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Preface

“Soft matter” is nowadays used to describe an increasingly important class of ma-
terials that encompasses polymers, liquid crystals, molecular assemblies building
hierarchical structures, organic-inorganic hybrids, and the whole area of colloidal
science. Common to all is that fluctuations, and thus the thermal energy kg7 and
entropy, play an important role. “Soft” then means that these materials are in a state
of matter that is neither a simple liquid nor a hard solid of the type studied in hard
condensed matter, hence sometimes many types of soft matter are also named “com-
plex fluids.”

Soft matter, either of synthetic or biological origin, has been a subject of physical
and chemical research since the early finding of Staudinger that long chain mole-
cules exist. From then on, synthetic chemistry as well as physical characterization
underwent an enormous development. One of the outcomes is the abundant pres-
ence of polymeric materials in our everyday life. Nowadays, methods developed
for synthetic polymers are being more and more applied to biological soft matter.
The link between modern biophysics and soft matter physics is quite close in many
respects. This also means that the focus of research has moved from simple ho-
mopolymers to more complex structures, such as branched objects, heteropolymers
(random copolymers, proteins), polyelectrolytes, amphiphiles and so on. While ba-
sic questions concerning morphology, dynamics, and rheology are still a matter of
intense research, additional, more advanced topics are also being tackled, for exam-
ple the link between structure and function or non-equilibrium aspects.

For many years there have been attempts to understand these systems thoroughly
using theoretical concepts. Beginning with the early work of Flory, simplified mod-
els were studied, which were able to explain certain generic/universal aspects but
failed to provide a solid theoretical basis for this universal behavior. It was then
up to the seminal works of de Gennes and Edwards to provide a link between the
statistical mechanics of phase transitions (critical phenomena) and polymer chain
conformations. This link to the modern concepts of theoretical physics provided
huge momentum for the field, which shaped many theoretical schools and formed
the basis for modern soft matter physics. Despite all these developments, soft mat-
ter theory is still an active and growing research field. Due to the high degree

IX
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of complexity of the problems it is not surprising that analytical theory can only
treat highly idealized and simplified models. Consequently, with the availability
of computers, problems in polymer science were among the first to be tackled by
simulations. Even now, the problem of an isolated self-avoiding walk cannot be
solved exactly in three dimensions. As early as 1954, Hammersley and Morton,
and Rosenbluth and Rosenbluth tried to overcome the related attrition problem in
growing self-avoiding walks by introducing “inversely restricted sampling.” In ad-
dition, basic multichain features (such as the noncrossability of chains) are hard to
deal with analytically and can only be included properly by a simulation approach.
Thus, with the rising availability of computing power, simulation methods began
to play an increasingly important role in soft matter research. Computing power
is, however, only one aspect. Even more important has been the development of
advanced numerical methods and highly optimized programs. Very different areas,
ranging from quantum chemistry studying molecules on the sub-Angstrgm level all
the way to macroscopic fluid dynamics, have to come together and offer a unique
set of research opportunities. Over the years, the role of computer simulations has
gone beyond the traditional aspect of checking approximative solutions of analyti-
cal models and bridging the gap between experiments and theory. They are now an
independent, in some cases even predictive, tool in materials research, for example
for complex molecular assemblies or specific rheological problems.

It is the purpose of this small series of volumes in Advances in Polymer Sciences
to provide an overview of the latest developments in the field. For this, interna-
tionally renowned experts review recent work in the general area of soft matter
simulations. The third volume contains three contributions. The first two chapters
review several coarse-grained methods to include the effects of hydrodynamics in
mesoscopic particle simulations that use an implicit solvent, whereas the last chapter
deals with advanced sampling methods to study rare events.

The first two contributions deal with methods or systems where hydrodynamic
interactions play a dominant role. Studying coarse-grained mesoscopic systems,
hydrodynamic interactions are unimportant for static properties in equilibrium.
However, the inclusion of hydrodynamic effects becomes indispensable for all prob-
lems of dynamics of solutions in bulk or under confinement, especially when it
comes to flow-induced structure formation. This would automatically be achieved
by a standard molecular dynamics simulation, which takes full account of the sol-
vent molecules. This, however, is only feasible in some very exceptional cases, even
for the upcoming computer generation, and is still applicable to only very small sys-
tems. Because of that, solvent-free methods play a very important role and have been
improved significantly over the last few years. In the first contribution G. Gompper,
T. Ihle, D.M. Kroll, and R.G. Winkler focus on an algorithm that was initially pro-
posed by Malevanets and Kapral in 1999, and is now called multiparticle collision
dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of al-
ternating streaming and collision steps in an ensemble of point particles that locally
conserve mass, momentum, and energy. The second contribution by B. Diinweg and
A.J.C. Ladd reviews in depth the standard D3Q19 lattice-Boltzmann model and ex-
tensions thereof. Here the Boltzmann equation is solved on a grid, where the fluid
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velocities are stored, employing mass and momentum conservation. The authors dis-
cuss in depth the “fluctuating” lattice-Boltzmann algorithm, followed by a detailed
discussion of complementary methods for the coupling of solvent and solute. Both
presented methods consistently couple full hydrodynamic interactions and thermal
fluctuations and, since they deal with complementary methods, give an excellent
comprehensive overview over the field. Both contributions also conclude with ex-
amples in which the methods are applied to soft matter systems such as colloidal
suspensions and polymer solutions.

In the third contribution, C. Dellago and P. Bolhuis review several recently
developed methods for studying rare-event transitions, which are important in
understanding molecular processes such as nucleation events, chemical reactions
transport phenomena in liquids and solids, or slow processes such as protein fold-
ing. Such transition events are rare because the stable basins are separated from
each other by high free-energy barriers of either potential energy, entropic, or com-
bined origin. Several methods have been proposed to speed up the sampling of
these transitions, like metadynamics, the finite temperature string method, forward
flux sampling, and others. The authors cover in depth the transition path sampling
methodology to which they have both added important contributions.

We are confident that this collection of reviews will be a very useful guide to
interested scientists and advanced students, and it also provides detailed background
information for experienced researchers in the field.

Mainz, Autumn 2008 C. Holm, K. Kremer
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Multi-Particle Collision Dynamics: A
Particle-Based Mesoscale Simulation Approach
to the Hydrodynamics of Complex Fluids

G. Gompper, T. Ihle, D.M. Kroll, and R.G. Winkler

Abstract In this review, we describe and analyze a mesoscale simulation method
for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is
now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an en-
semble of point particles. The multi-particle collisions are performed by grouping
particles in collision cells, and mass, momentum, and energy are locally conserved.
This simulation technique captures both full hydrodynamic interactions and ther-
mal fluctuations. The first part of the review begins with a description of several
widely used MPC algorithms and then discusses important features of the origi-
nal SRD algorithm and frequently used variations. Two complementary approaches
for deriving the hydrodynamic equations and evaluating the transport coefficients
are reviewed. It is then shown how MPC algorithms can be generalized to model
non-ideal fluids, and binary mixtures with a consolute point. The importance of
angular-momentum conservation for systems like phase-separated liquids with dif-
ferent viscosities is discussed. The second part of the review describes a number
of recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of vis-
coelastic fluids.

Keywords Binary fluid mixtures, Colloids, Complex fluids, Hydrodynamics,
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1 Introduction

“Soft Matter” is a relatively new field of research that encompasses traditional
complex fluids such as amphiphilic mixtures, colloidal suspensions, and polymer
solutions, as well as a wide range of phenomena including chemically reactive flows
(combustion), the fluid dynamics of self-propelled objects, and the visco-elastic be-
havior of networks in cells. One characteristic feature of all these systems is that
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phenomena of interest typically occur on mesoscopic length-scales — ranging from
nano- to micrometers — and at energy scales comparable to the thermal energy kg7 .

Because of the complexity of these systems, simulations have played a partic-
ularly important role in soft matter research. These systems are challenging for
conventional simulation techniques due to the presence of disparate time, length,
and energy scales. Biological systems present additional challenges because they
are often far from equilibrium and are driven by strong spatially and temporally
varying forces. The modeling of these systems often requires the use of “coarse-
grained” or mesoscopic approaches that mimic the behavior of atomistic systems
on the length scales of interest. The goal is to incorporate the essential features of
the microscopic physics in models which are computationally efficient and are eas-
ily implemented in complex geometries and on parallel computers, and can be used
to predict emergent properties, test physical theories, and provide feedback for the
design and analysis of experiments and industrial applications.

In many situations, a simple continuum description based on the Navier—Stokes
equation is not sufficient, since molecular-level details — including thermal fluctu-
ations — play a central role in determining the dynamic behavior. A key issue is to
resolve the interplay between thermal fluctuations, hydrodynamic interactions, and
spatio-temporally varying forces. One well-known example of such systems are mi-
croemulsions — a dynamic bicontinuous network of intertwined mesoscopic patches
of oil and water — where thermal fluctuations play a central role in creating this
phase. Other examples include flexible polymers in solution, where the coil state
and stretching elasticity are due to the large configurational entropy. On the other
hand, atomistic molecular dynamics simulations retain too many microscopic de-
grees of freedom, consequently requiring very small time steps in order to resolve
the high frequency modes. This makes it impossible to study long timescale behav-
ior such as self-assembly and other mesoscale phenomena.

In order to overcome these difficulties, considerable effort has been devoted to
the development of mesoscale simulation methods such as Dissipative Particle Dy-
namics [1-3], Lattice-Boltzmann [4—6], and Direct Simulation Monte Carlo [7-9].
The common approach of all these methods is to “average out” irrelevant micro-
scopic details in order to achieve high computational efficiency while keeping the
essential features of the microscopic physics on the length scales of interest. Apply-
ing these ideas to suspensions leads to a simplified, coarse-grained description of the
solvent degrees of freedom, in which embedded macromolecules such as polymers
are treated by conventional molecular dynamics simulations.

