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Introduction

After receiving your first Raspberry Pi, the first question in your mind is probably “What 
can this hardware do?” What are its capabilities and limitations? Hardware is the more 
urgent question because software is so easily altered or replaced. 

The one perplexing problem I immediately ran up against when I started out with the 
Pi was that the hardware information seemed to be scattered. The basic information was 
accessible and well known, but other important parameters such as GPIO source or sink 
current limits required research. After researching these questions, I often discovered that 
the answer was “It depends.” It was the answering of these classes of questions that led to 
the writing of Mastering the Raspberry Pi. 

Content of This Book
This book is focused mainly on the Raspberry Pi’s hardware. The content is extracted from 
the complete work, Mastering the Raspberry Pi. As such, it will serve you as an owner’s 
manual of sorts, saving time as a ready reference about the hardware you purchased.

While this is a volume focused on hardware, some software coverage must coexist. 
For example, it is through the physical memory management that software gains access 
to the hardware peripheral registers. Another example is the discussion about the CPU, 
where the pthread API is covered for reference purposes. Through the application of this 
API, you further utilize that ARM CPU.

This book begins by introducing the Pi in general terms in Chapter 1. Then attention 
immediately turns to the important topic of power in Chapter 2. Many people suffer 
needless problems because of neglect in this area. The chapter ends with some notes 
about running from battery or solar power.

Chapter 3 documents the header strips, LEDs, and Reset inputs. This is information 
that should be bookmarked. Next is Chapter 4 on memory, which documents the various 
Raspbian Linux measures and controls for memory allocation. The CPU and its API are 
described in Chapter 5.

The focus of Chapter 6 is USB. USB-specific power issues and its API are explained. 
Wired and wireless Ethernet networking is discussed in Chapter 7. SD card technology 
is examined in Chapter 8, describing the interface and the specifics of the Raspberry Pi 
interface. The topic of wear leveling is also included. 

Serial communication, RS-232 converters, serial consoles, and dedicated serial ports 
are covered in Chapter 9. The serial interface, some historical influences, and flow control 
are discussed. Included is an organized description of the Linux API for utilizing the serial 
interface.
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Chapter 10 covers the important area of the GPIO interface. Every aspect of GPIO 
is covered, including its configuration after reset and boot. Logic levels, drive strength, 
input pullup resistor control, and output totem pole configuration are explained. Each is 
examined from an electronics viewpoint. Additionally, the various ways of applying these 
GPIO pins in software are described. 

The GPIO coverage also includes guidance about how to budget the +3.3 V supply 
current. Configuration of the pins and selection of alternate I/O functions are also 
discussed. Finally, a design procedure is provided for a single transistor driver, when 
more power is required.

The next three chapters concern themselves with Raspbian Linux–supported 
peripheral buses. The one-wire driver is supported through a Linux driver and described 
in Chapter 11. The I2C bus is another important peripheral bus, which is documented 
with its API in Chapter 12. Finally, the SPI bus is explained with its API in Chapter 13. 
With this coverage, you will be fully informed of what is available and how to leverage 
Raspbian Linux to drive it.

Assumptions About You
Apart from the C language software API presented in this book, much of the content of 
this volume is electronics based. You should therefore have a basic understanding of 
digital electronics. This includes a good grasp of DC voltage, current, resistance, power, 
and mastery of Ohm’s law (you may also refer to Appendix C). For a full appreciation of 
the concepts behind the I2C bus, you should also be familiar with the operation of an 
open collector driver.

The transistor driver design procedure provided in Chapter 10 (GPIO) uses a light 
engineering approach where formulas are assumed (an engineering text would also 
include the derivation of the formulas). The intent here is to simply demonstrate that the 
use of design procedure can solve problems that might otherwise cause students to look 
for a chip solution when a transistor would suffice. Let’s take the fear out of design.

Learn and Design
The main assumption throughout this book is that you are looking to learn how to design 
things for yourself. Through an appreciation of the involved hardware parameters, design 
procedure, and the software API, you will be able to build custom solutions using the 
Raspberry Pi. To further assist in this, several charts and tables were provided in this 
reference. Any real designer takes delight in having the necessary parameters available at 
their disposal. 
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Chapter 1

The Raspberry Pi

Before considering the details about each resource within the Raspberry Pi, it is useful 
to take a high-level inventory. In this chapter, let’s just list what you get when you 
purchase a Pi.

In later chapters, you’ll be looking at each resource from two perspectives:

The hardware itself—what it is and how it works•	

The driving software and API behind it•	

In some cases, the hardware will have one or more kernel modules behind it, 
forming the device driver layer. They expose a software API that interfaces between the 
application and the hardware device. For example, applications communicate with the 
driver by using ioctl(2) calls, while the driver communicates with the I2C devices on the 
bus. The /sys/class file system is another way that device drivers expose themselves to 
applications. You’ll see this when you examine GPIO in Chapter 10.

There are some cases where drivers don’t currently exist in Raspbian Linux.  
An example is the Pi’s PWM peripheral that is covered in Chapter 9 of Experimenting with 
Raspberry Pi (Apress, 2014). Here we must map the device’s registers into the application 
memory space and drive the peripheral directly from the application. Both direct access 
and driver access have their advantages and disadvantages.

So while our summary inventory here simply lists the hardware devices, you’ll be 
examining each from a hardware and software point of view in the chapters ahead.

Models
A hardware inventory is directly affected by the model of the unit being examined.  
The Raspberry Pi comes in two models:

Model A (introduced later as a hardware-reduced model)•	

Model B (introduced first and is the full hardware model)•	

Figure 1-1 shows the Model B and its interfaces. Table 1-1 indicates the differences 
between the two models.
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As you can see, one of the first differences to note is the amount of RAM available. 
The revision 2.0 (Rev 2.0) Model B has 512 MB of RAM instead of 256 MB. The GPU also 
shares use of the RAM. So keep that in mind when budgeting RAM.

In addition, the Model A does not include an Ethernet port but can support 
networking through a USB network adapter. Keep in mind that only one USB port exists 
on the Model A, requiring a hub if other USB devices are needed.

Finally, the power consumption differs considerably between the two models.  
The Model A is listed as requiring 300 mA vs. 700 mA for the Model B. Both of these 
figures should be considered low because consumption rises considerably when the GPU 
is active (when using the desktop through the HDMI display port).

Figure 1-1. Model B interfaces

Table 1-1. Model Differences

Resource Model A Model B

RAM 256 MB 512 MB

USB ports 1 2

Ethernet port None 10/100 Ethernet (RJ45)

Power consumption10 300 mA (1.5 W) 700 mA (3.5 W)

Target price9 $25.00 $35.00



Chapter 1 ■ the raspberry pi

3

The maximum current flow that is permitted through the 5 V micro-USB 
connection is about 1.1 A because of the fuse. However, when purchasing a power 
supply/adapter, it is recommended that you seek supplies that are rated higher than 
1.2 A because they often don’t live up to their specifications. Chapter 2 provides more 
details about power supplies.

Hardware in Common
The two Raspberry Pi models share some common features, which are summarized 
in Table 1-2.9 The Hardware column  lists the broad categories; the Features column 
provides additional specifics.

Table 1-2. Common Hardware Features

Hardware Features Comments

System on a chip Broadcom BCM2835 CPU, GPU, DSP, SDRAM, and USB port

CPU model Clock 
rate

ARM1176JZF-S core With floating point

700 MHz Overclockable to 800 MHz

GPU Broadcom VideoCore IV

OpenGL ES 2.0 3D

OpenVG 3D

MPEG-2

VC-1 Microsoft, licensed

1080p30 H.264 Blu-ray Disc capable, 40 Mbit/s

MPEG-4 AVC high-profile decoder and encoder

1 Gpixel/s, 1.5 Gtexels/s 24 GFLOPS with DMA

Video output Composite RCA PAL and NTSC

HDMI Rev 1.3 and 1.4

Raw LCD panels Via DSI

Audio output 3.5 mm jack HDMI

(continued)
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Hardware Features Comments

Storage SD/MMC/SDIO Card slot

Peripherals 8 × GPIO

100 kHz

UART

I2C bus

SPI bus Two chip selects, +3.3 V, +5 V, ground

Power source 5 V via micro-USB

Table 1-2. (continued)

Which Model?
One of the questions that naturally follows a model feature comparison is why the Model 
A? Why wouldn’t everyone just buy Model B?

Power consumption is one deciding factor. If your application is battery powered, 
perhaps a data-gathering node in a remote location, then power consumption becomes 
a critical factor. If the unit is supplemented by solar power, the Model A’s power 
requirements are more easily satisfied.

Cost is another advantage. When an Arduino/AVR class of application is being 
considered, the added capability of the Pi running Linux, complete with a file system on 
SD, makes it irresistible. Especially at the model A price of $25.

Unit cost may be critical to students in developing countries. Networking can be 
sacrificed, if it still permits the student to learn on the cheaper Model A. If network capability 
is needed later, even temporarily, a USB network adapter can be attached or borrowed.

The main advantage of the Model B is its networking capability. Networking today 
is so often taken for granted. Yet it remains a powerful way to integrate a larger system 
of components. The project outlined in Chapter 8 of Experimenting with Raspberry Pi 
(Apress, 2014) demonstrates how powerful ØMQ (ZeroMQ) can be in bringing separate 
nodes together.
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Chapter 2

Power

One of the most frequently neglected parts of a system tends to be the power supply—at 
least when everything is working. Only when things get weird does the power supply 
begin to get some scrutiny.

The Raspberry Pi owner needs to give the power supply extra respect. Unlike many 
AVR class boards, where the raw input voltage is followed by an onboard 5 V regulator, the 
Pi expects its power to be regulated at the input. The Pi does include onboard regulators, 
but these regulate to lower voltages (3.3 V and lower).

Figure 2-1 illustrates the rather fragile Micro-USB power input connector. There is a 
large round capacitor directly behind the connector that people often grab for leverage.  
It is a mistake to grab it, however, as many have reported “popping it off” by accident.

Figure 2-1. Micro-USB power input

Calculating Power
Sometimes power supplies are specified in terms of voltage, and power handling capability 
in watts. The Pi’s input voltage of 5 V must support a minimum of 700 mA (Model B). Let’s 
compute a power supply figure in watts (this does not include any added peripherals):

P = V × I

        = 5 × 0.7

      = 3.5 W
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The 3.5 W represents a minimum requirement, so we should overprovision this by an 
additional 50%:

P = 3.5 × 1.50

= 5.25 W

The additional 50% yields a power requirement of 5.25 W.

Tip ■  allow 50% extra capacity for your power supply. a power supply gone bad may 
cause damage or many other problems. one common power-related problem for the pi is 
loss of data on the SD card.

Current Requirement
Since the power supply being sought produces one output voltage (5 V), you’ll likely see 
adapters with advertised current ratings instead of power. In this case, you can simply 
factor a 50% additional current instead:

I
supply

 = I
Pi

 × 1.50

                 = 0.700 × 1.50

      = 1.05 A

To double-check our work, let’s see whether this agrees with the power rating we 
computed earlier:

P = V × I

          = 5 × 1.05

         = 5.25 W

The result does agree. You can conclude this section knowing that you minimally 
need a 5 V supply that produces one of the following:

5.25 W or more•	

1.05 A or more (ignoring peripherals)•	

Supplies that can meet either requirement, should be sufficient. However, you 
should be aware that not all advertised ratings are what they seem. Cheap supplies often 
fail to meet their own claims, so an additional margin must always be factored in.
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Peripheral Power
Each additional circuit that draws power, especially USB peripherals, must be considered 
in a power budget. Depending on its type, a given USB peripheral plugged into a USB 2 
port can expect up to 500 mA of current, assuming it can obtain it. (Pre Rev 2.0 USB ports 
were limited to 140 mA by polyfuses.)

Wireless adapters are known to be power hungry. Don’t forget about the keyboard 
and mouse when used, since they also add to the power consumption. If you’ve attached 
an RS-232 level shifter circuit (perhaps using MAX232CPE), you should budget for that 
small amount also in the 3 V supply budget. This will indirectly add to your +5 V budget, 
since the 3 V regulator is powered from it. (The USB ports use the +5 V supply.) Anything 
that draws power from your Raspberry Pi should be tallied.

Model B Input Power
The Raspberry Pi’s input voltage is fixed at exactly 5 V (±0.25 V). Looking at the schematic 
in Figure 2-2, you can see how the power enters the micro-USB port on the pin marked 
VBUS. Notice that the power flows through fuse F3, which is rated at 6 V, 1.1 A. If after  
an accidental short, you find that you can’t get the unit to power up, check that fuse with 
an ohmmeter.

Figure 2-2. Model B Rev 2.0 input power

If you bring the input +5 V power into the Pi through header P1, P5, or TP1, for 
example, you will lose the safety of the fuse F3. So if you bypass the micro-USB port to 
bring in power, you may want to include a safety fuse in the supplying circuit.

Figure 2-3 shows the 3.3 V regulator for the Pi. Everything at the 3.3 V level is 
supplied by this regulator, and the current is limited by it.
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Model A Input Power
Like the Model B, the Model A receives its power from the micro-USB port. The Model 
A power requirement is 300 mA, which is easily supported by a powered USB hub or 
desktop USB 2 port. A USB 2 port is typically able to supply a maximum of 500 mA unless 
the power is divided among neighboring ports. You may find in practice, however, that 
not all USB ports will deliver 500 mA.

As with the Model B, factor the power required by your USB peripherals. If your total 
nears or exceeds 500 mA, you may need to power your Model A from a separate power 
source. Don’t try to run a wireless USB adapter from the Model A’s USB port if the Pi is 
powered by a USB port itself. The total current needed by the Pi and wireless adapter 
will likely exceed 500 mA. Supply the wireless adapter power from a USB hub, or power 
the Pi from a 1.2 A or better power source. Also be aware that not all USB hubs function 
correctly under Linux, so check compatibility if you’re buying one for that purpose.

3.3 Volt Power
Since the 3.3 V supply appears at P1-01, P1-17, and P5-02, it is useful to examine Figure 2-3 
(shown previously) to note its source. This supply is indirectly derived from the input 5 V 
supply, passing through regulator RG2. The maximum excess current that can be drawn 
from it is 50 mA; the Raspberry Pi uses up the remaining capacity of this regulator.

When planning a design, you need to budget this 3 V supply carefully. Each GPIO 
output pin draws from this power source an additional 3 to 16 mA, depending on how it is 
used. For more information about this, see Chapter 10.

Powered USB Hubs
If your power budget is stretched by USB peripherals, you may want to consider the use 
of a powered USB hub. In this way, the hub rather than your Raspberry Pi provides the 
necessary power to the downstream peripherals. The hub is especially attractive for the 
Model A because it provides additional ports.

Figure 2-3. 3.3 V power
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Again, take into account that not all USB hubs work with (Raspbian) Linux. The 
kernel needs to cooperate with connected USB hubs, so software support is critical. The 
following web page lists known working USB hubs:
 
http://elinux.org/RPi_Powered_USB_Hubs

Power Adapters
This section pertains mostly to the Model B because the Model A is easily supported by a 
USB 2 port. We’ll first look at an unsuitable source of power and consider the factors for 
finding suitable units.

An Unsuitable Supply
The example shown in Figure 2-4 was purchased on eBay for $1.18 with free shipping  
(see the upcoming warning about fakes). For this reason, it was tempting to use it.

Figure 2-4. Model A1265 Apple adapter

This is an adapter/charger with the following ratings:

•	 Model: A1265

•	 Input: 100–240 VAC

•	 Output: 5 V, 1 A

When plugged in, the Raspberry Pi’s power LED immediately lights up, which is a 
good sign for an adapter (vs. a charger). A fast rise time on the power leads to successful 
power-on resets. When the voltage was measured, the reading was +4.88 V on the +5 V 
supply. While not ideal, it is within the range of acceptable voltages. (The voltage must be 
between 4.75 and 5.25 V.)

http://elinux.org/RPi_Powered_USB_Hubs
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The Apple unit seemed to work fairly well when HDMI graphics were not being 
utilized (using serial console, SSH, or VNC). However, I found that when HDMI was 
used and the GPU had work to do (move a window across the desktop, for example), 
the system would tend to seize up. This clearly indicates that the adapter does not fully 
deliver or regulate well enough.

Caution ■  Be very careful of counterfeit apple chargers/adapters. the raspberry pi Foun-
dation has seen returned units damaged by these. For a video and further information, see 
www.raspberrypi.org/archives/2151.

E-book Adapters
Some people have reported good success using e-book power adapters. I have also 
successfully used a 2 A Kobo charger.

Best Power Source
While it is possible to buy USB power adapters at low prices, it is wiser to spend more on 
a high-quality unit. It is not worth trashing your Raspberry Pi or experiencing random 
failures for the sake of saving a few dollars.

If you lack an oscilloscope, you won’t be able to check how clean or dirty your supply 
current is. A better power adapter is cheaper than an oscilloscope. A shaky/noisy power 
supply can lead to all kinds of obscure and intermittent problems.

A good place to start is to simply Google “recommended power supply Raspberry Pi.” 
Do your research and include your USB peripherals in the power budget. Remember that 
wireless USB adapters consume a lot of current—up to 500 mA.

Note ■  a random Internet survey reveals a range of 330 ma to 480 ma for wireless USB 
adapter current consumption.

Voltage Test
If you have a DMM or other suitable voltmeter, it is worthwhile to perform a test after 
powering up the Pi. This is probably the very first thing you should do, if you are 
experiencing problems.

Follow these steps to perform a voltage test:

1. Plug the Raspberry Pi’s micro-USB port into the power 
adapter’s USB port.

2. Plug in the power adapter.

http://www.raspberrypi.org/archives/2151
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3. Measure the voltage between P1-02 (+5 V) and P1-25 
(Ground): expect +4.75 to +5.25 V.

4. Measure the voltage between P1-01 (+3.3 V) and P1-25 
(Ground): expect +3.135 to +3.465 V. 

Caution ■  Be very careful with your multimeter probes around the pins of p1.  
Be especially careful not to short the +5 V to the +3.3 V pin, even for a fraction of a second.  
Doing so will zap your pi! If you feel nervous or shaky about this, leave it alone. You may end 
up doing more harm than good. as a precaution, put a piece of wire insulation (or spaghetti) 
over the +3.3 V pin.

The left side of Figure 2-5 shows the DMM probes testing for +5 V on header strip 
P1. Again, be very careful not to touch more than one pin at a time when performing 
these measurements. Be particularly careful not to short between 5 V and 3.3 V. To avoid a 
short-circuit, use a piece of wire insulation, heat shrink tubing, or even a spaghetti noodle 
over the other pin.

Figure 2-5. Measuring voltages
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The right side of Figure 2-5 shows the positive DMM probe moved to P1-01 to 
measure the +3.3 V pin. Appendix B lists the ATX power supply standard voltage levels, 
which include +5 ± 0.25 V and +3.3 ± 0.165 V.

Battery Power
Because of the small size of the Raspberry Pi, it may be desirable to run it from battery 
power. Doing  so requires a regulator and some careful planning. To meet the Raspberry 
Pi requirements, you must form a power budget. Once you know your maximum current, 
you can flesh out the rest. The following example assumes that 1 A is required.

Requirements
For clarity, let’s list our battery power requirements:

Voltage  5 V, within ± 0.25 V•	

Current  1 A•	

Headroom
The simplest approach is to use the linear LM7805 as the 5 V regulator. But there are some 
disadvantages:

There must be some headroom above the input voltage  •	
(about 2 V).

Allowing too much headroom increases the power dissipation in •	
the regulator, resulting in wasted battery power.

A lower maximum output current can also result.•	

Your batteries should provide a minimum input of 5+2 V (7 V). Any lower input 
voltage to the regulator will result in the regulator “dropping out” and dipping below 5 V. 
Clearly, a 6 V battery input will not do.

 LM7805 Regulation
Figure 2-6 shows a very simple battery circuit using the LM7805 linear regulator. Resistor 
R

L
 represents the load (the Raspberry Pi).
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The 8.4 V battery is formed from seven NiCad cells in series, each producing 1.2 V. 
The 8.4 V input allows the battery to drop to a low of 7 V before the minimum headroom 
of 2 V is violated.

Depending on the exact 7805 regulator part chosen, a typical heat-sinked parameter 
set might be as follows:

•	 Input voltage: 7–25 V

•	 Output voltage: 1.5 A (heat-sinked)

•	 Operating temperature: 125°C 

Be sure to use a heat sink on the regulator so that it can dissipate heat energy to the 
surrounding air. Without one, the regulator can enter a thermal shutdown state, reducing 
current flow to prevent its own destruction. When this happens, the output voltage will 
drop below +5 V.

Keep in mind that the amount of power dissipated by the battery is more than 
that received by the load. If we assume that the Raspberry Pi is consuming 700 mA, a 
minimum of 700 mA is also drawn from the battery through the regulator (and it could 
be slightly higher). Realize that the regulator is dissipating additional energy because of 
its higher input voltage. The total power dissipated by the regulator and the load is as 
follows:

P
d
 = P

L
 + P

R

      = 5 V × 0.7 A + (8.4 V − 5 V ) × 0.7 A

      = 3.5 W + 2.38 W

      = 5.88 W

The regulator must dissipate the difference between the input and the output 
voltages (2.38 W). This additional energy heats up the regulator with the energy being 
given away at the heat sink. Because of this, designers avoid using a high input voltage on 
linear regulator circuits.

Figure 2-6. Regulated battery supply
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If the regulator is rated at a maximum of 1.5 A at 7 V (input), the power maximum 
for the regulator is about 10.5 W. If we apply an input voltage of 8.4 V instead of 7, we can 
derive what our 5 V maximum current will be:

I
P

V
W

V
A

in
max

max

.

.
.

=

=

=

10 5

8 4
1 25

From this, we find that the 8.4 V battery regulator circuit can provide a maximum of 
1.25 A at the output, without exceeding the regulator’s power rating. Multiply 8.4 V by 1.25 
A to convince yourself that this equals 10.5 W.

DC-DC Buck Converter
If the application is designed for data acquisition, for example, it is desirable to have it run 
as long as possible on a given set of batteries or charge cycle. A switching regulator may 
be more suitable than the linear regulator.

Figure 2-7 shows a very small PCB that is about 1.5 SD cards in length. This unit 
was purchased from eBay for $1.40, with free shipping. At these prices, why would you 
build one?

Figure 2-7. DC-DC buck converter

They are also  simple to use. You have + and – input connections and + and – output 
connections. Feed power in at one voltage and get power out at another voltage. This is so 
simple that you’ll forgive me if I omit the diagram for it.

But don’t immediately wire it up to your Raspberry Pi, until you have calibrated the 
output voltage. While it might come precalibrated for 5 V, it is best not to count on it. If the 
unit produces a higher voltage, you might fry the Pi.
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The regulated output voltage is easily adjusted by a multiturn trim pot on the PCB. 
Adjust the pot while you read your DMM.

The specifications for the unit I purchased are provided in Table 2-1 for your general 
amusement. Notice the wide range of input voltages and the fact that it operates at 
a temperature as low as –40°C. The wide range of input voltages and current up to 3 
A clearly makes this a great device to attach to solar panels that might vary widely in 
voltage.

Table 2-1. DC-DC buck converter specifications

Parameter Min Max Units Parameter Min Max Units

Input voltage 4.00 35.0 Volts Output ripple 30.9 mA

Input current 3.0 Amps Load regulation ±0.5 %

Output voltage 1.23 30.0 Volts Voltage 
regulation

±2.5 %

Conversion 
efficiency

92 % Working 
temperature

–40 +85 °C

Switching 
frequency

150 kHz PCB size 45×20×12 mm

Net weight 10 g

The specification claims up to a 92% conversion efficiency. Using 15 V on the input, 
I performed my own little experiment with measurements. With the unit adjusted to 
produce 5.1 V at the output, the  readings shown in Table 2-2 were taken.

Table 2-2. Readings taken from experiment

Parameter Input Output Units

Voltage 15.13 5.10 Volts

Current 0.190 0.410 Amps

Power 2.87 2.09 Watts

From the table we expected to see more power used on the input side (2.87 W). 
The power used on the output side was 2.09 W. The efficiency then becomes a matter of 
division:

2 09

2 87
0 728

.

.
.=

From this we can conclude that the measured conversion efficiency was about 72.8%.
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How well could we have done if we used the LM7805 regulator? The following is 
a best case estimate, since I don’t have an actual current reading for that scenario. But 
we do know that at least as much current that flows out of the regulator must flow into it 
(likely more). So what is the absolute best that the LM7805 regulator could theoretically 
do? Let’s apply the same current draw of 410 mA for the Raspberry Pi at 5.10 V, as shown 
in Table 2-3. (This was operating without HDMI output in use.)

Table 2-3. Hypothetical LM7805 power use

Parameter Input Output Units

Voltage 7.1 5.10 Volts

Current 0.410 0.410 Amps

Power 2.91 2.09 Watts

The power efficiency for this best case scenario amounts to this:

2 09

2 91
0 718

.

.
.=

The absolute best case efficiency for the LM7805 regulator is 71.8%. But this is 
achieved at its optimal input voltage. Increasing the input voltage to 12 V causes the 
power dissipation to rise considerably, resulting in a 42.5% efficiency (this calculation is 
left to the reader as an exercise). Attempting to operate the LM7805 regulator at 15.13 V, 
as we did with the buck converter, would cause the efficiency to drop to less than 33.7%. 
Clearly, the buck converter is much more efficient at converting power from a higher 
voltage source.

Signs of Insufficient Power
In the forums, it has been reported that ping sometimes doesn’t work from the desktop 
(with HDMI), yet works OK in console mode.42 Additionally, I have seen that desktop 
windows can freeze if you move them (HDMI). As you start to move the terminal window, 
for example, the motion would freeze part way through, as if the mouse stopped working.

These are signs of the Raspberry Pi being power starved. The GPU consumes more 
power when it is active, performing accelerated graphics. Either the desktop freezes (GPU 
starvation) or the network interface fails (ping). There may be other symptoms related to 
HDMI activity.

Another problem that has been reported is resetting of the Raspberry Pi shortly after 
starting to boot. The board starts to consume more power as the kernel boots up, which 
can result in the Pi being starved.43

If you lose your Ethernet connection when you plug in a USB device, this too may be 
a sign of insufficient power.44
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While it may seem that a 1 A power supply should be enough to supply a 700 mA 
Raspberry Pi, you will be better off using a 2 A supply instead. Many power supplies 
simply don’t deliver their full advertised ratings.

The micro-USB cable is something else to suspect. Some are manufactured with thin 
conductors that can result in a significant voltage drop. Measuring the voltage as shown 
previously in the “Voltage Test” section may help diagnose that. Try a higher-quality cable 
to see whether there is an improvement.

No Power
If your Pi appears dead, even though power is present at the input, the input polyfuse 
could have blown. If this was a recent event, allow the unit to cool down. The polymer 
in the fuse recrystallizes, but this can take several hours. If you think the F3 poly fuse is 
permanently destroyed, see the Linux wiki page45 for how to test it.
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Chapter 3

Header Strips, LEDs,  
and Reset

In this chapter, an inventory of the Raspberry Pi header strips, LEDs, and reset button 
connections is covered. These are important interfaces from the Pi to the outside world. 
You may want to use a bookmark for Table 3-3, which outlines the general purpose input/
output (GPIO) pins on header strip P1.

Status LEDs
The Model A Raspberry Pi has a subset of the Model B LED indicators because it lacks the 
Ethernet port. The Model B has three additional LEDs, each showing the network status. 
Table 3-1 provides a list of LED statuses.

Table 3-1. Status LEDs

LED Color Model A Model B Comment

ACT Green OK ACT SD card access activity

PWR Red Yes Yes Power supply

FDX Green N/A Yes LAN: Full duplex

LNK Green N/A Yes LAN: Link

100 Yellow N/A 100 Labeled incorrectly on Rev 1.0 as 
10M: 10/100 Mbit link

OK or ACT LED
This green LED indicates SD card I/O activity. This active low LED is internally driven by 
the kernel on GPIO 16 (see the kernel source file bcm2708.c in arm/mach-bcm2708).
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PWR LED
This red LED simply indicates that the Raspberry Pi has power. Figure 3-1 shows that the 
power LED is supplied from the 3.3 V regulator.14 Consequently, the LED indicates only 
that power is arriving through the 3.3 V regulator.

Figure 3-1. Power LED

The power LED indicator is not necessarily an indication that the power is good.  
It simply indicates that power is present. The LED can be lit and still not have sufficient 
voltage present for the CPU to operate correctly.

If there is any doubt about how good the power supply is, refer to the “Voltage Test” 
section in Chapter 2, which has information about how to perform a voltage test.

FDX LED
This green LED indicates that the Ethernet port is operating in full-duplex mode.

LNK LED
This green LED indicates that the Ethernet port has an active link-level status.

10M or 10/100 LED
Model B Rev 1.0 had this LED incorrectly labelled as 10M. The correct label is 100, which 
is found on Rev 2.0 boards. This yellow LED indicates that the 100 Mbit link is active 
(otherwise, it is a 10 Mbit link).

Header P1
The Raspberry Pi includes a 13x2 pin strip identified as P1, which exposes GPIO pins. 
This includes the I2C, SPI, and UART peripherals as well as the +3.3 V, +5.0 V, and ground 
connections. Table 3-2 shows the pin assignments for the Model B, Rev 1.0 PCB.
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Caution ■  the Model a can supply a maximum of 500 ma from the +5 V pins of p1. the 
model B has a lower maximum limit of 300 ma. these limits are due to the fusible link F3 on 
the pCB (shown previously in Figure 2-2 in Chapter 2). note also for both models, the +3.3 V 
pins of p1 and p5 are limited to a maximum of 50 ma. this is the remaining capacity of the 
onboard voltage regulator. GpiO currents also draw from this resource. (See Figure 2-3.)

Table 3-3 shows the connections for the Model B revision 2.0. According to the 
Raspberry Pi website14, these pin assignments are not expected to change beyond Rev 2.0 
in future revisions. The additional Rev 2.0 header P5 is shown in Table 3-4.

Note ■  Chapter 5 provides more information on identifying your raspberry pi. if you have 
an early pre rev 2.0 board, be aware that the GpiO pins differ.

Table 3-2. Rev 1.0 GPIO Header Connector P1 (Top View)

Lower Left Upper Left

3.3 V power P1-01 P1-02 5 V power

GPIO 0 (I2C0_SDA)+R1=1.8k P1-03 P1-04 5 V power

GPIO 1 (I2C0_SCL)+R2=1.8k P1-05 P1-06 Ground

GPIO 4 (GPCLK 0/1-Wire) P1-07 P1-08 GPIO 14 (TXD)

Ground P1-09 P1-10 GPIO 15 (RXD)

GPIO 17 P1-11 P1-12 GPIO 18 (PCM_CLK)

GPIO 21 (PCM_DOUT) P1-13 P1-14 Ground

GPIO 22 P1-15 P1-16 GPIO 23

3.3 V power P1-17 P1-18 GPIO 24

GPIO 10 (MOSI) P1-19 P1-20 Ground

GPIO 9 (MISO) P1-21 P1-22 GPIO 25

GPIO 11 (SCKL) P1-23 P1-24 GPIO 8 (CE0)

Ground P1-25 P1-26 GPIO 7 (CE1)

Lower Right Upper Right
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Safe Mode
If your Raspbian SD image supports it, a safe mode can be activated when needed. The 
New Out of Box Software (NOOBS) image still appears to support this feature.

Pin P1-05, GPIO 3 is special to the boot sequence for Rev 2.0 models. (This is GPIO 1 on 
the pre Rev 2.0 Model B.) Grounding this pin or jumpering this to P1-06 (ground) causes the 
boot sequence to use a safe mode boot procedure. If the pin is used for some other purpose, 
you can prevent this with configuration parameter avoid_safe_mode=1. Be very careful that 
you don’t accidentally ground a power pin (like P1-01 or P1-02) when you do use it.

Table 3-4. Rev 2.0 P5 Header (Top View)

Lower Left Upper Left

(Square) 5 V P5-01 P5-02 3.3 V, 50 mA

GPIO 28 P5-03 P5-04 GPIO 29

GPIO 30 P5-05 P5-06 GPIO 31

Ground P5-07 P5-08 Ground

Lower Right Upper Right

Table 3-3. Rev 2.0 GPIO Header Connector P1 (Top View)

Lower Left Upper Left

3.3 V power, 50 mA max P1-01 P1-02 5 V power

GPIO 2 (I2C1_SDA1)+R1=1.8k P1-03 P1-04 5 V power

GPIO 3 (I2C1_SCL1)+R2=1.8k P1-05 P1-06 Ground

GPIO 4 (GPCLK 0/1-Wire) P1-07 P1-08 GPIO 14 (TXD0)

Ground P1-09 P1-10 GPIO 15 (RXD0)

GPIO 17 (GEN0) P1-11 P1-12 GPIO 18 (PCM_CLK/GEN1)

GPIO 27 (GEN2) P1-13 P1-14 Ground

GPIO 22 (GEN3) P1-15 P1-16 GPIO 23 (GEN4)

3.3 V power, 50 mA max P1-17 P1-18 GPIO 24 (GEN5)

GPIO 10 (SPI_MOSI) P1-19 P1-20 Ground

GPIO 9 (SPI_MISO) P1-21 P1-22 GPIO 25 (GEN6))

GPIO 11 (SPI_SCKL) P1-23 P1-24 GPIO 8 (CE0_N)

Ground P1-25 P1-26 GPIO 7 (CE1_N)

Lower Right Upper Right
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If yours fails to respond to safe mode, it may be due to a manufacturing error. See this 
message:
 
www.raspberrypi.org/phpBB3/viewtopic.php?f=29&t=12007
 

In that thread, it is suggested that you check the following:
 
$ vcgencmd otp_dump | grep 30:
30:00000002
 

If you see the value 2, it means that the firmware thinks this is a Rev 1.0 board 
(even though it may be a Rev 2.0). When that applies, it will not support the safe mode 
sequence. Newer Rev 2.0 Pis do not have this issue.

When safe mode is invoked by the jumper, the config.txt file is ignored except for the 
avoid_safe_mode parameter. Additionally, this mode overrides the kernel command line, 
and kernel_emergency.img is loaded. If this file is unavailable, kernel.img is used instead.

The intent of this feature is to permit the user to overcome configuration problems 
without having to edit the SD card on another machine in order to make a correction. The 
booted emergency kernel is a BusyBox image with /boot mounted so that adjustments 
can be made. Additionally, the /dev/mmcblk0p2 root file system partition can be fixed up 
or mounted if necessary.

Logic Levels
The logic level used for GPIO pins is 3.3 V and is not tolerant of 5 V TTL logic. The 
Raspberry Pi PCB is designed to be plugged into PCB extension cards or otherwise 
carefully interfaced to 3 V logic. Input voltage parameters V

IL
 and V

IH
 are described in 

Chapter 10. This feature of the Pi makes it an interesting case study as we interface it to 
the outside world.

GPIO Configuration at Reset
The Raspberry Pi GPIO pins can be configured by software control to be input or output, 
to have pull-up or pull-down resistors, or to assume some specialized peripheral 
function. After reset, only GPIO 14 and 15 are assigned a special function (UART). After 
boot up, however, software can even reconfigure the UART pins as required.

When a GPIO pin is configured for output, there is a limited amount of current 
that it can drive (source or sink). By default, each P1 GPIO is configured to use an 8 mA 
driver, when the pin is configured as an output. Chapter 10 has more information on the 
software control of this.

Note ■  raspbian 1-Wire bus is GpiO 4 (GpCLK0) pin p1-07.

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=29&amp;t=12007
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1-Wire Driver
The default GPIO pin used for the 1-Wire driver is GPIO 4. This is hard-coded in the 
following kernel source file:
 
arch/arm/mach–bcm2708/bcm2708.c
 

If you need to change this default, alter the line in bcm2708.c that defines the macro 
W1_GPIO:
 
#define  W1_GPIO  4
 

Then rebuild your kernel.

Header P5
Be careful with the orientation of this Model B Rev 2.0 header strip. See Figure 3-2: while 
looking down at P1, with its pin 1 at the lower left, the P5 strip has its pin 1 at the upper 
left (note the square pad on either side of the PCB).

