
Shigeru Yamashita
Shin-ichi Minato (Eds.)

 123

LN
CS

 8
50

7

6th International Conference, RC 2014
Kyoto, Japan, July 10–11, 2014
Proceedings

Reversible
Computation

Lecture Notes in Computer Science 8507
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shigeru Yamashita Shin-ichi Minato (Eds.)

Reversible
Computation
6th International Conference, RC 2014
Kyoto, Japan, July 10-11, 2014
Proceedings

13

Volume Editors

Shigeru Yamashita
Ritsumeikan University
College of Information Science and Engineering
1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan
E-mail: ger@cs.ritsumei.ac.jp

Shin-ichi Minato
Hokkaido University
Graduate School of Information Science and Technology
North 14 West 9, Sapporo 060-0814, Japan
E-mail: minato@ist.hokudai.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08493-0 e-ISBN 978-3-319-08494-7
DOI 10.1007/978-3-319-08494-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941620

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Reversible computing is a model of computing where the computational process
is in some measure reversible; either in a logical or physical sense, and in certain
areas, both. Reversible computation is of importance to a broad range of areas
of computer science, engineering, mathematics, and physics including low-power
circuit design, coding/decoding, program debugging, testing, databases, discrete
event simulation, reversible algorithms, reversible specification formalisms, re-
versible programming languages, process algebras, and the modeling of biochem-
ical systems. Furthermore, reversible logic provides a basis for describing and
working with quantum computation and its applications as well as other emerg-
ing computational technologies.

RC 2014 was the 6th in a series of annual meetings designed to gather re-
searchers for the dissemination and discussion of novel results and concepts in
all aspects of reversible computation. The first five events were held in York, UK
(2009), Bremen, Germany (2010), Ghent, Belgium (2011), Copenhagen, Den-
mark (2012) and Victoria, Canada (2013). RC 2014 was thus the first of the
meetings to be held in Asia. This volume comprises the proceedings for RC
2014.

The RC 2014 program included three invited talks by Irek Ulidowski, Naoki
Takeuchi and Simon Devitt. For each talk, the full paper appears in these pro-
ceedings. The first paper “Concurrency and Reversibility” is by Irek Ulidowski,
Iain Phillips and Shoji Yuen. The second paper “Reversible Computing Using
Adiabatic Superconductor Logic” is by Naoki Takeuchi, Yuki Yamanashi and
Nobuyuki Yoshikawa. The third paper “Classical Control of Large-Scale Quan-
tum Computers” is by Simon Devitt. We thank the invited speakers for their
contributions to RC2014.

The call for papers attracted 27 submissions. All contributed papers were
reviewed by at least three members of the RC 2014 Program Committee or
their designated sub-reviewers. Based on those reviews and extensive discussion
by the Program Committee, 14 papers were selected for presentation at RC
2014 to make up sessions on automata, notation and languages for reversible
computation, synthesis and optimization of reversible and quantum circuits, as
well as validation and representation of quantum logic.

The list of Program Committee members is provided elsewhere in this vol-
ume. We take this opportunity to thank these 15 experts from across the inter-
national reversible computation community for their hard work and dedication
to the quality of RC 2014. We also thank additional reviewers for their impor-
tant contributions. It has been our great pleasure to have served as Program
Co-chairs for RC 2014 and as editors for these proceedings.

Financial support for RC 2014 was provided by JST ERATO MINATO
Discrete Structure Manipulation System Project and by the Department of

VI Preface

Computer Science, College of Information Science and Engineering, Ritsumeikan
University. The invited talk by Irek Ulidowski was supported by the Department
of Computer Science, University of Leicester.

We also acknowledge organizational support provided by Lisa Jungmann and
Robert Wille, University of Bremen, and by Nurul Ain Binti Adnan and Yousef
Mohammed Alhamdan, Ritsumeikan University.

We also should thank D. Michael Miller, University of Victoria, and Irek
Ulidowski, University of Leicester for their valuable suggestions and guidance.

To conclude, we offer our sincere appreciation to Frank Holzwarth and Anna
Kramer, Springer, Heidelberg, Germany, for their assistance and guidance on
the use of the OCS online manuscript submission and review system, and in the
preparation of these proceedings.

July 2014 Shin-ichi Minato
Shigeru Yamashita

Organization

Program Committee Co-chairs

Shin-ichi Minato Hokkaido University, Japan
Shigeru Yamashita Ritsumeikan University, Japan

Program Committee

Holger Bock Axelsen University of Copenhagen, Denmark
Alexis De Vos University of Ghent, Belgium
Simon Gay University of Glasgow, UK
Markus Grassl Centre Quantum Tech, Singapore
Jarkko J. Kari University of Turku, Finland
Martin Kutrib University of Giessen, Germany
Kazutaka Matsuda University of Tokyo, Japan
D. Michael Miller University of Victoria, Canada
Jackie Rice University of Lethbridge, Canada
Yasuhiro Takahashi NTT, Japan
Irek Ulidowski University of Leicester, UK
Janis Voigtländer University of Bonn, Germany
Robert Wille University of Bremen, Germany
Tetsuo Yokoyama Nanzan University, Japan
Paolo Zuliani Newcastle University, UK

Organizing Committee

Nurul Ain Binti Adnan Ritsumeikan University, Japan
Yousef Mohammed Alhamdan Ritsumeikan University, Japan
Lisa Jungmann University of Bremen, Germany
Shin-ichi Minato Hokkaido University, Japan
Robert Wille University of Bremen, Germany
Shigeru Yamashita Ritsumeikan University, Japan

VIII Organization

Additional Reviewers

Krysia Broda
Markus Holzer
Sebastian Jakobi
Andreas Malcher
Andreas Maletti
Daniel Morrison

Ville Salo
Shigeyuki Sato
Michal Szabados
Rick Thomas
Michael Kirkedal Thomsen
Ilkka Törmä

Sponsors

RC 2014 was sponsored by JST ERATO MINATO Discrete Structure Manip-
ulation System Project and by the Department of Computer Science, College
of Information Science and Engineering, Ritsumeikan University. The invited
talk by Irek Ulidowski was supported by the Department of Computer Science,
University of Leicester.

Table of Contents

Invited Talks

Concurrency and Reversibility . 1
Irek Ulidowski, Iain Phillips, and Shoji Yuen

Reversible Computing Using Adiabatic Superconductor Logic 15
Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa

Classical Control of Large-Scale Quantum Computers 26
Simon J. Devitt

Automata for Reversible Computation

Degrees of Reversibility for DFA and DPDA . 40
Martin Kutrib and Thomas Worsch

Trace Complexity of Chaotic Reversible Cellular Automata 54
Jarkko Kari, Ville Salo, and Ilkka Törmä

Notation and Languages for Reversible Computation

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 67
Daniel Morrison and Irek Ulidowski

Reference Counting for Reversible Languages . 82
Torben Ægidius Mogensen

Synthesis and Optimization of Reversible Circuits

Constructive Reversible Logic Synthesis for Boolean Functions
with Special Properties . 95

Anupam Chattopadhyay, Soumajit Majumder,
Chander Chandak, and Nahian Chowdhury

RevVis: Visualization of Structures and Properties in Reversible
Circuits . 111

Robert Wille, Jannis Stoppe, Eleonora Schönborn,
Kamalika Datta, and Rolf Drechsler

Templates for Positive and Negative Control Toffoli Networks 125
Md Zamilur Rahman and Jacqueline E. Rice

X Table of Contents

Minimal Designs of Reversible Sequential Elements 137
Anindita Banerjee, Anirban Pathak, and Gerhard W. Dueck

Synthesis and Optimization of Quantum Circuits

Quantum Circuit Optimization by Hadamard Gate Reduction 149
Nabila Abdessaied, Mathias Soeken, and Rolf Drechsler

Mapping NCV Circuits to Optimized Clifford+T Circuits 163
D. Michael Miller, Mathias Soeken, and Rolf Drechsler

2D Qubit Layout Optimization for Topological Quantum
Computation . 176

Nurul Ain Binti Adnan, Shigeru Yamashita, Simon J. Devitt, and
Kae Nemoto

Validation and Representation of Quantum Logic

Cross-Level Validation of Topological Quantum Circuits 189
Alexandru Paler, Simon J. Devitt, Kae Nemoto, and Ilia Polian

Equivalence Checking in Multi-level Quantum Systems 201
Philipp Niemann, Robert Wille, and Rolf Drechsler

BDD Operations for Quantum Graph States . 216
Hidefumi Hiraishi and Hiroshi Imai

Author Index . 231

Concurrency and Reversibility

Irek Ulidowski1, Iain Phillips2, and Shoji Yuen3

1 Department of Computer Science, University of Leicester, England
2 Department of Computing, Imperial College London, England

3 Graduate School of Information Science, Nagoya University, Japan

Abstract. Reversible computation has attracted increasing interest in
recent years, with applications in hardware, software and biochemistry. In
this paper we show how to model reversibility in concurrent computation
as realised abstractly in terms of event structures. Two different forms of
event structures are presented and it is shown how to extend them with
reversibility.

1 Introduction

Reversing computation in concurrent and distributed systems has many promis-
ing applications as well as technical and conceptual challenges. Several different
forms of undoing of computation have been identified recently. Backtracking
and reversing of computation that preserves causal order were considered in,
for example, [8, 16, 13, 4, 14, 5, 9] with applications including recovery-oriented
systems and reversible debugging. Reversing out of causal order, however, which
is a very common mode of operation in, for example, biochemical systems has
not been studied widely. The first attempt was made by Phillips, Ulidowski and
Yuen [21] where an extension of the reversible process calculus CCSK with the
execution control operator was proposed. This was followed by a study of a form
of reversible event structure [22] based on a generalisation of Winskel’s enabling
relation [26]. Phillips and Ulidowski proposed then in [19] reversible event struc-
tures that focused on analysing conflict and causation as first-class notions in
the setting of reversible computation.

The last decade has produced a good understanding of how causal reversibil-
ity can be described in the settings of operational semantics and process calculi,
and how to model reversibility logically and in terms of behavioural equivalences.
Research on reversing process calculi can be traced back perhaps to Berry and
Boudol’s Chemical Abstract Machine [3]. Danos and Krivine reversed CCS in [6,
7], and Phillips andUlidowski proposed a generalmethod for reversing process cal-
culi in [16, 17]. Reversible structures that compute forwards and backwards asyn-
chronously were developed by Cardelli and Laneve [4]. Mechanisms for control-
ling reversibility based on a rollback construct were devised by Lanese, Mezzina,
Schmitt and Stefani [12] for a reversible higher-order π calculus [13], and an alter-
native mechanism based on the execution control operator was proposed in [21].
Event Identifier Logic (EIL), which extends Hennessy-Milner logic [11] with re-
verse modalities, was introduced in [20]. EIL corresponds to hereditary history-
preserving bisimulation equivalence [2] within a particular true-concurrencymodel

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 1–14, 2014.
© Springer International Publishing Switzerland 2014

2 I. Ulidowski, I. Phillips, and S. Yuen

of stable configuration structures [10]. Moreover, natural sublogics of EIL corre-
spond to coarser equivalences, several of them defined in terms of reversible events,
sets of concurrent reversible events or pomsets of reversible events. These equiv-
alences and other behavioural equivalences based in the reversible setting were
studied for the first time in [18].

In this paper we show how to understand and model reversibility in concur-
rent computation as realised abstractly in terms of event structures. In Section 2
we introduce the notions of events, configurations, computation and configura-
tion systems. Then in Sections 3 and 4, we recall two different forms of event
structures and show how to extend them with reversibility. Numerous examples
are used to illustrate our approach. The last section contains conclusions and
lists some future challenges.

2 Events and Configurations

We represent the behaviour of systems and processes in the setting of event
structures where units of behaviour are modelled by events. Since we aim to
cover a wide range of systems and processes, events will represent activities such
as incrementing the value of a variable, sending a message, as well as entering
a room, putting a coin into a vending machine, or creating a bond between two
molecules. Events have names and we assume that no two different events have
the same name. We shall use a, b, c, d, e, f to denote events. A system or a process
is then represented as an event structure which is a set of events and a number
of relations on events. Event structures were defined by Winskel [26] following
earlier work by Nielsen, Plotkin and Winskel [15]. They were further developed
in, for example, [24, 23, 27] and [25]. There are many ways in which events can be
related, and this determines how events are performed or undone. For example,
a number of events can cause each other thus occurring in a sequence. Also,
events can be independent from each other, or some events may be in conflict
with other events. Alternatively, an enabling relation on events is used.

Event structures compute (or execute) by either performing events or undo-
ing events, thus moving from one state to another state. A state is simply a
set of events that have occurred and have not been undone yet, and is called
a configuration. The act of moving from a configuration to another configura-
tion is a computation step and is represented by a transition relation: C → C′

means that configuration C evolves to configuration C′ by performing and/or
undoing some events. A sequence of computation steps is called an execution (or
computation). For example, the execution ∅ → {a} → {a, b} says that, initially,
no event has occurred, then event a takes place, and finally event b occurs. We
note that any initial subsequence of an execution is also an execution. Events
can also be undone. We take the view that undoing an event e means that e
is removed from the current configuration, and it is as if e had never occurred,
apart possibly from indirect effects, such as e having caused another event f
before e was reversed. When we undo e in configuration {e, f} we regress to
{f}: this is often written as {e, f} ⇢ {f} instead of {e, f} → {f} to indicate that

Concurrency and Reversibility 3

an event is undone and to match the notation used in figures. The computation
of event structures is thus represented by a configuration system. Configuration
systems are closely related to configuration structures, which have a notion of
configuration and a notion of concurrent or step transition. These were intro-
duced by van Glabbeek and Goltz in [10] and later generalised by van Glabbeek
and Plotkin in [23]. Let P(E) denote the powerset of a set E. A configuration
structure is a pair C = (E,C) where E is a set of events and C ⊆ P(E) is a set
of configurations. For configurations X,Y , we let X → Y if X ⊆ Y and for every
Z, if X ⊆ Z ⊆ Y then Z is a configuration. Since all the events in Y ∖X are
independent, they can happen concurrently as a single step.

We sometime write X
A
→ Y where A = Y ∖X instead of X → Y . Note that

if Y = X ∪ {a} and X,Y ∈ C then X → Y . This may no longer hold in the
reversible setting. Consider E = {a, b}. Suppose that a causes b, so that b cannot
occur unless a has already occurred. Then {b} is not a possible configuration
using forwards computation. However, if a is reversible, we can do a (namely,
∅ → {a}) followed by b ({a} → {a, b}), followed by reversing a ({a, b} ⇢ {b}) to

reach {b}. Thus both ∅ and {b} are configurations, but we do not have ∅
b
→ {b}.

A definition of configuration systems appropriate for the reversible setting was
first given in [19]. We first establish our notation before we recall the definition.
We let A,B,X,Y,Z, . . . range over sets of events. If an event e is reversible, we
have a corresponding reverse event e. We write B for {e ∶ e ∈ B}.

Definition 2.1. A configuration system is a quadruple C = (E,F,C,→) where
E is a set of events, F ⊆ E are the reversible events, C ⊆ P(E) is the set of
configurations and → ⊆ C ×P(E ∪ F) × C is a labelled transition relation such

that if X
A∪B
→ Y then:

– A ∩X = ∅ and B ⊆X ∩F and Y = (X ∖B) ∪A;

– X
A′∪B′

→ Z
(A∖A′)∪(B∖B′)

→ Y (where Z = (X ∖ B′) ∪A′ ∈ C) for every A′ ⊆ A
and B′ ⊆ B.

We say that A∪B is enabled at X if there is Y such that X
A∪B
→ Y . A transition

X
A∪B
→ Y is mixed if both A and B are non-empty. If B = ∅ we say the transition

is forwards, and if A = ∅ the transition is reverse.

For simplicity, we do not discuss in depth mixed transitions in this paper. Most
examples concern transitions where A and B are singleton sets. As a result, the
transitions denote either performing an event or undoing an event.

Finally, we define reachable configurations. Let C = (E,F,C,→) be a con-
figuration system. We say that configuration X is a reachable configuration if

∅

A1∪B1
→ ⋯

An∪Bn
→ X where Ai ⊆ E and Bi ⊆ F for each i = 1, . . . , n.

3 Reversible Event Structures with Causality and
Precedence

In this section we consider event structures where the causation, concurrency
and precedence relations on events dictate how they compute.

4 I. Ulidowski, I. Phillips, and S. Yuen

In order to explore different forms of relations between events and how this
impacts on performing and undoing of events, we shall consider mostly very small
event structures, namely those that have three events a, b and c.

a
b

c

Fig. 1.

Even in such a simple setting we will be able to describe
most of the important forms of executing events forwards
and in reverse. The events a, b, c are depicted by the three
dimensions of the cube in Figure 1. Note that any of the
four edges of any dimension (representing an event) de-
notes an occurrence of the event. The bottom-left vertex
represents the empty configuration ∅ (the origin of com-
putation) and the top-right vertex represents the configu-
ration {a, b, c}. If there are no constraints the events can
happen in any order, denoted by following the edges from
the origin, or simultaneously, denoted by taking some diagonals in the cube. For
simplicity we do not display transitions of simultaneous events in our figures.

Causality is a binary irreflexive relation on events. It tells us which events
cause which other events. We write a ≺ b to mean a causes b, so b cannot take
place before a has occurred.

If a ≺ b and b ≺ c and a ≺ c, namely ≺ is transitive, then we know that an exe-
cution contains b if it contains a, and c is in an execution if b is. The execution is

aa
b b

c
c

Fig. 2.

∅ → {a} → {a, b} → {a, b, c}. This is
depicted in the left cube in Figure 2
by the sequence of thick arrows. An
alternative way to represent an execu-
tion is with a sequence of events, for
example, abc is the execution of the
system with a ≺ b, b ≺ c and a ≺ c. And

we can also write ∅
a
→ {a}

b
→ {a, b}

c
→

{a, b, c}.
The cube on the right in Figure 2

shows all possible executions when a, b and c are independent, except those exe-
cutions that involve steps (sets of simultaneous events) which we do not display
for clarity. If events are not related by causality or other relations, then they are
independent. This means that the events can take place in any order; hence six
complete executions abc, acb, bac, bca, cab and cba are depicted. Each square of
thick arrows represents graphically the independence of the events; we see that
the events can happen in any order so we call them concurrent events. We have
step transitions here, for example ∅ → {a, b, c} and {a} → {a, b, c}, but we do not
display them in Figure 2. Also, there are several mixed transitions, for example,

performing b and undoing a from {a} is represented by {a} → {b}, or {a}
b,a
→ {b}.

If a ≺ b and a ≺ c, meaning that a causes both b and c, and b, c are independent,
then there are only two complete executions: abc and acb. Correspondingly, a ≺ c
and b ≺ c (namely, both a and b cause c) results in abc and bac.

So far we have illustrated how causality or independence (concurrency) af-
fects the execution. Another very useful relation on events is precedence: a ◁ b,

Concurrency and Reversibility 5

read as event a precedes event b, means that if both a and b occur then a oc-
curs first. The precedence relation has a dual interpretation: b ▷ a says that b
prevents a, meaning that if b is present in a configuration, then a cannot occur.

aa
b

c
c

c

Fig. 3.

Precedence is a form of asymmetric
conflict [1]. Consider a system where
a◁ b and b◁ a, meaning that once ei-
ther a or b occurs the other event can-
not occur afterwards. In other words,
a and b are in conflict, often denoted
as a ♯ b. If, additionally, a ≺ c, then we
have two complete executions ac and
b depicted by the left cube in Figure 3.
We can use the precedence relation to
disable events. For example, if b◁ b, then b can never occur, and if we also have
a◁ c then ac and c are the only complete executions (see the cube on the right
in Figure 3).

There are other forms of execution of the three events a, b, c which cannot
be achieved by any combination of the causation, concurrency and precedence
relations: we discuss this in the next section.

Next, we recall three forms of undoing events. Backtracking is when events are
undone in the inverse order they occurred. The system a ≺ b ≺ c in configuration
{a, b, c} backtracks by undoing c first, then undoing b and, lastly, undoing a.
The left cube in Figure 4 shows the system backtracking c and then b (dashed
arrows pointing in the opposite direction) from {a, b, c}, which is written as
{a, b, c} ⇢ {a, b} ⇢ {a}.

aa

b b
cc

Fig. 4.

Consider a ≺ b and a ≺ c: a oc-
curs first and then b, c can occur inde-
pendently. Once in the configuration
{a, b, c} we have no way of working
out which of b and c occurred last.
Since the events are independent, the
order of performing or undoing them
does not matter. So causal reversing,
or simply reversing, is undoing where
(a) independent events can be undone in any order irrespective of the order
they have actually occurred, and (b) events that cause other events can only be
undone after the caused events are undone first.

Both backtracking and reversing are cause-respecting, meaning that events
caused by other events are undone first before the other events can be undone.
There are, however, many important examples of undoing things out-of-causal
order. In fact, this form of undoing plays the vital rôle the mechanisms driving
long-running transactions and biochemical reactions. As an example, consider
the following pattern of behaviour shown in the right cube of Figure 4. Event
a causes event b. Once we have b, a is not needed so it is undone. Finally, c
occurs and cannot be undone, and then b is undone. Informally speaking, a can

6 I. Ulidowski, I. Phillips, and S. Yuen

be thought as the catalyst of b, and b as the catalyst of c. The execution is
∅ → {a} → {a, b} ⇢ {b} → {b, c} ⇢ {c}. Note that we undo a, the cause of b,
before we undo b. Overall, we can reach {c} from ∅ via a combination of forwards
and reverse moves but we cannot reach {c} by executing forwards only.

Since there are different forms of undoing events, the question is how to model
undoing of events formally. In [19] we extend the causation and precedence rela-
tions to define additionally undoing of events. Recall that a, b, c denote undoing
of a, b, c. We can extend the causation relation ≺ with pairs x ≺ y, meaning
that event y can be undone if y has occurred and x has occurred and has not
been undone yet. For example, a ≺ a means that a can be undone if it has oc-
curred. Correspondingly, we also extend our precedence relation ◁ with pairs
x◁ y, meaning that x cannot be undone if y is present. What we have described
informally so far are reversible asymmetric event structures ([19]):

Definition 3.1. A reversible asymmetric event structure (RAES) is a quadruple
E = (E,F,≺,◁) where E is a set of events and F ⊆ E are those events of E which
are reversible, and for any a, b, c, e ∈ E and α ∈ E ∪F :

1. ◁ ⊆ (E ∪F) ×E is the precedence relation (with a ◁ b if and only if b ▷ a),
which is irreflexive;

2. ≺ ⊆ E × (E ∪ F) is the direct causation relation, which is irreflexive and
well-founded, and such that {e ∈ E ∶ e ≺ α} is finite and ◁ is acyclic on
{e ∈ E ∶ e ≺ α};

3. a ≺ a for all a ∈ F ;
4. if a ≺ α then not a▷ α;
5. a ≺≺ b implies a ◁ b, where sustained direct causation a ≺≺ b means that a ≺ b

and if a ∈ F then b▷ a;
6. ≺≺ is transitive;
7. if a ♯ c and a ≺≺ b then b ♯ c, where ♯ is defined to be ◁ ∩ ▷.

Causation can be explained in two different ways. Event a causes event b (a ≺ b)
means either (1) in any execution (computation), if b occurs then a occurs earlier
or (2) if b is enabled at configuration X then we must have a ∈X . The two views
are equivalent if there is no reversing. Consider three events with a ≺ b ≺ c.
Taking view (1) we deduce that a ≺ c. View (2) also allows us to deduce that
a ≺ c, provided that X is left-closed (downwards closed under ≺), which will be
the case for forward-only computation. Thus causation is transitive.

In the setting of reversible computation the second view of causation is sim-
pler, and is adopted in this paper. If all reversing is causal, then all configurations
are left-closed, and so it is still natural to require ≺ to be transitive. If, however,
there is non-causal reversing, which leads to non-left-closed configurations (such
as {b, c} and {c} in our example), it is no longer reasonable to insist on ≺ being
transitive. If a ≺ b ≺ c then a may have been reversed after b occurs, and before
c occurs. Therefore, direct causation in RAESs is non-transitive. We introduce
additionally the concept of sustained causation, where a ≺≺ b means that a causes
b and a cannot reverse until b reverses. This is the analogue of standard causa-
tion for forwards computation, and we therefore take sustained causation to be
transitive (condition 6 in Definition 3.1).

Concurrency and Reversibility 7

Next we consider the issue of conflict inheritance, namely if a ≺ b and a ♯ c
then b ♯ c, in the reversible setting. If a < b and a ♯ c and a is reversible, then
we can undo a in {a, b} to reach {b}. And there is nothing in {b} to prevent
c from taking place, so we expect that {b, c} is a configuration, and b and c
are not in conflict. Hence, there is no conflict inheritance with respect to ≺.
However, we still have conflict inheritance with respect to sustained causation
a ≺≺ b (condition 7 in Definition 3.1).

Definition 3.2. Let E = (E,F,≺,◁) be an RAES. We define the associated
configuration system C(E) = (E,F,C,→) as follows. Let C consist of those X ⊆ E
such that ◁ is well-founded on X . For X ∈ C and A ⊆ E, B ⊆ F , we define

X
A∪B
→ Y if and only if X,Y ∈ C and Y = (X ∖B) ∪A and A ∪B is enabled at

X , which is

– A ∩X = ∅, B ⊆X ;
– for every a ∈ A, if c ≺ a then c ∈ X ∖B;
– for every a ∈ A, if c ▷ a then c /∈ X ∪A;
– for every b ∈ B, if d ≺ b then d ∈ X ∖ (B ∖ {b});
– for every b ∈ B, if d ▷ b then d /∈ X ∪A.

We are now able to model undoing of events. If we add x ≺ x, for all x ∈ {a, b, c},
and a◁ b, b ◁ c to a ≺ b ≺ c and a ≺ c, then we achieve backtracking in Figure 4.
Note that only c can be undone in {a, b, c} because a◁ b, b ◁ c and the presence
of b, c prevents undoing of a, b, respectively.

In order to achieve causal reversing we impose the following global conditions:
all events are reversible (x ≺ y if and only if x = y for all x), and causes are undone
if and only if their effects are not present (x ≺ y if and only if x◁ y for all x, y).
In the case of the system a ≺ b, a ≺ c we add the following to achieve causal
reversibility: a ≺ a, b ≺ b, c ≺ c and a ◁ b, a ◁ c. Here, once {a, b, c} is reached,
b, c can be undone in any order, and a can only be undone when b, c are not
present (due to a ◁ b, a ◁ c). Overall, we have {a, b, c} ⇢ {a, b} ⇢ {a} and
{a, b, c} ⇢ {a, c} ⇢ {a}, and clearly {a} ⇢ ∅.

Finally, we model the out-of-causal-order RAES in Figure 4. We have a ≺ b ≺ c
but no a ≺ c (so ≺ is not transitive) and a ≺ a, b ≺ b (there is no c ≺ c since c is
irreversible). That a, b are undone only when b, c are present is ensured by b ≺
a, c ≺ b, respectively. In order to stop reversing b immediately after it occurs we
add b◁ a. And, a◁ b, a◁ c prevent a from re-occurring when b or c are present.
As a result, there is a single execution ∅ → {a} → {a, b} ⇢ {b} → {b, c} ⇢ {c}.

The work on reversing asymmetric event structures in [19] led to several inter-
esting results concerning reachable configurations. For example, we have given
conditions under which finite and reachable configurations are guaranteed to
be reachable without intermediate infinite configurations. Our models are gen-
eral enough to allow several forms of reversibility to be defined and analysed,
including the causal and inverse causal disciplines.

8 I. Ulidowski, I. Phillips, and S. Yuen

4 Reversible Event Structures with Enablings

There are forms of execution of three events a, b, c which cannot be achieved
by any combination of the causation, concurrency and precedence relations. For
example, consider an event that is caused by a disjunction of events: namely
a or b causes c. This is called disjunctive causation. If no other relation holds
of a, b, c, then there is an execution where only a occurs before c, there is an-
other execution where only b occurs prior to c, and there are two executions
where both a and b precede c. These complete executions acb, bca, abc and bac
are depicted in the left cube in Figure 5. This event structure can be defined
using the enabling relation as in [15, 26] as we shall see below. Another ex-
ample of a relation on events that cannot be expressed in terms of causality,

aa
bb

c c
c

Fig. 5.

concurrency and precedence is resolv-
able conflict. Consider a temporary
conflict between a and b which be-
comes resolved once a third event c
occurs. This is represented by the ex-
ecutions acb, bca, cab and cba in the
cube on the right in Figure 5. This
event structure cannot be expressed
with the traditional enabling relation;
instead a more general enabling rela-
tion from [23] or our enabling with prevention relation, that we recall below, are
necessary.

Firstly, we recall some definitions from [26]. Event structures are triples E =
(E,Con,⊢) where E is a set of events with typical elements e, e′, Con ⊆ Pfin(E)
is the consistency relation which is non-empty and satisfies the property Y ⊆
X ∈ Con implies Y ∈ Con (downwards closure), and ⊢ ⊆ Con ×E is the enabling
relation which satisfies the weakening condition X ⊢ e and X ⊆ Y ∈ Con implies
Y ⊢ e for all e ∈ E. We omit brackets for singleton sets in expressionsX ⊢ e where
convenient. Informally, configurations are the sets of events that have occurred
(in accordance with Con and ⊢). More formally, we let E = (E,Con,⊢) be an
event structure. The set S(E) of configurations of E consists of X ⊆ E which are

– consistent : every finite subset of X is in Con;
– secured : for all e ∈ X there is a sequence of events e0, . . . , en ∈ X such that

en = e and for all i < n, {e0, . . . , ei−1} ⊢ ei.

We shall now present several examples of event structures with enablings and
their corresponding configurations.

Consider the events a, b with all subsets of {a, b} in Con, and the enabling
relation ∅ ⊢ a, a ⊢ b. We notice that {a} is a configuration because {a} ∈ Con
and a is enabled without any preconditions: ∅ ⊢ a. Once a takes place, b can
happen because {a, b} ∈ Con and b is enabled by the already performed a: a ⊢ b.
We can say here that a causes b and b cannot take place before a happens first.

Some events are in conflict : they cannot happen in the same computation.
Consider the events a, b as above and the event c which is conflict with a. This

Concurrency and Reversibility 9

is represented by {a, c} ∉ Con and, by the downwards closure property, {a, b, c} ∉
Con. The enabling relation is ∅ ⊢ a, a ⊢ b and ∅ ⊢ c. The configurations are
∅, {a},{a, b} and {c} representing that either a or c can happen initially, but
once one has taken place the other cannot happen; see left cube in Figure 6.

aa

b b
cc

Fig. 6.

Some events are independent of each
other, or concurrent. Consider the
events a, b and c, with no events in
conflict. The enabling relation is ∅ ⊢
a, a ⊢ b and ∅ ⊢ c. Since a and c are
not in conflict, ∅ ⊢ a, ∅ ⊢ c imply that
a, c can happen independently of one
another, in any order. Moreover, b and
c are independent and can happen in
any order provided that b always fol-
lows a. The configurations are ∅, {a},{a, b}, {c}, {a, c},{a, b, c}, and can be seen
in the cube on the right in Figure 6.

We now show how to define the disjunctive causation event structure from
Figure 5. If we let the enabling relation as ∅ ⊢ a, ∅ ⊢ b, and a ⊢ c with b ⊢ c,
then we can deduce that {c} is not a configuration since we have no ∅ ⊢ c. All
other subsets of {a, b, c} are configurations.

As we aim to generalise event structures with enablings to the reversible set-
ting, we shall use this equivalent definition of a configuration. Let E = (E,Con,⊢)
be an event structure. A set X ⊆ E is a configuration of E if there is an infinite
sequence X0, . . . with X = ⋃∞n=0Xn, X0 = ∅, Xn ⊆ Xn+1 and Xn consistent (all
n ∈ N), where for every n ∈ N, and every e ∈ Xn+1 ∖Xn, there is a rule X ′ ⊢ e
with X ′ ⊆fin Xn.

As in Section 3, there is a natural notion of computation for configurations
in this setting. A transition relation can now be defined to represent how a
new event can happen in a configuration giving rise to a bigger configuration.
Given configurations X,Y we have X → Y if Y = X ∪ {e} (with e /∈ X) and
X ′ ⊢ e, for some e and X ′ ⊆fin X . A computation of the event structure E is a
computation (sequence of transitions) starting from ∅E , the empty configuration
of E . Subsequently we omit E in ∅E . As an illustration, ∅ → {c} → {a, c} →
{a, b, c} is a computation of the event structure in the right cube in Figure 6.
We also have ∅ → {a} → {a, c} → {a, b, c} and ∅ → {a} → {a, b} → {a, b, c}.

Finally, we consider undoing of events. Let E be a set of events. We define
the corresponding set of undone events (strictly speaking, events that are to be
undone) to be E = {e ∶ e ∈ E}, where E is disjoint from E. For e ∈ E, let e∗ be
either e or e; we sometimes use the notation X + e∗ to mean either X ∪ {e} or
X ∖ {e} respectively. Reversible event structures were first introduced in [22]:

Definition 4.1. A reversible event structure (RES for short) is a triple E =
(E,Con,⊢) where E and Con are as before and ⊢ ⊆ Con×P(E) × (E ∪E) is the
enabling relation satisfying:

1. if X � Y ⊢ e∗ then (X ∪ {e}) ∩ Y = ∅;
2. if X � Y ⊢ e then e ∈X ;

10 I. Ulidowski, I. Phillips, and S. Yuen

3. weakening: if X � Y ⊢ e∗ and X ⊆ X ′ ∈ Con then X ′ � Y ⊢ e∗, provided
X ′ ∩ Y = ∅.

When Y = ∅ we shall write X � Y ⊢ e∗ as X ⊢ e∗. Also we omit brackets for
singleton sets in expressions X � Y ⊢ e∗ where convenient.

Our enabling relation ⊢ extends the enabling relation of Winskel in two di-
rections. Firstly, it permits reversing of events as e∗ in X � Y ⊢ e∗ can be an
undone event. Secondly, it allows us to specify some of the events that prevent
e∗ (here those in Y) in addition to the events that enable e∗ (those in X). For
example, {a, b}� {c, d} ⊢ a says that a can be undone in a configuration which
contains a and b and does not contain c and d.

We are ready to define an RES for resolvable conflict in Figure 5.

Example 4.2. We let Con be P({a, b, c}). The enabling relation is as follows:
∅ ⊢ c, ∅�b ⊢ a and ∅�a ⊢ b, meaning that initially, either a or b can take place
if the other event is not present. We also have c ⊢ a and c ⊢ b, which imply that
both a and b can happen after c.

Example 4.3. Consider an RES with a single event e and the enabling rule ∅ ⊢ e.
The sets ∅ and {e} are configurations. If we add another rule e ⊢ e then this
allows us to regress from {e} to ∅. The sets ∅ and {e} are reachable from ∅ in
any number of steps; they are configurations according to Definition 4.5 below.
And, there is an infinite computation sequence ∅,{e},∅,{e},

This example shows that sets of events can grow and and shrink as reversible
computation progresses. Also, sets of events may grow non-monotonically as,
for example, in a0, b, a1, b, a2, b, a3, b, a4, So we shall use limits of infinite se-
quences of subsets of E in order to define configurations as in [22] (recall that
S ⊆ N is cofinite if N ∖ S is finite):

Definition 4.4. Let X0, . . . be an infinite sequence of subsets of E. We say that
X = limn→∞Xn if for every e ∈ E:

1. {n ∈ N ∶ e ∈Xn} is either finite or cofinite;
2. e ∈X if and only if {n ∶ e ∈Xn} is cofinite.

We note that a sequence of sets does not necessarily have a limit. The sequence
∅,{e},∅,{e}, . . . in Example 4.3 has no limit, since e belongs to infinitely many
sets and does not belong to infinitely many sets. However if Xn ⊆ Xn+1 (all
n ∈ N) then limn→∞Xn exists and is ⋃∞n=0Xn. A finite sequence X0, . . . ,Xn

can be extended to an infinite sequence by letting Xm = Xn for all m > n; the
extended sequence has the limit Xn. In Example 4.3 the sequence ∅,{e} can be
extended to an infinite sequence ∅,{e},{e}, . . . and has the limit {e}.

Next we state the definition of a configuration for an RES ([22]). As the
notational convention we write e ∈ A ∖B to mean e ∈ B ∖A.

Definition 4.5. Let E = (E,Con,⊢) be an RES. A set X ⊆ E is a configuration
of E if there is an infinite sequence X0, . . . with X = limn→∞Xn, X0 = ∅ and
Xn∪Xn+1 consistent (all n ∈ N), where for every n ∈ N, and every e∗ ∈ Xn+1∖Xn,
there is a rule X ′ � Y ′ ⊢ e∗ such that:

Concurrency and Reversibility 11

1. X ′ ⊆fin Xn and X ′ + e∗ ⊆Xn+1;
2. Y ′ ∩ (Xn ∪Xn+1) = ∅.

We require Xn∪Xn+1 to be consistent, as configurations can only be extended in
a consistent fashion. However, there is no requirement that Xi∪Xj is consistent
if j > i + 1 because events in Xi which are inconsistent with Xj can be reversed
in constructing Xi+1, . . . ,Xj−1. Also, we note that the Xis in the above defini-
tion can grow smaller as well as bigger as computation progresses. Moreover, a
finite sequence X0, . . . ,Xn = X that satisfies the conditions of Definition 4.5 is
sufficient for X to be a configuration. The sequence ∅,{e} in Example 4.3 can
be extended to an infinite sequence and, since the conditions of Definition 4.5
are satisfied, its limit {e} is a configuration.

We return to Example 4.2. We note that although {a, b} ∈ Con, {a, b} is not a
configuration according to Definition 4.5. Consider ∅, {a}, {a, b} and b: there is
no enablingX ′�Y ′ ⊢ b such thatX ′ ⊆fin {a} and Y ′∩{a, b} = ∅. Correspondingly
for the sequence ∅, {b}, {a, b} and a. Hence, {a, b} is not a configuration.

It can be easily shown that RESs are a generalisation of event structures: RESs
with enablings X � ∅ ⊢ e are just event structures of Winskel [26]. Moreover,
our configurations in such setting are just the traditional configurations. We can
also show that our generalised enabling rules are powerful enough that we no
longer need the consistency relation.

We are now ready to define a transition relation between configurations of an
RES. Again, as in Section 2, we shall use the dashed arrow notation for the part
of the transition relation that represents undoing of events. Given configurations
X,Y of an RES E we let

– X → Y if Y =X ∪{e} and X ′�Z ⊢ e for some e,X ′, Z with e /∈X , X ′ ⊆fin X
and Z ∩ (X ∪ {e}) = ∅;

– X ⇢ Y if Y = X ∖ {e} and X ′ �Z ⊢ e for some e,X ′, Z with X ′ ⊆fin X and
Z ∩X = ∅.

In contrast to Section 2, this transition relation represents only either performing
a single event or undoing a single event. Having given the transition relation, we
can now define a configuration system for an RES. Given an RES E = (E,Con,⊢),
the associated configuration system C(E) is (E,E,C,→) where C is the set of
configurations for E as in Definition 4.5.

We now show how to represent different forms of undoing of events in RESs.
Consider events a and b with ∅ ⊢ a and a ⊢ b. We have that a causes b so if we
wish to achieve causal reversing we need to add the following to the definition
of ⊢: b ⊢ b and a� b ⊢ a. The configuration {a, b} can regress to {a} by undoing
b as allowed by b ⊢ b. But it cannot regress to {b} because a� b ⊢ a can only be
applied in a configuration that contains a and does not contain b. See Figure 7(i).

If undoing events in the same order as they occurred is required, we instead
add to the definition of ⊢ the following: a ⊢ a and b � a ⊢ b. This means that a
can be reversed in any configuration that contains a (with or without b), and b
can be reversed only when a is not present. Since a causes b, this means that b can
be reversed only when a is reversed. See Figure 7(ii) where reverse transitions are

12 I. Ulidowski, I. Phillips, and S. Yuen

(i) (ii) (iii)

aaa
b

b

b

Fig. 7.

indicated by dashed lines. Finally, if we would like instead that a and b are reversed
in any order, then we would extend the enabling relation simply with b ⊢ b and
a ⊢ a. See Figure 7(iii).

Finally, we give an example where we get an infinite configuration as a limit
of a non-monotonically increasing sequence ([22]).

Example 4.6. Let E = (E,Con,⊢) where E = {ai ∶ i ∈ N} ∪ {bj ∶ j ∈ N} and Con
consists of {ai, b0, . . . , bj} (any i, j ∈ N) plus deducible subsets, with

∅ ⊢ a0 ai ⊢ bi {ai, bi} ⊢ ai bi ⊢ ai+1 (all i ∈ N)

Informally, ai is the catalyst of bi, for all i, so once bi occurs ai can be undone.
The only possible computation of E is a0, b0, a0, a1, b1, a1, It produces the

following sequence of sets of events, which grow non-monotonically:

∅,
{a0}, {a0, b0}, {b0},
{b0, a1}, {b0, a1, b1}, {b0, b1},
{b0, b1, a2}, {b0, b1, a2, b2}, {b0, b1, b2}, . . .

Each of the sets is a configuration and this sequence has limit the infinite set
{bj ∶ j ∈ N}, so {bj ∶ j ∈ N} is also a configuration. Note that each ai appears
finitely often in the sequence, while each bj appears cofinitely often.

5 Discussion and Conclusions

We indicate briefly several areas of ongoing research in reversing event structures.
We aim to investigate the expressiveness of event structures defined with our

enabling relation with prevention (for forwards-only events), and compare them
with other forms of event structures. In particular, it remains to be seen whether
or not we can encode event structures of van Glabbeek and Plotkin [23], which
are defined by a very general form of enabling relation (X ⊢ Y where X,Y are
sets of events), as our event structures from Section 4, or vice versa.

The examples in the previous section indicate that it ought to be possible
to represent an arbitrary RAES as a special form of RES. Given an RAES if
Xa = {e ∣ e ≺ a} and Ya = {f ∣ a◁ f}, then the enabling rule Xa�Ya ⊢ a captures
the idea that a can occur if all events in Xa have occurred (and are present) and

Concurrency and Reversibility 13

if no events from Ya are present. It should be then routine to define conditions 3
to 7 of RAESs in terms of our enabling relation. For example, condition 3 is
expressed as if X � Y ⊢ α and a ∈ X , then a ∉ Y : this is already guaranteed by
condition 1 in Definition 4.1. Since disjunctive causation cannot be expressed in
RAESs, RESs are strictly more expressive that RAESs.

Another challenge is to define step and mixed transitions between configura-
tions in the RES setting. In order to define the notion of a set of enabled events
and past events (as in Definition 3.2), we need to devise a way of dealing with
enabling rules that are obtained via weakening (Definition 4.1). Assume that
we wish to check if A ∪ B is enabled at X . Clearly, we require A ∩X = ∅ and
B ⊆ X . If a ∈ A and Xa � Ya ⊢ a, then we also require that Xa ⊆ X ∖ B and
(X ∪A) ∩ Ya = ∅. However, the last condition will not necessarily hold for rules
gotten from Xa � Ya ⊢ a by weakening. Assume that Xa ∪ {d} is consistent and
d ∉Xa, Ya,X . Then (Xa∪{d})�Ya ⊢ a is an enabling obtained from Xa�Ya ⊢ a
by weakening, but Xa ∪ {d} is not a subset of X ∖B.

Concluding, we have shown how to model reversibility in concurrent com-
putation as realised by two different forms of events structures, namely event
structures defined in terms of the causation and precedence relations and event
structures defined by the enabling relation. We have presented causal reversibil-
ity as well as out-of-causal-order reversibility.

Acknowledgements. The first author thanks the University of Leicester for
granting Academic Study Leave and acknowledges partial support from the JSPS
Invitation Fellowship grant S13054.

References

[1] Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures, and processes. Information and Computation 171(1), 1–49 (2001)

[2] Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical Report ICS PAS, Polish
Academy of Sciences (1991)

[3] Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer
Science 96(1), 217–248 (1992)

[4] Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference
on Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

[5] Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: Proceedings of LICS 2013, pp. 388–397. IEEE Computer Society
(2013)

[6] Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

[7] Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

[8] Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings
of BioConcur 2003. ENTCS, vol. 180, pp. 31–49 (2007)

14 I. Ulidowski, I. Phillips, and S. Yuen

[9] Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In:
Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384.
Springer, Heidelberg (2014)

[10] van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37, 229–327 (2001)

[11] Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency.
Journal of the ACM 32, 137–161 (1985)

[12] Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility
in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

[13] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

[14] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013)

[15] Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13, 85–108 (1981)

[16] Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006)

[17] Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic
and Algebraic Programming 73, 70–96 (2007)

[18] Phillips, I.C.C., Ulidowski, I.: A hierarchy of reverse bisimulations on stable con-
figuration structures. Mathematical Structures in Computer Science 22, 333–372
(2012)

[19] Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in even structures.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052,
pp. 303–318. Springer, Heidelberg (2013)

[20] Phillips, I.C.C., Ulidowski, I.: Event Identifier Logic. Mathematical Structures in
Computer Science 24, 1–51 (2014)

[21] Phillips, I.C.C., Ulidowski, I., Yuen, S.: A reversible process calculus and the
modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC
2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

[22] Phillips, I.C.C., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and
events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–
154. Springer, Heidelberg (2013)

[23] van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theoretical Computer Science 410(41), 4111–4159 (2009)

[24] van Glabbeek, R.J., Plotkin, G.D.: Event structures for resolvable conflict.
In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153,
pp. 550–561. Springer, Heidelberg (2004)

[25] Varacca, D., Yoshida, N.: Typed event structures and the linear π-calculus. The-
oretical Computer Science 411(19), 1949–1973 (2010)

[26] Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

[27] Winskel, G.: Events, causality and symmetry. Computer Journal 54(1), 42–57
(2011)

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 15–25, 2014.
© Springer International Publishing Switzerland 2014

Reversible Computing
Using Adiabatic Superconductor Logic

Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa

Department of Elecrical and Computer Engineering, Yokohama National University,
Hodogaya, Yokohama 240-8501, Japan

takeuchi-naoki-kx@ynu.jp, {yamanasi,nyoshi}@ynu.ac.jp

Abstract. The adiabatic quantum-flux-parametron (AQFP), which is adiabatic
superconductor logic, is well suitable to realize reversible computing, because of
the extremely high energy efficiency. In AQFP logic, dynamic energy
dissipation can be significantly reduced by varying potential energy adiabatically
during a switching event, which prevents non-adiabatic energy dissipation. In
this paper, we report recent research results toward reversible computing using
AQFP logic. First, we show experimental demonstrations of adiabatic switching
operations of an AQFP gate. Then we discuss the minimum energy dissipation
for an adiabatic switching operation using numerical analyses. Finally, we report
reversible computing using AQFP gates and discuss the minimum energy
dissipation required for logic operations using logically and physically reversible
gates.

Keywords: reversible computing, physical reversibility, superconductor logic,
adiabatic device, QFP.

1 Introduction

The connection between information and energy has recently been attracting
significant attention as part of efforts related to increasing energy-efficiency, which is
now considered to be the most important metric in modern computer design [1,2].
One of the most important theories in this field is the Landauer’s principle [3],
whereby Rolf Landauer predicted that the erasure of 1-bit information generates heat
of more than kBTln2 in order to compensate for a reduction in entropy, where kB is the
Boltzmann constant and T is temperature. This principle imposed the Landauer bound
of kBTln2 as the minimum energy dissipation on irreversible logic operations, such as
AND and OR, which erase 1-bit information at every logic operation. The minimum
power consumption in modern semiconductor-based computers can be defined using
this principle because they primarily conduct irreversible logic operations [4-7]. After
long discussions and numerical analyses of this energy bound [8-10], some very
recent experimental demonstrations that confirmed its validity have been reported
[11,12].

16 N. Takeuchi, Y. Yamanashi, and N. Yoshikawa

In order to go beyond this bound, Edward Fredkin established a theory of
reversible computing [13], where the entropy of information is conserved during
computation to prevent the heat generation resulting from the entropy reduction. He
introduced the Fredkin gate [13] as a 3-in/3-out reversible logic gate, which is
logically reversible [14] because its inputs are uniquely determined from its outputs,
thereby conserving the entropy during computation. As part of the effort to achieve
practical reversible logic gates, several physical models and devices have been
proposed [15-18]. However, no reversible logic operations have been demonstrated to
date, and the minimum energy bound for logic operations using practical devices is
not clear yet. Thus, discussions on reversible computing remain theoretical, and the
question as to whether reversible computing is achievable using practical logic
devices has yet to be resolved.

One of the obstacles to the achievement of reversible computing is that reversible
logic gates must be built by using very low-power devices, whose bit energy
should be ~kBT or even smaller. Adiabatic quantum-flux-parametron [19,20], which
is adiabatic superconductor logic, is a good candidate for such use because the
bit energy can go below kBT due to adiabatic switching operations [21]. Another
obstacle is that a reversible logic gate must be physically, as well as logically,
reversible [22].

In the present study, we report recent research results toward reversible computing
using AQFP gates. In Chap. 3, we show experimental demonstrations of adiabatic
switching operations of AQFP gates. In Chap. 4, we discuss the minimum energy
dissipation for the adiabatic operations. In Chap. 5, we show the first practical
reversible logic gate using AQFP logic and discuss the minimum energy dissipation
for reversible computing.

2 Adiabatic Quantum-Flux-Parametron Logic

Figure 1 shows the circuit schematic of an AQFP gate, which is composed of two
superconducting loops including Josephson junctions, J1 and J2. The operation
principle of an AQFP gate is based on that of a quantum-flux-parametron (QFP) gate
invented by Eiichi Goto [23]. In AQFP logic, we focus on operating QFP gates in an
adiabatic operation mode with optimized circuit parameters [20]. Excitation fluxes are
applied to the superconducting loops through transformers composed of L1, L2, Lx1,
and Lx2 using ac excitation currents, Ix. Then one single-flux-quantum (SFQ) is stored
either in the left loop or in the right loop, depending on the input current, Iin. As a
result, the logic state can be represented by the direction of the output current, Iout.
Because AQFP gates are driven by ac excitation currents, static power consumption is
zero. Moreover, dynamic energy dissipation can be significantly reduced by adiabatic
switching operations, as will be described later.

 Reversible Computing Using Adiabatic Superconductor Logic 17

Fig. 1. AQFP gate. Excitation fluxes are applied using Ix, and one SFQ is stored either in the
left loop or in the right loop, which correspond to logic “1” and “0”, respectively.

Fig. 2. (a) Potential energy of a binary switch. The particle corresponds to the circuit state. (b)
Non-adiabatic switching operation. (c) Adiabatic switching operation. The circuits state
changes without irreversible state transition.

The potential energy of a binary switch can be represented by double-well potential

as shown in Fig. 2(a). In most logic devices, including complementary metal-oxide-
semiconductor (CMOS) logic and rapid single-flux-quantum (RSFQ) logic [24], the
circuit state non-adiabatically changes during a switching event as shown in Fig. 2(b),
and the applied energy equal to or larger than the energy barrier, Eb, is dissipated as
heat. Also, Eb should be much larger than the thermal energy, kBT. Therefore, in non-
adiabatic logic, energy much larger than kBT is dissipated at every switching
operation; the bit energy of state-of-the-art CMOS circuits is approximately 105kBT
[25,26], those of energy-efficient superconductor logics are at least 103kBT [27-29].
On the other hand, in adiabatic logic such as AQFP, the circuit state changes
adiabatically by tilting the single-well potential after removing the energy barrier as
shown in Fig. 2(c), which enables switching operations with energy dissipation much
smaller than Eb. Moreover, because energy dissipation is proportional to operation
frequencies in adiabatic logic [21, 22], sub-kBT bit energy is achievable by lowering
operation frequencies.

18 N. Takeuchi, Y. Yamanashi, and N. Yoshikawa

3 Experimental Demonstration of Adiabatic Switching
Operations

In order to experimentally demonstrate adiabatic switching operations of AQFP logic,
we measured extremely small energy dissipation of an AQFP gate using the
superconducting resonator-based method [30]. Figure 3 shows the circuit schematic
for the method, where an AQFP gate is magnetically coupled with the
superconducting resonator composed of L and C. When the Q between the resonator
and each port, Qes, is sufficiently high, most of the energy applied by a power supply
is dissipated by the AQFP gate. In such a coupling condition, the power consumption
of an AQFP gate, Pqfp, is given by the insertion loss, S21, as follows:

()2121 1
2

SS
P

P in
qfp −= , (1)

where Pin is the input microwave power. Figure 4(a) shows the micrograph of a 5
GHz superconducting resonator and an AQFP gate for the power measurement, that
we designed and fabricated using the Nb Josephson process, the AIST standard
process (STP2) [31]. We measured S21 of the resonator using a network analyzer and
calculated Pqfp using Eq. (1). Figure 4(b) shows the measurement results of S21
implemented in the liquid He at 4.2 K, where the sudden drop of S21 for Pin ~ -57 dBm
indicates that the AQFP gate starts to switch by applied enough energy through the
resonator. Assuming the loss of the measurement system to be 4.0 dB, Pqfp was ~50
pW for Pin = -57 dBm, which corresponds to the bit energy of only 10 zJ = 170 kBT at
5 GHz operation. Furthermore, the bit energy corresponds to 10% of the energy
barrier given by Eb = IcΦ0, where Ic is a critical current of Josephson junctions and Φ0
is an SFQ. From the above results, we have successfully demonstrated the adiabatic
switching operation of AQFP gates, where the bit energy is much smaller than the
energy barrier as described in Chap. 2.

Fig. 3. Superconducting resonator-based method to measure power consumption of an AQFP
gate. The AQFP gate is supplied with energy for switching by the resonator through magnetic
coupling. Most of the energy applied by the power supply is dissipated by the AQFP gate for
sufficiently high Qes.

 Reversible Computing Using Adiabatic Superconductor Logic 19

Fig. 4. Measurement of power consumption of an AQFP gate at 5 GHz operation for Ic = 50
μA. (a) Micrograph. (b) Measurement results. Pqfp increases as Pin increases, because excitation
fluxes applied by the resonator changes potential energy of the AQFP gate more quickly.

4 Minimum Energy Dissipation for Adiabatic Switching
Operations

In this chapter, we discuss the minimum energy dissipation required for adiabatic
switching operations using analytical estimation of bit energy and numerical analyses
on a bit error rate (BER) [21]. In Chap. 3, the AQFP gate was designed using
critically damped Josephson junctions for high-speed operations, where the
McCumber parameter [32], βc (= Q2), was adjusted to be ~1. For adiabatic switching
operations, energy dissipation can be further reduced by using underdamped junctions
with higher βc, because the intrinsic switching time of junctions reduces and the
circuit state changes more adiabatically. This gives analytical estimation of the bit
energy, Ebit, as follows:

20 N. Takeuchi, Y. Yamanashi, and N. Yoshikawa

rf

sw
cbit IE

τ
τ

02 Φ= , (2)

where τsw is an intrinsic switching time of junctions and τrf is a rise/fall time of Ix.
This equation indicates that energy dissipation in adiabatic logic is determined by the
ratio of the two time constants, τsw and τrf, and corresponds to the non-adiabatic
dissipation of IcΦ0 for τsw = τrf. Figure 5 shows Ebit as a function of τrf using
underdamped Josephson junctions (βc ~ 2600), where the red solid line shows circuit
simulation results and the blue dashed line shows analytical estimation using Eq. (2).
The figure shows energy dissipation reduces linearly with an increase in τrf, and
finally Ebit reaches below the Landauer bound of kBT ln2 [3] for τrf ~ 1000 ps at 4.2 K.

Fig. 5. Bit energy as a function of a rise/fall time of ac excitation currents for underdamped
Josephson junctions (βc ~ 2600) for Ic = 50 μA. Simulation results agree well with the
analytical estimation. Energy dissipation reduces almost linearly with an increase in the rise/fall
time.

In order to confirm if such an extremely small Ebit is attainable at a finite
temperature, we calculated BERs at 4.2 K for different τrf with the same circuit
parameters. Figure 6 shows the simulation results of the BERs for τrf of 200 ps, 1000
ps, and 2000 ps, as a function of Ix, where the bias of 0% corresponds to an excitation
flux of Φ0. The plotted markers show simulation results and the lines show fitting
curves using a complementary error function. We confirmed that the BER for each τrf
was much smaller than 10-23 for the bias of 0%, and all the fitting curves were almost
the same. This is because the BERs of AQFP gates are determined by the energy
barrier of IcΦ0 and do not depend on operation frequencies. These results show that
the bit energy of an AQFP gate can be arbitrarily reduced by increasing the rise/fall
time while keeping low BERs, and that there is no minimum bit energy in AQFP
logic, unless the entropy decreases.

 Reversible Computing Using Adiabatic Superconductor Logic 21

Fig. 6. Bit error rates at 4.2 K for different rise/fall times. Junctions are underdamped (βc ~
2600) and Ic = 50 μA. The bias of 0% corresponds to the excitation flux of Φ0. BERs are
determined by the energy barrier of IcΦ0, therefore energy dissipation can be arbitrarily reduced
by increasing the rise/fall time.

5 Reversible Computing Using AQFP Gates

We have demonstrated that AQFP gates can operate in an adiabatic mode, and that
energy dissipation during a switching event can be arbitrarily reduced by increasing
junctions’ Q or lowering operation frequencies. In this chapter, we show the first
practical reversible logic gate, which we designated as the reversible quantum-flux-
parametron (RQFP) gate [33], and discuss the minimum energy dissipation required
for reversible computing using AQFP gates.

Fig. 7(a) shows the block diagram of the RQFP gate, where a, b, and c are input
ports, and x, y, and z are output ports. An RQFP gate is composed of three AQFP
majority (MAJ) gates and three AQFP splitter (SPL) gates. In AQFP logic, MAJ gates
and SPL gates have the same circuit topologies and the direction of data flow decides
the function, MAJ or SPL. Therefore, the circuit topology of the RQFP gate is totally
symmetrical and data can propagate bi-directionally, which indicates that the RQFP
gate is physically, as well as logically, reversible. Also, the RQFP gate is considered
to be a primitive gate in reversible computing, because MAJ gates, NOT gates, and
constant inputs constitute a logical primitive. Fig. 7(b) shows the simulation results of
energy dissipation per clock cycle for logic operations using an RQFP gate. For all
input data combinations, energy dissipation reduces almost linearly with an increase
in a rise/fall time of excitation currents, which shows that all the gates in the RQFP
gate operate adiabatically. Therefore, it can be concluded that there is no minimum
energy dissipation for logic operations using RQFP gates, or logically and physically
reversible gates. On the other hand, there exists minimum energy dissipation for logic
operation using irreversible gates because of the physical irreversibility. To the best of

22 N. Takeuchi, Y. Yamanashi, and N. Yoshikawa

our knowledge, this is the first numerical demonstrations that show no minimum
energy bound for reversible computing using practical logic devices.

Fig. 7. RQFP gate. (a) Block diagram, where MAJ(a, b, c) = ab+bc+ca. (b) Simulation results
of energy dissipation of an RQFP gate with several input and output buffers. All the junctions
are underdamped (βc ~ 2600) and Ic = 50 μA. Energy dissipation reduces almost linearly with
an increase in the rise/fall time due to the physical reversibility.

Figure 8(a) shows the micrograph of an RQFP gate with input and output buffer

gates that we designed and fabricated using the STP2. The circuits are driven by three
phase excitation currents, Ix1, Ix2, and Ix3, and dc superconducting quantum
interference devices (dc-SQUIDs) were used for readout of output data. Figure 8(b)
shows low-speed experimental test results at 100 kHz, implemented in the liquid He
at 4.2 K. The figure shows correct logic operations of the RQFP gate. We also
experimentally confirmed the logical and physical reversibility of the RQFP gate [33].
Although energy dissipation was too small to measure in this low-speed
demonstration, we expect that it will be possible to measure that of RQFP gates by
using superconducting resonator-based method [30] at a higher operation frequency
(~ 1 GHz) [34].

 Reversible Computing Using Adiabatic Superconductor Logic 23

Ix2

Ix3

a b c

a” b” c”

RQFP

dc-SQUID
for readout

SPL

MAJ

Buffer

100 µm

Ix1

Inputs

3-phase
excitation
currents

Closeup of the buffer

Ix

Iout

Lq

Iin

J2 J1

10 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 10 0 1 0 1 1

1 11 1000 0

1 1 1 1000 0

Ix1

Ix2

Ix3

a

b

c

x = MAJ(a, b, c)

y = MAJ(a, b, c)

z = MAJ(a, b, c)

Excitation
currents

Inputs

Outputs

100 µs

(a)

(b)

Fig. 8. Experimental demonstration of the RQFP gate. (a) Microphotograph. (b) Low-speed test
results. The results show the correct logic operations of the RQFP gate.

6 Conclusion

We reported recent research results toward reversible computing using adiabatic
superconductor logic, or AQFP gates. First we experimentally demonstrated adiabatic
switching operations of AQFP gates using a superconducting resonator. Then we
numerically demonstrated that bit energy of an AQFP gate can be arbitrarily reduced
by increasing Q or lowering operation frequencies, which shows that there is no
minimum energy dissipation for adiabatic switching operations. Finally, we reported
the first practical reversible logic gate, which we designated as the RQFP gate. RQFP

24 N. Takeuchi, Y. Yamanashi, and N. Yoshikawa

gates are logically and physically reversible because of the symmetric circuit topology
composed of AQFP MAJ gates and AQFP SPL gates. We numerically demonstrated
that there is no minimum energy bound for logic operations using RQFP gates. Also,
we fabricated an RQFP gate using the STP2 and demonstrated correct logic
operations.

We believe that our research results will enable “reversible computing” to move
from the theoretical stage into practical usage. Additionally, these results will
facilitate detailed discussions and investigations related to the energy efficiency, and
the hardware complexity associated reversible computing will become realizable
using actual devices.

Acknowledgement. This work was supported by a Grant-in-Aid for Scientific
Research (S) (No. 22226009) from the Japan Society for the Promotion of Science
(JSPS). The circuits were fabricated in the clean room for analog-digital
superconductivity (CRAVITY) of National Institute of Advanced Industrial Science
and Technology (AIST) with the standard process 2 (STP2).

References

1. Ball, P.: Computer engineering: Feeling the heat. Nature 492, 174–176 (2012)
2. Service, R.F.: Computer science. What it’ll take to go exascale. Science 335, 394–396

(2012)
3. Landauer, R.: Irreversibility and Heat Generation in the Computing Process. IBM J. Res.

Dev. 5, 183–191 (1961)
4. Keyes, R.W.: Fundamental limits in digital information processing. Proc. IEEE. 69, 267–

278 (1981)
5. Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047–1054 (2000)
6. Meindl, J.D., Davis, J.A.: The fundamental limit on binary switching energy for terascale

integration (TSI). IEEE J. Solid-State Circuits 35, 1515–1516 (2000)
7. Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch

scaling-a gedanken model. Proc. IEEE. 9, 1934–1939 (2003)
8. Shizume, K.: Heat generation required by information erasure. Phys. Rev. E 52, 3495–

3499 (1995)
9. Dillenschneider, R., Lutz, E.: Memory Erasure in Small Systems. Phys. Rev. Lett. 102, 1–

4 (2009)
10. Sagawa, T., Ueda, M.: Minimal Energy Cost for Thermodynamic Information Processing:

Measurement and Information Erasure. Phys. Rev. Lett. 102, 250602 (2009)
11. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.:

Experimental verification of Landauer’s principle linking information and
thermodynamics. Nature 483, 187–189 (2012)

12. Orlov, A.O., Lent, C.S., Thorpe, C.C., Boechler, G.P., Snider, G.L.: Experimental Test of
Landauer’s Principle at the Sub-kBT Level. Jpn. J. Appl. Phys. 51, 06FE10 (2012)

13. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)
14. Bennett, C.H.: Logical Reversibility of Computation. IBM J. Res. Dev. 17, 525–532

(1973)
15. Keyes, R.W., Landauer, R.: Minimal Energy Dissipation in Logic. IBM J. Res. Dev. 14,

152–157 (1970)

 Reversible Computing Using Adiabatic Superconductor Logic 25

16. Likharev, K.: Dynamics of some single flux quantum devices: I. Parametric quantron.
IEEE Trans. Magn. 13, 242–244 (1977)

17. Semenov, V.K., Danilov, G.V., Averin, D.V.: Negative-inductance SQUID as the basic
element of reversible Josephson-junction circuits. IEEE Trans. Appiled Supercond. 13,
938–943 (2003)

18. Wenzler, J., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano
Lett. 14, 89–93 (2014)

19. Takeuchi, N., Ozawa, D., Yamanashi, Y., Yoshikawa, N.: An adiabatic quantum flux
parametron as an ultra-low-power logic device. Supercond. Sci. Technol. 26, 035010
(2013)

20. Takeuchi, N., Ehara, K., Inoue, K., Yamanashi, Y., Yoshikawa, N.: Margin and Energy
Dissipation of Adiabatic Quantum-Flux-Parametron Logic at Finite Temperature. IEEE
Trans. Appl. Supercond. 23, 1700304 (2013)

21. Takeuchi, N., Yamanashi, Y., Yoshikawa, N.: Simulation of sub-kBT bit-energy operation
of adiabatic quantum-flux-parametron logic with low bit-error-rate. Appl. Phys. Lett. 103,
62602 (2013)

22. Likharev, K.K.: Classical and quantum limitations on energy consumption in computation.
Int. J. Theor. Phys. 21, 311–326 (1982)

23. Hosoya, M., Hioe, W., Casas, J., Kamikawai, R., Harada, Y., Wada, Y., Nakane, H., Suda,
R., Goto, E.: Quantum flux parametron: a single quantum flux device for Josephson
supercomputer. IEEE Trans. Appiled Supercond. 1, 77–89 (1991)

24. Likharev, K.K., Semenov, V.K.: RSFQ logic/memory family: a new Josephson-junction
technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl.
Supercond. 1, 3–28 (1991)

25. Mukhopadhyay, S.: Switching energy in CMOS logic: How far are we from physical limit
(2006), http://nanohub.org/resources/1250

26. Zhirnov, V., Cavin, R., Gammaitoni, L.: Minimum Energy of Computing, Fundamental
Considerations (2014), http://dx.doi.org/10.5772/57346

27. Mukhanov, O.A.: Energy-Efficient Single Flux Quantum Technology. IEEE Trans. Appl.
Supercond. 21, 760–769 (2011)

28. Herr, Q.P., Herr, A.Y., Oberg, O.T., Ioannidis, A.G.: Ultra-low-power superconductor
logic. J. Appl. Phys. 109, 103903 (2011)

29. Tanaka, M., Ito, M., Kitayama, A., Kouketsu, T., Fujimaki, A.: 18-GHz, 4.0-aJ/bit
Operation of Ultra-Low-Energy Rapid Single-Flux-Quantum Shift Registers. Jpn. J. Appl.
Phys. 51, 053102 (2012)

30. Takeuchi, N., Yamanashi, Y., Yoshikawa, N.: Measurement of 10 zJ energy dissipation of
adiabatic quantum-flux-parametron logic using a superconducting resonator. Appl. Phys.
Lett. 102, 052602 (2013)

31. Nagasawa, S., Hashimoto, Y., Numata, H., Tahara, S.: A 380 ps, 9.5 mW Josephson 4-
Kbit RAM operated at a high bit yield. IEEE Trans. Appl. Supercond. 5, 2447–2452
(1995)

32. McCumber, D.E.: Effect of ac Impedance on dc Voltage-Current Characteristics of
Superconductor Weak-Link Junctions. J. Appl. Phys. 39, 3113 (1968)

33. Takeuchi, N., Yamanashi, Y., Yoshikawa, N.: Reversible logic gate using adiabatic
superconducting devices. submitted to Appl. Phys. Lett.