All these approaches are essentially alternative ways of solving the Navier—
Stokes equation and its generalizations. This is because the hydrodynamic equations
are expressions for the local conservation laws of mass, momentum, and energy,
complemented by constitutive relations which reflect some aspects of the micro-
scopic details. Frisch et al. [10] demonstrated that discrete algorithms can be
constructed which recover the Navier—Stokes equation in the continuum limit as
long as these conservation laws are obeyed and space is discretized in a sufficiently
symmetric manner.

The first model of this type was a cellular automaton, called the Lattice-Gas-
Automaton (LG). The algorithm consists of particles which jump between nodes of
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a regular lattice at discrete time intervals. Collisions occur when more than one par-
ticle jumps to the same node, and collision rules are chosen which impose mass and
momentum conservation. The Lattice-Boltzmann method (LLB) — which follows the
evolution of the single-particle probability distribution at each node — was a natural
generalization of this approach. LB solves the Boltzmann equation on a lattice with
a small set of discrete velocities determined by the lattice structure. The price for
obtaining this efficiency is numerical instability in certain parameter ranges. Fur-
thermore, as originally formulated, LB did not contain any thermal fluctuations. It
became clear only very recently (and only for simple liquids) how to restore fluctu-
ations by introducing additional noise terms to the algorithm [11].

Except for conservation laws and symmetry requirements, there are relatively
few constraints on the structure of mesoscale algorithms. However, the constitutive
relations and the transport coefficients depend on the details of the algorithm, so
that the temperature and density dependencies of the transport coefficients can be
quite different from those of real gases or liquids. However, this is not a problem as
long as the functional form of the resulting hydrodynamic equations is correct. The
mapping to real systems is achieved by tuning the relevant characteristic numbers,
such as the Reynolds and Peclet numbers [12, 13], to those of a given experiment.
When it is not possible to match all characteristic numbers, one concentrates on
those which are of order unity, since this indicates that there is a delicate balance
between two effects which need to be reproduced by the simulation. On occasion,
this can be difficult, since changing one internal parameter, such as the mean free
path, usually affects all transport coefficients in different ways, and it may happen
that a given mesoscale algorithm is not at all suited for a given application [14—17].

In this review we focus on the development and application of a particle-based
mesoscopic simulation technique which was recently introduced by Malevanets and
Kapral [18, 19]. The algorithm, which consists of discrete streaming and collision
steps, shares many features with Bird’s Direct Simulation Monte Carlo (DSMC)
approach [7]. Collisions occur at fixed discrete time intervals, and although space
is discretized into cells to define the multi-particle collision environment, both the
spatial coordinates and the velocities of the particles are continuous variables. Be-
cause of this, the algorithm exhibits unconditional numerical stability and has an
H-theorem [18,20]. In this review, we will use the name multi-particle collision dy-
namics (MPC) to refer to this class of algorithms. In the original and most widely
used version of MPC, collisions consist of a stochastic rotation of the relative veloc-
ities of the particles in a collision cell. We will refer to this algorithm as stochastic
rotation dynamics (SRD) in the following.

One important feature of MPC algorithms is that the dynamics is well-defined
for an arbitrary time step, Az. In contrast to methods such as molecular dynamics
simulations (MD) or dissipative particle dynamics (DPD), which approximate the
continuous-time dynamics of a system, the time step does not have to be small. MPC
defines a discrete-time dynamics which has been shown to yield the correct long-
time hydrodynamics; one consequence of the discrete dynamics is that the transport
coefficients depend explicitly on At. In fact, this freedom can be used to tune the
Schmidt number, Sc [15]; keeping all other parameters fixed, decreasing At leads to
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an increase in Sc. For small time steps, Sc is larger than unity (as in a dense fluid),
while for large time steps, Sc is of order unity, as in a gas.

Because of its simplicity, SRD can be considered an “Ising model” for hydro-
dynamics, since it is Galilean invariant (when a random grid shift of the collision
cells is performed before each collision step [21]) and incorporates all the essen-
tial dynamical properties in an algorithm which is remarkably easy to analyze. In
addition to the conservation of momentum and mass, SRD also locally conserves
energy, which enables simulations in the microcanonical ensemble. It also fully in-
corporates both thermal fluctuations and hydrodynamic interactions. Other more
established methods, such as Brownian Dynamics (BD) can also be augmented
to include hydrodynamic interactions. However, the additional computational costs
are often prohibitive [22,23]. In addition, hydrodynamic interactions can be easily
switched off in MPC algorithms, making it easy to study the importance of hydro-
dynamic interactions [24,25].

It must, however, be emphasized that all local algorithms such as MPC, DPD,
and LB model compressible fluids, so that it takes time for the hydrodynamic in-
teractions to “propagate” over longer distances. As a consequence, these methods
become quite inefficient in the Stokes limit, where the Reynolds number approaches
zero. Algorithms which incorporate an Oseen tensor do not share this shortcoming.

The simplicity of the SRD algorithm has made it possible to derive analytic ex-
pressions for the transport coefficients which are valid for both large and small mean
free paths [26-28]. This is usually very difficult to do for other mesoscale particle-
based algorithms. Take DPD as an example: the viscosity measured in [29] is about
50% smaller than the value predicted theoretically in the same paper. For SRD, the
agreement is generally better than 1%.

MPC is particularly well suited (1) for studying phenomena where both thermal
fluctuations and hydrodynamics are important, (2) for systems with Reynolds and
Peclet numbers of order 0.1-10, (3) if exact analytical expressions for the trans-
port coefficients and consistent thermodynamics are needed, and (4) for modeling
complex phenomena for which the constitutive relations are not known. Examples
include chemically reacting flows, self-propelled objects, or solutions with embed-
ded macromolecules and aggregates.

If thermal fluctuations are not essential or undesirable, a more traditional method
such as a finite-element solver or a LB approach is recommended. If, on the other
hand, inertia and fully resolved hydrodynamics are not crucial, but fluctuations are,
one might be better served using Langevin or BD.

This review consists of two parts. The first part begins in Sect. 2 with a descrip-
tion of several widely used MPC algorithms and then discusses important features of
the original SRD algorithm and a frequently used variation, Multi-Particle Collision
Dynamics with Anderson Thermostat (MPC-AT), which effectively thermostats the
system by replacing the relative velocities of particles in a collision cell with newly
generated Gaussian random numbers in the collision step. After a qualitative discus-
sion of the static and dynamic properties of MPC fluids in Sect. 3, two alternative ap-
proaches for deriving the hydrodynamic equations and evaluating the transport co-
efficients are described. First, in Sect. 4, discrete-time projection operator methods
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are discussed and the explicit form of the resulting Green—Kubo (GK) relations
for the transport coefficients are given and evaluated. Subsequently, in Sect. 5, an
alternative non-equilibrium approach is described. The two approaches comple-
ment each other, and the predictions of both methods are shown to be in complete
agreement. It is then shown in Sect. 6 how MPC algorithms can be generalized
to model non-ideal fluids and binary mixtures. Finally, various approaches for
implementing slip and no-slip boundary conditions — as well as the coupling of
embedded objects to a MPC solvent — are described in Sect. 7. In Sect. 8, the im-
portance of angular-momentum conservation is discussed, in particular in systems
of phase-separated fluids with different viscosities under flow. An important as-
pect of mesoscale simulations is the possibility to directly determine the effect of
hydrodynamic interactions by switching them off, while retaining the same ther-
mal fluctuations and similar friction coefficients; in MPC, this can be done very
efficiently using an algorithm described in Sect.9. The second part of the review
describes a number of recent applications of MPC algorithms to study colloid and
polymer dynamics, and the behavior of vesicles and cells in hydrodynamic flows.
Section 10 focuses on the non-equilibrium behavior of colloidal suspensions, the
dynamics of dilute solutions of linear polymers both in equilibrium and under flow
conditions, and the properties of star polymers — also called ultra-soft colloids —
in shear flow. Section 11 is devoted to the review of recent simulation results for
vesicles in flow. After a short introduction to the modeling of membranes with dif-
ferent levels of coarse-graining, the behavior of fluid vesicles and red blood cells,
both in shear and capillary flow, is discussed. Finally, a simple extension of MPC
for viscoelastic solvents is described in Sect. 12, where the point particles of MPC
for Newtonian fluids are replaced by harmonic dumbbells.

A discussion of several complementary applications — such as chemically reac-
tive flows and self-propelled objects — can be found in a recent review of MPC by
Kapral [30].

2 Algorithms

In the following, we use the term MPC to describe the generic class of particle-
based algorithms for fluid flow which consist of successive free-streaming and
multi-particle collision steps. The name SRD is reserved for the most widely used
algorithm which was introduced by Malevanets and Kapral [18]. The name refers
to the fact that the collisions consist of a random rotation of the relative velocities
O0v; = v; —u of the particles in a collision cell, where u is the mean velocity of
all particles in a cell. There are a number of other MPC algorithms with different
collision rules [31-33]. For example, one class of algorithms uses modified colli-
sion rules which provide a nontrivial “collisional” contribution to the equation of
state [33, 34]. As a result, these models can be used to model non-ideal fluids or
multi-component mixtures with a consolute point.
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2.1 Stochastic Rotation Dynamics

In SRD, the solvent is modeled by a large number N of point-like particles of mass
m which move in continuous space with a continuous distribution of velocities. The
algorithm consists of individual streaming and collision steps. In the streaming step,
the coordinates, r;(r), of all solvent particles at time ¢ are simultaneously updated
according to

ri(t+At) = v;(t) + Arvi(t) (1)

where v;(¢) is the velocity of particle i at time # and At is the value of the discretized
time step.

