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Preface

Multiscale process systems are characterized by highly coupled phenomena that
occur in disparate spatial and temporal scales. Examples include the chemical va-
por deposition of thin films, as well as ion-sputtering and catalytic processes where
gas-phase and surface processes strongly interact. Detailed modeling of multiscale
process systems naturally leads to continuum laws for the macroscopic (gas-phase)
phenomena coupled with stochastic simulations for the microscopic (surface) phe-
nomena. Control and optimization of multiscale process systems, targeting regula-
tion of microscopic properties like thin-film surface roughness, cannot be addressed
using existing methods that rely on continuum process models in the form of lin-
ear/nonlinear differential equations.

This book—the first of its kind—presents general, yet practical, methods for
model-based feedback control and optimization of multiscale process systems.
Beginning with an introduction to general issues on control and optimization of
multiscale processes and a review of previous work in this area, the book discusses
detailed modeling approaches for multiscale processes with emphasis on the the-
ory and implementation of kinetic Monte Carlo simulation, methods for feedback
control using kinetic Monte Carlo models, stochastic model construction and param-
eter estimation, predictive and covariance control using stochastic partial differential
equation models, and both steady-state and dynamic optimization algorithms that ef-
ficiently address coupled macroscopic and microscopic objectives. The methods are
applied to various multiscale/microscopic processes—including thin-film deposition
processes, an ion-sputtering process, and a catalytic CO oxidation process—and their
effectiveness and performance are evaluated through detailed computer simulations.
The book also includes discussions of practical implementation issues that can help
researchers and engineers understand the development and application of the meth-
ods in greater depth.

The book assumes a basic knowledge about differential equations, probability
theory, and control theory and is intended for researchers, graduate students, and
process control engineers.

In addition to our work, Dr. Dong Ni and doctoral candidate Gangshi Hu at
UCLA contributed greatly to the research results included in the book and in the
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Introduction

1.1 Motivation

Over the last 10 years, increasingly tight product quality specifications have motivated
extensive research on the development of control and optimization methods for
distributed and multiscale process systems using increasingly detailed process de-
scriptions. On one hand, for distributed process systems for which continuum laws
are applicable, nonlinear distributed parameter systems, such as nonlinear hyper-
bolic/parabolic partial differential equations (PDEs), Navier–Stokes equations, and
population balance equations are employed as the basis for the design of high-
performance feedback controllers used to regulate spatial temperature and con-
centration profiles in advanced materials processing applications, achieve wave
suppression and drag reduction in fluid dynamic systems, and shape particle size
distribution in particulate processes, respectively (see, for example, the special vol-
umes [34, 33] and the books [28, 29] for representative results and references in these
areas). On the other hand, for processes that involve coupling of macroscale phenom-
ena with important phenomena at mesoscopic/microscopic length scales, multiscale
systems coupling continuum-type distributed parameter systems with molecular
dynamics (MD) or kinetic Monte Carlo (MC/kMC) simulations are employed be-
cause of their ability to describe phenomena that are inaccessible with continuum
laws and equations.

An industrially important process where multiscale modeling is needed to
adequately describe the coupling of macroscopic and microscopic phenomena is
thin-film growth. Thin films of advanced materials are currently used in a very wide
range of applications, e.g., microelectronic devices, optics, micro-electro-mechanical
systems (MEMS), and biomedical products. Various deposition methods have been
developed and widely used to prepare thin films such as physical vapor deposition
(PVD) and chemical vapor deposition (CVD). However, the dependence of the thin-
film properties, such as uniformity, composition, and microstructure, on the deposi-
tion conditions is a severe constraint on reproducing the thin film’s performance.
Thus, real-time feedback control of thin-film deposition, based on fundamental

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 1,
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2 1 Introduction

models, becomes increasingly important in order to meet the stringent requirements
on the quality of thin films and reduce thin-film variability. While deposition unifor-
mity and composition control can be accomplished on the basis of continuum-type
distributed parameter models [see, for example, [28, 147] for results on rapid ther-
mal processing (RTP) and [6, 119] on plasma-enhanced chemical vapor deposition
(PECVD)], precise control of thin-film microstructure requires multiscale distributed
models that predict how the film state (microscopic scale) is affected by changes in
the controllable process parameters (macroscopic scale). In the remainder of this
chapter, we discuss the implications of these problems in the context of chemi-
cal process control applications and review some of the relevant literature on this
subject.

1.2 An Example of a Multiscale Process: Thin-Film Growth

Consider a conceptual thin-film growth process in a reactor with the split-inlet con-
figuration shown in Fig. 1.1. The bulk of the reactor can be modeled using two-
dimensional axisymmetric PDEs in cylindrical coordinates derived from continuum
conservation principles. The surface of the growing film is modeled using kMC sim-
ulations. Figure 1.1 also shows the domains of definition of the two models. It should
be noted that the microscopic domain is infinitesimally thin. Substrate temperature
profiles can be manipulated using three circular heaters with heat being conducted in
the in-between areas. Gaseous species A and B represent the precursors of a and b
(components of compound semiconductor ab), respectively, and are assumed to un-
dergo the gas-phase reactions in the bulk of the reactor and gas-surface reactions on
the wafer surface, shown in Table 1.1. Reaction G1 represents the thermal decompo-
sition of precursor A into A′, which adsorbs on the substrate (reaction S1). The rate
parameter for adsorption of A′ (reaction S1) is assumed to follow that of an ideal
gas, i.e. ka = s0

√
(RT )/(2πM), where s0 is the sticking coefficient. The rate of

Heaters

Wafer

Feed stream

Rotating pedestral

Effluent stream

simulations
Continuum

simulations
Microscopic

Fig. 1.1. Schematic of the reactor with a split-inlet configuration.
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Table 1.1. Process reaction scheme.

Reaction
(G1) A → A′ + C
(S1) A′ → a(s) + D
(S2) B → b(s)

adsorption of B (reaction S2) is assumed to be equal to S1 so that the stoichiome-
try of the film is preserved. In addition to adsorption, thin-film surface diffusion and
desorption of adsorbed species are other significant processes that affect the mor-
phology of the surface. The rate of desorption of surface species into the gas phase
and the rate of surface diffusion are given by

kn
d = kd0e

−Ed0+nΔE

kBT , kn
m = kBT

h e
−E+nΔE

kB T , (1.1)

where h is Planck’s constant, E and Ed0 are the energy barriers for surface diffusion
and desorption, respectively, ΔE is the interaction energy between two neighboring
adsorbed species, and n ∈ {0, 1, 2, 3, 4} is the number of nearest neighbors.

The macroscopic model for the gas phase of the reactor is given by the following
conservation equations:

� · (ρu)= 0, � · (ρu u) −� · T − ρg = 0,

� · (ρuT )=−� ·q −
∑

k

hkWkω̇,

� · (ρuYk)=−� ·jk + Wkω̇k, k ∈ {1, 2, 3, 4},

jk =−Dkρ � Yk − DT,k
�T

T
,

(1.2)

where ρ is the gas-phase density, u is the fluid velocity vector, T is the stress ten-
sor, Cp is the specific heat capacity, T is the temperature, q is the heat flux due to
conduction, and hk, Wk , and Yk are the partial specific enthalpy, molecular weight,
and the mass fraction of gas species. ω̇k and jk are the net production rate due to
homogeneous reactions and mass flux, respectively, of species k. Dk and DT,k in
the flux equation correspond to mass diffusion and thermal diffusion coefficients,
respectively.

The flux boundary condition at the deposition surface is given by

j = Rad = kaCA′ |s− < kd > f(Ca.s, T, wA′A′), (1.3)

where Rad is the net rate of adsorption, Ts is the surface temperature, and < kd >,
CA′ |s, and Ca.s are the effective desorption rate, concentration of A′ over the sub-
strate, and average surface concentration of adsorbed a(s), respectively. Function
f describes the influence of lateral interactions on the desorption rate, which cannot
be ascertained without knowledge of microscopic surface structure. Kinetic Monte
Carlo models can be used to account for the surface microstructure and estimate the
right-hand side of Eq. (1.3), which links the two levels of descriptions.
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Kinetic Monte Carlo simulation approximates the solution of the following
stochastic master equation [43] through Monte Carlo sampling:

∂P (σ, t)
∂t

=
∑

σ′

W (σ′, σ)P (σ′, t) − W (σ, σ′)P (σ, t) , (1.4)

where σ and σ′ are surface configurations and P (σ, t) is the probability that the
surface configuration is in state σ at time t, and W (σ, σ′) is the probability per unit
time of transition from σ to σ′. It is assumed that at any instant, only a single event
(out of all possible events) occurs, according to its relative probability. After each
event, time is incremented based on the total rate of all surface microprocesses.

A typical control problem for this process is to regulate the thin-film growth rate
(macroscale objective) and the surface roughness (microscale objective) by manipu-
lating the gas-phase composition and substrate temperature.

1.3 Background on Control and Optimization of Multiscale
Process Systems

The objective of this section is to provide a review of results on control and optimiza-
tion of multiscale systems coupling continuum-type distributed parameter systems
with atomistic/particle simulations. We emphasize the progress recently made on the
precise regulation of spatial temperature and concentration profiles in distributed pro-
cess systems for which continuum laws are applicable and of material microstructure
in advanced materials processing applications for which atomistic models are used.
The review is not intended to be exhaustive; its objective is to provide the necessary
background for the results of this book.

Research on the dynamics of distributed parameter systems has led to the dis-
covery that the dominant dynamic behavior of many highly dissipative distributed
process systems can be characterized by a small number of degrees of freedom,
which has led to the introduction of rigorous mathematical concepts (e.g., inertial
manifold (IM) [145]) to capture this type of behavior and to the development of
advanced model-reduction techniques for deriving low-dimensional approximations
that accurately reproduce the dynamics and solutions of various classes of infinite-
dimensional systems. However, the explicit derivation of the inertial form requires
the computation of the analytic form of the IM. Unfortunately, IMs have been proven
to exist only for certain classes of PDEs (for example, Kuramoto–Sivashinsky equa-
tion and some diffusion-reaction equations [145]), and even then it is almost im-
possible to derive their analytic form. In order to overcome the problems associated
with the existence and construction of IMs, the concept of approximate inertial man-
ifold (AIM) has been introduced (see, for example, [47, 46, 148, 77]) and used for
the derivation of ODE systems whose dynamic behavior approximates that of the
inertial form.

More recently, significant developments in control nonlinear distributed param-
eter systems have been accomplished by bringing together concepts from nonlinear
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dynamics of infinite-dimensional systems and nonlinear control theory. Specifically,
research has led to the development of a general and practical framework for the
synthesis of nonlinear low-order feedback controllers used to regulate spatial tem-
perature and concentration profiles in advanced materials processing applications,
achieve wave suppression and drag reduction in fluid dynamic systems, and shape
particle size distribution in particulate processes, respectively (see the books [28, 29]
for results). The key idea is the development of a singular perturbation formulation of
Galerkin’s method that leads to a practical procedure for the construction of approx-
imate inertial manifolds (AIMs) of highly dissipative, infinite-dimensional systems.
The AIMs are used to derive accurate low-order approximations of the PDE sys-
tems that form the basis for the synthesis of nonlinear low-order output feedback
controllers. Within the developed framework, the infinite-dimensional, closed-loop
system stability, performance, and robustness properties have been precisely charac-
terized in terms of the accuracy of the approximation of the low-dimensional mod-
els. Due to the low-dimensional structure of the controllers, the computation of the
control action involves the solution of a small set of ordinary differential equations
(ODEs); thus, the developed controllers can be readily implemented in real time with
reasonable computing power.

However, many applications of industrial relevance require product quality spec-
ifications that are characterized by phenomena that evolve at both macroscopic
and microscopic length scales. In general, continuum mathematical descriptions
that apply to macroscopic phenomena are inadequate at microscopic length scales.
Atomistic/particle simulation techniques such as molecular dynamics, kinetic Monte
Carlo, and Lattice–Boltzmann (LB) simulations, on the other hand, are computation-
ally too expensive to be employed for macroscopic process domains. This problem
has been addressed through the development of hybrid continuum/atomistic mul-
tiscale models that augment the continuum macroscopic description of a process
by embedding microscopic descriptions only at small subdomains of the process
where submacroscopic resolution is required. Such models have been developed
for fluid flows [120, 52, 96, 44], moving contact line [66], transient fluid flows
with heat transfer [38], crack propagation [23, 114], chemical vapor deposition
[155, 76, 156, 125, 90, 112], and biological systems [108, 161, 4], to name a few.
In most of these multiscale frameworks, the inner (microscopic) and outer (macro-
scopic) models evolve concurrently and interact through exchange of particles such
that mass, momentum, and energy remain conserved.

Fundamental mathematical modeling techniques have been developed to de-
scribe the microscopic features of surfaces formed by surface microprocesses, which
include (1) kinetic Monte Carlo methods [57, 43, 133, 127] and (2) stochastic partial
differential equations [39, 158, 36, 91]. The kinetic Monte Carlo simulation methods
can be used to predict average properties of thin films (which are of interest from
a control point of view; for example, surface roughness), by explicitly accounting
for the microprocesses that directly shape thin-film microstructure. Stochastic PDEs
contain the surface morphology information of thin films, and, thus, they may be
used for the purpose of feedback controller design. For example, it has been experi-
mentally verified that the Kardar–Parisi–Zhang (KPZ) equation [82] can describe the
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evolution of the surface morphology of gallium arsenide (GaAs) thin films, which is
consistent with the surface measured by atomic force microscopy (AFM) [13, 79].
Furthermore, based on the fact that kinetic Monte Carlo simulations provide real-
izations of a stochastic process that are consistent with the master equation that de-
scribes the evolution of the probability distribution of the system being at a certain
microconfiguration, a method to construct reduced-order approximations of the mas-
ter equation was reported in [51]. Recently, a method was also developed to identify
an empirical input–output model for a copper electrodeposition process using simu-
lation data from a coupled kMC and finite-difference simulation code and to perform
controller design using the identified model [130].

In the context of control of processes described by microscopic simulations,
a so-called coarse time-stepper approach [146, 53, 106, 54] has been utilized to
design linear discrete-time controllers for lumped [137, 134] and distributed pro-
cesses [11, 136] described by microscopic simulations. This approach circumvents
the derivation of a closed-form macroscopic model for the process by identifying the
essential coarse-scale system behavior and is effective in controlling macroscopic
variables that are low statistical moments of the microscopic distributions (e.g., sur-
face coverage, which is the zeroth moment of species distribution on a lattice). How-
ever, to control higher statistical moments of the microscopic distributions, such as
the surface roughness (the second moment of height distribution on a lattice) or even
the microscopic configuration (such as the surface morphology), deterministic mod-
els may not be sufficient. This is because the effect of the stochastic nature of the mi-
croscopic processes becomes very significant in these cases and must be addressed
in both the model construction and the controller design.

The problem of optimal operation of multiscale processes is gaining considerable
significance due to increasingly more stringent performance specifications. This has
led to the incorporation of detailed process models into process optimization frame-
works. Nonlinear model-reduction techniques for transport-reaction processes oper-
ating at steady state [17, 18] and unsteady state [9] were recently employed to for-
mulate approximate low-order optimization problems. In these investigations spatial
discretization was carried out using the method of weighted residuals with empir-
ical eigenfunctions as basis functions. These eigenfunctions were generated by the
application of Karhunen–Loève expansion (KLE, also known as proper orthogonal
decomposition, principal component analysis, and method of empirical eigenfunc-
tions [138, 139]) on an ensemble of solution data of the PDEs for the span of process
parameters. The motivation behind this approach was the presence of a finite num-
ber of dominant spatial patterns (eigenmodes) in the solution of highly dissipative
PDEs that govern its long-time dynamics, while the remaining infinite-dimensional
(stable) fast modes relax to these finite-dimensional slow dynamics [28, 145]. The
nonlinear programs (NLPs) thus formed are significantly lower in size and can be
solved faster than those that result from discretization of the distributed parameter
system with finite differences/elements. The principal reason that allows model re-
duction is that the spatiotemporal behavior of the given PDE system is accounted for
in the shape of the empirical eigenfunctions. An additional reduction in the size of
the NLP can be made if temporal discretization is performed only for the vector of
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control variables and ODE equality constraints are directly integrated in time (the
so-called control vector parametrization (CVP) scheme [19, 21, 41, 153, 131]). The
advantage of the control vector parameterization-based scheme is that optimization
is performed for the reduced set of discretized decision variables rather than for the
complete set of discretized variables. Incorporation of second-order derivative in-
formation into the CVP framework for improved efficiency has also been addressed
in [14, 15]. Hence, for distributed processes, the combination of spatial discretiza-
tion using Galerkin/KLE and temporal discretization using CVP offers an attractive
strategy for the efficient solution of the corresponding optimal control problems.

Process optimization with microscopic simulations presents a distinct set of chal-
lenges. Unlike continuum models for macroscopic phenomena, microscopic models
are unavailable in closed form. This implies that the corresponding optimal control
problem is constrained by dynamic equalities whose explicit form is unavailable.
Moreover, since microscopic models are stochastic in nature, traditional gradient-
based algorithms have limited applicability. The standard approach for the solution
of such problems is to compute the objective functional as a “black box” and em-
ploy direct search algorithms such as Hooke–Jeeves, Nelder–Mead, pattern search
[149, 94, 95], etc. to compute the optimal control trajectory [136, 11]. An alterna-
tive methodology for the global optimization of nonlinear programs constrained by
“nonfactorable” constraints (constraints defined by a computational model for which
no explicit analytical representation is available) was proposed in [113]. However,
the above approaches are inefficient if the computation of the cost functional (or
the black-box simulation) is expensive, which is usually the case with microscopic
simulations. A number of approaches are specially designed for problems where
computation of the objective function is expensive [22, 78], but most of them have
been employed for noise-free systems, which limits their applicability to the case of
optimization of processes described by microscopic simulations.

1.4 Objectives and Organization of the Book

Motivated by the industrial significance of multiscale process systems and the lack
of general control and optimization methods for such systems, the broad objectives
of this book are as follows:

• To present a framework for the design of real-time control systems that systemat-
ically integrates fundamental process models, model-reduction techniques, feed-
back control laws, and real-time surface measurement techniques to regulate ma-
terial microstructure in multiscale processes.

• To present a methodology for the efficient solution of optimization problems
when the cost functional and/or equality constraints span multiple length scales
and necessitate multiscale process models.

• To provide fundamental understanding and insight into the nature of the control
and optimization problems for process systems characterized by coupled macro-
scopic and microscopic phenomena.
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• To illustrate the application of the proposed control and optimization methods to
material preparation processes of practical interest and document their effective-
ness and advantages with respect to existing control and optimization methods.

The rest of the book is organized as follows. Chapter 2 reviews the challenges
and modeling approaches for multiscale processes and provides the necessary back-
ground for presenting our methods for control and optimization of multiscale process
systems. A detailed multiscale model of a thin-film growth process in a stagna-
tion point geometry is presented. Specifically, a set of PDEs is used to model the
gas-phase dynamics and the kinetic Monte Carlo model is used to model the thin-
film surface microstructure. The theoretical foundation of the kinetic Monte Carlo
simulation is reviewed. It is demonstrated that by assuming the surface micropro-
cesses are Poisson processes, both the master equation and the kinetic Monte Carlo
simulation algorithm can be derived. Finally, a tutorial is given to show the details of
the algorithm for kinetic Monte Carlo simulation of a thin-film growth process.

Chapter 3 addresses the real-time feedback control of thin-film growth using ki-
netic Monte Carlo models. A real-time estimator is first constructed that allows es-
timates of the surface roughness and growth rate to be estimated at a time scale
comparable to the real-time evolution of the process. The real-time estimates enable
the design of feedback controllers to regulate the thin-film growth process. Methods
for the design of single-input–single-output (SISO), multiple-input–multiple-output
(MIMO), and predictive controllers using kMC models are then presented. The appli-
cations of the developed real-time feedback control methods are illustrated through
two thin-film growth processes.

Stochastic partial differential equations (PDEs), as closed-form microscopic
models, arise naturally in the modeling of the evolution of the surface height pro-
file of ultra-thin films in a variety of material preparation processes and can be used
as a basis for model-based controller synthesis. Chapter 4 focuses on the methods
for the construction of linear and nonlinear stochastic PDEs. The construction of
linear stochastic PDE models for thin-film deposition processes involves the deriva-
tion of the analytical solution for the statistical moments of the state of the pro-
cess and the generation of surface snapshots for different instants during process
evolution using kMC simulations. A linear stochastic PDE model is determined by
least-squares-fitting model parameters to match the kMC simulation results. Non-
linear stochastic PDE models are constructed by combining a priori knowledge on
the model structure and a novel model parameter estimation procedure. A determin-
istic finite-dimensional ODE system is first derived for the evolution of the state
covariance matrix for the dominant modes of the stochastic PDE. Model parame-
ters are subsequently estimated by using surface snapshots generated using a kMC
simulation and solving an overdetermined least-squares minimization problem. The
effectiveness of the methods is demonstrated through applications to two thin-film
deposition processes and an ion-sputtering process.

In Chapter 5, we present methods for model-based controller design based on
the stochastic PDEs to control the thin-film surface roughness. A method for mul-
tivariable model predictive control using linear stochastic PDEs is first presented.



1.4 Objectives and Organization of the Book 9

The method results in the design of a computationally efficient multivariable predic-
tive control algorithm that is successfully applied to the kMC models of thin-film
deposition processes taking place on both 1D and 2D lattices to regulate the thin-
film thickness and surface roughness at desired levels. When spatially distributed
sensing and actuation are available, the surface roughness can be regulated using
the covariance control technique. A method for linear covariance controller design
is first developed and is demonstrated through application to the kMC model of a
1D thin-film growth process whose surface height evolution can be described by
the Edwards–Wilkinson equation. Motivated by the fact that nonlinearities exist in
many material preparation processes in which the surface evolution can be modeled
by nonlinear stochastic PDEs, we also propose a method for nonlinear covariance
controller design based on nonlinear stochastic PDEs. The stochastic KSE is used
to evaluate the developed method. The proposed nonlinear controller is applied to
a high-order approximation of the stochastic KSE and the kMC model of an ion-
sputtering process.

Chapter 6 addresses the issue of efficient solution of optimization problems when
the cost functional and/or equality constraints span multiple length scales and neces-
sitate multiscale process models. We consider a conceptual thin-film epitaxy process
and optimize the process operation for two simultaneous objectives that span mul-
tiple length scales: (1) to maximize the thickness uniformity of the deposited film
(macroscopic objective) and (2) to minimize the surface roughness of the deposited
film (microscopic objective) across the wafer surface at the end of the process cy-
cle. A multiscale process model is formulated linking continuum conservation laws
for reactor-scale phenomena and kMC simulations for the microscopic film-surface
processes. The computational intensity of the multiscale process model prohibits its
direct incorporation into process optimization. To address this issue, order-reduction
techniques for dissipative PDEs are linked with the adaptive tabulation scheme for
the solution data from the microscopic model to derive a computationally efficient
multiscale model that forms the equality constraints of the optimization problem.
The process is modeled mathematically using continuum conservation laws and the
microscopic film-surface processes are modeled using kMC simulations. Initially, we
calculate optimal substrate temperature profiles for a steady-state process operation
such that the grown thin films have a high degree of spatial uniformity and, simulta-
neously, low surface roughness. Subsequently, we improve the process operation by
computing time-varying substrate temperature radial profiles and inlet concentration
profiles of the precursors to meet the optimization objectives.

Chapter 7 extends the methodology outlined in the previous chapter to efficient
solution of dynamic optimization problems for multiscale processes coupling con-
tinuum and discrete descriptions. The approach relies on the reduction of the contin-
uum system using Karhunen–Loève expansion (KLE) and the discrete system using
in situ adaptive tabulation (ISAT). The reduced systems are linked together to for-
mulate a computationally efficient multiscale model. Consequently, standard search
algorithms are employed for the solution of the optimization problem. The approach
is demonstrated on two numerical examples describing catalytic oxidation of CO to
CO2. In the first case, lateral interactions between adsorbed species are neglected and



10 1 Introduction

the mobility of adsorbed species is assumed to be infinitely fast, so that the system
can be approximated as a well-mixed system. In the latter case, nearest-neighbor
interactions between adsorbed CO molecules are introduced along with the finite
mobility of the adsorbed species. The microscopic system is linked to a macroscopic
system describing diffusion of CO and O2 on the catalyst surface. In both cases, op-
timal inlet concentration profiles are computed to guide the microscopic system from
one stable stationary state to another stable stationary state.



2

Multiscale Process Modeling and Simulation

2.1 Overview of Multiscale Modeling

A large number of the processes relevant to the chemical process industry necessi-
tate the consideration of transport phenomena (fluid flow, heat and mass transfer),
often coupled with chemical reactions. Examples range from reactive distillation in
petroleum processing to plasma-enhanced chemical vapor deposition, etching, and
metalorganic vapor-phase epitaxy in semiconductor manufacturing. Mathematical
descriptions of these transport-reaction processes can be derived from dynamic con-
servation equations and usually are comprised of highly dissipative partial differ-
ential equations (PDEs). In addition, efforts have also gained momentum toward
detailed modeling of processes at microscopic length scales. To this end, atom-
istic/particle simulation techniques such as molecular dynamics (MD), kinetic Monte
Carlo (KMC), Lattice–Boltzmann (LB), etc. have been utilized in place of traditional
continuum or mean-field approaches. The advantage of using atomistic models is
their capability to describe phenomena whose characteristic length and time scales
are much smaller than those for which the continuum approximation holds. Exam-
ples where microscopic simulations have been utilized include modeling of homoge-
neous reacting systems [57, 59, 5], biological systems [110, 126, 140], microstruc-
ture evolution during thin-film growth [133, 61, 109, 60], crack propagation [143],
and fluid flow [96, 16], to name a few.

An industrially important process where multiscale modeling is needed to ade-
quately describe the coupling of macroscopic and microscopic phenomena is thin-
film growth. Thin films of advanced materials are currently used in a very wide range
of applications, e.g., microelectronic devices, optics, micro-electro-mechanical sys-
tems (MEMS), and biomedical products. Various deposition methods have been de-
veloped and widely used to prepare thin films such as physical vapor deposition
(PVD) and chemical vapor deposition (CVD). In the remainder of this chapter, we
discuss a detailed multiscale model of a thin-film growth process.

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 2,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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2.2 Thin-Film Growth Process

In this section, in order to discuss an example of multiscale modeling and provide
the necessary background for presenting our methods for control and optimization
of process systems using multiscale models, we consider the growth of a thin film
from a fluid in a vertical, stagnation-flow geometry. The process is shown in Fig. 2.1.
In this geometry, the inlet fluid flow forms a uniform boundary layer adjacent to
the surface of the substrate and precursor atoms diffuse through the boundary layer
and deposit a thin film [49]. Upon arrival at the surface, the precursor atoms are
adsorbed onto the surface. Subsequently, adsorbed atoms may desorb to the gas phase
or migrate on the surface.

From a modeling point of view, the major challenge is the integration of the wide
range of length and time scales that the process encompasses [155]. Specifically, in
the gas phase, the processes of heat/mass transport can be adequately modeled under
the hypothesis of continuum, thereby leading to PDE models for chamber tempera-
ture and species concentration. However, when the microstructure of the surface is
studied, microscopic events such as atom adsorption, desorption, and migration have
to be considered, and the length scale of interest reduces dramatically to the order of
that of several atoms. Under such a small length scale, the continuum hypothesis is
no longer valid and deterministic PDEs cannot be used to describe the microscopic
phenomena. Microscopic simulation techniques should be employed to describe the
evolution of the surface microstructure.

Although different modeling approaches are needed to model the macroscopic
and microscopic phenomena of the process, there are strong interactions between the
macro- and microscale phenomena. For example, the concentration of the precursor
in the inlet gas governs the rate of adsorption of atoms on the surface, which, in turn,
influences the surface roughness. On the other hand, the density of the adatoms on
the surface affects the rate of desorption of atoms from the surface to the gas phase,
which, in turn, influences the gas-phase concentration of the precursor. A multiscale
model [155] is employed in this work to capture the evolution of both macroscopic
and microscopic phenomena of the thin-film growth process as well as their inter-
actions. A set of PDEs derived from the mass, momentum, and energy balances is

Desorption

Gas phase

MigrationAdsorption
Surface

Fig. 2.1. Illustration of the thin-film growth process.
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used to describe the gas-phase dynamics. Kinetic Monte Carlo (MC) simulation is
employed to capture the evolution of the surface microstructure. Furthermore, the
parameters of MC simulation such as the temperature and precursor concentration
are provided by the solution of PDE, and the results from the kinetic MC simula-
tion are used to determine the boundary conditions of the PDEs of the macroscopic
model. In the remainder of this section, we describe the model for the gas phase and
the surface microstructure for the thin-film growth process of Fig. 2.1.

2.3 Gas-Phase Model

Under the assumption of axisymmetric flow, the gas phase can be modeled through
continuum-type momentum, energy, and mass balances as follows [90]:
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The following boundary conditions are used for η → ∞:

T = Tbulk,
∂f

∂η
= 1, yj = yjb, j = 1, . . . , Ng, (2.4)

and for η → 0 (surface):
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(2.5)

where f is the dimensionless stream function, ra and rd are the rates of adsorption
and desorption, respectively, η is the dimensionless distance to the surface, ρ is the
density of the mixture, Pr is the Prandtl number, yj and Scj are the mole fraction
and Schmidt number of species j, respectively, μb and ρb are the viscosity and the
density of the bulk, respectively, a is the hydrodynamic strain rate, and τ = 2at is
the dimensionless time.

Although the macroscopic model describes the evolution of the precursor con-
centration and temperature (which influence the configuration of the growing sur-
face), no direct information about the surface microstructure is available from the
macroscopic model. Furthermore, the boundary conditions for the mass-transfer
equation of the growing species depend on the rate of adsorption and desorption.
Therefore, a microscopic model is necessary to model the surface microstructure
and to determine the boundary conditions of the mass-transfer equation.
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2.4 Surface Microstructure Model

The thin-film growth of Fig. 2.1 includes three processes: the adsorption of atoms
from the gas phase to the surface, the desorption of atoms from the surface to the
gas phase, and the migration of atoms on the surface. In this study, we consider
multilayer growth and assume that all the surface sites are available for adsorption
at all times, therefore, the adsorption rate is treated as site-independent. For an ideal
gas, the adsorption rate is given by the kinetic theory [90]

ra =
s0P

2a
√

2πmkTCtot

, (2.6)

where s0 is the sticking coefficient, k is the Boltzmann constant, P is the partial
pressure of the precursor, Ctot is the concentration of sites on the surface, m is the
molecular weight of the precursor, T is the gas-phase temperature above the surface,
and a is the strain rate. The rate of desorption of an atom depends on the atom’s
local microenvironment (i.e., interactions with nearest neighbors) and the local ac-
tivation energy. Under the consideration of only first nearest-neighbor interactions,
the desorption rate of an atom from the surface with n first nearest neighbors is

rd(n) =
ν0

2a
exp

(
−nE

kT

)
, (2.7)

where E is the energy associated with a single bond on the surface and ν0 is the
frequency of events, which is determined by the following expression:

ν0 = kd0 exp
(
−Ed

kT

)
, (2.8)

where kd0 is an event-frequency constant and Ed is the energy associated with des-
orption. Finally, the surface migration is modeled as desorption followed by re-
adsorption [60], and the migration rate is given by

rm(n) =
ν0A

2a
exp

(
−nE

kT

)
, (2.9)

where A is associated with the energy difference that an atom on a flat surface has to
overcome in jumping from one lattice site to an adjacent one and A is given as

A = exp
(

Ed − Em

kT

)
, (2.10)

where Em is the energy associated with migration.

2.4.1 Poisson Processes and Master Equation

The formation of the thin film by adsorption, migration, and desorption is a stochastic
process because (1) the exact time and location of the occurrence of one specific
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surface microprocess (adsorption, migration, or desorption) are unknown, and (2)
the probability with which each surface microprocess may occur is only available.
Therefore, the surface evolution model should be established based on probability
theory.

Specifically, we treat the surface microprocesses as Poisson processes, which
means that the following assumptions are made [111, 42, 57, 43]:

Assumption 2.1. The probability that k events occur in the time interval (t, t + T )
is independent of t.

Assumption 2.2. The probability that k events occur in the time interval (t, t+T ) is
independent of the number of events occurring in any nonoverlapping time interval.

Assumption 2.3. The probability that an event occurs in an infinitesimal time inter-
val [t, t + dt) is equal to W · dt (where W is the mean count rate of the event), and
the probability of more than one event occurring in an infinitesimal time interval is
negligible.

Based on these three assumptions, the time evolution of probabilities that the
surface is in one specific configuration can be derived. The configuration of a surface
is characterized as the height of each surface atom at each surface site. If P (α, t)
represents the probability that the system is in configuration α at time t, based on
Assumptions 2.2 and 2.3, we have the following equation for P (α, t + dt):

P (α, t + dt) = P (α, t)P0α +
∑

β

P (β, t)P1β , (2.11)

where P0α is the probability that no event occurs in the time interval (t, t+dt) given
that the surface is in configuration α at t, P (β, t) is the probability that the surface
is in configuration β at t, and P1β is the probability that one event occurs in the time
interval (t, t+dt) given that the surface is in configuration β at t, and the occurrence
of this event results in a transition from configuration β to configuration α.

P0α and P1β have the following expression (a detailed proof can be found in
[58]). Specifically,

P0α = 1 −
∑

β

Wβαdt, (2.12)

where Wβαdt is the probability that an event occurs in the time interval [t, t + dt),
which results in a transition from configuration α to a configuration β; therefore,∑

β Wβαdt is the probability that any one event occurs in the time interval (t, t+dt)
provided that the surface configuration is α at t. Moreover,

P1β = Wαβdt, (2.13)

where Wαβdt is the probability that an event occurs in the time interval [t, t + dt)
and the occurrence of this event results in a transition from configuration β to con-
figuration α.
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By substituting Eqs. (2.12) and (2.13) into Eq. (2.11) and taking the limit dt → 0,
we obtain a differential equation describing the time evolution of the probability that
the surface is in configuration α:

dP (α, t)
dt

=
∑

β

P (β, t)Wαβ −
∑

β

P (α, t)Wβα. (2.14)

Eq. (2.14) is the so-called ‘master equation’ (ME) for a stochastic process. The
ME has a simple, linear structure; however, it is difficult to write the explicit form
of Eq. (2.14) for any realistic system because the number of the possible states
is extremely large for most systems of a realistic size. For example, for a system
with 10 × 10 sites and a maximum height of 1, the number of configurations is
2100 ≈ 1030. This makes the direct solution of Eq. (2.14), for any system of meaning-
ful size, using numerical methods for integration of ordinary differential equations
(e.g., Runge–Kutta) impossible.

2.4.2 Theoretical Foundation of Kinetic Monte Carlo Simulation

Monte Carlo techniques provide a way to obtain unbiased realizations of a stochas-
tic process, which is consistent with the ME. The consistency of the Monte Carlo
simulation to the ME is based on the fact that in a Monte Carlo simulation, the time
sequence of Monte Carlo events is constructed following a probability density func-
tion that is derived based on the same assumptions (Assumptions 2.1–2.3) as those
used in the derivation of the master equation [57].

A Monte Carlo event is characterized by both the type of the event and the site
in which the event is executed. We use e(x; i, j) to represent a Monte Carlo event of
type x executed on the site (i, j), where x ∈ {a, m, d}, where x = a corresponds to
an adsorption event, x = m corresponds to a migration event, and x = d corresponds
to a desorption event, 1 ≤ i, j ≤ N , and N × N is the size of the lattice.

The sequence of Monte Carlo events can be constructed based on the probability
density function, F (τ, e), defined as follows:

Definition 2.1. F (τ, e)dτ is the probability at time t that event e will occur in the
infinitesimal time interval (t + τ, t + τ + dτ).

We now compute the expression of F (τ, e) based on Assumptions 2.1 and 2.2:

F (τ, e)dτ = P0τPe, (2.15)

where P0τ is the probability that no event occurs in [t, t+τ), and Pe is the probability
that event e occurs in the time interval (t + τ, t + τ + dτ). Pe can be determined by
using Assumption 2.3 as follows:

Pe = Wedτ. (2.16)

P0τ can be calculated by sampling the duration (t, t + τ) into M identical time
intervals δτ = τ/M . When M → ∞, δτ is small enough so that each time interval
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of size δτ contains one event at most. Based on Assumption 2.3, the probability that
one event e occurs in δτ is Weδτ and, based on Assumption 2.2, the probability that
any one event occurs in δτ is

∑

e
Weδτ . Therefore, the probability that no events will

occur in δτ is
P0δτ = 1 −

∑

e

Weδτ, (2.17)

where P0δτ is the probability that no event occurs in one δτ interval and Weδτ is the
probability that one event e will occur in the δτ interval.

Eq. (2.17) can be applied to all the δτ time intervals in the duration (t, t + τ).
Therefore, the probability that no events will occur in the duration τ is

P0τ = lim
N→∞

PN
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. (2.18)

By substituting Eqs. (2.18) and (2.16) into (2.15) and using Wtot =
∑

e
We, the

probability density function, F (τ, e), is as follows:

F (τ, e) = We exp(−Wtotτ). (2.19)

Monte Carlo simulation constructs a sequence of events following the probability
density function shown in Eq. (2.19). Note that Eq. (2.19) is based on the same
assumptions as the master equation [Eq. (2.14)]; therefore, the kinetic Monte Carlo
simulation is able to provide an unbiased realization of a stochastic process that
is consistent with that described by the master equation. Many kinetic Monte Carlo
algorithms are available to simulate a stochastic dynamic process. In the remainder of
this section, we discuss in detail the theoretical foundation and steps in the so-called
“direct” method developed by [57] and of the algorithm used in the calculations.
The “direct” method is based on the fact that the two-variable probability density
function, Eq. (2.19), can be written as the product of two one-variable probability
functions:

F (τ, e)dτ = F1(τ)dτ · P (e|τ), (2.20)

where F (τ, e)dτ is the probability that event e will occur in the time interval (t +
τ, t+ τ +dτ), F1(τ)dτ is the probability that an event will occur in the time interval
(t + τ, t + τ + dτ), and P (e|τ) is the probability that the next event will be event e,
given that the next event will occur in (t + τ, t + τ + dτ).

Based on the addition theorem [111], F1(τ)dτ is the sum of F (τ, e)dτ over all
events:

F1(τ)dτ =
∑

e

F (τ, e)dτ. (2.21)

P (e|τ) can be obtained by substituting Eq. (2.21) into Eq. (2.20):
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P (e|τ) =
F (τ, e)

∑

e

F (τ, e)
, (2.22)

By substituting Eq. (2.19) into Eqs. (2.21) and (2.22), we obtain

F1(τ) = Wtot exp (−Wtotτ), (2.23)

P (e|τ) =
We

Wtot
, (2.24)

In the Monte Carlo simulation, Eq. (2.23) is used to determine the lifetime of a
Monte Carlo event and Eq. (2.24) is used to determine the Monte Carlo event to be
executed. To execute a Monte Carlo simulation, a pseudo-random number genera-
tor is used that generates random numbers following the uniform distribution in the
interval (0, 1). It has been proven by [57] that if a random number, ξ, follows the
uniform distribution in the unit interval, then the lifetime of a Monte Carlo event, τ ,
can be computed by

τ = − ln ξ

Wtot
. (2.25)

To demonstrate that the τ obtained by using Eq. (2.25) follows the probabil-
ity density function in Eq. (2.23), we first compute the probability that τ < T,
P (τ < T ), using Eq. (2.25). Specifically, we have

P (τ < T ) = P

(
− ln ξ

Wtot
< T

)
= P (exp(−WtotT ) < ξ < 1) . (2.26)

Because ξ follows the uniform distribution in the interval (0, 1), from Eq. (2.26)
we have that

P (τ < T ) = P (exp(−WtotT ) < ξ < 1) = 1 − exp(−WtotT ), (2.27)

whose corresponding probability density function, F ′
1(τ), is

F ′
1(τ) =

dP (τ < T )
dT

= Wtot exp(−WtotT ), (2.28)

which is the probability density function in Eq. (2.23). Therefore, the lifetime of each
Monte Carlo event, τ , calculated using Eq. (2.25) follows the probability density
function in Eq. (2.23), which is consistent with the master equation.

2.4.3 Kinetic Monte Carlo Simulation of Thin-Film Growth

In this section, we show the details of kinetic Monte Carlo simulation of thin-film
growth using the surface microstructure model presented above. We will demonstrate
the initialization, Monte Carlo event selection, execution of adsorption, desorption,
and migration events, computation of real time, and updating of the classes. In the
simulation, we use the (001) surface of a simple cubic lattice with periodic boundary
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conditions. The size of the simulation lattice is 10 × 10. The adsorption rate is site-
independent and is set to be 100/s. The substrate temperature is fixed at 800 K.
Both the bond energy and desorption energy are 0.74 eV and the migration energy
is 0.44 eV. The strain rate is 5 s−1. The desorption rate is 4.06 × exp(−10n)/s,
and the migration rate is 233.1 × exp(−10n)/s, where n is the number of nearest
neighbors. Note that the three rates are determined in a way that is consistent with
Eqs. (2.6)–(2.9).

Initializations

To start the simulation, the initial surface configuration should be specified. Although
there is no limitation on the initial surface configuration, in many applications, a per-
fect surface is assumed to start the simulation [97, 100, 155]. In computer memory,
the surface configuration can be stored in the form of a 2D array S, whose size is
equal to the size of the simulation lattice. Each element indicates the number of atoms
on the corresponding surface site of the substrate. In this simulation, a 10 × 10 zero
matrix can be used to represent the initial perfect surface of the 10 × 10 lattice (flat
surface with no atoms). A surface site is determined by its coordinates, (i, j), where
i and j are integers satisfying 1 ≤ i ≤ N and 1 ≤ j ≤ N and N is the size of the
lattice. When a 10×10 lattice is used in this simulation, N = 10. A (001) surface of
a simple cubic lattice is used in this simulation. The initial surface configuration and
the coordinates are shown in Fig. 2.2. Note that the same coordinate system will be
applied to all simulations in this section and will not be marked in figures of surface
configuration in the remainder of this section.

In the kMC simulation, all surface atoms need to be grouped according to the
number of their nearest neighbors. On the (001) surface of a simple cubic lattice, a
surface atom could have 0, 1, 2, 3, or 4 nearest neighbors. When the initial surface is
a perfect surface, there are no surface atoms. The groups of surface atoms with 0, 1,
2, 3, and 4 nearest neighbors are initialized as empty sets.

Finally, we need to initialize the total rates of adsorption, desorption, and migra-
tion. The adsorption rate is site-independent and is set to be 100/s in this study. The
initial total rate of adsorption is 1 × 104/s. Since there are no surface atoms on the

Fig. 2.2. Initial surface configuration of the kMC simulation of the thin-film growth.
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initial perfect surface, the initial values for the total rates of desorption and migration
are both zero [see also Eqs. (2.29) – (2.31) below].

Monte Carlo Event Selection

The Monte Carlo algorithm picks an event to be executed based on the probability
shown in Eq. (2.24). The probability of adsorption in an infinitesimal time interval
δτ is site-independent, and the probabilities of desorption and migration are only
dependent on the number of immediate side neighbors. To select a Monte Carlo
event, the surface atoms are grouped into five classes based on the number of side
neighbors (e.g., surface atoms have 0, 1, 2, 3, and 4 side neighbors); in each class, the
atoms have the same desorption and migration probabilities (adsorption probability
is site-independent). The total rate of adsorption, Wa, is computed as follows:

Wa = N2ra, (2.29)

where N is the size of the lattice and ra is the adsorption rate on each surface site
defined in Eq. (2.6).

The total rate of desorption, Wd, and the total rate of migration, Wm, are given
by

Wd =
4∑

i=0

Wdi , Wdi = Mi · rd(i) (2.30)

and

Wm =
4∑

i=0

Wmi , Wmi = Mi · rm(i), (2.31)

where Mi is the number of surface atoms that have i side neighbors, which is equal
to the number of atoms in each of the five classes, rd(i), defined in Eq. (2.7), is the
desorption rate of an atom from the surface with i first nearest neighbors, and rm(i),
defined in Eq. (2.9), is the migration rate of an atom from the surface with i first
nearest neighbors.

To select a Monte Carlo event based on the rates, a random number following the
uniform distribution in the unit interval, ζ, is generated. If 0 < ζ < Wa/(Wa+Wd+
Wm), the event is adsorption; if Wa/(Wa + Wd + Wm) < ζ < (Wa + Wd)/(Wa +
Wd + Wm), the event is desorption; if (Wa + Wd)/(Wa +Wd +Wm) < ζ < 1, the
event is migration. Since the initial values for Wd and Wm are zero in this simulation,
the first event must be an adsorption event.

Execution of a Monte Carlo Event: Adsorption

After the Monte Carlo event is selected, it needs to be executed. If the event is ad-
sorption, the site on which the adsorption event will occur needs to be picked and
the number of atoms on the selected site is increased by one. Since the adsorption
rate is site-independent, the site for an adsorption event should be randomly picked
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Fig. 2.3. The surface configuration after the execution of an adsorption event.

from all sites in the entire lattice. To randomly pick a site for an adsorption event,
two random numbers uniformly distributed in the unit interval, ζe,i and ζe,j , are first
generated. The site is determined as i = ceil(ζe,i × N) and j = ceil(ζe,j × N),
where the function ceil(·) rounds the element to the nearest integer toward infinity.
In this simulation, we get ζe,i = 0.6068 and ζe,j = 0.4860. The site is, therefore,
picked as (7, 5). An atom is added to the site (7, 5) as a result of the adsorption event.
In computer memory, the 2D array S, which stores the surface configuration, is up-
dated as S(i, j) = S(i, j) + 1 by assuming that its index begins with 1. The surface
configuration after the execution of the adsorption event is shown in Fig. 2.3.

Remark 2.1. In above discussion, we assume that the array index begins with 1,
which is the case for programming languages such as MATLAB and Fortran. Note
that in some other programming languages, such as Java, C, and C++, array indices
begin with 0. In that case, the 2D array S, which stores the surface configuration,
should be updated as S(i− 1, j − 1) = S(i − 1, j − 1) + 1. In the remainder of this
discussion, we consider the case where the array index begins with 1.

Compute the Real Time

Upon an executed event, a real-time increment Δt is computed by using Eq. (2.25):

Δt =
− ln ξ

Wa + Wd + Wm
, (2.32)

where ξ is a random number in the (0, 1) interval.
In this simulation, Wa = 1 × 104/s, Wd = 0, and Wm = 0. Using a random

number generator, we get a random number in the (0, 1) interval, ξ = 0.6154. Ac-
cording to Eq. (2.32), the real time of the adsorption event is Δt = − ln ξ/(Wa +
Wd + Wm) = 4.855× 10−5s.

Update the Five Classes

After the execution of a Monte Carlo event, the surface configuration is changed.
As a result, the number of nearest neighbors of the surface atoms affected by the
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Monte Carlo event is also changed. The five classes and the rates need to be updated
accordingly. Note that although the update of the classes can be done by screening
the entire lattice, it is more efficient to update the classes locally [155].

In this simulation, the adsorption of the atom on site (7, 5) adds an atom that has
zero neighbors so that the number of surface atoms having zero neighbors increases
from zero to one. Accordingly, the total desorption rate changes from Wd = 0 to
Wd = 4.06/s and the total migration rate changes from Wm = 0 to Wm = 233.1/s.
Since the total adsorption rate is site-independent, it remains to be Wa = 1× 104/s.
It can be seen that one Monte Carlo event could substantially change the total rates
of desorption and migration.

After the real time is advanced by Δt and the five classes are updated, the simula-
tion algorithm goes back to the step of Monte Carlo event selection to start executing
the next event. In this way, the simulation continues until it is terminated by the user.

In the remainder of this section, we will also show how to execute desorption
and migration events. It can be observed that in the initial stage of the simulation,
the total rates of desorption and migration are significantly smaller than the total
rate of adsorption. However, the rates of desorption and migration increase signifi-
cantly when more surface atoms are available due to random adsorption events. To
demonstrate how to execute desorption and migration events, we first have multiple
atoms adsorbed onto the surface, so that the total rates of desorption and migration
are comparable to the total rate of adsorption.

Surface After Multiple Adsorption Events

We continue the Monte Carlo simulation until 30 adsorption events are executed.
The resulting surface configuration matrix is shown in Eq. (2.33) and the resulting
surface configuration is shown in Fig. 2.4.

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 2 0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 0 1
0 0 0 2 1 1 0 0 0 0
1 0 2 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 2
0 0 0 0 0 0 0 0 0 1
0 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

. (2.33)

By grouping all surface atoms based on the number of nearest neighbors, we
have that M0 = 8, M1 = 14, M2 = 4, M3 = 0, and M4 = 74. The coordinates
of surface atoms in each group are also saved. The total rates are Wd = 32.48/s,
Wm = 1864.9, and Wa = 1 × 104/s.
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Fig. 2.4. The surface configuration after 30 adsorption events.

Execution of a Monte Carlo Event: Desorption

In the Monte Carlo event selection step, if the generated random number, ζ, satisfies
Wa/(Wa + Wd + Wm) < ζ < (Wa + Wd)/(Wa + Wd + Wm), a desorption event
is selected. If the event is a desorption, the kth class in which the desorption event
will occur can be selected by finding an integer k ∈ {0, 1, 2, 3, 4} such that

Wa +
k−1∑

i=0

Wdi

Wa + Wd + Wm
< ζ <

Wa +
k∑

i=0

Wdi

Wa + Wd + Wm
,

(2.34)

where Wdi is the total desorption rate of all atoms that have i nearest neighbors. Note
that when k = 0, Eq. (2.34) becomes

Wa

Wa + Wd + Wm
< ζ <

Wa + Wd0

Wa + Wd + Wm
. (2.35)

After the class is selected, a second random number is generated to select the site
where the desorption event will be executed.

The current surface configuration is shown in Fig. 2.4, and a random number is
generated to select the next Monte Carlo event to be executed. In this simulation, we
obtain ζ = 0.8413 for the selection of the next Monte Carlo event. Since ζ satisfies
Wa/(Wa + Wd + Wm) < ζ < (Wa + Wd)/(Wa + Wd + Wm), a desorption event
is selected. Then, Wdi is computed by multiplying the desorption rate for a surface
atom with i nearest neighbors by the total number of this type of surface atom, Mi.
For example, the desorption rate for a surface atom having zero side neighbors is
wd0 = 4.06 × exp(−10 × 0)/s = 4.06/s and there are M0 = 8 surface atoms that
have zero side neighbors. Wd0 is, therefore, equal to 4.06 × 8 = 32.48/s. In this
way, we also compute that Wd1 = 0.0026/s, Wd2 = 3.35 × 10−8/s, Wd3 = 0/s,
Wd4 = 1.28 × 10−15/s. Based on these rates, the zeroth class, which contains all
surface atoms having no nearest neighbors, is selected because ζ satisfies Wa/(Wa+
Wd + Wm) < ζ < (Wa + Wd0)/(Wa + Wd + Wm).
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Fig. 2.5. Execution of a desorption event: surface atom selected for desorption (left plot) and
the surface configuration after the desorption event (right plot).

In this simulation, the coordinates of the eight surface atoms in the zeroth class
are (1, 2), (3, 7), (5, 4), (6, 1), (6, 3), (6, 8), (7, 10), and (9, 9). To randomly select
one site among the eight sites in the zeroth class, the eight sites are indexed from 1 to
8 and a random number ζ1, following the uniform distribution in the (0, 1) interval,
is generated to pick a site. The index, i, of the site is determined as i = ceil(ζ1 ∗ 8).
In this example, we get ζ1 = 0.8099 and i = 7. The site subject to desorption is,
therefore, (7, 10). After the site is determined, the desorption event is executed by
removing the surface atom on site (7, 10). The surface atom subject to desorption is
the black one pointed out by the arrow shown in Fig. 2.5 (left plot); the right plot in
the figure shows the surface configuration after the desorption event.