34. Takeuchi, N., Ortlepp, T., Yamanashi, Y., Yoshikawa, N.: High-Speed Experimental
Demonstration of Adiabatic Quantum-Flux-Parametron Gates Using Quantum-Flux-
Latches. IEEE Trans. Appl. Supercond. 24, 1300204 (2014)

Classical Control of Large-Scale Quantum

Computers

Simon J. Devitt

Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. The accelerated development of quantum technology has
reached a pivotal point. Early in 2014, several results were published
demonstrating that several experimental technologies are now accurate
enough to satisfy the requirements of fault-tolerant, error corrected quan-
tum computation. While there are many technological and experimental
issues that still need to be solved, the ability of experimental systems to
now have error rates low enough to satisfy the fault-tolerant threshold for
several error correction models is a tremendous milestone. Consequently,
it is now a good time for the computer science and classical engineer-
ing community to examine the classical problems associated with com-
piling quantum algorithms and implementing them on future quantum
hardware. In this paper, we will review the basic operational rules of a
topological quantum computing architecture and outline one of the most
important classical problems that need to be solved; the decoding of error
correction data for a large-scale quantum computer. We will endeavour
to present these problems independently from the underlying physics as
much of this work can be effectively solved by non-experts in quantum
information or quantum mechanics.

Keywords: quantum computing, topological quantum computing,
classical processing.

1 Introduction

Quantum technology, specifically large-scale quantum computation, has been a
significant research topic in physics since the early 1990’s. Since the publica-
tion of the first quantum algorithms [1], illustrating the computational power of
quantum computers, millions of dollars has been invested worldwide and numer-
ous technological advances have been made [2–7]. It is now routine for multiple
experimental laboratories to fabricate and control small arrays of quantum bits
(qubits) and perform proof of principal experiments demonstrating small quan-
tum algorithms and protocols [8]. Quantum technology has also moved into the
industrial sector via protocols such as Quantum Key Distribution (QKD) and
Quantum random number generators and many non-physicists are aware of the
D-Wave quantum computer, which while scientifically controversial is an at-
tempt to build a analogue quantum computer capable of solving certain types
of optimisation problems [9–11].

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 26–39, 2014.
c© Springer International Publishing Switzerland 2014

Classical Control of Large-Scale Quantum Computers 27

Recent experimental results in 2014 have demonstrated that two experimen-
tal systems can be built with high enough accuracy to satisfy the constraints
of fault-tolerant, error corrected quantum computation [12, 13]. As error rates
on qubit arrays is high compared to classical nano-electronics, extensive error
correction is required to successfully perform computation [1, 14–17]. One of the
most seminal results in quantum information theory is the fault-tolerant thresh-
old theorem [18]. This theorem states that provided the fundamental error rate
associated with qubits and quantum gates falls below a threshold, then arbi-
trarily long quantum computation is possible with a polylogarithmic overhead
in physical resources. This threshold is a function of the type of quantum error
correction code used for the computer [14–17] and extensive research has been
performed to derive new codes, with high thresholds, that are amenable to ex-
perimental architectures. Arguably the most successful class of codes that have
been developed are known as topological quantum codes [19–23]. Topological
quantum codes are defined over a lattice (of arbitrary dimension depending on
the code, but the most common are 2- and 3-dimensional) of physical qubits.
The code itself can be defined over small, physically local groups of qubits while
the properties of the encoded information is a global property of the entire lat-
tice. This is what defines the code as topological. These codes are arguably
preferred in quantum computer development as they exhibit comparably high
fault-tolerant thresholds and they are adaptable to the physical constraints of
experimental quantum systems.

Irrespective of the actual quantum code chosen to protect a quantum com-
puter, it is well known that operating such as system requires extensive classical
control infrastructure. This is not simply related to the control of the physi-
cal device hardware needed to operate a qubit (lasers, signal generators etc...),
but it is also required to decode error correction information produced by the
computer. This classical control software development is in its infancy and has
received little attention within the fields of quantum information and classical
computer science [24, 25]. While there has been much work at the more abstract
level of quantum algorithm design and circuit optimisation [26–32], we now have
to go one step deeper and connect the high level work to the physical constraints
of the quantum hardware.

This paper will introduce one of the main classical computer science and en-
gineering problems associated with controlling a large scale quantum computer.
We will focus on a specific form of quantum computer; namely a system that
is built using an error correction code known as Topological Quantum Clusters
(TQC) [33, 34]. This code has received significant attention in recent years due
to multiple hardware architectures utilising it in designing large scale systems
[23, 35–40]. We won’t discuss the details of how information to be encoded or
manipulated. Instead we will focus on the basic error correction properties of
the code and what this implies for classical processing of this data. In section 2
we will provide some background information on the basic definitions of qubits
and quantum logic. In section 3 we will provide a brief introduction to the TQC
model. This will not be an in depth introduction, but should provide enough

28 S.J. Devitt

material to grasp the classical problems that need to be solved. Finally, in sec-
tion 5 we will examine the processing that needs to be developed to perform
dynamic error correction on the system and discuss the potential problems as-
sociated with the massive amount of classical data produced by the computer.

2 Quantum Computers

A qubit is the quantum analogue of a bit. Its state is defined as a vector of
dimension 2, where |0〉 = (1, 0)T is the vector notation for the value correspond-
ing to binary 0, and |1〉 = (0, 1)T correspond to 1. The state of one qubit q
can be written as the linear combination |q〉 = a0|0〉+ a1|1〉, where ai ∈ C and∑

i |ai|2 = 1; this is a superposition of the two basis states, a concept with no
analogy in classical computing. Given the principal of superposition, an array
of n qubits can be in an equal superposition of all binary states from |0〉 unto∣∣2n−1

〉
, i.e.

∑2n−1
i=0 ai|bin(i)〉, where ai are complex numbers and bin(i) is the

binary expansion of i.

Measurement: In quantum computing, measuring a state is the only way
to observe results of calculation. Measuring an arbitrary quantum state |q〉 =
a0|0〉+a1|1〉 can result in two outcomes: |0〉 (with probability |a0|2), or |1〉 (with
probability |a1|2). Moreover, the measurement will collapse the state leaving it
in the state corresponding to the measurement result.

The goal of a quantum algorithm is to manipulate the amplitudes of each bi-
nary state, ai, such that the incorrect answers have very low amplitudes, aj ≈ 0,
j = incorrect while the correct answers have amplitudes close to one, aj ≈ 1,
j = correct. This will ensure that after an algorithm is completed, we have a
very high probability, when we measure every qubit, to measure the correct an-
swer. The simplest initial state is to initialise each qubit in the computer in the
|+〉 = (|0〉+ |1〉) /√2 such that each ai = 1/2(n/2), ∀i. Therefore, initially, ev-
ery possible binary state will have an equal probability of being measured. The
quantum algorithm will then manipulate these amplitudes to suppress the am-
plitudes of incorrect answers and increase the amplitude of correct ones. At any
given time the state of the quantum computer is represented by a n-dimensional
complex vector |ψ〉 = (a0, a1, a2,, a2(n−1))T .

Quantum Gates: Quantum gates act on qubits and modify their states and
hence modify the amplitudes of each binary state, ai. They are represented
as unitary (guaranteeing a gate is reversible, a necessity in quantum theory)
matrices. An n-qubit gate, G, is described by a 2n × 2n matrix and its action
on the state of the quantum computer is described by simply computing |ψ′〉 =
G|ψ〉, where |ψ′〉 is the output and |ψ〉 is the input. It has been shown that
any valid operation, G, can be decomposed into a discrete alphabet of single
qubit and 2-qubit gates and consequently we only need to realise a small set of
primitive qubit operations to realise any arbitrary computation. Shown below

Classical Control of Large-Scale Quantum Computers 29

is an example of such an alphabet, consisting of four single qubit gates and one
two-qubit gate.

X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)
cnot =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠T =

(
1 0

0 e−iπ/8

)

(1)
These gates form a universal gate set (technically, S = {H,T,cnot} are suffi-
cient for universality, we include X and Z because of their relevance for QEC),
i.e., arbitrary quantum gates can be decomposed into products of these gates
[1]. (This is similar to the classical case where all gates can be represented by
equivalent circuits consisting of NAND gates only.).

The properties of quantum information allow us to create certain states that
have no classical analogue. These states are called entangled states. For example,
if we prepare two qubits in the initial state |+〉|0〉 and apply the two qubit cnot
gate (where the control qubit is the one in the |+〉 state), we get the output
|b〉 = 1√

2
(|00〉 + |11〉). This state is known as a Bell state and it has properties

that no classical computational state has. Specifically if we measure one of the
qubits in the |0〉 state, the second qubits is also found to be in the |0〉 state.
Similarly for the |1〉 state. This behaviour is unique to quantum-bits and creation
and manipulation of these types of states is an identifying feature when proving,
experimentally, you have a true quantum system. Entanglement is a fundamental
property of quantum information and forms the basis of the TQC model we will
discuss in the next section.

3 Topological Cluster State Computation

The original formalism for quantum computation is the circuit based model [1].
This is where we have an array of qubits that is operated on by a pre-defined
sequence of quantum gates to realise an algorithm. There is another method
of performing quantum computation, known as the measurement based model
(MBM) [41]. In this model, we pre-define what is known as a Universal Resource
State (URS). A URS is a lattice of qubits where entanglement connections have
been formed before any computation begins. This URS can be thought of as a
graph, where each vertex represents a qubit and each edge is a two-qubit quan-
tum gate that establishes entanglement between two vertices. Once this resource
state has been prepared, quantum gates are realised by measuring individual
qubits in well defined ways. As computation proceeds, qubits are consumed as
they are measured. The first MBM was defined over a regular, 2-dimensional grid
of qubits with nearest neighbour connections [Figure 1]. In this model, qubits are
measured, column-by-column, to realise quantum gates. Essentially each row of
qubits represented the world line of a given qubit of information and each column
represented individual time steps of computation. As each column is measured,
information is teleported to the next column and a quantum gate is applied
during this teleportation.

30 S.J. Devitt

Qubits measured column-by-column to perform computation

Fig. 1. A standard 2D lattice of qubits used for measurement based quantum computa-
tion. Qubits are measured from left to right and information is teleported from column
to column. Processing occurs during this teleportation, applying quantum gates.

This 2-dimensionalMBM showed that arbitrary computation could be achieved
using a pre-defined URS, but it did not incorporate any error correction protocols
to protect against noise.

The Topological Cluster State model is a MBM of quantum computation
that incorporates a sophisticated topological error correction model by con-
struction. It was derived from the seminal work of Kitaev [19] and extended
to a 3-dimensional entangled lattice of qubits that forms the initial URS [33].
The fundamental unit cell of this lattice is illustrated in Figure 2. Again, each
vertex in the image represents a physical qubit while each edge represents a two-
qubit gate applied to form an entanglement bond. Preparing this state requires
initialising each qubit in the |+〉 state, and applying a CZ gate between any two
qubits connected by an edge. A CZ gate can be achieved by applying the cnot
gate, interleaved by two H gates on the target qubit [1]. The total size of the
3-dimensional Topological cluster is dictated by the total resources needed for
an algorithm. i.e. how many encoded qubits and gates does the algorithm need
and how strong the error correction needs to be to successfully complete com-
putation. For large quantum algorithms, the size of this lattice could be billions
if not trillions of physical qubits [42].

3.1 Error Correction

The primary job of the TQC model is to perform error correction. The structure
of the 3-dimensional lattice establishes certain symmetries that can be used to
detect and correct errors that occur during the preparation and/or consumption
of the state.

Arbitrary noise on a qubit can be decomposed into a series of bit-flips (X
gates) and phase flips (Z gates). A phase flip is a gate which can convert the state
|+〉 = (|0〉+ |1〉) /√2 into |−〉 = (|0〉 − |1〉) /√2 and has no classical analogue.
A general error operator, E, acting on a single qubit can be written in the form,

E|ψ〉 = kI |ψ〉+ kxX |ψ〉+ kzZ|ψ〉+ kxzXZ|ψ〉 (2)

Classical Control of Large-Scale Quantum Computers 31

a. b.

Fig. 2. Figure a) represents the unit cell of the lattice. Each of the Face qubits (red)
are used to calculate the parity of the cell. The non-face qubits of Figure a) are face
qubits on identical unit cells that are offset by half a lattice spacing along the three
axes of the lattice.

where {|kI |2, |kx|2, |ky|2, |kxz|2} are the probabilities that the qubit experiences
an X error, a Z error or both 1. Therefore, to protect qubits against noise, we
just need the ability to detect and correct for bit- and phase-flips.

The unit cell of the topological cluster has certain symmetries. Namely, if you
measure the six face qubits of the unit cell (illustrated in red in Figure 2a))
in the basis {|+〉, |−〉} (known as an X-basis measurement) and you calculate
the classical parity of the results (identifying the bit-value zero if we measure
the qubit in |+〉 and one if we measure it in |−〉), you will always get an even
parity result under modulo 2 addition. i.e. while the individual measurements
themselves are random, the symmetries of the quantum state of the unit cell
will conspire (through the property of entanglement) to always generate an even
parity result when you combine the measured values of these six qubits. Now,
let us consider two of these unit cells side by side and the consequence of a
Z-error on the qubit shared on a face [Figure 3a)]. In quantum information
the order in which you apply quantum gates is important. For example, the
output of the operation XZ|ψ〉 is not necessarily the same as the output of
the operation ZX |ψ〉, this is because the gates X and Z do not commute, i.e.
XZ − ZX �= 0. Instead, for these two operations the following holds, XZ =
−ZX . What does this mean when we measure our six face qubits of the unit cell
when a qubit experiences an error? If no error occurs, then the six measurement,
when combined modulo 2, gives us an even parity result. If one of those qubits
experiences a Z-error prior to being measured in the X-basis the fact that XZ =
−ZX means that the measurement of the erred qubit will flip from |±〉 to |∓〉.
Consequently, if the initial parity of the six measurements was even, it will flip
to odd. Hence for the two unit cells shown in Figure 3a) when we measure the
11 face qubits and we observe a negative parity of the two sets of measurements,

1 This is not a completely general description of a noise channel, but introducing the
formalism for a general channel would require us to delve more into the mathematics
of qubits.

32 S.J. Devitt

we can identify that a Z-error must have occurred on the qubit sharing a face
between the two cells. Similarly errors on the other five face qubits are detected
by parity flips with the other unit cells bordering the five other faces [Figure 3b)].

a.

Parity flip
to the left

Parity flip
to the right

Parity flip
downwards

Parity flip
upwards

Parity flip
backwards

Parity flip
forwards

b.

Fig. 3. A single error on a face qubit of a unit cell will cause two parity flips on the
cells which share the qubit [Figure a)]. The six neighbouring cells bordering a given
cell allows us to uniquely determine which qubit experienced an error [Figure b)].

An obvious question arises. We have so far only considered the six qubits on
each of the faces of the unit cell. What about the other remaining qubits lying on
edges? If we stack together eight unit cells into a cube, at it’s centre is an identical
unit cell. The face qubits associated with this unit cell correspond to the qubits
on the edges of the eight cells in the cube. The topological lattice embeds two
self similar lattices, one which we call the primal lattice and the other which we
call the dual2. Face qubits on primal unit cells correspond to edge qubits on dual
cells and visa versa. These two self similar lattices also explains how X-errors
are corrected. In the previous paragraph we only considered Z errors because
the Z-gate didn’t commute with the X-basis measurement of each face qubit
and consequently the parity of the six face measurements flipped when an error
occurred. Again, without going into the mathematical detail, the symmetries of
the topological lattice allows us to convert X-errors on a qubit into Z-errors
on other qubits. If an X-error occurs on a given qubit, the entanglement bonds
connecting qubits can convert this X-error into Z-errors on all the qubits it is
connected to [34, 43]. If you examine the structure of the unit cell [Figure 2a)]
you will note that a given face qubit is only connected to qubits on the edge of a
unit cell. Therefore an X-error occurring on a face qubit will be converted to Z-
errors on edge qubits (which correspond to face qubits on dual cells). Therefore,
all errors can be converted to Z-errors in either the primal or dual lattices and
detecting these parity flips in both spaces is sufficient for correcting arbitrary
errors on each individual qubit.

We discussed how single errors can be corrected by examining the parity of
neighbouring cells, the next issue is what happens when multiple errors occur.

2 Which is primal and which is dual is arbitrary.

Classical Control of Large-Scale Quantum Computers 33

Fig. 4. From Ref. [34]. Errors create parity flips on various unit cells. Multiple errors
can form chains. Parity flips are only observed at the endpoints of chains.

This is shown in Figure 4. As the parity condition for a unit cell is calculated
modulo two we only see an odd parity if an odd number of errors have occurred.
If an even number occur then the parity will remain even. Therefore, if there is a
chain of errors we will only see a parity flip for the two unit cells at the endpoint
of the error chain. In the case of isolated errors, endpoints are of neighbouring
cells. Hence decoding the error correction information requires us to match up
the endpoints (which we detect via the calculation of a cells parity) with the
actual physical sets of errors that occurred (which are not directly detected.

In quantum information we assign a probability, p, that a given qubit will expe-
rience a bit (X) and/or phase (Z) error over some time interval, t. This probability
encapsulates the physical sources of noise such as environmental decoherence and
control that could effect the operation of the qubit. Provided that p < 1, increas-
ing numbers of errors occurring in a given time interval become exponentially less
probable. Consequently, the most probable event that gives rise to the observed set
of parity flips in the topological cluster is the one with the fewest number of errors.
Given a set of parity flips measured in the topological cluster we connect them in
a pairwise fashion such that the total length of all connections is minimised. This
is a well known classical problem and was solved by Edmonds in 1967 [44] who
developed a classical algorithm for minimum weight perfect matching who’s run-
time scales polynomially with the number of nodes (which in our case corresponds
to the number of parity flips we observe).

4 Physical Data Flow in an Operational Computer

What occurs in a physical quantum computer built using this model? For the TQC
model, the physical quantum hardware is responsible for preparing the lattice.

34 S.J. Devitt

If we assume that the physical qubits in the quantum computer are single particles
of light (photons), then each photon is prepared froma source and sent through the
quantum computer to be entangled with its neighbours [36]. Each 2-dimensional
cross-section of the lattice is prepared sequentially as photons ”flow” through the
quantum hardware.

Fig. 5. From Ref. [24]. Architecture for an optical quantum computer. Single photons
are prepared, sent through a preparation network which is responsible for creating
the topological lattice. After the lattice is prepared it flows into detector arrays which
performs measurement to perform computation.

Photons are continuously injected into the rear of the preparation network.
Each passes through a network of quantum devices, which act to link them
together into the topological lattice. Each quantum device operates on a funda-
mental clock cycle, T , and each device operates in a well-defined manner. Once
a given photon has been connected to its relevant neighbours, it does not have to
wait until the rest of the lattice is constructed, it can be measured immediately.
This is exactly how the actual computer will operate. The lattice is consumed
at the same rate at which it is created, hence in the third dimension there only
exists a small number of 2D cross-sections at any given time.

As one dimension of the topological lattice is identified as simulated time,
the total 2D cross section defines the actual size of the quantum computer. The
lattice is built such that when each 2D cross-section is measured, all encoded
information is teleported to the next successive layer along the direction of sim-
ulated time allowing an algorithm to be implemented (in a similar manner to
standard cluster state computation [41]).

In Figure 6 we illustrate the structure of the detection system. A given unit
cell flows through a set of nine optical fibres which carry the individual photons
that have been linked together in the lattice. As they flow into the detectors the
parity of the cell is calculated as,

P (i, j, T) = (sT−1
(i,j) + sT(i−1,j) + sT(i,j−1) + sT(i,j+1) + sT(i+1,j) + sT+1

(i,j)) mod 2 (3)

where sTi,j is the detection result (1, 0) of detector (i, j) at time T .

Classical Control of Large-Scale Quantum Computers 35

Fig. 6. Detection array for a topological quantum computer where each qubit is a
single photon

Error decoding and correction must occur in real-time as the computer is
operating in order to ensure the system will operate correctly. Hence the classical
data processing much be done efficiently, fast and in a highly parallel way.

5 The Decoding Problem

The error correction decoding problem is a classical software and hardware op-
timisation problem to effectively perform the minimum weight perfect match-
ing algorithm to an arbitrarily large topological lattice running at high speeds.
Resource estimates for topological quantum computing has shown that to suc-
cessfully implement fully error corrected, large-scale algorithms would require an
enormous topological lattice [42]. The results of Ref. [42] indicate that a lattice of
the order of a billion cells in cross-section, running for a year at 10 nanoseconds
per cross-sectional sheet is necessary to factor a 1024-bit number using Shor’s
algorithm. At 6-bits of raw data per cell, we would need to classically process
on the order of (6× 109)/(30× 10−9) = 2× 1017 bits/second of data to perform
error correction decoding for the entire computation.

This clearly is a phenomenal amount of data that needs to be processed while
the computer is running. Clearly we require a large amount of parallel processing
and a modular classical processing framework to decode error correction data for
a full-scale machine. There has been work attempting to address this problem
which falls into two categories. The first is further optimisation of the minimum
weight perfect matching algorithm. The Blossom V algorithm is currently used
when performing simulations of the topological cluster state model [45] and
we can examine its performance for large lattices [Figure 7]. From this figure
(which was produced by running the algorithm on a standard laptop) shows that
BlossomV runs far too slowly to handle the processing of error correction data for
a large-scale computer. This necessitates further optimisation of the algorithm.
Work by Fowler and others [46, 47] attempts to rectify this problem, but at

36 S.J. Devitt

Fig. 7. Processing speed of Blossom V [45] as a function of the total number of qubits in
a 2D cross-section of the topological lattice. Each curve represents a different physical
error rate of each qubit, p. This plot was produced with a standard laptop with no
further optimisation.

this stage no benchmarking has been performed using this package. The second
category is dedicated hardware implementations of the decoding operations [24].
There are several steps which is illustrated in Figure. 8.

Raw Data Parity Filtering

Input Processing for
matching

Minimum weight matching

Output Processing

Fig. 8. Processing stages for error decoding in the topological model

The raw data is the bit streams coming directly from the quantum hardware.
Parity filtering is the first step, where the co-ordinates of unit cells that have
experienced a parity flip are retained and all other data is disregarded. This can
reduce the amount of information as the probability that a unit cell of the lattice
will experience a parity flip is of the order of the error rate of each qubit, p, which
will be approximately 0.1% [48]. The next step is to convert the collection of co-
ordinates into a graph which is used as input for the minimum weight matching
algorithm. This data will produce a lookup table associating a vertex number

Classical Control of Large-Scale Quantum Computers 37

for the graph with the co-ordinate of the relevant cell. The matching algorithm
comes next and will produce a list of bi-partite connections telling us which
nodes in the graph are connected. Output processing then converts these nodes
back into the cell co-ordinates allowing us to correct the actual errors.

Each of these stages will have to be handled by dedicated circuits, built pri-
marily for speed. This has not currently been done and we do not have evidence
if current technology is sufficient to achieve fast enough speeds for quantum
computing systems. For various physics related reasons, we do not wish to slow
down the operational speed of the quantum hardware to accommodate slow clas-
sical processing. The speed of the classical system mush be commensurate with
the quantum system (which can vary between 10ns and 10ms depending on the
underlying technology). The first generation of quantum computers will be slow,
so the demands on the classical hardware should not be too significant in the
short term. But more futuristic technology is being developed [49] and will run at
much higher clock rates. Designing the classical system with these faster systems
in mind should ensure that quantum computer development is not bottlenecked
by the necessary classical systems being underdeveloped.

Acknowledgements. We wish to thank Ashley Stephens for producing the
image in Figure 7.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Information, 2nd edn. Cam-
bridge University Press (2000)

2. Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F.,
Rabeau, J., Stavrias, N., Greentree, A., Prawer, S., Meijer, J., Twamley, J., Hem-
mer, P., Wrachtrup, J.: Room Temperature coherent control of coupled single spins
in solid. Nature Physics (London) 2, 408–413 (2006)

3. Hanson, R., Awschalom, D.: Coherent manipulation of single spins in semiconduc-
tors. Nature (London) 453, 1043–1049 (2008)

4. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of
a single quantum dot spin using ultrafast optical pulses. Nature (London) 456,
218–221 (2008)

5. Politi, A., Matthews, J., O’Brien, J.: Shor’s quantum factoring algorithm on a
photonic chip. Science 325, 1221 (2009)

6. Pla, J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Jamieson, D.N.,
Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in Silicon. Nature
(London) 489, 541–545 (2012)

7. Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A.,
O’Malley, P., Sank, D., Vainsencher, A., Wenner, J., White, T., Yin, Y., Cle-
land, A.N., Martinis, J.: Computing prime factors with a Josephson phase qubit
quantum processor. Nature Physics 8, 719–723 (2012)

8. Ladd, T., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.: Quan-
tum Computing. Nature (London) 464, 45–53 (2010)

9. Vinci, W., Albash, T., Mishra, A., Warburton, P.A., Lidar, D.A.: Distinguishing
Classical and Quantum Models for the D-Wave Device. arxiv:1403.4228 (2014)

38 S.J. Devitt

10. Boixo, S., Ronnow, T.F., Wecker, S.I.Z.W.D., Lidar, D., Martinis, J., Troyer, M.:
Quantum annealing with more than one hundred qubits. Nature Physics 10, 218
(2014)

11. Shin, S., Smith, G., Smolin, J., Vazirani, U.: How “Quantum” is the D-Wave
Machine? arxiv:1401.0787 (2014)

12. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.,
Mutus, J., Fowler, A., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth,
A., Neill, C., O‘Malley, P., Roushan, P., Vainsencher, A., Wenner, J., Korotkov,
A., Cleland, A., Martinis, J.: Logic gates at the surface code threshold: Super-
conducting qubits poised for fault-tolerant quantum computing. arXiv:1402.4848
(2014)

13. Choi, T., Debnath, S., Manning, T., Figgatt, C., Gong, Z.X., Duan, L.M., Monroe,
C.: Optimal quantum control of multi-mode couplings between trapped ion qubits
for scalable entanglement. arxiv:1401.1575 (2014)

14. Devitt, S., Munro, W., Nemoto, K.: Quantum error correction for beginners. Rep.
Prog. Phys. 76, 76001 (2013)

15. Steane, A.: Quantum Computing and Error Correction. Decoherence and its impli-
cations in quantum computation and information transfer. In: Gonis, Turchi (eds.),
pp. 284–298. IOS Press, Amsterdam (2001), quant-ph/0304016 (2001)

16. Calderbank, A., Rains, E., Shor, P., Sloane, N.: Quantum Error Correction via
Codes Over GF(4). IEEE Trans. Inform. Theory 44, 1369 (1998)

17. Knill, E., Laflamme, R., Viola, L.: Theory of Quantum Error Correction for General
Noise. Phys. Rev. Lett. 84, 2525 (2000)

18. Aharonov, D., Ben-Or, M.: Fault-tolerant Quantum Computation with constant
error. In: Proceedings of 29th Annual ACM Symposium on Theory of Computing,
p. 46 (1997)

19. Kitaev, A.: Quantum Computations: algorithms and error correction. Russ. Math.
Serv. 52, 1191 (1997)

20. Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological Quantum Memory. J.
Math. Phys. 43, 4452 (2002)

21. Raussendorf, R., Harrington, J., Goyal, K.: A Fault-tolerant one way quantum
computer. Ann. Phys. 321, 2242 (2006)

22. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high
threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007)

23. Fowler, A., Mariantoni, M., Martinis, J., Cleland, A.: Surface codes: Towards prac-
tical large-scale quantum computation. Phys. Rev. A 86, 32324 (2012)

24. Devitt, S., Fowler, A., Tilma, T., Munro, W., Nemoto, K.: Classical Processing
Requirements for a Topological Quantum Computing Systems. Int. J. Quant. Inf. 8,
1 (2010)

25. Duclos-Cianci, G., Poulin, D.: Fault-Tolerant Renormalization Group Decoded for
Abelian Topological Codes. Quant. Inf. Comp. 14, 721 (2014)

26. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation
of single qubit unitaries by Clifford and T circuits using a constant number of
ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)

27. Meter, R.V., Itoh, K.: Fast Quatum Modular Exponentiation. Phys. Rev. A. 71,
052320 (2005)

28. Zalka, C.: Fast Versions of Shor’s quantum factoring algorithm. quant-ph/9806084
(1998)

29. Vedral, V., Barenco, A., Ekert, A.: Quantum Networks for elementary arithmetic
operations. Phys. Rev. A. 54, 147 (1996)

Classical Control of Large-Scale Quantum Computers 39

30. Choi, B., Meter, R.V.: A Θ(
√
n)-depth Quantum Adder on a 2D NTC Quantum

Computer Architecture. ACM Journal on Emerging Technologies in Computer
Systems (JETC) 7, 11 (2011)

31. Cleve, R., Watrous, J.: Fast Parallel circuits for the quantum fourier transform. In:
Proc. 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS
2000), pp. 526–536 (2000)

32. Meter, R.V., Itoh, K.: Fast Quantum Modular Exponentiation. Phys. Rev. A. 71,
52320 (2005)

33. Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster
state quantum computation. New J. Phys. 9, 199 (2007)

34. Fowler, A., Goyal, K.: Topological cluster state quantum computing. Quant. Inf.
Comp. 9, 721 (2009)

35. Stock, R., James, D.: A Scalable, high-speed measurement based quantum com-
puter using trapped ions. Phys. Rev. Lett. 102, 170501 (2009)

36. Devitt, S., Fowler, A., Stephens, A., Greentree, A., Hollenberg, L., Munro, W.,
Nemoto, K.: Architectural design for a topological cluster state quantum computer.
New. J. Phys. 11, 083032 (2009)

37. Nemoto, K., Trupke, M., Devitt, S., Stephens, A., Buczak, K., Nobauer, T., Everitt,
M., Schmiedmayer, J., Munro, W.: Photonic architecture for scalable quantum
information processing in NV-diamond. arXiv:1309.4277 (2013)

38. Jones, N.C., Meter, R.V., Fowler, A., McMahon, P., Kim, J., Ladd, T., Yamamoto,
Y.: A Layered Architecture for Quantum Computing Using Quantum Dots. Phys.
Rev. X 2, 31007 (2012)

39. Meter, R.V., Ladd, T., Fowler, A., Yamamoto, Y.: Distributed Quantum Compu-
tation Architecture Using Semiconductor Nanophotonics. Int. J. Quant. Inf. 8, 295
(2010)

40. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.M.,
Kim, J.: Large Scale Modular Quantum Computer Architecture with Atomic Mem-
ory and Photonic Interconnects. Phys. Rev. A 89, 22317 (2014)

41. Raussendorf, R., Briegel, H.J.: A One way Quantum Computer. Phys. Rev.
Lett. 86, 5188 (2001)

42. Devitt, S., Stephens, A., Munro, W., Nemoto, K.: Requirements for fault-tolerant
factoring on an atom-optics quantum computer. Nature Communications 4, 2524
(2013)

43. Gottesman, D.: PhD Thesis (Caltech). quant-ph/9705052 (1997)
44. Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17, 449 (1965)
45. Kolmogorov, V.: Blossom V: A new implementation of a minimum cost perfect

matching algorithm. Math. Prog. Comp. 1, 43 (2009)
46. Fowler, A., Whiteside, A., Hollenberg, L.: Towwards practical classical processing

for the surface code: Timing analysis. Phys. Rev. A. 86, 042313 (2012)
47. Fowler, A.: Minimum weight perfect matching in O(1) parallel time.

arxiv:1307.1740 (2013)
48. Stephens, A.: Fault-tolerant thresholds for quantum error correction with the sur-

face code. Phys. Rev. A. 89, 022321 (2014)
49. Kane, B.: A Silicon-Based nuclear spin Quantum Computer. Nature (London) 393,

133 (1998)

Degrees of Reversibility for DFA and DPDA

Martin Kutrib1 and Thomas Worsch2

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de
2 Karlsruhe Institute of Technology

worsch@kit.edu

Abstract. The notion of k-reversibility is generalized to pushdown
automata. A pushdown automaton is said to be (k, l)-reversible if its
predecessor configurations can uniquely be computed by a pushdown
automaton with input lookahead of size k and stack lookahead of size l.
It turns out that there are problems which can be solved by (k + 1, 1)-
reversible pushdown automata, but not by (k, l)-reversible pushdown au-
tomata. So, infinite hierarchies dependent on the degree of reversibility
are shown. On the other hand, any reversible pushdown automaton of
degree (k, l+1) can be simulated by a reversible pushdown automaton of
degree (k, 1). So, there are no hierarchies induced by the size of the stack
lookahead. These results complement the situation for finite automata
which is also discussed and presented in our setting.

Keywords: Reversible finite state machines, gradual reversibility, push-
down automata, lookahead, hierarchies of languages.

1 Introduction

Reversibility is a fundamental principle in physics. Since abstract computational
models may serve as prototypes of computing devices which can be physically
constructed, it is interesting to know whether these abstract models are able to
obey physical laws. The observation that loss of information results in heat dis-
sipation [9] strongly suggests to study computations without loss of information.
Many different formal models have been studied in connection with reversibility.
For example, reversible Turing machines have been introduced in [4] (see [3,10]
for improved constructions). Reversibility in finite state machines has been stud-
ied in [2,11] and reversibility in pushdown machines is investigated in [8].

Reversibility in the context of computing devices with discrete internal states
that evolve in discrete time refers to the possibility to letting the computation
step back and forth deterministically. This implies that any configuration has at
most one predecessor that, in addition, has to be computable by a device of the
same type as the given one. For example, given a reversible finite-state machine
it is required that the backward steps in time are performed by another finite-
state machine derived from the given one. An observation in [2,11] is that there
are regular languages which are not reversible, so there are finite-state machines

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 40–53, 2014.
c© Springer International Publishing Switzerland 2014

Degrees of Reversibility for DFA and DPDA 41

that cannot be simulated by any reversible finite-state machine. However, it
turned out [2] that this inherent irreversibility may depend on the size of the
input window of the devices. If this size is increased for backward computations,
more languages become reversible. This result led to the definition of so-called
k-reversible languages. However, in [2] the machines are also considered from
the learning theory point of view. So, they are restricted to have one accepting
state only. Here we stick with standard definitions and generalize the notion of
k-reversibility to finite-state devices with an additional resource. In particular,
the resource pushdown store or stack is considered.

The rest of this paper is organized as follows. In the next section we recall
some basic definitions including deterministic finite-state machines with input
lookahead, and define devices that are reversible of a certain degree. Then we
present an example of a regular language that is reversible of degree two but
not reversible of degree one. This example is generalized to an infinite degree
hierarchy of regular languages, thus, obtaining the results of [2] in our setting.

Section 4 is devoted to the study of degrees of reversibility for pushdown ma-
chines. The handling of the additional resource makes the definitions of the de-
grees more involved. A pushdown machine is said to be reversible of degree (k, l)
if its predecessor configurations can uniquely be computed by a pushdown ma-
chine with input lookahead of size k and stack lookahead of size l. The sit-
uation for finite automata is complemented and contrasted by proving that
there are problems which can be solved by reversible pushdown machines of
degree (k + 1, 1), but not by any reversible pushdown machine of degree (k, l).
On the other hand, any reversible pushdown machine of degree (k, l + 1) can
be simulated by a reversible pushdown machine of degree (k, 1). So, there are
no hierarchies induced by the size of the stack lookahead. However, the stack
lookahead is suitable to decrease the descriptional complexity of pushdown au-
tomata. The lookahead can be used to obtain machines with significantly fewer
states and/or stack symbols.

Finally, in Section 5 we are interested in the question whether for any regular
respectively realtime deterministic context-free language there is some degree k
of reversibility so that the language is accepted by a device of the corresponding
type with degree k. Or else, whether there are regular (or deterministic context-
free) languages that cannot be accepted by any reversible finite automaton (or
reversible pushdown automaton) of any degree. We consider the important sub-
classes of finite and unary languages as well as the general question.

2 Preliminaries and Definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. For convenience, we use Σ≤k for the set
of all words over Σ whose length is at most k ≥ 0. Furthermore, we write a≤k

for {a}≤k. Hence ΣΣ≤k−1 is the set of all non-empty words of length at most k.
For the length of w we write |w|. We denote by prfk(w) the longest prefix of w
which has length at most k and analogously by sufk(w) the longest suffix of w
which has length at most k.

42 M. Kutrib and T. Worsch

In the following we consider computing machines with a finite number of dis-
crete internal states. The machines have a read-only input tape, may be equipped
with further resources, and evolve in discrete time, where each computation step
is driven by a deterministic transition function δ. Given a configuration repre-
senting the complete “global state” of a device, the transition function is used
to compute the successor configuration resulting after one step. The transition
function depends on the current internal state and on the status of further re-
sources the machine is equipped with. It gives the successor state and maybe
changes the status of the resources.

A first study of reversibility of such devices has been done in [4] for Turing ma-
chines. Deterministic Turing machines are called reversible if any configuration
occurring in any computation has at most one predecessor which, in addition, is
computable by a deterministic Turing machine, say, with transition function δ←.
Generalizing this convention, we assume that for any reversible computing ma-
chine with discrete internal states and transition function δ the reverse transition
function is denoted by δ←.

In the following, two devices are said to be equivalent if they accept the same
language.

3 Degree of Reversibility for Finite Automata

We first look at the simplest type of device in question, deterministic finite
automata which can accept the regular languages. Forward automata read their
input from left to right as usual, and backward automata from right to left.

A deterministic finite automaton with lookahead k, (k)-DFA for short, is a sys-
tem 〈S,Σ, δ, s0, k, F 〉, where S is the finite set of internal states, Σ is the finite
set of input symbols, s0 ∈ S is the initial state, k ≥ 1 is the size of the input win-
dow (lookahead), F ⊆ S is the set of accepting states, and δ : S ×ΣΣ≤k−1 → S
is the (possibly partial) transition function.

A classical deterministic finite automaton (DFA) is a (1)-DFA. A configuration
of a (k)-DFA is a triple (u, s, v) ∈ Σ∗×S×Σ∗, where s is the current state and uv
is the complete input. The part u ∈ Σ∗ is to the left and the part v ∈ Σ∗ to the
right of the input head. The input window of a forward DFA is W = prfk(v),
for a backward DFA it is W = sufk(u). The initial configuration for forward
computations on input w is defined to be (λ, s0, w).

For a configuration (u, s, v) its successor configuration is (u′, s′, v′) where
s′ = δ(s,W) and (u′, v′) = (u prf1(v), suf |v|−1(v)) for forward computations and
(u′, v′) = (prf|u|−1(u), suf1(u)v) in the backward case. The head always moves
1 symbol further, even if k ≥ 2. There is no successor configuration if W = λ.
The relation from one configuration to the next one is denoted , and its reflex-
ive transitive closure by ∗. The language accepted by a forward (k)-DFA M is
L(M) = {w ∈ Σ∗ | (λ, s0, w) ∗ (w, sf , λ), for some sf ∈ F }.

Degrees of Reversibility for DFA and DPDA 43

Now we turn to reversibility of DFA. In general, it is required that any con-
figuration must have at most one predecessor. However, this definition raises
a couple of questions. For example, how difficult it is to compute the unique
predecessor configuration. On the other hand, the notion of reversibility can be
relaxed slightly. For example, when for a fixed constant k ≥ 1 the k symbols
most recently read in a forward computation are known, and the immediate
predecessor configuration is unique for all computations that lead to the current
configuration along these k symbols seen in the input window. From this point
of view, it turns out to be interesting to allow some lookahead k ≥ 1 for the
backward computation (see [2]), although the lookahead for the forward DFA is
still 1.

We emphasize that the task of the reverse DFA is to compute predecessor
configurations and not to accept a specific language. Therefore the indication of
initial state and accepting states for the reverse DFA is meaningless.

A forward DFA is said to be reversible of degree k (REV(k)-DFA) if and only if
there exists a backward (k)-DFA with transition function δ← inducing a relation
←

from one configuration to the next, so that

(u, s, v) ←
(u′, s′, v′) if and only if

(i) (u′, s′, v′) (u, s, v),

(ii) if |u| ≥ k, then (prf |u|−k(u), ŝ, sufk(u)v) ∗ (u′, s′, v′) (u, s, v) for all ŝ ∈ S
so that (prf |u|−k(u), ŝ, sufk(u)v) ∗ (u, s, v), and

(iii) if 1 ≤ |u| < k, then (λ, s0, u) ∗ (u′, s′, v′) (u, s, v).

So, the lookahead of the backward DFA is used to determine the unique prede-
cessor configuration from all computations that lead to the current configuration
along the symbols seen in the input window.

Example 1. The regular language { ambn | m ≥ 0, n ≥ 1 } is accepted by the
REV(2)-DFA M = 〈{s0, s1}, {a, b}, δ, s0, 2, {s1}〉, where the transition func-
tions δ and δ← are shown in Figure 1. The crucial part of the computation
appears at the borderline between the a’s and b’s in the input. Figure 2 demon-
strates that it can be done reversibly by the (2)-DFA M .

In addition, consider exemplarily the configuration (baab, s1, bb) that is
unreachable in any computation starting from an initial configuration, and the
configuration (aaab, s1, bb) that is reachable. Both have two predecessor configu-
rations, namely (baa, s0, bbb), (baa, s1, bbb) and (aaa, s0, bbb), (aaa, s1, bbb). How-
ever, in both cases the predecessor configuration is unique, when the computation
comes along the last two input symbols. For the first case we have (ba, s0, abbb)
(baa, s0, bbb) (baab, s1, bb) and (ba, s1, abbb) �∗ (baab, s1, bb). ��
Essentially, in [11] it has been shown that the regular language of Example 1
cannot be accepted by any REV(1)-DFA. So, one gets the following corollary
already known from [2].

Corollary 2. There are languages accepted by REV(2)-DFA that cannot be
accepted by any REV(1)-DFA.

44 M. Kutrib and T. Worsch

Transition function δ

(1) δ(s0, a) = s0

(2) δ(s0, b) = s1

(3) δ(s1, b) = s1

Reverse transition function δ←

(1) δ←(s1, bb) = s1

(2) δ←(s1, ab) = s0

(3) δ←(s1, b) = s0

(4) δ←(s0, aa) = s0

(5) δ←(s0, a) = s0

s0 s1

a b

bstart
s0 s1

aa, a bb

ab, b

Fig. 1. Example of a REV(2)-DFA accepting the language a∗b+ (double circled states
are accepting). The DFA is depicted at the left and the reverse (2)-DFA is depicted at
the right. The labels on the edges indicate the complete content of the input window
(but only 1 symbol is “consumed”). There is no REV(1)-DFA accepting this language.

a a a b b b

s0

a a a b b b

s0

a a a b b b

s1

a a a b b b

s1

a a a b b b

s0

a a a b b b

a a a b b b

s0

a a a b b b

a a a b b b

s1

a a a b b b

a a a b b b

s1

a a a b b b

fo
rw

a
rd

b
a
ck
w
ar
d

Fig. 2. A forward and its corresponding backward computation

Reversible deterministic finite automata have also been studied in the context
of algorithmic learning theory [2,7]. In the former reference the notion of k-
reversible languages has been introduced in a slightly different setting. However,
there an infinite and strict hierarchy of regular language families is derived de-
pending on the lookahead size in backward computations. We generalize Exam-
ple 1 and Corollary 2 obtaining the result of [2]. So one can speak about the
degree of reversibility of regular languages.

Degrees of Reversibility for DFA and DPDA 45

Example 3. Let k ≥ 1 be an integer. Then the language { ambn | m ≥ 0, n ≥ k }
is accepted by the REV(k + 1)-DFA

M = 〈{s0, s1, . . . , sk}, {a, b}, δ, s0, k + 1, {sk}〉
as depicted in Figure 3. However, the language cannot be accepted by any
REV(k)-DFA. ��

s0 s1 . . . sk−1 sk

a b

b b b bstart

· · · a a b · · · b b · · ·

sk

k

backward

Fig. 3. Example of a REV(k+1)-DFA accepting the language a∗bkb∗. This DFA is not
a REV(k)-DFA and there is no other REV(k)-DFA accepting this language.

Theorem 4. For any integer k ≥ 1, there are regular languages accepted by
REV(k + 1)-DFA that cannot be accepted by any REV(k)-DFA.

Proof. For k ≥ 1 let M be any DFA accepting { ambn | m ≥ 0, n ≥ k }. Con-
sider the input words wr = bk−1br for r ≥ 0 and denote by sr the state of M
after reading wr. For increasing r M must ultimately enter a loop of accepting
states; denote by y ≥ 1 the length of the loop. Let wx be the shortest word
leading to a state belonging to the loop; then sx = sx+y and x ≥ 1. This means
that sufk(wx) = sufk(wx+y) = bk and therefore any reverse automaton with
lookahead at most k will enter the same state when doing one step backwards.

On the other hand, because of the minimality of x state sx−1 is not part of the
loop while sx+y−1 is. Therefore undoing the last step after inputs wx and wx+y

respectively should lead to different states which therefore requires a lookahead
whose size is at least k + 1. ��

4 Degree of Reversibility for Pushdown Machines

Now we turn to generalize the results of the previous section to more powerful
finite state devices having an additional resource. Here we consider the resource
pushdown store or stack and obtain the so-called pushdown automata, whose de-
terministic variants have important applications in parser theory. They capture
the deterministic context-free languages that can still be parsed in linear time

46 M. Kutrib and T. Worsch

(see, for example, [1]). The additional resource allows a more involved definition
of lookaheads and, thus, degrees of reversibility. On the one hand, there is the
possible lookahead on the input as for (k)-DFA. On the other hand, we consider
a lookahead on the stack, that is, the machine can see the topmost l stack sym-
bols. It turns out that the latter is interesting from a descriptional complexity
point if view only.

General deterministic pushdown automata that are not allowed to perform
λ-steps are weaker than DPDA that may move on λ input [6]. However, in [8]
it has been shown that every reversible pushdown automaton can be simulated
by a realtime reversible pushdown automaton, that is, without λ-steps. This
realtime reversible machine can effectively be constructed from the given one.
Therefore, in order to simplify matters we do not allow λ-steps from the outset.

A deterministic pushdown automaton with lookaheads k and l ((k, l)-DPDA)
is a system M = 〈S,Σ, Γ, δ, s0, k, l,⊥, F 〉, where S is the finite set of internal
states, Σ is the finite set of input symbols, Γ is the finite set of stack symbols,
s0 ∈ S is the initial state, k ≥ 1 is the size of the input window, l ≥ 1 is
the size of the stack window, ⊥ ∈ Γ is the so-called bottom-of-stack symbol,
which initially appears on the stack, F ⊆ S is the set of accepting states, and
δ : S×ΣΣ≤k−1×ΓΓ≤l−1 → S×Γ ∗ is the (possibly partial) transition function.

A classical deterministic pushdown automaton (DPDA) is a deterministic
pushdown automaton with lookaheads k = 1 and l = 1. A configuration of a
(k, l)-DPDA is a quadruple (u, s, v, γ), where s is the current state, u ∈ Σ∗ is
the part of the input to the left of the input head, and v ∈ Σ∗ the part of the
input to the right of the input head, and γ ∈ Γ ∗ is the current content of the
stack, the leftmost symbol of γ being the top symbol. On input w the initial
configuration is defined to be (λ, s0, w,⊥).

For a configuration (u, s, v, Zγ) its successor configuration is (u′, s′, v′, βγ)
where (s′, β) = δ(s,W, prf l(Zγ)). As for DFA the input window is denoted W
and the change from (u, v) to (u′, v′) depends on whether it is a forward or a
backward computation. There are no successor configurations for (u, s, λ, γ) and
for (u, s, v, λ). The size of the stack can only decrease (by exactly 1) if β = λ; this
is usually called a pop operation. If |β| = 1 the top of stack symbol is exchanged,
leaving the size of the stack unchanged. If |β| > 1 the size of the stack increases
(by |β| − 1); we call this a push operation.

As before, we denote the relation from one configuration to the next one by .
The language accepted by a (k, l)-DPDA M is

L(M) = {w ∈ Σ∗ | (λ, s0, w,⊥) ∗ (w, sf , λ, γ), for some sf ∈ F and γ ∈ Γ ∗ }.

Now we turn to reversible DPDA. Classical reversible pushdown automata
have been introduced in [8], where reversibility is considered only for configura-
tions that are reachable from some valid initial configuration.

As for DFA here we also consider configurations unreachable from initial con-
figurations and, moreover, relax the notion of reversibility slightly. A configura-
tion must have a unique predecessor for all computations that lead to the current
configuration along the symbols seen in the input window and are consistent with

Degrees of Reversibility for DFA and DPDA 47

the symbols at the top of the stack. As before, for reverse computations the head
moves from right to left.

A DPDA is said to be reversible of degree (k, l) (REV(k, l)-DPDA) if and
only if there exists a reverse (k, l)-DPDA with transition function δ← inducing
a relation ←

from one configuration to the next, so that

(u, s, v, γ) ←
(u′, s′, v′, γ′) if and only if

(i) (u′, s′, v′, γ′) (u, s, v, γ),

(ii) if |u| ≥ k, then (prf |u|−k(u), ŝ, sufk(u)v, γ̂) ∗ (u′, s′, v′, γ′) (u, s, v, γ) for
all ŝ ∈ S, γ̂ ∈ Γ ∗ so that (prf|u|−k(u), ŝ, sufk(u)v, γ̂) ∗ (u, s, v, γ), and

(iii) if 1 ≤ |u| < k, then (λ, s0, u,⊥) ∗ (u′, s′, v′, γ′) (u, s, v, γ).

Example 5. For any integer k ≥ 1, the deterministic linear context-free language
{ anbamban | n ≥ 1,m ≥ k } is accepted by the REV(k + 1, 1)-DPDA M =
〈{s0, s1, . . . , sk+4}, {a, b}, {a,⊥}, δ, s0, k + 1, 1,⊥, {sk+4}〉, where the transition
functions δ and δ← are as follows, for x ∈ {ak+1} ∪ { apbaaq | p + q = k − 1 },
2 ≤ i ≤ k + 1, and Z ∈ Γ :

Transition function δ

(F1) δ(s0, a,⊥) = (s1,⊥)
(F2) δ(s1, a, Z) = (s1, aZ)

(F3) δ(s1, b, Z) = (s2, Z)

(F4) δ(si, a, Z) = (si+1, Z)

(F5) δ(sk+2, a, Z) = (sk+2, Z)

(F6) δ(sk+2, b, Z) = (sk+3, Z)

(F7) δ(sk+3, a, a) = (sk+3, λ)

(F8) δ(sk+3, a,⊥) = (sk+4,⊥)

Reverse transition function δ←

(B1) δ←(sk+4, x,⊥) = (sk+3,⊥)
(B2) δ←(sk+3, x, Z) = (sk+3, aZ)

(B3) δ←(sk+3, a
kb, Z) = (sk+2, Z)

(B4) δ←(sk+2, a
k+1, Z) = (sk+2, Z)

(B5) δ←(sk+2, ba
k, Z) = (sk+1, Z)

(B6) δ←(si, a
≤k−i+1abai−2, Z) = (si−1, Z)

(B7) δ←(s1, a
≤k−1aa, a) = (s1, λ)

(B8) δ←(s1, a,⊥) = (s0,⊥)
Rule (F1) is used to read the first a of the input and to change to state s1 in order
to record that at least one a appeared. While in s1 the remaining input prefix
of the form a∗ is read and stored. When a b appears in the input, (F3) and (F4)
are used to count the number of a’s in the infix up to k. If there are sufficiently
many a’s, the computation continues in sk+2 until the second b appears in the
input (using (F5) and (F6)). By (F7), now the number of stored a’s from the
prefix is compared with the number of a’s from the suffix. Since the very first a
has not been stored, there should be one more a in the suffix than in the stack.
Finally, if the bottom-of-stack symbol is seen in state sk+3, automaton M reads
the last a from the suffix and changes into the sole accepting state sk+4 by (F8),
and the computation necessarily stops.

For the backward computation the transitions of δ← are used. Note, that
in forward computations any state si+1 can only be reached from state si and
possibly from state si+1 itself. Since there is only one transition of δ that changes
to state sk+4, (B1) reverses this step for all lookahead contents that allows a
computation to reach sk+4. For further input symbols a from the suffix, the
only transition of δ that changes to state sk+3 is (F7) which pops the symbol

48 M. Kutrib and T. Worsch

from the top of the stack. So, (B2) are constructed to reverse the popping by
pushing the current input symbol, again for all lookahead contents that allow a
computation to reach sk+3. In forward computations M changes from state sk+2

to sk+3 if and only if the current input symbol is a b, whereby the stack remains
unchanged. This step can uniquely be reversed by (B3). While in state sk+2,
the power of the lookahead is used. As long as there are only a’s in the input
window, all possible computations along these a’s lead M to state sk+2 (B4).
When the window content becomes bak, all possible computations along these
sequence of symbols lead M to start to reverse the forward counting. Similarly
for further contents of the input window given in rule (B6). So, by (B5) and (B6)
the state s1 is reached. The only possibility in forward computations to reach s1
is by a’s. Therefore, (B7) reverses the pushing of the prefix by popping whenever
the stack is not empty. Finally, by (B8) the leftmost a is read when the stack is
empty, which leads to state s0. ��

4.1 Degrees by Input Lookahead

We use the languages of Example 5 as witnesses for an infinite and tight hierar-
chy of languages acceptable by reversible pushdown automata of a degree that
depends on the size of the input window only. Large stack windows do not help.

Theorem 6. For any integer k ≥ 1, there are deterministic linear context-
free languages accepted by REV(k + 1, 1)-DPDA that cannot be accepted by any
REV(k, l)-DPDA, for an arbitrary l ≥ 1.

Proof. By Example 5, the language Lk = { anbamban | n ≥ 1,m ≥ k } is
accepted by some REV(k + 1, 1)-DPDA. So, it remains to be shown, that Lk

cannot be accepted by any REV(k, l)-DPDA, l ≥ 1. To this end, assume in
contrast to the assertion that Lk is accepted by some REV(k, l)-DPDA M =
〈S,Σ, Γ, δ, s0, k, l,⊥, F 〉. During the computation of M on input prefixes a+ no
combination of state and content of the pushdown store may appear twice: If

(λ, s0, a
nbamban,⊥) ∗ (ap1 , s1, a

n−p1bamban, γ1)

+ (ap1+p2 , s1, a
n−p1−p2bamban, γ1)

is the beginning of an accepting computation, then so is

(λ, s0, a
n−p2bamban,⊥) ∗ (ap1 , s1, a

n−p1−p2bamban, γ1),

but an−p2bamban does not belong to Lk. This implies that each height of the
pushdown store may appear only finitely often and, thus, that the height in-
creases arbitrarily. So, M runs into a loop while processing a’s, that is, the
combination of a state and, for any fixed number h, some h topmost push-
down symbols α appear again and again. To render the loop more precisely,

Degrees of Reversibility for DFA and DPDA 49

let (an−x, s, axbamban, αγ) be a configuration of the loop. Then there is a suc-
cessor configuration with the same combination of state and topmost pushdown
symbols (an−x+y, s, ax−ybamban, αβ). We may choose α so that during the com-
putation starting in (an−x, s, axbamban, αγ) no symbol of γ is touched, that is,
αβ = αγ′γ. Therefore, the computation continues as

(an−x+y, s, ax−ybamban, αγ′γ) + (an−x+2y, s, ax−2ybamban, αγ′γ′γ).

Now we turn to the input suffixes. While M processes the input suffixes a+, no
combination of state and content of the pushdown store may appear twice. If

(anbamb, s2, a
n, γ2) ∗ (anbambaq1 , s3, a

n−q1 , γ3)

+ (anbambaq1+q2 , s3, a
n−q1−q2 , γ3)

results in an accepting computation, then so does

(anbamb, s2, a
n−q2 , γ2) ∗ (anbambaq1 , s3, a

n−q1−q2 , γ3),

but anbamban−q2 does not belong to Lk. This implies that each height of the
pushdown store appears only finitely often. Moreover, in any accepting compu-
tation the pushdown store has to be decreased until some symbol of γ appears.
Otherwise, we could increase the number of a’s in the prefix by y to drive M
through an additional loop. The resulting computation would also be accepting
but the input does not belong to Lk. Together we conclude that M runs into
a loop that decreases the height of the pushdown store while processing the a’s
of the suffix, and that there are only finitely many combinations of state and
content of the pushdown store which are accepting.

Now we consider the computations on the input infixes of the form a+ in
between the two symbols b. While processing these infixes the height of the
pushdown store cannot be decreased by more than a constant. Otherwise we ob-
tain the same contradiction as for the computation on the prefixes. Moreover,M
cannot increase the height of the pushdown store by more than a constant while
processing the infixes. Otherwise, the computation on the suffixes cannot de-
crease the height sufficiently, and there would be infinitely many accepting com-
binations of state and content of the pushdown store, which contradicts the
previous observation. Therefore, on these infixes M processes a loop that, in
total, neither increases nor decreases the height of the pushdown store by more
than a constant.

We will now derive a contradiction to the assumption that Lk is accepted
by M . Consider two different numbers k < m1 < m2 and some n ≥ 1 so that M
accepts anbam1ban and anbam2ban in the same combinations of state and con-
tent of the pushdown store, say in state sp with γp in the pushdown store, at the
end of the infix computation and in the same combinations of state and content of

50 M. Kutrib and T. Worsch

the pushdown store, say sf and γf , at the overall end of the computation. By the
considerations above, such numbers exist. So, we have the forward computations

(λ, s0, a
nbam1ban,⊥) n+1 (anb, s1, a

m1ban, γ1)

k−1 (anbak−1, s2, a
m1−k+1ban, γ2) (anbak, s3, a

m1−kban, γ3)

m1−k (anbam1 , sp, ba
n, γp) ∗ (anbam1ban, sf , λ, γf)

and

(λ, s0, a
nbam2ban,⊥) n+1 (anb, s1, a

m2ban, γ1)

k (anbak, s3, a
m2−kban, γ3) m2−m1−1 (anbak+m2−m1−1, s4, a

m1−k+1ban, γ4)

 (anbak+m2−m1 , s5, a
m1−kban, γ5) m1−k (anbam2 , sp, ba

n, γp)

∗ (anbam2ban, sf , λ, γf).

Since M is (k, l)-reversible, we obtain

(anbam1ban, sf , λ, γf) ← ∗(anbam1 , sp, ba
n, γp)

←m1−k
(anbak, s3, a

m1−kban, γ3)

and

(anbam2ban, sf , λ, γf) ← ∗(anbam2 , sp, ba
n, γp)

←m1−k
(anbak+m2−m1 , s5, a

m1−kban, γ5).

Since during the m1 − k steps of both backward computations the input look-
ahead is always ak and the stacks are even identical, (s3, γ3) = (s5, γ5) and, in
particular, (s2, γ2) = (s4, γ4) follow. Since M is deterministic, the beginning of
the accepting computation on input anbak+m2−m1−1ban is

(λ, s0, a
nbak+m2−m1−1ban,⊥) n+1 (anb, s1, a

k+m2−m1−1ban, γ1)

k (anbak, s3, a
m2−m1−1ban, γ3) m2−m1−1 (anbak+m2−m1−1, s4, ba

n, γ4)

= (anbak+m2−m1−1, s2, ba
n, γ2).

By the forward computations above, the beginning of the computation on input
anbak−1ban is as follows:

(λ, s0, a
nbak−1ban,⊥) n+1 (anb, s1, a

k−1ban, γ1) k−1 (anbak−1, s2, ba
n, γ2).

So, the computation on input anbak−1ban is accepting, too, a contradiction. ��

4.2 No Degrees by Stack Lookahead

Now we turn to the question whether there are hierarchies with respect to the
size of the stack lookahead, and answer it negatively. In fact, any reversible

Degrees of Reversibility for DFA and DPDA 51

pushdown machine of degree (k, l+1) can be simulated by a reversible pushdown
machines of degree (k, 1). So, in general, a lookahead on the stack does not help
to obtain reversibility. We present two different simulation principles based on
where the information of the topmost stack symbols is maintained. This could
be in additional registers of the states or in the stack symbols. Both methods
are constructive. From a practical point of view, states are somehow more active
resources while stack symbols are more passive. So, it depends on the application
which principle is more suitable.

Theorem 7. Let k, l ≥ 1 be integers and M be an REV(k, l)-DPDA with m
states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with n stack

symbols and at most m · nl+1

n−1 states can effectively be constructed.

The second construction groups up to l stack symbols into one. However, the
construction has to overcome the problem, that, when the original automaton
pops a symbol, the simulating one has to access the symbol below the topmost.

Theorem 8. Let k, l ≥ 1 be integers and M be an REV(k, l)-DPDA with m
states and n stack symbols. Then an equivalent REV(k, 1)-DPDA with m states

and at most nl+1

n−1 · (nl + 1) stack symbols can effectively be constructed.

5 Beyond the Degrees

So far, it turned out that lookaheads on the input gradually increase the capa-
bility to perform reverse computations. On the other hand, lookaheads on the
stack do not. However, the latter are suitable to decrease the descriptional com-
plexity of pushdown automata. The lookahead can be used to obtain machines
with significantly fewer states and/or stack symbols.

Now we are interested in the question whether all regular respectively realtime
deterministic context-free languages are captured by REV-DFA respectively by
REV-DPDA. Or else, whether there are regular (or deterministic context-free)
languages that cannot be accepted by any REV-DFA (or REV-DPDA) of any
degree. For the important subclass of finite languages, the answer to the latter
question is no.

Proposition 9. Any finite language is accepted by some REV(1)-DFA.

Proof. For any finite language one can obtain a DFA M whose state graph is a
finite tree and, thus, M is reversible of degree 1. ��

For a second important subclass, the unary languages, reversibility is always ob-
tained as well, but the degree for REV-DFA cannot be bounded by any number.

Proposition 10. For any unary regular language L there is an integer k ≥ 1
so that L is accepted by some REV(k)-DFA.

52 M. Kutrib and T. Worsch

Proof. Basically, the state graph of any DFA accepting a unary language con-
sists of an initial tail that leads into a cycle. If both parts are non-empty, the
DFA cannot be reversible of degree 1, since the first state of the cycle has two
predecessors. However, with an input lookahead whose size is one more than the
length of the initial tail the DFA can compute its predecessor state uniquely. ��
The necessity to provide arbitrary degrees to accept unary regular languages is
not applicable for pushdown automata.

Proposition 11. Any unary (deterministic) context-free language is accepted
by some REV(1, 1)-DPDA.

Proof. In [5] it is shown that any unary context-free language is regular. The
assertion now follows from a result in [8] that provides a REV(1, 1)-DPDA for any
regular language. Basically, the idea is to store the history of a DFA computation
on the pushdown store. Since in this way the predecessor configuration is always
unique, the construction applies here as well. ��
Finally, we consider the general cases and show that there are languages for
which even an arbitrarily large degree cannot help.

Theorem 12. There are regular languages which cannot be accepted by any
REV(k)-DFA for any degree k ≥ 1. There are realtime deterministic context-
free languages which cannot be accepted by any REV(k, l)-DPDA for any degree
(k, l), k, l ≥ 1.

Proof. Theorem 4 and Theorem 6 revealed that there are regular languages
accepted by REV(2)-DFA that cannot be accepted by any REV(1)-DFA and
that there are context-free languages accepted by REV(2, 1)-DPDA that cannot
be accepted by any REV(1, l)-DPDA, l ≥ 1.

Let L ⊆ Σ∗ be such a language, respectively, and # /∈ Σ be a symbol. Define
a regular substitution by s(a) = a#∗, for a ∈ Σ. Language s(L) consists of all
words from L with an arbitrary number of # between each two symbols from Σ.

Clearly, s(L) is still accepted by some DFA respectively DPDA. On the other
hand, for any k ≥ 1, language s(L) contains all words from s(L) ∩ (Σ#k)∗. So,
when accepting such words there is always at most one symbol of Σ in the
lookahead. Therefore, if s(L) would be reversible for input lookahead size k, a
direct construction would show that it is reversible for input lookahead size 1 as
well, a contradiction. ��

References

1. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Pars-
ing, vol. I. Prentice-Hall Inc., Englewood Cliffs (1972)

2. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
3. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible Turing ma-

chine. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS,
vol. 6638, pp. 117–128. Springer, Heidelberg (2011)

Degrees of Reversibility for DFA and DPDA 53

4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

5. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J.
ACM 9(3), 350–371 (1962)

6. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

7. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with re-
versible languages. Theoret. Comput. Sci. 174, 251–257 (1997)

8. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System
Sci. 78, 1814–1827 (2012)

9. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

10. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE E72, 223–228 (1989)

11. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992)

Trace Complexity of Chaotic Reversible Cellular

Automata�

Jarkko Kari, Ville Salo, and Ilkka Törmä

TUCS – Turku Centre for Computer Science, Finland
University of Turku, Finland

{jkari,vosalo,iatorm}@utu.fi

Abstract. Delvenne, Kůrka and Blondel have defined new notions of
computational complexity for arbitrary symbolic systems, and shown
examples of effective systems that are computationally universal in this
sense. The notion is defined in terms of the trace function of the sys-
tem, and aims to capture its dynamics. We present a Devaney-chaotic
reversible cellular automaton that is universal in their sense, answering a
question that they explicitly left open. We also discuss some implications
and limitations of the construction.

Keywords: cellular automaton, reversible, chaos, computational com-
plexity, trace, symbolic system.

1 Introduction

A significant branch of dynamical systems research is the study of computabil-
ity and computational complexity of finitely presented systems. In the liter-
ature, there are usually multiple incomparable notions of computability and
computational universality for a sufficiently popular model, like cellular au-
tomata [16,18,4]. Traditionally, for a model to be considered computationally
universal, it is sufficient for it to be able to simulate the computation process
of any Turing machine in a suitably transparent way. However, seemingly minor
variations to the formal definition (if one is presented) may reduce a universal
system into a trivial one. A related notion is that of intrinsic universality, which
refers to the ability of simulating any other instance of the same model in some
formally defined way. In cellular automata, intrinsic universality is usually de-
fined with respect to block simulations, although in earlier research this notion
had usually also been left undefined. See [8] for a discussion on the implications
of not defining these notions rigorously. In the context of reversible computation,
intrinsic universality of reversible Turing machines has been discussed in [1].

In [5], a new definition of computational universality was proposed that can
be applied to a wide range of discrete dynamical systems, including cellular
automata, shift spaces, tag systems, and Turing machines, which can be viewed
as dynamical systems in more than one way [9]. It is an update of the definition

� Research supported by the Academy of Finland Grant 131558.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 54–66, 2014.
c© Springer International Publishing Switzerland 2014

Trace Complexity of Chaotic Reversible Cellular Automata 55

given in [6], and aims to capture the dynamical complexity of the system, so
that systems that are dynamically too simple (like the identity map on a set) or
allow too much freedom (like the shift map) would not be universal.

The computational universality presented in [5] intuitively means the hard-
ness of deciding prediction problems like ‘for subsets U, V,W of the state space,
is there a point in U that is mapped by the dynamics to V , and stays there
until it enters W .’ For example, one would show that Turing machines are com-
putationally universal by defining U as the singleton set containing the initial
configuration, V as the set of all configurations, and W as the set of final con-
figurations. Of course, for the definition to be sensible, the subsets need to be
restricted in some way. In symbolic systems, whose elements are infinite se-
quences of symbols, we require that the sets are clopen, that is, they are defined
by the contents of finitely many coordinates.

One of the main observations in [5] is that universal systems tend to be ‘at
the edge of chaos’: the dynamics appears chaotic, but has underlying structure
that gives rise to the universality. They give examples of effective systems that
are both universal and chaotic in the sense of Devaney [7], but the existence
of a universal chaotic cellular automaton is explicitly left open. In this article,
we contruct a reversible universal chaotic cellular automaton, answering this
question in the positive. Note that although reversible cellular automata were
shown to be able to simulate arbitrary computation already in [11], and their
construction seems to be universal in the sense of [5], it is not chaotic.