Figure 3-2. P5’s pin 1 location on the Rev 2.0 Model B

As a practical matter, I found that the pins for P5 can be soldered into the PCB with 
some care (they are not included). However, the proximity of P5 to P1 makes it impossible 
to plug in a header connector to P1 and P5 at the same time. With the pins installed, it 
is possible to use individual wire plugs on the pins as needed. I ended up plugging in a 
dual-wire plug on P5-04 and P5-06, which is one row away from P1. These wires were 
then brought out to connectors on a wood strip for easier access.

By default, GPIO pins 28 through 31 are configured for driving 16 mA. (Chapter 10 
has more information about this.)
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Reset
In the revision 2.0 Raspberry Pi, a reset circuit was implemented, as shown in Figure 3-4.11 To 
complete the reset circuit, attach a push button to pins 1 and 2 of P6, as shown in Figure 3-3.14

Figure 3-4. Reset circuit

Figure 3-3. Model B Rev 2.0 P6

To actuate the reset, P6 pin 1 is short-circuited to P6 pin 2. This resets the BCM2835 
SoC chip. This is something you will want to avoid using while Raspbian Linux is up and 
running. Use reset as a last resort to avoid losing file content.
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Chapter 4

SDRAM

The Model B Rev 2.0 Raspberry Pi has 512 MB of SDRAM, while the older revisions and 
remaining models have 256 MB. Contrast this to the AVR class ATmega168p, which has 
1 KB of static RAM. SDRAM is synchronous dynamic random access memory, which 
synchronizes with the system bus for improved performance. It uses a form of pipelining 
to gain this advantage.

There isn’t much about the memory hardware that concerns the average Pi 
developer. However, in this chapter, you’ll examine some useful Raspbian Linux kernel 
interfaces that inform us how that memory is utilized. You’ll also examine how to access 
the memory-mapped ARM peripherals directly from your Linux application.

/proc/meminfo
The pseudo file /proc/meminfo provides us with information about memory utilization. 
This information varies somewhat by architecture and the compile options used for that 
kernel. Let’s study an example that is produced by Raspbian Linux, on the Raspberry Pi:
 
$ cat /proc/meminfo
MemTotal:      448996 kB
MemFree:       340228 kB
Buffers:        14408 kB
Cached:         58532 kB
SwapCached:         0 kB
Active:         45948 kB
Inactive:       51564 kB
Active(anon):   24680 kB
Inactive(anon):   820 kB
Active(file):   21268 kB
Inactive(file): 50744 kB
Unevictable:        0 kB
Mlocked:            0 kB
SwapTotal:     102396 kB
SwapFree:      102396 kB
Dirty:              0 kB
Writeback:          0 kB
AnonPages:      24584 kB
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Mapped:         20056 kB
Shmem:            932 kB
Slab:            6088 kB
SReclaimable:    2392 kB
SUnreclaim:      3696 kB
KernelStack:     1216 kB
PageTables:      1344 kB
NFS_Unstable:       0 kB
Bounce:             0 kB
WritebackTmp:       0 kB
CommitLimit:   326892 kB
Committed_AS:  215104 kB
VmallocTotal:  188416 kB
VmallocUsed:      744 kB
VmallocChunk:  186852 kB
 

All of the memory values shown have the units KB to the right of them, indicating 
kilo (1,024) bytes.

This next example was taken from a Model A Raspberry Pi, with 256 MB:63

 
$cat/proc/meminfo
MemTotal:      190836 kB
MemFree:       151352 kB
Buffers:         7008 kB
Cached:         20640 kB
SwapCached:         0 kB
Active:         14336 kB
Inactive:       18648 kB
Active(anon):    5468 kB
Inactive(anon):     0 kB
Active(file):    8868 kB
Inactive(file): 18648 kB
Unevictable:        0 kB
Mlocked:            0 kB
SwapTotal:          0 kB
SwapFree:           0 kB
Dirty:              0 kB
Writeback:          0 kB
AnonPages:       5348 kB
Mapped:          6512 kB
Shmem:            136 kB
Slab:            3712 kB
SReclaimable:    1584 kB
SUnreclaim:      2128 kB
KernelStack:      944 kB
PageTables:       620 kB
NFS_Unstable:       0 kB
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Bounce:             0 kB
WritebackTmp:       0 kB
CommitLimit:    95416 kB
Committed_AS:   57876 kB
VmallocTotal:  188416 kB
VmallocUsed:      704 kB
VmallocChunk:  186852 kB
 

Many of these values are noticeably smaller.
In the sections that follow, a Model B to Model A comparison is provided. In some 

cases, the comparison isn’t meaningful because the values represent activity that has or 
has not occurred. For example, the value for AnonPages is going to depend on the mix of 
commands and applications that have run. But values from both models are provided for 
completeness. Other values such as MemTotal can be meaningfully compared, however.

MemTotal
The MemTotal line indicates the total amount of memory available, minus a few reserved 
binary regions. Note that memory allocated to the GPU is not factored into MemTotal. 
Some may choose to allocate the minimum of 16 MB to the GPU to make more memory 
available.

Model B Model A

MemTotal 448,996 KB 190,836 KB

If we break this down a bit further, accounting for memory allocated to the GPU 
(see Chapter 2 of Raspberry Pi System Software Reference [Apress, 2014] for more 
details), we find that there is about 9.5 MB (1.9%) of memory that is unaccounted for, as 
shown in Table 4-1.

Table 4-1. GPU and Main Memory Breakdown

Memory Model B Comments

MemTotal 448,996 KB /proc/meminfo

gpu_mem 65,536 KB /boot/config.txt

Total 514,532 KB 502.5 MB

Unaccounted for 9,756 KB 9.5 MB
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MemFree
MemFree normally represents the sum of LowFree + HighFree memory in kilobytes on the 
Intel x86 platform. For ARM, this simply represents the amount of memory available to 
user space programs.

Model B Model A

MemFree 340,228 KB 151,352 KB

The Model B has 332.25 MB for application programs, which amounts to about 64.9% 
(Rev 2.0). The Model A values indicate about 57.7% of the memory is available.

Buffers
This value represents temporary buffers used within the kernel for raw disk blocks, and so 
forth. This value should not get much larger than about 20 MB or so.27

Model B Model A

Buffers 14,408 KB 7,008 KB

Cached
This value represents the read file content that has been cached (page cache). This does 
not include the content reported for SwapCached.

Model B Model A

Cached 58,532 KB 20,640 KB

SwapCached
The value shown for SwapCached represents memory that was swapped out and is now 
swapped back in. For efficiency, these memory pages are still represented by swap disk 
space, should they be needed again.

Model B Model A

SwapCached 0 KB 0 KB
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The fact that the value is reported as zero is a happy sign that no swapping has 
occurred, or is no longer pertinent.

Active
The Active memory value represents recently used memory that is not reclaimed, unless 
absolutely necessary.

Model B Model A

Active 45,948 KB 14,336 KB

Inactive
This value represents memory that is not active and is likely to be reclaimed when 
memory is needed.

Model B Model A

Inactive 51,564 KB 18,648 KB

Active(anon)
This value represents memory that is not backed up by a file and is active. Active memory 
is not reclaimed unless absolutely necessary.

Model B Model A

Active(anon) 24,680 KB 5,468 KB

Inactive(anon)
This value represents memory that is not backed up by a file and is not active. Inactive 
memory is eligible to be reclaimed if memory is required.

Model B Model A

Inactive(anon) 820 KB 0 KB
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Active(file)
This value represents file-backed memory, which is active. Active memory is reclaimed 
only if absolutely required.

Model B Model A

Active(file) 21,268 KB 8,868 KB

Inactive(file)
This value represents inactive memory that is backed by a file. Inactive memory is eligible 
for reclamation, when memory is required.

Model B Model A

Inactive(file) 50,744 KB 18,648 KB

Unevictable
This amount reflects the total amount of memory that cannot be reclaimed. Memory that 
is locked, for example, cannot be reclaimed.

Model B Model A

Unevictable 0 KB 0 KB

Mlocked
This value reports the amount of locked memory.

Model B Model A

Mlocked 0 KB 0 KB

SwapTotal
This value reports the total amount of swap space available in kilobytes.

Model B Model A

SwapTotal 102,396 KB 0 KB
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SwapFree
This value reports the remaining amount of swap space available in kilobytes.

Model B Model A

SwapFree 102,396 KB 0 KB

Dirty
This value represents the kilobytes of memory that have been modified and are waiting to 
be written to disk.

Model B Model A

Dirty 0 KB 0 KB

Writeback
This value reports the amount of memory in kilobytes being written back to disk.

Model B Model A

Writeback 0 KB 0 KB

AnonPages
This represents the non-file-backed pages of memory mapped into user space.

Model B Model A

AnonPages 24,584 KB 5,348 KB

Mapped
This value reports the files that have been mapped into memory. This may include library 
code.

Model B Model A

Mapped 20,056 KB 6,512 KB
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 Shmem
This parameter does not appear to be documented well. However, it represents the 
amount of shared memory in kilobytes

Model B Model A

Shmem 932 KB 136 KB

 Slab
This parameter is described as “in-kernel data structures cache.”27

Model B Model A

Slab 6,088 KB 3,712 KB

SReclaimable
This parameter is described as “Part of Slab that might be reclaimed, such as caches.”27

Model B Model A

SReclaimable 2,392 KB 1,584 KB

SUnreclaim
This parameter is described as “Part of Slab that cannot be reclaimed [under] memory 
pressure.”27

Model B Model A

SUnreclaim 3,696 KB 2,128 KB

KernelStack
This value reports the memory used by the kernel stack(s).

Model B Model A

KernelStack 1,216 KB 944 KB
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PageTables
This value reports the amount of memory required by the page tables used in the kernel. 
Clearly, with more memory to manage, there is more memory dedicated to page tables.

Model B Model A

PageTables 1,344 KB 620 KB

NFS_Unstable
This value represents “NFS pages sent to the server, but not yet committed to stable 
storage.”27 This example data suggests that NFS is not being used.

Model B Model A

NFS_Unstable 0 KB 0 KB

Bounce
This reports the memory used for “block device bounce buffers.”27

Model B Model A

Bounce 0 KB 0 KB

WritebackTmp
This parameter reports the memory used by FUSE for “temporary writeback buffers.”27

Model B Model A

WritebackTmp 0 KB 0 KB



Chapter 4 ■ SDraM

36

CommitLimit
The documentation states:

Based on the overcommit ratio (vm.overcommit_ratio), this is the total 
amount of memory currently available to be allocated on the system. 
This limit is only adhered to if strict overcommit accounting is enabled 
(mode 2 in vm.overcommit_memory). The CommitLimit is calculated with 
the following formula:27

CommitLimit = (vm.overcommit_ratio × Physical RAM) + Swap

For example, a system with 1 GB of physical RAM and 7 GB of swap with a  
vm.overcommit_ratio of 30 would yield a CommitLimit of 7.3 GB. For more details,  
see the memory overcommit documentation in vm/overcommitaccounting.

The formula can be written as follows:

C R r S= ´( ) + .

The elements of this formula are described here:

•	 C is the overcommit limit.

•	 R is the physical RAM available (MemTotal).

•	 S is the swap space available (SwapTotal).

•	 r is the overcommit ratio percent (expressed as a fraction).

The overcommit ratio, r, is not reported in the /proc/meminfo data. To obtain that 
ratio, we consult another pseudo file. This example was taken from a Rev 2.0 Model B, but 
it appears to be a value common to all Pis:
 
$ cat /proc/sys/vm/overcommit_ratio
50
 

The value 50 is to be interpreted as r = 0.50 (50%).
Using the overcommit formula, the value for S can be computed for the swap space 

available:

S C R r

KB

= - ´( )
= - ´( )
= -
=

326892 448996 0 50
326892 262144
102394

.
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This fits within 2 KB of the SwapTotal value of 102,396 KB reported by /proc/
meminfo.

The overcommit ratio is configurable by the user, by writing a value into the pseudo 
file. This example changes the ratio to 35%:
 
$ sudo -i
# echo 35 >/proc/sys/vm/overcommit_ratio
# cat /proc/sys/vm/overcommit_ratio
35
 

The CommitLimit values reported by our example Raspberry Pi sessions are shown 
in Table 4-2 for comparison purposes. A Model B pre Rev 2.0 version is also included here 
for comparison.

Table 4-2. Example Model B to Model A Memory Comparisons

Model B Rev 2.0 Model B Pre 2.0 Model A

CommitLimit 326,892 KB 127,868 KB 95,416 KB

MemTotal 448,996 KB 124,672 KB 190,836 KB

SwapTotal 102,396 KB 65,532 KB 0 KB

Commit Ratio 50 50 50

With thanks to Dan Braun for providing the Model B Pre 2.0 data.

The value of the Model A commit ratio was calculated here since it wasn’t available 
from the website. But if you calculate the swap space S for it, you arrive at the value of –2 KB, 
if you assume 50% for the commit ratio. This agrees with the 2 KB difference you saw earlier.

Committed_AS
This parameter is described as follows:

The amount of memory presently allocated on the system. The committed 
memory is a sum of all of the memory which has been allocated by 
processes, even if it has not been “used” by them as of yet. A process which 
malloc()’s 1 GB of memory, but only touches 300 MB of it will only show 
up as using 300 MB of memory even if it has the address space allocated 
for the entire 1 GB. This 1 GB is memory which has been “committed” 
to by the VM and can be used at any time by the allocating application. 
With strict overcommit enabled on the system (mode 2 in vm.overcommit_
memory), allocations which would exceed the CommitLimit (detailed 
above) will not be permitted. This is useful if one needs to guarantee that 
processes will not fail due to lack of memory once that memory has been 
successfully allocated.27
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Model B Model A

Committed_AS 215,104 KB 57,876 KB

VmallocTotal
This represents the total amount of allocated virtual memory address space.

Model B Model A

VmallocTotal 188,416 KB 188,416 KB

VmallocUsed
This is the amount of virtual memory that is in use, reported in kilobytes.

Model B Model A

VmallocUsed 744 KB 704 KB

VmallocChunk
This value reports the largest size of a vmalloc area, in kilobytes.

Model B Model A

VmallocChunk 186,852 KB 186,852 KB

Physical Memory
Let’s now turn our attention to the Raspberry Pi’s physical memory layout. Normally, 
physical memory isn’t a concern to application programmers, because the operating 
system and its drivers provide an abstract and often portable way to access them. 
However, when this support is absent, direct access to a peripheral like the PWM 
controller is necessary.

Figure 4-1 illustrates the physical addressing used on the Raspberry Pi. The SDRAM 
starts at physical address zero and works up to the ARM/GPU split point (Chapter 2 of 
Raspberry Pi System Software Reference [Apress, 2014] defines the split point). The ARM 
peripherals are mapped to physical memory starting at the address of 0x20000000. This 
starting address is of keen interest to Pi programmers.
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In the region labeled Peripherals, the offsets and addresses indicated in Table 4-3 are 
of interest to us.

Figure 4-1. Physical memory layout

Table 4-3. Peripheral Offsets for the Raspberry Pi

Peripheral Offset Address Description C Offset Macro

Base 0x00000000 0x20000000 Starting address BCM2708_PERI_BASE

PADS_GPIO 0x00100000 0x20100000 PADS base PADS_GPIO_BASE

GPIO 00..27 0x0010002C 0x2010002C GPIO 00..27 pads PADS_GPIO_00_27

GPIO 28..45 0x00100030 0x20100030 GPIO 28..45 pads PADS_GPIO_28_45

GPIO 46..53 0x00100034 0x20100034 GPIO 46..53 pads PADS_GPIO_46_53

Clock 0x00101000 0x20101000 Clock registers CLK_BASE

GPIO 0x00200000 0x20200000 GPIO registers GPIO_BASE

GPPUD 0x00200025 0x20200025 Pull-up enable

GPPUDCLK0 0x00200026 0x20200026 Pull-up clock 0

GPPUDCLK1 0x00200027 0x20200027 Pull-up clock 1

PWM 0x0020C000 0x2020C000 PWM registers PWM_BASE
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Throughout this book, you’ll see the macros BCM2708_PERI_BASE and GPIO_BASE, for 
example, used in programs that access the peripherals directly.

Memory Mapping
To gain access to physical memory under Linux, we make use of the /dev/mem character 
device and the mmap(2) system call. The /dev/mem node is shown here:
 
$ ls −l /dev/mem
crw−r−−−−T 1 root kmem 1, 1 Dec 31 1969 /dev/mem
 

From the ownership information shown, it is immediately obvious that you’ll need 
root privileges to access it. This is sensible given that a process can cause havoc with 
direct access to the physical memory.  Clearly, the Pi developer should exercise caution in 
what the applications do with it.

The mmap(2) system call API is shown here:
 
#include <sys/mman.h>
 
void ∗mmap(
  void          ∗addr,           /∗ Address to use ∗/
  size_t         length,         /∗ Number of bytes to access ∗/
  int            prot,           /∗ Memory protection ∗/
  int            flags,          /∗ Option flags ∗/
  int            fd,             /∗ Opened file descriptor ∗/
  off_t          offset          /∗ Starting off set ∗/
) ;
 

Rather than look at all the options and flags available to this somewhat complicated 
system call, let’s look at the ones that we use in the following code:
 
static char ∗map = 0;
 
static void
gpio_init() {
    int fd;
    char ∗map;
 
    fd = open("/dev/mem",O_RDWR|O_SYNC) ;   /∗ Needs root access ∗/
    if ( fd < 0 ) {
        perror("Opening /dev/mem") ;
        exit(1) ;
    }
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    map = (char ∗) mmap(
        NULL,                       /∗ Any address ∗/
        BLOCK_SIZE,                 /∗ # of bytes ∗/
        PROT_READ|PROT_WRITE,
        MAP_SHARED,                 /∗ Shared ∗/
        fd,                         /∗ /dev/mem ∗/
        GPIO_BASE                   /∗ Offset to GPIO ∗/
    ) ;
 
    if ( (long)map == −1L ) {
        perror("mmap(/dev/mem)");
        exit(1) ;
    }
 
    close(fd);
    ugpio = (volatile unsigned ∗)map;
}
 

The first thing performed in this code is to open the device driver node /dev/mem.  
It is opened for reading and writing (O_RDWR), and the option flag O_SYNC requests that any 
write(2) call to this file descriptor result in blocking the execution of the caller until it 
has completed.

Address
Next, the mmap(2) call is invoked. The address argument is provided with NULL (zero) 
so that the kernel can choose where to map it into the caller’s address space. If the 
application were to specify a starting address to use and the kernel was not able use it, 
the system call would fail. The starting address is returned and assigned to the character 
pointer map in the preceding listing.

Length
Argument 2 is supplied with the macro BLOCK_SIZE in this example. This is the number 
of bytes you would like to map into your address space. This was defined earlier in the 
program as 4 KB:
 
#define BLOCK_SIZE (4∗1024)
 

While the application may not need the full 4 KB of physical memory mapped, 
mmap(2) may insist on using a multiple of the page size. This can be verified on the 
command line as follows:
 
$ getconf PAGE_SIZE
4096
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A program could determine this as well, by using the sysconf(2) system call:
 
#include <unistd.h>
 
    ...
    long sz = sysconf(_SC_PAGESIZE);

Protection
The third mmap(2) argument is supplied with the flags PROT_READ and PROT_WRITE. 
This indicates that the application wants both read and write access to the memory-
mapped region.

Flags
The flags argument is supplied with the value MAP_SHARED. This permits nonexclusive 
access to the underlying mapping.

File Descriptor
This argument supplies the underlying opened file to be mapped into memory. In this 
case, we map a region of physical ARM memory into our application by using the opened 
device driver node /dev/mem.

Offset
This last argument specifies the location in physical memory where we want to start our 
access. For the GPIO registers, it is the address 0x20200000.

Return Value
The return value, when successful, will be an application address that points to the 
physical memory region we asked for. The application programmer need not be 
concerned with what this address is, except to save and use it for access.

The return value is also used for indicating failure, so this should be checked and 
handled:
 
if ( (long) map == –1L )  {
    perror("mmap(/dev/mem)");
    exit(1);
}
 

The returned address (pointer) map is cast to a long integer and compared to -1L. 
This is the magic value that indicates that an error occurred. The error code is found in 
errno.
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Volatile
The last section of this initialization code for GPIO assigns the address map to another 
variable, ugpio, as follows:
 
ugpio = (volatile unsigned ∗)map;
 

The value ugpio was defined earlier in the program:
 
static volatile unsigned ∗ugpio = 0;
 

There are two things noteworthy about this:

The data type is an unsigned •	 int (32 bits on the Pi).

The pointed-to data is marked as •	 volatile.

Since the Pis registers are 32 bits in size, it is often more convenient to access them 
as 32-bit words. The unsigned data type is perfect for this. But be careful with offsets in 
conjunction with this pointer, since they will be word offsets rather than byte offsets.

The volatile keyword tells the compiler not to optimize access to memory through 
the pointer variable. Imagine code that reads a peripheral register and reads the same 
register again later, to see whether an event has occurred. An optimizing compiler might 
say to itself, “I already have this value in CPU register R, so I’ll just use that since it is 
faster.” But the effect of this code is that it will never see a bit change in the peripheral’s 
register because that data was not fetched back into a CPU register. The volatile 
keyword forces the compiler to retrieve the value even though it would be faster to use the 
value still found in a register.

Virtual Memory
In the previous section, you looked at how to access physical memory in an application, 
provided that you had the rights to do so (root or setuid). The Broadcom Corporation 
PDF manual “BCM2835 ARM Peripherals,” page 5, also shows a virtual memory layout 
on the right. This should not be confused with the physical memory layout that you 
examined earlier. Virtual memory can be accessed through /dev/kmem driver node using 
mmap(2), but we won’t be needing that in this book.

Final Thoughts on SDRAM
Some parameters such as Buffers impact the performance of Raspbian Linux on the Pi. 
From our comparison, we saw that the Model A seems to use about half of the buffering 
available to the Model B Rev 2.0 Pi. This is reasonable when limited memory has to be 
divided between operating system and application use.

Another performance area related to memory is how much SDRAM is dedicated 
to GPU use. This parameter is examined in Chapter 2 of Raspberry Pi System Software 
Reference (Apress, 2014).
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Probably the most important aspect of memory allocation is how much memory 
is available to the developer’s application programs. The value of MemFree is perhaps 
the most useful metric for this. When exceeding physical memory limits, the swapping 
parameters then become measurements of interest.

Finally, we took a detailed look at how to access the Raspberry Pi peripherals 
directly using mmap(2). Until Raspbian Linux gains device drivers for peripherals such as 
PWM, the direct access technique will be necessary. Even with driver support, there are 
sometimes valid reasons to access the peripheral registers directly.
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Chapter 5

CPU

The Raspberry Pi includes an ARM 700 MHz CPU. In this chapter, you’ll first look at the 
versions of the Pi that have been released into the wild. Then after looking briefly at 
overclocking, you’ll examine how the CPU is exploited by the Linux application.

Identification
Several revisions of the Pi have been released and sold. Table 5-1 lists the known revisions 
and some of the changes related to them.

Table 5-1. Board Identification40, 41

Code Model Rev. RAM P1-03 P1-05 P1-13 P5 Manuf. Comments

0002 B 1.0 256 MB GPIO0 GPIO1 GPIO21 N Egoman?

0003 B 1.0+ 256 MB GPIO0 GPIO1 GPIO21 N Egoman? Fuse mod and 
D14 removed

0004 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Sony

0005 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Qisda

0006 B 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Egoman

0007 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Egoman

0008 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Sony

0009 A 2.0 256 MB GPIO1 GPIO2 GPIO27 Y Qisda

000d B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Egoman

000e B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Sony

000f B 2.0 512 MB GPIO1 GPIO2 GPIO27 Y Qisda
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Once your Raspberry Pi has booted up in Raspbian Linux, you can check the board’s 
identification with the following command:
 
$ cat /proc/cpuinfo
Processor           :  ARMv6–compatible processor rev 7 (v6l)
BogoMIPS            :  697.95
Features            :  swp half thumb fastmult vfp edsp java tls
CPU implementer     :  0x41
CPU  architecture   :  7
CPU  variant        :  0x0
CPU  part           :  0xb76
CPU  revision       :  7
Hardware            :  BCM2708
Revision            :  000f
Serial              :  00000000f52b69d9
 

The preceding example reports a revision of 000f, which is a Rev 2.0 Pi.

Overclocking
Raspbian Linux for the Raspberry Pi is conservatively configured for reliability by default. 
Those with the need for speed can reconfigure it for increased performance but at the risk 
of less-reliable operation.

Raspbian Linux 3.6.11 provides a raspi-config menu of five CPU profiles.  
The profile None is the default:

Profile ARM CPU Core SDRAM Overvolt

None 700 MHz 250 MHz 400 MHz 0

Modest 800 MHz 250 MHz 400 MHz 0

Medium 900 MHz 250 MHz 450 MHz 2

High 950 MHz 250 MHz 450 MHz 6

Turbo 1 GHz 500 MHz 600 MHz 6

The raspi-config requires root privileges and is started as follows:
 
$ sudo raspi-config
 

The initial menu screen provides an overclock selection with the description 
Configure overclocking. Choosing that menu item opens another menu, allowing you 
to choose a profile.
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Choosing a profile from this menu changes the following parameters in  
/boot/config.txt:

Parameter None Modest Medium High Turbo

arm_freq= 700 800 900 950 1000

core_freq= 250 250 250 250 500

sdram_freq= 400 400 450 450 600

over_voltage=      0      0     2      6      6

When trading reliability for performance, these factors should be considered as it 
relates to your application:

How critical is the application for•	

Correctness/accuracy ·

Uptime ·

How does increased performance relate to the results?•	

Improved accuracy (Fourier transforms, real-time  ·
processing)

Increased number of measurements/sampling points ·

What is the impact of failure?•	

Will the unit perform reliably in all required temperatures (in an •	
enclosure, outdoors)?

How do these performance profiles affect day-to-day performance? Developers are 
often concerned about compile times, so I did a simple compile-time test.

The test procedure used is as follows:

1. With raspi-config, configure the desired overclocking 
profile.

2. Reboot.

3. Change to the book’s source code top-level directory.

4. Use the command make clobber.

5. Use the command time make.

Table 5-2 summarizes the results in seconds for compiling all projects for this book, 
using the different overclocking profiles. The elapsed times did not always improve 
(Real), but they can vary widely because of how I/O to the SD card occurs. The CPU time 
otherwise improved, with one small exception between Medium and High “User” CPU 
time.
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Everyone has a different appetite for speed. I usually favor reliability over speed, 
since failure and intermittent problems can cause “wild goose chases” and otherwise 
waste valuable time. Yet in some situations performance can be important enough to 
accept the risks. An application performing real-time Fourier transforms on audio might 
justify Turbo mode, for example.

Execution
Connected with the idea of the CPU is program execution itself. Before you look at 
program execution, you need to take high-level view of the execution context. Figure 5-1 
shows the operating environment that an executing program operates within.

Table 5-2. Profile Compile Tests

Profile Real User System

None 56.641 23.730 3.520

Modest 37.475 22.330 3.510

Medium 40.127 20.830 3.360

High 49.318 20.980 3.240

Turbo 32.756 15.380 2.650

Figure 5-1. Program execution context
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At the lowest end of the address space is the “text” region containing the program 
code. This region of virtual memory is read-only, containing read-only program constants 
in addition to executable code.

The next region (in increasing address) contains blocks of uninitialized arrays, 
buffers, static C variables, and extern storage.

At the high end of memory are environment variables for the program, like PATH. You 
can easily check this yourself by using getenv("PATH") and printing the returned address 
for it. Its address will likely be the highest address in your Raspberry Pi application, except 
possibly for another environment variable.

Below that, your main program’s stack begins and grows downward. Each function 
call causes a new stack frame to be created below the current one.

If you now add a thread to the program, a new stack has to be allocated for it. 
Experiments on the Pi show that the first thread stack gets created approximately 123 MB 
below the main stack’s beginning. A second thread has its stack allocated about 8 MB 
below the first. Each new thread’s stack (by default) is allocated 8 MB of stack space.

Dynamically allocated memory gets allocated from the heap, which sits between the 
static/extern region and the bottom end of the stack.

Threads
Before threads were perfected under Linux, many application developers tended to avoid 
them. Now, however, there is little reason to.

Every attempt was made to keep the project programs in this book simple. 
This usually meant also avoiding threads. Yet, a few projects would have been more 
complicated without them. In the example using ØMQ, threads would have been present 
behind the scenes, even if we didn’t see them in our application code.

With that introduction, let’s take a crash course on the pthread API as it applies to 
Raspbian Linux.

pthread Headers
All pthread functions require the following header file:
 
#include <pthread.h>
 

When linking programs compiled to use pthreads, add the linker option:

-lpthread: Link with the pthread library.

pthread Error Handling
The pthread routines return zero when they succeed and return an error code when they 
fail. The value errno is not used for these calls.
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The reason behind this is likely that it was thought that the traditional Unix errno 
approach would be phased out in the near future (at the time POSIX threads were being 
standardized). The original use of errno was as follows:
 
extern int errno;
 

However, this approach didn’t work for threaded programs. Imagine two threads 
concurrently opening files with open(2), which sets the errno value upon failure. Both 
threads cannot share the same int value for errno.

Rather than change a vast body of code already using errno in this manner, other 
approaches were implemented to provide each thread with its own private copy of errno. 
This is one reason that programs today using errno must include the header file errno.h. 
The header file takes care of defining the thread specific reference to errno.

Because the pthread standard was developing before the errno solution generally 
emerged, the pthread library returns the error code directly when there is an error and 
returns zero when the call is a success. If Unix were to be rewritten from scratch today, all 
system calls would probably work this way.

pthread_create(3)
The function pthread_create(3) is used to create a new thread of execution. The 
function call looks more daunting than it really is:
 
int pthread_create(
  pthread_t ∗thread,
  const pthread_attr_t ∗attr,
  void ∗(∗start_routine)(void ∗),
  void ∗arg
);
 

The call to pthread_create(3) creates a new stack, sets up registers, and performs 
other housekeeping. Let’s describe the arguments:

thread: This first argument is simply a pointer to a pthread_t 
variable to receive the created thread’s ID value. The ID value 
allows you to query and control the created thread. If the call 
succeeds, the thread ID is returned to the calling program.

attr: This is a pointer to a pthread_attr_t attribute object 
that supplies various options and parameters. If you can accept 
the defaults, simply supply zero or NULL.

start_routine: As shown in the following code, this is simply 
the name of a start routine that accepts a void pointer and 
returns a void pointer.
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arg: This generic pointer is passed to start_routine. It may 
point to anything of interest to the thread function  
(start_routine). Often this is a structure containing values, 
or in a C++ program, it can be the pointer to an object. If you 
don’t need an argument value, supply zero (or NULL).

returns: Zero is returned if the function is successful; 
otherwise, an error number is returned (not in errno).

Error Description

EAGAIN Insufficient resources to create another thread, or a system-imposed limit 
on the number of threads was encountered.

EINVAL Invalid settings in attr.

EPERM No permission to set the scheduling policy and parameters specified in attr.

The C language syntax of argument 3 is a bit nasty for beginning C programmers. 
Let’s just show what the function for argument 3 looks like:
 
void ∗
start_routine(void ∗arg) {
    ...
    return some_ptr;
}
 

The following is perhaps the simplest example of thread creation possible:
 
static void ∗
my_thread(void ∗arg) {
    ...                         // thread execution
    return 0;
}
 
int
main(int argc, char ∗∗argv) {
    pthread_t tid;              // Thread   ID
    int rc;
 
    rc = pthread_create(&tid,0,my_thread,0);
    assert(!rc);
 

This example does not use thread attributes (argument 2 is zero). We also don’t care 
about the value passed into my_thread(), so argument 4 is provided a zero. Argument 3 
simply needs to tell the system call what function to execute. The value of rc will be zero if 
the thread is successfully created (tested by the assert(3) macro).
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At this point, the main thread and the function my_thread() execute in parallel. 
Since there is only one CPU on the Raspberry Pi, only one executes at any instant of time. 
But they both execute concurrently, trading blocks of execution time in a preemptive 
manner. Each, of course, runs using its own stack.

Thread my_thread() terminates gracefully, by returning.

pthread_attr_t
There are several thread attributes that can be fetched and set. You’ll look only at perhaps 
the most important attribute (stack size) to keep this crash course brief. For the full list of 
attributes and functions, you can view the man pages for it:
 
$ man pthread_attr_init
 

To initialize a new attribute, or to release a previously initialized pthread attribute, 
use this pair of routines:
 
int pthread_attr_init(pthread_attr_t ∗attr);
int pthread_attr_destroy(pthread_attr_t ∗attr);
 

attr: Address of the pthread_attr_t variable to initialize/
destroy

returns: Zero upon success, or an error code when it fails  
(not in errno)

Error Description

ENOMEM Insufficient resources (memory)

The Linux implementation of pthread_attr_init(3) may never return the ENOMEM 
error, but other Unix platforms might.

The following is a simple example of creating and destroying an attribute object:
 
pthread_attr_t attr;
 
pthread_attr_init(&attr);    // Initialize attr
...
pthread_attr_destroy(&attr); // Destroy attr
 

Perhaps one of the most important attributes of a thread is the stack size attribute:
 
int pthread_attr_setstacksize(
  pthread_attr_t *attr,
  size_t stacksize
);
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int pthread_attr_getstacksize(
  pthread_attr_t *attr,
  size_t *stacksize
); 

attr: The pointer to the attribute to fetch a value from, or to 
establish an attribute in.

stacksize: This is a stack size value when setting the attribute, 
and a pointer to the receiving size_t variable when fetching 
the stack size.

returns: Returns zero if the call is successful; otherwise, 
returns an error number (not in errno).

The following error is possible for pthread_attr_setstacksize(3):

Error Description

EINVAL The stack size is less than PTHREAD_STACK_MIN (16,384) bytes.

The Linux man page further states:

On some systems, pthread_attr_setstacksize() can fail with the error 
EINVAL if stack size is not a multiple of the system page size.

The following simple example obtains the system default stack size and increases it 
by 8 MB:
 
pthread_attr_t          attr;
size_t                  stksiz;
 
pthread_attr_init(&attr);                       // Initialize attr
pthread_attr_getstacksize (&attr,&stksiz);      // Get stack size
stksiz  += 8 ∗ 1024 ∗ 1024;                     // Add 8 MB
pthread_attr_setstacksize(&attr,stksiz);        // Set stack size
 

The system default is provided by the initialization of attr. Then it is a matter of 
“getting” a value out of the attr object, and then putting in a new stack size in the call to 
pthread_attr_setstacksize().

Note that this set of operations has simply prepared the attributes object attr for use 
in a pthread_create() call. The attribute takes effect in the new thread, when the thread 
is actually created:
 
pthread_attr_t attr;
 
...
rc = pthread_create(&tid,&attr,my_thread,0);
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pthread_join(3)
In the earlier pthread_create() example, the main program creates my_thread() and 
starts it executing. At some point, the main program is going to finish and want to exit  
(or return). If the main program exits before my_thread() completes, the entire process 
and the threads in it are destroyed, even if they have not completed.

To cause the main program to wait until the thread completes, the function pthread_
join(3) is used: 

int pthread_join(pthread_t thread, void **retval); 

thread: Thread ID of the thread to be joined with.

retval: Pointer to the void * variable to receive the returned 
value. If you are uninterested in a return value, this argument 
can be supplied with zero (or NULL).

returns: The function returns zero when successful; otherwise, 
an error number is returned (not in errno).

The following example has added pthread_join(3), so that the main program does 
not exit until my_thread() exits.
 
int
main(int argc,char ∗∗argv) {
      pthread_t tid;                            // Thread ID
      void ∗retval = 0;                         // Returned value pointer
      int rc;
 
      rc = pthread_create(&tid,0,my_thread,0);
      assert(!rc);
      rc = pthread_join(tid,&retval);           // Wait for my_thread()
      assert(!rc);
      return 0;
}

pthread_detach(3)
The function pthread_join(3) causes the caller to wait until the indicated thread returns. 
Sometimes, however, a thread is created and never checked again. When that thread 
exits, some of its resources are retained to allow for a join operation on it. If there is never 
going to be a join, it is better for that thread to be forgotten when it exits and have its 
resources immediately released.

The pthread_detach(3) function is used to indicate that no join will be performed 
on the named thread. This way, the named thread becomes configured to release itself 
automatically, when it exits.
 
int pthread_detach(pthread_t thread);
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The argument and return values are as follows:

thread: The thread ID of the thread to be altered, so that it 
will not wait for a join when it completes. Its resources will be 
immediately released upon the named thread’s termination.

returns: Zero if the call was successful; otherwise, an error 
code is returned (not in errno).