Execution of a Monte Carlo Event: Migration

In the Monte Carlo event selection step, if the generated random number, ζ, satisfies
(Wa + Wd)/(Wa + Wd + Wm) < ζ < 1, a migration event is selected. If the event
is migration, the kth class in which the desorption event will occur can be selected
by finding an integer k ∈ {0, 1, 2, 3, 4} such that

Wa + Wd +
k−1∑

i=0

Wmi

Wa + Wd + Wm
< ζ <

Wa + Wd +
k∑

i=0

Wmi

Wa + Wd + Wm
,

(2.36)

where Wmi is the total migration rate of all atoms that have i nearest neighbors. Note
that when k = 0, Eq. (2.36) becomes

Wa + Wd

Wa + Wd + Wm
< ζ <

Wa + Wd + Wd0

Wa + Wd + Wm
. (2.37)

After the class is selected, a second random number is generated to select the site
where the migration event will be executed.

Consider again the surface shown in Fig. 2.4; a random number is generated to
select the next Monte Carlo event to be executed. In this example, we get a random
number ζ = 0.9278 for the selection of the next Monte Carlo event. Since ζ satisfies
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Fig. 2.6. Execution of a migration event: surface atom selected for migration marked as black
(left plot) and the surface configuration after the migration event (right plot).

(Wa + Wd)/(Wa + Wd + Wm) < ζ < 1, a migration event is selected. Then, Wmi

can be computed by multiplying the migration rate for a surface atom with i nearest
neighbors by the total number of this type of surface atom, Mi. For example, the
migration rate for a surface atom having zero nearest neighbors is wm0 = 233.1 ×
exp(−10 × 0)/s = 233.1/s and there are M0 = 8 surface atoms that have zero
nearest neighbors. Wm0 is, therefore, equal to 233.1 × 8 = 1864.8/s. In the same
way, we also compute that Wd1 = 0.0026/s, Wd2 = 3.35 × 10−8/s, Wd3 = 0/s
and Wd4 = 1.28 × 10−15/s. Based on these rates, the zeroth class, which contains
all surface atoms having no side neighbor, is selected because ζ satisfies Wa/(Wa +
Wd + Wm) < ζ < (Wa + Wd0)/(Wa + Wd + Wm).

The coordinates of the eight surface atoms in the zeroth class are (1, 2), (3, 7),
(5, 4), (6, 1), (6, 3), (6, 8), (7, 10), and (9, 9). To randomly select one site among
the eight sites in the zeroth class, these sites are indexed from 1 to 8 and a random
number, ζ1, following the uniform distribution in the (0, 1) interval, is generated to
pick a site. The index, i, of the site is determined as i = ceil(ζ1 ∗ 8). In this example,
we get ζ1 = 0.0989 and i = 1. The site subject to migration is, therefore, (1, 2). After
the site subject to migration is determined, a nearest neighbor that the surface atom
hops to also needs to be determined. Since a cubic lattice is used, the surface atom
could hop to, four nearest neighbors, which are (10, 2), (2, 2), (1, 1), and (1, 3). Note
that since the site (1, 2) is on the boundary of the 10×10 simulation lattice, its nearest
neighbor on the left is outside of the simulation lattice. Periodic boundary conditions
are applied and its nearest neighbor on the left becomes (10, 2). To randomly select
one nearest neighbor among the four nearest neighbors, the four nearest neighbors
are indexed from 1 to 4 and a random number, ζ2, following the uniform distribution
in the (0, 1) interval is generated to pick a nearest neighbor to which the surface atom
hops. The index, j, of the site is determined as j = ceil(ζ2 ∗ 4). In this example, we
get ζ2 = 0.1548 and j = 1. The surface atom on site (1, 2) hops to site (10, 2).
The migration event is executed by removing the surface atom on the site (1, 2) and
adding an atom on site (10, 2). Figure 2.6 (left plot) shows the surface configuration
before the migration event; the surface atom selected for migration on site (1, 2) is
marked as black. The right plot of the figure shows the surface configuration after
the migration event; the surface atom on site (10, 2) (marked as black) is the one that
hops from site (1, 2) due to the migration event.
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Control Using Kinetic Monte Carlo Models

3.1 Introduction

To effectively control material microstructure in multiscale process systems, an ap-
propriate process model for the microscopic phenomena should be incorporated in
the control system design. The surface of a thin film is directly formed by surface
microprocesses such as adsorption, desorption, and migration. Due to the stochastic
nature of the process, the exact time and location of the occurrence of one specific
surface microprocess are unknown, and only the probability (rate) with which each
surface microprocess may occur is available. The probability that the surface is in a
possible configuration is described by the master equation of Eq. (2.11). However,
due to the extremely high dimension of a master equation for any system of mean-
ingful size, it is impossible to directly solve the master equation using numerical
methods for integration of ordinary differential equations (such as Runge–Kutta).
On the other hand, kinetic Monte Carlo (kMC) simulation methods provide a nu-
merical solution to the master equation [80]. The kMC simulation method can be
used to predict average properties of the thin film (which are of interest from a con-
trol point of view; for example, surface roughness), by explicitly accounting for the
microprocesses that directly shape the thin-film microstructure.

In this chapter, we address the real-time feedback control of thin-film growth us-
ing kinetic Monte Carlo models. A real-time estimator is first constructed that allows
estimates of the surface roughness and growth rate to be computed at a time scale
comparable to the real-time evolution of the process. The real-time estimates enable
the design of feedback controllers to regulate the thin-film growth process. Methods
for the design of single-input–single-output (SISO), multiple-input–multiple-output
(MIMO), and predictive controllers using kMC models are then presented. The appli-
cations of the developed real-time feedback control methods are illustrated through
two thin-film growth processes. The results of this chapter were first presented in
[97, 98, 116], and an application of the real-time feedback control methodology to
a GaAs deposition process using an experimentally determined kMC process model
can be found in [100].

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 3,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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3.2 Real-Time Estimation

Surface roughness is a property of interest from a control point of view since it di-
rectly influences device properties. Various definitions of surface roughness can be
found in the literature. Note that estimation and control of surface roughness using
different surface roughness definitions can be readily studied within the framework
presented in this chapter, which consides the surface roughness represented by the
number of broken bonds on the surface and the surface roughness represented by
the standard deviation of the surface from its average height [125]. When the sur-
face roughness is represented by the number of broken bonds on the surface, it is
computed as follows:

r =
∑

(|hi+1,j − hi,j | + |hi−1,j − hi,j | + |hi,j+1 − hi,j | + |hi,j−1 − hi,j |)
2 × N × N

+ 1.

(3.1)
When the surface roughness is represented by the standard deviation of the surface
from its average height, it is computed as follows:

r =

√√
√
√
√

N∑

i=1

N∑

j=1

[hi,j − h̄]2

N × N
, (3.2)

where N is the size of the lattice, h̄ is the average height of the surface, and hi,j is
the height of the surface at site (i, j).

To achieve control objectives, the real-time acquisition of the controlled variables
is important. To this end, an estimation scheme is developed that provides estimates
of the surface roughness for all times. The estimation scheme employs kinetic Monte
Carlo simulations of the surface together with roughness measurements obtained at
discrete-time instants to produce estimates of the surface roughness for all times. The
basic idea is to construct a bank of “parallel running” kinetic Monte Carlo simulators
of the surface based on small lattice-size models to capture the dominant roughness
evolution and utilize the surface roughness measurements to improve upon the pre-
dictions of the kinetic Monte Carlo simulators to obtain accurate surface roughness
estimates.

3.2.1 Kinetic Monte Carlo Simulator Using Multiple Small Lattices

In the kinetic Monte Carlo simulation, the size of the lattice influences the accuracy
of the result and the computational demand. Roughly speaking, the computational
complexity of the algorithm we adopt in this work is O(N4) and the magnitude of the
fluctuation in the solution is O(1/N2), where N is the size of the lattice. The fourth
order dependence on computational complexity and the second order dependence of
fluctuations on the size of the lattice leave room for reducing the solution time with
a relatively small loss of accuracy.

As an illustration, we consider the thin-film growth process presented in Sec-
tion 2.2 and present simulation results on the evolution of surface roughness under
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open-loop operation obtained from kMC simulators using different lattice sizes. Both
the gas-phase model in Section 2.3 and the surface microstructure model in Section
2.4 are used to simulate the multiscale process, and the two models are coupled
through the boundary conditions of the gas-phase PDE model. The process parame-
ters used for the simulations are listed in Table 3.1 and the chamber pressure is 1 atm.
The initial precursor concentration above the substrate is zero. In all simulations, the
initial surface is a perfect surface. The surface roughness is represented by the num-
ber of broken bonds on the surface as defined in Eq. (3.1).

Figure 3.1 shows the evolution of the surface roughness at T = 600 K from
kinetic Monte Carlo simulators using different lattice sizes: 20 × 20, 50 × 50,
100×100, and 150×150. The result from a kinetic Monte Carlo simulation that uses
a 20× 20 lattice contains significant fluctuations compared to the roughness profiles
obtained from a kinetic Monte Carlo simulation that uses a higher-order lattice. How-
ever, it gives the same trend of the evolution of surface roughness. Furthermore, the
results from kinetic Monte Carlo simulators that use 50×50, 100×100, and 150×150
lattices are very close, thereby implying that a further increase in the lattice size does
not improve the accuracy of the results. Due to the algorithm’s stochastic nature, it
is not possible to obtain the same results from repeated runs starting from the same
initial conditions. However, for a sufficiently large lattice size, the results from differ-
ent runs are consistent in the sense that they provide surface roughness profiles that
are very close. Figures 3.2 and 3.3 show the results from three independent kinetic
Monte Carlo simulations that utilize a 20 × 20 lattice and a 50 × 50 lattice. Clearly,
as the lattice size increases, the error among different runs decreases.
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Fig. 3.1. Comparison of the surface roughness profiles obtained from kinetic Monte Carlo
simulations that use 20 × 20, 50 × 50, 100 × 100, and 150 × 150 lattices.
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Fig. 3.2. Comparison of the surface roughness profiles from three independent kinetic Monte
Carlo simulations that utilize a 20 × 20 lattice.
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Fig. 3.3. Comparison of the surface roughness profiles from three independent kinetic Monte
Carlo simulations that utilize a 50 × 50 lattice.

Referring to the selection of the lattice size, it is important to point out that the
dimension of the small lattice in general should be chosen so that the interactions
between the surface atoms are adequately captured and also so that it is large enough
to describe all the spatio-temporal phenomena occurring on the surface (e.g., clus-
ter formation). Furthermore, the small lattice should be chosen to provide accurate
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estimates of the desired properties to be controlled. For example, in the case of sur-
face roughness, this quantity is defined as the average number of broken bonds for
every surface atom and the microscopic unit involved is an individual atom. When
a 20 × 20 small lattice is used, the computation of surface roughness involves hun-
dreds of surface atoms, which is adequate to obtain the expected value. However,
when the property of interest is, for example, step density, a larger lattice is needed
to obtain a convergent average value from the kinetic Monte Carlo simulation. At
this point, it is important to note that the proposed reduction of lattice size can be
viewed as an alternative (and quite intuitive) way to perform order reduction of the
master equation [50].

The fluctuations of the roughness value obtained by using a small lattice Monte
Carlo model can be reduced by independently running several Monte Carlo simu-
lations using a small lattice with the same parameters and averaging the roughness
values obtained from the different runs. Figure 3.4 shows a comparison of the evolu-
tion of surface roughness obtained from (1) a kinetic Monte Carlo simulator that uses
a 20× 20 lattice, (2) the computation of the average of six independent Monte Carlo
simulations that utilize a 20× 20 lattice, and (3) a Monte Carlo simulator that uses a
100×100 lattice. These results show that when the outputs from multiple small lattice
models are averaged, a more accurate calculation of surface roughness is obtained.
However, by increasing the number of Monte Carlo simulations, the computational
requirement is also increasing. For the simulations of Fig. 3.4, the computational time
for the averaged roughness is six times higher than that needed to perform one Monte
Carlo simulation run and approximately equal to the computational time needed to
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Fig. 3.4. Comparison of the evolution of surface roughness from (1) a Monte Carlo simulation
that uses a 20 × 20 lattice, (2) the computation of the average of six independent Monte
Carlo simulations that utilize a 20 × 20 lattice, and (3) a Monte Carlo simulation that uses a
100 × 100 lattice.
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Fig. 3.5. Comparison of the evolution of surface roughness from (1) a Monte Carlo simulation
that uses a 30 × 30 lattice, (2) the computation of the average of six independent Monte
Carlo simulations that utilize a 20 × 20 lattice, and (3) a Monte Carlo simulation that uses a
100 × 100 lattice.

run a Monte Carlo simulation on a 30 × 30 lattice. Figure 3.5 shows a comparison
of the evolution of roughness obtained from: (1) a Monte Carlo simulator that uses a
30 × 30 lattice, (2) the computation of the average of six independent Monte Carlo
simulations that utilize a 20 × 20 lattice, and (3) a Monte Carlo simulator that uses
a 100 × 100 lattice. The results of Fig. 3.5 show that the roughness obtained by av-
eraging six Monte Carlo simulations, which use a 20 × 20 lattice model, is closer to
that obtained from the 100 × 100 lattice model and is superior to that obtained from
the 30 × 30 lattice model.

3.2.2 Adaptive Filtering and Measurement Compensation

The predicted profiles of surface roughness, which are obtained from kinetic Monte
Carlo simulation based on multiple small lattice models, still contain stochastic fluc-
tuations and are not robust (due to the open-loop nature of the calculation) with
respect to disturbances and variations in process parameters. To alleviate these prob-
lems, we combine the small lattice kinetic Monte Carlo simulators with an adaptive
filter to reject the stochastic fluctuations, and a measurement error compensator to
improve the surface roughness estimate using online measurements.

To overcome the fluctuations introduced by the smaller lattice size, a second-
order linear filter is used to reject the noise in the roughness values obtained from
the kinetic Monte Carlo simulator that uses multiple small lattice models with the
following state-space representation:
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dŷr

dτ
= y1,

dy1

dτ
=

K

τI
(yr − ŷr) −

1
τI

y1,

(3.3)

where y1 is a state of the filter, yr is the output of the kinetic Monte Carlo simulator
that uses multiple small lattice models, ŷr is the filter output, K is the filter gain and
τI is the time constant. To accelerate the response of the filter and avoid overshoot,
τI = 0.5/K.

Due to the Arrhenius-like dependence of the rate of desorption and surface mi-
gration on temperature, the dynamics of the roughness with respect to temperature
variations is very fast. To this end, we need a filter that can both track the fast dy-
namics and reject the noise so that the noise will not deteriorate the controller’s
performance. However, fast tracking and efficient noise rejection are two conflict-
ing objectives that are very hard to achieve simultaneously. Fortunately, during the
fast dynamic stage, the roughness is very large compared to the fluctuations and the
effect of the fluctuations on the controller performance is insignificant. The fluctu-
ations begin to deteriorate the controller’s performance significantly only when the
controlled roughness is close to the set-point value. Motivated by this, an adaptive
scheme is used to determine the gain of the filter online such that the filter focuses on
tracking the growth dynamics at the fast dynamic stage and on noise rejection when
the surface dynamics slow down. To achieve this, the gain of the filter is adjusted
according to the following law:

K(τ) = K0

|
∫ τ

τ−Δτ yr(t)dt −
∫ τ−Δτ

τ−2Δτ yr(t)dt|
Δτ2

+ Ks, (3.4)

where K0 is a constant, Ks is the steady-state gain for the adaptive filter, and Δτ is
the dimensionless time interval between two updates of K . To make the filter focus
on tracking the growth dynamics at the fast dynamic stage and on noise rejection
when the surface dynamics slow down, the K0 and Ks in Eq. (3.4) are tuned such
that the first term on the right-hand side of Eq. (3.4) is dominant during the fast
dynamics stage and the second term on the right-hand side of Eq. (3.4) is dominant
when the dynamics slow down. The filter parameters (K0 and Ks) can be determined
from a step test of the process. Regarding the choice of Δτ , although a better tracking
performance is expected when a smaller Δτ is used, a very small Δτ will introduce
the effect of fluctuations on the filter gain and should be avoided.

The significant fluctuation is not the only problem that must be fixed when a small
lattice is used in the kinetic Monte Carlo simulator. There is also model inaccuracy
when the outputs of kinetic Monte Carlo simulators that use multiple small lattices
and a high-order lattice are compared. This can be corrected by using a measurement
error compensator that uses the available roughness measurements obtained from a
kinetic Monte Carlo simulator that uses the high-order lattice model (or directly from
experiments at discrete time instants) to produce an improved roughness estimate.
The state-space representation of the measurement error compensator is

de

dτ
= Ke(yh

(τmi) − ŷ(τmi)), τmi < τ ≤ τmi+1 , i = 1, 2, . . . , (3.5)
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and the final roughness estimates are computed by

ŷ = ŷr + e. (3.6)

In the above equations, Ke is the compensator gain, e is the estimated model error,
which is used to compensate the model output, ŷ is the roughness estimate, ŷr is
the filtered output from a kinetic Monte Carlo simulator that uses multiple small
lattices, and y

h
is the output of a kinetic Monte Carlo simulator that uses the high-

order lattice (in an experimental setup, y
h

could be obtained from the measurement
sensor). Since the roughness measurements are only available at discrete points in
time, τm = [τm1 , τm2 , . . .], the right-hand side of Eq. (3.5) is computed at the time
a roughness measurement is available and is kept in this value in the time interval
between two available roughness measurements.

The combination of the adaptive filter and the measurement error compensator
functions as a roughness estimator, which can accurately predict the evolution of
roughness during the thin-film growth by using measurements of the precursor con-
centration above the substrate and surface roughness. In this development, we as-
sume that the estimate of precursor concentration above the substrate is available;
the surface precursor concentration can be estimated using estimation methods for
continuum-type PDE models [28].

3.3 Feedback Control Design

The developed real-time estimator provides a computationally feasible approach to
predict the evolution of important process variables. In this section, design methods
for SISO control, MIMO control, and model predictive control using the real-time
estimator are presented.

3.3.1 An Estimator/Controller Structure

SISO Control

We initially consider the use of a proportional-integral (PI) feedback controller to
regulate the surface roughness by manipulating the substrate temperature. Specifi-
cally, the controller has the following form:

u(τ) = Kc[(ŷ − yset) +
1
τc

∫ τ

0

(ŷ − yset)dt], (3.7)

where yset is the set-point of the output, ŷ is the output of the roughness estimator,
Kc is the proportional gain, and τc is the integral time constant.

The PI controller is coupled with the roughness estimator presented in the pre-
vious section. A diagram of the closed-loop system under the proposed estima-
tor/controller structure is shown in Fig. 3.6. In this structure, the estimator, which
includes multiple kinetic Monte Carlo simulators using small lattice models, an adap-
tive filter, and a measurement error compensator, is used to provide estimates of the
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Fig. 3.6. Diagram of the estimator/controller structure using a kinetic Monte Carlo simulator
based on multiple small lattice models.

controlled variable (surface roughness or growth rate) in a time scale comparable
to the real-time evolution of the process. The estimates are used in the controller to
determine the control action.

MIMO Control

We now turn our attention to the design and evaluation of a multivariable feedback
control structure, based on kinetic Monte Carlo models, used to control the surface
roughness and thin-film growth rate by manipulating the substrate temperature and
inlet precursor concentration. A multivariable feedback control structure is devel-
oped that explicitly compensates for the effect of the multivariable interactions oc-
curring in the process. The controller structure is obtained by introducing a compen-
sation block between the multiple single-loop controllers and the process. A diagram
of the multivariable control system using the estimator/controller structure with in-
teraction compensation is shown in Fig. 3.7. G1(s) is the transfer function between
the substrate temperature and the growth rate and G2(s) is the transfer function be-
tween the inlet precursor mole fraction and the growth rate. Step tests are used to
identify the expression and parameters of G1(s) and G2(s).

3.3.2 Model-Predictive Control

In order to achieve a robust closed-loop operation in certain highly complex deposi-
tion processes, a kinetic Monte Carlo model-based predictive control scheme is de-
veloped. Figure 3.8 shows the block diagram of the closed-loop system. A reference
trajectory of the instantaneous surface roughness of the thin film is selected based
on off-line optimization, and in this work for simplicity, the profile of the surface
roughness of the thin film in an ideal open-loop deposition (no disturbance is as-
sumed to affect the process and the final surface roughness is taken to be the desired
value) is chosen. Using such a reference trajectory, instead of solving the receding
horizon optimization problem of minimizing the difference between the final surface
roughness and the desired value with multiple decision variables, we only need to
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Fig. 3.8. Block diagram of the closed-loop system with the kMC model-predictive controller.

solve the fixed short-horizon optimization problem of minimizing the difference be-
tween the instantaneous surface roughness and the reference value with a single
decision variable. Therefore, the computation time of each optimization is greatly
reduced, since the kMC simulation duration is reduced from the scale of the total
deposition time to the controller turnover time. This is very important since kMC
simulation is relatively time-consuming and large-scale numerical optimization us-
ing kMC models is almost impossible to solve in real time.

During each control cycle, the surface configuration X(k) is first measured. An
estimate of the surface configuration at the next control action time Xest(k + 1) is
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computed based on the current process conditions using the proposed kMC model,
and the estimated surface roughness value rest(k+1) is compared with the reference
value rref(k +1). If the error is less than ε, the next controller output T (k + 1) is set
to be the same as the current output T (k). If the error is larger than ε, the optimizer
is called to compute the output value of the next control action T (k + 1) so that the
error between the surface roughness after the next control action r(k + 2) and the
reference value rref(k + 2) is minimized.

The optimizer uses direct search to find the optimal solution since the kMC model
does not have a closed-form expression. The estimate of the surface roughness after
the next control action rest(k+1) is computed using the proposed kMC model based
on the estimated surface configuration before the next control action Xest(k+1), the
probe output value Tprobe(k + 1), and current process conditions. When the search
precision is 1 K, the optimization problem can be solved by an entry-level personal
computer within the controller turnover time of 10 s. Furthermore, the speed and the
precision of the direct search optimization algorithm can be substantially improved
by parallel computing.

Remark 3.1. It is important to comment on the dependence of the steady-state surface
roughness on the lattice size of the kMC models of various deposition processes. In
the most simplified deposition process model where only random deposition events
take place, the expected surface roughness keeps increasing as time increases, since
there are no correlations between any two lattice sites and the fluctuations in the
heights obey a Poisson process. However, when surface relaxation and/or diffusion
take place in the process, the surface profiles tend to be smoothened out and the ex-
pected surface roughness reaches a steady-state value at large times. The steady-state
values of the roughness depend on the lattice size differently in different dimensions
of the models, which has been verified by both numerical simulations and theoret-
ical derivations. Specifically, for a 2D model as in this work, i.e., the lattice sizes
are predefined in the x and y directions, the steady-state surface roughness is weakly
dependent on the lattice size [72, 81] for sufficiently large lattice sizes. Thus, it al-
lows controller design based on smaller lattice size models. For a 1D model of the
surface roughness of a random deposition with surface relation (RDSR) process, the
dependence of roughness on the lattice size is stronger. There is a roughness expo-
nent of 0.5 in this case, i.e., the steady-state surface roughness is proportional to the
order of square root of the lattice size [40]. These results are also consistent with
the solutions of the Edwards and Wilkinson equations [39] in 1D and 2D, which are
stochastic PDEs that can be derived from the master equations of the kMC models
of RDSR processes.

3.4 Application to a Thin-Film Growth Process

In this chapter, we present simulation results on applications of the SISO and MIMO
feedback controllers to the thin-film growth process presented in Section 2.2 with
process parameters presented in Table 3.1. The process is the growth of a thin film
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Table 3.1. Parameters of the thin-film growth process.

Sticking coefficient s0 0.1
Precursor molecular weight m 4.65 × 10−26 kg
Surf. site concentration Ctot 1019 sites/m2

Event-freq. const kd0 1013 s−1

Bond energy E 0.74 eV
Desorption energy Ed 0.74 eV
Migration energy Em 0.44 eV
Strain rate a 5 s−1

from a fluid in a vertical, stagnation-flow geometry as shown in Fig. 2.1. In this ge-
ometry, the inlet fluid flow forms a uniform boundary layer adjacent to the surface
of the substrate and precursor atoms diffuse through such a boundary and deposit
a uniform thin film [49]. Upon arrival at the surface, the precursor atoms are ad-
sorbed onto the surface. Subsequently, adsorbed atoms may desorb to the gas-phase
or migrate on the surface. The gas-phase model in Section 2.3 and the surface mi-
crostructure model in Section 2.4 are used for simulations. The open-loop dynamics
of the thin-film growth process are shown in Section 3.2.1.

3.4.1 SISO Control: Surface Roughness Regulation

In this case study, we consider as manipulated variable the substrate temperature,
which is assumed to change only with respect to time. This is a reasonable formu-
lation for the manipulated input and is practically feasible for many experimental
and industrial deposition processes. With such a manipulated input formulation, the
only variable that can be controlled is a spatially averaged roughness. The surface
roughness defined in Eq. (3.1) is used. We could have formulated a control problem
under the assumption that a large number of manipulated inputs (control actuators)
are available to control surface roughness with higher precision, but such a control
problem formulation is not considered at the present time but will be discussed in
Chapters 4 and 5. As we will see later, it is possible by manipulating the substrate
temperature (single-input formulation) to achieve an overall very smooth surface
configuration. In this case study, the process parameters are shown in Table 3.1 and
the chamber pressure is 1 atm.

Real-Time Roughness Estimator

A roughness estimator, which combines a kMC simulator using multiple small lattice
models, a second-order adaptive filter, and a measurement compensator, is used to
accurately predict the evolution of roughness during the thin-film growth in real time.
The size of the small lattice has to be selected to make the model computations be at
a time scale comparable to the process real-time evolution. Based on the simulation
results shown in Figs. 3.1 to 3.5, when the size of the lattice is reduced to 20×20, the
time of simulation is comparable to the real-time process evolution. A kMC simulator
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Fig. 3.9. (a) plot: surface roughness profile obtained directly from a kMC simulation that uses
a 20 × 20 lattice; (b) plot: surface roughness profile from the roughness estimator (dashed
line) and from a kMC simulation that uses a 100 × 100 lattice (solid line).

using a 100 × 100 lattice is used to simulate the process. The real-time roughness
estimator is designed with the parameters shown in Table 3.2 (column SISO).

The left plot of Fig. 3.9 shows the roughness obtained directly from a kMC sim-
ulator using a 20 × 20 lattice, which contains significant stochastic noise. The right
plot illustrates the prediction of surface roughness by the roughness estimator and its
comparison to the output from the kMC model, which uses a large lattice (100×100).
The results clearly show that when measurements are used, the estimator based on a
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kMC simulator that uses a small lattice can predict the evolution of surface rough-
ness, while the computational requirements are kept within the limit that online con-
trol is possible.

Feedback Control of Surface Roughness

A closed-loop simulation was run to evaluate the effectiveness of the estimator/contr-
oller structure shown in Fig. 3.6. The size of the small lattice is 20 × 20, and a
50 × 50 lattice Monte Carlo model is used to describe the evolution of the process.
The desired roughness is 1.5. The time interval between two available measurements
is 0.3 s; this is consistent with spectroscopic ellipsometry techniques that can be
used to measure surface roughness online [159]. The controller parameters used in
the simulation are shown in Table 3.2 (column SISO).

Initially, the thin film grows on a perfect surface at T = 600 K and the rough-
ness increases. Then, the controller is activated when the roughness reaches 15.5.
Figure 3.10 shows the evolution of surface roughness and the profile of the substrate
temperature under feedback control. The results clearly show that the proposed esti-
mator/controller structure can successfully drive the surface roughness to the desired
set-point value.

The microconfiguration of the surface before the controller is activated and at the
end of the closed-loop simulation run is shown in Fig. 3.11. The controller success-
fully reduces the surface roughness of the thin film.

Advantages of the Estimator/Controller Structure

To show the importance of using the roughness estimator for feedback control and
not relying exclusively on the roughness measurements (which are obtained every
0.3 s), we applied the PI controller (with the same parameters as in column SISO
of Table 3.2) to the multiscale process model assuming that new roughness mea-
surements are fed into the controller every 0.3 s (this is consistent with our pre-
vious simulations). Also, to prevent the substrate temperature from increasing to
an unreasonably high value, the substrate temperature is constrained to be below
Tmax = 1100 K. We note that when the roughness is controlled using the proposed
controller/estimator structure, the substrate temperature is always lower than Tmax

(see Fig. 3.10). Figure 3.12 shows the evolution of surface roughness and substrate
temperature. Due to the discrete measurements, we observe significant oscillations
in the surface roughness profile; this simulation shows the usefulness of the proposed
estimator/controller structure.

We note that the fundamental reason for the poor performance shown in Fig. 3.12
is that the discrete measurements cannot capture the full dynamics of the system,
which prevents the controller from computing efficient control actions. Tuning the
controller cannot achieve a control performance as good as that achieved under
feedback control using the roughness estimator. In [97], various tuning schemes are
applied to the PI controller without using the real-time roughness estimator, and sim-
ulation results are presented. When the controller is tuned to achieve fast dynamics,
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Fig. 3.10. Evolution of the surface roughness and the substrate temperature under feedback
control.

Fig. 3.11. The microconfiguration of the surface for T = 600 K (left plot) and that at the end
of the closed-loop simulation run (right plot).
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Fig. 3.12. Evolution of the surface roughness and substrate temperature under feedback con-
troller without roughness estimator.

it will result in significant oscillations in the roughness output. On the other hand,
when the controller is tuned to avoid oscillations, a much longer time is required for
the process to reach the steady state. We tried different parameters of the PI con-
troller, but it turns out it is hard to achieve short transient time and less oscillation
simultaneously when the surface roughness is controlled exclusively by relying on
the discrete measurements. To compare the performance of the various control ap-
proaches, the roughness profiles obtained from different control schemes are shown
in Fig. 3.13. It is clear that the proposed estimator/controller scheme results in the
best closed-loop performance.
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Fig. 3.13. Comparison of surface roughness profiles: (1) roughness profile under feedback
control using roughness estimator; (2) roughness profile under feedback control without using
roughness estimator with controller parameters shown in column SISO of Table 3.2; and (3)
roughness profile under feedback control without using roughness estimator with controller
parameters tuned to avoid significant oscillation.

Other advantages of the proposed estimator/controller structure for surface rough-
ness regulation are also demonstrated in [97]. When there is a time delay in the
measurements of the surface roughness, the PI controller exclusively relying on dis-
crete measurements (with parameters shown in column SISO of Table 3.2) is not
able to drive the surface roughness to the set-point value. On the other hand, in the
estimator/controller structure, the measurement delay has very little effect on the
closed-loop performance. Furthermore, we have shown that the estimator/controller
structure is able to control the surface roughness independently of the frequency at
which the roughness measurements are available. The robustness properties of the
estimator/controller structure were also tested. In [97], we considered controlling the
thin-film growth process in the presence of 10% uncertainty in the energy associated
with a single bond on the surface. Simulation results showed that the controller ex-
hibited very good robustness properties in the presence of this parametric uncertainty.

3.4.2 MIMO Control: Surface Roughness and Growth Rate Regulation

The efficient production of high-quality thin films requires that the surface roughness
and growth rate be maintained at desired levels. Therefore, the objectives of this sec-
tion are to study the nature of the multivariable control problem and to demonstrate
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the effectiveness of the multivariable feedback control structure shown in Fig. 3.7.
The feedback control system makes use of the real-time estimator, which provides a
computationally feasible approach to predict the growth rate and surface roughness
of the thin film in real time. Given the set of available manipulated inputs and the
desired control objectives, the control problem is formulated as that of regulating
the surface roughness and growth rate by manipulating the substrate temperature and
precursor mole fraction in inlet gases. The surface roughness defined in Eq. (3.1) is
used. We will begin with a study of the feasibility of the control problem formulation,
continue with an analysis and evaluation of the effect of input–output interactions on
closed-loop performance, and close with the design and evaluation of the multivari-
able feedback control structure shown in Fig. 3.7. In this case study, the process
parameters are shown in Table 3.1 and the chamber pressure is 10 Pa.

KMC Simulator Based on Multiple Small Lattice Models

The growth rate, gr (units monolayer/second, ML/s), determines how fast the thin
film grows. In this study, the growth rate is defined as the difference between the rate
of adsorption and the rate of desorption on the surface and is given by the following
expression:

gr =

∑

i,j

rai,j − rdi,j

N × N
, (3.8)

where rai,j and rdi,j (units s−1) are the rates of adsorption and desorption at the
site (i, j) of the surface, respectively, and N is the size of the lattice. The rate rdi,j

depends on the number of nearest neighbors at site (i, j) and is obtained from the
kinetic Monte Carlo simulations.

To implement real-time feedback control based on a model that captures the evo-
lutions of surface roughness and growth rate, the size of the lattice has to be selected
to make the model solution time comparable to the process real-time evolution, while
capturing the dominant phenomena occurring on the surface. In our simulations,
when the size of the lattice is reduced to 30 × 30, the solution time of the kinetic
Monte Carlo simulation is comparable to the real-time process evolution and the av-
erage values of the surface roughness and growth rate approximate well the average
values of these variables, which are obtained by running the kinetic Monte Carlo
simulation on a 120× 120 lattice (this is a sufficiently large lattice to ensure simula-
tion results that are independent of the lattice size; see the simulation results shown
in Fig. 3.17).

However, the outputs from a kMC simulation using a 30 × 30 lattice contain
significant stochastic fluctuations, thus, they cannot be directly used for feedback
control [such an approach would result in significant fluctuations of the control ac-
tion, which could perturb unmodeled (fast) process dynamics and should be avoided].
The fluctuations on the values of the outputs (i.e., surface roughness and growth rate)
obtained from the kMC simulation using the 30× 30 lattice can be reduced by inde-
pendently running several small lattice kMC simulations with the same parameters
and averaging the outputs of the different runs. Approximately, the computational
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Fig. 3.14. Growth rate and surface roughness from the computation of the average of six
independent kinetic Monte Carlo simulations that utilize a 20 × 20 lattice.

requirement for a kMC simulation using a 30 × 30 lattice is close to that for six
independent kMC simulations that utilize a 20 × 20 lattice. Figure 3.14 shows the
growth rate and surface roughness obtained from the computation of the average of
six independent kMC simulations that utilize a 20 × 20 lattice. Figure 3.15 shows
the growth rate and roughness profiles obtained from a kMC simulation that uses
a 30 × 30 lattice. Comparing the simulation results shown in Figs. 3.14 and 3.15,
we find that the roughness and growth rate obtained by averaging six independent
kinetic Monte Carlo simulations, which use a 20 × 20 lattice model, contain fewer
fluctuations than those obtained from a kinetic Monte Carlo simulation that uses a
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Fig. 3.15. Growth rate and surface roughness from a kinetic Monte Carlo simulation that uses
a 30 × 30 lattice.

30×30 lattice model. This demonstrates that, for a fixed computational time, the use
of a kMC simulator based on multiple small lattice models would yield growth rate
and surface roughness profiles with fewer fluctuations compared to a kMC simulator
that uses a single lattice with a larger size.

Real-Time Surface Roughness and Growth Rate Estimator

The predicted profiles of surface roughness and growth rate, which are obtained
from kMC simulation based on multiple small lattice models, still contain stochastic
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fluctuations and are not robust (due to the open-loop nature of the calculation) with
respect to disturbances and variations in process parameters. To alleviate these prob-
lems, we combine the small lattice kMC simulator with an adaptive filter, to reject the
stochastic fluctuations on the surface roughness and growth rate profiles, and a mea-
surement error compensator to improve the estimates of these variables using online
measurements. We use the same adaptive filter and measurement error compensator
structure for both the surface roughness and the growth rate. The measurement error
compensator uses the available online measurements (in the numerical simulations
the values of the surface roughness and growth rate obtained from the large lattice
model are used) to produce improved estimates of the surface roughness and growth
rate.

Figure 3.16 shows the growth rate and surface roughness profiles computed by
the estimator, which uses a kinetic Monte Carlo simulator based on six 20×20 lattice
models (solid lines); they are compared with the growth rate and surface roughness
profiles obtained from a kinetic Monte Carlo simulator that uses a 120 × 120 lattice
model. The results clearly show that the developed estimator can accurately predict
the evolution of the growth rate and surface roughness. Note also that the developed
estimator can be used for real-time feedback control since the computational time
needed to run a kinetic Monte Carlo simulation based on six 20 × 20 lattice models
is comparable to the real-time process evolution.

Referring to the selection of the lattice size, when the surface roughness and
growth rate are considered in the process with parameters shown in Table 3.1, we
found that an 80 × 80 lattice is sufficient to capture the evolution of the process
and that a further increase in the lattice size leads to no observable improvement
in the accuracy of the simulation results; this is shown in Fig. 3.17, which shows
comparisons of surface roughness profiles and growth rate profiles from a kinetic
Monte Carlo simulator that uses an 80 × 80 lattice and those from a kinetic Monte
Carlo simulator that uses a 120 × 120 lattice. Therefore, in the remainder of this
work, we use a kinetic Monte Carlo simulator that uses an 80× 80 lattice to describe
the evolution of the thin-film growth under open-loop and closed-loop conditions.

Feasibility of Simultaneous Control of Surface Roughness and Growth Rate

In this subsection, we establish that it is feasible to control the surface roughness and
growth rate by manipulating the substrate temperature and precursor mole fraction
in inlet gases. To this end, we perform the following set of closed-loop simulations:
(1) The growth rate is controlled by manipulating the precursor mole fraction in the
inlet gas while the substrate temperature is kept constant; and (2) the surface rough-
ness is controlled by manipulating the substrate temperature while the inlet precursor
mole fraction is kept constant. In our calculations, since the precursor mole fraction
is very small, we assume that the chamber pressure is independent of the precursor
mole fraction. In each simulation, a controller/estimator structure of the type shown
in Fig. 3.6 is used to control the process. In this structure, the estimator, which in-
cludes multiple kinetic Monte Carlo simulators using small lattice models, an adap-
tive filter, and a measurement error compensator, is used to provide estimates of the
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Fig. 3.16. Growth rate and surface roughness profiles from the estimator (solid lines) and from
a kinetic Monte Carlo simulation that uses a 120 × 120 lattice model (dashed lines).

controlled variable (surface roughness or growth rate) in a time scale comparable to
the real-time evolution of the process. The estimates are used in the controller to de-
termine the control action. Since the models that describe the evolution of the surface
roughness and growth rate are not available in closed form, a PI controller is used to
compute the control action:

u(τ) = Kc

[
(yset − ŷ) +

1
τc

∫ τ

0

(yset − ŷ)dt

]
, (3.9)
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Fig. 3.17. Comparisons of the surface roughness and growth rate profiles from a kinetic Monte
Carlo simulation that uses an 80 × 80 lattice (dotted) and those from a kinetic Monte Carlo
simulation that uses a 120 × 120 lattice (solid).

where yset is the set point of the output, ŷ is the output of the estimator, Kc is the
proportional gain, and τc is the integral time constant.

When the growth rate is controlled, the size of the small lattice is 20 × 20 and
the outputs of six small lattice kinetic Monte Carlo simulators are averaged within
the estimator. A kinetic Monte Carlo simulator based on an 80 × 80 lattice model is
used to describe the evolution of the process. The time interval between two available
measurements is taken to be 0.3 s, which is consistent with available techniques that
can be used to measure the growth rate in real time [121]. The substrate temperature
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is kept constant at 800 K, and the initial inlet precursor mole fraction is 2.0 × 10−5;
these values correspond to a growth rate of about 180 ML/s. The desired set-point
value for the growth rate is 220 ML/s. The parameters for the growth rate estimator
and the PI controller used in this simulation are shown in Table 3.2 (column MIMO:
Growth Rate). Figure 3.18 shows the growth rate and the inlet precursor mole frac-
tion under feedback control. The results demonstrate that the growth rate can be
successfully controlled to the desired set point by manipulating the precursor mole
fraction.
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Fig. 3.18. Profiles of the growth rate and the inlet precursor mole fraction under single-loop
feedback control using the estimator/controller structure of Fig. 3.6.
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Table 3.2. All estimator and controller parameters.

SISO MIMO
roughness Growth rate Roughness

Ks 1.00 Ks 1.00 Ks 1.00
Ke 0.08 Ke 0.08 Ke 0.08
Kc 30.00 Kc 2.0 × 10−9 Kc −15
τc 0.40 τc 0.40 τc 0.30
K0 0.50 K0 0.50 K0 0.50
yset 1.50

In the second simulation run, the surface roughness is controlled by manipulat-
ing the substrate temperature while the inlet precursor mole fraction is kept constant.
Figure 3.19 shows the profiles of the surface roughness and substrate temperature
in the closed-loop system. A kinetic Monte Carlo simulator that uses an 80 × 80
lattice model is used to describe the evolution of the process. The inlet precursor
mole fraction is kept constant at 2.0 × 10−5 and the substrate temperature is ini-
tially 800 K. The desired set-point value of surface roughness is 1.5. The parameters
for the roughness estimator and controller are shown in Table 3.2 (column MIMO:
Roughness). The controller successfully drives the surface roughness to the set point
by manipulating the substrate temperature.

Effect of Multivariable Input–Output Interactions

The objective of this subsection is to understand the influence of multivariable input–
output interactions on closed-loop performance and determine whether there is a
need for the design and implementation of a multivariable controller that compen-
sates for the effect of such interactions. To this end, we consider the problem of
simultaneous regulation of the growth rate and of the surface roughness and use
a feedback control system that is comprised of the estimator and two single-loop
proportional-integral controllers. Specifically, following up on the results of the pre-
vious subsection, the input–ouput pairs are substrate temperature (T )–surface rough-
ness (r) and inlet precursor mole fraction (y)–growth rate (gr).

A closed-loop system simulation is carried out to evaluate this approach to si-
multaneously control the growth rate and surface roughness. In this simulation, the
outputs from six kinetic Monte Carlo simulators running on 20×20 lattice models are
averaged within the estimator. A kMC simulator that uses an 80 × 80 lattice model
is used to describe the evolution of the process. The parameters for the estimator
and the controllers are listed in Table 3.2 (column MIMO). Compared to the results
shown in Figs. 3.18 and 3.19, we find very similar roughness profiles (the reader may
refer to [98] for detailed simulation results). However, the transient response of the
growth rate in the case of simultaneous growth rate and surface roughness control
is slower compared to the case where the growth rate is the only controlled output
and the structure of Fig. 3.6 is used (Fig. 3.20). The reason for the slower transient
response of the growth rate is the effect of multivariable input–ouput interactions
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Fig. 3.19. Profiles of the surface roughness and the substrate temperature under single-loop
feedback control using the estimator/controller structure of Fig. 3.6.

(i.e., the influence of the variation of substrate temperature on the growth rate and
the influence of the variation of inlet precursor mole fraction on surface roughness
in the closed-loop system); these interactions need to be compensated for in order to
speed up the growth rate response and improve the closed-loop performance.

Multivariable Feedback Control of Surface Roughness and Growth Rate

This subsection focuses on the design and evaluation of a multivariable feedback
control structure. To this end, we need to understand and model the interactions
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Fig. 3.20. Comparison of closed-loop growth rate profiles: (a) Growth rate is the only con-
trolled output and the structure of Fig. 3.6 is used (solid line); (b) Simultaneous regulation of
growth rate and surface roughness is considered and feedback control that does not account
for multivariable input–output interactions is used (dotted line).

between inputs and outputs; two simulations are carried out to observe the changes in
the surface roughness and growth rate for (1) a step change on substrate temperature
with constant inlet precursor mole fraction, and (2) a step change on inlet precursor
mole fractions with constant substrate temperature.

Figure 3.21 shows the growth rate and surface roughness when the substrate
temperature is kept at 800 K and the inlet precursor mole fraction changes from
2.0× 10−5 to 2.1× 10−5 at τ = 10. The results show that the growth rate increases
from around 180 ML/s to 190 ML/s, but there is no observable change in the sur-
face roughness, which means the change in the inlet precursor mole fraction has very
little influence on the surface roughness.

The interactions between the substrate temperature and the surface roughness and
growth rate are studied by keeping the inlet precursor mole fraction at 2.0 × 10−5

and increasing the substrate temperature from 800 K to 840 K at τ = 10. Figure 3.22
shows the responses of the growth rate and surface roughness to the substrate tem-
perature change. The simulation results show that the growth rate drops from approx-
imately 180 ML/s to 175 ML/s and the roughness drops from approximately 1.8 to
1.6, which indicates that variations on the substrate temperature influence both the
surface roughness and growth rate. It should be pointed out that this specific coupling
pattern is valid only under the specific growth conditions used in this simulation.

To improve the closed-loop performance, a multivariable feedback control struc-
ture is developed, that explicitly compensates for the effect of the multivariable inter-
actions occurring in the process. The controller structure is obtained by introducing
a compensation block between the multiple single-loop controllers and the process.
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Fig. 3.21. Growth rate (middle plot) and surface roughness (bottom plot) profiles for a step
change in inlet precursor mole fraction (top plot) from 2.0×10−5 to 2.1×10−5 . The substrate
temperature is kept at 800 K.

Because the interactions between the inlet precursor mole fraction and surface rough-
ness are not significant (as shown in Fig. 3.21, bottom plot), only one compensator
is needed in this example. A diagram of the multivariable control system using the
estimator/controller structure with interaction compensation is shown in Fig. 3.7.
G1(s) is the transfer function between the substrate temperature and the growth rate,
and G2(s) is the transfer function between the inlet precursor mole fraction and the
growth rate. Step tests are used to identify the expression and parameters of G1(s)
and G2(s). Specifically, based on the simulation results shown in Fig. 3.21 (mid-
dle plot) and Fig. 3.22 (middle plot), G1 and G2 are taken to be constants with the
following values: G1(s) = 0.125 and G2(s) = 1.0 × 107. The rest of the process
and controller parameters used in the simulation are the same as those in Table 3.2
(column MIMO).

A closed-loop system simulation is performed to evaluate the effectiveness of
the multivariable estimator/control structure with interaction compensation shown in
Fig. 3.7. The size of the small lattice is 20 × 20 and the outputs from six kinetic
Monte Carlo simulators based on 20 × 20 lattice models are averaged within the
estimator. A kinetic Monte Carlo simulator based on an 80 × 80 lattice model is
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Fig. 3.22. Growth rate (middle plot) and surface roughness (bottom plot) with a step change
in substrate temperature (top plot) from 800 K to 840 K. The inlet precursor mole fraction is
2.0 × 10−5.

used to describe the evolution of the process. The roughness set-point value is 1.5
and the growth rate set-point value is 220 ML/s. Initially, the substrate temperature
is T = 800 K and the inlet precursor mole fraction is 2.0 × 10−5; these conditions
correspond to a growth rate of about 180 ML/s and a surface roughness of about 1.8.
The proposed multivariable control system (Fig. 3.7) is applied to the process to reg-
ulate the growth rate and surface roughness to the desired set-point values. The left
plot of Fig. 3.23 shows the comparison of the growth rate profiles under multivari-
able feedback control with interaction compensation and under multiple single-loop
control without interaction compensation. By using the interaction compensator, the
growth rate converges to the desired set-point value faster. The right plot of Fig. 3.23
shows the surface roughness under multivariable control with interaction compen-
sation. The microstructure of the thin film at the beginning and at the end of the
closed-loop system simulation run is shown in Fig. 3.24. These results show that the
proposed multivariable control system with interaction compensation can simultane-
ously drive the growth rate and surface roughness to the desired set-point values and
improve the closed-loop response.
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Fig. 3.23. Comparison of the closed-loop growth rate under multivariable feedback control
with interaction compensation (solid line) and under multiple single-loop control (dashed line)
(top plot) and closed-loop surface roughness under multivariable feedback control with inter-
action compensation (bottom plot).

Fig. 3.24. Surface microconfiguration at the beginning (left plot, roughness = 1.8) and at the
end of the closed-loop simulation run (right plot, roughness = 1.5).
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3.5 Application to a Complex Deposition Process

This section investigates a complex deposition process, which includes two types of
macromolecules whose growth behaviors are very different. This deposition process
is influenced by both short-range and long-range interactions. The study of this pro-
cess is motivated by recent experimental results on the growth of high-κ dielectric
thin films using plasma-enhanced chemical vapor deposition (PECVD). An example
is the PECVD ZrO2 process [25], in which two major species, zirconium hydroxide
and hydrocarbon, are present in the gas phase during the deposition. Recent experi-
mental results have shown that when zirconium hydroxides are the dominant species
in the gas phase, the deposited ZrO2 thin film has a very smooth surface with a
roughness value of less than half ZrO2 monolayer. On the other hand, when hy-
drocarbons dominate the gas phase, the deposited ZrO2 thin film has a very rough
surface characterized by big islands, which suggests that the aggregation of the hy-
drocarbon species on the substrate surface, as a result of long-range interactions, is
quite significant [24].

These results imply that a single-component kMC model considering only short-
range interactions is inadequate to describe the thin-film growth in such a complex
process. Therefore, a computationally efficient kMC model of heterogeneous de-
position processes in which long-range interactions are accounted for is needed.
Motivated by this, a multicomponent kMC model is developed for the deposition
process. Both single-component and multicomponent cases are simulated and the
dependence of the surface microstructure of the thin film, such as island size and
surface roughness, on substrate temperature and gas-phase composition is studied.
The surface morphology is found to be strongly influenced by these two factors,
and growth regimes governed by short-range and long-range interactions are ob-
served. Furthermore, two kMC model-based feedback control schemes that use the
substrate temperature to control the final surface roughness of the thin film are pro-
posed. The closed-loop simulation results demonstrate that robust deposition with
controlled thin-film surface roughness can be achieved under a kMC estimator-based
PI feedback controller in the short-range interaction-dominated growth regime, while
a kMC model-predictive controller is needed to control the surface roughness in the
long-range interaction-dominated growth regime.

3.5.1 Process Description

Deposition processes such as PECVD often involve large numbers of participat-
ing species with heterogeneous growth behaviors. Here, we study a heterogeneous
deposition process in which two types of macromolecules of very different growth
behavior, type A and type B, are present. A type A macromolecule is significantly af-
fected by long-range attractions and tends to aggregate with other A macromolecules
into clusters, i.e., it favors Volmer–Weber (VW) growth mode [61]. Hydrocarbon
molecules generated from the decomposition of metallo-organic (MO) precursors in
a PECVD process are good examples of such a type. A type B macromolecule fa-
vors surface sites of a local minimum height, which usually results in Frank–van der



58 3 Control Using Kinetic Monte Carlo Models

Gas phase

A adsorption

B adsorption

A hopping

Substrate

Fig. 3.25. The complex heterogeneous thin-film deposition process.

Merwe (FM) type of film growth [61]. Metal oxides or hydroxides originated from
the MO precursors may behave similarly to type B macromolecules as discussed in
the introduction.

The geometry of the deposition process is shown in Fig. 3.25. The gas flux is
perpendicular to the substrate surface. Flux compositions, i.e., the flux of A and B,
in terms of the number of macromolecules encountered per unit time per surface
site, are taken as macroscopic process parameters. They can be measured directly
(via mass spectrometer for example) or determined based on the measurements of
the partial pressures for each species and gas-phase temperature using kinetic theory
[90]. Thus, we model only the microprocesses taking place on the substrate surface.
Both A and B can diffuse from the gas phase onto the substrate; however, type B
macromolecules settle to surface sites of local minimum height (surface relaxation)
simultaneously during adsorption. Surface migration and desorption processes are
ignored (generally true for low-temperature CVD processes such as PECVD), while
hopping of type A macromolecules is allowed (as if A is first physisorbed). Sur-
face reactions are not explicitly considered in this process; however, the long-range
behavior of A and the surface relaxation of B could be consequences of surface
reactions (i.e., surface-mediated).

Surface Microstructure Model

The surface microstructure model is constructed based on a standard kMC scheme
[57] that assumes the growth process to be a Poisson process. Therefore, the dy-
namics of the deposition process are governed by the master equation that describes
the evolution of probabilities of the surface being in specific micro-configurations.
Monte Carlo simulation is used to obtain realizations of this stochastic process that
are consistent with the master equation.
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To simulate the heterogeneous deposition process studied in this chapter, a simple
cubic lattice structure, which is a good approximation for amorphous films, is used.
The simulated surface domain is a square grid of 100 lattice points by 100 lattice
points. To improve computational efficiency, the solid-on-solid assumption is made
(i.e., voids and overhangs can be neglected). We consider a multilayer growth and
assume that all the sites are available for adsorption of all gas-phase species at all
times, and, thus, the adsorption rates of A (wA

a ) and B (wB
a ) are taken to be site-

independent.
To incorporate different growth behaviors into a kMC scheme, a viable way is to

set up specific rules for the microprocesses considered in the scheme (see [132] for
an example of rule-based modeling of a coating microstructure). Although such rules
may be arbitrary and may sacrifice the model’s fidelity with respect to the detailed
physics and chemistry, they are very favorable from a computational point of view
and thus are preferable for real-time applications. Furthermore, when mechanisms
of such behaviors are unknown, which is true for most of the complex PECVD pro-
cesses, rule-based modeling must be used. In this work, we set up two rules for ag-
gregation of the type A macromolecule and surface relaxation of the type B macro-
molecule, respectively.

