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Preface

“Soft matter” is nowadays used to describe an increasingly important class of ma-
terials that encompasses polymers, liquid crystals, molecular assemblies building
hierarchical structures, organic-inorganic hybrids, and the whole area of colloidal
science. Common to all is that fluctuations, and thus the thermal energy kBT and
entropy, play an important role. “Soft” then means that these materials are in a state
of matter that is neither a simple liquid nor a hard solid of the type studied in hard
condensed matter, hence sometimes many types of soft matter are also named “com-
plex fluids.”

Soft matter, either of synthetic or biological origin, has been a subject of physical
and chemical research since the early finding of Staudinger that long chain mole-
cules exist. From then on, synthetic chemistry as well as physical characterization
underwent an enormous development. One of the outcomes is the abundant pres-
ence of polymeric materials in our everyday life. Nowadays, methods developed
for synthetic polymers are being more and more applied to biological soft matter.
The link between modern biophysics and soft matter physics is quite close in many
respects. This also means that the focus of research has moved from simple ho-
mopolymers to more complex structures, such as branched objects, heteropolymers
(random copolymers, proteins), polyelectrolytes, amphiphiles and so on. While ba-
sic questions concerning morphology, dynamics, and rheology are still a matter of
intense research, additional, more advanced topics are also being tackled, for exam-
ple the link between structure and function or non-equilibrium aspects.

For many years there have been attempts to understand these systems thoroughly
using theoretical concepts. Beginning with the early work of Flory, simplified mod-
els were studied, which were able to explain certain generic/universal aspects but
failed to provide a solid theoretical basis for this universal behavior. It was then
up to the seminal works of de Gennes and Edwards to provide a link between the
statistical mechanics of phase transitions (critical phenomena) and polymer chain
conformations. This link to the modern concepts of theoretical physics provided
huge momentum for the field, which shaped many theoretical schools and formed
the basis for modern soft matter physics. Despite all these developments, soft mat-
ter theory is still an active and growing research field. Due to the high degree

IX
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of complexity of the problems it is not surprising that analytical theory can only
treat highly idealized and simplified models. Consequently, with the availability
of computers, problems in polymer science were among the first to be tackled by
simulations. Even now, the problem of an isolated self-avoiding walk cannot be
solved exactly in three dimensions. As early as 1954, Hammersley and Morton,
and Rosenbluth and Rosenbluth tried to overcome the related attrition problem in
growing self-avoiding walks by introducing “inversely restricted sampling.” In ad-
dition, basic multichain features (such as the noncrossability of chains) are hard to
deal with analytically and can only be included properly by a simulation approach.
Thus, with the rising availability of computing power, simulation methods began
to play an increasingly important role in soft matter research. Computing power
is, however, only one aspect. Even more important has been the development of
advanced numerical methods and highly optimized programs. Very different areas,
ranging from quantum chemistry studying molecules on the sub-Ångstrøm level all
the way to macroscopic fluid dynamics, have to come together and offer a unique
set of research opportunities. Over the years, the role of computer simulations has
gone beyond the traditional aspect of checking approximative solutions of analyti-
cal models and bridging the gap between experiments and theory. They are now an
independent, in some cases even predictive, tool in materials research, for example
for complex molecular assemblies or specific rheological problems.

It is the purpose of this small series of volumes in Advances in Polymer Sciences
to provide an overview of the latest developments in the field. For this, interna-
tionally renowned experts review recent work in the general area of soft matter
simulations. The third volume contains three contributions. The first two chapters
review several coarse-grained methods to include the effects of hydrodynamics in
mesoscopic particle simulations that use an implicit solvent, whereas the last chapter
deals with advanced sampling methods to study rare events.

The first two contributions deal with methods or systems where hydrodynamic
interactions play a dominant role. Studying coarse-grained mesoscopic systems,
hydrodynamic interactions are unimportant for static properties in equilibrium.
However, the inclusion of hydrodynamic effects becomes indispensable for all prob-
lems of dynamics of solutions in bulk or under confinement, especially when it
comes to flow-induced structure formation. This would automatically be achieved
by a standard molecular dynamics simulation, which takes full account of the sol-
vent molecules. This, however, is only feasible in some very exceptional cases, even
for the upcoming computer generation, and is still applicable to only very small sys-
tems. Because of that, solvent-free methods play a very important role and have been
improved significantly over the last few years. In the first contribution G. Gompper,
T. Ihle, D.M. Kroll, and R.G. Winkler focus on an algorithm that was initially pro-
posed by Malevanets and Kapral in 1999, and is now called multiparticle collision
dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of al-
ternating streaming and collision steps in an ensemble of point particles that locally
conserve mass, momentum, and energy. The second contribution by B. Dünweg and
A.J.C. Ladd reviews in depth the standard D3Q19 lattice-Boltzmann model and ex-
tensions thereof. Here the Boltzmann equation is solved on a grid, where the fluid
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velocities are stored, employing mass and momentum conservation. The authors dis-
cuss in depth the “fluctuating” lattice-Boltzmann algorithm, followed by a detailed
discussion of complementary methods for the coupling of solvent and solute. Both
presented methods consistently couple full hydrodynamic interactions and thermal
fluctuations and, since they deal with complementary methods, give an excellent
comprehensive overview over the field. Both contributions also conclude with ex-
amples in which the methods are applied to soft matter systems such as colloidal
suspensions and polymer solutions.

In the third contribution, C. Dellago and P. Bolhuis review several recently
developed methods for studying rare-event transitions, which are important in
understanding molecular processes such as nucleation events, chemical reactions
transport phenomena in liquids and solids, or slow processes such as protein fold-
ing. Such transition events are rare because the stable basins are separated from
each other by high free-energy barriers of either potential energy, entropic, or com-
bined origin. Several methods have been proposed to speed up the sampling of
these transitions, like metadynamics, the finite temperature string method, forward
flux sampling, and others. The authors cover in depth the transition path sampling
methodology to which they have both added important contributions.

We are confident that this collection of reviews will be a very useful guide to
interested scientists and advanced students, and it also provides detailed background
information for experienced researchers in the field.

Mainz, Autumn 2008 C. Holm, K. Kremer
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Multi-Particle Collision Dynamics: A
Particle-Based Mesoscale Simulation Approach
to the Hydrodynamics of Complex Fluids

G. Gompper, T. Ihle, D.M. Kroll, and R.G. Winkler

Abstract In this review, we describe and analyze a mesoscale simulation method
for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is
now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an en-
semble of point particles. The multi-particle collisions are performed by grouping
particles in collision cells, and mass, momentum, and energy are locally conserved.
This simulation technique captures both full hydrodynamic interactions and ther-
mal fluctuations. The first part of the review begins with a description of several
widely used MPC algorithms and then discusses important features of the origi-
nal SRD algorithm and frequently used variations. Two complementary approaches
for deriving the hydrodynamic equations and evaluating the transport coefficients
are reviewed. It is then shown how MPC algorithms can be generalized to model
non-ideal fluids, and binary mixtures with a consolute point. The importance of
angular-momentum conservation for systems like phase-separated liquids with dif-
ferent viscosities is discussed. The second part of the review describes a number
of recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of vis-
coelastic fluids.

Keywords Binary fluid mixtures, Colloids, Complex fluids, Hydrodynamics,
Mesoscale simulation techniques, Microemulsions, Polymers, Red blood cells,
Vesicles, Viscoelastic fluids
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1 Introduction

“Soft Matter” is a relatively new field of research that encompasses traditional
complex fluids such as amphiphilic mixtures, colloidal suspensions, and polymer
solutions, as well as a wide range of phenomena including chemically reactive flows
(combustion), the fluid dynamics of self-propelled objects, and the visco-elastic be-
havior of networks in cells. One characteristic feature of all these systems is that
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phenomena of interest typically occur on mesoscopic length-scales – ranging from
nano- to micrometers – and at energy scales comparable to the thermal energy kBT .

Because of the complexity of these systems, simulations have played a partic-
ularly important role in soft matter research. These systems are challenging for
conventional simulation techniques due to the presence of disparate time, length,
and energy scales. Biological systems present additional challenges because they
are often far from equilibrium and are driven by strong spatially and temporally
varying forces. The modeling of these systems often requires the use of “coarse-
grained” or mesoscopic approaches that mimic the behavior of atomistic systems
on the length scales of interest. The goal is to incorporate the essential features of
the microscopic physics in models which are computationally efficient and are eas-
ily implemented in complex geometries and on parallel computers, and can be used
to predict emergent properties, test physical theories, and provide feedback for the
design and analysis of experiments and industrial applications.

In many situations, a simple continuum description based on the Navier–Stokes
equation is not sufficient, since molecular-level details – including thermal fluctu-
ations – play a central role in determining the dynamic behavior. A key issue is to
resolve the interplay between thermal fluctuations, hydrodynamic interactions, and
spatio-temporally varying forces. One well-known example of such systems are mi-
croemulsions – a dynamic bicontinuous network of intertwined mesoscopic patches
of oil and water – where thermal fluctuations play a central role in creating this
phase. Other examples include flexible polymers in solution, where the coil state
and stretching elasticity are due to the large configurational entropy. On the other
hand, atomistic molecular dynamics simulations retain too many microscopic de-
grees of freedom, consequently requiring very small time steps in order to resolve
the high frequency modes. This makes it impossible to study long timescale behav-
ior such as self-assembly and other mesoscale phenomena.

In order to overcome these difficulties, considerable effort has been devoted to
the development of mesoscale simulation methods such as Dissipative Particle Dy-
namics [1–3], Lattice-Boltzmann [4–6], and Direct Simulation Monte Carlo [7–9].
The common approach of all these methods is to “average out” irrelevant micro-
scopic details in order to achieve high computational efficiency while keeping the
essential features of the microscopic physics on the length scales of interest. Apply-
ing these ideas to suspensions leads to a simplified, coarse-grained description of the
solvent degrees of freedom, in which embedded macromolecules such as polymers
are treated by conventional molecular dynamics simulations.

All these approaches are essentially alternative ways of solving the Navier–
Stokes equation and its generalizations. This is because the hydrodynamic equations
are expressions for the local conservation laws of mass, momentum, and energy,
complemented by constitutive relations which reflect some aspects of the micro-
scopic details. Frisch et al. [10] demonstrated that discrete algorithms can be
constructed which recover the Navier–Stokes equation in the continuum limit as
long as these conservation laws are obeyed and space is discretized in a sufficiently
symmetric manner.

The first model of this type was a cellular automaton, called the Lattice-Gas-
Automaton (LG). The algorithm consists of particles which jump between nodes of
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a regular lattice at discrete time intervals. Collisions occur when more than one par-
ticle jumps to the same node, and collision rules are chosen which impose mass and
momentum conservation. The Lattice-Boltzmann method (LB) – which follows the
evolution of the single-particle probability distribution at each node – was a natural
generalization of this approach. LB solves the Boltzmann equation on a lattice with
a small set of discrete velocities determined by the lattice structure. The price for
obtaining this efficiency is numerical instability in certain parameter ranges. Fur-
thermore, as originally formulated, LB did not contain any thermal fluctuations. It
became clear only very recently (and only for simple liquids) how to restore fluctu-
ations by introducing additional noise terms to the algorithm [11].

Except for conservation laws and symmetry requirements, there are relatively
few constraints on the structure of mesoscale algorithms. However, the constitutive
relations and the transport coefficients depend on the details of the algorithm, so
that the temperature and density dependencies of the transport coefficients can be
quite different from those of real gases or liquids. However, this is not a problem as
long as the functional form of the resulting hydrodynamic equations is correct. The
mapping to real systems is achieved by tuning the relevant characteristic numbers,
such as the Reynolds and Peclet numbers [12, 13], to those of a given experiment.
When it is not possible to match all characteristic numbers, one concentrates on
those which are of order unity, since this indicates that there is a delicate balance
between two effects which need to be reproduced by the simulation. On occasion,
this can be difficult, since changing one internal parameter, such as the mean free
path, usually affects all transport coefficients in different ways, and it may happen
that a given mesoscale algorithm is not at all suited for a given application [14–17].

In this review we focus on the development and application of a particle-based
mesoscopic simulation technique which was recently introduced by Malevanets and
Kapral [18, 19]. The algorithm, which consists of discrete streaming and collision
steps, shares many features with Bird’s Direct Simulation Monte Carlo (DSMC)
approach [7]. Collisions occur at fixed discrete time intervals, and although space
is discretized into cells to define the multi-particle collision environment, both the
spatial coordinates and the velocities of the particles are continuous variables. Be-
cause of this, the algorithm exhibits unconditional numerical stability and has an
H-theorem [18,20]. In this review, we will use the name multi-particle collision dy-
namics (MPC) to refer to this class of algorithms. In the original and most widely
used version of MPC, collisions consist of a stochastic rotation of the relative veloc-
ities of the particles in a collision cell. We will refer to this algorithm as stochastic
rotation dynamics (SRD) in the following.

One important feature of MPC algorithms is that the dynamics is well-defined
for an arbitrary time step, Δ t. In contrast to methods such as molecular dynamics
simulations (MD) or dissipative particle dynamics (DPD), which approximate the
continuous-time dynamics of a system, the time step does not have to be small. MPC
defines a discrete-time dynamics which has been shown to yield the correct long-
time hydrodynamics; one consequence of the discrete dynamics is that the transport
coefficients depend explicitly on Δ t. In fact, this freedom can be used to tune the
Schmidt number, Sc [15]; keeping all other parameters fixed, decreasing Δ t leads to
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an increase in Sc. For small time steps, Sc is larger than unity (as in a dense fluid),
while for large time steps, Sc is of order unity, as in a gas.

Because of its simplicity, SRD can be considered an “Ising model” for hydro-
dynamics, since it is Galilean invariant (when a random grid shift of the collision
cells is performed before each collision step [21]) and incorporates all the essen-
tial dynamical properties in an algorithm which is remarkably easy to analyze. In
addition to the conservation of momentum and mass, SRD also locally conserves
energy, which enables simulations in the microcanonical ensemble. It also fully in-
corporates both thermal fluctuations and hydrodynamic interactions. Other more
established methods, such as Brownian Dynamics (BD) can also be augmented
to include hydrodynamic interactions. However, the additional computational costs
are often prohibitive [22, 23]. In addition, hydrodynamic interactions can be easily
switched off in MPC algorithms, making it easy to study the importance of hydro-
dynamic interactions [24, 25].

It must, however, be emphasized that all local algorithms such as MPC, DPD,
and LB model compressible fluids, so that it takes time for the hydrodynamic in-
teractions to “propagate” over longer distances. As a consequence, these methods
become quite inefficient in the Stokes limit, where the Reynolds number approaches
zero. Algorithms which incorporate an Oseen tensor do not share this shortcoming.

The simplicity of the SRD algorithm has made it possible to derive analytic ex-
pressions for the transport coefficients which are valid for both large and small mean
free paths [26–28]. This is usually very difficult to do for other mesoscale particle-
based algorithms. Take DPD as an example: the viscosity measured in [29] is about
50% smaller than the value predicted theoretically in the same paper. For SRD, the
agreement is generally better than 1%.

MPC is particularly well suited (1) for studying phenomena where both thermal
fluctuations and hydrodynamics are important, (2) for systems with Reynolds and
Peclet numbers of order 0.1–10, (3) if exact analytical expressions for the trans-
port coefficients and consistent thermodynamics are needed, and (4) for modeling
complex phenomena for which the constitutive relations are not known. Examples
include chemically reacting flows, self-propelled objects, or solutions with embed-
ded macromolecules and aggregates.

If thermal fluctuations are not essential or undesirable, a more traditional method
such as a finite-element solver or a LB approach is recommended. If, on the other
hand, inertia and fully resolved hydrodynamics are not crucial, but fluctuations are,
one might be better served using Langevin or BD.

This review consists of two parts. The first part begins in Sect. 2 with a descrip-
tion of several widely used MPC algorithms and then discusses important features of
the original SRD algorithm and a frequently used variation, Multi-Particle Collision
Dynamics with Anderson Thermostat (MPC-AT), which effectively thermostats the
system by replacing the relative velocities of particles in a collision cell with newly
generated Gaussian random numbers in the collision step. After a qualitative discus-
sion of the static and dynamic properties of MPC fluids in Sect. 3, two alternative ap-
proaches for deriving the hydrodynamic equations and evaluating the transport co-
efficients are described. First, in Sect. 4, discrete-time projection operator methods
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are discussed and the explicit form of the resulting Green–Kubo (GK) relations
for the transport coefficients are given and evaluated. Subsequently, in Sect. 5, an
alternative non-equilibrium approach is described. The two approaches comple-
ment each other, and the predictions of both methods are shown to be in complete
agreement. It is then shown in Sect. 6 how MPC algorithms can be generalized
to model non-ideal fluids and binary mixtures. Finally, various approaches for
implementing slip and no-slip boundary conditions – as well as the coupling of
embedded objects to a MPC solvent – are described in Sect. 7. In Sect. 8, the im-
portance of angular-momentum conservation is discussed, in particular in systems
of phase-separated fluids with different viscosities under flow. An important as-
pect of mesoscale simulations is the possibility to directly determine the effect of
hydrodynamic interactions by switching them off, while retaining the same ther-
mal fluctuations and similar friction coefficients; in MPC, this can be done very
efficiently using an algorithm described in Sect. 9. The second part of the review
describes a number of recent applications of MPC algorithms to study colloid and
polymer dynamics, and the behavior of vesicles and cells in hydrodynamic flows.
Section 10 focuses on the non-equilibrium behavior of colloidal suspensions, the
dynamics of dilute solutions of linear polymers both in equilibrium and under flow
conditions, and the properties of star polymers – also called ultra-soft colloids –
in shear flow. Section 11 is devoted to the review of recent simulation results for
vesicles in flow. After a short introduction to the modeling of membranes with dif-
ferent levels of coarse-graining, the behavior of fluid vesicles and red blood cells,
both in shear and capillary flow, is discussed. Finally, a simple extension of MPC
for viscoelastic solvents is described in Sect. 12, where the point particles of MPC
for Newtonian fluids are replaced by harmonic dumbbells.

A discussion of several complementary applications – such as chemically reac-
tive flows and self-propelled objects – can be found in a recent review of MPC by
Kapral [30].

2 Algorithms

In the following, we use the term MPC to describe the generic class of particle-
based algorithms for fluid flow which consist of successive free-streaming and
multi-particle collision steps. The name SRD is reserved for the most widely used
algorithm which was introduced by Malevanets and Kapral [18]. The name refers
to the fact that the collisions consist of a random rotation of the relative velocities
δvi = vi − u of the particles in a collision cell, where u is the mean velocity of
all particles in a cell. There are a number of other MPC algorithms with different
collision rules [31–33]. For example, one class of algorithms uses modified colli-
sion rules which provide a nontrivial “collisional” contribution to the equation of
state [33, 34]. As a result, these models can be used to model non-ideal fluids or
multi-component mixtures with a consolute point.
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2.1 Stochastic Rotation Dynamics

In SRD, the solvent is modeled by a large number N of point-like particles of mass
m which move in continuous space with a continuous distribution of velocities. The
algorithm consists of individual streaming and collision steps. In the streaming step,
the coordinates, ri(t), of all solvent particles at time t are simultaneously updated
according to

ri(t +Δ t) = ri(t)+Δ t vi(t) , (1)

where vi(t) is the velocity of particle i at time t and Δ t is the value of the discretized
time step.

In order to define the collisions, particles are sorted into cells, and they interact
only with members of their own cell. Typically, the system is coarse-grained into
cells of a regular, typically cubic, grid with lattice constant a. In practice, lengths
are often measured in units of a, which corresponds to setting a = 1. The average
number of particles per cell, M, is typically chosen to be between three and 20. The
actual number of particles in a cell at a given time, which fluctuates, will be denoted
by Nc. The collision step consists of a random rotation R of the relative velocities
δvi = vi −u of all the particles in the collision cell,

vi(t +Δ t) = u(t)+R ·δvi(t) . (2)

All particles in the cell are subject to the same rotation, but the rotations in differ-
ent cells and at different times are statistically independent. There is a great deal of
freedom in how the rotation step is implemented, and any stochastic rotation ma-
trix which satisfies semi-detailed balance can be used. Here, we describe the most
commonly used algorithm. In two dimensions, R is a rotation by an angle ±α , with
probability 1/2. In three dimensions, a rotation by a fixed angle α about a ran-
domly chosen axis is typically used. Note that rotations by an angle −α need not
be considered, since this amounts to a rotation by an angle α about an axis with
the opposite orientation. If we denote the randomly chosen rotation axis by R̂, the
explicit collision rule in three dimensions is

vi(t +Δ t) = u(t)+δvi,⊥(t)cos(α)

+(δvi,⊥(t)× R̂)sin(α)+δvi,‖(t) , (3)

where ⊥ and ‖ are the components of the vector which are perpendicular and paral-
lel to the random axis R̂, respectively. Malevanets and Kapral [18] have shown that
there is an H-theorem for the algorithm, that the equilibrium distribution of veloc-
ities is Maxwellian, and that it yields the correct hydrodynamic equations with an
ideal-gas equation of state.

In its original form [18,19], the SRD algorithm was not Galilean invariant. This is
most pronounced at low temperatures or small time steps, where the mean free path,
λ = Δ t

√
kBT/m, is smaller than the cell size a. If the particles travel a distance

between collisions which is small compared to the cell size, essentially the same
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particles collide repeatedly before other particles enter the cell or some of the partic-
ipating particles leave the cell. For small λ , large numbers of particles in a given cell
remain correlated over several time steps. This leads to a breakdown of the molec-
ular chaos assumption – i.e., particles become correlated and retain information of
previous encounters. Since these correlations are changed by a homogeneous im-
posed flow field, V, Galilean invariance is destroyed, and the transport coefficients
depend on both the magnitude and direction of V.

Ihle and Kroll [20, 21] showed that Galilean invariance can be restored by per-
forming a random shift of the entire computational grid before every collision step.
The grid shift constantly groups particles into new collision neighborhoods; the
collision environment no longer depends on the magnitude of an imposed homo-
geneous flow field, and the resulting hydrodynamic equations are Galilean invariant
for arbitrary temperatures and Mach number. This procedure is implemented by
shifting all particles by the same random vector with components uniformly distrib-
uted in the interval [−a/2,a/2] before the collision step. Particles are then shifted
back to their original positions after the collision.

In addition to restoring Galilean invariance, this grid-shift procedure acceler-
ates momentum transfer between cells and leads to a collisional contribution to the
transport coefficients. If the mean free path λ is larger than a/2, the violation of
Galilean invariance without grid shift is negligible, and it is not necessary to use this
procedure.

2.1.1 SRD with Angular Momentum Conservation

As noted by Pooley and Yeomans [35] and confirmed in [28], the macroscopic stress
tensor of SRD is not symmetric in ∂αvβ . The reason for this is that the multi-
particle collisions do not, in general, conserve angular momentum. The problem
is particularly pronounced for small mean free paths, where asymmetric collisional
contributions to the stress tensor dominate the viscosity (see Sect. 4.1.1). In contrast,
for mean free paths larger than the cell size, where kinetic contributions dominate,
the effect is negligible.

An anisotropic stress tensor means that there is non-zero dissipation if the en-
tire fluid undergoes a rigid-body rotation, which is clearly unphysical. However, as
emphasized in [28], this asymmetry is not a problem for most applications in the
incompressible (or small Mach number) limit, since the form of the Navier–Stokes
equation is not changed. This is in accordance with results obtained in SRD sim-
ulations of vortex shedding behind an obstacle [36], and vesicle [37] and polymer
dynamics [14]. In particular, it has been shown that the linearized hydrodynamic
modes are completely unaffected in two dimensions; in three dimensions only the
sound damping is slightly modified [28].

However, very recently Götze et al. [38] identified several situations involving
rotating flow fields in which this asymmetry leads to significant deviations from
the behavior of a Newtonian fluid. This includes (1) systems in which boundary
conditions are defined by torques rather than prescribed velocities, (2) mixtures of
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liquids with a viscosity contrast, and (3) polymers with a locally high monomer
density and a monomer–monomer distance on the order of or smaller than the lattice
constant, a, embedded in a MPC fluid. A more detailed discussion will be presented
in Sect. 8 below.

For the SRD algorithm, it is possible to restore angular momentum conservation
by having the collision angle depend on the specific positions of the particles within
a collision cell. Such a modification was first suggested by Ryder [39] for SRD
in two dimensions. She showed that the angular momentum of the particles in a
collision cell is conserved if the collision angle α is chosen such that

sin(α) = −2AB/(A2 +B2) and cos(α) = (A2 −B2)/(A2 +B2), (4)

where

A =
Nc

∑
1

[ri × (vi −u)]|z and B =
Nc

∑
1

ri · (vi −u). (5)

When the collision angles are determined in this way, the viscous stress tensor is
symmetric. Note, however, that evaluating (4) is time-consuming, since the collision
angle needs to be computed for every collision cell every time step. This typically
increases the CPU time by a factor close to 2.

A general procedure for implementing angular-momentum conservation in multi-
particle collision algorithms was introduced by Noguchi et al. [32]; it is discussed
in the following section.

2.2 Multi-Particle Collision Dynamics with Anderson Thermostat

A stochastic rotation of the particle velocities relative to the center-of-mass veloc-
ity is not the only possibility for performing multi-particle collisions. In particular,
MPC simulations can be performed directly in the canonical ensemble by employ-
ing an Anderson thermostat (AT) [31, 32]; the resulting algorithm will be referred
to as MPC-AT−a. In this algorithm, instead of performing a rotation of the relative
velocities, {δvi}, in the collision step, new relative velocities are generated. The
components of {δvran

i } are Gaussian random numbers with variance
√

kBT/m. The
collision rule is [32, 38]

vi(t +Δ t) = u(t)+δvran
i = u(t)+vran

i − ∑
j∈cell

vran
j /Nc , (6)

where Nc is the number of particles in the collision cell, and the sum runs over all
particles in the cell. It is important to note that MPC-AT is both a collision proce-
dure and a thermostat. Simulations are performed in the canonical ensemble, and
no additional velocity rescaling is required in non-equilibrium simulations, where
there is viscous heating.
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Just as SRD, this algorithm conserves momentum at the cell level but not angular
momentum. Angular momentum conservation can be restored [32, 39] by imposing
constraints on the new relative velocities. This leads to an angular-momentum con-
serving modification of MPC-AT [32, 38], denoted MPC-AT+a. The collision rule
in this case is

vi(t +Δ t) = u(t)+vi,ran −∑
cell

vi,ran/Nc

+

{

mΠ−1 ∑
j∈cell

[
r j,c × (v j −vran

j )
]
× ri,c

}

, (7)

where Π is the moment of inertia tensor of the particles in the cell, and ri,c = ri−Rc
is the relative position of particle i in the cell and Rc is the center of mass of all
particles in the cell.

When implementing this algorithm, an unbiased multi-particle collision is first
performed, which typically leads to a small change of angular momentum, ΔL. By
solving the linear equation −ΔL = Π ·ω , the angular velocity ω which is needed to
cancel the initial change of angular momentum is then determined. The last term in
(7) restores this angular momentum deficiency. MPC-AT can be adapted for simu-
lations in the micro-canonical ensemble by imposing an additional constraint on the
values of the new random relative velocities [32].

2.2.1 Comparison of SRD and MPC-AT

Because d Gaussian random numbers per particle are required at every iteration,
where d is the spatial dimension, the speed of the random number generator is the
limiting factor for MPC-AT. In contrast, the efficiency of SRD is rather insensitive
to the speed of the random number generator since only d − 1 uniformly distrib-
uted random numbers are needed in every box per iteration, and even a low quality
random number generator is sufficient, because the dynamics is self-averaging.
A comparison for two-dimensional systems shows that MPC-AT−a is about a factor
2–3 times slower than SRD, and that MPC-AT+a is about a factor 1.3–1.5 slower
than MPC-AT−a [40].

One important difference between SRD and MPC-AT is the fact that relaxation
times in MPC-AT generally decrease when the number of particles per cell is in-
creased, while they increase for SRD. A longer relaxation time means that a larger
number of time steps is required for transport coefficients to reach their asymptotic
value. This could be of importance when fast oscillatory or transient processes are
investigated. As a consequence, when using SRD, the average number of particles
per cell should be in the range 3–20; otherwise, the internal relaxation times could
be no longer negligible compared to physical time scales. No such limitation exists
for MPC-AT, where the relaxation times scale as (lnM)−1, where M is the average
number of particles in a collision cell.
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2.3 Computationally Efficient Cell-Level Thermostating for SRD

The MPC-AT algorithm discussed in Sect. 2.2 provides a very efficient particle-level
thermostating of the system. However, it is considerably slower than the original
SRD algorithm, and there are situations in which the additional freedom offered by
the choice of SRD collision angle can be useful.

Thermostating is required in any non-equilibrium MPC simulation, where there
is viscous heating. A basic requirement of any thermostat is that it does not violate
local momentum conservation, smear out local flow profiles, or distort the velocity
distribution too much. When there is homogeneous heating, the simplest way to
maintain a constant temperature is to just rescale velocity components by a scale
factor S, vnew

α = Svα , which adjusts the total kinetic energy to the desired value.
This can be done with just a single global scale factor, or a local factor which is
different in every cell. For a known macroscopic flow profile, u, like in shear flow,
the relative velocities v− u can be rescaled. This is known as a profile-unbiased
thermostat; however, it has been shown to have deficiencies in molecular dynamics
simulations [41].

Here we describe an alternative thermostat which exactly conserves momen-
tum in every cell and is easily incorporated into the MPC collision step. It was
originally developed by Heyes for constant-temperature molecular dynamics simu-
lations; however, the original algorithm described in [42] violates detailed balance.
The thermostat consists of the following procedure which is performed indepen-
dently in every collision cell as part of the collision step:

1. Randomly select a real number ψ ∈ [1,1+c], where c is a small number between
0.05 and 0.3 which determines the strength of the thermostat.

2. Accept this number as a scaling factor S = ψ with probability 1/2; otherwise,
take S = 1/ψ .

3. Create another random number ξ ∈ [0,1]. Rescale the velocities if ξ is smaller
than the acceptance probability pA = min(1,A), where

A = Sd (Nc−1)exp

[

− m
2kBT0

Nc

∑
i=1

(vi −u)2{S2 −1}
]

. (8)

d is the spatial dimension, and Nc is the number of particles in the cell. The
prefactor in (8) is an entropic contribution which accounts for the fact that the
phase-space volume changes if the velocities are rescaled.

4. If the attempt is accepted, perform a stochastic rotation with the scaled rotation
matrix SR. Otherwise, use the rotation matrix R.