Error Description

EINVAL Thread is not a joinable thread.

ESRCH No thread with the ID thread could be found.

The pthread_detach function simply requires the thread ID value as its argument:
 
pthread_t tid;          // Thread ID
int rc;
 
rc = pthread_create(&tid,0,my_thread,0);
assert(!rc);
pthread_detach(tid);    // No joining with this thread

pthread_self(3)
Sometimes it is convenient in a piece of code to find out what the current thread ID is. The 
pthread_self(3) function is the right tool for the job:
 
pthread_t pthread_self(void);
 

An example of its use is shown here:
 
pthread_t tid;
 
tid = pthread_self();

pthread_kill(3)
The pthread_kill(3) function allows the caller to send a signal to another thread. The 
handling of thread signals is beyond the scope of this text. But there is one very useful 
application of this function, which you’ll examine shortly:
 
#include <signal.h>
 
int pthread_kill(pthread_t thread, int sig);
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Notice that the header file for signal.h is needed for the function prototype and the 
signal definitions.

thread: This is the thread ID that you want to signal (or test).

sig: This is the signal that you wish to send. Alternatively, 
supply zero to test whether the thread exists.

returns: Returns zero if the call is successful, or an error code 
(not in errno).

Error Description

EINVAL An invalid signal was specified.

ESRCH No thread with the ID thread could be found.

One useful application of the pthread_kill(3) function is to test whether another 
thread exists. If the sig argument is supplied with zero, no actual signal is delivered, but 
the error checking is still performed. If the function returns zero, you know that the thread 
still exists.

But what does it mean when the thread exists? Does it mean that it is still executing? 
Or does it mean that it has not been reclaimed as part of a pthread_join(3), or as a 
consequence of pthread_detach(3) cleanup?

It turns out that when the thread exists, it means that it is still executing. In other 
words, it has not returned from the thread function that was started. If the thread has 
returned, it is considered to be incapable of receiving a signal.

Based on this, you know that you will get a zero returned when the thread is still 
executing. When error code ESRCH is returned instead, you know that the thread has 
completed.

Mutexes
While not strictly a CPU topic, mutexes cannot be separated from a discussion on threads.  
A mutex is a locking device that allows the software designer to stop one or more threads 
while another is working with a shared resource. In other words, one thread receives 
exclusive access. This is necessary to facilitate inter-thread communication. I’m simply going 
to describe the mutex API here, rather than the theory behind the application of mutexes.

pthread_mutex_create(3)
A mutex is initialized with the system call to pthread_mutex_init(3):
 
int pthread_mutex_init(
    pthread_mutex_t           ∗mutex,
    const pthread_mutexattr_t ∗attr
);
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mutex: A pointer to a pthread_mutex_t object, to be 
initialized.

attr: A pointer to a pthread_mutexattr_t object, describing 
mutex options. Supply zero (or NULL), if you can accept the 
defaults.

returns: Returns zero if the call is successful; otherwise, 
returns an error code (not in errno).

Error Description

EAGAIN The system lacks the necessary resources (other than memory)  
to initialize another mutex.

ENOMEM Insufficient memory exists to initialize the mutex.

EPERM The caller does not have the privilege to perform the operation.

EBUSY The implementation has detected an attempt to reinitialize the object 
referenced by mutex, a previously initialized, but not yet destroyed, 
mutex.

EINVAL The value specified by attr is invalid.

An example of mutex initialization is provided here:
 
pthread_mutex_t mutex;
int rc;
 
rc = pthread_mutex_init(&mutex,0);
assert (!rc);

pthread_mutex_destroy(3)
When the application no longer needs a mutex, it should use pthread_mutex_destroy(3) 
to release its resources:
 
pthread_mutex_t mutex ;
int rc;
 
...
rc = pthread_mutex_destroy(&mutex);
assert(!rc); 

mutex: The address of the mutex to release resources for

returns: Returns zero when successful, or an error code when 
it fails (not in errno)
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Error Description

EBUSY Mutex is locked or in use in conjunction with a pthread_cond_wait(3) or 
pthread_cond_timedwait(3).

EINVAL The value specified by mutex is invalid.

pthread_mutex_lock(3)
When a thread needs exclusive access to a resource, it must lock the resource’s mutex. As 
long as the cooperating threads follow the same procedure of locking first, they cannot 
both access the shared object at the same time.
 
int pthread_mutex_lock(pthread_mutex_t ∗mutex);
 

mutex: A pointer to the mutex to lock.

returns: Returns zero if the mutex was successfully locked; 
otherwise, an error code is returned (not in errno).

Error Description

EINVAL The mutex was created with the protocol attribute having the value 
PTHREAD_PRIO_PROTECT, and the calling thread’s priority is higher 
than the mutex’s current priority ceiling. Or the value specified by the 
mutex does not refer to an initialized mutex object.

EAGAIN Maximum number of recursive locks for mutex has been exceeded.

EDEADLK The current thread already owns the mutex.

The following shows the function being called:
 
pthread_mutex_t mutex;
int rc;
 
...
rc = pthread_mutex_lock(&mutex);

pthread_mutex_unlock(3)
When exclusive access to a resource is no longer required, the mutex is unlocked:
 
int pthread_mutex_unlock(pthread_mutex_t ∗mutex);
 

mutex: A pointer to the mutex to be unlocked.

returns: Returns zero if the mutex was unlocked successfully; 
otherwise, an error code is returned (not in errno).
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Error Description

EINVAL The value specified by mutex does not refer to an initialized mutex 
object.

EPERM The current thread does not own the mutex.

A simple example of unlocking a mutex is provided here:
 
pthread_mutex_t mutex;
int rc;
 
...
rc = pthread_mutex_unlock(&mutex);

Condition Variables
Sometimes mutexes alone are not enough for efficient scheduling of CPU between 
different threads. Mutexes and condition variables are often used together to facilitate 
inter-thread communication. Some beginners might struggle with this concept, if they are 
seeing it for the first time.

Why do we need condition variables when we have mutexes?
Consider what is necessary in building a software queue that can hold a maximum of 

eight items. Before we can queue something, we need to first see if the queue is full. But 
we cannot test that until we have the queue locked—otherwise, another thread could be 
changing things under our own noses.

So we lock the queue but find that it is full. What do we do now? Do we simply 
unlock and try again? This works but it wastes CPU resources. Wouldn’t it be better if we 
had some way of being alerted when the queue was no longer full?

The condition variable works in concert with a mutex and a “signal” (of sorts). In 
pseudo code terms, a program trying to queue an item on a queue would perform the 
following steps:

1. Lock the mutex. We cannot examine anything in the queue 
until we lock it.

2. Check the queue’s capacity. Can we place a new item in it?  
If so:

a. Place the new item in the queue.

b. Unlock and exit.

3. If the queue is full, the following steps are performed:

a. Using a condition variable, “wait” on it, with the 
associated mutex.

b. When control returns from the wait, return to step 2.
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How does the condition variable help us? Consider the following steps:

1. The mutex is locked (1).

2. The wait is performed (3a). This causes the kernel to do the 
following:

a. Put the calling thread to sleep (put on a wait queue)

b. Unlock the mutex that was locked in step 1

Unlocking of the mutex in step 2b is necessary so that another thread can do 
something with the queue (hopefully, take an entry from the queue so that it is no longer 
full). If the mutex remained locked, no thread would be able to move.

At some future point in time, another thread will do the following:

1. Lock the mutex

2. Find entries in the queue (it was currently full), and pull one 
item out of it

3. Unlock the mutex

4. Signal the condition variable that the “waiter” is using, so that 
it can wake up

The waiting thread then awakens:

1. The kernel makes the “waiting” thread ready.

2. The mutex is successfully relocked.

Once that thread awakens with the mutex locked, it can recheck the queue to see 
whether there is room to queue an item. Notice that the thread is awakened only when it 
has already reacquired the mutex lock. This is why condition variables are paired with a 
mutex in their use.

pthread_cond_init(3)
Like any other object, a condition variable needs to be initialized:
 
int pthread_cond_init(
  pthread_cond_t             ∗cond,
  const pthread_condattr_t   ∗attr
);
 

cond: A pointer to the pthread_cond_t structure to be 
initialized.

attr: A pointer to a cond variable attribute if one is provided, 
or supply zero (or NULL).

returns: Zero is returned if the call is successful; otherwise, an 
error code is returned (not in errno).
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Error Description

EAGAIN The system lacked the necessary resources.

ENOMEM Insufficient memory exists to initialize the condition variable.

EBUSY The implementation has detected an attempt to reinitialize the object 
referenced by cond, a previously initialized, but not yet destroyed, 
condition variable.

EINVAL The value specified by attr is invalid.

pthread_cond_destroy(3)
When a condition (cond) variable is no longer required, its resources should be released 
with the following call:
 
int pthread_cond_destroy(pthread_cond_t ∗cond);
 

cond: Condition variable to be released.

returns: Zero if the call was successful; otherwise, returns an 
error code (not in errno).

Error Description

EBUSY Detected an attempt to destroy the object referenced by cond while it 
is referenced by pthread_cond_wait() or pthread_cond_timedwait() in 
another thread.

EINVAL The value specified by cond is invalid.

pthread_cond_wait(3)
This function is one-half of the queue solution. The pthread_cond_wait(3) function is 
called with the mutex already locked. The kernel will then put the calling thread to sleep 
(on the wait queue) to release the CPU, while at the same time unlocking the mutex. The 
calling thread remains blocked until the condition variable cond is signaled in some way 
(more about that later).

When the thread is awakened by the kernel, the system call returns with the mutex 
locked. At this point, the thread can check the application condition (like queue length) 
and then proceed if things are favorable, or call pthread_cond_wait(3) again to wait 
further.
 
int pthread_cond_wait(
  pthread_cond_t *cond,
  pthread_mutex_t *mutex
);
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cond: Pointer to the condition variable to be used for the wake-
up call.

mutex: Pointer to the mutex to be associated with the condition 
variable.

returns: Returns zero upon success; otherwise, an error code 
is returned (not in errno).

Error Description

EINVAL The value specified by cond, mutex is invalid. Or different mutexes were 
supplied for concurrent pthread_cond_timedwait() or pthread_cond_
wait() operations on the same condition variable.

EPERM The mutex was not owned by the current thread at the time of the call.

The following code snippet shows how a queuing function would use this. 
(Initialization of mutex and cond is assumed.)
 
pthread_mutex_t mutex;
pthread_cond_t cond;
 
...
pthread_mutex_lock(&mutex);
 
while ( queue.length >= max_length )
    pthread_cond_wait(&cond,&mutex);
 
// queue the item
...
pthread_mutex_unlock(&mutex);
 

The while loop retries the test to see whether the queue is “not full.” The while loop 
is necessary when  multiple threads are inserting into the queue. Depending on timing, 
another thread could beat the current thread to queuing an item, making the queue full 
again.

pthread_cond_signal(3)
When an item is taken off the queue, a mechanism needs to wake up the thread 
attempting to put one entry into the full queue. One wake-up option is the  
pthread_cond_signal(3) system call:
 
int pthread_cond_signal(pthread_cond_t ∗cond);
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cond: A pointer to the condition variable used to signal one 
thread

returns: Returns zero if the function call was successful; 
otherwise, an error number is returned (not in errno).

Error Description

EINVAL The value cond does not refer to an initialized condition variable.

It is not an error if no other thread is waiting. This function does, however, wake up 
one waiting thread, if one or more are waiting on the specified condition variable.

This call is preferred for performance reasons if signaling one thread will “work.” 
When there are special conditions whereby some threads may succeed and others would 
not, you need a broadcast call instead. When it can be used, waking one thread saves 
CPU cycles.

pthread_cond_broadcast(3)
This is the broadcast variant of pthread_cond_signal(3). If multiple waiters have 
different tests, a broadcast should be used to allow all waiters to wake up and consider 
the conditions found.
 
int pthread_cond_broadcast(pthread_cond_t ∗cond);
 

cond: A pointer to the condition variable to be signaled, waking 
all waiting threads.

returns: Zero is returned when the call is successful; 
otherwise, an error number is returned (not in errno).

Error Description

EINVAL The value cond does not refer to an initialized condition variable.

It is not an error to broadcast when there are no waiters.
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Chapter 6

USB

The USB port has become ubiquitous in the digital world, allowing the use of a large 
choice of peripherals. The Model B Raspberry Pi supports two USB 2 ports, and the Model 
A just one.

This chapter briefly examines some power considerations associated with USB 
support and powered hubs. The remainder of this chapter examines the device driver 
interface available to the Raspbian Linux developer. Figure 6-1 serves as a chapter 
reference schematic of the Raspberry USB interface.

Figure 6-1. USB interface



Chapter 6 ■ USB

66

Power
Early models of the Raspberry Pi limited each USB port to 100 mA because of the polyfuses 
included. Revision 2.0 models did away with these, leaving you with more options.

Even with the polyfuses removed, the end user should remember that the USB ports 
are powered by the input to the Raspberry Pi PCB. This is supplied through fuse F3  
(see Figure 4-3, shown previously in Chapter 2). This limits the maximum USB current to 
500 mA for the Model A (which is the limit for one USB port anyway) and 300 mA for the 
Model B. Exceeding these limits could cause fuse F3 to blow.

Note ■  Wireless USB adapters consume between 350 ma and 500 ma.

Powered Hubs
Whether you have a Model A or Model B Raspberry Pi, you’ll want to use a powered USB 
hub for high-current peripherals. This is particularly true for wireless network adapters, 
since they often require up to 500 mA.

A USB hub requires coordination with the Linux kernel and thus requires Raspbian 
Linux driver support. A number of hubs have been reported not to work. The following 
web page is a good resource listing hubs that are known work with Raspbian Linux:
 
http://elinux.org/RPi_Powered_USB_Hubs
 

With the powered USB hub plugged in, you can list the USB devices that have 
registered with the kernel by using the lsusb command:
 
# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub
 

The first three listed are the usual suspects from the Pi’s own hardware. The last line 
shows that a TUSB2077 Hub has been registered. Figure 6-2 shows my Belkin USB hub on 
a busy workbench. If your hub fails to appear in this report, it likely means that there is no 
driver support for it.

http://elinux.org/RPi_Powered_USB_Hubs
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USB API Support
USB devices are normally supported by device drivers and appear as generic peripherals 
like keyboards, mice, or storage. The USB Boarduino is a little different, using the FTDI 
chipset, and supported by a driver.

Once the Boarduino is plugged in, the lsusb command lists it, thanks to the FTDI 
chipset driver:
 
$ lsusb
...
Bus 001 Device 008: ID 0403:6001 Future Technology Devices \
        International, Ltd FT232 USB–Serial (UART) IC
 

The supporting driver makes the Boarduino available as a serial device:
 
$ ls –l /dev/ttyUSB0
Crw–rw——T 1 root dialout 188, 0 Dec 31 1969 /dev/ttyUSB0
 

The serial device support allows the AVR device to be programmed by avrdude.  
A Raspberry Pi application can also communicate with the AVR device’s application. If 
you want to use network-like packets, the SLIP serial protocol, for example, can be used 
to communicate over that link. The “Serial API” section of Chapter 9 covers the Linux API 
for serial communications.

libusb
Although USB devices are supported by drivers and appear as generic devices, in some 
situations a user space program needs to communicate with specialized hardware. While 
Raspbian Linux has libusb installed, the developer will want to install the developer 
package for it:
 
# apt–get install libusb–dev
 

Figure 6-2. A powered USB hub
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The USB API is fairly large, complex and beyond the scope of this text. But the 
curious developer can read more about the libusb API at the website:
 
http://libusb.sourceforge.net/doc/index.html
 

In this chapter, you’ll examine just the beginnings of a libusb program, so that you 
can get a flavor of how the API works.

Include Files
The main include file for Raspbian libusb support is as follows:
 
#include <usb.h>
 

The next few pages show a simple USB program, which enumerates USB buses 
and devices. Once a device is located, an attempt is made to “claim” it and then release 
it (it will print CLAIMED if successful). However, when all of your USB devices are fully 
supported by drivers, none will be claimed. This list can be checked against the lsusb 
command output.

The next example program was run on a Raspberry Pi with the following USB devices 
reported by lsusb:
 
$ lsusb
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 05ac:1002 Apple, Inc. Extended Keyboard Hub [Mitsumi]
Bus 001 Device 005: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub
Bus 001 Device 006: ID 05ac:0204 Apple, Inc.
Bus 001 Device 007: ID 045e:0040 Microsoft Corp. Wheel Mouse Optical
 

The example program was compiled by the provided make file in the libusb 
subdirectory and invoked as follows:
 
$ ./tusb
Device: 007 045e:0040    class 0.0 protocol 0 device 768, manuf 1, serial 0
  0.0.0 class 3
Device: 006 05ac:0204    class 0.0 protocol 0 device 290, manuf 1, serial 0
  0.0.0 class 3
  0.1.0 class 3
Device: 005 0451:2077    class 9.0 protocol 0 device 256, manuf 0, serial 0
  0.0.0 class 9
Device: 004 05ac:1002    class 9.0 protocol 0 device 290, manuf 1, serial 0
  0.0.0 class 9
Device: 003 0424:ec00    class 255.0 protocol 1 device 512, manuf 0, serial 0
  0.0.0 class 255

http://libusb.sourceforge.net/doc/index.html
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Device: 002 0424:9512    class 9.0 protocol 2 device 512, manuf 0, serial 0
  0.0.0 class 9
  0.0.1 class 9
Device: 001 1d6b:0002    class 9.0 protocol 1 device 774, manuf 3, serial 1
  0.0.0 class 9
 

These are easily compared by noting the device name, such as 007, which is reported 
by lsusb to be the Microsoft mouse.
 
1   /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2    ∗ tusb.c – Scan list of USB devices and test claim/release.
3    ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5   #include <stdio.h>
6   #include <stdlib.h>
7   #include <errno.h>
8   #include <usb.h>
9   #include <assert.h>
10
11  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12   ∗ See http://libusb.sourceforge.net/doc/index.html for API
13   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
14
15  int
16  main(int argc, char ∗∗argv) {
17       struct usb_bus ∗busses, ∗bus;
18       struct usb_device ∗dev;
19       struct usb_device_descriptor ∗desc;
20       usb_dev_handle ∗hdev;
21       int cx, ix, ax, rc;
22
23       usb_init();
24       usb_find_busses();
25       usb_find_devices();
26
27       busses = usb_get_busses();
28
29       for ( bus=busses; bus; bus = bus–>next ) {
30           for ( dev=bus–>devices; dev; dev = dev–>next ) {
31               desc = &dev–>descriptor;
32
33               printf("Device: %s %04x:%04x ",
34                   dev–>filename,
35                   desc–>idVendor,
36                   desc–>idProduct);
37               printf("  class %u.%d protocol %u",
38                   desc–>bDeviceClass,
39                   desc–>bDeviceSubClass,

http://libusb.sourceforge.net/doc/index.html
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40                   desc–>bDeviceProtocol);
41               printf(" device %u, manuf %u, serial %u\n",
42                   desc–>bcdDevice,
43                   desc–>iManufacturer,
44                   desc–>iSerial Number);
45
46               hdev = usb_open(dev);
47               assert(hdev);
48
49               rc = usb_claim_interface(hdev,0);
50               if ( !rc ) {
51                   puts("  CLAIMED..");
52                   rc = usb_release_interface(hdev, 0);
53                   puts("  RELEASED..");
54                   assert(!rc);
55               }
56               usb_close(hdev);
57
58               /∗ Configurations ∗/
59                for ( cx=0; cx <dev–>descriptor.bNumConfigurations;   

++cx ) {
60                   /∗ Interfaces ∗/
61                    for ( ix=0; ix < dev–>config[cx].bNumInterfaces;   

++ix ) {
62                       /∗ Alternates ∗/
63                        for ( ax=0; ax < dev–>config[cx].interface[ix].

num_altsetting;
                                  ++ax ) {
64                           printf("  %d.%d.%d class %u\n",
65                             cx,ix,ax,
66                             dev->config[cx].interface[ix].
                                    altsetting[ax].bInterfaceClass);
67                       }
68                   }
69               }
70           }
71       }
72
73       return 0;
74  }
75
76  /∗ End tusb.c ∗/ 
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Chapter 7

Ethernet

Networking has become an important part of everyday life, whether wireless or by wire. 
Having a network adapter on your Raspberry Pi allows you to connect to it and do things 
on it from the comfort of your desktop or laptop computer. It also allows your application 
on the Pi to reach out to the outside world. Even when the Raspberry Pi is deployed as 
part of an embedded project, the network interface continues to be important. Remote 
logging and control are just two examples.

Wired Ethernet
The standard Raspbian SD card image provides a wired network connection, using 
DHCP to automatically assign an IP address to it. If you are using the HDMI output and 
keyboard devices to do work on the Pi, the dynamically assigned IP address is not a 
bother. But if you would like to eliminate the attached display and keyboard, connecting 
over the network is attractive. The only problem is the potentially changing IP address. 
(DHCP will not always use a different IP address, since the address is leased for a time).  
It is difficult to contact your Raspberry Pi from a laptop until you know its IP address.  
As covered in Chapter 1 of Raspberry Pi System Software Reference (Apress, 2014), you can 
use the nmap command to scan for it, but this is inconvenient:
 
$ sudo nmap −sP 192.168.0.1−254
 
Starting Nmap 6.25 (http://nmap.org) at 2013−04−14 19:12 EDT
. . .
Nmap scan report for mac (192.168.0.129)
Host is up.
Nmap scan report for rasp (192.168.0.132)
Host is up (0.00071s latency).
MAC Address: B8:27:EB:2B:69:E8 ( Raspberry Pi Foundation )
Nmap done : 254 IP addresses (6 hosts up) scanned in 6.01 seconds
$
 

If you use your Pi at school or away from your own premises, using DHCP may still 
be the best option for you. If you are plugging it into different networks as you travel, 
DHCP sets up your IP address properly and takes care of the name server configuration. 
However, if you are using your unit at home, or your school can assign you a valid IP 
address to use, a static IP address simplifies access.

http://nmap.org/
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Note ■  Be sure to get approval and an Ip address assigned to prevent network conflicts.

/etc/network/interfaces
As supplied by the standard Raspbian image, the /etc/network/interfaces file looks 
like this:
 
$ cat /etc/network/interfaces
auto lo
 
iface lo inet loopback
iface eth0 inet dhcp
 
allow−hotplug wlan0
iface wlan0 inet manual
wpa−roam/etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp
$
 

The wired Ethernet interface (Model B) is named eth0. The line starting with  
iface eth0 indicates that your network interface eth0 is using DHCP. If this is what  
you want, leave it as is.

Changing to Static IP
If you haven’t booted up your Raspberry Pi with the network cable plugged in, now is 
a good time to do that. This may save you time later, when we review the name server 
settings.

Next, before you start changing it, save a backup of the /etc/network/interfaces 
file in case you want to change it back:
 
$ sudo −i
# cd /etc/network
# cp interfaces interfaces.bak
 

Next, edit the line in /etc/network/interfaces that begins with iface eth0 so that 
it reads like the following:
 
iface eth0 inet static
  address     192.168.0.177
  gateway     192.168.0.1
  netmask     255.255.255.0
  network     192.168.0.0
  broadcast   192.168.0.255
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In this example, we have established a fixed IP address of 192.168.0.177, along with 
the appropriate settings for gateway, netmask, network, and broadcast address. If the 
network is not your own, get a network administrator to help you with the correct values 
to use.

There is one other file that needs to be checked and potentially edited:
 
$ cat /etc/resolv.conf
domain myfastisp.net
search myfastisp.net
nameserver 192.168.0.1
 

If you’ve booted up your Raspberry Pi previously while it was using DHCP (with 
network cable plugged in), these values may already be suitably configured. Otherwise, 
you’ll need to edit them to get the name service to work. In this example, the Internet 
Service Provider is myfastisp.net, and name service requests are forwarded through the 
firewall router at 192.168.0.1.

Test Static IP Address
Once you have configured things, the simplest thing to do is to reboot your Raspberry 
Pi to make the new settings take effect (use sudo /sbin/reboot or sudo /sbin/
shutdown -r now).

Once you’ve rebooted and logged in, check your IP address:
 
$ ifconfig eth0
eth0 Link encap : Ethernet HWaddr b8:27:eb:2b:69:e9
     inet addr:192.168.0.177   Bcast: 192.168.0.255   Mask: 255.255.255.0
     UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
     RX packets: 1046 errors: 0 dropped : 3 overruns: 0 frame: 0
     TX packets: 757 errors: 0 dropped: 0 over runs : 0 carrier: 0
     collisions:0 txqueuelen :1000
     RX bytes: 74312 (72.5 KiB) TX bytes: 86127 (84.1 KiB)
 

In the preceding example, the inet addr matches our configured static IP address. 
Let’s now check that the names are resolving. Normally, I would recommend nslookup or 
dig for this, but neither comes preinstalled on Raspbian. So let’s just use ping:
 
$ ping −c1 google.com
PING google.com (74.125.226.4) 56 (84) bytes of data.
64 bytes from yyz06s05−in−f4.1e100.net (74.125.226.4): . . .
 
−−− google.com ping statistics −−−
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 11.933/11.933/11.933/0.000 ms
$
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In this example, we see that google.com was looked up and translated to the IP 
address 74.125.226.4. From this, we conclude that the name service is working. The -c1 
option on the ping command line causes only one ping to be performed. Otherwise, ping 
will keep trying, and you may need to ^C to interrupt its execution.

If the name google.com does not resolve, you’ll need to troubleshoot  
/etc/resolv.conf. As a last resort, you might switch back to using DHCP (interfaces.bak) 
and reboot. If the /etc/resolv.conf file is updated with new parameters,  
you might try again.

USB Adapters
If you have a USB Ethernet adapter (non-wireless), you can set up networking for that 
also. The following line added to /etc/network/interfaces will cause it to use DHCP:
 
iface usb0 inet dhcp
 

For a fixed usb0 IP address, configure as we did earlier (for eth0). For example:
 
iface usb0 inet static
  address   192.168.0.178
  gateway   192.168.0.1
  netmask   255.255.255.0
  network   192.168.0.0
  broadcast 192.168.0.255
 

This provides interface usb0 with a fixed address of 192.168.0.178.

/etc/hosts File
If you have a static IP address for your Raspberry Pi, why not update your Linux, OS X, 
or Windows hosts file (typically, C:\Windows\system32\drivers\etc\hosts) with a 
hostname for it? For example, your hosts file could have the following line added:
 
$ cat /etc/hosts
. . .
192.168.0.177 rasp raspi rpi pi # My Raspberry Pi
 

Now you can use a hostname of rasp, raspi, rpi, or pi to access your Raspberry Pi 
on the network.

Wireless Ethernet
If you haven’t already done so, review the “Powered Hubs” section of Chapter 6. Wi-Fi 
adapters can require 350 mA to 500 mA of current draw.
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The following web page lists good information about the various brands of Wi-Fi 
adapters available and their level of support:
 
http://elinux.org/RPi_USB_Wi-Fi_Adapters
 

I have a NetGear WN111(v2) RangeMax Next Wireless adapter available. Apparently, 
this adapter uses one of the following chips:

Atheros AR9170•	

Atheros AR9101•	

Since the AR9170 shows up in the supported list for the D-Link DWA-160, there is 
a reasonable chance of driver support for it. After plugging it into the powered USB hub 
and rebooting, the console log shows that it is being “seen”:
 
$ dmesg
. . .
[3.867883] usb 1_1.3.2: New USB device found, idVendor=0846, idProduct=9001
[3.893138] usb 1_1.3.2: New USB device strings: Mfr=16, Product=32, 
SerialNumber=
[3.923115] usb 1_1.3.2: Product: USB2.0 WLAN
[3.930064] usb 1_1.3.2: Manufacturer : ATHER
[3.963095] usb 1_1.3.2: SerialNumber : 12345
[4.393875] cfg80211: Calling CRDA to update world regulatory domain
[4.663403] usb 1_1.3.2: reset full_speed USB device number 5 using dwc_otg
[4.953470] usbcore: registered new interface driver carl9170
[6.687035] usb 1_1.3.2: firmware not found.
[7.703098] usb 1_1.3.2: kill pending tx urbs.
 

But there is a troubling error message: “firmware not found.” Also visible in the log, 
we see that the driver is named carl9170. Further research reveals that it also requires a 
firmware file named carl9170-1.fw. While this file is available from other sources, the 
simplest way to install this file is to install it from Raspbian sources:
 
$ sudo apt–get install firmware–linux
 

The firmware file being sought and installed is as follows:
 
$ ls –l /lib/firmware/carl9170−1.fw
−rw−r−−r−−1 root root 13388 Jan 14 17:04 /lib/firmware/carl9170−1.fw
 

http://elinux.org/RPi_VerifiedPeripherals#USB_Wi-Fi_Adapters


Chapter 7 ■ ethernet

76

Rebooting again, the missing firmware message is gone. The lsusb report also 
confirms the device is ready:
 
# lsusb
Bus 001 Device 001: ID 1d6b :0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 0424:9512 Standard Microsystems Corp.
Bus 001 Device 003: ID 0424: ec00 Standard Microsystems Corp.
Bus 001 Device 004: ID 0451:2077 Texas Instruments, Inc. TUSB2077 Hub
Bus 001 Device 005: ID 0846:9001 NetGear, Inc. WN111(v2) RangeMax \ 
   Next Wireless [Atheros AR9170+AR9101]
#
 

The hardware driver support is now in place. The device now needs network 
configuration.

Configuration
You could edit the configuration files by hand if you knew all the possible keywords 
necessary for your particular wireless authentication protocol. The following Linux 
raspberrypi 3.2.27+ files are involved:

Pathname Description

/etc/network/interfaces Main configuration file for networks

/etc/wpa_supplicant/wpa_supplicant.conf Authentication information

You’ll find a variety of advice on how to configure these on the Internet. But the 
quickest path to success is to just use the wpa_gui dialog box from the Raspberry Pi 
desktop. Once you’ve done it this way, directly editing the configuration files can be 
performed later if you need to tweak it further.

Figure 7-1 shows how to locate the wpa_gui dialog box from your Pi desktop. Once 
wpa_gui is started, click the Manage Networks tab, shown in Figure 7-2. If you’ve made 
prior attempts at configuring wlan0, delete them all from this menu. Then click the Scan 
button at the bottom right.
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After clicking Scan, your wireless network should eventually appear in the scan list, 
as shown in Figure 7-3.

Figure 7-1. wpa_gui dialog box

Figure 7-2. The Manage Networks tab
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Double-click the line representing your network. This brings up a new dialog box 
that allows you to fill in the remaining authentication parameters:

Parameter Example

Authentication WPA-Personal (PSK)

Encryption CCMP

PSK Pass phrase

Enter settings that apply to your network. After completing the data input, click the 
Add button. As you exit the dialog box, be sure to select Save Configuration from the  
File menu.

Caution ■  Don’t forget to pull down Save Configuration from the File menu before you 
exit the setup application. this is easily forgotten, and no reminder of unsaved changes is 
provided.

Figure 7-3. Results of a wireless network scan
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After saving the new Wi-Fi configuration, reboot. After the Pi comes back up, log in 
and check the network interfaces. Look for interface wlan0:
 
$ ifconfig
. . .
wlan0 Link encap: Ethernet HWaddr 00:22:3f:8d: 78: f9
      inet addr:192.168.0.61 Bcast:192.168.0.255 Mask:255.255.255.0
      UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
      RX packets: 10514 errors: 0 dropped: 0 overruns: 0 frame : 0
      TX packets: 121 errors: 0 dropped : 0 over runs: 0 carrier: 0
      collisions:0 txqueuelen:1000
      RX bytes: 767287 (749.3 KiB) TX bytes: 9188 (8.9 KiB)
 

The preceding example shows that the wlan0 is available and has a DHCP-assigned 
IP address. You can now ping or ssh to this access point.
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Chapter 8

SD Card Storage

The file system is central to the Unix system design, from which Linux borrows. The 
necessary mass storage requirements have traditionally been fulfilled through hard disk 
subsystems. However, as Linux hosts become as small as cell phones, flash memory 
technology has replaced the bulky mechanical drive.

SD Card Media
The standard SD card is 32 mm long, 24 mm wide, and 2.1 mm thick. Figure 8-1 illustrates 
the connections available on the underside of the SD card. The schematic excerpt shown 
later will document how the connections are made to this media.

Figure 8-1. SD card pinout

SD Card Interface
In the Raspberry Pi, the SD card is interfaced to the SoC through GPIO pins 46 through 
53, seen in Figure 8-2. The SoC senses the insertion of an SD card through the closing of a 
socket switch (pins 10 and 11 of the socket). Thus GPIO 47 is brought to ground potential 
when the socket is occupied.
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Looking at the wiring in Figure 8-2, it might be assumed that all data transfers are 4 
bits wide (GPIO 50 through GPIO 53). However, as the following sections will describe, 
this depends on the SD card media used.

SD Card Basics
The SD card includes an internal controller, also known as a Flash Storage Processor 
(FSP). In this configuration, the Linux host merely provides a command and waits for the 
response. The FSP takes care of all erase, programming, and read operations necessary 
to complete the command. In this way, Flash card designs are permitted to increase in 
complexity as new performance and storage densities are implemented.

The SD card manages data with a sector size of 512 bytes. This was intentionally 
made the same as the IDE magnetic disk drive for compatibility with existing operating 
systems. Commands issued by the host include a sector address to allow read/writes of 
one or more sectors.

Note ■  operating systems may use a multiple of the 512-byte sector.

Commands and data are protected by CRC codes in the FSP. The FSP also 
automatically performs a read after write to verify that the data is written correctly.21 If 
the data write is found defective, the FSP automatically corrects it, replacing the physical 
sector with another if necessary.

Figure 8-2. SD card circuit
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The SD card soft error rate is much lower than a magnetic disk drive. In the rare case 
when errors are discovered, the last line of defense is a correcting ECC, which allows for 
data recovery. These errors are corrected in the media to prevent future unrecoverable 
errors. All of this activity is transparent to the host.

Raspbian Block Size
The block size used by the operating system may be a multiple of the media’s sector size. 
To determine the physical block size used under Raspbian, we first discover how the root 
file system is mounted (the following listing has been trimmed with ellipses):
 
$ mount
/dev/root on/type ext4 (rw, noatime, . . . )
. . .
/dev/mmcblk0p1 on/boot type vfat (rw, relatime , . . . )
$
 

From this we deduce that the device used for the root file system is /dev/root. The 
pathname given is a symbolic link, so we need to determine the real device pathname:
 
$ ls −dl /dev/root
lrwxrwxrwx 1 root root 9 Jan 12 19:33/dev/root −> mmcblk0p2
$
 

From this, we deduce that the actual device pathname is /dev/mmcblk0p2. The 
naming convention used tells us the following:

Component Name Number Type

Prefix /dev/mmcblk MMC block

Device number 0 0

Partition number p2 2

From the earlier mount command output, notice that the /boot file system was 
mounted on /dev/mmcblk0p1. (No symbolic link was used in this case.) From this we 
understand that the /boot file system is from partition 1 of the same SD card device.

Using the root device information, we consult the /sys pseudo file system to find out 
the physical sector size. Here we supply mmcblk0 as the third-level pathname qualifier to 
query the device:
 
$ cat /sys/block/mmcblk0/queue/physical_block_size
  512
$ cat /sys/block/mmcblk0/queue/logical_block_size
  512
$
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The result shown informs us that the Raspbian Linux used in this example uses a 
block (sector) size of 512 bytes, both physically and logically. This precisely matches the 
SD card’s sector size. Since the /boot file system uses the same physical device as root, 
this also applies to that partition.

Disk Cache
While we’re examining mounted SD card file systems, let’s also check the type of device 
node used:
 
$ ls −l /dev/mmcblk0p?
brw−rw−−−T 1 root floppy 179, 1 Dec 31 1969  /dev/mmcblk0p1
brw−rw−−−T 1 root floppy 179, 2 Jan 12 19:33  /dev/mmcblk0p2
$
 

The example output shows a b at the beginning of the brw-rw—T field. This tells  
us that the disk device is a block device as opposed to a character device.  
(The associated character device would show a c instead.) Block devices are important 
for file systems because they provide a disk cache capability to vastly improve the file 
system performance. The output shows that both the root (partition 2) and the /boot 
(partition 1) file systems are mounted using block devices.