2 Definitions

Let M be either N or Z, and let S be a finite alphabet. The set SM, equipped with
the product topology, is called the full M-shift on S, and its elements are called
configurations. The monoid (M,+) acts on SM by the shift maps σm : SM → SM

for m ∈ M, defined by σm(x)n = xn+m. We denote σ1 = σ. For a word w ∈ Sn

and x ∈ SM, we say that w occurs in x, denoted w � x, if there exists m ∈ M

such that w = x[m,m+n−1]. This notation is extended to sets of configurations

in the obvious way. An M-shift space is a topologically closed set X ⊂ SM

satisfying σ(X) ⊂ X . Equivalently, a shift space is defined by a set F ⊂ S∗ of
forbidden words as XF = {x ∈ SM | ∀w ∈ F : w �� x}. If F is finite, XF is a
shift of finite type (SFT for short). We denote Bn(X) = {w ∈ Sn | w � X} and
B(X) =

⋃
n∈N

Bn(X).
A block map is a continuous function f : X → Y between shift spaces X,Y ⊂

SM that satisfies f ◦ σ|X = σ|Y ◦ f . Alternatively, a block map is defined by a

local rule f̂ : Ba+m+1(X) → B1(Y), where a,m ∈ N are the anticipation and

memory of f̂ , by f(x)n = f̂(x[n−m,n+a]). The interval {−m, . . . , a} ⊂M is called

the neighborhood of f̂ . In the case M = N, we must have m = 0. If X = Y = SM,
then f is called a cellular automaton (CA for short), and a bijective CA is called
reversible, since its inverse function is also a CA. We sometimes identify a CA
and its local rule, but this should always be clear from the context.

56 J. Kari, V, Salo, and I. Törmä

A symbolic system is a tuple (X, f), where X is a compact metric space with
countable clopen basis (equivalently, homeomorphic to a closed subset of a full
shift), and f : X → X is continuous. The system is effective if the clopen basis
of X can be enumerated so that complementation, intersection and f -preimage
are computable operations. It is chaotic (in the sense of Devaney [7]) if

– it is sensitive (there exists ε > 0 such that for all x ∈ X and δ > 0 there
exist y ∈ X and n ∈ N with d(x, y) < δ and d(fn(x), fn(y)) ≥ ε),

– it is transitive (for all nonempty open sets U, V ⊂ X , there exists n ∈ N with
U ∩ fn(V) �= ∅), and

– the f -periodic points (those x ∈ X for which fn(x) = x for some n ∈ N) are
dense in X .

In particular, every Z-shift space (X, σ) with the left shift is a symbolic system,
as is (X, f) for every block map f : X → X . These are the only kinds of symbolic
systems we use in this article; the full definition is given only for completeness,
and to state the definitions of universality given in [5].

Example 1. For a cellular automaton f : SZ → SZ, most dynamical notions have
combinatorial characterizations. For example, f is transitive if and only if for all
words u, v ∈ S2�+1 of the same odd length, there exists a configuration x ∈ SZ

and n ∈ N such that x[−�,�] = u and fn(x)[−�,�] = v.

A Muller automaton is a quintuple A = (Q, q0, Σ, δ, F), where Q is a finite state
set, q0 ∈ Q an initial state, Σ a finite input alphabet, δ : Q×Σ → Q a transition
function and F ⊂ 2Q a set of accepting subsets of states. A Muller automaton
runs deterministically on infinite words w ∈ ΣN analogously to a standard finite
automaton, and accepts if the set of states that are visited infinitely often during
the computation is in the set F . The language accepted by A is denoted LA. For
a language L ⊂ A∗, we denote by Lω ⊂ AN the set of infinite concatenations of
the words of L. In particular, if L is regular, then Lω is accepted by a Muller
automaton. See [17] for a reference on Muller automata, and other types of finite
automata on infinite words.

In this article, a Turing machine is a sextuple M = (Q,Σ, q0, qf , B, δ), where
Q is a finite state set, Σ a finite input alphabet, q0, qf ∈ Q are the initial and
final states, B ∈ Σ is the blank letter and δ ⊂ Q× (Σ×Σ∪{/}×{+, 0,−})×Q
a transition relation. Turing machines are run on two-way infinite tapes, and the
initial input is placed immediately to the right of the head. The interpretation
of a quadruple [q1, a, b, q2] ∈ δ in the case a, b ∈ Σ is that if M is in state q1
and reading the letter a, it may rewrite it to b and go to state q2. In the case
a = / and b ∈ {+, 0,−}, if M is in state q1, it may go to state q2 and move one
step in the direction indicated by b. Two quadruples [q1, a, b, q2] and [q′1, a′, b′, q′2]
overlap in domain if q1 = q′1 and a, a′ ∈ Σ =⇒ a = a′. They overlap in range
if q2 = q′2 and a, a′ ∈ Σ =⇒ b = b′. If no distinct quadruples overlap in domain
(range), then M is deterministic (reversible, respectively). As usual, the language
of a Turing machine is the set of input words on which is eventually halts.

We use the following terminology for certain classes in the arithmetical and
analytical hierarchies. A set N ⊂ N is called Σ0

1 if it is recursively enumerable,

Trace Complexity of Chaotic Reversible Cellular Automata 57

and Π0
1 if its complement is. The set is called Σ1

1 , if there exists an oracle Turing
machine M such that

N = {n ∈ N | ∃f : N→ N : M never halts on input n with oracle f}.
These are not the standard definitions of the classes, but characterizations whose
proofs can be found, for example, in [15, Theorem 1.3]. Hardness and complete-
ness of a set with respect to these classes is defined using Turing reductions.
When classifying subsets of other countable sets than N, for example {0, 1}∗, we
assume that they are in some natural and computable bijection with N.

In [12], it was proved that deterministic reversible Turing machines are capable
of simulating any deterministic Turing machine (first proved in [2] for multi-tape
Turing machines). We will not go into the details of the notion of simulation,
but it is easy to see that it implies the following lemmas.

Lemma 1. There exists a deterministic reversible Turing Machine M whose
language is Σ0

1-complete.

Lemma 2. There exists a deterministic reversible Turing Machine M , whose
tape alphabet contains 0, 1 and #, such that the set

L = {w ∈ {0, 1}∗ | ∃u ∈ (0∗1)ω : M never halts on w#u}
is Σ1

1 -complete, and the head never steps left of the origin on right-infinite inputs.

3 Traces and Computational Universality

In this section, we recall the definition of computational universality for an ef-
fective symbolic system (X, f), as given in [5]. First, a clopen partition of X is
a finite collection C = (Cs)s∈Σ of mutually disjoint clopen subsets of X such
that X =

⋃
s∈Σ Cs, labeled by a finite set Σ. The partition can be seen as

an observation or experiment, with input x ∈ X resulting in the unique label
πC(x) = s0 ∈ Σ such that x ∈ Cs0 . More information can be extracted from x
if we apply the dynamics function f to it and repeat the experiment, obtaining
the result πC(f(x)) ∈ Σ. Iterating the idea leads to the following definition.

Definition 1. Let (X, f) be a symbolic system, and let C = (Cs)s∈Σ be a clopen
partition of X. For x ∈ X, the f -itinerary of x via C is the infinite sequence
πf
C (x) ∈ ΣN defined by πf

C (x)n = πC(fn(x)) for all n ∈ N. The C-trace shift

of f is the N-shift space τf,C = {πf
C (x) | x ∈ X}. In the case X ⊂ SZ, we

denote by τf,n the trace with respect to the partition Cn = (Cw)w∈S2n+1, where
Cw = {x ∈ X | x[−n,n] = w} for all w ∈ S2n+1.

Example 2. Let f : SZ → SZ be a cellular automaton, and let n ∈ N. Then the
trace shift τf,n is obtained by taking, for each x ∈ SZ, the sequence

x[−n,n], f(x)[−n,n], f
2(x)[−n,n], f

3(x)[−n,n], . . .

of the central words occurring in the evolution of the initial state x under f .

The article [5] defines the following two decision problems.

58 J. Kari, V, Salo, and I. Törmä

Definition 2. Let (X, f) be an effective symbolic system. The infinite time
prediction problem asks whether we have τf,C ∩ LA �= ∅ for a given partition
C = (Cs)s∈Σ and Muller automaton A on the alphabet Σ. The finite time pre-
diction problem asks whether we have B(τf,C) ∩ L �= ∅ for a given partition
C = (Cs)s∈Σ and regular language L ⊂ Σ∗. We say that (X, f) is computation-
ally universal if its finite time prediction problem is Σ0

1-complete.

As hinted in Section 1, the most obvious way of showing that an effective sym-
bolic system (X, f) is computationally universal in the above sense is to construct
a simulation of a Turing machine M (or some other universal computational de-
vice) by f , and identify three disjoint clopen sets C0, C1, C2 ⊂ X that correspond
to the classes of initial, intermediate, and halting configurations of M . Then the
instance 01∗2 of the finite time prediction problem is positive if and only if M
halts on one of the the initial configurations in C0.

Example 3. We continue Example 2. In the finite time prediction problem for
(SZ, f), we are given a clopen partition of SZ, which we (for now) assume to
be Cn for some n ∈ N, and a regular language L over the alphabet S2n+1. For
example, if S = {0, 1} and n = 1, then L may be given as the regular expression
([000][010])∗[111] + [100]∗[111] (note that the ‘letters’ of this regular expression
are binary words of length 3). If there exists x ∈ {0, 1}Z such that, for example,
x[−1,1] = 000, f(x)[−1,1] = 010 and f2(x)[−1,1] = 111, then the answer to the
finite time prediction problem with these inputs is ‘yes’, since the language of
the C1-trace shift of f contains the word [000][010][111] ∈ L.

Examples of chaotic universal effective symbolic systems and universal cellular
automata were provided in [5], but it was explicitly left open whether a universal
cellular automaton can be chaotic.

The notion of universality given in the earlier work [6] is also equivalent to
the Σ0

1 -completeness of a prediction problem, but instead of Muller automata,
the definition uses a temporal logic that specifies subsets of the state space. We
will not digress into this subject, as it is not necessary for stating and proving
the main results of this article.

4 Main Results

In this section, we prove that a chaotic reversible cellular automaton can be com-
putationally universal and even have a maximally hard infinite time prediction
problem. In the proof, we use the following well-known lemma, found explicitly
in [10].

Lemma 3. A reversible cellular automaton is chaotic (in the sense of Devaney)
if and only if it is transitive.

We are now ready to state and prove our main theorem.

Trace Complexity of Chaotic Reversible Cellular Automata 59

Theorem 1. There exists a chaotic reversible cellular automaton whose finite-
time prediction problem is Σ0

1 -complete, even when restricted to the radius-one
partition C1. In particular, the automaton is computationally universal in the
sense of Definition 2.

Proof. We first describe the general idea of the construction. The configurations
of the reversible CA we construct are divided into ‘compartments’, each of which
may contain one read-write head of a reversible Turing machine. The automaton
simulates the Turing machines separately in each compartment, changing the
direction of the simulation if they halt, and no information can be passed between
the compartments. The compartments and the machines are also constantly
shifted to the left. When one of the machines halts, it sends a signal to the right.

Now, in the trace shift we wish to see the following pattern: the left wall of
a compartment, then some empty space, then the Turing machine head in its
initial state followed by an input word, then another empty stretch, and finally
the right-moving signal emitted by the halting machine. If we see such a pattern,
the machine must have halted, since the signal cannot have come from the other
side of the wall, and it cannot be the result of a left-moving signal bouncing
off the wall, for no such signal was seen earlier. Finally, the transitivity of the
CA follows from the constant shifting of the compartments and the fact that
they never communicate, so that every central pattern of a configuration can
eventually be replaced by arbitrary data.

Let M = (Σ,Q, δ, B, q0, qf) be the reversible Turing Machine of Lemma 1.
We may assume that the head of M makes a move only on every third step,
that it does not make a move in state q0 for two steps when run backwards or
forwards, that it always takes at least 2|w|+ 2 steps for M to halt on an input
word w, and that it always halts after an even number of steps or runs forever.
Denote S = Σ × (Q ∪ Q̃ ∪ {←,→}), where Q̃ = {q̃ | q ∈ Q} is a disjoint copy of
Q, and define a reversible cellular automaton fM on SZ as follows.

We partition each configuration x ∈ SZ into segments whose second track is of
the form←mq→n, where q ∈ Q∪ Q̃, or←m+1→n+1, for some (possibly infinite)
m,n ≥ 0. Namely, each cell of x is contained in at least one pattern of this form,
and when we take the maximal ones, the partition is uniquely determined. On
these segments, fM simulates a computation of M (backwards in time if q ∈ Q̃)
in a standard way. Namely, consider a cell in state (a, q) ∈ Σ×Q. If [q, a, b, r] ∈ δ
for some b ∈ Σ and r ∈ Q, the cell will update to (b, r). Each two-cell pattern
(a, q)(b,→) such that [q, /,+, r] ∈ δ for some b ∈ Σ will update to (a,←)(b, r),
and analogously for a 0- or −-move. In all other cases (no applicable quadruple
exists, or the segment ends), the cell becomes (a, q̃). To such cells, the quadruples
and the time-reversal rule are applied in the reverse direction: [r, b, a, q] ∈ δ
results in (b, r̃) and so on. All cells not mentioned here retain their state. Thus
the first track acts as the tape, the endpoints of the segments never move, and
if the simulation cannot be carried on then it changes direction. For x ∈ SZ,
denote by r(x) ∈ SZ the configuration obtained from x by changing every q ∈ Q
to q̃, and vice versa; it is easy to see that r ◦ fM ◦ r = f−1

M , which implies that
fM is reversible. See Figure 1 for a visualization of the dynamics of fM .

60 J. Kari, V, Salo, and I. Törmä

Now, let D = { , , , }, and denote R = S ×D. The cells in D represent
particles traveling to the left or to the right, with the fourth one containing one
of each. We define a CA g on RZ that functions as follows:

1. Apply fM to the first track.
2. Shift each particle to its direction, unless it would cross the barrier between

two segments, in which case change its direction.
3. If a cell contains the final state of M in its first track, apply the bijection

↔ , ↔ to the second track.

See Figure 2 for a visualization. Since each of the three steps is clearly reversible,
so is g. Finally, define h = σ ◦ g2, which is likewise reversible, and denote by
πS : R→ S and πD : R→ D the obvious projections from R.

Now, let w ∈ Σ∗ be arbitrary, and denote by L(w) ⊂ R∗ the regular language

(B,→,)(B,←,)∗(B, q0,)(w × (→,)|w|)(B,→,)∗(B,→,) (1)

The words of the language L(w) consist of the left border of a segment, then
some ‘empty’ cells, followed by the initial state of M and its input word, then
more empty cells, and finally a right-moving particle. Let U(w) ⊂ (R3)N be the
open set of all configurations that have a prefix v ∈ (R3)∗ such that the middle
components of the triples in v form a word in L(w), and none of the letters of
v contain a left-moving particle. We claim that τh,1 ∩ U(w) is nonempty if and
only if M halts on w, which is Σ0

1-complete.
First, assume that M halts on w after exactly 2n + 2 steps, where n ≥ |w|,

and define x ∈ RZ by

xi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(B,→,), if i ≤ −n,
(B,←,), if − n < i < 0,
(B, q0,), if i = 0,
(wi−1,→,), if 1 ≤ i ≤ |w|,
(B,→,), if i > |w|.

Denote y = h−n(x). We claim that (hi(y)[−1,1])i∈N ∈ U(w). To prove that, we

first remark that for all k, � ∈ Z such that 3|�| ≥ |k| we have πS(g
k(x)�) =

πS(x�), since only the single Turing Machine head can introduce changes to
the S-component of the configuration, and it only moves every third step by
assumption. This means that for all i ∈ Z we have πS(h

i(y)0) = πS(xi−n).
Since M does not halt in 2n steps, the second track of every configuration

in {hi(y) | i ∈ {0, . . . , 2n}} contains no particles. But since M halts at step
2n + 2, there exists k ∈ Z with |k| ≤ n

3 such that πD(h2n+1(y)k−n−1) =
πD(g2n+2(x)k) = . Since the single Turing Machine head will not enter the
final state for another 4n + 4 steps, we have πD(hi(y)0) = for every i ∈
{2n+ 1, . . . , 3n − k + 1}, and πD(h3n−k+2(y)0) = . Furthermore, no letter in
(hi(y)[−1,1])i∈N contains a left-moving particle, and together with the previous
paragraph, this shows that (hi(y)[−1,1])i∈N ∈ U(w), and thus τh,1 ∩ U(w) �= ∅.
See Figure 3 for a visualization that will also be helpful in the converse direction.

Trace Complexity of Chaotic Reversible Cellular Automata 61

←
←
←
←
←
←
←
←
←
←
←
←
←
←

←
←
←
←
←
←
←
←
←
←
←
←
←
←

←
←
←
←
←
←
←
←
←
←
←
←
←
←

q0

q2
b

q1
a

q4
c

q3
b

q6

q5
b

q8
c

q7
b

←
←
←
←
←
←
←
←
←
←
←
←
←
←

←
←
←
←
←
←
←
←
←
←
←
←
←
←

←
←
←
←
←
←
←
←
←
←
←
←
←
←

←
←
←
←

←
←
←
←
←

←
←

←
←
←
←
←
←
←
←
←
←
←
←
←
←

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→
→
→
→
→
→
→

←b
←b

←b
←b

←b

→a
→a

→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a

→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a
→a

→c
→c
→c

→c
→c
→c
→c
→c
→c
→c
→c
→c
→c
→c
→c
→c
→c

→b

→b
→b
→b
→b
→b
→b

→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b

→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b
→b

q̃2
b

q̃0

q̃3
b

q̃4
c

q̃1
a

Fig. 1. A spacetime diagram of the reversible cellular automaton fM simulating the
reversible Turing machine M . Each row is (the central pattern of) a configuration of
SZ, and time increases upwards. The shaded cells contain a Turing machine head, and
the thick vertical lines mark the borders of segments. The initial state of M is q0, which
is preceded in the simulation by the ‘backward’ state q̃0, and a, b, c are elements of the
tape alphabet. To save space, M does not move only every third step in this figure.

Fig. 2. A spacetime diagram of g, showing the dynamics of the particles. The thick
lines mark the borders of segments, and the circles denote the final state of M . Other
information from the first track is not shown. The particles are drawn in gray for clarity.

Second, assume that y ∈ RZ is such that (hi(y))i∈N ∈ U(w), with the ∗-
symbols in the definition of L(w) being replaced by numbers n−1,m−|w|−1 ∈ N,
so that we have hn(y)0 = (B, q0,) and hn+m(y)0 = (B,→,). Let x = hn(y).
Since the segments used in the simulation of M never move under the action of
g, the interval I = [−n,m] is contained in a single segment of y, and contains
its left endpoint. The segment contains a Turing Machine head, and as above,

62 J. Kari, V, Salo, and I. Törmä

w

x

g−2n(x) = σn(y)

k

g2n+2(x)

−n

0

m

m

g2m(x)

Fig. 3. A schematic spacetime diagram of g. The black (gray) circles represent the
initial (final) states of M (at coordinates 0 and k, respectively), and the densely dotted
line traces the read-write head of M as it carries out its computation. The sparsely
dotted line corresponds to the central coordinates of the configurations hi−n(x) for
i ∈ N. The thick vertical line is a border of segments, the diagonal line is a particle,
and the dashed continuation is its hypothetical path assuming thatM never halted. The
particle meets the sparsely dotted line at coordinate m. Each horizontal line represents
a configuration. The shaded area represents the letters of the input word w ∈ Σ∗ in x
that the head of M has not yet read (which the sparsely dotted line goes through).

Trace Complexity of Chaotic Reversible Cellular Automata 63

for all k, � ∈ Z such that 3|�| ≥ 2|k|, we have πS(h
k+n(y)�−k) = πS(g

2k(x)�) =
πS(x�). In particular, the word πS(xI) contains a Turing Machine head in state
q0 followed by the input word w, surrounded by the blank symbols.

Consider now the two remaining tracks of x and y. We know from the above
that g2m+2n(y)m+n = hm+n(y)0 = (B,→,) (the intersection of the particle
and the densely dotted line in Figure 3). This implies that either the coordinate
g2m+2n−i(y)m+n−i contains the final state of M for some i ∈ {0, . . . ,m + n},
or each of them contains a right-moving particle. In the latter case, gm+n−1(y)0
contains a left-moving particle, since it is next to a segment border, and so does
gm+n−1−j(y)j for all j ∈ {0, . . . ,m+n} (see the dashed line in the figure). Now,
at j = 0 we have m + n − 1 − j > 2j, while at j = m + n, the opposite holds.
Thus we have |(m+n− 1− j0)/2− j0| ≤ 1 for some j0 such that m+n− 1− j0
is even; denote m+ n− 1− j0 = 2�. Then 0 ≤ � < m+ n, and the cell

h�(y)b = g2�(y)�+b = gm+n−1−j0(y)j0

contains a left-moving particle for some b ∈ {−1, 0, 1} (the intersection of the
dashed line with the densely dotted line in the figure). But this is impossible
since (hi(y))i∈N ∈ U(w), so the choice that none of the cells g2m+2n−i(y)m+n−i =
g2m−i(x)m−i contain the final state of M was incorrect. Thus one of them does,
implying that M eventually halts, since the initial and final states lie in the same
segment (at different times). This finishes the proof of τh,1 ∩ U(w) �= ∅ being
equivalent to M halting on w.

Finally, we show that h is chaotic, and by Lemma 3, it suffices to prove
transitivity. The proof is standard for reversible CA that have ‘shifting barri-
ers’, in our case borders of segments. Let thus u, v ∈ Rn be two words of the
same length n. Define w = (B,←,)(B,→,). Then for all x, y ∈ RZ with
x[0,1] = y[0,1] = x[n+2,n+3] = y[n+2,n+3] = w and x[2,n+1] = y[2,n+1], we have
gi(x)[2,n+1] = gi(y)[2,n+1] for all i ∈ Z. This is because the evolution of a seg-
ment under g is independent of other segments.

Now, let x ∈ RZ be such that x[0,n+3] = wuw, and let y ∈ RZ be defined by

yi =

{
(wvw)i, if i ∈ [0, n+ 3],
hn+4(x)i, otherwise.

By applying the above argument to y, which satisfies y[n+4,n+5] = y[2n+6,2n+7] =
w, we have that h−n−4(y)[2,n+1] = u, and by definition y[2,n+1] = v. This shows
that h is transitive, and thus chaotic. See Figure 4 for a visualization of this
argument. ��
The regular expression (1) used in this construction is local in the sense that
it can be recognized by a DFA whose state only depends on the n symbols it
last read. This also applies to the regular language used in the definition of
U(w), where the small extra condition of not having left-moving particles in the
neighboring coordinates was added.

The reversible cellular automaton we constructed above also has a maximally
hard infinite time prediction problem, provided that we choose the machine M
correctly.

64 J. Kari, V, Salo, and I. Törmä

h−n−4(y)
x

hn+4(x)

= �= =y

hn+4

wuw

wuw

wvw

Fig. 4. A schematic spacetime diagram of h. The vertical lines represent configurations,
and each thick line is a border of segments. The dotted lines mark the interval [0, n+3].

Theorem 2. There exists a chaotic reversible cellular automaton whose infinite-
time prediction problem is Σ1

1 -complete, even when restricted to the radius-one
partition C1.

5 Further Discussion

The automaton h constructed in Theorem 1 and Theorem 2 is chaotic, but it is
not expansive. A reversible cellular automaton h : SZ → SZ is expansive, if there
exists r ∈ N such that for all distinct pairs x �= y ∈ SZ, there exists k ∈ Z with
hk(x)[−r,r] �= hk(y)[−r,r]. Intuitively, this means that all discrepancies between
two configurations are propagated to the left and to the right, if we consider both
their past and future itineraries. Expansivity can thus be seen as an extreme
form of sensitivity to initial conditions, and it makes sense to ask whether an
expansive CA can be computationally universal.

Unfortunately, the trace shifts of expansive cellular automata are a deep and
mysterious subject, and not much is known about them. In [3], it was shown
that if h is an expansive CA, then all of its wide enough traces (τh,n for large
enough n ∈ N) have a property called total chain transitivity, which makes it
difficult to find much structure in them. Also, in [14], it was shown that if h has
memory or anticipation 0, then all wide enough traces are actually SFTs. It is
currently unknown whether this holds for all expansive CA (as conjectured in
[13]), but it would directly imply that their prediction problems are decidable,
at least for a fixed clopen partition.

Acknowledgments. The authors are thankful to the anonymous referees for
their valuable comments that helped to improve the quality and readability of
this article.

Trace Complexity of Chaotic Reversible Cellular Automata 65

References

1. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17,
525–532 (1973)

3. Boyle, M.: Some sofic shifts cannot commute with nonwandering shifts of finite
type. Illinois J. Math. 48(4), 1267–1277 (2004)

4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1),
1–40 (2004)

5. Delvenne, J.-C., Kůrka, P., Blondel, V.: Decidability and universality in symbolic
dynamical systems. Fund. Inform. 74(4), 463–490 (2006)

6. Delvenne, J.-C., Kůrka, P., Blondel, V.D.: Computational universality in sym-
bolic dynamical systems. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354,
pp. 104–115. Springer, Heidelberg (2005)

7. Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-
Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced
Book Program, Redwood City (1989)

8. Durand, B., Róka, Z.: The game of life: universality revisited. In: Cellular automata
(Saissac 1996). Math. Appl., vol. 460, pp. 51–74. Kluwer Acad. Publ., Dordrecht
(1999)

9. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput.
Sci. 174(1-2), 203–216 (1997)

10. Lukkarila, V.: Sensitivity and topological mixing are undecidable for reversible
one-dimensional cellular automata. Technical Report 927, TUCS (2009)

11. Morita, K., Harao, M.: Computation universality of one-dimensional reversible
(injective) cellular automata. The Transactions of The IEICE E72-E(6), 758–762
(1989)

12. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible turing machine.
The Transactions of the IEICE E72, 223–228 (1989)

13. Nasu, M.: Textile systems for endomorphisms and automorphisms of the shift.
Mem. Amer. Math. Soc. 114(546), viii+215 (1995)

14. Nasu, M.: Textile systems and one-sided resolving automorphisms and endomor-
phisms of the shift. Ergodic Theory and Dynamical Systems 28, 167–209 (2008)

15. Sacks, G.E.: Higher recursion theory. Perspectives in mathematical logic. Springer
(1990)

16. Smith III, A.R.: Simple computation-universal cellular spaces. J. Assoc. Comput.
Mach. 18, 339–353 (1971)

17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

18. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10(1-2),
1–35 (1983); Cellular automata (Los Alamos, N.M., 1983)

66 J. Kari, V, Salo, and I. Törmä

Appendix

Proof of Theorem 2:

Proof. The CA h : RZ → RZ and the proof idea are exactly the same as in
Theorem 1, but the machine M now needs to satisfy the claim of Lemma 2.

Now, let w ∈ {0, 1}∗, and define the Muller-recognizable language L(w) ⊂ RN

by the infinite regular expression

(B,→,)(B, q0,)(w × (→,)|w|)(#,→,)((0,→,)∗(1,→,))ω (2)

It is similar to (1), except that the head of M is situated right next to the end of
the segment, and after the input word w we may have an infinite tail of 0s and 1s,
but no particles at all. As before, let U(w) ⊂ (R3)N be the set of configurations
whose middle letters form a configuration in L(w), and none of the letters of
which contains a left-moving particle.

With a proof mimicking that of Theorem 1, we can now show that τf,1 ∩
U(w) �= ∅ if and only if there exists u ∈ {0, 1}N such that M never halts on
w#u, and this is Σ1

1-complete by the choice of M . Namely, if M never halts,
then the preimage of a configuration x ∈ RZ containing the initial configuration
of M with input w#u for some u ∈ (0∗1)ω has its trace in U(w) since no
particles are ever introduced. Conversely, if such a configuration exists, then it
necessarily simulates a non-halting computation of M , since a particle must be
either created or destroyed at the time of halting, both of which are impossible.
Furthermore, h is chaotic by the same argument as before. ��

Arbitration and Reversibility of Parallel

Delay-Insensitive Modules

Daniel Morrison and Irek Ulidowski

Department of Computer Science, University of Leicester, England

Abstract. Weanalyse the external behaviour of parallel delay-insensitive
modules in order to formalise the notions of arbitration and reversibility,
and investigate universality of classes of such modules. A new notation for
parallel modules is developed, where inputs can be sets of signals, which is
used to define arbitration and module inversion. We show that arbitrating
modules are more expressive than non-arbitrating modules, and propose
universal sets for two classes of non-arbitrating modules. We demonstrate
previously unrealised constructions of M×NJoin and M×NFork in terms
of purely reversible and non-arbitrating modules.

1 Introduction

Delay-insensitive (DI) circuits are a category of asynchronous circuits which
make no assumption about delays within modules and lines (wires) connecting
the modules, and have no global clock. They were introduced by Keller ([2]) who
characterised the conditions required for correct DI operation and gave various
universal sets of modules. Much subsequent work by Patra and Fussell ([12,11])
went into finding more efficient universal sets of modules, where efficiency is mea-
sured as lowmodularity (the maximum number of input-output lines for modules
in a set) and low cardinality (the number of modules in a set). Constructions by
Keller and by Patra and Fussell of arbitrary parallel modules (where multiple
signals can be input or output) made no clear distinction between those modules
which utilised high-level arbitrating behaviour and those which did not. As a re-
sult, all current constructions of parallel modules, whether they are arbitrating
or not, utilise arbitrating modules.

Reversible modules were originally studied by Fredkin and Toffoli ([1]) who
proposed a number of synchronous universal logic gates. More recently, Morita,
Lee, Peper and Adachi carried out research into finding efficient universal sets
of reversible serial modules with memory (where only one signal travels around
a circuit), such as Rotary Element (RE) ([6]), and Reading Toggle (RT) and
Inverse Reading Toggle (IRT) ([3]). The set of all possible 2-state modules with
two, three and four pairs of input/output lines was enumerated in [8]. How
these various concepts relate to each other, as well as to cellular automata, was
discussed by Morita in [5]. However, a comparatively small amount of research
has been carried out into reversible parallel modules.

The behaviour of parallel modules is defined in a sequential machine style
([2]) by specifying how sequences of inputs produce sequences of sets of outputs.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 67–81, 2014.
c© Springer International Publishing Switzerland 2014

68 D. Morrison and I. Ulidowski

In order to allow concurrent inputs and, at the same time, use the sequential
machine style of defining the behaviour of modules, Keller introduced an informal
notion of arbitration (see conditions N3 and N6 in Section 2). It says that if two
input signals arrive simultaneously or close to each other in time, the behaviour
of the module is such as if one signal and then the other arrived (even though
the real order of arrival was opposite). We investigate arbitration further and
propose several conditions that define its properties precisely.

In order to enable us to define inverses of parallel DI modules we develop a
new notation where inputs as well as outputs can be sets of signals. We give
an algorithm for converting traditional sequential machine definitions of paral-
lel modules to the new so-called set notation, and use this notation to define
“high-level” arbitration (a form of non-determinism) and inverses of parallel
modules. We show how reversibility combined with parallelism presents a new
type of backwards-arbitration. Our main results are several universal sets for par-
allel modules which satisfy various properties relating to arbitration, backwards-
arbitration and reversibility. In particular, we give for the first time a general
construction of M×NJoin using only reversible and non-arbitrating modules.

2 Asynchronous Delay-Insensitive Modules

We begin by formally defining a DI module.

Definition 1. A module is defined by the 6-tuple (Q, I,O, f, g, A) where 1) Q
is a finite set of states, 2) I is a set of input lines, 3) O is a set of output
lines, 4) f : Q × I → Q is a partial function, the state-transition function, 5)
g : Q×I → P(O) is a partial function, the output function, 6) A : Q→ P(P(I)).
The initial state of a module is understood implicitly. The set A(q) represents
the maximal sets of inputs which may be signalled concurrently in state q. Hence
for each L ∈ A(q), any subset of L may be signalled concurrently.

We note that this differs from Keller’s original definitions given in [2], where
a distinction is made between a module and an internal sequential machine of a
module. The definition we give above is a simplification but this does not make
a difference in practice.

We introduce some useful notation. Symbols q, q′, q′′... range over states, and
a, b, c... and B,C,D... range over input/output lines and sets of such lines re-
spectively. Given a module M , assume that f(q, a) is defined iff g(q, a) is defined
for all q, a. As in [10], we use CCS-like notation ([13], [14]) to succinctly define
a module. If f(q, a) and g(q, a) are defined, then (a, g(q, a)).f(q, a) is called an
action of q, where (a, g(q, a)) is an input/output pair and f(q, a) is the resulting
state. We specify all actions of q by writing q = (a1, B1).q

′
1 + · · · + (an, Bn).q

′
n

where Bx = g(q, ax), q
′
x = f(q, ax) and f(q, ax) and g(q, ax) are defined for all

1 ≤ x ≤ n. Then the definition of a module M is given by a set of such equations,
one for each state of M , together with a definition of the function A. We say
that an action (a,B).q is an empty output if B = ∅. We require that for any q, q′:
if f(q, a) = f(q′, a) and g(q, a) = g(q′, a) for all a, then q = q′ (no two different

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 69

states have the same definitions). We also require a ∈ L ∈ A(q) iff (a,B).f(q, a)
is an action of q for some B. Sometimes we write (a,B).q′ ∈ q to mean (a,B).q′

is an action of q.
We outline the operating conditions of modules and networks after Keller [2]:

N1) “I and O are disjoint”;
N2) “A module, once having created a signal on a line, cannot “withdraw” the
signal before it is assimilated by a module on the opposite of the line”;
N3 (arbitration-condition) “If two signals appear on different input lines of a
module simultaneously, or very close together in time, the action of the module
should be as if one signal, then the other occurred as specified by the sequential
machine”;
N4) “There may be an arbitrary delay between the assimilation of an input
signal by a module and the production of a corresponding output signal. This
delay is always finite but is not necessarily bounded”;
N5) “At most two modules in a network are ever connected by the same line,
and this line must be an input to one module and an output from the other”;
N6) “If a signal is produced by one module on an input line to another modules,
it must be assimilated before a second signal occurs on the same line.”

We modify one of Keller’s conditions, and add two further conditions:
N7) A wire has an unbounded but finite delay;
M1) If an input is undefined in a state, then such an input may never occur
during operation;
M2) All states are reachable from the initial state.

If a network of modules performs its function correctly regardless of any delays
in lines or modules, we say that the network is delay-insensitive. We also impose
five conditions listed below on the construction of delay-insensitive networks that
arise from Keller’s arbitration. The conditions are universally quantified over q, a
and b (with a �= b):
A1) if a, b ∈ L, where L ∈ A(q) then f(f(q, a), b) and f(f(q, b), a) are defined;
A2) if f(q, a) and f(f(q, a), b) are defined, and g(q, a) = ∅ then f(q, b) is defined;
A3) if f(q, a) and f(f(q, a), a) are defined then g(q, a) �= ∅;
A4) if a, b ∈ L, where L ∈ A(q) then g(q, a) ∩ g(q, b) = ∅;
A5) if a, b ∈ L, where L ∈ A(q) and g(q, a)∪ g(f(q, a), b) = g(q, b)∪ g(f(q, b), a)
then q′ and q′′, where q′ = f(f(q, a), b) and q′′ = f(f(q, b), a), are not input
discriminating. States q′, q′′ are not input discriminating if there exists a binary
relation S on states such that (q′, q′′) ∈ S, where S is defined as follows: if
(q′, q′′) ∈ S then, A(q′) = A(q′′) and for all c, whenever g(q′, c) and g(q′′, c) are
defined and equal then (f(q′, c), f(q′′, c)) ∈ S.

A1 is required as a direct consequence of condition N3, and can be found in [2].
A2 has been identified by us as a condition which must hold as a consequence of
M1 and the lack of feedback produced by empty outputs in the DI environment.
A3 and A4 correspond directly to Conditions 8 and 9 in [2]. A5 is new and
requires that any two identical sequences of inputs and outputs from a given
state cannot result in two different states (as a result of arbitration) which have
different inputs as specified by function A (but may have different outputs).

70 D. Morrison and I. Ulidowski

This ensures that the environment can determine which sets of inputs are valid
based on the preceding input/output sequence. Otherwise, it is possible that the
module enters a state where some inputs are not supported, and this cannot be
detected by the environment. Similarly to A2, it has been identified by us as a
condition which must hold to ensure that the environment behaves correctly in
accordance with a module’s definition.

Finally, we also require that for any q, a such that f(q, a) is defined,
f(f(q, a), b) is defined for some b: this means that modules are not deadlocking,
and they always have some input defined in each state.

0

0

1

q p

a

c r

s
DM J

DM0 = (q, {0}).DM0 + (p, {1}).DM0

+ (r, {s}).DM1 + (c, {s}).DMa;

DM1 = (q, {1}).DM1 + (p, {0}).DM1

+ (r, {s}).DM0 + (c, {s}).DMb;

DMa = (r, {a}).DM1; DMb = (r, {a}).DM0

J0 = (a, ∅).Ja + (b, ∅).Jb;

Ja = (b, {c}).J0;

Jb = (a, {c}).J0;

A(J0) = {{a, b}};
A(Ja) = {{b}}; A(Jb) = {{a}}

M F
RT

T0 T1
ATS

M = (a, {c}).M
+ (b, {c}).M

F = (a, {b, c}).F S1 = (T, {T1}).S1 + (R, ∅).S0;

S0 = (T, {T0}).S1;

A(S1) = {{T, R}}; A(S0) = {{T}}

Fig. 1. From top-left: DM in state DM0 [10]; Join, Merge, Fork, ATS ([2])

To illustrate, in Fig. 1 we define several useful modules. All symbols shown are
constants and should not be confused with the variables used in this paper. In
the case of Join, a and b may arrive concurrently in state J0 as given by A(J0).
Recall that if a module’s correct operation involves each input signal producing
exactly one output signal, with no possibility of multiple input signals arriving
concurrently, we say that the module is serial. DM and Merge are examples of
serial modules. The function A is not given for modules where no inputs are
assumed to be concurrent, as it always consists of the sets {a} for each input a.

Consider the behaviour of ATS. It is valid in S1 to send signals on both R
and T concurrently, or individually. Depending on the delays in wires, and the
order of processing by the module, this can lead to different outcomes. In [2],
this is referred to as non-trivial arbitration. If the order of processing between

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 71

two signals does not affect the output or resulting state, it is known as trivial
arbitration. In the case of non-trivial arbitration, the module can be seen to
make a “choice” which affects the overall outcome of the computation. Hence
non-trivial arbitration, when combined with the DI environment represents a
form of non-determinism.

Trivial and non-trivial arbitration, however, are only defined with respect to
pairs of signals. In the general case where several signals may arrive concurrently,
leading to different possible states where different sets of inputs may be defined,
the situation is much more complex. It is not always clear from the standard
notation which modules exhibit non-deterministic (henceforth referred to simply
as arbitrating) behaviour. High-level arbitration in this sense is briefly mentioned
by Keller ([2]), but is not formally defined or further elaborated on.

Furthermore, it is also not clear whether a module exhibits high-level re-
versibility. For example, simply inverting the definition of Join to yield its inverse
is not possible using the standard notation, as this would result in empty inputs
producing outputs, which is not a valid definition. However Join’s high-level
behaviour clearly exhibits a form of reversibility.

3 Set Notation for Parallel DI Modules

In this section, we introduce a new notation which describes the high-level be-
haviour of delay-insensitive modules. We wish to use actions where inputs, as
well as outputs, are sets. This will allow us to express that there maybe be sev-
eral concurrent inputs. Each input set will correspond to a valid combination
of individual inputs which may occur in a given state. Since we are also inter-
ested in inverses of parallel DI modules, we would like to be able to present the
definitions of DI modules in such a way that all actions are not empty output
actions. Any module which is not deadlocking will always eventually produce at
least one non-empty output in response to a set of inputs.

We present an algorithm (Fig. 2) for converting any definition of M (that
satisfies the conditions from Section 2) to a new definition M ′, which uses our
set notation, where each set of inputs causes a non-empty set of outputs, such
that M and M ′ represent the same external behaviour. Informally, the input sets
for M ′ will represent each possible set of inputs which may arrive concurrently
to a module in a given state. Hence each L′ ⊆ (L ∈ A(q)) (where |L| ≥ 1) will be
the input of an action in state q. Henceforth, we occasionally omit set brackets
when representing a singleton set of inputs or outputs.

Example 2. We show the new definition of Join after applying this algorithm.
It can now be defined as J0 = ({a, b}, c).J0, where this indicates that the combi-
nation of inputs {a, b} causes an output on c, with no other valid input combi-
nations permitted. It can be verified to possess the same external behaviour of
Join as defined in Section 2.

The “input sets” in a given state now correspond to the sets of signals that the
environment may send before expecting an output. The external operation of a

72 D. Morrison and I. Ulidowski

module defined using set notation, and the behaviour of the environment can
therefore be understood as follows: 1) The environment chooses one input set to
satisfy and signals the corresponding set of lines; 2) When the module receives
a complete input set, it selects an action at random which contains the satisfied
input set, and executes this action, assimilating the input signals on the lines in
the set, and producing signals on the lines in the corresponding output set; 3)
When the environment receives the full output set of the action selected by the
module, it begins satisfying a new input set.

Input : Module M = (Q, I,O, f, g, A) which satisfies conditions from Section 2.

1) For all q in Q and all (a,B).q′ ∈ q, replace (a,B).q′ with ({a}, B).q′

2) repeat :{∀q ∈ Q and ∀L ∈ A(q) with |L| ≥ 2: if (B,C).q′ ∈ q and (D,E).q′′ ∈ q,
with B,D ⊂ L and B ∩ D �= ∅, then add the following to actions of q if they are not
actions already: (B ∪D,C ∪ g(q′, D)).f(q′, D) and (B ∪D,E ∪ g(q′′, B)).f(q′′, B).}
until :{∀q ∈ Q and ∀L′ ⊆ (L ∈ A(q)) with |L| ≥ 2 and |L′| ≥ 1, (L′, B).f(q, L′) is an
action of q for some B}
3) repeat :{∀q ∈ Q and ∀(B, ∅).q′ ∈ q: replace (B, ∅).q′ with the sum of all (B∪C,D).q′′

where (C,D).q′′ ∈ q′ (and B �= C)}
until :{There are no actions with empty-outputs}
4) Remove states which are unreachable from the initial state.
5) Remove all duplicate actions from each q ∈ Q.

Output : Set notation version of M .

Fig. 2. Algorithm for converting a module to set notation

Clearly, if one input set A is a subset of another A′ in the same state, then due
to the DI environment, if A′ is signalled it is possible that A is “processed” by
the module instead of A′. In such a case, signals on the lines A′ \A can be seen
to remain pending. The next input set signalled by the environment must then
contain A′ \A. The environment cannot send new signals on the lines A′ \A, it
must signal some set B such that B ∪ A′ \ A corresponds to a valid input set.
These restrictions are automatically satisfied for an arbitrary module M ′ defined
using set notation, if the original module M satisfies the conditions outlined in
Section 2, and the environment interacts with M ′ as it did with M .

Example 3. The new definition of ATS using set notation is S1 = (T, T1).S1 +
({R, T }, T0).S1 + ({R, T }, T1).S0; and S0 = (T, T0).S1. The definition of S0 is
unchanged by the algorithm, so it suffices to check the behaviour of S1. If T is
signalled alone by the environment, then the behaviour is trivially equivalent to
the original definition. If R is signalled, then the signal can be seen to pend at the
module as a full input set has not yet been signalled. This is externally equivalent
to the original definition, which accepts R but does not produce any outputs.
When T is then signalled, one of the two actions containing the input set {R, T }
may be chosen, with each of the two actions corresponding to processing the
inputs in either order. The action ({R, T }, T0).S1 corresponds to processing R

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 73

followed by T in the original definition. The action ({R, T }, T1).S0 corresponds
to processing T followed by R, which results in the T1 output and a change to
S0 (where the next T will produce T0). We also note that if the environment
signals {R, T } (either concurrently or in any order) in S1, this may result in the
action (T, T1).S1 being processed by the module instead. In this case, R is seen to
pend until another T signal arrives, where the module may then select an action
containing {R, T }, or again force the R signal to pend. This corresponds to the
R signal taking an arbitrary length of time to arrive due to the DI environment,
or the module repeatedly arbitrating against R in favour of processing T . Hence,
the external behaviour of ATS is preserved.

The new definitions of f and g and the new state set Q are outputs of the
algorithm in Fig. 2. Maps f and g are now relations (instead of functions) defined
over states and sets of inputs, because a set of concurrent inputs may lead
to different outputs depending on the actual low-level order of accepting the
individual inputs. Hence f ⊆ (Q × (P(I) \ ∅))×Q, and g ⊆ (Q × (P(I) \ ∅))×
(P(O) \ ∅). The function A is now redundant as each input of an action in the
definition of a state is a valid set of concurrent inputs, and vice versa. We note
that the CCS-like definitions of serial modules are not modified by the algorithm.

Henceforth, we combine the relations f and g in an obvious way into a single
relation T , referred to as transitions, and have T ⊆ (Q × (P(I) \ ∅)) × (Q ×
(P(O) \ ∅)), where ((q, A), (q′, B)) ∈ T represents that the input set A in state q
may result in a change to state q′ and the output set B. Therefore our modules
are now defined using the 4-tuple (Q, I,O, T).

We call a module reversible if T is a bijection. We say that a network is
reversible if all modules within the network are reversible. We define the inverse
of a reversible module (Q, I,O, T) to be the module (Q, I ′, O′, T ′) where I ′ = O,
O′ = I, and T ′ is the inverse of T . The inverse of a network is achieved by
replacing each module with its inverse and reversing the direction of wires.

We call a module arbitrating (arb for short) if there are transitions ((q, B),
(q′, C)), ((q′′, D), (q′′′, E)) ∈ T , such that q = q′′, and either B ⊂ D or, B = D
and either q′ �= q′′′ or C �= E. We say that a module is non-arbitrating (non-arb)
if it is not arbitrating. Informally, arbitration corresponds to non-determinism.
As each possible input set in a given state corresponds to a set of signals arriving,
for a module to be deterministic in a delay-insensitive environment, no input set
cannot be a subset of another input set in the same state, and no input set
can lead to two different output sets or different states. An example of a non-
arb module is Join. An example of an arb module is ATS, as the set notation
definition satisfies the subset condition with {T } ⊂ {R, T } in S1 (Example 3).

Correspondingly, we call a module backwards-arbitrating (b-arb for short) if
there are ((q, B), (q′, C)), ((q′′, D), (q′′′, E)) ∈ T , such that q′ = q′′′, and either
C ⊂ E or, C = E and either q �= q′′ or B �= D. We say that a module is
non-backwards-arbitrating (non-b-arb) if it is not b-arb. For reversible modules,
if the inverse of a module is arb then the module is b-arb and vice-versa.

74 D. Morrison and I. Ulidowski

4 Universality of Non-arbitrating Parallel Modules

The main purpose of this section is to realise arbitrary non-arb modules out of
simple modules Merge, Join, Fork and DM in Fig. 1. Firstly, we show that ar-
bitrating modules cannot be realised with non-arbitrating modules. Then, since
M×NJoins will be utilised in our construction of arbitrary non-arb modules,
we demonstrate how to realise M×NJoins in terms of purely reversible modules
DM and Join. Finally, we present our construction of arbitrary non-arb modules
with the help of an example, and prove two universality results.

We begin by showing some limitations of non-arb modules.

Proposition 4. No set of non-arb modules can be universal for arb modules.

Proof. Consider module M : M0 = ({q}, {0}).M0 + ({r}, {s}).M1 +
({q, r}, {1}).M0; M1 = ({q}, {2}).M1 + ({r}, {s}).M0 + ({q, r}, {3}).M1. The
module M is arb as {q} ⊂ {q, r} in both M0 and M1.

Assume for contradiction that a set X which contains only non-arb modules is
universal for arb modules. Hence M can be realised as a networkN of modules in
X . Note that the input sets {q} and {q, r} result in different outputs depending
on the state of M . Similarly, the input {r} results in different behaviour (by
toggling the state) depending on the state of M .

Consider the set Z of modules in N which process inputs in response to the
input {q}. At least one module in Z must record whether M is in M0 or M1. Let
any one such module in Z be denoted by z. Let the set of inputs of z which are
signalled in response to {q} be denoted by the set F . As the input {r} changes
the state of M , it must change the state of z. Let G be the set of inputs of z
which are signalled in response to {r}.

Hence if {q, r} is signalled in M0, then by delay-insensitivity, it is possible
for signals to arrive on F and G together. Note that F ∩ G = ∅, otherwise this
implies that two signals may appear on some f ∈ F , and this would violate
condition N6. As a result, z must define actions for the input sets F , G and
F ∪G. Since F ⊆ F ∪G, we obtain that z ∈ X is arbitrating: contradiction. ��
Consider the inverse M−1 of the above module M . M−1 is reversible and b-arb.
Utilising the above argument, it is straightforward to show that M−1 cannot be
realised with a network of reversible non-arb non-b-arb modules only, giving the
following result:

Proposition 5. No reversible non-arb non-b-arb set can be universal for re-
versible non-arb and b-arb modules.

4.1 Constructing M×NJoins and Forks with Reversible Modules

We shall use in our main construction arbitrarily-sizedM×NJoins (left of Fig. 3),
where at least one of M , N is greater than or equal to 2. We will also utilise
M×NForks, which are inverses of M×NJoins, and are depicted with the same
symbol but with the directions of signals reversed. Their definition is not given
here. We denote trees of Join and Fork with symbols JT and FT respectively.

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 75

We now demonstrate how to construct arbitrary M×NJoins using only the
reversible set {DM, Join}. The right of Fig. 3 shows how to reversibly construct
an arbitrary 1×NJoin using only {DM, Join}. Figure 4 shows how to utilise
a 1×NJoin to reversibly construct an arbitrary M×NJoin. We compare our
construction with that of Keller in [2], and Patra and Fussell in [12] which both
utilise Merge and therefore are not reversible. Note also that replacing Join with
Fork in these constructions and relabelling the ports of DM (DM is shown to be

b1b2bN

a1

a2

aM

c1,N

c2,N

cM,1cM,2cM,N

JMN = ({a1, b1}, c11).JMN

+ ({a1, b2}, c12).JMN

+ · · ·+ ({aM , bN}, cMN).JMN

J

b1b2bN

c1c2cN

0

0
0

0

0

0
0

0

0

0
0

0

1

1

1

1

1

1

q

q

q

q

q

q

p

p

p

p

p

p

a

a

a

a

a

a

a

c

c

c

c

c

c

r

r

r

r

r

r

s

s

s

s

s

s

Fig. 3. Left: M×NJoin, Right: Arbitrary 1×NJoin using {DM, Join}

b1
b2

bN

a1a2aM

c11c21cM1

c12c22cM2

c1Nc2NcMN

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

1

1

1

1

1

1

1

1

1

1

1

1

q

q

q

q

q

q

q

q

q

q

q

q

p

p

p

p

p

p

p

p

p

p

p

p

a

a

a

a

a

a

a

a

a

a

a

a

c

c

c

c

c

c

c

c

c

c

c

c

r

r

r

r

r

r

r

r

r

r

r

r

s

s

s

s

s

s

s

s

s

s

s

s

Fig. 4. Arbitrary M×NJoin using {DM, 1×NJoin}

76 D. Morrison and I. Ulidowski

its own inverse in [10]), the inverse of this construction can be achieved, yielding
M×NForks. Hence the reversible set {DM, Join,Fork} allows M×NJoins and
M×NForks of arbitrary size to be constructed reversibly. Realisations of 1×3,
1× 4, 3× 3, 4× 3 and 4× 4 Joins using this construction were verified using
Concurrency Workbench ([4]). The details can be found at [9].

4.2 Universal Sets of Non-arbitrating Modules

We note, before we present our main construction and results, that {Merge,DM}
is universal for serial modules as proven in [10]. Since DM can realise RE ([10]),
and since RE is shown in [7] to be able to realise any reversible serial module,
we obtain the following result:

Proposition 6. DM is universal for the class of reversible serial modules.

In order to realise an arbitrary non-arb module N in terms of our simple modules
we shall use three auxiliary modules defined in terms of N . Firstly, we introduce
some helpful notation.

Let RQ(M), RI(M), RO(M), RT (M) return the sets of states, inputs, out-
puts and transitions for any module M respectively. Let ISets(M) = {B :
((q, B), (q′, C)) ∈ T (M)}. Let OSets(M) = {C : ((q, B), (q′, C)) ∈ T (M)}.
ISets(M), OSets(M) are the sets of input and output sets for M respectively.

Consider any non-arb module N = (NQ,NI,NO,NT) defined as in Sec-
tion 3. The three auxiliary modules for N are defined as follows:

The module SeqN = (SQ, SI, SO, ST) is given by SQ = RQ(N);SI =
{Ii : i ∈ ISets(N)};SO = {Oi : i ∈ OSets(N)};ST = {((q, B), (q′, C)) :
((q,MapIN (B)), (q′MapON (C))) ∈ RT (N)}, where MapIN is a bijection that
maps SI to RI(N) and MapON is a bijection that maps SO to RO(N). Infor-
mally, SeqN is a serial module which represents the behaviour of N but with
input sets replaced with single inputs. SeqN is reversible iff N is reversible.

SeqQN = (SqQ, SqI, SqO, SqT) is given by SqQ = RQ(N);SqI = RI(SeqN)
∪{qi};SqO = RO(SeqN)∪{qx : x ∈ SqQ};SqT = RT (SeqN)∪{((x, qi), (x, qx)) :
x ∈ SqQ}. Informally, SeqQN extends the functionality of SeqN with the ability
to query the state of the module on a dedicated set of lines, which do not modify
the state. SeqQN is reversible iff N is reversible.

Finally, SeqQ’N = (Sq′Q,Sq′I, Sq′O,Sq′T) is Sq′Q = RQ(N);Sq′I =
RI(SeqN) ∪ {qx : x ∈ SqQ};Sq′O = RO(SeqN) ∪ {qi};Sq′T = RT (SeqN) ∪
{((x, qx), (x, qi)) : x ∈ SqQ}. Informally, SeqQ’N is equivalent to SeqQN but
with the query functionality inverted. SeqQ’N is reversible iff N is reversible.

It is important to note that the auxiliary modules are serial, and SeqN , SeqQN

and SeqQ’N can be realised by DM if they are reversible, and by {Merge, DM}
otherwise.

Next, we define a non-arb non-b-arb module P , and its auxiliary modules. We
will then describe how to construct P using {DM, Join, Fork}. This allows us
to illustrate the method used for the general case.

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 77

P is given by:
S0 = ({a, b, c}, {x, y}).S0 + ({a, c, d}, {y, z}).S1;
S1 = ({a, c, d}, {x, y}).S1 + ({a, b, d}, {x, z}).S0

The set mappings required for SeqP , SeqQP and SeqQ’P are:
MapIP = {(I1, {a, b, c}), (I2, {a, c, d}), (I3, {a, b, d})};
MapOP = {(O1, {x, y}), (O2, {y, z}), (O3, {x, z})}

Finally:

SeqP : S0 = (I1, O1).S0 + (I2, O2).S1; S1 = (I2, O1).S1 + (I3, O3).S0;
SeqQP : S0 = (I1, O1).S0 + (I2, O2).S1 + (qi, qS0).S0;

S1 = (I2, O1).S1 + (I3, O3).S0 + (qi, qS1).S1;
SeqQ’P : S0 = (I1, O1).S0 + (I2, O2).S1 + (qS0 , qi).S0;

S1 = (I2, O1).S1 + (I3, O3).S0 + (qS1 , qi).S1

The construction is divided into two stages. Stage 1 determines the input set
which has been signalled and then updates the state of P accordingly. Stage 2
determines the output set and creates signals on the appropriate output lines.

Stage 1 is shown in Fig. 5. A signal on an input line is forked to several
columns of M×NJoins, one for each input set B in the current state of P that
contains the signal (determined by querying instances of SeqQP). These columns
contain different numbers and sizes of M×NJoins depending on the module to
be constructed. Each M×NJoin in a given input set’s column synchronises an
additional input. Hence synchronising three signals requires two M×NJoins.

Eventually exactly one column produces an output on the bottom M×NJoin,
corresponding to some input set C of P being satisfied. This signal then re-
moves other instances of the inputs which are part of the completed input set,
currently pending on various M×NJoins in other columns. This is achieved by
utilising other inputs of the M×NJoins. The order that inputs in a set are
synchronised also affects the location of signals which need to be “cancelled”.
For example, if {a, b, c} is satisfied (the leftmost column), the completion signal
removes other instances of these inputs from the other input set in this state
({a, c, d}), which corresponds to removing instances of a and c from the second
column of M×NJoins (there are no other instances of b in S0). However, due to
the synchronisation order of the second column, the a and c inputs which have
been forked to the second column will have been joined, and hence the single
signal corresponding to the completed set {a, c} pending on the secondM×NJoin
must be cancelled. Similarly, if {a, c, d} in S0 is satisfied, pending instances of a
on the top M×NJoin and c on the bottom M×NJoin in the leftmost column are
cancelled. It is always possible to cancel other forked inputs either individually
or as a partially completed set, as they will be pending on some fixed combina-
tion of M×NJoins. This is uniquely determined based on the completed input
set, the structure of the columns, and the current state of P , as P is non-arb.

After “cancelling” other instances of inputs, the signal is “reversibly merged”
using an instance of SeqQ’P , allowing input sets which exist in multiple states to
share a single line. This can be seen with the set {a, c, d}, which exists in both
S0 and S1, and hence two columns, each representing {a, c, d} in a state, are
reversibly merged through the middle instance of SeqQ’P . The signal then forks

78 D. Morrison and I. Ulidowski

FTFT FT FT

SeqQP SeqQPSeqQP SeqQP

SeqQ’PSeqQ’PSeqQ’P

a

a

a a

a b

b
b

c

c

c

c

d dd

d

{a, b, c}

{a, b, c}

{a, c, d}{a, c, d}

{a, c, d}

{a, b, d}

{a, b, d}

{a, b}{a, b} {a, c}{a, c}

{x, y} {y, z} {x, z}

qi qiqi qi

qiqiqi

qS0 qS0qS0 qS0

qS0qS0qS0

qS1 qS1qS1 qS1

qS1qS1qS1

I1 I1I1

I1I1I1I1

I2 I2I2

I2I2I2I2

I3 I3I3

I3I3I3I3

O1 O1O1 O1

O1O1O1

O2 O2O2 O2

O2O2O2

O3 O3O3 O3

O3O3O3

in S0

in S0

in S1in S1
satisfiedsatisfied

satisfied
satisfied

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

cancel

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

pending

merge allmerge allmerge all
{a, b, c} into {a, c, d} into {a, b, d} into

single linesingle linesingle line

ca
n
ce
l
a
n
y
o
th
er

ca
n
ce
l
a
n
y
o
th
er

ca
n
ce
l
a
n
y
o
th
er

ca
n
ce
l
a
n
y
o
th
er

a
,
c,

d
in

S
0

a
,
b,

d
in

S
0

a
,
c,

d
in

S
1

a
,
b,

d
in

S
1

a

a

a

a

b

b

c

c

c

dd

d

a, b
a, ba, ca, c

Fork to all I1 Fork to all I2 Fork to all I3

Join from all O1 Join from all O2 Join from all O3

To Stage 2

Query the
state and
fork each
input to all
relevant

input sets in
the current

state

Verify input
set one

input at a
time by
joining

signals

signals
together

Satisfied
input set
cancels
other

Reversibly
merge

identical
sets from
different
states

Update
states of all
SeqQP and
SeqQ’P in

both stages

Fig. 5. Stage 1 (input determination and state update) for P

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 79

to all thirteen instances of SeqQP and SeqQ’P in both Stages 1 and 2 (Fig. 6),
inputting on each module’s instance of x such that MapIP (x) = C, where C
is the satisfied input set. This updates the state of P depending on the input
set. All identical outputs on the various instances of SeqQP and SeqQ’P in both
Stages 1 and 2 are joined together using a tree of Joins. The output from each
tree corresponds to an output set of P . These lines continue to Stage 2.

Stage 2 (Fig. 6) uses a symmetric method to Stage 1. It is achieved by following
the construction method of Stage 1 but output sets and resulting states of P are
considered (instead of input sets and current states). The entire construction is
then inverted, (with M×NForks replaced with M×NJoins, and vice versa) with
the exceptions of SeqQP and SeqQ’P , which are exchanged. This construction
is only possible because P is not b-arb. As P is reversible, Stages 1 and 2 are
both reversible. If P were not reversible, then SeqQP and SeqQ’P would not
be reversible, and hence Stages 1 and 2 would not be reversible. It is easy to
see that any non-arb non-b-arb module can be realised by following a similar
construction method to P .

We note that an irreversible version of Stage 2 can be trivially realised with
Merges and Forks as shown in [2]. When combined with Stage 1, this is used to
realise non-arb b-arb modules.

To compare our construction with that of Keller ([2]), we note that Keller
uses arbitrating modules even if the target module is non-arbitrating, and his
construction processes one signal at a time. We utilise parallel signals fully, thus
realising modules’ behaviour, expressed by our new set notation, more directly.

TJ TJ

SeqQPSeqQPSeqQP

SeqQ’PSeqQ’PSeqQ’P

xxx

x

y
y y

y

z
z

z

{x, y} {y, z} {x, z}

qiqiqi

qiqiqi

qS0qS0qS0

qS0 qS0 qS0

qS1qS1qS1

qS1 qS1 qS1

I1I1 I1

I1I1I1

I2I2 I2

I2I2I2

I3I3 I3

I3I3I3

O1O1O1

O1O1O1

O2O2O2

O2O2O2

O3O3O3

O3O3O3

Fig. 6. Stage 2 (output determination) for P

80 D. Morrison and I. Ulidowski

It is easy to see that our construction can be generalised to any non-arb
module. This gives us two universal sets for different classes of non-arb modules.

Theorem 7. {DM,Fork, Join} is universal for the set of reversible non-
arbitrating non-backwards-arbitrating modules, and all constructions of such
modules are reversible.

Proof. A reversible non-arb non-b-arb module M has reversible serial instances
of SeqQM and SeqQ’M which are realisable by DM (Proposition 6). Hence re-
versible constructions of Stages 1 and 2 (Figures 5 and 6) can be achieved using
{DM,Fork, Join} and arbitrarily large M×NJoins and M×NForks. We showed
how to construct any M×NJoin or M×NFork using {DM,Fork, Join}. ��
Theorem 8. {DM,Fork, Join,Merge} is universal for non-arbitrating modules.

Proof. Theorem 7 proves that {DM,Fork, Join} can realise the reversible non-
b-arb subclass. Any other module M in this class has instances of SeqQM and
SeqQ’M realisable with {DM,Merge}. Hence, constructions of Stage 1 (Fig. 5)
can be achieved using {DM,Merge,Fork, Join} and arbitrarily large M×NJoins
and M×NForks (achievable with {DM,Fork, Join}). Stage 2 can be irreversibly
realised for any non-arb module using {Merge,Fork}. ��

5 Conclusion

In this paper we have introduced a new set notation for describing parallel DI
modules. We have defined a clear notion of arbitration, and identified an inter-
esting phenomenon of backwards-arbitration. We have proven limitations when
realising reversible modules which utilise backwards-arbitration. Reversible con-
structions of M×NJoins and M×NForks in terms of reversible, non-arb modules
have been given for the first time. Finally, we have shown how to construct
arbitrary non-arbitrating modules within two universal sets of modules.

References

1. Fredkin, E.F., Toffoli, T.: Conservative logic. International Journal of Theoretical
Physics 21(3/4), 219–253 (1982)

2. Keller, R.M.: Towards a theory of universal speed-independent modules. IEEE
Transactions on Computers 23(1), 21–33 (1974)

3. Lee, J., Peper, F., Adachi, S., Morita, K.: An asynchronous cellular automaton
implementing 2-state 2-input 2-output reversed-twin reversible elements. In: Umeo,
H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008.
LNCS, vol. 5191, pp. 67–76. Springer, Heidelberg (2008)

4. Moller, F., Stevens, P.: Edinburgh Concurrency Workbench user manual, version
7.1 (1999), http://homepages.inf.ed.ac.uk/perdita/cwb/

5. Morita, K.: Reversible computing systems, logic circuits, and cellular automata.
In: ICNC 2012, pp. 1–8. IEEE Computer Society (2012)

http://homepages.inf.ed.ac.uk/perdita/cwb/

Arbitration and Reversibility of Parallel Delay-Insensitive Modules 81

6. Morita, K.: A simple universal logic element and cellular automata for reversible
computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055,
pp. 102–113. Springer, Heidelberg (2001)

7. Morita, K.: Reversible computing and cellular automata - a survey. Theor. Comput.
Sci. 395(1), 101–131 (2008)

8. Morita, K., Ogiro, T., Tanaka, K., Kato, H.: Classification and universality of
reversible logic elements with one-bit memory. In: Margenstern, M. (ed.) MCU
2004. LNCS, vol. 3354, pp. 245–256. Springer, Heidelberg (2005)

9. Morrison, D.: Homepage, Department of Computer Science, University of Leicester
(2014), http://www.cs.le.ac.uk/people/dm181

10. Morrison, D., Ulidowski, I.: Reversible delay-insensitive distributed memory mod-
ules. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 11–24.
Springer, Heidelberg (2013)

11. Patra, P., Fussell, D.S.: Building-blocks for designing DI circuits. Technical report,
University of Texas at Austin (1993)

12. Patra, P., Fussell, D.S.: Efficient building blocks for delay insensitive circuits. In:
Proc. of Async 1994, pp. 196–205. Society Press (1994)

13. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Alge-
braic and Logic Programming 73(1-2), 70–96 (2007)

14. Phillips, I.C.C., Ulidowski, I., Yuen, S.: A reversible process calculus and the mod-
elling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012.
LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)

http://www.cs.le.ac.uk/people/dm181

Reference Counting for Reversible Languages

Torben Ægidius Mogensen

DIKU, University of Copenhagen
Universitetsparken 5, DK-2100 Copenhagen O, Denmark

torbenm@diku.dk

Abstract. Modern programming languages and operating systems use heap
memory that allows allocation and deallocation of memory to be decoupled, so
they don’t follow a stack discipline. Axelsen and Glück have presented a re-
versible heap manager where allocation and deallocation are each other’s logical
inverses: Freeing a block of memory is done by running the allocation procedure
backwards.

Axelsen and Glück use this heap manager to sketch implementation of a sim-
ple reversible functional language where pattern matching a constructor is the
inverse of construction, so pattern-matching implies deallocation. This requires
the language to be linear: A pointer can not be copied and it can only be elimi-
nated by deallocating the node to which it points.

We overcome this limitation by adding reference counts to nodes: Copying
a pointer to a node increases the reference count of the node and eliminating a
pointer decreases the reference count. We show reversible implementations of
operations on nodes with reference counts. We then show these operations can
be used when implementing a reversible functional language RCFUN to the re-
versible imperative language Janus.

1 Introduction

There are basically three ways programs traditionally allocate and free memory: Static
allocation, stack allocation and heap allocation. The first two forms are easy to im-
plement reversibly: In static allocation, all memory blocks are available throughout
the entire program execution and are neither allocated nor freed during execution, and
in stack allocation, allocations and deallocations form a palindromic sequence where
each deallocation is a natural inverse of the corresponding allocation. The reversible
programming language Janus [5] uses both kinds of allocation: Arrays are statically al-
located and a stack is used for storing return addresses of function calls. Janus has also
been extended with parameter passing [8], which is also implemented using a stack.
Heap allocation, however, does not follow a reversible allocation/deallocation disci-
pline, so it is not obvious how to implement this reversibly without generating garbage
data. Axelsen and Glück [2] have described an implementation of heap allocation and
deallocation in a reversible setting, though some (relatively harmless) garbage data is
generated in the form of a free list, the structure of which depends on the sequence of
allocations and deallocations.

We will assume existence of a reversible implementation of explicit allocation and
deallocation of nodes (as each other’s inverses) in the style of Axelsen and Glück and,

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 82–94, 2014.
c© Springer International Publishing Switzerland 2014

Reference Counting for Reversible Languages 83

using these, describe reversible implementations of node construction, pointer copying
and pattern-matching, the inverses of which are node destruction, pointer elimination
and node sharing. We will show these implementations as procedures in Janus.

Next, we define a language RCFUN similar to the reversible functional language
RFUN [9,2] and show how functions in RCFUN can be translated into Janus proce-
dures. We will use the trivial extension of the original Janus to include assertions that is
described in [7]. We refer to the latter paper for a description of the syntax and seman-
tics of Janus and for a description of how Janus statements can be reversed.