For type A macromolecules, we enforce a rule on the hopping process. To encour-
age the aggregation of the surface A macromolecules over a longrange, we select the
hopping direction of a type A macromolecule based on the number of the surface
As that the hopping A can see in each direction instead of randomly picking among
the possible hopping directions. Specifically, the hopping direction of a specific A
macromolecule is determined by comparing the distance-weighted sum of all the A
macromolecules in each direction and picking the largest sum. The weighted sum,
for example, in the positive x-direction of an A located at the surface lattice point
(x0, y0), NA

h,+x(x0, y0), is computed as follows:

NA
h,+x(x0, y0) =

la∑

x=1

x∑

y=−x

SA
(x0+x,y0+y)

(

1 −
√

x2 + y2

la

)

, (3.10)

where la is the maximum range of attraction, and the value of the occupancy factor
SA

(i,j) is unity when the surface site (i, j) is occupied by an A and zero otherwise.
Equation (3.10) imitates the sight of a surface A that fades out with distance, i.e., the
near neighbors are weighted more than the distant neighbors. 1 − (

√
x2 + y2/la) is

picked as the weighting function to employ a linearly decaying weighting that goes
to zero at the boundary of the attraction zone. However, one can use any meaning-
ful weighting function here to carry out simulations to simulate or validate specific
deposition mechanisms.

The rate of the surface hopping of a type A macromolecule depends on the local
activation energy barrier. Considering only the interactions of the first nearest side
neighbors and the first nearest bottom neighbor to determine the hopping rate at a
specific site, the hopping rate of a type A macromolecule on the surface with n first
nearest side neighbors is given by



60 3 Control Using Kinetic Monte Carlo Models

wA
h (n) = kA

h0 exp
(
−EA

s + nEA
n

kT

)
, (3.11)

where kA
h0 is the hopping frequency constant, and EA

s and EA
n are the energy barriers

associated with the surface hopping of A for the bottom and side neighbors, respec-
tively (we note that for simplicity we do not distinguish the neighboring macro-
molecules of different types).

For type B macromolecules, we enforce a surface relaxation rule on the adsorp-
tion process. During an adsorption event, a site (i, j) is first randomly picked among
the sites of the whole lattice; the final site onto which the B macromolecule adsorbs
could be different from the initially chosen site for the adsorption event. In particu-
lar, when the initially chosen site does not have the local minimum height, B will be
adsorbed onto one of the neighboring sites that has the local minimum height. In this
work, only the four first-nearest neighbor sites and four second-nearest neighbor sites
are considered. In addition, the sticking probability of the type B macromolecule on
the surface site occupied by type A macromolecules is considered very small (5% in
this study). This is because when this sticking probability is close to unity, the sur-
face would be smoothed by type B macromolecules independently of the presence of
type A macromolecules; thus, the dynamics of the two-component deposition would
not be observable. All other sticking probabilities are considered to be unity for sim-
plicity.

The lifetime of each Monte Carlo event in the simulation τ can be determined by
the following expression (see Section 2.4.2 for a detailed proof):

τ = − ln ξ

wA
a + wB

a +
4∑

n=0
NA

n wA
h (n)

, (3.12)

where ξ is a random number that follows the uniform distribution in the unit interval
and NA

n is the number of type A macromolecules on the surface with n first-nearest
side neighbors.

Remark 3.2. Since we treat hopping events toward different hopping directions as
different microscopic events, the kinetic Monte Carlo simulation does not need to
determine in which hopping direction the macromolecule needs to go once the event
is selected; therefore, overriding the direction chosen by kMC by the microprocess
rule is not an issue here, and the time increment can be calculated using Eq. (3.12).
Hopping processes toward different hopping directions are treated as independent
Poisson processes just like the adsorption of A and the adsorption of B. As long as
the dynamical hierarchy of transition rates is preserved in the kinetic Monte Carlo
simulation, the time increment should be selected from the exponential distribution
of Eq. (3.12).

Simulation Procedure

The parameters, kA
h0, EA

s , EA
n , and la in the model can be determined by optimal

parameter estimation using experimental data (see also Section 4.4). However, the
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Table 3.3. Parameters of the complex deposition process.

Hopping freq. const. kA
h0 1013 s−1

Hopping energy (bottom) EA
s 0.8 eV

Hopping energy (side) EA
n 0.2 eV

Attraction range la 20 units

parameters used in this study are typical but arbitrarily chosen, and are shown in
Table 3.3. When the lattice is set and the rates of the three events (A adsorption, B
adsorption, A hopping) are determined based on measurements or its corresponding
rate expression [Eq. (3.11)], a kinetic Monte Carlo simulation is executed following
the algorithm in Section 2.4.2. First, the surface A macromolecules are grouped into
five classes based on the number of side neighbors (from zero to four side neighbors);
in each class, the macromolecules have the same hopping rates. However, they may
have different hopping directions depending on the surface microconfiguration; the
adsorption rates of the A and B macromolecules are both site-independent. Then, a
random number is generated to select an event to be run based on the rates; if the
event is A hopping, the class in which the event will happen is also selected. After
that, a second random number is generated to select the site where the event will
be executed; if the event is A or B adsorption, the site is randomly picked from
sites in the entire lattice; if the event is A hopping, the site is randomly picked from
the list of the sites in the selected class. After the site is selected, the MC event is
executed. If the event is adsorption, it is executed by adding one macromolecule to
the selected site (B adsorption rule is applied if the event is B adsorption); if the
event is A hopping, the type A macromolecule on the site is moved to the next site in
the direction selected by the hopping rule. Upon an executed event, a time increment
τ computed based on Eq. (3.12) is added to the process time t. Periodic boundary
conditions are used in the simulation to satisfy the mass balance of the hopping
macromolecules.

3.5.2 Open-Loop Dynamics

Using the proposed growth model, a parametric analysis of the growth process is con-
ducted. Specifically, we study the effects of the substrate temperature (in the range of
300 K to 440 K, which is the normal operating temperature of low-temperature CVD
processes such as PECVD) and gas-phase composition on the surface microstruc-
ture of the deposited thin films in both homogeneous and heterogeneous deposition
processes. The effect of the simulation lattice size is also investigated. Furthermore,
island sizes of the thin films obtained under different process conditions are quali-
tatively compared and the surface roughness of each film, r, is computed in a root-
mean-square fashion using Eq. (3.2). This study provides valuable insight for the
formulation of the control problem. In this section, we summarize the open-loop dy-
namics of the complex deposition process. The reader may refer to [116] for detailed
simulation results.
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Single-Component Case

The simulation of a single-component deposition process can be executed by setting
either parameter wA

a or wB
a in the heterogeneous model equal to 0.

It has been shown that the surface of the thin film obtained by a deposition with
only type B macromolecules is very smooth due to the surface relaxation of B,
and the film growth is in Frank–van der Merwe mode. Since the adsorption rate is
independent of the substrate temperature, the surface microstructure of the thin film
has no dependence on the substrate temperature.

On the other hand, the surface morphologies of thin films obtained by depositions
with only type A macromolecules present in the gas phase strongly depend on the
substrate temperature. Specifically, the thin film deposited at a low substrate temper-
ature (T = 320 K) has a high island density but a small lateral island size. The thin
film deposited at a high substrate temperature (T = 380 K) has a low island density
but a large lateral island size.

The very different surface microstructure observed for these two films, which
have similar roughness values, can be explained by the different growth modes in
these two temperature regimes. According to the hopping rate equation [Eq. (3.11)],
surface hopping of type A macromolecules has an Arrhenius-type dependence on
the substrate temperature T . Thus, at a low substrate temperature, the hopping rate is
much smaller than the rate at a high substrate temperature. This suggests that at low
temperature, the dominant surface microprocess is the adsorption process. There-
fore, although the long-range attraction tends to drive the surface type A macro-
molecules together, the hopping rate is so low that these macromolecules are not able
to move along the direction of attraction far enough to form large islands. Therefore,
the effect of long-range attraction is not significant and the aggregation mostly oc-
curs in the vertical direction (one-dimensional aggregation) by A adsorption. This
growth mechanism results in a surface with islands of large height and small lateral
size.

On the other hand, when the substrate temperature is high, the rate of hopping
becomes large, and surface type A macromolecules are able to move along the di-
rection of attraction for a distance comparable to the range of attraction. Therefore,
the effect of long-range attraction becomes very significant and aggregation occurs
in both vertical and horizontal directions (three-dimensional aggregation, i.e., VW
growth mode) by adsorption and hopping. This growth mechanism leads to the for-
mation of islands with large dimensions in both the vertical and horizontal directions.
Furthermore, we note that although the range of attraction is limited to la, the lateral
size of the islands is not limited by the range of interaction due to the coalescence
between islands. Islands of lateral size larger than la are observed in our simulations
for high-substrate-temperature depositions.

Time evolution of the surface roughness is also investigated through kMC simu-
lations. Our simulation results show that the thin-film growth in the B-only deposi-
tion is 2D growth (the surface roughness saturates over time) while the growth in the
A-only deposition, with either low or high substrate temperature, is 3D growth (the
surface roughness never saturates).
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Multicomponent Case

We have also simulated a heterogeneous multicomponent deposition using the pro-
posed process model. Both types A and B macromolecules are present in the gas
phase, and the relative ratio of the two species is set to be unity in the simulated case
for simplicity.

Figure 3.26 shows the surface morphology of thin films obtained by depositions
at low (T = 320 K) and high (T = 440 K) substrate temperatures, respectively. The
difference in surface morphology between the two thin films is similar to the single-
component case in which only type A macromolecules are present in the gas phase.
This is expected since the behavior of the two types of macromolecules is considered
independent of each other in the simulation.

Figure 3.27 shows the surface roughness of thin films deposited at different sub-
strate temperatures. It can be seen that there are two temperature regimes in which
thin-film growth is quite different. In the low-temperature regime, the surface rough-
ness drops with increasing temperature, while in the high-temperature regime, the
surface roughness rises with increasing temperature (however, the surface roughness
drops again when the substrate temperature is very high when stable surface islands
start to coalesce and form islands with lateral dimension larger than the range of
attraction). Based on the discussion above about the different growth modes at low
and high substrate temperatures, the transition from the low-temperature regime to
the high-temperature regime corresponds to the change in growth process from short-
range interaction-dominant to long-range attraction-dominant. The substrate temper-
ature at which the minimum roughness is achieved corresponds to the separation of
the two temperature regimes.

Furthermore, since different gas-phase compositions can be used to tailor the
material properties of the thin films obtained by the depositions for different appli-
cations, simulations of depositions for different gas-phase compositions have been
run to study the effect of gas-phase composition on the surface microstructure based
on the proposed growth model. It can be observed that the increase in the relative
concentration of A leads to increasing surface roughness, and vice versa. Moreover,
when the relative concentration of A is larger than 50%, the presence of two temper-
ature regimes is quite clear. This again suggests that type A macromolecules have a
significant effect on the surface microstructure when the relative concentrations of A
and B are comparable [116].

Effect of Lattice Size

Because the dimension of the wafers used in a real deposition process is usually
in the 108 nm regime, it is impossible to simulate the film growth for the entire
wafer even with the most efficient Monte Carlo algorithm and the best available
computing power. Thus, a lattice size that corresponds to a very small spatial domain
compared to the actual wafer dimension is used in this work. However, to better
gauge the results from such simulations, investigating the lattice-size dependency of
the simulation results is necessary.



64 3 Control Using Kinetic Monte Carlo Models

Fig. 3.26. Surface of a thin film deposited with wA
a = 0.05 s−1, wB

a = 0.05 s−1 and different
temperatures at t = 900 s: T = 320 K (left plot) and T = 380 K (right plot).
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Fig. 3.27. Surface roughness of thin films deposited with wA
a = 0.05 s−1, wB

a = 0.05 s−1 for
different substrate temperature. (t = 900 s).

Figure 3.28 shows the surface roughness of thin films deposited with different
substrate temperatures computed using different simulation lattice sizes. It can be
seen that simulation results from kMC runs with a lattice size larger than 50 × 50
agree very well with each other, while simulation results from the 50 × 50 lattice
show qualitative agreement with the results from the larger lattice runs. However,
the result from the 20 × 20 lattice is inconsistent with all other results. Such results
suggest that the lattice size used in the kMC simulation should be at least twice as
large as the surface interaction radius (20 in this work) to capture the dynamics of the
thin-film growth process. Moreover, the stochastic noise of the simulation decreases
with increasing lattice size. For this work in particular, a simulation lattice size of
100×100 is large enough to describe the process dynamics with low stochastic noise;
therefore, such a lattice size (or larger) will be used in the subsequent simulations.

3.5.3 Low-Temperature Regime: PI Control Design

For thin-film applications where a high island density is desired, surface roughness
control can be implemented on the low-temperature regime, in which the growth pro-
cess is dominated by short-range interactions. Real-time feedback control of deposi-
tion processes that are characterized by short-range interactions has been discussed
in detail in Section 3.4, where the control problem was formulated as regulation of
instantaneous surface roughness. In this work, a feedback control scheme inspired
by the methodology proposed in Sections 3.2 and 3.3 is developed to regulate the
final surface roughness. To ensure that the surface of the thin film has a high island
density, the substrate temperature is restricted within the range of 300 K–340 K.
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Fig. 3.28. Surface roughness of thin films deposited with different substrate temperatures com-
puted using different simulation lattice sizes.

Open-Loop Response

We first investigate the open-loop response of surface roughness with respect to step
changes in the substrate temperature and gas-phase composition. Our simulation re-
sults demonstrate that the value of the surface roughness at the end of the deposition
can be controlled by manipulating the substrate temperature and the final surface
roughness can be computed based on the current thin-film surface, the gas flux com-
position, and the substrate temperature using the proposed kMC growth model. Fur-
thermore, it can be observed that increasing concentration of type A macromolecules
in the gas phase, i.e., increasing wA

a , results in a rise in the final thin-film surface
roughness, and vice versa [116].

Controller Design: Closed-Loop Simulation

Based on the open-loop system analysis, a real-time surface roughness feedback con-
trol scheme is designed for the process. Figure 3.29 shows the block diagram of the
closed-loop system. The thin-film growth is influenced by the substrate tempera-
ture and the macromolecule adsorption rates, which are determined by the gas-phase
composition. Since we chose the final surface roughness as the variable to control,
an estimate is computed for every control cycle using the proposed kMC model
based on the operating conditions and the thin-film surface configuration, which
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Fig. 3.29. Block diagram of the closed-loop system.

can be measured in real time by advanced surface characterization tools such as the
GISAXS [129].

The substrate temperature is then computed based on a proportional-integral (PI)
control algorithm as follows:

T (t) =Kcê(t) + Ki

∫ t

t0

ê(μ)dμ + T0, (3.13)

ê(t) =
{

e(t) |e(t), | > ε,
0, |e(t)| ≤ ε,

(3.14)

where T (t) is the controller output (i.e., substrate temperature), T0 is the initial sub-
strate temperature, Kc is the proportional gain, Ki is the integral gain, e(t) is the
error of the final surface roughness (i.e., the difference between the desired final
surface roughness and the estimated final surface roughness computed using the pro-
posed kMC model based on the surface configuration and operating conditions at the
instance of last control action), and ε is the error tolerance, which is used to improve
the robustness properties of the controller against stochastic noises (ε = 0.05 in this
work).

The closed-loop thin-film growth process that employs the proposed real-time
feedback control scheme has been simulated. The controller parameters Kc and Ki

are set to be −0.1 and −0.5, respectively. For all the closed-loop simulations, the
deposition duration is set to be 950 s, and the adsorption rates wA

a and wB
a are both

set to be 0.05 s−1. The estimator and controller are activated at t = 400 s, and the
control action is applied to the process every 10 s.

Figure 3.30 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.5 ML. It can be seen that the surface roughness
value of the thin film at the end of the deposition has been controlled at the desired
value, which is 12.5% lower than the surface roughness of the thin film deposited by
open-loop deposition with the same initial deposition conditions.
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Fig. 3.30. Temperature and surface roughness profiles with surface roughness set-point value
of 3.5 ML: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface
roughness (dashed line, left scale); (c) substrate temperature (dotted line, right scale).

Figure 3.31 shows the temperature and surface roughness profiles with final sur-
face roughness set-point value of 3.5 ML. A disturbance in the gas-phase composi-
tion is introduced in this simulation represented by a step change in the adsorption
rates at t = 400 s to t = 500 s. Specifically, wA

a changed from 0.05 s−1 to 0.1 s−1

and wB
a changed from 0.05 s−1 to 0 s−1 at t = 400 s, while at t = 500 s, wA

a and wB
a

both changed back to 0.05 s−1. It can be seen that the surface roughness of the thin
film at the end of the deposition has been controlled at the desired value in spite of the
disturbance in the gas phase, while the thin film deposited by open-loop deposition
has a surface roughness 19.2% higher than the desired value due to the disturbance.

3.5.4 High-Temperature Regime: MPC Design

For thin-film applications where a large island size is desired, surface roughness
control can be implemented for the high-temperature regime, in which the growth
process is dominated by long-range interactions. To ensure the surface of the thin
film has a low island density, the substrate temperature is restricted within the range
of 340 K–420 K.

Open-Loop Response

The open-loop response of surface roughness with respect to step changes in the sub-
strate temperature and gas-phase composition at the high-temperature regime is also
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Fig. 3.31. Temperature and surface roughness profiles with surface roughness set-point value
of 3.5 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left
scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature
(dotted line, right scale).

studied through kMC simulations. We can see that, in the high-temperature regime,
the value of the surface roughness at the end of the deposition can also be con-
trolled by manipulating the substrate temperature. However, both the responses to
step changes in substrate temperature and gas-phase composition exhibit inverse dy-
namics, which suggests that a more advanced controller may be needed to control
the surface roughness in the high-temperature regime [116].

Controller Design: PI Control

The high-temperature regime, closed-loop thin-film growth process that employs the
proposed real-time feedback control scheme for the low-temperature regime but with
different controller parameters has been simulated. The controller parameters Kc and
Ki are set to be −2 and −0.2, respectively.

Figure 3.32 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.2 ML. It can be seen that the surface roughness
value of the thin film at the end of the deposition has been controlled at the desired
value, which is about the same as the surface roughness of the thin film deposited by
open-loop deposition with the same initial deposition conditions.

Figure 3.33 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.2 ML. A disturbance in the gas-phase com-
position is introduced in this simulation in terms of a step change in the adsorption
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Fig. 3.32. Temperature and surface roughness profiles with a surface roughness set-point value
of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) open-loop surface
roughness (dashed line, left scale); (c) substrate temperature (dotted line, right scale).
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Fig. 3.33. Temperature and surface roughness profiles with a surface roughness set-point value
of 3.2 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left
scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature
(dotted line, right scale).
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Fig. 3.34. Temperature and surface roughness profiles with a surface roughness set-point value
of 3.2 ML in the presence of disturbance: (a) closed-loop surface roughness (solid line, left
scale); (b) open-loop surface roughness (dashed line, left scale); (c) substrate temperature
(dotted line, right scale).

rates at t = 400 s to t = 420 s. Specifically, wA
a changed from 0.05 s−1 to 0.1 s−1

and wB
a changed from 0.05 s−1 to 0 s−1 at t = 400 s, while at t = 420 s, wA

a and wB
a

both changed back to 0.05 s−1. It can be seen that the final surface roughness has
been controlled at the desired value, which is 5.9% lower than that obtained under
open-loop operation in spite of the disturbance in the gas phase.

Figure 3.34 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.2 ML. A disturbance in the gas-phase compo-
sition is introduced in this simulation in terms of a step change in the adsorption rates
at t = 400 s to t = 500 s. Specifically, at t = 400 s, wA

a changed from 0.05 s−1 to
0.1 s−1 and wB

a changed from 0.05 s−1 to 0 s−1, while at t = 500 s, wA
a and wB

a both
changed back to 0.05 s−1. It can be seen that the surface roughness is not controlled
at the desired value and that the controller output hits the high limit of the control
actuator. The final surface roughness is about 13.9% higher than that obtained under
the open-loop operation. This suggests that the kMC estimator-based PI controller
does not provide satisfactory closed-loop performance when the disturbance to the
process is significant and, therefore, that a more advanced control scheme is needed.

Controller Design: kMC Model-Based Predictive Control

In order to achieve robust closed-loop operation in the high-temperature regime, a
kMC model-based predictive control scheme is proposed. Figure 3.8 shows the block
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diagram of the closed-loop system. A reference trajectory of the instantaneous sur-
face roughness of the thin film is selected based on offline optimization. For simplic-
ity in this work, the profile of the surface roughness of the thin film in an ideal open-
loop deposition (no disturbance is assumed to affect the process, and the final surface
roughness is taken to be the desired value) is chosen. Using such a reference trajec-
tory, instead of solving the receding-horizon optimization problem of minimizing
the difference between the final surface roughness and the desired value with mul-
tiple decision variables, we need only to solve the fixed short-horizon optimization
problem of minimizing the difference between the instantaneous surface roughness
and the reference value with a single decision variable. Therefore, the computation
time of each optimization is greatly reduced, since the kMC simulation duration is
reduced from the scale of the total deposition time to the controller turnover time.
This is very important since kMC simulation is relatively time-consuming and large-
scale numerical optimization using kMC models is almost impossible to solve in real
time (see also Chapters 6 and 7 for more on this topic).

During each control cycle, the surface configuration X(k) (i.e., the height and
the types of the top two macromolecules of each surface site) is first measured. An
estimate of the surface configuration at the next control action time Xest(k + 1) is
computed based on the current process conditions using the proposed kMC model,
and the estimated surface roughness value rest(k+1) is compared with the reference
value rref(k+1). If the error is less than ε (ε = 0.05 in this work), the next controller
output T (k + 1) is set to be the same as the current output T (k). If the error is larger
than ε, the optimizer is called to compute the output value of the next control action
T (k+1) so that the error between the surface roughness after the next control action
r(k + 2) and the reference value rref(k + 2) is minimized.

The optimizer uses direct search to find the optimal solution since the kMC model
does not have a closed-form expression. The estimate of the surface roughness after
the next control action rest(k+1) is computed using the proposed kMC model based
on the estimated surface configuration before the next control action Xest(k+1), the
probe output value Tprobe(k + 1), and current process conditions. The search preci-
sion specified in this work is 1 K, and since the proposed kMC model is highly com-
putationally efficient, the optimization problem can be solved by an entry-level per-
sonal computer within the controller’s turnover time (10 s). Furthermore, the speed
and the precision of the direct search optimization algorithm can be substantially
improved by parallel computing.

Figure 3.35 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.2 ML. The reference trajectory is computed by
averaging the open-loop surface roughness profiles from six independent simulation
runs. It can be seen that the surface roughness value of the thin film follows the
reference trajectory closely and the final surface roughness has been controlled at
the desired value.

Figure 3.36 shows the temperature and surface roughness profiles with a final
surface roughness set-point value of 3.2 ML. A disturbance in the gas-phase compo-
sition is introduced in this simulation in terms of a change in the adsorption rates at
t = 400 s to t = 500 s, specifically, wA

a changed from 0.05 s−1 to 0.1 s−1 and wB
a
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Fig. 3.35. Temperature and surface roughness profiles with a surface roughness set-point value
of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) reference surface
roughness (dashed line, left scale); (c) open-loop surface roughness (dotted line, left scale);
(d) substrate temperature (dashed dotted line, right scale).
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Fig. 3.36. Temperature and surface roughness profiles with a surface roughness set-point value
of 3.2 ML: (a) closed-loop surface roughness (solid line, left scale); (b) reference surface
roughness (dashed line, left scale); (c) open-loop surface roughness (dotted line, left scale);
(d) substrate temperature (dashed dotted line, right scale).
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changed from 0.05 s−1 to 0 s−1 at t = 400 s, while at t = 500 s, wA
a and wB

a both
changed back to 0.05 s−1. It can be seen that the surface roughness closely follows
the reference trajectory and that the final surface roughness has been controlled at
the desired value, which is 13.5% lower than the open-loop value. Compared to the
poor performance of the PI controller on the same closed-loop simulation case, the
kMC model-based predictive controller delivers substantially improved and robust
closed-loop performance.

3.6 Conclusions

This chapter presented methods for real-time estimation and control of surface
roughness in thin-film growth. SISO, MIMO, and kMC model-predictive control
systems, which can be implemented in real time, were developed and applied to
thin-film deposition processes. The control systems use estimators that provide es-
timates of the controlled variables such as surface roughness and growth rate at a
time scale comparable to the real-time evolution of the process. Specifically, an esti-
mator/controller structure was initially developed and was applied to the multiscale
process model of a thin-film growth process to regulate the surface roughness at a
desired set-point value. Then, multivariable feedback control of surface roughness
and growth rate in thin-film growth was studied and a multivariable feedback con-
trol system was proposed. Application of the multivariable feedback control sys-
tem to the multiscale process model demonstrated successful regulation of both the
surface roughness and growth rate to desired set-point values. Finally, two kMC
model-based feedback control schemes were presented to control the final surface
roughness of a complex deposition process, which included two types of macro-
molecules and both short-range and long-range interactions. The closed-loop simu-
lation results demonstrated that robust deposition with controlled thin-film surface
roughness could be achieved under a kMC estimator-based PI feedback controller in
the short-range interaction-dominated growth regime, while a kMC model-predictive
controller was needed to control the surface roughness in the long-range interaction-
dominated growth regime.



4

Construction of Stochastic PDEs

4.1 Introduction

While it is possible in certain cases to use kinetic Monte Carlo models for real-
time estimation and control of thin-film microstructure, there are many applica-
tions where closed-form models are needed, due to their computational efficiency,
to carry out system-level analysis as well as design and implementation of real-
time, model-based feedback control systems. For many deposition and sputtering
processes, closed-form process models, in the form of linear or nonlinear stochas-
tic partial differential equations (PDEs), are available (e.g., [36, 39, 91, 154, 158]).
Stochastic PDEs contain the surface morphology information of thin films; thus,
they may be used for the purpose of feedback controller design. For example, it has
been experimentally verified that the Kardar–Parisi–Zhang (KPZ) equation [82] can
describe the evolution of the surface morphology of gallium arsenide (GaAs) thin
films, which is consistent with the surface measured by atomic force microscopy
(AFM) [13, 79].

This has motivated recent research on the development of methods for feedback
control of surface roughness based on linear and nonlinear stochastic PDE process
models [102, 101, 117, 103]. In all the developments, a feedback controller designed
based on a stochastic PDE process model can be applied to the kMC model of the
same process to regulate the surface roughness to desired values.

However, the derivation of linear/nonlinear stochastic PDE models for complex
thin-film growth processes directly based on microscopic process rules is a very dif-
ficult task. This issue has prohibited the development of stochastic PDE models,
and subsequently the design of model-based feedback control systems, for realistic
deposition processes that are, in general, highly complex. To address this issue, an
initial effort was made to apply system identification techniques to identify param-
eters of a linear stochastic PDE model [101] using kinetic Monte Carlo simulation
data. The results show that data-driven, optimization-based methods are appropriate
to construct stochastic PDE models using data obtained from first-principles simu-
lations. Inspired by this, methods for the construction of linear stochastic PDEs and
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parameter estimation of nonlinear stochastic PDEs were developed in a recent series
of papers [118, 117, 74].

In this chapter, we present methods for the construction of linear and nonlinear
stochastic PDEs. Linear stochastic PDEs on a one-dimensional (1D) spatial domain
are first considered. A generic linear stochastic PDE model for thin-film deposition
processes is initially reformulated into a system of infinite stochastic ordinary dif-
ferential equations (ODEs) by using modal decomposition. The dependence of the
statistical moments of the ODE states on the eigenvalues of the linear spatial oper-
ator of the stochastic PDE is subsequently derived. Then, we use a kMC simulation
of the thin-film growth process to generate surface snapshots for different instants
during process evolution to obtain values of the state vector of the stochastic ODE
system. Using the kMC simulation data, a linear stochastic PDE model is determined
by least-squares fitting of the prederivative coefficients to match the spectrum of the
stochastic PDE system to the computed spectrum of the stochastic ODE system.
The linear stochastic PDE construction method is then extended to two-dimensional
(2D) applications. The method is applied to construct linear stochastic PDE models
for thin-film growth processes taking place on 1D and 2D lattices.

Furthermore, the existence of nonlinearities in certain material preparation pro-
cesses motivates the development of a method for the construction of nonlinear
stochastic PDEs. Nonlinear stochastic PDE models are constructed by combining
a priori knowledge on the model structure and a novel model parameter estima-
tion procedure. To perform the parameter estimation, the nonlinear stochastic PDE
is first formulated into a system of infinite nonlinear stochastic ODEs and then a
finite-dimensional approximation is derived that captures the dominant mode con-
tribution to the PDE state. The evolution of the state covariance of the stochastic
ODE system is subsequently derived. Then, we use a kMC simulator to generate sur-
face snapshots for different instants during process evolution to obtain values of the
state vector of the stochastic ODE system. The model parameters of the nonlinear
stochastic KSE are obtained by using least-squares fitting so that the state covariance
computed from the stochastic KSE process model matches that computed from kMC
simulations. The effectiveness of the method is demonstrated through application to
an ion-sputtering process model described by the nonlinear stochastic Kuramoto–
Sivashinsky equation (KSE). Some of the results of this chapter were first presented
in [115, 117, 74].

4.2 Construction of 1D Linear Stochastic PDEs

4.2.1 1D Linear Stochastic PDE Model

Without any a priori knowledge of the physics of a thin-film deposition process, we
assume that there exists a one-dimensional linear stochastic PDE of the following
general form that can adequately describe the evolution of the surface of a thin film
during deposition:
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∂h

∂t
= c + c0h + c1

∂h

∂x
+ c2

∂2h

∂x2
+ · · · + cw

∂wh

∂xw
+ ξ(x, t), (4.1)

where x ∈ [0, π] is the spatial coordinate, t is the time, h(x, t) is the height of the
surface at position x and time t, and ξ(x, t) is a Gaussian noise with zero mean and
covariance

〈ξ(x, t)ξ(x′, t′)〉 = ς2δ(x − x′)δ(t − t′), (4.2)

where δ(·) is the Dirac function. Furthermore, the prederivative coefficients c and cj

in Eq. (4.1) and the parameter ς2 in Eq. (4.2) depend on the process parameters (gas
flow rates, substrate temperature, etc.) pi(t):

c = C[p1(t), p2(t), . . . , pd(t)],
cj = Cj [p1(t), p2(t), . . . , pd(t)], j = 0, . . . , w,

ς2 = Cξ[p1(t), p2(t), . . . , pd(t)],

(4.3)

where C(·), Cj(·), and Cξ(·) are nonlinear functions to be determined.
The stochastic PDE in Eq. (4.1) is subjected to the following periodic boundary

conditions:
∂jh

∂xj
(0, t) =

∂jh

∂xj
(π, t), j = 0, . . . , w − 1, (4.4)

and the initial condition
h(x, 0) = h0(x). (4.5)

Remark 4.1. In this work, we assume that a linear stochastic PDE model adequately
describes the process dynamics. However, for cases in which the nonlinear dynamics
are significant, nonlinear stochastic PDE models would be needed; this issue will
be addressed in Section 4.4. Also, we note that we use a scalar function, h(·), to
represent the height profile of the thin-film surface in the model. In general, h(·)
can be a vector function and can be used to represent any appropriate microscopic
description of the thin film (such as the defect locations, grain boundaries, etc.); in
such a case, several stochastic PDEs should be considered simultaneously.

4.2.2 Eigenvalue Problem of the Linear Operator

To study the dynamics of Eq. (4.1), we initially consider the eigenvalue problem of
the linear operator in Eq. (4.1), which takes the form

Aφn(x) = c0φn(x) + c1
dφn(x)

dx
+ c2

d2φn(x)
dx2

+ . . . + cw
dwφn(x)

dxw
= λnφn(x),

djφn

dxj
(0) =

djφn

dxj
(π), j = 0, . . . , w − 1, n = 1, . . . ,∞, (4.6)

where λn denotes an eigenvalue and φn denotes an eigenfunction. A direct compu-
tation of the solution of the above eigenvalue problem yields
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λn = c0 + I2nc1 + (I2n)2c2 + · · · + (I2n)wcw,

φn(x) =

√
1
π

eI2nx, n = 0,±1, . . . ,±∞,
(4.7)

where λn denotes the nth eigenvalue, φn(x) denotes the nth eigenfunction, and
I =

√
−1.

To present the method that we use for parameter identification of the stochastic
PDE in Eq. (4.1), we first derive an infinite stochastic ODE representation of Eq. (4.1)
using modal decomposition and parameterize the infinite stochastic ODE system
using kMC simulation. We first expand the solution to Eq. (4.1) in an infinite series
in terms of the eigenfunctions of the operator in Eq. (4.6) as follows (i.e., the Fourier
expansion in the complex form):

h(x, t) =
∞∑

n=−∞
zn(t)φn(x), (4.8)

where zn(t) are time-varying coefficients. Substituting the above expansion for the
solution, h(x, t), into Eq. (4.1) and taking the inner product, the following system of
infinite stochastic ODEs is obtained:

dzn

dt
= λnzn + czn + ξn(t), n = 0,±1, . . . ,±∞, (4.9)

with the initial conditions

zn(0) = zn0, n = 0,±1, . . . ,±∞, (4.10)

where czn = c
∫ π

0 φ∗
n(x)dx (note that cz0 = c

√
π and czn = 0 ∀ n �= 0),

ξn(t) =
∫ π

0
ξ(x, t)φ∗

n(x)dx and zn0 =
∫ π

0
h0(x)φ∗

n(x)dx, where φ∗
n(x) is the com-

plex conjugate of φn(x), and the superscript star is used to denote complex conjugate
in the remainder of this manuscript.

The covariances of ξn(t) can be computed by using the following result:

Result 4.1. If (1) f(x) is a deterministic function, (2) η(x) is a random variable with

〈η(x)〉 = 0 and covariance 〈η(x)η(x′)〉 = σ2δ(x−x′), and (3) ε =
∫ b

a
f(x)η(x)dx,

then ε is a random number with 〈ε〉 = 0 and covariance 〈ε2〉 = σ2
∫ b

a f(x)f∗(x)dx
[1].

Using Result 4.1, we obtain 〈ξn(t)〉 = 0 and 〈ξn(t)ξ∗n(t′)〉 = ς2δ(t−t′). We note
that ξn(t) is a complex Gaussian random variable and the probability distribution
function of the Gaussian distribution, P (ξn, t), on the complex plane with zero mean
and covariance ς2δ(t − t′) is defined as follows:

P (ξn, t) =
1√

2πςδ(t − t′)
eξnξ∗n/2ς2δ(t − t′). (4.11)
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4.2.3 Analytical Solutions for Statistical Moments

To compute the parameters of the system of infinite stochastic ODEs in Eq. (4.9),
we first derive the analytical expressions for the statistical moments of the stochastic
ODE states, including the expected value and covariance. By comparing the analyti-
cal expression to the statistical moments obtained by multiple kMC simulations, the
parameters of the stochastic ODE system (i.e., λn and ς) can be determined.

The explicit solution to Eq. (4.9) is obtained as follows to derive the expressions
for the statistical moments of the stochastic ODE states:

zn(t) = eλntzn0 +
(eλnt − 1)czn

λn
+
∫ t

0

eλn(t − μ)ξn(μ)dμ. (4.12)

Using Result 4.1, Eq. (4.12) can be further simplified as follows:

zn(t) = eλntzn0 +
(eλnt − 1)czn

λn
+ θn(t), (4.13)

where θn(t) is a complex random variable of normal distribution with zero mean

and covariance 〈θn(t)θ∗n(t)〉 = ς2(e(λn + λ∗
n)t − 1)/(λn + λ∗

n). Therefore, the ex-
pected value (the first stochastic moment) and the covariance (the second stochastic
moment) of state zn can be expressed as follows:

〈zn(t)〉 = eλntzn0 +
(eλnt − 1)czn

λn
,

〈zn(t)z∗n(t)〉 = ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

+ 〈zn(t)〉〈zn(t)〉∗,

n = 0,±1, . . . ,±∞.

(4.14)

Equation (4.14) holds for any initial condition zn0. Since we are able to choose any
initial thin-film surface for simulation, we choose zn0 = 0 [i.e., the initial surface is
flat, h(x, 0) = 0] to simplify our calculations. In this case, Eq. (4.14) can be further
simplified as follows (note that czn = 0, ∀n �= 0):

〈zn(t)〉 = 0,

〈zn(t)z∗n(t)〉 = ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

= ς2 e2Re(λn)t − 1
2Re(λn)

,

n = ±1, . . . ,±∞,

(4.15)

where Re(λn) denotes the real part of λn, and for z0(t), it follows from Eq. (4.14)
with λ0 = 0 that

〈z0(t)〉 = lim
λ0→0

(eλ0t − 1)cz0

λ0
= tcz0 = t

√
πc,

〈z2
0(t)〉 = ς2t + t2πc2.

(4.16)
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It can be seen in Eq. (4.15) that the statistical moments of each stochastic ODE
state depend only on the real part of the corresponding eigenvalue. Therefore, to
determine the imaginary part of the eigenvalue, we need to construct an additional
equation. We note that λn would be a complex number if the linear operator A is not
self-adjoint, i.e., when odd partial derivatives are present in the stochastic PDE [see
Eq. (4.7)].

Therefore, we rewrite Eq. (4.12) by separating the real part and the imaginary
part of zn(t) as follows with initial condition zn0 = 0:

zn(t) =
1
2

∫ t

0

[eλn(t − μ) + eλ
∗
n(t − μ)]ξn(μ)dμ

+
1
2

∫ t

0

[eλn(t − μ) − eλ
∗
n(t − μ)]ξn(μ)dμ,

n = ±1, . . . ,±∞.

(4.17)

Accordingly, the real part of zn(t) can be expressed as follows:

Re[zn(t)] =
1
2

∫ t

0

[eλn(t − μ) + eλ
∗
n(t − μ)]ξn(μ)dμ, n = ±1, . . . ,±∞,

(4.18)
where Re[zn(t)] denotes the real part of zn(t). Using Result 4.1, we have

〈Re[zn(t)]〉 = 0,

〈Re[zn(t)]2〉 = ς2

[
λ∗

ne2λnt + λne2λ∗
nt − (λn + λ∗

n)
8λnλ∗

n

+
e(λn + λ∗

n)t − 1
2(λn + λ∗

n)

]

= ς2

{
Re(λn)e2Re(λn) cos(2Im(λn)t)

4[Re(λn)2 + Im(λn)2]

+
Im(λn)e2Re(λn) sin(2Im(λn)t)

4[Re(λn)2 + Im(λn)2]

− Re(λn)
4[Re(λn)2 + Im(λn)2]

+
e2Re(λn)t − 1

4Re(λn)

}

,

n = ±1, . . . ,±∞,
(4.19)

where Im(λn) denotes the imaginary part of λn. Thus, we can use Eq. (4.15) to
first determine the real part of the eigenvalue, and then use Eq. (4.19) to determine
its imaginary part. We note that it is not recommended to determine both parts of
the eigenvalue using only Eq. (4.19), since, in that case, the nonlinear least-squares
problem involved in the eigenvalue determination would be much more difficult to
solve.
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4.2.4 Model Construction Methodology

Equations (4.15), (4.16), and (4.19) show the analytical relationship that relates the
linear operator and the Gaussian noise in Eq. (4.1) to the statistical moments of the
states of Eq. (4.9) which can be obtained, through multiple experimental measure-
ments or kinetic Monte Carlo simulations and, therefore, reveal a viable path to sys-
tematically construct a linear stochastic PDE of the form of Eq. (4.1) that describes
the dynamics of microscopic processes directly from experimental or simulation
data. To this end, we propose a systematic procedure to construct linear stochas-
tic PDEs. This procedure will be demonstrated using a thin-film deposition process
described in Section 4.2.5 and can be readily extended to other stochastic processes.

The proposed procedure includes the following steps: First, we design a set of
simulation experiments that cover the complete range of process operation; second,
we run multiple simulations for each simulation condition to obtain the trajectories
of the first and second statistical moments of the states (i.e., Fourier coefficients)
computed from the surface snapshots; third, we compute the eigenvalues of the lin-
ear operator and covariance of the Gaussian noise based on the trajectories of the
statistical moments of the states for each simulation run, and determine the model
parameters of the stochastic PDE (i.e., the prederivative coefficients and the order of
the stochastic PDE); finally, we investigate the dependence of the model parameters
of the stochastic PDE on the process parameters and determine the least-squares opti-
mal form of the stochastic PDE model with model parameters expressed as functions
of the process parameters.

4.2.5 Application to a 1D Thin-Film Growth Process

To illustrate the application of the above model construction methodology, we con-
sider a thin-film growth process of deposition from the vapor phase in which the
formation of the thin film is governed by two microscopic processes that occur on
the surface as shown in Fig. 4.1, i.e., the adsorption of vapor-phase molecules on the
surface and the migration of surface molecules. The processes of molecule adsorp-
tion and migration are very common in thin-film growth processes.

More specifically, we consider a single-species growth on a one-dimensional lat-
tice (see Section 4.3 for extension of the results to thin-film growth occurring in
a two-dimensional lattice). The adsorption rate, which depends on the vapor-phase
concentration, is considered uniform over the spatial domain and constant (i.e., fixed
growth rate) during each deposition. However, it could vary for different deposition
runs. All surface sites are available for adsorption for all times and the adsorption
rate for each surface site is given by

wa = W, (4.20)

where W is the growth rate in ML/s (monolayers per second).
The migration rate of each surface molecule depends on its local environment.

Under the consideration of only first nearest-neighbor interactions, the migration rate
of surface molecules from a surface site with n first nearest neighbors is given by
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Fig. 4.1. The thin film growth process.

wm(n) = km0e
−Es+nEn

kBT , (4.21)

where Es is the energy barrier associated with migration due to surface effects, En

is the energy barrier associated with migration due to nearest-neighbor interactions,
km0 is the frequency constant associated with migration, kB is Boltzmann’s constant,
and T is the substrate temperature. The values of migration energy barriers and fre-
quency constant used in this study are taken from the literature [133] for a molecular-
beam epitaxy GaAs process and are as follows: Es = 1.58 eV, En = 0.28 eV, and
km0 = 2kBT/h, where h is Planck’s constant. A kinetic Monte Carlo simulation
code is used to simulate the deposition process and obtain surface snapshots.

Eigenvalues and Covariance

Because only two process parameters are considered in the deposition process under
consideration, the growth rate W and the substrate temperature T , the design of the
simulation runs is straightforward. Specifically, different W values and T values are
evenly selected from the range of process operations of interest and simulation runs
are executed with every selected W value for each selected T value. Therefore, we
start our demonstration of the model construction methodology with the computa-
tion of the eigenvalues and of the covariance. Also, we note that the trajectories of
the statistical moments for each simulation condition are computed based on 100
simulation runs taking place with the same process parameters.

In the previous section, we showed that for a deposition process with a flat initial
surface, the covariance of each state 〈zn(t)z∗n(t)〉 can be predicted by Eq. (4.15).
Therefore, we can fit ς2 and Re(λn) in Eq. (4.15) for the profile of 〈zn(t)z∗n(t)〉.

In order to obtain the profile of 〈zn(t)z∗n(t)〉, we need to generate snapshots of
the thin-film surface during each deposition simulation and compute the values of
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zn(t). Since the lattice consists of discrete sites, we let h(kL, t) be the height profile
of the surface at time t with lattice constant L (k denotes the coordinate of a specific
surface site), and compute zn(t) as follows:

zn(t) =
∫ π

0

h(x, t)φ∗
n(x)dx =

kmax∑

k=0

h(kL, t)
∫ (k+1)L

kL

φ∗
n(x)dx, (4.22)

where kmaxL = π (i.e., the lattice is mapped to the domain [0,π]). Substituting
Eq. (4.7) into Eq. (4.22), we can derive the following expression for zn(t):

zn(t) =
kmax∑

k=0

h(kL, t)e−I2kLn

I2
√

πn
(1 − e−I2Ln), n = ±1, . . . ,±∞, (4.23)

and for z0(t), we have

z0(t) =
kmax∑

k=0

h(kL, t)
L√
π

=
√

πt

kmax∑

k=0

h(kL, t)

kmaxt
= t

√
πW. (4.24)

To capture the dynamics of both the fast states and slow states simultaneously in
the same simulation run with few surface snapshots, the snapshots are generated in a
variable time-step fashion in which the intervals between two snapshots are increased
with time. This procedure is motivated by the fact that the dynamics of the fast states
can be detected only at the beginning of each simulation run, and, therefore, the
evolving surface should be sampled more frequently in the beginning than during
the remainder to cope with the small time scale of evolution of these fast states.

Figure 4.2 shows the eigenvalues computed from thin-film depositions occurring
under the same operating conditions but simulated with different lattice sizes (we
note that the computed eigenvalues are considered real since the imaginary part of
the eigenvalues turned out to be very small, which implies the absence of odd-order
terms in the stochastic PDE model of this process). It can be seen that the computed
spectrums are very close to each other when n is rescaled with the corresponding
lattice size. This is expected, since φn(x) is a basis of the domain of operator A and
is a complex function of the frequency n. Accordingly, n/kmax is the length scale
of the surface fluctuation described by φn(x) when a lattice of size kmax is mapped
to the domain of [0, π] (we note that, for the same reason, the covariance values
should be scaled with the inverse of the lattice size, 1/kmax, in order to carry out a
meaningful comparison).

It can also be seen in Fig. 4.2 that the eigenspectrums are very close to the
parabolic reference curve, which implies that a second-order stochastic PDE sys-
tem of the following form would be able to describe the evolution of the surface
height of this deposition process:

∂h

∂t
= c + c2

∂2h

∂x2
+ ξ(x, t), (4.25)
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Fig. 4.2. Eigenvalue spectrums of the system of infinite stochastic ODEs computed from the
kMC simulation of the deposition process with different lattice sizes: kmax = 100, kmax =
500, kmax = 1000, and kmax = 2000.

where c, c2, and the covariance of the Gaussian noise ξ, ς , all depend on the micro-
scopic processes and operating conditions.

Dependence on the Process Parameters

We now proceed with the derivation of the parameters of the stochastic PDE of
Eq. (4.25). From Eqs. (4.16) and (4.24), we can see that c = W for all cases. How-
ever, c2 and ς2 identified for different deposition settings can be very different, and
so we need to investigate their dependence on the deposition parameters to obtain
their analytical expressions. c2 and ς2 are evaluated for assorted deposition condi-
tions, and a lattice size of 1000 (i.e., kmax = 1000) is used for all the simulation runs
in our study.

Figure 4.3 shows the eigenspectrums and the covariance spectrums computed
from depositions with the same growth rate (W = 0.5 ML/s) for different substrate
temperatures. It can be seen that the magnitude of the eigenvalues decreases faster
with increasing n at higher substrate temperatures. This implies that a higher sub-
strate temperature corresponds to a larger c2 in the stochastic PDE model, and vice
versa. Although it follows from Eq. (4.11) that the covariance of the stochastic noise
should be the same for all states, it is not exactly the case for high-order states in the
high-substrate-temperature regime (e.g., T = 680 K). However, because these high-
order states correspond to the surface fluctuations of small length scales, and at the
same time, such small length-scale surface fluctuations are almost negligible in the
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Fig. 4.3. Eigenspectrums (top) and covariance spectrums (bottom) computed from simulated
deposition processes with a growth rate W = 0.5 ML/s for different substrate temperatures:
T = 600 K, T = 650 K, and T = 680 K.

high-substrate-temperature regime due to the significant surface diffusion, the con-
tribution from these high-order states at high substrate temperatures becomes very
small. Therefore, given that such discrepancy would not significantly affect the ac-
curacy of the model, we compute ς2 only based on the low-order states. From the
covariance of the low-order states shown in the right plot of Fig. 4.3, we may also
consider ς2 to be independent of substrate temperature.

We also investigate the eigenspectrums and covariance spectrums computed from
depositions occurring under the same substrate temperature but different thin-film
growth rates. It can be seen that a higher growth rate corresponds to a smaller c2 but
a larger covariance value [118].
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To derive explicit expressions for c2 and ς2 as functions of T and W , we eval-
uate these values for different T and W [118]. We find that ln c2 has a quasi-linear
relationship with both T and W . Thus, the following expression can be obtained for
c2 as a function of T and W through least-squares fitting:

c2(T, W ) = e−45.8176 + 0.0511T − 0.1620W

=
e−32.002 + 0.0511T − 0.1620W

k2
max

.
(4.26)

Furthermore, we find that ς2 depends almost linearly on both T and W . Thus,
the following expression can be obtained for ς2 as a function of T and W through
least-squares fitting as well:

ς2(T, W ) = 5.137 × 10−8T + 3.2003× 10−3W ≈ πW

kmax
. (4.27)

Therefore, the linear stochastic PDE model computed for the deposition process
is as follows:

∂h

∂t
= W +

(
e−32.002 + 0.0511T − 0.1620W

k2
max

)
∂2h

∂x2
+ ξ(x, t),

∂h

∂x
(0, t) =

∂h

∂x
(π, t), h(0, t) = h(π, t), h(x, 0) = h0(x),

(4.28)

where

〈ξ(x, t)ξ(x′, t′)〉 =
5.137× 10−5T + 3.2003W

kmax
δ(x − x′)δ(t − t′).

Validation of the 1D Stochastic PDE Model

We now proceed with the validation of the stochastic PDE model of the thin-film de-
position process [Eq. (4.28)]. Validation experiments are conducted for a number of
deposition conditions that have not been used for the model construction. We gener-
ate surface profiles using both the stochastic PDE model and the kinetic Monte Carlo
code. Figure 4.4 shows the surface profile at the end of a deposition with substrate
temperature T = 550 K, thin-film growth rate W = 0.1 ML/s, deposition duration
of 1000 s, and lattice size kmax = 2000. Figure 4.5 shows the surface profile at the
end of a deposition with substrate temperature T = 700 K, thin-film growth rate
W = 2.5 ML/s, deposition duration of 400 s and lattice size kmax = 2000; we can
see that at both low and high substrate temperatures, and for different growth rates,
the surface height profile, h(x), at t = 1000 s computed by the linear stochastic PDE
model constructed for the deposition process is very consistent with that obtained
from the kinetic Monte Carlo simulation.
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Fig. 4.4. Final thin-film surface profiles generated by kMC simulation and stochastic PDE
model for a 1000-s deposition with substrate temperature T = 550 K, thin-film growth rate
W = 0.1 ML/s and lattice size kmax = 2000.
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Fig. 4.5. Final thin-film surface profiles generated by kMC simulation and stochastic PDE
model for a 400-s deposition with substrate temperature T = 700 K, thin-film growth rate
W = 2.5 ML/s, and lattice size kmax = 2000.
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We also generate expected surface roughness profiles using both the stochastic
PDE model and the kinetic Monte Carlo simulation (average of 100 runs) for the
deposition process. For simplicity, the surface roughness is evaluated in a root-mean-
square fashion as follows:

r(t) =

√
1
π

∫ π

0

[h(x, t) − h̄(t)]2dx, (4.29)
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Fig. 4.6. Expected surface roughness profiles generated by kMC simulation and stochastic
PDE model for a 1000-s deposition with substrate temperature T = 550 K, thin-film growth
rate W = 0.1 ML/s, and lattice size kmax = 2000.
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Fig. 4.7. Expected surface roughness profiles generated by kMC simulation and stochastic
PDE model for a 400-s deposition with substrate temperature T = 700 K, thin-film growth
rate W = 2.5 ML/s, and lattice size kmax = 2000.
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where h̄(t) = (1/π)
∫ π

0
h(x, t)dx is the average surface height. We note that for a

more detailed description of the surface morphology, the height–height correlation
function may be used to evaluate the surface roughness [144].