Capacities and Performance
SD cards allow a configurable data bus width within limits of the media. All SD cards start 
with one data bit line until the capabilities of the memory card are known:

The SD bus allows dynamic configuration of the number of data lines. 
After power-up, by default, the SD card will use only DAT0 for data 
transfer. After initialization, the host can change the bus width (number 
of active data lines). This feature allows [an] easy trade-off between 
hardware cost and system performance.18

After the capabilities of the media are known, the data bus can be expanded under 
software control, as supported. Given that SD cards with memory capacities up to 2 GB 
operate with a 1-bit data bus, it is highly desirable to use a 4 GB or larger card on the 
Raspberry Pi, even if the extra storage is not required. More-advanced cards also offer 
greater transfer speeds by use of higher data clock rates.

Table 8-1 summarizes SD card capabilities.19
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Transfer Modes
There are three basic data transfer modes used by SD cards:18

SPI Bus mode•	

1-bit SD mode•	

4-bit SD mode•	

SPI Bus Mode
The SPI Bus mode is used mainly by consumer electronics using small microcontrollers 
supporting the SPI bus. Examining Table 8-2 reveals that data is transmitted 1 bit at a time 
in this mode (pin 2 or 7).

Table 8-1. SD Card Capabilities

Standard Description Greater Than Up To Data Bus

SDSC Standard capacity 0 2 GB 1-bit

SDHC High capacity 2 GB 32 GB 4-bit

SDXC Extended capacity 32 GB 2 TB 4-bit

Table 8-2. SPI Bus Mode

Pin Name I/O Logic Description SPI

1 nCS I PP Card select (negative true) CS

2 DI I PP Data in MOSI

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock SCLK

6 VSS S S Ground

7 DO O PP Data out MISO

8 NC Memory cards

nIRQ O OD Interrupt on SDIO cards

9 NC Not connected
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The various SD card connections are used in different ways, as documented by the 
Table 8-2 mnemonics in the columns I/O and Logic. Table 8-3 is a legend for these and 
also applies to later Tables 10-4 and 10-5.

1-bit SD Mode 
Table 8-4 lists the pins and functions of the SD card when it is in 1-bit SD mode. The 
data traverses pin 7 (DAT0) while the clock is supplied on pin 5. Pin 2 is used to send 
commands and receive responses. This mode uses a proprietary transfer format.

Table 8-3. Legend for I/O and Logic

Notation Meaning Notes

I Input Relative to card

O Output

I/O Input or output

PP Push/pull logic

OD Open drain

S Power supply

NC Not connected Or logic high

Table 8-4. 1-bit SD Mode

Pin Name I/O Logic Description

1 NC No connection

2 CMD I/O PP/OD Command/response

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock

6 VSS S S Ground

7 DAT0 I/O PP Data 0

8 NC NC Memory cards

nIRQ O OD SDIO cards

9 NC No connection
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Table 8-5. 4-bit SD Mode

Pin Name I/O Logic Description

1 DAT3 I/O PP Data 3

2 CMD I/O PP/OD Command/response

3 VSS S S Ground

4 VDD S S Power

5 CLK I PP Clock

6 VSS S S Ground

7 DAT0 I/O PP Data 0

8 DAT1 I/O PP Data 1

nIRQ O OD SDIO cards share with interrupt

9 DAT2 I/O PP Data 2

4-bit SD Mode 
This is the mode used when the data bus width is more than a single bit and supported by 
SDHC and SDXC cards. Higher data clock rates also improve transfer rates. Table 8-5 lists 
the pin assignments.

Wear Leveling
Unfortunately, Flash memory is subject to wear for each write operation performed 
(as each write requires erasing and programming a block of data). The design of Flash 
memory requires that a large block of memory be erased and rewritten, even if a single 
sector has changed value. For this reason, wear leveling is used as a technique to extend 
the life of the media. Wear leveling extends life by moving data to different physical blocks 
while retaining the same logical address.

Note ■  ScanDisk calls the block of Flash memory being erased and rewritten a zone.

Some cards use wear leveling.18 Indeed the SanDisk company indicates that their 
products do use wear leveling.20 However, the type of wear leveling supported by SanDisk 
is limited to zones within the media. Each SanDisk zone has 3% extra capacity, from 
which writes can be wear leveled within. If the zone size is 4 MB and is overprovisioned 
by 3%, this leaves about 245 spare sectors within each zone. Thus each 4 MB zone holds 
8,192 active sectors at any given instant, rotated among 245 spares.
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Note ■  SanDisk indicates that the 4 MB zones may change with future memory  
capacities.

Other manufacturers may not implement wear leveling at all or use a lower level 
of overprovisioning. Wear leveling is not specified in the SD card standard, so no 
manufacturer is compelled to follow SanDisk’s lead.

Note that wear leveling applies to read/write file systems. If the file system is 
mounted read-only, no erase and program operations are occurring inside the card.  
So no “erase wear” is taking place. But do take into account all of the mounted partitions 
on the same media.

If you are using your Raspberry Pi for educational purposes, you can probably ignore 
the issue. However, using known brands like SanDisk can provide you with additional 
quality assurance. Consider also the advantage of documented overprovisioning and 
wear leveling characteristics.

Caution ■  Some brands of SD cards have been reported not to work with the raspberry 
pi, so the brand/product issue cannot be totally ignored.
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Chapter 9

UART

The Raspberry Pi has a UART interface to allow it to perform serial data communications. 
The data lines used are 3.3 V logic-level signals and should not be connected to TTL logic 
(+5 V) (they also are not RS-232 compatible). To communicate with equipment using  
RS-232, you will need a converter module.

RS-232 Converter
While an industrious person could build their own RS-232 converter, there is little need to 
do so when cheap converters are available.

Figure 9-1 shows a MAX232CSE chip interface that I use. (This unit supports only 
the RX and TX lines.) When searching for a unit, be sure that you get one that works with 
3 V logic levels. Some units work only with TTL (+5 V) logic, which would be harmful 
to the Pi. The MAX232CSE chip will support 3 V operation when its VCC supply pin is 
connected to +3 V.

Figure 9-1. MAX232CSE interface
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Note ■  throughout this text, we’ll refer to 3 V, knowing that it is precisely 3.3 V.

Figure 9-2 is a schematic excerpt of the UART section of the Raspberry Pi. The UART 
connections are shown as TXD0 and RXD0.

Figure 9-2. UART interface

Also when selecting a converter, consider whether you need only the data lines, or 
the data lines and the hardware flow control signals. Some units support only the RX and 
TX lines. For hardware flow control, you’ll also want the CTS and DTR signals. A full  
RS-232 converter would also include DTR, DSR, and CD signals.

DTE or DCE
When choosing your RS-232 converter, keep in mind that there are two types of serial 
connections:

DCE: Data communications equipment (female connector)

DTE: Data terminal equipment (male connector)
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A normal USB serial adapter (for a laptop, for example) will present a DTE (male) 
connector. The wiring of this cable is such that it expects to plug into to a DCE (female) 
connection. When this holds true for your Raspberry Pi’s adapter, the laptop’s serial 
adapter can plug straight into the DCE (female) connector, eliminating the need for a 
crossover cable or null modem.

Consequently, for your Pi, choose a RS-232 converter that provides a female (DCE) 
connector. Likewise, make sure that you acquire for the laptop/desktop a cable or USB 
device that presents a male (DTE) connection. Connecting DTE to DTE or DCE to DCE 
requires a crossover cable, and depending on the cable, a “gender mender” as well. It is 
best to get things “straight” right from the start.

Assuming that you used a DCE converter for the Pi, connect the RS-232 converter’s 3 
V logic TX to the Pi’s TXD0 and the RX to the Pi’s RXD0 data lines.

All this business about DCE and DTR has always been rather confusing. If you also 
find this confusing, there is another practical way to look at it. Start with the connectors 
and the cable(s) that you plan to use. Make sure they mate at both ends and that the 
serial cable is known to be a straight cable (instead of a crossover). Once those physical 
problems are taken care of, you can get the wiring correct. Connect the TX to RX, and 
RX to TX. In other words, you wire the crossover in your own wiring between the RS-232 
adapter and the Raspberry Pi. The important thing to remember is that somewhere the 
transmitting side needs to send a signal into the RX (receiving) side, in both directions.

Note ■  a straight serial cable will connect pin 2 to pin 2, and pin 3 to pin 3 on a DB9 or 
DB25 cable. a crossover cable will cross these two, among other signal wire changes.

RS-232
RS-232 is the traditional name for a series of standards related to serial communication. It 
was first introduced by the Radio Sector of the EIA in 1962.46 The first data terminals were 
teletypewriters (DTE) communicating with modems (DCE). Early serial communications 
were plagued by incompatibilities until later standards evolved.

A serial link includes two data lines, with data being transmitted from a terminal and 
received by the same terminal. In addition to these data lines are several handshaking 
signals (such as RTS and CTS). By default, these are not provided for by the Raspberry Pi.

Figure 9-3 shows a serial signal transmission, with time progressing from left to right. 
RS-232 equipment expects a signal that varies between –15 V and +15 V.
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The standard states that the signal is considered to be in a mark state, when the 
voltage is between –3 and –15 V. The signal is considered in a space state if the voltage is 
between +3 and +15 V. The RS-232 data line is in the mark state when the line is idle.

Start Bit
When an asynchronous character of data is to be sent, the line first shifts to a space level 
for the duration of 1 bit. This is known as the start bit (0). Data bits immediately follow.

Asynchronous lines do not use a clock signal like synchronous links. The 
asynchronous receiver must have a clock matching the same baud rate as the transmitter. 
The receiver samples the line 16 times in the bit cell time to determine its value. Sampling 
helps to avoid a noise pulse from triggering a false data read.

Data Bits
Data bits immediately follow the start bit, least significant bit first. A space is a 0 data 
bit, while mark represents a 1 bit. Early teletype equipment used 5 data bits sending 
characters in the 5-bit Baudot code.47 For this reason, serial ports can be configured for 5, 
6, 7, or 8 data bits. Before the ASCII character set was extended to 8 bits, it was common 
to use 7-bit serial data.

Parity Bit
An optional parity bit can be generated when transmitting or can be detected on the 
receiving side. The parity can be odd, even, or stick (mark or space). The most commonly 
used setting today is No Parity, which saves 1-bit time for faster communication. 
Older equipment often used parity to guard against errors from noisy serial lines. Odd 
parity is preferred over even because it forces at least one signal transition in the byte’s 
transmission. This helps with the data reliability.

Mark or space parity is unusual and has limited usefulness. Mark parity could be 
used along with 2 stop bits to effectively provide 3 stop bits for very slow teletypewriter 
equipment. Mark or space parity reduces the effective throughput of data without 
providing any benefit, except possibly for diagnostic purposes. Table 9-1 summarizes the 
various parity configurations.

Figure 9-3. Serial signal
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Table 9-1. RS-232 Parity Settings

Parity X Notes

None N No parity bit

Even E 1 if even number of data 1-bits

Odd O 1 if odd number of data 1-bits

Mark M Always at mark level (1)

Space S Always at space level (0)

Table 9-2. Stop-Bit Configuration

Stop Bits Description

1 1 stop bit

1.5 1.5 stop bits (†)

2 2 stop bits

†Unsupported by the Raspberry Pi

Stop Bit(s)
Asynchronous communication requires synchronizing the receiver with the transmitter. 
For this reason, 1 or more stop bits exist so that the receiver can synchronize with the 
leading edge of the next start bit. In effect, each stop bit followed by a start bit provides 
built-in synchronization.

Many UARTs support 1, 1.5, or 2 stop bits. The Broadcom SoC supports 1 or 2 stop 
bits only. The use of 2 stop bits was common for teletypewriter equipment and probably 
rarely used today. Using 1 stop bit increases the overall data throughput. Table 9-2 
summarizes the stop-bit configurations.

Baud Rate
The baud rate is calculated from bits per second, which includes the start, data, parity, 
and stop bits. A link using 115200 baud, with no parity and 1 stop bit, provides the 
following data byte rate:

D
rate

B

s d p S
=

+ + +

=
+ + +

=

115200

1 8 0 1

11 520, bytes/sec
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where

B is the baud rate.

s is the start bit (always 1).

d is the number of data bits (5, 6, 7, or 8).

p is the parity bit (0 or 1).

S is the stop bit (1, 1.5, or 2).

The 115200 baud link allows 11,250 bytes per second. If a parity bit is added, the 
throughput is reduced:

Drate =
+ + +

=

115200

1 8 1 1

10 472 7, . bytes/sec

The addition of a parity bit reduces the transmission rate to 10,472.7 bytes per second.
Table 9-3 lists the standard baud rates that a serial link can be configured for on the 

Raspberry Pi.

Table 9-3. Standard Baud Rates

Rate Notes

75 Teletypewriters

110 Teletypewriters

300 Low-speed (acoustic) modem

1200

2400

4800

9600

19200

38400

57600

115200 Raspberry Pi console
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Break
With asynchronous communication, it is also possible to send and receive a break signal. 
This is done by stretching the start bit beyond the data bits and the stop bit(s), and 
eventually returning the line to the mark state. When the receiver sees a space instead of a 
mark for the stop bit, it sees a framing error.

Some UARTs distinguish between a framing error and a break by noting how long the 
line remains in the space state. A simple framing error can happen as part of noisy serial 
line communications (particularly when modems were used) and normally attributed to 
a received character error. Without break detection, it is possible to assume that a break 
has been received when several framing errors occur in a sequence. Short sequences of 
framing errors, however, can also just indicate a mismatch in baud rates between the two 
end points.

Flow Control
Any link that transmits from one side to a receiver on the other side has the problem 
of flow control. Imagine a factory assembly line where parts to be assembled arrive at 
the worker’s station faster than he can assemble them. At some point, the conveyor belt 
must be temporarily stopped, or some parts will not get assembled. Alternatively, if the 
conveyor belt is reduced in speed, the assembly worker will always be able to keep up, but 
perhaps at a slower than optimal pace.

Unless the serial link receiver can process every character of data as fast as it arrives, 
it will need flow control. The simplest approach is to simply reduce the baud rate, so that 
the receiver can always keep up. But this isn’t always satisfactory and leads to a reduced 
overall throughput. A logging application might be able to write the information quickly, 
except when writes occur to an SD card, for example.

A better approach is to signal to the transmitter to stop sending when the receiver 
is bogged down. Once the receiver catches up, it can then tell the transmitter to resume 
transmission. Note that this problem exists for both sides of a serial link:

Data transmitted to the terminal (DTE)•	

Data transmitted to the data communications equipment (DCE)•	

Two forms of flow control are used:

Hardware flow control•	

Software flow control•	

Hardware Flow Control
Hardware flow control uses additional signal lines to regulate the flow of data. The RS-232 
standards have quite an elaborate set of signals defined, but the main signals needed for 
flow control are shown in Table 9-4. Unlike the data line, these signals are inactive in the 
space state and active in the mark state.
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The most important signals are the ones marked with a dagger in Table 9-4. When 
CTS is active (mark), for example, the DCE (Pi) is indicating that it is OK to send data. 
If the DCE gets overwhelmed by the volume of data, the CTS signal will change to the 
inactive (space) state. Upon seeing this, the DTE (laptop) is required to stop sending data. 
(Otherwise, loss of data may occur.)

Similarly, the laptop operating as the DTE is receiving data from the DCE (Pi). If the 
laptop gets overwhelmed with the volume of incoming data, the RTS signal is changed to 
the inactive state (space). The remote end (DCE) is then expected to cease transmitting. 
When the laptop has caught up, it will reassert RTS, giving the DCE permission to resume.

The DTR and DSR signals are intended to convey the readiness of the equipment 
at each end. If the terminal was deemed not ready (DTR), DSR is not made active by the 
DCE. Similarly, the terminal will not assert DTR unless it is ready. In modern serial links, 
DTR and DSR are often assumed to be true, leaving only CTS and RTS to handle flow 
control.

Where flow control is required, hardware flow control is considered more reliable 
than software flow control.

Software Flow Control
To simplify the cabling and the supporting hardware for serial communications, the 
hardware flow controls can be omitted/ignored. In its place, a data protocol is used instead.

Initially, each end of the link assumes readiness for reception of data. Data is sent 
until an XOFF character is received, indicating that transmission should stop. The receiver 
sends the XON character when it is ready to resume reception again. These software flow 
control characters are shown in Table 9-5.

Table 9-5. Software Flow Control Characters

Code Meaning ASCII Hex Keyboard

XOFF Pause transmission DC3 13 Control-S

XON Resume transmission DC1 11 Control-Q

Table 9-4. Hardware Flow Controls

DTE Direction DCE Description Active

RTS → RTS Request to send(†) Low

CTS ← CTS Clear to send(†)

DSR ← DSR Data set ready Low

DTR → DTR Data terminal ready

† Primary flow control signals
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In a terminal session, the keyboard commands can be used to control the serial 
connection. For example, if information is displaying too fast, the user can type Ctrl-S to 
cause the transmission to stop. Pressing Ctrl-Q allows it to resume.

The disadvantages of software flow control include the following:

1. Line noise can prevent the receiver from seeing the XOFF 
character and can lead to loss of data (causing data overrun).

2. Line noise can prevent the remote end from seeing the XON 
character and can fail to resume transmission (causing a link 
“lockup”).

3. Line noise can cause a false XON/XOFF character to be received 
(data loss or link lockup).

4. The delay in the remote end seeing a transmitted XOFF 
character can cause loss of data if the receiving buffer is full.

5. The XON and XOFF characters cannot be used for data in the 
transmission.

Problems 1 to 3 can cause link lockups or data loss to occur. Problem 4 is avoidable 
if the buffer notifies the other end early enough to prevent a buffer overflow. Problem 5 is 
an issue for binary data transmission.

Raspberry Pi UARTs
The Raspberry Pi supports two UARTs:

UART Driver Node GPIO ALT

UART0 drivers/tty/serial/amba- pl011.c /dev/ttyAMA0 14 & 15 0

UART1 The mini has no driver. 14 & 15 5

Some websites have incorrectly stated that the mini UART is the one being used. 
But this does not jibe with the Broadcom documentation, nor the Raspbian Linux device 
driver. The Broadcom BCM2835 ARM Peripherals manual states that the mini UART is 
UART1. UART1 is available only as alternate function 5 for GPIO 14 and 15. Raspbian 
Linux boots up using alternate function 0 for GPIO 14 and 15, providing the UART0 
peripheral instead. Finally, the source code for the device driver references PL011 in the 
naming throughout.

ARM PL011 UART
By default, UART0 is provided after reset and boot-up, on GPIO 14 (TX) and 15 (RX), 
configured as alternate function 0 (Table 9-6). UART0 is the full UART, referred to as the 
ARM PL011 UART. Broadcom refers the interested reader to the ARM PrimeCell UART 
(PL011) Revision r1p5 Technical Reference Manual for more information.
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Table 9-6. UART0 Pins

Function GPIO P1/P5 ALT Direction Description

TXD 14 P1-08 0 Out DTE transmitted data

RXD 15 P1-10 0 In DTE received data

RTS 17 P1-11 3 Out Request to send

CTS 30 P5-05 3 In Clear to send

RTS/CTS Access
Hardware flow controls CTS and RTS are available on GPIO 30 and 17, respectively, when 
configured. By default these are GPIO inputs, but this can be changed. To gain access 
to the UART’s CTS and RTS signals, configure GPIO 30 and 17 to alternate function 3. 
Table 9-6 summarizes the connections that are used by the UART.

The following short C program shows how to gain access to these signals. The listing 
for the included source file gpio_io.c is given in the “Direct Register Access” section of 
Chapter 10.
 
1   /*****************************************************************
2    * rtscts.c     Configure GPIO 17 & 30 for RTS & CTS
3    ****************************************************************/
4
5   #include <stdio.h>
6   #include <stdlib.h>
7   #include <fcntl.h>
8   #include <unistd.h>
9   #include <errno.h>
10  #include <setjmp.h>
11  #include <sys/mman.h>
12  #include <signal.h>
13 
14  #include "gpio_io.c"    /* GPIO routines */
15
16  static inline void
17  gpio_setalt(intgpio, unsigned alt) {
18         INP_GPIO(gpio);
19         SET_GPIO_ALT(gpio, alt);
20  }
21
22  int
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23  main(int argc, char **argv) {
24
25          gpio_init();             /* Initialize GPIO access */
26          gpio_setalt(17, 3);      /* GPIO 17 ALT = 3 */
27          gpio_setalt(30, 3);      /* GPIO 3 0 ALT = 3 */
28          return 0;
29  }
30
31  /* End rtscts.c */

PL011 UART Features
The Broadcom BCM2835 ARM Peripherals manual states that the following features are 
unsupported:

•	 No Infrared Data Association (IrDA) support

•	 No Serial InfraRed (SIR) protocol encoder/decoder (endec)

•	 No direct memory access (DMA)

•	 No support for signals DCD, DSR, DTR, and RI

The following features are supported, however:

Separate 16×8 transmit and 16×12 receive FIFO buffers•	

Programmable baud rate generator•	

False start-bit detection•	

Line-break generation and detection•	

Support of control functions CTS and RTS•	

Programmable hardware flow control•	

Fully programmable serial interface characteristics:•	

Data can be 5, 6, 7, or 8 bits.•	

Even, odd, mark, space, or no-parity bit generation and •	
detection.

1 or 2 stop-bit generation.•	

Baud rate generation, DC up to UARTCLK/16.•	
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Broadcom also states that there are some differences between its implementation of 
the UART and the 16C650 UART. But these are mostly device driver details:

Receive FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.•	

Transmit FIFO trigger levels are 1/8, 1/4, 1/2, 3/4, and 7/8.•	

The internal register map address space and the bit function of •	
each register differ.

1.5 stop bits is •	 not supported.

•	 No independent receive clock.

The only real concern to the application developer is that the 1.5 stop-bits 
configuration option is not available, which is rarely used these days anyway.

If you need the RS-232 DCD, DSR, DTR, and RI signals, these can be implemented 
using GPIO input and output pins (along with the appropriate RS-232 line-level shifters). 
These are relatively slow-changing signals, which can easily be handled in user space. 
The one limitation of this approach, however, is that the hang-up TTY controls provided 
by the device driver will be absent. To change that, the device driver source code could be 
modified to support these signals using GPIO. The Raspbian Linux module of interest for 
this is as follows:
 
drivers/tty/serial/amba-pl011.c

Exclusive Serial Line Use
As outlined in the “Available Consoles” section in Chapter 5 of Raspberry Pi System 
Software Reference (Apress, 2014), the serial device /dev/ttyAMA0 is easily applied as a 
serial console device. However, some Raspberry Pi application developers will want to 
use that serial interface for application purposes, instead of a console. Without taking 
measures for exclusive access, the console will write to your serial peripheral and respond 
to its input as well (as root console commands).

Even if you turned off the console, there can still be unwanted interaction from a 
login prompt.

Procedure
Use the following steps to configure exclusive serial port access:

1. Eliminate console references to console=ttyAMA0,... in the 
files:

a. /boot/cmline.txt

b. /boot/config.txt (check option cmdline="...")
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2. Eliminate the kernel debugging option kgdboc=ttyAMA0,... 
as outlined for the console in step 1.

3. Eliminate the login prompt caused by the /etc/inittab entry. 
Look for ttyAMA0 and comment the line out. The line will look 
something like T0:23:respawn:/sbin/getty -L ttyAMA0 
115200 vt100.

With these steps accomplished, reboot. The device /dev/ttyAMA0 should be 
available exclusively for your application to use.

Verification
To check that /etc/inittab has not launched a getty process, use the following after 
rebooting:
 
$ ps aux | grep ttyAMA0
 

No entries should appear.
To check that you have eliminated all kernel console references to the device, you 

can use the following:
 
$ grep ttyAMA0 /proc/cmdline

Serial API
The Linux operating system provides access to serial port functions through a family of 
system and library calls. Most of these require that you have an open file descriptor for 
the serial device driver being used. For the Raspberry Pi, this will usually be the device  
/dev/ttyAMA0. Full information can be had from these man pages:

•	 tcgetattr(3)

•	 tty_ioctl(4)–ioctl(2) equivalents to tcgetattr(3)

The bulk of the developer work for serial ports is configuration of the serial driver:

Physical characteristics: baud rate, data bits, parity, and stop bits•	

Driver processing characteristics: raw or cooked mode, for •	
example

Once the driver is configured, the software developer is able to use the usual 
read(2)/readv(2), write(2)/writev(2), select(2), or poll(2) system calls.

For an example program using some of this API, see the “Software” section in 
Chapter 6 of Experimenting with Raspberry Pi (Apress, 2014).
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Header Files
Programs involved in altering TTY settings will want to include the following include 
files:
 
#include <termios.h>
#include <unistd.h>

open(2)
Most of the serial operations in this section require an open file descriptor to the TTY 
device being used. For the Raspberry Pi UART, you’ll want to specify /dev/ttyAMA0.
 
int fd;
 
fd = open("/dev/ttyAMA0",O_RDWR); /* Open for reading and writing */
if ( fd < 0 ) {
    perror("Opening/dev/ttyAMA0");
 

You may need to take special measures to gain access to the device, since by default 
it will be protected. Note the permissions and user/group ownership:
 
$ ls –l /dev/ttyAMA0
crw–rw---1 root tty 204, 64 Feb 9 13:12  /dev/ttyAMA0
 

struct termios
Many of the serial port configuration options require the use of the structure termios:
 
struct termios {
    tcflag_t  c_iflag;    /* input mode flags */
    tcflag_t  c_oflag;    /* output mode flags */
    tcflag_t  c_cflag;    /* control mode flags */
    tcflag_t  c_lflag;    /* local mode flags */
    cc_t      c_line;     /* line discipline */
    cc_t      c_cc[NCCS]; /* control characters */
    speed_t   c_ispeed;   /* input speed */
    speed_t   c_ospeed;   /* output speed */
};
 

The tables in the following sections describe the C language macros used for the 
members of the termios structure:

Table •	 9-7 lists the macros for member c_iflag.
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Table •	 9-8 lists the macros for member c_oflag.

Table 9-7. Input (c_iflag) Flags

Flag Set Description Flag Description

BRKINT T Break causes SIGINT else 0x00 ISTRIP Strip off eighth bit

F Break reads as 0x00 INLCR Translate NL to CR

IXANY Any character will resume IUTF8 Input is UTF8 charset

IXOFF Enable input XON/XOFF ICRNL Translate CR to NL

IXON Enable output XON/XOFF IGNBRK Ignore break

IGNPAR Ignore framing and parity errors IGNCR Ignore CR

IUCLC Translate uppercase to lowercase

INPCK Enable parity checking

PARMRK T Prefix framing/parity error with \377

F Don’t prefix with \377 (byte reads 0)

Table 9-8. Output (c_oflag) Flags

Flag Description Flag Description

CR0 CR delay mask 0 OFDEL Fill character is DEL else NUL

CR1 CR delay mask 1 OFILL Use fill characters instead of 
timed delay

CR2 CR delay mask 2 OLCUC Translate lowercase to uppercase

CR3 CR delay mask 3 ONLCR Translate NL to CR-NL

CRDLY CR delay: apply CR0-CR3 ONLRET Don’t output CR

FF0 FF delay mask 0 ONOCR Don’t output CR at column 0

FF1 FF delay mask 1 OPOST Enable output processing

FFDLY FF delay: apply FF0-FF1 TAB0 Tab delay mask 0

NL0 NL delay mask 0 TAB1 Tab delay mask 1

NL1 NL delay mask 1 TAB2 Tab delay mask 1

NLDLY NL delay: apply NL0-NL1 TAB3 Tab delay mask 2

OCRNL Translate CR to NL TABDLY Tab delay: apply TAB0-TAB3
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Table •	 9-9 lists the macros for member c_cflag.

Table 9-9. Control (c_cflag) Flags

Flag Baud Flag Baud Flag Description

B0 Hang-up B115200 115,200 CLOCAL Ignore modem controls

B50 50 B230400 230,400 CMSPAR Stick parity

B75 75 B460800 460,800 CREAD Enable receiver

B110 110 B500000 500,000 CRTSCTS Enable RTS/CTS flow

B134 134 B576000 576,000 CS5 5 data bits

B150 150 B921600 921,600 CS6 6 data bits

B200 200 B1000000 1,000,000 CS7 7 data bits

B300 300 B1152000 1,152,000 CS8 8 data bits

B600 600 B1500000 1,500,000 CSIZE Data bits mask

B1200 1,200 B2000000 2,000,000 CSTOPB 2 stop bits (else 1)

B1800 1,800 B2500000 2,500,000 HUPCL Modem control hang-up

B2400 2,400 B3000000 3,000,000 PARENB Enable parity

B4800 4,800 B3500000 3,500,000 PARODD Odd or stick = 1 parity

B9600 9,600 B4000000 4,000,000 CBAUD Rate mask

B19200 19,200 CBAUDEX Extended mask

B38400 38,400 CIBAUD Input rate mask

B57600 57,600 EXTA External A

EXTB External B
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Table •	 9-10 lists the macros for member c_lflag.

Table 9-10. Local (c_lflag) Flags

Flag Description Flag Description

ECHOCTL Echo controls as ^X ECHO Echo input

IEXTEN Enable input processing ECHOE Erase previous char

PENDIN Reprint upon reading ECHOK Erase line on kill

ECHOKE Erase each char on kill ISIG Generate signals

ECHONL Echo NL even if !ECHO NOFLSH No flush on signal

ECHOPRT Print chars during erase TOSTOP Send SIGTTOU

ICANON Enable canonical mode XCASE Terminal is uppercase

Table •	 9-11 lists the macros for member c_cc.

Table 9-11. Special (c_cc) Characters

Macro Description Macro Description

VEOF End-file (^D) VQUIT Quit (^\)

VEOL End line (NUL) VREPRINT Reprint (^R)

VEOL2 End line 2 VSTART XON (^Q)

VERASE Erase (^H) VSTOP XOFF (^S)

VINTR Interrupt (^C) VSUSP Suspend (^Z)

VKILL Kill (^U) VTIME Time-out decsecs

VLNEXT Literal next (^V) VWERASE Word erase (^W)

VMIN Min chars to read

tcgetattr(3)
Before you make changes to the serial port settings, you will want to retrieve the current 
settings in case you later need to restore them. This also greatly simplifies configuration, 
allowing you to change only the settings that need changing.
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Use the tcgetattr(3) function to fetch the current serial device settings:
 
int tcgetattr(int fd, struct termios *termios_p);
 
where

fd is the open TTY file descriptor.
termios_p is the struct to be filled with current setting information.

 
struct termios term;
int rc;
 
rc = tcgetattr(fd,&term);
if ( rc < 0 ) {
    perror("tcgetattr(3)");

tcsetattr(3)
When the termios structure has been defined with the serial parameters you wish to use, 
the tcsetattr(3) call is used to set them in the device driver:
 
int tcsetattr(
  int fd,
  int optional_actions,
  const struct termios *termios_p
);
 
where

fd is the open TTY file descriptor to change.
optional_actions is one of three actions (listed in the following table).
termios_p is a pointer to the new settings to be applied.
The three choices for optional_actions are as follows:

optional_actions Meaning

TCSANOW The change occurs immediately.

TCSADRAIN Change occurs after all output has been sent.

TCSAFLUSH As TCSADRAIN, but pending input is discarded.
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The following shows an example of use:
 
struct termios term;
int rc;
 
...
rc = tcsetattr(fd,TCSADRAIN,&term);
if ( rc < 0 ) {
    perror("tcsetattr(3)");

tcsendbreak(3)
A break signal can be transmitted to the remote end by calling the tcsendbreak(3) 
function:
 
int tcsendbreak(int fd, int duration);
 
where

fd is the open TTY file descriptor.
duration is the amount of time to use to represent a break.
When the argument duration is zero, it sends a break signal lasting between 

0.25 and 0.5 seconds. When the argument is nonzero, the man page states that some 
implementation-defined amount of time is used instead.
 
int rc;
 
rc = tcsendbreak(fd,0);
if ( rc < 0 ) {
    perror("tcsendbreak(3)");

tcdrain(3)
The function tcdrain(3) can be used to block the execution of the calling program until 
all of the output characters have been transmitted out of the UART:
 
int tcdrain(int fd);
 
where

fd is the open TTY file descriptor. An example follows:
 
int rc;
 
rc = tcdrain(fd);
if ( rc < 0 ) {
    perror("tcdrain(3)");
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tcflush(3)
The tcflush(3) call can be used to flush pending input or output data from the serial 
port buffers.
 
int tcflush(int fd, int queue_selector);
 
where

fd is the open TTY file descriptor.
queue_selector determines which queue(s) are to be flushed.
The following values are used for the queue_selector argument:

queue_selector Description

TCIFLUSH Flushes unread incoming data

TCOFLUSH Flushes untransmitted output data

TCIOFLUSH Flushes both unread and untransmitted data

The following example flushes pending input data:
 
int rc;
 
rc = tcflush(fd,TCIFLUSH);

tcflow(3)
Various flow control operations can be performed by calling the tcflow(3) function:
 
int tcflow(int fd, int action);
 
where

fd is the open TTY file descriptor.
action is the flow control action required (as shown in the following table).
The valid choices for action are as follows:

action Description

TCOOFF Suspends output (transmission stops)

TCOON Resumes output

TCIOFF Immediately sends a STOP character to stop the remote device

TCION Transmits a START character to resume the remote device
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The following example shows the program immediately suspending output:
 
int rc;
 
rc = tcflow(fd,TCOOFF);
if ( rc < 0 ) {
    perror("tcflow (3)");

cfmakeraw(3)
The cfmakeraw(3) function is a convenience routine to establish raw mode, where 
no special data conversions or mappings occur. The caller should first call upon 
tcgetattr(3) to define the initial termios structure settings. Then cfmakeraw(3) can be 
used to adjust those settings for raw mode:
 
void cfmakeraw(struct termios *termios_p);
 
where

termios_p is a pointer to a struct populated with the serial device’s current settings, 
to be altered.

Note that no file descriptor is provided since this function doesn’t actually change 
anything beyond the data structure that was passed to it. After calling cfmakeraw(3), the 
user will need to use cfsetattr(3) to inform the driver of the changes.
 
struct termios term;
int rc;
 
rc = cfgetattr(fd,&term);  /* Get settings */
cfmakeraw(&term);          /* Alter settings for raw mode */
rc = tcsetattr(fd,TCSADRAIN,&term); /* Apply the settings */
 

Calling cfmakeraw(3) is equivalent to manually applying the following changes:
 
struct termios term;
...
term.c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
                 | INLCR | IGNCR  | ICRNL  | IXON);
term.c_oflag &= ~OPOST;
term.c_lflag &= ~(ECHO   | ECHONL | ICANON | ISIG | IEXTEN);
term.c_cflag &= ~(CSIZE  | PARENB);
term.c_cflag |=CS8;
 

This is a good place to pause and discuss what raw mode is. There are two forms of 
serial I/O supported by Linux (and Unix generally):

Cooked mode: The input, output, and echoing functions are modified/performed by 
the kernel.

Raw mode: The input/output data is sent to/from the application unchanged by the 
kernel.
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The serial port developer, wishing to communicate with a serial device or AVR 
class microcontroller, will be very interested in raw mode. Using raw mode, the data you 
transmit is sent unmodified to its destination. Likewise, the data received is received as it 
was originally transmitted. Cooked mode, which is the norm, is a very different beast.

The original purpose of serial lines for Unix was the handling of user interaction 
using terminal I/O (this is still true for the serial port console). Many terminal processing 
functions were considered common enough among applications to centralize them in 
the kernel. This saved the application from having to deal with these physical aspects and 
lead to consistency in their handling. This terminal handling is affectionately known as 
cooked mode.

The main areas of cooked mode processing are as follows:

Input processing: The type of kernel processing performed on 
serial input data (like backspace processing)

Output processing: The type of kernel processing performed 
on serial output data (like converting a sent line feed into a 
carriage return and line-feed pair)

Local processing: Involving input and output, processing 
features such as echo

Control processing: Other serial controls

We can get a sense of how raw mode differs from cooked mode by looking at what 
cfmakeraw(3) changes. Looking at
 
term.c_iflag &= ~ (IGNBRK | BRKINT | PARMRK | ISTRIP
                  | INLCR | IGNCR  | ICRNL  | IXON);
 
we see that the following input processing features are disabled:

Flag Description Setting

IGNBRK Ignore break Disabled

BRKINT Break reads as 0x00 Disabled

PARMRK Don’t prefix with \377 (byte reads 0) Disabled

ISTRIP Strip off eighth bit Disabled

INLCR Translate NL to CR Disabled

IGNCR Ignore CR Disabled

ICRNL Translate CR to NL Disabled

IXON Enable output XON/XOFF Disabled
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Disabling ISTRIP prevents the kernel from stripping the high-order bit in the byte. 
Disabling INLCR, ICRNL prevents the substitution of NL or CR characters (for input). 
Disabling IGNCR prevents the kernel from deleting the CR character from the input stream. 
Disabling IXON disables software flow control so that the characters XON and XOFF can be 
read by the application program.