2 A Heap Manager

The heap manager described by Axelsen and Glück [2] is used for LISP-like data struc-
tures built using the nullary constructor Nil and a binary constructor Cons. In order
to have all heap cells be the same size, both Nil and Cons cells are represented using
three machine words: A tag field and two pointer fields, which in a Nil node are set to
0. Construction and freeing both kinds of cells are done using a reversible procedure
get_free that, for allocation, takes no argument and returns a pointer to a three-word
cell where all words are 0, and when run in reverse for deallocation takes a pointer to a
three-word cell where all words are 0 and returns nothing.

Axelsen and Glück intend their heap manager for implementing a simplified version
of the reversible functional language RFUN [9]. The restrictions are that constructors
are only Nil and Cons and that values can not be copied. Since pointers to nodes can
not be copied, the node can be deallocated at pattern-matching, making construction and
pattern-matching basically each other’s inverses. This is essentially the same restriction
that is used in Bakers reversible Ψ-Lisp [3].

Axelsen and Glück briefly mention the possibility of adding copying to the restricted
RFUN language, but not how this would be implemented. Since pattern-matching al-
ways deallocates a node, copying values would imply deep copies: Rather than copying
a pointer, so the value is shared between two or more variables, the entire tree is copied,
so there is only one reference to each node. We want to remove this limitation from the
functional language, so heap nodes can be shared by arbitrarily many pointers. We do
so by adding reference counts to nodes.

3 Pointer Copying and Reference Counts

We will implement operations on nodes in Janus. In basic Janus, the parameter and
return value of get_free are passed through global variables. For example, before a to
call to get_free, a global variable p is set to 0 and at return it contains the resulting
pointer to the allocated three-word block. Deallocation would set p to point to the block
to be freed and uncall (run in reverse) get_free, which would set p to 0 at return.

We want to implement a Janus procedure copy_pointer that takes one argument,
which is a pointer, and returns two copies of that pointer. copy_pointer would use
two global variables p and q, where p contains a pointer and q is set to zero. A call to
copy_pointer will leave p unchanged and set q to be equal to p.

84 Torben Æ. Mogensen

Uncalling copy_pointer will require p and q to be identical pointers and set q to
zero. Since pointers can be copied, deconstruction of a Cons-node to get its fields does
not imply deallocation: It is deallocated only if no other pointers to the node exists. This
is where reference counts come in.

We will use a representation of Nil/Cons trees that is somewhat different from what
Axelsen and Glück uses: A Nil value is in our representation is pointer with a value of 1
and a Cons value is a pointer (greater than 1) to a three-word block where the first word
is a reference count and the two other words are the head and tail fields. The reason we
don’t use 0 for Nil is that we want to reserve 0 for uninitialised variables and undefined
values.

When a Cons-node is allocated, the reference count is set to 1. Each time a (non-
null) pointer is copied by calls to copy_pointer, the reference count is incremented.
Uncalling copy_pointer will decrement the reference count (which must be at least
two). Deallocating a Cons-node requires that the reference count is 1.

4 Reference-Counting Implementation of Node Operations

We will, assuming an implementation of a reversible allocation/deallocation procedure
get_free as described above, describe reversible implementations in Janus of node
construction, pointer copying and node deconstruction.

We will in our Janus code use e1 <> e2 as a shorthand for !(e1 == e2), and else
skip can be omitted, so an if-then-else-fi statement can be written without the else part.
We also add true and false conditions. These can be seen as shorthands for 0 == 0
and 0 == 1, respectively. We will later introduce a few more shorthand notations.

We treat the heap memory as an array M of words, which can contain either integers
or heap pointers represented as integer offsets into M. So if p is a pointer to a Cons-node,
M[p] is the reference count, M[p+1] is the head field and M[p+2] is the tail field. So we
can write, e.g, M[p] += 1 to increase the reference-count field of a Cons-node.

4.1 Pointer Copying

The simplest of the procedures is pointer copying. If we did not have to consider ref-
erence counts, it could be implemented just by q += p, but we additionally have to
increment the reference count of the cell that p points to.

procedure copy_pointer
assert q == 0;
if p > 1 then /* if not Nil */
M[p] += 1 /* increase reference count */

fi p > 1;
q += p;
assert p == q

Note that this implementation allows copy_pointer to be used on Nil values. There
is no net effect of calling the procedure in this case. The assertions state the precondi-
tions for calling and uncalling this procedure (and, hence, also the postconditions). If
these are guaranteed by global invariants (as will be the case in the code-generation
scheme shown in Section 6)), there is no need for explicit assertions, but we have

Reference Counting for Reversible Languages 85

included them for clarity. We will, for compactness and ease of reading, use (x,y) =
call copy_pointer(z) as a shorthand notation for the sequence

p <=> z;
call copy_pointer;
p <=> x; q <=> y

where a<=>b swaps a and b. Similarly, we will use z = uncall copy_pointer(x,y) as
shorthand for the reverse call sequence.

4.2 Cons-Node Construction

This procedure will allocate and construct a Cons-node with reference count set to 1.
Arguments are in the variables head and tail and the result is returned in c, which
before the call must be zero.

procedure cons
assert c == 0 && p == 0;
call get_free; /* allocate a pointer to 3 zeroed words */
c <=> p; /* make c point to this */
M[c] += 1; /* increase reference count to 1 */
M[c + 1] <=> head; M[c + 2] <=> tail; /* set fields */
assert c > 1 && M[c] == 1 && head == 0 && tail == 0 && p == 0;

Uncalling cons will deallocate a node and return the fields.
We will use z = call cons(x,y) and (x,y) = uncall cons(z) as shorthands similar

to the shorthands for copy_pointer.

4.3 Field Access

So far, the only operations we have for shared nodes are copy_pointer and its inverse.
This rather limits the usefulness of shared nodes, so we must have a way of accessing
the fields of a shared node. The fields procedure below accesses the fields of a Cons-
node without deallocating or modifying the node.

In addition to returning the fields, fields returns the node-pointer unchanged, so
the reference count of the node is not changed. But, since the fields are copied, the
reference counts of these are increased (if they are non-Nil).

procedure fields
assert tail == 0 && head == 0 && c > 1 && M[c] > 0;
head += M[c + 1]; /* copy fields, increasing reference counts */
if head > 1 then M[head] += 1 fi head > 1;
tail += M[c + 2];
if tail > 1 then M[tail] += 1 fi tail > 1;
assert c > 1 && M[c] > 0 && head == M[c + 1]&& tail == M[c + 2]

Given a (non-Nil) node pointer c, a call to fields returns the fields in the variables
head and tail while preserving the value of c.

86 Torben Æ. Mogensen

Uncalling fields requires c to contain a pointer to a cons-node and head and tail
to contain the values of the fields to this node. At return, head and tail are cleared and
c is unchanged.

We will use shorthands (w,x,y) = call fields(z) and z = uncall fields(w,x,y),
where w is the value returned/passed in p.

5 The Reversible Functional Language RCFUN

We will define a modified version of RFUN from [9] that, like the language used in [2],
restricts constructors to Nil and Cons. We will call this language RCFUN, where the C
stands for “counting”. RCFUN has the following syntax:

Program → Definition+

Definition → fid Match
Match → Pattern+ =Call∗Pattern+

| Match | Match
Call → vid+ = fid vid+;

| fid vid+ = vid+;
Pattern → vid

| Nil
| Cons(Pattern, Pattern)
| vid as Cons(Pattern, Pattern)

Where vid is a variable identifier and fid is a function identifier or the special function
copy that copies a pointer, so it takes one argument and returns two values. This is
equivalent to the copy/equality operator �·� used [9]. A function is defined by a Match
with one or more rules using patterns to restrict the arguments.

There are two kinds of calls: One for running a function in the forwards direction
and one for running a function backwards: f xs = ys; means running the inverse of f
on ys to get xs, i.e, the inverse of running f on xs to get ys.

The main differences from RFUN (apart from syntactic details) is that functions
in RCFUN are defined by multiple rules, where RFUN uses a single rule and case-
expressions, and that functions here can return multiple values.

Additionally, patterns in RCFUN can depend on reference counts as well as the con-
structor identity: There are two different patterns for Cons-nodes: The pattern Cons(x,y)
matches a Cons-node with reference count 1, i.e, unshared nodes, and z as Cons(x,y)
matches a Cons-node with any reference count, i.e, both shared and unshared nodes.
The first form deallocates the node, so the pointer to the node is eliminated. When used
as an expression, it allocates a new Cons-node. It is naturally implemented using the
cons procedure (in reverse for pattern matching and forwards for building results).

The second form does not eliminate the pointer, so the pointer is explicitly named (as
z) and must be used in the body expression. When this form is used as an expression,
it takes a pointer z to a Cons-node and two values x and y. It then verifies that x and y
are equal to the head and tail fields of the Cons-node. It then returns the Cons-node un-
changed. It is naturally implemented using the fields procedure (forwards for pattern

Reference Counting for Reversible Languages 87

matching and in reverse for building results). Note that the two kinds of pattern overlap.
We will discuss the implications of this in Section 8.

The following restrictions apply to RCFUN programs:

1. Whenever a variable is declared in a pattern or call, it is used exactly once within
its scope.

2. No two rules in a Match can have overlapping argument-pattern lists.
3. The Pattern lists that are the results of rules in a Match can not overlap. This

ensures that the inverse of a function can select rules deterministically. For details
of this symmetric first-match policy, see [9].

Figure 1 shows and example program in RCFUN that takes two lists and returns the
first unchanged and the concatenation of the two lists as the second result.

Running in reverse, this function would deallocate a prefix of the second list that
is identical to the first list. Note that calling in reverse requires that the prefix that is
deallocated is unshared.

append Nil ys = Nil ys
| xs1 as Cons(x,xs) ys =

w z = copy x;
ws zs = append xs ys;
xs1 as Cons(w, ws) Cons(z,zs)

Fig. 1. RCFUN program for appending lists

5.1 Reversibility of Programs

Programs in RCFUN are trivially reversible, as the following inversion scheme shows:

Reversing a function definition
RF [|fid M|] .

= fid−1 RM [|M|]

Reversing a match
RM [|Ps = Cs Qs||] .

= Qs = RC [|Cs|] Ps
RM [|M1 | M2|] .

= RM [|M1|] | RM [|M2|]

Reversing a call list
RC [|Vs = fid Ws; |] .

= fid Ws = Vs;
RC [|fid Vs = Ws; |] .

= Ws = fid Vs;
RC [Cs1 Cs2|] .

= RC [Cs2|] RC [Cs1|]

where we use
.
= in the transformation function definitions to distinguish from the syn-

tactic equality sign =. The non-overlap restriction on result patterns ensures that an in-
verted Match has non-overlapping rules. Since f−1 is the inverse of f , a call V s = f Ws
can be translated to f ′ Vs = Ws and f Vs = Ws to Vs = f ′ Ws.

88 Torben Æ. Mogensen

6 Translation to Janus

We will show how programs in RCFUN can be translated into Janus. Since Janus can be
translated to reversible machine code [1] and the get_free (which is used by the Janus
code) can be implemented in reversible machine code [2], this shows that RCFUN can
be implemented in reversible machine code.

A complication is that RCFUN has local variables, where Janus has only global
variables. We handle this by storing the values of variables that are live after a call in
a heap-allocated list when the function is called, restoring them after the call. It would
suffice to use a stack, but since explicit stacks are not found in Janus, it is easier to use
the heap we already have defined.

We use the global Janus variable dump for the variable-save list. We define a proce-
dure store that takes a parameter v and stores v in the dump:

procedure store
head <=> v; tail <=> dump;
call cons;
c <=> dump

Uncalling store will fetch a variable from the dump. We will use the shorthands
call store(x) and x = uncall store.

For simplicity of translation, we will assume that no variables or functions in the
RCFUN program clash with variables or procedures used by the Janus procedures cons,
copy_pointer and so on that we use in the translated programs. This can be ensured by
renaming prior to translation. Hence, we can translate names from RCFUN programs
into the same Janus names, so no environments are needed in the translation scheme.

We use global Janus variables A1, A2, . . . and R1, R2, . . . to, respectively, pass argu-
ments to and results from RCFUN functions. RCFUN variables can, of course, not clash
with these either.

We will, below, show a translation scheme for translating RCFUN to Janus. The
translation scheme assumes programs are well-formed, in particular that the linearity
and unique-matching constraints are obeyed.

The function CP translates a pattern list to a Janus condition. In addition to a pattern
list, CP also takes a list of Janus expressions that evaluate to the values that the patterns
should match.

Translating a pattern to a condition
CP[|P1 . . . Pn|](e1, . . . , en)

.
= CP[|P1|](e1) && . . .&& CP[|Pn|](en)

CP[|x|](e) .
= true

CP[|Nil|](e) .
= e == 1

CP[|Cons(P1, P2)|](e) .
= e > 1 && M[e] == 1 &&

CP[|P1|](M[e+1]) && CP[|P2|](M[e+2])
CP[|x as Cons(P1, P2)|](e) .

= e > 1 &&
CP[|P1|](M[e+1]) && CP[|P2|](M[e+2])

The function TP translates a pattern list into code that defines the variables in the patterns
and clears the variables that hold the matched values. It is assumed that the pattern

Reference Counting for Reversible Languages 89

matches and that the variables in the pattern are initially cleared. In addition to a list
of patterns, TP takes a list of variables of the same length. The code, when executed in
reverse, will build values from variables. The rules for Cons-nodes have optimised rules
for when one or more of the field patterns are variables.

Translating a pattern to deconstructing code
TP[|P1 . . . Pn|](v1, . . . , vn)

.
= TP[|P1|](v1); . . . ; TP[|Pn|](vn);

TP[|x|](v) .
= x <=> v;

TP[|Nil|](v) .
= v -= 1

TP[|Cons(w1, w2)|](v) .
= (w1, w2) = uncall cons(v)

TP[|Cons(w1, P2)|](v) .
= (w1, w2) = uncall cons(v);

TP[|P2|](w2);
where w2 is a new variable

TP[|Cons(P1, w2)|](v) .
= (w1, w2) = uncall cons(v);

TP[|P1|](w1);
where w1 is a new variable

TP[|Cons(P1, P2)|](v) .
= (w1, w2) = uncall cons(v); TP[|P1, P2|](w1, w2);

where w1, w2 are new variables
TP[|x as Cons(w1, w2)|](v) .

= (x, w1, w2) = call fields(v)
TP[|x as Cons(w1, P2)|](v) .

= (x, w1, w2) = call fields(v);
where w2 is a new variable

TP[|x as Cons(P1, w2)|](v) .
= (x, w1, w2) = call fields(v);

where w1 is a new variable
TP[|x as Cons(P1, P2)|](v) .

= (x, w1, w2) = call fields(v);
where w1, w2 are new variables

The function TC translates calls while keeping track of which variables are used later,
i.e, the live variables. Tc handles a function call by saving the live variables (excluding
the results of the function), passing the arguments in A1, A2, . . . , calling the Janus
procedure that implements the function, taking the results from R1, R2, . . . and restoring
the saved variables. A special case is copy, as it uses different variables for passing
arguments and results and because no variables are stored, since copy_pointer doesn’t
overwrite variables from the RCFUN program.

Translating a call list
TC[|x y = copy z; |]Vs

.
= ((x, y) = call copy pointer(z),
{z}∪ (Vs\ {x, y}))

TC[|copy z = x y; |]Vs
.
= (z = uncall copy pointer(x, y),
{x, y}∪ (Vs\ {z}))

TC[|x1 . . . xm = f y1 . . . yn|]Vs
.
= (call store(z1); . . . ; call store(zk);

A1 <=> y1; . . . ; An <=> yn;
call f ;
R1 <=> x1; . . . ; Rm <=> xm;
zk = uncall store; . . . ; z1 = uncall store,
{z1, . . . , zk}∪{y1 . . . yn})

where {z1, . . . , zk}=Vs\ {x1, . . . , xm}

90 Torben Æ. Mogensen

TC[| f y1 . . . yn = x1 . . . xm; |]Vs
.
= (call store(z1); . . . ; call store(zk);

R1 <=> x1; . . . ; Rm <=> xm;
uncall f ;
A1 <=> y1; . . . ; An <=> yn;
zk = uncall store; . . . ; z1 = uncall store,
{z1, . . . , zk}∪{x1 . . . xm})

where {z1, . . . , zk}=Vs\ {y1, . . . , yn}
TC[|Cs1 Cs2|]Vs

.
= (J1; J2, Vs1)

where (J2,Vs2) = TC[|Cs2|]Vs
and (J1,Vs1) = TC[|Cs1|]Vs2

TM translates a Match. Code is generated that will try the rule patterns in sequence
in a nested if-then-else-fi structure. If a rule matches, it will execute the code for the
patterns, then code for the calls and finally reversed code for the result pattern. We use
the Janus-inversion function R from [7] for reversing the code. The exit conditions are
built from the result patterns. If no rules match, an always-failing assertion is executed.

Translating a match
TM[|P1 . . . Pn = Cs Q1 . . . Qm | M|] .

= if CP[|P1 . . . Pn|](A1, ..., An) then
TP[|P1 . . . Pn|](A1, ..., An);
#1(TC[|Cs|](U [|Q1 . . . Qm|]))
R (TP[|Q1 . . . Qm|](R1, ..., Rm)

else
TM[|M|]

fi CP[|Q1 . . . Qm|](R1, ..., Rm)
TM[|P1 . . . Pn = Cs Q1 . . . Qm|] .

= if CP[|P1 . . . Pn|](A1, ..., An) then
TP[|P1 . . . Pn|](A1, ..., An);
#1(TC[|Cs|](U [|Q1 . . . Qm|]))
R (TP[|Q1 . . . Qm|](R1, ..., Rm)

else assert false
fi CP[|Q1 . . . Qm|](R1, ..., Rm)

where #1 is the function that returns the first component of a pair. We used, above, a
function U that finds the set of variables used in a pattern list to initialise the variable
list when calling TC:

Finding variables used in pattern
U [|P1 . . . Pn|] .

= U [|P1|]∪ . . .∪U [|Pn|]
U [|x|] .

= {x}
U [|x as Cons(P1, P2)|] .

= {x}∪U [|P1|]∪U [|P2|]
A function definition is translated by the function TF simply by defining a Janus proce-
dure where the body is the code for the Match.

Translating a function definition
TF [| f Ps = M|] .

= procedure f
TM[|M|]

Reference Counting for Reversible Languages 91

As an example, the append function from Figure 1 is translated into the Janus procedure
shown in Figure 2. The comments are added for readability.

procedure append
if A1 == 1 && true then /* first rule matches */
A1 -=1; ys <=> A2; /* pattern decomposition */
ys <=> R2; R1 += 1; /* result building */

else /* try second rule */
if A1 > 1 && true then /* 2nd rule matches */

(xs1, x, xs) = call fields(A1); /* pattern decomposition */
ys <=> A2;
(w, z) = call copy_pointer(x); /* call to copy */
call store(xs1); call store(w); call store(z); /* save variables */
A1 <=> xs; A2 <=> ys; /* set parameters */
call append; /* recursive call */
R1 <=> ws; R2 <=> zs; /* get results */
z = uncall store; w = uncall store; xs1 = uncall store; /* restore */
R2 = call cons(z, zs); /* result building */
R1 = uncall fields(xs1, w, ws);

else assert false /* no matching rule, so fail */
fi R1 > 1 && R2 > 1 && M[R2] == 1 /* 2nd result matches */

fi R1 == 1 && true /* first result matches */

Fig. 2. The append function from Figure 1 translated to Janus

7 Loops

Since tail-recursive functional programs are hard to make reversible, we introduce an
extension to RCFUN that allows tail-recursive definitions to be written as reversible
loops. We add the following call construction:

Call → vid+ = loop fid vid+;
| loop fid vid+ = vid+;

Like the normal calls, these are each other’s inverses. The loop calls require that the
function has the same number of parameters and results and that the pattern matching in
both forwards and backward directions is non-exhaustive, so it is possible for matching
to fail. The semantics of the call xs = loop f ys is:

1. Call f with the values in ys as arguments and put results (if any) in xs.
2. Swap xs and ys.
3. If ys is defined (i.e, if a matching rule was found), repeat from step 1, otherwise

exit loop.

92 Torben Æ. Mogensen

A similar construction has been used for transforming tail-recursive programs to enable
syntactic inversion [6]. With this extension, it is fairly easy to write, for example, a
list-reversal function for unshared lists:

reverse xs =
xs1 ys0 = makeNil xs;
xs2 ys1 = loop rev xs1 ys0;
makeNil ys = ys1 xs2;
ys

makeNil xs = xs Nil

rev Cons(x, xs) ys = xs Cons(x, ys)

The makeNil function is just used to introduce and eliminate Nil values. The rev
function matches only if the first argument is a Cons-node, so the loop will continue
until the xs1 is Nil. At this time, ys0 holds the reversed list. When the loop stops,
the arguments and results are swapped, so xs2 holds Nil and ys1 holds the reversed
list. After removing the Nil value by calling makeNil in reverse, the reversed list is
returned.

To implement the loop construction, we need to change the behaviour of calls that
do not match any rules. Currently, this causes an assertion to fail, but instead we want
nothing to happen. This causes the argument variables to remain unchanged and the
result variables to stay cleared. This way, a non-matching call can be detected at the
call site by checking if the result variables are still clear. If we want non-looping calls
to report errors when no rules match, we can add an assertion after the call that checks
this. With this change, we can implement the loop with the following translation rule:

TC[|x1 . . . xn = loop f y1 . . . yn|]Vs
.
= (call store(z1); . . . ; call store(zk);

A1 <=> y1; . . . ; An <=> yn;
from R1 == 0 do
call f; R1 <=> A1; . . .; Rn <=> An

loop skip until A1 == 0
R1 <=> x1; . . . ; Rn <=> xn;
zk = uncall store; . . . ; z1 = uncall store,
{z1, . . . , zk}∪{y1 . . . yn})

where {z1, . . . , zk}=Vs\ {x1, . . . , xn}

The translation rule for the reverse case (not shown) is similar.

8 Conclusion and Future Work

We have presented implementation in Janus of reversible reference-counting operations
on heap nodes, assuming availability of a heap manager in the style of [2]. We have used
these operations to implement a non-trivial reversible functional language RCFUN by
translating RCFUN functions into Jason procedures that use the node operations.

Reference Counting for Reversible Languages 93

The addition of a reversible loop construct to RCFUN makes it easier to write re-
versible tail-recursive programs, such as list reversal. It is fairly easy to modify the
translation scheme to accommodate this addition.

In the current design of RCFUN, Cons and as Cons patterns overlap, which (due to
the unique-match restriction) means that you can’t use both in different rules of the same
function. It is not difficult to change as Cons patterns so they require a reference count
greater than 1, so they don’t overlap Cons patterns. It would still be possible to make an
append function like the one in Figure 1, that works on both a shared and an unshared
first argument, but that would require two almost identical versions of the second rule,
where the new version differs from the current only in using Cons patterns where the
current second rule uses as Cons patterns, so programs would be larger. To avoid this,
we could make two distinct versions of as Cons patterns: One that (like in the current
design) matches both shared and unshared nodes, and one that matches only shared
nodes (so it does not overlap Cons patterns). This would allow the append function in
Figure 1 to stay unchanged, but would allow functions that do different things to shared
and unshared nodes. The usefulness of this is debatable, so we have chosen the current
design where the two patterns overlap.

It is a more serious limitation that the Cons pattern (without as) only works on
unshared nodes. In Figure 1, this means that, when calling append in reverse, the prefix
of the second argument that is not shared with the first argument must be completely
unshared, i.e, have reference count 1. It is not possible to write an append function that
allows shared nodes in this prefix without adding an extra parameter that is a copy of
the appended list, which makes the function rather useless. The same limitation means
that the reverse function in Section 7 only works on unshared lists. It is possible to
make an alternative reverse function that works on both shared and unshared lists, but
this would need to return a copy of the original list as well as the reversed list, and it
would not be tail recursive.

So while being able to share nodes and work on shared nodes at all is a nontrivial
extension of previous work [2,3] that allows no sharing, making shared nodes match
only as Cons patterns is a serious limitation.

We are currently working on a mechanism for avoiding this limitation and, hence,
allow Cons patterns as well as as Cons patterns to match both shared and unshared
nodes. Making construction and deconstruction by Cons mutually inverse while work-
ing on both shared and unshared nodes, however, requires maximal sharing. Maximal
sharing can be implemented using hash-consing [4], which makes construction and de-
construction more costly than in this paper. With maximal sharing, structural equality
and pointer equality is the same, so it is natural to add pattern guards that test for equal-
ity and non-equality of trees.

It is somewhat annoying to have to use a function (such as makeNil in Section 7)
to introduce a constant argument to a function call, so we plan to allow patterns in
arguments and results of calls. Additionally, having all data being built from Nil and
Cons is somewhat limiting (even though you can encode anything as nil-cons trees), so
we plan to add integers and arithmetic to the language. Comparing numbers will also
require pattern guards.

94 Torben Æ. Mogensen

References

1. Axelsen, H.B.: Clean translation of an imperative reversible programming language.
In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Heidelberg (2011)

2. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of constructor terms
in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 96–109.
Springer, Heidelberg (2013)

3. Baker, H.G.: Nreversal of fortune–the thermodynamics of garbage collection. In: Bekkers,
Y., Cohen, J. (eds.) IWMM-GIAE 1992. LNCS, vol. 637, pp. 507–524. Springer, Heidelberg
(1992)

4. Goto, E.: Monocopy and associative algorithms in an extended lisp. Technical Report TR
74-03, University of Tokyo (1974)

5. Lutz, C.: Janus: a time-reversible language. A letter to Landauer (1986),
http://www.cise.uf1.edu/~mpf/rc/janus.html

6. Mogensen, T.Æ.: Report on an implementation of a semi-inverter. In: Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 322–334. Springer, Heidelberg (2007)

7. Mogensen, T.Æ.: Partial evaluation of janus part 2: Assertions and procedures. In: Clarke,
E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 289–301. Springer,
Heidelberg (2012)

8. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In:
Proceedings of the 5th Conference on Computing Frontiers, CF 2008, pp. 43–54. ACM, New
York (2008)

9. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language. In:
De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidelberg
(2012)

http://www.cise.uf1.edu/~mpf/rc/janus.html

Constructive Reversible Logic Synthesis for Boolean
Functions with Special Properties

Anupam Chattopadhyay1, Soumajit Majumder1,
Chander Chandak2, and Nahian Chowdhury1

1 MPSoC Architectures Research Group, RWTH Aachen University, Germany
anupam.chattopadhyay@umic.rwth-aachen.de

2 IIT Kharagpur, India

Abstract. Reversible computation is gaining increasing relevance in the context
of several post-CMOS technologies, the most prominent of those being quan-
tum computing. The problem of implementing a given Boolean function using
a set of elementary reversible logic gates is known as reversible logic synthesis.
Though several generic reversible logic synthesis methods have been proposed
so far, yet the scalability and implementation efficiency of these methods pose a
difficult challenge. Compared to these generic synthesis methods, few reversible
logic synthesis approaches for restricted classes of Boolean functions demon-
strated better implementation efficiency and scalability. In this paper, we propose
a novel constructive reversible logic synthesis technique for Boolean functions
with special properties. The proposed techniques are scalable, fast and outper-
forms state-of-the-art generic reversible synthesis methods in terms of quantum
cost, gate count and the number of lines.

1 Introduction

From thermodynamic principles of computing, Landauer [11] pointed out that for every
bit of information lost, kT · ln 2 Joules of heat is generated in an irreversible computa-
tion, which is recently verified experimentally [3]. Bennett [2] proposed that the compu-
tation can be done in reversible manner to achieve theoretically zero power dissipation
by building upon Landauer’s observations. This concept helped to form the field of re-
versible computation, which also dictates that the physical reversibility must be accom-
panied at higher abstraction by logical reversibility. This is a cornerstone for serveral
post-CMOS technologies including quantum computing. Reversible logic synthesis ac-
cepts an (in)completely specified reversible Boolean function as input and generates a
logical representation of the function, where reversible logic gates are used.

Boolean functions serve as prime building block of symmetric-key cryptosystems
and error-correcting codes, for which several properties are highly desirable such as
nonlinearity, symmetry, correlation immunity and balancedness. The main motiva-
tion behind this work is to show that the combinatorial construction of the reversible
Boolean functions with specific properties can be done in order to improve the circuit
efficiency compared to automated logic synthesis method. In this paper, we focus to
two properties namely, symmetry and nonlinearity of Boolean functions.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 95–110, 2014.
© Springer International Publishing Switzerland 2014

96 A. Chattopadhyay et al.

2 Preliminaries

A Boolean function f is of the form f : {0, 1}n → {0, 1} (or equivalently f :
Vn

2 → V2). The output of the Boolean function f can be represented as a string s
of ones and zeros. It can also be represented as a multivariate polynomial over GF (2).
This polynomial can be expressed as a exclusive disjunction (EXOR) of a constant
a0 and one or more conjunctions of the function argument. This is called the Exclu-
sive Sum-Of-Product (ESOP) representation. A less general representation of the ESOP
form is known as the Algebraic Normal Form (ANF). The general ANF for a function
f(x1, .., xn) over n-variables can be written as,

f(x1, .., xn) =a0 ⊕ a1x1 ⊕ · · · ⊕ aixi ⊕ · · · ⊕ anxn

⊕ · · · ⊕ a1,2,...,nx1x2 · · ·xn

(1)

Reversible and Irreversible Boolean Functions. An n-variable vectorial Boolean
function is reversible if all its output patterns map uniquely to an input pattern and
vice-versa. It can be expressed as an n-input, n-output bijection or alternatively, as a
Boolean permutation function over the truth value set {0, 1, . . .2n−1}. An irreversible
Boolean function firr : {0, 1}n → {0, 1}m with n �= m can also be made reversible
with the help of extra input lines (ancilla) and/or output lines (garbage lines) such that,
input+ ancilla = output+ garbage.

Nonlinearity. The nonlinearity of a Boolean function f on n-variables, denoted by Nf

is the minimal Hamming Distance between f and all the affine functions on Vn
2 .

The class of Boolean functions having the highest nonlinearity are known as Bent
functions. They are defined only on V2k

2 , i.e. Boolean functions of even number of
variables and their nonlinearity is given by 22k−1 − 2k−1. In contrast, the maximum
nonlinearity attainable for a Boolean function V

2k+1
2 with odd number of variables still

remains an open problem.

Symmetry. A Boolean function f : {0, 1}n → {0, 1} is called symmetric if its output
is invariant under any permutation of its input bits. Equivalently we can say that the
value of f(x) is constant for all x’s having the same weight.

Direct Sum. The direct sum of two strings x and y, of lengths n and m respectively,
denoted by xℵy is given by xℵy = (x ⊗ yc) ⊕ (xc ⊗ y), where x ⊗ y = (x0 AND
y)...(xn−1 AND y) denotes the Kronecker product of two strings producing a string
of length nm. yc denotes complement of y.

Reversible Logic Synthesis. Reversible Boolean logic synthesis is achieved with the
help of reversible logic gates. The gates are characterized by their implementation cost
in quantum technologies, which is dubbed as Quantum Cost (QC). We use the stan-
dard QC values from [13] along with the latest improvements reported in [30] for QC
computation. Few prominent reversible logic gates are as following.

Constructive Reversible Logic Synthesis for Boolean Functions 97

– CNOT gate: CNOT(a, b) = (a, a⊕ b).
– CCNOT gate (Toffoli gate): CCNOT(a, b, c)=(a, b, ab⊕ c). This gate can be gen-

eralized with Tofn gate, where first n− 1 variables are used as control lines. NOT
and CNOT gates are denoted as Tof1 and Tof2 respectively.

– Controlled Swap gate (Fredkin gate): Fred(a, b, c) = (a, ab ⊕ ac, ac ⊕ ab). This
is generalized with Fredn gate (n > 1), where first n − 2 variables are used as
control lines.

– Peres gate: Per(a, b, c) = (a, a⊕ b, ab⊕ c). This gate can be generalized with Pern
gate (n > 2) [30], where first n− 1 variables are used as control lines.

2.1 Related Work and Motivation

A Boolean function should possess certain properties for its use in cryptographic appli-
cations such as symmetry, balancedness and high nonlinearity. Matsui in [17] showed
that Boolean functions of low nonlinearity can be approximated and hence can be con-
sequently attacked using linear cryptanalysis attacks, which makes high nonlinearity
a desirable property of cryptographically strong Boolean function. To this effect, re-
searchers came up with multiple construction methods for highly nonlinear Boolean
functions with large number of variables. These constructive methods could be adopted
for reversible circuit construction, which has not been attempted before this work. This
constructive approach not only provides a scalable reversible logic synthesis method for
highly nonlinear Boolean functions but also, demonstrates increased efficiency of im-
plementation compared to generic reversible logic synthesis techniques. Symmetry of
Boolean functions, while a desirable property for cryptographic applications, has also
been shown to be important for general reversible logic synthesis [23].

Existing reversible logic synthesis methods can be broadly classified in two cate-
gories - generic [26] and property-specific. In the area of property-specific reversible
logic synthesis, Beth and Rötteler [4] suggested synthesis approach for linear re-
versible circuits using Gaussian Elimination and LU-Decomposition to yield circuits
with O(n2) gates. In [21], an improved algorithm with better speed and asymptotically
optimal performance for synthesis of linear reversible circuits is proposed. Younes [34]
proposed a factorization algorithm for synthesis of homogeneous Boolean functions.
For Symmetric Boolean functions, a synthesis technique is proposed at [15]. This is
improved further at [8], where a cascade of Peres gates is utilized to obtain reversible
circuits with improved QC.

It has been noted at [15] that the constructive reversible logic synthesis procedures
for Boolean functions with special properties are scalable and can outperform, in many
cases, the generic synthesis techniques. This forms the key motivation of this work. Be-
sides, it has been shown in a recent work that several Quantum algorithms do require
efficient reversible circuits for specific classes of Boolean functions [7]. In this work,
we make two contributions. First, we propose a constructive reversible logic synthesis
technique for highly nonlinear Boolean functions. Second, we propose a constructive re-
versible logic synthesis technique for symmetric Boolean functions. For both the cases,
we report improved results compared to the current literature.

In contrast to the state-of-the-art synthesis techniques [28,26] for Boolean functions
with special propertes, we explore deeper and draw from the classical Boolean function

98 A. Chattopadhyay et al.

construction techniques from the literature. The constructive approach presented in this
paper have multiple advantages, e.g., scalability, low synthesis runtime and significant
implementation efficiency, as we demonstrate via benchmarking with state-of-the-art
generic and property-specific reversible synthesis flows.

3 Synthesis of Highly Nonlinear Functions

In this section, several construction techniques for highly nonlinear Boolean functions
and Bent functions are discussed. Those are followed by their reversible circuit syn-
thesis approaches, corresponding theoretical results on the upper bounds of gate count
(GC), QC and the total number of lines (L) and comparison with state-of-the-art generic
synthesis techniques.

3.1 Construction Method I: [27]

Here, we follow the concatenation-based construction of n-variable, m-resilient
Boolean functions. (following Theorem 4,[27]). The idea is to utilize Boolean func-
tions with smaller number of variables to construct a highly nonlinear Boolean function
of large variable count. Before the concatenation, direct sum function is used. An op-
timized reversible circuit construction for the direct sum function (denoted as ℵ) is
developed for the same. We illustrate with the help of a construction of a 14-variable
Boolean function with 2nd order resiliency. The values of k and r, which are defined
as two parameters for the construction in [27] are chosen as 6. Following the theorem,
we concatenate 4 Boolean functions fi’s on V12

2 as fi = giℵλi, where gi is maximum
nonlinear function on 6-variables. We choose 4 Bent functions on V

6
2 which are as fol-

lowing.

g1 = x1x2 ⊕ x3x4 ⊕ x5x6,

g2 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2,

g3 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2 ⊕ x3,

g4 = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x2 ⊕ x3 ⊕ x4

(2)

The λi’s belong to ULk(m + 1) where, ULk(m + 1) = Lk(m + 1) ∪ · · ·Lk(k) (i.e.,
Lk(3) ∪ · · ·Lk(6)) The individual sets Lk(j) denote the set of all k-variable linear
Boolean functions which are non-degenerate on exactly j-variables. The choices for
the λi’s are,

λ1 = L6(3) = x7 ⊕ x8 ⊕ x9,

λ2 = L6(4) = x7 ⊕ x8 ⊕ x9 ⊕ x10,

λ3 = L6(5) = x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ x11,

λ4 = L6(6) = x7 ⊕ x8 ⊕ x9 ⊕ x10 ⊕ x11 ⊕ x12

(3)

For reversible circuit implementation, constructions of gi and λis are straightfor-
ward. It is noted that, the reversible logic implementation of direct sum is nothing but
the ⊕ operation of the two functions gi and λi. This allows efficient implementation of

Constructive Reversible Logic Synthesis for Boolean Functions 99

this method also via ESOP-based approach. However, the constructive approach con-
siderably reduced the QC of the individual functions, resulting in overall improvement
(Table 1). In the table, the shaded cells represent equal or improved performance in
comparison with state-of-the-art synthesis methods.

Comparison with the state-of-the-art synthesis methods: We compare the proposed syn-
thesis technique with state-of-the-art reversible logic synthesis methods. The functions
are represented by the choice of the parameters - n, k, r and m. The nonlinearity of the
functions are denoted by Nf and the maximum achievable nonlinearity (in the case of
Bent functions) by nlmax. It can be observed that, with the proper choice of r and k,
the method can easily scale to large Boolean functions. On the other hand, the choice
of a large k and/or r, requires one to first synthesize a large Boolean function.

Table 1. Benchmarking Construction Method I

Function Nf/nlmax
BDD[32] ESOP[20,10] MMD[18] This work

Lines Gates QC Lines Gates QC Lines Gates QC Lines Gates QC
(14, 6, 6, 1) 7836/8028 26 67 179 15 17 157 14 40 886 18 20 88
(14, 6, 6, 2) 7836/8028 31 86 238 15 16 148 14 39 660 18 21 91
(16, 6, 8, 1) 31856/32368 31 80 208 17 22 262 16 168 5670 20 23 87
(16, 8, 6, 2) 31344/32368 36 93 241 17 16 136 16 172 5850 20 27 91

3.2 Construction Method II: Recursive Construction[22]

A construction method presented in [22] generates large Boolean functions of high
nonlinearity and resilience recursively like the previous one. A 10-variable, 4-resilient
Boolean function of degree 4 and of nonlinearity 480 is constructed using a 7-variable,
2-resilient Boolean function of degree 4 and nonlinearity 56 as described in Theorem
7 [22]. The 7-variable function is first presented below. Note that this function was again
found using a constructive method based on 6-variable functions.

f(x1, . . . , x7) = (1⊕ x7)(1⊕ x6)h1()⊕ (1⊕ x7)x6h2()⊕ (1⊕ x6)x7h3()⊕ x6x7h4(),
(4)

where

h1(x1, . . . , x5) = x1 ⊕ x2 ⊕ x1x4 ⊕ x3x4 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x3x4x5

h2(x1, . . . , x5) = 1 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x3x4 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x4x5 ⊕ x2x4x5 ⊕ x3x4x5

h3(x1, . . . , x5) = x3 ⊕ x1x3 ⊕ x1x2x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x5 ⊕ x1x5

⊕ x1x2x5 ⊕ x1x3x5

h4(x1, . . . , x5)=1 ⊕ x2 ⊕ x1x2 ⊕ x1x2x3 ⊕ x4 ⊕ x1x4 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x1x5 ⊕ x2x5 ⊕ x1x2x5

⊕ x3x5 ⊕ x1x3x5

(5)

In [22], an n-variable Boolean function Fd is defined to be in desired form if it
follows the construction

Fd = (1⊕ xn)f1 ⊕ xnf2, (6)

100 A. Chattopadhyay et al.

where f1 and f2 are (n − 1)-variable functions with their degree being 1 less than Fd.
The aforementioned 7-variable function is in desired form since, those are constructed
recursively using 6-variable functions. Based on the 7-variable function f(x1, . . . , x7),
a 10-variable, 4-resilient Boolean function of degree 4 and of nonlinearity 480 is con-
structed as following. Let F = xn+2 ⊕ xn+1 ⊕ f and G = (1 ⊕ xn+2 ⊕ xn+1)f1 ⊕
(xn+2 ⊕ xn+1)f2 ⊕ xn+2 ⊕ xn. Then the target 10-variable function F1 of specified
properties is constructed as F1 = (1 ⊕ xn+3)F ⊕ xn+3G. The construction of the 10-
variable function from the 7-variable function can be easily achieved with Toffoli and
Fredkin gates, as shown in the Figure 1. The detailed implementation of the constituent
functions h1, h2, h3 and h4 are not shown. These functions were synthesized using an
ESOP-based flow including common cube sharing.

The proposed synthesis technique is compared with the existing state-of-the-art syn-
thesis techniques in Table 2. It is interesting to note that, even though the recursive con-
struction allows direct implementation via simple reversible gates, none of the synthesis
methods had matching QC or gate count that could be achieved from our constructive
technique. The additional 6 lines, compared to the MMD method is contributed due to
the fact that the constituent functions were synthesized using ESOP, thereby requiring
4 lines for the constituent functions h1, h2, h3 and h4. Furthermore, 2 were required for
6-variable functions f1 and f2, which were used for constructing f(x1, . . . , x7) as well
as for constructing F1. The improvement in constructive method is due to the following
facts

– The desired form of a function directly translates to controlled swap gate
– Recursive construction method is based on basic CNOT gates

Evidently, these properties are not utilized by generic synthesis methods.

Fig. 1. Construction Method II:10-variable, 4-resilient Boolean function

Table 2. Comparison of Construction Method II with existing synthesis methods

Synthesis Method Lines Gates QC
BDD[32] 42 147 447

ESOP[20,10] 26 89 309
MMD[18] 10 654 55632
This work 16 44 230

Constructive Reversible Logic Synthesis for Boolean Functions 101

3.3 Construction Method III: [9]

An early construction method for Bent functions on V
2k
2 was originally proposed in [9].

This construction, known as Maiorana-McFarland construction, has been further gen-
eralized in [5]. Numerous developments on Bent function construction followed the
basic Maiorana-McFarland technique, such as in [12], authors obtained Bent functions
with high resiliency. In this work, we focus on the basic construction as outlined in [9]
and [35]. The idea of the construction is to concatenate the linear functions on Vk

2 ,
thereby generating Bent functions on V2k

2 .

f(y, x) = π(y) · x⊕ g(y), x, y ∈ V
k
2 (7)

where f is the resultant Bent function, π represents a permutation on Vk
2 and g is any

Boolean function on Vk
2 . There are 22

k

(2k!) such Bent functions, where the possible
permutations are covered by the factor (2k!). For our study, we restricted π to all possi-
ble linear functions, and assumed g to be 0, thereby generating 2k(2k!) Bent functions.
The general implementation is as shown in the Fig. 2.

Mapping to Reversible Circuits and Implementation Cost Determination: The afore-
mentioned construction can be realized by applying psuedo-optimal linear reversible
circuit synthesis [21] followed by a set of Fredkin gates. This construction has high L,
GC and QC due to the multiplexer type functionality where k lines act as control lines
and select one from all possible 2k linear functions on Vk

2 . This construction method
suffers from scalability issues since, with increasing variable count, the number of lin-
ear functions increases exponentially.

Comparison with state-of-the-art synthesis methods: The benchmarking results are pre-
sented in Table 3. Note that due to the size constraint, the complete functions are not
presented for the studied 8-variable Boolean functions. Instead, only the permutation of
the 16 linear functions for the sub-space V4

2 are given, where 1→ 0, 2→ x1, 3→ x2,
· · · , 16→ x1⊕x2⊕x3⊕x4. The total number of lines required remain upper-bounded
by 20, which is due to 4 control inputs, 4 inputs for the linear functions, which are re-
used as part of the total 16 linear functions. Thereby, the upper bound of lines can be
generalized as k+2k for a bent function construction on Vk

2k. In this case, however, the
line counts could be further reduced by applying algebraic optimization based on the
ESOP formulation (see subsection 3.5). In the same manner, it is possible to determine
the generalized costs for the linear function generator part. However, the identification
of minimum swap count for a given permutation is non-trivial. Thankfully, the con-
struction method as shown in [35] includes the swaps. Except for the count of lines,
the constructive method outperformed ESOP and BDD-based methods both in gate
count and QC for most of the permutations. We did not benchmark against MMD as
it typically reports even higher gate count and QC compared to ESOP and BDD-based
methods.

102 A. Chattopadhyay et al.

Fig. 2. Construction Method III: Bent Func-
tion

Fig. 3. Construction Method IV: Bent Func-
tion

Table 3. Benchmarking Construction Method III

Permutation of Linear Functions Variable
BDD[32] ESOP[20,10] This work

Lines Gates QC Lines Gates QC Lines Gates QC
{11, 15, 10, 16, 4, 5, 2, 13, 8, 14, 6, 12, 9, 3, 7, 1} 8 22 71 219 9 32 488 18 33 97
{7, 14, 5, 13, 1, 16, 6, 3, 10, 12, 9, 2, 4, 11, 8, 15} 8 22 68 196 9 35 479 14 30 90
{15, 9, 14, 7, 5, 1, 16, 12, 6, 2, 11, 10, 4, 8, 3, 13} 8 22 62 174 9 25 353 13 23 71
{6, 14, 9, 4, 7, 13, 11, 1, 8, 15, 12, 5, 10, 3, 16, 2} 8 22 70 202 9 33 509 19 34 86
{11, 13, 16, 15, 8, 7, 2, 14, 10, 5, 4, 9, 3, 12, 1, 6} 8 20 62 174 9 36 516 16 35 99
{4, 7, 10, 9, 15, 16, 3, 8, 12, 11, 13, 6, 1, 5, 14, 2} 8 24 65 169 9 29 461 15 31 87
{9, 4, 2, 15, 6, 10, 7, 11, 12, 3, 16, 14, 5, 1, 13, 8} 8 22 72 208 9 34 506 15 29 81
{16, 9, 10, 7, 15, 4, 5, 12, 2, 1, 6, 13, 11, 8, 14, 3} 8 23 68 200 9 33 461 15 30 86
{16, 4, 15, 8, 9, 1, 14, 5, 10, 13, 2, 3, 12, 6, 7, 11} 8 22 73 201 9 34 490 18 34 98
{2, 7, 5, 6, 12, 3, 1, 4, 16, 10, 13, 11, 9, 14, 8, 15} 8 22 68 196 9 37 597 16 30 86

3.4 Construction Method IV: [33]

The authors in [33] proposed two theorems for construction of new Bent functions using
existing Bent functions. This is particularly interesting for Boolean functions with odd
number of variables, where direct constructions methods cannot be used [25].

Theorem 1: Let f and g be Boolean functions on Vm
2 and Vn

2 respectively. Then the
Boolean function h : Vm+n

2 → V2 defined by h(x, y) = f(x) ⊕ g(y) is bent iff f and
g are bent.

Theorem 2: If f is a Bent function on V
n
2 , then f ⊕ l is a Bent function for any affine

function l on Vn
2 .

Mapping to Reversible Circuits and Implementation Cost Determination: The basic
idea of this construction according to theorem 1 is given by Fig. 3. The second con-
struction method can be achieved similarly by performing a CNOT operation between
the Bent function and the linear function. The QC of the resulting circuit using this
method of construction is simply the sum of QCs of the constituent functions added

Constructive Reversible Logic Synthesis for Boolean Functions 103

with 1, which is due to the CNOT gate. The total number of lines for the resulting cir-
cuit is L(f1)+L(f2)+m+n, where f1 denotes a Bent function on n-variables and f2
is a Bent function on m-variables for Theorem 1. Here, an ESOP-based implementation
of the constituent Bent functions is assumed. f2 is a linear function on n-variables for
Theorem 2 (hence, m = 0 for the second construction).

The QC, GC and L for this construction are enlisted in Table 4.

Table 4. Implementation Costs for Construction Method IV

Gate Count GC(f1) +GC(f2) + 1

Quantum Cost QC(f1) +QC(f2) + 1

Lines L(f1) + L(f2) +m+ n

Comparison with state-of-the-art synthesis methods: This simple construction of Bent
function is compared with BDD-based and ESOP-based methods, when the final
Boolean function is subjected to synthesis. We observed an improved performance in
most of the cases. The constructive method is scalable to large number of variables, in
contrast to the generic methods. An 1-hour timeout set to the benchmarked synthesis
methods failed to return a valid circuit in one case (indicated by ’-’).

3.5 Post-synthesis Optimization

Aforementioned construction techniques show strong algebraic structure and hence
there is a wide scope for optimizing the synthesis by using common cube sharing.
Common cube sharing is a well-studied problem in classical logic synthesis as it helps
in minimization of cost and size by identifying the sub-circuits which form the basis for
larger functional blocks. This optimization is applied on the Boolean functions obtained
following the construction techniques. The implementation costs of these functions, as
presented in the following Table 5, is computed after application of the cube sharing
algorithm [20]. Note that, such optimizations are present also for the ESOP-based syn-
thesis flows that we compared against and hence, do not provide any undue advantage
to the proposed constructive synthesis flow.

Table 5. Benchmarking Construction Method IV

Function Variable
BDD[32] ESOP[20,10] This work

Lines Gates QC Lines Gates QC Lines Gates QC
fx = x1x2 2 3 1 5 3 1 5 3 1 5
gy = y1y2 ⊕ y3y4 ⊕ y5y6 6 9 11 31 7 3 15 7 3 15
hx,y = fx ⊕ gy 8 12 17 45 9 4 20 10 5 21
fx = x1x2 ⊕ x3x4 4 6 7 19 5 2 10 5 2 10
gy = y1y2 ⊕ y3y4 ⊕ y5y6 ⊕ y7y8 ⊕ y9y10 ⊕ y11y12 12 19 30 78 13 12 88 13 6 30
hx,y = fx ⊕ gy 16 22 40 92 17 24 112 18 9 41
fx = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕ x7x8 ⊕ x9x10 ⊕ x11x12 16 22 40 92 17 26 214 17 12 44

⊕x13x14 ⊕ x15x16

gy = y1y2 ⊕ y3y4 ⊕ y5y6 ⊕ y1 ⊕ y2 ⊕ y6 6 9 12 28 7 6 18 7 6 18
hx,y = fx ⊕ gy 22 - - - - - - 24 19 53

104 A. Chattopadhyay et al.

4 Synthesis of Symmetric Functions

In contrast to nonlinear Boolean functions, constructive approach for synthesizing sym-
metric Boolean functions have been studied in the past [15,8], possibly due to their
usage in efficient synthesis of general reversible Boolean functions [23]. Before pro-
ceeding further, we present some recent results on generalized Peres gates as well as
show how cascaded multi-control Peres gates can be realized with lower Quantum costs.

4.1 Quantum Cost of Cascaded, Generalized Peres Gates

Generalization of Peres gates is introduced in [30] with the following definition,

Pern(x0, x1, · · · , xn) = (x0, x0 ⊕ x1, x0x1 ⊕ x2, · · · , x0x1 · · ·xn−1 ⊕ xn), n ≥ 2
(8)

Such gates are implemented in an optimized manner with controlled kth-root-of-NOT
gates. In the following Fig. 4, Per3 and its corresponding reversible circuit realization
is shown. Here, controlled-V , controlled-V + represents controlled kth-root-of-NOT for
k = 2 and controlled-W , controlled-W+ represents the same for k = 4. In the lower
part of the same Fig. 4 an alternative reversible circuit is presented, which locally re-
orders the controlled kth-root-of-NOT gates. Since the control lines are exclusive, the
resultant Boolean function remains the same.

In lemma 1 of [30], the number of elementary gates for Pern is proved to be n2,
which is same as its QC since the elementary gates have a QC of 1. We explore this
further considering cascaded, generalized Peres gates. The re-ordering of controlled

Fig. 4. Generalized Peres Gate Implementation

Constructive Reversible Logic Synthesis for Boolean Functions 105

kth-root-of-NOT gates provides an opportunity to reduce a few adjacent gates. This
has been explored in the context of basic Peres gate [19] and for multi-control Toffoli
gates [29].

Lemma 1. Cascading 2 Pern gates require n2 + n gates.

Proof. From lemma 1 of [30], 2 cascaded Pern gates require 2n2 elementary gates.
An n-controlled Peres gate, i.e., Pern consists of three parts. The part in middle imple-
ments a Pern−1 gate. The first and the last part of the circuit consists of n and n − 1
controlled Quantum gates respectively. For two adjacent Pern gates, by re-ordering,
(n − 1) controlled Quantum gates can be cancelled out with their corresponding in-
verses. This leads to a reduction of 2(n− 1) elementary gates. Every Pern contains a
Pern−1 inside it, which, in the same manner allows a reduction of 2(n− 2) gates. This
continues till there is a Per2 gate, for which a reduction of 2(n − (n − 1)) gates are
possible. Hence, by summing the reductions, we obtain the elementary gate count as
following.
2n2 −∑n−1

i=1 2(n− i)
= 2n2 − n(n− 1)
= n2 + n ��
Corollary 1. Cascading t Pern gates require n2 + (t− 1)n gates.

Proof. For each pair of Pern gates, a reduction of n(n−1) is obtained. For t number of
cascaded Pern gates, the total reduction from a basic tn2 gate count is (t−1)n(n−1).
Hence, the final gate count is,
tn2 − (t− 1)n(n− 1)
= tn2 − (t− 1)n2 + (t− 1)n
= n2 + (t− 1)n ��

Evidently, the above results also lead to the QC values as we are only considering
gates with 1 QC. An application of the above lemma is shown graphically for 2 cascaded
Per3 gates in Fig. 5. It is clear that by cascading as much as possible Peres gates with
same control lines, one can obtain a significant reduction in gate count and QC. In the
constructive synthesis of symmetric Boolean functions, this property is exploited.

4.2 Constructive Synthesis for Symmetric Functions

Since the symmetric Boolean functions have unique output for a given Hamming weight
of the input n-variable Boolean vector V

n
2 , we propose an approach based on two

phases. First, the Hamming weight computation in (�log2 n� + 1) lines followed by
an evaluation of the function on those lines. Note that, due to the sharing of one target
Hamming weight line with one input line, (�log2 n�) ancilla lines are needed. The cir-
cuit complexity largely depends on the Hamming weight computation, which is done
using a ripple-carry adder approach as shown in Fig. 6. This approach is earlier used
for Hidden Weighted Bit (HWB) functions in [13]. It can be observed that the Ham-
ming weight computation circuitry is nothing but a series of cascaded, generalized Peres
gates. In case of rd73, the Hamming weight computation is done with 2 cascaded Per2

106 A. Chattopadhyay et al.

Fig. 5. Cascaded Generalized Peres Gate Implementation

gates and 4 cascaded Per3 gates, resulting into a total QC of 24. Please note, that to re-
duce garbage count, an input line is re-used for storing the LSB of the Hamming weight
value. The Hamming weight values directly result into the output. Hence, no further
gate is required. In providing the gate count, we report the number of mixed-control
Tofn gates for ease of comparison with previous results.

Table 6. Benchmarking with Property-specific Synthesis Techniques

Function I/O
[8] (Low Garbage) [8] (Low QC) [15] This work
Garbage QC Garbage QC Garbage Gates QC Garbage Gates QC

2of5 5/1 - - - - 6 12 32 6 9 15
rd53 5/3 5 28 6 20 5 12 36 4∗ 10 18
rd73 7/3 7 46 10 32 7 20 64 6∗ 16 24
rd84 8/4 9 66 13 44 11 28 98 7 20 27
6sym 6/1 - - - - 9 20 62 8 16 32
9sym 9/1 14 88 19 59 11 28 94 10 22 30

The computation of Hamming weight is further optimized by taking the desired out-
put into consideration. For example, the benchmark function 2of5 produces an output
of 1 when the Hamming weight is 2 or 010. However, 110 is not a valid Hamming
weight for 5-variable circuit. Therefore, the Hamming weight computation can opti-
mize the carry propagation circuitry and an additional line used for the most significant

Constructive Reversible Logic Synthesis for Boolean Functions 107

Fig. 6. Generation of Hamming Weight for rd73 Fig. 7. Reversible Ciruit: 2of5

bit. Similarly for rd84, the Per4 gate can be avoided by putting an inverted-control
Toffoli gate at the end, which sets the output line indicating Hamming weight of 1000
to true if none of the less Hamming weight values are true. This allows cascading of 5
Per3 gates. For 9sym, computing the final two Hamming weights 1000 and 1001 can
be avoided, since those do not influence the output. Neither of the Hamming weight
values influencing the output, i.e. 3, 4, 5 and 6, has any overlapping bit-pattern in the 3
least significant bits. The complete reversible circuit for 2of5 is shown in Fig. 7.

Comparison with state-of-the-art synthesis methods: This construction technique easily
outperforms both the previous property-specific synthesis flows for symmetric functions
in all the efficiency metrics as shown in Table 6. In [8], a cascade of 2-control Peres gates
are used followed by an extraction-elimination module. In contrast, we do not require
any follow-up module and obtain the individual Hamming weight values directly. The
values with ∗ in the garbage count are shown to be minimal [13]. Further, it is likely
that any approach based on adder circuit and generalized Peres gates may benefit from
the results presented in this paper.

4.3 Upper Bounds of Symmetric Functions

In this subsection, we establish novel upper bounds for the gate count and QC for sym-
metric Boolean functions based on the proposed constructive approach. To the best of
our knowledge, no such upper bound for symmetric Boolean functions exist.

Based on a recent result [30], we have an expression of the QC of Tofn gate as
following.

2(n− 1)2 − 2(n− 1) + 1 (9)

While this result is for positive-control Tofn gates, we use it also for mixed-polarity
Tofn gates. It has been showed in the case of mixed-polarity Tofn gates, a realization
with equivalent QC can be obtained [16]. The only case, where the QC for mixed-
polarity is higher, is when all the control inputs are negated. In that case, the QC is

2(n− 1)2 − 2(n− 1) + 3 (10)

108 A. Chattopadhyay et al.

Using the proposed constructive approach, we explore the following upper bound
calculation based on the circuit for Hamming weight computation using cascaded Pern
gates.

Lemma 2. The upper bound of QC for an n-variable Hamming weight computation
circuit is (�log2 n�)2 + n(�log2 n�) + n− 1.

Proof. For an n-variable Boolean function, the Hamming weight computation requires
(n−1) cascaded Perk gates, where the maximum value of k can be �log2 n�+1. Con-
sidering the worst-case scenario, total (n−1) cascaded Per	log2 n
+1 gates are needed.
By using the result from Corollary 1, the upper bound on QC is (�log2 n�+ 1)2+(n−
2)(�log2 n�+ 1). Simplification of this leads to the result. ��
Theorem 1. The upper bound of QC for an n-variable Symmetric Boolean function is
(2n+ 1)(�log2 n�)2 − n(�log2 n�) + 4n− 1.

Proof. The computation of Symmetric function is composed of Hamming weight calcu-
lation followed by a set of comparators. Each comparator is due to one Hamming weight
value. There can be (n+1) different Hamming weights for an n-variable Boolean func-
tion. However, at most n Hamming weights can contribute to the generation of the Sym-
metric function, as otherwise, it will become a constant function. The Hamming weights
are stored in (�log2 n�+1) lines. Each comparator for a specific Hamming weight value
require a mixed-polarity Tofk gate, where k is at most (�log2 n�+1). This leads to the
worst-case QC value from the comparator circuit as n(2(�log2 n�)2−2(�log2 n�)+3).
By adding the upper bound of QC from the Hamming weight circuit with the compara-
tor circuit, we obtain the result. ��
Clearly, the upper bound derived in Theorem 1 based on the constructive approach is
tighter compared to the generic upper bounds presented recently in [1].

It can be also noted that the QC values obtained for benchmark circuits, presented
in Table 6 is significantly less than the upper bound presented in Theorem 1. To predict
a tighter bound of QC for individual circuits compared to theorem 1, we need to enu-
merate the number of Per1, Per2 · · ·Per	log2 n
+1 gates, which follows a piecewise
function. Let us define the number of Perk gates for an n-variable Hamming weight
computation circuit as Cn(Perk). It can be easily shown that,

Cn(Perk) =

⎧⎪⎨
⎪⎩
0 if n < 2k−1

(n+ 1)− 2	log2 n
 if 2k−1 ≤ n ≤ 2k − 1

2k−1 if n ≥ 2k

5 Summary and Future Work

In this paper, a novel, constuctive reversible logic synthesis method is presented for
Boolean functions with special properties. It has been shown that this synthesis meth-
ods outperforms state-of-the-art, general reversible logic synthesis methods. Detailed
experimental studies are presented to support the claim.

Constructive Reversible Logic Synthesis for Boolean Functions 109

Due to the desirability of Boolean functions with specific properties, new construc-
tions are continuously being proposed. The presented techniques can be extended to
cover further Boolean function construction methods. The interdependence between the
Boolean function properties and the implementation efficiency is an interesting open re-
search problem. Further, we will like to explore the usage of efficient reversible circuits
for symmetric Boolean functions in the context of reversible logic synthesis and adder
circuit realizations.

Acknowledgement. The authors will like to thank the anonymous reviewers, whose
critical feedback helped to improve the paper considerably. The first author will like to
acknowledge the help of Prof. Subhamoy Maitra, Indian Statistical Institute, Kolkata,
India for understanding several Boolean function construction techniques.

References

1. Abdessaied, N., Soeken, M., Thomsen, M.K., Drechsler, R.: Upper bounds for reversible
circuits based on Young subgroups. Information Processing Letters 114(6), 282–286 (2014)
ISSN 0020-0190, http://dx.doi.org/10.1016/j.ipl.2014.01.003

2. Bennett, C.H.: Logical Reversibility of Computation. IBM Journal of Research and
Development 6, 525–532 (1973)

3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experi-
mental verification of Landauer’s principle linking information and thermodynamics. Nature,
187–189 (March 2012)

4. Beth, T., Rötteler, M.: Quantum algorithms: Applicable Algebra and Quantum physics. In:
Quantum Information, pp. 96–150. Springer (2001)

5. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In: Crama, Y.,
Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press
(2010), http://www.math.univ-paris13.fr/˜carlet/pubs.html

6. Chee, S., Lee, S., Lee, D., Sung, S.H.: On the Correlation Immune Functions and Their
Nonlinearity. In: Kim, K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 232–243. Springer, Heidelberg (1996)

7. Chakrabory, K., Maitra, S.: Quantum algorithm to check Resiliency of a Boolean function.
In: International Workshop on Coding and Cryptography (2013)

8. Deb, A., Das, D.K., Rahaman, H., Bhattacharya, B.B., Wille, R., Drechsler, R.: Reversible
Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure. In: Workshop
on Reversible Computation, pp. 182–195 (2013)

9. Dillon, J.F.: Elementary Hadamard Difference Set, PhD Dissertation, University of
Maryland, College Park, MD (1974)

10. Gupta, P., Agrawal, A., Jha, N.K.: An Algorithm for Synthesis of Reversible Logic Circuits.
IEEE TCAD 25(11), 2317–2330 (2006)

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development 5, 183–191 (1961)

12. Maitra, S., Pasalic, E.: A Maiorana–McFarland type Construction for Resilient Boolean
functions on n variables (n even) with nonlinearity. Discrete Applied Mathematics 154(2),
357–369 (2006)

13. Maslov, D.: Reversible Benchmarks (2014),
http://webhome.cs.uvic.ca/˜dmaslov (last accessed March 2014)

14. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An O(m2)-depth quantum algorithm
for the elliptic curve discrete logarithm problem over GF(2m)a. In: Quantum Information &
Computation, pp. 610–621 (2009)

http://dx.doi.org/10.1016/j.ipl.2014.01.003
http://www.math.univ-paris13.fr/~carlet/pubs.html
http://webhome.cs.uvic.ca/~dmaslov

110 A. Chattopadhyay et al.

15. Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean
functions. IEE Proceedings of Circuits, Devices and Systems 153(5), 467–472 (2006)

16. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit
Simplification and Level Compaction. IEEE TCAD 27(3), 436–444 (2008),
doi:10.1109/TCAD.2007.911334

17. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In:
Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg
(1993)

18. Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible
Logic Synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

19. Moraga, C., Hadjam, F.Z.: On Double gates for Reversible Computing Circuits. In: Proceed-
ings of International Workshop on Boolean Problems (2012)

20. Nayeem, N.M., Rice, J.E.: Improved ESOP-based Synthesis of Reversible Logic. In:
Proceedings of the Reed-Muller Workshop (2011)

21. Patel, K.N., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quan-
tum Information & Computation 8(3), 282–294 (2008)

22. Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correla-
tion immune Boolean functions achieving upper bound on nonlinearity. Electronic Notes in
Discrete Mathematics 6, 158–167 (2001)

23. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mischenko, A., Song, X.,
Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regularity and Symmetry as a Base
for Efficient Realization of Reversible Logic Circuits. In: Proceedings of IWLS, pp. 90–95
(2001)

24. Pieprzyk, J., Finkelstein, G.: Towards Effective Nonlinear Cryptosystem Design. In:
Proceedings of IEEE Computers and Digital Techniques, vol. 135(6), pp. 143–7062 (Novem-
ber 1988) ISSN:0143-7062

25. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation
characteristics of Boolean functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 161–173. Springer, Heidelberg (1991)

26. Saeedi, M., Markov, I.L.: Synthesis and Optimization of Reversible Circuits - A Survey.
CoRR abs/1110.2574 (2011), http://arxiv.org/abs/1110.2574

27. Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important crypto-
graphic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506.
Springer, Heidelberg (2000)

28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible circuit
design. In: Workshop on Reversible Computation, pp. 69–72 (2010)

29. Szyprowski, M., Kerntopf, P.: Reducing Quantum Cost of Pairs of Multi-Control Toffoli
Gates. In: International Workshop on Boolean Problems (2012)

30. Szyprowski, M., Kerntopf, P.: Low Quantum Cost Realization of Generalized Peres and
Toffoli Gates with Multiple-Control Signals. In: 13th IEEE International Conference on
Nanotechnology, pp. 802–807 (2013)

31. Tarannikov, Y.V.: New Constructions of Resilient Boolean Functions with Maximal Nonlin-
earity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 66. Springer, Heidelberg (2002)

32. Wille, R., Drechsler, R.: BDD-based Synthesis of Reversible Logic for Large Functions. In:
Proceedings of DAC, pp. 270–275 (2009)

33. Yarlagadda, R., Hershey, J.E.: Analysis and synthesis of bent sequences. IEEE Proceedings
on Computers and Digital Techniques 136(2), 112–123 (1989)

34. Younes, A.: Synthesis and Optimization of Reversible Circuits for Homogeneous Boolean
Functions. arXiv:0710.0664 [quant-ph] (2007)

35. Zhang, F., Hu, Y., Ma, H., Xie, M.: Constructions of Maiorana-McFarland’s Bent Func-
tions of Prescribed Degree. In: International Conference on Computational Intelligence and
Security (CIS), pp. 315–319 (2010)

http://arxiv.org/abs/1110.2574

RevVis: Visualization of Structures

and Properties in Reversible Circuits

Robert Wille1,2, Jannis Stoppe2,
Eleonora Schönborn1, Kamalika Datta3, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

3 Department of Information Technology, Bengal Engineering, Shibpur, India
{rwille,jstoppe,eleonora,drechsle}@informatik.uni-bremen.de,

kdatta.iitkgp@gmail.com

www.informatik.uni-bremen.de/agra/eng/revvis.php

Abstract. The recent interest in reversible computation led to plenty
of (automatic) approaches for the design of the corresponding circuits.
While this automation is desired in order to provide a proper support
for the design of complex functionality, often a manual consideration and
human intuition enable improvements or provide new ideas for design so-
lutions. However, this manual interaction requires a good understanding
of the structure or the properties of a reversible cascade which, with in-
creasing circuit size, becomes harder to grasp. Visualization techniques
that abstract irrelevant details and focus on intuitively displaying im-
portant structures or properties provide a solution to this problem and
have already successfully been applied in other domains such as design
of conventional software, hardware debugging, or Boolean satisfiability.
In this work, we introduce RevVis, a graphical interface which visualizes
structures and properties of reversible circuits. RevVis collects relevant
data of a given reversible cascade and presents it in a simple but intuitive
fashion. By this, RevVis unveils information on characteristic structures
and properties of reversible circuits that could be utilized for further
optimization. A case study demonstrates this by considering circuits ob-
tained from several synthesis approaches.