Figure 4.6 shows the expected roughness profile of a deposition with substrate
temperature T = 550 K and thin-film growth rate W = 0.1 ML/s; Fig.4.7 shows
the roughness profile of a deposition with substrate temperature T = 700 K and
thin-film growth rate W = 2.5 ML/s; we can see that the linear stochastic PDE
model constructed for the deposition process is also very consistent with the kinetic
Monte Carlo simulation in terms of surface roughness prediction, at both low and
high substrate temperatures, for different growth rates.

4.3 Construction of 2D Linear Stochastic PDEs

In Section 4.2, a systematic method to construct stochastic PDE models for thin-film
growth using first-principles-based microscopic simulations has been presented, and
the method has been applied to a representative one-dimensional thin-film growth
process. In this section, we focus on the construction of two-dimensional linear
stochastic PDE models for two-dimensional thin-film growth processes.

4.3.1 2D Linear Stochastic PDE Model

We now proceed with constructing a closed-form stochastic PDE model using the
approach we presented in Section 4.2. Without any a priori knowledge of the deposi-
tion process, we assume that there exists a 2D linear stochastic PDE of the following
general form that can adequately describe the evolution of the surface of the thin film
during the deposition:

∂h

∂t
= c + c1 � h + c2 �2 h + · · · + cw �w h + ξ(x, y, t), (4.30)

where x ∈ [0, π], y ∈ [0, π] is the spatial coordinate, t is the time, h(x, y, t) is the
height (in the unit of monolayers) of the surface at position x, y and time t, �k is
the following operator: �k = ∂k

∂xk + ∂k

∂yk , and ξ(x, y, t) is a Gaussian noise with
zero mean and covariance:

〈ξ(x, y, t)ξ(x′, y′, t′)〉 = ς2δ(x − x′)δ(y − y′)δ(t − t′), (4.31)

where δ(·) is the Dirac function. Furthermore, the prederivative coefficients c and cj

in Eq. (4.30) and the parameter ς2 in Eq. (4.31) depend on the process parameters,
the substrate temperature T , and the adsorption rate W (directly determined by the
vapor-phase concentration):

c = C[T (t), W (t)],

ς2 = Cξ[T (t), W (t)],

cj = Cj [T (t), W (t)], j = 0, . . . , w,

(4.32)

where C(·) and Cj(·) are nonlinear functions to be determined.



90 4 Construction of Stochastic PDEs

The stochastic PDE in Eq. (4.30) is subjected to the following periodic boundary
conditions:

�jh(0, y, t) = �jh(π, y, t),
�jh(x, 0, t) = �jh(x, π, t), j = 0, . . . , w − 1,

(4.33)

with the initial condition
h(x, y, 0) = h0(x, y). (4.34)

4.3.2 Eigenvalue Problem of the Linear Operator

To study the dynamics of Eq. (4.30), we initially consider the eigenvalue problem of
the linear operator of Eq. (4.30), which takes the form

Aφm,n(x, y) = c1 � φm,n(x, y) + c2 �2 φm,n(x, y) + · · · + cw �w φm,n(x, y)

= λm,nφm,n(x, y),

�jφm,n(0, y) = �jφm,n(π, y),

�jφm,n(x, 0) = �jφm,n(x, π), j = 0, . . . , w − 1, m, n = 0,±1, . . . ,±∞,
(4.35)

where λm,n denotes the eigenvalue and φm,n denotes the eigenfunction. A direct
computation of the solution to the above eigenvalue problem yields

λm,n = (I2m + I2n)c1 + [(I2m)2 + (I2n)2]c2

+ · · · + [(I2m)w + (I2n)w]cw,

φm,n(x, y) =
1
π

(eI2mx + I2ny), m, n = 0,±1, . . . ,±∞,

(4.36)

where λm,n denotes the (m, n)th eigenvalue, φm,n(x, y) denotes the (m, n)th eigen-
function, and I =

√
−1.

To present the method that we use for the identification of the stochastic PDE in
Eq. (4.30), we first derive an infinite stochastic ODE representation of Eq. (4.30)
using modal decomposition and parameterize the infinite stochastic ODE system
using kMC simulation. We first expand the solution to Eq. (4.30) in an infinite series
in terms of the eigenfunctions of the operator in Eq. (4.35) as follows (i.e., the Fourier
expansion in the complex form):

h(x, y, t) =
∞∑

m,n=−∞
zm,n(t)φm,n(x, y), (4.37)

where zm,n(t) are time-varying coefficients. Substituting the above expansion for
the solution, h(x, y, t), into Eq. (4.30) and taking the inner product, the following
system of infinite stochastic ODEs is obtained:

dzm,n

dt
= λm,nzm,n + cz

m,n + ξm,n(t), m, n = 0,±1, . . . ,±∞, (4.38)
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with the initial conditions

zm,n(0) = zm,n,0, m, n = 0,±1, . . . ,±∞, (4.39)

where cz
m,n = c

∫ π

0

∫ π

0 φ∗
m,n(x, y)dxdy, ξm,n(t) =

∫ π

0

∫ π

0 ξ(x, y, t)φ∗
m,n(x, y) dxdy,

and zm,n,0 =
∫ π

0

∫ π

0
h0(x, y)φ∗

m,n(x, y)dxdy. We note that cz
0,0 = πc and cz

m,n = 0
when m2 + n2 �= 0. φ∗

m,n is the complex conjugate of φm,n, and the superscript star
is used to denote complex conjugate in the remainder of this section.

By using Result 4.1, we obtain 〈ξm,n(t)〉 = 0 and 〈ξm,n(t)ξ∗m,n(t′)〉 = ς2δ(t −
t′). We note that ξm,n(t) is a complex Gaussian random variable.

4.3.3 Analytical Solutions for Statistical Moments

To compute the parameters of the system of infinite stochastic ODEs in Eq. (4.38),
we first derive the analytical expressions for the statistical moments of the stochastic
ODE states, such as the expected values and covariances. By comparing the analyti-
cal expression to the statistical moments obtained by multiple kMC simulations, the
parameters of the stochastic ODE system (i.e., λm,n and ς) can be determined.

The analytical solution to Eq. (4.38) is obtained as follows to derive the expres-
sions for the statistical moments of the stochastic ODE states:

zm,n(t) = eλm,ntzm,n,0 +
(eλm,nt − 1)cz

m,n

λm,n
+
∫ t

0

eλm,n(t − μ)ξm,n(μ)dμ,

(4.40)
Using Result 4.1, Eq. (4.40) can be further simplified as follows:

zm,n(t) = eλm,ntzm,n,0 +
(eλm,nt − 1)cz

m,n

λm,n
+ θm,n(t), (4.41)

where θm,n(t) is a complex random variable of normal distribution with zero mean

and covariance 〈θm,n(t)θ∗m,n(t)〉 = ς2(e(λm,n + λ∗
m,n)t − 1)/(λm,n + λ∗

m,n).
Therefore, the first stochastic moment (the expected value) and the second stochastic
moment (the covariance) of state zm,n can be expressed as follows:

〈zm,n(t)〉 = eλm,ntzm,n,0 +
(eλm,nt − 1)cz

m,n

λm,n
,

〈zm,n(t)z∗m,n(t)〉 = ς2 e(λm,n + λ∗
m,n)t − 1

λm,n + λ∗
m,n

+ 〈zm,n(t)〉〈zm,n(t)〉∗.
(4.42)

Remark 4.2. We note that Eqs. (4.40), (4.41), and (4.42) hold for all stochastic ODE
system states. Particularly, when m = n = 0 (i.e., for state z0,0), λm,n = 0, these
terms in the equations with λm,n and λm,n + λ∗

m,n as denominators should be cal-
culated as follows:
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lim
λm,n→0

(eλm,nt − 1)cz
m,n

λm,n
= tcz

m,n,

lim
λm,n→0

ς2 e(λm,n + λ∗
m,n)t − 1

λm,n + λ∗
m,n

= ς2t.

(4.43)

Equation (4.42) holds for any initial condition zm,n,0. Since we are able to choose
any initial thin-film surface profile for simulation, we choose zm,n,0 = 0 [i.e., the ini-
tial surface is flat, h(x, y, 0) = 0] to simplify our calculations. In this case, Eq. (4.42)
can be further simplified as follows (note that cz

m,n = 0, ∀m2 + n2 �= 0):

〈zm,n(t)〉 = 0,

〈zm,n(t)z∗m,n(t)〉 = ς2 e(λm,n + λ∗
m,n)t − 1

λm,n + λ∗
m,n

= ς2 e2Re(λm,n)t − 1
2Re(λm,n)

,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0,

(4.44)

where Re(λm,n) denotes the real part of λm,n. For z0,0(t), it follows from Eq. (4.42)
with λ0,0 = 0 that

〈z0,0(t)〉 = tπc,

〈z2
0,0(t)〉 = ς2t + t2π2c2.

(4.45)

It can be seen in Eq. (4.44) that the statistical moments of each stochastic ODE
state depend only on the real part of the corresponding eigenvalue. Therefore, to de-
termine the imaginary part of the eigenvalue, we need to construct an extra equation.
We note that λm,n will be a complex number if the linear operator A is not self-
adjoint, for example, when odd partial derivatives are present in the stochastic PDE
[see Eq. (4.36)].

Therefore, we rewrite Eq. (4.40) by separating the real part and the imaginary
part of zm,n(t) as follows with initial condition zm,n,0 = 0:

zm,n(t) =
1
2

∫ t

0

[eλm,n(t − μ) + eλ
∗
m,n(t − μ)]ξm,n(μ)dμ

+
1
2

∫ t

0

[eλm,n(t − μ) − eλ
∗
m,n(t − μ)]ξm,n(μ)dμ,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0.

(4.46)

Accordingly, the real part of zm,n(t) can be expressed as follows:

Re[zm,n(t)] =
1
2

∫ t

0

[eλm,n(t − μ) + eλ
∗
m,n(t − μ)]ξm,n(μ)dμ,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0,

(4.47)

where Re[zm,n(t)] denotes the real part of zm,n(t). By using Result 4.1, we have
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〈Re[zm,n(t)]〉 = 0,

〈Re[zm,n(t)]2〉 = ς2

⎡

⎣λ∗
m,ne2λm,nt + λm,ne2λ∗

m,nt − (λm,n + λ∗
m,n)

8λm,nλ∗
m,n

+
e(λm,n + λ∗

m,n)t − 1
2(λm,n + λ∗

m,n)

⎤

⎦

= ς2

{
Re(λm,n)e2Re(λm,n) cos(2Im(λm,n)t)

4[Re(λm,n)2 + Im(λm,n)2]

+
Im(λm,n)e2Re(λm,n) sin(2Im(λm,n)t)

4[Re(λm,n)2 + Im(λm,n)2]

− Re(λm,n)
4[Re(λm,n)2 + Im(λm,n)2]

+
e2Re(λm,n)t − 1

4Re(λm,n)

}

,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0,

(4.48)

where Im(λm,n) denotes the imaginary part of λm,n. Thus, we can use Eq. (4.44) to
first determine the real part of the eigenvalue, and then use Eq. (4.48) to determine
its imaginary part. We note that we can determine both parts of the eigenvalue using
only Eq. (4.48). However, in that case, the nonlinear least-squares problem involved
in the eigenvalue determination would be much more difficult to solve.

4.3.4 Model Construction Methodology

Equations (4.44), (4.45), and (4.48) show the analytical relationship that relates the
linear operator and the Gaussian noise in Eq. (4.30) to the statistical moments of the
states of Eq. (4.38) that can be obtained through multiple experimental measurements
or first-principles microscopic simulations.

To this end, we can follow a systematic procedure, similar to the one developed
for the 1D case, to construct 2D linear stochastic PDEs for deposition processes on
a 2D lattice. The procedure includes the following steps: First, we design a set of
simulation experiments that cover the complete range of process operations; second,
we run multiple simulations for each simulation condition to obtain the trajectories
of the first and second statistical moments of the states (i.e., Fourier coefficients)
computed from the surface snapshots; third, we compute the eigenvalues of the lin-
ear operator and covariance of the Gaussian noise based on the trajectories of the
statistical moments of the states for each simulation condition, and determine the
model parameters of the stochastic PDE (i.e., the prederivative coefficients and the
order of the stochastic PDE); finally, we investigate the dependence of the model
parameters of the stochastic PDE on the process parameters and determine the least-
squares optimal form of the stochastic PDE model with model parameters expressed
as functions of the process parameters. This procedure will be demonstrated using a
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thin-film deposition process described in Section 4.3.5 and can be readily extended
to other stochastic processes.

Remark 4.3. We note that all the simulation experiments are executed using simu-
lation lattices whose sizes are large enough to capture the dynamics of the surface
evolution during the thin-film growth, and we run additional simulation experiments
using larger lattices to check our results. As we have mentioned in Section 4.2, the
experimental measurements obtained from the actual physical process can also be
used for model construction, as long as the measurement has enough resolution to
capture the surface evolution dynamics. Furthermore, since the same dynamics can
be present at both large and small length scales, the resolution of the constructed
model could be even better than the experimental measurements. In general, the use
of a finite lattice size simulation and limited resolution measurements does not affect
the accuracy of the constructed model, provided that the surface evolution dynamics
are captured by the simulation/experimental data.

4.3.5 Application to a 2D Thin-Film Growth Process

In this section, we consider a thin-film growth process of deposition from the vapor
phase in which the formation of the thin film is governed by three microscopic pro-
cesses that occur on the surface, i.e., the adsorption of vapor-phase molecules on the
surface, the migration of surface molecules, and the desorption of surface molecules.
More specifically, we consider a single-species growth on a 2D lattice. The adsorp-
tion rate, which depends on the vapor-phase concentration, is considered uniform
over the spatial domain. All surface sites are available for adsorption for all time and
the adsorption rate for each surface site is denoted as W (expressed in number of
molecules adsorbed per second, 1/s).

The migration rate of each surface molecule depends on its local environment.
Under the consideration of only first nearest-neighbor interactions, the migration rate
of surface molecules from a surface site with n first nearest neighbors is given by

wm(n) = km0e
−Es+nEn

kBT , (4.49)

where Es is the energy barrier associated with migration due to surface effects, En

is the energy barrier associated with migration due to nearest-neighbor interactions,
km0 is the frequency constant associated with migration, kB is Boltzmann’s constant,
and T is the substrate temperature. The values of migration energy barriers and fre-
quency constant used in this study are taken from the literature [133] for a molecular-
beam epitaxy GaAs process and are as follows: Es = 1.58 eV, En = 0.28 eV, and
km0 = 2kBT/h, where h is Planck’s constant.

The desorption rate of each surface molecule also depends on its local environ-
ment. Under the consideration of only first nearest-neighbor interactions, the desorp-
tion rate of surface molecules from a surface site with n first nearest neighbors is
given by

wd(n) = kd0e
−Ed+nEn

kB T , (4.50)
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where Ed is the energy barrier associated with desorption due to surface binding, and
kd0 is the frequency constant associated with desorption. A kMC simulation code is
used to simulate the deposition process, and we use the values Ed = 1.8 eV and
kd0 = 2kBT/h in all kMC simulations in this chapter. We note that in contrast to
the 1D process of Section 4.2, which only includes adsorption and surface migration
processes, the 2D process includes adsorption, surface migration, and desorption
processes.

Eigenvalues and Covariance

The eigenvalues and the covariance of the systems of ODEs, which correspond to
the deposition processes with different W and T values, are identified based on the
trajectories of the statistical moments. In the previous subsection, we showed that for
a deposition process with a flat initial surface, the trajectory of the second statistical
moment of the ODE state 〈zm,n(t)z∗m,n(t)〉 can be predicted by Eq. (4.44). There-
fore, we can fit ς2 and Re(λm,n) in Eq. (4.44) for the profile of 〈zm,n(t)z∗m,n(t)〉.
Similarly, Im(λm,n) can be determined based on the trajectory of 〈Re[zm,n(t)]2〉
and Eq. (4.48).

In order to obtain the profile of 〈zm,n(t)z∗m,n(t)〉 and 〈Re[zm,n(t)]2〉, we need
to generate snapshots of the thin-film surface during each deposition simulation and
compute the values of zm,n(t). Since the lattice consists of discrete sites, we let
h(kxL, kyL, t) be the height profile of the surface at time t with lattice constant L
(kx and ky denote the coordinates of a specific surface site), and compute zm,n(t) as
follows:

zm,n(t) =
∫ π

0

∫ π

0

h(x, y, t)φ∗
m,n(x, y)dxdy

=
kmax∑

kx,ky=0

h(kxL, kyL, t)
∫ (kx+1)L

kxL

∫ (ky+1)L

kyL

φ∗
m,n(x, y)dxdy,

(4.51)

where kmaxL = π (i.e., the lattice is mapped to the domain [0, π]2). Substituting
Eq. (4.36) into Eq. (4.51), we can derive the following expressions for zm,n(t),
z0,n(t), zm,0(t), and z0,0(t):

zm,n(t) =
kmax∑

kx,ky=0

h(kxL, kyL, t)
−4πmn

e−(I2mkxL + I2nkyL)

× (e−I2mL − 1)(e−I2nL − 1), m, n = ±1, . . . ,±∞,

(4.52)

z0,n(t) =
kmax∑

kx,ky=0

h(kxL, kyL, t)Le−I2kyLn

−I2πn
(e−I2Ln − 1)

n = ±1, . . . ,±∞,

(4.53)
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zm,0(t) =
kmax∑

kx,ky=0

h(kxL, kyL, t)Le−I2kxLm

−I2πm
(e−I2Lm − 1) (4.54)

m = ±1, . . . ,±∞,

z0,0(t) =
kmax∑

kx,ky=0

h(kxL, kyL, t)L2

π
. (4.55)

We note that, for each simulation experiment, the profile “s” of 〈zm,n(t)z∗m,n(t)〉
and 〈Re[zm,n(t)]2〉 are computed based on 100 simulation runs taking place with
the same process parameters (a further increase in the number of simulations led to
identical results for the order and the parameters of the constructed stochastic PDE).

Figure 4.8 shows an eigenspectrum computed from a thin-film deposition (we
note that the computed eigenvalues are considered real since the imaginary part of the
eigenvalues turned out to be very small). It can be seen that the computed spectrum
is very close to the parabolic reference curve (appears as a line when the eigenvalue
is plotted against m2 + n2). Based on Eq. (4.36), this implies that a second-order
stochastic PDE system of the following form would be able to describe the evolution
of the surface height of this deposition process:

∂h

∂t
= c + c2 �2 h + ξ(x, y, t),

�h(0, y, t) = �h(π, y, t), h(0, y, t) = h(π, y, t),
�h(x, 0, t) = �h(x, π, t), h(x, 0, t) = h(x, π, t),

h(x, y, 0) = h0(x, y),

(4.56)

where c, c2, and the covariance of the Gaussian noise ξ, ς all depend on the micro-
scopic processes and operating conditions.
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Fig. 4.8. Eigenvalue spectrum of the stochastic ODE systems computed from the kMC simu-
lation of the deposition process with W = 0.5 s−1, T = 650 K, and kmax = 100.
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Remark 4.4. We note that it is necessary to rescale m2+n2 with the square of the cor-
responding lattice size, to carry out a meaningful comparison among eigenspectrums
computed from simulations using lattices of different sizes; for the same reason, the
covariance values should be scaled with the inverse of the square of the lattice size,
1/k2

max (see Section 4.2 for a detailed discussion).

Dependence on the Process Parameters

We proceed now with the derivation of the parameters of the stochastic PDE of
Eq. (4.56). c, c2, and ς2 are evaluated for assorted deposition conditions, and the
lattice size of 100 × 100 (i.e., kmax = 100) is used for all simulation runs in our
study.

The model parameter c is determined using Eq. (4.45) based on the trajectory of
〈z0,0(t)〉. Since z0,0(t) is, in fact, proportional to the average height [see Eq. (4.55],
i.e., the thickness of the film), c should equal the adsorption rate W when there is no
desorption of surface molecules (see the process studied in Section 4.2 for example).
However, desorption of surface molecules is significant in the deposition process
studied in this chapter, and thus, the actual value of c should be smaller than W .
Therefore, to derive the expression for c, we plot the relative difference of c and
W [i.e., (W − c)/W ] against W and T [118]. We find that ln [(W − c)/W ] has a
quasi-linear relationship with both T and ln W ; thus, the following expression can
be obtained for c as a function of T and W through least-squares fitting:

c(W, T ) = W

(
1 − kw

W awe−kBT/Ew

)
(4.57)

where kw = 3.3829× 10−12, aw = 0.6042, and Ew = 2.7 × 10−3 eV.
The value of c2 is determined by least-squares fitting of Eq. (4.36) and the eigen-

spectrum computed from the simulation. Based on the profile of c2 as a function of
T and W , we find that ln c2 has a quasi-linear relationship with both T and ln W .
Thus, the following expression can be obtained for c2 as a function of T and W
through least-squares fitting:

c2(W, T ) =
kc0

W ace−kBT/Ec
=

kc

k2
maxW

ace−kBT/Ec
, (4.58)

where kc = 1.0274× 10−13, ac = 0.1669, and Ec = 1.9 × 10−3 eV.
The value of ς2 is obtained by averaging the ς2 values determined using Eq. (4.44)

based on the trajectories of the second statistical moments of the states. However,
derivation of the expression of ς2(T, W ) is not as straightforward as the ones for
c and c2. Consider the normalized ς2 value, ς2/(π/kmax)2, as a function of T for
different W . It is found that ς2/(π/kmax)2 grows exponentially with W ; therefore,

we may assume ς2/(π/kmax)2 = 1 + eav0 + kv0T [118]. Values of av0 and kv0 are
determined by least-squares fitting for different W , and results suggest that av0 and
kv0 are linear functions of W . Thus, the following expression is obtained for ς2 as a
function of T and W :
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ς2(W, T ) =
π2

k2
max

W [1 + e−av − kvW + (at + ktW )T ]

=
π2

k2
max

W

[

1 +
e(at + ktW )T

eav + kvW

]

,
(4.59)

where av = 15.55493, kv = 20.64504, at = 0.02332, and kt = 0.0261.
Therefore, the linear stochastic PDE model computed for the deposition process

is as follows:

∂h

∂t
= W

(
1 − kw

W awe−kBT/Ew

)

+

(
kc

k2
maxW

ace−kBT/Ec

)

�2 h + ξ(x, y, t),

�h(0, y, t) = �h(π, y, t), h(0, y, t) = h(π, y, t),
�h(x, 0, t) = �h(x, π, t), h(x, 0, t) = h(x, π, t),

h(x, y, 0) = h0(x, y),

(4.60)

where 〈ξ(x, y, t)ξ∗(x′, y′, t′)〉 = π2/k2
maxW

[
1 +

(
e(at + ktW )T

/
eav + kvW

)]

δ(x − x′)δ(y − y′)δ(t − t′).

Validation of the 2D Stochastic PDE Model

We now proceed with the validation of the stochastic PDE model of the thin-film
deposition process [Eq. (4.60)]. Validation experiments are conducted for a number
of deposition conditions that have not been used for the model construction. We gen-
erate surface profiles using both the stochastic PDE model and the kinetic Monte
Carlo simulation. Figure 4.9 shows the surface profile at the end of a deposition with
substrate temperature T = 610 K, adsorption rate W = 0.5 s−1, deposition dura-
tion of 200 s, and kmax = 100; Fig. 4.10 shows the surface profile at the end of a
deposition with substrate temperature T = 710 K, adsorption rate W = 0.5 s−1,
deposition duration of 200 s, and lattice size kmax = 100. We can see that at both
low and high substrate temperatures, the linear stochastic PDE model constructed
for the deposition process is very consistent with the kinetic Monte Carlo simulation
in terms of film thickness and surface morphology (such as surface island size dis-
tribution and aggregation). The only observable difference between the two surfaces
is that the one generated by kMC simulation has finer structural details than the one
generated by stochastic PDE simulation. Such a difference is caused by the fact that
the surface height profile in the stochastic PDE model is a continuous approximation
of the discrete lattice.

In addition, we generate expected surface roughness profiles using both the
stochastic PDE model and the kinetic Monte Carlo simulation (average of 100 runs)
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Fig. 4.9. Final thin-film surface profiles generated by kMC simulation (left, kmax = 100) and
stochastic PDE model (right, 20×20 states) for a 200-s deposition with substrate temperature
T = 610 K and adsorption rate W = 0.5 s−1.

for the deposition process. For simplicity, the surface roughness is evaluated in a
root-mean-square fashion as follows:

r(t) =

√
1
π

∫ π

0

∫ π

0

[h(x, y, t) − h̄(t)]2dxdy, (4.61)
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Fig. 4.10. Final thin-film surface profiles generated by kMC simulation (left, kmax = 100) and
stochastic PDE model (right, 20× 20 states) for a 200 s deposition with substrate temperature
T = 710 K and adsorption rate W = 0.5s−1.

where h̄(t) = 1/π2
∫ π

0

∫ π

0 h(x, y, t)dxdy is the average surface height. We note
that for more detailed descriptions of the surface morphology, the surface can be
examined using the height–height correlation function [144] and the interface width
function [3]. Note that these different descriptions can be very efficiently computed
using standard algebraic operations when the surface morphology is available from
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either the kMC model or the stochastic PDE model. The computational time required
to obtain descriptions of the surface morphology is not significant compared to that
needed for the solution of the surface microstructure model (either kMC model or
stochastic PDE model).

To calculate the expected surface roughness using the stochastic PDE model,
we first express the surface roughness in terms of the ODE states. According to
Eq. (4.51), we have h̄(t) = z0,0(t)φ0,0. Therefore, r(t) can be rewritten in terms of
zm,n as follows:

r(t) =

√
1
π2

∫ π

0

∫ π

0

[h(x, y, t) − h̄(t)][h(x, y, t) − h̄(t)]∗dxdy

=

√√
√
√√

1
π2

∫ π

0

∫ π

0

∞∑

m,n=−∞,

m2+n2 �=0

zm,n(t)φm,n(x, y)φ∗
m,n(x, y)z∗m,n(t)dxdy

=

√√√
√
√

1
π2

∞∑

m,n=−∞,

m2+n2 �=0

zm,n(t)z∗m,n(t),

(4.62)
and the expected roughness can be computed as follows:

〈r2(t)〉 =
1
π2

∞∑

m,n=−∞,

m2+n2 �=0

〈zm,n(t)z∗m,n(t)〉.
(4.63)

Substituting Eq. (4.42) and λn = −4c2(m2 + n2) into Eq. (4.63), we obtain the
following expression of the trajectory of 〈r(t)〉 in terms of the parameters of the
stochastic PDE model:

〈r2(t)〉 =
1
π2

∞∑

m,n=−∞,

m2+n2 �=0

[

ς2 e−8c2(m2 + n2)t − 1
−8c2(m2 + n2)

+ e−8c2(m2 + n2)tzm,n,0z
∗
m,n,0

]
.

(4.64)

Figure 4.11 shows the expected roughness profile of a deposition with adsorption
rate W = 0.5 s−1 and different substrate temperatures: T = 610 K and T = 710 K.
We can see that the roughness profiles generated by the linear stochastic PDE model
are very close to the profiles generated by the kinetic Monte Carlo simulation, for
both low and high substrate temperatures.
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Fig. 4.11. Expected surface roughness profiles generated by kMC simulation (kmax = 100)
and stochastic PDE model for a 200 s deposition with adsorption rate W = 0.5 s−1 and
different substrate temperatures: T = 610 K (top) and T = 710 K (bottom).

Furthermore, we have also generated expected thin-film thickness profiles using
both the stochastic PDE model and the kinetic Monte Carlo simulation (average of
100 runs) for the deposition process [117]. Numerical simulations have demonstrated
that the thickness profiles generated by the linear stochastic PDE model are also very
close to the profiles generated by the kMC simulation, for both low and high substrate
temperatures.
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4.4 Parameter Estimation for Nonlinear Stochastic PDEs

In Sections 4.2 and 4.3, we presented methods for the construction of 1D and 2D
linear stochastic PDE models for thin-film deposition processes. However, nonlin-
earities exist in many material preparation processes in which the surface evolution
can be modeled by stochastic PDEs. A typical example of such processes is the
sputtering process, whose surface evolution is described by the nonlinear stochas-
tic Kuramoto–Sivashinsky equation (KSE). In a simplified setting, the sputtering
process includes two types of surface micro–processes, erosion and diffusion. The
nonlinearity of the sputtering process originates from the dependence of the erosion
rate on a nonlinear sputtering yield function [36]. The presented methods for the
identification and construction of linear stochastic PDEs require the analytical so-
lutions for statistical moments, which prevent their direct applications to nonlinear
stochastic PDEs.

Motivated by this section focuses on estimation of the parameters of nonlinear
stochastic PDEs. To present the method we develop for parameter estimation, we
use the nonlinear stochastic Kuramoto–Sivashinsky equation, a fourth-order non-
linear stochastic PDE, as a representative example of nonlinear stochastic PDEs.
To perform this model parameter estimation task, we initially formulate the non-
linear stochastic KSE into a system of infinite nonlinear stochastic ODEs. A finite-
dimensional approximation of the stochastic KSE is then constructed that captures
the dominant mode contribution to the state and the evolution of the statistical mo-
ments of the state of the stochastic ODE system is derived. Then, a set of simulation
experiments is designed that covers the complete range of process operations and
multiple simulations are carried out for each simulation condition to obtain the tra-
jectories of the statistical moments of the states computed from the surface snapshots.
Finally, we determine the least-squares optimal form of the parameters of the nonlin-
ear stochastic PDE model. The parameter estimation method is successfully applied
to an ion-sputtering process that involves two surface microprocesses: atom erosion
and surface diffusion.

4.4.1 Example: The Stochastic Kuramoto–Sivashinsky Equation

We consider the nonlinear stochastic Kuramoto–Sivashinsky equation (KSE), a
fourth–order, nonlinear stochastic PDE [36], taking the following form:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+ ξ(x, t) (4.65)

subject to periodic boundary conditions:

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, . . . , 3 , (4.66)

with the initial condition
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h(x, 0) = h0(x), (4.67)

where ν, κ, and λ are parameters related to surface mechanisms [91], x ∈ [−π, π] is
the spatial coordinate, t is the time, and h(x, t) is the height of the surface at position
x and time t. The periodic boundary conditions are used so that the treatment of
surface boundaries is consistent with that of the kMC model where periodic boundary
conditions are also used. ξ(x, t) is a Gaussian noise with the following expressions
for its mean and covariance:

〈ξ(x, t)〉 = 0,

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′),
(4.68)

where σ is a constant, δ(·) is the Dirac function, and 〈·〉 denotes the expected value.
Note that the noise covariance depends on both space x and time t.

4.4.2 Model Reduction

To study the dynamics of Eq. (4.65), we initially consider the eigenvalue problem of
the linear operator in Eq. (4.65), which takes the form

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
− κ

d4φ̄n(x)
dx4

= λnφ̄n(x),

dj φ̄n

dxj
(−π) =

dj φ̄n

dxj
(+π), j = 0, . . . , 3, n = 1, . . . ,∞,

(4.69)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct com-
putation of the solution of the above eigenvalue problem yields λ0 = 0 with
ψ0 = 1/

√
2π, and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity two) with

eigenfunctions φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞.
Note that the φ̄n in Eq. (4.69) denotes either φn or ψn. From the expression of the
eigenvalues, it follows that for fixed values of ν > 0 and κ > 0, the number of un-
stable eigenvalues of the operator A in Eq. (4.69) is finite and the distance between
two consecutive eigenvalues (i.e., λn and λn+1) increases as n increases.

To present the method that we use to estimate the parameters of the stochastic
KSE in Eq. (4.65) and design controllers, we first derive a nonlinear stochastic ODE
approximation of Eq. (4.65) using Galerkin’s method. To this end, we first expand
the solution in Eq. (4.65) in an infinite series in terms of the eigenfunctions of the
operator of Eq. (4.69) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x), (4.70)

where αn(t), βn(t) are time-varying coefficients. Substituting the above expansion
for the solution, h(x, t), into Eq. (4.65) and taking the inner product with the ad-
joint eigenfunctions, φ∗

n(z) = (1/
√

π) sin(nz) and ψ∗
n(z) = (1/

√
π) cos(nz), the

following system of infinite nonlinear stochastic ODEs is obtained:
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dαn

dt
= (νn2 − κn4)αn + λ · fnα + ξn

α(t),

dβn

dt
= (νn2 − κn4)βn + λ · fnβ + ξn

β (t)

(4.71)

For n = 1, . . . ,∞, where

fnα =
1
2

∫ π

−π

φ∗
n(x) ·

⎛

⎝
∞∑

j=1

αj(t)
dφj

dx
(x) +

∞∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

fnβ =
1
2

∫ π

−π

ψ∗
n(x) ·

⎛

⎝
∞∑

j=1

αj(t)
dφj

dx
(x) +

∞∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

(4.72)

and

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗
n(x)dx,

ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗
n(x)dx.

(4.73)

The covariances of ξn
α(t) and ξn

β (t) can be computed by using Result 4.1 as follows:
〈ξn

α(t)ξn
α(t′)〉 = σ2δ(t − t′) and 〈ξn

β (t)ξn
β (t′)〉 = σ2δ(t − t′).

The surface roughness is represented by the standard deviation of the surface
from its average height as defined in Eq. (3.2). According to Eq. (4.70), we have
h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of αn(t) and βn(t) as
follows:

〈r2(t)〉 =
1
2π

〈∫ π

−π

(h(x, t) − h̄(t))2dx

〉

=
1
2π

〈∫ π

−π

[ ∞∑

i=1

αi(t)φi(x) +
∞∑

i=0

βi(t)ψi(x) − β0(t)ψ0

]2

dx

〉

=
1
2π

〈∫ π

−π

∞∑

i=1

[
α2

i (t)φ
2
i (x) + β2

i (t)ψ2
i (x)

]
dx

〉

=
1
2π

〈 ∞∑

i=1

(α2
i (t) + β2

i (t))

〉

=
1
2π

∞∑

i=1

[
〈α2

i (t)〉 + 〈β2
i (t)〉

]
.

(4.74)

Eq. (4.74) provides a direct link between the state covariance of the infinite stochastic
ODEs of Eq. (4.71) and the expected surface roughness of the sputtering process.
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Due to its infinite-dimensional nature, the system in Eq. (4.71) cannot be directly
used as a basis for either parameter estimation or feedback controller design that can
be implemented in practice (i.e., the practical implementation of such algorithms
will require the computation of infinite sums, which cannot be done by a computer).
Instead, we will use finite-dimensional approximations of the system in Eq. (4.71).

Specifically, we rewrite the system in Eq. (4.71) as follows:

dxs

dt
= Λsxs + λ · fs(xs, xf ) + ξs,

dxf

dt
= Λfxf + λ · ff (xs, xf ) + ξf ,

(4.75)

where

xs = [α1 · · · αm β1 · · · βm]T ,

xf = [αm+1 βm+1 αm+2 βm+2 · · · ]T ,

Λs = diag [λ1 · · · λm λ1 · · · λm] ,

Λf = diag [λm+1 λm+1 λm+2 λm+2 · · · ] ,

fs(xs, xf ) = [f1α(xs, xf ) · · · fmα(xs, xf ) f1β(xs, xf ) · · ·

fmβ(xs, xf )]T ,

(4.76)

ff (xs, xf ) =
[
f(m+1)α(xs, xf ) f(m+1)β(xs, xf )

f(m+2)α(xs, xf ) f(m+2)β(xs, xf ) · · ·
]T

,

ξs =
[
ξ1
α · · · ξm

α ξ1
β · · · ξm

β

]T

,

ξf =
[
ξm+1
α ξm+1

β ξm+2
α ξm+2

β · · ·
]T

,

The dimension of the xs subsystem is 2m and the xf subsystem is infinite-
dimensional.

Neglecting the xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + λ · fs(x̃s, 0) + ξs, (4.77)

where the tilde symbol in x̃s denotes that this state variable is associated with a
finite-dimensional system.
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4.4.3 System of Deterministic ODEs for State Covariance

The parameters of stochastic PDE models for many deposition and sputtering pro-
cesses can be derived based on the corresponding master equation; they describe the
evolution of the probability that the surface is at a certain configuration. For all practi-
cal purposes, the stochastic PDE model parameters should be estimated by matching
the prediction of the stochastic PDE model to that of kMC simulations due to the
approximations made in the derivation of the stochastic PDE model from the master
equation [67, 101].

In this section, we present a method to estimate the parameters of the nonlinear
stochastic KSE model of the sputtering process by using data from the kMC simu-
lations of the process. The parameter-estimation algorithm is developed on the basis
of the finite-dimensional system in Eq. (4.77).

The system in Eq. (4.77) is a finite-dimensional, nonlinear, stochastic ODE sys-
tem including all four parameters, ν, κ, λ, and σ2 of the stochastic KSE in Eq. (4.65).
We first derive the system of deterministic ODEs that describes the dynamics of
the covariance matrix of the state vector of Eq. (4.77), xs, which is defined as
Ps = 〈xsx

T
s 〉.

Consider the evolution of the state of Eq. (4.77) in a small time interval [t, t+Δt]
as follows [86, 35]:

xs(t + Δt) = (Is + Δt · Λs)xs(t) + Δt · λfs(xs(t), 0) + Δt · ξs(t), (4.78)

where Is is a 2m×2m identity matrix. To study the dynamics of Ps, we approximate
the Dirac function, δ(·), involved in the covariances of ξs by 1/Δt, and neglect the
terms of order Δt2. When Eq. (4.78) is used to compute the numerical solution of
xs(t), it is clear that xs(t) is only dependent on ξs(τ) (for τ ≤ t − Δt). Since ξs(t)
and ξs(τ) are mutually independent according to the definition of Gaussian noise
of Eq. (4.68) and Result 4.1, ξs(t) is also independent of xs(t). We therefore have
〈ξs(t)xT

s (t)〉 = 0 and 〈xs(t)ξT
s (t)〉 = 0. Consequently, the following equation for

Ps can be obtained from Eq. (4.78):

Ps(t + Δt) = Ps(t) + Δt · {ΛsPs(t) + Ps(t)ΛT
s

+ λ
〈
xs(t)fs(xs(t), 0)T + fs(xs(t), 0)xs(t)T

〉
+ Rs},

(4.79)

where Rs is the intensity of ξs and Rsδ(t − t′) = 〈ξs(t)ξT
s (t)〉. In this work, Rs =

σ2I2m×2m.
By bringing Ps(t) to the left-hand side of Eq. (4.79), dividing both sides by Δt,

and setting Δt → 0, we obtain the following nonlinear system of deterministic ODEs
for the state covariance of the system in Eq. (4.75):

dPs(t)
dt

= ΛsPs(t) + Ps(t)ΛT
s + Rs

+λ
〈
xs(t)fs(xs(t), 0)T + fs(xs(t), 0)xs(t)T

〉
.

(4.80)
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Note that the linear part of Eq. (4.80) is the Lyapunov equation used in covariance
controller design for linear systems [73]. We will use this deterministic ODE system
as the basis for parameter estimation.

4.4.4 Parameter Estimation

The four parameters of the stochastic PDE process model in Eq. (4.65) can be es-
timated from Eq. (4.80). Specifically, the parameters ν and κ are included in the
matrix Λs in Eq. (4.80) and the parameter λ is associated with the nonlinear term in
Eq. (4.80). To this end, we need to obtain Ps(t) and

〈
xs(t)fs(t)T + fs(t)xs(t)T

〉
,

which are both functions of xs, to perform the parameter estimation.
The data of xs = [α1(t) · · · αm(t) β1(t) · · · βm(t)]T can be obtained from kMC

simulations of the sputtering process. Once xs is obtained, fs(xs, 0) = [f1α(xs, 0)
· · · fmα(xs, 0) f1β(xs, 0) · · · fmβ(xs, 0)]T can be computed as follows:

fnα(xs(t), 0) =
1
2

∫ π

−π

φ∗
n(x)

⎛

⎝
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

fnβ(xs(t), 0) =
1
2

∫ π

−π

ψ∗
n(x)

⎛

⎝
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

(4.81)
where n = 1, 2, · · · , m. To compute the expected values for xs(t) · xs(t)T and
xs(t)fs(xs, 0)T + fs(xs, 0)xs(t), multiple kMC simulation runs for the sputtering
process should be performed and the profiles of xs(t) ·xs(t)T and xs(t)fs(xs, 0)T +
fs(xs, 0)xs(t) should be averaged to obtain the expected values.

The time derivative of Ps(t) can be computed by the first-order approximation
(O(Δt)) of the time derivative as follows:

dPs(t)
dt

=
Ps(t + Δt) − Ps(t)

Δt
, (4.82)

where Δt is a small time interval.
When the values of dPs(t)/dt, Ps(t), and 〈xs(t)fs(xs, 0)T +fs(xs, 0)xs(t)T 〉

are obtained through kMC simulation runs at a set of discrete-time instants (t =
t1, t2, . . . , tk), Eq. (4.80) becomes a system of linear algebraic equations for the four
unknown model parameters. When the number of equations is larger than the number
of parameters to be estimated, the least-squares method can be used to determine the
model parameters.

Since Ps is a diagonally dominant matrix (see simulation part for a numerical
verification), to make the parameter-estimation algorithm insensitive to round-off
errors, we propose formulating the system of algebraic equations for least-squares
fitting of the model parameters by using only the diagonal elements of the system in
Eq. (4.80). The system of ODEs corresponding to the diagonal elements in Eq. (4.80)
is as follows:
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d〈α2
n(t)〉
dt

= 2(νn2 − κn4) · 〈α2
n(t)〉 + 2λ · 〈αn(t) · fnα(t)〉 + σ2,

d〈β2
n(t)〉
dt

= 2(νn2 − κn4) · 〈β2
n(t)〉 + 2λ · 〈βn(t) · fnβ(t)〉 + σ2,

(4.83)

where n = 1, . . . , m. The system in Eq. (4.83) is a linear system with respect to ν,
κ, λ, and σ2; reformulating Eq. (4.83) in the form of the following linear system to
estimate ν, κ, λ and σ2 using the least-squares method results to:

b = Aθ, (4.84)

where θ = [ν κ λ σ2]T ,

b = [b1 b2 · · · bk ]T ,

bi =
[
d〈α2

1(ti)〉
dt

· · · d〈α2
m(ti)〉
dt

d〈β2
1(ti)〉
dt

· · · d〈β2
m(ti)〉
dt

]T

,

(4.85)

for i = 1, 2, . . . , k,
and

A =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

2 · 12 · 〈α2
1(t1)〉 2 · 14 · 〈α2

1(t1)〉 2〈α1(t1) · f1α(t1)〉 1
...

...
...

...
2 · m2 · 〈α2

m(t1)〉 2 · m4 · 〈α2
m(t1)〉 2〈αm(t1) · fmα(t1)〉 1

2 · 12 · 〈β2
1(t1)〉 2 · 14 · 〈β2

1(t1)〉 2〈β1(t1) · f1β(t1)〉 1
...

...
...

...
2 · m2 · 〈β2

m(t1)〉 2 · m4 · 〈β2
m(t1)〉 2〈βm(t1) · fmβ(t1)〉 1

...
...

...
...

2 · 12 · 〈α2
1(tk)〉 2 · 14 · 〈α2

1(tk)〉 2〈α1(tk) · f1α(tk)〉 1
...

...
...

...
2 · m2 · 〈α2

m(tk)〉 2 · m4 · 〈α2
m(tk)〉 2〈αm(tk) · fmα(tk)〉 1

2 · 12 · 〈β2
1(tk)〉 2 · 14 · 〈β2

1(tk)〉 2〈β1(tk) · f1β(tk)〉 1
...

...
...

...
2 · m2 · 〈β2

m(tk)〉 2 · m4 · 〈β2
m(tk)〉 2〈βm(tk) · fmβ(tk)〉 1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

. (4.86)

Note that all elements in b and A can be obtained through the kMC simulations
of the thin-film growth or sputtering process. The least-squares fitting of the model
parameters can be obtained as follows:

θ̂ = (AT A)−1AT · b. (4.87)
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Remark 4.5. Note that it is important to appropriately collect the data set of sur-
face snapshots from kMC simulations for parameter estimation. The data set should
be representative so that the dynamics of the stochastic process can be adequately
captured by the data set and reliable parameter estimation results can be obtained.
Specifically, the condition number of the square matrix AT A in Eq. (4.87) should be
used as an indicator of the quality of the data set. The matrix A is constructed by us-
ing the data derived from the surface snapshots. The condition number measures the
sensitivity of the solution to the perturbations in A and b. There is stochastic noise
contained in the data used to construct the matrix A and the vector b in Eq. (4.87).
This noise will perturb A and b from their true values. A low condition number of
the square matrix AT A will ensure that the perturbations in A and b introduced by
the noise will not result in significant errors in the estimated model parameters. The
sampling time and the number of surface snapshots should be carefully selected so
that the condition number of the square matrix AT A is small.

4.4.5 Application to an Ion-Sputtering Process

In this section, we present applications of the presented model parameter-estimation
method to the kMC model of a sputtering process to demonstrate the effectiveness
of the algorithms. Specifically, the model parameters of the stochastic KSE process
model are estimated using data of surface snapshots obtained from kMC simulations.

Description of the Sputtering Process

We consider a one-dimensional (1D) lattice representation of a crystalline surface
of a sputtering process, which includes two surface microprocesses, atom erosion
and surface diffusion. The solid-on-solid assumption is made, which means that no
defects or overhangs are allowed to be developed in the film. The microscopic rules
under which atom erosion and surface diffusion take place are as follows: A site, i,
is first randomly picked among the sites of the whole lattice and the particle at the
top of this site is subject to erosion with probability 0 < f < 1, or diffusion with
probability 1 − f .

If the particle at the top of site i is subject to erosion, the particle is removed
from site i with probability Pe · Y (φi). Pe is determined as 1/7 times the number of
occupied sites in a 3 × 3 box centered at site i, which is shown in Fig. 4.12. There
are nine sites in the box. The central one is the particle to be considered for erosion
(the one marked by •). Among the remaining eight sites, the site above the central
site of interest must be vacant since the central site is a surface site. Therefore, only
seven of the eight sites can be occupied and the maximum value of Pe is 1. Y (φi) is
the sputtering yield function defined as follows:

Y (φi) = y0 + y1φ
2
i + y2φ

4
i , (4.88)

where y0, y1, and y2 are constants. Following [36], the values of y0, y1, and y2 can
be chosen such that Y (0) = 0.5, Y (π/2) = 0 and Y (1) = 1 , which correspond
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x

h

Fig. 4.12. Schematic of the rule to determine Pe. Pe is defined as 1/7 times the number of
occupied sites in a 3 × 3 box centered at the particle on the top of site i; Pe = 1 in the left
figure and Pe = 4/7 in the right figure, where the particle marked by • is on the top of site i.

to y0 = 0.5, y1 = 1.0065, and y2 = −0.5065. The local slope, φi, is defined as
follows:

φi = tan−1

(
hi+1 − hi−1

2a

)
, (4.89)

where a is the lattice parameter and hi+1 and hi−1 are the values of the surface
height at sites i + 1 and i − 1, respectively.

If the particle at the top of site i is subject to diffusion, one of its two nearest
neighbors, j (j = i+1 or i− 1), is randomly chosen and the particle is moved to the
nearest-neighbor column with transition probability wi→j as follows:

wi→j =
1

1 + exp (βΔHi→j)
, (4.90)

where ΔHi→j is the energy difference between the final and initial states of the
move, β = 1/kBT and H is defined through the Hamiltonian of an unrestricted
solid-on-solid model as follows:

H =
(

J

an

) N∑

k=1

(hk − hk+1)n, (4.91)

where J is the bond energy, N is the total number of sites in the lattice, and n is a pos-
itive number. In the simulations presented here, we use n = 2 and βJ = 2.0 [135].
Note that these microscopic rules have been used in a master equation approach to
show that the continuum equation for the sputtering process is the stochastic KSE
[91].

Kinetic Monte Carlo Simulation of the Sputtering Process

To carry out kMC simulations of this sputtering process, the rates of surface micro-
processes should be computed [43, 155]. The rates of both erosion and diffusion are
site-specific and can be obtained based on the process description as follows:

re(i) =
f

τ
· Pe(i) · Y (φi),

rd(i, j) =
1 − f

2τ
· wi→j ; for i = 1, 2, . . . , N,

(4.92)
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where re(i) is the erosion rate at site i and rd(i, j) is the rate at which a surface
particle hops from site i to site j. For the sputtering process considered, only nearest-
neighbor hopping is allowed, so j = i ± 1. Pe(i) is determined by the box rule
shown in Fig. 4.12, Y (φi) is defined in Eqs. (4.88) and (4.89), and wi→j is defined
in Eqs. (4.90) and (4.91). τ is defined as the time scale [91] and is fixed at 1/s for
open-loop simulations in this work.

After the rates of surface microprocesses are determined, kMC simulations can
be carried out using an appropriate algorithm. Specifically, we simulate the sputtering
process in this work by using the null-event algorithm [162] so that the complex
dependence of the transition probabilities on the surface microconfiguration in the
sputtering process can be handled in an efficient way.

The following kMC simulation algorithm is used to simulate the sputtering pro-
cess:

• The first integer random number, ζ1 (0 < ζ1 ≤ N , where ζ1 is an integer and
N is the total number of surface sites), is generated to pick a site i among all the
sites on the 1D lattice.

• The second real random number, ζ2 in the (0, 1) interval, is generated to decide
whether the chosen site i is subject to erosion (ζ2 < f ) or diffusion (ζ2 > f ).

• If the chosen site is subject to erosion, Pe and Y (φi) are computed. Specifically,
Pe is computed by using the box rule shown in Fig. 4.12, where the center of the
box is the surface particle on site i and Y (φi) is computed using Eqs. (4.88) and
(4.89). Then, another real random number, ζe3 in the (0, 1) interval, is generated.
If ζe3 < Pe ·Y (φi), the surface particle on site i is removed. Otherwise, no event
is executed.

• If the chosen site is subject to diffusion, a side neighbor, j (j = i + 1 or i − 1
in the case of a 1D lattice) is randomly picked and the hopping rate, wi→j , is
computed using Eq. (4.90). Then, another real random number, ζd3 in the (0, 1)
interval, is generated. If ζd3 < wi→j , the surface atom is moved to the new site.
Otherwise, no event is executed.

• Upon the execution of an event, a time increment, δt, is computed using the
following expression:

δt = − ln ζ4

f
τ

N∑

i=1

[Pe(i) · Y (φi)] + 1−f
2τ

N∑

i=1

[wi→i+1 + wi→i−1]
, (4.93)

where ζ4 is a real random number in the (0, 1) interval.

All random numbers, ζ1, ζ2, ζ3, and ζ4, follow a uniform probability distribution
in their domains of definition.

Periodic boundary conditions (PBCs) are used in the kMC model of the sputter-
ing process. Using PBCs, a particle that diffuses out of the simulation lattice at one
boundary enters into the simulation lattice from the opposing side. Limited by the
currently available computing power, the lattice size of a kMC simulation is much
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smaller than the size of a real process. Therefore, PBCs are widely used in micro-
scopic simulations so that the statistical properties of a large-scale stochastic process
can be appropriately captured by kMC simulations carried out on a small simulation
lattice [107].

Simulation Results

In all simulations, we consider a sputtering process that takes place on a lattice con-
taining 200 sites. Therefore, a = 0.0314. The sputtering yield function, Y (φi), is a
nonlinear function of φi that takes the form of Eq. (4.88). y0, y1, and y2 are chosen,
such that Y (0) = 0.5, Y (π/2) = 0, and Y (1) = 1 [36].

We first compute the profiles of the state covariance and the expected values for
αn · fnα and βn · fnβ from kMC simulations of the sputtering process. Upon the
execution of an event, the state of the stochastic KSE model (αn or βn) is updated.
If the executed event is erosion, αn or βn can be updated as follows [101, 103]:

αnew
n = αold

n +
a [ψ(n, zi − a/2) − ψ(n, zi + a/2)]

n
,

βnew
n = βold

n +
a [φ(n, zi + a/2) − φ(n, zi − a/2)]

n
.