In order to define the collisions, particles are sorted into cells, and they interact
only with members of their own cell. Typically, the system is coarse-grained into
cells of a regular, typically cubic, grid with lattice constant a. In practice, lengths
are often measured in units of a, which corresponds to setting a = 1. The average
number of particles per cell, M, is typically chosen to be between three and 20. The
actual number of particles in a cell at a given time, which fluctuates, will be denoted
by N.. The collision step consists of a random rotation R of the relative velocities
0v; = v; —u of all the particles in the collision cell,

vi(t+A1) =u(t) +R-0v(t). 2)

All particles in the cell are subject to the same rotation, but the rotations in differ-
ent cells and at different times are statistically independent. There is a great deal of
freedom in how the rotation step is implemented, and any stochastic rotation ma-
trix which satisfies semi-detailed balance can be used. Here, we describe the most
commonly used algorithm. In two dimensions, R is a rotation by an angle +o, with
probability 1/2. In three dimensions, a rotation by a fixed angle o about a ran-
domly chosen axis is typically used. Note that rotations by an angle — need not
be considered, since this amounts to a rotation by an angle o about an axis with
the opposite orientation. If we denote the randomly chosen rotation axis by R, the
explicit collision rule in three dimensions is

Vi(t+Ar) = u(r) 4+ 8v; | (1) cos(or)
+(8v; 1 (t) x R) sin(e) + ov; (1), 3)

where | and || are the components of the vector which are perpendicular and paral-
lel to the random axis R, respectively. Malevanets and Kapral [18] have shown that
there is an H-theorem for the algorithm, that the equilibrium distribution of veloc-
ities is Maxwellian, and that it yields the correct hydrodynamic equations with an
ideal-gas equation of state.

In its original form [18,19], the SRD algorithm was not Galilean invariant. This is
most pronounced at low temperatures or small time steps, where the mean free path,
A = At+/kgT /m, is smaller than the cell size a. If the particles travel a distance
between collisions which is small compared to the cell size, essentially the same
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particles collide repeatedly before other particles enter the cell or some of the partic-
ipating particles leave the cell. For small A, large numbers of particles in a given cell
remain correlated over several time steps. This leads to a breakdown of the molec-
ular chaos assumption — i.e., particles become correlated and retain information of
previous encounters. Since these correlations are changed by a homogeneous im-
posed flow field, V, Galilean invariance is destroyed, and the transport coefficients
depend on both the magnitude and direction of V.

Thle and Kroll [20,21] showed that Galilean invariance can be restored by per-
forming a random shift of the entire computational grid before every collision step.
The grid shift constantly groups particles into new collision neighborhoods; the
collision environment no longer depends on the magnitude of an imposed homo-
geneous flow field, and the resulting hydrodynamic equations are Galilean invariant
for arbitrary temperatures and Mach number. This procedure is implemented by
shifting all particles by the same random vector with components uniformly distrib-
uted in the interval [—a/2,a/2] before the collision step. Particles are then shifted
back to their original positions after the collision.

In addition to restoring Galilean invariance, this grid-shift procedure acceler-
ates momentum transfer between cells and leads to a collisional contribution to the
transport coefficients. If the mean free path A is larger than a/2, the violation of
Galilean invariance without grid shift is negligible, and it is not necessary to use this
procedure.

2.1.1 SRD with Angular Momentum Conservation

As noted by Pooley and Yeomans [35] and confirmed in [28], the macroscopic stress
tensor of SRD is not symmetric in dgvg. The reason for this is that the multi-
particle collisions do not, in general, conserve angular momentum. The problem
is particularly pronounced for small mean free paths, where asymmetric collisional
contributions to the stress tensor dominate the viscosity (see Sect. 4.1.1). In contrast,
for mean free paths larger than the cell size, where kinetic contributions dominate,
the effect is negligible.

An anisotropic stress tensor means that there is non-zero dissipation if the en-
tire fluid undergoes a rigid-body rotation, which is clearly unphysical. However, as
emphasized in [28], this asymmetry is not a problem for most applications in the
incompressible (or small Mach number) limit, since the form of the Navier—Stokes
equation is not changed. This is in accordance with results obtained in SRD sim-
ulations of vortex shedding behind an obstacle [36], and vesicle [37] and polymer
dynamics [14]. In particular, it has been shown that the linearized hydrodynamic
modes are completely unaffected in two dimensions; in three dimensions only the
sound damping is slightly modified [28].

However, very recently Gotze et al. [38] identified several situations involving
rotating flow fields in which this asymmetry leads to significant deviations from
the behavior of a Newtonian fluid. This includes (1) systems in which boundary
conditions are defined by torques rather than prescribed velocities, (2) mixtures of
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liquids with a viscosity contrast, and (3) polymers with a locally high monomer
density and a monomer—monomer distance on the order of or smaller than the lattice
constant, a, embedded in a MPC fluid. A more detailed discussion will be presented
in Sect. 8 below.

For the SRD algorithm, it is possible to restore angular momentum conservation
by having the collision angle depend on the specific positions of the particles within
a collision cell. Such a modification was first suggested by Ryder [39] for SRD
in two dimensions. She showed that the angular momentum of the particles in a
collision cell is conserved if the collision angle & is chosen such that

sin(o) = —2AB/(A*>+B?) and cos(a)= (A>—B*)/(A’+B?), (4

where
Ne

AZZ[I‘,‘X (V,‘*ll)}

1

Ne
. and B:Zr,w(v,'fu). Q)
1

When the collision angles are determined in this way, the viscous stress tensor is
symmetric. Note, however, that evaluating (4) is time-consuming, since the collision
angle needs to be computed for every collision cell every time step. This typically
increases the CPU time by a factor close to 2.

A general procedure for implementing angular-momentum conservation in multi-
particle collision algorithms was introduced by Noguchi et al. [32]; it is discussed
in the following section.

2.2 Multi-Particle Collision Dynamics with Anderson Thermostat

A stochastic rotation of the particle velocities relative to the center-of-mass veloc-
ity is not the only possibility for performing multi-particle collisions. In particular,
MPC simulations can be performed directly in the canonical ensemble by employ-
ing an Anderson thermostat (AT) [31, 32]; the resulting algorithm will be referred
to as MPC-AT—a. In this algorithm, instead of performing a rotation of the relative
velocities, {8v;}, in the collision step, new relative velocities are generated. The
components of {dv{*"} are Gaussian random numbers with variance /kgT /m. The
collision rule is [32, 38]

Vit + A1) =u(t) + 5V —u() + v — Y VN, 6)

jecell

where N, is the number of particles in the collision cell, and the sum runs over all
particles in the cell. It is important to note that MPC-AT is both a collision proce-
dure and a thermostat. Simulations are performed in the canonical ensemble, and
no additional velocity rescaling is required in non-equilibrium simulations, where
there is viscous heating.
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Just as SRD, this algorithm conserves momentum at the cell level but not angular
momentum. Angular momentum conservation can be restored [32,39] by imposing
constraints on the new relative velocities. This leads to an angular-momentum con-
serving modification of MPC-AT [32, 38], denoted MPC-AT-+a. The collision rule
in this case is

Vi(t +At) = ll(t) + Viran — Zvi,ran/Nc

cell

+ {mnl Y, [rjex (vi=vim)] % l'i-,c} ’ 7

j€Ecell

where IT is the moment of inertia tensor of the particles in the cell, and r;c =r; — R¢
is the relative position of particle i in the cell and R is the center of mass of all
particles in the cell.

When implementing this algorithm, an unbiased multi-particle collision is first
performed, which typically leads to a small change of angular momentum, AL. By
solving the linear equation —AL =IT- w, the angular velocity @ which is needed to
cancel the initial change of angular momentum is then determined. The last term in
(7) restores this angular momentum deficiency. MPC-AT can be adapted for simu-
lations in the micro-canonical ensemble by imposing an additional constraint on the
values of the new random relative velocities [32].

2.2.1 Comparison of SRD and MPC-AT

Because d Gaussian random numbers per particle are required at every iteration,
where d is the spatial dimension, the speed of the random number generator is the
limiting factor for MPC-AT. In contrast, the efficiency of SRD is rather insensitive
to the speed of the random number generator since only d — 1 uniformly distrib-
uted random numbers are needed in every box per iteration, and even a low quality
random number generator is sufficient, because the dynamics is self-averaging.
A comparison for two-dimensional systems shows that MPC-AT—a is about a factor
2-3 times slower than SRD, and that MPC-AT+a is about a factor 1.3—1.5 slower
than MPC-AT—a [40].

One important difference between SRD and MPC-AT is the fact that relaxation
times in MPC-AT generally decrease when the number of particles per cell is in-
creased, while they increase for SRD. A longer relaxation time means that a larger
number of time steps is required for transport coefficients to reach their asymptotic
value. This could be of importance when fast oscillatory or transient processes are
investigated. As a consequence, when using SRD, the average number of particles
per cell should be in the range 3-20; otherwise, the internal relaxation times could
be no longer negligible compared to physical time scales. No such limitation exists
for MPC-AT, where the relaxation times scale as (InM )_1, where M is the average
number of particles in a collision cell.
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2.3 Computationally Efficient Cell-Level Thermostating for SRD

The MPC-AT algorithm discussed in Sect. 2.2 provides a very efficient particle-level
thermostating of the system. However, it is considerably slower than the original
SRD algorithm, and there are situations in which the additional freedom offered by
the choice of SRD collision angle can be useful.

Thermostating is required in any non-equilibrium MPC simulation, where there
is viscous heating. A basic requirement of any thermostat is that it does not violate
local momentum conservation, smear out local flow profiles, or distort the velocity
distribution too much. When there is homogeneous heating, the simplest way to
maintain a constant temperature is to just rescale velocity components by a scale
factor S, viyV = Svq, which adjusts the total kinetic energy to the desired value.
This can be done with just a single global scale factor, or a local factor which is
different in every cell. For a known macroscopic flow profile, u, like in shear flow,
the relative velocities v —u can be rescaled. This is known as a profile-unbiased
thermostat; however, it has been shown to have deficiencies in molecular dynamics
simulations [41].

Here we describe an alternative thermostat which exactly conserves momen-
tum in every cell and is easily incorporated into the MPC collision step. It was
originally developed by Heyes for constant-temperature molecular dynamics simu-
lations; however, the original algorithm described in [42] violates detailed balance.
The thermostat consists of the following procedure which is performed indepen-
dently in every collision cell as part of the collision step:

1. Randomly select a real number y € [1, 14 ], where c is a small number between
0.05 and 0.3 which determines the strength of the thermostat.