This thermostat reproduces the Maxwell velocity distribution and does not change
the viscosity of the fluid. It gives excellent equilibration, and the deviation of the
measured kinetic temperature from T0 is smaller than 0.01%. The parameter c con-
trols the rate at which the kinetic temperature relaxes to T0, and in agreement with
experience from MC-simulations, an acceptance rate in the range of 50–65% leads
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to the fastest relaxation. For these acceptance rates, the relaxation time is of the order
of 5–10 time steps. The corresponding value for c depends on the particle number
Nc; in two dimensions, it is about 0.3 for Nc = 7 and decreases to 0.05 for Nc = 100.
This thermostat has been successfully applied to SRD simulations of sedimenting
charged colloids [16].

3 Qualitative Discussion of Static and Dynamic Properties

The previous section outlines several multi-particle algorithms. A detailed discus-
sion of the link between the microscopic dynamics described by (1) and (2) or (3)
and the macroscopic hydrodynamic equations, which describe the behavior at large
length and time scales, requires a more careful analysis of the corresponding Liou-
ville operator L. Before describing this approach in more detail, we provide a more
heuristic discussion of the equation of state and of one of the transport coefficients,
the shear viscosity, using more familiar approaches for analyzing the behavior of
dynamical systems.

3.1 Equation of State

In a homogeneous fluid, the pressure is the normal force exerted by the fluid on one
side of a unit area on the fluid on the other side; expressed somewhat differently, it
is the momentum transfer per unit area per unit time across an imaginary (flat) fixed
surface. There are both kinetic and virial contributions to the pressure. The first
arises from the momentum transported across the surface by particles that cross the
surface in the unit time interval; it yields the ideal-gas contribution, Pid = NkBT/V ,
to the pressure. For classical particles interacting via pair-additive, central forces, the
intermolecular “potential” contribution to the pressure can be determined using the
method introduced by Irving and Kirkwood [43]. A clear discussion of this approach
is given by Davis in [44], where it is shown to lead to the virial equation of state of
a homogeneous fluid,

P =
NkBT

V
+

1
3V ∑

i
〈ri ·Fi〉, (9)

in three dimensions, where Fi is the force on particle i due to all the other particles,
and the sum runs over all particles of the system.

The kinetic contribution to the pressure, Pid = NkBT/V , is clearly present in
all MPC algorithms. For SRD, this is the only contribution. The reason is that the
stochastic rotations, which define the collisions, transport (on average) no net mo-
mentum across a fixed dividing surface. More general MPC algorithms (such as
those discussed in Sect. 6) have an additional contribution to the virial equation of
state. However, instead of an explicit force Fi as in (9), the contribution from the
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multi-particle collisions is a force of the form mΔvi/Δ t, and the role of the particle
position, ri, is played by a variable which denotes the cell-partners which participate
in the collision [33, 45].

3.2 Shear Viscosity

Just as for the pressure, there are both kinetic and collisional contributions to the
transport coefficients. We present here a heuristic discussion of these contributions
to the shear viscosity, since it illustrates rather clearly the essential physics and
provides background for subsequent technical discussions.

Consider a reference plane (a line in two dimensions) normal in the y-direction
embedded in a homogeneous fluid in equilibrium. The fluid below the plane exerts
a mean force py per unit area on the fluid above the plane; by Newton’s third law,
the fluid above the plane must exert a mean force −py on the fluid below the plane.
The normal force per unit area is just the mean pressure, P, so that pyy = P. In
a homogeneous simple fluid in which there are no velocity gradients, there is no
tangential force, so that, for example, pyx = 0. pαβ is called the pressure tensor, and
the last result is just a statement of the well-known fact that the pressure tensor in a
homogeneous simple fluid at equilibrium has no off-diagonal elements; the diagonal
elements are all equal to the mean pressure P.

Consider a shear flow with a shear rate γ̇ = ∂ux(y)/∂y. In this case, there is a
tangential stress on the reference surface because of the velocity gradient normal
to the plane. In the small gradient limit, the dynamic viscosity, η , is defined as
the coefficient of proportionality between the tangential stress, pyx, and the normal
gradient of the imposed velocity gradient,

pyx = −ηγ̇. (10)

The kinematic viscosity, ν , is related to η by ν = η/ρ , where ρ = nm is the mass
density, with n the number density of the fluid and m the particle mass.
Kinetic contribution to the shear viscosity: The kinetic contribution to the shear vis-
cosity comes from transverse momentum transport by the flow of fluid particles.
This is the dominant contribution to the viscosity of gases. The following analogy
may make this origin of viscosity clearer. Consider two ships moving side by side
in parallel, but with different speeds. If the sailors on the two ships constantly throw
sand bags from their ship onto the other, there will be a transfer of momentum
between to two ships so that the slower ship accelerates and the faster ship deceler-
ates. This can be interpreted as an effective friction, or kinetic viscosity, between the
ships. There are no direct forces between the ships, and the transverse momentum
transfer originates solely from throwing sandbags from one ship to the other.

A standard result from kinetic theory is that the kinetic contribution to the shear
viscosity in simple gases is [46]
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ηkin ∼ nmv̄λ , (11)

where λ is the mean free path and v̄ is the thermal velocity. Using the fact that
λ ∼ v̄Δ t for SRD and that v̄ ∼

√
kBT/m, relation (11) implies that

ηkin ∼ nkBTΔ t, or equivalently, νkin ∼ kBTΔ t/m, (12)

which is, as more detailed calculations presented later will show, the correct depen-
dence on n, kBT , and Δ t. In fact, the general form for the kinetic contribution to the
kinematic viscosity is

νkin =
kBTΔ t

m
fkin(d,M,α), (13)

where d is the spatial dimension, M is the mean number of particles per cell, and
α is the SRD collision angle. Another way of obtaining this result is to use the
analogy with a random walk: The kinematic viscosity is the diffusion coefficient for
momentum diffusion. At large mean free path, λ/a � 1, momentum is primarily
transported by particle translation (as in the ship analogy). The mean distance a
particle streams during one time step, Δ t, is λ . According to the theory of random
walks, the corresponding diffusion coefficient scales as νkin ∼ λ 2/Δ t ∼ kBTΔ t/m.

Note that in contrast to a “real” gas, for which the viscosity has a square root de-
pendence on the temperature, νkin ∼ T for SRD. This is because the mean free path
of a particle in SRD does not depend on density; SRD allows particles to stream
right through each other between collisions. Note, however, that SRD can be easily
modified to give whatever temperature dependence is desired. For example, an ad-
ditional temperature-dependent collision probability can be introduced; this would
be of interest, e.g., for a simulation of realistic shock-wave profiles.
Collisional contribution to the shear viscosity: At small mean free paths, λ/a 	 1,
particles “stream” only a short distance between collisions, and the multi-particle
“collisions” are the primary mechanism for momentum transport. These collisions
redistribute momenta within cells of linear size a. This means that momentum
“hops” an average distance a in one time step, leading to a momentum diffusion
coefficient νcol ∼ a2/Δ t. The general form of the collisional contribution to the
shear viscosity is therefore

νcol =
a2

Δ t
fcol(d,M,α). (14)

This is indeed the scaling observed in numerical simulations at small mean free
path.

The kinetic contribution dominates for λ � a, while the collisional contribution
dominates in the opposite limit. Two other transport coefficients of interest are the
thermal diffusivity, DT , and the single particle diffusion coefficient, D. Both have
the dimension square meter per second. As dimensional analysis would suggest, the
kinetic and collisional contributions to DT exhibit the same characteristic depen-
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dencies on λ , a, and Δ t described by (13) and (14). Since there is no collisional
contribution to the diffusion coefficient, D ∼ λ 2/Δ t.

Two complementary approaches have been used to derive the transport coeffi-
cients of the SRD fluid. The first is an equilibrium approach which utilizes a discrete
projection operator formalism to obtain GK relations which express the transport
coefficients as sums over the autocorrelation functions of reduced fluxes. This ap-
proach was first utilized by Malevanets and Kapral [19], and later extended by Ihle,
Kroll and Tüzel [20,27,28] to include collisional contributions and arbitrary rotation
angles. This approach is described in Sect. 4.1.

The other approach uses kinetic theory to calculate the transport coefficients in
a stationary non-equilibrium situation such as shear flow. The first application of
this approach to SRD was presented in [21], where the collisional contribution to
the shear viscosity for large M, where particle number fluctuations can be ignored,
was calculated. This scheme was later extended by Kikuchi et al. [26] to include
fluctuations in the number of particles per cell, and then used to obtain expressions
for the kinetic contributions to shear viscosity and thermal conductivity [35]. This
non-equilibrium approach is described in Sect. 5.

4 Equilibrium Calculation of Dynamic Properties

A projection operator formalism for deriving the linearized hydrodynamic equations
and GK relations for the transport coefficients of molecular fluids was originally
introduced by Zwanzig [47–49] and later adapted for lattice gases by Dufty and
Ernst [50]. With the help of this formalism, explicit expressions for both the re-
versible (Euler) as well as dissipative terms of the long-time, large-length-scale
hydrodynamics equations for the coarse-grained hydrodynamic variables were de-
rived. In addition, the resulting GK relations enable explicit calculations of the
transport coefficients of the fluid. This work is summarized in Sect. 4.1. An analy-
sis of the equilibrium fluctuations of the hydrodynamic modes can then be used
to directly measure the shear and bulk viscosities as well as the thermal diffusivity.
This approach is described in Sect. 4.2, where SRD results for the dynamic structure
factor are discussed.

4.1 Linearized Hydrodynamics and Green–Kubo Relations

The GK relations for SRD differ from the well-known continuous versions due to
the discrete-time dynamics, the underlying lattice structure, and the multi-particle
interactions. In the following, we briefly outline this approach for determining the
transport coefficients. More details can be found in [20, 27].

The starting point of this theory are microscopic definitions of local hydrody-
namic densities Aβ . These “slow” variables are the local number, momentum, and
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energy density. At the cell level, they are defined as

Aβ (ξ ) =
N

∑
i=1

aβ ,i

d

∏
γ=1

Θ
(a

2
−
∣∣∣ξγ +

a
2
− riγ

∣∣∣
)

, (15)

with the discrete cell coordinates ξ = am, where mβ = 1, . . . ,L, for each spa-
tial component. a1,i = 1 is the particle density, {aβ ,i} = m{vi(β−1)}, with β =
2, . . . ,d +1, are the components of the particle momenta, and ad+2,i = mv2

i /2 is
the kinetic energy of particle i. d is the spatial dimension, and ri and vi are position
and velocity of particle i, respectively.

Aβ (ξ ), for β = 2, . . . ,d +2, are cell level coarse-grained densities. For example,
A2(ξ ) is the x-component of the total momentum of all the particles in cell ξ at the
given time. Note that the particle density, A1, was not coarse-grained in [20], i.e., the
Θ functions in (15) were replaced by a δ -function. This was motivated by the fact
that during collisions the particle number is trivially conserved in areas of arbitrary
size, whereas energy and momentum are only conserved at the cell level.

The equilibrium correlation functions for the conserved variables are defined by
〈δAβ (r, t)δAγ(r′, t ′)〉, where 〈δA〉 = A−〈A〉, and the brackets denote an average
over the equilibrium distribution. In a stationary, translationally invariant system,
the correlation functions depend only on the differences r− r′ and t − t ′, and the
Fourier transform of the matrix of correlation functions is

Gαβ (k, t) =
1
V
〈δA∗

β (k,0)δAγ(k, t)〉, (16)

where the asterisk denotes the complex conjugate, and the spatial Fourier transforms
of the densities are given by

Aβ (k) =∑
j

aβ , je
ik·ξ j , (17)

where ξ j is the coordinate of the cell occupied by particle j. k = 2πn/(aL) is the
wave vector, where nβ = 0,±1, . . . ,±(L−1),L for the spatial components. To sim-
plify notation, we omit the wave-vector dependence of Gαβ in this section.

The collision invariants for the conserved densities are

∑
j

eik·ξs
j(t+Δ t) [aβ , j(t +Δ t)−aβ , j(t)

]
= 0, (18)

where ξ s
j is the coordinate of the cell occupied by particle j in the shifted system.

Starting from these conservation laws, a projection operator can be constructed that
projects the full SRD dynamics onto the conserved fields [20]. The central result is
that the discrete Laplace transform of the linearized hydrodynamic equations can be
written as

[
s+ ikΩ+ k2Λ

]
G(k,s) =

1
Δ t

G(0)R(k), (19)



Multi-Particle Collision Dynamics 17

where R(k) = [1 +Δ t(ikΩ+ k2Λ ]−1 is the residue of the hydrodynamic pole [20].
The linearized hydrodynamic equations describe the long-time large-length-scale
dynamics of the system, and are valid in the limits of small k and s. The frequency
matrix Ω contains the reversible (Euler) terms of the hydrodynamic equations. Λ
is the matrix of transport coefficients. The discrete GK relation for the matrix of
viscous transport coefficients is [20]

Λαβ (k̂) ≡ Δ t
NkBT

∞

∑
t=0

′
〈k̂λσαλ (0)|k̂λ ′σβλ ′(t)〉, (20)

where the prime on the sum indicates that the t = 0 term has the relative weight 1/2.
σαβ = Pδαβ − pαβ is the viscous stress tensor. The reduced fluxes in (20) are given
by

k̂λσαλ (t) =
m
Δ t ∑j

(
−v jα(t)k̂ ·

[
Δξ j(t)+Δv jα(t)Δξ s

j(t)
]
+

Δ t
d

k̂αv2
j(t)
)

(21)

for α = 1, . . . ,d, with Δξ j(t) = ξ j(t +Δ t)− ξ j(t), Δξ
s
j(t +Δ t) = ξ j(t +Δ t)−

ξ s
j(t +Δ t), and Δvx j(t) = vx j(t +Δ t)−vx j(t). ξ j(t) is the cell coordinate of particle

j at time t, while ξ s
j is its cell coordinate in the (stochastically) shifted frame. The

corresponding expressions for the thermal diffusivity and self-diffusion coefficient
can be found in [20].

The straightforward evaluation of the GK relations for the viscous (21) and
thermal transport coefficients leads to three – kinetic, collisional, and mixed – con-
tributions. In addition, it was found that for mean free paths λ smaller than the
cell size a, there are finite cell-size corrections which could not be summed in a
controlled fashion. The origin of the problem was the explicit appearance of Δξ in
the stress correlations. However, it was subsequently shown [28, 51] that the GK
relations can be re-summed by introducing a stochastic variable, Bi, which is the
difference between change in the shifted cell coordinates of particle i during one
streaming step and the actual distance traveled, Δ t vi. The resulting microscopic
stress tensor for the viscous modes is

σ̄αβ =∑
i

[
mviαviβ +

m
Δ t

viαBiβ

]
(22)

where B jβ (t) = ξ s
jβ (t +Δ t)− ξ s

jβ (t)−Δ t v jβ (t). It is interesting to compare this
result to the corresponding expression

σαβ =∑
i
δ (r− ri)

[

mviαviβ +
1
2 ∑j =i

ri jαFi jβ (ri j)

]

(23)

for molecular fluids. The first term in both expressions, the ideal-gas contribution,
is the same in both cases. The collisional contributions, however, are quite different.
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The primary reason is that in SRD, the collisional contribution corresponds to a non-
local (on the scale of the cell size) force which acts only at discrete time intervals.

Bi has a number of important properties which simplify the calculation of the
transport coefficients. In particular, it is shown in [28, 51] that stress–stress correla-
tion functions involving one Bi in the GK relations for the transport coefficients are
zero, so that, for example, Λαβ (k̂) =Λ kin

αβ (k̂)+Λ col
αβ (k̂), with

Λ kin
αβ (k̂) =

Δ t
NmkBT

∞

∑
n=0

′
〈k̂λσkin

αλ (0)|k̂λ ′σkin
βλ (nΔ t)〉 (24)

and

Λ col
αβ (k̂) =

Δ t
NmkBT

∞

∑
n=0

′
〈k̂λσ col

αλ (0)|k̂λ ′σ col
βλ (nΔ t)〉], (25)

with
σkin
αβ (nΔ t) =∑

j
mv jα(nΔ t)v jβ (nΔ t) (26)

and
σ col
αβ (nΔ t) =

1
Δ t ∑j

mv jα(nΔ t)B jβ (nΔ t), (27)

where B jβ (nΔ t) = ξ s
jβ ([n+1]Δ t)−ξ s

jβ (nΔ t)−Δ tv jβ (nΔ t). Similar relations were
obtained for the thermal diffusivity in [28].

4.1.1 Explicit Expressions for the Transport Coefficients

Analytical calculations of the SRD transport coefficients are greatly simplified by
the fact that collisional and kinetic contributions to the stress–stress autocorrelation
functions decouple. Both the kinetic and collisional contributions have been cal-
culated explicitly in two and three dimension, and numerous numerical tests have
shown that the resulting expressions for all the transport coefficients are in excellent
agreement with simulation data. Before summarizing the results of this work, it is
important to emphasize that because of the cell structure introduced to define coarse-
grained collisions, angular momentum is not conserved in a collision [28,35,39]. As
a consequence, the macroscopic viscous stress tensor is not, in general, a symmetric
function of the derivatives ∂αvβ . Although the kinetic contributions to the transport
coefficients lead to a symmetric stress tensor, the collisional do not. Before eval-
uating the transport coefficients, we discuss the general form of the macroscopic
viscous stress tensor.

Assuming only cubic symmetry and allowing for a non-symmetric stress tensor,
the most general form of the linearized Navier–Stokes equation is

∂t vα(k) = −∂α p+Λαβ (k̂)vβ (k), (28)
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where

Λαβ (k̂) ≡ ν1

(
δα,β +

d −2
d

k̂α k̂β

)
(29)

+ν2
(
δα,β − k̂α k̂β

)
+ γ k̂α k̂β +κ k̂2

αδα,β .

In a normal simple liquid, κ = 0 (because of invariance with respect to infinitesimal
rotations) and ν2 = 0 (because the stress tensor is symmetric in ∂αvβ ), so that the
kinematic shear viscosity is ν = ν1. In this case, (29) reduces to the well-known
form [20]

Λαβ (k̂) = ν
(
δα,β +

d −2
d

k̂α k̂β

)
+ γ k̂α k̂β , (30)

where γ is the bulk viscosity.
Kinetic contributions: Kinetic contributions to the transport coefficients dominate
when the mean free path is larger than the cell size, i.e., λ > a. As can be seen
from (24) and (26), an analytic calculation of these contributions requires the eval-
uation of time correlation functions of products of the particle velocities. This is
straightforward if one makes the basic assumption of molecular chaos that suc-
cessive collisions between particles are not correlated. In this case, the resulting
time-series in (24) is geometrical, and can be summed analytically. The resulting
expression for the shear viscosity in two dimensions is

νkin =
kBTΔ t

2m

[
M

(M−1+ e−M)sin2(α)
−1
]
. (31)

Fluctuations in the number of particles per cell are included in (31). This result
agrees with the non-equilibrium calculations of Pooley and Yeomans [35,52], mea-
surements in shear flow [26], and the numerical evaluation of the GK relation in
equilibrium simulations (see Fig. 1).

The corresponding result in three dimensions for collision rule (3) is

νkin =
kBTΔ t

2m

{
5M

(M−1+ e−M)[2− cos(α)− cos(2α)]
−1
}

. (32)

The kinetic contribution to the stress tensor is symmetric, so that νkin
2 = 0 and the

kinetic contribution to the shear viscosity is νkin ≡ νkin
1 .

Collisional contributions: Explicit expressions for the collisional contributions to
the viscous transport coefficients can be obtained by considering various choices
for k̂ and α and β in (25), (27), and (29). Taking k̂ in the y-direction and α = β = 1
yields

νcol
1 +νcol

2 =
1

Δ tNkBT

∞

∑
t=0

′

∑
i, j
〈vix(0)Biy(0)vix(t)Biy(t)〉. (33)

Other choices lead to relations between the collisional contributions to the viscous
transport coefficients, namely
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Fig. 1 a Normalized kinetic contribution to the viscosity, νkin/(Δ tkBT ), in three dimensions as
a function of the collision angle α . Data were obtained by time averaging the GK relation over
75,000 iterations using λ/a = 2.309 for M = 5 (filled squares) and M = 20 (filled circles). The
lines are the theoretical prediction, (32). Parameters: L/a = 32, Δ t = 1. From [53]. b Normal-
ized collisional contribution to the viscosity, νcolΔ t/a2, in three dimensions as a function of the
collision angle α . The solid line is the theoretical prediction, (39). Data were obtained by time
averaging the GK relation over 300,000 iterations. Parameters: L/a = 16, λ/a = 0.1, M = 3, and
Δ t = 1. From [54]

[1+(d −2)/d]νcol
1 + γ col +κcol = νcol

1 +νcol
2 . (34)

and
[(d −2)/d]νcol

1 −νcol
2 + γ col = 0. (35)

These results imply that κcol = 0, and γ col − 2νcol
1 /d = νcol

2 − νcol
1 . It follows that

the collision contribution to the macroscopic viscous stress tensor is

σ̂ col
αβ/ρ = νcol

1 (∂β vα +∂αvβ )+νcol
2 (∂β vα −∂αvβ )+(νcol

2 −νcol
1 )δαβ∂λ vλ

= (νcol
1 +νcol

2 )∂β vα +(νcol
2 −νcol

1 )Qαβ , (36)

where Qαβ ≡ δαβ∂λ vλ − ∂αvβ . Since Qαβ has zero divergence, ∂βQαβ = 0, the
term containing Q in (36) will not appear in the linearized hydrodynamic equation
for the momentum density, so that

ρ
∂v
∂ t

= −∇p+ρ(νkin +νcol)Δv+
d −2

d
νkin∇(∇ ·v), (37)

where νcol = νcol
1 +νcol

2 . In writing (37) we have used the fact that the kinetic con-
tribution to the microscopic stress tensor, σ̄kin, is symmetric, and γ kin = 0 [27]. The
viscous contribution to the sound attenuation coefficient is νcol + 2(d − 1)νkin/d
instead of the standard result, 2(d − 1)ν/d + γ , for simple isotropic fluids. The
collisional contribution to the effective shear viscosity is νcol ≡ νcol

1 + νcol
2 . It is
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interesting to note that the kinetic theory approach discussed in [35] is able to show
explicitly that νcol

1 = νcol
2 , so that νcol = 2νcol

1 .
It is straightforward to evaluate the various contributions to the right-hand side

of (33). In particular, note that since velocity correlation functions are only required
at equal times and for a time lag of one time step, molecular chaos can be assumed
[51]. Using the relation [28]

〈Biα(nΔ t)B jβ (mΔ t)〉 =
a2

12
δαβ (1+δi j) [2δn,m −δn,m+1 −δn,m−1] , (38)

and averaging over the number of particles in a cell assuming that the number of
particles in any cell is Poisson distributed at each time step, with an average number
M of particles per cell, one then finds

νcol = νcol
1 +νcol

2 =
a2

6dΔ t

(
M−1+ e−M

M

)
[1− cos(α)] , (39)

for the SRD collision rules in both two and three dimensions. Equation (39)
agrees with the result of [26] and [35] obtained using a completely different
non-equilibrium approach in shear flow. Simulation results for the collisional con-
tribution to the viscosity are in excellent agreement with this result (see Fig. 1).

Thermal diffusivity and self-diffusion coefficient: As with the viscosity, there are
both kinetic and collisional contributions to the thermal diffusivity, DT . A detailed
analysis of both contributions is given in [28], and the results are summarized in
Table 1. The self-diffusion coefficient, D, of particle i is defined by

D = lim
t→∞

1
2dt

〈[ri(t)− ri(0)]2〉 =
Δ t
d

∞

∑
n=0

′
〈vi(nΔ t) ·vi(0)〉, (40)

where the second expression is the corresponding discrete GK relation. The self-
diffusion coefficient is unique in that the collisions do not explicitly contribute to
D. With the assumption of molecular chaos, the kinetic contributions are easily
summed [27] to obtain the result given in Table 1.

4.1.2 Beyond Molecular Chaos

The kinetic contributions to the transport coefficients presented in Table 1 have all
been derived under the assumption of molecular chaos, i.e., that particle velocities
are not correlated. Simulation results for the shear viscosity and thermal diffusivity
have generally been found to be in good agreement with these results. However, it
is known that there are correlation effects for λ/a smaller than unity [15, 55]. They
arise from correlated collisions between particles that are in the same collision cell
for more than one time step.
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Table 1 Theoretical expressions for the kinematic shear viscosity ν , the thermal diffusivity, DT ,
and the self-diffusion coefficient, D, in both two (d = 2) and three (d = 3) dimensions. M is the
average number of particles per cell, α is the collision angle, kB is Boltzmann’s constant, T is
the temperature, Δ t is the time step, m is the particle mass, and a is the cell size. Except for self-
diffusion constant, for which there is no collisional contribution, both the kinetic and collisional
contributions are listed. The expressions for shear viscosity and self-diffusion coefficient include
the effect of fluctuations in the number of particles per cell; however, for brevity, the relations for
thermal diffusivity are correct only up to O(1/M) and O(1/M2) for the kinetic and collisional
contributions, respectively. For the complete expressions, see [28, 53, 54]

d Kinetic (×kBTΔ t/2m) Collisional (×a2/Δ t)

ν 2 M
(M−1+e−M)sin2(α)

−1 (M−1+e−M)
6dM [1− cos(α)]

3 5M
(M−1+e−M)[2−cos(α)−cos(2α)] −1

DT
2 d

1−cos(α) −1+ 2d
M

[ 7−d
5 − 1

4 csc2(α/2)
] (1−1/M)

3(d+2)M [1− cos(α)]
3

D
2 dM

[1−cos(α)](M−1+e−M) −1 –
3

For the viscosity and thermal conductivity, these corrections are generally negli-
gible, since they are only significant in the small λ/a regime, where the collisional
contribution to the transport coefficients dominates. In this regard, it is important
to note that there are no correlation corrections to νcol and Dcol

T [28]. For the self-
diffusion coefficient – for which there is no collisional contribution – correlation
corrections dramatically increase the value of this transport coefficient for λ 	 a,
see [15, 55]. These correlation corrections, which arise from particles which collide
with the same particles in consecutive time steps, are distinct from the correlation
effects which are responsible for the long-time tails. This distinction is important,
since long-time tails are also visible at large mean free paths, where these correc-
tions are negligible.

4.2 Dynamic Structure Factor

Spontaneous thermal fluctuations of the density, ρ(r, t), the momentum density,
g(r, t), and the energy density, ε(r, t), are dynamically coupled, and an analysis of
their dynamic correlations in the limit of small wave numbers and frequencies can
be used to measure a fluid’s transport coefficients. In particular, because it is easily
measured in dynamic light scattering, X-ray, and neutron scattering experiments, the
Fourier transform of the density-density correlation function – the dynamics struc-
ture factor – is one of the most widely used vehicles for probing the dynamic and
transport properties of liquids [56].

A detailed analysis of equilibrium dynamic correlation functions – the dynamic
structure factor as well as the vorticity and entropy-density correlation functions –
using the SRD algorithm is presented in [57]. The results – which are in good
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agreement with earlier numerical measurements and theoretical predictions – pro-
vided further evidence that the analytic expressions or the transport coefficients are
accurate and that we have an excellent understanding of the SRD algorithm at the
kinetic level.

Here, we briefly summarize the results for the dynamic structure factor. The dy-
namic structure factor exhibits three peaks, a central “Rayleigh” peak caused by
the thermal diffusion, and two symmetrically placed “Brillouin peaks” caused by
sound. The width of the central peak is determined by the thermal diffusivity, DT ,
while that of the two Brillouin peaks is related to the sound attenuation coefficient,
Γ . For the SRD algorithm [57],

Γ = DT

(
cp

cv
−1
)

+2
(

d −1
d

)
νkin +νcol. (41)

Note that in two-dimensions, the sound attenuation coefficient for a SRD fluid has
the same functional dependence on DT and ν = νkin +νcol as an isotropic fluid with
an ideal-gas equation of state (for which γ = 0).

Simulation results for the structure factor in two-dimensions with λ/a = 1.0 and
collision angle α = 120◦, and λ/a = 0.1 with collision angle α = 60◦ are shown
in Figs. 2a and 2b, respectively. The solid lines are the theoretical prediction for the
dynamic structure factor (see (36) of [57]) using c =

√
2kBT/m and values for the

transport coefficients obtained using the expressions in Table 1, assuming that the
bulk viscosity γ = 0. As can be seen, the agreement is excellent.
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Fig. 2 Normalized dynamic structure, Sc
ρρ (kω)/χρρ (k), for k = 2π(1,1)/L and a λ/a = 1.0 with

α = 120◦, and b λ/a = 0.1 with α = 60◦. The solid lines are the theoretical prediction for the
dynamic structure factor (see (36) of [57]) using values for the transport coefficients obtained with
the expressions in Table 1. The dotted lines show the predicted positions of the Brillouin peaks,
ω = ±ck, with c =

√
2kBT/m. Parameters: L/a = 32, M = 15, and Δ t = 1.0. From [57]
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5 Non-Equilibrium Calculations of Transport Coefficients

MPC transport coefficients have also been evaluated by calculating the linear re-
sponse of the system to imposed gradients. This approach was introduced by
Kikuchi et al. [26] for the shear viscosity and then extended and refined in [35]
to determine the thermal diffusivity and bulk viscosity. Here, we summarize the
derivation of the shear viscosity.

5.1 Shear Viscosity of SRD: Kinetic Contribution

Linear response theory provides an alternative, and complementary, approach for
evaluating the shear viscosity. This non-equilibrium approach is related to equi-
librium calculations described in the previous section through the fluctuation–
dissipation theorem. Both methods yield identical results. For the more complicated
analysis of the hydrodynamic equations, the stress tensor, and the longitudinal trans-
port coefficients such as the thermal conductivity, the reader is referred to [35].

Following Kikuchi et al. [26], we consider a two-dimensional liquid with an im-
posed shear γ̇ = ∂ux(y)/∂y. On average, the velocity profile is given by v = (γ̇y,0).
The dynamic shear viscosity η is the proportionality constant between the velocity
gradient γ̇ and the frictional force acting on a plane perpendicular to y; i.e.,

σxy = ηγ̇ , (42)

where σxy is the off-diagonal element of the viscous stress tensor. During the stream-
ing step, particles will cross this plane only if |vyΔ t| is greater than the distance to
the plane. Assuming that the fluid particles are homogeneously distributed, the mo-
mentum flux is obtained by integrating over the coordinates and velocities of all
particles that cross the plane from above and below during the time step Δ t. The
result is [26]

σxy = ρ
(
γ̇Δ t

2
〈v2

y〉−〈vxvy〉
)

, (43)

where the mass density ρ = mM/ad , and the averages are taken over the steady-state
distribution P(vx − γ̇ y,vy). It is important to note that this is not the Maxwell–
Boltzmann distribution, since we are in a non-equilibrium steady state where the
shear has induced correlations between vx and vy. As a consequence, 〈vxvy〉 is
nonzero. To determine the behavior of 〈vxvy〉, the effect of streaming and col-
lisions are calculated separately. During streaming, particles which arrive at y0
with positive velocity vy have started from y0 − vyΔ t; these particles bring a ve-
locity component vx which is smaller than that of particles originally located at
y0. On the other hand, particles starting out at y > y0 with negative vy bring a
larger vx. The velocity distribution is therefore sheared by the streaming, so that



Multi-Particle Collision Dynamics 25

Pafter(vx,vy) = Pbefore(vx + γ̇vyΔ t,vy). Averaging vxvy over this distribution gives
[26]

〈vxvy〉after = 〈vxvy〉− γ̇Δ t〈v2
y〉 , (44)

where the superscript denotes the quantity after streaming. The streaming step
therefore reduces correlations by −γ̇Δ t〈v2

y〉, making vx and vy increasingly anti-
correlated.