(4.94)

If the executed event is diffusion from site i to site j, αn or βn are updated as follows:

αnew
n = αold

n +
a

n
· {[ψ(n, zi − a/2) − ψ(n, zi + a/2)]

− [ψ(n, zj − a/2) − ψ(n, zj + a/2)]},

βnew
n = βold

n +
a

n
· {[φ(n, zi + a/2)− φ(n, zi − a/2)]

− [φ(n, zj + a/2) − φ(n, zj − a/2)]},

(4.95)

where a is the lattice parameter and zi is the coordinate of the center of site i.
The covariance profiles of α1, α3, α5, α7, and α9 are shown in Fig. 4.13 and

the profiles for the expected values of α1f1α, α3f3α, α5f5α,α7f7α, and α9f9α are
shown in Fig. 4.14. Similar profiles are observed for the covariance of βn and βnfnβ

and are omitted here for brevity.
The terms αn · fnα and βn · fnβ are computed using Eq. (4.81) with m = 10 for

n = 1, 2, . . . , 10. The expected profiles are the averages of profiles obtained from
10,000 independent kMC simulation runs. Since we use m = 10, the first 2m = 20
modes are used for parameter estimation. The three-dimensional profile of the co-
variance matrix for the first 20 states at the end of a simulation run is plotted in
Fig. 4.15. It is clear that the covariance matrix is diagonally dominant. Therefore, it
is appropriate to use just the diagonal elements of the system in Eq. (4.80) for pa-
rameter estimation so that the estimation algorithm is insensitive to round-off errors.



114 4 Construction of Stochastic PDEs

0 100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (s)

S
ta

te
 c

ov
ar

ia
nc

e

cov(α1(t ))

cov(α3(t ))
cov(α5(t ))

cov(α7(t ))
cov(α9(t ))

Fig. 4.13. Profiles of the state covariance 〈α2
n(t)〉 for n = 1, 3, 5, 7, and 9.
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Fig. 4.14. Profiles of the expected value for αn · fnα(t) for n = 1, 3, 5, 7, and 9.

To formulate the least-squares fitting problem, d〈α2
n(t)〉/dt, d〈β2

n(t)〉/dt, 〈α2
n(t)〉,

〈β2
n(t)〉, 〈αn(t) · fnα(t)〉, and 〈βn(t) · fnβ(t)〉 are evaluated at the first 150 avail-

able discrete-time instants in the data obtained from kMC simulations. Therefore,
in the least-squares fitting formulations of Eqs. (4.84) and (4.87), A is a 3, 000 × 4
matrix, b is a 3, 000 × 1 vector, and θ = [ν κ λ σ2]T . The values of the four param-
eters obtained from least-squares fitting are ν = 2.76 × 10−5, κ = 1.54 × 10−7,
λ = 3.06 × 10−3, and σ2 = 1.78 × 10−5.

To validate the parameter-estimation method, we first compute the expected
open-loop surface roughness from the stochastic KSE model in Eq. (4.65) with the
computed parameters. A 200th-order stochastic ordinary differential equation ap-
proximation of the system in Eq. (4.65) is used to simulate the process (the use of
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Fig. 4.15. The covariance matrix for the first 20 states: a diagonally dominant matrix.
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Fig. 4.16. Comparison of the open-loop profile of the expected surface roughness of the sput-
tering process from the kMC simulator and that from the solution of the stochastic KSE using
the estimated parameters.

higher-order approximations led to identical numerical results, thereby implying that
the following simulation runs are independent of the discretization). Then, the profile
from the stochastic KSE with the computed parameters is compared to that from the
kMC model. The expected surface roughness is computed from the simulations of
the stochastic KSE and the kMC model by averaging surface roughness profiles ob-
tained from 100 and 10,000 independent runs, respectively. The simulation result is
shown in Fig. 4.16. It is clear that the computed model parameters result in consistent
expected surface roughness profiles from the stochastic KSE model in Eq. (4.65) and
from the kMC simulator of the sputtering process. There is an observable difference
between the two profiles, which indicates the existence of a slight mismatch of the
computed model with the kMC model of the sputtering process.
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4.5 Conclusions

In this chapter, we have presented systematic methods for the construction of both
linear and nonlinear stochastic PDE models for material microstructure using micro-
scopic simulation data. In our development, a linear/nonlinear stochastic PDE was
initially reformulated into a system of infinite stochastic ODEs by using modal de-
composition. The statistical moments of the ODE states were consequently derived.
For linear stochastic PDEs, the analytical solutions for the first and second statistical
moments can be obtained, while for nonlinear stochastic PDEs, a system of deter-
ministic nonlinear ODEs can be derived to capture the evolution of the statistical
moments. Subsequently, kMC simulators of the stochastic processes were used to
generate surface snapshots at different time instants during the process evolution to
obtain the state and statistical moments of the stochastic ODE systems. Finally, the
model parameters of the linear/nonlinear stochastic PDEs were obtained using least-
squares fitting. The effectiveness of the proposed methods was demonstrated through
applications to thin-film deposition processes taking place on both 1D and 2D lat-
tices that are modeled by linear stochastic PDEs and to an ion-sputtering process that
is modeled by a nonlinear stochastic PDE.



5

Feedback Control Using Stochastic PDEs

5.1 Introduction

Using the methods presented in Chapter 4, closed-form process models can be
constructed for a variety of material preparation processes. When closed-form pro-
cess models, in the form of linear or nonlinear stochastic PDEs, are available, it is
desirable to design feedback controllers on the basis of process models. This has
motivated research on the feedback control of surface roughness based on stochastic
PDE process models.

In this chapter, we present methods for model-based controller design based on
stochastic PDEs to control the thin-film surface roughness. A method for multivari-
able model predictive control using linear stochastic PDEs is first presented. The
method results in the design of a computationally efficient multivariable predictive
control algorithm that is successfully applied to the kMC models of thin-film deposi-
tion processes taking place in both 1D and 2D lattices to regulate the thin-film thick-
ness and surface roughness at desired levels. When spatially distributed sensing and
actuation are available, the surface roughness can be regulated using the covariance
control technique. A method for linear covariance controller design is also presented.
This method involves reformulation of the linear stochastic PDE into a system of
infinite linear stochastic ordinary differential equations by using modal decompo-
sition, derivation of a finite-dimensional approximation that captures the dominant
mode contribution to the surface roughness, and feedback controller design based
on the finite-dimensional approximation. The method for linear covariance control
of surface roughness is demonstrated through application to the kMC model of a
1D thin-film growth process whose surface height evolution can be described by the
Edwards–Wilkinson equation.

However, nonlinearities exist in many material preparation processes in which
surface evolution can be modeled by stochastic PDEs. A typical example of such
processes is the sputtering process, whose surface evolution is described by the non-
linear stochastic Kuramoto–Sivashinsky equation (KSE). To perform feedback con-
trol design for nonlinear stochastic processes, i.e., provide good performance for a
wide range of process initial conditions and operating conditions, it is desirable that

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 5,
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a nonlinear process model is directly used as the basis for controller synthesis. Moti-
vated by this, we present a method for nonlinear covariance controller design based
on nonlinear stochastic PDEs. The stochastic KSE is used to present the developed
method. A finite-dimensional approximation of the stochastic KSE is first derived
that captures the dominant mode contribution to the surface roughness, and a nonlin-
ear feedback controller is designed based on this finite-dimensional approximation
to control the surface roughness. An analysis of the closed-loop nonlinear infinite-
dimensional system is performed to characterize the closed-loop performance en-
forced by the nonlinear feedback controller in the closed-loop infinite-dimensional
system. The proposed nonlinear controller is successfully applied to a high-order ap-
proximation of the stochastic KSE and the kMC model of a sputtering process. The
results of this chapter were first presented in [101–103, 115, 117].

5.2 Predictive Control Using Stochastic PDEs

This section focuses on model-predictive controller (MPC) design using linear
stochastic PDEs. The linear stochastic PDE model in Eq. (4.28) is used to present
the method. The methodology can be applied to other material preparation processes
described by linear stochastic PDEs. The methodology is applied to a 1D thin-film
growth process to control the final surface roughness and is applied to a 2D thin-
film growth process to design a multivariable model-predictive controller to control
the thin-film surface roughness and thickness. Numerical simulation results for these
two applications are shown in Sections 5.2.3 and 5.2.4, respectively.

5.2.1 Generic MPC Formulation

Surface Roughness and Statistical Moments

We first proceed with the analysis of the dynamics of the surface roughness based
on the stochastic PDE model constructed (Eq. (4.28)) for the thin-film deposition
process. The surface roughness, r(t), is represented by the standard deviation of the
surface from its average height as defined in Eq. (3.2). According to Eq. (4.22), we
have h̄(t) = z0(t)φ0. Therefore, r(t) can be rewritten in terms of zn as follows:

r(t) =

√
1
π

∫ π

0

(h(x, t) − h̄(t))2dx

=

√√
√
√ 1

π

∫ π

0

∞∑

n=−∞,n�=0

zn(t)φn(x)φ∗
n(x)z∗n(t)dx

=

√√
√√ 1

π

∞∑

n=−∞,n�=0

zn(t)z∗n(t),

(5.1)
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and the expected roughness can be computed as follows:

〈r2(t)〉 =
1
π

∞∑

n=−∞,n�=0

〈zn(t)z∗n(t)〉. (5.2)

In order to design a model-based feedback controller to control the surface rough-
ness, we first derive the analytical expression for the trajectory of 〈r(t)〉. Substituting
Eq. (4.14) into Eq. (5.2), we obtain the following expression for 〈r(t)〉 in terms of
the eigenvalues of the system of infinite stochastic ODEs in Eq. (4.9):

〈r2(t)〉 =
1
π

∞∑

n=−∞,n�=0

[

ς2 e(λn + λ∗
n)t − 1

λn + λ∗
n

+ e(λn + λ∗
n)tzn0z

∗
n0

]

=
1
π

∞∑

n=−∞,n�=0

[

ς2 e2Re(λn)t − 1
2Re(λn)

+ e2Re(λn)tzn0z
∗
n0

]

.

(5.3)

Predictive Control Formulation

Since the thin-film deposition is a batch process, the control objective is to control the
final surface roughness of the thin film to a desired level at the end of each deposition
run by explicitly accounting for the presence of constraints on the manipulated input
[an important problem that cannot be addressed by classical (PID) control schemes].
Therefore, we use an optimization-based control (model-predictive control-type)
problem formulation. Figure 5.1 shows the block diagram of the closed-loop system.
When a real time surface profile measurement is obtained, the states of the infinite
stochastic ODE system, zn, are computed. Then, a substrate temperature T is com-
puted based on states zn and the stochastic PDE model and applied to the deposition
process. The substrate is held at this temperature for the rest of the deposition until
a different value is assigned by the controller. The value of T is determined at each
time t by solving, in real-time, an optimization problem minimizing the difference
between the estimated final surface roughness and the desired level for this variable.

5.2.2 Order Reduction

In order to compute an estimate of the expected surface roughness at a future time
t, we need to compute the infinite sum in Eq. (5.3). However, such an infinite sum-
mation cannot be computed directly; instead, an mth-order approximation (only the
first mth states are included in the summation) needs to be used to approximately
compute this infinite sum.

As an example, when the stochastic PDE model in Eq. (4.25) is considered, λn =
−4c2n

2. Thus, Eq. (5.3) can be rewritten as follows:
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Fig. 5.1. Block diagram of the closed-loop system.

〈r2(t)〉 =
1
π

∞∑

n=−∞,n�=0

(

ς2 e−8c2n
2t − 1

−8c2n2
+ e−8c2n

2tzn0z
∗
n0

)

= 2
π

∑∞
n=1

(

ς2 e−8c2n2t − 1
−8c2n2

+ e−8c2n2tzn0z
∗
n0

)

.

(5.4)

Using the standard theory of infinite summation [89], it can be shown that, if the
following mth-order approximation is used,

r̂(t)2 =
2
π

m∑

n=1

(

ς2 e−8n2c2t − 1
−8n2c2

+ e−8n2c2tzn0z
∗
n0

)

+
1
2π

[

e−8c2(m + 1)2t
(

πr2
0 −

m∑

n=1

zn0z
∗
n0

)

+
ς2

2m+2c2

]

,

(5.5)

where r0 is the initial roughness value, the approximation error would be subject to
the following bound:

|〈r2(t)〉 − r̂2(t)| ≤ 1
2π

[

e−8c2(m + 1)2t
(

πr2
0 −

m∑

n=1

zn0z
∗
n0

)

+
ς2

2m+2c2

]

.

(5.6)
We note that the approximation error decreases with increasing m.

In general, to achieve a control precision ε, m should be chosen large enough
for each optimization computation so that the approximation error is less than ε.
However, to achieve the same control precision, the minimum m needed may vary
depending on the specific surface configuration (i.e., current states zn). On one hand,
when the length scale of the surface fluctuation is very small, the magnitude of the
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high-order states becomes significant; hence, m needs to be relatively large so that
these high-order states are included in the calculation. On the other hand, when
the length scale of the surface fluctuation is relatively large, the contribution from
the high-order states becomes negligible compared to the low-order states; hence,
a relatively small m should be good enough for precise calculation. Therefore, in
our implementation, the desired control precision is achieved by adding more states
to the finite-dimensional system until the approximation error [computed based on
Eq. (5.6)] is small enough, rather than by specifying the number of states that should
be evaluated from the surface snapshot before hand. However, a limit on the maxi-
mum number of states to be used is imposed to guarantee that the computation time
of the controller does not prevent real-time implementation (control precision may
be reduced to meet real-time computation requirements).

5.2.3 Application to a 1D Thin-Film Growth Process

In this section, we design a state feedback model-predictive controller based on the
stochastic PDE model in Eq. (4.28) to control the thin-film surface roughness of the
1D thin-film deposition process described in Section 4.2.5. Since the thin-film depo-
sition is a batch process, the control objective is to control the final surface roughness
of the thin film to a desired level at the end of each deposition run. Therefore, we
use an optimization-based control problem formulation. The substrate temperature
T is chosen to be the manipulated variable, while the thin-film growth rate W is kept
constant during each deposition. Furthermore, since the process is stochastic, the
controlled variable is the expected value of the final surface roughness, 〈r2(tdep)〉,
where tdep is the total deposition time.

The control system is designed based on the block diagram shown in Fig. 5.1.
The value of T is determined at each time t by solving, in real time, the following
optimization problem:

min
T

J = (r2
set − 〈r2

final〉)2 (5.7)

subject to

〈r2
final〉 =

2

π

m∑

n=1

⎡

⎣ς2
e−8n2c2(tdep − t) − 1

−8n2c2
+ e−8n2c2(tdep − t)zn(t)z∗n(t)

⎤

⎦

+
1

2π

{

e−8c2(m + 1)2(tdep − t)
[

πr2(t) −
m∑

n=1

zn(t)z∗n(t)

]

+
ς2

2m+2c2

}

,

(5.8)

c2 =
e−32.002 + 0.0511T − 0.1620W

k2
max

, (5.9)

ς2 =
πW

kmax
, (5.10)
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Tmin ≤ T ≤ Tmax, (5.11)

where Tmin and Tmax are the lowest and highest substrate temperature, respectively.
We note that J corresponds to the difference between the square of the desired final
surface roughness r2

set and the square of the estimated final surface roughness 〈r2
final〉

computed based on the current states zn. We choose to minimize the difference of
the squares of the surface roughness, i.e., the mean square of the surface height, to
simplify the calculation.

The first equality constraint Eq. (5.8) [essentially the same as in Eq. (5.5)] states
that the estimate of the final surface roughness, r2

final, is computed based on current
states zn(t) under the assumption that a substrate temperature T will be used and kept
constant in the rest of the deposition. The second and third equality constraints are,
in fact, Eqs. (4.26) and (4.27) of the stochastic PDE model of the deposition process,
and since the growth rate W is fixed during each deposition, the third constraint can
be removed by substituting the actual value of ς2 into Eq. (5.8).

To solve the optimization problem in Eqs. (5.7)–(5.11), our initial step is to re-
duce it to a quadratic programming problem with only linear constraints. To do this,
we remove the second and fourth constraints [Eqs. (5.9) and (5.11)] by first finding
the optimal c2 that minimizes J and then computing the corresponding optimal T us-
ing the equality constraint in Eq. (5.9). In addition, we linearize the first constraint in
Eq. (5.8) with respect to c2 around an initial guess c̃2 (we note that when c̃2 is chosen
close enough to the optimal c2, the solution of the linearized problem should be close
to the solution of the original problem). The value of c̃2 is computed based on the
substrate temperature used in Eq. (5.9) (at t = 0, c̃2 is computed based on the initial
substrate temperature). Therefore, the original optimization problem is reduced to

min
c2

J = (r2
set − 〈r2

final〉)2 (5.12)

subject to

〈r2
final〉 = 〈r2

final(c̃2)〉 + (c2 − c̃2)
∂〈r2

final(c̃2)〉
∂c̃2

, (5.13)

c2,min ≤ c2 ≤ c2,max, (5.14)

where c2,min and c2,max are the lower and upper bound of c2, respectively. The
second constraint is added due to the fact that c2 can only take values within the
corresponding range specified by Eqs. (5.9) and (5.11), and c2,min and c2,max are
determined as follows:

c2,min =
e−32.002 + 0.0511Tmin − 0.1620W

k2
max

,

c2,max =
e−32.002 + 0.0511Tmax − 0.1620W

k2
max

.

(5.15)

A standard procedure based on the active set method [56] is used to solve the opti-
mization problem in Eq. (5.12). First, we drop the inequality constraint in Eq. (5.14),
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and thus, a direct computation of the above problem by substituting the equality
constraint into the objective function yields

c̄2 = c̃2 +
r2
set − 〈r2

final(c̃2)〉
∂〈r2

final(c̃2)〉
∂c̃2

,
(5.16)

where c̄2 is the optimal value of c2 without the inequality constraint in Eq. (5.14).
Then, we check whether the inequality constraint is violated by c̄2. If the inequal-
ity constraint is inactive (i.e., the constraint is not violated), c̄2 is considered to be
the optimal value for the linearized optimization problem. On the other hand, if the
inequality constraint is active (i.e., the constraint is violated), the optimization prob-
lem is resolved accounting for the active constraint (which serves as another equality
constraint). In such a case, c2 can only take the value of c2,min (when the lower
bound is violated by c̄2) or c2,max (when the upper bound is violated by c̄2); hence,
the optimal value is just the only feasible value, c2,min or c2,max.

However, since Eq. (5.13) is the linearization of Eq. (5.8), c̄2 might only be a
suboptimal value for the original problem. To this end, we can use this suboptimal
c̄2 as a new guess and repeat the linearization procedure until c̄2 converges to the
optimal value (the convergence is guaranteed if the original problem is convex), but
for the sake of simplicity, such an iterative procedure is not adopted in this work.
Once the optimal c2 is determined, by substituting c2 into Eq. (5.9), the optimal T
can be obtained and used as the output of the controller.

Closed-Loop Simulation

A kMC simulation with a lattice size kmax = 1000 is used to simulate the thin-film
deposition process, and the substrate temperature is restricted within 300 K to 900 K.
The measurement interval, as well as the control interval, is set to be 1 s. We limit the
maximum number of states to be used (in our case, to m = 500) to guarantee that
the maximum possible computation time for each control action is within a certain
practical requirement. Most of the time, however, the number of states needed by the
controller is much smaller.

Figure 5.2 shows the surface roughness and substrate temperature profiles of a
closed-loop deposition process with thin-film growth rate W = 0.5 ML/s and of an
open-loop deposition with the same growth rate and a fixed substrate temperature
T = 650 K. The control objective is to drive the final surface roughness of the thin
film to 1.0 ML (monolayers) at the end of the 1000-s deposition. It can be seen
that the final surface roughness is controlled at the desired level while an open-loop
deposition with the same initial deposition condition would lead to a 100% higher
final surface roughness, as shown in Fig. 5.2 (a comparison between the surfaces
of the thin films deposited with closed-loop and open-loop deposition is shown in
Fig. 5.3).

Figure 5.4 shows the final surface roughness histogram of the thin films deposited
using 100 different closed-loop depositions with a final surface roughness set-point
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Fig. 5.4. Histogram of final surface roughness of 100 closed-loop and 100 open-loop thin-film
depositions targeted at the same surface roughness level.

of 2.25 ML and 100 different open-loop depositions. It can be seen that the average
surface roughness of the thin films deposited by the open-loop depositions is very
close to the average surface roughness of the thin films deposited by the closed-loop
deposition and the well-designed, recipe-based open-loop depositions. However, the
variance among the thin films from different open-loop deposition runs is over 400%
higher than that of closed-loop deposition runs even though no process disturbance is
considered in the simulations. This is due to the fact that the stochastic nature of the
microscopic processes of the film growth cannot be handled effectively without hav-
ing a real-time feedback controller that can compensate for the stochastic variation
from the expectation. As a result, if the tolerance on the thin-film surface roughness
to fabricate a certain device is ±0.1 ML, over half of the thin films prepared by the
recipe-based, open-loop deposition would be disqualified. Therefore, introducing a
real-time feedback control system that directly aims at the material and electrical
properties of the thin films is one of the most effective, if not the only, solution to
reduce cost and meet the ever-increasing film-quality requirements demanded by the
devices, which are already down to the nanometer regime.

5.2.4 Application to a 2D Thin-Film Growth Process

In this section, we design a multivariable state feedback model-predictive controller
based on the stochastic PDE model in Eq. (4.28) to control the thin-film thickness
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and surface roughness for the deposition process described in Section 4.3.5. The
control objective is to control the final thin-film thickness and surface roughness to
the desired levels at the end of each deposition run. We use an optimization-based
control problem formulation. The substrate temperature T and the adsorption rate W
(W can be adjusted by varying reactor inlet gas flow rate, chamber pumping speed,
etc.) are chosen to be the manipulated variables. Furthermore, since the process is
stochastic in nature, the controlled variables are the expected values of the final thin
film thickness 〈h̄(tdep)〉 and of the surface roughness 〈r2(tdep)〉, where tdep is the
total deposition time.

Figure 5.5 shows the block diagram of the closed-loop system. The control sys-
tem operates in a discrete-time (sample and hold) fashion: When the Kth real-time
surface profile measurement is obtained at time tK (i.e., tK = Kts, where ts is the
measurement interval as well as the control interval), the states of the infinite stochas-
tic ODE system, zm,n(tK), are computed. Then, a substrate temperature T (tK+1)
and an adsorption rate W (tK+1) are computed based on states zm,n(tK) and the
stochastic PDE model, under the assumption that T and W are held at designated
levels for the rest of the deposition. T (tK+1) and W (tK+1) are then applied to the
deposition process at the next measurement time, tK+1.

Predictive Control Design

In order to design a model-based predictive controller, we first derive the analytical
expression for the trajectory of 〈h̄(t)〉 and 〈r2(t)〉 for the 2D surface. Due to the fact
that the current deposition parameters [T (tK) and W (tK)] would be used during the
current control cycle before the new levels [T (tK+1) and W (tK+1)] are applied, the
estimate of the film thickness (i.e., the estimate of 〈z0,0(tdep〉) and the estimate of
the final surface roughness cannot be computed directly using Eqs. (4.45) and (4.64)
(λm,n and ς2 are no longer constant due to the change in W and T ). Therefore, we
first need to derive the expressions of z0,0(tdep) and zm,n(tdep) (m2 + n2 �= 0)
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for this case. We consider that at time tK+1, the deposition parameters are changed
from W (tK) and T (tK) to W (tK+1) and T (tK+1), respectively. Following from
Eq. (4.40), we have

z0,0(t) = z0,0(t0) + cz
0,0(t − t0) +

∫ t

t0

ξ0,0(μ)dμ,

zm,n(t) = eλm,n(t − t0)zm,n(t0) +
∫ t

t0

eλm,n(t − μ)ξm,n(μ)dμ,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0.

(5.17)

Hence, by calculating the intermediate values z0,0(tK+1) and zm,n(tK+1) (m2 +
n2 �= 0) using z0,0(tK) and zm,n(tK), respectively, the expressions of z0,0(tdep)
and zm,n(tdep) can be derived as follows:

z0,0(tdep) = z0,0(tK) + cz
0,0(tK)tc + cz

0,0(tK+1)(tdep − tK+1)

+
∫ tK+1

tK

ξ0,0(μ)dμ +
∫ tdep

tK+1

ξ0,0(μ)dμ,

zm,n(t) = eλm,n(tK)tc + λm,n(tK+1)(tdep − tK+1)zm,n(tK)

+ eλm,n(tK+1)tc
∫ tK+1

tK

eλm,n(tK)(tK+1 − μ)ξm,n(μ)dμ

+
∫ tdep

tK+1

eλm,n(tK+1)(tdep − μ)ξm,n(μ)dμ,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0.

(5.18)

Using Result 4.1 and substituting cz
0,0 = πc and λm,n = −4(m2+n2)c2 [Eq. (4.36)],

the above equations can be simplified as follows:

z0,0(tdep) = z0,0(tK) + πc(tK)tc + πc(tK+1)(tdep − tK+1)

+ θ̄0,0(tK) + θ̂0,0(tK+1),

zm,n(t) = e−4(m2 + n2){c2(tK)tc + c2(tK+1)[tdep − tK+1]}zm,n(tK)

+ θ̄m,n(tK) + θ̂m,n(tK+1),

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0,
(5.19)

where θ̄0,0(tK), θ̂0,0(tK+1), θ̄m,n(tK), and θ̂m,n(tK+1) (m2 + n2 �= 0) are inde-
pendent Gaussian random numbers with zero mean, and their covariances can be
expressed as follows:
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〈θ̄0,0(tK)θ̄∗0,0(tK)〉 = ς2(tK)tc,

〈θ̂0,0(tK+1)θ̂∗0,0(tK+1)〉 = ς2(tK+1)(tdep − tK+1),

〈θ̄m,n(tK)θ̄∗m,n(tK)〉 = e−8(m2 + n2)c2(tK+1)tcς2(tK)

× e−8(m2 + n2)c2(tK)tc − 1
−8(m2 + n2)c2(tK)

,

〈θ̂m,n(tK+1)θ̂∗m,n(tK+1)〉 = ς2(tK+1)
e−8(m2 + n2)c2(tK+1)(tdep − tK+1) − 1

−8(m2 + n2)c2(tK+1)
,

m, n = 0,±1, . . . ,±∞, m2 + n2 �= 0.
(5.20)

Therefore, the quantities that directly relate to thickness and roughness estima-
tion, 〈z0,0(tdep)〉, 〈zm,n(tdep)〉, and 〈zm,n(tdep)z∗m,n(tdep)〉, can be derived as
follows:

〈z0,0(tdep)〉 = z0,0(tK) + πc(tK)tc + πc(tK+1)(tdep − tK+1),

〈zm,n(tdep)〉 = e−4(m2 + n2)[c2(tK)tc + c2(tK+1)(tdep − tK+1)]zm,n

× (tK),

〈zm,n(tdep)z∗m,n(tdep)〉 = 〈zm,n(tdep)〉〈zm,n(tdep)〉∗ + 〈θ̄m,n(tK)θ̄∗m,n(tK)〉

+ 〈θ̂m,n(tK+1)θ̂
∗
m,n(tK+1)〉,

m,n = 0,±1, . . . ,±∞, m2 + n2 �= 0.
(5.21)

Accordingly, the expected final film thickness can be expressed as follows:

〈h̄final(tK)〉 =
〈z0,0(tdep)〉

π
=

z0,0(tK)
π

+ c(tK)tc + c(tK+1)(tdep − tK+1).
(5.22)

Also, by substituting Eq. (5.21) into Eq. (4.63), the expected final surface roughness
can be derived as follows:
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〈r2
final(tK)〉 =

1
π2

∞∑

m,n=−∞; m2+n2 �=0

〈zm,n(tdep)z∗m,n(tdep)〉

=
1
π2

∞∑

m,n=−∞; m2+n2 �=0

[〈zm,n(tdep)〉〈zm,n(tdep)〉∗

+〈θ̄m,n(tK)θ̄∗m,n(tK)〉 + 〈θ̂m,n(tK+1)θ̂∗m,n(tK+1)〉]

=
1
π2

∞∑

m,n=−∞; m2+n2 �=0

{zm,n(tK)z∗m,n(tK)

× e−8(m2 + n2)[c2(tK)tc + c2(tK+1)(tdep − tK+1)]

+ e−8(m2 + n2)c2(tK+1)tc ς2(tK)
e−8(m2 + n2)c2(tK)tc − 1

−8(m2 + n2)c2(tK)

+ ς2(tK+1)
e−8(m2 + n2)c2(tK+1)(tdep − tK+1) − 1

−8(m2 + n2)c2(tK+1)

⎫
⎬

⎭
.

(5.23)
Since the computation of the above equation involves infinite summations, it can-

not be calculated directly in practice. A finite-dimensional approximation, which
only uses the first (±N th,±N th) states, is used for the computation and is of the
following form:

〈r2
final(tK)〉 =

1
π2

N∑

m,n=−N ; m2+n2 �=0

{zm,n(tK)z∗m,n(tK)

× e−8(m2 + n2)[c2(tK)tc + c2(tK+1)(tdep − tK+1)]

+ e−8(m2 + n2)c2(tK+1)tc ς2(tK)
e−8(m2 + n2)c2(tK)tc − 1

−8(m2 + n2)c2(tK)

+ ς2(tK+1)
e−8(m2 + n2)c2(tK+1)(tdep − tK+1) − 1

−8(m2 + n2)c2(tK+1)

⎫
⎬

⎭
.

(5.24)
Here we note that this finite-dimensional approximation can be improved by uti-

lizing an upper bound for the residue of the infinite summation derived following
the method we proposed in our previous chapter (see Section 5.2.2 for a discussion
on the convergence property of the infinite series and the determination of N for
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a desired approximation precision). However, such an improvement is not adopted
in this chapter for simplicity. Moreover, instead of direct truncation of the system
of infinite-dimensional stochastic ODEs, more advanced reduction techniques can
be used, especially when the stochastic PDE model is nonlinear (see [12, 32] for
results on nonlinear model reduction of parabolic PDEs). Therefore, the values of
T (tK+1) and W (tK+1) are determined at each sampling time interval by solving, in
the control time interval, the following optimization problem:

min
W (tK+1),T (tK+1)

J(tK) = qh(hset − 〈h̄final(tK)〉)2 + qr(r2
set − 〈r2

final(tK)〉)2

(5.25)
subject to

〈h̄final(tK)〉 =
z0,0(tK)

π
+ c(tK)tc + c(tK+1)(tdep − tK+1), (5.26)

〈r2
final(tK)〉 =

1
π2

N∑

m,n=−N ; m2+n2 �=0

{

zm,n(tK)z∗m,n(tK)

× e−8(m2 + n2)[c2(tK)tc + c2(tK+1)(tdep − tK+1)]

+ e−8(m2 + n2)c2(tK+1)tc ς2(K)
e−8(m2 + n2)c2(tK)tc − 1

−8(m2 + n2)c2(tK)

+ ς2(tK+1)
e−8(m2 + n2)c2(tK+1)(tdep − tK+1) − 1

−8(m2 + n2)c2(tK+1)

}

,(5.27)

c(tK+1) = W (tK+1)
[
1 − kw

W (tK+1)

aw

e−kBT (tK+1)/Ew

]
, (5.28)

c2(tK+1) =
kc

k2
maxW (tK+1)ace−kBT (tK+1)/Ec

, (5.29)

ς2(tK+1) =
π2

k2
max

W (tK+1)

{

1 +
e[at + ktW (tK+1)]T (tK+1)

eav + kvW (tK+1)

}

, (5.30)

c(tK+1) ≥ cmin, (5.31)

Tzmin ≤ T (tK+1) ≤ Tmax, (5.32)

Wmin ≤ W (tK+1) ≤ Wmax, (5.33)

where qh and qr are the weights of the penalties on thickness and roughness, re-
spectively, cmin is the minimum growth rate, Tmin, Tmax, Wmin and Wmax are the
lowest and highest substrate temperature, and the lowest and highest adsorption rate,
respectively. In this study, we use qh = 1/h2

set, qr = 1/r2
set, cmin = 0.1hset/tdep,

Tmin = 400 K, Tmax = 900 K, Wmin = 0.11/s and Wmax = 2.01/s.
We note that J corresponds to the difference between the square of the desired

final surface roughness rset and the square of the estimated final surface roughness
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〈r2
final〉 computed based on the current states zm,n(tK). We choose to minimize the

difference of the squares of the surface roughness, i.e., the mean square of the sur-
face height, to simplify the calculation. The optimization problem is solved using a
standard sequential quadratic programming (SQP) method described in [45]. Also,
since Eq. (5.27) is a finite-dimensional approximation of the predicted final surface
roughness, to achieve a control precision ε, m should be chosen large enough for
each optimization computation so that the approximation error is less than ε.

Closed-Loop Simulations

A kMC simulation using a lattice size of 100 × 100 is used to simulate the thin-film
deposition process and tc is set to be 1 s. The dimension of the finite-dimensional
approximation of the stochastic PDE used for optimization is N = 10.

Figure 5.6 shows the surface roughness and substrate temperature profiles of a
closed-loop deposition process with initial substrate temperature T = 610 K and
adsorption rate W = 1.0 s−1 (these initial values are picked such that, with process
parameters fixed at these levels throughout the deposition, the final thickness and
surface roughness of the deposited film are quite different from the desired values).
Figure 5.7 shows the thin-film thickness and surface adsorption rate profiles of this
closed-loop deposition. The control objective is to control the thin-film thickness
to 100 ML (monolayers) and to drive the final surface roughness to 1.5 ML at the
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sition process with a thickness set point of 100 ML and a final roughness set point rset =
1.5 ML; the initial deposition conditions are T = 610 K and W = 1.0 ML/s.
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end of the 200-s deposition. It can be seen that both the film thickness and the final
surface roughness are controlled at the desired levels simultaneously while an open-
loop deposition with the same initial deposition condition would lead to a 100%
higher film thickness and a 100% higher final surface roughness as shown in Figs. 5.6
and 5.7.

Figure 5.8 shows the final surface roughness histogram of the thin films deposited
using 100 different closed-loop depositions targeting a thin-film thickness of 100 ML
and final surface roughness of 1.65 ML and 100 different open-loop depositions with
fixed substrate temperature and surface adsorption rate. The average roughness of
the thin films deposited by open-loop depositions is 1.52 ML, which is quite close
to the average roughness of the thin films deposited by the closed-loop depositions
(1.64 ML). However, the variance among the thin films from different open-loop
deposition runs is over 300% higher than that of closed-loop depositions even though
no process disturbance is considered in the simulations.

Such a large variance among the films deposited by open-loop deposition can
be attributed to the stochastic nature of the thin-film growth process itself. Although
optimal profiles of adsorption rate and substrate temperature, i.e., a well-prescribed
process recipe, can be determined for the open-loop deposition, so that the average
final thickness and surface roughness of the deposited films are very close to the de-
sired levels, the stochasticity of the film growth cannot be effectively handled by the
predetermined process recipes (implemented in an open-loop fashion) and, therefore,
results in significant film roughness variance. On the other hand, in closed-loop depo-
sitions, as is demonstrated in the simulation, feedback control is able to effectively
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Fig. 5.8. Histogram of final surface roughness of 100 closed-loop and 100 open-loop thin-film
depositions.

compensate for the stochasticity of the process and, therefore, significantly reduce
the film variance and outperform the recipe-based, open-loop deposition.

Remark 5.1. Since the control action is computed using closed-form equations in the
MPC design, the computational cost is proportional to the number of states used,
but independent of the optimization horizon tdep − t. Nevertheless, even for a lattice
size that corresponds to the largest physical dimension of the sampling area that can
be achieved by common surface measurement techniques (i.e., a few microns), such
computation can still be completed within the control interval using currently avail-
able computing power. On the other hand, such a task is almost impossible to achieve
using a kMC code, whose computational cost is on the order of k4

max(tdep − t) for
merely a single run. Furthermore, we note that the evaluation of each state is inde-
pendent of other states and, therefore, can be executed in parallel, while the kMC
code, being a serial calculation, is unsuitable for parallel processing.

5.3 Linear Covariance Control Using Stochastic PDEs

When spatially distributed sensing and actuation are available, the surface roughness
can be regulated using the covariance control technique. In this section, we present
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a method for covariance control of the surface roughness based on linear stochas-
tic PDEs. The following second-order linear stochastic PDE is used to present our
method:

∂h

∂t
= ν

∂2h

∂x2
+ ξ(x, t), (5.34)

where ν > 0 is a constant, x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t)
is the height of the surface at position x and time t, and ξ(x, t) is a Gaussian noise
with zero mean and covariance

〈ξ(x, t)ξ(x′, t′)〉 = ς2δ(x − x′)δ(t − t′), (5.35)

where ς2 is a constant, δ(·) is the Dirac function, and 〈·〉 denotes the expected value.
Note that the noise covariance depends on both space x and time t.

The surface roughness, r, is represented by the standard deviation of the surface
from its average height. The definition is similar to Eq. (3.2) and is given as follows:

r(t) =

√
1
2π

∫ π

−π

[h(x, t) − h̄(t)]2dx, (5.36)

where h̄(t) = (1/2π)
∫ π

−π h(x, t)dx is the average surface height.
Our objective is to control the surface roughness of a simple thin-film growth

process described by Fig. (5.9). The controller design is based on the stochastic par-
tial differential equation (SPDE) model of the process [Eqs. (5.34) and (5.35)]. To do
this, we formulate a distributed control problem in the spatial domain [−π, π]. The
control problem is described by the following SPDE:

∂h

∂t
= ν

∂2h

∂x2
+

p∑

i=1

bi(x)ui(t) + ξ(x, t) (5.37)

subject to periodic boundary conditions

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, 1, (5.38)

and with the initial condition

h(x, 0) = h0(x), (5.39)

where ui is the ith manipulated input, p is the number of manipulated inputs, and
bi is the ith actuator distribution function [i.e., bi determines how the control action
computed by the ith control actuator, ui, is distributed (e.g., point or distributed
actuation) in the spatial interval (−π, π)].

To study the dynamics of Eq. (5.37), we initially consider the eigenvalue problem
of the linear operator in Eq. (5.37), which takes the form
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Aφ̄n(x) = ν
d2φ̄n(x)

dx2
= λnφ̄n(x), n = 1, . . . ,∞,

dj φ̄n

dxj
(−π) =

dj φ̄n

dxj
(π), j = 0, 1,

(5.40)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct com-
putation of the solution of the above eigenvalue problem yields λ0 = 0 with
ψ0 = 1/

√
2π, and λn = −νn2 (λn is an eigenvalue of multiplicity two) with eigen-

functions φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞.
From the solution of the eigenvalue problem shown in Eq. (5.40), it follows that for a
fixed value of ν > 0, the distance between two consecutive eigenvalues (i.e., λn and
λn+1) increases as n increases. Furthermore, the eigenspectrum of the operator A in
Eq. (5.40), σ(A), can be partitioned as σ(A) = σ1(A)

⋃
σ2(A), where σ1(A) con-

tains the first m (with m finite) eigenvalues [i.e., σ1(A) = {λ1, . . . , λm}] and σ2(A)
contains the remaining infinite number of eigenvalues [i.e., σ2(A) = {λm+1, . . .}].

To present the method that we use to control the stochastic PDE in Eq. (5.37), we
first derive stochastic ODE approximations in Eq. (5.37) using modal decomposition.
To this end, we first expand the solution in Eq. (5.37) in an infinite series in terms of
the eigenfunctions of the operator in Eq. (5.40) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x), (5.41)

where αn(t) and βn(t) are time-varying coefficients. Substituting the above expan-
sion for the solution, h(x, t), into Eq. (5.37) and taking the inner product with the
adjoint eigenfunctions, φ∗

n(z) = (1/
√

π) sin(nz) and ψ∗
n(z) = (1/

√
π) cos(nz), the

following system of infinite stochastic ODEs is obtained:

dαn

dt
= −νn2αn +

p∑

i=1

biαn
ui(t) + ξn

α(t),

dβn

dt
= −νn2βn +

p∑

i=1

biβn
ui(t) + ξn

β (t), n = 1, . . . ,∞,

(5.42)

where biαn
=
∫ π

−π

φ∗
n(x)bi(x)dx, biβn

=
∫ π

−π

ψ∗
n(x)bi(x)dx,

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗
n(x)dx, ξn

β (t) =
∫ π

−π

ξ(x, t)ψ∗
n(x)dx.

The covariances of ξn
α(t) and ξn

β (t) can be computed using Result 4.1 as
〈ξn

α(t)ξn
α(t′)〉 = ς2δ(t − t′) and 〈ξn

β (t)ξn
β (t′)〉 = ς2δ(t − t′).

In this work, the controlled variable is the expected value of surface roughness,
〈r2〉. According to Eq. (5.41), we have h̄(t) = β0(t)ψ0. Therefore, 〈r2〉 can be
rewritten in terms of αn and βn as follows:
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〈r2〉 =
1
2π

〈∫ π

−π

(h(x, t) − h̄(t))2dx

〉

=
1
2π

〈∫ π

−π

∞∑

i=1

[
α2

i (t)φ
2
i (x) + β2

i (t)ψ2
i (x)

]
dx

〉

=
1
2π

〈 ∞∑

i=1

(α2
i + β2

i )

〉

=
1
2π

∞∑

i=1

[
〈α2

i 〉 + 〈β2
i 〉
]
.

(5.43)

Therefore, the surface roughness control problem for the stochastic PDE system
in Eq. (5.37) is formulated as that of controlling the covariance of the states αn and
βn of the system of infinite stochastic ODEs in Eq. (5.42).

5.3.1 Model Reduction

Due to its infinite-dimensional nature, the system in Eq. (5.42) cannot be directly
used for the design of controllers that can be implemented in practice (i.e., the
practical implementation of controllers that are designed on the basis of this sys-
tem will require the computation of infinite sums, which cannot be done by a
computer). Instead, we base the controller design on finite-dimensional approxi-
mations of this system. Subsequently, we will show that the resulting controller
will enforce the desired control objective in the closed-loop infinite-dimensional
system.

Specifically, we rewrite the system in Eq. (5.42) as follows:

dxs

dt
= Λsxs + Bsu + ξs,

dxf

dt
= Λfxf + Bfu + ξf ,

(5.44)

where xs = [α1 · · · αm β1 · · · βm ]T , xf = [αm+1βm+1 · · · ]T , Λs = diag[−ν · · ·−
m2ν − ν · · · −m2ν], Λf = diag[−(m + 1)2ν − (m + 1)2ν · · · ], u = [u1 · · · up ]T ,
ξs = [ ξ1

α · · · ξm
α ξ1

β · · · ξm
β ]T , and ξf = [ξm+1

α ξm+1
β · · · ]T

Bs =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1α1
· · · bpα1

...
. . .

...
b1αm

· · · bpαm

b1β1
· · · bpβ1

...
. . .

...
b1βm

· · · bpβm

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Bf =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

b1αm+1
· · · bpαm+1

b1βm+1
· · · bpβm+1

b1αm+2
· · · bpαm+2

b1βm+2
· · · bpβm+2

...
...

...

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

. (5.45)

We note that the subsystem xf in Eq. (5.44) is infinite-dimensional.
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Neglecting the xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + Bsu + ξs, (5.46)

where the tilde symbol in x̃s denotes that this state variable is associated with a
finite-dimensional system.

5.3.2 Feedback Control Design

We design the state feedback controller on the basis of the finite-dimensional system
in Eq. (5.46). To simplify our development, we assume that p = 2m and we pick the
actuator distribution functions such that B−1

s exists. The state feedback control law
then takes the form

u = B−1
s (Λcs − Λs) x̃s, (5.47)

where the matrix Λcs contains the desired poles of the closed-loop system; Λcs =
diag[λcα1 · · · λcαm λcβ1 · · · λcβm], and λcαi and λcβi (1 ≤ i ≤ m) are desired
poles of the closed-loop, finite-dimensional system, which can be computed from the
desired closed-loop surface roughness level.

We first analyze the dependence of the covariances of the states αn and βn (n =
1, . . . , m) on the poles of the finite-dimensional system in Eq. (5.46). Then, we will
show in the next subsection that the surface roughness of the infinite-dimensional
system in Eq. (5.42) can be controlled to a desired level by using the state feedback
controller in Eq.( 5.47), which uses only a finite number of actuators.

By applying the controller in Eq. (5.47) to the system in Eq. (5.46), the closed-
loop system takes the form

dx̃s

dt
= Λcsx̃s + ξs(t). (5.48)

To analyze the effect of the feedback controller on the covariance of the state x̃s, we
discretize Eq. (5.48) in the time domain, using Δt as the time step, as follows:

Xs(k + 1) = GcsXs(k) + ζs(k), k = 0, . . . ,∞, (5.49)

where Xs(k) = x̃s(kΔt), and Gcs = eΛcsΔt, ζs(k) =
∫ (k+1)Δt

kΔt eΛcs((k+1)Δt−t)

ξs(t)dt. According to [1, Chapter 3], if all eigenvalues of Gcs are within the unit cir-
cle on the complex plane, the covariance matrix of Xs(k), P (k) = 〈Xs(k)Xs(k)T 〉,
converges to P (∞), which is the solution to the following equation:

P (∞) = GcsP (∞)GT
cs + R1, (5.50)

where R1 = 〈ζsζ
T
s 〉. Eq. (5.50) cannot be solved, in general, analytically. However,

for the specific deposition system considered in this work, the analytical solution for
P (∞) can be obtained as follows:

P (∞) =
[

Pα(∞) 0
0 Pβ(∞)

]
, (5.51)
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where Pα(∞) = diag[ 〈α2
1(∞)〉 · · · 〈α2

m(∞)〉 ], and Pβ(∞) = diag
[〈β2

1(∞)〉 · · · 〈β2
m(∞)〉. Using Result 5.1, 〈α2

n(∞)〉 and 〈β2
n(∞)〉

(n = 1, . . . , m) can be computed by using the following expressions:

〈α2
n(∞)〉 = − ς2

2λcαn

, 〈β2
n(∞)〉 = − ς2

2λcβn

. (5.52)

From Eq. (5.52), we can see that by assigning the closed-loop poles λcαn and
λcβn (n = 1, . . . , m) at desired locations, the covariances of the states αn and
βn (n = 1, . . . , m) can be controlled to desired levels. Therefore, according to
Eq. (5.43), the contribution to the surface roughness from the finite-dimensional sys-
tem in Eq. (5.46) can be controlled to the desired level.

5.3.3 Analysis of the Closed-Loop Infinite-Dimensional System

In this subsection, we show that when the state feedback controller in Eq. (5.47)
is used to manipulate the poles of the finite-dimensional system in Eq. (5.46), the
contribution to the surface roughness from the αf and βf subsystem of the system in
Eq. (5.44) is bounded and can be made arbitrarily small by increasing the dimension
of the xs subsystem.

By applying the feedback controller in Eq. (5.47) into the infinite-dimensional
system in Eq. (5.44), we obtain the following closed-loop system:

dxs

dt
= Λcsxs + ξs,

dxf

dt
= Λεxs + Λfxf + ξf ,

(5.53)

where Λε = BfB−1
s (Λcs − Λs).

The boundedness of the state of the above system follows directly from the sta-
bility of the matrices Λcs and Λf and the structure of the system, where the xs

subsystem is independent of the xf state (see [32, 28] for results and techniques for
analyzing the stability properties of such systems).

Due to the structure of the eigenspectrum of operator A, the effect of the control
action computed from Eq. (5.47) to the poles of the xf subsystem can be reduced by
increasing m. Therefore, by picking m sufficiently large, the Λεxs term can be made
very small compared to the Λfxf term, thus, the closed-loop system in Eq. (5.53)
can be adequately described by the following system:

dxs

dt
= Λcsxs + ξs,

dxf

dt
= Λfxf + ξf .

(5.54)

On the basis of the above system, it can be shown that the covariance of the state
of the xf subsystem converges to [ 〈α2

m+1(∞)〉 〈β2
m+1(∞)〉 · · · · · · ], where
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〈α2
n(∞)〉 =

ς2

2n2ν
, 〈β2

n(∞)〉 =
ς2

2n2ν
, n > m. (5.55)

Therefore, for m sufficiently large, the overall contribution to the surface roughness
from the xf subsystem in Eq. (5.44) can be computed as follows:

ς
√

2π(m + 1)ν
<

√√
√√ 1

2π

∞∑

n=m+1

[
ς2

νn2

]
<

ς√
2πmν

. (5.56)

Clearly, as m → ∞, the contribution to the surface roughness from the αf and βf

subsystem goes to zero.
In summary, under the controller in Eq. (5.47), the closed-loop surface roughness,

for m sufficiently large, can be adequately described by the following expression:

〈r2〉 =
ς2

2π

(

λ∗ +
∞∑

n=m+1

1
νn2

)

, (5.57)

where λ∗ =
m∑

i=1

[(−1/2λcαi) − (1/2λcβi)].

Remark 5.2. Note that in order to regulate the surface roughness to a desired level,
〈r2

d〉, the number of actuators should be large enough so that the value of 〈r2
d〉 is

achievable. Specifically, the number of actuators m should be selected such that the
following inequality holds:

〈r2
d〉 >

ς2

2π

( ∞∑

n=m+1

1
νn2

)

. (5.58)

This is because the closed-loop stability requires that λcαi < 0 and λcβi < 0 (for
i = 1, . . . , m), and, thus, λ∗ > 0 in Eq. (5.57).

Remark 5.3. Note that to control the closed-loop surface roughness to 〈r2
d〉, we

need to design a controller to assign the poles of the finite-dimensional system in
Eq. (5.48) to appropriate values so that the following equation holds:

λ∗ =
2π(〈r2

d〉 − 〈r2
f 〉)

ς2
. (5.59)

The controller that assigns the poles of the system in Eq. (5.48) to satisfy Eq. (5.59)
is not unique. Consequently, for a fixed number of actuators, p, the controller that
can regulate the closed-loop surface roughness to a desired level is also not unique.
Furthermore, we note that robust control methods [27, 31], which utilize bounds of
the noise terms, can be employed to design a controller that can achieve an arbitrary
degree of attenuation of the effect of noise on the PDE system state.
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Remark 5.4. Note that the expected value of the open-loop surface roughness con-
verges to its steady-state value, 〈r2

ol〉, which can be computed as follows:

〈r2
ol〉 =

ς2

2πν

( ∞∑

k=1

1
k2

)

. (5.60)

If the closed-loop poles of the finite-dimensional system in Eq. (5.48) are written as
λcαk

= −νn2
αk

and λcβk
= −νn2

βk
for k = 1, . . . , m, the ratio of the expected

value of the steady-state closed-loop surface roughness, 〈r2
cl〉, to that of the steady-

state open-loop surface roughness, 〈r2
ol〉, can be computed as follows:

〈r2
cl〉

〈r2
ol〉

=

m∑

k=1

(
1

n2
αk

+
1

n2
βk

)

+
∞∑

k=m+1

1
k2

∞∑

k=1

1
k2

. (5.61)

This ratio is independent of the lattice size of the deposition system for the specific
thin-film growth process under consideration. Therefore, if the control objective is
to achieve a certain percentage of reduction of the value of surface roughness from
that under open-loop operation, the number of actuators needed is independent of the
lattice size of the deposition process.

5.3.4 Application to a Thin-Film Growth Process

Process Description

We consider a deposition process on a 1-dimensional lattice. In this process, particles
land on the surface at rate ra. The rules for the deposition are as follows: A site, l,
is first randomly picked among the sites of the whole lattice and the deposition site
is determined according to the following rules: (1) If the height of this site is lower
than or equal to that of both nearest neighbors, this site is picked as the deposition
site; (2) if the height of only one of the two nearest-neighbor sites is lower than that
of the original site, deposition is on that site; (3) if the height of each of the nearest-
neighbor sites is lower than that of the original site, the deposition site is randomly
picked with equal probability between the two nearest-neighbor sites. A schematic
of the rules of the deposition is shown in Fig. 5.9. There is no particle migration and
desorption taking place on this process (see Chapter 3 and Sections 5.2.3 and 5.2.4
for film growth processes that involve these phenomena).

In this section, we present an application of the proposed state feedback con-
troller to the deposition process described in Fig. 5.9 to regulate the surface rough-
ness to a desired level. Specifically, the deposition occurs on a lattice containing
1,000 sites. Therefore, a = 0.00628. The open-loop deposition rate for each site is
r̄a = 1s−1. A 1000th -order stochastic ordinary differential equation approximation
of the system in Eq. (5.37) is used to simulate the process (the use of higher-order
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Fig. 5.9. Schematic of the rules of the deposition.

approximations led to identical numerical results, thereby implying that the follow-
ing simulation runs are independent of the discretization). The δ function involved
in the covariances of ξn

α and ξn
β is approximated by 1/δt.