2. Accept this number as a scaling factor S = y with probability 1/2; otherwise,
take S=1/y.

3. Create another random number & € [0, 1]. Rescale the velocities if £ is smaller
than the acceptance probability po = min(1,A), where

Ne
_ m
A= 51WNeNexp BT Z’(v,-—u)z{S2 —1}]. (8)
i=1

d is the spatial dimension, and N is the number of particles in the cell. The
prefactor in (8) is an entropic contribution which accounts for the fact that the
phase-space volume changes if the velocities are rescaled.

4. If the attempt is accepted, perform a stochastic rotation with the scaled rotation
matrix SR. Otherwise, use the rotation matrix R.

This thermostat reproduces the Maxwell velocity distribution and does not change
the viscosity of the fluid. It gives excellent equilibration, and the deviation of the
measured kinetic temperature from 7y is smaller than 0.01%. The parameter ¢ con-
trols the rate at which the kinetic temperature relaxes to 7y, and in agreement with
experience from MC-simulations, an acceptance rate in the range of 50-65% leads
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to the fastest relaxation. For these acceptance rates, the relaxation time is of the order
of 5-10 time steps. The corresponding value for ¢ depends on the particle number
N.; in two dimensions, it is about 0.3 for N, = 7 and decreases to 0.05 for N, = 100.
This thermostat has been successfully applied to SRD simulations of sedimenting
charged colloids [16].

3 Qualitative Discussion of Static and Dynamic Properties

The previous section outlines several multi-particle algorithms. A detailed discus-
sion of the link between the microscopic dynamics described by (1) and (2) or (3)
and the macroscopic hydrodynamic equations, which describe the behavior at large
length and time scales, requires a more careful analysis of the corresponding Liou-
ville operator £. Before describing this approach in more detail, we provide a more
heuristic discussion of the equation of state and of one of the transport coefficients,
the shear viscosity, using more familiar approaches for analyzing the behavior of
dynamical systems.

3.1 Egquation of State

In a homogeneous fluid, the pressure is the normal force exerted by the fluid on one
side of a unit area on the fluid on the other side; expressed somewhat differently, it
is the momentum transfer per unit area per unit time across an imaginary (flat) fixed
surface. There are both kinetic and virial contributions to the pressure. The first
arises from the momentum transported across the surface by particles that cross the
surface in the unit time interval; it yields the ideal-gas contribution, P,qg = NkgT/V,
to the pressure. For classical particles interacting via pair-additive, central forces, the
intermolecular “potential” contribution to the pressure can be determined using the
method introduced by Irving and Kirkwood [43]. A clear discussion of this approach
is given by Davis in [44], where it is shown to lead to the virial equation of state of
a homogeneous fluid,

_ NkgT 1

P _
v i

(ri-Fy), 9)

in three dimensions, where F; is the force on particle i due to all the other particles,
and the sum runs over all particles of the system.

The kinetic contribution to the pressure, Py = NkgT/V, is clearly present in
all MPC algorithms. For SRD, this is the only contribution. The reason is that the
stochastic rotations, which define the collisions, transport (on average) no net mo-
mentum across a fixed dividing surface. More general MPC algorithms (such as
those discussed in Sect. 6) have an additional contribution to the virial equation of
state. However, instead of an explicit force F; as in (9), the contribution from the
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multi-particle collisions is a force of the form mAv;/At, and the role of the particle
position, r;, is played by a variable which denotes the cell-partners which participate
in the collision [33,45].

3.2 Shear Viscosity

Just as for the pressure, there are both kinetic and collisional contributions to the
transport coefficients. We present here a heuristic discussion of these contributions
to the shear viscosity, since it illustrates rather clearly the essential physics and
provides background for subsequent technical discussions.

Consider a reference plane (a line in two dimensions) normal in the y-direction
embedded in a homogeneous fluid in equilibrium. The fluid below the plane exerts
a mean force p, per unit area on the fluid above the plane; by Newton’s third law,
the fluid above the plane must exert a mean force —p, on the fluid below the plane.
The normal force per unit area is just the mean pressure, P, so that py, = P. In
a homogeneous simple fluid in which there are no velocity gradients, there is no
tangential force, so that, for example, py, = 0. pyp is called the pressure tensor, and
the last result is just a statement of the well-known fact that the pressure tensor in a
homogeneous simple fluid at equilibrium has no off-diagonal elements; the diagonal
elements are all equal to the mean pressure P.

Consider a shear flow with a shear rate ¥ = du,(y)/dy. In this case, there is a
tangential stress on the reference surface because of the velocity gradient normal
to the plane. In the small gradient limit, the dynamic viscosity, 1, is defined as
the coefficient of proportionality between the tangential stress, py,, and the normal
gradient of the imposed velocity gradient,

Pyx = -ny. (10)

The kinematic viscosity, Vv, is related to n by v =n/p, where p = nm is the mass
density, with n the number density of the fluid and m the particle mass.

Kinetic contribution to the shear viscosity: The Kinetic contribution to the shear vis-
cosity comes from transverse momentum transport by the flow of fluid particles.
This is the dominant contribution to the viscosity of gases. The following analogy
may make this origin of viscosity clearer. Consider two ships moving side by side
in parallel, but with different speeds. If the sailors on the two ships constantly throw
sand bags from their ship onto the other, there will be a transfer of momentum
between to two ships so that the slower ship accelerates and the faster ship deceler-
ates. This can be interpreted as an effective friction, or kinetic viscosity, between the
ships. There are no direct forces between the ships, and the transverse momentum
transfer originates solely from throwing sandbags from one ship to the other.

A standard result from kinetic theory is that the kinetic contribution to the shear
viscosity in simple gases is [46]
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Nk ~ nmvd, (11)

where A is the mean free path and v is the thermal velocity. Using the fact that
A ~ VAt for SRD and that ¥ ~ \/kgT /m, relation (11) implies that

n&t ~ nkgTAr,  or equivalently, V" ~ kgT At /m, (12)
which is, as more detailed calculations presented later will show, the correct depen-

dence on n, kg T, and At. In fact, the general form for the kinetic contribution to the
kinematic viscosity is

ykin — kBZlAt fian(d. M, 1), (13)
where d is the spatial dimension, M is the mean number of particles per cell, and
a is the SRD collision angle. Another way of obtaining this result is to use the
analogy with a random walk: The kinematic viscosity is the diffusion coefficient for
momentum diffusion. At large mean free path, A /a > 1, momentum is primarily
transported by particle translation (as in the ship analogy). The mean distance a
particle streams during one time step, At, is A. According to the theory of random
walks, the corresponding diffusion coefficient scales as VK" ~ A2 /At ~ kgT At /m.

Note that in contrast to a “real” gas, for which the viscosity has a square root de-
pendence on the temperature, VK™ ~ T for SRD. This is because the mean free path
of a particle in SRD does not depend on density; SRD allows particles to stream
right through each other between collisions. Note, however, that SRD can be easily
modified to give whatever temperature dependence is desired. For example, an ad-
ditional temperature-dependent collision probability can be introduced; this would
be of interest, e.g., for a simulation of realistic shock-wave profiles.

Collisional contribution to the shear viscosity: At small mean free paths, A /a < 1,
particles “stream” only a short distance between collisions, and the multi-particle
“collisions” are the primary mechanism for momentum transport. These collisions
redistribute momenta within cells of linear size a. This means that momentum
“hops” an average distance a in one time step, leading to a momentum diffusion
coefficient v°°' ~ a?/At. The general form of the collisional contribution to the
shear viscosity is therefore

2
a
veel = = feol(d, M, 00). (14)

This is indeed the scaling observed in numerical simulations at small mean free
path.

The kinetic contribution dominates for A >> a, while the collisional contribution
dominates in the opposite limit. Two other transport coefficients of interest are the
thermal diffusivity, D7, and the single particle diffusion coefficient, D. Both have
the dimension square meter per second. As dimensional analysis would suggest, the
kinetic and collisional contributions to D7 exhibit the same characteristic depen-
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dencies on A, a, and At described by (13) and (14). Since there is no collisional
contribution to the diffusion coefficient, D ~ A2 /At

Two complementary approaches have been used to derive the transport coeffi-
cients of the SRD fluid. The first is an equilibrium approach which utilizes a discrete
projection operator formalism to obtain GK relations which express the transport
coefficients as sums over the autocorrelation functions of reduced fluxes. This ap-
proach was first utilized by Malevanets and Kapral [19], and later extended by Ihle,
Kroll and Tiizel [20,27,28] to include collisional contributions and arbitrary rotation
angles. This approach is described in Sect. 4.1.

The other approach uses kinetic theory to calculate the transport coefficients in
a stationary non-equilibrium situation such as shear flow. The first application of
this approach to SRD was presented in [21], where the collisional contribution to
the shear viscosity for large M, where particle number fluctuations can be ignored,
was calculated. This scheme was later extended by Kikuchi et al. [26] to include
fluctuations in the number of particles per cell, and then used to obtain expressions
for the kinetic contributions to shear viscosity and thermal conductivity [35]. This
non-equilibrium approach is described in Sect. 5.

4 Equilibrium Calculation of Dynamic Properties

A projection operator formalism for deriving the linearized hydrodynamic equations
and GK relations for the transport coefficients of molecular fluids was originally
introduced by Zwanzig [47-49] and later adapted for lattice gases by Dufty and
Ernst [50]. With the help of this formalism, explicit expressions for both the re-
versible (Euler) as well as dissipative terms of the long-time, large-length-scale
hydrodynamics equations for the coarse-grained hydrodynamic variables were de-
rived. In addition, the resulting GK relations enable explicit calculations of the
transport coefficients of the fluid. This work is summarized in Sect.4.1. An analy-
sis of the equilibrium fluctuations of the hydrodynamic modes can then be used
to directly measure the shear and bulk viscosities as well as the thermal diffusivity.
This approach is described in Sect. 4.2, where SRD results for the dynamic structure
factor are discussed.

4.1 Linearized Hydrodynamics and Green—Kubo Relations

The GK relations for SRD differ from the well-known continuous versions due to
the discrete-time dynamics, the underlying lattice structure, and the multi-particle
interactions. In the following, we briefly outline this approach for determining the
transport coefficients. More details can be found in [20,27].