The collision step redistributes momentum between particles and tends to reduce
correlations. Making the assumption of molecular chaos, i.e., that the velocities of
different particles are uncorrelated, and averaging over the two possible rotation
directions, one finds

〈vxvy〉after =
[

1− Nc −1
Nc

[1− cos(2α)]
]
〈vxvy〉before. (45)

The number of particles in a cell, Nc is not constant, and density fluctuations have
to be included. The probability to find n uncorrelated particles in a given cell is
given by the Poisson distribution, w(n) = exp(−M)Mn/n!; the probability of a given
particle being in a cell together with n−1 others is nw(n)/M. Taking an average over
this distribution gives

〈vxvy〉after = f 〈vxvy〉before, (46)

with

f =
{

1− M−1+ exp(−M)
M

[1− cos(2α)]
}

. (47)

The difference between this result and just replacing Nc by M in (45) is small, and
only important for M ≤ 3. One sees that 〈vxvy〉 is first modified by streaming and
then multiplied by a factor f in the subsequent collision step. In the steady state, it
therefore oscillates between two values. Using (44), (46), and (47), we obtain the
self-consistency condition (〈vxvy〉− γ̇Δ t〈v2

y〉) f = 〈vxvy〉. Solving for 〈vxvy〉, assum-
ing equipartition of energy, 〈v2

y〉 = kBT/m, and substituting into (43), we have

σxy =
γ̇ MΔ tkBT

m

(
1
2

+
f

1− f

)
, (48)

Inserting this result into the definition of the viscosity, (42), yields the same expres-
sion for the kinetic viscosity in two-dimensions as obtained by the equilibrium GK
approach discussed in Sect. 4.1.1.

5.2 Shear Viscosity of SRD: Collisional Contribution

The collisional contribution to the shear viscosity is proportional to a2/Δ t; as dis-
cussed in Sect. 3.2, it results from the momentum transfer between particles in a cell
of size a during the collision step. Consider again a collision cell of linear dimension
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a with a shear flow ux(y) = γ̇y. Since the collisions occur in a shifted grid, they cause
a transfer of momentum between neighboring cells of the original unshifted refer-
ence frame [21, 27]. Consider now the momentum transfer due to collisions across
the line y = h, the coordinate of a cell boundary in the unshifted frame. If we assume
a homogeneous distribution of particles in the collision cell, the mean velocities in
the upper (y > h) and lower partitions are

u1 =
1

M1

M1

∑
i=1

vi and u2 =
1

M2

M

∑
i=M1+1

vi , (49)

respectively, where M1 = M(a−h)/a and M2 = Mh/a. Collisions transfer momen-
tum between the two parts of the cell. The x-component of the momentum transfer is

Δ px(h) ≡
M1

∑
i=1

[
vafter

ix − vbefore
ix

]
. (50)

The use of the rotation rule (2) together with an average over the sign of the sto-
chastic rotation angle yields

Δ px(h) = [cos(α)−1]M1(u1x −ux). (51)

Since Mu = M1u1 +M2u2,

Δ px(h) = [1− cos(α)] M (u2x −u1x)
h
a

(
1− h

a

)
. (52)

Averaging over the position h of the dividing line, which corresponds to averaging
over the random shift, we find

〈Δ px〉 =
1
a

∫ a

0
Δ px(h)dh =

1
6

[1− cos(α)]M(u2x −u1x). (53)

Since the dynamic viscosity η is defined as the ratio of the tangential stress, σyx, to
∂ux/∂y, we have

η =
〈Δ px〉/(a2Δ t)

∂ux/∂y
=

〈Δ px〉/(a2Δ t)
(u2x −u1x)/(a/2)

, (54)

so that the kinematic viscosity, ν = η/ρ , in two-dimensions for SRD is

νcol =
a2

12Δ t
[1− cos(α)] (55)

in the limit of small mean free path. Since we have neglected the fluctuations in
the particle number, this expression corresponds to the limit M → ∞. Even though
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this derivation is somewhat heuristic, it gives a remarkably accurate expression; in
particular, it contains the correct dependence on the cell size, a, and the time step,
Δ t, in the limit of small free path,

νcol =
a2

Δ t
fcol(d,M,α), (56)

as expected from simple random walk arguments. Kikuchi et al. [26] included parti-
cle number fluctuations and obtained identical results for the collisional contribution
to the viscosity as was obtained in the GK approach (see Table 1).

5.3 Shear Viscosity of MPC-AT

For MPC-AT, the viscosities have been calculated in [32] using the methods de-
scribed in Sects. 5.1 and 5.2. The total viscosity of MPC-AT is given by the sum of
two terms, the collisional and kinetic contributions. For MPC-AT−a, it was found
for both two and three dimensions that [32]

νkin =
kBTΔ t

m

(
M

M−1+ e−M − 1
2

)
and

νcol =
a2

12Δ t

(
M−1+ e−M

M

)
. (57)

The exponential terms e−M are due to the fluctuation of the particle number per cell
and become important for M ≤ 3. As was the case for SRD, the kinetic viscosity has
no anti-symmetric component; the collisional contribution, however, does. Again,
as discussed in Sect. 4.1.1 for SRD, one finds νcol

1 = νcol
2 = νcol/2. This relation is

true for all −a versions of MPC discussed in [32, 58, 59]. Simulation results were
found to be in good agreement with theory.

For MPC-AT+a it was found for sufficiently large M that [38, 59]

νkin =
kBTΔ t

m

[
M

M− (d +2)/4
− 1

2

]
,

νcol =
a2

24Δ t

(
M−7/5

M

)
. (58)

MPC-AT−a and MPC-AT+a both have the same kinetic contribution to the viscos-
ity in two dimensions; however, imposing angular-momentum conservation makes
the collisional contribution to the stress tensor symmetric, so that the asymmetric
contribution, ν2, discussed in Sect. 4.1.1 vanishes. The resulting collisional contri-
bution to the viscosity is then reduced by a factor close to 2.
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6 Generalized MPC Algorithms for Dense Liquids and Binary
Mixtures

The original SRD algorithm models a single-component fluid with an ideal-gas
equation of state. The fluid is therefore very compressible, and the speed of sound,
cs, is low. In order to have negligible compressibility effects, as in real liquids, the
Mach number has to be kept small, which means that there are limits on the flow ve-
locity in the simulation. The SRD algorithm can be modified to model both excluded
volume effects, allowing for a more realistic modeling of dense gases and liquids,
as well as repulsive hard-core interactions between components in mixtures, which
allow for a thermodynamically consistent modeling of phase separating mixtures.

6.1 Non-Ideal Model

As in SRD, the algorithm consists of individual streaming and collision steps. In
order to define the collisions, a second grid with sides of length 2a is introduced,
which (in d = 2) groups four adjacent cells into one “supercell.” The cell structure is
sketched in Fig. 3 (left panel). To initiate a collision, pairs of cells in every supercell
are chosen at random. Three different choices are possible: (a) horizontal (with σ1 =
x̂), (b) vertical (σ2 = ŷ), and (c) diagonal collisions (with σ3 = (x̂ + ŷ)/

√
2 and

σ4 = (x̂− ŷ)/
√

2).

w wd
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Δt
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Fig. 3 Left panel: Schematic of collision rules. Momentum is exchanged in three ways: (a) hori-
zontally along σ1, (b) vertically along σ2, and (c) diagonally along σ3 and σ4. w and wd denote
the probabilities of choosing collisions (a), (b), and (c), respectively. Right panel: Static structure
factor S(k̄, t = 0) as a function of Δ t for M = 3. The open circles show results obtained by taking
the numerical derivative of the pressure. The filled circles are data obtained from direct measure-
ments of the density fluctuations. The solid line is the theoretical prediction obtained using the
first term in (61) and (63). k̄ is the smallest wave vector, k̄ = (2π/L)(1,0). Parameters: L/a = 32,
A = 1/60, and kBT = 1.0. From [33]
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For a mean particle velocity un = (1/Mn) ∑Mn
i=1 vi, of cell n, the projection of the

difference of the mean velocities of the selected cell pairs on σ j, Δu = σ j ·(u1−u2),
is then used to determine the probability of collision. If Δu < 0, no collision will
be performed. For positive Δu, a collision will occur with an acceptance probabil-
ity, pA, which depends on Δu and the number of particles in the two cells, N1 and
N2. The choice of pA determines both the equation of state and the values of the
transport coefficients. While there is considerable freedom in choosing pA, the re-
quirement of thermodynamic consistency imposes certain restrictions [33, 34, 55].
One possible choice is

pA(M1,M2,Δu) =Θ(Δu) tanh(Λ) with Λ = AΔuN1N2, (59)

where Θ is the unit step function and A is a parameter which is used to tune the
equation of state. The choice Λ ∼ N1N2 leads to a non-ideal contribution to the
pressure which is quadratic in the particle density.

The collision rule chosen in [33] maximizes the momentum transfer parallel to
the connecting vector σ j and does not change the transverse momentum. It ex-
changes the parallel component of the mean velocities of the two cells, which is
equivalent to a “reflection” of the relative velocities, v‖i (t +Δ t)−u‖ =−(v‖i (t)−u‖),
where u‖ is the parallel component of the mean velocity of the particles of both cells.
This rule conserves momentum and energy in the cell pairs.

Because of x− y symmetry, the probabilities for choosing cell pairs in the x- and
y-directions (with unit vectors σ1 and σ2 in Fig. 3) are equal, and will be denoted
by w. The probability for choosing diagonal pairs (σ3 and σ4 in Fig. 3) is given
by wd = 1−2w. w and wd must be chosen so that the hydrodynamic equations are
isotropic and do not depend on the orientation of the underlying grid. An equivalent
criterion is to guarantee that the relaxation of the velocity distribution is isotropic.
These conditions require w = 1/4 and wd = 1/2. This particular choice also ensures
that the kinetic part of the viscous stress tensor is isotropic [45].

6.1.1 Transport Coefficients

The transport coefficients can be determined using the same GK formalism as was
used for the original SRD algorithm [21,51]. Alternatively, the non-equilibrium ap-
proach described in Sect. 5 can be used. Assuming molecular chaos and ignoring
fluctuations in the number of particles per cell, the kinetic contribution to the vis-
cosity is found to be

νkin =
kBT
m

Δ t
(

1
pcol

− 1
2

)
with pcol = A

√
kBT
mπ

M3/2, (60)

which is in good agreement with simulation data. pcol is essentially the collision rate,
and can be obtained by averaging the acceptance probability, (59). The collisional
contribution to the viscosity is νcol = pcol(a2/3Δ t) [60]. The self-diffusion constant,
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D, is evaluated by summing over the velocity-autocorrelation function (see, e.g.,
[21]); which yields D = νkin.

6.1.2 Equation of State

The collision rules conserve the kinetic energy, so the internal energy should be the
same as that of an ideal gas. Thermodynamic consistency therefore requires that the
non-ideal contribution to the pressure is linear in T . This is possible if the coefficient
A in (59) is sufficiently small.

The mechanical definition of pressure – the average longitudinal momentum
transfer across a fixed interface per unit time and unit surface area – can be used
to determine the equation of state. Only the momentum transfer due to collisions
needs to be considered, since that coming from streaming constitutes the ideal part
of the pressure. Performing this calculation for a fixed interface and averaging over
the position of the interface, one finds the non-ideal part of the pressure,

Pn =
(

1
2
√

2
+

1
4

)
AM2

2
kBT
aΔ t

+O(A3T 2). (61)

Pn is quadratic in the particle density, ρ = M/a2, as would be expected from a virial
expansion. The prefactor A must be chosen small enough that higher-order terms in
this expansion are negligible. Prefactors A leading to acceptance rates of about 15%
are sufficiently small to guarantee that the pressure is linear in T .

The total pressure is the average of the diagonal part of the microscopic stress
tensor,

P = Pid +Pn =
1

Δ tLx Ly

〈

∑
j

{
Δ tv2

jx −Δv jx zs
jlx/2

}〉

. (62)

The first term gives the ideal part of the pressure, Pid, as discussed in [21]. The aver-
age of the second term is the non-ideal part of the pressure, Pn. zs

jl is a vector which
indexes collision partners. The first subscript denotes the particle number and the
second, l, is the index of the collision vectors σ l in Fig. 3 (left panel). The compo-
nents of zs

jl are either 0, 1, or −1 [55]. Simulation results for Pn obtained using (62)
are in good agreement with the analytical expression, (61). In addition, measure-
ments of the static structure factor S(k → 0, t = 0) agree with the thermodynamic
prediction

S(k → 0, t = 0) = ρkBT∂ρ/∂P|T (63)

when result (61) is used [see Fig. 3 (right panel)]. The adiabatic speed of sound ob-
tained from simulations of the dynamic structure factor is also in good agreement
with the predictions following from (61). These results provide strong evidence for
the thermodynamic consistency of the model. Consistency checks are particularly
important because the non-ideal algorithm does not conserve phase-space volume.
This is because the collision probability depends on the difference of collision-cell
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velocities, so that two different states can be mapped onto the same state by a colli-
sion. While the dynamics presumably still obeys detailed – or at least semi-detailed –
balance, this is very hard to prove, since it would require knowledge not only of the
transition probabilities, but also of the probabilities of the individual equilibrium
states. Nonetheless, no inconsistencies due to the absence of time-reversal invari-
ance or a possible violation of detailed balance have been observed.

The structure of S(k) for this model is also very similar to that of a simple dense
fluid. In particular, for fixed M, both the depth of the minimum at small k and the
height of the first peak increase with decreasing Δ t, until there is an order–disorder
transition. The fourfold symmetry of the resulting ordered state – in which clusters
of particles are concentrated at sites with the periodicity close, but not necessarily
equal, to that of the underlying grid – is clearly dictated by the structure of the colli-
sion cells. Nevertheless, these ordered structures are similar to the low-temperature
phase of particles with a strong repulsion at intermediate distances, but a soft repul-
sion at short distances. The scaling behavior of both the self-diffusion constant and
the pressure persists until the order/disorder transition.

6.2 Phase-Separating Multi-Component Mixtures

In a binary mixture of A and B particles, phase separation can occur when there is
an effective repulsion between A–B pairs. In the current model, this is achieved by
introducing velocity-dependent multi-particle collisions between A and B particles.
There are NA and NB particles of type A and B, respectively. In two dimensions, the
system is coarse-grained into (L/a)2 cells of a square lattice of linear dimension L
and lattice constant a. The generalization to three dimensions is straightforward.

Collisions are defined in the same way as in the non-ideal model discussed in the
previous section. Now, however, two types of collisions are possible for each pair
of cells: particles of type A in the first cell can undergo a collision with particles of
type B in the second cell; vice versa, particles of type B in the first cell can undergo
a collision with particles of type A in the second cell. There are no A–A or B–B
collisions, so that there is an effective repulsion between A–B pairs. The rules and
probabilities for these collisions are chosen in the same way as in the non-ideal
single-component fluid described in [33, 55]. For example, consider the collision of
A particles in the first cell with the B particles in the second. The mean particle
velocity of A particles in the first cell is uA = (1/Nc,A) ∑

Nc,A
i=1 vi, where the sum runs

over all A particles, Nc,A, in the first cell. Similarly, uB = (1/Nc,B) ∑
Nc,B
i=1 vi is the

mean velocity of B particles in the second cell. The projection of the difference of
the mean velocities of the selected cell-pairs on σ j, ΔuAB = σ j · (uA −uB), is then
used to determine the probability of collision. If ΔuAB < 0, no collision will be
performed. For positive ΔuAB, a collision will occur with an acceptance probability

pA(Nc,A,Nc,B,ΔuAB) = AΔuABΘ(ΔuAB)Nc,ANc,B , (64)
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where Θ is the unit step function and A is a parameter which allows us to tune
the equation of state; in order to ensure thermodynamic consistency, it must be
sufficiently small that pA < 1 for essentially all collisions. When a collision oc-
curs, the parallel component of the mean velocities of colliding particles in the two
cells, v‖i (t +Δ t)− u‖AB = −(v‖i (t)− u‖AB), is exchanged, where u‖AB = (Nc,Au‖A +
Nc,Bu‖B)/(Nc,A +Nc,B) is the parallel component of the mean velocity of the collid-
ing particles. The perpendicular component remains unchanged. It is easy to verify
that these rules conserve momentum and energy in the cell pairs. The collision of
B particles in the first cell with A particles in the second is handled in a similar
fashion.

Because there are no A–A and B–B collisions, additional SRD collisions at the
cell level are incorporated in order to mix particle momenta. The order of A–B and
SRD collision is random, i.e., the SRD collision is performed first with a probability
1/2. If necessary, the viscosity can be tuned by not performing SRD collisions every
time step. The results presented here were obtained using a SRD collision angle of
α = 90◦.

The transport coefficients can be calculated in the same way as for the one-
component non-ideal system. The resulting kinetic contribution to the viscosity is

νkin =
Δ tkBT

2

{
1
A

√
2π

kBT
[MAMB(MA +MB)]−1/2 −1

}

, (65)

where MA = 〈Nc,A〉, MB = 〈Nc,B〉. In deep quenches, the concentration of the mi-
nority component is very small, and the non-ideal contribution to the viscosity
approaches zero. In this case, the SRD collisions provide the dominant contribu-
tion to the viscosity.

6.2.1 Free Energy

An analytic expression for the equation of state of this model can be derived by
calculating the momentum transfer across a fixed surface, in much the same way as
was done for the non-ideal model in [33]. Since there are only non-ideal collisions
between A–B particles, the resulting contribution to the pressure is

Pn =
(

w+
wd√

2

)
AMAMB

kBT
aΔ t

= ΓρAρB, (66)

where ρA and ρB are the densities of A and B and Γ ≡ (w + wd/
√

2)a3A/Δ t. In
simulations, the total pressure can be measured by taking the ensemble average of
the diagonal components of the microscopic stress tensor. In this way, the pressure
can be measured locally, at the cell level. In particular, the pressure in a region
consisting of Ncell cells is
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Pn =
1

Δ ta2Ncell

〈
Nc

∑
c=1

∑
j∈c

[
Δ tv2

jx −Δv jxzs
jlx/2

]〉

, (67)

where the second sum runs over the particles in cell c. The first term in (67) is
the ideal-gas contribution to the pressure; the second comes from the momentum
transfer between cells involved in the collision indexed by zs

jl [45].
Expression (66) can be used to determine the entropy density, s. The ideal-gas

contribution to s has the form [61]

sideal = ρ ϕ(T )− kB [ρA lnρA +ρB lnρB] , (68)

where ρ = ρA +ρB. Since ϕ(T ) is independent of ρA and ρB, this term does not play
a role in the current discussion. The non-ideal contribution to the entropy density,
sn, can be obtained from (66) using the thermodynamic relation

Pn/T = −sn +ρA∂ sn/∂ρA +ρB∂ sn/∂ρB. (69)

The result is sn =ΓρAρB, so that the total configurational contribution to the entropy
density is

s = −kB {ρA lnρA +ρB lnρB +ΓρAρB} . (70)

Since there is no configurational contribution to the internal energy in this
model, the mean-field phase diagram can be determined by maximizing the en-
tropy at fixed density ρ . The resulting demixing phase diagram as a function of
ρAB = (ρA − ρB)/ρ is given by the solid line in Fig. 4 (left panel). The critical
point is located at ρAB = 0, ρΓ ∗ = 2. For ρΓ < 2, the order parameter ρAB = 0;
for ρΓ > 2, there is phase separation into coexisting A- and B-rich phases. As can
be seen, the agreement between the mean-field predictions and simulation results is
very good except close to the critical point, where the histogram method of deter-
mining the coexisting densities is unreliable and critical fluctuations influence the
shape of the coexistence curve.

6.2.2 Surface Tension

A typical configuration for ρAB = 0, ρΓ = 3.62 is shown in the inset to Fig. 4 (left
panel), and a snapshot of a fluctuating droplet at ρAB = −0.6, ρΓ = 3.62 is shown
in the inset to Fig. 4 (right panel). The amplitude of the capillary wave fluctuations
of a droplet is determined by the surface tension, σ . Using the parameterization
r(φ) = r0

[
1+∑∞

k=−∞ uk exp(ikφ)
]

and choosing u0 to fix the area of the droplet, it
can be shown that [54]

〈|uk|2〉 =
kBT

2πr0σ

(
1

k2 −1

)
. (71)
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Fig. 4 Left panel: Binary phase diagram. There is phase separation for ρΓ > 2. Simulation results
for ρAB obtained from concentration histograms are shown as filled circles. The dashed line is a
plot of the leading singular behavior, ρAB =

√
3(ρΓ −2)/2, of the order parameter at the critical

point. The inset shows a configuration 50,000 time steps after a quench along ρAB = 0 to ρΓ = 3.62
(arrow). The dark (blue) and light (white) spheres are A and B particles, respectively. Parameters:
L/a = 64, MA = MB = 5, kBT = 0.0004, Δ t = 1, and a = 1. From [45]. Right panel: Dimensionless
radial fluctuations, 〈|u2

k |〉, as a function of the mode number k for A = 0.45 (filled circles) and A =
0.60 (open circles) with kBT = 0.0004. The average droplet radii are r0 = 11.95a and r0 = 15.21a,
respectively. The solid lines are fits to (71). The inset shows a typical droplet configuration for
ρAB = −0.6, ρΓ = 3.62 (A = 0.60 and kBT = 0.0004). Parameters: L/a = 64, MA = 2, MB = 8,
Δ t = 1, and a = 1. From [45]

Figure 4 (right panel) contains a plot of 〈|uk|2〉 as a function of mode number k
for ρΓ = 3.62 and ρΓ = 2.72. Fits to the data yield σ � 2.9kBT for ρΓ = 3.62
and σ � 1.1kBT for ρΓ = 2.72. Mechanical equilibrium requires that the pressure
difference across the interface of a droplet satisfies the Laplace equation

Δ p = pin − pout = (d −1)σ/r0 (72)

in d spatial dimensions. Measurements of Δ p [using (67)] as a function of the
droplet radius for A = 0.60 at kBT = 0.0005 yield results in excellent agreement
with the Laplace equation for the correct value of the surface tension [45].

The model therefore displays the correct thermodynamic behavior and interfacial
fluctuations. It can also be extended to model amphiphilic mixtures by introducing
dimers consisting of tethered A and B particles. If the A and B components of the
dimers participate in the same collisions as the solvent, they behave like amphiphilic
molecules in binary oil–water mixtures. The resulting model displays a rich phase
behavior as a function of ρΓ and the number of dimers, Nd. Both the formation of
droplets and micelles, as shown in Fig. 5 (left panel), and a bicontinuous phase, as
illustrated in Fig. 5 (right panel), have been observed [45]. The coarse-grained nature
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Fig. 5 Left panel: Droplet configuration in a mixture with NA = 8,192, NB = 32,768, and
Nd = 1,500 dimers after 105 time steps. The initial configuration is a droplet with a homoge-
neous distribution of dimers. The dark (blue) and light (white) colored spheres indicate A and B
particles, respectively. For clarity, A particles in the bulk are smaller and B particles in the bulk are
not shown. Parameters: L/a = 64, MA = 2, MB = 8, A = 1.8, kBT = 0.0001, Δ t = 1, and a = 1.
Right panel: Typical configuration showing the bicontinuous phase for NA = NB = 20,480 and
Nd = 3,000. Parameters: L/a = 64, MA = 5, MB = 5, A = 1.8, kBT = 0.0001, Δ t = 1, and a = 1.
From [45]

of the algorithm therefore enables the study of large time scales with a feasible
computational effort.

6.2.3 Color Models for Immiscible Fluids

There have been other generalizations of SRD to model binary mixtures by
Hashimoto et al. [62] and Inoue et al. [63], in which a color charge, ci = ±1 is
assigned to two different species of particles. The rotation angle α in the SRD
rotation step is then chosen such that the color-weighted momentum in a cell,
m = ∑Nc

i=1 ci(vi −u), is rotated to point in the direction of the gradient of the color
field c̄ = ∑Nc

i=1 ci. This rule also leads to phase separation. Several tests of the model
have been performed; Laplace’s equation was verified numerically, and simulation
studies of spinodal decomposition and the deformation of a falling droplet were
performed [62]. Later applications include a study of the transport of slightly de-
formed immiscible droplets in a bifurcating channel [64]. Subsequently, the model
was generalized through the addition of dumbbell-shaped surfactants to model mi-
cellization [65] and the behavior of ternary amphiphilic mixtures in both two and
three dimensions [66, 67]. Note that since the color current after the collision is al-
ways parallel to the color gradient, thermal fluctuations of the order parameter are
neglected in this approach.
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7 Boundary Conditions and Embedded Objects

7.1 Collisional Coupling to Embedded Particles

A very simple procedure for coupling embedded objects such as colloids or poly-
mers to a MPC solvent has been proposed in [68]. In this approach, every colloid
particle or monomer in the polymer chain is taken to be a point-particle which par-
ticipates in the SRD collision. If monomer i has mass mm and velocity wi, the center
of mass velocity of the particles in the collision cell is

u =
m∑Nc

i=1 vi +mm∑Nm
i=1 wi

Ncm+Nmmm
, (73)

where Nm is the number of monomers in the collision cell. A stochastic collision
of the relative velocities of both the solvent particles and embedded monomers is
then performed in the collision step. This results in an exchange of momentum be-
tween the solvent and embedded monomers. The same procedure can of course
be employed for other MPC algorithms, such as MPC-AT. The new monomer mo-
menta are then used as initial conditions for a molecular-dynamics update of the
polymer degrees of freedom during the subsequent streaming time step, Δ t. Al-
ternatively, the momentum exchange, Δ p, can be included as an additional force
Δ p/Δ t in the molecular-dynamics integration. If there are no other interactions be-
tween monomers – as might be the case for embedded colloids – these degrees of
freedom stream freely during this time interval.

When using this approach, the average mass of solvent particles per cell, mNc,
should be of the order of the monomer or colloid mass mm (assuming one embed-
ded particle per cell) [15]. This corresponds to a neutrally buoyant object which
responds quickly to the fluid flow but is not kicked around too violently. It is also
important to note that the average number of monomers per cell, 〈Nm〉, should be
smaller than unity in order to properly resolve hydrodynamic interactions between
the monomers. On the other hand, the average bond length in a semi-flexible poly-
mer or rod-like colloid should also not be much larger than the cell size a, in order
to capture the anisotropic friction of rod-like molecules due to hydrodynamic in-
teractions [69] (which leads to a twice as large perpendicular than parallel friction
coefficient for long stiff rods [6]), and to avoid an unnecessarily large ratio of the
number of solvent to solute particles. For a polymer, the average bond length should
therefore be of the order of a.

In order to use SRD to model suspended colloids with a radius of order 1μm
in water, this approach would require approximately 60 solvent particles per cell in
order to match the Peclet number [16]. This is much larger than the optimum number
(see discussion in Sect. 2.2.1), and the relaxation to the Boltzmann distribution is
very slow. Because of its simplicity and efficiency, this monomer–solvent coupling
has been used in many polymer [14, 71–74] and colloid simulations [15, 16, 75, 76].
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7.2 Thermal Boundaries

In order to accurately resolve the local flow field around a colloid, methods have
been proposed which exclude fluid-particles from the interior of the colloid and
mimic slip [19,77] or no-slip [78] boundary conditions. The latter procedure is sim-
ilar to what is known in molecular dynamics as a “thermal wall” boundary condition:
fluid particles which hit the colloid particle are given a new, random velocity drawn
from the following probability distributions for the normal velocity component, vN,
and the tangential component, vT,

pN(vN) = (mvN/kBT ) exp
(
−mv2

N/2kBT
)
, with vN > 0 ,

pT(vT) =
√

m/2πkBT exp
(
−mv2

T/2kBT
)

. (74)

These probability distributions are constructed so that the probability distribution
for particles near the wall remains Maxwellian. The probability distribution, pT,
for the tangential components of the velocity is Maxwellian, and both positive and
negative values are permitted. The normal component must be positive, since after
scattering at the surface, the particle must move away from the wall. The form of
pN is a reflection of the fact that more particles with large |vN| hit the wall per unit
time than with small |vN| [78].

This procedure models a no-slip boundary condition at the surface of the colloid,
and also thermostats the fluid at the boundaries. For many non-equilibrium flow
conditions, this may not be sufficient, and it may also be necessary to thermostat the
bulk fluid also (compare Sect. 2.3). It should also be noted that (74) will be a good
approximation only if the radius of the embedded objects is much larger than the
mean free path λ . For smaller particles, corrections are needed.

If a particle hits the surface at time t0 in the interval between nΔ t and (n+1)Δ t,
the correct way to proceed would be to give the particle its new velocity and then
have it stream the remaining time (n+1)Δ t − t0. However, such detailed resolution
is not necessary. It has been found [16] that good results are also obtained using
the following simple stochastic procedure. If a particle is found to have penetrated
the colloid during the streaming step, one simply moves it to the boundary and then
stream a distance vnewΔ t ε, where ε is a uniformly distributed random number in the
interval [0,1].

Another subtlety is worth mentioning. If two colloid particles are very close, it
can happen that a solvent particle could hit the second colloid after scattering off
the first, all in the interval Δ t. Naively, one might be tempted to simply forbid this
from happening or ignore it. However, this would lead to a strong depletion-like
attractive force between the colloids [16]. This effect can be greatly reduced by
allowing multiple collisions in which one solvent particle is repeatedly scattered off
the two colloids. In every collision, momentum is transferred to one of the colloids,
which pushes the colloids further apart. In practice, even allowing for up to ten
multiple collisions cannot completely cancel the depletion interaction – one needs
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an additional repulsive force to eliminate this unphysical attraction. The same effect
can occur when a colloid particle is near a wall.

Careful tests of this thermal coupling have been performed by Padding et al. [17,
79], who were able to reproduce the correct rotational diffusion of a colloid. It
should be noted that because the coupling between the solvent particles and the
surface occurs only through the movement of the fluid particles, the coupling is
quite weak for small mean free paths.