Open-Loop Dynamics

In the first simulation, we compare the expected value of the open-loop surface
roughness of the deposition process from the solution of the stochastic PDE model in
Eq. (5.34) to that from a kinetic Monte Carlo simulation. We use the kinetic Monte
Carlo algorithm developed in [57] to simulate the process. First, a random number
is generated to pick a site among all the sites on the 1D lattice. If the height of this
site is lower than or equal to that of both nearest neighbors, this site is picked as
the deposition site and the height of this site increases by a; if the height of only
one of the two nearest-neighbor sites is lower than that of the original site, deposi-
tion is on that site and the height of that site increases by a; if the height of each
of the nearest-neighbor sites is lower than that of the original site, a second ran-
dom number is generated to randomly pick one of the two nearest neighbors with
equal probability and the height of the picked site increases by a. Upon an executed
event, a time increment, dt, is computed by dt = (− ln ζ)/(N × ra), where ζ is
a random number in the (0, 1) interval and N is the total number of sites on the
lattice.
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Fig. 5.10. Comparison of the open-loop profile of the expected surface roughness from the ki-
netic Monte Carlo simulator (solid line) and that from the solution of the SPDE, with adjusted
covariance, using 1,000 modes (dotted line).

The profiles of expected surface roughness are obtained by averaging surface
roughness profiles (either from the stochastic PDE or the kinetic Monte Carlo simu-
lations) from 1,000 independent simulation runs using the same simulation parame-
ters. According to [157], the model parameters ν and ς2 are initially determined as
ν = a2ra = 3.944 × 10−5 and ς2 = a3ra = 2.477 × 10−7. Our simulation results
show that if ς2 is adjusted from 2.477 × 10−7 to 2.94 × 10−7, the expected surface
roughness profile computed from the stochastic PDE model better matches that from
the kMC simulator (see [102] for a discussion on the adjustment of the model param-
eter). Figure 5.10 shows the simulation result. We can see that with this adjustment
of ς , the two profiles are almost identical. Therefore, by slightly adjusting the covari-
ance of the stochastic PDE model in Eq. (5.34), the model can adequately capture
the evolution of surface roughness of the deposition process described in Fig. 5.9
obtained by the kinetic Monte Carlo simulations. Therefore, our control design will
be based on the stochastic PDE model of the process with adjusted ς .

Closed-Loop Simulation

Subsequently, we design a state feedback covariance controller based on a 40th-
order stochastic ODE approximation constructed by using the first 40 eigenmodes of
the system in Eq. (5.42) with adjusted value of the covariance. Forty control actuators
are used to control the system. The ith actuator distribution function is taken to be,

bi(z) =

⎧
⎪⎨

⎪⎩

1√
π

sin(iz), i = 1, . . . , 20,

1√
π

cos[(i − 20)z], i = 21, . . . , 40.
(5.62)



5.3 Linear Covariance Control Using Stochastic PDEs 143

The expected open-loop surface roughness converges to 0.045, which can be
computed using Eq. (5.60). The desired closed-loop surface roughness is 0.01 in this
simulation, which is a 78% reduction compared to the open-loop surface roughness.
Using Eq. (5.57), we design the state feedback controller such that λcαi = λcβi =
−0.023, for i = 1, . . . , 20. Then, we apply the designed controller to the kinetic
Monte Carlo model of the deposition process to control the surface roughness to the
desired level.

The control action, ui, can be implemented by manipulating the gas composition
across the surface in a deposition process. Spatially controllable CVD reactors have
been developed to enable across-wafer spatial control of surface gas composition
during deposition [26]. In such a control problem formulation, the rate that particles
land on the surface is spatially distributed and is computed by the controller. How-
ever, the value of ra, which is used to calculate the values of ν and the covariance, ς ,
in the system in Eq. (5.37), corresponds to the adsorption rate under open-loop oper-
ation and is thus a constant. The contribution of the spatially distributed adsorption
rate to the fluctuations of the surface height profile (e.g., the surface roughness) is

captured by the term
∑p

i=1
bi(x)ui(t). This control problem formulation is further

supported by our simulation results that the controller designed based on the stochas-
tic PDE model of the deposition process can be applied to the kinetic Monte Carlo
model of the same deposition process to control the surface roughness to desired
levels.

Specifically, the adsorption rate on site i at time t is determined according to the
following expression:

ra(i, t) = r̄a +

⎛

⎝
40∑

j=1

bj(zi)uj(t)

⎞

⎠ /a. (5.63)

The following simulation algorithm is used to run the kinetic Monte Carlo simula-
tions for the closed-loop system. First, a random number is generated to pick a site
among all the sites on the 1D lattice; the probability that a surface site is picked is
proportional to the adsorption rate on this site, which is computed using Eq. (5.63).
If the height of this site is lower than or equal to that of both nearest neighbors, this
site is picked as the deposition site and the height of this site increases by a; if the
height of only one of the two nearest-neighbor sites is lower than that of the original
site, deposition is on that site and the height of that site increases by a; if the height
of each of the nearest-neighbor sites is lower than that of the original site, a second
random number is generated to randomly pick one of the two nearest neighbors with
equal probability and the height of the picked site increases by a. Upon an executed

event, a time increment, dt, is computed by dt = − ln ζ/

(
N∑

i=1

ra(i)

)

, where ζ is a

random number in the (0, 1) interval and N is the total number of sites on the lat-
tice. Once a particle is deposited, the first 40 states (α1, . . . , α20 and β1, . . . , β20)
are updated and new control actions are computed to update the spatially distributed
adsorption rate across the surface.
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Fig. 5.11. Closed-loop simulation results by applying the controller designed based on the
first 40 modes of the SPDE model to the kinetic Monte Carlo model. (a) The closed-loop
surface roughness profile from one simulation run (solid line); (b) the expected closed-loop
surface roughness profile (dotted line); and (c) the open-loop surface roughness profile from
one simulation run (dashed line).

The closed-loop system simulation results are shown in Fig. 5.11. The dotted
line shows the expected surface roughness, which is the average surface roughness
profile obtained from 200 independent runs, under feedback control. We can see
that the controller successfully drives the expected surface roughness to the desired
level. The solid line shows the surface roughness profile under feedback control from
one simulation run; due to the stochastic nature of the deposition process, stochas-
tic fluctuations can be observed in the closed-loop surface roughness profile, but the
surface roughness is very close to the set-point value under feedback control. For
the sake of comparison, the dashed line shows a surface roughness profile from one
open-loop simulation run. We can see that under feedback control, a much lower
surface roughness can be achieved. Finally, we note that the proposed approach for
controller design can be, in principle, applied to larger-scale deposition processes
to control surface roughness. In such a case, the stochastic PDE model can be con-
structed by initially deriving a stochastic PDE model based on the transition rules and
then fitting the model parameters based on the experimental roughness data from the
specific deposition process.

5.4 Nonlinear Covariance Control Using Stochastic PDEs

Nonlinearities exist in many material preparation processes in which the surface evo-
lution can be modeled by stochastic PDEs. A typical example of such processes is the
sputtering process, whose surface evolution is described by the nonlinear stochastic
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Kuramoto–Sivashinsky equation (KSE). In a simplified setting, the sputtering pro-
cess includes two types of surface microprocesses, erosion and diffusion. The non-
linearity of the sputtering process originates from the dependence of the erosion
rate on a nonlinear sputtering yield function [36]. In [101], feedback control of sur-
face roughness in sputtering processes was designed based on a linearized stochastic
KSE process model, which was identified using data from multiple kinetic Monte
Carlo simulations of the same process. However, due to the fact that the inherent
process nonlinearities are not explicitly considered in the linearized process model,
it is expected that such a linear controller is only going to provide good closed-loop
performance locally (i.e., for initial conditions close to the desired set point) for
the nonlinear closed-loop system. To perform feedback control design for nonlin-
ear stochastic processes, i.e., provide good performance for a wide range of process
initial conditions and operating conditions, it is desirable that a nonlinear process
model is directly used as the basis for controller synthesis. In this section, we use the
stochastic KSE as an example to present a method for nonlinear control of nonlinear
stochastic partial differential equations.

The stochastic KSE is a fourth-order nonlinear stochastic partial differential
equation that describes the evolution of the height fluctuation for surfaces in a
variety of material preparation processes including surface erosion by ion sput-
tering [36, 91], surface smoothing by energetic clusters [75] and ZrO2 thin-film
growth by reactive ion beam sputtering [124]. We consider the stochastic Kuramoto–
Sivashinsky equation in a 1-dimensional domain [91] with distributed control in the
spatial domain [−π, π] (see also [8, 7, 30, 99] for a distributed control problem for-
mulation for the deterministic KSE):

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+
p∑

i=1

bi(x)ui(t) + ξ(x, t) (5.64)

subject to periodic boundary conditions

∂jh

∂xj
(−π, t) =

∂jh

∂xj
(π, t), j = 0, . . . , 3, (5.65)

and with the initial condition

h(x, 0) = h0(x), (5.66)

where ν, κ, and λ are parameters related to surface mechanisms [124], x ∈ [−π, π]
is the spatial coordinate, t is the time, h(x, t) is the height of the surface at posi-
tion x and time t, ui is the ith manipulated input, p is the number of manipulated
inputs, and bi is the ith actuator distribution function [i.e., bi determines how the
control action computed by the ith control actuator, ui, is distributed (e.g., point or
distributed actuation) in the spatial interval [−π, π]]. ξ(x, t) is a Gaussian noise with
the following expressions for its mean and covariance:

〈ξ(x, t)〉 = 0,
〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′), (5.67)



146 5 Feedback Control Using Stochastic PDEs

where δ(·) is the Dirac function, and 〈·〉 denotes the expected value. Note that the
noise covariance depends on both space x and time t.

Our objective is to control the expected roughness of the surface described by the
stochastic KSE. The surface roughness, r, is defined in Eq. (5.36).

To study the dynamics of Eq. (5.64), we initially consider the eigenvalue problem
of the linear operator in Eq. (5.64), which takes the form

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
− κ

d4φ̄n(x)
dx4

= λnφ̄n(x),

dj φ̄n

dxj
(−π) =

dj φ̄n

dxj
(+π), j = 0, . . . , 3, n = 1, . . . ,∞,

(5.68)

where λn denotes an eigenvalue and φ̄n denotes an eigenfunction. A direct com-
putation of the solution of the above eigenvalue problem yields λ0 = 0 with
ψ0 = 1/

√
2π, and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity two) with

eigenfunctions φn = (1/
√

π) sin(nx) and ψn = (1/
√

π) cos(nx) for n = 1, . . . ,∞.
Note that the φ̄n in Eq. (5.68) denotes either φn or ψn. From the expression of the
eigenvalues, it follows that for fixed values of ν > 0 and κ > 0, the number of un-
stable eigenvalues of the operator A in Eq. (5.68) is finite and the distance between
two consecutive eigenvalues (i.e., λn and λn+1) increases as n increases.

To present the method that we use to control Eq. (5.64), we first derive nonlin-
ear stochastic ODE approximations of Eq. (5.64) using Galerkin’s method. To this
end, we first expand the solution to Eq. (5.64) in an infinite series in terms of the
eigenfunctions of the operator in Eq. (5.68) as follows:

h(x, t) =
∞∑

n=1

αn(t)φn(x) +
∞∑

n=0

βn(t)ψn(x), (5.69)

where αn(t) and βn(t) are time-varying coefficients. Substituting the above expan-
sion for the solution, h(x, t), into Eq. (5.64) and taking the inner product with the
adjoint eigenfunctions, φ∗

n(z) = (1/
√

π) sin(nz) and ψ∗
n(z) = (1/

√
π) cos(nz), the

following system of infinite nonlinear stochastic ODEs is obtained:

dαn

dt
= (νn2 − κn4)αn + fnα +

p∑

i=1

biαn
ui(t) + ξn

α(t), n = 1, . . . ,∞,

dβn

dt
= (νn2 − κn4)βn + fnβ +

p∑

i=1

biβn
ui(t) + ξn

β (t),
(5.70)

where

fnα =
∫ π

−π

φ∗
n(x)

⎛

⎝
∞∑

j=1

αj(t)
dφj

dx
(x) +

∞∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

fnβ =
∫ π

−π

ψ∗
n(x)

⎛

⎝
∞∑

j=1

αj(t)
dφj

dx
(x) +

∞∑

j=0

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

(5.71)
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and

biαn
=
∫ π

−π

φ∗
n(x)bi(x)dx,

biβn
=
∫ π

−π

ψ∗
n(x)bi(x)dx,

ξn
α(t) =

∫ π

−π

ξ(x, t)φ∗
n(x)dx,

ξn
β (t) =

∫ π

−π

ξ(x, t)ψ∗
n(x)dx.

(5.72)

Using Result 4.1, we obtain 〈ξn
α(t)ξn

α(t′)〉 = δ(t − t′) and 〈ξn
β (t)ξn

β (t′)〉 =
δ(t − t′). The controlled variable is the expected value of the square of the sur-
face roughness defined in Eq. (5.36), 〈r2(t)〉. According to Eq. (5.69), we have
h̄(t) = β0(t)ψ0. Therefore, 〈r2(t)〉 can be rewritten in terms of αn(t) and βn(t)
as follows:

〈r2(t)〉 =
1
2π

〈∫ π

−π

(h(x, t) − h̄(t))2dx

〉

=
1
2π

〈∫ π

−π

[ ∞∑

i=1

αi(t)φi(x) +
∞∑

i=0

βi(t)ψi(x) − β0(t)ψ0

]2

dx

〉

=
1
2π

〈∫ π

−π

∞∑

i=1

[
α2

i (t)φ
2
i (x) + β2

i (t)ψ2
i (x)

]
dx

〉

=
1
2π

〈 ∞∑

i=1

(α2
i (t) + β2

i (t))

〉

=
1
2π

∞∑

i=1

[
〈α2

i (t)〉 + 〈β2
i (t)〉

]
.

(5.73)

The surface roughness control problem for the stochastic KSE in Eq. (5.64) is
formulated as that of controlling the covariance of the states αn and βn in the non-
linear stochastic ODE system in Eq. (5.70).

Remark 5.5. Note that in the stochastic KSE in Eq. (5.64), the covariance of ξ(x, t)
is normalized to be δ(x−x′)δ(t− t′). In general, the covariance of the noise term of
the stochastic KSE is ς2δ(x − x′)δ(t − t′), where ς2 is a process parameter derived
based on the rates of surface microscopic processes [36]. The normalization proce-
dure is detailed in the simulation section of this work. This convenience is adopted
to simplify our presentation.
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5.4.1 Model Reduction

Due to its infinite-dimensional nature, the system in Eq. (5.70) cannot be directly
used for the design of controllers that can be implemented in practice (i.e., the prac-
tical implementation of controllers that are designed on the basis of this system will
require the computation of infinite sums, which cannot be done by a computer). In-
stead, we will base the controller design on a finite-dimensional approximation of
this system. Subsequently, we will show that the resulting controller will enforce the
desired control objective in the closed-loop infinite-dimensional system. Specifically,
we rewrite the system in Eq. (5.70) as follows:

dxs

dt
= Λsxs + fs(xs, xf ) + Bsu + ξs,

dxf

dt
= Λfxf + ff (xs, xf ) + Bfu + ξf ,

(5.74)

where xs = [α1 · · · αm β1 · · · βm]T , xf = [αm+1 βm+1 · · · ]T , Λs = diag[λ1 · · ·
λm λ1 · · · λm], Λf = diag[λm+1 λm+1 λm+2 λm+2 · · · ], fs(xs, xf ) = [f1α(xs, xf )
· · · fmα(xs, xf ) f1β(xs, xf ) · · · fmβ(xs, xf )]T , ff (xs, xf ) = [f(m+1)α(xs, xf )
f(m+1)β(xs, xf ) · · · ]T , u = [u1 · · · up]T , ξs = [ξ1

α · · · ξm
α ξ1

β · · · ξm
β ]T , and ξf

= [ξm+1
α ξm+1

β · · · ]T .

Bs =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

b1α1
· · · bpα1

...
. . .

...
b1αm

· · · bpαm

b1β1
· · · bpβ1

...
. . .

...
b1βm

· · · bpβm

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

, Bf =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

b1αm+1
· · · bpαm+1

b1βm+1
· · · bpβm+1

b1αm+2
· · · bpαm+2

b1βm+2
· · · bpβm+2

...
...

...

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

. (5.75)

In our development, we will need the following notations. The 2-norms for the
vectors xs, xf , and fs(xs, xf ) are defined as follows:

‖xs‖2 =

√√
√√

m∑

j=1

α2
j +

m∑

j=1

β2
j ,

‖xf‖2 =

√√√
√

∞∑

j=m+1

α2
j +

∞∑

j=m+1

β2
j ,

‖fs(xs, xf )‖2 =

√√
√
√

m∑

j=1

f2
jα(xs, xf ) +

m∑

j=1

f2
jβ(xs, xf ).

(5.76)

The covariance matrices for xs(t), xf (t), Ps(t) and Pf (t), are defined as follows:
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Ps(t) = 〈xs(t)xT
s (t)〉, Pf (t) = 〈xf (t)xT

f (t), 〉 (5.77)

where 〈·〉 denotes the expected value and xT
s (t) and xT

f (t) are transposes of the
vectors xs(t) and xf (t), respectively.

We note that the subsystem xf in Eq. (5.74) is infinite-dimensional. Neglecting
the xf subsystem, the following 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + fs(x̃s, 0) + Bsu + ξs, (5.78)

where the tilde symbol in x̃s denotes that this state variable is associated with a
finite-dimensional system.

5.4.2 Feedback Control Design

We design the nonlinear state feedback controller on the basis of Eq. (5.78). To sim-
plify our development, we assume that p = 2m (i.e., the number of control actuators
is equal to the dimension of the finite-dimensional system) and pick the actuator dis-
tribution functions such that B−1

s exists. The state feedback control law then takes
the form

u = B−1
s {(Λcs − Λs) x̃s − fs(x̃s, 0)} , (5.79)

where the matrix Λcs contains the desired poles of the closed-loop system; Λcs =
diag[λcα1 · · · λcαm λcβ1 · · · λcβm], and λcαi and λcβi (1 ≤ i ≤ m) are desired
poles of the closed-loop finite-dimensional system, which satisfy Re{λcαi} < 0 and
Re{λcβi} < 0 for (1 ≤ i ≤ m) and can be determined from the desired closed-
loop surface roughness level. The method to determine the eigenvalues of Λcs will
be discussed in Section 5.4.3.

The control action is computed using the formula in Eq. (5.79), and the compu-
tation as cost is proportional to the number of actuators, p. Since B−1

s depends only
on the configuration of the control actuators, it can be computed offline. The major
computational requirement involved in Eq. (5.79) is the evaluation of the nonlinear
term fs(x̃s, 0), whose specific form is given in Eq. (5.80):

fs(x̃s, 0) = [f1α(x̃s, 0) · · · fmα(x̃s, 0)f1β(x̃s, 0) · · · fmβ(x̃s, 0)]T ,

fnα(x̃s, 0) =
∫ π

−π

φ∗
n(x)

⎛

⎝
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑

j=1

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

fnβ(x̃s, 0) =
∫ π

−π

ψ∗
n(x)

⎛

⎝
m∑

j=1

αj(t)
dφj

dx
(x) +

m∑

j=1

βj(t)
dψj

dx
(x)

⎞

⎠

2

dx,

(5.80)

where n = 1, . . . , m. Therefore, the computation of fs(x̃s, 0) involves standard nu-
merical operations and can be completed very fast relative to the time scale of process
evolution using currently available computing power.
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We will demonstrate in Section 5.4.3 that the expected surface roughness of the
closed-loop infinite-dimensional system in Eq. (5.70) can be controlled to the desired
level by using the state feedback controller in Eq. (5.79), which uses only a finite
number of actuators.

5.4.3 Analysis of the Closed-Loop Infinite-Dimensional System

By applying the controller in Eq. (5.79) to the infinite-dimensional system in
Eq. (5.74), and using that ε = |λ1|/|λm+1|, the closed-loop system takes the form

dxs

dt
= Λcsxs + (fs(xs, xf ) − fs(xs, 0)) + ξs,

ε
dxf

dt
= Λfεxf + εBfB−1

s (Λcs − Λs) x̃s

+εff(xs, xf ) − εBfB−1
s fs(x̃s, 0) + εξf ,

(5.81)

where λ1 and λm+1 are the first and the (m+1)th eigenvalues of the linear operator
in Eq. (5.68), and Λfε = diag[λε1 λε1 λε2 λε2 · · · ] is an infinite-dimensional matrix
defined as Λfε = ε · Λf .

Computing the linearization of the nonlinear system in Eq. (5.81) around
(xs, xf ) = (0, 0) and using the fact that the terms {fs(xs, xf ) − fs(xs, 0)},
ff(xs, xf ), and fs(xs, 0) include second-order terms and do not include linear terms
[this follows from the quadratic structure of the nonlinear term of the stochastic KSE
and from Eq. (5.71)], we obtain the following linear system:

dxs

dt
= Λcsxs + ξs,

ε
dxf

dt
= Λfεxf + εBfB−1

s (Λcs − Λs) x̃s + εξf .

(5.82)

Due to the stability properties of Λcs and Λfε and the decoupled nature of the sys-
tem in Eq. (5.82), this system is asymptotically stable. Thus, the nonlinear system
in Eq. (5.81) is locally (i.e., for sufficiently small initial conditions) asymptotically
stable. This implies that under the assumption that the initial condition is sufficiely
small, as t → ∞, the covariance matrices of xs and xf of the system in Eq. (5.81)
converge to Ps(∞) and Pf (∞), respectively. Ps(∞) and Pf (∞) are defined as
follows:

Ps(∞) = lim
t→∞

〈xs(t)xT
s (t)〉, Pf (∞) = lim

t→∞
〈xf (t)xT

f (t)〉, (5.83)

where 〈·〉 denotes the expected value, and xT
s (t) and xT

f (t) are transposes of the
vectors xs(t) and xf (t), respectively.

We now proceed to characterize the accuracy with which the closed-loop surface
roughness is controlled. Theorem 5.1 provides estimates of the contribution of the
expected surface roughness from the xs and xf subsystems of the closed-loop system
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in Eq. (5.81) and a characterization of the expected value of the surface roughness
enforced by the controller in Eq. (5.79) in the closed-loop stochastic KSE. The proof
of Theorem 5.1 is also given below.

Theorem 5.1. Consider the closed-loop stochastic KSE in Eq. (5.81). Define the
expected surface roughness and the contribution to the expected surface roughness
of the closed-loop system from the xf and xs subsystems as t → ∞ as follows:

〈r2(∞)〉 =
1
2π

∞∑

i=1

[
〈α2

i (∞)〉 + 〈β2
i (∞)〉

]
,

〈r2
f (∞)〉 =

1
2π

∞∑

i=m+1

[
〈α2

i (∞)〉 + 〈β2
i (∞)〉

]
,

〈r2
s(∞)〉 =

1
2π

m∑

i=1

[
〈α2

i (∞)〉 + 〈β2
i (∞)〉

]
,

(5.84)

where 〈·〉 denotes the expected value, 〈r2(∞)〉 is the expected surface roughness of
the closed-loop system in Eq. (5.81), 〈r2

f (∞)〉 is the contribution to the expected
surface roughness from the xf subsystem in Eq. (5.81), 〈r2

s(∞)〉 is the contribution
to the expected surface roughness from the xs subsystem in Eq. (5.81), xf =[αm+1

βm+1 αm+2 βm+2 · · · ]T , and xs= [α1 · · · αm β1 · · · βm]T .
Then, there exist μ∗ > 0 and ε∗ > 0 such that if ‖xf0‖2 + ‖xs0‖2 ≤ μ∗ and

ε ∈ (0, ε∗], then 〈r2
f (∞)〉, 〈r2

s∞)〉, and 〈r2(∞)〉 satisfy

〈r2
f (∞)〉 = O(ε), (5.85)

〈r2
s(∞)〉 =

1
4π

m∑

i=1

(
1

|λcαi|
+

1
|λcβi|

)
+ O(

√
ε), (5.86)

〈r2(∞)〉 =
1
4π

m∑

i=1

(
1

|λcαi|
+

1
|λcβi|

)
+ O(

√
ε), (5.87)

where xf0 and xs0 are the initial conditions for xf and xs in Eq. (5.81), respec-
tively, and λcαi, λcβi (i = 1, 2, . . . , m) are the eigenvalues of Λcs in the system in
Eq. (5.81).

Proof of Theorem 5.1. The proof of Theorem 5.1 includes three parts. First, we
compute the contribution to the expected surface roughness from the xf subsystem
in Eq. (5.81) and prove Eq. (5.85) in Theorem 5.1. Then, we compute the contri-
bution to the expected surface roughness from the xs subsystem in Eq. (5.81) and
prove Eq. (5.86) in Theorem 5.1. Finally, the proof of Theorem 5.1 is completed
by proving Eq. (5.87) based on the results in Eqs. (5.85) and (5.86). Since we work
with sufficiently small initial conditions, local stability of the closed-loop nonlinear
infinite-dimensional system can be proved by using the linearization argument of
Section 5.4.3 and is used without further proof in the remainder.
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Proof of Eq. (5.85) in Theorem 5.1. Consider the closed-loop system in Eq. (5.81)
and note that the terms on the right-hand side of the xf subsystem constitute an O(ε)
approximation to the term Λfεxf . Consider also the following linear system:

ε
∂x̄f

∂t
= Λfεx̄f + εξf . (5.88)

Following a similar approach to the one employed in the proof of Theorem A.1 in
[87, p. 361], we have that there exists an ε̂∗ > 0 such that for all ε ∈ (0, ε̂∗], we have
that

xf (t) = x̄f (t) + O(
√

ε). (5.89)

Therefore, we have the following estimate for 〈‖xf (t)‖2
2〉:

〈‖xf (t)‖2
2〉 = 〈‖x̄f (t) + O(

√
ε)‖2

2〉 ≤ 2〈‖x̄f (t)‖2
2〉 + O(ε). (5.90)

Furthermore, 〈‖xf (t)‖2
2〉 and 〈‖x̄f (t)‖2

2〉 are equal to the traces of the covariance
matrices of xf (t) and x̄f (t), Pf (t) = 〈xf (t)xf (t)T 〉 and P̄f (t) = 〈x̄f (t)x̄f (t)T 〉,
respectively. Finally, as t → ∞, Pf (t) and P̄f (t) converge to Pf (∞) and P̄f (∞),
respectively [both Pf (∞) and P̄f (∞) are bounded quantities, which follows from
closed-loop stability]. We note that the 2-norm of xf , ‖xf‖2, is defined in Eq. (5.76)
and Pf (∞) is defined in Eq. (5.83). Because Λfε is a diagonal matrix, the trace of
matrix P̄f can be computed as follows [101]:

Tr{P̄f} =
ε

2
·

∞∑

i=1

∣∣
∣
∣

1
λεi

∣∣
∣
∣ , (5.91)

where λεi (i = 1, 2, . . . ,∞) are the eigenvalues of the matrix Λfε in Eq. (5.88).
Specifically, |λε1| = |ν − κ| and

|λεi| =

∣∣
∣
∣
∣
(ν − κ)

[
ν(2m + i)2 − κ(2m + i)4

]

ν(2m + 1)2 − κ(2m + 1)4

∣∣
∣
∣
∣
, i = 1, 2, . . . .

It is clear that |λεi| increases with respect to i in the order of (2m+ i)4, where 2m is

the size of the xs subsystem in Eq. (5.81). Therefore,
∞∑

i=1

∣
∣
∣
∣

1
λεi

∣
∣
∣
∣ converges to a finite

positive number, and, thus, there exists a positive real number kfε such that

Tr{P̄f} <
ε

2
· kfε. (5.92)

Therefore, it follows that

Tr{P̄f} = 〈‖x̄f (∞)‖2
2〉 = O(ε). (5.93)

According to Eq. (5.90), it follows that the contribution to the expected surface
roughness from xf is O(ε), i.e.
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〈r2
f (∞)〉 =

1
2π

〈‖xf (∞)‖2
2〉 =

1
2π

∞∑

i=m+1

[
〈α2

i (∞)〉 + 〈β2
i (∞)〉

]
= O(ε). (5.94)

This completes the proof of Eq. (5.85) in Theorem 5.1. �
Proof of Eq. (5.86) in Theorem 5.1. Consider the xs subsystem of the closed-loop

system in Eq. (5.81). First, we note that there exists a positive real number k1s such
that [32, 28]

‖fs(xs, xf ) − fs(xs, 0)‖2 < k1s‖xf‖2, (5.95)

where the definitions of ‖xf‖2 and ‖fs(·)‖2 can be found in Eq. (5.76). From
Eq. (5.89), we have the following estimate for ‖xf‖2 for t ≥ tb (where tb is the
time needed for ‖x̄f (t)‖ to approach zero and tb → 0 as ε → 0):

‖xf (t)‖2 =

√√
√
√

∞∑

i=m+1

[〈α2
i (∞)〉 + 〈β2

i (∞)〉] = O(
√

ε). (5.96)

This implies that we have the following estimate for ‖fs(xs, xf ) − fs(xs, 0)‖2 for
t ≥ tb:

‖fs(xs, xf ) − fs(xs, 0)‖2 = O(
√

ε). (5.97)

Therefore, the solution of the following system consists of an O(
√

ε) approximation
of the xs of Eq. (5.81) [87, Theorem A.1, p. 361]:

dx̄s

dt
= Λcsx̄s + ξs. (5.98)

In particular, there exists an ε̂∗∗ > 0 such that for all ε ∈ (0, ε̂∗∗], it holds that

xs(t) − x̄s(t) = O(
√

ε) (5.99)

and

‖xs(t)‖2
2 − ‖x̄s(t)‖2

2 = (‖xs(t)‖2 − ‖x̄s(t)‖2) · (‖xs(t)‖2 + ‖x̄s(t)‖2) = O(
√

ε).
(5.100)

Because ‖xs(t)‖2 and ‖x̄s(t)‖2 are bounded for all t > 0, 〈‖xs(t)‖2
2〉 and 〈‖x̄s(t)‖2

2〉
are equal to the traces of the covariance matrices of xs(t) and x̄s(t), Ps(t) =
〈xs(t)xs(t)T 〉 and P̄s(t) = 〈x̄s(t)x̄s(t)T 〉, respectively. As t → ∞, Ps(t) and P̄s(t)
converge to Ps(∞) and P̄s(∞), respectively. The definition of Ps(∞) can be found
in Eq. (5.83).

Because Λcs is a diagonal matrix, the trace of matrix P̄s(∞) can be computed as
follows [101]:

Tr{P̄s(∞)} =
1
2
·

m∑

i=1

(∣∣
∣
∣

1
λcαi

∣
∣
∣
∣+

∣
∣
∣
∣

1
λcβi

∣
∣
∣
∣

)
, (5.101)

where λcαi and λcβi (i = 1, 2, . . . , m) are the eigenvalues of the matrix Λcs in
Eq. (5.81).

Therefore, it holds that
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〈‖x̄s(∞)‖2
2〉 = Tr{P̄s(∞)} =

1
2
·

m∑

i=1

(∣∣∣
∣

1
λcαi

∣
∣∣
∣+

∣
∣∣
∣

1
λcβi

∣
∣∣
∣

)
. (5.102)

According to Eq. (5.100), it holds that the contribution to the expected surface rough-
ness from xs is as follows:

〈r2
s(∞)〉 =

1
2π

〈‖xs(∞)‖2
2〉 =

1
2π

m∑

i=1

[
〈α2

i (∞)〉 + 〈β2
i (∞)〉

]

=
1
4π

m∑

i=1

(∣∣
∣
∣

1
λcαi

∣
∣
∣
∣+

∣
∣
∣
∣

1
λcβi

∣
∣
∣
∣

)
+ O(

√
ε).

(5.103)

This completes the proof of Eq. (5.86) in Theorem 5.1. �
Proof of Eq. (5.87) in Theorem 5.1. The expected surface roughness from the

closed-loop system 〈r2(∞)〉 includes contributions from both the xs subsystem
and the xf subsystem in Eq. (5.81). Therefore, we have the following equation for
〈r2(∞)〉:

〈r2(∞)〉 = 〈r2
s(∞)〉 + 〈r2

f (∞)〉. (5.104)

Using Eqs. (5.85) and (5.86), we immediately have

〈r2(∞)〉 =
1
4π

m∑

i=1

(
1

|λcαi|
+

1
|λcβi|

)
+ O(

√
ε) + O(ε), (5.105)

since as ε → 0, it holds that
O(ε)

O(
√

ε)
→ 0. (5.106)

The O(ε) term in Eq. (5.105) is negligible and there exists an ε∗ = min(ε̂∗, ε̂∗∗) such
that if ε ∈ (0, ε∗], then

〈r2(∞)〉 =
1
4π

m∑

i=1

(
1

|λcαi|
+

1
|λcβi|

)
+ O(

√
ε), (5.107)

where λcαi, λcβi (i = 1, 2, . . . , m) are eigenvalues of Λcs in the system in Eq. (5.81).
This completes the proof of Theorem 5.1. �

Remark 5.6. Note that to control the expected value of the surface roughness to
〈r2(∞)〉, we need to design a controller to assign the eigenvalues of the matrix
Λcs in the system in Eq. (5.81) to appropriate values. The controller that assigns
the eigenvalues of the matrix Λcs in the system in Eq. (5.81) to satisfy Eq. (5.87)
is not unique. Consequently, for a fixed number of actuators, p, the controller that
can drive the closed-loop surface roughness to a desired level is not unique either.
Furthermore, we note that the proposed nonlinear feedback controller in Eq. (5.79)
is a multivariable controller (i.e., the numbers of the manipulated inputs adjusted by
this controller is equal to p). Therefore, the number of independent output variables
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that this controller is capable of simultaneously regulating is equal to p. If control
of surface configuration variables other than the surface roughness is of interest (for
example, surface coverage, island size, etc.), then these variables should be math-
ematically expressed as controlled outputs of the stochastic PDE and the nonlinear
feedback controller should be designed to regulate these new outputs to the desired
set-point values in a similar way to the one that is followed to achieve this task for
the expected value of the surface roughness.

Remark 5.7. In case where the desired value of the steady-state surface roughness of
the closed-loop system is 〈r2

d〉, the controller should be designed such that

〈r2
d〉 =

1
4π

m∑

i=1

(
1

|λcαi|
+

1
|λcβi|

)
.

Under this controller, the expected surface roughness of the infinite-dimensional sys-
tem is shown in Eq. (5.87), which is an O(

√
ε) approximation of 〈r2

d〉, which means
that there exists a positive real number kr such that |〈r2(∞)〉 − 〈r2

d〉| < kr · √ε.
Under the assumption that the number of control actuators is equal to the dimen-
sion of the xs subsystem, the value of ε is dependent on the number of actuators
used by the controller. Therefore, the larger the number of control actuators used,
the smaller the ε. Consequently, the closed-loop surface roughness is closer to the
desired surface roughness as the number of control actuators used to control the pro-
cess increases. If the allowable error between the closed-loop surface roughness and
the desired surface roughness is prespecified as er = |〈r2

d〉 − 〈r2(∞)〉|, then the
number of control actuators should be chosen such that kr · √ε < er to achieve the
desired closed-loop performance. However, it is not straightforward to solve for kr

analytically. Therefore, the number of control actuators can be determined using a
two-step procedure. First, an estimate of the number of actuators, p1, is made and an
ε1 is computed. Closed-loop simulations can be performed to evaluate the error be-
tween the expected closed-loop surface roughness and the desired value, ēr1, when
p1 actuators are used. If ēr1 > er, then the number of actuators should be increased
to p2 (and the value of ε is reduced from ε1 to ε2) such that ēr1 ·

√
ε2 > er ·

√
ε1 in

order to achieve the desired closed-loop performance.

Remark 5.8. We note that a full-scale model of a sputtering process would consist
of a two-dimensional lattice representation of the surface. Although we developed
the method for nonlinear feedback control design based on a one-dimensional lat-
tice representation of the surface, it is possible to extend the proposed method to
control the surface roughness of material preparation processes taking place in two-
dimensional domains. In a two-dimensional in space process, the feedback control
design and the analysis of the closed-loop system will be based on a two-dimensional
extension of the model in Eq. (5.74). Moreover, Eq. (5.74) will be obtained by solv-
ing the eigenvalue/eigenfunction problem of the operator A in the two-dimensional
spatial domain subject to the appropriate boundary conditions; this can be achieved
in a similar way to that followed for the one-dimensional spatial domain (see Sec-
tion 4.3.2 for results on the solution of the eigenvalue/eigenfunction problem for a
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two-dimensional spatial domain). Once the modal representation in Eq. (5.74) corre-
sponding to the two-dimensional PDE is obtained, the method for control design and
closed-loop analysis presented above can be applied to control the surface roughness.

5.4.4 Application to the Stochastic Kuramoto-Sivashinsky Equation

In this subsection, we consider the following stochastic KSE with spatially dis-
tributed control:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+
p∑

i=1

b̂i(x)ui(t) + ξ′(x, t), (5.108)

where ui is the ith manipulated input, p is the number of manipulated inputs, b̂i

is the ith actuator distribution function [i.e., b̂i determines how the control action
computed by the ith control actuator, ui, is distributed (e.g., point or distributed
actuation) in the spatial interval [−π, π]], ν = 1.975 × 10−4, κ = 1.58 × 10−4,
λ = 1.975 × 10−4, x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the
height of the surface at position x and time t, and ξ′(x, t) is a Gaussian noise with
zero mean and covariance:

〈ξ′(x, t)ξ′(x′, t′)〉 = ς2δ(x − x′)δ(t − t′), (5.109)

where ς = 3.52× 10−5. Note that the difference between Eq. (5.64) and Eq. (5.108)
is that in Eq. (5.108), the covariance of the Gaussian noise, ξ′(x, t), is ς2δ(x −
x′)δ(t − t′), while in Eq. (5.64), the covariance of the Gaussian noise, ξ(x, t), is
δ(x − x′)δ(t − t′).

We normalize the covariance of the Gaussian noise in the system in Eq. (5.108)
to be δ(x − x′)δ(t − t′) by introducing a new variable for the height of the surface,
h′(x, t) = h(x, t)/ς , and new actuator distribution functions, bi(x) = b̂i(x)/ς , for
i = 1, . . . , p. Equation (5.108), therefore, can be rewritten as follows:

∂h′

∂t
= −ν

∂2h′

∂x2
− κ

∂4h′

∂x4
+

λ

2

(
∂h′

∂x

)2

+
p∑

i=1

bi(x)ui(t) + ξ(x, t), (5.110)

where ξ(x, t) = ξ′(x, t)/ς and 〈ξ(x, t)ξ(x′, t′)〉 = δ(x−x′)δ(t− t′). Therefore, the
system in Eq. (5.110) is consistent with the system in Eq. (5.64) which is the basis
for feedback control design and closed-loop analysis. We also use the system in
Eq. (5.110) for all simulations in this work.

A 200th-order stochastic ordinary differential equation approximation of
Eq. (5.110) obtained via Galerkin’s method is used to simulate the process (the use
of higher-order approximations led to identical numerical results, thereby implying
that the following simulation runs are independent of the discretization). The δ func-
tion involved in the covariances of ξn

α and ξn
β is approximated by 1/Δt, where Δt is

the integration time step.
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Fig. 5.12. The open-loop profile of the expected surface roughness resulting from the compu-
tation of the average of 100 independent simulation runs of the stochastic KSE in Eq. (5.110).

Open-Loop Dynamics of the Stochastic KSE

In the first simulation, we compute the expected value of the open-loop surface
roughness profile from the solution of the stochastic KSE in Eq. (5.110) by set-
ting ui(t) = 0 for i = 1, . . . , p. For ν = 1.975 × 10−4 and κ = 1.58 × 10−4,
the stochastic KSE possesses one positive eigenvalue. Therefore, the zero solution of
the open-loop system is unstable. Surface roughness profiles obtained from 100 in-
dependent simulation runs using the same parameters are averaged and the resulting
expected surface roughness profile is shown in Fig. 5.12. The value of the open-loop
surface roughness increases due to the open-loop instability of the zero solution but
remains bounded due to the bounding nature of the nonlinear terms in the stochastic
KSE.

Closed-Loop Simulation of the Stochastic KSE Under Nonlinear Control

In the closed-loop simulation under nonlinear control, we design a nonlinear state
feedback controller based on a 20th-order stochastic ODE approximation con-
structed by using the first 20 eigenmodes of the system in Eq. (5.70) and apply this
controller to a 200th-order approximation of the nonlinear stochastic KSE. Twenty
control actuators are used to control the system. The ith actuator distribution func-
tion is taken to be

bi(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
π

sin(iz), i = 1, . . . , 10,

1√
π

cos[(i − 10)z], i = 11, . . . , 20.

(5.111)
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Fig. 5.13. The closed-loop profile of the expected value of the surface roughness (solid line)
vs. the open-loop profile of the expected value of the surface roughness (dotted line) when the
controller is designed based on the first 20 modes.

Under this control problem formulation, m = 10 and the value of ε = |λ1|/|λ11| =
1.73 × 10−5. Our desired expected value of the surface roughness is 6.53.

Using Eq. (5.87), we design a nonlinear state feedback controller such that
λcαi = λcβi = −0.0373, for i = 1, . . . , 10. Closed-loop simulations are performed
to study the evolution of the expected value of the surface roughness under nonlinear
state feedback control. Closed-loop surface roughness profiles obtained from 100 in-
dependent simulation runs using the same simulation parameters are averaged; the
resulting closed-loop expected surface roughness profile is shown in Fig. 5.13 (solid
line), where it is compared with the open-loop expected surface roughness profile
(dotted line). We can see that the controller successfully drives the surface rough-
ness to the desired level, which is lower than that corresponding to the open-loop
operation [ui(t) = 0, i = 1, . . . , 20].

Comparison of Closed-Loop Performance Under Nonlinear and Linear
Control

In this subsection, we demonstrate that the performance of the proposed nonlinear
controller is superior to that of the linear state feedback controller resulting from the
linearization of the nonlinear controller around the zero solution. The nonlinear con-
troller is the same as that presented in Section 5.4.4. The linear state feedback con-
troller design is based on a 20th-order stochastic ODE approximation constructed
using the first 20 eigenmodes of the system in Eq. (5.70) as follows:

u = B−1
s (Λcs − Λs) x̃s, (5.112)
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where the definitions of the matrices Bs, Λcs, and Λs are the same as those in
Eq. (5.79) and x̃s = [α1 · · · α10 β1 · · · β10]T . Twenty control actuators are used to
control the system. The ith actuator distribution function is the same as that shown
in Eq. (5.111). The desired expected value of the surface roughness is 6.53, and the
linear state feedback controller is designed such that λcαi = λcβi = −0.0373, for
i = 1, . . . , 10. The linear controller is also applied to the 200th-order approximation
of the nonlinear stochastic KSE.

Closed-loop simulations are carried out to evaluate the performance of the
closed-loop system achieved under the nonlinear controller and to compare it to that
of the corresponding linear controller. Two cases are studied. In both cases, the de-
sired expected surface roughness is 6.53 and the initial surface roughness is chosen to
be 18 and 45, respectively. In each case, closed-loop simulation runs are carried out
using both the linear state feedback controller [Eq. (5.112)] and the nonlinear state
feedback controller [Eq. (5.79)]. Further, in each case, the closed-loop surface rough-
ness profiles are obtained by averaging 100 independent closed-loop simulation runs
using the same simulation parameters; the resulting expected surface roughness pro-
files are presented in Fig. 5.14. Moreover, in both cases, closed-loop surface rough-
ness profiles under the linear and the nonlinear state feedback controllers obtained
from a single simulation run using the same simulation parameters are presented in
Fig. 5.15.

The number of actuators used by both the linear controller and the nonlinear con-
troller is the same (20 control actuators for all the closed-loop simulations discussed
in this subsection). The parameters for the two controllers are the same except that
the linear controller excludes the nonlinear term of the stochastic KSE. As a result,
when the initial condition is small, both controllers are able to drive the expected
closed-loop surface roughness to the desired level. However, based on the simulation
results presented in Fig. 5.14, it is clear that a large initial condition deteriorates the
closed-loop performance under the linear controller while the nonlinear controller
consistently achieves good closed-loop performance independently of the initial con-
dition. This is because under the nonlinear feedback controller, the dominant modes
of the closed-loop system in Eq. (5.81) (in particular, the first 20 modes) can be ap-
proximated by a stable linear stochastic system [see also Eqs. (5.88) and (5.98) in
the Appendix]. In a stable linear stochastic system, the decay rate of the expected
value of the surface roughness to the set-point value depends on the eigenvalues of
the matrix Λcs (assigned by the nonlinear controller) and is independent of the ini-
tial value of the state (see, for example, [101, 115, 117]). Therefore, the closed-loop
performance (in terms of the rate of convergence of the expected value of surface
roughness to the set point) under the nonlinear controller is practically independent
of the initial condition.

Remark 5.9. Note that a surface roughness profile obtained from one simulation run
is one realization of a stochastic process. Due to the stochastic nature of the process,
surface roughness profiles from different simulation runs using the same simulation
parameters are not identical, but will be around the expected surface roughness. Also,
stochastic fluctuations can be observed in all simulation results. By averaging the
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Fig. 5.14. Comparison of the expected closed-loop surface roughness under the nonlinear
controller (solid line) and that of the linear controller (dotted line) when the initial surface
roughness is 18 (top) and 45 (bottom). The nonlinear controller’s performance is superior to
that of the linear controller.

surface roughness profiles from multiple independent simulation runs, the stochastic
fluctuation can be reduced and the resulting profile will be closer to the expected sur-
face roughness. Conceptually, if we run a very large number of simulations with the
same parameters, and average the roughness profiles obtained from each simulation
run, the desired expected roughness profile can be obtained. In this study, we com-
pute the expected values of surface roughness in both the open-loop and closed-loop
simulations by averaging surface roughness profiles obtained from 100 independent
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Fig. 5.15. Comparison of the closed-loop surface roughness under the nonlinear controller
(solid line) and that of the linear controller (dotted line) from a single simulation run when the
initial surface roughness is 18 (top) and 45 (bottom). The nonlinear controller’s performance
is superior to that of the linear controller.

simulation runs. The resulting surface roughness profiles have few stochastic fluctu-
ations and are very close to the expected values. Furthermore, our control objective
is to control the expected surface roughness to a desired level. In practice, a lower
surface roughness is usually preferred. In our control problem formulation, if the
expected surface roughness is controlled to a lower level compared to that in the
open-loop operation, it is expected that the surface roughness from each run will be
lowered.
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5.4.5 Application to a KMC Model of an Ion-Sputtering Process

In this section, we demonstrate nonlinear control of the sputtering process described
in Section 4.4.5, which includes two surface microprocesses, diffusion and erosion.
The proposed nonlinear feedback controller is applied to the kinetic Monte Carlo
process model of the sputtering process to control the surface roughness to a desired
level. The equation for the height fluctuations of the surface in this sputtering process
was derived in [91] and is a stochastic Kuramoto–Sivashinsky equation of the form

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

λ

2

(
∂h

∂x

)2

+ ξ(x, t), (5.113)

where x ∈ [−π, π] is the spatial coordinate, t is the time, h(x, t) is the height of the
surface at position x and time t, ν and κ are two constants, and ξ(x, t) is a Gaussian
noise with zero mean and covariance:

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′), (5.114)

where σ is a constant, δ(·) is the Dirac function, and 〈·〉 denotes the expected value.
Note that the noise covariance depends on both space x and time t. We note that this
stochastic KSE representation for the surface morphological evolution in sputtering
processes is limited to surface morphologies that do not involve re-entrant features;
the re-entrant features could arise under certain sputtering conditions and are catas-
trophic for the surface.

Open-Loop Dynamics of the Sputtering Process

In this section, we compute the expected surface roughness profile of the sputtering
process by using both the kinetic Monte Carlo model and the stochastic KSE model
of the process. The kMC simulation algorithm described in Section 4.4.5 is used.
Upon the execution of one Monte Carlo event, αn or βn are updated. If the executed
event is erosion, αn or βn can be updated using Eq. (5.115). If the executed event is
diffusion from site i to site j, αn or βn can be updated by using Eq. (5.116):

αnew
n = αold

n +
a [ψ(n, zi − a/2) − ψ(n, zi + a/2)]

n
,

βnew
n = βold

n +
a [φ(n, zi + a/2)− φ(n, zi − a/2)]

n
, (5.115)

αnew
n = αold

n + a ·
{

[ψ(n, zi − a/2)− ψ(n, zi + a/2)]
n

− [ψ(n, zj − a/2)− ψ(n, zj + a/2)]
n

}
, (5.116)

βnew
n = βold

n + a ·
{

[φ(n, zi + a/2) − φ(n, zi − a/2)]
n

− [φ(n, zj + a/2) − φ(n, zj − a/2)]
n

}
,
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Fig. 5.16. Comparison of the open-loop profile of the expected surface roughness from the
kinetic Monte Carlo simulation (solid line) and that from the solution of the stochastic KSE
process model (dotted line).

where a is the lattice parameter and zi is the coordinate of the center of site i.
We also compute the expected surface roughness of the sputtering process based

on its stochastic KSE process model of Eq. (5.113). A 200th-order stochastic or-
dinary differential equation approximation of the system in Eq. (5.113) obtained
via Galerkin’s method is used to simulate the process (the use of higher-order ap-
proximations led to identical numerical results, thereby implying that the following
simulation runs are independent of the discretization). The δ function involved in
the covariances of ξn

α and ξn
β is approximated by 1/Δt, where Δt is the integra-

tion time step. The parameters of the stochastic KSE model are ν = 3.27 × 10−6,
κ = 1.34 × 10−8, λ = 7.52 × 10−6, and σ = 4.65 × 10−3.

In Fig. 5.16, we compare the expected value of the open-loop surface roughness
of the sputtering process from the solution of the stochastic KSE model in Eq. (5.113)
to that from a kinetic Monte Carlo simulation. The two profiles are very close. There-
fore, by using the stochastic KSE model in Eq. (5.113), we can predict the evolution
of the expected surface roughness in this sputtering process. This stochastic KSE
model is used as the basis for feedback controller design.

Feedback Control Design

Our control objective is to control the expected surface roughness in the sputter-
ing process to a desired value. Based on the stochastic KSE model of the sputter-
ing process [Eq. (5.113)], a distributed control problem is formulated by following
Eq. (5.108). We design a state feedback controller based on a 40th-order stochastic
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ODE approximation constructed by using the first 40 eigenmodes of the stochastic
KSE model in Eq. (5.113). Forty control actuators are used to control the system.
The ith actuator distribution function is taken to be

bi(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
π

sin(iz), i = 1, . . . , 20,

1√
π

cos[(i − 20)z], i = 21, . . . , 40.

(5.117)

The desired closed-loop surface roughness is 0.3 in this simulation. We design the
state feedback controller such that λcαi = λcβi = −0.01, for i = 1, . . . , 20.

In the sputtering process described in Section 4.4.5, the probability f in Eq. (4.92)
is dependent on the operating conditions of the sputtering process. Based on the
process description, the value of f affects the ratio of erosion and diffusion events
on the surface. Since an erosion event is a direct consequence of the bombardment
by incoming particles, a higher bombardment rate will result in a higher erosion
rate, which implies a larger f . On the other hand, the surface diffusion rate, rd in
Eq. (4.92), should not depend on the bombardment rate of incoming particles. When
spatially distributed control is implemented, the surface bombardment rate is a spa-
tially distributed variable. Consequently, f is a spatially distributed variable that can
be computed based on the surface bombardment rate.

The controller can be implemented by manipulating the probability that a ran-
domly selected site is subject to the erosion rule, f . From a practical point of view, a
spatially distributed erosion probability can be realized by varying the bombardment
rate across the substrate. Specifically, the bombardment rate of each surface site un-
der feedback control is 1/τ = 1 + (

∑2m
j=1 bj(zi)uj(t))/a. Since the variation of the

bombardment rate does not change the surface diffusion rate, according to the dis-
cussion above, the f of site i should relate to the surface bombardment rate in a way
that (1 − f)/τ is a constant. Since, in open-loop operation, f̄ = 0.5 and 1/τ̄ = 1,
we have (1 − f)/τ = (1 − f̄)/τ̄ = 0.5. Therefore, f under feedback control is
determined according to the following expression:

f(i) =

f̄ +

⎛

⎝
2m∑

j=1

bj(zi)uj(t)

⎞

⎠ /a

1 +

⎛

⎝
2m∑

j=1

bj(zi)uj(t)

⎞

⎠ /a

, (5.118)

where f̄ = 0.5 is the probability that a selected surface site is subject to erosion, and
1/τ̄ = 1 is the bombardment rate of each surface site in an open-loop operation.