The starting point of this theory are microscopic definitions of local hydrody-
namic densities Aﬁ. These “slow” variables are the local number, momentum, and
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energy density. At the cell level, they are defined as

N d a a
Ap(&) =Y ag; [0 (5 - |&+5 1)) (1)

~ 1 2 2
with the discrete cell coordinates & = am, where mg = 1,...,L, for each spa-
tial component. a;; = 1 is the particle density, {ag;} = m{vyg_1)}, with B =

2,...,d+1, are the components of the particle momenta, and a;,7; = mv,-2 /2 is
the kinetic energy of particle i. d is the spatial dimension, and r; and v; are position
and velocity of particle i, respectively.

Ag(&), for B =2,...,d +2, are cell level coarse-grained densities. For example,
Ay (&) is the x-component of the total momentum of all the particles in cell £ at the
given time. Note that the particle density, Aj, was not coarse-grained in [20], i.e., the
O functions in (15) were replaced by a d-function. This was motivated by the fact
that during collisions the particle number is trivially conserved in areas of arbitrary
size, whereas energy and momentum are only conserved at the cell level.

The equilibrium correlation functions for the conserved variables are defined by
(0Ag(r,1)0A,(r',1")), where (6A) = A — (A), and the brackets denote an average
over the equilibrium distribution. In a stationary, translationally invariant system,
the correlation functions depend only on the differences r —r’ and ¢ —¢’, and the
Fourier transform of the matrix of correlation functions is

1
G(xﬁ(kat) = V<6Ag(ka0)6AY(kat)>v (16)

where the asterisk denotes the complex conjugate, and the spatial Fourier transforms
of the densities are given by

Ap(k) = Yag ™, a7
J

where & ; is the coordinate of the cell occupied by particle j. k = 27n/(aL) is the
wave vector, where ng = 0,£1,...,4(L— 1), L for the spatial components. To sim-
plify notation, we omit the wave-vector dependence of G in this section.

The collision invariants for the conserved densities are

Zeikf;(H_At) I:aﬁ’j(lt +At) - aﬁ/(t)] = Oa (18)
J

where 5; is the coordinate of the cell occupied by particle j in the shifted system.
Starting from these conservation laws, a projection operator can be constructed that
projects the full SRD dynamics onto the conserved fields [20]. The central result is
that the discrete Laplace transform of the linearized hydrodynamic equations can be
written as

[s+ikQ+K*A] G(k,s) = ﬁG(O)R(k), (19)
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where R(k) = [1 4+ At(ikQ + k*>A]~! is the residue of the hydrodynamic pole [20].
The linearized hydrodynamic equations describe the long-time large-length-scale
dynamics of the system, and are valid in the limits of small k and s. The frequency
matrix Q contains the reversible (Euler) terms of the hydrodynamic equations. A
is the matrix of transport coefficients. The discrete GK relation for the matrix of
viscous transport coefficients is [20]

/

A At & - A
Aap®) = g7 L (k0w ()0 (1), (20)
=

where the prime on the sum indicates that the = 0 term has the relative weight 1/2.
Oop = P&w — Pagp 1s the viscous stress tensor. The reduced fluxes in (20) are given
by

oa ) = 30 X (—viak: [42,0) + va0a850)] + Fhd)) - 1
J

for a = 1,....d, with AE;(1) = & ;(t + A1) — & (1), AEj(1 +Ar) = & ;(t + Ar) —
Ei(t+At), and Avyj(1) = vyj(t +At) —vy(1). (1) is the cell coordinate of particle
J at time ¢, while éj is its cell coordinate in the (stochastically) shifted frame. The
corresponding expressions for the thermal diffusivity and self-diffusion coefficient
can be found in [20].

The straightforward evaluation of the GK relations for the viscous (21) and
thermal transport coefficients leads to three — kinetic, collisional, and mixed — con-
tributions. In addition, it was found that for mean free paths A smaller than the
cell size a, there are finite cell-size corrections which could not be summed in a
controlled fashion. The origin of the problem was the explicit appearance of A& in
the stress correlations. However, it was subsequently shown [28, 51] that the GK
relations can be re-summed by introducing a stochastic variable, B;, which is the
difference between change in the shifted cell coordinates of particle i during one
streaming step and the actual distance traveled, Azv;. The resulting microscopic
stress tensor for the viscous modes is

— m
op =Y [mviav,ﬁ + Ev,-aB,-B} 22)
i

where B g(t) = ijj‘ﬁ (t+ At) — é;ﬁ (t) — Atv,g(t). It is interesting to compare this
result to the corresponding expression

1
Oup = 25(1' —-r;) [mViaViﬁ T3 ; rijaFijp (rif)] 23)
i J7

for molecular fluids. The first term in both expressions, the ideal-gas contribution,
is the same in both cases. The collisional contributions, however, are quite different.
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The primary reason is that in SRD, the collisional contribution corresponds to a non-
local (on the scale of the cell size) force which acts only at discrete time intervals.

B; has a number of important properties which simplify the calculation of the
transport coefficients. In particular, it is shown in [28, 51] that stress—stress correla-
tion functions involving one B; in the GK relations for the transport coefficients are
zero, so that, for example, Agp (k) = AX(K) + A (k), with

af aff
oo !
A (k) = Nmk = Y (bt ()l (nan)) 24)
n=0
and
. At & L e o
AGR) = 5 X (R ogg (0)lku o (nAn)) 25)
n=0
with
O (nA1) =Y mvja(nAt)v g (nAt) (26)
j
and
o5y (nAt) va,a (nAt)B;g(nAt), (27)

where B g(nAt) = é;ﬁ ([n+1]A1) — 51‘[3 (nAt) — Atv g (nAt). Similar relations were
obtained for the thermal diffusivity in [28].

4.1.1 Explicit Expressions for the Transport Coefficients

Analytical calculations of the SRD transport coefficients are greatly simplified by
the fact that collisional and kinetic contributions to the stress—stress autocorrelation
functions decouple. Both the kinetic and collisional contributions have been cal-
culated explicitly in two and three dimension, and numerous numerical tests have
shown that the resulting expressions for all the transport coefficients are in excellent
agreement with simulation data. Before summarizing the results of this work, it is
important to emphasize that because of the cell structure introduced to define coarse-
grained collisions, angular momentum is not conserved in a collision [28,35,39]. As
a consequence, the macroscopic viscous stress tensor is not, in general, a symmetric
function of the derivatives dgvg. Although the kinetic contributions to the transport
coefficients lead to a symmetric stress tensor, the collisional do not. Before eval-
uating the transport coefficients, we discuss the general form of the macroscopic
viscous stress tensor.

Assuming only cubic symmetry and allowing for a non-symmetric stress tensor,
the most general form of the linearized Navier—Stokes equation is

Iva(K) = —dap+Aap (k)vp (K), (28)
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where

N d—2. .
Aap (k) =wv (5(”3 + p kakﬁ) (29)

+Va (6067[5 — ]ACO,IACB) + ’}/]A(ai(ﬁ +K 12(216057[3.

In a normal simple liquid, k¥ = 0 (because of invariance with respect to infinitesimal
rotations) and v, = 0 (because the stress tensor is symmetric in 8avﬁ), so that the
kinematic shear viscosity is v = v;. In this case, (29) reduces to the well-known

form [20] s
Agp(k) =V <6a,ﬁ + dicaicﬁ) + Ykokg , (30)

where 7 is the bulk viscosity.

Kinetic contributions: Kinetic contributions to the transport coefficients dominate
when the mean free path is larger than the cell size, i.e., A > a. As can be seen
from (24) and (26), an analytic calculation of these contributions requires the eval-
uation of time correlation functions of products of the particle velocities. This is
straightforward if one makes the basic assumption of molecular chaos that suc-
cessive collisions between particles are not correlated. In this case, the resulting
time-series in (24) is geometrical, and can be summed analytically. The resulting
expression for the shear viscosity in two dimensions is

ykin _ kgT At M . 1l 31)
2m  |(M—14eM)sin’(a)
Fluctuations in the number of particles per cell are included in (31). This result
agrees with the non-equilibrium calculations of Pooley and Yeomans [35,52], mea-
surements in shear flow [26], and the numerical evaluation of the GK relation in
equilibrium simulations (see Fig. 1).
The corresponding result in three dimensions for collision rule (3) is

wn  ksTAt sM -
VT Tom {(M—]—i—eM)[Z—cos(a)—cos(Za)] 1}' (32)

The kinetic contribution to the stress tensor is symmetric, so that v;d“ = 0 and the
kinetic contribution to the shear viscosity is V¥ = vkin,

Collisional contributions: Explicit expressions for the collisional contributions to
the viscous transport coefficients can be obtained by considering various choices
for k and o and B in (25), (27), and (29). Taking k in the y-direction and ot = § = 1
yields

1 </
col col __ . . . .
Vio + V5o = ANl ;) ;(V,X(O)B,y(O)v,x(t)B,y(t)). (33)

Other choices lead to relations between the collisional contributions to the viscous
transport coefficients, namely
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Fig. 1 a Normalized kinetic contribution to the viscosity, VK" /(AtkgT), in three dimensions as
a function of the collision angle ¢. Data were obtained by time averaging the GK relation over
75,000 iterations using A/a = 2.309 for M = 5 (filled squares) and M = 20 (filled circles). The
lines are the theoretical prediction, (32). Parameters: L/a = 32, At = 1. From [53]. b Normal-
ized collisional contribution to the viscosity, veolAg /az, in three dimensions as a function of the
collision angle . The solid line is the theoretical prediction, (39). Data were obtained by time
averaging the GK relation over 300,000 iterations. Parameters: L/a = 16, A /a = 0.1, M = 3, and
At = 1. From [54]