Looking at the output processing changes,
 
term.c_oflag &= ~OPOST;
 
we see that the following change applies:

Flag Description Setting

OPOST Enable output processing Disabled

This disables all output processing features with one flag.
Local processing includes both input and output. The following local processing 

flags are changed:
 
term.c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG| IEXTEN);
 

From this, we see that these local processing features are disabled:

Flag Description Setting

ECHO Echo input Disabled

ECHONL Echo NL even if !ECHO Disabled

ICANON Enable canonical mode Disabled

ISIG Generate signals Disabled

IEXTEN Enable input processing Disabled

Disabling ICANON means that all special nonsignal characters defined in c_cc are 
disregarded (like VERASE). Disabling ISIG means that there will be no signals sent to your 
application for characters like VINTR. Disabling IEXTEN disables other c_cc character 
processing like VEOL2, VLNEXT, VREPRINT, VWERASE, and the IUCLC flag. Disabling ECHO and 
ECHONL disables two aspects of character echoing.

Finally, the following control aspects are changed:
 
term.c_cflag &= ~ (CSIZE | PARENB);
term.c_cflag |= CS8;
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meaning that:

Flag Description Setting

CSIZE Data bits mask Masked-out data bits

PARENB Generate/detect parity Disabled

CS8 8 data bits Set to 8-bit data

The CSIZE masking is used to reset the data bits field to zeros. This allows the CS8 
bit pattern to be or-ed in later, setting the data bits value to 8 bits. Disabling the PARENB 
flag causes parity generation on output to be disabled, and disables parity checking on 
input. If your raw link requires parity generation and checking, you’ll need to undo this 
particular change in your own code.

You can see from this list that a plethora of special processing is altered to go from 
cooked mode to raw mode. It is no wonder that this support routine was made available.

cfgetispeed(3)
The current input baud rate for the line can be queried by the cfgetispeed(3) function:
 
speed_t cfgetispeed(const struct termios *termios_p);
 
where

termios_p is the pointer to the structure containing the terminal configuration.
Because the termios structure has been extended and modified over the years, this 

function provides a more portable way to extract the input baud rate, including the more 
recently added higher baud rates.
 
struct termios term;
speed_t baud_rate;
baud_rate = cfgetispeed(&term);

cfgetospeed(3)
The current output baud rate can be extracted from the termios structure with
 
speed_t cfgetospeed(const struct termios *termios_p);
 
where

termios_p is the pointer to the structure containing the terminal configuration.
Because the termios structure has been extended and modified over the years, this 

function provides a portable way to extract the output baud rate, including the more 
recently added higher baud rates.
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cfsetispeed(3)
The cfsetispeed(3) function permits a portable way to establish an input baud rate in 
the termios structure:
 
int cfsetispeed(struct termios *termios_p, speed_t speed);
 
where

termios_p is the pointer to the TTY configuration structure to be modified.
speed is the input baud rate to apply.
Note that this function only updates the termios data structure and has no direct 

effect on the device being used.
 
struct termios term;
int rc;
 
rc = cfsetispeed(&term,115200);
if ( rc < 0 ) {
    perror("cfsetispeed(3)");

cfsetospeed(3)
The cfsetospeed(3) function sets the output baud rate in the termios structure:
 
int cfsetospeed(struct termios *termios_p, speed_t speed);
 
where

termios_p is the pointer to the TTY configuration structure being modified.
speed is the output baud rate to apply.
Note that this function only updates the termios data structure with no direct effect 

on the device being used.
 
struct termios term;
int rc;
 
rc = cfsetospeed(&term,9600);
if ( rc < 0 ) {
    perror("cfsetospeed(3)");
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cfsetspeed(3)
Most serial communication uses a common baud rate for transmitting and receiving. For 
this reason, this is the preferred function to invoke for establishing both the input and 
output baud rates:
 
int cfsetspeed(struct termios *termios_p, speed_t speed);
 
where

termios_p is the pointer to the TTY configuration structure to be modified.
speed is the input and output baud rate to apply.
Note that this function only updates the termios data structure with no direct effect 

on the device being used.
 
struct termios term;
int rc;
 
rc = cfsetspeed(&term,9600);
if ( rc < 0 ) {
    perror("cfsetsspeed(3)");

read(2)
The read(2) system call can be used for reading from the serial port, in addition to 
normal Linux files and other devices:
 
#include <unistd.h>
 
ssize_t read(int fd, void *buf, size_t count);
 
where

fd is the open file descriptor to read from.
buf is the buffer to read the data into.
count is the maximum number of bytes to read.

returns an int, where

-1 indicates an error, with the error code found in errno.

0 indicates that the serial port has been closed with the end-of-file  
character.

>0 indicates the number of bytes read.
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The errors that pertain to blocking calls on a serial port include the following:

Error Description

EBADF fd is not a valid file descriptor.

EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was read.

More will be said about EINTR near the end of this chapter.
The following example reads up to 256 bytes into the array buf, from the serial port 

open on the file unit fd:
 
int fd;          /* Opened serial port */
char buf[256];
int rc;
 
rc = read(fd,buf,sizeof buf);
if ( rc < 0 ) {
    fprintf(stderr,"%s: reading serial port.\n",strerror(errno));
    ...
} else if ( !rc ) {
     /* End file */
} else {
     /* Process rc bytes in buf[] */
}

write(2)
To transmit data on a serial link, you can use the write(2) system call:
 
#include <unistd.h>
 
ssize_t write(int fd, const void *buf, size_t count);
 
where

fd is the file unit of the opened serial port.
buf is the buffer containing the bytes to be transmitted.
count is the number of bytes to transmit.

returns an int, where

-1 indicates that an error has occurred, with the error found in 
errno.

0 indicates no bytes were transmitted (end-of-file, port was 
closed).

>0 indicates the number of bytes transmitted.
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The possible errors related to blocking calls for serial port writes include the 
following:

Error Description

EBADF fd is not a valid file descriptor or is not open for writing.

EFAULT buf is outside your accessible address space.

EINTR The call was interrupted by a signal before any data was written.

Normally, only an error (-1) or a value of count is returned. If the serial port was 
opened for nonblocking I/O, the returned count can be less than the requested count 
(this mode of operation is not discussed here). In blocking mode (which we are assuming 
here), the call will return only when the full count requested has been written. Any failure 
would otherwise result in an error being returned instead.

The following is an example of its use, as it pertains to a serial port:
 
int fd;
char buf[256];
int rc, n;
 
strcpy(buf,"Hello World!\n");
n = strlen(buf);
 
rc = write(fd,buf,n);
if ( rc < 0 ) {
    fprintf(stderr,"%s: writing serial link.\n",strerror(errno));
    ...
}
assert(rc == n);

readv(2) and writev(2)
An often neglected option for reading and writing are the readv(2) and writev(2) 
system calls. These tend to be more useful for programs that work with packets than for 
interactive terminal sessions. These are presented because the serial port application 
developer may want to use a protocol that has more than one buffer containing headers, 
data, and trailer. Using the scatter-gather routines can enhance your code communicating 
with an AVR class microcontroller. The use of an I/O vector here is similar in concept to 
the I/O vectors used by I2C I/O operations in the ioctl(2,I2C_RDWR) system call (see 
Chapter 12).
 
#include <sys/uio.h>
 
ssize_t readv(int fd, const struct iovec *iov, int iovcnt);
ssize_t writev(int fd, const struct iovec *iov, int iovcnt);
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where
fd is the open serial port file descriptor for reading/writing.
iov is the I/O vector directing the reading/writing.
iovcnt is the I/O vector count.

returns an int, where

-1 indicates an error, leaving the error code in errno, see 
read(2) or write(2).

0 indicates that an end-of-file condition occurred.

>n indicates the actual number of bytes read/written.

The I/O vector is shown here:
 
struct iovec {
    void    *iov _base;    /* Starting address */
    size_t  iov_len;       /* Number of bytes to transfer */
};
 

In the following example, a simple terminal writev(2) system call is used to piece 
together three pieces of information, to be transmitted to the terminal:

The text •	 Hello

The person’s name provided in the argument •	 name

The text •	 !\n\r at the end

One of the advantages of the writev(2) call is its ability to take separate buffers of 
data and transmit them as a whole in one I/O operation:
 
void
fun(int serport, const char *name) {
    struct iovec iov[3];
    int rc;
 
    iov[0].iov_base = "Hello";
    iov[0].iov_len = 6;
    iov[1].iov_base = (void *)name;
    iov[1].iov_len = strlen(name);
    iov[2].iov_base = "!\n\r";
    iov[2].iov_len = 3;
 
    rc = writev(serport,iov,3);
    if ( rc < 0 ) {
        fprintf(stderr,"%s: writev(2)\n",strerror(errno));
        abort();
    }
}
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Each segment to be transmitted is described by one iov[x] member, each consisting 
of a buffer pointer and the number of bytes. The writev(2) system call is told how many 
iov[] entries to use in its third calling argument.

Error EINTR
One error code that afflicts many device I/O system calls is the EINTR error, “Interrupted 
system call.” This error code applies to read(2), readv(2), write(2), and writev(2) on 
devices that may “block” execution until the required data has been fully read/written. 
(This also applies to ioctl(2) when I2C I/O is performed.) The EINTR error is not 
returned for I/O to disk because these I/O calls don’t block for a long time (the I/O is to/
from a file system disk memory buffer). The application developer should otherwise plan 
on handling this error.

The EINTR error is the Unix way of working with signals. Consider what happens 
when your application is waiting for a single keystroke from the user at a terminal (or 
reading a packet from an AVR class device):
 
rc = read(fd,buf,n);       /* Block until n bytes read */
 

Until that read is satisfied (or the file descriptor is closed), execution will stop there. 
In the meantime, another process or thread may signal your application to do something, 
perhaps to shut down and exit. A signal handler like the following is invoked when the 
signal is handled:
 
static void
sigint_handler(int signo) {
     is_signaled = 1;      /* Please exit this program */
}
 

At this point, your application is in the middle of a system call, waiting to read 
from the serial port. The system call’s registers are saved on the stack frame, and your 
application has entered into the kernel. The handling of the signal means that the kernel 
calls your signal handler, placing another stack frame on your current stack.

Because a signal can arrive at any time, there are many things you can’t do from within 
a signal handler. For example, you must not invoke malloc(3) or other non-reentrant 
functions. Otherwise, you risk doing another malloc(3) inside an interrupted malloc(3), 
which leads to disaster. The important point here is that a very limited number of safe 
things can be performed from inside a signal handler.

One thing that is safe to do in a signal handler is to set a global variable of some kind, 
like the is_signaled variable in the example. One problem remains: how does the code 
blocked in the read(2) call respond to this notification? When the signal handler returns, 
the application will continue to block trying to read from the serial port.
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The Unix solution to this problem is to have the kernel return an error code EINTR 
after a signal handler receives a signal. In this manner, the read(2) call returns an error, 
allowing the application program to test whether it received a signal. The following code 
shows how the simple read(2) call is replaced with a loop that checks whether the signal 
handler was called:
 
do  {
    rc = read(fd, buf, n);       /* Block until n bytes read */
    if ( is_signaled )
        longjmp(shutdown,1);     /* Shutdown this server */
} while ( rc == –1 && errno == EINTR );
 
if ( rc == –1 ) {                /* Check for non EINTR errors */
    fprintf(stderr,"%s: read(2)\n",strerror(errno));
    abort();
}
 

In this code snippet, we see that the read(2) call is performed as part of a loop.  
As long as an error is returned and the errno value is EINTR, we check for any interesting 
events (like is_signaled) and repeat the call. If any other type of error occurs or we 
succeed, we drop out of the loop.

This is the basic template that should be used for any call that might receive EINTR, 
even if you don’t plan to handle signals in your application. Otherwise, you may find that 
your Pi application may run for weeks and then one day when you least expect it, fail 
because of a received EINTR error.
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Chapter 10

GPIO

General-purpose I/O is a topic near to the hearts of Raspberry Pi owners, because this is 
the interface to the outside world. The BCM2835 is flexibly designed to allow I/O pins to 
be reconfigured under software control. GPIO 14 can be an input, an output, or operate as 
a serial port TX data line, for example. This makes the Raspberry Pi very adaptable.

One of the challenges related to the Pi’s GPIO interface is that it uses a weak CMOS 
3 V interface. The GPIO pins are susceptible to static electricity damage, and the I/O pins 
are weak drivers (2 to 16 mA). Additionally, GPIO power must be budgeted from the total 
spare current capacity of 50 mA. Using adapter boards overcomes these problems but 
adds considerably to the cost. This then provides a fertile area for coming up with cheap 
and effective roll-your-own solutions.

Pins and Designations
Figures 12-1 and 12-2 show the schematic GPIO connections for the Raspberry Pi. You 
will notice that the GPIO pins are also designated with the GENx designation. (Gen 7 to 
10 was not available prior to version 2.) This may have been an early attempt to follow the 
Arduino lead of naming their pins digital0 or analog4, for example, in a generic way. It 
appears, however, that this naming convention has not really caught on among Pi users. 
Despite this, these names are cross-referenced in Table 10-1. These are probably the 
preferred first choices when shopping for GPIO pins to use, since they are less likely to be 
required for special (alternate) functions like UART or SPI.

Table 10-1. Rev 2.0 GEN and GPIO Designations

GENx GPIOy Header GENx GPIOy Header

GEN0 GPIO 17 P1-11 GEN6 GPIO 25 P1-22

GEN1 GPIO 18 P1-12 GEN7 GPIO 28 P5-03

GEN2 GPIO 27 P1-13 GEN8 GPIO 29 P5-04

GEN3 GPIO 22 P1-15 GEN9 GPIO 30 P5-05

GEN4 GPIO 23 P1-16 GEN10 GPIO 31 P5-06

GEN5 GPIO 24 P1-18
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A couple of GPIO pins have pull-up resistors. Figure 10-1 shows that GPIO pins 2  
(SDA1) on P1-03, and GPIO 3 (SCL1) on P1-05, have an 1.8 kΩ pull-up resistor. This 
should be taken into account if you use these for something other than I2C.

Figure 10-1. GPIO P1 header

The layouts of headers P1 and P5, where the GPIO pins are made accessible, are 
documented in Chapter 3.

Note ■  p5 was not present prior to version 2, but both Models a and B now include it 
(without header pins).

Configuration After Reset
Upon reset, most GPIO pins are configured as general-purpose inputs with the exceptions 
noted in Table 10-2. (Figure 10-2 applies to version 2, Models A and B.) The Pull-up 
column indicates how the internal pull-up resistor is initially configured. The pull-up 
resistors apply when the GPIO is configured as an input pin.
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Table 10-2. Rev 2.0 Configuration After Reset

GPIO Pull-up Config ALT GPIO Pull-up Config ALT

0 High Input 17 Low Input

1 High Input 18 Low Input

2 High SDA1 0 21 Low Input

3 High SCL1 0 22 Low Input

4 High Input 23 Low Input

5 High GPCLK1 0 24 Low Input

6 High Output 25 Low Input

7 High Input 27 Low Output

8 High Input 28 - Input

9 Low Input 29 - Input

10 Low Input 30 Low Input

11 Low Input 31 Low Input

14 Low TXD0 0 40 Low PWM0 0

15 Low RXD0 0 45 - PWM1 0

16 Low Output

Figure 10-2. GPIO P5 header
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Pull-up Resistors
As noted earlier, GPIO pins 2 and 3 have an external resistor tied to the +3.3 V rail. The 
remaining GPIO pins are pulled high or low by an internal 50 kΩ resistor in the SoC.56, 48 
The internal pull-up resistor is rather weak, and effective at only giving an unconnected 
GPIO input a defined state. A CMOS input should not be allowed to float midway 
between its logic, high or low. When pull-up resistance is needed for an external circuit, 
it is probably best to provide an external pull-up resistor, rather than rely on the weak 
internal one.

Configuring Pull-up Resistors
The pull-up configuration of a GPIO pin can be configured using the SoC registers GPPUP 
and GPPUDCLK0/1. (The  “Physical Memory” section of Chapter 4  has the physical 
addresses for these registers.)

The GPPUP register is laid out as follows:

GPPUP Register

Bits Field Description Type Reset

31-2 - Unused

GPIO pin pull-up/down

R 0

1-0 PUD 00     Off—disable pull-up/down

01     Pull-down enable

10     Pull-up enable

11     Reserved

R/W 0

The GPPUDCLK0 register is laid out as follows:

GPPUDCLK0 Register

Bits Field Description Type Reset

31-0 PUDCLKn n = 0..31 R/W 0

0 No effect

1 Assert clock
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Finally, the GPPUDCLK1 register is formatted this way:

GPPUDCLK1 Register

Bits Field Description Type Reset

31-22 - Reserved R 0

21-0 PUDCLKn n = 32..53 R/W 0

0 No effect

1 Assert clock

According to the Broadcom documentation, the general procedure for programming 
the pull-up resistor is this:

1. Write the pull-up configuration desired in the rightmost 2 bits 
of the 32-bit GPPUP register. The configuration choices are as 
follows:

a. 00: Disable pull-up control.

b. 01: Enable pull-down control.

c. 10: Enable pull-up control.

2. Wait 150 cycles to allow the preceding write to be registered.

3. Write a 1-bit to every GPIO position, in the group of 32 GPIO 
pins being configured. GPIOs 0–31 are configured by register 
GPPUDCLK0.

4. Wait another 150 cycles to allow step 3 to register.

5. Write 00 to GPPUP to remove the control signal.

6. Wait another 150 cycles to allow step 5 to register.

7. Finally, write to GPPUDCLK0/1 to remove the clock.

The Broadcom procedure may seem confusing because of the word clock. Writing 
to GPPUP and GPPUDCLK0/1 registers by using the preceding procedure is designed 
to provide a pulse to the internal pull-up resistor flip-flops (their data clock input). First 
a state is established in step 1, and then the configured 1 bits are clocked high in step 3 
(for selected GPIO pins). Step 5 establishes a zero state, which is then sent to the flip-flop 
clock inputs in step 7.

The documentation also states that the current settings for the pull-up drivers cannot 
be read. This makes sense when you consider that the state is held by these internal 
flip-flops that were changed by the procedure. (There is no register access available to 
read these flip-flops.) Fortunately, when configuring the state of a particular GPIO pin, 
you change only the pins you select by the GPPUDCLK0/1 register. The others remain 
unchanged.
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The program pullup.c, shown next, provides a simple utility to change the pull-up 
resistor settings. The program listing for gpio_io.c is provided in the “Direct Register 
Access” section. The source for timed_wait.c is found in the “Source Code” section in 
Chapter 1 of Experimenting with Raspberry Pi (Apress, 2014).

After compiling, the following example changes the GPIO 7 pull-up to high and GPIO 
8 to low:
 
    $ ./pullup 7=low 8=high
  
1   /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2    ∗ pullup.c : Change the pull−up resistor setting for GPIO pin
3    ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5   #include <stdio.h>
6   #include <stdlib.h>
7   #include <fcntl.h>
8   #include <unistd.h>
9   #include <errno.h>
10  #include <setjmp.h>
11  #include <sys/mman.h>
12  #include <signal.h>
13
14  #include "gpio_io.c"                 /∗ GPIO routines ∗/
15  #include "timed_wait.c"              /∗ Delay ∗/
16
17  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18   ∗ 0x7E200094    GPPUD      GPIO  Pin  Pull−up/down Enable
19   ∗ 0x7E200098    GPPUDCLK0  GPIO  Pin  Pull−up/down Enable Clock 0
20   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
21
22  #define GPIO_GPPUD              ∗(ugpio+37)
23  #define GPIO_GPPUDCLK0     ∗(ugpio+38)
24
25  static inline void
26  gpio_setpullup(int gpio, int pull) {
27         unsigned mask = 1 << gpio;  /∗ GPIOs 0 to 31 only ∗/
28         unsigned pmask = pull >= 0 ? ( 1 << !! pull) : 0;
29
30         GPIO_GPPUD = pmask;      /∗ Select pull−up setting ∗/
31         timed_wait (0, 500, 0);
32         GPIO_GPPUDCLK0 = mask;   /∗ Set the GPIO of interest ∗/
33         timed_wait (0, 500, 0);
34         GPIO_GPPUD = 0;          /∗ Reset pmask ∗/
35         timed_wait (0, 500, 0);
36         GPIO_GPPUDCLK0 = 0;      /∗ Set the GPIO of interest ∗/
37         timed_wait (0, 500, 0);
38 }
39
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40  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41   ∗ Command line arguments are of the form <gpio>={low,high or none},
42   ∗ for example : ./pull−up 7=high 8=low
43   ∗
44   ∗ Only the first character of the argument after '=' is checked.
45   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
46  int
47  main(int argc, char ∗∗argv) {
48          int x, gpio, p;
49          char arg [64];
50
51          gpio_init();
52
53          for ( x=1; x<argc; ++x ) {
54                  if (sscanf(argv[x],"%d=%s",&gpio,arg)!=2)
55                       goto errxit;
56                  if ( ∗arg == 'n' )
57                       p = −1;
58                  else if ( ∗arg == ' l ' || ∗arg == 'h ' )
59                       p = ∗arg == 'h ' ? 1 : 0;
60                  else goto errxit;
61                  if ( gpio < 0 || gpio > 31 )  {
62                       fprintf(stderr,"%s : GPIO must be <= 31\n",
63                             argv[x]) ;
64                       return 1;
65                  }
66                  gpio_setpullup(gpio, p);
67          }
68          return 0;
69
70  errxit: fprintf(stderr,
                   "Argument '%s' must be in the form\n"
71               " <gpio>=<arg> where arg is h, l or n.\ n",
72               argv [ x ] ) ;
73          return 1;
74 }
75
76 /∗ End pullup.c ∗/
 

The default drive strengths after booting are listed next, along with the GPIO 
addresses for the corresponding GPIO pads:

Address GPIO Pads Reset Drive Strength

0x2010002C GPIO 0 to 27 8 mA

0x20100030 GPIO 28 to 45 16 mA

0x20100034 GPIO 46 to 53 8 mA
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Table 10-3 summarizes the GPIO Pads Control register. Note that to be successful 
setting values in this register, the field labeled PASSWRD must receive the value 0x5A. 
This is a simple measure to avoid having the values trashed by an accidental write to 
this location.

Table 10-3. GPIO Pads Control

Bits Field Description I/O Reset

31:24 PASSWRD 0x5A Must be 0x5A when writing W 0x00

23:05 Reserved 0x00 Write as zero, read as don’t 
care

R/W

04:04 SLEW Slew rate

0 Slew rate limited R/W 1

1 Slew rate not limited

03:03 HYST Enable input hysterisis

0 Disabled R/W 1

1 Enabled

02:00 DRIVE Drive strength R/W 3

0 2 mA

1 4 mA

2 6 mA

3 8 mA (default except 28 to 45)

4 10 mA

5 12 mA

6 14 mA

7 16 mA (GPIO 28 to 45)

Testing Pull-up State
If you want to test the state of the pull-up resistors, the following procedure can be used:

1. Make sure no connection is attached so that the input can 
float.

2. Configure the GPIO pin as an input.

3. Configure the GPIO as active high (that is, not active low).
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4. Read the input value.

a. A reading of 1 means that the input was pulled high.

b. A reading of 0 means that the input was pulled low.

Note that GPIO pins 2 and 3 are pulled up by external resistors, while others may be 
connected to other circuits (GPIO 6). This will affect your readings for those pins. Note 
also that pins configured for alternate functions may be outputs and will be driven.

When the input GPIO is configured with no pull-up, you might see random values, 
but this is unreliable. An input voltage can float above or below a threshold and remain 
there for a time.

The script presented in the “GPIO Input Test” section can be used to test a GPIO 
input (^C to exit the script).

Logic Levels
GPIO pins use 3 V logic levels. The precise BCM2835 SoC logic-level specifications are as 
follows:

Parameter Volts Description

V
IL

£ 0.8 Voltage, input low

V
IH

³ 1.3 Voltage, input high

As we work through several projects in this book, we’ll be making frequent 
references to these parameters. You might want to commit these voltage levels to memory 
or mark the page with a tab. The voltage levels between V

IL
 and V

IH
 are considered to be 

ambiguous or undefined, and must be avoided.

Drive Strength
How much drive can a GPIO pin provide in terms of current drive? The design of the 
SoC is such that each GPIO pin can safely sink or source up to 16 mA without causing 
it harm.28 The drive strength is also software configurable from 2 mA up to 16 mA.29 
The boot-up default is to use the drive strength of 8 mA.28 However, as our test program 
pads.c will show, the GPIO outputs 28 to 45 were found configured for 16 mA (GPIO 28 to 
31 are available on header P5).

Table 10-3 shows the SoC registers for reading and configuring the drive strength  
of the GPIO pins. There are three registers, affecting GPIO pins in three groups of 28  
(two groups affect user-accessible GPIOs). The slew rate, hysteresis, and drive strength 
settings all apply at the group level. The drive strength is configured through a 3-bit value 
from 2 mA to 16 mA, in increments of 2 mA. When writing to these registers, the field 
PASSWRD must contain the hexadecimal value 0x5A, as a guard against accidental changes.
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To visualize how the Raspberry Pi controls drive strength, examine Figure 10-3. The 
control lines Drive0 through Drive2 are enabled by bits in the DRIVE register. With these 
three control lines disabled (zero), only the bottom 2 mA amplifier is active (this amplifier 
is always enabled for outputs). This represents the weakest drive-strength setting.

Figure 10-3. Drive-strength control

With Drive0 set to a 1, the top amplifier is enabled, adding another 2 mA of drive, 
for a total of 4 mA. Enabling Drive1 adds a further 4 mA of drive, totaling 8 mA. Enabling 
Drive2 brings the total drive capability to 16 mA.

It should be mentioned that these drive capabilities are not current limiters in 
any way. What they do is apply more amplifier drive in order to meet the logic-level 
requirements (next section). If the GPIO output is wired up to a light load like a CMOS 
chip or MOSFET transistor where little current is drawn, then the minimum drive of 2 mA 
suffices. The single GPIO 2 mA buffer can effortlessly establish a logic high in its proper 
voltage range as well as bring the voltage to a logic low when required.

When the GPIO output is loaded with a higher current load, the single 2 mA buffer 
may not be enough to keep the logic level within spec. By applying more amplifier drive, 
the output voltage levels are coerced into the correct operating range.
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Input Pins
A GPIO input pin should experience voltages only between 0 and the 3.3 V maximum. 
Always exercise caution when interfacing to other circuits that use higher voltages like 
TTL logic, where 5 V is used. The SoC is not tolerant of overvoltages and can be damaged.

While there exist protection diodes for protecting against negative input swings, 
these are weak and intended only to bleed away negative static charges. Be sure to design 
your input circuits so that the GPIO input never sees a negative input potential.

Output Pins
As an output GPIO pin, the user bears full responsibility for current limiting. There is no 
current limiting provided. When the output pin is in the high state, as a voltage source, it 
tries to supply 3.3 V (within the limits of the transistor).

If this output is shorted to ground (worst case), then as much current as can be 
supplied will flow. This will lead to permanent damage.

The outputs also work to the specifications listed earlier, but the attached load can 
skew the operating voltage range. An output pin can source or sink current. The amount of 
current required and the amount of output drive configured alters the operating voltage 
profile. As long as you keep within the current limits for the configured drive capability, 
the voltage specifications should be met.

Figure 10-4 illustrates how a GPIO port sources current into its load (R
load

). Current 
flows from the +3.3 V supply, through transistor M

1
, out the GPIO pin, and into R

load
 to 

ground. Because of this, it takes a high (logic 1) to send current into the load. This makes 
the circuit an “active high” configuration.

Figure 10-4. GPIO output high

Figure 10-5 shows how the GPIO output sinks current instead. Because R
load

 is 
connected to the +3.3 V supply, current flows through R

load
, into the GPIO output pin, 

and through the bottom transistor M
2
 to ground. To send current through the load, a low 

(logic 0) is written to the output port. This is the active low configuration.
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Figure 10-6 shows the active high configuration’s R
load

 circuit element substituted 
with an LED and limiting resistor R. Since there is no current limiting provided by the 
GPIO port, resistor R must be provided to do this.

Figure 10-5. GPIO output low

Figure 10-6. GPIO driving an LED

Driving LEDs 
When an LED is hooked up to the GPIO output port, R

load
 becomes the LED and the 

limiting resistor (in series). The math is complicated slightly by the fact that the LED is 
a diode. As a diode, it has a voltage drop, which should be subtracted from the supply 
voltage. For red LEDs, the voltage drop is usually between 1.63 and 2.03 V.

30
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Knowing the current draw you want for the LED, the resistor R can be calculated 
from the following:

R
V V

I
CC LED

LED

=
-

where
V

CC
  is the supply voltage (+3.3 V).

V
LED

  is the voltage drop for the LED.
I

LED
  is the required current draw for the LED.

For V
LED

 it is best to assume the worst case and assume the lower voltage drop of 1.63 V.  
Assuming we need 8 mA to get reasonable brightness from the LED, we can calculate the 
resistance of the limiting resistor:

R =
-

=

3 3 1 63

0 008
208 75

. .

.
. W

Since resistors come in standard values, we round up to a standard 10% component 
of 220 Ω.

Note ■  rounding resistance down would lead to higher current. It is better to err on the 
side of less current.

The LED and the 220 Ω limiting resistor can be wired according to Figure 10-4 (and 
shown in Figure 10-6). When wired this way, a high is written to the GPIO output port to 
make current flow through the LED.

The sense of the GPIO port can be altered by the sysfs file active_low (see 
Table 10-5 later in this chapter). Putting the GPIO pin 7 into active low mode reverses the 
logic sense, as follows:
 
# echo 1  >/sys/class/gpio/gpio7/active_low
 

With this mode in effect, writing a 1 to GPIO pin 7 causes the pin to go “low” on the 
output and causes the LED to go off:
 
# echo 1  >/sys/class/gpio/gpio7/value
 

If the LED was wired according to Figure 10-5, it would turn on instead.
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Driving Logic Interfaces
For LEDs, the requirements of the interface are rather simple. The interface is a success 
if the LED is lit when the output port is in one state, and the LED is dark in the other. The 
precise voltage appearing at the GPIO output pin in these two states is of little concern, as 
long as the maximum current limits are respected.

When interfacing to logic, the output voltage is critical. For the receiving logic, the 
output level must be at least V

IH
 to reliably register a 1 bit (for the BCM2835, this is 1.3 V). 

Likewise, the output should present less than V
IL

  to reliably register a 0 in the receiver (for 
the BCM2835, this is 0.8V). Any voltage level between these limits is ambiguous and can 
cause the receiver to randomly see a 0 or a 1.

There are a fairly large number of approaches to interfacing between different logic 
families. A good source of information is provided by the document “Microchip 3V Tips ’n 
Tricks.”31

Another document titled “Interfacing 3V and 5V Applications, AN240” describes the 
issues and challenges of interfacing between systems.32 It describes, for example, how a  
5 V system can end up raising the 3 V supply voltage if precautions are not taken.

Approaches to interfacing include direct connections (when safe), voltage-dividing 
resistors, diode resistor networks, and the more-complex op-amp comparators.

When choosing an approach, remember to consider the necessary switching speed 
of the interface required.

Driving Bi-color LEDs
This is a good point to inject a note about driving bi-color LEDs. Some of these are 
configured so that one LED is forward biased while the other is reversed biased. This has 
the advantage of needing only the usual two LED leads. To change colors, you simply 
change the polarity of the power going into the pair.

To drive these and choose a color, you need a way to reverse the current. This is 
normally done using the H-Bridge driver, which is explored in Chapter 7 of Experimenting 
with Raspberry Pi (Apress, 2014). There a bipolar stepper motor is driven by the H-Bridge 
driver. The LED, however, requires considerably less current, and so this is an easy 
assignment. If you choose a bi-color LED requiring 10 mA or less, you can drive it directly 
from a pair of GPIO outputs.

Figure 10-7 illustrates the bi-color LED driving arrangement. Compare this 
configuration with the H-Bridge in Figure 7-1 in Chapter 7 of Experimenting with 
Raspberry Pi (Apress, 2014). Do you see the similarity?
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The pair of GPIO outputs form an H-Bridge because each of the outputs themselves 
are a pair of CMOS driving transistors—an upper and lower half. It is this pairing that 
makes them capable of both sourcing and sinking a current. By using two GPIO outputs, 
you form an H-Bridge driver.

To light the bi-color LED in one color, make one GPIO high (source), while the other 
is made low (sink). Then the current will flow through the LED from the first GPIO output 
into the second. To reverse the current and see the other color, make the first GPIO low 
and the other high. Now the current flows from the second GPIO output into the first.

Testing Drive Strength
There’s nothing like finding out for yourself the configured parameters of your Raspberry 
Pi. The program pads.c (next) dumps out the GPIO Pads Control registers so that you can 
verify the actual parameters in effect.

Each GPIO pin defaults to setting 3 (for 8 mA).28 Running the pads.c program on my 
Rev 2.0 Raspberry Pi showed that the GPIO group from 28 to 45 was configured for 16 mA. 
GPIO pins 28 to 31 are available on header P5.

The following example session shows the output for my Raspberry Pi:
 
$ sudo ./pads
07E1002C  :   0000001B  1  1  3
07E10030  :   0000001F  1  1  7
07E10034  :   0000001B  1  1  3
 

The last four fields on each output line are as follows:

1. The word value in hexadecimal

2. The configured slew rate setting

3. The configured hysteresis setting

4. The drive-level code

Figure 10-7. Driving a bi-colored LED
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What this suggests is that GPIO 28 through 31 could be used, if you have higher 
current driving requirements.

If you have a requirement to change these settings from within a C program, the 
program pads.c can be easily modified. Use the macro GETPAD32 (line 16) for inspiration.
 
1  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2   ∗ pads . c : Examine GPIO Pads Control
3   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4   #include <stdio.h>
5   #include <stdlib.h>
6   #include <fcntl.h>
7   #include <sys/mman.h>
8   #include <unistd.h>
9
10  #define BCM2708_PERI_BASE 0x20000000
11  #define PADS_GPIO_BASE       (BCM2708_PERI_BASE+0x100000)
12  #define PADS_GPIO_00_27      0x002C
13  #define PADS_GPIO_28_45      0x0030
14  #define PADS_GPIO_46_53      0x0034
15
16  #define GETPAD32(offset)  \
          ( ∗(unsigned ∗) ((char ∗) (pads)+offset))
17
18  #define BLOCK_SIZE  (4∗1024)
19
20  volatile unsigned ∗pads ;
21
22  void
23  initialize(void)  {
24      int mem_fd = open("/dev/mem",O_RDWR|O_SYNC);
25      char ∗pads_map;
26
27      if ( mem_fd <= 0 )  {
28          perror("Opening/dev/mem");
29          exit(1);
30      }
31
32      pads_map = (char ∗)mmap(
33          NULL,                        /∗ Any address ∗/
34          BLOCK_SIZE,           /∗ Map length ∗/
35          PROT_READ|PROT_WRITE,
36          MAP_SHARED,
37          mem_fd,                    /∗ File to map ∗/
38          PADS_GPIO_BASE  /∗ Offset to registers ∗/
39      );
40
41      if  ( (long)pads_map == −1L )  {
42          perror("mmap failed.");
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43          exit(1);
44      }
45
46      close(mem_fd);
47      pads = (volatile unsigned ∗)pads_map;
48  }
49
50  int
51  main(int argc,char ∗∗argv) {
52       int x;
53       union {
54           struct {
55               unsigned    drive : 3;
56               unsigned    hyst  : 1;
57               unsigned    slew : 1;
58               unsigned    reserved : 13;
59               unsigned    passwrd  : 8;
60           }  s;
61           unsigned  w;
62       } word;
63
64      initialize();
65
66      for ( x=PADS_GPIO_00_27; x<=PADS_GPIO_46_53; x += 4 ) {
67          word.w = GETPAD32(x) ;
68          printf("%08X : %08X %x %x %x\n" ,
69              x+0x7E10000, word.w,
70              word.s.slew, word.s. hyst, word.s.drive) ;
71      }
72
73      return 0;
74 }
75
76 /∗ End ∗/

GPIO Current Budget
Gert van Loo states that “the Raspberry-Pi 3V3 supply was designed with a maximum 
current of ~3 mA per GPIO pin.”29 He correctly concludes that if “you load each pin with 
16 mA, the total current is 272 mA.”