7.3 Coupling Using Additional Forces

Another procedure for coupling an embedded object to the solvent has been pursued
by Kapral et al. [19, 30, 80]. They introduce a central repulsive force between the
solvent particles and the colloid. This force has to be quite strong in order to prohibit
a large number of solvent particles from penetrating the colloid. When implement-
ing this procedure, a small time step δ t is therefore required in order to resolve these
forces correctly, and a large number of molecular dynamics time steps are needed
during the SRD streaming step. In its original form, central forces were used, so that
only slip boundary conditions could be modeled. In principle, non-central forces
could be used to impose no-slip conditions.

This approach is quite natural and very easy to implement; it does, however,
require the use of small time steps and therefore may not be the optimal procedure
for many applications.

7.4 “Ghost” or “Wall” Particles

One of the first approaches employed to impose a non-slip boundary condition at an
external wall or at a moving object in a MPC solvent was to use “ghost” or “wall”
particles [36, 81]. In other mesoscale methods such as LB, no-slip conditions are
modeled using the bounce-back rule: the velocity of the particle is inverted from v
to −v when it intersects a wall. For planar walls which coincide with the boundaries
of the collision cells, the same procedure can be used in MPC. However, the walls
will generally not coincide with, or even be parallel to, the cell walls. Furthermore,
for small mean free paths, where a shift of the cell lattice is required to guarantee
Galilean invariance, partially occupied boundary cells are unavoidable, even in the
simplest flow geometries.

The simple bounce-back rule fails to guarantee no-slip boundary conditions in the
case of partially filled cells. The following generalization of the bounce-back rule
has therefore been suggested. For all cells that are cut by walls, fill the “wall” part of
the cell with a sufficient number of virtual particles in order to make the total number
of particles equal to M, the average number of particles per cell. The velocities of
the wall particles are drawn from a Maxwell–Boltzmann distribution with zero mean
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Fig. 6 Velocity field of a fluid near a square cylinder in a Poiseuille flow at Reynolds number
Re = vmaxL/ν = 30. The channel width is eight times larger than the cylinder size L. A pair of
stationary vortices is seen behind the obstacle, as expected for Re ≤ 60. From [81]

velocity and the same temperature as the fluid. The collision step is then carried out
using the mean velocity of all particles in the cell. Note that since Gaussian random
numbers are used, and the sum of Gaussian random numbers is also Gaussian-
distributed, the velocities of the individual wall particles need not be determined
explicitly. Instead, the average velocity u can be written as u = (∑n

i=1 vi + a)/M,
where a is a vector whose components are Gaussian random numbers with zero
mean and variance (M−n)kBT . Results for Poiseuille flow obtained using this pro-
cedure, both with and without cell shifting, were found to be in excellent agreement
with the correct parabolic profile [36]. Similarly, numerical results for the recircula-
tion length, the drag coefficient, and the Strouhal number for flows around a circular
and square cylinder in two dimensions were shown to be in good agreement with
experimental results and computational fluid dynamics data for a range of Reynolds
numbers between Re = 10 and Re = 130 (see Fig. 6) [36, 81].

8 Importance of Angular-Momentum Conservation:
Couette Flow

As an example of a situation in which it is important to use an algorithm which
conserves angular momentum, consider a drop of a highly viscous fluid inside a
lower-viscosity fluid in circular Couette flow. In order to avoid the complications of
phase-separating two-component fluids, the high viscosity fluid is confined to a ra-
dius r < R1 by an impenetrable boundary with reflecting boundary conditions (i.e.,
the momentum parallel to the boundary is conserved in collisions). No-slip bound-
ary conditions between the inner and outer fluids are guaranteed because collision
cells reach across the boundary. When a torque is applied to the outer circular wall
(with no-slip, bounce-back boundary conditions) of radius R2 > R1, a solid-body
rotation of both fluids is expected. The results of simulations with both MPC-AT−a
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Fig. 7 Azimuthal velocity of binary fluids in a rotating cylinder with Ω0 = 0.01(kBT/m0a2)1/2.
The viscous fluids with particle mass m1 and m0 are located at r < R1 and R1 < r < R2, respectively,
with R1 = 5a and R2 = 10a. Symbols represent the simulation results of MPC-AT−a with m1/m0 =
2 ( pluses) or m1/m0 = 5 (crosses), and MPC-AT+a for m1/m0 = 5 (open circles). Solid lines
represent the analytical results for MPC-AT−a at m1/m0 = 5. Error bars are smaller than the size
of the symbols. From [38]

and MPC-AT+a are shown in Fig. 7. While MPC-AT+a reproduces the expected
behavior, MPC-AT−a produces different angular velocities in the two fluids, with a
low (high) angular velocity in the fluid of high (low) viscosity [38].

The origin of this behavior is that the viscous stress tensor in general has sym-
metric and antisymmetric contributions (see Sect. 4.1.1),

σαβ = λ (∂γvγ)δαβ + η̄
(
∂β vα +∂αvβ

)
+ η̌

(
∂β vα −∂αvβ

)
, (75)

where λ is the second viscosity coefficient and η̄ ≡ ρν1 and η̌ ≡ ρν2 are the sym-
metric and anti-symmetric components of the viscosity, respectively. The last term
in (75) is linear in the vorticity ∇× v, and does not conserve angular momentum.
This term therefore vanishes (i.e., η̌ = 0) when angular momentum is conserved.

The anti-symmetric part of the stress tensor implies an additional torque, which
becomes relevant when the boundary condition is given by forces. In cylindrical
coordinates (r,θ ,z), the azimuthal stress is given by [38]

σrθ = (η̄ + η̌)
r∂ (vθ/r)

∂ r
+2η̌

vθ
r

. (76)

The first term is the stress of the angular-momentum-conserving fluid, which de-
pends on the derivative of the angular velocity Ω = vθ/r. The second term is an
additional stress caused by the lack of angular momentum conservation; it is pro-
portional to Ω.
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In the case of the phase-separated fluids in circular Couette flow, this implies that
if both fluids rotate at the same angular velocity, the inner and outer stresses do not
coincide. Thus, the angular velocity of the inner fluid Ω1 is smaller than the outer
one, with vθ (r) = Ω1r for r < R1 and

vθ (r) = Ar +B/r, with A =
Ω2R2

2 −Ω1R2
1

R2
2 −R2

1
, B =

(Ω1 −Ω2)R2
1R2

2

R2
2 −R2

1
(77)

for R1 < r < R2. Ω1 is then obtained from the stress balance at r = R1, i.e., 2η̌1Ω1 =
(8/3)η2(Ω0 −Ω1)+2η̌2Ω1. This calculation reproduces the numerical results very
well, see Fig. 7. Thus, it is essential to employ an +a version of MPC in simulations
of multi-phase flows of binary fluids with different viscosities.

There are other situations in which the lack of angular momentum conservation
can cause significant deviations. In [38], a star polymer with small monomer spacing
was placed in the middle of a rotating Couette cell. As in the previous case, it was
observed that the polymer fluid rotated with a smaller angular velocity than the
outer fluid. When the angular momentum conservation was switched on, everything
rotated at the same angular velocity, as expected.

9 MPC without Hydrodynamics

The importance of hydrodynamic interactions (HI) in complex fluids is generally
accepted. A standard procedure for determining the influence of HI is to investigate
the same system with and without HI. In order to compare results, however, the two
simulations must differ as little as possible – apart from the inclusion of HI. A well-
known example of this approach is Stokesian dynamics simulations (SD), where the
original BD method can be extended by including hydrodynamic interactions in the
mobility matrix by employing the Oseen tensor [6, 12].

A method for switching off HI in MPC has been proposed in [24, 26]. The basic
idea is to randomly interchange velocities of all solvent particles after each colli-
sion step, so that momentum (and energy) are not conserved locally. Hydrodynamic
correlations are therefore destroyed, while leaving friction coefficients and fluid
self-diffusion coefficients largely unaffected. Since this approach requires the same
numerical effort as the original MPC algorithm, a more efficient method has been
suggested recently in [25]. If the velocities of the solvent particles are not correlated,
it is no longer necessary to follow their trajectories. In a random solvent, the solvent-
solute interaction in the collision step can thus be replaced by the interaction with a
heat bath. This strategy is related to that proposed in [36] to model no-slip boundary
conditions of solvent particles at a planar wall, compare Sect. 7.4. Since the posi-
tions of the solvent particles within a cell are not required in the collision step, no
explicit particles have to be considered. Instead, each monomer is coupled with an
effective solvent momentum P which is directly chosen from a Maxwell–Boltzmann
distribution of variance mMkBT and a mean given by the average momentum of the
fluid field – which is zero at rest, or (mMγ̇ri

y,0,0) in the case of an imposed shear
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flow. The total center-of-mass velocity, which is used in the collision step, is then
given by [25]

vcm,i =
mmvi +P
mM +mm

, (78)

where mm is the mass of the solute particle. The solute trajectory is then determined
using MD, and the interaction with the solvent is performed every collision time Δ t.

The random MPC solvent therefore has similar properties to the MPC solvent,
except that there are no HI. The relevant parameters in both methods are the aver-
age number of particles per cell, M, the rotation angle α , and the collision time Δ t
which can be chosen to be the same. For small values of the density (M < 5), fluctu-
ation effects have been noticed [26] and could also be included in the random MPC
solvent by a Poisson-distributed density. The velocity autocorrelation functions [15]
of a random MPC solvent show a simple exponential decay, which implies some
differences in the solvent diffusion coefficients. Other transport coefficients such as
the viscosity depend on HI only weakly [57] and consequently are expected to be
essentially identical in both solvents.

10 Applications to Colloid and Polymer Dynamics

The relevance of hydrodynamic interactions for the dynamics of complex fluids –
such as dilute or semidilute polymer solutions, colloid suspensions, and microemul-
sions – is well known [6, 12]. From the simulation point of view, however, these
systems are difficult to study because of the large gap in length- and time-scales
between solute and solvent dynamics. One possibility for investigating complex flu-
ids is the straightforward application of molecular dynamics simulations (MD), in
which the fluid is course-grained and represented by Lennard-Jones particles. Such
simulations provide valuable insight into polymer dynamics [83–87]. Similarly,
mesoscale algorithms such as LB and DPD have been widely used for modeling
of colloidal and polymeric systems [88–92].

Solute molecules, e.g., polymers, are typically composed of a large number of
individual particles, whose interactions are described by a force-field. As discussed
in Sect. 7, the particle-based character of the MPC solvent allows for an easy and
controlled coupling between the solvent and solute particles. Hybrid simulations
combining MPC and molecular dynamics simulations are therefore easy to imple-
ment. Results of such hybrid simulations are discussed in the following.

10.1 Colloids

Many applications in chemical engineering, geology, and biology involve systems
of particles immersed in a liquid or gas flow. Examples include sedimentation
processes, liquid-solid fluidized beds, and flocculation in suspensions.
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Long-range solvent-mediated hydrodynamic interactions have a profound ef-
fect on the non-equilibrium properties of colloidal suspensions, and the many-body
hydrodynamic backflow effect makes it difficult to answer even relatively simple
questions such as what happens when a collection of particles sediments through
a viscous fluid. Batchelor [93] calculated the lowest-order volume fraction correc-
tion to the average sedimentation velocity, vs = v0

s (1− 6.55φ), of hard spheres of
hydrodynamic radius RH where v0

s is the sedimentation velocity of a single sphere.
Because of the complicated interplay between short-range contact forces and long-
range HI, it is difficult to extend this result to the high volume fraction suspensions
of interest for ceramics and soil mechanics. An additional complication is that the
Brownian motion of solute particles in water cannot be neglected if they are smaller
than 1μm in diameter.

The dimensionless Peclet number Pe = v0
s RH/D, where D is the self-diffusion co-

efficient of the suspended particles, measures the relative strength of HI and thermal
motion. Most studies of sedimentation have focused on the limit of infinite Peclet
number, where Brownian forces are negligible. For example, Ladd [94] employed a
LB method, and Höfler and Schwarzer [95] used a marker-and-cell Navier–Stokes
solver to simulate such non-Brownian suspensions. The main difficulty with such
algorithms is the solid-fluid coupling which can be very tricky: in LB simulations,
special “boundary nodes” were inserted on the colloid surface, while in [95], the
coupling was mediated by inertia-less markers which are connected to the colloid
by stiff springs and swim in the fluid, effectively dragging the colloid, but also ex-
erting a force on the fluid. Several methods for coupling embedded particles to an
MPC solvent were discussed in Sect. 7.

Using the force-based solvent-colloid coupling described in Sect. 7.3, Padding
and Louis [96] investigated the importance of HI during sedimentation at small
Peclet numbers. Surprisingly, they found that the sedimentation velocity does not
change if the Peclet number is varied between 0.1 and 15 for a range of volume
fractions. For small volume fractions, the numerical results agree with the Batchelor
law; for intermediate φ they are consistent with the semi-empirical Richardson–Zaki
law, vs = v0

s (1− φ)n, n = 6.55. Even better agreement was found with theoretical
predictions by Hayakawa and Ichiki [97, 98], who took higher-order HI into ac-
count. Purely hydrodynamic arguments are therefore still valid in an average sense
at low Pe, i.e., for strong Brownian motion and relatively weak HI. This also means
that pure Brownian simulations without HI, which lead to vs = v0

s (1−φ), strongly
underestimate the effect of backflow.

On the other hand, it is known that the velocity autocorrelation function of a
colloidal particle embedded in a fluctuating liquid at equilibrium exhibits a hydro-
dynamic long-time tail, 〈v(t)v(0)〉 ∼ t−d/2, where d is the spatial dimension [99].
These tails have been measured earlier for point-like SRD particles in two [21, 27]
and three [15] spatial dimensions, and found to be in quantitative agreement with
analytic predictions, with no adjustable parameters. It is therefore not surprising that
good agreement was also obtained for embedded colloids [96]. MPC therefore cor-
rectly describes two of the most important effects in colloidal suspensions, thermal
fluctuations and hydrodynamic interactions.
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In a series of papers, Hecht et al. [16, 76, 100] used hybrid SRD–MD simula-
tions to investigate a technologically important colloidal system – Al2O3-particles
of diameter 0.5μm (which is often used in ceramics) suspended in water – with ad-
ditional colloid–colloid interactions. These colloids usually carry a charge which, by
forming an electric double layer with ions in water, results in a screened electrostatic
repulsion. The interaction can be approximated by the Derjaguin–Landau–Verwey–
Overbeek (DLVO) theory [101, 102]. The resulting potential contains a repulsive
Debye–Hückel contribution, VEL ∼ exp(−κ[r−d])/r, where d is the particle diam-
eter, κ is the inverse screening length, and r is the distance of the particle centers.
The second part of the DLVO-potential is a short-range van der Waals attraction,

VvdW = −AH

12

[
d2

r2 −d2 +
d2

r2 +2ln
(

r2 −d2

r2

)]
, (79)

which turns out to be important at the high volume fractions (φ > 20%) and high
salt concentrations of interest. AH is the Hamaker constant which involves the po-
larizability of the particles and the solvent. DLVO theory makes the assumption
of linear polarizability and is valid only at larger distances. It therefore does not
include the so-called primary potential minimum at particle contact, which is ob-
served experimentally and is about 30 kBT deep. Because of this potential minimum,
colloids which come in contact rarely become free again. In order to ensure numer-
ical stability for reasonable values of the time step, this minimum was modeled by
an additional parabolic potential with depth of order 6 kBT . The particle Reynolds
number of the real system is very small, of order 10−6–10−7. Since it would be too
time-consuming to model this Reynolds number, the simulations were performed
at Re ≈ 0.02, which still ensures that the contribution of momentum convection is
negligible compared to that of momentum diffusion. However, due to the remaining
inertial effects and the non-zero time step, it was still possible that particles partially
overlapped in the simulation. This overlap was penalized by an additional potential,
frequently used in simulations of granular matter, given by a Hertz-law,

VHertz ∼ (d − r)5/2 if r < d . (80)

SRD correctly describes long-range HI, but it can only resolve hydrodynamic
interactions on scales larger than both the mean free path λ and the cell size a. In
a typical simulation with about 1,000 colloid particles, a relatively small colloid
diameter of about four lattice units was chosen for computational efficiency. This
means that HI are not fully resolved at interparticle distances comparable to the
colloid diameter, and lubrication forces have to be inserted by hand. Only the most
divergent mode, the so-called squeezing mode, was used, Flub ∼ vrel/rrel, where rrel
and vrel are the relative distance and velocity of two colloids, respectively. This sys-
tem of interacting Al2O3-particles was simulated in order to study the dependence
of the suspension’s viscosity and structure on shear rate, pH, ionic strength and
volume fraction. The resulting stability diagram of the suspension as a function of
ionic strength and pH value is shown in Fig. 8 (plotted at zero shear) [76]. The pH
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Fig. 8 Phase diagram of a colloidal suspension (plotted at zero shear and volume fraction
φ = 35%) in the ionic-strength–pH plane depicting three regions: a clustered region, a suspended
regime, and a repulsive structure. From [76]

controls the surface charge density which, in turn, affects the electrostatic interac-
tions between the colloids. Increasing the ionic strength, experimentally achieved
by “adding salt,” decreases the screening length 1/κ , so that the attractive forces
become more important; the particles start forming clusters. Three different states
are observed (1) a clustered regime, where particles aggregate when van der Waals
attractions dominate, (2) a suspended regime where particles are distributed homo-
geneously and can move freely – corresponding to a stable suspension favored when
electrostatic repulsion prevents clustering but is not strong enough to induce order.
At very strong Coulomb repulsion the repulsive regime (3) occurs, where the mobil-
ity of the particles is restricted, and particles arrange in local order which maximizes
nearest neighbor distances.

The location of the phase boundaries in Fig. 8 depends on the shear rate. In
the clustered phase, shear leads to a breakup of clusters, and for the shear rate
γ̇ = 1,000 s−1, there are many small clusters which behave like single particles.
In the regime where the particles are slightly clustered, or suspended, shear thin-
ning is observed. Shear thinning is more pronounced in the slightly clustered state,
because shear tends to reduce cluster size. Reasonable agreement with experiments
was achieved, and discrepancies were attributed to polydispersity and the manner
in which lubrication forces were approximated, as well as uncertainties how the pH
and ionic strength enter the model force parameters.

In the simulations of Hecht et al. [16], the simple collisional coupling procedure
described in Sect. 7.1 was used. This means that the colloids were treated as point
particles, and solvent particles could flow right through them. Hydrodynamic inter-
actions were therefore only resolved in an average sense, which is acceptable for
studies of the general properties of an ensemble of many colloids. The heat from
viscous heating was removed using the stochastic thermostat described in Sect. 2.3.
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Various methods for modeling no-slip boundary conditions at colloid surfaces –
such as the thermal wall coupling described in Sect. 7.2 – were systematically in-
vestigated in [79]. No-slip boundary conditions are important, since colloids are
typically not completely spherical or smooth, and the solvent molecules also transfer
angular momentum to the colloid. Using the SRD algorithm without angular mo-
mentum conservation, it was found that the rotational friction coefficient was larger
than predicted by Enskog theory when the ghost-particle coupling was used [82]. On
the other hand, in a detailed study of the translational and rotational velocity auto-
correlation function of a sphere coupled to the solvent by the thermal-wall boundary
condition, quantitative agreement with Enskog theory was observed at short times,
and with mode-coupling theory at long times. However, it was also noticed that
for small particles, the Enskog and hydrodynamic contributions to the friction co-
efficients were not clearly separated. Specifically, mapping the system to a density
matched colloid in water, it appeared that the Enskog and the hydrodynamic contri-
butions are equal at a particle radius of 6 nm for translation and 35.4 nm for rotation;
even for a particle radius of 100 nm, the Enskog contribution to the friction is still
of order 30% and cannot be ignored.

In order to clarify the detailed character of the hydrodynamic interactions be-
tween colloids in SRD, Lee and Kapral [103] numerically evaluated the fixed-
particle friction tensor for two nano-spheres embedded in an SRD solvent. They
found that for intercolloidal spacings less than 1.2 d, where d is the colloid diame-
ter, the measured friction coefficients start to deviate from the expected theoretical
curve. The reader is referred to the review by Kapral [30] for more details.

10.2 Polymer Dynamics

The dynamical behavior of macromolecules in solution is strongly affected or even
dominated by hydrodynamic interactions [6, 104, 105]. From a theoretical point of
view, scaling relations predicted by the Zimm model for, e.g., the dependencies of
dynamical quantities on the length of the polymer are, in general, accepted and con-
firmed [106]. Recent advances in experimental single-molecule techniques provide
insight into the dynamics of individual polymers, and raise the need for a quan-
titative theoretical description in order to determine molecular parameters such as
diffusion coefficients and relaxation times. Mesoscale hydrodynamic simulations
can be used to verify the validity of theoretical models. Even more, such simula-
tions are especially valuable when analytical methods fail, as for more complicated
molecules such as polymer brushes, stars, ultrasoft colloids, or semidilute solutions,
where hydrodynamic interactions are screened to a certain degree. Here, mesoscale
simulations still provide a full characterization of the polymer dynamics.

We will focus on the dynamics of polymer chains in dilute solution. In order
to compare simulation results with theory – in particular the Zimm approach [6,
107] – and scaling predictions, we address the dynamics of Gaussian as well as self-
avoiding polymers.
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10.2.1 Simulation Method and Model

Polymer molecules are composed of a large number of equal repeat units called
monomers. To account for the generic features of polymers, such as their confor-
mational freedom, no detailed modeling of the basic units is necessary. A coarse-
grained description often suffices, where several monomers are comprised in an
effective particle. Adopting such an approach, a polymer chain is introduced into
the MPC solvent by adding Nm point particles, each of mass mm, which are con-
nected linearly by bonds. Two different models are considered, a Gaussian polymer
and a polymer with excluded-volume (EV) interactions. Correspondingly, the fol-
lowing potentials are applied:
(1) Gaussian chain: The monomers, with the positions ri (i = 1, . . . ,Nm), are con-
nected by the harmonic potential

UG =
3kBT
2b2

Nm−1

∑
i=1

(ri+1 − ri)
2 , (81)

with zero mean bond length, and b the root-mean-square bond length. Here, the
various monomers freely penetrated each other. This simplification allows for an
analytical treatment of the chain dynamics as in the Zimm model [6, 107].
(2) Excluded-volume chain: The monomers are connected by the harmonic potential

UB =
κ
2

Nm−1

∑
i=1

(|ri+1 − ri|−b)2 , (82)

with mean bond length b. The force constant κ is chosen such that the fluctuations of
the bond lengths are on the order of a percent of the mean bond length. In addition,
non-bonded monomers interact via the repulsive, truncated Lennard-Jones potential

ULJ =

{
4ε
[(σ

r
)12 −

(σ
r
)6
]
+ ε, r < 21/6σ ,

0, otherwise .
(83)

The excluded volume leads to swelling of the polymer structure compared to a
Gaussian chain, which is difficult to fully account for in analytical calculations [73].

The dynamics of the chain monomers is determined by Newtons’ equations of
motion between the collisions with the solvent. These equations are integrated using
the velocity Verlet algorithm with the time step Δ tp. The latter is typically smaller
than the collision time Δ t. The monomer–solvent interaction is taken into account by
inclusion of the monomer of mass mm = ρm in the collision step [68, 73], compare
Sect. 7.1. Alternatively, a Lennard-Jones potential can be used to account for the
monomer–MPC particle interaction, where a MPC particle is of zero interaction
range [19, 108].

We scale length and time according to x̂ = x/a and t̂ = t
√

kBT/ma2, which cor-
responds to the choice kBT = 1, m = 1, and a = 1. The mean free path of a fluid
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particle Δ t
√

kBT/m is then given by λ = Δ t̂. In addition, we set b = a, σ = a, and
ε/kBT = 1.

The equilibrium properties of a polymer are not affected by hydrodynamic inter-
actions. Indeed, the results for various equilibrium quantities – such as the radius
of gyration – of MPC simulations are in excellent agreement with the results of
molecular dynamics of Monte Carlo simulations without explicit solvent [73].

Simulations of Gaussian chains, i.e., polymers with the bond potential (81), can
be compared with analytical calculations based on the Zimm approach [6, 107].
Note, however, that the simulations are not performed in the Zimm model. The
Zimm approach relies on the preaveraging approximation of hydrodynamic inter-
actions, whereas the simulations take into account the configurational dependence
of the hydrodynamic interactions, and therefore hydrodynamic fluctuations. Hence,
the comparison can serve as a test of the validity of the approximations employed
in the Zimm approach.

The Zimm model rests upon the Langevin equation for over-damped motion
of the monomers, i.e., it applies for times larger than the Brownian time scale
τB � mm/ζ , where ζ is Stokes’ friction coefficient [12]. On such time scales, ve-
locity correlation functions have decayed to zero and the monomer momenta are in
equilibrium with the solvent. Moreover, hydrodynamic interactions between the var-
ious parts of the polymer are assumed to propagate instantaneously. This is not the
case in our simulations. First of all, the monomer inertia term is taken into account,
which implies non-zero velocity autocorrelation functions. Secondly, the hydrody-
namic interactions build up gradually. The center-of-mass velocity autocorrelation
function displayed in Fig. 9 reflects these aspects. The correlation function exhibits
a long-time tail, which decays as 〈vcm(t)vcm(0)〉 ∼ t−3/2 on larger time scales. The
algebraic decay is associated with a coupling between the motion of the polymer
and the hydrodynamic modes of the fluid [99, 109, 110]. A scaling of time with

Dt=a2

v
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m

(t
)v

c
m

(0
)
=

v
2 c

m
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)
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Fig. 9 Center-of-mass velocity autocorrelation functions for Gaussian polymers of length Nm =
20, Nm = 40, and λ = 0.1 as a function of Dt. The solid line is proportional to (Dt)−3/2. From [73]



Multi-Particle Collision Dynamics 49

a/RH

0.2 0.4 0.8

4

2

1

10
3 D

H
=

√k
B
T
a
2 /
m

Fig. 10 Dependence of the hydrodynamic part of the diffusion coefficient, DH = D−D0/Nm, on
the hydrodynamic radius for Gaussian chains of lengths Nm = 5, 10, 20, 40, 80, and 160 (right to
left). The mean free path is λ = 0.1. From [73]

the diffusion coefficient D shows that the correlation function is a universal func-
tion of Dt. This is in agreement with results of DPD simulations of dilute polymer
systems [92].

The polymer center-of-mass diffusion coefficient follows either via the GK re-
lation from the velocity autocorrelation function or by the Einstein relation from
the center-of-mass mean square displacement. According to the Kirkwood for-
mula [104, 105, 111]

D(K) =
D0

Nm
+

kBT
6πη

1
RH

, (84)

where the hydrodynamic radius RH is defined as

1
RH

=
1

N2
m

〈
Nm

∑
i=1

Nm

∑
j=1

′ 1
|ri − r j|

〉

(85)

and the prime indicates that the term with j = i has to be left out in the summa-
tion. The diffusion coefficient is composed of the local friction contribution D0/Nm,
where D0 is the diffusion coefficient of a single monomer in the same solvent, and
the hydrodynamic contribution.

Simulation results for the hydrodynamic contribution, DH = D−D0/Nm, to the
diffusion coefficient are plotted in Fig. 10 as a function of the hydrodynamic radius
(85). In the limit Nm � 1, the diffusion coefficient D is dominated by the hydro-
dynamic contribution DH, since DH ∼ N−1/2

m . For shorter chains, D0/Nm cannot be
neglected, and therefore has to be subtracted in order to extract the scaling behavior
of DH. The hydrodynamic part of the diffusion coefficient DH exhibits the depen-
dence predicted by the Kirkwood formula and the Zimm theory, i.e., DH ∼ 1/RH.
The finite-size corrections to D show a dependence D = D∞− const./L on the size
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L of a periodic system, in agreement with previous studies [68, 91, 112]. Simula-
tions for various system sizes for polymers of lengths Nm = 10, 20, and 40 allow
an extrapolation to infinite system size, which yields D0/

√
kBTa2/m ≈ 1.7×10−2,

in good agreement with the diffusion coefficient of a monomer in the same solvent.
The values of D∞ are about 30% larger than the finite-system-size values presented
in Fig. 10. Similarly the diffusion coefficient for a polymer chain with excluded vol-
ume interactions displays the dependence DH ∼ 1/RH [73].

The Kirkwood formula neglects hydrodynamic fluctuations and is thus identical
with the preaveraging result of the Zimm approach. When only the hydrodynamic
part is considered, the Zimm model yields the diffusion coefficient

DZ = 0.192
kBT

bη
√

Nm
. (86)

MPC simulations for polymers of length Nm = 40 yield DZ/
√

kBTa2/m = 0.003.
This value agrees with the numerical value for an infinite system, DH/

√
kBTa2/m =

0.0027, within 10%. The MPC simulations yield a diffusion coefficient smaller than
D(K), in agreement with previous studies presented in [6, 111, 113]. Note that the
experimental values are also smaller by about 15% than those predicted by the Zimm
approach [6, 114, 115].

To further characterize the internal dynamics of the molecular chain, a mode
analysis in terms of the eigenfunctions of the discrete Rouse model [6, 116] has
been performed. The mode amplitudes χ p are calculated according to

χ p =
√

2
Nm

Nm

∑
i=1

ri cos
[

pπ
Nm

(
i− 1

2

)]
, p = 1, . . . ,Nm. (87)

Because of hydrodynamic interactions, Rouse modes are no longer eigenfunctions
of the chain molecule. However, within the Zimm theory, they are reasonable
approximations and the autocorrelation functions of the mode amplitudes decay ex-
ponentially, i.e., 〈

χ p(t)χ p(0)
〉

=
〈
χ2

p

〉
exp(−t/τp) . (88)

For the Rouse model, the relaxation times τp depend on chain length and mode
number according to τp ∼ 1/sin2 (pπ/2Nm), whereas for the Zimm model the de-
pendence

τp ∼ (p/Nm)1/2/sin2 (pπ/2Nm) (89)

is obtained. The extra contribution
√

p/Nm follows from the eigenfunction repre-
sentation of the preaveraged hydrodynamic tensor, under the assumption that its
off-diagonal elements do not significantly contribute to the relaxation behavior.

In Fig. 11, the autocorrelation functions for the mode amplitudes are shown for
the mean free path λ = 0.1. Within the accuracy of the simulations, the correlation
functions decay exponentially and exhibit the scaling behavior predicted by the
Zimm model. Hence, for the small mean free path, hydrodynamic interactions are
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Fig. 11 Correlation functions of the Rouse-mode amplitudes for the modes p = 1−4 of Gaussian
polymers. The chain lengths are Nm = 20 (right) and Nm = 40 (left). From [73]
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Fig. 12 Dependence of the longest relaxation time τ1 on the radius of gyration for Gaussian chains
of the lengths given in Fig. 10. From [73]

taken into account correctly. This is no longer true for the large mean free path,
λ = 2. In this case, a scaling behavior between that predicted by the Rouse and
Zimm models is observed. This implies that hydrodynamic interactions are present,
but are not fully developed or are small compared to the local friction of the
monomers. We obtain pure Rouse behavior for a system without solvent by sim-
ply rotating the velocities of the individual monomers [73].