1 Introduction

Motivated by applications e.g. in quantum computation [1], low-power design [2],
or encoder and decoder design [3], research in reversible computation received
significant interest in the past. While rather small circuits have (manually) been
considered at the beginning, a recent strive for automated and scalable methods
supporting the design of several thousand gate circuits can be observed today.
This resulted in plenty of (automated) approaches for the synthesis and opti-
mization of reversible circuits in the recent past (see e.g. [4,5] for overviews).
Most of them are based on a particular genuine idea, e.g. reversible transforma-
tions at a truth-table description, the utilization of proper data structures such
as ESOPs, decision diagrams, etc., or the application of templates. But besides

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 111–124, 2014.
c© Springer International Publishing Switzerland 2014

112 R. Wille et al.

Fig. 1. Existing netlist visualization of reversible circuits

that, also human intuition often led to ideas for new strategies to be exploited
or enabled further improvements which could not be detected by a machine.

However, getting a good intuition of a considered circuit requires a deep tech-
nical understanding of how design approaches actually realize the respective
circuits. Moreover, these approaches may generate circuits with certain struc-
tures and properties that are often neither obvious to the developer nor to the
user of the design method. Consequently, possible potential in terms of better
synthesis or optimization may often not fully be exploited.

In fact, relevant instances of any kind are often equipped with some inter-
nal (sometimes hidden) structures or properties that are unknown to the de-
veloper and/or designer [6]. One way to unveil these information is to provide
a different intuition about a circuit. This can be accomplished by visualization
technologies. However, existing visualization schemes for reversible circuits are
basically limited to simple netlist representations in which all gates are only ar-
ranged in a cascade where black circles and ⊕ respectively represent control and
target lines of the gates. In particular for larger circuits, these netlists do not
provide a proper intuition of the structure and possible properties of reversible
circuits. As an example, consider the netlist visualization of a circuit realizing
a division and shown in Fig. 1 (realized by the HDL-based synthesis approach
proposed in [7]). Although this circuit is composed of less than 100 gates, it is
almost impossible to recognize certain structures and/or properties from this
netlist visualization.

As a consequence, advanced visualization techniques are required that go be-
yond the straight-forward representation of a circuit as a netlist. They should
mask irrelevant details as deemed necessary and, in turn, explicitly focus on
highlighting the desired structures and properties. In other domains, such visu-
alization techniques have already successfully been applied. For example:

– In the conventional software design, visualizations such as the CodeCity [8]
are well known. Here, different software classes are placed as “buildings”
within an artificial representation of a city. Depending on their properties,
e.g. their number of attributes, methods, or lines of code, the ground size or
the height of the “buildings” differ. Structural interrelation between classes
is e.g. emphasized by placing the corresponding “buildings” in the same
“district”. Fig. 2a shows such a visualization taken from [8]. Unproportional
looking “buildings” immediately pinpoint the designer to problematic classes
in the software project. The visualization reveals classes that are too complex
in terms of code and may better be split into subclasses or are not well-
balanced in terms of their number of attributes to number of methods ratio.

RevVis: Visualization of Structures and Properties in Reversible Circuits 113

(a) SW design (CodeCity) (b) HW debuging (c) SAT solving

Fig. 2. Visualization technologies in other domains

– In the domain of debugging (conventional) hardware, so called error can-
didates are explicitly highlighted in the netlist [9]. They represent logic el-
ements within the circuit that may explain an erroneous behavior. Fig. 2b
shows such a visualization (taken from [9]). By this, the designer is explicitly
pinpointed to possible reasons for the incorrect behavior and does not have
to consider all gates of the circuit at once. Furthermore, by lapping several
of such layers, the designer is provided with an intuitive representation of
the circuit as well as possible explanations for the error which aids him/her
during the debugging process.

– Solvers for Boolean satisfiability (so called SAT solvers [10]) have been shown
to be very powerful and, hence, find practical applications e.g. in domains like
verification. However, although these approaches are able to efficiently solve
instances composed of hundreds of thousands of variables and constraints,
much smaller instances remain unsolvable within generous time limits. Un-
derstanding what makes a SAT instance hard or not has also been investi-
gated using visualization technologies [11]. For this purpose, instances have
been represented by graphs as shown in Fig. 2c (taken from [11]), where nodes
represent the variables of the instance and edges the constraints over them.
Using a visualization like this intuitively unveils connected sub-functions, im-
portant and less important literals, etc. This provides a better understanding
about how instances could be solved in a more efficient fashion.

Motivated by these success stories, the application of visualization technolo-
gies in the domain of reversible circuit design is investigated in this work. For
this purpose, we present the tool RevVis, a graphical interface that intuitively
visualizes the structure and properties of reversible circuits. For a selected set
of metrics and objectives which are relevant in the design of reversible circuits,
corresponding data is collected and, afterwards, visualized in a simple fashion.
The application of RevVis has been evaluated in a thorough case study involv-
ing several synthesis approaches that have been proposed in the past. From the
different visualizations some already known structures and properties could be
confirmed. Beyond that also new characteristics could be unveiled. They may
be exploited in the future to further finetune these approaches and to develop
corresponding new optimization schemes for the resulting circuits.

114 R. Wille et al.

The remainder of this paper is structured as follows. The next section briefly
reviews reversible circuits and some of the metrics that are considered in the fol-
lowing. Section 3 introduces RevVis and, in particular, the visualizations of the
selected metrics and objectives. Afterwards, these visualizations are applied for
circuits generated by several synthesis approaches. Possible conclusions drawn
from that are discussed in Section 4. The paper is eventually concluded in Sec-
tion 5.

2 Background

This section briefly reviews reversible circuits as well as some of their properties
which will be considered later in this paper. In general, reversible logic deals
with Boolean functions which are reversible. A function f : Bn → Bm over the
variables X := {x1, . . . , xn} is said to be reversible if (1) its number of inputs
and outputs is equal (i.e. n = m) and (2) it represents a bijective, i.e. one-
to-one, mapping. A reversible circuit G is composed of a cascade of reversible
gates G = g1g2 . . . gk where gi represents a reversible gate. In the past, various
reversible gates such as the Toffoli gate [12], Fredkin gate [13], or Peres gate [14]
have been investigated. In the context of this work, we focus on Multiple Control
Toffoli gates which are known to be universal.

A Toffoli gate is composed of a (possibly empty) set of control lines
C = {xi1 , . . . , xik} ⊂ X as well as a single target line xj ∈ X \ C and maps
(x1, . . . , xn) to (x1, . . . , xj−1, xj ⊕ xi1 . . . xik , xj+1, . . . , xn). In other words, the
logic value on the target line gets inverted if all the control inputs are at logic 1;
otherwise the value on the target is passed as it is. In addition to the (positive)
control lines as defined above, Toffoli gates may also be composed of negative
control lines. The functionality of such gates is the same as defined above, except
that the value on the target line is inverted if all values on positive control lines
are assigned 1 and all values on negative control lines are assigned 0. Fig. 3a
exemplarily shows a reversible circuit composed of eight Toffoli gates.

In a reversible circuit, sometimes an input line is fed with a constant logic
value (0 or 1). Such circuit lines are denoted to have constant inputs. Similarly,
circuit lines with so called garbage outputs may exist, i.e. circuit lines whose
output value is a don’t care. Garbage outputs may e.g. be needed in order to
make an irreversible function reversible (see e.g. [15,16]). The circuit from Fig. 3a
has two constant inputs and two garbage outputs.

Finally, the moving rule for reversible circuits is partially considered in this
work: Two adjacent gates g1 and g2 with control lines C1 and C2 as well as
target lines t1 and t2, respectively, can be interchanged if C1 ∩ {t2} = ∅ and
C2 ∩ {t1} = ∅, i.e. if none of the target lines of one gate is a control line of the
other gate. Moving gates through the circuit enables further optimizations, e.g. it
allows to remove or merge redundant gates (see e.g. [17,18,19,20]). Hence, the
movability of a gate is an important metric. Consider a reversible gate sequence
G = g1g2 . . . gk. For every gate gi(1 ≤ i ≤ k), the movability of the gate is
the number of possible gate positions j (j �= i) such that gi can be moved to
position j according to the definition from above.

RevVis: Visualization of Structures and Properties in Reversible Circuits 115

x0 f0
0 f1
0 f2

x1 –
x2 –
x3 f3

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 3. Different visualizations

3 The RevVis Tool

This section introduces the main features of the proposed visualization schemes
which have been implemented in the tool RevVis1. For a selected set of metrics
and objectives, the tool first collects information on the structure and properties
of a given reversible circuit, which are then visualized. The visualizations are
kept as simple and abstract as possible so that, even for larger designs, an intu-
itive and easy understanding is possible. In the following, the considered metrics
and objectives are introduced. Here, all visualization schemes are illustrated by
means of the reversible circuit depicted in Fig. 3a.

Constant Inputs and Garbage Outputs. Constant inputs and garbage outputs are
not only essential in order to embed irreversible functions into reversible ones (see
e.g. [15,16]), but are also heavily applied in synthesis approaches e.g. based on
ESOPs (e.g. [21]) or decision diagrams (e.g. [22]). Optimization approaches such
as introduced in [23] rely on the fact how long circuit lines with constants or
garbage are unused or not needed anymore, respectively. This is emphasized by
the first visualization scheme shown in Fig. 3b. All lines inheriting a constant or
garbage line are highlighted by black rows. The width of the rows depends on
the number of gates in the cascade in which the respective constant (garbage)
is unused (not needed anymore).

Structure of the Circuit. Reversible circuits are composed as a cascade of re-
versible gates which, in turn, are composed of control lines and target lines. Due
to this cascade structure, the structural usage of each line in a circuit may sig-
nificantly differ. This is visualized in the scheme shown in Fig. 3c. Each control

1 RevVis is available at
http://www.informatik.uni-bremen.de/agra/eng/revvis.php .

http://www.informatik.uni-bremen.de/agra/eng/revvis.php

116 R. Wille et al.

and target line connection is highlighted in black. Grey denotes the usage of
each circuit line, i.e. the cascade from the first gate in which this circuit line is
involved until the last gate of the cascade. White represents parts of the circuit
which are not needed for the actual computation. For example, the bottom line
of the considered circuit is only needed at the end of the cascade while all re-
maining lines are needed almost throughout the whole cascade. Although similar
to the netlist visualization, this simplified view enables a more intuitive view on
the structure of a circuit and can pinpoint to “holes” in the circuit (which can
be used e.g. as ancilliae).

Line Usage. The usage of circuit lines is additionally visualized by the scheme
shown in Fig. 3d. Here, the visualization is enriched by a color code represent-
ing the numerical usage of a circuit line. Lines highlighted red (green) represent
the circuit lines with the largest (smallest) number of control and target line
connections. Yellow patterns denote the circuit lines which lie between these ex-
tremes. White represents parts of the circuit which are not needed for the actual
computation. Information like that could e.g. be applied for nearest neighbor
optimization (see e.g. [24,25,26,27]). Here, control and target line connections
always have to be adjacent, i.e. lines which are heavily used should preferably
be put next to each other.

Line Types. The distribution of control and target line connections is an objec-
tive of the scheme shown in Fig. 3e. Here, red lines (green lines) denote circuit
lines which are entirely composed of target lines (control lines) only; yellow lines
denote circuit lines which have both control and target line connections. All
actual connections are again highlighted in black. This could provide some in-
spiration for optimization as e.g. huge parts of the circuit composed entirely
of control lines may provide some potential for reduction by factorization (see
e.g. [28]).

Target blocks. Fig. 3f shows another scheme which focuses on the target line
connections. More precisely, sub-circuits in which all gates have the same target
line are highlighted by means of grey blocks (with the target lines additionally
highlighted in black). Also this view could provide some inspiration for optimiza-
tion (in particular, if the possibly different control connections could be merged
so that such a cascade can be reduced to some few or even a single gate(s)).

Movability. Finally, the “movability” of gates is visualized in Fig. 3g, i.e. the
applicability of the moving rule as reviewed in Section 2 is represented for each
gate. Gates highlighted red have a low movability (i.e. can hardly be moved
through the cascade), while gates highlighted green can be moved rather flexibly
through the cascade. Obviously this view is particularly helpful to investigate
optimization approaches relying on the moving rule.

RevVis: Visualization of Structures and Properties in Reversible Circuits 117

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4

+x2x3x4

f5 = x2x3x4

+x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1
0 0

1

1

0

1
0

1

0 0

1

(a) BDD

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

0 −
0 −
1 −
0 f

x4, f1 −
x3 −
x2 −
x1 −

(b) Resulting circuit

Fig. 4. BDD-based synthesis

4 Applying RevVis

The visualizations proposed in the last section are supposed to provide a rep-
resentation which allows to grasp a good intuition of the structure and the
properties of a given circuit. In order to illustrate that RevVis satisfies this pur-
pose, an intense case study has been conducted, in which circuits generated with
different synthesis approaches (namely BDD-based synthesis [22], ESOP-based
synthesis [21], and HDL-based synthesis [7,29]) have been investigated using
RevVis. In this section, results of these investigations are exemplarily shown
and discussed. For this purpose, first the respective synthesis approach is briefly
reviewed. Afterwards, a representative circuit (taken from RevLib [30]) is visu-
alized and corresponding observations are discussed.

4.1 Considering Circuits Obtained by BDD-Based Synthesis

The Synthesis Approach. BDD-based synthesis as introduced in [22] makes
use of Binary Decision Diagrams (BDDs) [31]. A BDD is a directed graph
G = (V,E) where each terminal node represents the constant 0 or 1 and each
non-terminal node represents a (sub-)function. Each non-terminal node v ∈ V
has two succeeding nodes low(v) and high(v). If v is representing the func-
tion f and labeled with the variable xi, then the corresponding sub-functions
represented by the succeeding nodes are the co-factors fxi=0 (low(v)) and fxi=1

(high(v)). Thus, a BDD naturally exposes the Shannon decomposition. Having
a BDD representing a function f as well as its sub-functions derived by Shan-
non decomposition, a reversible circuit for f can be obtained as shown by the
following example.

Example 1. Fig. 4a shows a BDD representing the function f = x1x2x3x4 +
x1x2x3x4 + x1x2x3x4 + x1x2x3x4 as well as the respective co-factors resulting

118 R. Wille et al.

a a

b b

c c

d g

e g

f g

1 g

1 g

0 g

0 g

1 g

0 g

0 g

0 g

0 d

1 g

0 g

0 g

1 g

1 g

1 g

0 g

0 g

0 e

1 g

1 g

1 g

0 g

1 g

1 g

1 g

1 f

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 5. Considering a circuit obtained by BDD-based synthesis

from the application of the Shannon decomposition. The co-factor f1 can easily
be represented by the primary input x4. Having the value of f1 available, the
co-factor f2 can be realized by the first two gates depicted in Fig. 4b2. By this,
respective sub-circuits can be added for all remaining co-factors until a circuit
representing the overall function f results. The remaining steps are shown in
Fig. 4b.

Observations Using RevVis. Fig. 5 shows the visualizations for the circuit
mod5adder 66 which has been obtained using BDD-based synthesis and works
as a proper representative for this synthesis scheme. Compared to the simple
netlist (see Fig. 5a), these visualizations unveil the clear structure of these cir-
cuits. In fact, BDD-based synthesis heavily relies on constant inputs (see Fig. 5b)
and subsequently builds up the sub-functions (i.e. the co-factors) of the BDD.
This can clearly be seen in Figs. 5c and 5f: New functionality is costantly build
up towards the top-right of the circuit. The primary inputs (located at the bot-
tom of the circuit) are frequently used for this purpose. This explains the intense
usage of these circuit lines (see Fig. 5d). It also shows very nicely that the usage
of the primary inputs depends on the BDD-level, e.g. the primary input repre-
sented by the root node of the BDD has a very low usage while primary inputs
represented in lower levels of the BDD are accessed more often. As shown in
Fig. 5e, all primary input lines are accessed in a read-only fashion (i.e. just con-
trol connections are applied in those circuit lines). Finally, Fig. 5g unveils that
moveability is usually rather bad in circuits generated by BDD-based synthesis.

By this, several properties of BDD-based circuits which are already known
(e.g. the huge number of constant/garbage) are confirmed. Besides that, a clearer
intuition of the actual structure and properties is provided. For example, Fig. 5b
may offer more precise hints where to merge constants and garbage (similar
to the approach presented in [23]). Fig. 5g clearly shows that e.g. optimization
approaches like template matching [17] (relying on the moving rule) are not
really suitable for BDD-based circuits. Besides that, the clear stepped structure
of the overall circuit might be exploitable for further optimizations.

2 Note that an additional circuit line is added to preserve the values of x4 and x3

which are still needed by the co-factors f3 and f4, respectively.

RevVis: Visualization of Structures and Properties in Reversible Circuits 119

x1 x2 x3 f1 f2 f3
1st 1 - 1 1 1 0

2nd 1 1 - 0 1 1

3rd 1 - 0 1 0 1
4th - 1 1 0 1 1

5th 1 - - 0 1 0

(a) ESOP

x1

x2

x3

0 f1
0 f2
0 f3

1st 2nd 3rd 4th 5th

(b) Resulting circuit

Fig. 6. ESOP-based synthesis

4.2 Considering Circuits Obtained by ESOP-Based Synthesis

The Synthesis Approach. ESOP-based synthesis as introduced in [21] gen-
erates a reversible circuit from a Boolean function provided as Exclusive Sum of
Products (ESOPs). ESOPs are two-level descriptions of Boolean functions that
are represented as the exclusive disjunction (EXOR) of conjunctions of liter-
als (called products). A literal is either a Boolean variable or its negation. That
is, an ESOP is the most general form of two-level AND-EXOR expressions.

Having an ESOP representing a function f : Bn → Bm, the ESOP-based
synthesis approach generates a circuit with n +m lines, where the first n lines
work as primary inputs, while the last m circuit lines are initialized to constant 0
and work as primary outputs. Having that, Toffoli gates are selected such that
the desired function is realized. This selection exploits the fact that a single
product xi1 . . . xik of an ESOP description directly corresponds to a Toffoli gate
with control lines C = {xi1 , . . . , xik}. In case of negative literals, NOT gates
or negative control lines are applied accordingly. Based on these ideas, a circuit
realizing a function given as ESOP can be derived as illustrated in the following
example.

Example 2. Consider the function f to be synthesized as depicted in Fig. 6a3.
The first product x1x3 affects f1 and f2. Hence, two Toffoli gates which have
target lines f1 and f2 and control lines C = {x1, x3} are added (see Fig. 6b).
The third product x1x3 includes a negative literal. Thus, the Toffoli gates added
for this product have a negative control line on x3. This procedure is continued
until all products have been considered. The resulting circuit is shown in Fig. 6b.

Observations Using RevVis. Fig. 7 shows the visualizations for the cir-
cuit rd73 252 which has been obtained using ESOP-based synthesis and works
as a proper representative for this synthesis scheme. Compared to the simple

3 The column on the left-hand side gives the products, where a “1” on the ith position
denotes a positive literal (i.e. xi) and a “0” denotes a negative literal (i.e. xi),
respectively. A “–” denotes that the respective variable is not included in the product.
The right-hand side gives the primary output patterns.

120 R. Wille et al.

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

0 s0

0 s1

0 s2

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 7. Considering a circuit obtained by ESOP-based synthesis

netlist (see Fig. 7a), the characteristic structure is clearly unveiled thanks to
the visualizations. In particular, the distinction between input lines (which have
control connections only) and output lines (which have target connections only)
becomes evident (see Fig. 7e) and also leads to a very regular structure with
respect to target blocks (see e.g. Fig. 7f). This provides potential as it may allow
to merge gates with equal control lines but different target lines (as discussed
e.g. in [19]). Furthermore, approaches relying on the moving rule (e.g. [17]) sig-
nificantly benefit from this structure as it leads to a very high movability (see
Fig. 7g). It may also be observed that, due to the high movability of gates,
many target blocks can be merged leading to more potential for optimization.
In contrast, constant inputs are used very early in the cascade (see Fig. 7b),
i.e. there is no potential to reduce the number of constant/garbage lines using
e.g. the method proposed in [23]. Besides that, ESOP-based circuits seem to have
a rather irregular structure, i.e. the respective gate connections are distributed
rather arbitrarily (see Fig. 7c). However, it can be observed that inputs lines are
used more often than output lines (see Fig. 7d). This can be explained by the
fact that some factors may have to be applied to several functions and, hence,
identical control connections are frequently applied.

4.3 Considering Circuits Obtained by HDL-Based Synthesis

The Synthesis Approach. The strive for more scalable synthesis approaches
also led to the definition and consideration of a Hardware Description Lan-
guage (HDL) for reversible circuits in [7]. In order to ensure reversibility in
the description, this HDL distinguishes between reversible assignments (denoted
by ⊕=) and not necessarily reversible binary operations (denoted by #). The
former class of operations assigns values to a signal on the left-hand side. There-
fore, the left-hand side signal must not appear in the expression on the right-
hand side. Furthermore, only a restricted set of assignment operations exists,
namely increase (+=), decrease (-=), and bit-wise XOR (^=). These operations
preserve the reversibility (i.e. it is possible to compute these operations in both
directions). In contrast, binary operations, e.g. arithmetic, bit-wise, logical, or
relational operations, may not be reversible and, hence, can only be used in
right-hand expressions which preserve the values of the inputs. In doing so, all
computations remain reversible since the input values can be applied to reverse
any operation. For example, to describe a multiplication (i.e. a*b), a new free

RevVis: Visualization of Structures and Properties in Reversible Circuits 121

c c⊕ (a� b)⊕
0 ←add. line�
a a

b b

a� b

(a) Straight-forward

a a⊕ (b� c)⊕
0 Gb�c G−1

b�c

b b

c c

d d⊕ (e� f)⊕
0 0Ge�f G−1

e�f

e e

f f

(b) Improved

Fig. 8. HDL-based synthesis

signal c must be introduced which is used to store the product (i.e. c^=a*b

is applied). In comparison to common (non-reversible) languages, this forbids
statements like a=a*b.

Having such an HDL description, synthesis approaches like introduced in [7]
generate corresponding circuits following a hierarchical scheme. That is, existing
realizations of the individual operations (i.e. building blocks) are combined so
that the desired circuit is realized. This is illustrated in Fig. 8a for the generic
operation c⊕ = (a#b). First, the binary operation # is realized (using additional
circuit lines with constant inputs). Afterwards, the intermediate result is utilized
to realize the complete statement including its reversible assignment ⊕=.

This scheme has further been improved in [29]. Here, the values of intermediate
results are reversed once they are not needed any longer (leading back to the orig-
inal constant value). Then, no new additional lines might be required to buffer
upcoming intermediate results. The general idea is briefly illustrated in Fig. 8b
by means of the generic HDL statements a⊕ = (b # c) and d⊕ = (e # f). First,
two sub-circuits Gb�c and Ga⊕=b�c are added ensuring that the first statement is
realized. This is equal to the procedure from Fig. 8a and leads to additional lines
with constant inputs. But then, a further sub-circuit G−1

b�c is applied. Since G
−1
b�c

is the inverse of Gb�c, this sets the circuit lines buffering the result of b # c back
to the constant 0. As a result, these circuit lines can be reused in order to realize
the following statements as illustrated for d⊕=e# f in Fig. 8b.

Observations Using RevVis. Fig. 9 (Fig. 10) shows the visualizations for the
circuit mult stmts 3bit which has been obtained using the straight-forward HDL-
based synthesis as illustrated in Fig. 8a (the improved HDL-based synthesis as
illustrated in Fig. 8b) and works as a proper representative for this synthesis
scheme. More precisely, these circuits realize three HDL-statements over 3-bit
variables. The respective cascades for each statement are separated by vertical
lines in Fig. 9 and Fig. 10. Compared to the simple netlist (see Fig. 9a and
Fig. 10a), these visualizations do not only unveil the structure and characteristics
of the respective circuits, but also the differences between the straight-forward
and optimized synthesis scheme.

122 R. Wille et al.

0 g

0 g

0 g

0 g

0 g

0 g

a.0 a.0

a.1 a.1

a.2 a.2

b.0 b.0

b.1 b.1

b.2 b.2

c.0 c.0

c.1 c.1

c.2 c.2

d.0 d.0

d.1 d.1

d.2 d.2

e.0 e.0

e.1 e.1

e.2 e.2

f.0 f.0

f.1 f.1

f.2 f.2

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 9. Considering a circuit obtained by HDL-based synthesis

0 0

0 0

0 0

a.0 a.0

a.1 a.1

a.2 a.2

b.0 b.0

b.1 b.1

b.2 b.2

c.0 c.0

c.1 c.1

c.2 c.2

d.0 d.0

d.1 d.1

d.2 d.2

e.0 e.0

e.1 e.1

e.2 e.2

f.0 f.0

f.1 f.1

f.2 f.2

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line usage (e) Line types (f) Target blocks (g) Moveability

Fig. 10. Considering a circuit obtained by improved HDL-based synthesis

First of all, the structures sketched in Fig. 8, i.e. the building blocks for binary
operations, reversible assignments, and reversing, can also be recognized in the
visualizations (see e.g. Fig. 9c and Fig. 10c). In particular for the improved
scheme, the symmetry resulting from reversing intermediate results is rather
obvious. Here, it can also be observed that just one set of constant circuit lines
is needed, while the straight-forward approach uses several constant circuit lines
only for a short time (compare Fig. 9b and Fig. 10b). The frequent re-use of these
lines in the improved approach is also reflected in the line usage visualization (see
Fig. 10d).

Besides that, many circuit lines only have control connections in this ex-
ample (see Figs. 9e and 10e). This is caused by the fact that the three HDL-
statements are of the form a⊕ = (b# c), i.e. b and c never occur on the left-hand
side of a statement. Finally, the visualization clearly unveils that HDL-based
circuits have a rather poor moveability and, hence, do not seem very suitable
for optimization schemes such as [17] (see Figs. 9g and 10g).

5 Conclusions

In this work, we considered the visualization of reversible circuits. This is moti-
vated by the fact that certain structures and properties of circuits are often not
obvious to the developer or to the user. Furthermore, simple netlist representa-
tions do not provide a proper intuition and, hence, are not suitable – particularly

RevVis: Visualization of Structures and Properties in Reversible Circuits 123

for circuits of larger size. In order to address this, we introduced the tool RevVis
which provides visualization layers for several metrics as well as objectives and,
by this, intuitively highlights structures and properties of reversible circuits. The
application of RevVis has been evaluated in a thorough case study involving sev-
eral synthesis approaches. This enabled a deeper discussion about both known
as well as new characteristics of the obtained circuits and, hence, the consid-
ered synthesis schemes. In the future, visualizations as proposed in this work
will be beneficial to draw conclusions from newly developed design approaches
right from the beginning as well as to gain inspiration for new synthesis and
optimization methods.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge Univ. Press (2000)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

3. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of
low-power encoders using reversible circuit synthesis. In: Design, Automation and
Test in Europe, pp. 1036–1041 (2012)

4. Drechsler, R., Wille, R.: From truth tables to programming languages: progress in
the design of reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 78–85
(2011)

5. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey.
ACM Computing Surveys 45(2) (2011)

6. Walsh, T.: Search in a small world. In: International Conference on AI,
pp. 1172–1177 (1999)

7. Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for
synthesis of reversible circuits. In: Forum on Specification and Design Languages,
pp. 184–189 (2010)

8. Wettel, R., Lanza, M., Robbes, R.: Software systems as cities: a controlled
experiment. In: International Conference on Software Engineering, pp. 551–560
(2011)

9. Sülflow, A., Wille, R., Genz, C., Fey, G., Drechsler, R.: FormED: A formal envi-
ronment for debugging. In: University Booth at the Design, Automation and Test
in Europe (2009)

10. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reasoning 39(2), 219–243 (2007)

12. Toffoli, T.: Reversible computing. In: de Bakker, W., van Leeuwen, J. (eds.)
Automata, Languages and Programming. Springer (1980); 632 Technical Memo
MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

13. Fredkin, E., Toffoli, T.: Conservative logic. Int’l Journal of Theoretical
Physics 21(3-4), 219–253 (1982)

14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266–3276
(1985)

124 R. Wille et al.

15. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. Trans. on
CAD 23(11), 1497–1509 (2004)

16. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for
large reversible circuits. In: Design, Automation and Test in Europe, pp. 1204–1207
(2011)

17. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conf., pp. 318–323 (2003)

18. Maslov, D., Dueck, G.: Quantum circuit simplification and level compaction. Trans.
on CAD 27(3), 436–444 (2008)

19. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: ASP Design
Automation Conf. (2013)

20. Datta, K., Rathi, G., Wille, R., Sengupta, I., Rahaman, H., Drechsler, R.: Exploit-
ing negative control lines in the optimization of reversible circuits. In: Dueck, G.W.,
Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 209–220. Springer, Heidelberg
(2013)

21. Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade generation.
In: Pacific Rim Conference on Communications, Computers and Signal Processing,
pp. 206–209 (2007)

22. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conf., pp. 270–275 (2009)

23. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Design Automation Conf., pp. 647–652 (2010)

24. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quantum Information Processing 10(3), 355–377 (2011)

25. Alfailakawi, M., Alterkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible
circuits for linear nearest neighbor realization. Quantum Information Processing
12(10), 3319–3339 (2013)

26. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conf., p. 41 (2013)

27. Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor
quantum circuits. In: ASP Design Automation Conf., pp. 489–494 (2014)

28. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding
lines. In: Int’l Symp. on Multi-Valued Logic (2010)

29. Wille, R., Soeken, M., Schönborn, E., Drechsler, R.: Circuit line minimization in
the HDL-based synthesis of reversible logic. In: Annual Symposium on VLSI, pp.
213–218 (2012)

30. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

31. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Trans.
on Comp. 35(8), 677–691 (1986)

http://www.revlib.org

Templates for Positive and Negative Control

Toffoli Networks

Md Zamilur Rahman and Jacqueline E. Rice

Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, AB, Canada

{mdzamilur.rahman,j.rice}@uleth.ca

Abstract. This paper proposes templates for positive and negative con-
trol Toffoli gates for post synthesis optimization of reversible circuits.
Templates 1− 5 can be applied to two adjacent Toffoli gates T1(C1, t1)
and T2(C2, t2) where Ci is the set of controls, |C1| = |C2|, and |t1| = |t2|.
Templates 6−7 can be applied to two different size Toffoli gates T1(C1, t1)
and T2(C2, t2) where Ci is the set of controls, |C1| = |C2| and ti is the
target, |t1| = |t2|. When applying our templates to circuits generated by
the improved shared cube synthesis approach [14] a reduction in quan-
tum cost was achieved for 98 of the 122 circuits. On average a 16.82%
reduction in quantum cost was achieved, and in some cases up to 49.60%
reduction was obtained.

Keywords: reversible circuit, Toffoli gate, quantum cost, gate count.

1 Introduction

Power dissipation and heat generation are serious problems in today’s traditional
circuit technologies. According to R. Landauer’s observation in 1961, the amount
of energy dissipated for each lost bit of information is KTln2 where K is the
Boltzmann’s constant (1.3807×10−23JK−1) and T is the Temperature [7]. This
is a significant amount of energy for millions of operations. In [1], Bennett said
that in order to not dissipate energy the system must be logically reversible.
Reversible circuits do not erase any information when operations are performed.
In reversible circuits, all operations are performed in a bijective manner. Thus
fan-out and feedback operations are not allowed in reversible circuits. Reversible
circuits have applications in fields such as quantum computing [15] and optical
computing [3]. As a result, reversible logic is being considered as an alternative
to conventional logic. Instead of conventional logic gates reversible gates like
Toffoli gates, Fredkin gates, and Peres gates are used in reversible circuits.

Several synthesis approaches for reversible logic have been proposed, includ-
ing transformation based synthesis [11], Exclusive-OR Sum-of-Products (ESOP)
based synthesis [5,13] and binary decision diagram (BDD) based synthesis [18].
In this paper we describe a template-based post-processing approach that is
based on mixed-polarity Toffoli gates.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 125–136, 2014.
c© Springer International Publishing Switzerland 2014

126 M.Z. Rahman and J.E. Rice

The remainder of this paper is organized as follows. The following section briefly
introduces basic concepts in reversible logic. It offers an overviewof the Toffoli gate
and the cost metrics of a reversible circuit. Section 3 gives the motivations of this
work, and the proposed templates are discussed in section 4. Section 6 summarizes
the experimental results followed by conclusions in section 7.

2 Background

In this section we provide some brief background and notation to orient the
reader.

2.1 Reversible Gates and Reversible Circuits

In this work we focus solely on the Toffoli gate. Other reversible gates are de-
scribed in e.g. [16], which is recommended as a useful introductory article on the
topic of reversible logic.

An n-bit Toffoli gate or Multiple Control Toffoli (MCT) gate is a reversible
gate that has n inputs and n outputs where (i1, i2, ..., in) is the input vector,
(o1, o2, ..., on) is the output vector, and oj = ij where j = 1, 2, ..., n − 1 and
on = i1i2...in−1 ⊕ in. The first n− 1 bits are known as controls and the last nth

bit is known as the target. This gate passes all the inputs to the outputs and
inverts the target bit when all control bits are 1. When n = 1, this gate is known
as the NOT gate. When n = 2, it is referred to as a controlled-NOT (CNOT)
gate or Feynman gate. We note that for the sake of simplicity we assume that
the nth bit is the target; however the target bit could be any of the n bits with
which the gate interacts.

A negative-control Toffoli gate is a gate that may have one or more negative
controls. The gate maps the n inputs (i1, i2, ..., in) to the n outputs (o1, o2, ..., on)
where oj = ij , j = 1, 2, ..., n − 1 and on = ī1i2...in−1 ⊕ in and ī1 is a negative
control. This gate passes all the inputs to the outputs and inverts the target bit
when all the positive controls have value 1 and negative controls have value 0.

In this paper, ⊕ represents the target line, • indicates a positive control, and
◦ is used to indicate a negative control line. A Toffoli gate can also be written
as TOF(C; t) where C is the set of controls and t is the target line. The size of
a Toffoli gate refers to the number of controls plus target. Figure 1 illustrates
several versions of the n-bit Toffoli gate.

A reversible circuit is a cascade of reversible gates without fan-out and feed-
back. If a reversible circuit is built using only NOT, CNOT, and Toffoli gates
(NCT) or Multiple Control Toffoli gates (MCT) it is referred to as a Toffoli
circuit.

2.2 Cost Metrics

A reversible function may be realized in different ways, resulting in different
circuits. We briefly summarize two common cost metrics used in evaluating re-
versible circuits.

Templates for Positive and Negative Control Toffoli Networks 127

1i 11 io =

(a) NOT gate

212 iio ⊕=2i
1i 1o

(b) CNOT gate

3213 iiio ⊕=

1o

2o

3i
2i

1i

(c) 3-bit Toffoli
gate

(d) Negative-control
Toffoli gate

Fig. 1. Toffoli gates

Gate Count. Gate count is the simplest way to evaluate different reversible
circuits. This refers to a simple count of the number of gates in a circuit. It does
not, however, consider the complexity of the circuit. Consider two circuits where
the first circuit consists of three 2-input Toffoli gates and the second circuit
consists of two 6-input Toffoli gates. In this case a gate count might indicate
that the second circuit is preferable, as it has fewer gates. However, it contains
significantly more complex gates.

Quantum Cost. Quantum cost is an important measure for comparison of
reversible circuits. The quantum cost of a gate is defined as the number of basic
quantum operations needed to realize the gate [8]. Any reversible gate can be
decomposed into basic quantum (1 × 1 and 2 × 2) gates. The number of basic
quantum gates required to implement a circuit is referred to as the quantum cost
of the circuit. The quantum cost of the NOT, CNOT, and 3-bit Toffoli gate is 1,
1, and 5, respectively. In general, as the number of controls for a gate increases
so does the quantum cost.

The quantum cost of an n-bit negative control Toffoli gate with at least one
control is exactly the same as the cost of an n-bit Toffoli gate. When all the
controls are negative, an extra cost of 2 is required if zero or (n − 3) garbage
lines are used. An additional cost of 4 is required when only one garbage line is
used [10].

3 Motivation and Related Work

If a circuit is non-optimal then it may be possible to decrease the size and quan-
tum cost of the circuit by replacing sequences of gates with another equivalent
sequence of gates; this is known as a template-driven reduction method, or tem-
plate matching [11]. Template matching is an approach to reduce the number
of gates and quantum cost by removing unnecessary gates from the network
and has no effect on the functionality of the circuit. Templates for synthesis of
positive control Toffoli networks have been classified based on the number of
variables and proposed in [9] as well as [6]. For positive and negative control
Toffoli gates new merging, moving, and splitting rules are proposed and an al-
gorithm utilizing these rules is proposed in [2]. Templates and rules using both
positive and negative control Toffoli gates are also proposed in [4].

128 M.Z. Rahman and J.E. Rice

4 Proposed Approach

In developing our templates we considered the various ways in which two Toffoli
gates with the same target line can appear in a circuit:

1. Two same size gates with controls on the same or different lines, as shown
in Figure 2(a), or

2. Two different size gates with controls on the same or different lines, as shown
in Figure 2(b).

(a)

(b)

Fig. 2. Possible ways for two gates with the same target line to appear in a circuit

We have proposed 7 templates that may be applied in various situations.
Templates 1 − 5 can be applied to two adjacent Toffoli gates T1(C1, t1) and
T2(C2, t2) where Ci is the set of controls, |C1| = |C2| and ti is the target,
|t1| = |t2|. In templates 1 − 4, two gates share the same control line but in
template 5 one of the controls of one gate is on a different line. Templates 6− 7
can be applied to two different size Toffoli gates T1(C1, t1) and T2(C2, t2) where
Ci is the set of controls, |C1| > |C2| or |C2| > |C1| and ti is the target, |t1| = |t2|.
In template 6 the two gates may differ, but only by at most 1 line. In template 7,
the difference in the size of two Toffoli gates is ≥ 1. In all cases we are interested
in Toffoli gates that have the same target line. Details of each type of template
are as follows.

Template 1
Template 1 can be applied to two adjacent CNOT gates in the case where one
CNOT gate has a positive control and the other has a negative control. In this
case the two CNOT gates can be replaced by a single NOT gate [4].

T (C;xt)T (C;xt) ≡ T (;xt) (1)

Templates for Positive and Negative Control Toffoli Networks 129

Template 2
If two Toffoli gates have the same controls, then the two gates negate each other.
This property is known as self-reversibility [9].

T (C;xt)T (C;xt) ≡ I (2)

Template 3
If two Toffoli gates have same controls but one of the controls is the inverse,
then these two gates can be replaced by one Toffoli gate with all the common
controls [2]. An example is shown in Figure 3.

T (C ∪ xi;xt)T (C ∪ xi;xt) ≡ T (C;xt) (3)

Fig. 3. Template 3

Template 4
If two n-bit (n ≥ 3) Toffoli gates have controls on the the same lines but two (i.e.
xi, xj) of the controls have different polarity, then the two n-bit (n ≥ 3) gates
can be replaced by two CNOT gates and one (n − 1)-bit (n ≥ 2) Toffoli gate.
Equations(4a) and (4b) formalize this, while Figure 4 illustrates two possible
ways to apply this template.

T (C ∪ xi ∪ xj ;xt)T (C ∪ xi ∪ xj ;xt) ≡ T (xi;xj)T (C ∪ xj ;xt)T (xi;xj) (4a)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xi ∪ xj ;xt) ≡ T (xi;xj)T (C ∪ xj ;xt)T (xi;xj) (4b)

(a) (b)

Fig. 4. Template 4

Template 5
This template can be applied to two Toffoli gates of the same size where one
of the controls is on a different line. In this case the two Toffoli gates can be
replaced by two CNOT gates and one Toffoli gate [17]. The three situations in
which this may occur are formally described in Equations (5a), (5b), and (5c)
and illustrated in Figure 5.

130 M.Z. Rahman and J.E. Rice

T (C ∪ xi;xt)T (C ∪ xj ;xt) ≡ T (xi;xj)T (C ∪ xj ;xt)T (xi;xj) (5a)

T (C ∪ xi;xt)T (C ∪ xj ;xt) ≡ T (xi;xj)T (C ∪ xj ;xt)T (xi;xj) (5b)

T (C ∪ xi;xt)T (C ∪ xj ;xt) ≡ T (xi;xj)T (C ∪ xj ;xt)T (xi;xj) (5c)

(a) (b) (c)

Fig. 5. Template 5

Template 6
If the size of two Toffoli gates differs by 1 and all the controls except the ad-
ditional control in the larger gate are on the same lines, then this sequence of
gates can be replaced by a Toffoli gate of the same size as the larger gate [17].
The two situations are described in Equations (6a) and (6b) and illustrated in
Figure 6.

T (C;xt)T (C ∪ xi;xt) ≡ T (C ∪ xi;xt) (6a)

T (C;xt)T (C ∪ xi;xt) ≡ T (C ∪ xi;xt) (6b)

(a) (b)

Fig. 6. Template 6

Template 7
This template can be applied to two different sized n-bit (n ≥ 3) Toffoli gates
as described in Equations (7aa)-(7db)and illustrated in Figure 7.

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7aa)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7ab)

Templates for Positive and Negative Control Toffoli Networks 131

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7. Template 7

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7ba)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7bb)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7ca)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7cb)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7da)

T (C ∪ xi ∪ xj ;xt)T (C ∪ xk;xt) ≡ T (xi ∪ xj ;xk)T (C ∪ xk;xt)T (xi ∪ xj ;xk)
(7db)

Moving Rule. Two adjacent gates g(C1, t1) and g(C2, t2) in a reversible circuit
can be interchanged iff C1 ∩ t2 = ∅ and C2 ∩ t1 = ∅, i.e. the target of each
gate is not a control of the other gate [20]. Applying a moving rule increases the
possibilities for matching more templates and can lead to further optimization.

132 M.Z. Rahman and J.E. Rice

5 Steps/Algorithm

The template matching process is performed as follows: Consider two gates g1
and g2 from the gate list of a circuit.

1. if two gates have the same target line then we begin searching for templates
(a) if g1 and g2 match any of the templates then replace g1 and g2 with

the equivalent gates from that template (i.e. g1′, g2′...) and add the new
gates to the new gate list

(b) move on to consider the next two gates in the circuit (i.e. g3 and g4); go
to step 1

(c) if no match is found for any template then apply moving rule:
i. if g1 can pass g2 then interchange g1 and g2; add g2 into the new

gate list, g1 and g3 become the gates under consideration; go to step
1

ii. else g1 and g2 add into the new gate list and consider the next two
gates (i.e. g3 and g4); go to step 1

2. else apply moving rule to g1 and g2
(a) if g1 can pass g2 then interchange g1 and g2; add g2 into the new gate

list, g1 and g3 become the gates under consideration; go to step 1
(b) else add g1 and g2 to the new gate list and consider the next two gates

in the circuit (i.e. g3 and g4); go to step 1

The algorithm is iterated until no further reduction is possible.

6 Experimental Results

We have implemented the proposed templates along with the described mov-
ing rule in Java. The implemented programs have been run on an Intel Core
2 Duo CPU T6670 @ 2.20GHz×2 systems running Ubuntu 13.04 with 2GiB
main memory for 122 benchmark circuits. These benchmarks were obtained from
RevLib [19] and preprocessed by applying the improved shared cube synthesis ap-
proach from [14]. All the resulting circuits are QMDD (QuantumMultiple-valued
Decision Diagrams) verified [12]. Using QMDD, we compare the resulting circuits
(after applying templates) with the original circuits, in order to ensure that the
behaviour of the circuit has not been modified. The running time is negligible for
the program we developed to implement the algorithm discussed in section 5 and
the results are listed in Table 1. Table 1 compares the outputs obtained in the
current experiment to the results from the improved shared cube synthesis ap-
proach in terms of quantum cost and gate count. In this table PrevGC/PrevQC
refers to the gate count/quantum cost obtained from the circuit generated by the
improved shared cube synthesis approach, while NewGC/NewQC refers to the
new gate count/quantum cost as computed from the circuits generated from our
template matching post-processing. The proposed templates reduce the quan-
tum cost of circuits 16.82% on average. col4 135 is the best reported circuit in
terms of reduction in quantum cost. apex4 103 exhibited the greatest reduction
in gate count, at 86%. fredkin 3, x2 223, miller 5, and pcler8 190 showed no
changes in gate count but significant reductions in quantum cost.

Templates for Positive and Negative Control Toffoli Networks 133

Table 1. Applying templates with moving rule

Circuit PrevGC[14] NewGC GCImp.(%) PrevQC[14] NewQC QCImp.(%)
co14 135 14 21 -50.00 3472 1750 49.60
cm85a 127 48 54 -12.50 2206 1232 44.15
decod24-enable 32 9 5 44.44 29 17 41.38
bw 116 287 94 67.25 637 387 39.25
4mod5 8 4 4 0.00 21 13 38.10
decod24 10 9 4 55.56 16 10 37.50
C7552 119 89 32 64.04 399 250 37.34
decod 137 89 32 64.04 399 250 37.34
ham15 30 114 46 59.65 263 183 30.42
ham7 29 37 17 54.05 67 47 29.85
rd73 69 43 52 -20.93 856 619 27.69
add6 92 153 159 -3.92 5135 3714 27.67
hwb5 13 49 32 34.69 372 270 27.42
clip 124 78 80 -2.56 3824 2803 26.70
fredkin 3 7 7 0.00 15 11 26.67
mod5d2 17 15 12 20.00 38 28 26.32
mod5d1 16 11 12 -9.09 27 20 25.93
0410184 85 218 256 -17.43 7636 5662 25.85
plus127mod8192 78 36 31 13.89 803 602 25.03
z4 224 34 38 -11.76 489 370 24.34
z4ml 225 34 38 -11.76 489 370 24.34
adr4 93 41 41 0.00 645 489 24.19
apla 107 72 40 44.44 1683 1277 24.12
radd 193 41 43 -4.88 645 490 24.03
dc1 142 31 18 41.94 127 97 23.62
mod5mils 18 11 12 -9.09 30 23 23.33
max46 177 42 52 -23.81 4524 3540 21.75
3 17 6 11 9 18.18 28 22 21.43
cycle10 2 61 42 46 -9.52 1273 1004 21.13
apex4 103 5622 760 86.48 35840 28268 21.13
sym6 63 13 16 -23.08 721 571 20.80
plus63mod8192 80 35 31 11.43 847 672 20.66
majority 176 5 6 -20.00 133 106 20.30
sym10 207 83 105 -26.51 15640 12990 16.94
cm42a 125 42 17 59.52 161 134 16.77
pm1 192 42 17 59.52 161 134 16.77
graycode6 11 12 10 16.67 12 10 16.67
cm151a 129 26 25 3.85 769 642 16.51
4 49 7 20 14 30.00 97 81 16.49
dc2 143 51 39 23.53 1084 906 16.42
sqrt8 205 22 23 -4.55 466 393 15.67
root 197 48 44 8.33 1811 1528 15.63
hwb7 15 233 118 49.36 3015 2551 15.39
hwb6 14 92 52 43.48 839 711 15.26
x2 223 23 23 0.00 433 367 15.24
sao2 199 41 33 19.51 3767 3203 14.97
aj-e11 81 18 11 38.89 74 63 14.86
urf2 73 479 254 46.97 8742 7453 14.74
wim 220 23 14 39.13 139 119 14.39
urf5 76 210 115 45.24 5364 4614 13.98
miller 5 9 9 0.00 29 25 13.79
inc 170 75 32 57.33 892 769 13.79
sqn 203 37 37 0.00 1346 1171 13.00
mlp4 184 80 66 17.50 2496 2174 12.90
hwb8 64 480 261 45.63 8195 7158 12.65
5xp1 90 58 44 24.14 786 687 12.60
cu 141 28 20 28.57 781 687 12.04
rd32 19 6 7 -16.67 25 22 12.00
cm82a 126 17 14 17.65 126 111 11.90
f51m 159 327 359 -9.79 28382 25020 11.85
ex-1 82 6 4 33.33 17 15 11.76
in0 162 245 115 53.06 7949 7014 11.76
f2 158 14 13 7.14 112 99 11.61
9symml 91 52 63 -21.15 10943 9729 11.09

134 M.Z. Rahman and J.E. Rice

Table 1. (Continued.)

Circuit PrevGC[14] NewGC GCImp.(%) PrevQC[14] NewQC QCImp.(%)
sym9 71 52 63 -21.15 10943 9729 11.09
misex1 178 42 22 47.62 332 296 10.84
rd84 70 68 70 -2.94 2329 2079 10.73
table3 209 701 201 71.33 18606 16630 10.62
life 175 50 58 -16.00 6074 5429 10.62
misex3 180 854 576 32.55 49076 43865 10.62
alu3 97 72 56 22.22 1986 1780 10.37
ham3 28 6 5 16.67 10 9 10.00
mod5adder 66 28 26 7.14 353 318 9.92
hwb9 65 1011 554 45.20 23471 21173 9.79
alu2 96 78 82 -5.13 4369 3942 9.77
example2 156 78 82 -5.13 4369 3942 9.77
urf1 72 960 524 45.42 23769 21497 9.56
dist 144 94 82 12.77 3700 3348 9.51
sqr6 204 54 50 7.41 583 528 9.43
sf 232 4 5 -25.00 32 29 9.38
urf3 75 1501 941 37.31 53157 48218 9.29
ex1010 155 1675 775 53.73 52788 48110 8.86
tial 214 459 483 -5.23 43412 39731 8.48
dk17 145 34 27 20.59 1014 930 8.28
urf6 77 1862 287 84.59 39386 36314 7.80
alu 9 4 5 -25.00 40 37 7.50
misex3c 181 822 581 29.32 49720 46069 7.34
rd53 68 17 19 -11.76 220 206 6.36
squar5 206 31 29 6.45 221 207 6.33
plus63mod4096 79 32 28 12.50 676 634 6.21
4mod7 26 12 11 8.33 84 79 5.95
urf4 89 4293 2972 30.77 169830 160548 5.47
pcler8 190 18 18 0.00 323 308 4.64
alu4 98 454 456 -0.44 41127 39331 4.37
ex3 152 4 5 -25.00 76 73 3.95
one-two-three 27 8 5 37.50 38 37 2.63
ex2 151 7 8 -14.29 146 143 2.05
cm163a 133 35 27 22.86 546 536 1.83
Average 16.68 16.82

7 Conclusion and Future Work

This paper proposes two new templates for positive and negative control Toffoli
gates (templates 4 and 7). Template 4 can be applied to two ≥ 3-bit Toffoli gates
with controls on the same lines while template 7 can be applied to two different
size ≥ 3-bit Toffoli gates. 98 of the 122 circuits generated by the improved
shared cube synthesis approach [14] showed improvement in quantum cost after
applying our templates. Results show that the proposed templates can reduce
the quantum cost up to 49% (on average, 16.82%) and the gate count up to 86%
(on average, 16.68%). Future work may pursue several avenues related to this
work, including identifying additional templates, particularly for Toffoli gates
with different target lines, and also improving the template matching algorithm.
Of course, the issue of template matching with negative controls has not yet
been thoroughly studied, and as we pursue this work a broader investigation
will also be required.

Templates for Positive and Negative Control Toffoli Networks 135

Acknowledgments. This research was funded by a grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC). We also would
like to acknowledge the efforts of the reviewers in providing interesting and
thoughtful comments to help us improve the work; this was greatly appreciated.

References

1. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6),
525–532 (1973)

2. Cheng, X., Guan, Z., Wang, W., Zhu, L.: A simplification algorithm for reversible
logic network of positive/negative control gates. In: 2012 9th International Confer-
ence on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2442–2446 (2012)

3. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Optics
Letters 12(7), 542–544 (1987)

4. Datta, K., Rathi, G., Wille, R., Sengupta, I., Rahaman, H., Drechsler, R.: Exploit-
ing negative control lines in the optimization of reversible circuits. In: Dueck, G.W.,
Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 209–220. Springer, Heidelberg
(2013)

5. Fazel, K., Thornton, M.A., Rice, J.E.: Esop-based Toffoli gate cascade genera-
tion. In: IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, PacRim 2007, pp. 206–209 (2007)

6. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for design-
ing CNOT-based quantum circuits. In: Proceedings of the Design Automation
Conference, pp. 419–424 (2002)

7. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 44(1.2), 261–269 (2000)

8. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 23(11),
1497–1509 (2004)

9. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with tem-
plates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24(6), 807–817 (2005)

10. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simpli-
fication and level compaction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(3), 436–444 (2008)

11. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Proceedings of the Design Automation Conference,
pp. 318–323 (2003)

12. Miller, D.M., Thornton, M.A.: Qmdd: A decision diagram structure for reversible
and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic,
ISMVL 2006, p. 30 (May 2006)

13. Rice, J.E., Nayeem, N.M.: A shared-cube approach to esop-based synthesis of re-
versible logic. Facta Univ. Ser.: Elec. Energ. 24(3), 385–402 (2011)

14. Nayeem, N.M.: Synthesis and Testing of Toffoli Circuits. Master’s thesis, University
of Lethbridge (2011)

15. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge Univ. Press (2000)

16. Pan, W.D., Nalasani, M.: Reversible logic. IEEE Potentials, 38–41 (Febru-
ary/March 2005)

136 M.Z. Rahman and J.E. Rice

17. Sasanian, Z.: Technology Mapping and Optimization for Reversible and Quantum
Circuits. PhD thesis, University of Victoria (2012)

18. Wille, R., Drechsler, R.: Bdd-based synthesis of reversible logic for large func-
tions. In: 46th ACM/IEEE Design Automation Conference, DAC 2009, pp. 270–275
(2009)

19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

20. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: 2013 18th
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 145–150
(January 2013)

http://www.revlib.org

Minimal Designs of Reversible Sequential

Elements

Anindita Banerjee1, Anirban Pathak2, and Gerhard W. Dueck3

1 Bose Institute
2 Jaypee Institute of Information Technology

3 University of New Brunswick

Abstract. In this paper we propose minimal designs of reversible se-
quential elements. The proposed designs have been synthesized using ex-
act multiple control Toffoli network synthesis algorithm with SAT/SMT
techniques. The designs have minimal gate count, minimal garbage bits,
optimal quantum cost and optimal delay. The optimized sequential cir-
cuits are compared with results from earlier proposals. For a fair compar-
ison, previous circuits designed using non-standard gates are converted
into equivalent minimal NCT circuits.

Keywords: Reversible sequential circuits, elementary quantum gates,
low power design, quantum cost, circuit complexity, minimization,
Boolean satisfiability.

1 Introduction

Reversible computation is at the forefront of ongoing research. This promising
technology has extensive applications in low power CMOS [1], nanotechnology
[2], optical computing [3], DNA computing [4] and quantum computing [5]. In
conventional circuits, logic elements are normally irreversible. According to Lan-
dauer’s principle [6] erasure of each bit of information dissipates at least kT ln2
Joules of energy where k is Boltzmann constant and T is the absolute tempera-
ture at which the operation is performed. By 2020 this energy loss will become
a substantial part of energy dissipation, if Moore’s law continues to be in effect.
In 1973 Bennet [7] has shown that the energy dissipation problem can be cir-
cumvented by using reversible logic. This is so because reversible computation
does not require to erase any information. In 1980 Toffoli [8] introduced the no-
tion of universal reversible gates which paved way for reversible computation1.
Sequential reversible logic was first discussed by Toffoli [8]. Thereafter, Fredkin
and Toffoli [10] presented reversible JK flip flop and Picton [11] suggested re-
versible SR latch. So far most of the work reported in sequential reversible logic
are oriented towards synthesis of flip flops or gated latches [12–22].

The quantitative measures or cost metrics have been used to compare a set
of designs with another set and gradually optimal designs have been obtained

1 The history of reversible logic is presented in [9].

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 137–148, 2014.
c© Springer International Publishing Switzerland 2014

138 A. Banerjee, A. Pathak, and G.W. Dueck

in earlier works. The inherent difficulty behind not achieving the minimality
condition underlies in the reversible circuit optimization techniques used so far.
Moreover optimization techniques can optimize a circuit but can not ensure
minimality. In recent past Große et al. [23] have shown that Boolean satisfiability
(SAT) can be used to exactly optimize reversible circuit. They have presented
exact synthesis algorithm that finds minimal Toffoli network realization for a
given reversible (Boolean) function using SAT/SMT techniques and problem
specific knowledge. This algorithm is incorporated in an excellent toolkit called
RevKit [24]. In RevKit one can provide a reversible truth table of a function and
obtain a minimal reversible circuit. The SAT technique in [23] has provision for
don’t care values (the reversibility is still guaranteed since only reversible gates
are part of the solution) while the constants have to be assigned a fixed value.

For the first time in literature minimal reversible sequential circuits are pro-
posed. We have checked the minimality using the exact synthesis algorithm.
Specifically, using this technique we have ensured that the proposed designs
of reversible sequential elements have minimum circuit cost. We have critically
compared the proposed designs with the existing designs of [12, 13, 15–17, 25].
The comparison clearly indicates that the proposed circuits are better than the
earlier reported circuits. In the next section we have provided the background
and in Section 3 we have discussed the earlier approaches and their limitations.
In Section 4, we have presented our work and in Section 5, we have given a pro-
tocol for comparing our designs with the earlier proposals. Finally we conclude
in Section 6.

2 Background

A latch is defined as a bistable memory unit. It is possible to enable and disable
the latch by a control input such that the latch responds to input signals only
when the control signal is 1 otherwise it maintains the previous state. This is
called gated latch and it is level sensitive. In this paper we will use the name
Clock pulse (C) for the control signal.

A reversible logic circuit comprises of reversible gates. This gate is reversible if
it has equal number of inputs and outputs and the Boolean function is bijective.

Fan out and feedback are not allowed in a reversible circuit but these are
required for the design of a sequential circuit. Fortunately, there is a solution for
the feedback and this was first addressed by Toffoli [8]. Toffoli has shown that
reversible sequential circuits can be constructed provided the transition function
of the circuit block, without the feedback loop, is unitary.

Fanout is not allowed in a reversible circuit because there is one input signal
and many output signals which makes it irreversible. To circumvent this problem
a CNOT gate is used to copy the signal in a circuit which restores bijectivity.

Whichever synthesis algorithm we follow, it is important to choose a gate
library [26] which is universal. The physical complexity of gates may not be the
same in two different implementations of reversible circuits. For example, it may
be easy to build an arbitrary gate ’A’ in MOSFET technology but it may not be

Minimal Designs of Reversible Sequential Elements 139

that easy to implement in optical based technology [27]. Therefore the choice of
gate library has a significant role in designing. In this work we have used NCT
gate library which comprises of NOT, CNOT (Feynman) and Toffoli gates.

Circuit cost is also denoted by gate count. If one is allowed to introduce a new
gate or if a complex gate library is used then the gate count can be considerably
reduced. For example, let us consider the Half Adder circuit proposed in [26]. It
is implemented using 2 gates therefore its gate count is 2. Now we can put the
two gates in a box and consider the box as one gate. The gate count in that case
is 1. This gate can now be claimed as a new gate which reduces the gate count.
It should be noted that these gates do not contribute to any universal reversible
gate library. This may be clearly understood from a quantum gate perspective
since reversible gate is only a special case of quantum gate. An n-qubit quan-
tum gate is represented by 2n × 2n unitary matrix. Product of any arbitrary
number of unitary matrices is always unitary. Moreover serial connection of such
gates correspond to multiplication of their matrices and parallel connection cor-
responds to tensor multiplication of their matrices. Therefore, if we put a set of
reversible quantum gates in a black box then it can be visualized as a new gate.
Thus the gate count can be reduced to 1. For example in [28] the circuit cost of a
Full Adder circuit from NCT gate library is 4, in [29] it is reduced to 2 by using
Peres gate which is a relatively complex gate and is not a member of NCT gate
library and in [30] it is further reduced to 1. All the differences in circuit cost
of Full Adder is because of choice of non-standard gate libraries. Consequently
it is important to define an unique gate library for comparison of circuit cost.
Moreover it should be noted that the optimal realizations of reversible gates
reported in literature are not unique.

A garbage bit is an additional output to make a function reversible. It can be
rightly said that garbage bits are don’t cares. In [31] it is reported that at least
%log2(q)& number of garbage outputs are required to make a function reversible,
where q is the maximum number of times an output pattern is repeated in the
truth table. There can be many ways in which garbage value can be assigned
which affects the complexity. Recently Miller et al. [32] have shown that addition
of new working lines (i.e., essentially additional garbage bits) may be helpful to
reduce quantum cost of a circuit. Thus the reduction of a particular cost metric
may be obtained at the expense of another one.

Quantum cost is used to measure the implementation cost of a quantum circuit.
For a reversible function it is the number of primitive quantum gates needed to
implement the function. All (1× 1) and (2× 2) gates are considered as quantum
primitive gates and their quantum cost is one. The Toffoli gate can be constructed
using 5 elementary gates and consequently, its quantum cost is five [33].

Delay is considered as an important measure to evaluate a logic design. Toffoli
[8] has considered a unit wire for a specific delay that connects the output with
input. Therefore, delay in wires and gates play an important role in analyzing a
sequential circuit. Kaye [34] has defined that a reversible circuit design can be
visualized as a sequence of discrete time slices and the depth is summation of
total time slices. In [35] authors have reported that delay is directly proportional

140 A. Banerjee, A. Pathak, and G.W. Dueck

to depth and the delay for 1x1 and 2x2 primitive gates is 1. In [17] authors have
calculated the delay in their designs of reversible sequential elements by counting
total number of primitive gates in the critical path. Interestingly, Maslov et al.
[36] have prescribed a level compaction algorithm to optimize the depth of a
circuit (level compaction). The protocol provides minimal delay.

In CMOS technology the reversible gates can be realized by transistors. The
TrC [37] of a circuit is the total number of transistors required to implement
the circuit. The transistor cost (TrC) of a TOFn is given by 8n where n is the
number and that of CNOT gate is 8. TrC for generalized Fredkin gate is 8(n+1)
where n is the number of control lines of the generalized Fredkin gate. Thus
the TrC of usual Fredkin gate is 16. This is a linear cost metric. Transistor cost
is applicable to reversible circuits only and it has no role in determination of
quality of a quantum circuit since a quantum circuit cannot be realized with
transistors.

We have evaluated our designs with respect to the NCT gate library and
reported total number of gates/circuit cost (CC), number of garbage bits (G),
delay and quantum cost (QC) which are shown in Table 1-Table 12.

3 How to Design Sequential Circuits

3.1 Earlier Approaches

In the previous section we have mentioned that in order to design a reversible
sequential circuit we have to design transition function as unitary (U). Now if
we know the truth table of U and wish to decompose U in terms of finite number
of logic gates, we can use one of the three existing approaches.

1. The first approach is the direct substitution method where an irreversible
gate is substituted with an equivalent reversible gate. Picton [11] has used
Fredkin gate, Rice [25] has used Toffoli gate and Fredkin gate, Thapliyal et
al. [12] have used NEW gate and Fredkin gate and Thapliyal and Vinod [13]
have used NEW TOFFOLI gate.

2. The second approach is the augmented truth table approach [15] where one
starts with an augmented truth table and apply a suitable synthesis algo-
rithm to obtain the reversible circuit for the function.

3. The design methodology presented in [17] maps the characteristic equation
of the latch into a reversible design. This approach is not very different from
the second approach as one needs to make a modified truth table in this case
too.

Limitations of Earlier Approaches

1. In the first approach the resource cost is higher which means large number of
gates and garbage bits. This is so because each irreversible gate is substituted
by a reversible gate/circuit.

Minimal Designs of Reversible Sequential Elements 141

2. If we operate the traditional flip flop in SET condition (i.e., S=1 and R=0)

then the output will be Q+ = 1 and Q
+

= 0 for following two cases: (i)
when the previous state was in SET condition and (ii) when the previous
state was in RESET condition. Since we obtain same result for two different
cases, it always violates bijectivity. This fact is reflected in the behavior of
reversible truth table of Toffoli based reversible SR latch in Table 4, Table
6, Table 7 and Table 11 of [25]. Interestingly in [17] through Verilog HDL
using simulation flow it is shown that the SR latch designed using direct
substitution method by Peres gates do not satisfy the behavior of SR latch
in all possible input cases. Another important observation that points to
the fact that these circuits are not gated in nature (i.e., they do not have
Enable/Clock signal).

3. All the earlier designs from first approach have inherited the unstable con-
dition of the conventional SR latch which is observed when S=1 and R=1.
Thus it can not go beyond the limits of classical computation.

4. The second approach is not a unique approach, as mentioned in [15], the
designs of latches depend on the output column, therefore different values
assigned to these output columns will affect the design.

5. The third approach will result in reversible circuits belonging to different
gate libraries. To be more clear in [17] the designs include gates from two
gate libraries NCT gate library and generalized Fredkin gate library. In [13]
some new gates have been introduced (MFG and MTG) and are implemented
in the design along with NCT and Fredkin gate libraries.

4 New Designs for Reversible Sequential Elements

In this section we present some designs of reversible sequential elements. The
design process is that we have obtained the circuit and verified its minimality
in terms of circuit cost from the SAT based exact synthesis algorithm presented
in [23] using RevKit [24] and obtained the minimal circuit cost. Further we
have obtained the optimal quantum cost by substituting the Toffoli gate by its
primitive gates in respective circuit and optimizing it by technique prescribed
by [38, 39]. The delay is calculated from the elementary circuit by applying the
optimization algorithm presented in [36].

The SR latch is the traditional building block of sequential element. We have
already discussed in Sec 3.1 that designing SR latch using direct substitution
violates bijectively. In [17] they have used a modified truth table and proposed
the design of an SR latch with output Q. For our comparison purpose, we have
added in their circuit one CNOT gate for the Q output (as per their strategy).
We can also remove one CNOT gate at the end whose output gives Q and
compare it with their design, but still our proposed design is better. We have
proposed SR latch using augmented truth table approach with minimal circuit
cost. In Figure 1a we have shown the reversible SR latch with output Q and Q.
The SR Latch has 1 CCNOT and 4 CNOTs therefore its TrC is 48. Thus the
proposed SR latch is designed from augmented truth table approach. Its circuit
cost is 5, TrC is 48, quantum cost is 7 and delay is 7.

142 A. Banerjee, A. Pathak, and G.W. Dueck

Fig. 1. (a) SR latch (b) D latch (c) JK latch (d) T latch

Fig. 2. (a) Gated SR latch (b) gated D latch (c) gated JK latch (d) gated T latch

We have presented reversible D latch in Figure 1b. It comprises of 3 CNOTs
thus its TrC is 24. Its quantum cost and delay is 3.

JK latch is similar in function to SR latch with the difference that it toggles the
output when both the input signals J and K are 1 and its reversible design is pre-
sented in Figure 1c. It comprises of 1 CCNOT and 3 CNOTs thus its TrC is 40.

T latch is a memory device that toggles the output when the input signal T
is equal to 1 otherwise it stores the last state and it can be best represented by
a CNOT gate with delay, quantum cost and circuit cost equal to 1. Reversible
T latch is presented in Figure 1d. It consists of 2 CNOTs thus its TrC is 16.

Gated SR latch is presented in Figure 2a. In the literature gated SR latch with
two outputs is presented in [12], it has been implemented by a NEW gate, Fredkin
gate and CNOT gate. We have provided the comparison using the comparison
protocol. A design of gated SR latch with one output was provided in [17]. We
have compared our resources with them. The results are identical.

Gated D latch is presented in Figure 2b with outputs Q and Q. In literature
gated D latch with one output is presented in [15, 16] with Fredkin gate and
Feynman gate and its quantum cost is 6. In literature gated D latch with two
outputs is proposed in [12] with NEW gate, Fredkin gate and CNOT gate. Its
quantum cost is 31. Other works like in references [13] and [16] have implemented
it with Fredkin and CNOT gates and its quantum cost is 7. For gated D latch
with Q output the circuit cost is just less than 1 from the gated D latch with
two outputs because it consumes one more CNOT gate and that is the only
difference in these two designs. This is similar for gated JK latch and gated T
latch shown in Figure 2c and Figure 2d respectively.