Finally, we apply the designed controller to the kinetic Monte Carlo model of
the sputtering process to control the surface roughness to the desired level. In this
simulation, the initial surface roughness is about 0.5 and the microstructure of the
initial surface is shown in Fig. 5.17.
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Fig. 5.17. Surface microconfiguration at the beginning of the closed-loop simulation run.

The following simulation algorithm is used to run the kinetic Monte Carlo simu-
lations for the closed-loop system. First, a random number ζ1 is generated to pick a
site i among all the sites on the 1D lattice; the probability that a surface site is subject
to the erosion rules, f(i), is determined using Eq. (5.118). Then, the second random
number, ζ2, distributed uniformly in the (0, 1) interval is generated. If ζ2 < f(i), site
i is subject to erosion; otherwise, the site is subject to diffusion.

If site i is subject to erosion, Pe is computed using the box rule shown in Fig.
4.12 with the box centering the surface particle on site i and Y (φi) is computed
using Eq. (4.88). Then, another random number, ζe3, distributed uniformly in the
(0, 1) interval is generated. If ζe3 < Pe · Y (φi), the surface particle on site i is
removed. Otherwise, no Monte Carlo event is executed.

If site i is subject to diffusion, a side neighbor, j = i + 1 or i − 1, is randomly
picked with equal probability and the probability of a hopping from site i to site j,
wi→j , is computed based on Eq. (4.90). Then, another random number, ζd3, in the
(0, 1) interval, is generated. If ζe3 < wi→j , the surface particle on site i is moved
to site j. Otherwise, no Monte Carlo event is executed. Once a Monte Carlo event
is executed, the first 40 states (α1, . . . , α20 and β1, . . . , β20) are updated and new
control actions are computed to update the value of f [defined in Eq. (5.118)] for
each surface site.

The closed-loop system simulation result is shown in Fig. 5.18. The expected
surface roughness, which is the average of the surface roughness profiles obtained
from 100 independent runs, under feedback control is plotted as a solid line. We
can see that the controller successfully drives the expected surface roughness to the
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Fig. 5.18. Closed-loop surface roughness profiles in the sputtering process: (a) The expected
closed-loop surface roughness profile obtained from 100 independent simulation runs (solid
line); (b) the closed-loop surface roughness profile from one simulation run (dotted line).

desired value. The dotted line shows the surface roughness profile under feedback
control from one simulation run; due to the stochastic nature of the sputtering pro-
cess, stochastic fluctuations can be observed in the closed-loop surface roughness
profile, but the surface roughness is very close to the expected surface roughness
under nonlinear feedback control. We can see that under nonlinear feedback control,
the surface roughness can be controlled to the desired level.
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Fig. 5.19. Histogram of the final surface roughness of 100 closed-loop and 100 open-loop
simulation runs.
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Fig. 5.20. Surface microconfiguration at the end of the closed-loop simulation run under non-
linear feedback control.

Figure 5.19 shows the final surface roughness histogram after 500 monolayers are
eroded using 100 different closed-loop simulation runs and that using 100 different
open-loop simulation runs. It is clear that the surface roughness from closed-loop
simulation runs is lower than that from open-loop simulations runs. Moreover, the
variance of the final surface roughness from 100 closed-loop simulation runs is
0.067%, while the variance of the final surface roughness from 100 open-loop sim-
ulation runs is 0.53%. The relatively larger variance among the final surface rough-
nesses by open-loop simulations can be attributed to the stochastic nature of the
sputtering process itself. As demonstrated in Fig. 5.19, feedback control can not
only reduce the expected final surface roughness, but can also effectively reduce the
variance of the final surface roughness.

The microstructure of the surface at the end of the closed-loop system simulation
run is shown in Fig. 5.20. It is clear that the proposed nonlinear feedback control
method can reduce the surface roughness to the desired level.

5.5 Conclusions

This chapter developed methods for model-based controller design based on stochas-
tic PDEs to control the thin-film surface roughness. A method for multivariable
model-predictive control using linear stochastic PDEs was first presented. The
method resulted in the design of a computationally efficient multivariable predictive
control algorithm, which was successfully applied to the kMC models of thin-film
deposition processes taking place on both 1D and 2D lattices to regulate the thin-
film thickness and surface roughness at desired levels. Furthermore, it was found
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that the surface roughness can be regulated using the covariance control technique
when spatially distributed sensing and actuation are available. Methods for linear and
nonlinear covariance controller design were also developed and were applied to the
kMC models of a deposition process and of an ion-sputtering process to control the
surface roughness to desired levels.



6

Optimization of Multiscale Process Systems

6.1 Introduction

Optimal operation of processes with respect to certain economic criteria has always
been an industrial priority and a subject of intense research. The problem is gaining
considerable significance due to increased market competition, reduction in profit
margins, and increasingly stringent environmental constraints. This has led to the
incorporation of detailed and sophisticated process models into process optimization
frameworks.

Multiscale systems are characterized by both macroscopic and microscopic phe-
nomena. Macroscopic process models for such systems involve time-dependent par-
tial differential equations (PDEs), whose spatial discretization results in a set of
equality constraints in the form of a set of ordinary differential equations (ODEs).
Optimization, then, may involve further discretization of the ODEs in time to derive
algebraic equalities and yield a large nonlinear program (NLP) [9, 20] or alterna-
tively discretization in time of only the design variables and the direct integration
of the ODEs, keeping track of the inequality constraints, thus formulating a com-
parably smaller NLP (a scheme known as control vector parameterization (CVP)
[153, 41, 21, 19, 131]; semi-infinite programming approaches can also be consid-
ered [122, 69]). Optimization methodologies have also been developed when closed-
form process descriptions are unavailable or black-box simulations form the equality
constraints [113, 84]. Recently, algorithms to efficiently handle noisy objective func-
tions or objective functions that display multiscale behavior have also been devel-
oped. These include funneling algorithms, derivative-free optimization algorithms,
etc. [2, 22, 104]. However, efficient optimization problem formulations for multi-
scale process models defined over disparate length scales are lacking.

Motivated by the above considerations, the present chapter and the next chap-
ter present methods for the optimization of multiscale process systems. Specifically,
the present chapter addresses the issue of efficient solution of optimization problems
when the cost functional and/or equality constraints span multiple length scales and
necessitate multiscale process models. We consider a conceptual thin-film epitaxy

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 6,
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process and optimize the process operation for two simultaneous objectives that span
multiple length scales: (1) to maximize the thickness uniformity of the deposited film
(macroscopic objective) and (2) to minimize the surface roughness of the deposited
film (microscopic objective) across the wafer surface at the end of the process cycle.
A multiscale process model is formulated linking steady-state continuum conserva-
tion laws for reactor-scale phenomena and kinetic Monte Carlo (kMC) simulations
for the microscopic film-surface processes. The computational intensity of the mul-
tiscale process model prohibits its direct incorporation into process optimization. To
address this issue, order-reduction techniques for dissipative PDEs are linked with
the adaptive tabulation scheme for the solution data from the microscopic model
to derive a computationally efficient multiscale model that forms the equality con-
straints of the optimization problem. Initially, we calculate optimal substrate tem-
perature profiles for a steady-state process operation such that the grown thin films
have a high degree of spatial uniformity and, simultaneously, low surface roughness.
Subsequently, we improve the process operation by computing time-varying sub-
strate temperature radial profiles and inlet concentration profiles of the precursors to
meet the optimization objectives. The results of this chapter were first presented in
[150, 151].

6.2 Optimization Problem Formulation

Mathematically, the spatially distributed and multiscale process can be represented
as

0 =A(x) + f(x, d), on Ω1,

d(z, t) =
n∑

i

di(z)(H(t − t̄i) − H(t − t̄i+1)), (6.1)

xm(ti) =Π(xm(ti−1), δt, x|γ), on Ω2,

δt =ti − ti−1, (6.2)

g

(
x,

dx

dη

)
=0, on Γ \ γ, (6.3)

h

(
x̄s, x|γ ,

dx

dη

)
=0, on γ. (6.4)

Equations (6.1) and (6.2) represent the macroscopic and microscopic descriptions
of the process over the respective domains Ω1 and Ω2. It is assumed that Ω1 and
Ω2 do not overlap and share a common interface γ and that Ω = Ω1 ∪ Ω2 spans
the whole process domain. x(z) ∈ IRN denotes the vector of macroscopic state
variables, xm(ti) is the vector of microscopic state variables at time instant ti, z =
[z1, z2, z3]∈Ω1⊂ IR3 is the vector of spatial coordinates, and Γ is the boundary of
the macroscopic domain Ω1. A(x) is a second-order dissipative, possibly nonlinear,
spatial differential operator, f(x, d) is a nonlinear vector function that is assumed to
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be sufficiently smooth with respect to its arguments, d ∈ IRp is the vector of design
variables, (t̄i, t̄i+1] is the time period where the design variable attains a value di,
H(·) is the standard Heaviside function, and n is the number of such time instants
(leading to n − 1 time periods). g(x, dx/dη), defined on the boundary Γ \ γ, is a
nonlinear vector function that is assumed to be sufficiently smooth (the operator \
denotes set subtraction), and η is the spatial direction perpendicular to the boundary
Γ . We assume that the time horizon over which all the dynamics of the eigenmodes
of Eq. (6.1) relax, tsi , is negligible in comparison to δt̄i = t̄i+1 − t̄i, implying that
quasi-steady-state approximation for the process can be assumed.

Function Π can be thought of as a black-box time-stepper (i.e., integrator of
the microscopic model), which interacts via an input–output structure and whose
internal details may be unknown. It uses xm(ti−1) and the macroscopic state at the
interface γ as input, evolves over the time interval δt, and produces state xm(ti). The
vector function h(x̄s, x|γ , dx/dη) represents the boundary conditions at the common
interface between the macroscopic and microscopic domains, γ (thus linking the
macroscopic system with the microscopic system), and x̄s represents the stationary
state of the “coarse” realization (the optimization-oriented metrics of the microscopic
state), x̄, of xm. It is assumed that such a stationary state exists and is independent of
the initial microscopic state, i.e., xm(t = 0). Coarse variables, x, are defined through
the following restriction operator:

x = L(xm). (6.5)

The inverse of restriction, termed “lifting”, is defined by the following nonunique
operator:

xm = l(x̄). (6.6)

These two operations provide the bidirectional communication across the different
length scales. Typically, when the dynamic behavior of the coarse variables is of in-
terest, one starts with a set of initial coarse variables, generates a number of consis-
tent microscopic initial realizations through lifting, evolves the microscopic system
until the desired time horizon, and then restricts the microscopic state to a new set
of coarse states. The above operation is usually referred to as a “lift-evolve-restrict
procedure”. By repeated application of the above scheme, we obtain the dynamic
evolution of coarse variables. For a detailed analysis of the lift-evolve-restrict proce-
dure, the reader may refer to [85, 55]. It should be noted that lifting is a one-to-many
operation because of a large number of degrees of freedom available in the micro-
scopic configurational space. The set of coarse variables, which form the basis of
lifting, must be carefully chosen such that the (unknown) coarse dynamics are ob-
servable. Typically, they are lower-order statistical moments of microscopic states;
however, some applications may require additional coarse variables derived from
spectral moments. It is usually assumed that the higher-order statistical and spectral
moments are slaved by these coarse variables. However, in some cases, a “healing”
period may be required for the higher-order dynamics to relax [105, 85].
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A general optimization problem for the multiscale system in Eqs. (6.1)–(6.4) can
be formulated as

min G(x, x̄s, d, δt̄i) =
n∑

i

∫

Ω

G(x, x̄s, d, δt̄i)dz

s.t.

A(x) + f(x, d) = 0, on Ω1,

g

(
x,

dx

dη

)
= 0 on Γ \ γ, h

(
x̄s, x,

dx

dη

)
= 0, on γ,

p(x, x̄, d) ≤ 0, ∀ z ∈ Ω1,

d(z, t) =
n∑

i

di(z)(H(t − t̄i) − H(t − t̄i+1)),

(6.7)

where G(x, x̄s, d, δt̄i) is the objective functional and measures the process perfor-
mance at both macroscopic and microscopic levels and p(x, x̄, d) is the vector of
inequality constraints and may include bounds on the state and design variables; the
time intervals δt̄i and design variables di are the optimization variables. The mi-
croscopic description in the above optimization problem enters implicitly through
the parameters x̄s, which is the restriction of the microscopic scale properties in the
macroscopic scale. Note that the time-constant process description is a special case
of the above when n = 1.

Remark 6.1. The condition imposed on the domains of definition of the two process
descriptions can be extended to include a finite volume overlap between the two.
This overlapping region is used to “reconcile” the two different simulation results
and dampen the noise originating from the microscopic solver. In this case, the aver-
aged physical quantities over the overlapping domain, which are computed using the
microscopic solver, are required to be consistent with the macroscopic quantities.

6.3 Order Reduction of Dissipative PDEs

We focus on spatially distributed processes modeled by highly dissipative PDE sys-
tems with the following state-space description:

∂x

∂t
= A(x) + f(t, x, d), x(z, 0) = x0(z),

q

(
x,

dx

dη
, . . . ,

dno−1x

dηno−1

)
= 0, on Γ,

(6.8)

where x(z, t) ∈ IRn denotes the vector of state variables, t ∈ [0, tf ] is the time (tf
is the terminal time), z = [z1, z2, z3]∈ Ω ⊂ IR3 is the vector of spatial coordinates,
Ω is the domain of definition of the process, and Γ is its boundary. A(x) is a dis-
sipative, possibly nonlinear, spatial differential operator that includes higher-order
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spatial derivatives, f(t, x, d) is a nonlinear, possibly time-varying, vector function
that is assumed to be sufficiently smooth with respect to its arguments, d(t) ∈ IRp

is the vector of design variables that are assumed to be piecewise-continuous func-
tions of time, q(x, dx/dη, . . . , dno−1x/dηno−1) is a nonlinear vector function that
is assumed to be sufficiently smooth [no, an even number, is the order of the PDE of

Eq. (6.8)],
dx

dη

∣
∣
∣∣
Γ

denotes the derivative in the direction perpendicular to the bound-

ary, and x0(z) is a smooth vector function of z.
The system in Eq. (6.8) arises in the modeling of a wide range of dynamic spa-

tially distributed processes including both transport-reaction processes and several
classes of dissipative fluid dynamic systems [28]. The nonlinear structure of the
spatial differential operator, A(x), allows us to account for the explicit dependence
of diffusivity and thermal conductivity on temperature and concentration in certain
transport-reaction processes, while the nonlinear term f(t, x, d) allows us to model
complex reaction mechanisms.

A general optimization problem for the system in Eq. (6.8) can be formulated as
follows:

min
∫ tf

0

∫

Ω

G(x(z, t), d(t))dzdt

s.t.

−∂x

∂t
+ A(x) + f(t, x, d) = 0,

x(z, 0) = x0(z), q

(
x,

dx

dη
, . . . ,

dno−1x

dηno−1

)
= 0 on Γ,

g(x, d) ≤ 0, ∀ z ∈ Ω, t ∈ [0, tf ],

(6.9)

where
∫ tf

0

∫

Ω

G(x, d)dzdt is the objective functional and g(x, d) is the vector of

inequality constraints and may include bounds on the state and design variables.
Both G(x, d) and g(x, d) are assumed to be sufficiently smooth functions of their
arguments.

It is desired to obtain a finite-dimensional approximation of the infinite-dimen-
sional program developed above through spatial discretization of the imposed PDE
constraints. The reader may refer to [122, 69] for alternative methods for semi-
infinite programming. To formulate lower-dimensional NLPs, we employ the method
of weighted residuals with empirical eigenfunctions as basis functions [9, 17, 18]
instead of standard finite-difference-or finite elements-based spatial discretization.
The rationale behind this approach is that solutions of highly dissipative PDEs are
dominated by a finite (typically small) number of degrees of freedom [145]. For the
case of parabolic PDEs with linear differential operators, these can be identified as
finite-dimensional slow eigenmodes [28] and can usually be calculated analytically;
however, for nonlinear differential operators with spatially varying coefficients, such
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an analytical solution is, in general, not feasible. Karhunen–Loève expansion (KLE),
coupled with the method of snapshots, is an attractive alternative in such situations.
In the following, we briefly review the method of weighted residuals, which is fol-
lowed by a brief description of the KLE.

6.3.1 Method of Weighted Residuals

We derive finite-dimensional approximations of the infinite-dimensional nonlinear
program in Eq. (6.9) by using the method of weighted residuals. To simplify the
notation, we consider the optimization program in Eq. (6.9) with n = 1. In principle,
x(z, t) can be represented as an infinite series in terms of a complete set of basis
functions φk(z). We can obtain an approximation xN (z, t) by truncating the series
expansion of x(z, t) up to order N , as follows:

xN (z, t) =
N∑

k=1

akN (t)φk(z) N→∞−→ x(z, t) =
∞∑

k=1

ak(t)φk(z), (6.10)

where akN (t), ak(t) are time-varying coefficients.
Substituting the expansion in Eq. (6.10) into Eq. (6.9), multiplying the PDE and

the inequality constraints with the weighting functions, ψν(z), and integrating over
the entire spatial domain, the following finite-dimensional dynamic nonlinear pro-
gram with ODE equality constraints is obtained, where the optimization parameters
are the design variables d(t) and the time-varying coefficients akN (t):

min
∫ tf

0

∫

Ω

G

(
N∑

k=1

akN (t)φk(z), d

)

dzdt

s.t.

−
N∑

k=1

ȧkN

(∫

Ω

ψν(z)φk(z)dz

)

+
∫

Ω

ψν(z)A
(

N∑

k=1

akN (t)φk(z)

)

dz

+
∫

Ω

ψν(z)f

(

t,

N∑

k=1

akN (t)φk(z), d

)

dz = 0

∫

Ω

ψν(z)g

(
N∑

k=1

akNφk(z), d

)

dz ≤ 0,

(6.11)

where akN (t) is the approximation of ak(t) obtained by an N th-order truncation.
From Eq. (6.11), it is clear that the form of the algebraic equalities and inequali-
ties depends on the choice of the weighting functions, as well as on N . Due to the
smoothness of the functions G(x, d), A(x), f(t, x, d), g(x, d) and the completeness
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of the set of basis functions, φk(z), the nonlinear program in Eq. (6.11) is a well-
defined approximation of the infinite-dimensional program in Eq. (6.9) in the sense
that the optimal solution of the program in Eq. (6.11) converges to the optimal solu-
tion of the program in Eq. (6.9) as N → ∞.

6.3.2 Karhunen–Loève Expansion

In this section, we use the solution data of the system in Eq. (6.8) to construct global
basis functions using Karhunen–Loève expansion. The motivation for studying this
approach is provided by the occurrence of dominant spatial patterns in the solution
of several dissipative PDEs, which should be accounted for in the shape of the basis
functions. This approach will be useful in the context of systems of dissipative PDEs
that involve nonlinear spatial differential operators and spatially varying coefficients
that lead to nonsymmetric solution profiles. KLE is a procedure used to compute
an optimal set of empirical eigenfunctions from an appropriately constructed set of
solutions of the PDE system in Eq. (6.8), obtained from high-order discretizations
(e.g., using standard numerical integration software or process data directly). In this
work, the ensemble of solutions is constructed by computing the solutions of the
PDE system in Eq. (6.8) for different values of d(t) and different initial conditions.
Specifically, we construct a representative ensemble using the following procedure
(see also [65, 18] for a detailed discussion on ensemble construction):

• First, we create a set of different initial conditions.
• We then discretize the interval in which each design variable dm (m = 1, . . . , p)

is constrained to be into mdm (not necessarily equispaced) subintervals. The dis-
crete values of dm are denoted by dm,j , j = 1, . . . , mdm − 1.

• We also descritize the time interval into ndm time subintervals (also not neces-
sarily equispaced).

• Subsequently, we compute a set of time profiles for each of the design variables
dm(t) by assigning values for dm(t) at different time instants tj , dm,j , and sub-
sequently computing dm(t) for the entire time interval of process operation using
linear interpolation.

• Finally, we compute an ensemble of PDE solution data for all possible combina-
tions of initial conditions and profiles of d(t).

Application of KLE to this ensemble of data provides an orthogonal set of basis
functions (known as empirical eigenfunctions) for the representation of the ensem-
ble, as well as a measure of the relative contribution of each basis function to the total
energy (mean-square fluctuation) of the ensemble. A truncated series representation
of the ensemble data in terms of the dominant basis functions has a smaller mean-
square error than a representation by any other basis of the same dimension [71].
This implies that the projection on the subspace spanned by the empirical eigen-
functions will, on average, contain the most energy possible compared to all other
linear decompositions, for a given number of modes. Therefore, the KLE yields the
most efficient way for computing the basis functions (corresponding to the largest
empirical eigenvalues) capturing the dominant patterns of the ensemble.
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For simplicity of the presentation, we describe the KLE in the context of the
system in Eq. (6.8) with n = 1 and assume that there is available a sufficiently
large set of solutions of this system for different values of d, {v̄κ}, consisting of
K sampled states, v̄κ(z) (which are typically called “snapshots”). The reader may
refer to [48, 71, 138, 139] for a detailed presentation and analysis of the KLE. We

define the ensemble average of snapshots as < v̄κ >:= 1
K

K∑

κ=1
v̄κ(z) (we note that

nonuniform sampling of the snapshots and weighted ensemble average can also be
considered; see, for example, [65]). Furthermore, the ensemble average of snapshots
< v̄κ > is subtracted from the snapshots, i.e.,

vκ = v̄κ− < v̄κ >, (6.12)

so that only fluctuations are analyzed. It is useful to analyze fluctuations in devia-
tion variables rather than the actual variables because usually fewer functions are
required to fit them [138]. The issue is how to obtain the most typical or character-
istic structure (in a sense that will become clear below) φ(z) among these snapshots
{vκ}. Mathematically, this problem can be posed as that of obtaining a function φ(z)
that maximizes the following objective function:

Maximize
< (φ, vκ)2 >

(φ, φ)

s.t. (φ, φ) = 1, φ ∈ L2([Ω]),
(6.13)

which, in other words, implies that the projection of v̄k on the subspace spanned
by φ(z) captures maximum energy. Here, (x, y) denotes a complex inner product
defined as

(x, y) =
∫

Ω

x̄(z)y(z)dz. (6.14)

The constraint (φ, φ) = 1 is imposed to ensure that the function φ(z), computed
as a solution of the above maximization problem, is unique. An alternative way to
express the constrained optimization problem in Eq. (6.13) is to solve for φ such that

dL̄(φ + δψ)
dδ

(δ = 0) = 0, (φ, φ) = 1, (6.15)

where L̄ =< (φ, vκ)2 > −λ((φ, φ)− 1) is the corresponding Lagrangian functional
and δ is a real number.

Using the definitions of inner product and ensemble average, dL̄(φ + δψ)/
dδ(δ = 0) can be computed from the following expression:

dL̄(φ + δψ)
dδ

(δ = 0) =
∫

Ω

({∫

Ω

< vκ(z)vκ(z̄) > φ(z)dz

}
− λφ(z̄)

)
ψ(z̄)dz̄.

(6.16)
Since ψ(z̄) is an arbitrary function, the necessary conditions for optimality take the
form
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∫

Ω

< vκ(z)vκ(z̄) > φ(z)dz = λφ(z̄), (φ, φ) = 1. (6.17)

If we introduce the two-point correlation function:

K(z, z̄) =< vκ(z)vκ(z̄) >=
1
K

K∑

κ=1

vκ(z)vκ(z̄) (6.18)

and the linear operator:

R :=
∫

Ω

K(z, z̄)dz̄, (6.19)

the optimality condition in Eq. (6.17) reduces to the following eigenvalue-eigen-
function problem of the integral operator:

Rφ = λφ =⇒
∫

Ω

K(z, z̄)φ(z̄)dz̄ = λφ(z). (6.20)

The computation of the solution to the above integral eigenvalue problem is, in gen-
eral, a very expensive computational task. To circumvent this problem, Sirovich, in
1987, introduced the method of snapshots [138, 139]. The central idea of this tech-
nique is to assume that the requisite eigenfunction, φ(z), can be expressed as a linear
combination of the snapshots, i.e.,

φ(z) =
∑

k

ckvk(z). (6.21)

Substituting the above expression for φ(z) in Eq. (6.20), we obtain the following
eigenvalue problem:

∫

Ω

1
K

K∑

κ=1

vκ(z)vκ(z̄)
K∑

k=1

ckvk(z̄)dz̄ = λ

K∑

k=1

ckvk(z). (6.22)

Defining

Bκk :=
1
K

∫

Ω

vκ(z̄)vk(z̄)dz̄, (6.23)

the eigenvalue problem in Eq. (6.22) can be equivalently written as:

Bc = λc. (6.24)

The solution to the above eigenvalue problem (which can be obtained by utilizing
standard methods from linear algebra) yields the eigenvectors c = [c1 · · · cK ], which
can be used in Eq. (6.21) to construct the eigenfunction φ(z). From the structure
of the matrix B, it follows that it is symmetric and positive semidefinite; thus, its
eigenvalues, λκ, κ = 1, . . . , K , are real and nonnegative. The relative magnitude of
the eigenvalues represents a measure of the fraction of the “energy” embedded in the
ensemble captured by the corresponding eigenfunctions. Furthermore, the resulting
eigenfunctions form an orthogonal set, i.e.,

∫

Ω

φi(z)φj(z)dz = 0, i �= j. (6.25)
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Remark 6.2. The value of mdm should be determined based on the effect of the de-
sign variable dm on the solution of the system in Eq. (6.8) (if, for example, the effect
of the variable d1 is larger than the effect of the variable d2, then md1 should be
larger than md2).

Remark 6.3. It should be noted that the kernel in Eq. (6.17) is not symmetric for
cylindrical or spherical geometries [15]. However, the reformulated problem given
by Eq. (6.24) is symmetric irrespective of spatial geometry.

Remark 6.4. The basis that we compute using KLE is specific to the process under
investigation and independent of the specific optimization problem we try to solve.
Therefore, the same basis can be used to perform computationally efficient opti-
mizations with respect to different objective functionals associated with the same
underlying set of partial differential equations.

Remark 6.5. Even though it is expected that the use of more basis functions in the
series expansion in Eq. (6.10) would improve the accuracy of the computed approxi-
mate model in Eq. (6.11), the use of empirical eigenfunctions corresponding to very
small eigenvalues should be avoided because such eigenfunctions are contaminated
with significant round-off errors.

Remark 6.6. Iterative methods, such as Krylov subspace methods, can be used to
reduce the computational cost associated with the computation of the system eigen-
values and eigenfunctions.

Remark 6.7. In addition to the use of empirical eigenfunctions as basis functions,
the concept of approximated inertial manifolds can be used to take advantage of the
time-scale separation of the spectrum of the highly dissipative spatial differential
operator to construct reduced-order models and nonlinear programs [32, 9].

6.4 Optimization of Microscopic Model Using Tabulation

6.4.1 Problem Formulation

We investigate the problem of dynamic optimization for a class of systems described
by the following discrete-time description [53]:

X(ti+1) = Π(X(ti), δti, ω; θi),
for δti = ti+1 − ti,

(6.26)

where X(ti+1) and X(ti) ∈ Ω1 ⊂ IRn are the vector of states of the system at time
instants ti+1 and ti, respectively, ti+1, ti ∈ [0 T ], θi ∈ Ω1 ⊂ IRp is the control
input vector, which is constant for t ∈ (ti, ti+1], and ω is a random walk defined
over some measurable space. Most dynamic systems, continuous or discrete, can be
expressed in the form given by Eq. (6.26) when only an input–output relationship
is required. For example, spatially distributed parabolic partial differential equations
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(PDEs), which arise frequently in the modeling transport-reaction processes, assume
the above form, where the right-hand side (RHS) is obtained from the appropriate
spatial and temporal discretization of the PDE. For systems that are modeled using
atomistic simulations, such as kMC, the RHS represents the corresponding evolution
rule. The function Π(·) in this case is fundamentally different from the one obtained
by discretizing PDEs, as it is unavailable in closed form. Microscopic systems, for
which the function Π(·) is a “black box,” are the focus of this section. We assume the
following smoothness assumption with respect to parameters for the process X(ti):

Assumption 6.1. The stochastic process X(ti, θ,x) with X(0, θ,x) = x defined
over the probability space [Ω, Σ, Pθ] is twice continuously differentiable with re-
spect to θ ∈ Θ and x ∈ IRn for all ω ∈ Ω with probability 1.

We are interested in computing an optimal time-varying profile of the control
input, θ∗(t), such that a prespecified objective for the expected process dynamics is
realized. Such a profile can be obtained from the solution of the following dynamic
optimization problem:

min
θ(t)

∫ tf

0

Q(E(X), θ)dt + W(|E(X(tf )) − X̄(tf )|)

s.t.
X(ti+1) = Π(X(ti), δti, ω; θi), δti = ti+1 − ti, gd(X, θ) ≤ 0,

(6.27)

where Q is a scalar cost function, W is an appropriate final-time penalty function,
and gd denotes the set of inequality constraints on state and manipulated variables.
Discretizing the time interval [0, tf ] into N subintervals and assuming θ(t) to be
piecewise constant during each subinterval, we can obtain a finite-dimensional ap-
proximation to the above dynamic optimization problem. However, the equality con-
straints cannot be handled explicitly during optimization due to their unavailability
in closed form. The standard approach for the solution of the above optimization
problem is to compute the objective functional as a black box during optimization
and employ derivative-free optimization algorithms such as Nelder–Mead, Hooke–
Jeeves, pattern search [88], etc. to compute θ∗(t). However, if the computation of the
objective functional is expensive, which requires the integration of the microscopic
simulator for the period [0, tf ], the solution time required may become prohibitive.
To address this issue, we extend the applicability of in situ adaptive tabulation (ISAT)
to accomplish efficient simulation of the stochastic time-stepper, resulting in efficient
solution of the optimization problem.

6.4.2 In situ Adaptive Tabulation

The in situ adaptive tabulation scheme was originally developed for deterministic
systems in the context of efficient implementation of combustion chemistry [123].
This section provides a brief overview of the original algorithm (for details, refer to
[123, 150]). Consider a dynamically evolving process with the following state-space
description:
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ẋ = f(x,u) = f(φ), (6.28)

where x ∈ Ω1 ⊂ IRn is the vector of state variables and u ∈ Ω2 ⊂ IRp is the
vector of control variables. The vector φ is defined as φ = [x u]T , φ ∈ Ω =
Ω1 × Ω2. We define R(φ0) to be a nonlinear integral operator representing the
evolution of the system from initial state φ0 at time t0 to state φ(t0 + τ) = R(φ0)
at time t0 + τ (the time step τ will henceforth be referred to as the ISAT-reporting
horizon). To reduce computational costs, it is desired to approximate R(φq) due to
a “nearby” (in a sense that will become clear later) state φq , based on the knowledge
of {φ0, R}. One way to address this issue is to tabulate a large number of doublets
{φ, R(φ)} regularly spanning the whole realizable region Ω into a database [an
(n + p)-dimensional mesh], and subsequently interpolate within this database to
estimate R(φq). The interpolation error that is incurred can be controlled through
refining the mesh. However, the generation of the database, which is usually done
in a preprocessing phase, can become cumbersome if the dimensionality of the state
space (i.e., Ω) is large.

We, define the accessed region, Ωa (Ωa ⊂ Ω), as the set of all states φ that
occur in the calculations. A crucial observation is that the accessed region is much
smaller than the realizable region. Exploiting this fact, ISAT constructs the database
online and hence tabulates only the accessed region, Ωa. Moreover, to control the
interpolation errors, the mapping gradient matrix is also computed (and tabulated),
which is defined as

Aij(φ) ≡ ∂Ri(φ)
∂φj

. (6.29)

Consider a tabulated triplet {φp, R(φp),A(φp)}. A linear interpolation for R(φq)
can be obtained as

R(φq) ≈ Rl(φq) ≡ R(φ0) + δRl

δRl ≡ A(φp)δφ + O(| δφ |2), δφ = φq − φp (6.30)

The error induced due to the interpolation can be analyzed as follows. Assume
that φp and φq are such that | R(φq) − R(φp) |≤ εtol. It follows from above that

δφT AT (φp)A(φp)δφ ≤ ε2tol. (6.31)

Equation (6.31) defines a hyper-ellipsoid (referred to as the ellipsoid of attraction,
EOA) centered at φp with principle axes given by elements of the diagonal matrix

Σ such that QT ΣQ is the singular-value decomposition of A. Now given any query
φq , if there exists a tabulated φp such that Eq. (6.31) is valid, the error due to in-
terpolation will be less than εtol. If such a φp is not found in the database, direct
integration of Eq. (6.28) is performed and stored in the database.

The matrix A(φ) can be related to sensitivity coefficients. The first-order sensi-
tivity coefficients with respect to the initial conditions are defined as

Bij(φ0, t) ≡
∂φi(t)
∂φj

0

. (6.32)
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From the above, it can be seen that

A(φ0) = B(φ0, τ). (6.33)

ISAT is implemented in practice using a binary tree. Ideally, once a query point,
φq , is generated, one would like to determine φ0 that is closest to φq for interpolation
purposes. However, a complete database search for φ0 could be expensive, especially
if the database is large. To circumvent this problem, the database is organized as a
binary tree comprised of leafs and nodes. Each node contains the information regard-
ing a convex region that is likely to be spanned by the corresponding leafs, which,
in turn, contain the record comprised of φ0, R(φ0), A(φ0), Q, and σ. The convex
region contained within each node is characterized by a vector v and scalar a such
that leafs pertaining to subregion vT φ < a are on the left and leafs corresponding
to subregion vT φ > a are on the right. The division into a number of convex re-
gions allows efficient search of the point within the database that is most likely to be
nearest the query point.

When the database is probed with a query (φq), three distinct possibilities may
arise:

1. φq lies within the EOA of φ0. In this case, presented in Fig. 6.1(a), the corre-
sponding integral map based on interpolation around φ0 [Eq. (6.30)] is returned.

2. φq lies outside the EOA of φ0; R(φq) is computed through simulation, and

post-simulation it is observed that |R(φq) − Rl(φq)| < εtol. In this case, pre-
sented in Fig. 6.1(b), the EOA around φ0 is grown to include φq; the calculated
R(φq) is returned.

3. φq lies outside the EOA of φ0; R(φq) is computed through simulation, and

post-simulation it is observed that |R(φq) − Rl(φq)| > εtol. In this case, pre-
sented in Fig. 6.1(c), the database is augmented by a record for φq and the orig-
inal leaf, φ0, is replaced by a node. The records for φ0 and φq are stored as left
and right leafs, respectively, of the new node; the calculated R(φq) is returned.

In contrast to deterministic black-box systems, the problem of derivative estima-
tion for stochastic black-box systems is complex due to the issues of bias and vari-
ance. For example, finite-difference approximations cannot be directly employed in
Eq. (6.32) to obtain first-order sensitivity matrix. An extensive amount of literature is
available addressing this issue; important techniques include finite difference/finite
difference with common random numbers (FD/FDC) [93, 160, 62, 37], infinitesimal
perturbation analysis (IPA) [92, 68, 70, 160, 142], and likelihood ratio estimation
(LR) [128, 63, 64, 92]. In our implementation of stochastic ISAT, FDC was em-
ployed for derivative estimation. In the following subsection we discuss sufficient
conditions for unbiasedness and finite variance in derivative estimation using FDC.

6.4.3 FDC Derivative Estimation and EOA

Consider a stochastic process X(t, θ), X ∈ IRn θ ∈ Θ ⊂ IRm, defined over a
probability space (Ω, Σ, Pθ), and let X(t, θ, ω) | t ≥ 0, ω ∈ Ω, denote a sample
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Fig. 6.1. Various possibilities that may arise once the ISAT database is probed with a query. (a)
φq lies within the EOA of φ0. (b) φq lies outside the EOA of φ0, but |R(φq)−Rl(φq)| < εtol.
(c) φq lies outside the EOA of φ0, and |R(φq) −Rl(φq)| > εtol.

path. For ease of notation, we assume n = m = 1 for the rest of the discussion. Let
X ′(t, θ0) be the derivative ∂X(t, θ)θ=θ0/∂θ for some θ0 ∈ Θ, assuming it exists.
The FD and FDC estimates of the derivative X ′(t, θ0) are defined as follows:

X̄ ′,FD(t, θ0) =
1
N

N∑

i=1

X ′,FD
i (t, θ0),

X ′,FD
i (t, θ0) =

Xi(t, θ0 + δθ, ω′) − Xi(t, θ0, ω)
δθ

,

(6.34)

X̄ ′,FDC(t, θ0) =
1
N

N∑

i=1

X ′,FDC
i (t, θ0),

X ′,FDC
i (t, θ0) =

Xi(t, θ0 + δθ, ω) − Xi(t, θ0, ω)
δθ

.

(6.35)

An immediate issue arising due to the above definitions is the appropriate choice
of N and δθ that would guarantee satisfactory unbiasedness and accuracy of the
derivative estimates. To make these concepts more precise, we define the following
loss function [93]:
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Definition 6.1. The loss function associated with a derivative estimator X̄ ′(t, θ0)
based on N samples is defined as

RN = E[X̄ ′(t, θ0) − X ′(t, θ0)]2 = VAR(X̄ ′(t, θ0)) + B2
N ,

BN = E[X̄ ′(t, θ0)] − X ′(t, θ0),
(6.36)

where the first term denotes the variance of the derivative estimators and the second
term denotes the bias. Also, the convergence rate is said to be O(f(N)) if RN ∈
O(f(N)).

For the variance of the FD and FDC estimators, we state the following result
from [62]:

Theorem 6.1. Suppose that X(t, θ, ω) is described by Eq. (6.26) and Assumption
6.1 holds. Then, for θ0 ∈ Θ, VAR[X(t, θ0 + δθ, ω′) − X(t, θ0 + δθ, ω)] is

(i) O(1) if ω and ω′ are independent.
(ii) O(δθ2) if ω = ω′.

Theorem 6.1 states that variance of FD derivative estimators tends to infinity as
δθ → 0. However, using FDC, the variance can be made vanishingly small. Next, we
state the following theorem from [93] to establish the convergence of FDC estimates:

Theorem 6.2. Suppose that Assumption 6.1 holds and Ψ(ω) defined as

Ψ(ω) =
{

supθ∈Θ | X̄ ′(θ, ω) | if ω ∈ Ω,
0 otherwise,

is such that Ψ(ω) ≤ Γ (ω) for some function Γ : Ω → IR. If Γ (ω) satisfies∫

Ω

[Γ (ω)]2dP (ω) < ∞, then

RFDC
N = σ2

FDC/N + [X ′′(ξ+)δθ/4]2, (6.37)

where θ0 ≤ ξ+ ≤ θ0 +δθ. As a consequence, the convergence rate of FDC estimates
is O(N−1/2) provided that δθ ∈ O(N−1/2). In the limit δθ → 0, the bias also
vanishes.

A combination of Theorems 6.1 and 6.2 forms the theoretical rationale behind the
computation of derivatives based on finite differences with common random num-
bers. From the simulation point of view, FDC can be implemented by resetting the
random seed of the random number generator while evaluating X(t, θ0 + δθ, ω) and
X(t, θ0, ω).

We now formally define the EOA for systems governed by equations of the form
of Eq. (6.26):

Definition 6.2. Let X(t, α,x), X(·) ∈ IRn be a stochastic process governed by
Eq. (6.26) such that X(0, α,x) = x and let G : IRn × IRp → IRn×(n+p) be the
first-order sensitivity matrix defined as
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G =
[
∂X
∂x

∂X
∂α

]
. (6.38)

Then the state z′ = [x′ α′]T , z ∈ IRn+p, lies within the ellipsoid of attraction of
z = [x α]T if

(z′ − z)TGTG(z′ − z) ≤ ε2tol. (6.39)

In the next section, we present two applications of the above scheme when the un-
derlying dynamical system is modeled by a time-stepper-based description (i.e., mi-
croscopic simulator).

6.5 Multiscale Optimization Problem Solution

Finite-dimensional approximations to the infinite-dimensional program in Eq. (6.7)
can be obtained through spatial discretization of the PDE equality constraints and of
the objective functional to generate a nonlinear program (NLP). Brute-force spatial
discretization employing finite differences or finite elements typically results in a
large set of algebraic equations, and subsequent storage and computational require-
ments of the formulated NLP may become prohibitive, requiring the use of specially
designed algorithms for large-scale optimization problems. The presence of black-
box time-steppers, through the coarse stationary states (x̄s), into the multiscale model
further increases the computational demands. To address this issue, nonlinear order
reduction for PDEs using Karhuenen–Loéve expansion (KLE) (Section 6.3) is cou-
pled with in situ adaptive tabulation of x̄s (Section 6.4) to formulate a reduced-order
multiscale model that can be employed to efficiently solve multiscale optimization
problems.

6.5.1 Solution Algorithm

A solution algorithm that is applicable to a broad class of multiscale processes mod-
eled by Eqs. (6.1)–(6.4) is outlined below.

1. Formulate a reduced-order macroscopic model employing KLE as described in
Section 6.3.

2. Select an arbitrary (but physically consistent) initial condition xm(t = 0) and
x|γ , and evolve the black-box time-stepper until x reaches a constant value, de-
noted as x̄s (the microscopic system rests at stationary state).

3. Solve Eq. (6.1) subject to boundary conditions given by Eqs. (6.3) and (6.4),
either analytically or numerically, to obtain new x|γ denoted as x′

i.
4. Use ISAT to evaluate x̄s based on sampled data. If the error is predicted to be

high, simulate the microscopic system until it reaches a new stationary state.
5. Repeat steps 3 and 4 to obtain x′

i+1, until the error between x′
i and x′

i+1 is within
an acceptable tolerance.

A flowchart of the above algorithm is presented in Fig. 6.2 for more clarity. The
proposed iterative method is used to obtain the solution to the multiscale process
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xγ
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Create a number of realizations
consistent with xi through lifting.

Use ISAT to obtain coarse stationary state xs. If the
interpolation cannot be done based on the existing database,

evolve the time-stepper until it reaches stationary state.
Augment the database according to ISAT algorithm.

Solve the macroscopic system of Eq. (6.1)
with boundary conditions given by

Eq. (6.4) to obtain modified xγ.
Set xi+1=xγ.

||xi+1–xγ ||<εtol. i=i+1.
No

Yes

End

Fig. 6.2. Flowchart of the multiscale solution algorithm.

model in Eqs. (6.1)–(6.4) in the optimization problem in Eq. (6.7) to formulate an
approximate optimization problem that can be solved using the standard search al-
gorithms such as successive quadratic programming (SQP), BFGS, Luus–Jaakola,
Hooke–Jeeves, derivative-free optimization, etc. [83, 22] to obtain the optimal solu-
tion. The proposed formulation leads to computational savings, while the accuracy
of the solution remains close to the solution of the original optimization problem.

6.6 Application to Thin-Film Growth

6.6.1 Process Modeling and Simulation

The proposed optimization methodology is applied to a conceptual thin-film growth
process inspired by GaN deposition, where the objective is to compute optimal time-
invariant and time-varying process operating conditions that simultaneously mini-
mize spatial thickness nonuniformity and surface roughness of the deposited film at
the end of the process cycle.
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Fig. 6.3. Schematic of the reactor with a split-inlet showerhead configuration.

Figure 6.3 depicts the schematic of the reactor with a split-inlet showerhead con-
figuration. The bulk of the reactor is modeled using two-dimensional axisymmet-
ric PDEs in cylindrical coordinates derived from continuum conservation principles.
The surface of the growing film is modeled using kMC simulations to compute the
roughness of the growing film. Figure 6.3 shows the domains of description of the
macroscopic and microscopic process models. It should be noted that the micro-
scopic domain is infinitesimally thin. Substrate temperature profiles are manipulated
using three circular heaters, with heat conduction being the prevailing heat transfer
mechanism in between areas. Table 6.1 tabulates the reactor geometry and process
conditions.

Table 6.1. Process conditions and reactor geometry.

Reactor radius 2 in.
Substrate radius- (Rs) 1.5 in.
Number of inlets 3
Inner inlet outer radius 0.5 in.
Middle inlet outer radius 1 in.
Outer inlet outer radius 1.5 in.
Substrate to inlet distance- (z0) 3 in.
Reactor pressure 0.1 atm
Inlet & reactor wall temperature 300 K
Inlet temperature 300 K
Inlet velocity 80 cm/s
Substrate temperature- (Ts) 900–1300 K
Inlet mass fraction of species A (XA) 0.4×10−2

Inlet mass fraction of species B (XB) 0.6
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Table 6.2. Process reaction scheme.

Reaction k0 E

(G1) A → A′ + C 1 × 1014 39.9
(S1)A′ → a(s) + D —∗ 0
(S2) B → b(s) — —

∗ Rate calculated from kinetic theory of gases.

Gaseous species A and B represent the precursors of a and b (components of
compound semiconductor ab), respectively, and are assumed to undergo the follow-
ing gas-phase reactions in the bulk of the reactor and gas-surface reactions on the
wafer surface, shown in Table 6.2.

Reaction G1 represents the thermal decomposition of precursor A into A′, which
adsorbs on the substrate (reaction S1). The rate parameter for adsorption of A′ (reac-
tion S1) is assumed to follow that of an ideal gas, i.e., ka = s0

√
RT/2πM , where

s0 is the sticking coefficient. The adsorption rate of B (reaction S2) is assumed to be
equal to S1 so that the stoichiometry of the film is preserved. In addition to adsorp-
tion, diffusion and desorption of adsorbed species are other significant processes that
affect the structure of the surface. The desorption rate of the surface species into the
gas phase and the rate of surface diffusion are calculated as

kn
d = kd0e

−Ed0+nΔE

kB T , kn
m = kBT

h e
−E+nΔE

kB T , (6.40)

where h is Planck’s constant, E and Ed0 are the energy barriers for surface diffusion
and desorption, respectively, ΔE is the interaction energy between two neighboring
adsorbed species, and n ∈ {0, 1, 2, 3, 4} is the number of nearest neighbors. The
values of E, Ed0, ΔE, and kd0 are taken as 2.5 eV, 2.5 eV, 0.5 eV, and 1 × 1013,
respectively.

The macroscopic description of the process under consideration is given by the
following conservation equations:

� · (ρu) = 0, � · (ρu u) −� · T − ρg = 0,

� · (ρuT )] = −� ·q −
∑

k

hkWkω̇,

� · (ρuYk) = −� ·jk + Wkω̇k; k ∈ {1, 2, 3, 4},

jk = −Dkρ � Yk − DT,k
�T

T
,

(6.41)

where ρ is the gas-phase density, u is the fluid velocity vector, T is the stress ten-
sor, Cp is the specific heat capacity, T is the temperature, q is the heat flux due to
conduction, and hk, Wk , and Yk are the partial specific enthalpy, molecular weight,
and mass fractions of gas species. ω̇k and jk are the net production rate due to ho-
mogeneous reactions and the mass flux, respectively, of species k. Dk and DT,k in
the flux equation correspond to mass diffusion and thermal diffusion coefficients,
respectively.



188 6 Optimization of Multiscale Process Systems

The flux boundary condition at the deposition surface is given by [155]

j = Rad = kaCA′ |s− < kd > f(Ca.s, Ts, wA′A′), (6.42)

where Rad is the net rate of adsorption, Ts is the surface temperature, and < kd >,
CA′ |s, and Ca.s are the effective desorption rate, concentration of A′ over the sub-
strate, and average surface concentration of adsorbed a(s), respectively. Function f
describes the influence of lateral interactions on the desorption rate, which cannot be
ascertained without knowledge of the surface structure. We employ kMC to account
for the surface structure and estimate the right-hand side of Eq. ( 6.42), which links
the two levels of descriptions.

kMC approximates the solution of the stochastic master equation (see Chapter 2)
through Monte Carlo sampling;

∂P (σ, t)
∂t

=
∑

σ′

W (σ′, σ)P (σ′, t) − W (σ, σ′)P (σ, t),

where σ and σ′ are system configurations, P (σ, t) is the probability that the system is
in state σ at time t, and W (σ, σ′) is the probability per unit time of transition from σ
to σ′. It is assumed that at any instant, only a single event (out of all possible events)
occurs, according to its relative probability. After each event, time is incremented by
δt, given as

δt = − ln r
∑

i Ψi
= − ln r

kaNT +
∑4

n=0 km,nNn

, (6.43)

where r is a random number between 0 and 1 and Ψi is the propensity function
of event i. The summation in the denominator is carried over all possible events,
and transition probabilities are adjusted after each event. NT is the total number of
surface sites and Nn is the number of sites with n nearest neighbors. The surface
roughness is computed from:

R =
1

2NT

∑

i,j

(|hi+1,j − hi,j | + |hi,j−1 − hi,j |

+ |hi−1,1 − hi,j | + |hi,j+1 − hi,j |),
(6.44)

where hi,j is the number of atoms adsorbed at the (i, j)th surface site.
The temperature of the substrate can be manipulated using the three circular

heaters placed below it. Two distinct forms of actuation were investigated. Initially,
it was assumed that the effect of heaters on the substrate temperature is localized to
rings of negligible thickness in space, and heat conduction is the prevailing mecha-
nism of heat transfer in areas between the heaters. The following equation represents
the resulting substrate temperature profile (denoted as thin-ring actuation):

Ts(u, r) =
(

u1 +
u2 − u1

0.5R0
r

)
B1(r, 0, R0/2)

+
(

u2 +
u3 − u2

0.5R0

)
(r − 0.5R0)B1(r, R0/2, R0) (6.45)

+ u3B1(r, R0, Rw),
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where B1(·) denotes the standard Boxcar function [defined in terms of Heaviside
functions, H(·), as Ba(x, b, c) = a[H(x − b) − H(x − c)]]. Subsequently, the as-
sumption of actuation being localized to rings of negligible thickness was relaxed to
enforcing specific substrate temperatures over rings of finite thickness, giving rise to
the following profile (denoted as ring actuation):

Ts(u, r) = u1B1(r, 0, r′) + u2B1(r, Rw/2 − r′/2, Rw/2 + r′/2)
+ u3B1(r, Rw − r′, Rw)

+
(

u1 +
u2 − u1

Rw/2 − r′/2
r

)
B1(r, r′, Rw/2 − r′/2)

+

(

u2 +
u3 − u2

0.5Rw − 1.5r′
(r − Rw/2 + r′/2)

×B1(r, Rw/2 + r′/2, Rw − r′)

)

(6.46)

For the generation of snapshots, the macroscopic domain, Ω1, was discretized us-
ing finite differences into 6,201 nodes and the resulting system of nonlinear algebraic
equations was solved using a Newton–Krylov-based solver. The finite-difference grid
also partitioned the interface γ into 60 nodes. Simulation of the entire substrate sur-
face using kMC was a computationally intractable task; hence, the gaptooth dis-
cretization scheme was initially investigated [55], linking the patches of kMC sim-
ulations. However, the intercommunication between the patches was found to be
negligible due to the large distance between them. As a result, independent simu-
lations were performed at the center of each discretization node assuming periodic
boundary conditions. Depending on the structure of the kMC simulator, the flow
of information across the interface of the continuum and the discrete domains can
be unidirectional or bidirectional. For the current case, numerical simulations estab-
lished that inclusion of desorption into the kMC model had a negligible effect on the
macroscopic solution of the multiscale system. Hence, in the reduced-order process,
model desorption was not included. Under this assumption, the flow of information
was unidirectional and did not require multiple iterations.