From this, we can calculate the designed current budget for GPIO pins:

1. Gert is referring to 17 GPIO pins ( 272

16
17

mA

mA
=  )

2. The Pi is designed for 17 × 3 mA = 51mA

This is consistent with the 50 mA capacity figure we arrived at in Chapter 2. This is 
the remaining current capacity available from pins P1-01, P1-17, and P5-02.
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Consequently, when budgeting your 3.3 V supply current, factor in the following:

GPIO: Current used for each GPIO output pin assigned (2 mA 
to 16 mA)

+3.3 V: All current going to circuits powered from P1-01, P1-17, 
and P5-02.

MAX232CSE: If you attached a RS-232 adapter, allow for about 
15 mA.

To save on your power budget, configure unused GPIO pins as inputs.

Configuration
Each GPIO pin is affected by several configuration choices:

General-purpose input, output, or alternate function•	

Input event detection method•	

Input pull-up/pull-down resistors•	

Output drive level•	

Alternate Function Select
When a GPIO pin is configured, you must choose whether it is an input, an output, or an 
alternate function (like the UART). The complete list of choices is shown in Table 10-4. 
The exact nature of what alternate function x means depends on the pin being configured.

Table 10-4. Alternate Function Selection

Code Function Selected ALT

000 GPIO pin is an input.

001 GPIO pin is an output.

100 GPIO pin is alternate function 0. 0

101 GPIO pin is alternate function 1. 1

110 GPIO pin is alternate function 2. 2

111 GPIO pin is alternate function 3. 3

011 GPIO pin is alternate function 4. 4

010 GPIO pin is alternate function 5. 5
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The values shown in the table’s Code column are used in the configuration register 
itself. The alternate function numbers are listed in the ALT column. Keeping these two 
straight can be confusing when programming. Once the function has been selected, the 
configuration is then fine-tuned according to its peripheral type.

Output Pins
When a pin is configured for output, the remaining elements of configuration consist of 
the following:

Logic sense•	

Output state•	

The output state of the GPIO pins can either be set by the kernel as a 32-bit word 
(affects 32 GPIOs at a time) or individually set or cleared. Having individual set/clear 
operations allows the host to change individual bits without disturbing the state of others 
(or having to know their state).

Input Pins
Input pins are more complex because of the additional hardware functionality offered. 
This requires that the input GPIO pin be configured for the following:

Detect rising input signals (synchronous/asynchronous)•	

Detect falling input signals (synchronous/asynchronous)•	

Detect high-level signals•	

Detect low-level signals•	

Logic sense•	

Interrupt handling (handled by driver)•	

Choose no pull-up; use a pull-up or pull-down resistor•	

Once these choices have been made, it is possible to receive data related to input 
signal changes, or simply query the pin’s current state.

Alternate Function
When an alternate function such as the UART is chosen, many aspects of the pin’s 
configuration are predetermined. Despite this, each pin used by the peripheral should 
be preconfigured for input or output according to its function. These details are normally 
provided by the supporting driver.
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Sysfs GPIO Access
In this section, we’re going to access the GPIO pins through the /sys pseudo file system. 
This is the GPIO driver interface. Because it provides file system objects, it is possible to 
control GPIO pins from the command line (or shell).

The C/C++ programmer might be quick to dismiss this approach, because it might 
seem too slow. However, for input pins, the driver provides the advantage of providing a 
reasonable edge-level detection that is not possible when accessing the GPIO registers 
directly. The driver is able to receive interrupts when a GPIO state changes. This information 
can in turn be passed onto the application program using poll(2) or select(2).

Everything that you need for GPIO access is rooted in the top-level directory:
 
/sys/class/gpio
 

At this directory level, two main control pseudo files are maintained by the driver. 
These are write-only:

export: Requests the kernel to export control of the requested 
GPIO pin by writing its number to the file

unexport: Relinquishes control of the GPIO pin by writing its 
number to the file

Note ■  even root gets the permission denied if you try to read these files.

Normally, the kernel manages the GPIO pins, especially if they are used for resources 
that need them (like the UART). In order for an application to manipulate a GPIO pin, 
it must first request that the kernel relinquish control of the requested pin. From a 
userspace perspective, the operation is like opening a file. The script or program should 
be prepared for failure in the event that a GPIO pin is busy.

COrreCt USe OF SUDO

It is tempting to perform some operations from a nonroot account, using sudo like this:
 
$ sudo echo 17 >/sys/class/gpio/export
-bash: /sys/class/gpio/export: Permission denied
 
this does not work because the I/O redirection is performed by the shell before the 
sudo command begins. Change to interactive mode first and then the operation will 
succeed:
 
$ sudo -i
# echo 17 >/sys/class/gpio/export 
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export
The export pseudo file allows you to request a GPIO pin from the kernel. For example, 
if you want to manipulate GPIO pin 17, you request it from the kernel by writing its pin 
number to the pseudo file:
 
$  sudo –i
#  echo 17  >/sys/class/gpio/export
 

After a successful run, list the directory /sys/class/gpio:
 
#  ls
export  gpio17  gpiochip0  unexport
#
 

A new subdirectory (a symlink to a directory, actually) named gpio17 appears. This 
tells you that the kernel has given up control of GPIO 17 and has provided you this file 
system object to manipulate. At this point, you can consider the GPIO 17 as available.

unexport
Some applications may require a GPIO pin for only a short time. When the application is 
finished with the pin, the application can release the pin back to the kernel. This is done 
by writing to the unexport pseudo file:
 
$  sudo  -i
#  echo  17  >/sys/class/gpio/unexport
 

After this command completes, the pseudo object gpio17 disappears from the /sys/
class/gpio directory. This confirms that the GPIO is now being managed by the driver 
and makes it impossible for userspace programs to mess with it (except for direct register 
access).

gpioX
Once you have a file system object like /sys/class/gpio/gpio17 to work with, you can 
configure it and perform I/O. The main objects that you’ll see are outlined in Table 10-5. 
The ones normally used by shell programs are simply as follows:

direction: To set the I/O direction

value: To read or write the I/O bit

active_low: To alter the sense of logic
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The values used for direction are worth expanding on:

Value Description

in GPIO becomes an input port.

out GPIO becomes an output port (with some prior state).

high GPIO becomes output, but in a 1 state (high).

low GPIO becomes output, but in a 0 state (low).

The high and low options look like convenience frills, but they’re not. Consider 
configuring an output and setting it to 1:
 
# echo out >/sys/class/gpio/gpio7/direction
# echo 1 >/sys/class/gpio/gpio7/value
 

Some time will pass before the execution of the second command takes place to 
establish the correct output level. If the GPIO output state was previously left in a zero 
state, the GPIO 7 pin will reflect a 0 (low) until the second command completes. For 
electronic devices operating in nanosecond time frames, this can be a problem.

Table 10-5. /sys/class/gpio/gpioX Objects

Object Type R/W Values Description

direction File R/W in Input pin

out Output pin

high Output & high

low Output & low

value File R/W 0 or 1 Read or write

edge File R/W None No edge

Rising Rising edge

Falling Falling edge

Both Rising or falling

active_low File R/W 0 Normal sense

1 Active low

uevent File

subsystem Symlink Symlink to self

power Directory R
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To provide glitch-free configuration, the following can be done instead:
 
# echo high >/sys/class/gpio/gpio7/direction
 

This way, the driver takes the necessary steps to establish the correct output level 
prior to making the pin an output.

The settings of the file named edge affect how a C program (for example) would 
process poll(2) on the file named value (reading). A poll(2) system call could block the 
execution of the program until the required event occurred (like a rising edge).

Active Low
Sometimes it is desirable to have the logic inverted for the GPIO pin being used. For 
example, when driving an LED in the circuit configuration of Figure 10-5, a logic low is 
required to light the LED.

Value Description

0 Noninverted logic

1 Inverted logic

Inverting the logic allows you to light the LED with a logic 1:
 
# echo 1 >/sys/class/gpio/gpio7/active_low
# echo 1 >/sys/class/gpio/gpio7/value
 

Conversely, if you don’t want inverted logic, you should be certain to establish that 
by writing a 0:
 
# echo 0 >/sys/class/gpio/gpio7/active_low

Chip Level
You will also notice the presence of a subdirectory named gpiochipN in /sys/class/
gpio, where N is a numeric digit. The following main pseudo files exist within that 
directory:

base: The value read should be the same value N, which is the 
first GPIO managed by this chip.

label: The label (for example, bcm2708_gpio) of the chip, 
which is not necessarily unique. Used for diagnostic purposes.

ngpio: The value read indicates how many GPIOs this chip 
manages, starting with the value read from base.
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GPIO Tester
If you decided to build yourself a prototype board with the Raspberry Pi mounted 
on it, you may find this simple shell script useful for checking the wiring of the GPIO 
breakout clips. Or perhaps you just want to verify that the connection brought out to 
the breadboard is the correct one. Simply supply the GPIO pin number that you want to 
blink, on the command line:
 
$ cat ./gp
#!/bin/bash
 
GPIO="$1"
SYS=/sys/class/gpio
DEV=/sys/class/gpio/gpio$GPIO
 
if [ ! −d $DEV ] ; then
    # Make pin visible
    echo $GPIO >$SYS/export
fi
 
# Set pin to output
echo out >$DEV/direction
 
function put() {
    # Set value of pin (1 or 0)
    echo $1 >$DEV/value
}
 
while true ; do
    put 1
    echo "GPIO $GPIO: on"
    sleep 1
    put 0
    echo "GPIO $GPIO: off $(date)"
    sleep 1
done
 
# End
 

To exercise GPIO 25 (GEN6), use this command (project file scripts/gp):
 
# ./gp 25
 

When testing with an LED and alligator clip lead, ground yourself to the ground pin 
first (or better still, a good ground like a water tap). Static electricity can be especially bad 
in the winter months. It not only can cause your Pi to reset but also can inflict internal 
damage. After discharging yourself to the ground pin, apply the lead and allow time 
enough for 1-second-on and 1-second-off events.
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Note ■  Cats are especially bad for static electricity.

GPIO Input Test
To test out the GPIO input capability, a simple script is presented next (and is available 
in the scripts subdirectory as a file named input). By default, it assumes 0 for the active 
low setting, meaning that normal logic applies to the input values. If, on the other hand, 
a 1 is used, inverted logic will be applied. Using the script named input, apply one of the 
following commands to start it (^C to end it):
 
# ./input 0    # Normal "active high" logic
. . .
# ./input 1    # Use active low logic
 

The script, of course, can be modified, but as listed, it reads an input on GPIO 25 
(GEN6) and presents what it has read to GPIO 24 (GEN5). It additionally reports what has 
been read to standard output. If the output (GPIO 24) is wired to an LED, the input status 
will be visible in the LED (use Figure 10-6 as a guide for wiring).

The script has its limitations, one of which is that the sleep(1) command is used. 
This causes it to have a somewhat sluggish response. If you don’t like that, you can 
comment out the else and sleep commands. As a consequence, it will hog the CPU, 
however, but be more responsive.
 
#!/bin/bash
 
ALO="${1:−0}"  # 1=active low, else 0
INP=25         # Read from GPIO 25 (GEN6)
OUT=24         # Write t o GPIO 24 (GEN5)
 
set −eu
trap "close_all" 0
 
function close_all() {
  close $INP
  close $OUT
}
function open() { # pin direction
  dev=$SYS/gpio$1
  if [ ! −d $dev ] ; then
    echo $1 >$SYS/export
  fi
  echo $2 >$dev/direction
  echo none >$dev/edge
  echo $ALO >$dev/active_low
}
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function close() { # pin
  echo $1 >$SYS/unexport
}
function put() { # pin value
  echo $2 >$SYS/gpio$1/value
}
function get() { # pin
  read BIT <$SYS/gpio$1/value
  echo $BIT
}
count=0
SYS=/sys/class/gpio
 
open $INP in
open $OUT out
put $OUT 1
LBIT=2
 
while true ; do
  RBIT=$(get $INP)
  if [ $RBIT −ne $LBIT ] ; then
    put $OUT $RBIT
    printf "%04d Status : %d\n" $count $RBIT
    LBIT=$RBIT
    let count=count+1
  else
    sleep 1
  fi
done
 
# End
 

The following is an example session:
 
# ./input
0000 Status : 0
0001 Status : 1
0002 Status : 0
0003 Status : 1
^C
#
 

When GPIO 25 is grounded, 0 should be read, as reported in line 0000 of the 
example. If you then apply a high (for example, from the +3.3 V supply), a 1 should be 
reported.
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Floating Potentials
The beginning student may be puzzled about “glitches” seen by some GPIO inputs (28 or 
29). When a GPIO input without a pull-up resistor is unattached, the line can “float,” or 
change over time, due to static electrical buildup. Unless a pull-up or pull-down resistor 
is attached (or configured), the pin can assume intermediate voltages. A voltage in the 
range of V

IL
 = 0.8 V to V

IH
 = 1.3 V is ambiguous to the Pi. Input voltages in this range may 

read randomly as 1s or 0s.

Caution ■  If you are using a loose wire or alligator clip to apply high or low signals  
to an input GpIO pin, be very careful to avoid static electricity, which can cause damage.  
Use a ground strap or hold onto the pi’s ground to bleed any static away, while changing 
connections. Static electricity may also cause your raspberry pi to reset. a real ground,  
like a water tap, is best for bleeding off static.

When using a button or switch, for example, use a pull-up resistor to +3.3 V (or 
configure the SoC to use one). In this manner, high is immediately seen by the input 
when the switch or button is temporarily unconnected.

Note ■  a switch is temporarily disconnected while changing its poles.

Reading Events
One of the shortcomings of the input script is that it must poll the input pin’s value 
continuously, to see if the value has changed. In a multiprocessing environment like 
Linux, it is rude to burn the CPU like this (hence the compromise with the sleep 
command). A better design would have the program wait for a change on the input pin, 
allowing other processes to use the CPU while it waits.

The GPIO driver within the kernel is, in fact, able to do that, though not usable by 
shell commands. The C program evinput.c is an example program that takes advantage 
of this capability and is presented next. It uses the poll(2) system call to accomplish this. 
The basic procedure used is this:

1. The GPIO pin X is configured for input.

2. The value of /sys/class/gpio/gpioX/edge has been 
configured for the edge(s) to be reported (see Table 10-5).

3. When querying the input pin, the open file descriptor for /
sys/class/gpio/gpioX/value is provided to the poll(2) call 
(line 111).
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4. The time-out is specified as –1 in argument 3, so poll(2) will 
wait forever, if necessary.

5. When there is new data for the GPIO input, poll(2) returns 
and rc will be greater than zero, breaking out of the loop.

6. The program must rewind to the beginning of the pseudo file 
with lseek(2) (line 118).

7. Finally, the text is read from the value file in line 119.

Step 6 can be omitted if you only need notification. However, to read the correct data, 
a rewind to the start of the pseudo file is required.

The program shown also checks whether the signal handler was called. If it sees that 
variable is_signaled has been set, the routine gpio_poll() returns –1 to indicate to the 
caller that a program exit is needed (lines 112 to 113).

Test Run
A test was performed using a GPIO output pin (27) wired to the input pin (17). In one 
session, GPIO output pin 27 was changed from 0 to 1 and back. The events were captured 
in the other session, running ./evinput.

Note ■  If the reader compiles the programs using the included makefile for each  
program, the programs are automatically built to use setuid root. Doing this allows them 
to run with root privileges, without needing to use the sudo command.

The following is a session output obtained from the ./evinput run. The output 
pauses after reporting the first line (line 4). Following that, new lines appear whenever 
the input pins change state.
 
1  $ ./evinput 17
2  Monitoring for GPIO input changes:
3
4  GPIO 17 changed: 0
5  GPIO 17 changed: 1
6  GPIO 17 changed: 0
7  GPIO 17 changed: 1
8  ^C
9  $
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Input GPIO pin 17 was changed from this separate session, using output GPIO 27 
(recall that it is wired to GPIO 17 for this test):
 
1  # cd /sys/class/gpio
2  # echo 27 >export
3  # ls
4  export gpio27 gpiochip0 unexport
5  # cd gpio27
6  # ls
7  active_low direction edge power subsystem uevent value
8  # echo out >direction
9  # echo 0 >value
10 # # s t a r t e d . / evinput 17 he r e . . .
11 # echo 1 >value
12 # echo 0 >value
13 # echo 1 >value
 

From the sessions shown, GPIO 17 was set low in the preceding line 9. After that, 
the ./evinput program was started and the first line is reported (line 4 in the evinput 
session). As the input pin changed state in lines 11+ (in the preceding code), the input 
events were being reported in lines 5+ (evinput session).

Checking the system with the top command, you’ll see that ./evinput does not 
consume CPU. Yet the program is indeed responsive to the input change events. This 
leaves the CPU for all of your other processes that you may need to run.
 
1   / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2   ∗  evinput.c : Event driven GPIO input
3   ∗
4   ∗ ./evinput gpio#
5   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
6
7   #include <stdio.h>
8   #include <stdlib.h>
9   #include <fcntl.h>
10  #include <unistd.h>
11  #include <string.h>
12  #include <errno.h>
13  #include <signal.h>
14  #include <assert.h>
15  #include <sys/poll.h>
16
17  static int gpio_inpin = –1; /∗ GPIO input pin ∗/
18  static int is_signaled = 0; /∗ Exit program if signaled ∗/
19
20  typedef enum {
21          gp_export=0,        /∗ /sys/class/gpio/export ∗/
22          gp_unexport,        /∗ /sys/class/gpio/unexport ∗/
23          gp_direction,       /∗ /sys/class/gpio%d/direction ∗/
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24          gp_edge,            /∗ /sys/class/gpio%d/edge ∗/
25          gp_value            /∗ /sys/class/gpio%d/value ∗/
26  } gpio_path_t;
27
28  /∗
29   ∗ Internal : Create a pathname for type in buf.
30   ∗ /
31  static const char ∗
32  gpio_setpath(int pin, gpio_path_t type, char ∗buf,
      unsigned bufsiz) {
33          static const char ∗ paths[] = {
34                  "export", "unexport", "gpio%d/direction",
35                  "gpio%d/edge", "gpio%d/value"};
36          int slen;
37
38          strncpy (buf, "/sys/class/gpio/", bufsiz);
39          bufsiz –= (slen = strlen(buf));
40          snprintf(buf+slen, bufsiz, paths[type], pin);
41          return buf;
42  }
43
44  /∗
45   ∗ Open /sys/class/gpio%d/value for edge detection :
46   ∗/
47  static int
48  gpio_open_edge(int pin, const char ∗ edge)  {
49          char buf [128];
50          FILE ∗f;
51          int fd;
52
53          /∗ Export pin : /sys/class/gpio/export ∗/
54          gpio_setpath(pin, gp_export, buf, size of buf);
55          f = fopen(buf, "w");
56          assert(f);
57          fprintf(f,"%d\n", pin);
58          fclose(f);
59
60          /∗ Direction :  /sys/class/gpio%d/direction ∗/
61          gpio_setpath(pin, gp_direction, buf, size of buf);
62          f = fopen(buf, "w");
63          assert(f);
64          fprintf(f,"in\n");
65          fclose(f);
66
67          /∗ Edge :  /sys/class/gpio%d/edge ∗/
68          gpio_setpath(pin, gp_edge, buf, size of buf);
69          f = fopen (buf, "w");
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70          assert(f);
71          fprintf(f,"% s\n", edge);
72          fclose(f);
73
74          /∗ Value :  /sys/class/gpio%d/value ∗/
75          gpio_setpath(pin, gp_value, buf, size of buf);
76          fd = open(buf,O_RDWR);
77          return fd;
78  }
79
80  /∗
81   ∗  Close (unexport) GPIO pin :
82   ∗ /
83  static void
84  gpio_close(int pin) {
85          char buf[128];
86          FILE ∗f;
87
88          / ∗ Unexport :   /sys/class/gpio/unexport ∗/
89          gpio_setpath(pin, gp_unexport, buf, size of buf);
90          f = fopen(buf, "w");
91          assert(f);
92          fprintf(f,"%d\n", pin);
93          fclose(f);
94  }
95
96  /∗
97   ∗ This routine will block until the open GPIO pin has changed
98   ∗ value. This pin should be connected to the MCP23017 /INTA
99   ∗ pin.
100 ∗/
101 static int
102 gpio_poll(int fd) {
103         struct pollfd polls;
104         char buf [32];
105         int rc, n;
106
107         polls.fd = fd;  /∗ /sys/class/gpio17/value ∗/
108         polls.events = POLLPRI;     /∗ Exceptions ∗/
109
110         do     {
111                  rc = poll(&polls, 1, –1);  /∗ Block ∗/
112                  if ( is_signaled )
113                          return –1; /∗ Exit if ^C received ∗/
114         } while  (  rc < 0 && errno == EINTR );
115
116         assert (rc > 0);
117
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118         lseek(fd, 0, SEEK_SET);
119         n = read(fd, buf, size of buf);    /∗ Read value ∗/
120         assert(n > 0);
121         buf[n] = 0;
122
123         rc = sscanf(buf,"% d",&n);
124         assert(rc==1);
125         return n;  /∗ Return value ∗/
126 }
127
128 /∗
129  ∗ Signal handler to quit the program  :
130  ∗ /
131 static void
132 sigint_handler(int signo) {
133         is_signaled = 1; /∗ Signal to exit program ∗/
134 }
135
136 /∗
137  ∗ Main program :
138  ∗/
139 int
140 main(int argc, char ∗∗ argv)  {
141          int fd, v;
142
143          /∗
144           ∗ Get GPIO input pin to use :
145           ∗/
146          if (argc != 2) {
147 usage:     fprintf(stderr,"Usage: %s <gpio_in_pin>\n",
                argv[0]);
148            return 1;
149          }
150          if ( sscanf(argv[1], "%d",&gpio_inpin) != 1 )
151                 goto usage;
152          if ( gpio_inpin < 0 || gpio_inpin >= 32 )
153                 goto usage;
154
155          signal(SIGINT,sigint_handler); /∗ Trap on SIGINT ∗/
156          fd = gpio_open_edge(gpio_inpin,"both");
157
158          puts("Monitoring for GPIO input changes: \n");
159
160          while ((v=gpio_poll(fd)) >= 0 ) {
                /∗ Block until input changes ∗/
161             printf("GPIO %d changed: %d\n",gpio_inpin,
                 v);
162          } while ( !is_signaled ); /∗ Quit if ^C’ d ∗/
163
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164          putchar(’\n’);
165          close(fd);                /∗ Close gpio%d/value ∗/
166          gpio_close(gpio_inpin);   /∗ Unexport gpio ∗/
167          return 0;
168 }
169
170 /∗  End event.c ∗/

Direct Register Access
It is possible to access the GPIO registers directly. The module gpio_io.c shows the 
code that can be used for this. It requires the program to invoke gpio_init() upon 
startup, which then makes the registers available. The code as presented is intended to 
be #included into the module using it. (Normally, it would be compiled as a separate 
module.) The API made available is outlined in the following subsections.

These routines are used in several examples and projects within this book, including 
the following:

pullup: Change the pull-up register setting.

bipolar: Drive a bipolar stepper motor (Chapter 7 of 
Experimenting with Raspberry Pi [Apress, 2014]).

rtscts: Change the ALT function (Chapter 9).

valt: View ALT function settings (subdir valt in source code).

unipolar: Drive a unipolar stepper motor (Chapter 6 of 
Experimenting with Raspberry Pi [Apress, 2014]).

dht11: Humidity and temperature sensor (Chapter 1 of 
Experimenting with Raspberry Pi [Apress, 2014]).

pwm: Pulse width modulation (Chapter 9 of Experimenting with 
Raspberry Pi [Apress, 2014]).

gpio_init()
This function call opens access to the GPIO registers. This will require root privileges, which 
is why many programs in this book were compiled with setuid root. The operation of this 
routine is to gain access to the physical memory space, so that the GPIO registers can be 
accessed. This procedure is covered in the “Memory Mapping” section of Chapter 4.
 
void gpio_init(void);
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gpio_config()
This function call allows the caller to configure a pin as input or output:
 
typedef enum {
    Input = 0,      /∗ GPIO is an Input ∗/
    Output          /∗ GPIO is an Output ∗/
} direction_t;
 
void gpio_config(int gpio,direction_t output);
 

The arguments are as follows:

gpio: The GPIO pin to be configured

output: The value Input or Output

gpio_write()
This function permits the caller to set the output GPIO pin to a 1 or a 0.
 
void gpio_write(int gpio,int bit);
 

The arguments are as follows:

gpio: The GPIO pin to write to

bit: The value of the output bit (1 or 0)

Only the least significant bit of argument bit is used.

gpio_read()
This function reads the requested GPIO pin and returns the bit (0 or 1).
 
int gpio_read(int gpio);
 

The single argument gpio is used to specify the GPIO pin to be read.
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gpio_io.c
The following pages show the program listing for gpio_io.c:
 
1   /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2    ∗  gpio_io.c :     GPIO Access Code
3    ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
4
5   #define BCM2708_PERI_BASE 0x20000000
6   #define GPIO_BASE (BCM2708_PERI_BASE + 0x200000)
7   #define BLOCK_SIZE (4∗1024)
8
9   /∗ GPIO setup macros. Always use INP_GPIO (x) before using OUT_GPIO(x)
10     or SET_GPIO_ALT(x, y )  ∗/
11  #define INP_GPIO(g) \
         ∗(ugpio + ((g)/10)) &= ~(7 <<(((g) % 10)∗3))
12  #define OUT_GPIO(g)
         ∗(ugpio + ((g)/10)) |=  (1 <<(((g) % 10)∗3))
13  #define SET_GPIO_ALT(g,a)  \
14       ∗(ugpio + (((g)/10))) |= (((a) <=3?(a) + 4 : \
          (a)==4?3:2)<<(((g)%10)∗3))
15
16  #define  GPIO_SET ∗(ugpio+7)  /∗ sets bits ∗/
17  #define  GPIO_CLR ∗(ugpio+10) /∗ clears bits ∗/
18  #define  GPIO_GET ∗(ugpio+13) /∗ gets all GPIO input levels  ∗/
19
20  typedef enum {
21      Input = 0,       /∗ GPIO is an Input∗/
22      Output           /∗ GPIO is an Output∗/
23  } direction_t;
24
25  static volatile unsigned ∗ugpio;
26
27  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28   ∗ Perform initialization to access GPIO registers:
29   ∗ Sets up pointer ugpio.
30   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
31  static void
32  gpio_init() {
33      int fd;
34      char ∗map;
35      /∗ Needs root access ∗/
36      fd = open("/dev/mem",O_RDWR|O_SYNC);
37      if ( fd < 0 ) {
38          perror("Opening/dev/mem");
39          exit(1);
40      }
41



Chapter 10 ■ GpIO

156

42      map = (char ∗ ) mmap(
43          NULL,                       /∗ Any address ∗/
44          BLOCK_SIZE,                 /∗ # of bytes ∗/
45          PROT_READ| PROT_WRITE,
46          MAP_SHARED,                 /∗ Shared ∗/
47          fd,                         /∗ /dev/mem ∗/
48          GPIO_BASE                   /∗ Offset to GPIO ∗/
49      );
50
51      if ( (long)map == 1L )  {
52          perror("mmap(/dev/mem)");
53          exit(1);
54      }
55
56      close(fd);
57      ugpio = (volatile unsigned ∗)map;
58  }
59
60  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61   ∗ Configure GPIO as Input or Output
62   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
63  static inline void
64  gpio_config (int gpio, direction_t output) {
65      INP_GPIO (gpio);
66      if ( output ) {
67          OUT_GPIO(gpio);
68      }
69  }
70
71  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72   ∗ Write a bit to the GPIO pin
73   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
74  static inline void
75  gpio_write(int gpio, int bit) {
76      unsigned sel = 1  << gpio;
77
78      if ( bit ) {
79          GPIO_SET = sel;
80      } else  {
81          GPIO_CLR = sel;
82      }
83  }
84
85  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
86   ∗ Read a bit from a GPIO pin
87   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
88  static inline int
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89  gpio_read(int gpio)  {
90      unsigned sel = 1 << gpio;
91
92      return (GPIO_GET) & sel ? 1 : 0 ;
93  }
94
95  /∗ End gpio_io.c ∗/

GPIO Transistor Driver
The GPIO pins on the Pi are often going to be pressed into driving something in the 
outside world. GPIO pins 28 to 31 can drive up to 16 mA, maximum. The remaining 
GPIO pins are configured to drive up to 8 mA. These are fairly weak interfaces to the 
outside world.

Sometimes all that is needed is a simple one-transistor buffer. The 2N2222A 
transistor is cheap and drives a fair amount of current. Figure 10-8 shows a simple driver 
circuit attached to a GPIO output pin.

Figure 10-8. 2N2222A driver

The GPIO output driver sees only a diode-like path to ground through the base of 
transistor Q

1
. Resistor R

1
 is chosen to limit that current.

The resistor shown as Rc in the figure represents the load, like a high-current LED in 
series with a current-limiting resistor. Alternatively, it may be a resistor chosen so that the 
Vout represents a stiffer output voltage.

In the diagram, the resistor R
c
 is connected to the +5 V power supply. This is safe 

because current cannot flow from the collector into the base of Q
1
. This prevents 5 V 

from flowing into the GPIO pin (that junction is reversed biased). Thus Q
1
 allows you to 
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convert the 3.3 V GPIO output into a 5 V TTL signal, for example. The 2N2222A transistor 
has an absolute maximum V

CE
 of 30 V. This allows you to drive even higher voltage loads, 

provided that you stay within the transistor’s current and power ratings.

Driver Design
The transistor driver circuit is limited by the power-handling capability of Q

1
 and the 

maximum collector current. Looking at the datasheet, the maximum power listed for Q
1
 

is 0.5 W at 25°C. When the transistor is turned on (saturated), the voltage across Q
1
 (V

CE
) 

is between 0.3 V and 1 V (see V
CE(sat)

 in the datasheet). The remainder of the voltage is 
developed across the load. If we assume the worst case of 1 V for V

CE
 (leaving 4 V across 

the load), we can compute the maximum current for I
C
:

I
P

V

A

C
Q

CE

=

=

=

1

1

0 3
3 3

.
.

Clearly, this calculated current exceeds the listed absolute maximum current I
C
 of 

600 mA. So we use the maximum current for I
C
 = 600 mA instead. For safety, we use the 

minimum of these maximum ratings. While this transistor is clearly capable of driving up 
to 600 mA of current, let’s design our driver for a modest current flow of 100 mA.

The next thing to check is the H
FE

 of the part. The parameter value required is the 
lowest H

FE
 value for the amount of collector current flowing (H

FE
 drops with increasing  

I
C 

current). A STMicroelectronics datasheet shows its 2N2222A part as having an H
FE

 = 40,  
I

C
 = 500 mA, with V

CE
 = 10 V . They also have a more favorable H

FE
 value of 100, for 150 mA,  

but it is best to err on the side of safety. We can probably assume a safe compromise of 
H

FE
 = 50.

The H
FE

 parameter is important because it affects how much current is required to 
drive Q

1
’s base. The input base current is calculated as follows:

I
I

H
mA

mA

B
C

FE

=

=

=

100

50
2

This value tells us that the GPIO pin will need to supply up to 2 mA of drive into Q
1
’s 

base. With 2 mA of drive, Q
1
 will be able to conduct up to 100 mA in the collector circuit.  

A current of 2 mA is easily accommodated by any GPIO pin. Note that if you were to 
design closer to the design limits of this transistor (500 mA in this example), you should 
probably allow an additional 10% of base current “overdrive” to make certain that the 
transistor goes into saturation.
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Current flow into the base of Q
1
 creates a voltage drop of V

BE
 = 0.7 V, from the input 

base lead to ground. So to calculate the resistor value R
1
 we take the V

R1
 divided by the 

current. The highest voltage coming from GPIO is going to be slightly less than the 3.3 V 
power supply rail. It is safe to assume that GPIO

HIGH
 = 3 V. The voltage appearing across R

1
 

is thus GPIO
HIGH

–V
BE

.

R
GPIO V

I
HIGH BE

B
1

3 0 7

0 002
1 150

=
-

=
-

=

.

.
, W

The nearest 10% standard resistor value is R
1
 = 1.2 kΩ. Using this resistor value as a 

check, let’s compute backward what our actual drive capability is from Q
1
. First we need 

to recompute I
B
 now that we know R

1
 :

I
GPIO V

R

mA

B
HIGH BE=

-

=
-

=

1

3 0 7

1200
1 9

.

.

This tells us that the GPIO output pin will not have to source more than 1.9 mA of 
current, using R

1
 = 1.2 kΩ. Now let’s calculate the maximum drive we can reliably expect 

in the collector circuit of Q
1
:

I I H

mA

C B FE=
=
=

´
0 0019 50
95

. .

Note ■  this discussion glibly avoids the effects of components being within ±10%  
tolerance.

This computes that the designed 2N2222A driver circuit is capable of driving up 
to 95 mA.
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To obtain even more performance out of that driver (if you need it), you could 
choose a resistor closer to the actual value desired (1150 Ω). It turns out that a 1% resistor 
can be had at exactly 1.15 kΩ:

I I H

mA

C B FE=
=
=

´
0 002 50
100

. .

Be careful that your design does not stress the transistor beyond its maximum ratings 
(power and current). You might be willing to risk the cheap transistor, but keep in mind 
that the poor little thing might be holding back a higher voltage (like a river dam). If the 
transistor is destroyed, the high voltage may come crashing into the base circuit and 
cause damage to the Pi’s GPIO pin. So be nice to Q1!

Substitution
You don’t have to use my choice of the 2N2222A transistor for driving a load. Substitute 
what you have or what you plan to order. Today’s DMMs can measure the transistor H

FE
, 

so that makes planning easier when using junk box parts.
Another critical factor in selecting a part is the power capability of the transistor. 

You should probably know exactly what that limit is, unless you are driving an extremely 
light load. Finally, it is important to know what the maximum voltage ratings are for the 
selected transistor, if you plan to drive voltages higher than 3 V. You need to be able to 
count on it holding back those higher voltages in the collector circuit to prevent damage 
to the Pi.

Inductive Loads
Inductive loads like relays and motors present a special problem. They generate a high 
reverse voltage when current is switched off or interrupted. When the relay coil is turned 
off, the magnetic field collapses around the coil of wire. This induces a high voltage, 
which can damage the Pi (and can also provide a mild electric shock).

Electric motors exhibit a similar problem. As the DC current sparks and stutters 
at the commutator inside the motor, high reverse voltage spikes are sent back into the 
driving circuit. This is due to the magnetic field collapsing around the motor windings.

Consequently, inductive loads need a reverse-biased diode across the load to short 
out any induced currents. The diode conducts only when the back electromotive force 
(EMF) is generated by the inductive load.

Figure 10-9 shows diode D
1
 reverse biased across the relay coil winding L

1
 (or motor). 

The diode bleeds away any reverse current that might be generated. Use a diode with 
sufficient current-carrying capability (matching at least the current in Q

1
).
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Since there is no current-limiting resistor used in series with L
1
 , whether motor 

or relay, make sure that no more current than I
Cmax

 will flow. For relays, you need a coil 
resistance greater than or equal to 50 Ω, when driven from approximately 5 V. Otherwise, 
you risk burning out driver Q

1
 (assuming the 2N2222A with its power limit of 0.5 watts 

at 5 V). You can drive lower resistance coils, if you designed your driver to handle the 
additional current. For example, a 500 mA driver can handle coil resistances as low as 10 
ohms (at 5 V).

The 2N2222A transistor is probably suitable for only the smallest of electric motors. 
Depending on how it is used, a motor can stall and thus greatly increase its current 
demands. Motors also have high startup currents. If the motor is started and stopped 
frequently, the driving transistor may be overworked.

Driver Summary
This section on the transistor driver should not be thought of as your only choice in 
driver solutions. It was presented because it is simple and cheap and can fill the need for 
many small loads, like high-current LEDs or panel lightbulbs. Simple and cheap may be 
essential for robot building when many drivers are required.