In Figure 2c we have shown the gated JK latch with two outputs Q and Q.
Its circuit cost is 5, quantum cost is 9 and delay is also 9. In [13] a gated JK
latch is proposed with two outputs using MFG (modified Fredkin gate) and the
quantum cost of MFG is 5. We have presented minimal reversible circuit of MFG

Minimal Designs of Reversible Sequential Elements 143

Fig. 3. NEW gate introduced by [40]

Fig. 4. MFG introduced in [13]

in Figure 4. Gated JK latch with two outputs are presented in [16] where they
have used two Fredkin gates and MFG. Another design is presented in [12] using
NEW gate, Fredkin and CNOT gates. Chuang and Wang [15] have presented
gated JK latch with one output using CCCNOT and its optimized quantum cost
is 13 [28] therefore the design will have quantum cost of 2∗13+1∗5+1∗1 = 32.

In Figure 2d gated T latch is presented. It comprises of one CCNOT and
two CNOTs for Q and Q outputs. The design was first published in [Figure 6
[14]]. Identical design was proposed independently in [15]. In [13] similar design
is used but instead of two CNOTs they have used one Fredkin gate for two
outputs (i.e., Q and Q). In [16] Peres gate is used instead of Toffoli as it brings
down the quantum cost. In proposed work we have optimized the elementary
circuit of gated T Latch by removing the end gate CNOT which has target at
the garbage bit. Thus its quantum cost is 4.

We have reported the circuit cost, quantum cost, garbage bits and delay of
proposed gated reversible latch with outputs Q and Q in Table 5 - Table 8 and
the same for gated reversible latch with single output Q in Table 9 - Table 12.
In these tables we have compared proposed work with existing works. For the
designing of flip flops which are edge triggered sequential elements we follow the
traditional way of combining two gated latches with an inverter. The proposed
designs can be used to construct respective flip flops in the same manner.

Table 1. Comparison of reversible SR latches with S and R as primary input and Q
and Q as outputs

SR latch CC QC G D

[13] 6 10 2 10
[17] 6 8 2 8
[25] 6 10 2 10
[25] 4 10 2 10

Proposed 5 7 2 7

144 A. Banerjee, A. Pathak, and G.W. Dueck

Table 2. Comparison of reversible D latch with Q as output

D latch CC QC G D

[17] 4 6 2 6
Proposed 3 3 1 3

Table 3. Comparison of reversible JK latch with Q as output

JK latch CC QC G D

[17] 8 12 3 12
Proposed 4 5 2 5

Table 4. Comparison of reversible T latch with Q as output

T latch CC QC G D

[17] 3 5 2 5
Proposed 2 2 1 2

Table 5. Comparison of Gated SR latch with output Q and Q̄

Gated SR latch CC QC G D

[12] 7 27 8 52
Proposed 7 17 3 17

Table 6. Comparison of Gated D latch with output Q and Q̄

Gated D latch CC QC G D

[12] 19 23 8 23
[13] 6 10 2 10
[16] 5 7 2 7

Proposed 4 6 2 6

Table 7. Comparison of Gated JK latch with output Q and Q̄

Gated JK latch CC QC G D

[12] 25 35 12 35
[13] 10 15 3 15
[16] 9 12 3 12

Proposed 5 9 3 9

Minimal Designs of Reversible Sequential Elements 145

Table 8. Comparison of Gated T latch with output Q and Q̄

Gated T latch CC QC G D

[12] 26 36 12 36
[13] 4 10 2 10
[16] 4 6 2 6

Proposed 3 6 2 6

Table 9. Comparison of Gated SR latch with output Q

Gated SR latch CC QC G D

[17] 6 16 3 16
Proposed 6 16 3 16

Table 10. Comparison of Gated D latch with output Q

Gated D latch CC QC G D

[15] 4 6 2 6
[16] 4 6 2 6

Proposed 3 5 2 5

Table 11. Comparison of Gated JK latch with output Q

Gated JK latch CC QC G D

[15] 4 32 3 32
[16] 8 12 3 12

Proposed 4 8 3 8

Table 12. Comparison of Gated T latch with output Q

Gated T latch CC QC G D

[15] 2 6 2 6
[16] 3 5 2 5

Proposed 2 5 2 5

5 Comparison Protocol

Since the earlier designs of reversible circuits use different gate libraries. For the
purpose of comparison of circuit complexity of our proposals with the existing
proposals we have followed the steps given below:

1. Equivalent circuit: An equivalent minimal circuit is obtained for each non-
NCT gates using exact algorithm [23], for example a Fredkin gate was used
in [11, 41] requires 3 NCT-gates, CCCNOT gate was used in [15] requires 3

146 A. Banerjee, A. Pathak, and G.W. Dueck

Toffoli gates (staircase structure in [42]) and Modified Fredkin gate in [13]
requires 4 NCT gates.

2. Substitution: The equivalent circuits are then substituted in the designs and
thus the essential logic remains the same.

3. Re-optimization: After obtaining the NCT equivalent and logic conserv-
ing circuits of earlier proposals, the optimization techniques (i.e. template
matching algorithm, moving rule and deletion rule) are applied. Further
quantum cost optimization [38, 39, 43] is applied to the circuit and there-
after quantum cost is calculated.

4. Cost of resources: Number of NCT gates present in these circuits is counted
and this count is considered as gate count/circuit cost of the circuit. We have
also calculated the garbage bits, quantum cost and delay of the circuit.

5. Comparison: We have compared our resources with the existing resources of
[12, 13, 15–17, 25] and have found that the present proposals are better. The
results of comparison are presented in Table 1 - Table 12.

6 Conclusions

We have proposed minimal designs for SR Latch, D latch, JK latch and T latch
with their corresponding gated latches. With the help of RevKit we have ensured
that the designs obtained independently (by using local optimization tools) are
minimal as far as NCT gate count is concerned. We have also obtained TrC,
quantum cost, delay and number of garbage bits. As it does not make any sense
to compare a set of circuits prepared in one gate library with a set of circuits
prepared in another gate library, we have devised a protocol for comparison. We
have used this systematic protocol to compare the cost metrics of our proposal
with that of the existing proposals in [12, 13, 15–17, 25]. The comparison revealed
that the proposed designs have minimum gate count or circuit cost, minimum
garbage bits, optimal quantum cost and optimal delay.

References

1. De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.:
Design of reversible logic circuits by means of control gates. In: Soudris, D.J.,
Pirsch, P., Barke, E. (eds.) PATMOS 2000. LNCS, vol. 1918, pp. 255–264. Springer,
Heidelberg (2000)

2. Merkle, R.C.: Two types of mechanical reversible logic. Nanotechnology 4, 114–131
(1993)

3. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computa-
tion with linear optics. Nature 409, 46–52 (2001)

4. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: Dna computing, sticker
system and universality. Acta Informatica 35, 401–420 (1998)

5. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, New Delhi (2002)

6. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

Minimal Designs of Reversible Sequential Elements 147

7. Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 7, 525–532
(1973)

8. Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

9. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Research
and Development 32, 16–23 (1988)

10. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theo. Phys. 21, 219–253 (1982)
11. Picton, P.: Multivalued sequential logic design using fredkin gates. MVL Journal 1,

241–251 (1996)
12. Thapliyal, H., Shrinivas, M.B., Zwolinsky, M.: A beginning in the reversible logic

synthesis of sequential circuits. In: Proc. of Military and Aerospace Programmable
Logic Devices (MAPLD) International Conference, Washington D.C. (2005)

13. Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility
of transistor implementation. In: Proc. of the 2007 IEEE International Symposium
on Circuits and Systems, ISCAS, p. 625 (2007)

14. Banerjee, A., Pathak, A.: On the synthesis of sequential circuits. arXiv:quant-ph,
0707.4233v1, pp. 1–9 (2007)

15. Chuang, M., Wang, C.: Synthesis of reversible sequential elements. J. Emerg.
Technol. Comput. Syst. 3, 19.1–19.19 (2008)

16. Thapliyal, H., Ranganathan, N.: Design of reversible latches optimized for quantum
cost, delay and garbage outputs. In: Proc. of 23 Int. Conf. on VLSI Design (2010)

17. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing
quantum cost, delay and garbage outputs. ACM J. on Emerging Technologies in
Computer Science 6, 1–14 (2010)

18. Sayeem, A.S.M., Ueda, M.: Optimization of reversible sequential circuits. J. of
Computing 2, 208–214 (2010)

19. Banerjee, A.: Synthesis, optimization and testing of reversible and quantum
circuits. PhD thesis, Jaypee Institute of Information Technology, A-10, Sector-62,
Noida, India (March 2011)

20. Bhagyalakshmi, H.R., Ventatesha, M.K.: Design of sequential circuit elements
using reversible logic gates. World Applied Programming 2, 263–271 (2012)

21. Mamun, M.S.A., Mandal, I., Hasanuzzaman, M.: Efficient design of reversible
sequential circuit. IOSR J. of Comp. Engg. 5, 42–47 (2012)

22. Singla, P., Gupta, A., Bhardwaj, A., Basia, P.: An optimized design of reversible
sequential digital circuit. In: Proceedings of NCET (2013)

23. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. on CAD 28, 703–715 (2009)

24. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: A toolkit for re-
versible circuit design. In: Workshop on Reversible Computation (2010),
http://www.revkit.org

25. Rice, J.E.: An introduction to reversible latches. The Computer Journal 51,
700–709 (2008)

26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

27. Brien, J.L.O., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration
of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003)

28. Maslov, D., Dueck, G.W., Scott, N.: Reversible logic synthesis benchmark page
(2007)

29. Haghparast, M., Mohammadi, M., Kavi, K., Eshghi, M.: Optimized reversible
multiplier circuit. J. Circuits Syst. Comp. 18, 1–13 (2009)

http://www.revkit.org
http://www.revlib.org

148 A. Banerjee, A. Pathak, and G.W. Dueck

30. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization
of reversible multiplier circuit. Information Technology J. 8, 208–213 (2009)

31. Dueck, G.W., Maslov, D.: Reversible function synthesis with minimum garbage
outputs. In: Proc. International Symposium on Representations and Methodology
of Future Computing Technologies, pp. 154–161 (2003)

32. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by
adding lines. In: 40th Proc. of International Symposium on Multi-Valued Logic,
pp. 217–222 (2010)

33. Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to im-
plement the quantum Fredkin gate. Phys. Rev. A 53, 2855–2856 (1996)

34. Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum computing.
Oxford University Press, New York (2007)

35. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic
designs. Quantum information Process 8, 297–318 (2009)

36. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplifi-
cation and level compaction. Proc. Computer-Aided Design of Integrated Circuits
and Systems 27, 436–444 (2008)

37. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Int. J.
Unconventional Computing 1, 339–355 (2005)

38. Banerjee, A., Pathak, A.: An algorithm for minimization of quantum cost. Appl.
Math. Inf. Sci. 6, 157–165 (2012)

39. Rahman, M. M., Dueck, G.W., Banerjee, A.: Optimization of reversible circuits
using reconfigured templates. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS,
vol. 7165, pp. 43–53. Springer, Heidelberg (2012)

40. Biswas, A.K., Hasan, M.M., Chowdhury, A.R., Babu, H.: Efficient approaches for
designing reversible binary coded decimal adders. Microelectron. J. 39, 1693–1703
(2008)

41. Rice, J.E.: A new look at reversible memory elements. In: Proc. of International
Symposium on Circuits and Systems ISCAS, p. 1243 (2006)

42. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
Phys. Rev. A 52, 3457–3467 (1995)

43. Banerjee, A., Pathak, A., Mazder, R.R., Dueck, G.W.: Two qubit quantum gates
to reduce the quantum cost of reversible circuit. In: 41st International Symposium
on Multivalued Valued Logic (May 2011)

Quantum Circuit Optimization by Hadamard

Gate Reduction

Nabila Abdessaied2, Mathias Soeken1,2, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
{nabila,msoeken,drechsle}@informatik.uni-bremen.de

Abstract. Due to its fault-tolerant gates, the Clifford+T library con-
sisting of Hadamard (denoted by H), T , and CNOT gates has attracted
interest in the synthesis of quantum circuits. Since the implementation
of T gates is expensive, recent research is aiming at minimizing the use
of such gates. It has been shown that T -depth optimizations can be im-
plemented efficiently for circuits consisting only of T and CNOT gates
and that H gates impede the optimization significantly.

In this paper, we investigate the role of H gates in reducing the T -
count and T -depth for quantum circuits. To reduce the number of H
gates, we propose several algorithms targeting different steps in the syn-
thesis of reversible functions as quantum circuits.

Experiments show the effect of H gate reductions on the costs for
T -count and T -depth. Our approach yields a significant improvement of
up to 88% in the final T -depth compared to the best known T -depth
optimization technique.

1 Introduction

Quantum computing has shown promising results, e.g., for solving certain prob-
lems that require exponential running time in classical computers. Quantum
computers exploit quantum mechanical effects and their underlying model makes
use of qubits. In contrast to Boolean logic, qubits do not only represent the clas-
sical 0 and 1 states but also a superposition of both leading to a theoretically
enormous speed-up in computing. The Deutsch-Jozsa algorithm [1] as well as
the Shor’s factorization algorithm [2] from Shor are the famous examples.

As a result, the synthesis of quantum circuits has become an active research
area and many theoretical implementations for this kind of circuits have been
presented [3]. To that end, since quantum operations are reversible, as a first step
a reversible circuit is synthesized for the desired Boolean function after which,
the resulting circuit is mapped to a functionally equivalent quantum circuit. It
is also possible to build the quantum circuit for the requested Boolean function
directly without going through the reversible circuit synthesis stage [4]. For the
synthesis of, or mapping to, quantum circuits, several universal quantum gate
libraries were introduced. One of the most used libraries is the Clifford+T library
which is particularly interesting due to its fault-tolerant implementation [5].

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 149–162, 2014.
c© Springer International Publishing Switzerland 2014

150 N. Abdessaied, M. Soeken, and R. Drechsler

After designing the quantum circuit, optimization techniques are often applied
in order to produce a cheaper equivalent circuit. These optimization methods
for the resulting Clifford+T circuits mainly focus on reducing the number of
T gates and hence the T -depth on the resulting circuit because fault-tolerant
implementations of T gates are considerably more expensive than those of the
Clifford gates [6]. Thus, a couple of optimization techniques [7, 8] targeting the
T -depth minimization were introduced. The major obstacle facing the T -depth
minimization techniques is the H gates since T gates cannot commute across
such gates. For that reason, attempts for tackling this problem were either to
reduce the T -depth for quantum circuits over the gate library {CNOT, T} or to
extend the same approach for the Clifford+T library circuits by optimizing the
T -depth of subcircuits between the H gates boundaries [9]. To the best of our
knowledge, no one has studied the effect of minimizing H gates for reducing the
T -depth so far.

In this paper, we study the characteristics of H gates and show how they
significantly restrain the movement of T gates and hence limit the ability to
better parallelize T gates. We prove that reducing the not needed H gates leads
to a more efficient minimization of the T -depth. To do so, we introduce a new
methodology which aims to eliminate the H gates as a preprocessing step for
improving the T -depth optimization results of quantum circuits.

The remainder of the paper is structured as follows: first the basics on re-
versible and quantum circuits are introduced in Sect. 2. The next section outlines
the general idea. Section 4 gives a detailed description of the implementation of
the presented approach, and experimental results are evaluated and interpreted
in Sect. 5. The paper is concluded in Sect. 6.

2 Background

To keep the remainder of this paper self-contained, this section briefly intro-
duces the basics on reversible circuits, quantum circuits, and the corresponding
mapping from reversible to quantum circuits.

2.1 Reversible Circuits

A Boolean function f : IBn → IBn is said to be reversible if it is bijective,
i.e., if each input pattern is uniquely mapped to a corresponding output pattern,
and vice versa. Reversible functions can be realized by reversible circuits that
consist of at least n lines. Reversible circuits are cascades of reversible gates that
belong to a gate library. One gate library that is often used consists of multiple
control Toffoli gates [10].

Definition 1. Given a set of variables X = {x1, . . . , xn}, a multiple control
Toffoli gate T(C, t) has control lines C = {xj1 , xj2 , . . . , xjl} ⊂ X and a target
line t ∈ X \ C. The gate maps t '→ t ⊕ h(xj1 , xj2 , . . . , xjl) where h is defined
as h : (xj1 , xj2 , · · · , xjl) '→ (xj1 ∧ xj2 ∧ · · · ∧ xjl). All remaining other lines are
passed through unaltered.

Quantum Circuit Optimization by Hadamard Gate Reduction 151

1 1

1 1

0 1

(a) Toffoli gate

x1 / h / x1

t1 t1

(b) Multiple control Toffoli gate

1 1
0 0
1 1
1 0
0 1

(c) Reversible circuit

Fig. 1. Reversible circuitry

In [11] it has been shown that any reversible function f : IBn → IBn can be
realized by a reversible circuit with n lines when using Toffoli gates.

Example 1. Figure 1(a) shows a Toffoli gate with two control lines. The control
lines are either denoted by • as depicted in Fig. 1(a) or represented by a Boolean
function h : x1 = (x11 , x12 , · · · , x1l) '→ (x11 ∧ x12 ∧ · · · ∧ x1l) as sketched in

Fig. 1(b). The target line is denoted by⊕. Figure 1(c) shows different Toffoli
gates in a cascade forming a reversible circuit.

2.2 Quantum Circuits

Instead of bits, quantum circuits manipulate qubits which can represent the
classical Boolean values but also a superposition of them. A qubit |ϕ〉 is a vec-
tor

(
a
b

)
where a, b ∈ C such that |a|2 + |b|2 = 1. If a = 1, then |ϕ〉 represents

the classical 0, denoted |0〉, and if b = 1, then |ϕ〉 represents the classical 1,
denoted |1〉.

In general, a quantum gate acting on n qubits represents a 2n × 2n unitary
matrix [12]. A matrix U is unitary if U †U = UU † = I where U † = (U∗)T is the
conjugate transpose of U . Using this gate definition many quantum mechani-
cal effects such as superposition and entanglement can be formulated. Although
Toffoli gates represent a unitary matrix, they are too general and thus not suit-
able for realizing quantum circuits [13]. In this paper, we make use of a gate
library that is universal for quantum computation as well as its gates can be
implemented in a fault-tolerant way.

Definition 2. We consider the gate library {H,Z, S, T, CNOT } with

H =
1√
2

(
1 1
1 −1

)
, Z =

(
1 0
0 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0

0 e
iπ
4

)
, CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ (1)

as the universal gate set. Note that the S†, T †, and NOT gates can be imple-
mented with SSS, SSST , and HZH, respectively. The S and S† gates are square
roots of the Z gate (given by the matrix in (1)). Similarly, the T and T † gates
are given by matrices that are the fourth root of the Z gate.

A single qubit gate G(t) over the inputs X = {x1, . . . , xn} consists of a single
target line t ∈ X, while a CNOT gate G(c, t) comprises, in addition, a single
control line c ∈ X with t �= c.

152 N. Abdessaied, M. Soeken, and R. Drechsler

T T †

T T † T †

H T T H

Fig. 2. Quantum circuit realizing a Toffoli gate

The above gate library is often referred to as the Clifford+T library. The so-
called T -depth refers to the number of T -stages where each stage consists of one
or more T or T † gates that can be performed concurrently on separate qubits.
The total number of incorporated T or T † gates in the whole circuit is denoted
by T -count while the total number of H gates is denoted by H-count. A root of
Z gate denotes Z, S, T , S†, or T †.

Example 2. Figure 2 shows a quantum circuit consisting of sixteen Clifford+T
gates. This circuit represent one of the optimal realization of a Toffoli gate as
depicted in [7, Fig. 13]. The circuit has a T -count of 7, a T -depth of 3, and an
H-count of 2.

3 General Idea

In this work, we propose an optimization approach that aims for reducing the T -
depth in a given quantum circuit as a main goal. In this section we motivate the
impact of H gates on minimizing the T -depth in quantum circuits, afterwards
we outline the proposed approach.

Mapping reversible circuits to quantum circuits can be done with different
quantum library gates such as the NCV [12] or NCV -|v1〉 [14] libraries. But
recently the Clifford+T gate library has attracted most attention since it is
composed of fault-tolerant logical gates [5]. Because it has been demonstrated
that the fault-tolerant implementation of the T gates is surpassing the cost of
the Clifford gates [6], many works have addressed the optimization of quantum
circuits by minimizing the T -count [8] and the T -depth [9, 15].

The algorithm presented in [8] describes a method that performs an exhaustive
search for a circuit that implements an n-qubit unitary matrix U using the mini-
mal number of T gates. The work introduced in [7] addressed the optimization of
T -depth for small circuits composed of four qubits at maximum. This is done by
applying an exhaustive search algorithm to find the optimal T -depth realization.
Another approach proposed a polynomial run-time algorithm for reducing the T -
depth and theT -count of quantumcircuits over the gate library{CNOT,T} [9].The
algorithm deletes redundant T gates by computing the total phase and paralleliz-
ing the T gates through Matroid partitioning. The idea is based on decomposing
a given function into minimal number of linear Boolean functions and then resyn-
thesize each one with an optimal T -depth realization. This algorithm is extended
to circuits built with the Clifford+T library. In this case, the same approach is ap-
plied for the subcircuits between the H gates, afterwards an optimization process
is applied which detects the identical gates and deletes them.

Quantum Circuit Optimization by Hadamard Gate Reduction 153

H Z H H Z H
H Z H H Z H H Z H

(a) Quantum circuit

H Z H H Z H
H Z Z Z Z H

(b) Symplified quantum circuit

Fig. 3. Equivalent quantum circuit for Fig. 1(c)

So far, as it is explained above, all the optimization techniques proposed al-
gorithms for improving the T -depth for quantum circuits in the absence of, or
locally between, H gates. But no work has introduced an approach for optimiz-
ing quantum circuits including H gates since they present the bottleneck for
finding the optimal T -depth, i.e., they cannot interact with neighbouring gates
and thus block the movement of any other gates across them. This restricts
possible rearrangements of T gates and hence reduces the ability to perform T
gates in parallel or apply possible reduction rules to a target circuit. Also when
considering the algorithm [9] explained above and taking into account that the
H gates are reduced before, this will allow to have larger subcircuits to resyn-
thesize comparing to the first subcircuits: thus we get a bigger chance to get
more parallel T gates and hence lower T -depth. Following the previous observa-
tions, therefore we present an approach that minimizes the H-count of quantum
circuits, enabling better optimization results for the T -depth and the T -count.

Example 3. Figure 3(a) depicts the equivalent quantum circuit for the reversible
circuit drawn in Fig. 1(c) according to [9]. Following their algorithm, the circuit
is partitioned into a set of subcircuits located between the H gates. As it is shown
in Fig. 3(a) we have 7 subcircuits. Next step, each subcircuit is resynthesized
with an optimal T -depth quantum circuit. The application of the algorithm to
the quantum circuit gives a circuit with a T -depth equal to 11 and a T -count
equal to 27. However, one can reduce the H-count which yields an equivalent
circuit depicted in Fig. 3(b). Applying the same algorithm to this circuit, which
has 5 subcircuits, results in a circuit with a T -depth of 9 and a T -count of 23.

4 Optimization Approaches

Motivated by the idea outlined in the previous section, we propose a design flow
(depicted in Fig. 4) for the synthesis of a reversible function realized using gates
from the Clifford+T library. First, the desired function is realized as a reversible

Reversible
function

Synthesis
Rev.

optimization
Mapping

Quantum
optimization

Quantum
circuit

Fig. 4. Design flow for quantum circuits

154 N. Abdessaied, M. Soeken, and R. Drechsler

circuit with Toffoli gates by applying existing synthesis methods such as [16–18].
To achieve better H gate reductions, we have taken the benefits of existing work
aiming to optimize reversible circuits; for instance [19,20], and applied the tem-
plate matching technique introduced in [20] to the reversible circuit. Afterwards,
we have incorporated an alternative mapping technique that yields circuits which
are particularly suitable for H gate reductions. Finally, the obtained quantum
circuit is optimized by applying an algorithm that aims at the T -depth optimiza-
tion based on H gate minimizations. To resume, although we have employed the
existing optimization algorithms at the reversible optimization level, our main
contributions are on the mapping and quantum optimization steps.

4.1 Optimizations at the Reversible Level

In order to enhance the obtained circuit from a synthesis approach, a post syn-
thesis process, also called reversible optimization stage, is applied. There are
many existing methods targeting the optimization of reversible circuits for ei-
ther reducing the number of lines [21], number of gates [20], depth [22], or quan-
tum cost [23]. We are interested in techniques that lead to lower quantum cost.
Smaller circuits are likely to have less H-count and therefore would have better
T -depth but this is not always guaranteed.

Among the interesting work that focus on reducing the quantum cost for a
given reversible circuit are template matching algorithms as described in [20],
the window optimization introduced in [23], and finally the algorithm outlined
in [24], that is similar to the template matching algorithm but includes better
gate movement properties in the whole circuit. For this work, one can apply all
of these approaches along with any other method leading to optimized quan-
tum cost. For our experiments, we have included only the template matching
approach [20].

4.2 Optimizations in the Mapping

After realizing and optimizing the reversible circuit for a given reversible func-
tion, each reversible gate is mapped to its equivalent quantum circuit as described
in [13]. This mapping strategy is optimized with respect to quantum cost [25].
Afterwards, a second mapping technique that leads to an even lower quantum
cost was described in [26]. Another functional mapping algorithm was presented
in [27]: the described method searches for gates that have the same controls but
different targets and decomposes them with a special decomposition.

According to Lemma 7.3 in [13], a reversible Toffoli gate with c controls
(where c ≥ 3) can be mapped to a network consisting of two identical gates
with m controls and two other identical gates with c − m + 1 controls, where
m ∈ {2, · · · , c−2} and each of them are placed alternately. One has a lot of free-
dom on how to choose the controls and the order for each gate. As an example,
Fig. 5(b) presents a possible mapping for the circuit depicted in Fig. 5(a) where
the partitioning of controls is done with respect to their order in the original
gates. However an alternative application of Lemma 7.3 [13] results in a circuit

Quantum Circuit Optimization by Hadamard Gate Reduction 155

with two identical adjacent gates which can be removed as shown in Fig. 5(c).
By removing these gates, at least two H gates are eliminated.

Hence our approach aims to apply a special mapping technique that is par-
ticularly suitable for circuits in which H gates cancel. This technique, instead of
mapping reversible gates one by one and each on his own side, gathers gates as
shown in the schemas in Fig. 6 and finds a suitable partitioning of the controls
that leads to reversible gates that cancel and thus reduces the H-count.

This mapping technique can be applied when a pair of reversible gates have
one of the structures explained as below:

– Gates having a structure similar to the Peres gates as sketched in Fig. 6(a),
i.e., a control line of the first is a target line of the other, besides they share
one or more controls and the first gate has its target in a non shared line.

– Gates having their targets in the same line and sharing one or more control
lines as depicted in Fig. 6(b).

– Gates having their target in non shared lines as described in Fig. 6(c). Also
they have one or more control lines in common.

– Gates having a structure similar to the swap gates but also they share one
or more control lines as outlined in Fig. 6(d).

Example 4. Consider the case of the pair of gates depicted in Fig. 5(a). Using
the new mapping scheme, we obtain the circuit drawn in Fig. 5(c) that contains
2 identical reversible gates with 3 controls each. The removal of these gates will
lead to a reduction of 16 H gates compared to the classical mapping algorithm.

4.3 Optimizations at the Quantum Level

There are many optimization schemes that aim for quantum cost reduction for
circuits based on the NCV library. In particular, the application of quantum
template matching [28] or the merging and deletion rules together with functional
moving rules as explained in [24] are beneficial for decreasing the quantum cost.
However, post mapping optimization techniques designed for quantum circuits
based on Clifford+T gates are limited to the reduction of identical gates as
described in [9] and the identities shown in [29].

(a) Original circuit (b) Possible mapping (c) Better mapping

Fig. 5. Reversible circuit mapping

156 N. Abdessaied, M. Soeken, and R. Drechsler

x1 / f / x1

x2 / g / x2

x3 / h h / x3

t1 t1

t2 t2

(a) First case

x1 / f / x1

x2 / g / x2

x3 / h h / x3

t1 t1

t2 t2

(b) Second case

x1 / f / x1

x2 / g / x2

x3 / h h / x3

t1 t1

(c) Third case

x1 / h h h / x1

t1 t1

t2 t2

(d) Forth case

Fig. 6. Functional mapping

The optimization approach that we introduce is based on a greedy algorithm
that traverses repeatedly the circuit and looks for any possible cascade replace-
ment with a cheaper equivalent cascade or any identity deletion. These two
operations are known as merging and deleting rules. This scheme can addition-
ally be improved by applying the moving rules for quantum circuits. In fact,
in the Clifford+T library, additionally to the moving rules defined in [28], a
CNOT gate G(c, t1) and a root of Z gate (Z, S, T , S†, T †) G(t2) can be inter-
changed if t1 �= t2 as it is sketched with all other possible moving rules in Fig. 7.
Furthermore, the following moving and deletion rules can be exploited for the
Clifford+T circuits:

Hadamard Gates Reduction. The circuit is mapped in order to locate iden-
tical H gates or one of the cascades sketched in Fig. 8. Identical gates that could
be moved together are deleted from the circuit and other identified templates
are replaced by its equivalent cascade that do not contain any H gate.

Merging and Deleting Gates Reduction. Taking the benefits of the moving
properties for Clifford+T gates depicted on Fig. 7, additional reductions are
possible for the remaining gates of the library. The algorithm searches for the
templates shown in Fig. 10 and replaces these by their cheaper realization.

T = T

(a) First moving rule

T T
=

T T

(b) Second moving rule

T
= T

(c) Third moving rule

Fig. 7. Moving rules for the Clifford+T gates

Quantum Circuit Optimization by Hadamard Gate Reduction 157

H H = I H H = Z H Z H =

(a) (b) (c)

H H
=

Z
= S

S S†
H H

H H
=

(d) (e)

Fig. 8. Reduction rules for the H gates

T T = S T † T † = S† T † S = T T S† = T †

(a) (b) (c) (d)

S S = Z T T † = S S† = Z Z = = I

(e) (f)

Fig. 9. Reduction rules for the remaining gates

5 Experimental Results

In this work, we proposed considerations of H gate minimizations to optimize
quantum circuits build using the Clifford+T library. We have observed that
eliminatingH gates often leads to quantum circuits with a much smaller T -depth.
Motivated by this, we introduced an improved design flow that aims at having
lower H-count when generating the corresponding quantum gate cascades. The
proposed idea described above has been implemented in the open source toolkit
RevKit [30]. The experimental evaluation has been carried out on an Intel Core
i5 Processor with 4 GB of main memory using the benchmarks taken from [31,32]
database.

To determine the best synthesis approach with respect to T -depth, we have
generated for each benchmark its corresponding circuits utilizing the following
synthesis approaches: the transformation based synthesis approach (TBS [16]),
the Reed-Muller synthesis approach (RMS [33]), the Young subgroups based
synthesis approach (YSG [34]), and the ESOP based synthesis approach [17]. Due
to space constraints, we have not detailed results for the ESOP based synthesis
approach.

The experimental results are shown graphically in the plots in Fig. 10. The
values of x-axis and the y-axis (logarithmic scale) denote the benchmark and
the T -depth, respectively. Each plot contains three different scenarios: the T -
depth of the original quantum circuits, the T -depth of the optimized circuits
based on [9], and the T -depth of the optimized circuits based on our technique.
One can clearly see that the T -depth and the H-count related to each other.
Besides, most of the cases, the Reed-Muller synthesis approach [33] outperforms
the other synthesis techniques in terms of producing lower T -depth circuits. The
same observations are found for the H-count as it is shown in Fig. 10. In the rest
of the paper we consider only the results of the Reed-Muller synthesis approach.

158 N. Abdessaied, M. Soeken, and R. Drechsler

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

100

101

102

103

104

Benchmarks

H
-c
o
u
n
t

Original H-count

H-count in [9]

Opt. H-count

(a) H-count for TBS

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

101

102

103

104

Benchmarks

T
-d

e
p
th

Original T -depth

T -depth in [9]

Opt. T -depth

(b) T -depth for TBS

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

100

101

102

103

104

Benchmarks

H
-c
o
u
n
t

Original H-count

H-count in [9]

Opt. H-count

(c) H-count for RMS

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

101

102

103

104

Benchmarks

T
-d

e
p
th

Original T -depth

T -depth in [9]

Opt. T -depth

(d) T -depth for RMS

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

100

101

102

103

104

Benchmarks

H
-c
o
u
n
t

Original H-count

H-count in [9]

Opt. H-count

(e) H-count for YSG

m
o
d
5
d
1

1
-2
-3

M
o
d
8

cm
8
2
a

d
c1

C
1
7

rd
5
3

ex
2

co
n
1

sq
u
a
r5

m
a
jo
ri
ty z4

m
o
d
5
a
d
d

h
w
b
6

sy
m
6

rd
7
3

sq
n

rd
8
4

sy
m
9

101

102

103

104

Benchmarks

T
-d

e
p
th

Original T -depth

T -depth in [9]

Opt. T -depth

(f) T -depth for YSG

Fig. 10. H-count and T -depth for original benchmark, optimized T -depth benchmarks,
optimized H-count and T -depth benchmarks

Quantum Circuit Optimization by Hadamard Gate Reduction 159

T
a
b
le

1
.
E
x
p
er
im

en
ta
l
ev
a
lu
a
ti
o
n
fo
r
R
ee
d
-M

u
ll
er

sy
n
th
es
iz
ed

ci
rc
u
it
s
w
h
er
e
L
,
Q
C
,
H
C
,
T
C
,
T
D
,
T
im

e,
Δ
H
,
a
n
d
T
D

Im
p
.
re
fe
r
to

th
e
n
u
m
b
er

o
f
li
n
es
,
th
e
q
u
a
n
tu
m

co
st
s,

th
e
H
-c
o
u
n
t,

th
e
T
-c
o
u
n
t,

th
e
T
-d
ep
th
,
th
e
n
ee
d
ed

ru
n
-t
im

e,
th
e
H

g
a
te

re
d
u
ct
io
n
s,

a
n
d
th
e

T
-d
ep
th

im
p
ro
v
em

en
t
w
it
h
re
sp

ec
t
to

th
e
o
p
ti
m
iz
ed

ci
rc
u
it
s
b
a
se
d
o
n
[9
],
re
sp

ec
ti
v
el
y.

B
e
n
ch

m
a
rk

O
ri
g
in
a
l
c
ir
c
u
it

T
-d
e
p
th

o
p
t.

in
[9
]

H
-c
o
u
n
t+

T
-d
e
p
th

o
p
t.

Δ
H

T
D

Id
L

Q
C

H
C

T
C

T
D

Q
C

H
C

T
C

T
D

T
im

e
Q
C

H
C

T
C

T
D

T
im

e
Im

p
.

cm
8
2
a

8
4
5
6

5
6

1
9
6

7
1

4
6
2

2
8

1
4
2

5
6

0
.0
0
4

1
0
8

4
2
3

7
0
.0
0
0

-2
4

8
8
%

z4
1
1

2
1
4
0

2
6
6

9
3
1

3
3
7

2
2
2
2

1
3
4

6
3
9

2
6
6

0
.0
5
6

4
6
7

2
4

9
3

3
5

0
.0
3
1

-1
1
0

8
7
%

sy
m
9

1
0

2
1
5
1
0

2
6
8
8

9
4
0
8

3
4
1
9

2
2
4
2
3

1
3
4
6

6
3
6
4

2
6
8
8

4
.0
6
1

7
0
8
7

4
4
6

1
4
7
0

5
8
0

0
.0
4
4

-9
0
0

7
8
%

rd
8
4

1
5

1
6
1
8
8

2
0
2
0

7
0
7
0

2
5
2
0

1
6
8
0
3

9
9
4

4
7
5
6

2
0
2
1

5
.5
3
7

7
0
6
2

4
4
4

1
4
0
2

5
7
8

0
.0
1
1

-5
5
0

7
1
%

rd
7
3

1
0

6
8
8
5

8
5
8

3
0
0
3

1
0
8
6

7
0
9
1

4
0
6

2
0
3
1

8
5
9

0
.6
3
7

3
0
2
7

1
7
8

6
0
7

2
5
4

0
.0
7
1

-2
2
8

7
0
%

m
a
jo
ri
ty

6
1
1
8
8

1
4
8

5
1
8

1
8
9

1
2
2
0

8
0

3
6
4

1
4
9

0
.0
1
9

6
4
4

4
4

1
1
4

4
8

3
.7
0
1

-3
6

6
8
%

sq
u
a
r5

1
3

1
0
8
2

1
3
2

4
6
2

1
7
2

1
2
0
9

8
0

3
2
2

1
3
3

0
.0
2
1

6
7
5

4
0

1
3
6

4
4

0
.0
0
1

-4
0

6
7
%

co
n
1

9
1
0
6
2

1
3
2

4
6
2

1
6
4

1
0
6
6

6
8

3
3
0

1
3
2

0
.0
1
5

6
8
5

3
6

1
2
6

4
7

0
.1
2
4

-3
2

6
4
%

sy
m
6

7
3
8
8
8

4
8
6

1
7
0
1

6
1
9

3
9
2
4

2
4
0

1
1
4
3

4
8
7

0
.1
8
7

2
2
2
4

1
4
2

4
2
2

1
7
8

0
.1
2
5

-9
8

6
3
%

sq
n

1
0

8
4
1
1

1
0
3
4

3
6
1
9

1
3
0
1

8
7
3
4

6
2
6

2
5
2
3

1
0
3
5

1
.0
6
7

4
5
1
9

3
2
2

9
4
7

3
8
8

3
5
.4
7
8

-3
0
4

6
3
%

m
o
d
5
d
1

5
6
8

8
2
8

1
1

8
8

6
2
0

8
0
.0
0
1

3
1

2
7

3
0
.1
0
4

-4
6
3
%

rd
5
3

7
5
6
9

7
0

2
4
5

9
1

6
0
6

3
0

1
7
1

7
1

0
.0
0
5

4
2
7

2
0

7
3

2
9

0
.6
8
1

-1
0

5
9
%

1
-2
-3

5
2
8
5

3
4

1
1
9

4
8

3
1
3

2
4

8
7

3
4

0
.0
0
2

1
4
9

1
0

3
7

1
4

2
.0
9
0

-1
4

5
9
%

ex
2

6
9
9
7

1
2
4

4
3
4

1
6
0

1
0
2
7

6
4

3
0
0

1
2
5

0
.0
1
5

6
6
5

4
4

1
3
0

5
5

0
.0
7
6

-2
0

5
6
%

C
1
7

7
4
8
6

6
0

2
1
0

7
9

5
2
0

3
8

1
5
2

6
0

0
.0
0
4

3
4
4

2
2

7
7

3
2

0
.2
0
5

-1
6

4
7
%

m
o
d
5
a
d
d

6
2
2
5
1

2
7
6

9
6
6

3
6
1

2
3
1
7

1
6
6

6
7
0

2
7
7

0
.0
5
5

1
8
6
3

1
3
4

3
9
0

1
6
1

2
.1
0
8

-3
2

4
2
%

d
c1

1
1

5
0
3

5
6

1
9
6

7
2

6
9
1

4
2

1
4
2

5
7

0
.0
0
3

5
2
5

3
0

8
6

3
8

1
1
.8
0
6

-1
2

3
3
%

h
w
b
6

6
3
4
8
9

4
1
4

1
4
4
9

5
4
1

3
8
6
8

2
6
8

1
0
3
5

4
1
4

0
.1
3
5

3
6
3
0

2
4
8

6
9
8

2
9
1

6
.8
7
0

-2
0

3
0
%

M
o
d
8

5
4
0
6

5
0

1
7
5

6
8

4
1
3

3
4

1
3
1

5
0

0
.0
0
3

4
0
8

3
0

9
1

3
6

0
.0
3
2

-4
2
8
%

160 N. Abdessaied, M. Soeken, and R. Drechsler

Table 1 summarizes the obtained result. All benchmarks are listed in the
first column. Then, the number of lines (L), the quantum costs (QC), the H-
count (HC), the T -count (TC), and the T -depth (TD) of the respective circuit
realizations as well as the needed run-times (Time) are provided.
The H gate reductions and the relative T -depth improvement of the circuits
obtained by the proposed technique with respect to the optimized circuits based
on the approach presented in [9] are provided in the columns denoted by ΔH
and TD Imp., respectively.

In total three different aspects are studied: (1) the results of circuits generated
from the Reed-Muller synthesis approach, (2) the results of optimized circuits
using the algorithm introduced in [9], and (3) the results of the optimized circuits
using the technique reviewed in Sect. 4 in addition to the approach. in [9].

Applying the T -depth optimization approach described in [9] reduces the T -
depth significantly. However, it is clearly observed that these results can be
improved when applying the approach based onH gate reductions. Our proposed
approach leads to additional T -depth reductions of 10% in average. The results
confirm the impact of eliminating H gates on the T -depth.

As can be seen, in particular our scheme leads to significant H-count reduc-
tions. Over all circuits, reductions up to 900 H gates can be obtained, therefore,
this enables further improvements of the overall T -depth as it is shown in Ta-
ble 1. The T -depth is reduced by 60% on average and in the best case (cm82)
by 88%.

H-count and T -depth are related to each other and more the H gates are
reduced, more the T -depth is lower. This explains the variation of the T -depth
improvement for each benchmark. For example, when a circuit contains many
Toffoli gates that have their targets in the same line, then after quantum mapping
the majority of H gates will be at the same line and many will cancel. Therefore
the T -depth is reduced significantly (Z4, Sym9). Whereas, when Toffoli gates
have their targets in different lines then the H-count cannot be much improved,
hence the T -depth is not much decreased (Mod8).

6 Conclusion

In this paper we introduced a scheme for optimizing the T -depth of quantum cir-
cuits based onH gate reductions. To that end, we incorporated a 3-level strategy
targeting the optimization of circuits at the reversible, mapping and quantum
level to achieve better H-count reductions and hence possible further T -depth
improvements. Experimental results have shown significant T -depth reductions
which reach over 80% for quantum circuits.

Quantum Circuit Optimization by Hadamard Gate Reduction 161

References

1. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation.
Proceedings of the Royal Society of London. Series A: Mathematical and Phys-
ical Sciences 439(1907), 553–558 (1992)

2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. Foundations of Computer Science, 124–134 (1994)

3. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25, 1000–1010 (2006)

4. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of
single-qubit unitaries generated by Clifford and T gates. Quantum Information &
Computation 13(7-8), 607–630 (2013)

5. Jones, N.C.: Logic synthesis for fault-tolerant quantum computers. arXiv preprint
arXiv:1310.7290 (2013)

6. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum
computation on the surface code. Physical Review A 80(5), 52312 (2009)

7. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of
Integrated Circuits and Systems 32(6), 818–830 (2013)

8. Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count.
arXiv preprint arXiv:1308.4134 (2013)

9. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T -depth optimization of
Clifford+T circuits via matroid partitioning. arXiv preprint arXiv:1303.2042 (2013)

10. Toffoli, T.: Reversible Computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

11. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. TCAD 22(6), 710–722 (2003)

12. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge Univ. Press (2000)

13. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
Physical Review A 52, 3457–3467 (1995)

14. Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Realizing reversible circuits
using a new class of quantum gates. In: Design Automation Conference, pp. 36–41
(2012)

15. Selinger, P.: Quantum circuits of T -depth one. Physical Review A 87(4), 42302
(2013)

16. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)

17. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In:
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing. PacRim 2007, pp. 206–209 (2007)

18. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of re-
versible circuits with minimal lines for large functions. In: Asia and South Pacific
Design Automation Conference, pp. 59–70 (2012)

19. Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with
output permutation. In: 2009 22nd International Conference on VLSI Design,
pp. 189–194 (2009)

162 N. Abdessaied, M. Soeken, and R. Drechsler

20. Maslov, D., Dueck, G., Miller, D.: Simplification of Toffoli networks via templates.
In: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design,
pp. 53–58 (2003)

21. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: IEEE Design Automation Conference, pp. 647–652 (2010)

22. Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quan-
tum circuits using additional circuit lines. In: Dueck, G.W., Miller, D.M. (eds.) RC
2013. LNCS, vol. 7948, pp. 221–233. Springer, Heidelberg (2013)

23. Soeken, M., Wille, R., Dueck, G., Drechsler, R.: Window optimization of reversible
and quantum circuits. In: 2010 IEEE 13th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems, pp. 341–345 (2010)

24. Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: A func-
tional approach. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp.
112–124. Springer, Heidelberg (2013)

25. Maslov, D., Dueck, G.: Improved quantum cost for n-bit Toffoli gates. Electronics
Letters 39, 1790 (2003)

26. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffoli gates. In: 41st IEEE International Symposium on Multiple-
Valued Logic, pp. 217–222 (2011)

27. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: Asia and
South Pacific Design Automation Conference, pp. 145–150 (2013)

28. Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification
and level compaction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27(3), 436–444 (2008)

29. Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the
Pauli matrices. Physical Review A 88, 042322 (2013)

30. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: A toolkit for reversible
circuit design. Journal of Multiple-Valued Logic & Soft Computing 18(1) (2012),
RevKit is available at http://www.revkit.org

31. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: 38th IEEE International
Symposium on Multiple-Valued Logic, pp. 220–225 (2008), RevLib is available at
http://www.revlib.org

32. Maslov, D.: Reversible logic synthesis benchmarks page,
http://webhome.cs.uvic.ca/~dmaslov/ (last accessed January 2011)

33. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
Toffoli networks. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 12(4), 42 (2007)

34. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers.
Advances in Mathematics of Communications 2(2), 183–200 (2008)

http://www.revkit.org
http://www.revlib.org
http://webhome.cs.uvic.ca/~dmaslov/

Mapping NCV Circuits
to Optimized Clifford+T Circuits

D. Michael Miller1, Mathias Soeken2,3, and Rolf Drechsler2,3

1 Dept. of Computer Science, University of Victoria, Victoria, BC, Canada V8W 3P6
mmiller@cs.uvic.ca

2 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{msoeken,drechsle}@informatik.uni-bremen.de

3 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Abstract. The need to consider fault tolerance in quantum circuits has
led to recent work on the optimization of circuits composed of Clifford+T
gates. The primary optimization objectives are to minimize the T -count
(number of T gates) and the T -depth (the number of groupings of parallel
T gates). These objectives arise due to the high cost of the fault tolerant
implementation of the T gate compared to Clifford gates. In this paper,
we consider the mapping of a circuit composed of NOT, Controlled-NOT
and square-root of NOT (NCV) gates to an equivalent circuit composed
of Clifford+T gates. Our approach is heuristic and proceeds through
three phases: (i) mapping a circuit of NCV gates to a Clifford+T circuit;
(ii) optimization of the placement of the T gates in the Clifford+T circuit;
and (iii) optimization of the subcircuits between T gate groupings. The
approach takes advantage of earlier work on the optimization of NCV
circuits. Examples are presented to show the approach presented here
compares well with other approaches. Our approach does not add ancilla
lines.

1 Introduction

Quantum circuits are an important model of quantum computation and there
is thus considerable interest in the synthesis and optimization of such circuits
[9, 11, 15]. Recently, there has been particular interest in circuits composed of
Clifford+T gates [2, 3, 14] where a major objective is to minimize the number
of T gates and particularly the T -depth of the circuit. This is motivated by the
importance of fault tolerance in quantum computations [5, 18] and by the fact
the cost of the fault tolerant implementation of a T gate can exceed the cost of
implementing a Clifford gate by a factor of 100 or more [2].

Previously, there has been work on the optimization of NCV circuits [4, 13].
In this paper, we consider the mapping of an NCV circuit to an equivalent circuit
composed of Clifford+T gates with particular emphasis on optimizing T -count
and T -depth. The approach is heuristic but as examples will show, the approach
compares well with other methods. In particular, we compare our method to
circuits produced by the matroid partitioning approach described by Amy et
al. [2] which optimizes T -count and T -depth. Our approach is comparable for
those parameters and yields lower circuit depth in certain cases. We do not
consider the addition of ancilla lines in this work.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 163–175, 2014.
c© Springer International Publishing Switzerland 2014

164 D.M. Miller, M. Soeken, and R. Drechsler

Table 1. Gate definitions

Type Symbol Matrix Diagram Type Symbol Matrix Diagram

NOT N

(
0 1
1 0

)
CNOT C

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ •

controlled
V

(V =
√
N)

V

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2

⎞
⎟⎟⎠ •

V

controlled

V † V †

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1−i

2
1+i
2

0 0 1+i
2

1−i
2

⎞
⎟⎟⎠ •

V †

Hadamard H 1√
2

(
1 1
1 −1

)
H

T gate T

(
1 0

0 e
iπ
4

)
T T gate−1 T †

(
1 0

0 e
−iπ
4

)
T†

Phase S

(
1 0
0 i

)
S Phase−1 S†

(
1 0
0 −i

)
S†

The rest of the paper is organized as follows. Section 2 provides the back-
ground for the work. Our NCV to Clifford+T mapping approach is described
in Section 3 and examples are given in Section 4. The paper concludes with
suggestions for further work in Section 5.

2 Background

We assume the reader is familiar with the basics of quantum circuits and their
representations and only provide the notation and specifics required for this
work. A full review of the background can be found in the literature, e.g. [11].

Definition 1. A quantum circuit is a model of quantum computation repre-
senting a sequence of quantum operations. Each operation is represented by a
quantum gate and the circuit is a cascade of gates where the circuit lines repre-
sent the qubits (quantum bits) of a quantum system. A quantum circuit has no
fanout or feedback.

The gates used in quantum circuits are commonly defined by unitary matrices
and we do so in Table 1 which shows the gates used in this paper. U will denote
an arbitrary quantum operation. Note that since the matrices of interest are
unitary, the adjoint (denoted by †) is the inverse.

The C, V and V † gates are controlled gates and the operation is applied to
the target line if, and only if, the control line (indicated by a •) is 1.

The Toffoli gate [11] is like the CNOT except it has two controls which must
both be 1 for the target to be inverted. This has been generalized to multiple-
control Toffoli (MCT) gates [4] which have a number of controls all of which
must be 1 for the target to be inverted.

Quantum Gate Properties. The following quantum gate properties are im-
portant in this work.

1. (a) H = H−1 (b) S = TT (c) S† = T †T †
2. (a) U1

• •

U2

≡ U1

• •

U2

(b) •

•

≡ •

•

Mapping NCV Circuits to Optimized Clifford+T Circuits 165

3. • ≡ • •
V V

≡ • •

V † V †

4. (a) T •
U

≡ • T

U

(b) T† •

U

≡ • T†

U

5. (a) • •
T

≡ T

• •
(b) • •

T†
≡ T†

• •

6. (a) • •
• T

U

≡ • •
T •

U

(b) • •

• T†

U

≡ • •

T† •

U

7. (a) • •
•

≡ •
•

(b) •
• •

≡ • •

We refer to the structures in Property 5 as CTC structures where the T can
be a T or T † gate. Note the three gates in the structure have a common target
and the two CNOTs have a common control. Applying Property 5(a) or (b) will
be referred to as flipping the CTC structure.

Property 6 is somewhat surprising and provides considerable flexibility in
moving gates. It is a direct consequence of Properties 4 and 5.

Property 7 gives two important identities for reducing the number of CNOT
gates in a circuit. The applicability of Property 7(a) was illustrated in [17].
Note the equivalence shown is a particular example. The general rule is that
interchanging 2 CNOTs which share a qubit as target for one and control for
the other introduces a third CNOT with control and target from the unshared
lines of the initial pair of gates. Property 7(b) is a direct consequence of 7(a).
These properties have not been widely used in the literature but are in fact quite
effective as will be shown below.

In this paper, we refer to three types of circuits:

– MCT: which are composed of MCT gates which includes NOT, CNOT and
Toffoli gates;

– NCV: which are composed of N , C, V and V † gates; and

– Clifford+T : which are composed of the Clifford gates N , C, H , S and S†,
together with T and T † gates.

The following define key characteristics used in evaluating circuits.

Definition 2. A circuit level is defined as a sub-sequence of gates in a circuit
that can be applied in parallel. We assume in this work that two or more gates
can operate at the same level if they operate on disjoint qubits and can be grouped
together in the circuit.

Definition 3. Circuit depth is the number of levels in the circuit.

Definition 4. The T -count of a Clifford+T circuit is the total number of T
and T † gates in the circuit.

Definition 5. The T -depth of a Clifford+T circuit is the number of levels in
the circuit that contain one or more T or T † gates.

166 D.M. Miller, M. Soeken, and R. Drechsler

3 Mapping NCV Circuits to Clifford+T Circuits

In this section, we present a heuristic approach to mapping an NCV circuit to a
Clifford+T circuit. The approach involves a sequence of steps as outlined in the
following where we use the development of a Clifford+T circuit implementing a
full adder as a running example.

Initial Expansion. A V gate can be expanded to Clifford+T gates as shown
in (1) [16]. Note that the T on the top line can be placed as shown, between
the two CNOTs, or above the left H . The T on the bottom line can be moved
to be between the left-side H and CNOT gates. Provided the top T is not
between the CNOTs, the CNOT-T †-CNOT structure can be flipped. For a V †
gate, interchange T and T † gates in (1) and the above observations apply.

a •
b V

≡ • • T

H T† T H

(1)

Given the above, an NCV circuit can be expanded to a Clifford+T circuit by
expanding each V and V † gate. Our approach does this by traversing the NCV
gates from the inputs (left side) to the outputs (right side). In doing this, recall
that H is self-inverse so two adjacent H gates on the same qubit cancel and are
not included in the expansion.

T and T † gates outside CTC structures are specially considered as T and T †
are inverses so cancel if next to each other on the same qubit. Also two successive
T gates form an S and two successive T † gates form an S†. Our approach uses
a simple counting procedure to track the T and T † gates and only places a gate
when forced to when an H gate or CNOT target is encountered as the circuit
is traversed or the end of the circuit is reached. The details of our method are
outlined in the following algorithm description:

Initial Expansion Algorithm. Let n be the number of qubits (lines) in the
circuit. H is the set of lines with pending H gates. For each line i, Ti is a counter
of the T and T † gates on line i. By incrementing for the former and decrementing
for the latter, cancellations are directly accunted for. Let g denote the current
gate and let t represent its target. c will represent the control if g is a controlled
gate.

1. Set H = ∅ and set Ti = 0 for 1 ≤ i ≤ n. Start at the leftmost gate in the
circuit.

2. If g is a controlled gate and c ∈ H,
(a) If Tc > 0 add �Tc/2� S gates, and a T gate if Tc is odd, immediately to

the left of gate g on line c.
(b) Else if Tc < 0 add �Tc/2� S† gates, and a T † gate if Tc is odd, immedi-

ately to the left of gate g on line c.
(c) Set Tc = 0.
(d) Add an H gate on line c immediately left of gate g and remove c from

H.

Mapping NCV Circuits to Optimized Clifford+T Circuits 167

3. If g is a V or V † gate with target t:
(a) If t /∈ H add H,S, T gates as described in 2(a)-(d) above substituting t

for c.
(b) Put t into set H.

4. If g is a V gate,
(a) Add 1 to Tt and add 1 to Tc.
(b) Replace gate g with three gates CNOT-T †-CNOT using control c and

target t.
5. Else if g is a V † gate,

(a) Subtract 1 from Tt and subtract 1 from Tc.
(b) Replace gate g with three gates CNOT-T -CNOT using control c and

target t.
6. Else add H,S, T gates as described in 2(a)-(d) above substituting t for c.
7. Set g to the next gate to the right in the circuit. If there is no such gate the

procedure is done.
8. Go to step 2.

To illustrate the application of this algorithm, consider the reversible full
adder circuit in Fig. 1(a) [11]. Each Toffoli-CNOT pair is in fact a Peres [11]
gate. Figure 1(b) is an optimal NCV realization found by expanding the two
Peres gates and then canceling two gates [10]. The Clifford+T circuit shown in
Fig. 1(c) illustrates key features of the initial expansion process. The T gates
placed on the controls of the three V gates (1,2,3) are positioned as far right
as possible. Note that a T and T † gate cancellation coming from gates 3 and 5
occurs on line d and the T gates from gates 1 and 2 combine to form an S gate
which is again placed as far right as possible.

a • •
b • • •
c •
d

(a) a • •

b • •

c • •

d V V V V †

1 2 3 4 5 6

(b)

a • • • T

b • • T •

c • • T • • T†

d H T† T† T† T S H

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19

(c)

a T • T† •

b T • T†

c • T • • T† •

d H T† • • T • • S H

(d) a T • • T† •

b T • T†

c • T • • T† •

d H T† • T • S H

(e)

Fig. 1. Full adder

168 D.M. Miller, M. Soeken, and R. Drechsler

T Gate Parallelization. T gate parallelization means moving T and T † gates,
each on a unique circuit line, to the same circuit level so that they can operate
in parallel. The objective is to reduce the T -depth of the circuit. We consider
three types of T and T † gate moves:

I. A T or T † gate that can be moved to the desired position unimpeded, i.e.
it can pass over all intervening gates with no additional gate movement or
alteration.

II. Moving the T or T † gate to the desired position requires moving one or
more CNOTs and/or requires that a CTC group be flipped.

III. A sequence of Type I and Type II moves is required to reposition a T or
T † gate.

Our approach to T gate parallelization is outlined below. Note that this al-
gorithm addresses only Type I and Type II moves. Type III moves are applied
afterwards. Several illustrative examples are given in the next section.

T Gate Parallelization Algorithm. Let n be the number of qubits (lines) in
the circuit.

1. Start at the leftmost CTC structure in the circuit.
2. Let p be the position of the T or T † in the CTC structure.
3. Set X1i to be the position of the leftmost T gate that can be moved to

position p on line i by a Type I move. Set X1i = ∅ if no such T gate exists.
4. Set X2i to be the set of the positions for all T gates that can be moved to

be in position p on line i (the set may be empty). Note that in doing this
each CTC structure is entered twice as it can be moved flipped or unflipped,
i.e. the T or T † can end up on one of two possible lines.

5. Let t be the target line and c be the control line in the CTC being considered.
If X1t �= ∅ and X1c = ∅, flip the CTC structure; otherwise set X1t = ∅.

6. For each line i, if X1i �= ∅ move the T or T † gate from position X1i to
position p on line i (a Type I move) and set X2i = ∅.

7. For each line i, if X2i �= ∅ move the T or T † gate from position j to position
p on line i (a Type II move) where j is the position of the leftmost gate
identified in X2i. Remove j from any other X2k, k > i.

8. Go right to the next CTC structure and go to step 2. If there is no such
structure, the procedure is done.

As an example, applying our T gate parallelization approach to the circuit in
Fig. 1(c) yields the circuit in Fig. 1(d). First, the left parallelization is accom-
plished by moving T gates from positions 18, 11 and 13 left on lines a, b and c
respectively using Type I moves. Second, the right parallelization requires the
gate groups (5,6,7) and (8,9,10) to be flipped and then gates 8 and 9 have to be
shifted left. The group (15,16,17) then has to be shifted into position by a Type
II move. To do that requires gate 14 to be moved left which requires gate 14 be
moved past gate 12 (recall that gate 13 has already been moved to the left paral-
lelization). Moving gate 14 past gate 12 creates the CNOT(a;c) gate in Fig. 1(d).
Lastly, the T † gate in position 18 is moved left to join the parallelization.

Mapping NCV Circuits to Optimized Clifford+T Circuits 169

CNOT Reduction. A circuit composed solely of CNOTs is a linear reversible
circuit. As can be seen in Fig. 1, a Clifford+T circuit typically has a number of
linear subcircuits. It is thus useful to consider optimization of a circuit of CNOT
gates.

As shown in Patel et al. [12], this problem can be expressed in terms of
operations on a matrix over GF(2). In particular, the operation of a CNOT gate
can be expressed as a matrix row operation. In particular, the operation of a
CNOT with control α and target β corresponds to replacing row β by the mod-2
sum of rows α and β.

For example, consider the 6 CNOT gates between the two T gate paralleliza-
tions in Fig. 1(d). Starting from a 4× 4 identity matrix and applying (α, β) row
additions in the order (c, d), (b, c), (a, c), (d, a), (d, b), (c, d), corresponding to the
6 CNOTs gates from the adder, yields the matrix in (2). This matrix represents
the functionality of the 6 CNOTs. The problem here is to determine if there is
a more efficient CNOT circuit performing the same functionality.⎛

⎜⎝
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎞
⎟⎠ (2)

One approach is to use Gaussian elimination over GF(2). This is typically
not optimal. Patel et al. [12] have given a method that is typically more effec-
tive in terms of CNOT count but is not always optimal. For example, applying
their method to the matrix in (2) yields a circuit that can be further reduced
using Property 7. Also, the Patel method was not designed to take advantage of
levelizing CNOTs, i.e. positioning two or more CNOTs into one circuit level.

CNOT Optimization Algorithm. Given a 0-1 matrix M , let Mi denote the
ith row of M and let |Mi| denote the number of 1’s in that row. Our method
proceeds as follows:

1. SetX = ∅. (Note: The setX is key to making choices that allow levelization.)
2. If M is the identity matrix, go to step 10.
3. For all possible pairs, find the pair (α, β) such that α /∈ X , β /∈ X and
|Mβ|−|Mβ+Mα| is maximal, and there is a 1 in the β position in |Mβ+Mα|
where the addition is modulo 2.

4. If the maximum value found in step 3 is 0, apply the Patel et al. method [12]
to M to complete the solution.

5. If no (α, β) is found in step 3, set X = ∅ and go to step 2.
6. If an (α, β) is found in step 3, add a CNOT with control α and target β to

the solution. Note that the gates are generated in order from right to left.
7. Replace Mβ by Mβ +Mα where the addition is modulo 2.
8. Add α and β to X .
9. Return to step 2.
10. Property 7 is systematically applied to further reduce the number of CNOTs.

Applying the above method to the matrix in (2) yields the (α, β) sequence:
(a,b), (c,d), (d,a), (b,c), (a,b), (c,d) which corresponds to the CNOT sequence
shown in Fig. 1(e). Note that while there are 6 CNOTs in both circuits,

170 D.M. Miller, M. Soeken, and R. Drechsler

the sequence in Fig. 1(d) requires 5 levels, while the sequence in Fig. 1(e) requires
only 3. Using CNOT reduction, the CNOTs at the right end of Fig. 1(d) can
also be reduced as shown in Fig. 1(e) saving one level in the circuit. The circuit
in Fig. 1(e) is the same as identified in [3, 16].

4 Examples

In this section we provide a number of examples to illustrate the application of
our approach. In particular, these examples illustrate certain aspects of optimiz-
ing T gate parallelization not illustrated in the full adder example.

Toffoli Gate with Two Controls. It is well-known [4] that the 2-control
Toffoli gate depicted in Fig. 2(a) can be realized by 5 NCV gates as shown in
Fig. 2(b). Figure 2(c) is found by expanding the V and V † gates in Fig. 2(b) to
Clifford+T gates. Note that the H gates that would fall between gates 1 and 3
and between 3 and 5 cancel as do a T from the expansion of gate 1 and a T †
from the expansion of gate 3 on line c.

The next step is T gate parallelization. Gates 1e and 5d can be moved to be
above gate 1c using Type I moves since there are no intervening CNOT targets
or H gates. Similarly, gate 3d can be moved above 3b as a Type I move. Gate 5b
is moved above 3b by a Type II move. In particular, the gate group (5a,5b,5c)
is flipped and then the gates are moved into the positions shown in Fig. 2(d).

The circuit in Fig. 2(d) has T -count 7, T -depth 3 and 12 levels. The number of
levels can be reduced by shifting gate 3d left; flipping the gate group (3a,3b,3c);
and then shifting gate 5e left. This yields the circuit in Fig. 2(e) which has 11
levels since gates 5a and 3d can be combined in a single level. Note that no
CNOT optimization is possible for this circuit. The T -count of 7 and T -depth
of 3 are optimal but a circuit with 10 levels has been found previously [16].

The Function a2x [2]. The function a2x can be realized by 2 Toffoli gates
as shown in Fig. 3(a). An NCV realization is shown in Fig. 3(b). Note that
the realizations for the Toffoli gates have been arranged so that a V from the
left Toffoli combines with a CNOT from the right Toffoli to yield the V † gates
marked by the arrow. This reduction is possible since a CNOT can be replaced
by two identical V † gates which then leads to a V -V † cancellation. Using the
initial expansion and T gate parallelization techniques in the manner described
in the above examples yields the circuit in Fig. 3(c).

Figure 3(d) shows twoCNOT optimizations. The 3 leftmost CNOTs in Fig. 3(c)
are reduced to 2. The 3 CNOTs between the right two T gate parallelizations are
also reduced to 2.

Figure 3(d) also shows the insertion of 2 identical CNOTs at positions 3 and
4. This is possible since they functionally cancel. The reason for the insertion is
so that the gate group (4,5,6) can be flipped and then moved to the positions
shown in Fig. 3(e) with the effect of reducing the T -depth by 1. There is also a
resulting CNOT reduction shown in Fig. 3(e). The gates in position 1 and 2 have
been interchanged which results in the gate from position 3 being eliminated.
Our final circuit has T -count 12, T -depth 4 and circuit depth 20. The circuit
in [2] also has T -count 12 and T -depth 4. It has 23 levels.

Mapping NCV Circuits to Optimized Clifford+T Circuits 171

a •
b •
c

(a) a • • •

b • •

c V V † V

1 2 3 4 5

(b)

a • • • • T

b • • T • • T†

c H T† T T† T H

1a 1b 1c 1d 1e 2 3a 3b 3c 3d 4 5a 5b 5c 5d 5f

5e

(c)

a T • T† •

b • T • • T† •

c H T† • T • T H

1a 1b 5d 1d 2 5a3a 5b 3c5c 4 5f

1e 3d 5e

1c 3b

(d) a T • T† •

b • T • T† T

c H T† • • T • • H

1a 1b 5d 1d 2 5a 3d 3a 5b 3c 5c 4

1e 3b 5f

1c 5e

(e)

Fig. 2. 2-control Toffoli gate

a •
b • •
c •
d

(a) a • • •

b • • • •

c V V † V † • •

d V † V V

↑

(b)

a • • T • •

b T T† • T • •

c H • T† • • T† • H • T† • • T •

d H T T† T T† H

(c)

a • T • • • •

b T T† • T • • •

c H • T† • • T† • H • T† T •

d H T T† T T† H

1 2 3 4 5 6

(d)

a • T • T†

b T • • T • • • •

c H • T† • • T† • H • T† T •

d H T T† T T† H

2 1 4 5 6

(e)

Fig. 3. a2x

172 D.M. Miller, M. Soeken, and R. Drechsler

a
•

•
b

•
•

c
•

•
d

•
•

e

(a
)

a
•

•
•

•

b
•

•
•

•

c
•

•

d
•

•
V

V
V

†
•

•
V

V
†

V
†

e
V

V
†

V
V

†

(b
)

a
T

†
•

T
•

b
T

T
†

•
•

•
•

T
T

†

c
•

•

d
•

T
•

•
T

†
•

H
•

•
T

•
•

T
H

•
T

•
•

T
†

•
H

•
T

†
•

•
T
†

•
H

e
H

T
†

T
T
†

T
H

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2
1
3
1
4
1
5

1
6

1
7

1
8

(c)

a
T

†
•

T
•

b
T

T
†

•
•

T
†

•
T

†
•

c
•

•
•

•

d
•

T
T

†
•

H
•

•
T

•
T

H
•

T
T

†
•

H
•

•
T
†

•
T

H

e
H

T
†

T
T

†
T

H

A
2

6
4

B
8

1
0

1
1

1
4
1
3
1
5

1
6

1
7

1
8

(d
)

F
ig
.
4
.
a
3
x

Mapping NCV Circuits to Optimized Clifford+T Circuits 173

The Function a3x [2]. The Toffoli gate circuit for ax3 is shown in Fig. 4(a).
Note that this circuit implements the 3-control Toffoli gate TOF(a, b, c; e) using
d as an ancillary line. The mapping to NCV gates we use is shown in Fig. 4(b).
Note that the mapping for the 2 Toffoli gates with target e are chosen so that a
total of 4 NCV gates, 2 from each Toffoli, cancel, so each Toffoli maps to 3 gates.
Likewise, the 2 Toffoli gates with target d are mapped so that 2 CNOTs cancel
so that each of these Toffoli gates is mapped to 4 gates. The V /V † assignment
for the rightmost Toffoli is chosen so that there are 3 V and 3 V † on line d which
heightens the opportunity for cancellations during the expansion process. This
mapping is, up to reordering, the NCV realization given in [13].