[1+(d—2)/d}VC0]+’}/C01+K' _vcol+vcol (34)
and
[(d 2)/d] col vcol + ycol (35)
These results imply that k! = 0, and y*°! — 2v§°l/d = v§°l — veol Tt follows that
the collision contribution to the macroscopic viscous stress tensor is
Acol/p = COl(aﬂva + aaVﬁ) + V2 ((9[5\1,1 8051/[3) + ( COI vf"l)&xﬁaﬂl
(vcol + vgol)aﬁ Vo + ( col fO])Qaﬁv (36)

where Qqp = 04393v) — davp- Since Qyp has zero divergence, dgQqp = 0, the
term containing Q in (36) will not appear in the linearized hydrodynamic equation
for the momentum density, so that

p%:—Vp—i—p(vkm-l-VCOl)AV—l—ddz VEY (V. y), (37)

where veol = vCOl + v§°1 In writing (37) we have used the fact that the kinetic con-
tribution to the microscopic stress tensor, 65, is symmetric, and y%i" = 0 [27]. The
viscous contribution to the sound attenuation coefficient is vl +2(d — 1)vXin /d
instead of the standard result, 2(d — 1)v/d + ¥, for simple isotropic fluids. The
collisional contribution to the effective shear viscosity is v = vl 4 vsoL Tt is
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interesting to note that the kinetic theory approach discussed in [35] is able to show
explicitly that vl = v5°l, so that ve°! = 2oL,

It is straightforward to evaluate the various contributions to the right-hand side
of (33). In particular, note that since velocity correlation functions are only required
at equal times and for a time lag of one time step, molecular chaos can be assumed
[51]. Using the relation [28]

2
(Bio(nA1)B g (mAt)) = % 80 (14 8)) (280 — Sumt — Sum1] (38)

and averaging over the number of particles in a cell assuming that the number of
particles in any cell is Poisson distributed at each time step, with an average number
M of particles per cell, one then finds

1 1 1
yeol — vi:o +v§o _

a? M—1+e™M
T 6dAt

" ) [1—cos(a)], (39)

for the SRD collision rules in both two and three dimensions. Equation (39)
agrees with the result of [26] and [35] obtained using a completely different
non-equilibrium approach in shear flow. Simulation results for the collisional con-
tribution to the viscosity are in excellent agreement with this result (see Fig. 1).

Thermal diffusivity and self-diffusion coefficient: As with the viscosity, there are
both kinetic and collisional contributions to the thermal diffusivity, D7. A detailed
analysis of both contributions is given in [28], and the results are summarized in
Table 1. The self-diffusion coefficient, D, of particle i is defined by

/

D = lim iqr,-(t) —1;(0)?) = (vi(nAt)-v;(0)), (40)

t—o0 2t

B
[ agk

n=0

where the second expression is the corresponding discrete GK relation. The self-
diffusion coefficient is unique in that the collisions do not explicitly contribute to
D. With the assumption of molecular chaos, the kinetic contributions are easily
summed [27] to obtain the result given in Table 1.

4.1.2 Beyond Molecular Chaos

The kinetic contributions to the transport coefficients presented in Table 1 have all
been derived under the assumption of molecular chaos, i.e., that particle velocities
are not correlated. Simulation results for the shear viscosity and thermal diffusivity
have generally been found to be in good agreement with these results. However, it
is known that there are correlation effects for A /a smaller than unity [15,55]. They
arise from correlated collisions between particles that are in the same collision cell
for more than one time step.
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Table 1 Theoretical expressions for the kinematic shear viscosity v, the thermal diffusivity, Dr,
and the self-diffusion coefficient, D, in both two (d = 2) and three (d = 3) dimensions. M is the
average number of particles per cell, & is the collision angle, kg is Boltzmann’s constant, 7" is
the temperature, Af is the time step, m is the particle mass, and a is the cell size. Except for self-
diffusion constant, for which there is no collisional contribution, both the kinetic and collisional
contributions are listed. The expressions for shear viscosity and self-diffusion coefficient include
the effect of fluctuations in the number of particles per cell; however, for brevity, the relations for
thermal diffusivity are correct only up to O(1/M) and O(1/M?) for the kinetic and collisional
contributions, respectively. For the complete expressions, see [28,53,54]

d Kinetic (xkgTAt/2m) Collisional (xa?/At)
2 1 M—1te™M

v (M—T+e M)su;}éla) 1 (M-lteT) 6d1; )[1 —cos(a)]
3 (M—1+e M)2—cos(er) —cos(2ax)]
2 d [71— 1-1/M

Dr 3 l—c:;[s(a) —1+3 [%* %CSCZ(O‘/Z)] g(d+é)M)[1—cos(a)]
2 aM

D 3 Tcosi@(M—1re ™) | -

For the viscosity and thermal conductivity, these corrections are generally negli-
gible, since they are only significant in the small A /a regime, where the collisional
contribution to the transport coefficients dominates. In this regard, it is important
to note that there are no correlation corrections to v<° and DCT"l [28]. For the self-
diffusion coefficient — for which there is no collisional contribution — correlation
corrections dramatically increase the value of this transport coefficient for A < a,
see [15,55]. These correlation corrections, which arise from particles which collide
with the same particles in consecutive time steps, are distinct from the correlation
effects which are responsible for the long-time tails. This distinction is important,
since long-time tails are also visible at large mean free paths, where these correc-
tions are negligible.

4.2 Dynamic Structure Factor

Spontaneous thermal fluctuations of the density, p(r,7), the momentum density,
g(r,t), and the energy density, €(r,7), are dynamically coupled, and an analysis of
their dynamic correlations in the limit of small wave numbers and frequencies can
be used to measure a fluid’s transport coefficients. In particular, because it is easily
measured in dynamic light scattering, X-ray, and neutron scattering experiments, the
Fourier transform of the density-density correlation function — the dynamics struc-
ture factor — is one of the most widely used vehicles for probing the dynamic and
transport properties of liquids [56].

A detailed analysis of equilibrium dynamic correlation functions — the dynamic
structure factor as well as the vorticity and entropy-density correlation functions —
using the SRD algorithm is presented in [57]. The results — which are in good



Multi-Particle Collision Dynamics 23

agreement with earlier numerical measurements and theoretical predictions — pro-
vided further evidence that the analytic expressions or the transport coefficients are
accurate and that we have an excellent understanding of the SRD algorithm at the
kinetic level.

Here, we briefly summarize the results for the dynamic structure factor. The dy-
namic structure factor exhibits three peaks, a central “Rayleigh” peak caused by
the thermal diffusion, and two symmetrically placed “Brillouin peaks” caused by
sound. The width of the central peak is determined by the thermal diffusivity, D7,
while that of the two Brillouin peaks is related to the sound attenuation coefficient,
I'. For the SRD algorithm [57],

I =Dy (”1) +2(‘H) ykin 4 yeol, 1)
Cy d

Note that in two-dimensions, the sound attenuation coefficient for a SRD fluid has
the same functional dependence on D7 and v = VX" + vl a5 an isotropic fluid with
an ideal-gas equation of state (for which y = 0).

Simulation results for the structure factor in two-dimensions with A /a = 1.0 and
collision angle o = 120°, and A /a = 0.1 with collision angle a = 60° are shown
in Figs. 2a and 2b, respectively. The solid lines are the theoretical prediction for the
dynamic structure factor (see (36) of [57]) using ¢ = 1/2kgT /m and values for the
transport coefficients obtained using the expressions in Table 1, assuming that the
bulk viscosity ¥ = 0. As can be seen, the agreement is excellent.
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Fig.2 Normalized dynamic structure, Sg, (k®)/xpp (k), fork =2m(1,1)/Landa A /a = 1.0 with
o =120°, and b A /a = 0.1 with o = 60°. The solid lines are the theoretical prediction for the
dynamic structure factor (see (36) of [57]) using values for the transport coefficients obtained with
the expressions in Table 1. The dotted lines show the predicted positions of the Brillouin peaks,
® = *ck, with ¢ = \/2kgT /m. Parameters: L/a =32, M = 15, and At = 1.0. From [57]
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5 Non-Equilibrium Calculations of Transport Coefficients

MPC transport coefficients have also been evaluated by calculating the linear re-
sponse of the system to imposed gradients. This approach was introduced by
Kikuchi et al. [26] for the shear viscosity and then extended and refined in [35]
to determine the thermal diffusivity and bulk viscosity. Here, we summarize the
derivation of the shear viscosity.

5.1 Shear Viscosity of SRD: Kinetic Contribution

Linear response theory provides an alternative, and complementary, approach for
evaluating the shear viscosity. This non-equilibrium approach is related to equi-
librium calculations described in the previous section through the fluctuation—
dissipation theorem. Both methods yield identical results. For the more complicated
analysis of the hydrodynamic equations, the stress tensor, and the longitudinal trans-
port coefficients such as the thermal conductivity, the reader is referred to [35].
Following Kikuchi et al. [26], we consider a two-dimensional liquid with an im-
posed shear ¥ = du,(y)/dy. On average, the velocity profile is given by v = (}y,0).
The dynamic shear viscosity 7 is the proportionality constant between the velocity
gradient Y and the frictional force acting on a plane perpendicular to y; i.e.,

Oxy = 71% (42)

where 0y, is the off-diagonal element of the viscous stress tensor. During the stream-
ing step, particles will cross this plane only if |v, Az| is greater than the distance to
the plane. Assuming that the fluid particles are homogeneously distributed, the mo-
mentum flux is obtained by integrating over the coordinates and velocities of all
particles that cross the plane from above and below during the time step At. The
result is [26]

VA
o =p (00— (o)) 43

where the mass density p = mM /a?, and the averages are taken over the steady-state
distribution P(vx — ¥y, v,). It is important to note that this is not the Maxwell-
Boltzmann distribution, since we are in a non-equilibrium steady state where the
shear has induced correlations between v, and v,. As a consequence, (vyvy) is
nonzero. To determine the behavior of (v,vy), the effect of streaming and col-
lisions are calculated separately. During streaming, particles which arrive at yg
with positive velocity v, have started from yo — vy At; these particles bring a ve-
locity component v, which is smaller than that of particles originally located at
vo. On the other hand, particles starting out at y > yo with negative v, bring a
larger v,. The velocity distribution is therefore sheared by the streaming, so that
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pafter(y, yy) = PP (y 4 yv At v,). Averaging v,v, over this distribution gives
(26]
(vxvy)after = (vovy) — 7At<v)2,> , (44)

where the superscript denotes the quantity after streaming. The streaming step
therefore reduces correlations by f)'/At<v§>, making v, and v, increasingly anti-
correlated.