While students may use the Gertboard for labs, we still need to provide a substitute 
when the Raspberry Pi is integrated into something that was built (like a robot). It might 
be wise to stock up on a few good transistor types for this purpose.

Figure 10-9. Driver for inductive load
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Utility gpio
For this book, I have avoided using instances of “magic package X.” However, the 
wiringPi project is popular enough that no chapter on GPIO would be complete without 
mentioning it. The wiringPi project provides a handy utility for displaying and changing 
GPIO functionality. The package can be downloaded from here:
 
https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install
 

This page lists instructions for obtaining, compiling, and installing the package. 
Once installed, the gpio command is available:
 
$ gpio −h
gpio : Usage : gpio −v
       gpio −h
       gpio [−g ] <read/write /wb/pwm/ clock/mode> ...
       gpio [−p ] <read/write /wb> ...
       gpio readall
       gpio unexportall/exports ...
       gpio export/edge/unexport ...
       gpio drive <group> <value>
       gpio pwm−bal/pwm−ms
       gpio pwmr <range>
       gpio pwmc <divider>
       gpio load spi / i2c
       gpio gbr <channel>
       gpio gbw <channel> <value>
 

There are many options and functions within this utility. I’ll just demonstrate some 
quick examples of the most useful ones. Once installed, the full details of the utility can be 
found by this command:
 
$ man 1 gpio

https://projects.drogon.net/raspberry-pi/wiringpi/download-and-install
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Displaying GPIO Settings
The following command can be used to display your GPIO settings:
 
$ gpio readall
+----------+--------+---------+-------+-------+
| wiringPi |  GPIO  |   Name  |  Mode |  Value|
+----------+--------+---------+-------+-------+
|     0    |   17   |  GPIO 0 |   IN  |  High |
|     1    |   18   |  GPIO 1 |   IN  |  Low  |
|     2    |   27   |  GPIO 2 |   OUT |  Low  |
|     3    |   22   |  GPIO 3 |   IN  |  Low  |
|     4    |   23   |  GPIO 4 |   IN  |  Low  |
|     5    |   24   |  GPIO 5 |   IN  |  Low  |
|     6    |   25   |  GPIO 6 |   IN  |  Low  |
|     7    |    4   |  GPIO 7 |   IN  |  Low  |
|     8    |    2   |  SDA    |  ALT0 |  High |
|     9    |    3   |  SCL    |  ALT0 |  High |
|    10    |    8   |  CE0    |   IN  |  Low  |
|    11    |    7   |  CE1    |   IN  |  Low  |
|    12    |   10   |  MOSI   |   IN  |  Low  |
|    13    |    9   |  MISO   |   IN  |  Low  |
|    14    |   11   |  SCLK   |   IN  |  Low  |
|    15    |   14   |  TxD    |  ALT0 |  High |
|    16    |   15   |  RxD    |  ALT0 |  High |
|    17    |   28   |  GPIO8  |   IN  |  Low  |
|    18    |   29   |  GPIO9  |   IN  |  Low  |
|    19    |   30   |  GPIO10 |   IN  |  Low  |
|    20    |   31   |  GPIO11 |   IN  |  Low  |
+----------+--------+---------+-------+-------+

Reading GPIO
As a convenience, the gpio command allows you to read values from the command line:
 
$ gpio export 27 in
$ gpio −g read 27
0
$ gpio unexportall
 

Use the -g option to specify that the pin number is a GPIO pin number. (I found the 
need for the -g option irksome.)
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Writing GPIO
Like the read function, the gpio command can write values:
$ gpio export 27 out
$ gpio −g write 27 1
$ gpio −g read 27
1
$ gpio −g write 27 0
$ gpio −g read 27
0
$ gpio unexportall
 

Use the -g option to specify GPIO pin numbers for the read/write commands.

Modify Drive Levels
The gpio command also enables you to alter the drive levels of the three available pads. 
The following changes pad 1 to drive level 6 (from 7):
 
$ gpio drive 1 6
 

Use the pads program shown earlier in this chapter to verify the current settings:
 
$ gpio drive 1 6
$ ./pads
07E1002C : 0000001B 1 1 3
07E10030 : 0000001E 1 1 6
07E10034 : 0000001B 1 1 3
 

This kind of change should not be made lightly. If you don’t have a sound reason to 
change these drive levels, it is recommended that you don’t.
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Chapter 11

1-Wire Driver

The 1-Wire protocol was developed by Dallas Semiconductor Corp. initially for the 
iButton.37 This communication protocol was attractive enough to be applied to other 
devices and soon adopted by other manufacturers. This chapter provides an overview of 
the 1-Wire protocol and how it is supported in the Raspberry Pi.

1-Wire Line and Power
The 1-Wire protocol actually uses two wires:

•	 Data: The single wire used for data communication

•	 Ground: The ground or “return” wire

The 1-Wire protocol was designed for communication with low–data content devices 
like temperature sensors. It provides for low-cost remote sensing by supplying power 
over the same wire used for data communications. Each sensor can accept power from 
the data line while the data line is in the high state (which is also the line’s idle state). The 
small amount of power that is siphoned off charges the chip’s internal capacitor (usually 
about 800 pF).37

When the data line is active (going low), the sensor chips continue to run off of their 
internal capacitors (in parasitic mode). Data communications cause the data line to 
fluctuate between low and high. So whenever the line level returns high again, even for an 
instant, the capacitor recharges.

The device also provides an optional V
DD

 pin, allowing power to be supplied to it 
directly. This is sometimes used when parasitic mode doesn’t work well enough. This, of 
course, requires an added wire, which adds to the cost of the circuit. We’ll be focusing on 
the parasitic mode in this chapter. In parasitic mode, V

DD
 is connected to the ground.

Line Driving
The data line is driven by open collector transistors in the master and slave devices.  
The line is held high by a pull-up resistor when the driver transistors are all in the Off 
state. To initiate a signal, one transistor turns on and thus pulls the line down to  
ground potential.
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Figure 11-1 shows a simplified schematic of the master attached to the bus. Some 
voltage V (typically, +5 V) is applied to the 1-Wire bus through the pull-up resistor R

pullup
. 

When the transistor M
2
 is in the Off state, the voltage on the bus remains high because of 

the pull-up resistor. However, when the master device activates transistor M
2
, current is 

caused to flow from the bus to the ground, acting like a signal short-circuit. Slave devices 
attached to the bus will see a voltage near zero. 

Figure 11-1. 1-Wire driver circuit

Note ■  the raspbian Linux 1-Wire bus uses GpiO 4 (GpCLK0) pin p1-07.

Likewise, when a slave is signaled to respond, the master listens to the bus while 
the slave activates its driving transistor. Whenever all driving transistors are off, the bus 
returns to the high idle state.

The master can request that all slave devices reset. After the master has made this 
request known, it relinquishes the bus and allows it to return to the high state. All slave 
devices that are connected to the bus respond by bringing the line low after a short 
pause. Multiple slaves will bring the line low at the same time, but this is permitted. This 
informs the master that at least one slave device is attached to the bus. Additionally, this 
procedure puts all slaves into a known reset state.

Master and Slave
The master device is always in control of the 1-Wire bus. Slaves speak only to the master, 
and only when requested. There is never slave-to-slave device communication.

If the master finds that communication becomes difficult for some reason, it may 
force a bus reset. This corrects for an errant slave device that might be jabbering on the 
line.
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Protocol
This section presents a simplistic introduction to the 1-Wire communication protocol. 
Knowing something about how the signaling works is not only interesting, but may be 
helpful for troubleshooting. More information is available on the Internet.38

Reset
Figure 11-2 provides a simplified timing diagram of the reset procedure for the 1-Wire 
protocol. When the master driver begins, it must reset the 1-Wire bus to put all the slave 
devices into a known state.

Figure 11-2. 1-Wire reset protocol

For reset, the bus is brought low and held there for approximately 480 msec. Then 
the bus is released, and the pull-up resistor brings it high again. After a short time, slave 
devices connected to the bus start responding by bringing the line low and holding it for 
a time. Several slaves can participate in this at the same time. The master samples the bus 
at around 70 msec after it releases the bus. If it finds the line low, it knows that there is at 
least one slave connected and responding.

Soon after the master sampling point, all slaves release the bus again and go into a 
listening state. They do not respond again until the master specifically addresses a slave 
device. For simplicity, we’ll omit the discovery protocol used.

Note ■  each slave has a guaranteed unique address.

Data I/O
The data protocol is shown in Figure 11-3. Whether writing a 0 or 1 bit, the sending device 
brings the bus line low. This announces the start of a data bit.
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When a 0 is being transmitted, the line is held low for approximately 60 msec. Then 
the bus is released and allowed to return high. When a 1 bit is being transmitted, the line 
is held low for only about 6 msec before releasing the bus. Another data bit is not begun 
until 70 msec after the start of the previous bit. This leaves a guard time of 10 msec between 
bits. The receiver then has ample time to process the bit and gains some signal noise 
immunity.

The receiver notices a data bit is coming when the line drops low. It then starts a 
timer and samples the bus at approximately 15 msec. If the bus is still in the low state, a 0 
data bit is registered. Otherwise, the data bit is interpreted as a 1. Having registered a data 
bit, the receiver then waits further until the line returns high (in the case of a 0 bit). The 
receiver remains idle until it notices the line going low again, announcing the start of the 
next bit.

The sender can be either the master or the slave, but the master always has control. 
Slaves do not write data to the bus unless the master has specifically requested it.

Slave Support
Table 11-1 lists the slave devices that are supported by Raspbian Linux. The module 
names listed are found in the kernel source directory arch/arm/machbcm2708/slave.

Figure 11-3. 1-Wire read/write of 1 data bit
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Reading Temperature
The support for the usual temperature sensors is found in the kernel module w1_therm. 
When you first boot your Raspbian Linux, that module may not be loaded. You can check 
for it with the lsmod command:
 
$ lsmod
Module             Size   Used by
snd_bcm2835       12808   1
snd_pcm           74834   1 snd_bcm2835
snd_seq           52536   0
snd_timer         19698   2 snd_seq, snd_pcm
snd_seq_device     6300   1 snd_seq
snd               52489   7 snd_seq_device , snd_timer ,
                            snd_seq , snd_pcm, snd_bcm2835
snd_page_alloc     4951   1 snd_pcm
 

The module w1_therm is not loaded according to the example. This module also 
depends on the driver module wire. Another thing you can check is the pseudo file 
system:
 
$ ls –l /sys/bus/w1
ls: cannot access /sys/bus/w1 : No such file or directory
 

Table 11-1. 1-Wire Slave Driver Support

Device Module Description

DS18S20 w1_therm.c Precision digital thermometer

DS18B20 Programmable resolution thermometer

DS1822 Econo digital thermometer

DS28EA00 9- to 12-bit digital thermometer with PIO

bq27000 w1_bq27000.c Highly accurate battery monitor

DS2408 w1_ds2408.c Eight-channel addressable switch

DS2423 w1_ds2423.c 4 KB RAM with counter

DS2431 w1_ds2431.c 1 KB EEPROM

DS2433 w1_ds2433.c 4 KB EEPROM

DS2760 w1_ds2760.c Precision Li+ battery monitor

DS2780 w1_ds2780.c Stand-alone fuel gauge
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Having not found the pathname /sys/bus/w1, we have confirmation that the device 
driver is not loaded.

Loading module w1_therm will bring in most of its module dependents:
 
$ sudo modprobe w1_therm
$ lsmod
Module                 Size   Used by
w1_therm               2705   0
wire                  23530   1 w1_therm
cn                     4649   1 wire
snd_bcm2835           12808   1
snd_pcm               74834   1 snd_bcm2835
...
 

After the wire module is loaded, you’ll see the /sys/bus/w1/devices directory. One 
more module is needed:
 
$ sudo modprobe w1_gpio
$ lsmod
Module                   Size   Used by
w1_gpio                  1283   0
w1_therm                 2705   0
wire                    23530   2 w1_therm,w1_gpio
cn                       4649   1 wire
snd_bcm2835             12808   1
...
$ cd /sys/bus/w1/devices
$ ls
w1_bus_master1
 

Once module w1_gpio is loaded, there is a bus master driver for GPIO pin 4 (the 
default GPIO for the 1-Wire bus) at the ready. The bus master makes its presence 
known by creating directory w1_bus_master1. Change to that directory and list it to see 
the associated pseudo files within it. Table 11-2 lists the initial set of pseudo files and 
symlinks found there.
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Bus Master
The bus master driver scans for new slave devices every 10 seconds (according to 
w1_master_timeout). File w1_master_attempts indicates how many scans have been 
performed to date. File w1_master_slave_count shows how many slaves have been 
detected out of a maximum of w1_master_max_slave_count. Reading w1_master_slaves 
provides a list of slaves found or not found.

The following is an example output session produced while two DS18B20 
temperature sensors were connected to the bus:
 
$ cd /sys/bus/w1/devices/w1_bus_master1
$ cat w1_master_slaves
28−00000478d75e
28−0000047931b5
$

Table 11-2. w1_bus_masterX Files

File Type Read Content

driver Symlink

power Directory

subsystem Symlink

uevent File DRIVER=w1_master_driver

w1_master_add File Write device ID xx-xxxxxxxxxxxx  
to add slave

w1_master_attempts File 88

w1_master_max_slave_count File 10

_master_name File w1_bus_master1

w1_master_pointer File 0xd7032148

w1_master_pullup File 1

w1_master_remove File Write device ID xx-xxxxxxxxxxxx to 
remove slave

w1_master_search File –1

w1_master_slave_count File 0

w1_master_slaves File Not found

w1_master_timeout File 10
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Slave Devices
Figure 11-4 shows the pinout of the Dallas DS18B20 slave device. This temperature sensor 
is typical of many 1-wire slave devices.

Figure 11-4. DS18B20 pin-out

Slave devices are identified by a pair of digits representing the product family, 
followed by a hyphen and serial number in hexadecimal. The ID 28-00000478d75e 
is an example. You might also want to try different devices, like the similar DS18S20. 
Figure 11-5 illustrates the DS18B20 attached to the Raspberry Pi.
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When things are working correctly, the bus master detects slave devices 
automatically as part of its periodic scan. If the device you’ve attached is not showing 
up within 10 seconds or so, you may want to try forcing it. You can force adding a slave 
device entry as follows:
 
# cd /sys/bus/w1/devices/w1_bus_master1
# echo 28−0000028f6667 >w1_master_add
 

Upon doing this, subdirectory 28-0000028f6667 will appear, at least until the 
driver gives up trying to communicate with it (the following line with the ellipsis  is 
abbreviated):
 
# ls –ltr  ./28–0000028f6667
total 0
–rw–r––r––  1   root  root  4096  Jan  30  18:56  uevent
lrwxrwxrwx  1   root  root     0  Jan  30  18:56   subsystem –> ../../../

bus/w1
–r––r––r––  1   root  root  4096  Jan  30  18:56  w1_slave
Drwxr–xr–x  2   root  root     0  Jan  30  18:56  powerr
–r––r––r––  1   root  root  4096  Jan  30  18:56  name
–r––r––r––  1   root  root  4096  Jan  30  18:56  id
lrwxrwxrwx  1   root  root     0  Jan  30  18:56   driver –> .../w1_ 

slave_driver
 

If you want to remove a slave device, you can use the w1_master_remove file. The 
device will reappear in 10 seconds or so (due to a scanning period), if the device is still 
physically connected to the bus.
 
# echo  28–0000028f6667 >w1_master_remove
 

Figure 11-5. 1-Wire with DS18B20 slave circuit
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The following example shows how two DS18B20 temperature sensors show up on 
the 1-Wire bus:
 
$ cd /sys/bus/w1/devices
$ ls
28−00000478d75e 28−0000047931b5 w1_bus_master1
$

Reading the Temperature
The slave device’s temperature can be read by reading its w1_slave pseudo file. In this 
example, we read two DS18B20 temperature sensors that are supposed to be accurate 
to ±0.5 °C. Reading these two sensors together should show fairly good agreement (they 
were in close proximity of each other):
 
$ cat 28−00000478d75e/w1_slave 28−0000047931b5/w1_slave
14 01 4b 46 7f ff 0c 10 b4 : crc=b4 YES
14 01 4b 46 7f ff 0c 10 b4 t=17250
14 01 4b 46 7f ff 0c 10 b4 : crc=b4 YES
14 01 4b 46 7f ff 0c 10 b4 t=17250
$
 

Each sensor brings back two lines of data from the device driver. We see that both 
sensors agree exactly—that the temperature is 17.250°C. This speaks well for their 
accuracy. The DS18B20 device also supports a wide temperature range (–55°C to +125°C), 
which make them good as outdoor sensors.

If the read hangs at this point, it may be that the sensor hasn’t fully registered yet. 
This can happen if you forced adding it, but the driver was unable to communicate with it.

1-Wire GPIO Pin
Raspbian Linux has its driver support for the 1-Wire bus on GPIO 4 (P1-07). This pin 
is hard-coded in the kernel driver. If you want to change this, look for the definition of 
W1_GPIO in the source file:
 
arch/arm/mach-bcm2708/bcm2708.c
 

Change the definition of W1_GPIO to the pin you require (found near line 73):
 
// use GPIO 4 for the one–wire GPIO pin, if enabled
#define W1_GPIO 4
 

Then, of course, you’ll need to rebuild and install the new kernel.
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Chapter 12

I2C Bus

The I2C bus, also known as the two-wire interface (TWI), was developed by Philips circa 
1982 to allow communication with lower-speed peripherals.49 It was also economical 
because it required only two wires (excluding ground and power connections). Since 
then, other standards have been devised, building upon this framework, such as the 
SMBus. However, the original I2C bus remains popular as a simple, cost-effective way to 
connect peripherals.

I2C Overview
Figure 12-1 shows the I2C bus in the Raspberry Pi context. The Raspberry Pi provides 
the I2C bus using the BCM2835 as the bus master. Notice that the Pi also provides the 
external pull-up resistors R

1
 and R

2
, shown inside the dotted lines.

Figure 12-1. The I2C bus
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The two I2C bus lines are provided on the header strip P1:

P1

Rev            1.0 Rev           2.0 +

GPIO I2C Bus GPIO I2C Bus

P1-03 0 SDA0 I2C-0 2 SDA1 I2C-1

P1-05 1 SCL0 3 SCL1

Note that the original Raspberry Pi provided I2C bus 0, but switched to using bus 1 
with Rev 2.0 and later units.

The design of the I2C bus is such that multiple peripherals are attached to the SDA 
and the SCL lines. Each slave (peripheral) has its own unique 7-bit address. For example, 
the MCP23017 GPIO extender peripheral might be configured with the address of 0x20. 
Each peripheral is called upon by the master by using this address. All nonaddressed 
peripherals are expected to remain quiet so that communication can proceed with the 
selected slave device.

SDA and SCL
The two bus lines used for I2C are as follows:

Line P1 Idle Description

SDA P1-03 High Serial data line

SCL P1-05 High Serial clock line

Both masters and slaves take turns at “grabbing the bus” at various times. Master and 
slave use open-drain transistors to drive the bus. It is because all participants are using 
open-drain drivers that pull-up resistors must be used (provided by the Pi). Otherwise, 
the data and clock lines would float between handoffs.

The open-drain driver design allows all participants to drive the bus lines—just not at 
the same time. Slaves, for example, turn off their line drivers, allowing the master to drive 
the signal lines. The slaves just listen, until the master calls them by address. When the 
slave is required to answer, the slave will then assert its driver, thus grabbing the line. It is 
assumed by the slave that the master has already released the bus at this point. When the 
slave completes its own transmission, it releases the bus, allowing the master to resume.

The idle state for both lines is high. The high state for the Raspberry Pi is +3.3 V. 
Other systems may use +5 V signaling. When shopping for I2C peripherals, you’ll want to 
choose ones that will operate at the 3 V level. Otherwise, 5 V peripherals can sometimes 
be used with careful planning or with use of signal adapters. The DS1307 Real-Time clock 
project is one such a case that is covered in Chapter 4 of Experimenting with Raspberry Pi 
(Apress, 2014).
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Multimaster and Arbitration
The I2C protocol does support the idea of multiple masters. This complicates things, 
because two masters may grab the bus and transmit at the same time. When this 
happens, a process of arbitration is used to resolve the clash.

Each transmitting master simultaneously monitors what it sees on the bus that it 
is driving. If a discrepancy is seen between what it is transmitting and what it is sensing 
on the bus line, it knows that it must release the bus and cease. The first node to notice 
conflict is required to release the bus. The other that has not noticed any discrepancy is 
free to continue its transmission, since its message has not been affected. If it too sees a 
problem, it will also cease and retry later.

Not all devices support this arbitration. Ones that do are usually advertised as having 
multimaster support. Multimaster arbitration is not covered in this book, since this is an 
advanced I2C topic.

Bus Signaling
The start and stop bits are special in the I2C protocol. The start bit is illustrated in 
Figure 12-2. Notice the SDA line transition from high to low, while the clock remains in 
the high (idle) state. The clock will follow by going low after 1/2 bit time following the 
SDA transition. This special signal combination informs all connected devices to “listen 
up,” since the next piece of information transmitted will be the device address.

Figure 12-2. I2C start/stop signaling

The stop bit is also special in that it allows slave devices to know whether more 
information is coming. When the SDA line transitions from low to high midway through a 
bit cell, it is interpreted as a stop bit. The stop bit signals the end of the message.

There is also the concept of a repeated start, often labeled in diagrams as SR. This 
signal is electrically identical to the start bit, except that it occurs within a message in 
place of a stop bit. This signals to the peripheral that more data is being sent or required 
as part of another message.
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Data Bits
Data bit timings are approximately as shown in Figure 12-3. The SDA line is expected to 
stabilize high or low according to the data bit being sent, prior to the SCL line going high. 
The receiver clocks in the data on the falling edge of SCL, and the process repeats for the 
next data bit. Note that most significant bits are transmitted first.

Figure 12-3. I2C Data bit transmission

Figure 12-4. Example I2C messages

Message Formats
Figure 12-4 displays two example I2C messages that can be used with the MCP23017 chip 
(covered in Chapter 2 of Experimenting with Raspberry Pi [Apress, 2014]). The simplest 
message is the write register request.
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The diagram shows each message starting with the S (start) bit and ending with 
a P (stop) bit. After the start bit, each message begins with a byte containing the 7-bit 
peripheral address and a read/write bit. Every peripheral must read this byte in order to 
determine whether the message is addressed to it.

The addressed peripheral is expected to return an ACK/NAK bit after the address 
is sent. If the peripheral fails to respond for any reason, the line will go high due to the 
pull-up resistor, indicating a NAK. The master, upon seeing a NAK, will send a stop bit and 
terminate the transmission.

When the peripheral ACKs the address byte, the master then continues to write when 
the request is a write. The first example shows the MCP23017 8-bit register number being 
written next. This indicates which of the peripheral’s registers is to be written to. The 
peripheral will then ACK the register number, allowing the master to follow with the data 
byte to be written into the selected register. This too must be ACKed. If the master has no 
more data to send, the P (stop) bit is sent to end the transmission. Otherwise, more data 
bytes could follow with the sequence ending with the stop bit.

The second example in Figure 12-4 shows how a message may be composed of both 
write and read messages. The initial sequence looks like the write, but this only writes 
a register number into the peripheral. Once the register number is ACKed, the master 
then sends an SR (start, repeated) bit. This tells the peripheral that no more write data is 
coming and to expect a peripheral address next. Since the address transmitted specifies 
the same peripheral, the same peripheral responds with an ACK. This request is a read, 
so the peripheral continues to respond with 8 bits of the requested read data, with the 
master ACKing the data received. The master terminates the message with a P (stop) to 
indicate that no more data is to be read.

Many peripherals will support an auto-increment register mode. This is a feature 
of the peripheral, however, and not all devices support this. Once a peripheral’s register 
has been established by a write, successive reads or writes can occur in auto-increment 
mode, with the register being incremented with each byte transferred. This results in 
more-efficient transfers.

Which I2C Bus?
Before we look at the I2C software API provided by Raspbian Linux, you should first 
determine which I2C bus you’ll be working with. Early Raspberry Pi revisions provided 
I2C bus 0 on header strip P1, while later units changed this to bus 1. This will matter to 
both commands and programs communicating with I2C peripherals.

The  “Identification” section of Chapter 5 discusses how to identify your Pi by 
displaying the firmware code from /proc/cpuinfo. What is displayed as a Revision is 
actually more of a firmware code. The following is a quick check example:
 
$ grep Revision /proc/cpuinfo
Revision        : 000f
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From this information, use the firmware code (revision) number to determine which 
I2C bus to use:

Revision I2C Bus

SDA SCL

P1-03 P1-05

0002 0 GPIO-0 GPIO-1

0003 0

0004+ 1 GPIO-2 GPIO-3

I2C Bus Speed
Unlike the SPI bus, the I2C bus operates at a fixed speed within Raspbian Linux. The SoC 
document claims I2C operation up to 400 kHz, but the reported clock rate during the 
Raspbian Linux boot is 100 kHz:
 
$ dmesg | grep –i i2c
[1005.08] i2c /dev entries driver
[1026.43] bcm2708_i2c bcm2708_i2c.0: BSC0 Controller at. . . (baudrate 100k)
[1026.43] bcm2708_i2c bcm2708_i2c.1: BSC1 Controller at. . . (baudrate 100k)
 

Don’t be alarmed if the preceding grep command doesn’t provide any output. Later 
versions of Raspbian didn’t load bcm2708_i2c at boot time. You should see the same 
messages in the /var/log/syslog after you manually load the module as shown here:
 
$ sudo modprobe i2c_bcm2708
$ tail /var/log/syslog
. . .
Mar 12 20:16:55 raspberrypi kernel: [168.845802] bcm2708_i2c bcm2708_i2c.0: \
  BSC0 Controller at 0x20205000 (irq 79) (baudrate 100k)
Mar 12 20:16:55 raspberrypi kernel: [168.846423] bcm2708_i2c bcm2708_i2c.1: \
  BSC1 Controller at 0    x20804000 (irq 79) (baudrate 100k)

Tools
Working with I2C peripherals is made easier with the use of utilities. These I2C utilities 
are easily installed using the following command:
 
$ sudo apt−get install i2c−tools
 



Chapter 12 ■ I2C Bus

181

The i2c-tools package includes the following utilities:

i2cdetect: Detects peripherals on the I2C line

i2cdump: Dumps values from an I2C peripheral

i2cset: Sets I2C registers and values

i2cget: Gets I2C registers and values

Each of these utilities has a man page available for additional information. We’ll be 
using some of these commands in this chapter and in later parts of this book.

I2C API
In this section, we’ll look at the bare-metal C language API for the I2C bus transactions. 
An application using this API is provided in Chapter 2 of Experimenting with Raspberry Pi 
(Apress, 2014).

Kernel Module Support 
Access to the I2C bus is provided through the use of kernel modules. If lsmod indicates 
that the drivers are not loaded, you can load them at the command line:
 
$ sudo modprobe i2c–dev
$ sudo modprobe i2c–bcm2708
 

Once these modules are loaded, i2cdetect should be able to see bus-level support. 
On Revision 2.0 and later Raspberry Pis, the i2c-0 bus is for internal use. The user bus is 
shown as i2c-1. On early Pis this is reversed.
 
$ i2cdetect –l
i2c–0   unknown         bcm2708_i2c.0           N/A
i2c–1   unknown         bcm2708_i2c.1           N/A
 

After the driver support is available, the device nodes should appear under /dev:
 
$ ls –l /dev/i2c∗
crw−rw−−−T 1 root root 89, 0 Feb 18 23:53  /dev/i2c−0
crw−rw−−−T 1 root root 89, 1 Feb 18 23:53  /dev/i2c−1
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Header Files
The following header files should be included in an I2C program:
 
#include <sys/ioctl.h>
#include <linux/i2c−dev.h>

open(2) 
Working with I2C devices is much like working with files. You’ll open a file descriptor, do 
some I/O operations with it, and then close it. The one difference is that you’ll want to use 
ioctl(2) calls instead of the usual read(2)/write(2) calls.
 
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
 
int open(const char ∗pathname, int flags, mode_t mode);
 
where

pathname is the name of the file/directory/driver that you need 
to open/create.

flags is the list of optional flags (use O_RDWR for reading and 
writing).

mode is the permission bits to create a file (omit argument, or 
supply zero when not creating).

returns -1 (error code in errno) or open file descriptor >= 0 .

Error Description

EACCES Access to the file is not allowed.

EFAULT The pathname points outside your accessible address space.

EMFILE The process already has the maximum number of files open.

ENFILE The system limit on the total number of open files has been reached.

ENOMEM Insufficient kernel memory was available.
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To work with an I2C bus controller, your application must open the driver, made 
available at the device node:
 
int fd;
 
fd = open("/dev/i2c−1",O_RDWR);
if ( fd < 0 ) {
    perror("Opening /dev/i2c−1");
 

Note that the device node (/dev/i2c-1) is owned by root, so you’ll need elevated 
privileges to open it or have your program use setuid(2).

ioctl(2,I2C_FUNC)
In I2C code, a check is normally performed to make sure that the driver has the right 
support. The I2C_FUNC ioctl(2) call allows the calling program to query the I2C 
capabilities. The capability flags returned are documented in Table 12-1.
 
long funcs;
int rc;
 
rc = ioctl(fd,I2C_FUNCS,&funcs);
if ( rc < 0 ) {
    perror("ioctl(2,I2C_FUNCS)");
    abort();
}
 
/∗ Check that we have plain I2C support ∗/
assert(funcs & I2C_FUNC_I2C); 

Table 12-1. I2C_FUNC bits

Bit Mask Description

I2C_FUNC_I2C Plain I2C is supported (non SMBus)

I2C_FUNC_10BIT_ADDR Supports 10-bit addresses

I2C_FUNC_PROTOCOL_MANGLING Supports:

I2C_M_IGNORE_NAK

I2C_M_REV_DIR_ADDR

I2C_M_NOSTART

I2C_M_NO_RD_ACK

The assert() macro used here checks that at least plain I2C support exists. 
Otherwise, the program aborts.
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ioctl(2,I2C_RDWR) 
While it is possible to use ioctl(2,I2C_SLAVE) and then use read(2) and write(2) calls, 
this tends not to be practical. Consequently, the use of the ioctl(2,I2C_RDWR) system 
call will be promoted here instead. This system call allows considerable flexibility in 
carrying out complex I2C I/O transactions.

The general API for any ioctl(2) call is as follows:
 
#include <sys/ioctl.h>
 
int ioctl(int fd, int request, argp);
 
where

fd is the open file descriptor.

request is the I/O command to perform.

argp is an argument related to the command (type varies 
according to request).

returns -1 (error code in errno), number of msgs completed 
(when request = I2C_RDWR).

Error Description

EBADF fd is not a valid descriptor.

EFAULT argp references an inaccessible memory area.

EINVAL request or argp is not valid.

When the request argument is provided as I2C_RDWR, the argp argument is a pointer 
to struct i2c_rdwr_ioctl_data. This structure points to a list of messages and indicates 
how many of them are involved.
 
struct i2c_rdwr_ioctl_data {
    struct i2c_msg   ∗msgs;       /∗ ptr to array of simple messages ∗/
    int              nmsgs;        /∗ number of messages to exchange ∗/
};
 

The individual I/O messages referenced by the preceding structure are described by 
struct i2c_msg:
 
struct i2c_msg {
  __u16           addr;   /∗ 7/10 bit slave address ∗/
  __u16           flags;  /∗ Read/Write & options ∗/
  __u16           len;    /∗ No. of bytes in buf ∗/
  __u8            ∗buf;   /∗ Data buffer ∗/
};
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The members of this structure are as follows:

addr: Normally this is the 7-bit slave address, unless flag 
I2C_M_TEN and function I2C_FUNC_10BIT_ADDR are used. Must 
be provided for each message.

flags: Valid flags are listed in Table 12-2. Flag I2C_M_RD 
indicates the operation is a read. Otherwise, a write operation 
is assumed when this flag is absent.

buf: The I/O buffer to use for reading/writing this message 
component.

len: The number of bytes to read/write in this message 
component.

Table 12-2. I2C Capability Flags

Flag Description

I2C_M_TEN 10-bit slave address used

I2C_M_RD Read into buffer

I2C_M_NOSTART Suppress (Re)Start bit

I2C_M_REV_DIR_ADDR Invert R/W bit

I2C_M_IGNORE_NAK Treat NAK as ACK

I2C_M_NO_RD_ACK Read will not have ACK

I2C_M_RECV_LEN Buffer can hold 32 additional bytes

An actual ioctl(2,I2C_RDWR) call would be coded something like the following. 
In this example, a MCP23017 register address of 0x15 is being written out to peripheral 
address 0x20, followed by a read of 1 byte:
 
int fd;
struct i2c_rdwr_ioctl_data msgset;
struct i2c_msg iomsgs[2];
static unsigned char reg_addr[] = {0x15};
unsigned char rbuf[1];
int rc;
 
iomsgs[0].addr     = 0x20;          /∗ MCP23017−A ∗/
iomsgs[0].flags  = 0;               /∗ Write operation. ∗/
iomsgs[0].buf    = reg_addr;
iomsgs[0].len    = 1;
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iomsgs[1].addr   = iomsgs[0].addr;  /* Same MCP23017-A */
iomsgs[1].flags  = I2C_M_RD;        /∗ Read operation ∗/
iomsgs[1].buf    = rbuf;
iomsgs[1].len    = 1;
 
msgset.msgs      = iomsgs;
msgset.nmsgs     = 2;
 
rc = ioctl(fd,I2C_RDWR,&msgset);
if ( rc < 0 ) {
    perror("ioctl (2, I2C_RDWR)");
 

The example shown defines iomsgs[0] as a write of 1 byte, containing a register 
number. The entry iomsgs[1] describes a read of 1 byte from the peripheral. These two 
messages are performed in one ioctl(2) transaction. The flags member of iomsgs[x] 
determines whether the operation is a read (I2C_M_RD) or a write (0).

Note ■  Don’t confuse the peripheral’s internal register with the peripheral’s I2C address.

Each of the iomsgs[x].addr members must contain a valid I2C peripheral address. 
Each message can potentially address a different peripheral, though there are no 
examples of this in this book. The ioctl(2) will return an error with the first message 
failure. For this reason, you may not always want to combine multiple messages in one 
ioctl(2) call, especially when different devices are involved.

The returned value, when successful, is the number of struct i2c_msg messages 
successfully performed.
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Chapter 13

SPI Bus

The Serial Peripheral Interface bus, known affectionately as spy, is a synchronous serial 
interface that was named by Motorola.39 The SPI protocol operates in full-duplex mode, 
allowing it to send and receive data simultaneously. Generally speaking, SPI has a speed 
advantage over the I2C protocol but requires more connections.

SPI Basics
Devices on the SPI bus communicate on a master/slave basis. Multiple slaves coexist 
on a given SPI bus, with each slave being selected for communication by a slave select 
signal (also known as chip select). Figure 13-1 shows the Raspberry Pi as the master 
communicating with a slave. Additional slaves would be connected as shown with the 
exception that a different slave select signal would be used.

Figure 13-1. SPI interface

Data is transmitted from the master to the slave by using the MOSI line (master 
out, slave in). As each bit is being sent out by the master, the slave sends data bits on 
the MISO line (master in, slave out). Bits are shifted out of the master and into the slave. 
Simultaneously, bits are shifted out of the slave and into the master. Both transfers occur 
to the beat of the system clock (CLK).
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Many SPI devices support only 8-bit transfers, while others are more flexible. The SPI 
bus is a de facto standard, meaning that there is no standard for data transfer width and 
SPI mode.39 The SPI controller can also be configured to transmit the most significant or 
the least significant bit first. All of this flexibility can result in confusion.

SPI Mode
SPI operates in one of four possible clock signaling modes, based on two parameters:

Parameter Description

CPOL Clock polarity

CPHA Clock phase

Each parameter has two possibilities, resulting in four possible SPI modes of 
operation. Table 13-1 lists all four modes available. Note that a given mode is often 
referred to by using a pair of numbers like 1,0 or simply as mode 2 (for the same mode, as 
shown in the table). Both types of references are shown in the Mode column.