Figure 4(c) shows the Clifford+T circuit after T gate parallelization is almost
complete. This circuit has T -depth 9. However by doing the following in order:
flipping the gate group at (10,11,12); moving the T † from position 16 to position
11; flipping the gate group at (15,16,17) and then moving the T † from position
18 to position 16, the T -depth can be reduced to 8. Note that gates (1,2,3) in
Fig. 4(c) become gates A,2 in Fig. 4(d). Likewise, gates (4,5,6) become 6,4 and
gates (7,8,9) become B,8. These changes are the result of CNOT reductions.

Our final circuit has T -count 18 and T -depth 8 with circuit depth 33. Amy
et al. [2] give a circuit for a3x with T -count 16 and T -depth 8. Their circuit has
circuit depth 40. Which of the two circuits is truly better will likely be technology
dependent. The fact they have the same T -depth makes the reduction from 40
to 33 circuit levels attractive.

The Function 3 17. Our final example is known as 3 17 [19]. The NCV circuit
is shown in Fig. 5(a). Fig. 5(b) shows the circuit after the Type I and Type II

a • V † V V † • •

b • • • •

c • • V † V † V

(a)

a • H T • • T† • • H • T† • • T •

b • T† • T T • S†

c T • T† H • T† • T T† H

(b)

a • H T • • T† • • H • • T† • T •

b • T† • T T • • • S†

c T • T† H • T† • T T† H

1 2 3 4 5 6 7

(c)

a • H T • • T† • • H T • • T • •

b • T† • T T • T† S†

c T • T† H • • T† • • T† H

(d)

a • H T • T† • • H T • T • •

b • T† • T T • T† S†

c T • T† H • • T† • T† H

(e)

Fig. 5. 3 17

174 D.M. Miller, M. Soeken, and R. Drechsler

moves in the T gate parallelization phase. The circuit in Fig. 5(c) is derived from
the one in Fig. 5(b) by moving the T † gate into position 6 and adding the two
CNOTs in positions 4 and 5. The gate group (1,2,3) can be flipped and moved
left and the gate group (5,6,7) can be flipped and moved right. Doing both of
those operations yields the circuit in Fig. 5(d) with T -depth 4 rather than 5.
CNOT reduction then yields the final circuit, Fig. 5(e).

5 Conclusion and Future Work

In this paper, we have presented a method for mapping an NCV circuit to a
Clifford+T circuit. Several examples were presented to illustrate the approach.
The results show that the method is promising as it produces results comparable
to earlier methods.

More work is required to determine how effective the method will be for
larger NCV circuits. The methods presented are heuristic and further study is
required to determine if the choices made are in fact the most effective. It would
be most interesting to look at the integration of our methods with the matroid
partitioning approach due to Amy et al. [3], particularly our CNOT optimization
approach.

In this paper, we have assumed that gates can be applied in parallel, i.e. at the
same circuit level, if they involve different qubits. Depending on the technology,
a different assumption may apply. For example, the nearest neighbour constraint
requires that the target and control for a controlled gate must be adjacent cir-
cuit lines [7]. In that case, the CNOT optimization phase of our approach must
be modified or another appropriate nearest neighbour CNOT optimization tech-
nique [1,6,8] can be applied. Other constraints may apply for other technologies
and again the CNOT optimization phase must be appropriately adjusted. The
initial expansion and T -gate parallization phases are not affected.

H gates are particularly problematic for our approach since they put limits
on the movement of other gates in the circuit and can affect the ability of our
methods to optimally parallelize T gates. Work to limit or to judiciously place H
gates would be valuable. In addition, it is not clear that minimal NCV circuits
are the best starting point since non-minimality may in some instances lead to
better H gate placement.

Acknowledgment. This work was supported in part by a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada.

References

1. AlFailakawi, M., AlTerkawi, L., Ahmad, I., Hamdan, S.: Line ordering of re-
versible circuits for linear nearest neighbour realization. Qunatum Inf. Process. 12,
3319–3339 (2013)

2. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T -depth optimization of
Clifford+T circuits via matroid partitioning, arXiv:quant-ph/1303.2042v2 (2013)

3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD 32(6),
818–830 (2013)

Mapping NCV Circuits to Optimized Clifford+T Circuits 175

4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Phys. Rev. A 52(5), 3457–3467 (1995)

5. Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New lim-
its on fault-tolerant quantum computation. In: Foundations of Computer Science,
vol. 27, pp. 411–419. IEEE Computer Society (2006)

6. Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis
of reversible circuits by graph partitioning. CoRR, arXiv:1112.0564v2 (2012)

7. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal
quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

8. Khan, M.H.A.: Cost reduction in nearest neighbour based synthesis of quantum
Boolean circuits. Engineering Letters 16, 1–5 (2008)

9. Lukac, M.: Quantum Inductive Learning and Quantum Logic Synthesis.
BiblioLabsII (2011)

10. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simpli-
fication and level compaction. IEEE Trans. CAD 27(3), 436–444 (2008)

11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

12. Patel, K., Markov, I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits.
Quantum Information and Computation 8(3&4), 282–294 (2008)

13. Sasanian, Z., Miller, D.M.: Mapping a multiple-control Toffoli gate cascade to an
elementary quantum gate circuit. Multiple-Valued Logic and Soft Computing 18(1),
83–98 (2012)

14. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)
15. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits.

IEEE Trans. on CAD 25(6), 1000–1010 (2006)
16. Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the

Pauli matrices. Phys. Rev. A 88, 042322 (2013)
17. Soeken, M., Thomsen, M.K.: White dots do matter: Rewriting reversible logic

circuits. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 196–
208. Springer, Heidelberg (2013)

18. Weinstein, Y.S.: Non-fault tolerant T -gates for the [7,1,3] quantum error correction
code. Phys. Rev. A 87, 032320 (2013)

19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at www.revlib.org

www.revlib.org

2D Qubit Layout Optimization for Topological

Quantum Computation

Nurul Ain Binti Adnan, Shigeru Yamashita,
Simon J. Devitt, and Kae Nemoto

College of Information Science and Engineering, Ritsumeikan University,
1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan

Abstract. Nowadays,Topological quantum computation is considered to
be one of the most promising methods in realizing the future of quantum
computation. The circuit model for topological quantum computation
differs from the conventional quantum circuit model even in the logic
level; which is multiple CNOT gates can only be performed at the same
time if the order of qubits satisfies a certain property. Thus, there has
been a wide research to find a good qubit order in one-dimension to
satisfy such a property for topological quantum computation. This pa-
per proposes a new method by using two-dimensional qubit layouts for
topological quantum computation in order to reduce the computational
time steps instead of one-dimensional qubit layouts used by the con-
ventional computer. The general idea is to find a good two-dimensional
qubit layout, so our propose is to find the best set of one-dimensional
qubit layouts exactly by solving a minimum clique partition problem, and
by then we will find the best two-dimensional layout that can embed as
many of one-dimensional layouts as possible. The further task may need
a very time-consuming(exponential number of) enumerations because we
try to find the best possible solution by using an efficient graph structure
called πDDs. Indeed, despite this, we still could not find a solution for
larger cases more than 16 qubits (4x4 layout) case in our preliminary
experiment. Thus, we also implement an SA-based method in order to
find a good two-dimensional qubit layout for a reasonable time. Our pre-
liminary experiment shows that the SA-based method works very well
for larger cases.

Keywords: topological quantum computation, qubit layout, circuit
optimization, simulated annealing.

1 Introduction

To realize a quantum computation, we need to have a fault-tolerant quantum
gates, i.e., quantum gates with a very low operational error rate. Thus, the
quantum error correction codes were used for that purpose in the conventional
quantum circuit model.

Topological quantum computation [3] is another possible way to have fault-
tolerant quantum gates. Recently, this model of quantum computation has been

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 176–188, 2014.
c© Springer International Publishing Switzerland 2014

2D Qubit Layout Optimization 177

x1

x2

x3

x4

x5

x6

x7

x8

x9

g8
g6

g5

g4

g7

g2

g1

g3

Fig. 1. An initial circuit: 8 Steps

x3

x9

x4

x7

x8

x6

x2

x5

x1

g5

g1

g3

g6

g7

g8

g2

g4

Fig. 2. The optimal one-dimensional qubit
layout: 3 Steps

considered to be much more promising than the conventional model of quan-
tum circuits in terms of error corrections. The ways of encoding logical qubits
in topological quantum computation differs from the conventional quantum cir-
cuit model, and thus the logical primitive operations are also very different. The
primitive operation called a braiding operation can be seen as a drawing line
between logical qubits with some special rules when we designing a quantum
circuit. As the property of the topological quantum computation model are dif-
ferent from the conventional quantum circuit model, the design strategy also
should be different from the conventional quantum circuit design.

To briefly understand the difference between the conventional quantum cir-
cuit model and topological quantum computation; let us see the circuit in Fig. 1.
In the conventional quantum circuit model, we often assume that the multiple
CNOT gates can be performed at the same time if their interacting qubits are
different, and the depth of the circuit can also be calculated based on this as-
sumption. For example, in the Fig. 1 we can perform g1 and g2 at the same time.
First, an important observation here is that such a relation of two gates does
not change even if we change the qubit order(qubit layout); while the gate order
remain fixed. Thus, it is not important to consider about the qubit order in the
conventional quantum circuit design.

In contrast to the above, in topological quantum computation, we can only
assume that any two gates can be performed parallelly if only their gate symbols
on the circuit diagram are not overlapped in the horizontal direction. (More
discussion will be given later.) For example, we cannot perform g1 and g2 in
the circuit (as shown in Fig. 1) at the same time like in the conventional circuit
model.

As described above, it should now clear that the qubit order (i.e., qubit layout)
is really important for the computation time for topological quantum computa-
tion unlike the conventional quantum circuit model. Thus, there is an existing
work [5] to find a good qubit order; the method proposed in this paper can
optimize the circuit from Fig. 1 to the Fig. 2. Here, the two circuits are logically
equivalent but with different initial qubit orders. The number of the logical time
steps in the circuit in Fig. 1 is 8, which is optimized to 3 as shown in Fig. 2.

178 N.A.B. Adnan et al.

x9

x1

x2

x3

x4

x5

x6

x7

x8

g5

g7

g6

g8

Step 2

g1g4

g2 g3

x9

x1

x2

x3

x4

x5

x6

x7

x8

Step 1

Fig. 3. The optimal two-dimensional qubit layout: 2 Steps

Our Contribution
In this paper, we propose a method by using two-dimensional qubit layout
whereas the conventional methods considers only one-dimensional qubit layout.
In one-dimensional qubit layout, it is shown that one single qubit order does not
allow us to perform the above circuit with two time steps. For example, at the
one-dimensional qubit layout of the qubit order as shown in Fig. 2, the three
gates, g4, g1 and g5 (and g7), are overlapped with each other; so we need at least
three time steps. In contrast, if we layout the qubits two-dimensionally as shown
in Fig. 3, we can perform the circuit with only two logical time steps. This is
because the two-dimensional qubit layout allows us to perform g1, g2, g3 and g4
at the same time as shown at the left-hand side of Fig. 3. Our proposed method
is to find the best of two-dimensional qubit layout efficiently; will be mentioned
in the followings.

As far as we know, this is the first systematic method to find a good two-
dimensional qubit layout suitable for topological quantum circuits.

This paper is organized as follows. The next section explains the logic circuit
model for topological quantum circuits, and its design flow. The section also
describes terminology used mainly in the one-dimensional case because it is also
useful to understand our two-dimensional case. Then, Section 3 proposes our
method how to find a good two-dimensional qubit layout. After that, Section 4
shows some experimental results and Section 5 concludes the paper with further
future work.

2 A Circuit Optimization Problem for Topological
Quantum Computation

In this section, we will first review about the basic circuit model for topo-
logical quantum computation mainly from [3]. Then, we will explain a design
scheme on how to implement a quantum circuit in logic level for the circuit
model. We also explain some terminologies used in the previous optimization
method for one-dimensional case [5] because they are also useful for this paper.

2D Qubit Layout Optimization 179

Finally, we formulate a logic level circuit optimization problem for the proposed
design scheme. Readers who have the background knowledge of the topic may
skip this section.

2.1 Logic Circuit Model for Topological Quantum Computation

Here we explain a logical circuit model for topological quantum computation
based on the implementation scheme proposed by [3]. In the scheme, first we
prepare a group of physical qubits called surface code data qubits to express the
quantum state of a single logicala qubit. By the way of preparation that there
are two types of logical qubit codes: smooth and rough qubits.

We can apply a specific elementary logical operation to a logical qubit by
performing measurements to a specific group of physical qubits that are relevant
to the logical qubit code. A group of measurements to a specific group of physical
qubit can be illustrated as a drawing in the physical space corresponding to the
qubits. Such a group of measurements is called a brading operation. An important
property of brading operations is that multiple brading operations can be done
at the same time if their corresponding drawings are not overlapped with each
other in the physical space.

A CNOT operation to logical two qubits that are encoded into different types
of qubits (i.e., smooth and rough qubits) can be performed simply by just a
single brading operation between the two coded qubits. However, it is not always
possible to encode the target and the control qubits of all the CNOT gates into
different types of qubits. For example, if we want to apply three CNOT gates
between x1 and x2, between x2 and x3, and between x3 and x1, the three pairs
of qubits, (x1, x2), (x2, x3) and (x3, x1) should be encoded into different types;
this is impossible.

Therefore, we have to encode logical qubits into the same type (say, smooth)
code. Then, a CNOT gate between two smooth qubits can be implemented by
three brading operations by adding two ancilla qubits. This is shown in Fig. 4
where each horizontal line represents a logical qubit (smooth or rough) code,
and times goes from the left to the right in the figure. In the figure, only the
second line corresponds to a rough qubit code (the other lines corresponds to
smooth qubit codes). The dotted rectangles in the figure represent brading op-
erations. MX and MZ in the figure mean measurements in the X and the Z
bases, respectively. In the implementation of a CNOT gate, the logical qubit for
the target bit is moved to the ancilla (smooth) qubit as the shows in the figure.
Thus, for one logical qubit, we need to use a pair of two smooth logical qubit
codes. In the following, we consider such a pair of two logical qubit (smooth)
codes as one logical qubit in the logic level. Also note that we need an additional
rough logical qubit code for each CNOT gate as explained, but such additional
qubits are irrelevant to our discussion, and so we will simply ignore them in the
following.

The above is a very intuitive perspective of the model discussed in [3], and
thus an exact and detail discussions should be found in that paper.

180 N.A.B. Adnan et al.

Controlin

Ancilla

Ancilla

Targetin

Controlout

Targetout

MZ

MX

Fig. 4. A CNOT between two logical qubits of the same type

2.2 A Design Procedure for Topological Quantum Computation

To realize topological quantum computation, we consider the following design
procedure.

Step 1. Logic level quantum circuit design.
Step 2. Conversion to braiding operations.

This design flow is similar to the one for the conventional quantum circuits.
For the first step, as usual, we have to decompose a target quantum algorithm
into a sequence of CNOT gates and some elementary single qubit gates that can
be done in the topological quantum computation.

Then as a second step, the following logic circuit model is our proposal based
on the model described in Section 2.1.

– We prepare two smooth qubits for each logical qubit.
– One of the two smooth qubits is used to encode a logical qubit, and the other

smooth qubit is used as an ancilla qubit when we want to perform CNOT
gates as described in Section 2.1.

– Two smooth qubits for a logical qubit are placed adjacently, and each pair of
two qubits are placed in a line. In other words, if we have n logical qubits,
x1, · · · , xn, we place 2n smooth qubits, x1a , x1b , x2a , x2b , · · · , xna , xnb

in a line
where xia and xib are used for xi. However, in the logic level it is good enough
for us to only consider about one encoded qubit for each logical qubit in our
problem. The reason is that we can simply consider x1a , x1b as one qubit as
they are placed adjacently. Therefore, in the following, we consider that one
logical qubit is placed at one place in the logic level circuits for our problem.

2.3 Terminology Used for One-Dimensional Layout

In the followings, we assume logical qubits are placed in a line, named
x1, x2, · · · , xn for a circuit with n logical qubits. We ignore one-qubit gates for
simplicity, i.e., our target circuits consist of only CNOT gates. However, the
generalization is almost trivial. The target and the control qubits of gate gi are
denoted by T (gi) and C(gi), respectively.

First we introduce a terminology “overlapped” for one-dimensional qubit lay-
outs as follows.

2D Qubit Layout Optimization 181

Definition 1. A pair of gates gi and gj are said to be overlapped with a given
qubit order if the group of qubits placed between T (gi) and C(gi), and the group
of qubits placed between T (gj) and C(gj) have at least one common qubit with
the given qubit order. If gi and gj are not overlapped, they are said to be non-
overlapped with each other.

For example, g1 and g2 in Fig. 1 are overlapped with this qubit order. The reason
is as follows. Since T (g1) = 7, C(g1) = 9 and T (g2) = 2, C(g2) = 8, the group
of qubits placed between the control and the target qubits of g1 are x7, x8, x9,
and the group qubits placed between the control and the target qubits of g2
are x2, x3, x4, x5, x6, x7, x8. Thus, the two groups of qubits have common qubits,
and so g1 and g2 are overlapped. However, if we just change the qubit order to
get the circuit in Fig. 2, g1 and g2 become non-overlapped as we can see from
the figure.

If the two logical CNOT gates are non-overlapped, the braiding operations for
the two CNOT gates can be performed in one logical time step as we discussed
in Section 2.2. Thus, our task is to increase the number of CNOT gates that
are non-overlapped with each other after Step. 1 of the above-mentioned design
procedure.

We can swap two CNOT gates, gi and gj, if C(gi) �= T (gj) and T (gi) �= C(gj).
We refer this as the swapping rule in the following. For example, g3 and g4
in Fig. 1 can be swapped. Also g4 and g5 in Fig. 1 can be swapped, and thus
we can change the order of g3, g4, g5 in any order. However, g4 and g7 in Fig. 1
cannot be swapped because the target qubit of g4 and the control qubit of g7
are the same qubit (i. e., x4).

Based on the circuit model discussed in Section 2.1, the cost of a circuit Q,
denoted by Cost(Q), is defined as follows: Let the maximum number of gates that
are non-overlapped with each other at the first part of Q be k. In other words,
by using the swapping rule, we can move k (k is the maximum possible number)
gates to the beginning of the circuit so that the k gates are non-overlapped
with each other. (Note that non-overlapped two gates can be swapped by the
swapping rule.) Then, Cost(Q) = Cost(Q′) + 1 where Q′ is a circuit obtained
from Q by removing the first k gates. This cost is due to the fact that the first k
non-overlapped gates can be done in one logical time step in our circuit model.

Our essential task is to find a good qubit order among all the permutations,
and thus it seems very difficult.

To explain our method, we also need the following terminology.

Definition 2. If gi can be moved to next to gj by only the swapping rule, gi and
gj are said to be “adjacentable” with each other.

For example, g4 and g6 in Fig. 1 are adjacentable because g4 and g5 (or g5 and
g6) can be swapped.

For a given qubit order, if two gates are adjacentable and non-overlapped, their
corresponding brading operations can be performed parallelly, and thus the com-
putational steps for the circuit is decreased. Therefore, the existing method [5]
tries to find a “good” one-dimension qubit order such that as many adjacentable
gates as possible become non-overlapped.

182 N.A.B. Adnan et al.

3 Two-Dimensional Qubit Layout Optimization

In this section, we propose to use two-dimensional qubit layouts, and also show
an efficient method to find a good two-dimensional layout. Let us again see the
motivational example as shown in Figs. 2 and 3 where the logical time steps are
three and two when the qubits are placed in one-dimension and two-dimension,
respectively. From the example, it seems that a two-dimensional qubit layout
is always better than any one-dimensional qubit layout. This is indeed true as
stated formally in the following; our design approach is based on this fact.

Theorem 1. If a group of gates can be performed at the same time in a one-
dimensional qubit layout, there should be a two-dimensional qubit layout by which
we can perform the same group of gates at the same time.

The proof is obvious by seeing the fact that a one-dimensional qubit order
can be always embedded into a two-dimensional qubit layout. For example, the
qubit layout as shown in Fig. 3 contains one-dimensional qubit orders, such as
x3, x9, x7, x4, x2, x6, x8, x5, x1 and x7, x9, x3, x4, x1, x5, x8, x2, x6. The qubit or-
der: x3, x9, x7, x4, x2, x6, x8, x5, x1 allows us to perform g5, g6, g7 and g8 in Fig. 1
at the same time. Also, g1, g2, g3 and g4 in Fig. 1 can be performed at the same
time with the qubit order: x7, x9, x3, x4, x1, x5, x8, x2, x6. In other words, the
qubit layout as shown in Fig. 3 can provide us the above two one-dimensional
qubit layouts; two time steps are enough if we use the two-dimensional layout.

In the case of two-dimensional layouts, we need to modify the terminology
“overlapped” as follows, which should be obvious.

Definition 3. A pair of gates gi and gj are said to be overlapped with a given
two-dimensional qubit layout if the line between T (gi) and C(gi) and the line
between T (gj) and C(gj) cross each other in the given two-dimensional qubit
layout. If gi and gj are not overlapped, they are said to be non-overlapped
with each other.

For example, in the qubit layout as shown in Fig. 3, gi whose target and control
bits are x3 and x4, respectively, and gj whose target and control bits are x2 and
x8, respectively, are non-overlapped whereas gi and gk whose target and control
bits are x2 and x7, respectively, are overlapped. This is because two lines between
x3 and x4, and between x2 and x8, are not crossed, but two lines between x3 and
x4, and between x2 and x7, cross each other in the layout as shown in Fig. 3.

As in the case of one-dimensional layouts, our essential task is to find a “good”
two-dimensional qubit layout such that as many adjacentable gates as possible
become non-overlapped. The difficulty here is that a two-dimensional qubit lay-
out allows many pairs of two gates to be non-overlapped unlike one-dimensional
layouts; there are so many possibilities for a “good” layout.

Therefore, in order to do the search efficiently, we divide the whole problem
into the following two sub-problems, each of which can be solved optimally.

– First, we divide all the gates into the smallest number of gate groups such
that all the gates in each group are possibly non-overlapped whose definition
is explained below.

2D Qubit Layout Optimization 183

– Second, we enumerate the possible two-dimensional qubit layouts for each
gate group so that all the gates in the gate group can be non-overlapped.
Let such a set of two-dimensional qubit layouts for the gate group Gi be Pi.
After that, we can find a good layout which is included in as many Pi as
possible.

The definition of possibly non-overlapped is as follows.

Definition 4. Two gates are said to be possibly non-overlapped if T (gi)
and C(gi) are different from neither T (gj) nor C(gj), and the two gates are
adjacentable.

Equivalently, if two gates are possibly non-overlapped, there is at least one qubit
layout which allows the two gates to be non-overlapped.

Unlike the one-dimensional case, a two-dimensional qubit layout allows many
pairs of gates to be non-overlapped. So, it is expected that possibly non-overlapped
gates become no-overlapped with one specific qubit layout more often than the
one-dimensional case. If that happens, we can perform all the gates in one group
of possibly non-overlapped gates at one time step; this means that the number of
whole necessary time steps is expected to be equivalent to the number of groups
of possibly non-overlapped gates. Thus, in the first sub-problem, we would like to
find the smallest number of gate groups.

Finding a group of possibly non-overlapped gates can be easily formulated as
finding a clique in a graph. Namely, we can find a good solution by casting the
problem to a clique cover problem as follows. There are many state-of-the-art
methods for the problem, and we just use an exact method to solve minimum
clique partition problem [2] in our experiment.

A method to solve the first sub-problem.

Step 1. Construct a graph where each node corresponds to each gate in C, and
we have an edge between two nodes iff the corresponding two gates in the
given circuit are possibly non-overlapped.

Step 2. Partition the graph obtained at Step 1 into minimal number of cliques,
C1, C2, · · · , Cm by using a solver for clique cover problems. From each clique,
we get each group, Gi, of possibly non-overlapped gates.

For an initial circuit as shown in Fig. 1, the graph constructed at Step 1
can be shown as in Fig. 5. It is easy to see that the graph can be covered
with two cliques: C1 = (g1, g2, g3, g4) and C2 = (g5, g6, g7, g8). Thus, the group
of the possibly non-overlapped gates are selected as: G1 = {g1, g2, g3, g4} and
G2 = {g5, g6, g7, g8} in this example. This means that in the best case we can
perform the circuit in Fig. 1 in two time steps. Thus, we try to find a good
two-dimensional qubit layout in the second problem so that the circuit can be
performed in two time steps.

In the following, we represent a two-dimensional qubit layout by a qubit or-
der, which is essentially a permutation. More specifically, we order the qubits
from the lower left to the upper right to represent a two-dimensional qubit lay-
out. For example, the qubit layout, Layout 1, as shown in Fig. 6 is represented

184 N.A.B. Adnan et al.

g8g5

g7g6

g2g1

g4g3

Fig. 5. A Graph at Step 1 for the Circuit in Fig. 1

g1g4

g2 g3

x9

x1

x2

x3

x4

x5

x6

x7

x8

Layout 1
(x8, x5, x6, x1, x2, x3, x4, x9, x7)

g1
g4

g2

g3

x6

x1

x5

x3

x4

x2

x9

x7

x8

Layout 2
(x8, x2, x9, x1, x5, x3, x4, x6, x7)

g1g4

g2
g3

x9

x1

x2

x3

x4

x6

x5

x7

x8

Layout 3
(x8, x6, x5, x1, x2, x3, x4, x9, x7)

Fig. 6. An example of two-dimensional layouts

by the qubit permutation: (x8, x5, x6, x1, x2, x3, x4, x9, x7) which is essentially a
permutation.

To represent and manipulate a set of permutations, there has been proposed
an efficient graph structure, πDD [4], which we use in our method. A πDD
can represent a set of permutations compactly, and it provides many efficient set
operations such as intersection and union for the sets of permutations represented
by πDDs. So, instead of enumerating all the possible qubit layouts explicitly, we
implicitly represent a set of permutation by using a πDD to enumerate qubit
layouts.

For the second problem, our method is as follow.

A method to solve the second sub-problem.

Step 1. We choose Gi from the set of groups obtained at the first problem, one
by one, from the beginning of the circuit, and do the following Steps 2. and 3
until such Gi remains.

Step 2. We initialize an πDD Pi as representing all the possible permutations,
and go to Step 3.

2D Qubit Layout Optimization 185

Step 3. For each pair of two gates in Gi, construct a πDD, p, that represents a
set of permutations where two gates are non-overlapped. Then Pi is updated
as Pi ∩ p. This update is repeated for all the pairs of two gates. The final Pi

represent a set of permutations corresponding to qubit layouts by which all
the gates in Gi can be done at one time step.

Step 4. Our final task is to determine a two-dimensional qubit layouts which
is included in as many Pi as possible. We find such a layout by intersecting
Pi one by one. If the intersection of all Pi is not empty, we can find the best
qubit layout which gives us the smallest computational steps for the given
circuit. If the intersection becomes empty at some point, we may choose a
layout in the intermediate intersection before it becomes empty.

Note that there is a possibility that Pi becomes empty during the repetition
in Step 3. In such a case, there is no qubit layout which allows all the gates in
Gi to be non-overlapped. In such a case, we should spend more than one time
step to perform the gates in Gi; we just divide Gi into multiple groups so that
the final πDD obtained at Step 3 for each group is not empty.

If the intermediate intersection becomes empty during Step 4, we may not
get the best layout. However, we expect such a case does not happen so often;
indeed in our experiments described in the next section, the intersection does
not become empty which means our method can find the best layout.

Let us explain how we construct P1 for G1 = {g1, g2, g3, g4} which is the first
group of possibly non-overlapped gates for the example from Fig. 1. First let
us see various two-dimensional qubit layouts in Fig. 6. For example, Layout 1
which is represented as a qubit permutation: (x8, x5, x6, x1, x2, x3, x4, x9, x7),
allows g2 and g3 to be non-overlapped. Layout 2 also allows g2 and g3 to be
non-overlapped. Thus, for the pair of gates: g2 and g3, the set of permutation,
p, created at Step 3 includes Layout 1 and Layout 2, but it does not include
Layout 3 where two lines between x2 and x8, and between x1 and x5 cross each
other. For the pair of gates: g1 and g4, we also create the set of permutations
that includes Layout 1 and Layout 3, but not Layout 2. By using primitive
operations on πDDs, we can create a set of permutations to represent the set of
layouts where two lines do not cross each other.

If we want to find a layout that allows both pair of gates, (g2, g3) and (g1, g4)
to be non-overlapped, we just perform the intersection operation between the
two πDDs representing the two set of permutations obtained as p at Step 3 for
(g2, g3) and (g1, g4). By the intersection, Layout 2 and Layout 3 are automati-
cally excluded from the intermediate candidate set. In this way, we update the
intermediate layout candidate set, Pi, by excluding “bad” layouts for the current
pair of two gates. We would like to note that the intersection operation can be
done very efficiently when we use πDDs.

In conclusion, for each pair of two gates, we make πDDs representing the
layouts that allows the two gates to be non-overlapped, and then we update the
intermediate Pi as Pi ∩ p; this means we exclude layouts that does not allow
the current pair of two gates to be non-overlapped, from the intermediate layout

186 N.A.B. Adnan et al.

candidate set. Thus, the final P1 after Step 3 represents a set of layouts that
allows all pairs of gates in G1 = {g1, g2, g3, g4} to be non-overlapped.

4 Experimental Results

4.1 An SA-Based Heuristic Method

As described in the previous section, our method can find the best layout if
the intermediate candidate set does not become empty. There are many effi-
cient solvers for the first sub-problem, i.e., clique cover problems. However, for
the second problem, our enumeration-based method obviously cannot deal with
many qubits even though we utilize an efficient graph structure, πDD [4], to
manipulate sets of permutations.

Therefore, we implemented a simple simulated annealing (SA)-based heuris-
tic to find a good two dimensional layout even for the larger problems. In our
implementation, in each iteration, we swap the location of two qubits, and eval-
uate the depth of the circuit with the new qubit layout. As in the conventional
SA-based search, the swap is accepted even though the depth increases when
the temperature in the SA is high.

The only specific technique used in our implementation is that we do not
select a pair of qubits to be swapped by purely randomly, but we select qubits
that are used many times for gates with a higher probability. This is because
swapping such qubits tends to have more impact on the result.

We would like readers who are not familiar to the simulated annealing to refer
such as [1].

4.2 Comparison of the Three Methods

We implemented the two algorithms, our proposed method mentioned in Sec. 3
and the simple SA-based method described in Sec. 4.1 by C++. Then, we com-
pared the twomethods with the existing one-dimensional optimizationmethod [5].
Table 1 shows the optimized computational steps of the randomly generated
CNOT-based circuits by the three optimization methods. The columns “1D” “2D
Optimal” and “2D SA” shows the results for the existing one-dimensional opti-
mization method [5], our proposed method and the simple SA-based method,
respectively. The numbers in the parentheses means the ratio of the number of
steps to the one by “1D.”

The table also reports the computational time (CPU time) for the two meth-
ods to run on Linux version 2.6.27 67v15 system on AMD PhenomTM II x6
1055T CPU with 4 GB memory. The numbers in the parentheses means the
ratio of the CPU time by “2D SA” to the one by “2D Optimal.”

The parameters for the SA are set as follows: The initial temperature is 100◦C,
and the temperature is multiplied by 0.9 at each iteration until it becomes less
than 20◦C. At each iteration, we tried 500 different swaps of two qubits.

“2D Optimal” essentially enumerates all the possible qubit layouts, and thus
its computational time should increase exponentially even if we use efficient data

2D Qubit Layout Optimization 187

Table 1. A comparison of the three methods

1D 2D Optimal 2D SA
Circuit Steps Time (sec.) Steps Time (sec.) Steps

9 bits 50 gates 32 34.44 23 (0.72) 0.00005 (1.4× 10−6) 23 (0.72)
9 bits 100 gates (1) 63 133.44 46 (0.73) 0.00022 (1.6× 10−6) 46 (0.73)
9 bits 100 gates (2) 63 133.02 43 (0.68) 0.00022 (1.7× 10−6) 43 (0.68)
16 bits 100 gates (1) 57 2985.48 30 (0.53) 0.00030 (1.0× 10−7) 30 (0.53)
16 bits 100 gates (2) 58 2644.35 32 (0.55) 0.00029 (1.1× 10−7) 32 (0.55)
16 bits 200 gates 119 2546.01 65 (0.54) 0.00102 (4.0× 10−7) 67 (0.56)
25 bits 200 gates – – – 0.00125 48
25 bits 300 gates – – – 0.00244 83

structures for manipulating permutations [4]. Indeed, we cannot complete the
computation within 10 minutes for the case of 25 qubits as expected, whose
results are shown as “−” in the table. Thus, this exact optimization method
may be applicable to small parts of sub-circuits.

On the contrary, the SA-based heuristic is very fast and so it may be applicable
to larger circuits. We also found that the optimization ability of the heuristic is
very good; it achieves almost the same reduction of the steps as “2D Optimal.”
Thus, for a larger circuit, such heuristic will be useful.

It should be noted that we noticed the number of the best two-dimensional
qubit layouts is very huge by the verification of our exact enumeration. This
means that the problems are easy for a heuristic to find the best solution, so
there was not a much difference between the two methods. However, we consider
that the SA-based heuristic cannot find the best solution like our exact method
when the number of best layouts is relatively small which may happen in the
practical design.

5 Conclusion

This paper formulates the logic level circuit optimization problem for topological
quantum computation. Observing the properties of brading operations in topo-
logical quantum computation, we formulate our problem as to find a good gate
order and an good initial qubit layout. We also propose an efficient method to
try to find the best two-dimensional qubit layout. As far as we know, this is the
first systematic synthesis method for topological quantum circuits by consider-
ing two-dimensional qubit layout. We should evaluate the proposed approach by
using some practical circuits in the future.

Acknowledgments. Some parts of the programs used in this work was imple-
mented by Shinnosuke Hiratsuka and Yohei Ito.

188 N.A.B. Adnan et al.

References

1. Aarts, E., Korst, J.: Simulated annealing and boltzmann machines. Wiley, NY (1988)
2. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4),

251–256 (1979)
3. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High threshold universal quantum

computation on the surface code. Phys. Rev.A 80, 052312 (2009)
4. Minato, S.-I.: πDD: A new decision diagram for efficient problem solving in per-

mutation space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 90–104. Springer, Heidelberg (2011)

5. Yamashita, S.: An optimization problem for topological quantum computation.
In: 2012 IEEE 21st Asian Test Symposium (ATS), pp. 61–66 (November 2012)

Cross-Level Validation

of Topological Quantum Circuits

Alexandru Paler1, Simon Devitt2, Kae Nemoto2, and Ilia Polian1

1 University of Passau, Innstr. 43, 94032, Passau, Germany
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Abstract. Quantum computing promises a new approach to solving
difficult computational problems, and the quest of building a quan-
tum computer has started. While the first attempts on construction
were succesful, scalability has never been achieved, due to the inherent
fragile nature of the quantum bits (qubits). From the multitude of ap-
proaches to achieve scalability topological quantum computing (TQC) is
the most promising one, by being based on an flexible approach to error-
correction and making use of the straightforward measurement-based
computing technique. TQC circuits are defined within a large, uniform,
3-dimensional lattice of physical qubits produced by the hardware and
the physical volume of this lattice directly relates to the resources re-
quired for computation. Circuit optimization may result in non-intuitive
mismatches between circuit specification and implementation. In this pa-
per we introduce the first method for cross-level validation of TQC cir-
cuits. The specification of the circuit is expressed based on the stabilizer
formalism, and the stabilizer table is checked by mapping the topology
on the physical qubit level, followed by quantum circuit simulation. Sim-
ulation results show that cross-level validation of error-corrected circuits
is feasible.

Keywords: validation, quantum computing, topological quantum com-
puting.

1 Introduction

Building a large scale quantum computer has been the focus of a large interna-
tional effort for the past two decades. The fundamental principles of quantum
information have been well established [1] and experimental technologies have
demonstrated the basic building blocks of a quantum computer [2]. A significant
barrier to large scale devices is the inherent fragility of quantum-bits (qubits) and
the difficulty to accurately control them. The intrinsic error rates of quantum
components necessitates complicated error correction protocols to be integrated
into architecture designs from the beginning, and it’s these protocols that con-
tribute to the majority of physical resources (both in terms of total number of
physical qubits and total computational time) necessary for useful algorithms.

Topological Quantum Computation (TQC) [3,4] has emerged as arguably the
most promising error correction model to achieve large scale quantum informa-
tion processing. This model incorporates a powerful error correction code and

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 189–200, 2014.
c© Springer International Publishing Switzerland 2014

190 A. Paler et al.

has been shown to be compatible with a large number of physical systems [5,6].
While experimental technology is not yet of sufficient size to implement the full
TQC model, there have been demonstrations of small scale systems and no fun-
damental issue prevents further expansion to a fully scalable quantum computer.

The TQC hardware is responsible for producing a generic 3-dimensional lat-
tice of qubits, and programming in the TQC model can be separated from the
basic functionality of the quantum hardware. Programming a TQC computer re-
quires systematic methods, which are formulated starting from the TQC design
stack (Figure 1b) [5]. The stack consists of several abstraction levels that differ
from the ones used in classical circuit design. The high level quantum algorithm
is first decomposed into a quantum circuit. This circuit does not include any
error correction protocols; these can be implemented in multiple ways, leading
to circuits requiring a differing number of qubits and/or computational times.
We then identify each qubit in the circuit, as logically encoded with the topo-
logical code. This transforms each logical qubit into a large number of physical
qubits allowing for the implementation of correction protocols. Such protocols
also restrict the types of operations that can be performed on logical data, hence
the quantum circuit needs to be further decomposed into gates from an universal
set, but which can also be realized within the code. Once these decompositions
are complete, the resulting TQC circuit needs to be optimized with respect to
the physical resources and then translated to the physical operations sent to the
hardware.

The qubit-lattice produced by the hardware embeds the topological quantum
circuit and therefore it’s physical size (volume) directly relates to the number of
physical qubits employed for computation. The computation can be constructed
from the circuit in a straightforward, yet suboptimal, way [7] (i.e. it will occupy a
3-dimensional volume much larger than required). The primary goal of TQC cir-
cuit synthesis is to construct an automated procedure that not only performs the
required translation from circuit to topological circuit, but also to optimize the
volume of these structures to ultimately reduce physical resources needed by
the hardware. An example of an optimized circuit is presented in Figure 1a.

Validation of topological circuits is therefore a necessity, as optimized circuits
often bare little resemblance to their original specification (e.g. Figure 1a). Val-
idation has to be automated, as large topological circuits are complex objects,
where the gate list is difficult to be extracted, and unfeasible to verify manually.

In this paper, we introduce the first automated validation method for TQC
circuits. The input of the method is a quantum circuit specification, and the
procedure verifies that an instance of the quantum circuit exhibits the same
functionality as the specification.

For this purpose, we show that the validation problem can be mapped to
an equivalent problem that can be efficiently simulated. Direct simulation is
necessary to confirm that the topological structure correctly implements the
desired circuit. Note that the simulator checks functionality of the topological
structure, and it does not simulate error correction within the computation, as
this is unnecessary for circuit validation.

Cross-Level Validation of Topological Quantum Circuits 191

(a) Original and compressed TQC circuits (b) The TQC design stack

Fig. 1. Topological Quantum Computation (TQC)

2 Background

Quantum circuits are defined as series of quantum gates applied to transform
the state of qubits. Classical bits can be either 0 or 1, while a qubit can have an
infinity of states that can be visually represented as points on the surface of a
unit sphere (the Bloch sphere). Quantum computing is based on the postulates
of quantum mechanics: the state space of a quantum system (for our discussion a
quantum computer operating on n qubits) is a complex space, where the system’s
state is represented by unit vectors. For example, the state of a single qubit is
represented by a complex vector of length 2, and the 2n-dimensional state of all
n qubits is the tensor product of the component one-qubit states. The difficulty
of simulating a general quantum system using a classical computer stems from
the exponential increase of the state representation requirements. For example,
the possible states of a two-qubit quantum computer where each input qubit is
initialized to the |0〉 = (1, 0)T state is represented using 22 complex numbers
(1, 0, 0, 0)T . The complex entries of the state vector are called probability am-
plitudes, and arbitrary tensor products of |0〉 and |1〉 = (0, 1)T (e.g. |000〉, |100〉,
|1111〉) are called computational-basis-states.

In the quantum circuit formalism, the evolution of the quantum computer’s
state is dictated by the sequential application of quantum gates. The state, after
the application of each quantum gate, is modeled as the outcome of a matrix-
vector multiplication, thus the probability amplitudes of each computational
basis state are transformed. For this reason, quantum gates can be understood
as unitary complex matrices. Single-qubit quantum gates are 2 × 2 complex
matrices, while n-qubit gates are 2n× 2n complex matrices. The following gates
are particularly relevant for our work.

X =

(
0 1
1 0

)

Z =

(
1 0
0 −1

) H = 1√
2

(
1 1
1 −1

)

T =

(
1 0

0 e−iπ/4

) CNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠

A two-qubit controlled-gate is applied to two qubits, where one of the qubits
is left unchanged, but controls (given its state) the application of a single-qubit

192 A. Paler et al.

gate on to the second qubit. One such gate is the CNOT (Controlled-X) gate,
where the first qubit is the control-qubit, and the second-qubit is the target-
qubit. Only when the control-qubit is |1〉 the state of the target qubit is flipped
(e.g. |0〉 becomes |1〉). Because of its action, the X-gate is called the bit-flip gate.

One of the major differences between classical and quantum computation
is the concept of superposition. A qubit is a superposition, if more then one
computational basis-state amplitudes is different than zero. The Hadamard gate
can be used to construct the |+〉 and |−〉 superpositions, because |+〉 = H |0〉 =
1√
2
(|0〉+ |1〉) and |−〉 = H |1〉 = 1√

2
(|0〉+ |1〉). Furthermore, the state of at least

two qubits is entangled if their composite state cannot be written as a tensor
product. For example, if the CNOT is applied to the |0〉|+〉 = |0+〉 state, the
result 1√

2
(|00〉 + |11〉) is representing both a superposition and an entangled

pair of qubits. Similarly to the X-gate, the Z-gate is called the phase-flip gate,
because when applied to a single qubit it flips the sign of the so-called relative
phase (e.g. |+〉 is transformed into |−〉).

In general, arbitrary quantum computations can be mapped to a discrete set
of gates consisting of {(H,Z,X, T, CNOT } with any desired accuracy. The H
gate is used to construct superpositions, the CNOT to construct entanglement
and the T gate is used to achieve arbitrary single-qubit state rotations (visualized
as point rotations on the Bloch sphere surface).

2.1 Stabilizer Formalism

The exponential difficulty of describing the evolution of a quantum system orig-
inates from the fact that, by incrementing the number of qubits operated on, an
exponential increase of the state-space is required. There is a particular type of
quantum computations for which this can be overcome by employing the stabi-
lizer formalism. Because |0〉 is an eigenvector with eigenvalue 1 of Z it is said that
|0〉 is stabilized by Z, and, similarly, |1〉 is stabilized by −Z. Furthermore, using
the same idea, |+〉 is stabilized by X and |−〉 is stabilized by −X . Stabilizer
circuits are circuits that can be decomposed into the gates {X,Z, P,H,CNOT }
where P = T × T . The identity matrix I stabilizes any state, while −I is not
a valid stabilizer. The state of such a circuit can be expressed by its stabilizers,
and it was shown that for n-qubit circuits n stabilizers are required instead of
2n-dimensional complex amplitude vectors [1]. A stabilizer table ST is an n× n
table consisting of n independent stabilizers for the n qubits of a computation
(e.g. see Figure 3a). The system’s evolution of states is based on simple transi-
tion rules (e.g. applying a H gate on a qubit stabilized by X , results in the state
being stabilized by Z).

Initial state:|+〉|+〉|0〉 ;ST = {XII, IXI, IIZ}
H1→ |0〉|+〉|0〉 ;ST = {ZII, IXI, IIZ}

CNOT2,3→ |0〉(|00〉+ |11〉) ;ST = {ZII, IXX, IZZ}

Cross-Level Validation of Topological Quantum Circuits 193

The application of some gates, including the T gate, cannot be expressed
in a simple manner using the stabilizer formalism. Its application to a state
stabilized byX results in a state stabilized by a superposition of stabilizers: X+Y√

2
,

where Y = iXZ. Thus, simulating a circuit with T gates using the stabilizer
formalism requires doubling the set of stabilizers each time a T is encountered.
The application of T gates results in an exponential increase of the state space
to be observed. The set of stabilizing gates together with the T gate form an
universal gate set, meaning that an arbitrary quantum circuit can be expressed
by its stabilizer sub-circuits and a number of applications of T gates (at the
expense of an exponential increase in computational resources).

2.2 Measurement-Based Quantum Computing

Arbitrary quantum computations can be mapped to the measurement-based
quantum computing paradigm (MBQC). MBQC utilizes an entangled ensem-
ble of qubits (cluster) as a computational resource that is measured qubit-wise
to perform quantum computations. During the measurement-process it is not
necessary to apply any entangling gates, because the cluster is used as the en-
tanglement resource.

In general, measuring a qubit is a probabilistic process dictated by the prob-
ability amplitudes of its state. When a qubit is measured in the computational
basis (the Z-basis) the qubit’s state collapses to either |0〉 or |1〉, and when a qubit
is measured in the X-basis the possible outcomes are |+〉 and |−〉. Further-
more, it is possible to perform rotated measurements, meaning that first the
qubit’s state is rotated and then an X- or Z-basis measurement is performed.
In measurement-based computing, the T gate can be applied by using a rotated
measurement. Two qubits |t〉 = 1√

2
(|0〉+ r|1〉) (where r = e

i·π
4) and |q〉 = a|0〉+

b|1〉 are entangled using CNOT resulting in |tq〉 = a|00〉+ar|11〉+b|01〉+br|10〉.
The first qubit’s Z-measurement will transform the second qubit’s state as if it
were directly rotated by T : a|0〉+ r|1〉 or a|1〉+ r|0〉 (this result can be corrected
using an X gate) [1].

From the perspective of MBQC, only X- and Z-basis measurements are nec-
essary, iff the cluster to be measured contains already rotated qubits (called
injected qubits or injection points). This is a technological detail that enables
us to both simplify the definition of the computing paradigm, and also to limit
the number of qubit states from the initial cluster to only two states: |+〉 and
|A〉 = 1√

2
(|0〉+ ei

π
4 |1〉).

In the context of MBQC, the observation, that arbitrary circuits are formed
by stabilizer sub-circuits and applications of T gates, can be further refined by
noting that arbitrary circuits are formed by only a stabilizer sub-circuit (respon-
sible for entangling the cluster-qubits) and another sub-circuit for measuring the
cluster-qubits.

194 A. Paler et al.

2.3 Topological Quantum Computation

One of the most promising approaches to construct a practical scalable fault-
tolerant quantum computer, is based on the topological error-correction code.
This code lays at the foundation of topological quantum computing (TQC),
which is a measurement-based quantum computing model. In the following a
very short introduction to TQC will be offered, while more details are to be
found in [4,3].

The TQC cluster has a repeating 3D graph structure, which is obtained by
stacking a unit-cell along the three axis (width, height and time). The temporal
axis is dictated by the order of performing the measurements. The unit-cell is
constructed from 18 physical qubits (initialized into |+〉) and entangled using
the Controlled-Z gate according to the pattern indicated in Figure 2a. Morever,
for example, by constructing a 2 × 2 × 2 cluster of unit-cells, in the middle of
the cluster another unit-cell arises. The initial 8 cells are known as primal cells,
and the central cell is called a dual cell.

Logical qubits are encoded into the cluster by disconnecting individual cluster-
qubits (achieved via Z-basis measurement). Logical qubits are defined as pairs
of defects, where each defect is a trail of ”disconnected” physical cluster-qubits,
and furthermore it can be geometrically abstracted (e.g. Figure 1a). Cluster
defects introduce degrees of freedom into the cluster, allowing for the storage
of error-protection information. Due to the duality of the graph-structure, two
types of logical qubits can be encoded: primal and dual logical qubits, depending
on whether qubits are removed from the primal or the dual space.

A logical qubit has a quantum state which is protected against the errors, and
the quantum gates can be implemented in a fault-tolerant manner directly on
the logical qubits. The logical CNOT gate is always defined on logical qubits of
opposite types, but it is still possible to define a logical CNOT between qubits
of the same type by using the circuit identities presented in [3]. Initializing
and measuring logical qubits is performed by constructing the defect geometries
presented in Figure 2b.

A correlation surface is a stabilizer defined over the cluster qubits that connect
the logical operators of the circuit’s inputs to the logical operators of the out-
puts, such that information is propagated correctly during the circuit operation
[3]. The geometrical arrangements of the physical cluster qubits forming a cor-
relation surface are of two possible types: sheets and tubes (see Figure 3b), and
the physical cluster-qubits will be always measured in the X-basis. Sheets are
spanned between logical qubit defects, while tubes encircle a given defect. The
cumulative parity of their measurement indicates how the logical stabilizers of
the logical qubits are to be interpreted. The measurement parity of a correlation
surface is defined starting from the measurement results of the physical qubits
in the surface. The measurement results of an individual qubit are eigenvectors,
with associated eigenvalues, of the measurement operator, and 1 and −1 are
the two possible eigenvalues for the X-measurement. The measurement parity
along a correlation surface is the product of the resulting associated eigenvalues.

Cross-Level Validation of Topological Quantum Circuits 195

Finding a correlation surface that connects the logical operators is not to be
further detailed into this work, because the methods enabling it are explained
in [3].

In TQC the computational universality is achieved by employing injection
points in a similar way how the rotational gate T is applied by teleportation
as introduced in the context of MBQC. The TQC injection points are cluster

qubits initialized into the |A〉 state (defined in Section 2.2) or |Y 〉 = |0〉+i|1〉√
2

state.

Because TQC is an instance of MBQC, logical gate teleportation is achieved by
measuring the logical qubits that encode injected states.

3 Validation of TQC Circuits

In order to formulate the cross-level validation of TQC circuits, we start with a
consideration of generic (non-TQC) measurement-based fault-tolerant quantum
circuits. An arbitrary quantum circuit can be mapped to a construction from a
stabilizer sub-circuit followed by a non-stabilizer sub-circuit that contains only
rotated measurements. An adequate MBQC-oriented specification of such a ”de-
composed” quantum circuit is the tuple QCS = {ST, J,M}, where ST is the
stabilizer table of the stabilizer sub-circuit, J is the set of injection points, and
M is the ordered set of measurements of these injection points. Given an imple-
mentation QC that is also mapped to a tuple {ST ′, J ′,M ′}, we are interested in
equivalence of both descriptions (QC ≡ QCS). If we assume that the number of
injection points and their measurement is not changed, as it will directly affect
the computation being performed, this question is reduced to the equivalence
checking of the stabilizer circuit parts (ST ≡ ST ′), which has previosusly been
investigated in the context of reversible computing [8].

However, checking the equivalence of a TQC description against the speci-
fication QCS is more challenging because no complete procedure to translate
the geometric description of the topological circuit to the stabilizer table is cur-
rently known. In the following, we outline the cross-level approach which checks
equivalence without constructing the stabilizer table.

3.1 Problem Statement

In the context of TQC, the stabilizers and the gates are defined at a logical
level, which is constructed on top of the cluster-state level (physical qubits).
The specification of the circuit (QCS or, more exactly, the stabilizer table of its
portion ST) refers to the logical level. In order to check the equivalence of the
geometric description againstQCS, we map the logical qubits to the cluster state
and validate it by simulation. This is done in two steps. First, the geometrical
description is mapped to an (unmeasured) cluster. The mapping method can
be derived from [9], and the details are omitted here. Then, for every entry of
the stabilizer table ST from the specification, the topological computation in
the cluster is simulated using a (stabilizer) quantum circuit simulator. Note that
the simulated geometry is largely given by the shapes of the logical qubits which

196 A. Paler et al.

are independent from the processed ST entry. Moreover, the ST entry determines
the initialization and measurement parts of the logical qubits (see Figure 2b).

In the following paragraphs the validation procedure will be detailed and
analyzed.

(a) (b)

Fig. 2. TQC constructs: a) the unit-cell of 18-entangled qubits, and the two repeating
layers that are simulate. b) Defect geometries for initialization of primal logical qubits:
1. Z-basis initialisation 2.X-basis initialisation 3. injection point. The defect geometries
for measurement are similar.

3.2 Validation Procedure

The cross-validation of circuits is a simulation based procedure of a cluster where
the geometric description of the TQC circuit was mapped. Algorithm 1 is syn-
thesizing the details that are presented in the following.

The validationmethod starts bymapping the geometry to a cluster (Lines 1, 2).
The set TQCC = {(x, y, z)| x, y, z ∈ N,measure(x, y, z) ∈ {X,Z}, init(x, y, z) ∈
{|+〉, |A〉, |Y 〉}} is specified as a finite set of associated 3D-coordinates of physical
qubits, that are marked for measurement in the X- or Z-basis and initialisation
into |+〉, |A〉 or |Y 〉. The 3D-coordinates correspond to the geometry presented in
Figure 2a. Mapping of defect geometries to the 3D lattice takes an initial cluster
TQCC, where no measurements were marked, and updates it: Z-basis measure-
ments for defect-internal physical qubits, andX-basismeasurements for all others.
Injection points (physical qubits initialized into |A〉 or |Y 〉) are measured in the
X-basis.

Logical qubits can contain injection points anywhere along the geometric struc-
ture, and the target of validation method is to check that before the injection
point will be measured, the logical qubit is correctly stabilized. Otherwise the re-
sult of the rotated measurement will be faulty, and the whole quantum compu-
tation is compromised. During the validation, as indicated in Section 3, injection
points do not need to be explicitly considered. Without affecting the correctness
of the method, these are initialized into the |+〉 state. By re-interpreting the in-
jection points, the TQCC set is transformed into TQCC+ = {(x, y, z)|x, y, z ∈
N,measure(x, y, z) ∈ {X,Z, I}, init(x, y, z) ∈ {|+〉}} (Line 2).

Similar to classical circuits where input and output pins are used for the inputs
and the outputs of the circuit, Pin ⊂ TQCC is a set of cluster coordinates of
the physical qubits used for initiliazing the logical qubits. The same applies
for physical qubits used for logical measurement. These are used to read the
information from the TQC circuit; their coordinates are contained in the set

Cross-Level Validation of Topological Quantum Circuits 197

Pout ⊂ TQCC representing the output pins. The physical qubits from both sets
are marked for either X- or Z-basis measurement, in order to respect the defect
geometries from Figure 2b (Line 3). Cluster injection points are elements of Pout.
Circuit simulation will be performed for each for each logical stabilizer specified
in ST , and the Pin and Pout sets will be constructed accordingly.

A mapped cluster is supporting a logical stabilizer if the correlation surface
that connects the corresponding input and output pins has even parity (Lines 19,
23). In the absence of errors (which is assumed during the validation of circuit
functionality) the topology of the 3D-cluster guarantees that the measurement
parity of all the unit-cell face-qubits is even [4]. The existence of the logical
stabilizer support is proven by computing the parity of a correlation surface,
as even parity indicates that the stabilizer can be correctly constructed using
physical-cluster qubits.

In order to check the existence of all the logical stabilizers specified in ST ,
the validation method checks each entry in the table sequentially (Lines 4 – 23).
Depending on the logical stabilizer to be checked, the injection point coordinate
will be marked in TQCC+ (Line 7) with either an X-basis measurement (if the
logical qubit should be stabilized by logical-X) or with a Z-measurement (if the
logical qubit should be stabilized by logical-Z).

Checking the support of a logical stabilizer is performed by simulations of
the cluster, and the simulation involves the following steps. The first step is to
compute the presumed correlation surface of the investigated stabilizer (Line
8). A correlation surface connects, only for the logical qubits referenced by the
stabilizer, the input to the output pins. In the second step all the physical qubits
are measured according to their markings from TQCC+. In a third step, the
existence of the stabilizer is determined based on the parity of the correlation
surface (Lines 10 – 18). The error-correction is neglected, as it does not manifest
itself in the validation of the specification QC = {ST, J,M}.

During the second step, the measurements are performed. This can be done in
an arbitrary order, but we adopt a layered approach. One of the three dimensions
of the cluster is defined to be the temporal axis. In a cluster of size m × n× t,
we can reduce memory requirements by instead simulating a physical lattice of
t− 1 m× n× 2 layer pairs of the cluster dynamically.

Each layer pair (Line 13) consists of two cross-sections of the cluster (e.g.
Figure 2a). Layer i contains all physical qubits with t-coordinate equal to i.

In the i-th simulation run (i = 0, . . . , t − 1), layers i and i + 1 are consid-
ered. The first simulation run considers only qubits from layers 1 and 2 with
all connections between these layers. However, X and Z measurements are only
performed on qubits with the t-coordinate 1. In the second simulation run, the
qubits from the second layer, which retain their states from the first simulation
run, are entangled with (hitherto unconsidered) qubits from layer 3 (initialized
to |+〉) according to the unit-cell structure that is used throughout the complete
m× n × t cluster. Only second-layer qubits are measured, which influences the
entangled third-layer qubits. This process is continued until the qubits of the
final layer t are measured.

198 A. Paler et al.

Algorithm 1. Cross-level Validation

Require: Circuit TQC as a geometrical description and the specification QCS
1: Compute TQCC starting from the geometry of TQC
2: Compute TQCC+ from TQCC by marking injection points as |+〉 initialized
3: Compute P q

in, P
q
out ⊂ TQCC+

4: for all stabilizer s from ST of QCS do
5: SIMTQC ← TQCC+

6: for all Logical qubit q stabilized by s do
7: Mark in SIMTQC at coord ∈ P q

in, P
q
out the geometric patterns for initialisa-

tion and measurement of q according to s
8: Compute for sthe correlation surface CORS
9: end for
10: parity ← 1
11: Construct layer l0 of SIMTQC
12: for all Layer li of SIMTQC, i > 0 do
13: Construct li and Entangle with li−1

14: for all Cluster qubits cq in li−1, cq ∈ CORS do
15: ev ← measure cq in X-basis
16: parity = parity · ev
17: end for
18: end for
19: if parity = −1 then
20: return TQC is NOT valid according to QCS
21: end if
22: end for
23: return TQC is valid according to QCS

4 Results

To evaluate the practicality and the scalability of the validation procedure the
quantum circuit simulator CHP [10] was integrated for the cluster simulation
step. Checking the complete stabilizer truth table ST requires between 1 and
|ST | simulations.

We considered TQC circuits consisting of logical CNOT gates acting on logi-
cal qubits. Their sizes are expressed as an equivalent volume [7], a quantity that
measures the volume of a topological structure compared to a set of independent
regularly stacked logical CNOT gates. Our results indicate that reduced TQC
circuits of those equivalent volumes are feasible to simulate, and thus to validate.
Average simulation times for one pair of layers in such circuits are reported in
Figure 4. For example, the number of physical qubits required to be simulta-
neously simulated for the circuit having the equivalent volume of three CNOT
gates was 1462, and this number was 84, 052 for the equivalent volume of 243
CNOT gates. These results suggest that even large and complex topological
quantum circuits can be validated in reasonable time.

The selection of one of the three axes in the cluster as the temporal axis is arbi-
trary, which provides an additional degree of freedom for validation. The complete
computation is confined to a 3D volume where the three edges may have different

Cross-Level Validation of Topological Quantum Circuits 199

(a) (b)

Fig. 3. The logical CNOT: a) Two pairs of defects of opposite type are braided. The
stabilizer table consists of two stabilizers and indicates, for example, that if the control-
qubit is stabilized by X, after applying the CNOT the target-qubit will also be sta-
bilized by X. b) Validation of a circuit consisting of 3 logical CNOTs: 1. the geo-
metric description; 2. the mapped defect geometry, where Z-measured cluster qubits
are indicated along with the input and output pins; 3. the correlations surface for the
verification of one of the stabilizers from the specification.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

0*100 1*104 2*104 3*104 4*104 5*104 6*104 7*104 8*104 9*104

3 12 27 48 75 108 147 192 243

S
im

ul
at

io
n

Ti
m

e
fo

r L
ay

er
 P

ai
rs

 (s
ec

on
ds

)

Number of Physical Qubits

Equivalent Volume

Fig. 4. Average simulation times for pairs of layers

10-1

100

101

102

103

104

105

0 10 20 30 40 50 60 70

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Equivalent Volume

short edge
long edge

Fig. 5. Simulation times after choosing different temporal axes

200 A. Paler et al.

lengths. Selecting a short edge as the temporal axis will result in relatively small
number of relatively large simulation instances, while selecting a long edge will
require more simulations with less qubits per simulation. Note that the simulated
functionality is identical for both options. Figure 4 compares the run times for these
possibilities. It can be seen that simulation is orders of magnitude faster when the
longest edge is selected. This is not surprising as themeasurement of stabilizers is of
quadratic complexity in the number of qubits, and therefore having to consider less
qubits per simulation instance outweighs the higher number of simulation runs.

5 Conclusion

The first validation method for topological quantum circuits was presented. Syn-
thesis of topological quantum circuits often results in non-obvious inaccuracies
that currently require a huge manual effort to find and correct, which is clearly
impractical even for small circuits. The presented validation procedure maps the
geometric description to the actual three-dimensional cluster of physical qubits
and simulates these qubits. This abstraction level is much closer to the actual
hardware implementation and is well suited to identify any deviations from the
specification. Empirical data show the scalability of the procedure to circuits of
practical size. As the next step, we plan to develop a validation-guided synthesis
procedure for topological quantum circuits, and a more efficient representation
of the circuit specification.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Information, 2nd edn. Cam-
bridge University Press, Cambridge (2000)

2. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.:
Quantum Computers. Nature 464, 45–53 (2010)

3. Fowler, A., Goyal, K.: Topological cluster state quantum computing. Quant. Inf.
Comp. 9, 721 (2009)

4. Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster
state quantum computation. New J. Phys. 9, 199 (2007)

5. Devitt, S., Fowler, A., Stephens, A., Greentree, A., Hollenberg, L., Munro, W.,
Nemoto, K.: Architectural design for a topological cluster state quantum computer.
New. J. Phys. 11, 83032 (2009)

6. Jones, N.C., Meter, R.V., Fowler, A., McMahon, P., Kim, J., Ladd, T., Yamamoto,
Y.: A layered architecture for quantum computing using quantum dots. Phys. Rev.
X. 2, 031007 (2012)

7. Fowler, A., Devitt, S.: A bridge to lower overhead quantum computation,
arxiv:1209.0510 (2012)

8. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence checking of reversible
circuits. In: 39th International Symposium on Multiple-Valued Logic, ISMVL 2009,
pp. 324–330 (2009)

9. Paler, A., Devitt, S.J., Nemoto, K., Polian, I.: Mapping of topological quantum
circuits to physical hardware. Scientific reports 4 (2014)

10. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.
A. 70, 052328 (2004)

Equivalence Checking

in Multi-level Quantum Systems

Philipp Niemann1, Robert Wille1,2, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{pniemann,rwille,drechsle}@informatik.uni-bremen.de

Abstract. Motivated by its superiority compared to conventional solu-
tions in many applications, quantum computation has intensely been in-
vestigated froma theoretical, physical, and design perspective.While these
investigations mainly focused on two-level quantum systems, recently also
advantages and benefits of higher-level quantum systems became evident.
Though this led to several approaches for the representation and realiza-
tion of quantum functionality in different dimensions, no efficient solution
for verifying their equivalence has been proposed yet. In the present paper,
we address this problem. We propose a scheme which is capable of verify-
ing the equivalence of two quantum operations regardless of the dimension
of their underlying quantum system. The proposed scheme can be incor-
porated into data-structures such as Quantum Multiple-Valued Decision
Diagrams (QMDD) particularly suited for the representation of quantum
functionality and, by this, enables an efficient verification. Experiments
confirm the efficiency of the proposed approach.

1 Introduction

Quantum computation [19] provides a new way of computation based on so called
qubits. In contrast to conventional bits, qubits do not only allow to represent the
(Boolean) basis states 0 and 1, but also superpositions of both. By this, qubits
can represent multiple states at the same time which enables massive parallelism.
Additionally exploiting further quantum mechanical phenomena such as phase
shifts or entanglement enables asymptotic speed-ups for many relevant problems
(e.g. database search or integer factorization), offers new methods for secure
communication (e.g. quantum key distribution), and has several other appealing
applications [19].

Motivated by these prospects, researchers from various domains investigated
this emerging technology. While, originally, the exploitation of quantum mechan-
ical phenomena has been discussed in a purely theoretical fashion (see e.g. [10,23]
for two well-known quantum algorithms), recently also the consideration of phys-
ical realizations (see e.g. [6,8,21]) as well as proper design methods (see e.g. [1])
gained significant interest. However, most of these considerations and imple-
mentations focused on two-level quantum systems, i.e. systems based on qubits.
But, as a matter of fact, the considered quantum systems offer multiple lev-
els to be exploited. These levels are readily accessible and using them for state

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 201–215, 2014.
c© Springer International Publishing Switzerland 2014

202 P. Niemann, R. Wille, and R. Drechsler

preparation and read-out has been demonstrated [18]. By this, computations
can be performed on so called qudits rather than qubits. Researchers investi-
gated possible exploitations of these additional levels e.g. for matters of simpli-
fied implementation or improved design of quantum operations. They were able
to show that multi-level systems are useful for many promising applications and
provide several practical advantages in the design of respective operations (see
e.g. [5, 12]). This is discussed in detail later in Section 3.

As a consequence, several approaches for representing and realizing quantum
functionality in various quantum systems exist. This raises the question of how
to verify whether or not two quantum operations given in different quantum sys-
tems indeed realize the same function. Although several methods for equivalence
checking of quantum functionality have been proposed in the past (e.g. based
on simulation [24], decision diagrams [26], or Boolean satisfiability [28]), all of
them only supported two-level quantum systems composed of qubits.

In this work, we address the problem of checking functional equivalence be-
tween operations that are realized in multi-level quantum systems. This explicitly
includes comparisons between realizations in different dimensions, i.e. quantum
systems with a different number of levels. For this purpose, we first discuss and
define functional equivalence in this context. Afterwards, a verification scheme
based on the formal representation of quantum operations by unitary matrices is
proposed. Since these matrices grow exponentially with the number of considered
qubits, we additionally demonstrate how the proposed scheme can be incorpo-
rated into data-structures such as QMDDs [15] which are explicitly suited for the
compact representation of quantum operations. By this, an equivalence checker
for multi-level quantum systems results. The efficiency of the proposed scheme is
confirmed by an experimental evaluation considering a wide range of operations
realized in different quantum systems.

The remainder of the paper is structured as follows. In Section 2, preliminaries
on quantum computation as well as a proper data-structure for the compact
representation of quantum functionality are briefly reviewed. Section 3 discusses
recent achievements in the field of multi-level quantum systems and, by this,
motivates the present work. A definition of functional equivalence in multi-level
quantum systems is then provided in Section 4 before the proposed scheme
and an efficient implementation are described in detail. The paper concludes
with a summary on the conducted experimental evaluation in Section 5 and our
conclusions in Section 6.

2 Preliminaries

This section briefly reviews the basics on quantum computation. Furthermore, we
sketch the main ideas of Quantum Multiple-valued Decision Diagrams (QMDDs),
a data-structure which is used later for an efficient implementation of the pro-
posed equivalence checking scheme.