The dependence of the longest relaxation time on the radius of gyration is
displayed in Fig. 12 for λ = 0.1. The scaling behavior τ1 ∼R3

G is in very good agree-
ment with the predictions of the Zimm theory. We even find almost quantitative
agreement; the relaxation time of the p = 1 mode of our simulations is approxi-
mately 30% larger than the Zimm value [6].
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The scaling behavior of equilibrium properties of single polymers with excluded-
volume interactions has been studied extensively [6,117–120]. It has been found that
even very short chains already follow the scaling behavior expected for much longer
chains. In particular, the radius of gyration increases like RG ∼ Nν

m with the num-
ber of monomers, and the static structure factor S(q) exhibits a scaling regime for
2π/RG 	 q 	 2π/σ , with a q−1/ν decay as a function of the scattering vector q and
the exponent ν ≈ 0.6. For the interaction potentials (82), (83) with the parameters
b = σ = a, ε/kBT = 1, the exponent ν ≈ 0.62 is obtained from the chain-length
dependence of the radius of gyration, the mean square end-to-end distance, as well
as the q−dependence of the static structure factor [73].

An analysis of the intramolecular dynamics in terms of the Rouse modes yields
non-exponentially decaying autocorrelation functions of the mode amplitudes. At
very short times, a fast decay is found, which turns into a slower exponential decay
which is well fitted by Ap exp(−t/τp), see Fig. 13. Within the accuracy of these cal-
culations, the correlation functions exhibit universal behavior. Zimm theory predicts
the dependence τp ∼ p−3ν for the relaxation times on the mode number for poly-
mers with excluded-volume interactions [6]. With ν = 0.62, the exponent α for the
polymer of length Nm = 40 is found to be in excellent agreement with the theoretical
prediction. The exponent for the polymers with Nm = 20 is slightly larger.

Zimm theory predicts that the dynamic structure factor, which is defined by

S(q, t) =
1

Nm

Nm

∑
i=1

Nm

∑
j=1

〈
exp(iq[ri(t)− r j(0)])

〉
, (90)

pα t= ma2/kBT
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Fig. 13 Correlation functions of the Rouse-mode amplitudes for various modes as a function of
the scaled time t pα for polymers with excluded volume interactions. The chain lengths are Nm = 20
(left) and Nm = 40 (right). The calculated correlations were fitted by Ap exp(−t/τp) and have been
divided by Ap. The scaling exponents of the mode numbers are α = 1.93 (Nm = 20) and α = 1.85
(Nm = 40), respectively. From [73]
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scales as [6]
S(q, t) = S(q,0) f (qα t) (91)

with α = 3 for qRG � 1, independent of the solvent conditions (Θ or good solvent).
To extract the scaling relation for the intramolecular dynamics, which corresponds
to the prediction (91), we resort to the following considerations. As is well known,
the dynamic structure factor for a Gaussian distribution of the differences ri(t)−
r j(0) and a linear equation of motion is given by [6, 121]

S(q, t) = S(q,0)e−Dq2t 1
Nm

Nm

∑
i=1

Nm

∑
j=1

exp
(
−q2 〈(r′i(t)− r′j(0))2〉/6

)
, (92)

where Dq2t accounts for the center-of-mass dynamics and r′i denotes the position
of monomer i in the center-of-mass reference frame. Therefore, in order to obtain
the dynamics in the center-of-mass reference frame, we plot S(q, t)/(S(q,0)exp(
−Dq2t

)
). The simulation results for the polymer of length Nm = 40, shown in

Fig. 14, confirm the predicted scaling behavior. Thus, MPC–MD hybrid simulations
are very well suited to study the dynamics of even short polymers in dilute solution.

As mentioned above, the structure of a polymer depends on the nature of the
solvent. In good solvent excluded volume interactions lead to expanded conforma-
tions and under bad solvent conditions the polymer forms a dense coil. In a number
of simulations the influence of hydrodynamic interactions on the transition from an
extended to a collapsed state has been studied, when the solvent quality is abruptly
changed. Both, molecular dynamics simulations with an explicit solvent [122] as
well as MPC simulations [108, 123, 124] yield significantly different dynamics in
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the presence of hydrodynamic interactions. Specifically, the collapse is faster, with
a much weaker dependence of the characteristic time on polymer length [108, 124],
and the folding path is altered.

Similarly, a strong influence of hydrodynamic interactions has been found on the
polymer translocation dynamics through a small hole in a wall [125] or in polymer
packing in a virus capsid [126, 127]. Cooperative backflow effects lead to a rather
sharp distribution of translocation times with a peak at relatively short times. The
fluid flow field, which is created as a monomer moves through the hole, guides
following monomers to move in the same direction.

10.3 Polymers in Flow Fields

Simulations of an MPC fluid confined between surfaces and exposed to a constant
external force yield the expected parabolic velocity profile for appropriate bound-
ary conditions [31, 36, 128]. The ability of MPC to account for the flow behavior
of mesoscale objects, such as polymers, under non-equilibrium conditions has been
demonstrated for a number of systems. Rod-like colloids in shear flow exhibit flow
induced alignment [72]. The various diagonal components of the radius of gyration
tensor exhibit qualitatively and quantitatively a different behavior. Because of the
orientation, the component in the flow direction increases with increasing Peclet
number larger than unity and saturates at large shear rates because of finite size ef-
fects. The transverse components decrease with shear rate, where the component in
the gradient direction is reduced to a greater extent. The rod rotational velocity in the
shear plane shows two distinct regimes. For Peclet numbers much smaller than unity,
the rotational velocity increases linearly with the shear rate, because the system is
isotropic. At Peclet numbers much larger than unity, the shear-induced anisotropies
lead to a slower increase of the rotational velocity with the shear rate [72].

The simulations of a tethered polymer in a Poiseuille flow [74] yield a series of
morphological transitions from sphere to deformed sphere to trumpet to stem and
flower to rod, similar to theoretically predicted structures [129–131]. The crossovers
between the various regimes occur at flow rates close to the theoretical estimates for
a similar system. Moreover, the simulations in [74] show that backflow effects lead
to an effective increase in viscosity, which is attributed to the fluctuations of the free
polymer end rather than its shape.

The conformational, structural, and transport properties of free flexible polymers
in microchannel flow have been studied in [128, 132] by hybrid MPC–MD simula-
tions. These simulations confirm the cross streamline migration of the molecules as
previously observed in [133–138]. In addition, various other polymer properties are
addressed in [132].

All these hybrid simulations confirm that MPC is an excellent method to study
the non-equilibrium behavior of polymers in flow fields. In the next section, we will
provide a more detailed example for a more complicated object, namely an ultrasoft
colloid in shear flow.



Multi-Particle Collision Dynamics 55

10.4 Ultra-Soft Colloids in Shear Flow

Star polymers present a special macromolecular architecture, in which several linear
polymers of identical length are linked together by one of their ends at a common
center. This structure is particularly interesting because it allows for an almost con-
tinuous change of properties from that of a flexible linear polymer to a spherical
colloidal particle with very soft interactions. Star polymers are therefore also often
called ultrasoft colloids. The properties of star polymers in and close to equilib-
rium have been studied intensively, both theoretically [139,140] and experimentally
[141]. A star polymer is a ultrasoft colloid, where the core extension is very small
compared to the length of an arm. By anchoring polymers on the surface of a hard
colloid, the softness can continuously be changed from ultrasoft to hard by increas-
ing the ratio between the core and shell radius at the expense of the thickness of
the soft polymer corona. Moreover, star polymers have certain features in common
with vesicles and droplets. Although their shell can be softer than that of the other
objects, the dense packing of the monomers will lead to a cooperative dynamical
behavior resembling that of vesicles or droplets [142].

Vesicles and droplets encompass fluid which is not exchanged with the surround-
ing. In contrast, for star-like molecules fluid is free to penetrate into the molecule
and internal fluid is exchanged with the surrounding in the course of time. This in-
timate coupling of the star-polymer dynamics and the fluid flow leads to a strong
modification of the flow behavior at and next to the ultrasoft colloid particularly in
non-equilibrium systems.

In the following, we will discuss a few aspects in the behavior of star polymers
in shear flow as a function of arm number f , arm length L f , and shear rate γ̇ . The
polymer model is the same as described in Sect. 10.2.1, where the chain connec-
tivity is determined by the bond potential (82) and the excluded-volume interaction
is described by the Lennard-Jones potential (83). A star polymer of functionality
f is modeled as f linear polymer chains of L f monomers each, with one of their
ends linked to a central particle. Linear polymer molecules are a special case of star
polymers with functionality f = 2. Lees–Edwards boundary conditions [42] are em-
ployed in order to impose a linear velocity profile (vx,vy,vz) = (γ̇ry,0,0) in the fluid
in the absence of a polymer. For small shear rates, the conformations of star poly-
mers remain essentially unchanged compared to the equilibrium state. Only when
the shear rate exceeds a characteristic value, a structural anisotropy as well as an
alignment is induced by the flow (cf. Fig. 15). The shear rate dependent quantities
are typically presented in terms of the Weissenberg number Wi = γ̇τ rather than the
shear rate itself, where τ is the longest characteristic relaxation time of the consid-
ered system. For the star polymers, the best data collapse for stars of various arm
lengths is found when the relaxation time τ = ηb3L2

f /kBT is used [142]. Remark-
ably, there is essentially no dependence on the functionality. Within the range of
investigated star sizes, this relaxation time has to be considered as consistent with
the prediction for the blob model of [143], where τ ∼ L1.8

f f 0.1 for the Flory exponent
ν = 0.6.
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Fig. 15 Fluid flow lines in the flow-gradient plane of the star polymer’s center of mass reference
frame for f = 10 (top) and f = 50 (bottom) arms, both with L f = 20 monomers per arm and an
applied shear field with Wi = γ̇τ = 22. From [25]

In Fig. 15, typical star conformations are shown which indicate the alignment and
induced anisotropy in the flow. Moreover, the figure reveals the intimate coupling
of the polymer dynamics and the emerging fluid flow field. In the region, where the
fluid coexists with the star polymer, the externally imposed flow field is strongly
screened and the fluid velocity is no longer aligned with the shear flow direction,
but rotates around the polymer center of mass. The fluid stream lines are calculated
by integration of the coarse-grained fluid velocity field. Outside the region cov-
ered by the star polymer, the fluid adapts to the central rotation by generating two
counter-rotating vortices, and correspondingly two stagnation points of vanishing
fluid velocity [25].

The fluid flow in the vicinity of the star polymer is distinctively different from
that of a sphere but resembles the flow around an ellipsoid [144]. In contrast to
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the latter, the fluid penetrates into the area covered by the star polymer. While the
fluid in the core of the star rotates together with the polymer, the fluid in the corona
follows the external flow to a certain extent.

A convenient quantity to characterize the structural properties and alignment of
polymers in flow is the average gyration tensor, which is defined as

Gαβ (γ̇) =
1

Nm

Nm

∑
i=1

〈r′i,αr′i,β 〉 , (93)

where Nm = f L f + 1 is the total number of monomers, r′i,α is the position of
monomer i relative to the polymer center of mass, and α ∈ {x,y,z}. The average
gyration tensor is directly accessible in scattering experiments. Its diagonal compo-
nents Gαα(γ̇) are the squared radii of gyration of the star polymer along the axes
of the reference frame. In the absence of flow, scaling considerations predict [139]
Gxx(0) = Gyy(0) = Gzz(0) = R2

G(0)/3 ∼ L2ν
f f 1−ν .

The diagonal components Gαα of the average gyration tensor are shown in
Fig. 16 as a function of the Weissenberg number for various functionalities and arm
lengths. We find that the extension of a star increases with increasing shear rate in
the shear direction (x), decreases in the gradient direction (y), and is almost inde-
pendent of Wi in the vorticity direction (z). The deviation from spherical symmetry
exhibits a Wi2 power-law dependence for small shear rates for all functionalities.
A similar behavior has been found for rod-like colloids [72] (due to the increasing
alignment with the flow direction) and for linear polymers [6]. However, for stars
of not too small functionality, a new scaling regime appears, where the deforma-
tion seems to scale linearly with the Weissenberg number. For large shear rates,
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Fig. 16 Normalized component Gxx of the average gyration tensor as a function of the Weis-
senberg number Wi, for star polymers of f = 50 arms and the arm lengths L f = 10, 20, and
40 monomers. Power-law behaviors with quadratic and linear dependencies on Wi are indicated
by lines. The inset shows all three diagonal components of the gyration tensor (for L f = 20).
From [142]
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Fig. 17 Orientational resistance mG as a function of the Weissenberg number Wi for star polymers
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lengths indicated in the figure. Lines correspond to the power law mG = m̃G( f )Wi0.65. The inset
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finite-size effects appear due to the finite monomer number. These effects emerge
when the arms are nearly stretched, and therefore occur at higher Weissenberg num-
bers for larger arm lengths.

The average flow alignment of a (star) polymer can be characterized by the ori-
entation angle χG, which is the angle between the eigenvector of the gyration tensor
with the largest eigenvalue and the flow direction. It follows straightforwardly [87]
from the simulation data via

tan(2χG) = 2Gxy/(Gxx −Gyy) ≡ mG/Wi, (94)

where the right-hand-side of the equation defines the orientation resistance parame-
ter mG [145]. It has been shown for several systems including rod-like colloids and
linear polymers without self-avoidance [6] that close to equilibrium Gxy ∼ γ̇ and
(Gxx −Gyy) ∼ γ̇2, so that mG is independent of Wi. Our results for the orientation
resistance are presented in Fig. 17 for various functionalities f and arm lengths L f .
Data for different L f collapse onto universal curves, which approach a plateau for
small shear rates, as expected. For larger shear rates, Wi � 1, a power-law behav-
ior [142]

mG(Wi) ∼ f α Wiμ , (95)

is obtained with respect to the Weissenberg number and the functionality, where
α = 0.27±0.02 and μ = 0.65±0.05. For self-avoiding linear polymers, a somewhat
smaller exponent μ = 0.54± 0.03 was obtained in [87, 146], whereas theoretical
calculations predict ∼Wi2/3 in the limit of large Weissenberg numbers [147].

The data for the average orientation and deformation of a star polymer described
so far seem to indicate that the properties vary smoothly and monotonically from lin-
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Fig. 18 Temporal evolution of the largest intramolecular distance e = maxi j |ri − r j| of a linear
polymer and a star polymer with 50 arms, for the Weissenberg numbers Wi = 0.64 and Wi = 64.
In both cases, L f = 40. The time t is measured in units of the collision time δ t. es corresponds to
the fully stretched arms. From [142]

ear polymers to star polymers of high functionality. However, this picture changes
when the dynamical behavior is considered. It is well known by now that linear
polymers show a tumbling motion in flow, with alternating collapsed and stretched
configurations during each cycle [146, 148–150]. For large Weissenberg numbers,
this leads to very large fluctuations of the largest intramolecular distance of a linear
polymer with time, as demonstrated experimentally in [146, 150], and reproduced
in the MPC simulations [142], see Fig. 18. A similar behavior is found for f = 3.
However, for f > 5, a quantitatively different behavior is observed as displayed in
Fig. 19. Now, the fluctuations of the largest intramolecular distance are much smaller
and decrease with increasing Weissenberg number as shown in Fig. 18, and the dy-
namics resembles much more the continuous tank-treading motion of fluid droplets
and capsules. The shape and orientation of such stars depends very little on time,
while the whole object is rotating. On the other hand, a single, selected arm resem-
bles qualitatively the behavior of a linear polymer – it also collapses and stretches
during the tank-treading motion. The successive snapshots of Fig. 20 illustrate the
tank-treading motion. Following the top left red polymer in the top left image, we
see that the extended polymer collapses in the course of time, moves to the right and
stretches again. In parallel, other polymers exhibit a similar behavior on the bottom
side. Moreover, the images show that the orientation of a star hardly changes in the
course of time.

The rotational dynamics of a star polymer can be characterized quantitatively by
calculating the rotation frequency

ωα =
z

∑
β=x

〈Θ−1
αβ Lβ 〉 (96)
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Fig. 19 Widths of the distribution functions of the largest intramolecular distances, σe = (〈e2〉−
〈e〉2)/〈e〉2, of a linear polymer and star polymers with up to 50 arms as a function of the Weis-
senberg number. From [142]

Fig. 20 Successive snapshots of a star polymer of functionality f = 25 and arm length L f = 20,
which illustrate the tank-treading motion

of a star, where

Θαβ =
Nm

∑
i=1

[
r′2i δαβ − r′i,αr′i,β

]
(97)

is the instantaneous moment-of-inertia tensor and Lβ is the instantaneous angular
momentum. Since the rotation frequency for all kinds of soft objects – such as rods,
linear polymers, droplets and capsules – depends linearly on γ̇ for small shear rates,
the reduced rotation frequency ω/γ̇ is shown in Fig. 21 as a function of the Weis-
senberg number. The data approach ω/γ̇ = 1/2 for small Wi, as expected [87,151].
For larger shear rates, the reduced frequency decreases due to the deformation and
alignment of the polymers in the flow field. With increasing arm number, the de-
crease of ω/γ̇ at a given Weissenberg number becomes smaller, since the deviation
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Fig. 21 Scaled rotation frequencies as a function of a rescaled Weissenberg number for various
functionalities. Dashed and full lines correspond to ω/γ̇ = 1/2 for small Wi, and ω/γ̇ ∼ 1/Wi for
large Wi, respectively. The inset shows the dependence of the rescaling factor ϕ on the functional-
ity. From [142]

from the spherical shape decreases. Remarkably, the frequency curves for all stars
with f > 5 are found to collapse onto a universal scaling function when ω/γ̇ is
plotted as a function of a rescaled Weissenberg number, see Fig. 21. For high shear
rates, ω/γ̇ decays as Wi−1, which implies that the rotation frequency becomes in-
dependent of γ̇ . A similar behavior has been observed for capsules at high shear
rates [152].

The presented results show that star polymers in shear flow show a very rich
structural and dynamical behavior. With increasing functionality, stars in flow
change from linear-polymer-like to capsule-like behavior. These macromolecules
are therefore interesting candidates to tune the viscoelastic properties of complex
fluids.

11 Vesicles and Cells in Hydrodynamic Flows

11.1 Introduction

The flow behavior of fluid droplets, capsules, vesicles, and cells is of enormous
importance in science and technology. For example, the coalescence and break-up of
fluid droplets is essential for emulsion formation and stability. Capsules and vesicles
are discussed and used as drug carriers. Red blood cells (RBC) flow in the blood
stream, and may coagulate or be torn apart under unfavorable flow conditions. Red
blood cells also have to squeeze through narrow capillaries to deliver their oxygen
cargo. White blood cells in capillary flow adhere to, roll along and detach again from
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the walls of blood vessels under normal physiological conditions; in inflamed tissue,
leukocyte rolling leads to firm adhesion and induces an immunological response.

These and many other applications have induced an intensive theoretical and
simulation activity to understand and predict the behavior of such soft, deformable
objects in flow. In fact, there are some general, qualitative properties in simple shear
flow, which are shared by droplets, capsules, vesicles, and cells. When the internal
viscosity is low and when they are highly deformable, a tank-treading motion is
observed (in the case of droplets for not too high shear rates), where the shape and
orientation are stationary, but particles localized at the interface or attached to the
membrane orbit around the center of mass with a rotation axis in the vorticity direc-
tion. On the other hand, for high internal viscosity or small deformability, the whole
object performs a tumbling motion, very much like a colloidal rod in shear flow.
However, if we take a more careful look, then the behavior of droplets, capsules,
vesicles, and cells is quite different. For example, droplets can break up easily at
higher shear rates, because their shape is determined by the interfacial tension; fluid
vesicles can deform much more easily then capsules, since their membrane has no
shear elasticity; etc. We focus here on the behavior of fluid vesicles and red blood
cells.

11.2 Modeling Membranes

11.2.1 Modeling Lipid-Bilayer Membranes

The modeling of lipid bilayer membranes depends very much on the length scale
of interest. The structure of the bilayer itself or the embedding of membrane pro-
teins in a bilayer are best studied with atomistic models of both lipid and water
molecules. Molecular dynamics simulations of such models are restricted to about
103 lipid molecules. For larger system sizes, coarse-grained models are required
[153–155]. Here, the hydrocarbon chains of lipid molecules are described by short
polymer chains of Lennard-Jones particles, which have a repulsive interaction with
the lipid head groups as well as with the water molecules, which are also mod-
eled as single Lennard-Jones spheres. Very similar models, with Lennard-Jones
interactions replaced by linear “soft” DPD potentials, have also been employed
intensively [156–160]. For the investigation of shapes and thermal fluctuations of
single- or multi-component membranes, the hydrodynamics of the solvent is irrel-
evant. In this case, it can be advantageous to use a solvent-free membrane model,
in which the hydrophobic effect of the water molecules is replaced by an effective
attraction among the hydrocarbon chains [161–164]. This approach is advantageous
in the case of membranes in dilute solution, because it reduces the number of mole-
cules – and thus the degrees of freedom to be simulated – by orders of magnitude.
However, it should be noticed that the basic length scale of atomistic and coarse-
grained or solvent-free models is still on the same order of magnitude.
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In order to simulate larger systems, such as giant unilamellar vesicles (GUV) or
red blood cells, which have a radius on the order of several micrometers, a different
approach is required. It has been shown that in this limit the properties of lipid
bilayer membranes are described very well by modeling the membrane as a two-
dimensional manifold embedded in three-dimensional space, with the shape and
fluctuations controlled by the curvature elasticity [165],

H =
∫

dS 2κH2 , (98)

where H = (c1 + c2)/2 is the mean curvature, with the local principal curvatures c1
and c2, and the integral is over the whole membrane area. To make the curvature
elasticity amenable to computer simulations, it has to be discretized. This can be
done either by using triangulated surfaces [166,167], or by employing particles with
properly designed interactions which favor the formation of self-assembled, nearly
planar sheets [168,169]. In the latter case, both scalar particles with isotropic multi-
particle interactions (and a curvature energy obtained from a moving least-squares
method) [169] as well as particles with an internal spin variable and anisotropic,
multi-body forces [168] have been employed and investigated.

11.2.2 Dynamically Triangulated Surfaces

In a dynamically triangulated surface model [166, 167, 170–172] of vesicles and
cells, the membrane is described by Nmb vertices which are connected by tethers to
form a triangular network of spherical topology, see Fig. 22. The vertices have ex-
cluded volume and mass mmb. Two vertices connected by a bond have an attractive
interaction, which keeps their distance below a maximum separation �0. A short-
range repulsive interaction among all vertices makes the network self-avoiding and
prevents very short bond lengths. The curvature energy can be discretized in differ-
ent ways [166, 173]. In particular, the discretization [173, 174]

Ucv =
κ
2 ∑i

1
σi

{

∑
j(i)

σi, jri, j

ri, j

}2

(99)

has been found to give reliable results in comparison with the continuum expression
(98). Here, the sum over j(i) is over the neighbors of a vertex i which are connected
by tethers. The bond vector between the vertices i and j is ri, j, and ri, j = |ri, j|.
The length of a bond in the dual lattice is σi, j = ri, j[cot(θ1) + cot(θ2)]/2, where
the angles θ1 and θ2 are opposite to bond i j in the two triangles sharing this bond.
Finally, σi = 0.25∑ j(i)σi, jri, j is the area of the dual cell of vertex i.
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Fig. 22 Triangulated-network model of a fluctuating membrane. All vertices have short-range
repulsive interactions symbolized by hard spheres. Bonds represent attractive interactions which
imply a maximum separation �0 of connected vertices. From [175]

To model the fluidity of the membrane, tethers can be flipped between the two
possible diagonals of two adjacent triangles. A number ψNb of bond-flip attempts
is performed with the Metropolis Monte Carlo method [173] at time intervals Δ tBF,
where Nb = 3(Nmb −2) is the number of bonds in the network, and 0 < ψ < 1 is a
parameter of the model. Simulation results show that the vertices of a dynamically
triangulated membrane show diffusion, i.e., the squared distance of two initially
neighboring vertices increases linearly in time.

11.2.3 Vesicle Shapes

Since the solubility of lipids in water is very low, the number of lipid molecules in
a membrane is essentially constant over typical experimental time scales. Also, the
osmotic pressure generated by a small number of ions or macromolecules in solu-
tion, which cannot penetrate the lipid bilayer, keeps the internal volume essentially
constant. The shape of fluid vesicles [176] is therefore determined by the compe-
tition of the curvature elasticity of the membrane, and the constraints of constant
volume V and constant surface area S. In the simplest case of vanishing sponta-
neous curvature, the curvature elasticity is given by (98). In this case, the vesicle
shape in the absence of thermal fluctuations depends on a single dimensionless pa-
rameter, the reduced volume V ∗ = V/V0, where V0 = (4π/3)R3

0 and R0 = (S/4π)1/2

are the volume and radius of a sphere of the same surface area S, respectively. The
calculated vesicle shapes are shown in Fig. 23. There are three phases. For reduced
volumes not too far from the sphere, elongated prolate shapes are stable. In a small
range of reduced volumes of V ∗ ∈ [0.592,0.651], oblate discocyte shapes have the
lowest curvature energy. Finally, at very low reduced volumes, cup-like stomatocyte
shapes are found.

These shapes are very well reproduced in simulations with dynamically triangu-
lated surfaces [177–180].
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Fig. 23 Shapes of fluid vesicles as a function of the reduced volume V ∗. D and Dsto denote the
discontinuous prolate–oblate and oblate–stomatocyte transitions, respectively. All shapes display
rotational symmetry with respect to the vertical axis. From [176]

11.2.4 Modeling Red Blood Cells

Red blood cells have a biconcave disc shape, which can hardly be distinguished from
the discocyte shape of fluid vesicles with reduced volume V ∗ � 0.6, compare Fig. 23.
However, the membrane of red blood cells is more complex, since a spectrin network
is attached to the plasma membrane [181], which helps to retain the integrity of the
cell in strong shear gradients or capillary flow. Because of the spectrin network, the
red blood cell membrane has a non-zero shear modulus μ .

The bending rigidity κ of RBCs has been measured by micropipette aspiration
[182] and atomic force microscopy [183] to be approximately κ = 50kBT . The shear
modulus of the composite membrane, which is induced by the spectrin network, has
been determined by several techniques; it is found to be μ = 2×10−6 N m−1 from
optical tweezers manipulation [184], while the value μ = 6× 10−6 N m−1 is ob-
tained from micropipette aspiration [182]. Thus, the dimensionless ratio μR2

0/κ �
100, which implies that bending and stretching energies are roughly of equal impor-
tance.

Theoretically, the shapes of RBCs in the absence of flow have been calculated
very successfully on the basis of a mechanical model of membranes, which in-
cludes both curvature and shear elasticity [185,186]. In particular, it has been shown
recently that the full stomatocyte–discocyte–echinocyte sequence of RBCs can be
reproduced by this model [186].

The composite membrane of a red blood cell, consisting of the lipid bilayer and
the spectrin network, can be modeled as a composite network, which consists of
a dynamically triangulated surface as in the case of fluid vesicles, coupled to an
additional network of harmonic springs with fixed connectivity (no bond-flip) [185,
187]. Ideally, the bond length of the elastic network is larger than of the fluid mesh
[185] – in order to mimic the situation of the red blood cell membrane, where the
average distance of anchoring points is about 70 nm, much larger than the size of
a lipid molecule – and thereby allow, for example, for thermal fluctuations of the
distances between neighboring anchoring points. On the other hand, to investigate
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the behavior of cells on length scales much larger than the mesh size of the spectrin
network, it is more efficient to use the same number of bonds for both the fluid and
the tethered networks [187]. The simplest case is a harmonic tethering potential,
(1/2)kel(ri − r j)2. This tether network generates a shear modulus μ =

√
3kel.

11.3 Modeling Membrane Hydrodynamics

Solvent-free models, triangulated surfaces and other discretized curvature models
have the disadvantage that they do not contain a solvent, and therefore do not de-
scribe the hydrodynamic behavior correctly. However, this apparent disadvantage
can be turned into an advantage by combining these models with a mesoscopic
hydrodynamics technique. This approach has been employed for dynamically trian-
gulated surfaces [37, 180] and for meshless membrane models in combination with
MPC [188], as well as for fixed membrane triangulations in combination with both
MPC [187] and the LB method [189].

The solvent particles of the MPC fluid interact with the membrane in two ways
to obtain an impermeable membrane with no-slip boundary conditions. First, the
membrane vertices are included in the MPC collision procedure, as suggested for
polymers in [68], compare Sect. 7.1. Second, the solvent particles are scattered
with a bounce-back rule from the membrane surface. Here, solvent particles inside
(1 ≤ i ≤ Nin) and outside (Nin < i ≤ Ns) of the vesicle have to be distinguished. The
membrane triangles are assumed to have a finite but very small thickness δ = 2lbs.
The scattering process is then performed at discrete time steps Δ tbs, so that scat-
tering does not occur exactly on the membrane surface, but the solvent particles
can penetrate slightly into the membrane film [180]. A similar procedure has been
suggested in [26] for spherical colloidal particles embedded in a MPC solvent. Par-
ticles which enter the membrane film, i.e., which have a distance to the triangulated
surface smaller than lbs, or interior particles which reach the exterior volume and
vice versa, are scattered at the membrane triangle with the closest center of mass.
Explicitly [180],

v(new)
s (t) = vs(t)−

6mmb

ms +3mmb
(vs(t)−vtri(t)) (100)

v(new)
tri (t) = vtri(t)+

2ms

ms +3mmb
(vs(t)−vtri(t)), (101)

when (vs(t)−vtri(t)) ·ntri < 0, where vs(t) and vtri(t) are the velocities of the solvent
particle and of the center of mass of the membrane triangle, respectively, and ntri is
the normal vector of the triangle, which is oriented towards the outside (inside) for
external (internal) particles.

The bond flips provide a very convenient way to vary the membrane viscosity
ηmb, which increases with decreasing probability ψ for the selection of a bond for
a bond-flip attempt. The membrane viscosity has been determined quantitatively
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Fig. 24 Dependence of the membrane viscosity ηmb on the probability ψ for the selection of a
bond for a bond-flip attempt, for a membrane with Nmb = 1,860 vertices. From [180]

from a simulation of a flat membrane in two-dimensional Poiseuille flow. The
triangulated membrane is put in a rectangular box of size Lx × Ly with periodic
boundary conditions in the x-direction. The edge vertices at the lower and upper
boundary ( y = ±Ly/2) are fixed at their positions. A gravitational force (mmbg,0)
is applied to all membrane vertices to induce a flow. Rescaling of relative veloci-
ties is employed as a thermostat. Then, the membrane viscosity is calculated from
ηmb = ρmbgLy/8vmax, where ρmb is average mass density of the membrane parti-
cles, and vmax the maximum velocity of the parabolic flow profile. The membrane
viscosity ηmb, which is obtained in this way, is shown in Fig. 24. As ψ decreases,
it takes longer and longer for a membrane particle to escape from the cage of its
neighbors, and ηmb increases. This is very similar to the behavior of a hard-sphere
fluid with increasing density. Finally, for ψ = 0, the membrane becomes solid.