Table 13-1. SPI Modes

CPOL CPHA Mode Description

0 0 0,0 0 Noninverted clock, sampled on rising edge

0 1 0,1 1 Noninverted clock, sampled on falling edge

1 0 1,0 2 Inverted clock, sampled on rising edge

1 1 1,1 3 Inverted clock, sampled on falling edge

Clock Sense Description

Noninverted Signal is idle low, active high

Inverted Signal is idle high, active low

Peripheral manufacturers did not define a standard signaling convention in the 
beginning, so SPI controllers allow configuration to accommodate any of the four modes. 
However, once a mode has been chosen, all slaves on the same bus must agree.
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Signaling
The clock polarity determines the idle clock level, while the phase determines whether 
the data line is sampled on the rising or falling clock signal. Figure 13-2 shows mode 
0,0, which is perhaps the preferred form of SPI signaling. In Figure 13-2, the slave is 
selected first, by bringing the SS  (slave select) active. Only one slave can be selected at 
a time, since there must be only one slave driving the MISO line. Shortly after the slave is 
selected, the master drives the MOSI line, and the slave simultaneously drives the MISO 
line with the first data bit. This can be the most or least significant bit, depending on how 
the controller is configured. The diagram shows the least significant bit first.

Figure 13-2. SPI signaling, modes 0 and 2

In mode 0,0 the first bit is clocked into the master and slave when the clock line 
falls from high to low. This clock transition is positioned midway in the data bit cell. The 
remaining bits are successively clocked into master and slave simultaneously as the clock 
transitions from high to low. The transmission ends when the master deactivates the slave 
select line. When the clock polarity is reversed (CPOL = 1, CPHA = 0), the clock signal 
shown in Figure 13-2 is simply inverted. The data is clocked at the same time in the data 
cell, but on the rising edge of the clock instead.

Figure 13-3 shows the clock signals with the phase set to 1 (CPHA = 1). When the clock 
is noninverted (CPOL = 0), the data is clocked on the rising edge. Note that the clock must 
transition to its nonidle state one-half clock cycle earlier than when the phase is 0 (CPHA = 0). 
When the SPI mode is 1,1, the data is clocked in on the falling edge of the clock.
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While the four different modes can be confusing, it is important to realize that the 
data is sampled at the same times within the data bit cells. The data bit is always sampled 
at the midpoint of the data cell. When the clock phase is 0 (CPHA = 0), the data is sampled 
on the trailing edge of the clock, whether falling or rising according to CPOL. When the 
clock phase is 1 (CPHA = 1), the data is sampled on the leading edge of the clock, whether 
rising or falling according to CPOL.

Slave Selection
While some protocols address their slaves by using transmitted data, the SPI bus simply 
uses a dedicated line for each slave. The Raspberry Pi dedicates the GPIO pins listed in 
Table 13-2 as slave select lines (also known as chip enable lines).

Figure 13-3. SPI signaling modes 1 and 3

Table 13-2. Raspberry Pi Built-in Chip Enable Pins

GPIO Chip Enable P1

8 CE0 P1-24

7 CE1 P1-26

The Raspbian Linux kernel driver supports the use of only these two chip enable 
lines. However, the driver is designed such that you don’t have to use them, or only these. 
It is possible, for example, to add a third GPIO pin as a slave select. The application 
simply takes responsibility for activating the slave select GPIO line prior to the data I/O 
and deactivates it after. When the driver is controlling the two slave selects, this is done 
automatically.
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Driver Support
Raspbian Linux supports SPI through the spi_bcm2708 kernel module. As a loadable 
kernel module, it may not be loaded by default. Check for it by using the lsmod command:
 
$ lsmod
Module                  Size    Used by
spidev                  5136    0
spi_bcm2708             4401    0
...
 

If you would like the module loaded by default after a reboot, edit the /etc/
modprobe.d file raspi-blacklist.conf. In the file, look for the line
 
blacklist spi-bcm2708
 
and change that to a comment line, by putting a # character in front, as follows:
 
# blacklist spi-bcm2708
 

With that module un-blacklisted, the module will automatically be loaded with each 
new reboot.

The kernel module can be manually loaded by using modprobe command:
 
$ sudo modprobe spi_bcm2708
 

This loads the module and its dependents. Once the kernel module support is 
present, the device driver nodes should appear:
 
$ ls /dev/spi∗
/dev/spidev0.0  /dev/spidev0.1
$
 

These two device nodes are named according to which slave select should be 
activated, as shown in Table 13-3.

Table 13-3. SPI Device Nodes

Pathname Bus Device GPIO SS

/dev/spidev0.0 0 0 8 CE0

/dev/spidev0.1 0 1 7 CE1

If you open either of these device nodes by applying the option SPI_NO_CS,  the 
node chosen makes no difference. Macro SPI_NO_CS indicates that slave select will be 
performed by the application instead of the driver, if any select is used at all. (When only 
one slave device is attached, the peripheral can be permanently selected.)
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SPI API
The bare-metal API for SPI involves calls to ioctl(2) to configure the interface and 
further calls to ioctl(2) for simultaneous read and write. The usual read(2) and 
write(2) system calls can be used, when a one-sided transfer is being performed.

Header Files
The header files needed for SPI programming are as follows:
 
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
 

The spidev.h include file defines several macros and the struct spi_ioc_transfer. 
Table 13-4 lists the main macros that are declared. The macros SPI_CPOL and SPI_CPHA are 
used in the definitions of the values SPI_MODE_x. If you prefer, it is possible to use SPI_CPOL 
and SPI_CPHA in place of the mode macros.

Table 13-4. SPI Macro Definitions

Macro Supported Description

SPI_CPOL Yes Clock polarity inverted (CPOL = 1)

SPI_CPHA Yes Clock phase is 1 (CPHA = 1)

SPI_MODE_0 Yes SPI Mode 0,0 (CPOL = 0, CPHA = 0)

SPI_MODE_1 Yes SPI Mode 0,1 (CPOL = 0, CPHA = 1)

SPI_MODE_2 Yes SPI Mode 1,0 (CPOL = 1, CPHA = 0)

SPI_MODE_3 Yes SPI Mode 1,1 (CPOL = 1, CPHA = 1)

SPI_CS_HIGH Yes Chip select is active high

SPI_LSB_FIRST No LSB is transmitted first

SPI_3WIRE No Use 3-Wire data I/O mode

SPI_LOOP No Loop the MOSI/MISO data line

SPI_NO_CS Yes Do not apply Chip Select

SPI_READY No Enable extra Ready signal



Chapter 13 ■ SpI BuS

193

Communicating with an SPI device consists of the following system calls:

open(2): Opens the SPI device driver node

read(2): Reads with 0 bytes being transmitted

write(2): Writes data while discarding received data

ioctl(2): For configuration and bidirectional I/O

close(2): Closes the SPI device driver node

In SPI communication, the use of read(2) and write(2) is unusual. Normally, 
ioctl(2) is used to facilitate simultaneous read and write transfers.

Open Device
In order to perform SPI communication through the kernel driver, you need to open one 
of the device nodes by using open(2). The general format of the device pathname is
 
/dev/spidev<bus>.<device>
 
as we saw earlier. The following is a code snippet opening bus 0, device 0.
 
int fd;
 
fd = open("/dev/spidev0.0",O_RDWR);
if ( fd < 0 ) {
    perror("Unable to open SPI driver");
    exit(1);
}
 

SPI communication involves both reading and writing, so the driver is opened for 
read and write (O_RDWR).

SPI Mode Macros
Before SPI communications can be performed, the mode of communication needs to be 
configured. Table 13-5 lists the C language macros that can be used to configure the SPI 
mode to be used.

Table 13-5. SPI Mode Macros

Macro Effect Comments

SPI_CPOL CPOL = 1 Or use SPI_MODE_x

SPI_CPHA CPHA = 1 Or use SPI_MODE_x

SPI_CS_HIGH SS is active high Unusual

SPI_NO_CS Don’t assert select Not used/application controlled
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These bit values are simply or-ed together to specify the options that are required. 
The use of SPI_CPOL implies CPOL = 1. Its absence implies CPOL = 0. Similarly, the use 
of SPI_CPHA implies CPHA = 1 (otherwise, CPHA = 0). The options SPI_MODE_x use the 
SPI_CPOL and SPI_CPHA macros to define them. You don’t need to use them both in your 
code. The mode definitions are shown here:
 
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
 

The unsupported options are not shown, though one or more of these could be 
supported in the future.

Note ■  the mode values SPI_LOOP, SPI_LSB_FIRST, SPI_3WIRE, and SPI_READY are not 
currently supported in the wheezy release of raspbian Linux.

The following is an example that defines SPI_MODE_0:
 
uint8_t mode = SPI_MODE_0;
int rc;
 
rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);
if ( rc < 0 ) {
    perror("Can’t set SPI write mode.");
 

If you’d like to find out how the SPI driver is currently configured, you can read the 
SPI mode with ioctl(2) as follows:
 
uint8_t mode;
int rc;
 
rc = ioctl(fd,SPI_IOC_RD_MODE,&mode);
if ( rc < 0 ) {
     perror("Can’t get SPI read mode.");
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Bits per Word
The SPI driver also needs to know how many bits per I/O word are to be transmitted. 
While the driver will likely default to 8 bits, it is best not to depend on that. This can be 
configured with the following ioctl(2) call:
 
uint8_t bits = 8;
int rc;
 
rc = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD,&bits);
if ( rc < 0 ) {
    perror ("Can't set bits per SPI word."); 

Note ■  the SpI driver in the raspbian wheezy release supports only 8-bit transfers.

The currently configured value can be fetched with ioctl(2) as follows:
 
uint8_t bits;
int rc;
 
rc = ioctl(fd,SPI_IOC_RD_BITS_PER_WORD,&bits);
if ( rc == −1 ) {
    perror("Can’t get bits per SPI word.");
 

When the number of bits is not an even multiple of eight, the bits are assumed to be 
right-justified. For example, if the word length is set to 4 bits, the least significant 4 bits are 
transmitted. The higher-order bits are ignored.

Likewise, when receiving data, the least significant bits contain the data. All of this is 
academic on the Pi, however, since the driver supports only byte-wide transfers.

Clock Rate 
To configure the data transmission rate, you can set the clock rate with ioctl(2) as follows:
 
uint32_t speed = 500000; /∗ Hz ∗/
int rc;
 
rc = ioctl(fd,SPI_IOC_WR_MAX_SPEED_HZ,&speed);
if ( rc < 0 ) {
    perror("Can’t configure SPI clock rate.");
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The current configured clock rate can be fetched by using the following ioctl(2) call:
 
uint32_t speed; /∗ Hz ∗/
int rc;
 
rc = ioctl(fd,SPI_IOC_RD_MAX_SPEED_HZ,&speed);
if ( rc < 0 ) {
    perror("Can’t get SPI clock rate.");

Data I/O
SPI communication involves transmitting data while simultaneously receiving data. 
For this reason, the read(2) and write(2) system calls are usually inappropriate. The 
ioctl(2) call can, however, perform a simultaneous read and write.

The SPI_IOC_MESSAGE(n) form of the ioctl(2) call uses the following structure as its 
argument:
 
struct spi_ioc_transfer {
    __u64   tx_buf;           /∗ Ptr to tx buffer ∗/
    __u64   rx_buf;           /∗ Ptr to rx buffer ∗/
    __u32   len;              /∗ # of bytes ∗/
    __u32   speed_hz;         /∗ Clock rate in Hz ∗/
    __u16   delay_usecs;      /∗ Delay in microseconds ∗/
    __u8    bits_per_word;    /∗ Bits per "word" ∗/
    __u8    cs_change;        /∗ Apply chip select ∗/
    __u32   pad;              /∗ Reserved ∗/
};
 

The tx_buf and rx_buf structure members are defined as a 64-bit unsigned 
integers (__u64). For this reason, you must cast your buffer pointers when making 
assignments to them:
 
uint8_t tx[32], rx[32];
struct spi_ioc_transfer tr;
 
tr.tx_buf = (unsigned long) tx;
tr.rx_buf = (unsigned long ) rx;
 

On the Raspberry Pi, you will see example code that simply casts the pointers to 
unsigned long. The compiler automatically promotes these 32-bit values to a 64-bit 
value. This is safe on the Pi because the pointer value is a 32-bit value.
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If you do not wish to receive data (maybe because it is “don’t care” data), you can 
null out the receive buffer:
 
uint8_t tx[32];
struct spi_ioc_transfer tr;
 
tr.tx_buf = (unsigned long) tx;
tr.rx_buf = 0;                  /* ignore received data */
 

Note that to receive data, the master must always transmit data to shift data out of 
the slave peripheral. If any byte transmitted will do, you can omit the transmit buffer.  
Zero bytes will then be automatically transmitted by the driver to shift the slave data out 
onto the MISO line.

It is also permissible to transmit from the buffer you’re receiving into:
 
uint8_t io[32];
struct spi_ioc_transfer tr;
 
tr.tx_buf = (unsigned long) io;         /∗ Transmit buffer ∗/
tr.rx_buf = (unsigned long) io;         /∗ is also recv buffer ∗/
 

The len structure member indicates the number of bytes for the I/O transfer. Receive 
and transmit buffers (when both used) are expected to transfer the same number of bytes.

The member speed_hz defines the clock rate that you wish to use for this I/O, in Hz. 
This overrides any value configured in the mode setup, for the duration of the I/O. The 
value will be automatically rounded down to a supported clock rate when necessary.

When the value speed_hz is 0, the previously configured clock rate is used  
(SPI_IOC_WR_MAX_SPEED_HZ).

When the delay_usecs member is nonzero, it specifies the number of microseconds 
to delay between transfers. It is applied at the end of a transfer, rather than at the start. 
When there are multiple I/O transfers in a single ioctl(2) request, this allows time in 
between so that the peripheral can process the data.

The bits_per_word member defines how many bits there are in a “word” unit. Often 
the unit is 1 byte (8 bits), but it need not be (but note that the Raspbian Linux driver 
supports only 8 bits).

An application might use 9 bits to transmit the 8-bit byte and a parity bit, for 
example. The bits communicated on the SPI bus are taken from the least significant bits 
of the buffer bytes. This is true even when transmitting the most significant bit first.

When the bits_per_word value is 0, the previously configured value from  
SPI_IOC_WR_BITS_PER_WORD is used. (See drivers/spi/spi-bcm2708.c in the function 
bcm2708_process_transfer()).

Note ■  the raspbian wheezy driver requires that bits_per_word is the value 8 or 0.
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The cs_change member is treated as a Boolean value. When 0, no chip select is 
performed by the driver. The application is expected to do what is necessary to notify 
the peripheral that it is selected (usually a GPIO pin is brought low). Once the I/O has 
completed, the application then must normally unselect the slave peripheral.

When the cs_change member is true (non-zero), the slave selected will depend on 
the device pathname that was opened. The bus and the slave address are embedded in the 
device name:
 
/dev/spidev<bus>.<device>
 

When cs_change is true, the driver asserts GPIO8  for spidev0.0 and asserts GPIO7  
for spidev0.1 prior to I/O and then deactivates the same upon completion. Of course, 
using these two nodes requires two different open(2) calls.

The SPI_IOC_MESSAGE(n) macro is used in the ioctl(2) call to perform one or 
more SPI I/O operations. The macro is unusual because it requires an argument n. 
(Perhaps someone will take it upon themselves someday to clean this interface up to 
work like I2C.) This specifies how many I/O transfers you would like to perform.  
An array of spi_ioc_transfer structures is declared and configured for each transfer 
required, as shown in the next example:
 
struct spi_ioc_transfer io[3];    /∗ Define 3 transfers ∗/
int rc;
 
io[0].tx_buf = . . . ;            /∗ Configure I/O ∗/
...
io[2].bits_per_word = 8;
 
rc = ioctl(fd,SPI_IOC_MESSAGE(3),& io[0]);
 

The preceding example will perform three I/O transfers. Since the application 
never gets to perform any GPIO manipulation between these I/Os, this applies to 
communicating with one particular slave device.

The following example code brings all of the concepts together, to demonstrate one 
I/O. The spi_ioc_transfer structure is initialized so that 32 bytes are transmitted and 
simultaneously 32 are received.
 
uint8_t tx[32], rx[32];
struct spi_ioc_transfer tr;
int rc;
 
tr.tx_buf          = (unsigned long) tx;
tr.rx_buf          = (unsigned long) rx;
tr.len             = 32;
tr.delay_usecs     = delay;
tr.speed_hz        = speed;
tr.bits_per_word   = bits;
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rc = ioctl(fd,SPI_IOC_MESSAGE(1),&tr);
if ( rc < 1 ) {
    perror("Can't send spi message");
 

Here a single I/O transmission occurs, with data being sent from array tx and 
received into array rx.

The return value from the ioctl(2) call returns the number of bytes transferred  
(32 in the example). Otherwise, -1 is returned to indicate that an error has occurred.

Close
Like all Unix I/O operations, the device is closed when the open file descriptor is no 
longer required:
 
close(fd);

Write
The write(2) system call can be used, if the received data is unimportant. Note, however, 
that no delay is applied with this call.

Read
The read(2) system call is actually inappropriate for SPI since the master must transmit 
data on MOSI in order for the slave to send bits back on the MISO line. However, when 
read(2) is used, the driver will automatically send out 0 bits as necessary to accomplish 
the read. (Be careful that your peripheral will accept 0 bytes without unintended 
consequences.) Like the write(2) call, no delay is provided.

SPI Testing
When developing your SPI communication software, you can perform a simple loopback 
test to test your framework. Once the framework checks out, you can then turn your 
attention to communicating with the actual device.

While the Raspbian Linux driver does not support the SPI_LOOP mode bit (in the 
wheezy release), you can still physically loop your SPI bus by connecting a wire from the 
MOSI output back to the MISO input pin (connect GPIO 10 to GPIO 9).

A simple program, shown next, demonstrates this type of loopback test. It will write 
out 4 bytes (0x12, 0x23, 0x45, and 0x67) to the SPI driver. Because you have wired the 
MOSI pin to the MISO input, anything transmitted will also be received.

When the program executes, it will report the number of bytes received and four 
hexadecimal values:
 
$ sudo ./spiloop
rc=4 12 23 45 67
$
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If you remove the wire between MOSI and MISO, and connect the MISO to a high 
(+3.3 V), you should be able to read 0xFF for all of the received bytes. If you then connect 
MISO to ground, 0x00 will be received for each byte instead. (Be certain to apply to the 
correct pin, since applying high or low to an output can damage it, and do not apply +5 V.)
 
1  /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2   ∗ spiloop.c − Example loop test
3   ∗ Connect MOSI (GPIO 10) to MISO (GPIO 9)
4   ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
5  #include <stdio.h>
6  #include <errno.h>
7  #include <stdlib.h>
8  #include <stdint.h>
9  #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/ioctl.h>
12 #include <linux/types.h>
13 #include <linux/spi/spidev.h>
14
15 static int fd = −1;
16
17 static void
18 errxit(const char ∗msg) {
19           perror(msg);
20           exit(1);
21 }
22
23 int
24 main(int argc, char ∗∗ argv) {
25           static uint8_t tx[] = {0x12, 0x23, 0x45, 0x67};
26           static uint8_t rx[] = {0xFF, 0xFF, 0xFF, 0xFF};
27           struct spi_ioc_transfer ioc = {
28                  .tx_buf = (unsigned long) tx,
29                  .rx_buf = (unsigned long) rx,
30                  .len = 4,
31                  .speed_hz = 100000,
32                  .delay_usecs = 10,
33                  .bits_per_word = 8,
34                  .cs_change = 1
35           } ;
36           uint8_t mode = SPI_MODE_0;
37           int rc;
38
39           fd = open("/dev/spidev0.0",O_RDWR);
40           if ( fd < 0 )
41                  errxit("Opening SPI device.");
42
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43           rc = ioctl(fd,SPI_IOC_WR_MODE,&mode);
44           if ( rc < 0 )
45                  errxit("ioctl (2) setting SPI mode.");
46
47           rc = ioctl(fd,
              SPI_IOC_WR_BITS_PER_WORD,
              &ioc.bits_per_word);
48           if ( rc < 0 )
49                  errxit("ioctl (2) setting SPI bits perword.");
50
51           rc = ioctl(fd,SPI_IOC_MESSAGE(1),&ioc);
52           if ( rc < 0 )
53                  errxit("ioctl (2) for SPI I/O");
54           close(fd);
55
56           printf("rc=%d %02X %02X %02X %02X\n",
57                  rc, rx[0], rx[1], rx[2], rx[3]);
58           return 0;
59 }
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Appendix A

Glossary

AC
Alternating current

Amps
Amperes

ATAG
ARM tags, though now used by boot loaders for other architectures

AVC
Advanced Video Coding (MPEG-4)

AVR
 Wikipedia states that “it is commonly accepted that AVR stands for Alf (Egil Bogen) 
and Vegard (Wollan)’s RISC processor.”

BCD
Binary-coded decimal

Brick
To accidently render a device unusable by making changes to it

CEA
Consumer Electronics Association

cond
Condition variable

CPU
Central processing unit

CRC
Cyclic redundancy check, a type of hash for error detection

CVT
Coordinated Video Timings standard (replaces GTF)

daemon
A Unix process that services requests in the background

DC
Direct current
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DCD
RS-232 data carrier detect

DCE
RS-232 data communications equipment

Distro
A specific distribution of Linux software

DLNA
 Digital Living Network Alliance, whose purpose is to enable sharing of digital media 
between multimedia devices

DMM
Digital multimeter

DMT
Display Monitor Timing standard

DPI
Display Pixel Interface (a parallel display interface)

DPVL
Digital Packet Video Link

DSI
Display Serial Interface

DSR
RS-232 data set ready

DTE
RS-232 data terminal equipment

DTR
RS-232 data terminal ready

ECC
Error-correcting code

EDID
Extended display identification data

EEPROM
Electrically erasable programmable read-only memory

EMMC
External mass media controller

Flash
 Similar to EEPROM, except that large blocks must be entirely rewritten in an update 
operation

FFS
Flash file system
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FIFO
First in, first out

FSP
Flash storage processor

FTL
Flash translation layer

FUSE
Filesystem in Userspace (File system in USErspace)

GNU
GNU is not Unix

GPIO
General-purpose input/output

GPU
Graphics processing unit

GTF
Generalized Timing Formula

H.264
MPEG-4 Advanced Video Coding (AVC)

H-Bridge
An electronic circuit configuration that allows voltage to be reversed across the load

HDMI
High-Definition Multimedia Interface

HID
Human interface device

I2C
Two-wire interface invented by Philips

IC
Integrated circuit

IDE
Integrated development environment

IR
Infrared

ISP
Image Sensor Pipeline

JFFS2
Journalling Flash File System 2

LCD
Liquid-crystal display
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LED
Light-emitting diode

mA
Milliamperes, a measure of current flow

MCU
Microcontroller unit

MMC
MultiMedia Card

MISO
Master in, slave out

MOSI
Master out, slave in

MTD
Memory technology device

mutex
Mutually exclusive

NTSC
National Television System Committee (analog TV signal standard)

PAL
Phase Alternating Line (analog TV signal standard)

PC
Personal computer

PCB
Printed circuit board

PLL
Phase-locked loop

PoE
Power over Ethernet (supplying power over an Ethernet cable)

POSIX
Portable Operating System Interface (for Unix)

pthreads
POSIX threads

PWM
Pulse-width modulation

Pxe
Preboot execution environment, usually referencing booting by network

RAM
Random-access memory
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RI
RS-232 ring indicator

RISC
Reduced instruction set computer

RH
Relative humidity

ROM
Read-only memory

RPi
Raspberry Pi

RS-232
Recommended standard 232 (serial communications)

RTC
Real-time clock

SBC
Single-board computer

SD
Secure Digital Association memory card

SDIO
SD card input/output interface

SDRAM
Synchronous dynamic random-access memory

SoC
System on a chip

SMPS
Switched-mode power supply

SPI
Serial Peripheral Interface (bus)

Stick parity
Mark or space parity, where the bit is constant

TWI
Two-wire interface

UART
Universal asynchronous receiver/transmitter

USB
Universal Serial Bus

V3D
Video for 3D
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VAC
Volts AC

VESA
Video Electronics Standards Association

VFS
Virtual file system

VNC
Virtual Network Computing

VSB

ATX standby voltage

YAFFS
Yet Another Flash File System
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Appendix B

Power Standards

The following table references the standard ATX power supply voltages, regulation 
(tolerance), and voltage ranges.15

The values listed here for the +5 V and +3.3 V supplies were referenced in Chapter 2 
as a basis for acceptable power supply ranges. When the BroadCom power specifications 
become known, they should be used instead.

Supply  
(Volts)

Tolerance Minimum Maximum Ripple  
(Peak to Peak)

+5 V ±5% ± 0.25 V +4.75 V +5.25 V 50 mV

-5 V ±10% ±0.50 V –4.50 V –5.50 V 50 mV

+12 V ±5% ±0.60 V +11.40 V +12.60 V 120 mV

-12 V ±10% ±1.2 V –10.8 V –13.2 V 120 mV

+3.3 V ±5% ±0.165 V +3.135 V +3.465 V 50 mV

+5 VSB ±5% ±0.25 V +4.75 V +5.25 V 50 mV
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Appendix C

Electronics Reference

The experienced electronic hobbyist or engineer will already know these formulas 
and units well. This reference material is provided as a convenience for the student or 
beginning hobbiest.

Ohm’s Law
Using the following triangle, cover the unknown property to determine the formula 
needed. For example, if current (I) is unknown, cover the I, and the formula V

R
 remains.

V

I R

Power
Power can be computed from these formulas:

P I V
P I R

P
V

R

= ´
= ´

=

2

2
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Units
The following chart summarizes the main metric prefixes used in electronics.

Name Prefix Factor

Multiples mega M 106

kilo k 103

Fraction milli m 10-3

micro m 10-6

nano n 10-9

pico p 10-12



A���������
A1265 Apple adapter, 9
Adapters

e-book, 10
power source, 10
unsuitable supply, 9
voltage test, 10–11

API. See Application programming 
interface (API)

API support
Boarduino, 67
include files, 68, 70
libusb, 67
serial device, 67

Application programming interface (API)
bits per word, 195
cfgetispeed(3) function, 112
cfgetospeed(3), 112
cfmakeraw(3) function, 109–112
cfsetispeed(3) function, 113
cfsetospeed(3) function, 113
cfsetspeed(3), 114
clock rate, 195–196
close, 199
data I/O, 196–199
error EINTR, 97, 118–119
header files, 182, 192–193
ioctl(2,I2C_FUNC), 183
ioctl(2,I2C_RDWR), 184–186
kernel module support, 181
Linux operating system, 101
open(2), 102, 182–183
open device, 193
read, 199
read(2) system, 114–115
readv(2) and writev(2), 116–118
SPI mode macros, 193–194

struct termios, 102–105
tcdrain(3), 107
tcflow(3) function, 108–109
tcflush(3), 108
tcgetattr(3) function, 106
tcsendbreak(3), 107
tcsetattr(3), 106–107
write, 199
write(2) system, 115–116

B���������
Battery power

DC-DC buck converter, 14–16
headroom, 12
LM7805 regulation, 12–14
requirements, 12

BCM2835, 121

C���������
Central processing unit (CPU)

board identification, 45–46
condition variables, 59–63
executing program, 48–49
mutexes, 56–58
overclocking, 46–48
Raspberry Pi, 45
Raspbian Linux, 46
threads (see Threads, CPU)

CommitLimit, SDRAM
proc/meminfo, 36–37
values, 37
vm.overcommit_memory, 36

Condition variables, CPU
and mutexes, 59
pthread_cond_broadcast(3), 63

Index
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pthread_cond_destroy(3), 61
pthread_cond_init(3), 60–61
pthread_cond_signal(3), 62–63
pthread_cond_wait(3), 61–62
queue, 59
thread, 60
use, 60

CPU. See Central processing unit (CPU)

D���������
Data communications  

equipment (DCE), 90–91
Data terminal equipment (DTE), 90–91
DC-DC buck converter

data acquisition, 14
input and output connections, 14
LM7805 regulator, 16
measured conversion efficiency, 15
output voltage, 15
solar panels, 15
specifications, 15

DCE. See Data communications 
equipment (DCE)

Direct register access
code, 153
gpio_config(), 154
gpio_init(), 153
gpio_io.c, 155, 157
gpio_read(), 154
gpio_write(), 154

Drive strength
bi-color LEDs, 134–135
control, 130
current load, 130
input pin, 131
LED, 132–133
logic interfaces, 134
output pins, 131–132
software configurable, 129
testing, 135–137

DTE. See Data terminal equipment (DTE)

E���������
Electronics reference

Ohm’s law, 211
power, 211
units, 212

Ethernet
description, 71
wired, 71–74
wireless, 74–79

F���������
Flash Storage Processor (FSP), 82
FSP. See Flash Storage Processor (FSP)

G���������
General-purpose input/output (GPIO)

configuration
alternate function, 138–139
input pins, 139
output pins, 139

C program evinput.c, 147
current budget, 137
designations, 121
drive levels, 164
drive strength (see Drive strength)
evinput program, 149–153
floating potentials, 147
GPIO command, 162
header connector, 21–22
input test, 145, 147
kernel, 147
logic levels, 129
P1 header, 122
P5 header, 123
pins, 121
pull-up resistors, 124–128
Raspberry Pi, 23, 121
reading and  

writing, 163–164
registers, 153–154, 156–157
Rev 2.0 configuration, 123
Rev 2.0 models, 22
running ./evinput, 148–149
settings, 163
sysfs (see Sysfs)
tester, 144–145
transistor driver (see Transistor  

driver, GPIO)
1-Wire driver, 24
wiringPi project, 162

GPIO. See General purpose  
input/output (GPIO)

GPIO input test, 145–146
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H���������
Hardware flow control, 95–96
Header

GPIO, 21–23
kernel source file, 24
logic level, 23
macro W1_GPIO, 24
Rev 2.0 model, 22, 24
safe mode, 22–23

I, J, K���������
I2C bus

API (see Application programming 
interface (API))

data bit transmission, 178
description, 175
design, 176
firmware code, 179
message formats, 178–179
multimaster and  

arbitration, 177
Raspberry Pi context, 175
SDA and SCL, 176
speed, 180
start and stop signaling, 177
tools, 180–181

Insufficient power, 16–17

L���������
LED. See Light emitting diodes (LED)
LEDs

100 Mbit link, 20
full-duplex mode, 20
GPIO, 19
link-level status, 20
power, 20
Raspberry Pi, 19

Light emitting diodes (LED), 132–133
Logic levels, GPIO, 129

M���������
Mutexes, CPU

API, 56
pthread_mutex_create(3), 56–57
pthread_mutex_destroy(3), 57
pthread_mutex_lock(3), 58
pthread_mutex_unlock(3), 58–59

N���������
New Out of Box Software  

(NOOBS) image, 22
NOOBS. New Out of Box Software (NOOBS)

O���������
Ohm’s law, 211

P, Q���������
P1 header, 122
P5 header, 123
Physical memory, SDRAM

ARM, 38
layout, 39
peripheral offsets, 39
Raspberry Pi’s, 38

Power, 211
adapters (see Adapters)
battery power, 12–16
calculation, 5
insufficient, 16
micro-USB power input, 5
model A input power, 8
model B input power, 7
peripheral, 7
Raspberry Pi, 5
requirement, 6
USB hubs, 9
3.3 volt power, 8
vs. no power, 17

Powered USB Hubs, 8
Power standards, 209
Pull-up resistors

configuring
broadcom procedure, 125
GPIO pads control, 128
GPPUDCLK0/1, 124–125
program pullup.c, 126–127
registers GPPUP, 124

external and internal, 124
testing, 128–129

R���������
Raspberry Pi

hardware, 1, 3–4
input voltage, 7
models, 1–2
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networking capability, 4
power consumption, 4
power supply, 5
Raspbian Linux, 1
resetting, 16
software API, 1
unit cost, 4

Reset circuit, 25
RS-232

baud rate, 93–94
break signal, 95
data bits, 92
description, 91
flow control

description, 95
hardware, 95–96
software, 96–97

parity bit, 92
serial signal transmission, 91–92
start bit, 92
stop-bit(s), 93

RS-232 converter
DTE/DCE, 90–91
MAX232CSE chip interface, 89
TXD0 and RXD0, 90

S���������
SD card storage

block size, 83
/boot file system, 83
capacities and performance, 84
character device, 84
circuit, 82
device pathname, 83
FSP, 82
media, 81
Raspbian Linux, 84
storage requirements, 81
/sys pseudo file system, 83
transfer modes

1-bit SD mode, 86
4-bit SD mode, 87
SPI Bus mode, 85–86

wear leveling, 87–88
SDRAM. See Synchronous dynamic random 

access memory (SDRAM)
Serial line use

procedure, 100
verification, 101

Serial peripheral interface (SPI) bus
API (see Application programming 

interface (API))
communication, 187
data transfer, 188
description, 187
driver support, 191
signaling modes, 188–190
slave selection, 190
test, 199–201

Slave device
communication, 166
support, 169
temperature sensor, 172–174

Software flow control, 96–97
Synchronous dynamic random access 

memory (SDRAM)
active memory, 31
AnonPages, 33
block device bounce, 35
buffers, 30
CommitLimit, 36–37
Committed_AS, 37
dirty and writeback, 33
file-backed memory, 32
inactive memory, 31
KernelStack, 34
mapped value, 33
MemFree, 30
memory allocation, 44
memory mapping

BLOCK_SIZE, 41
character pointer map, 41
code, 40–41
dev/mem, 40
file descriptor, 42
MAP_SHARED, 42
mmap(2) system, 40
offset, 42
PROT_READ and  

PROT_WRITE, 42
return value, 42
sysconf(2) system, 42
volatile, 43

MemTotal, 29
Mlocked, 32
NFS_Unstable, 35
page tables, 35
physical memory, 38–40
Pi developer, 27
proc/meminfo, 27–29
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Raspbian Linux, 27, 44
shmem, 34
slab, 34
SReclaimable, 34
SUnreclaim, 34
SwapCached, 30
SwapFree, 33
SwapTotal, 32
temporary writeback  

buffers, 35
virtual memory, 43
VmallocChunk, 38
VmallocTotal, 38
VmallocUsed, 38

Sysfs
C/C++ programmer, 140
chip level, 143
export, 141
GPIO pins, 140
gpioX, 141–143
inverted logic, 143
noninverted logic, 143
pseudo files, 140
unexport, 141

T���������
Threads, CPU

errno, 49–50
Linux, 49
pthread_attr_t, 52–54
pthread_create(3)

arguments, 50–51
C language syntax, 51
function, 50
my_thread(), 51
start_routine, 51

pthread_detach(3), 54–55
pthread Headers, 49
pthread_kill(3), 55–56
pthread_self(3), 55

Transistor driver, GPIO
2N2222A driver, 157
2N2222A transistor, 157
design, 158–160
high-current LEDs/panel  

lightbulbs, 161
inductive loads, 160–161
output driver, 157
substitution, 160

U���������
UART. See Universal asynchronous 

receiver/transmitter (UART)
Universal asynchronous  

receiver/transmitter (UART)
API (see Application programming 

interface (API))
ARM PL011 UART

features, 99–100
RTS/CTS access, 98–99

description, 89
Raspberry Pi supports, 97
RS-232 (see RS-232)
RS-232 converter (see RS-232 converter)
serial line use, 100–101

USB
API support, 67–68, 70
power, 66
powered hubs, 66–67
Raspberry USB interface, 65

USB adapters, 74

V���������
3.3 Volt Power, 8

W, X, Y, Z���������
Wear leveling

flash memory, 87
Raspberry Pi, 88
read/write file systems, 88
SanDisk’s, 88

Wired ethernet
changing to static IP, 72–73
description, 71
DHCP, 71
/etc/hosts file, 74
/etc/network/interfaces, 72
nmap command, 71
test static  

IP address, 73–74
USB adapters, 74

1-Wire driver
description, 165
GPIO pin, 174
line and power

data communication, 165
ground/“return” wire, 165
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master device, 166
protocol

data I/O, 167–168
reset, 167

pull-up resistor, 166
slave devices, 166, 168–169
temperature sensors

bus master driver, 171
DS18B20 temperature  

sensors, 174
kernel module, 169
loading module, 170

lsmod command, 169
pseudo files and symlinks, 170–171
slave device, 172–173

wire driver circuit, 166
Wireless adapters, 7–8
Wireless ethernet

adapter, 75
Atheros AR9101, 75
Atheros AR9170, 75
configuration, 76–79
console log, 75
firmware file, 75
rebooting, 76
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