The collision step redistributes momentum between particles and tends to reduce
correlations. Making the assumption of molecular chaos, i.e., that the velocities of
different particles are uncorrelated, and averaging over the two possible rotation
directions, one finds

after __ 17N071

(vyvy) [1— cos(2a)] | (vyvy)Pefore. (45)

C
The number of particles in a cell, N, is not constant, and density fluctuations have
to be included. The probability to find n uncorrelated particles in a given cell is
given by the Poisson distribution, w(n) = exp(—M)M" /n!; the probability of a given
particle being in a cell together with n— 1 others is nw(n) /M. Taking an average over

this distribution gives
<vay>aftcr _ f <vay>before7 (46)

with

f= {1 M-l +;;Xp(_M) - cos(2a)]} . @7)

The difference between this result and just replacing N, by M in (45) is small, and
only important for M < 3. One sees that (v,v,) is first modified by streaming and
then multiplied by a factor f in the subsequent collision step. In the steady state, it
therefore oscillates between two values. Using (44), (46), and (47), we obtain the
self-consistency condition ((vivy) — j/At(vf)) f = (vvy). Solving for (v,vy), assum-
ing equipartition of energy, <v§> = kT /m, and substituting into (43), we have

YMAtkgT [ 1
_r B <+f)7

R (48)

Xy

Inserting this result into the definition of the viscosity, (42), yields the same expres-
sion for the kinetic viscosity in two-dimensions as obtained by the equilibrium GK
approach discussed in Sect. 4.1.1.

5.2 Shear Viscosity of SRD: Collisional Contribution

The collisional contribution to the shear viscosity is proportional to a”/At; as dis-
cussed in Sect. 3.2, it results from the momentum transfer between particles in a cell
of size a during the collision step. Consider again a collision cell of linear dimension
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a with a shear flow u,(y) = 7y. Since the collisions occur in a shifted grid, they cause
a transfer of momentum between neighboring cells of the original unshifted refer-
ence frame [21,27]. Consider now the momentum transfer due to collisions across
the line y = h, the coordinate of a cell boundary in the unshifted frame. If we assume
a homogeneous distribution of particles in the collision cell, the mean velocities in
the upper (y > h) and lower partitions are

1 M 1 M
u=—2y v and u=— Vi, 49)
M; z; l Mo H\;IH l

respectively, where M; = M(a— h)/a and M, = Mh/a. Collisions transfer momen-
tum between the two parts of the cell. The x-component of the momentum transfer is

A ° { after before}
px(h Z . (50)

The use of the rotation rule (2) together with an average over the sign of the sto-
chastic rotation angle yields

Ap(h) = [cos(ct) — 1] My (ury — ). (51)

Since Mu = M u; + M»>uy,

Ape(h) = [1 — cos(et)] M (tax — ury) Z (1 - Z) . 52)

Averaging over the position % of the dividing line, which corresponds to averaging
over the random shift, we find

[1—cos(a)] M(upy: — uyy). (53)

CJ\\'—‘

Apx = / Apx

Since the dynamic viscosity 7 is defined as the ratio of the tangential stress, Oy, to
du,/dy, we have

(Apy)/(a®Ar) _ (Apy)/(a*Ar)

= = , 54
1Ty G w)/(a)?) oY
so that the kinematic viscosity, v = 1/p, in two-dimensions for SRD is
1 a
= AT [l —cos(a)] (55)

in the limit of small mean free path. Since we have neglected the fluctuations in
the particle number, this expression corresponds to the limit M — oo. Even though
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this derivation is somewhat heuristic, it gives a remarkably accurate expression; in
particular, it contains the correct dependence on the cell size, a, and the time step,
At, in the limit of small free path,

2
a
veel = A feol(d M, @), (56)

as expected from simple random walk arguments. Kikuchi et al. [26] included parti-
cle number fluctuations and obtained identical results for the collisional contribution
to the viscosity as was obtained in the GK approach (see Table 1).

5.3 Shear Viscosity of MPC-AT

For MPC-AT, the viscosities have been calculated in [32] using the methods de-
scribed in Sects. 5.1 and 5.2. The total viscosity of MPC-AT is given by the sum of
two terms, the collisional and kinetic contributions. For MPC-AT—a, it was found
for both two and three dimensions that [32]

m  ksTAt M 1
ykin — 2B < > and

M—1+e ™M 2

m
2 -M
col a M* 1 +e
_ . 57
VT A < M ) (57)

The exponential terms e~ are due to the fluctuation of the particle number per cell
and become important for M < 3. As was the case for SRD, the kinetic viscosity has
no anti-symmetric component; the collisional contribution, however, does. Again,
as discussed in Sect. 4.1.1 for SRD, one finds vlCOl = v§°1 = yeol /2. This relation is
true for all —a versions of MPC discussed in [32, 58, 59]. Simulation results were
found to be in good agreement with theory.

For MPC-AT+-a it was found for sufficiently large M that [38,59]

vkin:kBTAt M _l
m |M—(d+2)/4 2|
2 (M-1T)5
yeol — & (ZZ /2 58
24At< M ) (58)

MPC-AT—a and MPC-AT+a both have the same kinetic contribution to the viscos-
ity in two dimensions; however, imposing angular-momentum conservation makes
the collisional contribution to the stress tensor symmetric, so that the asymmetric
contribution, v, discussed in Sect.4.1.1 vanishes. The resulting collisional contri-
bution to the viscosity is then reduced by a factor close to 2.
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6 Generalized MPC Algorithms for Dense Liquids and Binary
Mixtures

The original SRD algorithm models a single-component fluid with an ideal-gas
equation of state. The fluid is therefore very compressible, and the speed of sound,
cs, 1s low. In order to have negligible compressibility effects, as in real liquids, the
Mach number has to be kept small, which means that there are limits on the flow ve-
locity in the simulation. The SRD algorithm can be modified to model both excluded
volume effects, allowing for a more realistic modeling of dense gases and liquids,
as well as repulsive hard-core interactions between components in mixtures, which
allow for a thermodynamically consistent modeling of phase separating mixtures.

6.1 Non-Ideal Model

As in SRD, the algorithm consists of individual streaming and collision steps. In
order to define the collisions, a second grid with sides of length 2a is introduced,
which (in d = 2) groups four adjacent cells into one “supercell.” The cell structure is
sketched in Fig. 3 (left panel). To initiate a collision, pairs of cells in every supercell
are chosen at random. Three different choices are possible: (a) horizontal (with o1 =
£), (b) vertical (6, = $), and (c) diagonal collisions (with o3 = (£+ $)/v/2 and

o4 = (:—9)/VD.

=0)/p

Skt

Fig. 3 Left panel: Schematic of collision rules. Momentum is exchanged in three ways: (a) hori-
zontally along o, (b) vertically along &7, and (c) diagonally along 63 and c4. w and w, denote
the probabilities of choosing collisions (a), (b), and (c), respectively. Right panel: Static structure
factor S(k, = 0) as a function of At for M = 3. The open circles show results obtained by taking
the numerical derivative of the pressure. The filled circles are data obtained from direct measure-
ments of the density fluctuations. The solid line is the theoretical prediction obtained using the
first term in (61) and (63). k is the smallest wave vector, k = (27t/L)(1,0). Parameters: L/a = 32,
A =1/60, and kgT = 1.0. From [33]
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For a mean particle velocity u, = (1/M,,) Z?i”l v;, of cell n, the projection of the
difference of the mean velocities of the selected cell pairs on 0, Au= 0 - (u; —up),
is then used to determine the probability of collision. If Au < 0, no collision will
be performed. For positive Au, a collision will occur with an acceptance probabil-
ity, pa, which depends on Au and the number of particles in the two cells, N and
N,. The choice of ps determines both the equation of state and the values of the
transport coefficients. While there is considerable freedom in choosing pa, the re-
quirement of thermodynamic consistency imposes certain restrictions [33, 34, 55].
One possible choice is

pa(Mi, My, Au) = ©(Au)tanh(A) with A =AAuN,N,, (59)

where © is the unit step function and A is a parameter which is used to tune the
equation of state. The choice A ~ NN, leads to a non-ideal contribution to the
pressure which is quadratic in the particle density.

The collision rule chosen in [33] maximizes the momentum transfer parallel to
the connecting vector ¢; and does not change the transverse momentum. It ex-
changes the parallel component of the mean velocities of the two cells, which is
equivalent to a “reflection” of the relative velocities, vl-‘ (t+A1)—ull = — (vl-‘ (t)—ul),
where ull is the parallel component of the mean velocity of the particles of both cells.
This rule conserves momentum and energy in the cell pairs.

Because of x —y symmetry, the probabilities for choosing cell pairs in the x- and
y-directions (with unit vectors o and o5 in Fig. 3) are equal, and will be denoted
by w. The probability for choosing diagonal pairs (63 and o4 in Fig. 3) is given
by w; = 1 —2w. w and w,; must be chosen so that the hydrodynamic equations are
isotropic and do not depend on the orientation of the underlying grid. An equivalent
criterion is to guarantee that the relaxation of the velocity distribution is isotropic.
These conditions require w = 1/4 and w, = 1 /2. This particular choice also ensures
that the kinetic part of the viscous stress tensor is isotropic [45].

6.1.1 Transport Coefficients

The transport coefficients can be determined using the same GK formalism as was
used for the original SRD algorithm [21,51]. Alternatively, the non-equilibrium ap-
proach described in Sect.5 can be used. Assuming molecular chaos and ignoring
fluctuations in the number of particles per cell, the kinetic contribution to the vis-
cosity is found to be

. kgT 1 1 kgT

ykin — B Ay ( - ) With  peg = A/ —2— M3/2, (60)
m Deol 2 mm

which is in good agreement with simulation data. p. is essentially the collision rate,

and can be obtained by averaging the acceptance probability, (59). The collisional

contribution to the viscosity is V! = p 1 (a®/3At) [60]. The self-diffusion constant,
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D, is evaluated by summing over the velocity-autocorrelation function (see, e.g.,
[21]); which yields D = vyip.