11.4 Fluid Vesicles in Shear Flow

The dynamical behavior of fluid vesicles in simple shear flow has been studied
experimentally [190–193], theoretically [194–201], numerically with the boundary-
integral technique [202, 203] or the phase-field method [203, 204], and with meso-
scale solvents [37,180,205]. The vesicle shape is now determined by the competition
of the curvature elasticity of the membrane, the constraints of constant volume V and
constant surface area S, and the external hydrodynamic forces.

Shear flow is characterized (in the absence of vesicles or cells) by the flow field
v = γ̇yex, where ex is a unit vector, compare Sect. 10.4. The control parameter of
shear flow is the shear rate γ̇ , which has the dimension of an inverse time. Thus,
a dimensionless, scaled shear rate γ̇∗ = γ̇τ can be defined, where τ is a characteristic
relaxation time of a vesicle. Here, τ = η0R3

0/kBT is used, where η0 is the solvent
viscosity, R0 the average radius [206]. For γ̇∗ < 1, the internal vesicle dynamics is
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fast compared to the external perturbation, so that the vesicle shape is hardly affected
by the flow field, whereas for γ̇∗ > 1, the flow forces dominate and the vesicle is in
a non-equilibrium steady state.

One of the difficulties in theoretical studies of the hydrodynamic effects on vesi-
cle dynamics is the no-slip boundary condition for the embedding fluid on the
vesicle surface, which changes its shape dynamically under the effect of flow and
curvature forces. In early studies, a fluid vesicle was therefore modeled as an ellip-
soid with fixed shape [194]. This simplified model is still very useful as a reference
for the interpretation of simulation results.

11.4.1 Generalized Keller–Skalak Theory

The theory of Keller and Skalak [194] describes the hydrodynamic behavior of vesi-
cles of fixed ellipsoidal shape in shear flow, with the viscosities ηin and η0 of the
internal and external fluids, respectively. Despite of the approximations needed to
derive the equation of motion for the inclination angle θ , which measures the de-
viation of the symmetry axis of the ellipsoid from the flow direction, this theory
describes vesicles in flow surprisingly well. It has been generalized later [197] to
describe the effects of a membrane viscosity ηmb.

The main result of the theory of Keller and Skalak is the equation of motion for
the inclination angle [194],

d
dt
θ =

1
2
γ̇ [−1+Bcos(2θ)] , (102)

where B is a constant, which depends on the geometrical parameters of the ellipsoid,
on the viscosity contrast η∗

in = ηin/η0, and the scaled membrane viscosity η∗
mb =

ηmb/(η0R0) [180, 194, 197],

B = f0

[

f1 +
f−1
1

1+ f2(η∗
in −1)+ f2 f3η∗

mb

]

, (103)

where f0, f1, f2, and f3 are geometry-dependent parameters. In the spherical limit,
B → ∞. Equation (102) implies the following behavior:

• For B > 1, there is a stationary solution, with cos(2θ) = 1/B. This corresponds
to a tank-treading motion, in which the orientation of the vesicle axis is time
independent, but the membrane itself rotates around the vorticity axis.

• For B < 1, no stationary solution exists, and the vesicle shows a tumbling motion,
very similar to a solid rod-like colloidal particle in shear flow.

• The shear rate γ̇ only determines the time scale, but does not affect the tank-
treading or tumbling behavior. Therefore, a transition between these two types of
motion can only be induced by a variation of the vesicle shape or the viscosities.
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However, the vesicle shape in shear flow is often not as constant as assumed
by Keller and Skalak. In these situations, it is very helpful to compare simulation
results with a generalized Keller–Skalak theory, in which shape deformation and
thermal fluctuations are taken into account. Therefore, a phenomenological model
has been suggested in [180], in which in addition to the inclination angle θ a sec-
ond parameter is introduced to characterize the vesicle shape and deformation, the
asphericity [207]

α =
(λ1 −λ2)2 +(λ2 −λ3)2 +(λ3 −λ1)2

2R4
g

, (104)

where λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the moment-of-inertia tensor and the
squared radius of gyration is R2

G = λ1 + λ2 + λ3. This implies α = 0 for spheres
(with λ1 = λ2 = λ3), α = 1 for long rods (with λ1 = λ2 	 λ3), and α = 1/4 for flat
disks (with λ1 	 λ2 = λ3). The generalized Keller–Skalak model is then defined by
the stochastic equations

ζα
d
dt
α = −∂F/∂α +Aγ̇ sin(2θ)+ζαgα(t), (105)

d
dt
θ =

1
2
γ̇ {−1+B(α)cos(2θ)}+gθ (t), (106)

with Gaussian white noises gα and gθ , which are determined by

〈gα(t)〉 = 〈gθ (t)〉 = 〈gα(t)gθ (t ′)〉 = 0,

〈gα(t)gα(t ′)〉 = 2Dαδ (t − t ′), (107)
〈gθ (t)gθ (t ′)〉 = 2Dθ δ (t − t ′),

friction coefficients ζα and ζθ , and diffusion constants Dα = kBT/ζα and Dθ =
kBT/ζθ . Note that ζθ does not appear in (106); it drops out because the shear force
is also caused by friction.

The form of the stochastic equations (105) and (106) is motivated by the fol-
lowing considerations. The first term in (105), ∂F/∂α , is the thermodynamic force
due to bending energy and volume constraints; it is calculated from the free energy
F(α). The second term of (105) is the deformation force due to the shear flow. Since
the hydrodynamic forces elongate the vesicle for 0 < θ < π/2 but push to reduce
the elongation for −π/2 < θ < 0, the flow forces should be proportional to sin(2θ)
to leading order. The amplitude A is assumed to be independent of the asphericity α .
ζα and A can be estimated [205] from the results of a perturbation theory [199] in the
quasi-spherical limit. Equation (106) is adapted from Keller–Skalak theory. While
B is a constant in Keller–Skalak theory, it is now a function of the (time-dependent)
asphericity α in (106).
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11.4.2 Effects of Membrane Viscosity: Tank-Treading and Tumbling

The theory of Keller and Skalak [194] predicts for fluid vesicles a transition from
tank-treading to tumbling with increasing viscosity contrast ηin/η0. This has been
confirmed in recent simulations based on a phase-field model [203].

The membrane viscosity ηmb is also an important factor for the vesicle dynamics
in shear flow. For example, the membrane of red blood cells becomes more viscous
on aging [197, 208] or in diabetes mellitus [209]. Experiments indicate that the en-
ergy dissipation in the membrane is larger than that inside a red blood cell [196,197].
Furthermore, it has been shown recently that vesicles can not only be made from
lipid bilayers, but also from bilayers of block copolymers [210]. The membrane
viscosity of these “polymersomes” is several orders of magnitude larger than for
liposomes, and can be changed over a wide range by varying the polymer chain
length [211].

A variation of the membrane viscosity can be implemented easily in dynami-
cally triangulated surface models of membranes, as explained in Sect. 11.2.2. An
example of a discocyte in tank-treading motion, which is obtained by such a mem-
brane model [180], is shown in Fig. 25. Simulation results for the inclination angle
as a function of the reduced membrane viscosity η∗

mb = ηmb/(η0R0) are shown in
Fig. 26. This demonstrates the tank-treading to tumbling transition of fluid vesicles
with increasing membrane viscosity. The threshold shear rate decreases with de-
creasing reduced volume V ∗, since with increasing deviation from the spherical

Fig. 25 Snapshot of a discocyte vesicle in shear flow with reduced shear rate γ̇∗ = 0.92, reduced
volume V ∗ = 0.59, membrane viscosity η∗

mb = 0, and viscosity contrast ηin/η0 = 1. The arrows
represent the velocity field in the xz-plane. From [180]



Multi-Particle Collision Dynamics 71

ηmb

0

0.1

0.2

0 2 4 6
*

ηmb
*

0.05

0
0 1 2

<
θ>

/π
<

θ>
/π

Fig. 26 Average inclination angle 〈θ〉 as a function of reduced membrane viscosity η∗
mb, for the

shear rate γ̇∗ = 0.92 and various reduced volumes V ∗. Results are presented for prolate (circles) and
discocyte (squares) vesicles with V ∗ = 0.59, as well as prolate vesicles with V ∗ = 0.66 (triangles),
0.78 (diamonds), 0.91 (crosses), and V ∗ = 0.96 (pluses). The solid and dashed lines are calculated
by K–S theory, (102) and (103), for prolate (V ∗ = 0.59, 0.66, 0.78, 0.91, and 0.96) and oblate
ellipsoids (V ∗ = 0.59), respectively. The dashed-dotted lines are calculated from (106) with thermal
fluctuations, for V ∗ = 0.66, V ∗ = 0.78, and the rotational Peclet number γ̇/Dθ = 600 (where Dθ is
the rotational diffusion constant). From [180]

shape, the energy dissipation within the membrane increases. Interestingly, the
discocyte shape is less affected by the membrane viscosity than the prolate shape for
V ∗ = 0.59, since it is more compact – in contrast to a vesicle with viscosity contrast
ηin/η0 > 1, where the prolate shape is affected less [180].

Figure 26 also shows a comparison of the simulation data with results of Keller–
Skalak (K-S) theory for fixed shape, both without and with thermal fluctuations.
Note that there are no adjustable parameters. The agreement of the results of theory
and simulations is excellent in the case of vanishing membrane viscosity, ηmb = 0.
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For small reduced volumes, V ∗ � 0.6, the tank-treading to tumbling transition is
smeared out by thermal fluctuations, with an intermittent tumbling motion occur-
ring in the crossover region. This behavior is captured very well by the generalized
K–S model with thermal fluctuations. For larger reduced volumes and non-zero
membrane viscosity, significant deviations of theory and simulations become vis-
ible. The inclination angle θ is found to decrease much more slowly with increasing
membrane viscosity than expected theoretically. This is most likely due to thermal
membrane undulations, which are not taken into account in K–S theory.

11.4.3 Swinging of Fluid Vesicles

Recently, a new type of vesicle dynamics in shear flow has been observed exper-
imentally [192], which is characterized by oscillations of the inclination angle θ
with θ(t) ∈ [−θ0,θ0] and θ0 < π/2. The vesicles were found to transit from tum-
bling to this oscillatory motion with increasing shear rate γ̇ . Simultaneously with the
experiment, a “vacillating-breathing” mode for quasi-spherical fluid vesicles was
predicted theoretically, based on a spherical-harmonics expansion of the equations
of motion to leading order (without thermal fluctuations) [199]. This mode exhibits
similar dynamical behavior as seen experimentally; however, it “coexists” with the
tumbling mode, and its orbit depends on the initial deformation, i.e., it is not a limit
cycle. Furthermore, the shear rate appears only as the basic (inverse) time scale,
and therefore cannot induce any shape transitions. Hence it does not explain the
tumbling-to-oscillatory transition seen in the experiments [192].

Simulation data for the oscillatory mode – which has also been denoted “trem-
bling” [192] or “swinging” [205] mode – are shown in Fig. 27. The simulation
results demonstrate that the transition can indeed be induced by increasing shear
rate, and that it is robust to thermal fluctuations. Figure 27 also shows that the simu-
lation data are well captured by the generalized K–S model, (105) and (106), which
takes into account higher-order contributions in the curvature energy of a vesicle.
The theoretical model can therefore be used to predict the full dynamic phase di-
agram of prolate vesicles as a function of shear rate and membrane viscosity or
viscosity contrast, compare Fig. 28. The swinging phase appears at the boundary
between the tank-treading and the tumbling phase for sufficiently large shear rates.
The phase diagram explains under which conditions the swinging phase can be
reached from the tumbling phase with increasing shear rate – as observed exper-
imentally [192].

The generalized K–S model is designed to capture the vesicle flow behavior
for non-spherical shapes sufficiently far from a sphere. For quasi-spherical vesi-
cles, a derivation of the equations of motion by a systematic expansion in the
undulation amplitudes gives quantitatively more reliable results. An expansion to
third order results in a phase diagram [200, 201], which agrees very well with
Fig. 28.
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11.4.4 Flow-Induced Shape Transformations

Shear flow does not only induce different dynamical modes of prolate and oblate
fluid vesicles, it can also induce phase transformations. The simplest case is a oblate
fluid vesicle with ηmb = 0 and viscosity contrast ηin/η0 = 1. When the reduced
shear rate reaches γ̇∗ � 1, the discocyte vesicles are stretched by the flow forces into
a prolate shape [37,180,202]. A similar transition is found for stomatocyte vesicles,
except that in this case a larger shear rate γ̇∗ � 3 is required. In the case of non-zero
membrane viscosity, a rich phase behavior appears, see Fig. 29.

Surprisingly, flow forces can not only stretch vesicles into a more elongated
shape, but can also induce a transition from an elongated prolate shape into a more
compact discocyte shape [180]. Simulation results for the latter transition are shown
in Fig. 30. This transition is possible, because in a range of membrane viscosities,
the prolate shape is in the tumbling phase, while the oblate shape is tank-treading,
compare Fig. 26. Of course, this requires that the free energies of the two shapes
are nearly equal, which implies a reduced volume of V ∗ � 0.6. Thus, a prolate vesi-
cle in this regime starts tumbling; as the inclination angle becomes negative, shear
forces push to shrink the long axis of the vesicle; when this force is strong enough to
overcome the free-energy barrier between the prolate and the oblate phase, a shape
transformation can be induced, compare Fig. 30. The vesicle then remains in the
stable tank-treading state.

γ*.

ηmb
*

4

3

2

1

0
0 0.5 1 1.5

transformation from
stomatocyte to prolate

transformation from
discocyte to prolate

transformation from
tank-treading to tumbling

Fig. 29 Dynamical phase diagram of a vesicle in shear flow for reduced volume V ∗ = 0.59.
Symbols correspond to simulated parameter values, and indicate tank-treading discocyte and tank-
treading prolate (circles), tank-treading prolate and unstable discocyte (triangles), tank-treading
discocyte and tumbling (transient) prolate (open squares), tumbling with shape oscillation (di-
amonds), unstable stomatocyte (pluses), stable stomatocyte (crosses), and near transition ( filled
squares). The dashed lines are guides to the eye. From [180]
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Fig. 30 Time dependence of asphericity α and inclination angle θ , for γ̇∗ = 1.84, η∗
mb = 1.62,

and V ∗ = 0.59. The dashed lines are obtained from (105) and (106), with ζα = 100, A = 12, and
B(α) = 1.1−0.17α . From [212]

At higher shear rates, an intermittent behavior has been observed, in which the
vesicle motion changes in irregular intervals between tumbling and tank-treading
[180].

11.4.5 Vesicle Fluctuations Under Flow in Two Dimensions

At finite temperature, stochastic fluctuations of the membrane due to thermal motion
affect the dynamics of vesicles. Since the calculation of thermal fluctuations under
flow conditions requires long times and large membrane sizes (in order to have a
sufficient range of undulation wave vectors), simulations have been performed for a
two-dimensional system in the stationary tank-treading state [213]. For comparison,
in the limit of small deviations from a circle, Langevin-type equations of motion
have been derived, which are highly nonlinear due to the constraint of constant
perimeter length [213].

The effect of the shear flow is to induce a tension in the membrane, which re-
duces the amplitude of thermal membrane undulations. This tension can be extracted
directly from simulation data for the undulation spectrum. The reduction of the un-
dulation amplitudes also implies that the fluctuations of the inclination angle θ get
reduced with increasing shear rate. The theory for quasi-circular shapes predicts a
universal behavior as a function of the scaled shear rate γ̇∗Δ 1/2κ/(R0kBT ), where
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Fig. 31 Fluctuations of the inclination angle 〈Δθ 2〉1/2 of a two-dimensional fluctuating vesicle
in shear flow, as a function of scaled shear rate γ̇∗Δ 1/2κ/(R0kBT ), where Δ is the dimensionless
excess membrane length. Symbols indicate simulation data for different internal vesicle areas A
for fixed membrane length, with A∗ ≡ A/πR2

0 = 0.95 (squares), A∗ = 0.90 (triangles), A∗ = 0.85
(stars), and A∗ = 0.7 (circles). The solid line is the theoretical result in the quasi-circular limit.
From [213]

γ̇ ∗ = γ̇η0R3
0/κ is the reduced shear rate in two dimensions, and Δ is the dimension-

less excess membrane length. Theory and simulation results for the inclination angle
as a function of the reduced shear rate are shown in Fig. 31. There are no adjustable
parameters. The agreement is excellent as long as the deviations from the circular
shape are not too large [213].

11.5 Fluid Vesicles and Red Blood Cells in Capillary Flow

11.5.1 RBC Deformation in Narrow Capillaries

The deformation of single RBCs and single fluid vesicles in capillary flows were
studied theoretically by lubrication theories [214–216] and boundary-integral meth-
ods [217–219]. In most of these studies, axisymmetric shapes which are coaxial
with the center of the capillary were assumed and cylindrical coordinates were em-
ployed. In order to investigate non-axisymmetric shapes as well as flow-induced
shape transformations, a fully three-dimensional simulation approach is required.
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We focus here on the behavior of single red blood cells in capillary flow [187], as
described by a triangulated surface model for the membrane (compare Sect. 11.2.4)
immersed in a MPC solvent (see Sect. 11.3). The radius of the capillary, Rcap, is
taken to be slightly larger than the mean vesicle or RBC radius, R0 =

√
S/4π , where

S is the membrane area. Snapshots of vesicle and RBC shapes in flow are shown
in Fig. 32 for a reduced volume of V ∗ = 0.59, where the vesicle shape at rest is
a discocyte. For sufficiently small flow velocities, the discocyte shape is retained.
However, the discocyte is found not in a coaxial orientation; instead the shortest
eigenvalue of the gyration tensor is oriented perpendicular to the cylinder axis [187].
Since two opposite sides of the rim of the discocyte are closer to the wall where
the flow velocity is small, the rotational symmetry is slightly disturbed and the top
view looks somewhat triangular, see Fig. 32a. With increasing flow velocity, a shape
transition to an axisymmetric shape occurs. In the case of fluid vesicles this is a

Fig. 32 Snapshots of vesicles in capillary flow, with bending rigidity κ/kBT = 20 and capillary
radius Rcap = 1.4R0. a Fluid vesicle with discoidal shape at the mean fluid velocity vmτ/Rcap = 41,
both in side and top views. b Elastic vesicle (RBC model) with parachute shape at vmτ/Rcap = 218
(with shear modulus μR2

0/kBT = 110). The blue arrows represent the velocity field of the solvent.
c Elastic vesicle with slipper-like shape at vmτ/Rcap = 80 (with μR2

0/kBT = 110). The inside and
outside of the membrane are depicted in red and green, respectively. The upper front quarter of
the vesicle in (b) and the front half of the vesicle in (c) are removed to allow for a look into the
interior; the black circles indicate the lines where the membrane has been cut in this procedure.
Thick black lines indicate the walls of the cylindrical capillary. From [187]
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Fig. 33 Critical flow velocity vm of the discocyte-to-parachute transition of elastic vesicles and
of the discocyte-to-prolate transition of fluid vesicles, as a function of the bending rigidity for
μR2

0/kBT = 110 (left), and of the shear modulus μ for κ/kBT = 10 (right). From [187]

prolate shape, while in the case of RBCs a parachute shape is found. Such parachute
shapes of red blood cells have previously been observed experimentally [209, 220].

The fundamental difference between the flow behaviors of fluid vesicles and
red blood cells at high flow velocities is due to the shear elasticity of the spec-
trin network. Its main effect for μR2

0/κ � 1 is to suppress the discocyte-to-prolate
transition, because the prolate shape would acquire an elastic energy of order μR2

0.
In comparison, the shear stress in the parachute shape is much smaller.

Some diseases, such as diabetes mellitus and sickle cell anemia, change the me-
chanical properties of RBCs; a reduction of RBC deformability was found to be
responsible for an enhanced flow resistance of blood [221]. Therefore, it is very
important to understand the relation of RBC elasticity and flow properties in capil-
laries. The flow velocity at the discocyte-to-prolate transition of fluid vesicles and at
the discocyte-to-parachute transition is shown in Fig. 33 as a function of the bending
rigidity and the shear modulus, respectively. In both cases, an approximately linear
dependence is obtained [187],

vc
m

τ
Rcap

= 0.1
μR2

0
kBT

+4.0
κ

kBT
. (108)

This result suggests that parachute shapes of RBCs should appear for flow veloci-
ties larger than vc

m = 800Rcap/τ � 0.2 mm s−1 under physiological conditions. This
is consistent with the experimental results of [222], and is in the range of micro-
circulation in the human body.

Figure 33 (right) also shows that there is a metastable region, where discocytes
are seen for increasing flow velocity, but parachute shapes for decreasing flow ve-
locity. This hysteresis becomes more pronounced with increasing shear modulus.
It is believed to be due to a suppression of thermal fluctuations with increasing
μR2

0/kBT .
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11.5.2 Flow in Wider Capillaries

The flow of many red blood cells in wider capillaries has also been investigated by
several simulation techniques. Discrete fluid-particle simulations – an extension of
DPD – in combination with bulk-elastic discocyte cells (in contrast to the membrane
elasticity of real red blood cells) have been employed to investigate the dynamical
clustering of red blood cells in capillary vessels [223, 224]. An immersed finite-
element model – a combination of the immersed boundary method for the solvent
hydrodynamics [225] and a finite-element method to describe the membrane elas-
ticity – has been developed to study red blood cell aggregation [226]. Finally, it has
been demonstrated that the LB method for the solvent in combination with a trian-
gulated mesh model with curvature and shear elasticity for the membrane can be
used efficiently to simulate RBC suspensions in wider capillaries [189].

12 Viscoelastic Fluids

One of the unique properties of soft matter is its viscoelastic behavior [13]. Because
of the long structural relaxation times, the internal degrees of freedom cannot relax
sufficiently fast in an oscillatory shear flow already at moderate frequencies, so that
there is an elastic restoring force which pushes the system back towards its previ-
ous state. Well-studied examples of viscoelastic fluids are polymer solutions and
polymer melts [6, 13].

The viscoelastic behavior of polymer solutions leads to many unusual flow phe-
nomena, such as viscoelastic phase separation [227]. There is also a second level
of complexity in soft matter systems, in which a colloidal component is dispersed
in a solvent, which is itself a complex fluid. Examples are spherical or rod-like col-
loids dispersed in polymer solutions. Shear flow can induce particle aggregation and
alignment in these systems [228].

It is therefore desirable to generalize the MPC technique to model viscoelastic
fluids, while retaining as much as possible of the computational efficiency of stan-
dard MPC for Newtonian fluids. This can be done by replacing the point particles
of standard MPC by harmonic dumbbells with spring constant K [229].

As for point particles, the MPC algorithm consists of two steps, streaming and
collisions. In the streaming step, within a time interval Δ t, the motion of all dumb-
bells is governed by Newton’s equations of motion. The center-of-mass coordinate
of each dumbbell follows a simple ballistic trajectory. The evolution of the relative
coordinates of dumbbell i, which consists of two monomers at positions ri1(t) and
ri2(t) with velocities vi1(t) and vi2(t), respectively, is determined by the harmonic
interaction potential, so that

ri1(t +Δ t)− ri2(t +Δ t) = Ai(t)cos(ω0Δ t)+Bi(t)sin(ω0Δ t); (109)
vi1(t +Δ t)−vi2(t +Δ t) = −ω0Ai(t)sin(ω0Δ t)
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+ω0Bi(t)cos(ω0Δ t), (110)

with angular frequency ω0 =
√

2K/m. The amplitudes Ai(t) and Bi(t) are deter-
mined by the initial positions and velocities at time t. The collision step is performed
for the two point particles constituting a dumbbell in exactly the same way as for
MPC point-particle fluids. This implies, in particular, that the various collision rules
of MPC, such as SRD, AT−a or AT+a, can all be employed also for simulations of
viscoelastic solvents, depending on the requirements of the system under considera-
tion. Since the streaming step is only a little more time consuming and the collision
step is identical, simulations of the viscoelastic MPC fluid can be performed with
essentially the same efficiency as for the standard point-particle fluid.

The behavior of harmonic dumbbells in dilute solution has been studied in de-
tail analytically [230]. These results can be used to predict the zero-shear viscosity
η and the storage and loss moduli, G′(ω) and G′′(ω) in oscillatory shear with
frequency ω , of the MPC dumbbell fluid. This requires the solvent viscosity and
diffusion constant of monomers in the solvent. Since the viscoelastic MPC fluid
consists of dumbbells only, the natural assumption is to employ the viscosity ηMPC
and diffusion constant D of an MPC point-particle fluid of the same density. The
zero-shear viscosity is then found to be [229]

η = ηMPC +
ρ
2

kBT
ωH

, (111)

where
ωH =

4K
ζ

=
4DK
kBT

. (112)

Similarly, the storage and loss modulus, and the average dumbbell extension, are
predicted to be [229]

G′ =
ρkBT

2
(ω/ωH)2

1+(ω/ωH)2 , (113)

G′′ = ηMPCω +
ρkBT

2
ω/ωH

1+(ω/ωH)2 , (114)

and
〈r2〉
〈r2〉eq

= 1+
2
3
(γ̇/ωH)2. (115)

Simulation data are shown in Fig. 34, together with the theoretical predications (113)
and (114). The comparison shows a very good agreement. This includes not only the
linear and quadratic frequency dependence of G′′ and G′ for small ω , respectively,
but also the leveling off when ω reaches ωH. In case of G′′, there is quantitative
agreement without any adjustable parameters, whereas G′ is somewhat overesti-
mated by (113) for small spring constants K. The good agreement of theory and
simulations implies that the characteristic frequency decreases linearly with de-
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Fig. 34 a Storage G′ and b loss moduli G′′, as a function of oscillation frequency ω on a double-
logarithmic scale, for systems of dumbbells with various spring constants ranging from K = 0.2
to K = 1.0. Simulations are performed in two dimensions with the SRD collision rule. The wall
separation and the collision time are Ly = 10 and Δ t = 0.02, respectively. From [229]

creasing spring constant K and mean free path λ (since D ∼ λ ). A comparison
of other quantities, such as the zero-shear viscosity, shows a similar quantitative
agreement [229].

13 Conclusions and Outlook

In the short time since Malevanets and Kapral introduced MPC dynamics as a
particle-based mesoscale simulation technique for studying the hydrodynamics of
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complex fluids, there has been enormous progress. It has been shown that kinetic
theory can be generalized to calculate transport coefficients, several collision algo-
rithms have been proposed and employed, and the method has been generalized to
describe multi-phase flows and viscoelastic fluids. The primary applications to date
– which include studies of the equilibrium dynamics and flow properties of colloids,
polymers, and vesicles in solution – have dealt with mesoscopic particles embedded
in a single-component Newtonian solvent. An important advantage of this algorithm
is that it is very straightforward to model the dynamics for the embedded particles
using a hybrid MPC–MD simulations approach. The results of these studies are in
excellent quantitative agreement with both theoretical predictions and results ob-
tained using other simulation techniques.

How will the method develop in the future? This is of course difficult to predict.
However, it seems clear that there will be two main directions, a further development
of the method itself, and its application to new problems in Soft Matter hydrodynam-
ics. On the methodological front, there are several very recent developments, like
angular-momentum conservation, multi-phase flows and viscoelastic fluids, which
have to be explored in more detail. It will also be interesting to combine them to
study, for example, multi-phase flows of viscoelastic fluids. On the application side,
the trend will undoubtedly be towards more complex systems, in which thermal
fluctuations are important. In such systems, the method can play out its strengths,
because the interactions of colloids, polymers, and membranes with the mesoscale
solvent can all be treated on the same basis.
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87. C. Aust, M. Kröger, and S. Hess, Macromolecules 32, 5660 (1999).
88. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Phys. Rev. E 55,

3124 (1997).
89. P. Ahlrichs and B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998).
90. P. Ahlrichs, R. Everaers, and B. Dünweg, Phys. Rev. E 64, 040501 (2001).
91. N. A. Spenley, Europhys. Lett. 49, 534 (2000).
92. C. P. Lowe, A. F. Bakker, and M. W. Dreischor, Europhys. Lett. 67, 397 (2004).
93. G. K. Batchelor, J. Fluid Mech. 52, 245 (1972).
94. A. J. C. Ladd, Phys. Fluids 9, 481 (1997).
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1 Introduction

The term “soft condensed matter” generally refers to materials which possess
additional “mesoscopic” length scales between the atomic and the macroscopic
scales [1–8]. While simple fluids are characterized by the atomic size (3×10−10 m),
soft-matter systems contain one or more additional length scales, typically of order
10−9–10−6 m. There are many examples of matter with mesoscale structure, in-
cluding suspensions, gels, foams, and emulsions; all of these are characterized by
viscoelastic behavior, which means a response that is fluid-like on long time scales
but solid-like on shorter time scales. The two prototype systems considered in this
article are colloidal dispersions of hard particles, where the additional length scale
is provided by the particle size, and polymer systems, where the length scale is
the size of the macromolecule. The main difference between these two systems is
the presence of internal degrees of freedom in the polymer, such that a statistical de-
scription is necessary even on the single-molecule level. Many additional soft-matter
systems exist. For example, dispersions may not only contain spherical particles, but
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rather rod-like or disk-like objects. For polymers, there are many possible molecu-
lar architectures; in addition to simple linear chains, there are rings, stars, combs,
bottle-brush polymers and dendrimers. Polymers may also self-assemble into two-
dimensional membranes, either free or tethered, which are of paramount biological
importance in cell membranes, vesicles, and red blood cells.

Strongly non-linear rheology is characteristic of soft matter. In simple fluids, it is
difficult to observe any deviations from Newtonian behavior, which is well described
by the hydrodynamic equations of motion with linear transport coefficients that de-
pend only on the thermodynamic state. Indeed, Molecular Dynamics simulations [9]
have revealed that a hydrodynamic description is valid down to astonishingly small
scales, of the order of a few collisions of an individual molecule. This means that
one would have to probe the system with very short wave lengths and very high
frequencies, which are typically not accessible to standard experiments (with the
exception of neutron scattering [10]), and even less in everyday life. However, in
soft-matter systems microstructural components (particles and polymers for exam-
ple) induce responses that depend very much on frequency and length scale. These
systems are often referred to as “complex fluids.”

The nonlinear rheological properties of soft matter pose a substantial challenge
for theory [11]. Therefore, the study of simple model systems is often the only way
to make systematic progress. Numerical simulations allow us to follow the dynam-
ics of model systems without invoking the uncontrolled approximations that are
usually required by purely analytical methods. Simulations can be used to isolate
and investigate the influence of microstructure, composition, external perturbation
and geometry in ways that cannot always be duplicated in the laboratory. In partic-
ular, simulations can provide a well-defined test bed for theoretical ideas, allowing
them to be evaluated in a simpler and more rigorous environment than is possi-
ble experimentally. Finally, they can provide more detailed and direct information
on the particle dynamics and structure than is typically possible with experimental
measurements.