6.6.2 Time-Constant Process Operation: Optimization Problem Formulation
and Results

We initially consider the problem of time-constant process operation where precur-
sor A flows through the innermost inlet and B through the two outer inlets (which
is denoted as the ABB configuration of inlet), and the optimization objective is to
determine surface temperature profiles that are optimal with respect to the cost func-
tional. We formulate the optimization problem as
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min F = w1

∫ R0

0

{
Rdep(r) − R̄dep

}2
dr + w2

∫ R0

0

R(r)dr

s.t.
Rdep = kaCA′ at γ, (6.47)

R̄dep =
1

R0

∫ R0

0

Rdep(r)dr,

900 ≤ Ts(uk, r) ≤ 1300,

where F is the objective functional, Rdep is the deposition rate of the thin film, R is
the surface roughness of the deposited film, and Ts is the surface temperature. R0 is
the cutoff radius, which is taken to be a fraction of the substrate radius, thus discount-
ing the unavoidable edge effects. The objective function penalizes nonuniformities
in the deposition rate (macroscopic objective) and the surface roughness across the
substrate, as well as high values of the spatially averaged roughness of the film (mi-
croscopic objectives). Additional constraints on the optimization problem arise from
the reduced-order process model in Eq. (6.1), whose explicit form is omitted for
brevity. The temperature of the substrate is the design variable in the above opti-
mization problem and is manipulated using the three circular heaters placed below
the substrate. Since two distinct forms of actuation were investigated, two indepen-
dent optimization problems were considered, based on the actuators chosen, which
were solved using a Hooke–Jeeves search algorithm [83].

The choice of the lattice size for kMC is an important trade-off (similar to the
choice of grid size in the case of finite elements), since large lattice sizes increase
the computational demand. On the other hand, kMC with a small domain size has
significant stochastic uncertainty. Figure 6.4 compares the time evolution of surface
roughness computed using 50×50, 75×75, and 100×100 lattices. It can be seen
that the results from all the three lattice sizes are comparable. Hence, we chose a
75×75 lattice for the rest of the computations. The pertinent simulation parameters
are listed in the figure’s caption. During the development of the multiscale process
model, it was assumed that a stationary state for coarse variables, x̄s, exists and
is independent of the initial condition. In order to demonstrate the validity of this
assumption with respect to surface roughness, Fig. 6.5 plots the time evolution of
surface roughness for three distinct initial surface configurations. It can be seen that
after a short transient, all three trajectories converge to a common stationary point.
The caption to Fig. 6.5 contains the pertinent simulation parameters.

For the two cases, a separate ensemble of 729 snapshots was generated by vary-
ing u1, u2, and u3 between 900–1300 K. Application of KLE generated 3, 25, and 40
empirical eigenfunctions for the temperature and mass fractions of A and A′, respec-
tively, for the former case (thin-ring actuation) and 3, 26, and 41 for the latter case
(ring actuation). In both cases, the eigenfunctions accounted for more than 99.999%
of the energy of the respective ensembles. The reduced-order model was hence com-
prised of 68 and 70 (as opposed to 6,201×3) nonlinear algebraic equations for the
former and latter cases, respectively.
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Fig. 6.4. Surface roughness as a function of time for various lattice sizes (Ts = 1100 K;
adsorption rate = 10atoms/site-s).
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Fig. 6.5. Surface roughness as a function of time with different initial surface configurations
(Ts = 1150 K; adsorption rate = 8atoms/site-s).

Figure 6.6 presents surface deposition rate profiles of species a for Ts = 900 K
and Ts = 1300 K and compares them against that of optimal surface temperature
profiles, corresponding to thin-ring actuation, obtained by solving the problem in
Eq. (6.47) by accounting first only for the macroscopic objective (i.e., w2 = 0),
and, second for the combined macroscopic-microscopic (multiscale) objective (i.e.,
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Fig. 6.6. Comparison of deposition rate profiles with macroscale-only (Optimal 1) and multi-
scale optimization objective (Optimal 2) (time-constant process operation).

w1, w2 �= 0). Deposition rate nonuniformity is defined as

[ max
r∈[0,R0]

(Rdep(r)) − min
r∈[0,R0]

(Rdep(r))]/ max
r∈[0,R0]

Rdep(r)

and is computed to be 37.86%, 26.05%, 7.06% and 19.77% for Ts = 1300 K,
Ts = 900 K and the two optimal cases, respectively (see Table 6.3). The corre-
sponding optimal temperature and surface roughness profiles are shown in Fig. 6.7
and 6.8, respectively. For constant substrate temperature operation, the adsorbate
concentration, and, hence, the deposition rate, reduces across the substrate radius,
except near the edge, where, due to high convective mass transfer, the deposition
rate increases sharply. This effect is omitted in the computation of the deposition
rate uniformity. However, temperature gradients near the substrate induced by radial

Table 6.3. Nonuniformity and roughness values for different operating policies

Temperature
Operation Objective Nonuniformity Roughness profile
1300 K, constant — 37.86% 1.95
900 K, constant — 26.05% 11.69
Time-constant, thin-ring actuation Macroscale 7.06 % 9.26 Fig. 6.7
Time-constant, thin-ring actuation Multiscale 19.77% 6.59 Fig. 6.7
Time-constant, ring actuation Macroscale 16.2% 11.0 Fig. 6.11
Time-constant, ring actuation Multiscale 21.83% 7.8 Fig. 6.11
Time-varying, ring actuation Macroscale 0.62% 3.5 Fig. 6.13
Time-varying, ring actuation Multiscale 0.92% 1.7 Fig. 6.13
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Fig. 6.7. Optimal substrate temperature profiles across the wafer surface (time-constant pro-
cess operation).
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Fig. 6.8. Surface roughness profiles with macroscale-only (Optimal 1) and multiscale opti-
mization objective (Optimal 2) (time-constant process operation).

variations in substrate temperature cause preferential diffusion of species radially,
which leads to modified deposition rates. The solution of the optimization problem
demonstrates that optimal variation of the substrate temperature (by controlling the
magnitude of actuation) can lead to significant improvement in the uniformity of
the grown film. Higher overall surface temperature is required if reduction of av-
erage surface roughness is a concurrent optimization objective (see Fig. 6.7) be-
cause at high temperatures, an increase in diffusion over the surface of the adsorbed
species leads to relatively smoother films. However, the modified temperature gra-
dients (especially near the substrate) may not favor axial thermal diffusion to the
desired extent and, consequently, deposition rate uniformity may be compromised.
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Fig. 6.9. Comparison of optimal deposition rate profiles with thin-ring and ring actuation
for time-constant process operation. Optimal 1 and 1′ correspond to macroscale optimization
with thin-ring and ring actuation, respectively. Optimal 2 and 2′ correspond to multiscale
optimization.

The optimal temperature profile with respect to the above concurrent objective re-
duces the average surface roughness from 9.26 (for macroscale-only case) to 6.59,
however, increasing the nonuniformity in deposition rate from 7.06% to 19.77%. It
should be noted that process operation with substrate temperature near 1300 K re-
sults in a notable reduction in surface roughness, but, it is not optimal with respect
to the deposition rate uniformity.

In order to account for the finite surface area of heaters, temperature actuation
given by Eq. (6.46) was employed; the corresponding optimal surface temperature
profiles for macroscopic-only and multiscale process objectives are shown in Fig. 6.9
and the corresponding roughness profiles are plotted in Fig. 6.10. The computed op-
timal deposition rate nonuniformity and average surface roughness of the film are
16.2% and 11 for the microscale objective and 21.83% and 7.8 for the multiscale ob-
jective, respectively. Optimal surface temperature profiles are shown in Fig. 6.11.
Hence, process operation employing ring actuation resulted in compromised op-
timization objectives, which motivated the investigation of time-varying process
operation.

6.6.3 Time-Varying Process Operation: Optimization Problem Formulation
and Results

It is evident from the preceding subsection that optimization, based on time-constant
process operation, resulted in considerable improvement of the quality of the thin
film. However, the contrasting effect of the substrate temperature profile on de-
position rate uniformity and surface roughness of the film posed limitations when
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Fig. 6.10. Comparison of surface roughness profiles with thin-ring and ring actuation for opti-
mal time-constant process operation. Optimal 1 and 1′ correspond to macroscale optimization
with thin-ring and ring actuation, respectively. Optimal 2 and 2′ correspond to multiscale op-
timization.
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Fig. 6.11. Optimal temperature profiles for ring temperature actuation (time-constant process
operation).

simultaneous macroscale and microscale process objectives were desired. This is-
sue is addressed in this subsection by employing time-varying process operation. As
mentioned earlier, for steady-state process operation, precursor A flows through the
innermost inlet and B through the two outer inlets (ABB configuration of inlet).
During the process operation, the two gas streams in the two innermost inlets can be
interchanged to result in a distinct (BAB) inlet configuration. The transient evolu-
tion of the process following the switch is neglected due to the long time associated
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between switches in comparison to the time needed for relaxation of the system dy-
namics due to switch (quasi-steady-state approximation). It is proposed that by opti-
mally switching from an ABB to a BAB configuration and controlling the substrate
temperature profile before and after the switching, both optimization objectives can
be realized. Mathematically, the optimization problem can be formulated as

min F =
∫ R0

0

{
w1[T (r) − Tobj]2 + w2R(r)

}
dr

s.t.

T =
n∑

i=1

δt̄iRdep, δt̄i = t̄i+1 − t̄i,

Rdep = kaCA′ at γ,

uk =
n∑

i=1

uk,i[H(t̄i) − H(t̄i+1)], k ∈ {1, 2, 3},

900 ≤Ts(uk, r) ≤ 1300,

(6.48)

where F is the objective functional, T is the thickness of film at the end of the
deposition, Tobj is the target thickness of the film, Rdep is the deposition rate of
species a, R is the surface roughness of the deposited film, δt̄i is the time interval
for ith switching, Ts is the surface temperature, and uk is the magnitude of actuation.
The objective function penalizes any deviation of final film thickness from the target
thickness (macroscopic objective) and high values of the spatially averaged rough-
ness of the film (microscopic objectives). The design variables of the optimization
problem are the magnitudes of actuation uk and the time intervals δt̄i.

The optimization problem in Eq. (6.48) for the time-varying process operation
was solved in two steps. Initially, spatial uniformity of the deposited film was the
only optimization objective (i.e., w1 �= 0, w2 = 0). Subsequently, the microscopic
objective was included in the optimization. The target film thickness, Tobj was
5×10−6 m. Surface temperature profiles represented by the actuation of Eq. ( 6.46)
were employed, with conduction being the prevailing mechanism of heat transfer
between the actuators.

An ensemble of solution data (“snapshots”) was generated by varying u1, u2,
and u3 for both the ABB and BAB inlet configurations and solving the result-
ing system according to the algorithm presented earlier. Specifically, an ensemble
of 729×2 snapshots was generated. Three, 62, and 52 eigenfunctions were identi-
fied using KLE, respectively, for temperature and mass fraction profiles of A and A′

across the reactor, which captured more than 99.999% of the ensemble’s energy. The
reduced-order model was hence comprised of 117 (as opposed to 6,201×3) nonlinear
algebraic equations. Coarse data of kMC simulations were tabulated in accordance
with in situ adaptive tabulation, as described earlier, which facilitated efficient link-
ing between the macroscopic and microscopic process models.

Figure 6.12(a) shows the final film thickness across the wafer surface obtained for
the optimal process operation with macroscopic objective and multiscale objective
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Fig. 6.12. Comparison of (a) deposition rate and (b) roughness profiles across the wafer sur-
face, with macroscale (Optimal 1) and multiscale objective (Optimal 2) (time-varying process
operation).

(denoted as Optimal 1 and Optimal 2, respectively). For comparison purposes, the
final film thickness profiles for time-invariant nominal process operation are also
shown. Thickness nonuniformity, defined as

[ max
r∈[0,R0]

(T (r)) − min
r∈[0,R0]

(T (r))]/ max
r∈[0,R0]

T (r)
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Fig. 6.13. Initial (solid lines) and final (dashed lines) optimal surface temperature profiles, for
(a) macroscale-only objective and (b) multiscale objective (time-varying process operation).

for the ABB inlet configuration, was found to be 37.86% and 26.05%, respectively,
for the substrate temperatures 1300 K and 900 K. The corresponding numbers were
63.45% and 58.63%, respectively, for the BAB inlet configuration. However, under
the optimal process operation, radial nonuniformity in the film was reduced to 0.62%
and 0.92% for the former and latter cases, respectively. The corresponding inlet-
switching policies and substrate temperature profiles before and after switching are
shown in Fig. 6.13(a) and 6.13(b).
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Fig. 6.14. Comparison of film-thickness profiles with time-constant and time-varying process
operation. Optimal 1 and 1′ correspond to macroscale optimization with thin-ring and ring
actuation, respectively. Optimal 2 and 2′ correspond to multiscale optimization.

Inclusion of the microscopic objective resulted in the overall increase of substrate
temperature and the spatially averaged surface roughness of the film decreased from
3.5 (for Optimal 1) to 1.7 (for Optimal 2). Surface roughness profiles are shown in
Fig. 6.12(b). It should be noted that the BAB configuration with Ts = 1300 K would
result in the film with the lowest surface roughness; however, such an operation is
not optimal with respect to spatial thickness uniformity of the film.

Figure 6.14 compares the optimal final film thickness across the wafer for time-
constant and time-dependent process operations. The improvement in process op-
timization objectives is clearly evident, implying that the time-varying operation
is preferred over the time-constant operation, while the computational increase in
the optimization is relatively small. The film-thickness uniformity improved from
21.83% to 0.92%, and the average surface roughness across the wafer improved from
7.8 to 1.7 by employing time-varying process operation in place of time-constant
process operation.

Remark 6.8. The optimization problem for the time-dependent process operation was
also solved for thin-ring actuation represented by Eq. (6.45). A considerable im-
provement in process objectives was observed in this case too. The film-thickness
uniformity notably improved from 19.77% to 0.71%, and the average surface rough-
ness across the wafer reduced from 6.59 to 1.8 by employing time-varying process
operation in place of time-constant process operation. Since these results were only
marginally different from those obtained from distributed actuation of the substrate,
their graphical presentation was omitted for brevity.

Remark 6.9. It is worth mentioning that random and pattern-search methods (such as
Hooke–Jeeves) are not very efficient when the number of optimization parameters



200 6 Optimization of Multiscale Process Systems

is large, which is typically the case if one uses an infeasible path approach. In the
current context, if a full-order infeasible path approach is employed, the multiscale
process model appears as equality constraints in the optimization problem. The num-
ber of equality constraints, equal to the degrees of freedom, arising due to the macro-
scopic process model, are determined by the discretization of the process variables
in the spatial domain. The extent of discretization can be of the order of 103–106

depending on the desired level of accuracy. Microscopic time-steppers, as outlined
in Section 6.6.1, cannot be readily incorporated into the infeasible path approach.
Additional degrees of freedom can be a part of the operating and process parame-
ters, which in the present study were three (magnitude of temperature actuation) for
the time-constant process operation and eight (magnitudes of temperature actuation
and switching time) for the time-varying process operation. Since we employed the
feasible path approach, the number of degrees of freedom was small (and one does
not anticipate efficiency issues as far as the optimization method is concerned). The
bottleneck for optimization is the computational complexity of the process model,
which we propose to circumvent using the proposed order-reduction strategy.

Finally, the computational requirements of the proposed scheme are tabulated in
Table 6.4 for the various optimization problems discussed in the previous sections.
The CPU requirements listed are for a Pentium IV 3.02 GHz processor. It should be
noted that the time required for the construction of ensemble of snapshots was not
included in the CPU time reported in Table 6.4.

Table 6.4. Optimization efficiency.

Operation Objective Solution Time (min) Function Calls
Time-constant, thin-ring actuation Macroscale 15 131
Time-constant, thin-ring actuation Multiscale 18 159
Time-constant, ring actuation Macroscale 11 99
Time-constant, ring actuation Multiscale 19 158
Time-varying, ring actuation Macroscale 286 1012
Time-varying, ring actuation Multiscale 246 1011

6.7 Conclusions

In this chapter, nonlinear order-reduction techniques for elliptic partial differen-
tial equations were employed together with the adaptive tabulation method for mi-
croscopic/mesoscopic simulators to derive reduced-order continuum-discrete hybrid
models for the computationally efficient solution of optimization problems when
the cost function and/or equality constraints necessitate the consideration of phe-
nomena that occur over widely disparate length scales. The proposed methodology
was applied to a conceptual thin-film growth process to simultaneously maximize
the deposition rate uniformity and minimize the average surface roughness of the
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film. Optimal surface temperature profiles were calculated for time-constant process
operation and optimal surface temperature and precursor inlet concentration trajecto-
ries were computed for time-dependent process operation. The use of reduced-order
process model resulted in considerable savings in wall-clock time for optimization,
which was virtually intractable using the complete PDE/kMC process model.



7

Dynamic Optimization of Multiscale Process Systems

7.1 Introduction

In this chapter, we extend the methodology outlined in the previous chapter towards
the efficient solution of dynamic optimization problems for multiscale processes cou-
pling continuum and discrete descriptions. The approach relies on the reduction of
the continuum system using Galerkin–KLE and of the microscopic simulator using
ISAT. The reduced systems are linked together to formulate a computationally effi-
cient multiscale model (with bidirectional flow of information). Consequently, stan-
dard search algorithms can be employed for the solution of the optimization problem.
The approach is demonstrated on two numerical examples describing catalytic oxi-
dation of CO to CO2. In the first case, lateral interactions between adsorbed species
are neglected and the mobility of the adsorbed species is assumed to be infinitely fast,
so that the system can be approximated as a well-mixed system. In the latter case,
nearest-neighbor interactions between adsorbed CO molecules are introduced along
with the finite mobility of the adsorbed species. The microscopic system is linked to
a macroscopic system describing the diffusion of CO and O2 on the catalyst surface.
In both cases, optimal inlet concentration profiles are computed to guide the micro-
scopic system from one stable stationary state to another stable stationary state. The
results of this chapter were first presented in [152].

7.2 Problem Formulation

We focus on spatially distributed multiscale processes with the following state-space
description:

∂x

∂t
= A(x) + f(t, x, u), x(z, 0) = x0(z), on Ω1, (7.1)

xm(ti) = Π(xm(ti−1), δt, x(γ, t)), on Ω2, (7.2)

δt = ti − ti−1,

P.D. Christofides et al., Control and Optimization of Multiscale Process Systems,
Control Engineering, DOI 10.1007/978-0-8176-4793-3 7,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2009
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g

(
x,

dx

dη
, u, x̄

)
= 0, on Γ, (7.3)

x̄ = L(xm). (7.4)

Equations (7.1) and (7.2) represent the macroscopic and microscopic descriptions
of the process over the respective domains Ω1 and Ω2. It is assumed that Ω1 and
Ω2 do not overlap, that they share a common interface γ(⊆ Γ ) = Ω1 ∩ Ω2, and
that Ω = Ω1 ∪ Ω2 spans the whole process domain. x(z, t) ∈ Rn denotes the vec-
tor of macroscopic state variables, t ∈ [0, tf ] is the time (tf is the terminal time),
z = [z1, z2, z3] ∈ Ω1 ⊂ R3 is the vector of spatial coordinates, Ω1 is the domain of
definition of the macroscopic process, and Γ is its boundary. A(x) is a dissipative,
possibly nonlinear, spatial differential operator that includes up to second-order spa-
tial derivatives, f(t, x, u) is a nonlinear, possibly time-varying, vector function that
is assumed to be sufficiently smooth with respect to its arguments, u ∈ Rp is the
vector of design variables that are assumed to be piecewise-continuous functions of
time, and x0(z) is a smooth vector function of z.

Function Π , which describes the microscopic system, is a time-stepper, which
interacts via an input–output structure and may be unavailable in closed form. It uses
xm(ti−1) and the macroscopic state at the interface γ as input, evolves over the time
interval δt, and produces state xm(ti). The vector function h(x, dx/dη, u, x̄) repre-

sents the boundary conditions at Γ , and
dx

dη

∣
∣
∣
∣
Γ

denotes the derivative in the direction

perpendicular to the boundary. The boundary conditions depend upon x̄, the “coarse”
realization of the microscopic state, thus linking the macroscopic system with the
microscopic system. Coarse variables are defined through the restriction operator
denoted as L(·). Typically, they are lower-order statistical moments of microscopic
states chosen such that the coarse dynamics are observable.

Assumption 7.1. There exists an invertible transformation y = k(x, dx/dz, u, x̄)
such that g(k−1(y), k−1(y)/dη, u, x̄) = h(y, dy/dη) = 0.

With this assumption, the system in (7.1) and (7.3) can be written as

∂y

∂t
= kxA(k−1y) + kxf(t, k−1y, u) + kuu̇ + kx̄ ˙̄x, (7.5)

y(z, 0) = k

(
x0(z),

dx0

dz
, u(0), x̄(0)

)
, h

(
y,

dy

dη

)
= 0. (7.6)

A general optimization problem for the multiscale system in (7.1)–(7.4) can be
formulated as
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min
u(t)

G =
∫ tf

0

∫

Ω

G(x, x̄, u)dz dt + W (x(tf ), x̄(tf ))

s.t.
∂x

∂t
= A(x) + f(t, x, u), x(z, 0) = x0(z), on Ω1,

(7.7)
xm(ti) = Π(xm(ti−1), δt, x(γ, t)), δt = ti − ti−1, on Ω2,

g(x,
dx

dη
, u, x̄) = 0, on Γ, x̄ = L(xm),

p(x, x̄, u) ≤ 0,

where G(·) is a measure of the process performance at both macroscopic and micro-
scopic scales, the function W (·) is the terminal cost, tf denotes the terminal time,
and p(x, x̄, d) is the vector of inequality constraints, which may include bounds on
state and control variables. Due to the stochastic nature of the function Π and its un-
availability in closed form, standard gradient-based algorithms are unsuitable for the
solution of the above optimization problem. Also, it is inefficient to directly apply
derivative-free search algorithms that compute the objective function as a black box
due to the computational intensity of the multiscale model. To address this problem,
we present the following reduced-order formulation of the above multiscale model;
it employs a proper orthogonal decomposition for reduction of the PDEs and ISAT
for efficient simulation of the microscopic time-stepper.

7.3 Multiscale Solution Algorithm

The reduced-order multiscale model is constructed by appropriately linking the
reduced-order macroscopic description obtained from KLE with the microscopic
description implemented within the framework of the ISAT algorithm. To ensure
consistency across both length scales, we employ the “lift-evolve-restrict” scheme
[53] outlined in the following steps:

1. Initialize macroscopic state, x(0), and coarse microscopic state, x̄(0). Let xΓ

denote values of macroscopic variables at the interface Γ , and let D denote the
ISAT database. Define φ = [x̄, xΓ ]T . Initialize t = 0.

2. Integrate the macroscopic system from x(t) by a time step τ to obtain x(t + τ)
and xΓ (t + τ).

3. If φ(t) is within the EOA of one of the nodes in D, interpolate φ(t + τ) from
the database. Otherwise,
(a) Transform x̄(t), through lifting, to a number of consistent microscopic real-

izations, xm(t) = μx̄(t), where μ denotes the lifting operator,
(b) Evolve the realizations using the microscopic simulations, to obtain xm(t +

τ). The evolution will be a function of xΓ (t).
(c) Obtain the values of x̄(t + τ) from the restriction of xm(t + τ).

4. Set t = t + τ ; go to step 2.
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Although the multiscale simulation approach described above uses an explicit inte-
gration scheme, implicit variants can be implemented in a straightforward manner.
The choice of time step, τ , is crucial as it should be sufficiently large to allow the
incorrectly initialized statistics of the microscopic system during lifting to relax to
their true values.

Using the above reduced-order formulation of the multiscale system, the dynamic
optimization problem (7.7) can be efficiently solved using standard optimization al-
gorithms. Due to the stochastic nature of the discrete system, it may be more advan-
tageous to employ a pattern-search algorithm [95] in the current chapter we use such
an algorithm. The objective function is computed as a black box during optimization.
The overall scheme is presented in Fig. 7.1.

Initialize ),0(),0( xx .0=t

∈φ ?

Create )()( txtxm μ=

Compute )( τ+txm from Π using )(txΓ

Compute )).(()( ττ +=+ txLtx m

Interpolate )( τφ +t

from

Augment by adding

{ ))((),(),( tAtt φτφφ +

.τ+= tt

Initialize Optimization.
Initialize database .

Direct Search Toolbox

Yes

No

Yes No

Integrate )(tx , keeping x fixed, to obtain

).(),( ττ ++ Γ txtx Define Txx ],[ Γ=φ

?ftt = Evaluate Objective Functional

Optimal
Solution

}

Fig. 7.1. Flowchart of the multiscale solution algorithm for the dynamic optimization of mul-
tiscale process systems.
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7.4 Numerical Simulations

7.4.1 Catalytic CO Oxidation with Infinite Surface Mobility

We consider a kinetic model describing CO oxidation by O2 on a catalytic surface
[10]. The model involves transport of CO and O2 to the catalyst surface, Langmuir
adsorption for CO on the catalyst surface, dissociative adsorption of O2 on the cat-
alyst surface and second-order surface reaction to produce CO2, which desorbs in-
stantaneously. The overall surface reaction can be summarized as A + 1/2B2 → C,
where A, B, and C represent CO, O and CO2, respectively. The bulk transport of A
and B is described by a set of parabolic PDEs, and the adsorption, desorption, and
surface reaction phenomena are described by kMC simulations on a square lattice
with M × M sites. The two levels of descriptions are linked through appropriate
boundary conditions. The multiscale model is mathematically written as follows:

∂x

∂t
=

∂2x

∂z2
, z ∈ [0, 1], x(z, 0) = x0,

xm(t + δt) = Π(xm(t), x(1, t)), xm(0) = xm0,
(7.8)

x(0, t) = x0(t),
∂x

∂z
+ λ(x, θ) = 0 at z = 1,

θA =
∫

Ω2

||xm||AdΩ2, θB =
∫

Ω2

||xm||BdΩ2,

where x = [xA, xB]T is the vector of gas-phase concentrations of A and B and
represents the macroscopic variables, the microscopic state xm ∈ IM2

denotes the
occupancy of the lattice sites, θ = [θA, θB]T is the vector denoting surface coverage
of adsorbed A and B and represents the coarse variables, and λ(·) = [xA(t)(1 −
θA − θB)− γθA, 2xB(1− θA − θB)2] computes the net rates of adsorption of A and
B. The function || · ||A is defined such that ||xm(i)||A = 1 if the ith surface site is
occupied by A and ||xm(i)||A = 0 otherwise. It can be shown that the microscopic
subsystem exhibits multiple steady states for a range of values of x0

B .
We are interested in the solution to the following constrained dynamic optimiza-

tion problem:

min
x0

B(t)
F = Q(x, θ, t) + W(xtf

, θtf
),

Q =
∫ NT

0

(x0
B(t) − x0

B,ss)
2(1 − 0.3e−t)T

N∑

i=1

δ(t − iT )dt, (7.9)

W = 50[1 − e−R(|θA(tf )−θA,ss,f |−ε)e−R(|θB(tf )−θB,ss,f |−ε)].

The optimization objective is to compute an optimal boundary concentration profile,
x0

B(t), such that the microscopic state of the system switches from an initial stable
stationary state θss,i, to another stable stationary state, θss,f , within finite time tf =
NT (see Table 7.1 for parameter values). The function Q evaluates the performance
of the process over time period [0, tf ] and the function W penalizes any deviation
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Table 7.1. CO oxidation process parameters.

Parameter Value Steady states
kr 1.0 θA,ss,i 0.13944
α 1.6 θA,ss,u 0.67526
γ 0.04 θA,ss,f 0.97101

x0
B,ss 3.8 θB,ss,i 0.63553
tf 5s θB,ss,u 0.11452

θB,ss,f 0.00137

of the final state from the desired steady state. Due to the stochastic nature of the
microscopic system, the final state is restricted to be in the neighborhood of the
desired steady state and ε is a parameter for which |θ(tf )− θss| ≤ ε ⇒ W = 0. θ is
the standard ramp function.

The constraints for the optimization problem arise from the multiscale dynamic
process model. To solve the optimization problem, the manipulated variable was
parameterized into N time intervals of length T and the objective functional, F ,
was computed independently from the dynamic simulation of the system. A pattern-
search algorithm [95] was employed for the solution of the above optimization prob-
lem. Initially, the problem was solved for N = 10 and T = 0.5 s. For order re-
duction of the parabolic PDEs, an ensemble consisting of 500 snapshots of PDE
solution data was initially constructed. Application of KLE resulted in four eigen-
functions each for species A and B that captured more than 99.99% of the en-
ergy contained within the ensemble. Microscopic simulations were performed us-
ing ISAT with φ = [θA, θB, x(1, t)]T . Note that with the choice of coarse variables
x̄ = [θA, θB]T , the microscopic dynamics are observable. Initially, the database was
empty; it was concurrently built during the solution of the optimization problem. The
reduced multiscale process model was created by linking the two descriptions using
the algorithm presented in Section 7.3. The ISAT-reporting horizon was τ = 0.05 s,
so that the database was queried 100 times per objective functional evaluation. This
implies that in total 100 evaluations were need to compute the microscopic process
trajectory per function evaluation. The optimal control trajectory obtained from the
solution of the optimization problem is shown in Fig. 7.2. For comparison, the figure
also presents the “deterministic” optimal trajectory, which is obtained by using the
mean-field description of the microscopic system in the multiscale algorithm. The
difference between the two profiles is attributed to the noise arising from the kMC
simulations.

Figure 7.3 plots the number of database interpolations and number of time-
stepper evaluations performed as a function of objective functional evaluation during
optimization. It can be observed that database interpolations are significant during
the majority of the objective functional evaluations, thereby speeding up the solu-
tion of the optimization problem. An average CPU time of 6 seconds was required
to compute the objective functional using the reduced multiscale model, which is
significantly smaller than the 21 seconds required using the full multiscale model.
Note that the computational savings are a manifestation of model reduction at both
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Fig. 7.2. Optimal control profile for N = 10.
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Fig. 7.3. Number of time-stepper evaluations and database interpolations per F computations
for N = 10. Total equal to 100 per function evaluation.

macroscopic and microscopic scales. Greater computational savings can be expected
as the database increases in size. The average number of time-stepper evaluations per
F evaluation was 27, which is significantly lower than the 100 time-stepper evalua-
tions required without interpolation.
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Fig. 7.4. Optimal control profile for N = 50.

Subsequently, the optimization problem was solved with N = 50 and T = 0.1 s
to obtain an improved resolution in x0

B(t). The database created previously was em-
ployed as the initial database. The resulting optimal profile for x0

B(t) is shown in
Fig. 7.4. The noisy behavior is a manifestation of the stochastic nature of the dy-
namic system resulting in performance deterioration of pattern-search algorithms.
The number of database interpolations and number of time-stepper evaluations per-
formed as a function of F evaluation during the optimization are plotted in Fig. 7.5.
It can be seen that initially the number of time-stepper evaluations required for the
computation of F is high, which, however, continuously decreases as the optimiza-
tion proceeds. The advantage of using the preexisting database is clearly evident in
this case, as the average number of time-stepper evaluations per F calculations re-
duced to 9 compared to 27 in the previous case. An average of 3.5 seconds was
required to compute the objective functional using the reduced multiscale model,
which is considerably shorter than the 21 seconds required using the full multiscale
model.

7.4.2 Catalytic CO Oxidation with Limited Surface Mobility and Lateral
Interactions

In the following section, we relax the earlier assumption that surface species pos-
sess infinite mobility and hence can be considered as a well-mixed system. Also,
we incorporate first nearest-neighbor interactions between adsorbed CO molecules.
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Fig. 7.5. Number of time-stepper evaluations and database interpolations per F computations
for N = 50. Total equal to 100 per function evaluation.

Consequently, the rate coefficient for desorption of CO is now computed as a func-
tion of local environment, i.e., γ exp(−nE/RT ), where E denotes the lateral inter-
action strength between adsorbed CO molecules and n is the number of CO first
nearest-neighbor CO atoms. In addition, the rates of surface migration are computed
as D0 exp(−nE/RT ), where D0 is the migration rate at zero coverage of CO.

Unlike the previous case, exact closed-form equations for the evolution of sur-
face coverage of O and CO do not exist for this case, although several levels of
approximations have been obtained previously [141, 106]. These include modified
mean-field equations to account for lateral interactions and quasi-chemical approxi-
mations based on pair probabilities. From the simulation point of view, it implies that
microscopic simulations, initialized based on surface coverages during lifting, will
only be a crude approximation. A better approximation is obtained if pair probabili-
ties are also accounted for during lifting. This is based on the fact that the remaining
higher-order moments of species distribution have faster dynamics and quickly be-
come algebraic functions of the lower-order moments [53].

The optimization problem of Eq. (7.9) is resolved with the modified microscopic
description incorporating lateral interaction for W = 10 and T = 0.5s. The relevant
parameters are listed in Table 7.2. Note that, due to the lack of closed-form dy-
namical expressions, the optimization results cannot be compared with the corre-
sponding “deterministic” results. Figure 7.6 shows the optimal input concentration
trajectory obtained from the solution of the optimization problem employing a re-
duced multiscale process model. The figure also compares the above result with the
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Table 7.2. CO oxidation with lateral interaction process parameters.

Parameter Value Steady states
kr 1.0 θA,ss,i 0.1671
x0

A 1.92 θA,ss,f 0.9634
γ 0.04 θB,ss,i 0.6349

x0
B,ss 1.16 θB,ss,f 0.0013
tf 5s

0 2.5 5
0

0.6

1.2

Time (s)

x 0B

Full multiscale
Reduced multiscale

Fig. 7.6. Optimal control profile for catalytic CO oxidation with finite lattice diffusion rate for
N = 10.
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Fig. 7.7. Number of time-stepper evaluations and database interpolations per F computations
for N = 10. Total equal to 100 per function evaluation.
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result obtained by using the full multiscale process model. The number of database
interpolations and number of time-stepper evaluations performed as a function of F
evaluation during the optimization are plotted in Fig. 7.7. As with the previous cases,
initially the number of time-stepper evaluations required for the computation of F is
high, which, however, continuously decreases as the optimization proceeds. The av-
erage number of time-stepper evaluations per F calculation and number of database
interpolations per F calculation are 17 and 83, respectively. Thus, the incorporation
of reduced-order model resulted in considerable computational savings.

7.5 Conclusions

In this chapter, nonlinear order-reduction techniques for dissipative partial differ-
ential equations were combined with adaptive tabulation of microscopic simulation
data towards the efficient dynamic optimization of multiscale systems composed of
coupled continuum and discrete descriptions. The optimization problem was subse-
quently formulated and solved using standard search algorithms. The method was
applied to two representative catalytic oxidation process where optimal inlet con-
centration profiles were computed to guide the microscopic system from one stable
stationary state to another stable stationary state. The methodology resulted in sig-
nificant savings of computational resources during the solution of the optimization
problem.
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Index

Adsorption rate, for ideal gas, 14
AFM, see Atomic force microscopy (AFM)
AIM, see Approximate inertial manifolds

(AIM)
Approximate inertial manifolds (AIM), 5
Atomic force microscopy (AFM), 6

Catalytic CO oxidation
with infinite surface mobility

constrained dynamic optimization
problem, 207–208, 209, 210

multiscale model, mathematically
written, 207

limited surface mobility/lateral interac-
tions

with lateral interaction process
parameters, 212

process parameters, 211
Chemical vapor deposition (CVD), 1
Closed-loop deposition/simulation/system,

51, 123–125, 138, 144
applying feedback control law, 137
block diagram of, 67, 119, 120, 126

with kMC model-predictive controller,
36

finite-dimensional system, 139
growth rate profiles of, 53, 56
with kMC model-predictive controller, 36
microconfiguration of surface for, 41
nonlinear/linear control, 158–161
PI control design, 66–68
under proposed estimator/controller

structure, 34, 40
in sputtering process, 166

surface microconfiguration, 56, 165, 167
surface roughness, 70, 71, 73, 133, 139

expected/desired, 143
nonlinear controller vs. linear controller,

160, 161
and substrate temperature profiles,

124, 131
thickness/surface adsorption rate, 132
thin-film surface profile of, 124

Closed-loop infinite-dimensional system,
118, 138–140, 150–156

applying feedback controller, 138
closed-loop stochastic KSE theorem,

151–154
Coarse time-stepper approach, 6
Complex deposition process, 57–58

high-temperature regime, MPC design,
68–74

low-temperature regime, PI control
design, 65–68

open-loop dynamics, 61–65
effect of lattice size, 63–65
multicomponent case, 63
single-component case, 62

process description, 57–61
simulation procedure, 60–61
surface microstructure model, 58–60

Complex inner product, 176
Conceptual thin-film epitaxy process, 9
Constraints, 7
Control vector parameterization (CVP),

6–7, 169
CO oxidation, see Catalytic CO oxidation
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CVD, see Chemical vapor deposition
(CVD)

CVP, see Control vector parameterization
(CVP)

Deposition process
closed-loop, surface roughness/substrate

temperature profiles, 124
eigenvalue spectrum of infinite stochastic

ODE systems, 96
evolution of surface of thin film, 89
linear stochastic PDE model, 86, 98
schematic of rules, 140–141
stochastic PDE model/kMC simulation,

88
thin-film, 119

Deposition surface, flux boundary condition
at, 3

Desorption of surface species into gas
phase, 3

Desorption rate, 14, 20
execution of desorption event, 24

1D linear stochastic PDE model, construc-
tion of

eigenvalue problem of linear operator,
77–78

Fourier expansion in complex form, 78
periodic boundary conditions, 77
surface of thin film during deposition,

76–77
validation of, 86–89

2D linear stochastic PDEs, construction of,
89–90

adsorption rate, 89
analytical solutions for statistical

moments, 91–93
application to 2D thin-film growth

process, 94–102
eigenvalue problem of linear operator,

90–91
Fourier expansion in complex form, 90
Gaussian noise, 89
model construction methodology, 93–94
model parameter, 97
periodic boundary conditions, 90

1D thin-film growth process, application to,
121–125

closed-loop simulation, 123–125
first equality constraint, 123

optimization problem, 122
substrate temperature, 121

2D thin-film growth process, application to,
125–133

block diagram of closed-loop system, 126
closed-loop simulations, 131–133
control time interval, 130
deposition parameters, 127
expected final film thickness, 128
finite-dimensional approximation, 129
predictive control design, 126–131
thickness/roughness estimation, 128

Edwards–Wilkinson equation, 9
Ellipsoid of attraction (EOA), 180
Estimator/controller structure, feedback

control design
kMC simulator on multiple small lattice

models, 35
MIMO control, 35
parameters, 51
profiles of growth rate/inlet precursor

mole fraction, 50
profiles of surface roughness/substrate

temperature, 52
SISO control, 34–35

Feedback control law, 137, 149
Feedback control using stochastic PDEs,

117–118
linear covariance control using, 133–136

closed-loop infinite-dimensional system,
138–140

feedback control design, 137–138
model reduction, 136–137
thin-film growth process, 140–144

nonlinear covariance control using,
144–147

closed-loop infinite-dimensional system,
150–156

feedback control design, 149–150
kMC model of ion-sputtering process,

162–167
model reduction, 148–149
stochastic KSE, 156–161

predictive control using, 118
1D thin-film growth process, 121–125
2D thin-film growth process, 125–133
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generic MPC formulation, 118–119
order reduction, 119–121

Flux boundary condition at deposition
surface, 3

Frequency of events, 14

Gain of filter, adaptive scheme to
determine, 33

Galerkin–KLE, 203
Gallium arsenide (GaAs) thin films, 6

surface morphology of, 75
Gas-phase model, 13
Gaussian distribution, probability distribu-

tion function of, 78
Gaussian noise, 77
Gaussian random variable, 91
Growth rate, 44

Heaviside functions, 189
Hyper-ellipsoid, see Ellipsoid of attraction

(EOA)

Inertial manifold (IM), 4
Infinite-dimensional matrix, 150
Infinite nonlinear stochastic ODEs, 105,

146–147
in closed-loop infinite-dimensional

system, 105, 146–147
covariance matrices, 149
finite-dimensional approximations, 106

In situ adaptive tabulation (ISAT),
179–181, 203

accessed region, 180
database, 181

FD and FDC estimates of derivative,
182, 183–184

loss function, 182–183
mapping gradient matrix, 180

Ion-sputtering process, 76, 103
description, 110–111

Hamiltonian of unrestricted solid-on-
solid model, 111

local slope, 111
transition probability, 111

kMC model of, 162
actuator distribution function, 164
feedback control design, 163–167
open-loop dynamics of sputtering

process, 162–163

parameter-estimation method to kMC
model, 110

ISAT, see In situ adaptive tabulation (ISAT)

Kardar–Parisi–Zhang (KPZ) equation, 5–6,
75

Karhunen–Loève expansion (KLE), 6,
175–178, 184

eigenvalue problem, 177
orthogonal set, eigenfunctions, 177

Kinetic Monte Carlo (kMC) simulation, see
KMC simulation

Kinetic Monte Carlo models, control using,
27

complex deposition process, 57
high-temperature regime, MPC design,

68–74
low-temperature regime, PI control

design, 65–68
open-loop dynamics, 61–65
process description, 57–61

feedback control design, 34
estimator/controller structure, 34–35
model-predictive control, 35–37

real-time estimation, 28
adaptive filtering/measurement

compensation, 32–34
simulator using multiple small lattices,

28–32
thin-film growth process, 37–38

MIMO control, surface rough-
ness/growth rate regulation, 43–56

SISO control, surface roughness
regulation, 38–43

KMC simulation, 4, 5, 27
size of lattice and, 28
theoretical foundation of, 16
of thin-film growth, 18–19

adsorption, 20
desorption, 23–24
initializations, 19–20
initial surface configuration of, 19
migration, 24–25
Monte Carlo event selection, 20

KMC simulator
based on multiple small lattice models,

44–46
state-space representation, 32–33
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KSE, see Kuramoto–Sivashinsky equation
(KSE)

Kuramoto–Sivashinsky equation (KSE),
103–104

nonlinear stochastic, 103
eigenvalue problem of linear operator,

104
Gaussian noise, 104
parameters of, 104

Lattice–Boltzmann (LB) simulations, 5
Lift-evolve-restrict procedure, 171
Linear covariance control, stochastic PDEs,

133–136
closed-loop infinite-dimensional system,

138–140
feedback control design, 137–138
model reduction, 136–137
thin-film growth process, 140–144

Linear state feedback controller design, 158
Linear stochastic PDEs, 86, 133

computed for deposition process, 98
for deposition process, 86
Gaussian noise, 134
using kMC simulation, 76

Macroscopic model for gas phase of
reactor, 3

“Master equation” (ME), 16
MEMS, see Micro-electro-mechanical

systems (MEMS)
Micro-electro-mechanical systems

(MEMS), 1
Microscopic time-steppers, 200
Migration rate, 14, 20

execution of migration event, 25
MIMO, see Multiple-input–multiple-output

(MIMO)
MIMO control, surface roughness/growth

rate regulation, 43–56
KMC simulator based on multiple small

lattice models, 44–46
multivariable feedback control of surface

roughness/growth rate, 52–56
multivariable input–output interactions,

effect of, 51–52
real-time surface roughness/growth rate

estimator, 46–47

simultaneous control of surface
roughness/growth rate, 47–51

Model construction methodology, stochastic
PDE, construction of

1D linear, 81
2D linear, 93–94

Model-predictive controller (MPC), 68, 118
block diagram of closed-loop system with

kMC, 36
kMC model-based predictive control,

71–74
open-loop response, 68–69
PI control, 69–71

Monte Carlo event, 16, 18
desorption, 23–24

Monte Carlo sampling, 4
Monte Carlo simulation, 16, 18

direct method, 17
Multiple-input–multiple-output (MIMO), 8,

27, 35, 43–44
Multiscale optimization problem solution,

184
solution algorithm, 184–185

Multiscale PDE/kMC process systems,
dynamic optimization of

multiscale solution algorithm, 205–206
construction, 205
flowchart of multiscale solution

algorithm, 206
“lift-evolve-restrict” scheme, 205

numerical experiments, 207–213
catalytic CO oxidation with in-

finite/limited surface mobility,
207–211

see also Catalytic CO oxidation
problem formulation, 203–205

coarse variables, 204
macroscopic/microscopic descriptions,

204
optimization problem for multiscale

system, 204–205
state-space description, 203

Multiscale process modeling and simula-
tion, 11

gas-phase model, 13
surface microstructure model, 14

kMC simulation, theoretical foundation,
16–18
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kMC simulation of thin-film growth,
18–19

Poisson processes and master equation,
14–16

thin-film growth process, 12–13
Multiscale process systems, xix, 170

coarse variables, 171
control and optimization of, 4–7
lifting, 171
microscopic model using tabulation, 172

FDC derivative estimation and EOA,
181–184

problem formulation, 178–179
in situ adaptive tabulation, 179–181

motivation, 1–2
multiscale optimization problem solution,

184–185
optimization problem formulation,

170–172
order reduction of dissipative PDEs,

172–174
Karhunen–Loève expansion, 175–178
method of weighted residuals, 174–175

thin-film growth, 2–4
process modeling/simulation, 185–189
time-constant process operation,

189–194
time-varying process operation,

194–200
Multiscale systems, 169
Multivariable feedback control system, 74

closed-loop growth rate, 56
with interaction compensation, 36
surface roughness/growth rate, 52–56

Multivariable input–output interactions,
effect of, 51–52

“Nonfactorable” constraints, 7
Nonlinear covariance control using

stochastic PDEs, 144–147
closed-loop infinite-dimensional system,

150–156
feedback control design, 149–150
kMC model of ion-sputtering process,

162–167
model reduction, 148–149
stochastic KSE, 156–161

Nonlinear programming (NLP), 6, 169, 184

Open-loop deposition, 35, 61, 66, 68–69
surface roughness, 68, 69, 70, 71, 73, 133

expected, 115
steady state, 140

thin-film surface profile of, 124
Open-loop dynamics, 61–65

effect of lattice size, 63–65
multicomponent case, 63
single-component case, 62

Ordinary differential equations (ODEs),
5, 169

finite-dimensional dynamic nonlinear
program, 174

infinite stochastic, 76

Partial differential equations (PDE), 1, 2, 4
linear/nonlinear stochastic, 75
nonlinear hyperbolic/parabolic, 1

PDE, see Partial differential equations (PDE)
PDE systems, dissipative, 172

optimization problem for, 173
Physical vapor deposition (PVD), 1
PI control design, 65

controller design, closed-loop simulation,
66–68

open-loop response, 66
Plasma-enhanced chemical vapor deposition

(PECVD), 2
Poisson processes, treating surface

microprocesses as, 15
Probability density function, 16, 17
Proportional-integral (PI) feedback

controller, 34

Rapid thermal processing (RTP), 2
Reaction scheme, 3
Reactor with split-inlet configuration, 2
Real-time estimation, 28

adaptive filtering/measurement compensa-
tion, 32–34

simulator using multiple small lattices,
28–32

Real-time increment, 21
Real-time roughness estimator, 38–40

Single-input–single-output (SISO), 8, 27,
34, 38

SISO, see Single-input–single-output (SISO)
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“Snapshots”
ensemble average of, 176
linear combination of, 177

Spatially controllable CVD reactors, 143
Split-inlet showerhead configuration, reactor

with, 186
Sputtering process, 103, 117

closed-loop surface roughness profiles,
166

KMC simulation of, 111–113
algorithm to simulate, 112
profiles of state covariance, 114
simulation results, 113–115

kMC simulation of
state of stochastic KSE model, 113

parameters of stochastic PDE
models, 107

surface evolution by nonlinear stochastic
KSE, 117, 144–145

Sputtering yield function, 110
State feedback covariance controller, 142
Stochastic KSE, 9, 145, 156

closed-loop simulation, under nonlinear
control, 157–158

actuator distribution function, 157
closed-loop simulation of, 157–158
covariance matrices for, 148
in 1D domain, 145
Gaussian noise, 145, 156
linear system, 150
open-loop dynamics of, 157
open-loop profile of expected surface

roughness, 157
with spatially distributed control, 156
surface roughness control problem for,

147
Stochastic KSE theorem, closed-loop,

151–154
Stochastic ODEs (infinite), 78, 90–91,

146–147
eigenspectrums/covariance spectrums, 85
eigenvalues of system of, 119, 120

infinite summation, theory of, 120
eigenvalue spectrums of, 84

from kMC simulation of deposition
process, 96

expected value/covariance, 79, 91
expressions for statistical moments of, 79
and SPDE, 135

statistical moments of, 79–80, 91
using eigenvalues/ covariance, 83

Stochastic partial differential equation
(SPDE), 8, 134

eigenfunctions of operator, infinite series
in, 135

Stochastic PDEs, construction of, 8, 75–76
construction of 1D linear

analytical solutions for statistical
moments, 79–80

1D linear stochastic PDE model, 76–77
eigenvalue problem of linear operator,

77–78
model construction methodology, 81
thin-film growth process, 81–89

construction of 2D linear, 89
analytical solutions for statistical

moments, 91–93
2D linear stochastic PDE model, 89–90
2D thin-film growth process, 94–102
eigenvalue problem of linear operator,

90–91
model construction methodology, 93–94

parameter estimation for nonlinear, 103
deterministic ODEs for state covariance,

107–108
ion-sputtering process, 110–115
model reduction, 104–106
parameter estimation, 108–110
stochastic KSE, 103–104

see also Feedback control using stochastic
PDEs

Stochastic PDEs thin-film growth process,
82, 95

application to 1D, 81–89
dependence on process parameters,

84–86
eigenvalues/covariance, 82–84
validation, 86–89

application to 2D, 94–102
dependence on process parameters,

97–98
eigenvalues/ covariance, 95–97
validation of 2D stochastic PDE model,

98–102
feedback control using linear covariance

control, 140–144
adsorption rate, 143
closed-loop simulation, 142–144
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open-loop dynamics, 141–142
time increment, 143

Surface diffusion, rate of, 3
Surface microprocesses as Poisson

processes, treating, 15
Surface microstructure model, 14, 58–60

kMC simulation of thin-film growth,
18–19

adsorption, 20
compute real time, 21
initializations, 19–20
Monte Carlo event selection, 20
poisson processes/ master equation,

14–16
surface after multiple adsorption events,

22–23
theoretical foundation of, 16–18

Surface roughness, 28, 118, 119, 134, 139,
188

closed-loop profile vs. open-loop, 158
comparison of, 29, 31, 32
control expected, 146
deposition process, closed-loop, 124
as function of time, 191
growth rate from kMC simulation, 45,

54, 55
80 × 80 lattice vs. 120 × 120 lattice, 49
using 20 × 20 lattice, 45
using 30 × 30 lattice, 46

histogram of 100 closed-loop
100 open-loop simulation runs, 166
open-loop thin-film depositions, 125

kMC simulation and, 39, 102
multivariable feedback control of, 52–56
open-loop profile of expected, 142
of sputtering process, ODEs of, 105
and statistical moments, 118–119
steady-state closed-loop vs. open-loop,

140
substrate temperature under feedback

control, 41
without roughness estimator, 42

temperature and, 68, 69, 70, 71, 73
using stochastic PDE model, 101
using stochastic PDE model/kMC

simulation, 88
Surface site, surface molecules from

adsorption rate, 81, 94

bombardment rate, under feedback
control, 164

desorption rate, 94
migration rate, 82, 94

Thickness nonuniformity, 197
Thin-film deposition process, complex

heterogeneous, 58
Thin-film epitaxy process, 170
Thin-film growth process, 1, 11, 12

closed-loop growth rate profiles,
comparison of, 53

film-thickness profiles, comparison of
time-constant vs. time-varying process

operation, 199
formation – stochastic process, 14–15
kMC models, control using, 37–38

MIMO control, surface rough-
ness/growth rate regulation, 43–56

SISO control, surface roughness
regulation, 38–43

kMC simulation of, 18–19
multiscale process systems, 2–4
parameters of, 38
process modeling and simulation,

185–189
desorption rate/rate of surface

diffusion, 187
flux boundary condition at deposition

surface, 188
macroscopic description of process, 187
process conditions/reactor geome-

try, 186
process reaction scheme, 187

surface of, formation, 27
surface roughness of, 65, 66
time-constant process operation, 189–194

deposition rate nonuniformity, 192
deposition rate profiles, 192, 194
nonuniformity and roughness, 192
substrate temperature profiles across

wafer surface, 193
surface roughness profiles with

macroscale-only, 193
time-varying process operation, 194–200

deposition rate/roughness profiles, 197
surface roughness profiles with

thin-ring/ring actuation, 195
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Thin-film growth process (cont.)
surface temperature profiles, initial/final,

198
temperature profiles for ring temperature

actuation, 195
Thin film properties, on deposition

conditions, 1
Thin-film surface profiles

generated by kMC simulation/stochastic
PDE model

200-s deposition, 99,
100

400-s deposition, 87

1000-s deposition, 87

morphology, 75

Thin-ring actuation, 188

Time-varying coefficients, 90

real part/imaginary part
of, 92
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