Equivalence Checking in Multi-level Quantum Systems 203

2.1 Quantum Computation

Most commonly, the basic building blocks for quantum computation are qubits.
A qubit is a two-level quantum system, described by a two-dimensional complex
Hilbert space. The two orthogonal basis states |0〉 ≡ (

1
0

)
and |1〉 ≡ (

0
1

)
are used to

represent the (conventional) values 0 and 1. Any state of a qubit may be written
as |Ψ〉 = α|0〉+ β|1〉, where α and β are complex numbers with |α|2 + |β|2 = 1.
The quantum state of a single qubit is denoted by the vector

(
α
β

)
. We say that

a qubit is in superposition if neither of the so called amplitudes α or β is zero.
A qubit can be measured, yielding either the result |0〉 or |1〉 with probability
|α|2 or |β|2, respectively. Such measurement destroys superposition and forces
the qubit to the respective basis state. The state of a quantum system with n > 1
qubits is given by an element of the tensor product of the single qubit spaces, i.e.
a linear combination of the tensor states |0 . . . 0〉, |0 . . . 1〉, . . . , |1 . . . 1〉, which are
the tensor products of basis states. Consequently, a quantum state is represented
as a normalized vector of length 2n (called the state vector), whose components
denote the amplitude for each tensor state.

By the postulates of quantum mechanics, the evolution of a quantum sys-
tem due to a quantum operation can be described by a unitary transformation
matrix U [19]. Here, the columns correspond to the output state vectors that
result when applying the respective operation to the tensor states as inputs.
Thus, the entry uij of the matrix describes the mapping from the input tensor
state |j〉 to the output tensor state |i〉.
Example 1. Commonly used quantum operations include the Hadamard opera-
tionH (setting a qubit into a balanced superposition) and the T (or π

8) operation.
The corresponding unitary matrices are defined as

H = 1√
2

(
1 1
1 −1

)
and T =

(
1 0

0 e
πi
8

)
.

Applying these operations to a qubit in basis state |1〉 yields

H |1〉 = 1√
2

(
1 1
1 −1

)(
0

1

)
= 1√

2

(
1

−1
)

= 1√
2
(|0〉 − |1〉) and

T |1〉 =
(
1 0

0 e
πi
8

)(
0

1

)
=

(
0

e
πi
8

)
= e

πi
8 |1〉, respectively.

While these operations work on a single qubit, there are also operations on
multiple qubits. Usually, these are controlled operations in the sense that the
state of the additional control qubits determines which operation is performed
on the target qubit.

Example 2. An important example of a controlled operation is the controlled
NOT (CNOT) which flips the two basis states of the target qubit if and only if
the control qubit is in the |1〉-state.

204 P. Niemann, R. Wille, and R. Drechsler

0
0

0
1

1
0

1
1

00 0 0 1 0

01 0 0 0 −i

10 i 0 0 0

11 0 1 0 0

x1x0

Inputs

O
u
tp

u
ts

(a) Matrix

x0

x1

1

0

i
0

1 00 −i

(b) QMDD

Fig. 1. Matrix and QMDD representation of a 2-qubit quantum operation

It has been shown that the set of CNOT, H , and T operations (forming the
so-called Clifford+T library) is universal for quantum computation, i.e. oper-
ations from this set can approximate every unitary transformation to an arbi-
trary precision [3]. Moreover, these quantum operations can be implemented in
a fault-tolerant fashion [3] – a crucial property since quantum computing is in-
herently very sensitive to environmental factors such as radiation and, hence,
fault-tolerance is even more important than for conventional systems.

2.2 Quantum Multiple-Valued Decision Diagrams

QMDDs [15] have been introduced as a data-structure for the efficient represen-
tation and manipulation of quantum operations. The main idea is a recursive
partitioning of the respective transformation matrix and the use of edge and ver-
tex weights to represent various complex-valued matrix entries. More precisely,
a transformation matrix of dimension rn × rn is successively partitioned into
r2 sub-matrices of dimension rn−1 × rn−1. This partitioning is represented by
a directed acyclic graph – the QMDD. The following example illustrates main
aspects of this data-structure.

Example 3. Figure 1a shows a transformation matrix for which a QMDD as
shown in Fig. 1b has been built. Here, the unique root vertex (labelled x0) rep-
resents the whole matrix and has four outgoing edges to vertices representing
the top-left, top-right, bottom-left, and bottom-right sub-matrix (from left to
right). This decomposition is repeated at each partitioning level until the termi-
nal vertex (representing a single matrix entry) is reached. To obtain the value
of a particular matrix entry, one has to follow the corresponding path from the
root vertex at the top to the terminal vertex and multiply all edge weights on
this path. For example, the matrix entry −i from the top right sub-matrix of
Fig. 1a (highlighted bold) can be determined as the product of the weights on the
highlighted path of the QMDD in Fig. 1b. For simplicity, we omit edge weights
equal to 1 and indicate edges with a weight of 0 by stubs.

QMDDs are canonical representations, if normalization of edge weights (as de-
scribed in [15]) is performed. Thus, they are very convenient for equivalence

Equivalence Checking in Multi-level Quantum Systems 205

checking. Indeed, due to standard decision diagram techniques like unique ta-
bles, this task can be performed in O(1) by comparing root vertices.

3 Motivation: Multi-level Quantum Systems

Research on quantum computation is considered in numerous facets. Originally,
the exploitation of quantum mechanical phenomena e.g. for data-base search [10],
factorization [23], and other applications has been discussed in a purely theoret-
ical fashion. But in the past decade also several physical realizations have been
proposed – including prototypical implementations based on trapped ions [6],
photons [21], and superconducting qubits [8]. However, most of these consider-
ations and implementations focused on two-level quantum systems, i.e. systems
based on qubits with the basis states |0〉 and |1〉 as reviewed in Section 2.1.

But, as a matter of fact, quantum computation allows for multiple basis states.
Instead of qubits, d-leveled qudits are then used as basic building blocks. These
do not rely on only two orthogonal basis states but a total of d basis states
|0〉, |1〉, . . . , |d−1〉. More precisely, a qudit is described by a d-dimensional Hilbert

space, where the state space is formed by all superpositions |Ψ〉 = ∑d−1
i=0 αi|i〉

for complex-valued αi with
∑d−1

i=0 |αi|2 = 1. Prominent examples of qudits are
qutrits (d = 3) and ququarts (d = 4) which received most attention so far [5, 9,
11, 13, 16].

Multiple qudits with levels d0, . . . , dn−1 form a d̂-level quantum system where
d̂ is the maximum of the di. The underlying Hilbert space is the tensor product of
the respective spaces of the single qudits. Accordingly, the state of such systems
can be expressed by a state vector of length

∏n−1
i=0 di and is given by a linear

combination of the tensor states |x0, . . . , xn−1〉 where 0 ≤ xi < di for 0 ≤ i < n.
Operations over qudits are described by extended unitary transformation ma-

trices.

Example 4. The qutrit operation X which exchanges the basis states |0〉 and |2〉
can be described by the matrix

X0,2 =

⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠, while H0,1 = 1√

2

⎛
⎜⎜⎝
1 1 0 0
1 −1 0 0

0 0
√
2 0

0 0 0
√
2

⎞
⎟⎟⎠

represents the ququart operation that performs the Hadamard operation on basis
states |0〉 and |1〉, leaving the remaining basis states untouched.

Multi-level systems are not only of theoretical interest [9], but are also useful
for promising applications of quantum computation (see e.g. [5, 12]). Moreover,
the use of multi-level quantum systems offers several practical advantages com-
pared to qubit systems. More precisely:

– Multi-level quantum systems allow for much more efficient realizations of
multi-qubit operations [12]. For example, Fig. 2a shows a minimal imple-
mentation (in terms of T -depth, i.e. the number of sequential T operations)

206 P. Niemann, R. Wille, and R. Drechsler

H T

T

T

T †

T †

T †

T H
(a) Using the (two-level) Clifford+T library

|2〉 |0〉 |2〉
H

X0,1

X0,2 H H X0,2

X0,1

H

(b) Using a multi-level system

Fig. 2. Realizations of the Toffoli operation

of a Toffoli operation within the Clifford+T library, i.e. based on a two-level
system (taken from [1])1. The same functionality can be realized with sig-
nificantly less operations in a multi-level system using a qutrit as shown in
Fig. 2b (taken from [12]).

– A theoretical analysis showed that ququart operations may have a general
advantage over qubit operations when it comes to the realization of general-
ized Toffoli operations. In fact, mapping these Toffoli operations to quantum
operations using qubit-based techniques (e.g. [2]) requires an exponential ef-
fort. In contrast, a recently proposed four-valued approach can realize each
Toffoli operation with linear complexity [22].

These advantages lead to an increased interest in multi-level quantum systems
and the implementation of quantum operations in various dimensions. Conse-
quently, as for qubit systems, the synthesis of general quantum functionality has
also been studied for multi-level systems [4, 7, 17]. In [7], a generalized CNOT
operation is suggested that reacts on an arbitrary control state and swaps an
arbitrary pair of states on the target qudit. The advantage of this approach is
that it is physically realizable by using standard CNOT operations and certain
laser beams (Rabi oscillations) to swap basis states. By this, synthesis of many
important multi-level circuits becomes possible with established technology.

Overall, various representations and realizations of quantum functionality for
different quantum systems exist. But whether or not two given quantum oper-
ations in different dimensions indeed realize the same functionality has hardly
been considered yet. This issue is addressed in the following, i.e. we present a
scheme which automatically checks for the equivalence of operations in multi-
level quantum systems.

1 As established in the literature, horizontal lines represent the qudits and the opera-
tions H , T , (CNOT), etc. are applied successively from left to right.

Equivalence Checking in Multi-level Quantum Systems 207

4 Equivalence Checking in Multi-Level Quantum Systems

While, thus far, equivalence checking for quantum functionality has intensely
been considered in the past (leading to approaches e.g. based on simulation [24],
decision diagrams [26], or Boolean satisfiability [28]), usually only operations in
the same dimension have been compared. In this work, we propose a verification
scheme which is capable of proving the functional equivalence between quantum
operations even if they are realized in different dimensions. For this purpose, this
section first discusses fundamental preconditions and provides a precise defini-
tion of the functional equivalence that we are going to address. Afterwards, the
proposed equivalence checking scheme is introduced. Based on these concepts,
we finally illustrate an efficient implementation of the proposed scheme.

4.1 Functional Equivalence for Quantum Operations

The purpose of equivalence checking is to verify whether two quantum operations
realize the same functionality. In the following, we denote the two quantum
operations to be compared by U1 and U2. The underlying quantum systems may
have different dimensions d1 and d2 (for U1 and U2, respectively), where we
assume d2 ≥ d1 (without loss of generality). In order to check for equivalence
between U1 and U2, it is important to have a precise definition of which basis
states of the quantum systems actually correspond to each other. Basis states
can either be shared states, if there is a corresponding basis state in the other
system, or don’t care states, if there is no counterpart.

Example 5. Consider two quantum operations U1 and U2, which are realized in
a 2-level and 3-level quantum system, respectively. More precisely, the 2-level
system consists of three qubits whereas the 3-level system is a hybrid system
composed of two qubits and a single qutrit. A possible mapping between basis
states is shown in Fig. 3. Here, all basis states are shared states except the |1〉
state of the qutrit in U2, which has no counterpart in U1 and, thus, is a don’t
care state.

|0〉 |1〉 |0〉 |1〉 |0〉 |1〉

|0〉 |1〉 |0〉 |1〉 |0〉 |1〉 |2〉

U1

U2

Fig. 3. Possible mapping of basis states between quantum systems

In the following, the correspondence of basis states is represented by a func-
tion ψ. It is assumed that ψ is either derived from the specification of the re-
spective technology mapping or directly provided by the designer.

208 P. Niemann, R. Wille, and R. Drechsler

In this work, we require that both quantum systems are composed of the same
number of qudits and do not consider corner cases in which e.g. a ququart is re-
alized by two qubits or even more scattered mappings. Although the proposed
approach could be extended in order to support also these cases, our simplifica-
tion is strongly motivated by the following facts:

– It is a natural requirement to enable the same set of measurements for U1

and U2. Since only entire qudits can be measured, this is only possible if
there is a one-to-one relation between qudits in both systems.

– In order to interpret a measurement result correctly, there may not be cross-
mappings between basis states that do not belong to corresponding qudits.

Don’t care states may be employed during the operation, like e.g. in the multi-
level realization of the Toffoli operation shown in Fig. 2b. But, we assume that
neither input nor corresponding output states carry a don’t care component.

Having these definitions and assumptions, two quantum operations U1 and U2

are functionally equivalent (U1 ≡ U2) if they perform an equivalent transforma-
tion on shared states. The behaviour on don’t care states, however, may be
arbitrary.

Example 6. Consider the matrixH0,1 from Example 4 describing a Hadamard op-
eration on a ququart. Assuming the trivial mapping of shared states ψ(|i〉) = |i〉
(for i = 0, 1), H0,1 is equivalent to the Hadamard operation H on a qubit (from
Example 1). However, with the same mapping, this is not the case for

H0,2 = 1√
2

⎛
⎜⎜⎝
1 0 1 0

0
√
2 0 0

1 0−1 0

0 0 0
√
2

⎞
⎟⎟⎠ ,

which also performs a Hadamard operation on a ququart, but on different basis
states.

4.2 Proposed Equivalence Checking Scheme

Assume two quantum operations U1 and U2 (realized in quantum systems with
dimensions d2 ≥ d1) together with a mapping ψ and the corresponding distinc-
tion in shared states and don’t care states. Then, functional equivalence of these
operations can be verified in two steps:

1. Check whether the sub-matrices of U1 and U2 representing the mapping of
shared input states to shared output states are equivalent.

2. Check whether the sub-matrices of U1 and U2 representing the mapping of
don’t care input states to shared output states (and vice versa) are zero
matrices.

Equivalence Checking in Multi-level Quantum Systems 209

0 1 · · · s s
+

1

· · ·

d
2

−
1

0 0 0

1 0 0
... 0 0

s 0 0
s
+

1 0 0
... 0 0

d
2 −

1
0 0

Inputs

O
u
tp

u
ts

U1

∗0

0

shared don’t care

sh
a
re
d

d
o
n
’t

ca
re

Fig. 4. Matrix of U2 to be compared against U1

If both checks evaluate to true, then U1 and U2 are equivalent. This scheme is
illustrated by means of Fig. 4 on the basis of single qudit systems. More precisely,
Fig. 4 shows the matrix representing the quantum operation U2, i.e. within the
higher level system. Without loss of generality, assume that the basis states
|0〉, . . . , |s〉 of the U1-system are shared states (s < d1) and that ψ maps them to
the basis states |0〉, . . . , |s〉 of the U2-system. The remaining states are assumed
to be don’t cares. Then, the top-left (s+ 1)× (s+ 1) sub-matrix of U2 in Fig. 4
represents the mapping of shared input to shared output states. If U1 ≡ U2, this
mapping obviously has to be equivalent to the corresponding mapping described
in U1. This is checked in Step 1.

Next, we exploit the fact that, as discussed in Section 4.1, only superpositions
of shared basis states are applied to U2, i.e. the basis states |s+ 1〉, . . . , |di − 1〉
are always prepared (expected) with zero amplitude for input (output) states.
Because of that and in order to keep the unitarity of the overall matrix, no
further mappings from don’t care states to shared states (represented in the
top-right sub-matrix) and from shared states to don’t care states (represented
in the bottom-left sub-matrix) must exist. That is, the corresponding matrices
have to be zero matrices. This is checked in Step 2. Note that we do not need to
consider the bottom-right sub-matrix representing the mapping from don’t care
input to don’t care output states, since arbitrary behaviour is allowed here.

Example 7. Once again, consider the operations H (from Example 1) and H0,1

(from Example 4) together with the trivial mapping of shared states between
the underlying 2- and 4-level quantum systems (i.e. ψ(|i〉) = |i〉 for i = 0, 1).

The 4-level operation H0,1 is equivalent to the 2-level operation H , because
(1) the mappings of shared states are equivalent and (2) no mappings from don’t
care states to shared states and vice versa exist. In contrast, these properties do
not hold for the operation H0,2 (from Example 6), showing its non-equivalence
to the other two operations.

210 P. Niemann, R. Wille, and R. Drechsler

0
0

0
1

1
0

1
1

00 0 0 0 0

01 0 0 0 0

10 0 0 0 0

11 0 0 0 0

x1x0

U0
1 U1

1

U2
1 U3

1

(a) U1 (2-level system)

0
0

0
1

0
2

0
3

1
0

1
1

1
2

1
3 · · ·

00 0 0 0 0 0 0 0 0 · · ·
01 0 0 0 0 0 0 0 0 · · ·
02 0 0 0 0 0 0 0 0

03 0 0 0 0 0 0 0 0 · · ·
10 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 · · ·
12 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 · · ·
... 0

...
...

...
...

. . .

x1x0

U0
1 U1

1

U2
1 U3

1

∗

∗

∗

∗

0 0

0 0

0 0

0 0

(b) U2 (4-level system)

Fig. 5. Equivalence of operations in multi-qudit systems

This scheme can accordingly be extended to quantum systems composed of
an arbitrary number of qudits. Then, however, the checks have to consider the
more scattered distribution of the respective sub-matrices. This is sketched in
Fig. 5, where U1 (realized in a 2-level quantum system) is to be compared to
U2 (realized in a 4-level quantum system composed of two ququarts). Here we
assume that there are no don’t care states in the U1-system and again, without
loss of generality, that ψ maps the basis states |0〉 and |1〉 of the U1-system to the
shared basis states |0〉 and |1〉 of the U2-system. As can be seen, all (shared and
don’t care) basis states are considered separately for each qudit. Accordingly,
the sub-matrices to be checked against U1, the zero matrices, and don’t care
matrices (∗) are scattered throughout the whole transformation matrix.

This, however, does not restrict the applicability of the proposed equivalence
checking scheme, but of course harms the efficiency of the checks. Note that this
is even more the case for more complex mappings of shared states. Then, the
matrices under consideration can be in a more dispersed shape and the scheme
might result in checking equivalence of many small non-adjacent sub-matrices.

Hence, an efficient implementation of this scheme even in these cases is essen-
tial and will be described next.

4.3 Implementation Using QMDDs

While the concepts introduced above are sufficient to check equivalence between
arbitrary quantum operations, the matrix representations used thus far consti-
tute a serious hurdle to the applicability of the proposed scheme. In fact, matrix
descriptions grow exponentially with the number of qudits in a system. Hence,
a naive implementation based on matrices is infeasible for quantum systems of
a certain size.

Equivalence Checking in Multi-level Quantum Systems 211

x0

x1 · · · x1

1

(
U0

1

) (
U3

1

)

(a) QMDD for U1

x0

x1

1

0
0 0

0

U3
1 ∗

(b) QMDD for U2

Fig. 6. QMDD representations of the quantum operations sketched in Fig. 5

In order to address this issue, we implemented the proposed scheme by means
of the QMDD data-structure introduced in [15]. In this data-structure, each
vertex represents a matrix which is partitioned into four sub-matrices (for qubit
systems). Each sub-matrix is then represented by a successor of the current
vertex. In case of multi-level quantum systems, the number of successors grows
accordingly with the number of basis states.

Example 8. Figure 6 sketches the QMDD representations of the quantum opera-
tions already discussed in Fig. 5. As U1 assumes a two-level quantum system, the
overall matrix is partitioned into four sub-matrices. In contrast, the four-level
system of U2 is composed of 4 ·4 = 16 sub-matrices. Hence, the respective nodes
have four and 16 successors, respectively. The x1-vertices in Fig. 6a represent the
sub-matrices U0

1 and U3
1 , respectively (as indicated in brackets). The x1-vertex

in Fig. 6b sketches the second-top-right sub-matrix. Its sub-blocks U3
1 and ∗ are

represented by distinct sets of edges (which are indicated by a correspondingly

labelled M , but are not part of the original QMDD).

Due to efficient techniques like shared nodes or unique tables, QMDDs are ca-
pable of representing quantum functionality for several dozens of qubits and/or
qudits. Moreover, computed tables enable a very efficient implementation of the
equivalence checking scheme outlined above.

For the purpose of equivalence checking, the QMDD representations of the
operations have to be aligned. More precisely, we

– align the number of don’t care states for corresponding qudits by “blow-
ing up” vertices with additional successors (e.g. to introduce two additional
don’t care states for each qubit, all vertices in Fig. 6a are equipped with 12
additional 0-edges),

– align basis states (if the mapping of shared states is non-trivial) by rearrang-
ing edges appropriately, and

– align possibly different don’t care to don’t care mappings (∗) by setting the
corresponding edges to zero.

212 P. Niemann, R. Wille, and R. Drechsler

This transformation can be done in a single traversal of each QMDD and leads to
representations of two matrices (of equal size), which are identical if and only if
the operations are functionally equivalent. The latter can be verified in constant
time by a single unique table look-up, since QMDDs provide canonical repre-
sentations. By this, equivalence checking can be conducted efficiently even for
larger quantum systems. This has been confirmed by an experimental evaluation
whose results are summarized and discussed in the next section.

5 Experimental Results

The equivalence checking scheme described above has been implemented in C on
top of the original QMDD package presented in [15]2 and evaluated on a wide
range of operations realized in different quantum systems. More precisely, we
considered

– 2-level and 4-level representations of various quantum operations including
Shor’s 9-qubit error correcting code (denoted by 9qubitN1 and 9qubitN2),
as well as a 7-qubit encoding (denoted by 7qubitcode) taken from [14] and
instances of Grover’s algorithm (denoted by Grover-k) and quantum Fourier
transforms (denoted by QFT-k) taken from [19] (k is the number of qubits),

– multi-qubit operations taken from RevLib [27], mainly realizing Boolean
functionality for 2-level systems that additionally have been mapped to 4-
level representations based on the methods described in [22] (denoted by
their respective RevLib identifier), and

– randomly generated quantum operations with up to 25 qubits (denoted ar-
bitrary).

In total, 296 benchmarks have been considered. For each of them, the 2-level
representation has been compared against the respective 4-level representation.
In order to additionally evaluate the performance of the proposed approach
for non-equivalent operations, for each pair of representations we introduced
an error through random changes (to one of them) and compared this to the
original operation. All experiments have been conducted on a 2.8 GHz Intel
Core i7 machine with 8 GB of main memory running Linux. The timeout was
set to 500 CPU seconds.

The results are summarized in Table 1 for a selection of the conducted exper-
iments3. The first two columns provide the identifiers of the respective bench-
marks followed by its number of qudits. Afterwards, the run-time (in CPU
seconds) for building up the data-structure (QMDD) as well as performing the
actual equivalence check (EC) is provided for both cases, i.e. when both oper-
ations are equivalent and when they are not equivalent. As can be seen, the

2 We thank the authors of [15] for providing us with their implementation of the
QMDD package.

3 Due to space limitations, we were not able to provide the numbers for all benchmarks.

Equivalence Checking in Multi-level Quantum Systems 213

Table 1. Experimental evaluation

Runtimes (s)
Equivalence Non-Equivalence

Benchmark #Qudits QMDD EC QMDD EC

7qbitcode 7 < 0.01 < 0.01 < 0.01 < 0.01
9qubitN1 9 < 0.01 < 0.01 < 0.01 < 0.01
9qubitN2 17 0.04 < 0.01 0.04 < 0.01
Grover-5 11 0.41 < 0.01 0.38 < 0.01
Grover-6 13 0.04 < 0.01 0.05 < 0.01
QFT-5 5 < 0.01 < 0.01 0.01 < 0.01
QFT-7 7 0.01 0.01 0.02 < 0.01

add16 174 49 0.03 < 0.01 0.02 < 0.01
add32 183 97 0.08 < 0.01 0.08 < 0.01
alu2 199 16 117.84 0.01 115.94 0.02
alu3 200 18 224.42 0.04 217.3 0.04
apla 203 22 14.77 0.02 15.3 0.02
bw 291 87 > 500 – > 500 –

cm163a 213 29 1.63 < 0.01 1.74 0.03
cu 219 25 4.36 < 0.01 4.59 0.02

cycle10 293 39 22.91 < 0.01 25.29 < 0.01
ham15 107 15 103.77 0.31 88.6 0.25

hwb7 61 7 3.24 < 0.01 2.94 < 0.01
lu 326 299 > 500 – > 500 –

mod5add 306 32 326.98 0.4 307.95 0.36

arbitrary10 10 0.7 < 0.01 0.73 < 0.01
arbitrary15 15 15.04 0.2 25.41 0.55
arbitrary20 20 26.76 0.15 41.34 0.35
arbitrary25 25 > 500 – > 500 –

proposed scheme is able to efficiently check the equivalence of two quantum op-
erations for the majority of all benchmarks. In fact, for 224 out of the 296 bench-
marks, we were able to check their equivalence in less than a minute. While the
actual equivalence check can always be conducted in almost no time, the limiting
factor is the time needed for the construction of the representation of the respec-
tive quantum functionality, i.e. the QMDD in this case. Hence, the efficiency of
the proposed scheme only relies on the chosen description mean. As improving
those is an active research area (see e.g. the work on alternative representations
such as XQDDs [26], QuIDDs [25] or improvements on QMDDs themselves [20])
and the proposed scheme can easily be adapted to other representations, further
benefits can be expected here in the future.

6 Conclusions

In this work, we presented a scheme for checking the equivalence between two
quantum operations working in different quantum systems. By this, the recent
developments showing the advantages and benefits of multi-level quantum sys-
tems are taken into account. The proposed scheme can be incorporated into
data-structures particularly suited for the representation of quantum function-
ality. An experimental evaluation confirmed that this enabled an efficient and
fast equivalence checking which is mainly limited by the representation of the
applied quantum functionality.

214 P. Niemann, R. Wille, and R. Drechsler

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD 32(6),
818–830 (2013)

2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor,
P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum
computation. Physical Review A 52(5), 3457–3467 (1995)

3. Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal
and fault-tolerant quantum basis. Information Processing Letters 75(3), 101–107
(2000)

4. Bullock, S.S., O’Leary, D.P., Brennen, G.K.: Asymptotically optimal quantum
circuits for d-level systems. Physical Review Letters 94(23), 230502 (2005)

5. Cabello, A., D’Ambrosio, V., Nagali, E., Sciarrino, F.: Hybrid ququart-encoded
quantum cryptography protected by Kochen-Specker contextuality. Physical
Review A 84(3), 030302 (2011)

6. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Physical
Review Letters 74(20), 4091–4094 (1995)

7. Di, Y.M., Wei, H.R.: Synthesis of multivalued quantum logic circuits by elementary
gates. Physical Review A 87, 012325 (2013)

8. Galiautdinov, A.: Generation of high-fidelity controlled-not logic gates by coupled
superconducting qubits. Physical Review A 75(5), 052303 (2007)

9. Greentree, A.D., Schirmer, S., Green, F., Hollenberg, L.C., Hamilton, A., Clark,
R.: Maximizing the Hilbert space for a finite number of distinguishable quantum
states. Physical Review Letters 92(9), 097901 (2004)

10. Grover, L.K.: A fast quantummechanical algorithm for database search. In: Theory
of Computing, pp. 212–219 (1996)

11. Klimov, A., Guzman, R., Retamal, J., Saavedra, C.: Qutrit quantum computer
with trapped ions. Physical Review A 67(6), 062313 (2003)

12. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch,
K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum
logic using higher-dimensional Hilbert spaces. Nature Physics 5(2), 134–140 (2008)

13. Mc Hugh, D., Twamley, J.: Trapped-ion qutrit spin molecule quantum computer.
New Journal of Physics 7(1), 174 (2005)

14. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge
University Press (2007)

15. Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible
and quantum circuits. In: Int’l Symp. on Multi-Valued Logic, p. 30 (2006)

16. Moreva, E., Maslennikov, G., Straupe, S., Kulik, S.: Realization of four-level qudits
using biphotons. Physical Review Letters 97(2), 023602 (2006)

17. Muthukrishnan, A., Stroud Jr, C.: Multivalued logic gates for quantum computa-
tion. Physical Review A 62(5), 052309 (2000)

18. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell,
A.D., Sank, D., Wang, H., Wenner, J., Cleland, A.N., et al.: Emulation of a quan-
tum spin with a superconducting phase qudit. Science 325(5941), 722–725 (2009)

19. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge Univ. Press (2000)

20. Niemann, P., Wille, R., Drechsler, R.: On the “Q” in QMDDs: Efficient represen-
tation of quantum functionality in the QMDD data-structure. In: Dueck, G.W.,
Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 125–140. Springer, Heidelberg
(2013)

Equivalence Checking in Multi-level Quantum Systems 215

21. O’Brien, J.L., Akira Furusawa, J.V.: Photonic quantum technologies. Nature
Photonics 3(12), 687–695 (2009)

22. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class
of quantum gates. In: Design Automation Conf., pp. 36–41 (2012)

23. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and
factoring. Foundations of Computer Science, 124–134 (1994)

24. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Checking equivalence of quantum
circuits and states. In: Int’l Conf. on CAD, pp. 69–74 (2007)

25. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
New York (December 2009)

26. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method
for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)

27. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

28. Yamashita, S., Markov, I.L.: Fast equivalence-checking for quantum circuits.
Quantum Information & Computation 10(9&10), 721–734 (2010)

http://www.revlib.org

BDD Operations for Quantum Graph States�

Hidefumi Hiraishi1,2 and Hiroshi Imai1,3

1 Department of Computer Science, IST, The University of Tokyo
2 ERATO Kawarabayashi Large Graph Project, National Institute of Informatics

3 NanoQuine, The University of Tokyo

Abstract. A quantum graph state determined by an underlying graph
is very fundamental in quantum computation and information, such as
measurement-based quantum computing, stabilizer states and codes. For
a graph state, a reversible operation, called the local complementation,
transforms it to another graph state, and local Clifford operations map
it to a stabilizer state. Besides these operations, taking the inner prod-
uct of a graph/stabilizer state with an arbitrary complete product state
leads to analyzing measurements for an arbitrary basis and solving a #P-
complete problem of computing the partition function of a graph in Ising
model. We recently observe that a graph state naturally corresponds to
a Boolean function associated with a graph, and apply our top-down
construction algorithm for the function. In this paper, we further discuss
BDD operations for the above-mentioned operations on them. Specific
bounds on the sizes and computational times of these BDDs are given
in terms of the linear rank-width of a graph, and an efficient exact ex-
ponential algorithm for the Ising partition function is derived.

1 Introduction

Quantum computing opens us a new vista for a new model of computing based
on new principles of quantum mechanics. In order to reveal intrinsic power of
quantum computing, typical and useful quantum states have been investigated,
such as a maximally entangled state like EPR state, GHZ states. As more general
classes of quantum states, graph states and stabilizer states have been investi-
gated in these years. Quantum graph states, determined by underlying graphs,
are fundamental in measurement-based quantum computing (MBQC) where a
graph state is prepared as an initial quantum resource to be consumed by a
series of measurement for computation. Quantum stabilizer states are defined
under the stabilizer formalism in quantum information which have applications
for quantum error correcting codes, classical simulation and others. A class of
stabilizer states form a proper superclass of graph states.

� This work was supported by Project for Developing Innovation Systems of the Min-
istry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Also,
the work by the second author is supported in part by the Grant-in-Aid for Scientific
Research of MEXT, Japan.

S. Yamashita and S. Minato (Eds.): RC 2014, LNCS 8507, pp. 216–229, 2014.
c© Springer International Publishing Switzerland 2014

BDD Operations for Quantum Graph States 217

BDD is a data structure representing Boolean functions, proposed more than
a half century ago, and a paper [3] is a seminal work identifying the unique-
ness with respect to variable ordering and introducing operations among BDDs.
BDD has diverse applications in many branches of computer science [12,13,14].
Furthermore, quantum BDDs are proposed. Since finite-dimensional quantum
states are represented as a vector and a matrix, through this connection the
MTBDD in [8] directly represents quantum state. There are specific operations
on quantum states, which are exploited in quantum BDDs such as [30,29,21,31].

In [11], for an underlying graph G of n vertices and m edges, a simple
Boolean function of n variables can represent a graph state, and its BDD can be
constructed by a top-down construction algorithm from the root, as in [23].
The BDD width is shown to be bounded by 2lrw(G)+1 for the linear rank-
width lrw(G) (see [18]) of a graph G. This BDD itself can be constructed in
O(n22lrw(G)) time.

In this paper we first discuss applying a unitary transformation, called local
complementation at a vertex v, from a graph state to another graph state over
BDDs. Within the stabilizer formalism in quantum information, a specific uni-
tary transformation is given [22,25,10] as the tensor product of n 1-qubit unitary
matrices, specifically deg(v) + 1 non-identity unitary matrix and n− deg(v)− 1
identiry matrices, where deg(v) is the degree of vertex v. In general frameworks
of quantum BDDs, these unitary operations can be performed over them by ex-
tending Bryant’s operations over Boolean BDDs. However, this approach may
face a well-known barrier of Bryant’s approach, i.e., blow-up in size in intermedi-
ate BDDs treated in the process of apply operations and its time may dependent
on deg(v) which may be proportional to n in dense graphs. We show that a local
complementation can be performed in time linear to the BDD size of an original
graph in the worst case, by taking the exclusive-or, XOR, of the BDD of a graph
and a BDD representing the local complementation. This width and computa-
tional time of this BDD is O(n2lwd(G)), whose time is smaller by a factor of n
to the time bound to construct this transformed BDD from scratch.

Next we consider a representation of a stabilizer state when it is given as the
product of a graph state and a local Clifford unitary matrix, which is a tensor
product of n 1-qubit unitary matrices of a certain finite set of 1-qubit unitary
matrices. We are interested in computing the inner product of this stabilizer state
with an arbitrary complete product state. This can be done by first computing
the multiplication of the product state with the above-mentioned local Clifford
matrix, which is again another complete product state, and then by taking the
inner product of this computed product state with the BDD representing the
underlying graph state. With this, the BDD of a graph state can be further
utilized. Applying this to a specific stabilizer state in [27], we can efficiently
compute the partition function of a graph in Ising model. For a n = k×k square
lattice graph with non-zero external magnetic field, this yields We may interpret
in this framework anO(k32k)-time algorithm [11] for the Ising partition function,
which is better than an O(k34k)-time algorithm using a BDD representing all
the spanning trees of the underlying graph in [23]. We further refer to a Boolean

218 H. Hiraishi and H. Imai

function corresponding to the stabilizer state in [27], and discuss its BDD from
the viewopoint of graph width parameters.

Since this paper bridges many research fields, such as quantum computing,
graph minor theory and BDD, we try to use many examples to give idea on
their connection smoothly. In the remaining part of this introduction, we sum-
marize strongly relevant research results in such fields. From the standpoint of
quantum computing, the power of MBQC starting with a graph state is related
to the rank-width of its underlying graph [28]. Efficient classical simulation of
MBQC for graphs with bounded rank-width [26] can be extended to computing
the partition function of Ising model efficiently [27]. From the graph-theoretic
viewpoint, the rank-width of a graph is introduced in [19] (see also [18]) in terms
of vertex-minors as an extension of graph minor theory (e.g., see [20] introducing
the tree-width). The rank-width is investigated in terms of vertex-minors and
local complement operations in [16], and is used for MBQC in [28]. Both aspects
are combined via Boolean BDDs here. Concerning the Ising partition function,
Sekine, Imai and Tani [23] treated the BDD representing all spanning tree of
a graph, propose the above-mentioned top-down algorithm, and analyzed the
BDD width in terms of path-width (different terminology there, but using mod-
ern one here) of the graph. It has strong connection with ‘Exact Exponential
Algorithms’ (e.g., see a book [6]) as well as complexity-theoretic issues about
the Tutte polynomial of a graph [2,5,32]. It would be interesting to note, at the
end of this introduction, that an approximation algorithm for the Ising partition
function has been analyzed intensively in these year (e.g., see [24]), and also an
approximation quantum algorithm for computing the Tutte polynomial on some
curves and points in the Tutte plane, while this paper is concerned with exact
algorithms [1].

2 Basic Definitions

A one-bit quantum state, called a 1-qubit state, is a complex vector in C2 with
norm 1. By adopting a bracket notation, the normal orthogonal basis is repre-
sented, by ket vectors, which are column vectors, as

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)

A n-qubit state is a complex vector |φ〉 in C2n with norm 1, and its orthonormal
basis is given by

|x1x2 . . . xn〉 := |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ∈ C2n (xi ∈ {0, 1})

where ⊗ is the tensor product, or Kronecker prodct. We also use an orthogonal
basis |+〉. |−〉 defined by

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

BDD Operations for Quantum Graph States 219

In the sequel we will ignore the so-called global phase (e.g., see [15] of a quantum
state when required.

Consider an undirected graph G = (V,E) with vertex set V and edge set E.
We assume it is simple and connected. For S ⊆ V , define E(S) to be a set of
edges whose two vertices are both in S (i.e., the edge set of a subgraph induced
by S). For the vertex set V = {v1, v2,vn} (|V | = n), consider a n-qubit
quantum state |x1x2 . . . xn〉 ∈ C2n (xi ∈ {0, 1}). For S ⊆ V , its characteristic
vector is defined as χV

S = (x1, x2, . . . , xn) with S = {i | xi = 1}. Then, a graph
state |G〉 for graph G is defined by

|G〉 = 1

2|V |/2
∑
S⊆V

(−1)|E(S)||χV
S 〉 (1)

Graph states can be defined under the so-called stabilizer formalism where
more definitions about fundamentals of quantum computing are necessary. Pauli
spin matrices are

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

For n unitary matrices A1, . . . , An in C2×2, U = A1⊗A2⊗ · · ·⊗An operates on
|φ〉, mapping it to another quantum state. When Ai = A for i ∈ SA and Ai = B
for i ∈ SB and otherAi’s are all an identity matrix with SA, SB ⊆ S, SA∩SB = ∅,
the corresponding unitary matrix U in C2n×2n is denoted by ASABSB . For a
graph G = (V,E), define a unitary matrix Kv for v ∈ V , operating on n-qubit
states, by

Kv = (σx)
{v}(σz)

δ(v)

where δ(v) is defined to be a set of vertices adjacent to v in the graph G. A graph
state |G〉 satisfies Kv|G〉 = |G〉 for each v ∈ V , which is another characterization
of graph states. Stabilizer states can be defined by more general stabilizers. We
here simply give its characterization theorem:

Theorem 1 ([9,22,25], see also [10]). A quantum state |φ〉 is a stabilizer
state iff |φ〉 = U |G〉 for a graph state |G〉 and a unitary matrix U obtained by
the tensor product of each 1-qubit unitary matrix which are products

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)

The unitary transform in the theorem is called local Clifford unitary.
A binary decision diagram (BDD) represents a Boolean function in a compact

and operational manner. See [3]. Here we explain it through an example. In
Fig.1(a), for an ordering of x1, x2, x3, this labeled complete binary tree represents
the sign + and − of |K3〉 by 0 (false) and 1 (true), respectively. By unifying two
nodes in the tree such that trees rooted at each of them are isomorphic, including
labels, we derive a BDD. A BDD obtained by performing this unifying operation
as much as possible is called a quasi-reduced ordered binary decision diagram

220 H. Hiraishi and H. Imai

Fig. 1. For a graph state |K3〉 = (|000〉+ |001〉+ |010〉− |011〉+ |100〉− |101〉− |110〉−
|111〉) of a complete graph K3, (a) a complete binary tree represents it as a Boolean
function, and (b) its QOBDD

(QOBDD). A QOBDD is a layered diagram such that i-th level corresponds
to xi for the variable ordering. The width of a level is the number of nodes in
the level, and the width of QOBDD (we below write it simply as BDD) is the
maximum among widths of levels. In Fig.1, the BDD width is 3.

3 BDD of a Graph State

The paper [11] introduces a Boolean function fG(x1, . . . , xn) for G = (V,E) with
vertex set V and edge set E by

fG(χ
V
T) =

⊕
e=(vi,vj)∈E

(xi ∧ xj). for T ⊆ V, (2)

where⊕ is the exclusive-or, XOR, operation. Identifying the value of this Boolean
function with integers 0 (False) and 1 (True), we see that this function represents
the graph state. In fact, it gives an explicit representation by a straight-line
program produced from the BDD of this function as in the following example of
|K3〉. Denoting an intermediate variable in the program corresponding to a node
for xi with j-th left among the nodes in the same level by [xi]j , the program
becomes as follows:

[x2]1 := |0〉;
[x2]2 := |1〉;
[x3]1 := [x2]1 ⊗ |0〉;
[x3]2 := [x2]1 ⊗ |1〉+ [x2]2 ⊗ |0〉;
[x3]3 := [x2]2 ⊗ |1〉;
[0] := [x3]1 ⊗ (|0〉+ |1〉) + [x3]2 ⊗ |0〉;
[1] := [x3]2 ⊗ |1〉+ [x3]3(|0〉+ |1〉);
output 1

2
√
2
((−1)0[0] + (−1)1[1]);

BDD Operations for Quantum Graph States 221

The BDD of this function is first investigated in Hiraishi, Imai, Iwata and
Lin [11], and here we summarize its results to investigate BDD operations for
graph states followingfurther. This BDD representation can be directly applied
to computing useful functions of graph states.

Lemma 1. For a graph state |G〉 with its BDD, given a complete product quan-
tum state |α〉 = ⊗n

i=1(ai|0〉 + bi|1〉) ∈ (C2)⊗n the inner product 〈α|G〉 can be
computed in size proportional to the size of the BDD.

This inner product computation is a main problem here, and will be discussed in
a more general setting for stabilizer states in section 6.1. In fact, this is exactly
a necessary operation of computing the partition function of Ising model via a
type of graph state [27], and is covered in section 6.2.

We are interested in investigating BDDs of fG. Let us first consider a variable
order x1, . . . , xn in BDDs. For S ⊆ V , we denote V −S by S. For i = 1, . . . , n−1,
define a subset Si of V to be {v1, v2, . . . , vi}. For T ⊆ Si, define a Boolean
function f i

T = f i
T (xi+1, . . . , xn) of variables xi+1, . . . , xn by

f i
T (xi+1, . . . , xn) = fG(χ

Si

T , xi+1, . . . , xn)

This corresponds to a subfunction in the BDD of fG. For a vertex v ∈ Si, define
δi(v) to be {u | u ∈ Si, (u, v) ∈ E}. For T ⊆ S, define Γ2(T) by

Γ2(T) = {v | v ∈ Si, |T ∩ δi(v)|: odd}
Then, the following lemma is given in [11].

Lemma 2. For i ∈ {1, . . . , n − 1} and T, T ′ ⊆ Si, we have f i
T (xi, . . . , xn) =

f i
T ′(xi, . . . , xn) iff f i

T (0, . . . , 0) = f i
T ′(0, . . . , 0) and Γ2(T) = Γ2(T

′).

This lemma can be used in equivalence test of subfunctions in the top-down
BDD construction algorithm from the root.

The width of this BDD can be analyzed as follows. Consider the adjacency
matrix A(S, S) of a bipartite subgraph of G such that its rows and columns
correspond to S and S, respectively, and its uv-element (u ∈ S, v ∈ S) is 1 if
there is an edge connecting u and v, and 0 otherwise. Following the notation in
Oum [16], denote the rank of this matrix A(S, S) over GF (2) by cutrkG(S), we
have.

Lemma 3. |{Γ2(T) | T ⊆ S}| ≤ 2cutrkG(S).

This has connection with discussions about defining and analyzing the rank-
width of a graph G. In an analogous manner of defining the path-width from
the tree-width, we may define the linear rank-width as follows (see [18]). For
any permutation τ on V , consider a vertex oder vτ(1), vτ(2), . . . , vτ(n) and S′

i =
{vτ(1), vτ(2) . . . , vτ(i)}, the linear rank-width of graph G with respect to the per-
mutation τ is defined to be

lrw(G, τ) = max{cutrkG(S′
i) | i = 1, . . . , n− 1}

222 H. Hiraishi and H. Imai

and the linear rank-width G is defined to be

lrw(G) = min{lrw(G, σ) | ∀permutation τ}

Note that rwd(G) ≤ lrw(G) ≤ pw(G).

Theorem 2 ([11]). For a graph G, there is a QOBDD representing |G〉 with
width at most 2lrw(G)+1, and can can be constructed in O(n22lrwd(G)) time.

Similar arguments hold for a generalized graph state |ϕG̃〉 in [27] for the Ising
partition function.

4 Local Complementation in BDD

Local complementation at vertex v is an elementary operation in chordal graph
recognition and vertex-minor theory. Recall that δ(v) is a set of vertices adjacent
to v in the graph. The local complementation at v deletes edges connecting
vertices in δ(v) and adds new edges between two vertices in δ(v) which are not
connected by an edge in the original graph. That is, it takes the complement on
a subgraph induced by δ(v) with respect to a complete subgraph on δ(v). See
Fig.2.

Fig. 2. Local complementation at v

The local complementation corresponds to a fundamental unitary transfor-
mation among graph states:

Theorem 3 ([25], see also [10]). (1) A stabilizer state U |G〉 for a local Clifford
unitary U and a graph G is a graph state of a graph G′ iff G′ can be obtained by
a series of local complementations from G.

(2) Local complementation at vertex v maps a graph state |G〉 by a local Clif-
ford unitary, with imaginary unit i,

√
(−1)|δ(v)|i ·

√
−iσx

{v}√
iσz

δ(v)

with
√
−iσx =

1√
2

(
1 −i
−i 1

)
,

√
iσz =

1√
2

(
1 + i 0
0 1− i

)

BDD Operations for Quantum Graph States 223

Fig. 3. How to obtain the QOBDD of a graph state |P3〉 = (|000〉 + |001〉 + |010〉 +
|011〉 + |100〉 − |101〉 − |110〉 + |111〉) of a path graph P3 connecting vertices v2, v1, v3
in this order

This gives a complete characterization of a local Clifford unitary transformation
corresponding to a local complementation from the viewpoint of stabilizers. This
local Clifford unitary matrix is a tensor product of deg(v)+1 non-identity matrix,
where deg(v) = |δ(v)|, and applying a quantum BDD algorithm for such non-
identity matrix may take time dependent on deg(v) with a possible blow-up in
size for intermediate BDDs.

BDD as well as Boolean functions provides an efficient way of transformation
of local complementation at v as follows. Denote a complete graph of vertices in
δ(v) by Kδ(v), and then a Boolean function fKδ(v)

is given by

⊕
i,j∈δ(v), i�=j

(xi ∧ xj)

For this function we have the following.

Theorem 4. (1) For a graph G′ obtained by the local complementation at v
from G,

fG′ = fG ⊕ fKδ(v)
.

and |G′〉 = D|G〉 where D is a diagonal matrix whose diagonal element corre-
sponding to S ⊂ V is given by 1 if |S ∩ δ(v)| ≡ 0, 1 mod 4 and −1 if |S ∩ δ(v)| ≡
2, 3 mod 4.

(2) The width of a graph state of a complete graph is bounded by 4.
(3) The width of BDD representing G′ is bounded by 2lrw(G).
(4) From the BDD for a graph state of G, that for a graph state of G′ can be

obtained in time linear to the original BDD size, and in time O(n2lwd(G)) .

Proof. (1) It is known that the local complementation is performed with taking
the exclusive-or with a edge set of the complete graph, and this simply states it
in a level of Boolean functions.

224 H. Hiraishi and H. Imai

(2) The rank-width of a complete graph is 1, and using Theorem 2, the width
is bounded by 2 · 21 = 4.

(3) It is shown, in Proposition 2.6 of [16], that cutrkG(S) for every S ⊂ V
is invariant under local complementation at a vertex, and hence cutrkG for the
width of each level in the BDD does not change.

(4) This can be achieved by using Bryant’s algorithm [3]. ��
Viewing graph states in a discrete setting, the diagonal unitary transform in (2)
above may give different implications compared with the local Clifford unitary
transform.

5 Measurements in BDD

In the measurement-based quantum computing, stating with an initial graph
state |G〉, a sequence of measurements by Pauli spin matrices σx, σy and σz are
performed. Applying σx on vertex vi corresponds to pivot for an edge (vi, vj) ∈ E
with deletion of vi. σy on vi corresponds to local complementation at vi followed
by deletion of vi. σz on vi corresponds to deletion of vi. See [10,16].

These can be handled within the framework of BDDs. Deletion of vi in BDD
can be done by setting xi = 0 (and some post processing). Local complementa-
tion at vi can be done by considering a complete graph G′ of vertices adjacent
to vi, taking XOR between the original BDD and BDD representing fG′ . The
resulting BDD has width at most the width of the original BDD. Pivot is a series
of 3 local complementations, and can be done similarly with no increase in BDD
width. A step of the measurement-based quantum computing can be simulated
on the BDD in time bounded by the original BDD size.

Furthermore, concerning measurements with respect to an arbitrary basis, we
can compute the inner product of each of graph states with a basis. We have the
following.

Theorem 5. A step of the measurement-based quantum computing can be sim-
ulated on the BDD in time bounded by the original BDD size. In a series of O(n)
local complementation operations of a graph state starting from graph G, all the
inner products of each intermediate graph states with a basis can be computed in
O(n22lwg(G)) time.

Note that the time bound stated at the end of this theorem is also the time
bound in Theorem th:lrw. It should be noted that, the technique in the next
section can lead to the same bound, and merits of directly maintaining BDDs
should be investigated further.

6 Weighted BDD for a Stabilizer State

In the BDD for a graph state |G〉, 0-edge and 1-edge are made to correspond to
|0〉 and |1〉, respectively. We can extend this to a weighted case. For each qubit

BDD Operations for Quantum Graph States 225

|xi〉, consider a 1-qubit unitary matrix Ui, and, in the BDD, associate 0-edge
and 1-edge with 1-qubit weights w(xi.0) and w(xi, 1), respectively, defined by
w(xi, 0) = U |0〉 and w(xi, 1) = U |1〉. Then, this weighted BDD represents a
quantum state U1 ⊗ · · · ⊗Un|G〉, which is shown in the following subsections on
typical quantum states.

It should be noted that this type of operation is discussed in section 6.1 of
doctoral dissertation of Viamontes [29] and implemented in his QuIDDPro [30].
The algorithm utilizes Bryant’s apply operation in a clever manner. Our case
treats the problem of computing the inner product of a stablizer state represented
as above with an arbitrary complete product state, and, as described in the
introduction ours is not intended to be a quantum BDD.

For local complementation at vertex v, we show how to obtain the BDD
of a transformed graph state, together with a general theory of local Clifford
unitary transformation in Theorem 3. A weighted BDD on the original BDD
can be considered similarly to the other examples, and we can discuss more
about relation between these BDDs. Details will be given in a full paper.

6.1 Representing a Stabilizer State by a Weighted BDD

There exists a stabilizer state which is not any graph state, and therefore BDD
representations of graph states cannot be applied indirectly. For a stabilizer state
U |G〉 for a local Clifford unitary U and graph G as above, by introducing edge
weights, complex numbers in general, the stabilizer state can be represented
indirectly on the BDD of a graph state. This broadens applicabilities of BDD in
representing these quantum states.

We discuss this approach with using the so-called GHZ-state as a running
example. A 3-qubit GHZ state |φGHZ〉 is given as

1√
2
(|000〉+ |111〉).

Applying a local Clifford unitary I ⊗H ⊗H to this state, it is transformed to

1√
2
(|0〉 ⊗ |+〉 ⊗ |+〉+ |1〉 ⊗ |−〉 ⊗ |−〉) = |P3〉

where |P3〉 is a graph state of P3 as in Fig.3. Since HH = I, we have

|φGHZ 〉 = I ⊗H ⊗H |P3〉

Then, it is natural to associate weights to two edges of node xi representing
assignments weights corresponding to I ⊗H ⊗H as in Fig.4.

A computational process is also shown to compute the stabilizer state along
the BDD in a top-down fashion, which is more or less common in BDD ap-
plications. The program size is proportional to the BDD size. However, if we
expand the output thoroughly, the number of terms would blow up to 2n, which
is meaningless to compute. However, a complete expansion is not necessary in

226 H. Hiraishi and H. Imai

[x2]1 := w(x1, 0);

[x2]2 := w(x1, 1);

[x3]1 := [x2]1 ⊗ (w(x2, 0) +w(x2, 1));

[x3]2 := [x2]2 ⊗ w(x2, 0);

[x3]3 := [x2]2 ⊗ w(x2, 1);

[0] := [x3]1 ⊗ (w(x3, 0) + w(x3.1)) + [x3]2 ⊗ w(x3, 0) + [x3]⊗w(x3, 1);

[1] := [x3]2 ⊗ w(x3, 1) + [x3]3 ⊗ w(x3, 0);

output 1

2
√

2
((−1)0[0]− (−1)1[1]);

Fig. 4. Representing GHZ state by QOBDD

many cases, and the BDD representations can be used in various ways. For ex-
ample, it would be rather straightforward to compute the inner product of a
state with a complete product state based on this program. This example is
a very small-scale, yet gives an idea about handling generalized n-qubit GHZ
states fast. The following is a stronger statement of Lemma 1.

Lemma 4. The results of Lemma 1 hold for a stabilizer state U |G〉 when a local
Clifford unitary U and a graph state |G〉 are given.

6.2 Partition Function of the Ising Model and a Stabilizer State

In section 2, we described an operator Kv, stabilizer for graph states. In com-
puting the partition function of the Ising model, a stabilizer state for a graph is
used.

Given a graph G = (V,E), we first introduce a new vertex in the middle of
each edge to derive a expanded graph G̃ with vertex set V and vE = {ve | e ∈ E}.
G̃ is called a decorated graph, and in it ve is adjacent to two vertices which are
connected by e in G. Define an operator K̃v for each vertex v ∈ V and an
operator K̃e for each ve ∈ VE by

K̃v = (σx)
{v} · (σx)

{ ve | ve is adjacent to v in G̃ }

K̃e = (σz)
{ve} · (σz)

{ v | v is adjacent to ve in G̃ }

BDD Operations for Quantum Graph States 227

Fig. 5. A weighted BDD for a stabilizer state related to the Ising model

With these operators K̃v (v ∈ V) and K̃e (ve ∈ VE), a stabilizer state φG̃

is defined, which is invariant under these operators. This stabilizer state φG̃ is

obtained from a graph state |G̃〉 by applying the Hadamard transform H to each
vertex ve ∈ VE (e.g., see p.5 of [4]). Hence this state can be represented by a
weighted BDD.

As an example, suppose the original graph consists of a single edge, and its
decorated graph. This is nothing but a path graph P3 connecting v2, v1, v3 in
this order with V = {v2, v3} and VE = {v1}. Then, the weighted BDD becomes
as in Fig.5. Through calculation,

|φG〉 = 1

2
(|000〉+ |011〉+ |101〉+ |110〉

This argument can be generalized to any graph G, and, combining Lemma 4,
this gives another interpretation of computing the partition function of the Ising
model from the graph state |G̃〉, especially that for a k×k grid graph in O(k32k)
time [11].

For a decorated graph of G̃, consider a Boolean function

∨
e=(u,v)∈E

(xu ⊕ ye ⊕ xv)

with Boolean variables xv with v ∈ V and ye with e ∈ E. The support for
this function with 0 corresponds to the stabilizer state. The width of BDD of
this function can be characterized in terms of the path-width pw(G). In general,
the path-width of a graph can be much larger than its linear rank-width, for
example, they are n and 1, respectively, for a complete graph of n vertices. In
the problem of Ising partition function, a class of decorated graphs is considered.
It is left open to investigate the path-width and linear rank-width of a graph
this class.

228 H. Hiraishi and H. Imai

7 Concluding Remarks

We have discussed applications of Boolean BDDs for quantum graph states and
stabilizer states. Also, connection of these BDDs with graph width parameters
such as linear rank-width and path-width has been discussed. Research in these
directions seem to have interesting open problems, including one mentioned at
the end of the last section, would deserve further investigation.

Acknowledgment. The authors would like to thank anonymous reviewers for
their valuable comments which help improve the manuscript.

References

1. Aharonov, D., Arad, I., Eban, E., Landau, Z.: Polynomial Quantum Algorithms for
Additive approximations of the Potts model and other Points of the Tutte Plane,
arXiv:quant-ph/0702008 (2007)

2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte Poly-
nomial in Vertex-Exponential Time. In: Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science, pp. 677–686 (2008)

3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

4. De Las Cuevas, G., Dür, W., Van den Nest, M., Briegel, H.J.: Completeness of
Classical Spin Models and Universal Quantum Computation. Journal of Statistical
Mechanics: Theory and Experiment P07001 (2009)

5. Dell, H., Husfeldt, T., Wahlén, M.: Exponential Time Complexity of the Permanent
and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437.
Springer, Heidelberg (2010)

6. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of Clique-
Width Parameterizations. SIAM Journal on Computing 39(5), 1941–1956 (2010)

7. Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science, An EATCS Series. Springer (2010)

8. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-Terminal Binary Decisoin
Diagrams: An Efficient Data structure for Matrix Representation. Formal Methods
in System Design 10, 149–169 (1997)

9. Grassl, M., Klappennecker, A., Rotteler, M.: Graphs, Quadratic Forms, and
Quantum Codes. In: Proceedings of the 2002 IEEE International Symposium on
Information Theory, p. 45 (2002) (see also arXiv:quant-ph/0703112)

10. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.-
J.: Entanglement in Graph States and Its Applications. In: Quantum Computers,
Algorithms and Chaos. Proceedings of the International School of Physics “Enrico
Fermi”, vol. 162, pp. 115–218 (2006)

11. Hiraishi, H., Imai, H., Iwata, Y., Lin, B.: Representing Quantum Graph States by
Binary Decision Diagrams (submitted 2014)

12. Knuth, D.E.: The Art of Computer Programming. Fascicle 1: Bitwise Tricks &
Techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley Professional (2009)

13. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI-Design:
OBDD—Foundations and Applications. Springer (1998)

BDD Operations for Quantum Graph States 229

14. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers (November 1996)

15. Nielsen, M.A., Chuang, I.C.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

16. Oum, S.: Rank-Width and Vertex-Minors. Journal of Combinatorial Theory, Series
B 95(1), 79–100 (2005)

17. Oum, S.: Approximating Rank-Width and Clique-Width Quickly. ACM Transac-
tions on Algorithms 5(1), Article 10, 20 (2008)

18. Oum, S.: Dynamic Survey on Rank-Width and Related Width Parameters of
Graphs,
http://mathsci.kaist.ac.kr/~sangil/2013/dynamic-survey-on-rank-width/

19. Oum, S., Seymour, P.: Approximating Clique-Width and Branch-Width. Journal
of Combinatorial Theory, Series B 96(4), 514–528 (2006)

20. Robertson, N., Seymour, P.D.: Graph minors. IV. Tree-Width and Well-Quasi-
Ordering. Journal of Combinatorial Theory, Series B 48, 227–254 (1990)

21. Samoladas, V.: Improved BDD Algorithms for the Simulation of Quantum Circuits.
In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 720–731.
Springer, Heidelberg (2008)

22. Schlingemann, D.: Stabilizer Codes can be Realized as Graph Codes. Quantum
Information & Computation 2(4), 307–323 (2002)

23. Sekine, K., Imai, H., Tani, S.: Computing the Tutte Polynomial of a Graph of
Moderate Size. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC
1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995)

24. Sinclair, A., Srivastava, P., Yin, Y.: Spatial Mixing and Approximation Algorithms
for Graphs with Bounded Connective Constant. In: Proceedings of the IEEE 54th
Annual Symposium on Foundations of Computer Science, pp. 300–309 (2013)

25. Van den Nest, M., Dehaene, J., De Moor, B.: The Invariants of the Local Clifford
Group. Physical Review A 71, 022310 (2005)

26. Van den Nest, M., Dür, W., Vidal, G., Briegel, H.J.: Classical Simulation versus
Universality in Measurement-Based Quantum Computation. Physical Review A 75,
012337, 15 (2007)

27. Van den Nest, M., Dür, W., Briegel, H.J.: Completeness of the Classical 2D Ising
Model and Universal Quantum Computation. Physical Review Letters 100, 110501,
4 (2008)

28. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal Resources for
Measurement-Based Quantum Computation. Physical Review Letters 97, 150504,
4 (2006)

29. Viamontes, G.F.: Efficient Quantum Circuit Simulation. Doctoral Dissertation.
Department of Computer Science and Engineering, The University of Michigan
(2007)

30. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Improving Gate-Level Simulation of
Quantum Circuits. Quantum Information Processing 2(5), 347–380 (2003)

31. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-Based Verification Method
for Quantum Circuits. IEICE Trans. Fundamentals E91-A(2), 584–594 (2008)

32. Welsh, D.J.A.: Complexity: Knots, Colourings and Counting. London Mathemat-
ical Society Lecture Note Series, vol. 186. Cambridge University Press (1993)

http://mathsci.kaist.ac.kr/~sangil/2013/dynamic-survey-on-rank-width/

Author Index

Abdessaied, Nabila 149

Banerjee, Anindita 137
Binti Adnan, Nurul Ain 176

Chandak, Chander 95
Chattopadhyay, Anupam 95
Chowdhury, Nahian 95

Datta, Kamalika 111
Devitt, Simon J. 26, 176, 189
Drechsler, Rolf 111, 149, 163, 201
Dueck, Gerhard W. 137

Hiraishi, Hidefumi 216

Imai, Hiroshi 216

Kari, Jarkko 54
Kutrib, Martin 40

Majumder, Soumajit 95
Miller, D. Michael 163
Mogensen, Torben Ægidius 82
Morrison, Daniel 67

Nemoto, Kae 176, 189
Niemann, Philipp 201

Paler, Alexandru 189
Pathak, Anirban 137
Phillips, Iain 1
Polian, Ilia 189

Rahman, Md Zamilur 125
Rice, Jacqueline E. 125

Salo, Ville 54
Schönborn, Eleonora 111
Soeken, Mathias 149, 163
Stoppe, Jannis 111

Takeuchi, Naoki 15
Törmä, Ilkka 54

Ulidowski, Irek 1, 67

Wille, Robert 111, 201
Worsch, Thomas 40

Yamanashi, Yuki 15
Yamashita, Shigeru 176
Yoshikawa, Nobuyuki 15
Yuen, Shoji 1

	Preface
	Organization
	Table of Contents
	Invited Talks
	Concurrency and Reversibility
	1 Introduction
	2 Events and Configurations
	3 Reversible Event Structures with Causality and Precedence
	4 Reversible Event Structures with Enablings
	5 Discussion and Conclusions
	References

	Reversible Computing Using Adiabatic Superconductor Logic
	1 Introduction
	2 Adiabatic Quantum-Flux-Parametron Logic
	3 Experimental Demonstration of Adiabatic Switching Operations
	4 Minimum Energy Dissipation for Adiabatic Switching Operations
	5 Reversible Computing Using AQFP Gates
	6 Conclusion
	References

	Classical Control of Large-Scale QuantumComputers
	1 Introduction
	2 Quantum Computers
	3 Topological Cluster State Computation
	3.1 Error Correction

	4 Physical Data Flow in an Operational Computer
	5 The Decoding Problem
	References

	Automata for Reversible Computation
	Degrees of Reversibility for DFA and DPDA
	1 Introduction
	2 Preliminaries and Definitions
	3 Degree of Reversibility for Finite Automata
	4 Degree of Reversibility for Pushdown Machines
	4.1 Degrees by Input Lookahead
	4.2 No Degrees by Stack Lookahead

	5 Beyond the Degrees
	References

	Trace Complexity of Chaotic Reversible CellularAutomata
	1 Introduction
	2 Definitions
	3 Traces and Computational Universality
	4 Main Results
	5 Further Discussion
	References
	Appendix

	Notation and Languages for Reversible Computation
	Arbitration and Reversibility of ParallelDelay-Insensitive Modules
	1 Introduction
	2 Asynchronous Delay-Insensitive Modules
	3 Set Notation for Parallel DI Modules
	4 Universality of Non-arbitrating Parallel Modules
	4.1 Constructing M×NJoins and Forks with Reversible Modules
	4.2 Universal Sets of Non-arbitrating Modules

	5 Conclusion
	References

	Reference Counting for Reversible Languages
	1 Introduction
	2 A Heap Manager
	3 Pointer Copying and Reference Counts
	4 Reference-Counting Implementation of Node Operations
	4.1 Pointer Copying
	4.2 Cons-Node Construction
	4.3 Field Access

	5 The Reversible Functional Language RCFUN
	5.1 Reversibility of Programs

	6 Translation to Janus
	7 Loops
	8 Conclusion and Future Work
	References

	Synthesis and Optimization of Reversible Circuits
	Constructive Reversible Logic Synthesis for Boolean Functions with Special Properties
	1 Introduction
	2 Preliminaries
	2.1 Related Work and Motivation

	3 Synthesis of Highly Nonlinear Functions
	3.1 Construction Method I: [27]
	3.2 Construction Method II: Recursive Construction[22]
	3.3 Construction Method III: [9]
	3.4 Construction Method IV: [33]
	3.5 Post-synthesis Optimization

	4 Synthesis of Symmetric Functions
	4.1 Quantum Cost of Cascaded, Generalized Peres Gates
	4.2 Constructive Synthesis for Symmetric Functions
	4.3 Upper Bounds of Symmetric Functions

	5 Summary and Future Work
	References

	RevVis: Visualization of Structuresand Properties in Reversible Circuits
	1 Introduction
	2 Background
	3 The RevVis Tool
	4 Applying RevVis
	4.1 Considering Circuits Obtained by BDD-Based Synthesis
	4.2 Considering Circuits Obtained by ESOP-Based Synthesis
	4.3 Considering Circuits Obtained by HDL-Based Synthesis

	5 Conclusions
	References

	Templates for Positive and Negative ControlToffoli Networks
	1 Introduction
	2 Background
	2.1 Reversible Gates and Reversible Circuits
	2.2 Cost Metrics

	3 Motivation and Related Work
	4 Proposed Approach
	5 Steps/Algorithm
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Minimal Designs of Reversible SequentialElements
	1 Introduction
	2 Background
	3 How to Design Sequential Circuits
	3.1 Earlier Approaches

	4 New Designs for Reversible Sequential Elements
	5 Comparison Protocol
	6 Conclusions
	References

	Synthesis and Optimization of Quantum Circuits
	Quantum Circuit Optimization by HadamardGate Reduction
	1 Introduction
	2 Background
	2.1 Reversible Circuits
	2.2 Quantum Circuits

	3 General Idea
	4 Optimization Approaches
	4.1 Optimizations at the Reversible Level
	4.2 Optimizations in the Mapping
	4.3 Optimizations at the Quantum Level

	5 Experimental Results
	6 Conclusion
	References

	Mapping NCV Circuitsto Optimized Clifford+T Circuits
	1 Introduction
	2 Background
	3 Mapping NCV Circuits to Clifford+T Circuits
	4 Examples
	5 Conclusion and Future Work
	References

	2D Qubit Layout Optimization for TopologicalQuantum Computation
	1 Introduction
	2 A Circuit Optimization Problem for Topological Quantum Computation
	2.1 Logic Circuit Model for Topological Quantum Computation
	2.2 A Design Procedure for Topological Quantum Computation
	2.3 Terminology Used for One-Dimensional Layout

	3 Two-Dimensional Qubit Layout Optimization
	4 Experimental Results
	4.1 An SA-Based HeuristicMethod
	4.2 Comparison of the Three Methods

	5 Conclusion
	References

	Validation and Representation of Quantum Logic
	Cross-Level Validationof Topological Quantum Circuits
	1 Introduction
	2 Background
	2.1 Stabilizer Formalism
	2.2 Measurement-Based Quantum Computing
	2.3 Topological Quantum Computation

	3 Validation of TQC Circuits
	3.1 Problem Statement
	3.2 Validation Procedure

	4 Results
	5 Conclusion
	References

	Equivalence Checkingin Multi-level Quantum Systems
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computation
	2.2 Quantum Multiple-Valued Decision Diagrams

	3 Motivation: Multi-level Quantum Systems
	4 Equivalence Checking in Multi-Level Quantum Systems
	4.1 Functional Equivalence for Quantum Operations
	4.2 Proposed Equivalence Checking Scheme
	4.3 Implementation Using QMDDs

	5 Experimental Results
	6 Conclusions
	References

	BDD Operations for Quantum Graph States
	1 Introduction
	2 Basic Definitions
	3 BDD of a Graph State
	4 Local Complementation in BDD
	5 Measurements in BDD
	6 Weighted BDD for a Stabilizer State
	6.1 Representing a Stabilizer State by a Weighted BDD
	6.2 Partition Function of the Ising Model and a Stabilizer State

	7 Concluding Remarks
	References

	Author Index