In this article we will focus on systems which comprise particles, with or with-
out internal degrees of freedom, suspended in a simple fluid. We will first outline
the necessary ingredients for a theoretical description of the dynamics, and in par-
ticular explain the concept of hydrodynamic interactions (HI). Starting from this
background, we will provide a brief overview of the various simulation approaches
that have been developed to treat such systems. All of these methods are based
upon a description of the solute in terms of particles, while the solvent is taken
into account by a simple (but sufficient) model, making use of the fact that it can
be described as a Newtonian fluid. Such methods are often referred to as “meso-
scopic.” We will then describe and derive in some detail the algorithms that have
been developed by us to couple a particulate system to a LB fluid. The usefulness of
these methods will then be demonstrated by applications to colloidal dispersions and
polymer solutions. Some of the material presented here is a summary of previously
published work.
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2 Particle-Fluid Systems

2.1 Coarse-Grained Models

The first step towards understanding systems of particles suspended in a solvent is
the notion of scale separation. Colloidal particles are much larger (up to 10−6 m)
than solvent molecules, and their relaxation time (up to 10 s), given by the time the
particle needs to diffuse its own size, is several orders of magnitude larger than the
corresponding solvent time scale (10−12 s) as well. A similar separation of scales
holds for solute with internal degrees of freedom, like polymer chains, membranes,
or vesicles, as far as their diffusive motion or their global conformational reorgani-
zation is concerned. However, these systems contain a hierarchy of length and time
scales, which can be viewed as a spectrum of internal modes with a given wave-
length and relaxation time. For the long-wavelength part of this spectrum, the same
scale separation holds, but when the wavelength is comparable with the solvent
size molecular interactions become important. However, on scales of interest, these
details can usually be lumped into a few parameters. The solute is then modeled
as a system of “beads” interacting with each other via an effective potential. The
beads should be viewed as collections of atomic-scale constituents, either individ-
ual atoms or functional groups, which have been combined into a single effective
unit in a process known as “coarse-graining.” On the scale of the beads, the solvent
may be viewed as a hydrodynamic continuum, characterized by its shear viscosity
and temperature. The flow of soft matter is usually isothermal, incompressible, and
inertia-free (zero Reynolds number). Then, the most natural parameter to describe
solute–solvent coupling in polymeric systems is the Stokes friction coefficient of the
individual beads, or (in the case of anisotropic subunits) the corresponding tensor-
ial generalization. The effective friction coefficient is the lumped result of a more
detailed, or “fine-grained,” description at the molecular scale, as is the bead–bead
potential, which should be viewed as a potential of mean force. In order to make
contact with experimental systems, these parameters must be calculated from more
microscopic theories or simulations, or deduced from experimental data.

Further simplification may arise from the type of scientific question being ad-
dressed by the coarse-grained model. If the interest is not in specific material
properties of a given chemical species, but rather in generic behavior and mech-
anisms, as is the case for the examples we will discuss in this article, then the
details of the parameterization are less important than a model that is both con-
ceptually simple and computationally efficient. The standard model for particulate
suspensions is a system of hard spheres, while for polymer chains the Kremer–Grest
model [12] has proved to be a valuable and versatile tool. Here, the beads interact
via a purely repulsive Lennard-Jones (or WCA [13]) potential,

VLJ(r) =

{
4ε
[(σ

r

)12 −
(σ

r

)6 + 1
4

]
r ≤ 21/6σ ,

0 r ≥ 21/6σ ,
(1)
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while consecutive beads along the chain are connected via a FENE (“finitely exten-
sible nonlinear elastic”) potential,

Vch(r) = − k
2

R2
0 ln
(

1− r2

R2
0

)
, (2)

with typical parameters R0/σ = 1.5, kσ2/ε = 30. Chain stiffness can be incorpo-
rated by an additional bond-bending potential, while more complicated architectures
(like stars and tethered membranes) require additional connectivity. Poor solvent
quality is modeled by adding an attractive part to the non-bonded interaction, while
Coulomb interactions (however without local solvent polarization) can be included
by using charged beads.

There are two further ingredients which any good soft-matter model should take
into account: On the one hand, thermal fluctuations are needed in order to drive
Brownian motion and internal reorganization of the conformational degrees of free-
dom. There are, however, special situations where thermal noise can be disregarded,
and ideally the simulation method should be flexible enough to be able to turn the
noise both on and off. On the other hand, hydrodynamic interactions, which will be
the subject of the next subsection, need to be taken into account in most circum-
stances.

2.2 Hydrodynamic Interactions

The term “hydrodynamic interactions” describes the dynamic correlations between
the particles, induced by diffusive momentum transport through the solvent. The
physical picture is the same, whether the particle motion is Brownian (i.e., driven by
thermal noise) or the result of an external force (e.g., sedimentation or electrophore-
sis). The motion of particle i perturbs the surrounding solvent, and generates a flow.
This signal spreads out diffusively, at a rate governed by the kinematic viscosity of
the fluid ηkin = η/ρ (η is the solvent shear viscosity and ρ is its mass density).
On interesting (long) time scales, only the transverse hydrodynamic modes [14]
remain, and the fluid may be considered as incompressible. The viscous momen-
tum field around a particle diffuses much faster than the particle itself, so that the
Schmidt number

Sc =
ηkin

D
(3)

is large. In a molecular fluid, D is the diffusion coefficient of the solvent molecules
and Sc ∼ 102–103, while for soft matter, where D is the diffusion coefficient of the
polymer or colloid, Sc is much larger, up to 106 for micrometer size colloids. The
condition Sc � 1 is an important restriction on the dynamics, which good meso-
scopic models should satisfy. Consider two beads i and j, separated by a distance ri j.
The momentum generated by the motion of i with respect to the surrounding fluid
reaches bead j after a “retardation time” τ ∼ r2

i j/ηkin. After this time the motion of
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j becomes correlated with that of bead i. However, during the retardation time the
beads have traveled a small distance ∼

√
Dτ ∼ ri j/

√
Sc, which is negligible in com-

parison with ri j. Therefore, it is quite reasonable to describe the Brownian motion
of the beads neglecting retardation effects, and consider their random displacements
to be instantaneously correlated.

These general considerations suggest a Langevin description (stochastic differ-
ential equation) for the time evolution of the bead positions ri:

d
dt

riα =∑
j
μiα, jβFc

jβ +Δiα , (4)

where α , β are Cartesian indexes and the Einstein summation convention has been
assumed. Fc

j is the conservative force acting on the jth bead, while the mobility
tensor μi j describes the velocity response of particle i to Fc

j; both Fc
j and μi j depend

on the configuration of the N particles, rN . The random displacements (per unit time)
Δiα are Gaussian white noise variables [15,16] satisfying the fluctuation–dissipation
relation

〈Δiα〉 = 0, (5)
〈
Δiα(t)Δ jβ (t ′)

〉
= 2kBTμiα, jβ δ (t − t ′); (6)

here T is the temperature and kB denotes the Boltzmann constant. In general, the
mobility tensor, μiα, jβ depends on particle position, in which case the stochastic
integral should be evaluated according to the Stratonovich calculus. This is be-
cause during a finite time step a particle samples different mobilities as its position
changes. Numerically simpler is the Ito calculus [15, 16], which uses the mobility
at the beginning of the time step. In this case an additional term needs to be added
to (4),

d
dt

riα =∑
j
μiα, jβFc

jβ + kBT∑
j

∂μiα, jβ

∂ r jβ
+Δiα . (7)

In cases where the divergence of the mobility vanishes, ∂μiα, jβ/∂ r jβ = 0, the Ito
and Stratonovich interpretations coincide.

Processes generated by (4) (Stratonovich) or (7) (Ito) sample trajectories from
a probability distribution in the configuration space of the beads, P

(
rN , t

)
, which

evolves according to a Fokker–Planck equation (Kirkwood diffusion equation):

∂
∂ t

P
(
rN , t

)
= LP

(
rN , t

)
, (8)

with the Fokker–Planck operator

L =∑
i j

∂
∂ riα

μiα, jβ

(
kBT

∂
∂ r jβ

−Fc
jβ

)
. (9)
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Writing the forces as the derivative of a potential,

Fc
iα = − ∂

∂ riα
V
(
rN) , (10)

it follows that the Boltzmann distribution, P ∝ exp(−V/kBT ), is the stationary so-
lution of the Kirkwood diffusion equation; in other words the model satisfies the
fluctuation–dissipation relation.

The mobility tensor can be derived from Stokes-flow hydrodynamics. Consider
a set of spherical particles, located at positions ri with radius a, surrounded by a
fluid with shear viscosity η . Each of the particles has a velocity vi, which, as a
result of stick boundary conditions, is identical to the local fluid velocity on the
particle surface. The resulting fluid motions generate hydrodynamic drag forces Fd

i ,
which at steady state are balanced by the conservative forces, Fd

i + Fc
i = 0. The

commonly used approximation scheme is a systematic multipole expansion, similar
to the analogous expansion in electrostatics [17–21]. For details, we refer the reader
to the original literature [17], where the contributions from rotational motion of the
beads are also considered. As a result of the linearity of Stokes flow, the particle
velocities and drag forces are linearly related,

viα = −∑
j
μiα, jβFd

jβ =∑
j
μiα, jβFc

jβ . (11)

Since μi j describes the velocity response of particle i to the force acting on particle
j, it must be identical to the mobility tensor appearing in the Langevin equation.

In general the mobility matrix is a function of all the particle coordinates, but to
leading order, it is pairwise additive:

μi j =
δi j1

6πηa
+

(1−δi j)
8πηri j

(

1+
ri jri j

r2
i j

)

+
(1−δi j)a2

12πηr3
i j

(

1−3
ri jri j

r2
i j

)

, (12)

where ri j = ri − r j, and 1 denotes the unit tensor. The hydrodynamic interaction
is long-ranged and therefore has a strong influence on the collective dynamics of
suspensions and polymer solutions. This approximate form for the mobility matrix
follows from the assumption that the force density on the sphere surface is constant.
A point multipole expansion, by contrast, generates the Oseen (1/ri j) interaction
at lowest order [22], and can lead to non-positive-definite mobility matrices [23].
Thus, the simplest practical form for the hydrodynamic interaction is the Rotne–
Prager tensor [23] given in (12). Both the Oseen and Rotne–Prager mobilities are
divergence free, and therefore there is no distinction between Ito and Stratonovich
interpretations. However, at higher orders in the multipole expansion, the divergence
is non-zero [24].
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2.3 Computer Simulation Methods and Models

In this section we briefly summarize the Brownian dynamics algorithm and its close
cousin Stokesian Dynamics. We then outline the motivation and development of
several mesoscale methods, some of which are reviewed elsewhere in this series.

2.3.1 Brownian Dynamics

Brownian dynamics is conceptually the most straightforward approach [25, 26].
Starting from the Langevin equation for the particle coordinates, (4), and discretiz-
ing the time into finite length steps h, gives a first-order (Euler) update for the
particle positions,

riα(t +h) = riα(t)+∑
j
μiα, jβFc

jβh+
√

2kBT h∑
j
σiα, jβq jβ . (13)

Here qiα are random variables with

〈qiα〉 = 0, (14)
〈
qiαq jβ

〉
= δi jδαβ , (15)

while the matrix σiα, jβ satisfies the relation

∑
k
σiα,kγσ jβ ,kγ = μiα, jβ . (16)

Note that in (13) we have assumed a divergence-free mobility tensor
Although the number of degrees of freedom has been minimized, this approach is

computationally intensive, and imposes severe limitations on the size of the system
that can be studied. Since every particle interacts with every other particle, the cal-
culation of the mobility matrix scales as O(N2), where N is the number of Brownian
particles. In addition, the covariance matrix for the random displacements requires
a Cholesky decomposition of the mobility matrix, which scales as O(N3) [27]. The
computational costs of Brownian dynamics are so large that even today one cannot
treat more than a few hundred Brownian particles [28].

“Stokesian Dynamics” [29] is an improved version of Brownian dynamics, in
which the mobility tensor takes into account short-range (lubrication) contributions
to the hydrodynamic forces. It also improves the far-field interactions by including
contributions from torques and stresslets, although still higher moments are needed
for accurate results in concentrated suspensions [19]. Stokesian Dynamics is even
more computationally intensive than Brownian dynamics; the determination of the
mobility tensor is already an O(N3) process.

However, there have been two important improvements in efficiency. First,
Fixman [25, 26, 30, 31] has proposed an approximation to σiα, jβ by a truncated
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expansion in Chebyshev polynomials, which has a more favorable scaling than
Cholesky decomposition. Second, the long-range hydrodynamic interactions can be
calculated by Fast Fourier Transforms [32–37], or hierarchical multipole expan-
sions [20]. Accelerated Brownian Dynamics and Stokesian Dynamics algorithms
scale close to linearly in the number of particles, and their full potential is not
yet explored. However, it should be noted that all these methods are based upon
an efficient evaluation of the Green’s function for the Stokes flow, which depends
on the global boundary conditions. For planar boundaries, solutions are avail-
able [21, 38–40], but a more general shape requires a numerical calculation of the
Green’s function between a tabulated set of source and receiver positions [41].

2.3.2 Mesoscale Methods

In view of the computational difficulties associated with Brownian Dynamics, sev-
eral “mesoscale” methods have been developed recently. The central idea is to keep
the solvent degrees of freedom, but to describe them in a simplified fashion, such
that only the most salient features survive. As we have already seen, it is in principle
sufficient to describe the solvent as a Navier–Stokes continuum, or by some suitable
model which behaves like a Navier–Stokes continuum on sufficiently large length
and time scales. At least asymptotically, the solvent dynamics must be described by
the equations

∂tρ +∂α (ρuα) = 0,

∂t (ρuα)+∂β
(
ρuαuβ

)
+∂α p = ∂βσαβ +∂βσ f

αβ + fα , (17)

where ρ is the mass density, ρu the momentum density, p the thermodynamic pres-
sure, f an external force density applied to the fluid, σ the viscous stress tensor,
and σ f the fluctuating (Langevin) stress [42], whose statistical properties will be
discussed in later sections of this article. The viscous stresses are characterized by
the shear and bulk viscosities, η and ηv, which we will assume to be constants,
independent of thermodynamic state and flow conditions:

σαβ = η
(
∂αuβ +∂βuα − 2

3
∂γuγδαβ

)
+ηv∂γuγδαβ . (18)

The advantage of such approaches is their spatial locality, resulting in favorable
O(N) scaling, combined with ease of implementation and parallelization. The dis-
advantage is the introduction of additional degrees of freedom, and of additional
(short) time scales which are not of direct interest. The coupling between solvent
and solute varies from method to method. However, in all cases one takes the masses
and the momenta of the solute particles explicitly into account, and makes sure that
the total momentum is conserved.

Lattice models (Navier–Stokes, lattice Boltzmann) simulate a discretized field
theory in which thermal fluctuations can be added, but also avoided if desired.
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Particle methods (Molecular Dynamics, Dissipative Particle Dynamics, Multi-
Particle Collision Dynamics) simulate a system of interacting mass points, and
therefore thermal fluctuations are always present. The particles may have size and
structure or they may be just point particles. In the former case, the finite solvent size
results in an additional potential of mean force between the beads. The solvent struc-
ture extends over unphysically large length scales, because the proper separation of
scale between solute and solvent is not computationally realizable. In dynamic sim-
ulations of systems in thermal equilibrium [43], solvent structure requires that the
system be equilibrated with the solvent in place, whereas for a structureless sol-
vent the solute system can be equilibrated by itself, with substantial computational
savings [43]. Finally, lattice models have a (rigorously) known solvent viscosity,
whereas for particle methods the existing analytical expressions are only approxi-
mations (which however usually work quite well).

These considerations suggest that lattice methods are somewhat more flexible
and versatile for soft-matter simulations. On the other hand, the coupling between
solvent and immersed particles is less straightforward than for a pure particle sys-
tem. The coupling between solid particles and a lattice-based fluid model will be
discussed in detail in Sect. 4.

2.3.3 Molecular Dynamics

Molecular Dynamics (MD) is the most fundamental approach to soft-matter simu-
lations. Here the solute particles are immersed in a bath of solvent molecules and
Newton’s equations of motion are solved numerically. In this case, it is impossible
to make the solvent structureless – a structureless solvent would be an ideal gas of
point particles, which never reaches thermal equilibrium. Furthermore, the model
interaction potentials are stiff and considerable simulation time is spent following
the motion of the solvent particles in their local “cages.” These disadvantages are so
severe that nowadays MD is rarely applied to soft-matter systems of the type we are
discussing in this article.

2.3.4 Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD), which has become quite popular in the soft-
matter community [44–56], was developed to address the computational limitations
of MD. A very soft interparticle potential, representing coarse-grained aggregates
of molecules, enables a large time step to be used. Furthermore, a momentum-
conserving Galilean-invariant thermostat is included, representing the degrees of
freedom that have been lost in the coarse-graining process. Practically, these two
parts are unrelated, such that it is legitimate to apply the DPD thermostat to a stan-
dard MD system. The DPD thermostat is consistent with macroscopic isothermal
thermodynamics. Since this already introduces interparticle collisions, it is possible
to run DPD using an ideal gas solvent and still achieve thermal equilibrium.
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The key innovation in DPD is to apply the thermostat to particle pairs. A fric-
tional damping is applied to the relative velocities between each neighboring pair,
and a corresponding random force is added in a pairwise fashion also, such that
Newton’s third law holds exactly. The implementation is as follows. We define
two functions ζ (r) ≥ 0, the relative friction coefficient for particle pairs with in-
terparticle distance r, and σ(r) ≥ 0, characterizing the strength of the stochastic
force applied to the same particle pair. The fluctuation–dissipation theorem requires
that

σ2(r) = kBTζ (r). (19)

The functions have compact support, so that only near neighbors need be taken into
account.

The frictional force on particle i is determined by projecting the relative velocities
onto the interparticle separation (r̂i j = ri j/

∣
∣ri j
∣
∣):

Fd
i = −∑

j
ζ (ri j) [(vi −v j) · r̂i j] r̂i j, (20)

which conserves momentum exactly, ∑i Fd
i = 0. Similarly, the stochastic forces are

directed along the interparticle separation, again so that momentum is conserved
pair-by-pair,

Ff
i =∑

j
σ(ri j)ηi j(t) r̂i j. (21)

The noise ηi j satisfies the relations ηi j = η ji,
〈
ηi j
〉

= 0, and

〈
ηi j(t)ηkl(t ′)

〉
= 2(δikδ jl +δilδ jk)δ (t − t ′), (22)

such that different pairs are statistically independent and ∑i Ff
i = 0. The equations

of motion for a particle of mass mi and momentum pi are

d
dt

ri =
1
mi

pi, (23)

d
dt

pi = Fc
i +Fd

i +Ff
i . (24)

Exploiting the relation between this stochastic differential equation and its Fokker–
Planck equation, it can be shown that the fluctuation–dissipation theorem holds [46],
and that the method therefore simulates a canonical ensemble. DPD can be extended
to thermalize the perpendicular component of the interparticle velocity as well,
thereby allowing more control over the transport properties of the
model [49, 57].
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2.3.5 Multi-Particle Collision Dynamics

This method [58–62] works with a system of ideal-gas particles and therefore has
no artificial depletion forces. Free streaming of the particles,

ri(t +h) = ri(t)+hvi(t), (25)

alternates with momentum and energy conserving collisions, which are imple-
mented via a Monte Carlo procedure:

• Sub-divide the simulation volume into a regular array of cells.
• For each cell, determine the set of particles residing in it. For one particular cell,

let these particles be numbered i = 1, . . . ,n. Then in each box:
• Determine the local center-of-mass velocity:

vCM =
1
n

n

∑
i=1

vi. (26)

• For each particle in the cell, perform a Galilean transformation into the local
center-of-mass system:

ṽi = vi −vCM. (27)

• Within the local center-of-mass system, rotate all velocities within the cell by a
random rotation matrix R:

ṽ′i = Rṽi. (28)

• Transform back into the laboratory system:

v′i = ṽ′i +vCM. (29)

By suitable random shifts of the cells relative to the fluid, it is possible to recover
strict Galilean invariance [59, 60]. Multi-Particle Collision Dynamics (MPCD) re-
sults in hydrodynamic behavior on large length and time scales, and is probably the
simplest and most efficient particle method to achieve this.

2.3.6 Lattice Boltzmann

Here one solves the Boltzmann equation, known from the kinetic theory of gases, in
a fully discretized fashion. Space is discretized into a regular array of lattice sites,
time is discretized, and velocities are chosen such that one time step will connect
only nearby lattice sites. Free streaming along the lattice links alternates with local
on-site collisions. Care must be taken to restore isotropy and Galilean invariance
in the hydrodynamic limit, and asymptotic analysis is an indispensable tool in this
process. Further details will be provided in the following sections.
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2.3.7 Navier–Stokes

It is possible to start from a discrete representation of (17) but this has not been
particularly popular in soft-matter simulations, due to the difficulty of including
thermal fluctuations (but see [63]). Finite-difference methods share many techni-
cal similarities with lattice Boltzmann (LB) and are roughly comparable in terms
of computational resources. However, to our knowledge, no detailed benchmark
comparisons are available as yet. In order to be competitive with LB, we believe
that the solver must (1) make sure that mass and momentum are conserved within
machine accuracy, as is the case for LB, and (2) not work in the incompressible
limit, in order to avoid the costly non-local constraints imposed by the typical Pois-
son solver for the pressure. The incompressible limit is an approximation, which
eliminates the short time scales associated with wave-like motion. However, in soft
matter the solute particles must be simulated on short inertial time scales, which
requires that the solvent is simulated on rather short time scales as well. For this
reason, we believe that enforcing an incompressibility constraint does not pose a
real advantage, and it is instead preferable to allow for finite compressibility, such
that one obtains an explicit and local algorithm. This idea is analogous to the Car–
Parrinello method [64], where the Born–Oppenheimer constraint is also discarded,
in favor of an approximate but adequate separation of time scales. For simulations
of soft-matter systems coupled to a Navier–Stokes background, see [65–74].

3 The Fluctuating Lattice-Boltzmann Equation

The motivation for the development of lattice gas cellular automata (LGCA) [75,76]
was to apply a highly simplified MD to simulations of hydrodynamic flows. In
LGCA, particles move along the links of a regular lattice, typically cubic or tri-
angular. Each lattice direction is encoded with a label i and a vector hci connects
neighboring pairs of sites. During each time step h, all particles with a direction i
are displaced hci to an adjacent lattice site; thus ci is the (constant) velocity of par-
ticles of type i. Interparticle interactions are reduced to collisions between particles
on the same lattice site, such that the conservation laws for mass and momentum are
satisfied; in single speed LGCA models [75, 76], mass conservation implies energy
conservation as well. The LB method [77–80] was developed to reduce the thermal
noise in LGCA, which requires extensive averaging to obtain statistically significant
results.

The LB model preserves the structural simplicity of LGCA, but substitutes an
ensemble-averaged collision operator for the detailed microscopic dynamics of the
LGCA. The hydrodynamic flow fields develop without thermal noise, but the un-
derlying connection with statistical mechanics is lost (Sect. 3.1). The LB model
turns out to be more flexible than LGCA, and there is now a rich literature that
includes thermal [81–86] and multiphase flows, involving both liquid–gas coexis-
tence and multicomponent mixtures [87–96]. In the present article, we will consider
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only single-phase flows of a single solvent species, such that we can describe the
dynamics in terms of a single particle type. The algorithm can be summarized by
the equation

νi(r+ cih, t +h) = ν�
i (r, t) = νi(r, t)+Δi (ν(r, t)) , (30)

where νi(r, t) is the number of particles that, at the discrete time t just prior to
collision, reside at the lattice site r, and have velocity ci; ν�

i (r, t) indicates the ve-
locity distribution immediately after collision. The difference Δi between the pre-
and post-collision states is called the “collision operator” and depends on the com-
plete set of populations at the site ν(r, t). The left-hand side of (30) describes the
advection of the populations along the links connecting neighboring lattice sites.
The velocity set ci is chosen such that each new position r+ cih is again at a lattice
site; ci = 0 is possible.

For simplicity and computational efficiency, the number of velocities should be
small. Therefore the set of velocities, ci, is typically limited to two or three neighbor
shells, chosen to be compatible with the symmetry of the lattice. In two dimensions
a single shell of six neighbors is sufficient for hydrodynamic flows, but a single
set of cubic lattice vectors leads to anisotropic momentum diffusion, even at large
spatial scales. Thus, LB models employ a judicious mixture of neighboring shells,
suitably weighted so that isotropy is recovered. We use the classification scheme
introduced by Qian et al. [97]: for instance D2Q9 refers to an LB model on a square
lattice in two dimensions, using nine velocities (zero, four nearest neighbors, four
next-nearest neighbors), while D3Q19 indicates a three-dimensional model on a
simple cubic lattice with 19 velocities (zero, six nearest neighbors, 12 next-nearest
neighbors).

3.1 Fluctuations

The difference between lattice gas and LB lies in the nature of the νi. In a lattice gas
νi is a Boolean variable (i.e., only the values zero and one are allowed), while in the
LB equation it is a positive real-valued variable. In Sect. 3.6 we will consider the
case where νi is a large positive integer, a conceptual model we call a “Generalized
Lattice Gas” (GLG). Thinking of these models as a simplified MD, and considering
fluctuations in νi, it becomes clear what the key difference between LGCA and
the LB equation is. We define a dimensionless “Boltzmann number,” Bo, by the
fluctuations in νi at a single site,

Bo =

(〈
ν2

i
〉
−〈νi〉2

)1/2

〈νi〉
, (31)
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where 〈. . .〉 denotes the ensemble average. One could define Boltzmann numbers for
other observables, but they would all produce similar values. The important point
is that Bo tells us how coarse-grained the model is, compared to microscopic MD:
Bo ∼ 1 (the maximum value) corresponds to a fully microscopic model where fluc-
tuations are of the same order as the mean. This is exactly the case for LGCA, which
should therefore be viewed as a simplified, but not coarse-grained MD. Conversely,
deterministic LB algorithms, at sufficiently small Reynolds numbers, and with time-
independent driving forces, bring the system to a stationary state with well-defined
values for the νi. In other words, they are characterized by Bo = 0, which is the
minimal value, corresponding to entirely deterministic physics.

Originally, LGCA and LB algorithms were developed to simulate macroscopic
hydrodynamics. Here, a large Boltzmann number (order 1) is undesirable, since
the hydrodynamic behavior is only revealed after extensive sampling. For many
macroscopic applications a deterministic LB simulation at Bo = 0 is hence entirely
appropriate. In reality, however, the Boltzmann number is finite, since the spatial
domain in the physical system corresponding to a single lattice site is also finite. In
soft-matter applications the spatial scales are so small that these fluctuations do need
to be taken into account, although in many cases Bo is fairly small. This suggests
it would be advantageous to introduce small thermal fluctuations into the LB algo-
rithm, in a controlled fashion, by means of a stochastic collision operator [98–100].
The fluctuation–dissipation relation can be satisfied by enforcing consistency with
fluctuating hydrodynamics [42] on large length and time scales. An important re-
finement is to thermalize the additional degrees of freedom that are not directly
related to hydrodynamics [101], which leads to equipartition of fluctuation energy
on all length scales. A comprehensive understanding of these approaches in terms
of the statistical mechanics of LB systems has been achieved only recently [102].

The number variables, νi, can be connected to the hydrodynamic fields, mass
density ρ(r, t), momentum density j(r, t), and fluid velocity u(r, t) (j = ρu), by
introducing the mass of an LB particle, mp, and the mass density parameter

μ =
mp

b3 ; (32)

here b is the lattice spacing and a three-dimensional lattice has been assumed. We
then use the mass densities of the individual populations,

ni(r, t) = μνi(r, t), (33)

to re-write the LB equation as

ni(r+ cih, t +h) = n�
i (r, t) = ni(r, t)+Δi (n(r, t)) . (34)

The mass and momentum densities, ρ and j, are moments of the ni’s with respect to
the velocity vectors,
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ρ(r, t) =∑
i

ni(r, t), (35)

j(r, t) =∑
i

ni(r, t)ci, (36)

and therefore, the collision operator must satisfy the constraints of mass and mo-
mentum conservation,

∑
i
Δi =∑

i
Δici = 0. (37)

The LB algorithm has both locality and conservation laws built in, but two impor-
tant symmetries have been lost. The system will in general exhibit cubic anisotropy,
due to the underlying lattice symmetries, and violate Galilean invariance, due to
the finite number of velocities. Isotropy can be restored in the large-scale limit by
a careful choice of velocities and collision operator; however, the broken Galilean
invariance restricts the method to flows with u 	 ci. Since the speed of sound cs,
the maximum velocity with which any signal can travel through the system, is of
the order of the ci, the condition actually means low Mach number (Ma) flow,

Ma = u/cs 	 1. (38)

In soft-matter applications, variations in fluid density are small and there is a uni-
versal equation of state characterized by the pressure at the mean fluid density and
temperature, p0 = p(ρ0,T ), and the speed of sound cs = (∂ p/∂ρ)1/2 [42],

p = p0 +(ρ−ρ0)c2
s . (39)

Within an unimportant constant (p0 −ρ0c2
s ), (39) can be replaced by the relation

p = ρc2
s , (40)

which fits well to the linear structure of (34). The value of cs is immaterial except
that it establishes a time-scale separation between sound propagation and viscous
diffusion of momentum. For this reason, a model where cs is unphysically small
may be used, so long as the dimensionless number Cη = ρcsl/η is sufficiently large;
here l is a characteristic length in the system and η is the shear viscosity of the fluid.
For polymers and colloids, Cη ∼ 10–1,000, but values of Cη in excess of 10 lead to
quantitatively similar results.

The simplest equation of state of the form of (40) is an ideal gas,

p =
ρ

mp
kBT, (41)

where T is the absolute temperature and kB Boltzmann’s constant. Comparison with
(40) yields

kBT = mpc2
s . (42)
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The temperature is then determined by choosing values for the discretization para-
meters b and h (cs ∼ b/h), and the LB particle mass mp. The parameter mp controls
the noise level in stochastic LB simulations [102]: the smaller mp (at fixed cs), the
smaller the temperature (or the noise level). This makes physical sense, since small
mp means that a fixed amount of mass ρb3 is distributed onto many particles, and
therefore the fluctuations are small.