6.1.2 Equation of State

The collision rules conserve the kinetic energy, so the internal energy should be the
same as that of an ideal gas. Thermodynamic consistency therefore requires that the
non-ideal contribution to the pressure is linear in 7. This is possible if the coefficient
A in (59) is sufficiently small.

The mechanical definition of pressure — the average longitudinal momentum
transfer across a fixed interface per unit time and unit surface area — can be used
to determine the equation of state. Only the momentum transfer due to collisions
needs to be considered, since that coming from streaming constitutes the ideal part
of the pressure. Performing this calculation for a fixed interface and averaging over
the position of the interface, one finds the non-ideal part of the pressure,

1 1\ AM? kgT N
Po=—x+-)————+0AT?). 61
" <2ﬁ+4> > anr TOWT) 61)

P, is quadratic in the particle density, p = M /a?, as would be expected from a virial
expansion. The prefactor A must be chosen small enough that higher-order terms in
this expansion are negligible. Prefactors A leading to acceptance rates of about 15%
are sufficiently small to guarantee that the pressure is linear in 7.

The total pressure is the average of the diagonal part of the microscopic stress
tensor,

P=PRi+h = AtleLy <;{Atv§x—Avsz;lx/2}>. (62)
The first term gives the ideal part of the pressure, Pgq, as discussed in [21]. The aver-
age of the second term is the non-ideal part of the pressure, P,. zjl is a vector which
indexes collision partners. The first subscript denotes the particle number and the
second, /, is the index of the collision vectors o; in Fig. 3 (left panel). The compo-
nents of zjl are either 0, 1, or —1 [55]. Simulation results for P, obtained using (62)
are in good agreement with the analytical expression, (61). In addition, measure-
ments of the static structure factor S(k — 0,7 = 0) agree with the thermodynamic
prediction

S(k—0,t =0) = pkgTdp/IP|r (63)

when result (61) is used [see Fig. 3 (right panel)]. The adiabatic speed of sound ob-
tained from simulations of the dynamic structure factor is also in good agreement
with the predictions following from (61). These results provide strong evidence for
the thermodynamic consistency of the model. Consistency checks are particularly
important because the non-ideal algorithm does not conserve phase-space volume.
This is because the collision probability depends on the difference of collision-cell



Multi-Particle Collision Dynamics 31

velocities, so that two different states can be mapped onto the same state by a colli-
sion. While the dynamics presumably still obeys detailed — or at least semi-detailed —
balance, this is very hard to prove, since it would require knowledge not only of the
transition probabilities, but also of the probabilities of the individual equilibrium
states. Nonetheless, no inconsistencies due to the absence of time-reversal invari-
ance or a possible violation of detailed balance have been observed.

The structure of S(k) for this model is also very similar to that of a simple dense
fluid. In particular, for fixed M, both the depth of the minimum at small k and the
height of the first peak increase with decreasing A¢, until there is an order—disorder
transition. The fourfold symmetry of the resulting ordered state — in which clusters
of particles are concentrated at sites with the periodicity close, but not necessarily
equal, to that of the underlying grid — is clearly dictated by the structure of the colli-
sion cells. Nevertheless, these ordered structures are similar to the low-temperature
phase of particles with a strong repulsion at intermediate distances, but a soft repul-
sion at short distances. The scaling behavior of both the self-diffusion constant and
the pressure persists until the order/disorder transition.

6.2 Phase-Separating Multi-Component Mixtures

In a binary mixture of A and B particles, phase separation can occur when there is
an effective repulsion between A-B pairs. In the current model, this is achieved by
introducing velocity-dependent multi-particle collisions between A and B particles.
There are N and Np particles of type A and B, respectively. In two dimensions, the
system is coarse-grained into (L/a)? cells of a square lattice of linear dimension L
and lattice constant a. The generalization to three dimensions is straightforward.
Collisions are defined in the same way as in the non-ideal model discussed in the
previous section. Now, however, two types of collisions are possible for each pair
of cells: particles of type A in the first cell can undergo a collision with particles of
type B in the second cell; vice versa, particles of type B in the first cell can undergo
a collision with particles of type A in the second cell. There are no A—A or B-B
collisions, so that there is an effective repulsion between A—B pairs. The rules and
probabilities for these collisions are chosen in the same way as in the non-ideal
single-component fluid described in [33,55]. For example, consider the collision of
A particles in the first cell with the B particles in the second. The mean particle
velocity of A particles in the first cell is ua = (1/Nc a) Z&IA v;, where the sum runs
over all A particles, N a, in the first cell. Similarly, ug = (1/N.) ):?if v; is the
mean velocity of B particles in the second cell. The projection of the difference of
the mean velocities of the selected cell-pairs on 0}, Auag = 0; - (ua —ug), is then
used to determine the probability of collision. If Auag < 0, no collision will be
performed. For positive Auag, a collision will occur with an acceptance probability

PA(NcA,NeB,Auag) = AAuag O(Aupp) Ne ANc B (64)
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where @ is the unit step function and A is a parameter which allows us to tune
the equation of state; in order to ensure thermodynamic consistency, it must be
sufficiently small that pp < 1 for essentially all collisions. When a collision oc-
curs, the parallel component of the mean velocities of colliding particles in the two

cells, v” (t+ Ar) — H =—(v ”( 1) — ”‘/LB) is exchanged, where u‘/LB = (N, Au“

Nepug)/(Nea +Ne B) is the parallel component of the mean velocity of the collid-
ing particles. The perpendicular component remains unchanged. It is easy to verify
that these rules conserve momentum and energy in the cell pairs. The collision of
B particles in the first cell with A particles in the second is handled in a similar
fashion.

Because there are no A—A and B-B collisions, additional SRD collisions at the
cell level are incorporated in order to mix particle momenta. The order of A-B and
SRD collision is random, i.e., the SRD collision is performed first with a probability
1/2.1f necessary, the viscosity can be tuned by not performing SRD collisions every
time step. The results presented here were obtained using a SRD collision angle of
o =90°.

The transport coefficients can be calculated in the same way as for the one-
component non-ideal system. The resulting kinetic contribution to the viscosity is

. AtkgT 21 _
v = =22 { Vil " [MAMy (M + M) 1/2—1}, (65)
B

where Ma = (N A), Mg = (Nc ). In deep quenches, the concentration of the mi-
nority component is very small, and the non-ideal contribution to the viscosity
approaches zero. In this case, the SRD collisions provide the dominant contribu-
tion to the viscosity.

6.2.1 Free Energy

An analytic expression for the equation of state of this model can be derived by
calculating the momentum transfer across a fixed surface, in much the same way as
was done for the non-ideal model in [33]. Since there are only non-ideal collisions
between A—B particles, the resulting contribution to the pressure is

kgT
P, = <w+ ) AMAMp —— =T paps, (66)

2 Y,

where pa and pp are the densities of A and B and I' = (w + wg/v/2)a’A/At. In
simulations, the total pressure can be measured by taking the ensemble average of
the diagonal components of the microscopic stress tensor. In this way, the pressure
can be measured locally, at the cell level. In particular, the pressure in a region
consisting of Ny cells is
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1 Ne ,
b= NN <Z )3 [Afvjx —AvjZi/ 2] > : (67)

c=1 jec

where the second sum runs over the particles in cell ¢. The first term in (67) is
the ideal-gas contribution to the pressure; the second comes from the momentum
transfer between cells involved in the collision indexed by zjl [45].

Expression (66) can be used to determine the entropy density, s. The ideal-gas
contribution to s has the form [61]

Sideal = P @(T) — kg [paInpa + pplnpg], (68)

where p = pa + pg. Since @(7T') is independent of ps and pg, this term does not play
a role in the current discussion. The non-ideal contribution to the entropy density,
spn, can be obtained from (66) using the thermodynamic relation

Py/T = —sn+ padsn/dpa + padsn/dps. (69)

The resultis s, = I"papB, so that the total configurational contribution to the entropy
density is
s=—kg{palnpa+pplnps +I'paps}. (70)

Since there is no configurational contribution to the internal energy in this
model, the mean-field phase diagram can be determined by maximizing the en-
tropy at fixed density p. The resulting demixing phase diagram as a function of
paB = (pa — pB)/p is given by the solid line in Fig.4 (left panel). The critical
point is located at pap = 0, pI"* = 2. For pI" < 2, the order parameter pag = 0;
for pI" > 2, there is phase separation into coexisting A- and B-rich phases. As can
be seen, the agreement between the mean-field predictions and simulation results is
very good except close to the critical point, where the histogram method of deter-
mining the coexisting densities is unreliable and critical fluctuations influence the
shape of the coexistence curve.

6.2.2 Surface Tension

A typical configuration for pap = 0, pI" = 3.62 is shown in the inset to Fig. 4 (left
panel), and a snapshot of a fluctuating droplet at pag = —0.6, pI" = 3.62 is shown
in the inset to Fig. 4 (right panel). The amplitude of the capillary wave fluctuations
of a droplet is determined by the surface tension, ¢. Using the parameterization
r(¢) =ro [1+Xp_ . uxexp(ik¢)] and choosing ug to fix the area of the droplet, it
can be shown that [54]

() = 520 () a1
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Fig.4 Left panel: Binary phase diagram. There is phase separation for pI" > 2. Simulation results
for pap obtained from concentration histograms are shown as filled circles. The dashed line is a
plot of the leading singular behavior, pag = \/3(pI" —2)/2, of the order parameter at the critical
point. The inset shows a configuration 50,000 time steps after a quench along pag =0to pI" =3.62
(arrow). The dark (blue) and light (white) spheres are A and B particles, respectively. Parameters:
L/a=64,Mp =Mp =5,kgT =0.0004, At = 1, and a = 1. From [45]. Right panel: Dimensionless
radial fluctuations, (|u?|), as a function of the mode number k for A = 0.45 (filled circles) and A =
0.60 (open circles) with kgT = 0.0004. The average droplet radii are rp = 11.95a and ro = 15.21a,
respectively. The solid lines are fits to (71). The inset shows a 