In this section we will study the connection between the LB equation, (34), and
the equations of fluctuating hydrodynamics [42],

∂tρ +∂α jα = 0, (43)
∂t jα +∂β

(
ρc2

sδαβ +ρuαuβ
)

= ∂βσαβ +∂βσ f
αβ . (44)

The Greek indexes denote Cartesian components, δαβ is the Kronecker delta, and
the Einstein summation convention is implied. The viscous stress has a Newtonian
constitutive law,

σαβ = ηαβγδ ∂γuδ , (45)

and for an isotropic fluid

ηαβγδ = η
(
δαγδβδ +δαδ δβγ −

2
3
δαβ δγδ

)
+ηvδαβ δγδ , (46)

with shear and bulk viscosities η and ηv. The fluctuating stress tensor, σ f
αβ , is a

Gaussian random variable characterized by zero mean,
〈
σ f
αβ

〉
= 0, and a covariance

matrix 〈
σ f
αβ (r, t)σ f

γδ
(
r′, t ′

)〉
= 2kBTηαβγδ δ

(
r− r′

)
δ
(
t − t ′

)
. (47)

In the limit that T → 0, σ f
αβ vanishes, and the Navier–Stokes equations are recov-

ered.
We begin our analysis with a general description of the dynamics of the LB

equation, based on a Chapman–Enskog expansion (Sect. 3.2). Then we consider the
equilibrium distribution for the D3Q19 model (Sect. 3.3), followed by deterministic
(Sect. 3.4) and stochastic (Sect. 3.5) collision operators. Finally, we consider the
connection of the fluctuating LB model to statistical mechanics (Sect. 3.6) and the
effects of external forces (Sect. 3.7).

3.2 Chapman–Enskog Expansion

The Navier–Stokes description of a fluid is more coarse-grained than the original
LB equation, and to connect the microscopic scales with the hydrodynamic scales
we follow a standard asymptotic analysis [103]. We first introduce a dimensionless
scaling parameter ε 	 1 and write
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r1 = εr. (48)

The idea is to measure spatial positions with a ruler that has such a coarse scale that
details at the lattice level are not resolved. The position r1 then corresponds to the
number read off from this coarse-grained ruler; for example instead of talking about
1,000 nm, we talk about 1μm. For two points to be distant on the hydrodynamic
scale, it is not sufficient that |Δr| is large, but rather that |Δr1| is large. However,
from the perspective of practical computation, the degree of coarse graining is never
as extensive as implied by our analysis; the calculations would take far too long.
Instead there is usually only a few grid points separating the lattice scale from the
smallest hydrodynamic scale. Surprisingly the LB method can be quite accurate,
even in these circumstances [99, 104].

In a similar way, we can also introduce a coarse-grained clock for the time vari-
able, and write

t1 = εt. (49)

The fact that we choose the same factor ε for both space and time is related to
the typical scaling of wave-like phenomena, where the time scale of a process is
linearly proportional to the corresponding length scale. However, hydrodynamics
also includes diffusion of momentum, where the time scale is proportional to the
square of the length scale. These processes occur on a much longer time scale, and
to capture the slow dynamics we introduce a second clock that is even more coarse-
grained,

t2 = ε2t. (50)

We can therefore distinguish between “short times” on the hydrodynamic scale,
characterized by ts = t1/ε , and “long times,” where tl = t2/ε2. Both ts and tl are
implicitly large on the lattice scale, with the hydrodynamic limit being reached as
ε → 0. But once again, practical computation limits the separation between the time
scales h, ts, and tl to one or two orders of magnitude each.

In the “multi-time scale” analysis, the LB population densities may be consid-
ered to be functions of the coarse-grained position and times, r1, t1, and t2; ni ≡
ni (r1, t1, t2). When the algorithm proceeds by one time step, t → t +h, t1 → t1 +εh,
and t2 → t2 +ε2h. The LB equation in terms of the coarse-grained variables is then,

ni(r1 + εcih, t1 + εh, t2 + ε2h)−ni(r1, t1, t2) = Δi (n(r1, t1, t2)) . (51)

The population densities are slowly varying functions of coarse-grained vari-
ables, and we may obtain hydrodynamic behavior by a Taylor expansion of ni (51)
to second order in powers of ε:

ni (x+δx) = ni (x)+∑
k

∂ni

∂xk
δxk +

1
2∑kl

∂ 2ni

∂xk∂xl
δxkδxl + · · · , (52)

where we use x to indicate the coarse-grained variables, [r1, t1, t2]. Since the distri-
bution function itself depends on the degree of coarse-graining, we must take the ε
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dependence of the ni and Δi into account as well:

ni = n(0)
i + εn(1)

i +O(ε2), (53)

Δi = Δ (0)
i + εΔ (1)

i + ε2Δ (2)
i +O(ε3). (54)

The conservation laws for mass and momentum must hold independently of the
value of ε , and thus at every order k:

∑
i
Δ (k)

i =∑
i
Δ (k)

i ci = 0. (55)

Inserting these expansions into (51), and collecting terms at different orders of ε ,
we obtain:

• At order ε0,
Δ (0)

i = 0 (56)

• At order ε1,
(∂t1 + ci ·∂r1)n(0)

i = h−1Δ (1)
i (57)

• At order ε2,

∂t2n(0)
i +

h
2

(∂t1 + ci ·∂r1)
2 n(0)

i +(∂t1 + ci ·∂r1)n(1)
i = h−1Δ (2)

i (58)

Subsequently, it will prove useful to eliminate the second occurrence of n(0)
i from

(58), by using (57):

∂t2n(0)
i +

1
2

(∂t1 + ci ·∂r1)
(

n�(1)
i +n(1)

i

)
= h−1Δ (2)

i , (59)

where n�
i = ni +Δi is the post-collision population in direction i.

The multi-time-scale expansion of (51) is based on the physical time-scale sep-
aration between collisions (t ∼ h), sound propagation (t ∼ h/ε), and momentum
diffusion (t ∼ h/ε2). Equations (56)–(58) make the implicit assumption that these
three relaxations can be considered separately, which allows the collision operator
at order k +1 to be calculated from the distribution functions at order k. In essence,
the collision dynamics at order k + 1 is slaved to the lower-order distributions. The
zeroth-order collision operator must be a function of n(0) only,

Δ (0)
i = Δi(n(0)), (60)

which, in conjunction with (56), shows that n(0) is a collisional invariant; thus we
can associate n(0) with the equilibrium distribution neq [105]. In order to avoid spu-
rious conserved quantities, the equilibrium distribution should be a function of local
values of the conserved variables, ρ and j, only. In a homogeneous system, with
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fixed mass and momentum densities, neq(ρ, j) = n(0)(ρ, j) is stationary in time. A
stochastic collision operator (see Sect. 3.5) cannot satisfy (56) and therefore must
enter the Chapman–Enskog expansion at order ε .

From (53) we can derive analogous ε expansions for ρ and j,

ρ = ρ(0) + ερ(1) + ε2ρ(2) +O(ε3), (61)

j = j(0) + εj(1) + ε2j(2) +O(ε3). (62)

However, inserting these expansions into n(0)
i (ρ, j), shows that

0 = ρ(1) = ρ(2) = · · · , (63)

0 = j(1) = j(2) = · · · ; (64)

otherwise n(0)
i would have contributions of order ε and above, in contradiction to

(56). The mass and momentum densities can therefore be defined as moments of the
equilibrium distribution as well,

∑
i

neq
i = ρ, (65)

∑
i

neq
i ci = j. (66)

We can analyze the dynamics of the LB model on large length and time scales
by taking moments of (57) and (59) with respect to the LB velocity set ci. From the
zeroth moment, ∑i · · ·, we obtain the continuity equation on the t1 time scale (55),

∂t1ρ +∂1α jα = 0, (67)

and incompressibility on the t2 time scale (55), (63), and (64)

∂t2ρ = 0. (68)

In (67) we have used the shorthand notation ∂1α for the α component of the spatial
derivative ∂r1 .

The first moment, ∑i · · ·ciα , leads to momentum conservation equations on both
time scales (55), (63), and (64):

∂t1 jα +∂1βπ
(0)
αβ = 0, (69)

∂t2 jα +
1
2
∂1β

(
π�(1)
αβ +π(1)

αβ

)
= 0, (70)
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where παβ is the momentum flux or second moment,1

παβ =∑
i

niciαciβ . (71)

Momentum is conserved on both the t1 and t2 time scales, because, in the hydro-
dynamic limit, the coupling between acoustic and diffusive modes is very weak.
First, sound waves propagate with negligible viscous damping; then the residual
pressure field in a nearly incompressible fluid relaxes by momentum diffusion. We
can write the conservation laws on each time scale separately, as in (69) and (70),
or combine them into a single equation in the lattice-scale variables r = r1/ε and
t = t1/ε = t2/ε2. The hydrodynamic fields depend on r and t parametrically, through
their dependence on the coarse-grained variables r1, t1, t2. Using ∂α for a component
of ∂r, we have

∂α = ε∂1α , (72)
∂t = ε∂t1 + ε2∂t2 . (73)

The combined equations for the mass and momentum densities on the lattice space
and time scales are then:

∂tρ +∂α jα = 0, (74)

∂t jα +∂βπ
eq
αβ +

1
2
∂β
(
π�neq
αβ +πneq

αβ

)
= 0, (75)

where from (53), πeq
αβ = π(0)

αβ and πneq
αβ = επ(1)

αβ .
Finally, we can derive a relation between the pre-collision and post-collision mo-

mentum fluxes, παβ and π�
αβ , by taking the second moment of (57):

∂t1π
(0)
αβ +∂1γΦ

(0)
αβγ = h−1

(
π�(1)
αβ −π(1)

αβ

)
, (76)

where Φαβγ is the third moment of the distribution,

Φαβγ =∑
i

niciαciβ ciγ . (77)

We note that πeq
αβ is a collisional invariant and therefore remains unchanged by the

collision process. In terms of the lattice variables,

π�neq
αβ = πneq

αβ +h
(
∂tπeq

αβ +∂γΦeq
αβγ

)
. (78)

1 There is a notational inconsistency in [102]. In (71) and (73) of that paper the superscript “neq”
should be replaced by a superscript 1, and in (79) Qαβ should be Q1

αβ .
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Equation (74) shows that continuity (43) is automatically satisfied by any LB
model. The Navier–Stokes equation (44) will be satisfied, if we succeed in ensuring
that the Euler stress ρc2

sδαβ +ρuαuβ , the Newtonian viscous stress, σαβ (45), and
the fluctuating stress σ f

αβ (47) are given correctly by the sum of the momentum
fluxes in (75). Since πeq

αβ depends only on ρ and j, it must be identified with the
Euler stress:

πeq
αβ = ρc2

sδαβ +ρuαuβ . (79)

The viscous stress and fluctuating stresses must then be contained in (π�neq
αβ +

πneq
αβ )/2.

This is about as far as we can go in complete generality. In order to proceed fur-
ther we need to consider specific equilibrium distributions and collision operators.
The results of this subsection suggest the following approach towards construct-
ing an LB method which (asymptotically) simulates the fluctuating Navier–Stokes
equations:

• Find a set of equilibrium populations neq
i such that:

–
∑

i
neq

i = ρ . (80)

–
∑

i
neq

i ci = j . (81)

–
∑

i
neq

i ciαciβ = ρc2
sδαβ +ρuαuβ . (82)

• Find a collision operator Δi with the properties:

–
∑

i
Δi = 0 . (83)

–
∑

i
Δici = 0 . (84)

– The nonequilibrium momentum flux (π�neq
αβ +πneq

αβ )/2 must be connected with
the sum of viscous and fluctuating stresses.

In the following subsections, we will follow this procedure for the three-dimensional
D3Q19 model.

3.3 D3Q19 Model I: Equilibrium Populations

Early LB models [78–80] inherited their equilibrium distributions from LGCA,
along with macroscopic manifestations of the broken Galilean invariance: an
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incorrect advection velocity and a velocity-dependent pressure. Subsequently a
new equilibrium distribution was proposed that restored Galilean invariance at the
macroscopic level [97, 106], but with the loss of the connection to statistical me-
chanics. The idea was to ensure that the first few moments of neq

i matched those
derived from the Maxwell–Boltzmann distribution for a dilute gas [105],

n(c|ρ,u,T ) = ρ
(

mp

2πkBT

)3/2

exp
[
− mp

2kBT
(c−u)2

]
: (85)

specifically;

∫
d3cn(c) = ρ, (86)

∫
d3cn(c)cα = ρuα , (87)

∫
d3cn(c)cαcβ =

ρkBT
mp

δαβ +ρuαuβ = ρc2
sδαβ +ρuαuβ . (88)

With these moments the Euler hydrodynamic equations [cf. (43) and (44)],

∂tρ +∂α jα = 0, (89)
∂t jα +∂β

(
ρc2

sδαβ +ρuαuβ
)

= 0, (90)

may be derived from the continuum version of the Chapman–Enskog expansion
[105]. The viscous stress arises from the non-equilibrium distribution (cf. Sect. 3.2).

An expansion of the Maxwell–Boltzmann equilibrium distribution (85) at low
velocities suggests the following ansatz [97, 106] for the discrete velocity equilib-
rium,

neq
i (ρ,u) = aciρ

(
1+Au · ci +B(u · ci)2 +Cu2) (91)

with suitably adjusted coefficients aci , A, B, and C. The rationale for (91) is that
the equilibrium momentum flux is quadratic in the flow velocity u (88); it therefore
makes sense to construct a similar form for neq

i . A drawback of (91) is that neq
i may

be negative if u becomes sufficiently large. This can be avoided by more general
equilibrium distributions, which are equivalent to (91) up to order u2 [107–109].

The prefactors aci > 0 are normalized such that

∑
i

aci = 1, (92)

which ensures that (65) is satisfied in the special case u = 0. The notation in (91) was
chosen in order to indicate explicitly that the weights depend only on the absolute
value of the speed ci, but not its direction; this follows from the rotational symme-
tries of the LB model. The coefficients A, B, C are here independent of ci. There
are other LB models, like D3Q18 [106], where this condition is not imposed, and
A, B, and C depend on ci as well; however, such models are only hydrodynamically
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correct in the incompressible limit [98], and cannot be straightforwardly interpreted
in terms of statistical mechanics (see Sect. 3.6). We will not consider such models.

In a cubic lattice, symmetry dictates the following relations for the low-order
velocity moments of the weights,

∑
i

aciciα = 0, (93)

∑
i

aciciαciβ = C2 δαβ , (94)

∑
i

aciciαciβ ciγ = 0, (95)

∑
i

aciciαciβ ciγciδ = C′
4 δαβγδ +C4

(
δαβδγδ +δαγδβδ +δαδ δβγ

)
, (96)

where the values of the parameters C2, C4 and C′
4 depend on the details of the choice

of the coefficients aci . The tensor δαβγδ is unity when α = β = γ = δ and zero
otherwise. Rotational invariance of the stress tensor requires that C′

4 = 0.
The results in (92)–(96) allow us to calculate the moments of (91) up to second

order. Consistency with the mass density, momentum density and Euler stress for a
given ρ and u, uniquely determines the equilibrium distribution,

neq
i (ρ,u) = aciρ

(

1+
u · ci

c2
s

+
(u · ci)

2

2c4
s

− u2

2c2
s

)

, (97)

with the speed of sound c2
s = C2, and the weights adjusted such that C′

4 = 0 and
C4 =C2

2 . These two latter conditions, together with the normalization condition (92),
form a set of three equations for the coefficients aci . Therefore at least three speeds,
or three shells of neighbors, are needed to satisfy the constraints. We consider the
D3Q19 model, which incorporates the three smallest speeds on a simple-cubic lat-
tice. Here one obtains a0 = 1/3 for the stationary particles, a1 = 1/18 for the six
nearest-neighbor directions, and a

√
2 = 1/36 for the 12 next-nearest neighbors. The

speed of sound is then c2
s = (1/3)(b/h)2.

We now turn back to the results of the previous subsection, since the explicit form
of neq

i allows us to pursue the analysis further. We first calculate the equilibrium
third-order moment (77) using (97):

Φeq
αβγ = ρc2

s
(
uαδβγ +uβ δαγ +uγδαβ

)
. (98)

In fact (98) is model independent to order u2, since only the linear term in u ·ci con-
tributes. To close the hydrodynamic equations for the mass and momentum densities
[(74) and (75)] we need expressions for the pre-collision and post-collision momen-
tum fluxes, π�neq

αβ and πneq
αβ . From (76) we can obtain an expression for π�neq

αβ −πneq
αβ

in terms of the velocity gradient,

ρc2
s
(
∂1αuβ +∂1βuα

)
= h−1

(
π�(1)
αβ −π(1)

αβ

)
, (99)
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where we have used (67) and (69) to rewrite the time derivative of π(0)
αβ in terms of

spatial derivatives of ρ and u. In arriving at (99), we have neglected terms of order
u3, consistent with the low Mach number limit we are considering. Finally, (99) can
be rewritten in terms of the unscaled variables,

π�neq
αβ −πneq

αβ = hρc2
s
(
∂αuβ +∂βuα

)
. (100)

To obtain a further relation for the non-equilibrium momentum fluxes, we must
consider the collision operator in more detail.

3.4 D3Q19 Model II: Deterministic Collision Operator

In a deterministic model, the collision operator Δi is a unique function of the distrib-
ution n. Therefore, we can obtain the Chapman–Enskog ordering of Δi via a Taylor
expansion with respect to n:

Δi (n) = Δi

(
n(0) + εn(1) + ε2n(2) + · · ·

)

= Δi

(
n(0)
)

+ ε∑
j

(
∂Δi

∂n j

)∣∣∣∣
n(0)

n(1)
j +O

(
ε2) . (101)

The analysis of Sect. 3.2 has shown that Δi(n(0)) = 0 (60), and that hydrodynamic
behavior is determined by the order ε1 collision operator,

Δ (1)
i =∑

j

(
∂Δi

∂n j

)∣∣
∣∣
n(0)

n(1)
j . (102)

Although Δ (2)
i appears at second order in the Chapman–Enskog expansion (58), it

makes no contribution to the change in mass and momentum densities (55). How-
ever, Δ (1)

i contributes to a first-order change in the viscous stress (78), which enters
into the momentum equation at second order (70). It is therefore reasonable to con-
struct the collision operator with the form of Δ (1)

i :

Δi =∑
j
Li jn

neq
j , (103)

where Li j is a matrix of constant coefficients. Thus to lowest order in ε , the collision
process is a linear transformation between the non-equilibrium distributions for each
velocity:

n�neq
i =∑

j
(δi j +Li j)nneq

j . (104)
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The simplest such collision operator is the lattice BGK (Bhatnagar–Gross–Krook)
model [77], Li j = −δi j/τ , where the collisional relaxation time τ is related to
the viscosity. Here we will work within the more general framework of the multi-
relaxation time (MRT) model [110], for which the lattice BGK model is a special
case.

Polynomials in the dimensionless velocity vectors, ĉi = ci/c (c = b/h), form a
basis for a diagonal representation of Li j [110], which allows for a more general
and stable LB model with the same level of computational complexity as the BGK
version [111]. Orthogonal basis vectors, ek, are constructed from outer products of
the vectors ĉi. For example:

e0i = 1, (105)
e1i = ĉix, (106)
e2i = ĉiy, (107)
e3i = ĉiz. (108)

There are six quadratic polynomials, which are given in Table 1 as basis vectors
e4 − e9. A Gram–Schmidt procedure ensures that all the basis vectors are mutually

Table 1 Basis vectors of the D3Q19 model. Each row corre-
sponds to a different basis vector, with the actual polynomial
in ĉiα = ciα/c shown in the second column. The normaliz-
ing factor for each basis vector is in the third column. The
polynomials form an orthogonal set when qci = aci (109)

k eki wk

0 1 1
1 ĉix 1/3
2 ĉiy 1/3
3 ĉiz 1/3
4 ĉ2

i −1 2/3
5 3ĉ2

ix − ĉ2
i 4/3

6 ĉ2
iy − ĉ2

iz 4/9
7 ĉixĉiy 1/9
8 ĉiyĉiz 1/9
9 ĉizĉix 1/9
10 (3ĉ2

i −5)ĉix 2/3
11 (3ĉ2

i −5)ĉiy 2/3
12 (3ĉ2

i −5)ĉiz 2/3
13 (ĉ2

iy − ĉ2
iz)ĉix 2/9

14 (ĉ2
iz − ĉ2

ix)ĉiy 2/9
15 (ĉ2

ix − ĉ2
iy)ĉiz 2/9

16 3ĉ4
i −6ĉ2

i +1 2
17 (2ĉ2

i −3)(3ĉ2
ix − ĉ2

i ) 4/3
18 (2ĉ2

i −3)(ĉ2
iy − ĉ2

iz) 4/9
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orthogonal with respect to a set of positive weights, qci > 0,

∑
i

qciekieli = wkδkl . (109)

The weights are restricted by the same symmetries as the coefficients in the equilib-
rium distribution aci , but are not necessarily the same; in the D3Q19 model there are
then three independent values of qci . The normalization factors, wk > 0, are related
to the choice of basis vectors

wk =∑
i

qcie2
ki. (110)

Within the D3Q19 model, polynomials up to second order are complete, but at third
order there is some deflation; for example, ĉ3

ix is equivalent to ĉix. In fact, there are
only six independent third-order and three independent fourth-order polynomials in
the D3Q19 model. Beyond fourth order, all polynomials deflate to lower orders, so
the basis vectors in Table 1 form a complete set for the D3Q19 model.

The basis vectors can be used to construct a complete set of moments of the LB
distribution,

mk =∑
i

ekini, (111)

which allows for a diagonal representation of the collision operator [110, 112], as
will be made clear later. Hydrodynamic variables are related to the moments up to
quadratic order in ĉi (cf. Table 1):

ρ = m0, (112)
jx = m1c, (113)
jy = m2c, (114)
jz = m3c, (115)
πxx = (m0 +m4 +m5)c2/3, (116)
πyy = (2m0 +2m4 −m5 +3m6)c2/6, (117)

πzz = (2m0 +2m4 −m5 −3m6)c2/6, (118)
πxy = m7c2, (119)

πyz = m8c2, (120)

πzx = m9c2. (121)

There are additional degrees of freedom in the D3Q19 model beyond those required
for the conserved variables and stresses (112)–(121). These “kinetic” or “ghost”
[101] moments do not play a role in the large-scale dynamics [102], but they are
important for proper thermalization [101] and near boundaries [113].

The basis vectors in Table 1 are complete but not unique. Besides trivial varia-
tions in the Gram–Schmidt orthogonalization, there is a substantive difference that
depends on the choice of the weighting factors qci : these factors determine both the
result of the orthogonalization procedure, as well as the back transformation from
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moments mk to populations ni. This is most easily seen from the observation that
(109) can be rewritten as the standard orthonormality relation [102]

∑
i

êkiêli = δkl , (122)

where we have introduced the orthonormal basis vectors

êki =
√

qci

wk
eki. (123)

Equation (122) implies the backward relation

∑
k

êkiêk j = δi j, (124)

or, in terms of unnormalized basis vectors,

∑
k

w−1
k ekiek j =

1
qci

δi j. (125)

In the normalized basis the transformations between distribution and moments are

m̂k =
mk√
wk

=∑
i

êki
ni√
qci

=∑
i

êkin̂i, (126)

n̂i =
ni√
qci

=∑
k

êki
mk√
wk

=∑
k

êkim̂k; (127)

we will make use of these relations in Sect. 3.5. The analog of (104) for the normal-
ized basis is

n̂�neq
i =∑

j

(
δi j + L̂i j

)
n̂neq

j , (128)

with

L̂i j =

√
qc j

qci
Li j. (129)

In terms of unnormalized basis vectors the back transformation is given by

ni = qci∑
k

w−1
k ekimk. (130)

The most obvious choice is to set qci = 1 [110, 112], but then the basis vectors
of the kinetic modes, e10–e18, are not orthogonal to the equilibrium distribution,
and the moments m10–m18 have both equilibrium and non-equilibrium contribu-
tions [110, 112]. The statistical mechanical connection is more straightforward if
the weights qci are matched to the weights in the equilibrium distribution, setting
qci = aci ; this eliminates the projection of neq

i on the kinetic moments. The weighted
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orthogonality relation defines a different but equivalent set of basis vectors to those
given in [110, 112], and these are the ones given in Table 1. A comparison of the
two sets of basis vectors can be found in [114].

The basis vectors can be used to construct a collision operator that automatically
satisfies all the lattice symmetries,

L̂i j =∑
k
λkêkiêk j, (131)

which is a symmetric matrix, while Li j, in general, is not symmetric. The orthog-
onality of the basis vectors ensures that each moment relaxes independently under
the action of the linearized collision operator,

m̂�neq
k = γkm̂neq

k , (132)

where γk = 1+λk. For the conserved modes k = 0, . . . ,3 the value γk is immaterial,
since m�neq

k = mneq
k = 0. For the other modes, k > 3, linear stability requires that

|γk| ≤ 1; (133)

i.e., the effect of collisions must be to cause the nonequilibrium distribution to de-
crease rather than increase. The eigenvalues, γk, may be positive or negative, with
γk < 0 corresponding to “over-relaxation.”

The number of independent eigenvalues is limited by symmetry. There are at
most six independent γk’s in the D3Q19 model, corresponding to a bulk viscous
mode with eigenvalue γv, five symmetry-related shear modes, which must have the
same eigenvalue, γs, and nine kinetic modes, broken down into symmetry-related
groups: e10–e12, e13–e15, e16, e17–e18. The eigenvalues γs and γv can be related to the
shear and bulk viscosities by decomposing the stress tensor into traceless-symmetric
(shear) and trace (bulk) components,

παβ = παβ +
1
3
πγγδαβ ; (134)

the overbar is used to denote a traceless tensor. Equation (132) implies the following
relations between pre- and post-collisional stresses:

π�neq
αβ = γsπneq

αβ , (135)

π�neq
αα = γvπneq

αα . (136)

Additional relations between the pre- and post-collision stresses have already been
provided (100):

π�neq
αβ −πneq

αβ = hρc2
s

(
∂αuβ +∂βuα

)
, (137)
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π�neq
αα −πneq

αα = 2hρc2
s∂αuα . (138)

Equations (135)–(138) can be solved to relate the pre- and post-collision stresses to
the velocity gradient:

πneq
αβ = − hρc2

s

1− γs

(
∂αuβ +∂βuα

)
, (139)

π�neq
αβ = −hρc2

s γs

1− γs

(
∂αuβ +∂βuα

)
, (140)

πneq
αα = −2hρc2

s

1− γv
∂αuα , (141)

π�neq
αα = −2hρc2

s γv

1− γv
∂αuα . (142)

From (75) we then find the usual Newtonian form for the viscous stress, and can
identify the shear and bulk viscosities:

η =
hρc2

s

2
1+ γs

1− γs
, (143)

ηv =
hρc2

s

3
1+ γv

1− γv
. (144)

Lattice symmetry dictates that there are at most four independent eigenvalues of
the kinetic modes: (see Table 1): γ3a (modes 10–12), γ3b (modes 13–15), γ4a (mode
16), and γ4b (modes 17–18). In a number of implementations of the MRT model
[99, 100, 106, 115] the kinetic eigenvalues are set to zero, so that these modes are
projected out by the collision operator, although they reoccur at the next time step.
Recently, it has been shown that the kinetic eigenvalues can be tuned to improve the
accuracy of the boundary conditions at solid surfaces [113]. A useful simplification
is to use only two independent relaxation rates, with γv = γs = γ4a = γ4b = γe and
γ3a = γ3b = γo. The optimal boundary conditions are obtained with specific relations
between γe and γo [113, 114].

3.5 D3Q19 Model III: Thermal Noise

In the fluctuating LB model [98, 100], thermal noise is included by adding a sto-
chastic contribution, Δ ′

i , to the collision operator:

Δi =∑
j
Li jn

neq
j +Δ ′

i . (145)

The collision operator must still conserve mass and momentum exactly,
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∑
i
Δ ′

i =∑
i
Δ ′

i ci = 0, (146)

while the statistical properties of Δ ′
i include a vanishing mean, 〈Δ ′

i 〉 = 0, and a

nontrivial covariance matrix,
〈
Δ ′

iΔ ′
j

〉
, that gives the correct fluctuations at the hy-

drodynamic level [see (44) and (47)]:

〈
σ f
αβσ

f
γδ

〉
=

2kBT
b3h

ηαβγδ . (147)

The stochastic collision operator is assumed to be local in space and time, so that
there are no correlations between the noise at different lattice sites or at different
times. The delta functions in space and time have been replaced by b−3 and h−1,
respectively, so that the double integral of (47) with respect to r′ and t ′, over a small
space–time region of size b3h, matches the corresponding integral of (147).

Splitting the tensor into the trace, σ f
αα , and traceless, σ̄ f

αβ , parts gives the equiv-
alent relations

〈
σ̄ f
αβ σ̄

f
γδ

〉
=

2kBTη
b3h

[
δαγδβδ +δαδ δβγ −

2
3
δαβ δγδ

]
, (148)

〈
σ f
αασ f

ββ

〉
=

18kBTηv

b3h
, (149)

〈
σ̄ f
αβσ

f
γγ

〉
= 0. (150)

Although temperature does not appear directly in the D3Q19 LB model, we can
determine the appropriate fluctuation level through the equation of state for an
isothermal ideal gas of particles of mass mp, kBT = mpc2

s = μb3c2
s [102]. Taking

into account the results for η and ηv [(143) and (144)], we can write the desired
correlations in terms of the LB variables:

〈
σ̄ f
αβ σ̄

f
γδ

〉

μρc4
s

=
1+ γs

1− γs

[
δαγδβδ +δαδ δβγ −

2
3
δαβ δγδ

]
, (151)

〈
σ f
αασ f

ββ

〉

μρc4
s

= 6
1+ γv

1− γv
, (152)

〈
σ̄ f
αβσ

f
γγ

〉
= 0. (153)

The stress fluctuations σ f
αβ are different from the random stresses σ r

αβ that arise
in the LB algorithm itself,

σ r
αβ =∑

i
Δ ′

i ciαciβ . (154)

The reason is that σ f
αβ pertains to fluctuations on the t1 time scale, which interact

with the hydrodynamic flow field, while σ r
αβ represents added noise on the lattice
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time scale, h. We use the Chapman–Enskog procedure to work backwards from the
known fluctuations in σ f

αβ to determine the covariance matrix for σ r
αβ [102]. The

stress update rule including random noise σ r
αβ is [cf. (135) and (136)]

π̄�neq
αβ = γsπ̄neq

αβ + σ̄ r
αβ , (155)

π�neq
αα = γvπneq

αα +σ r
αα . (156)

Equations (137) and (138) remain valid and, together with (155) and (156), can be
solved for the pre- and post-collisional stresses, πneq

αβ and π�neq
αβ , as before:

π̄neq
αβ = − hρc2

s

1− γs

(
∂αuβ +∂βuα

)
+

1
1− γs

σ r
αβ , (157)

π̄�neq
αβ = −hρc2

s γs

1− γs

(
∂αuβ +∂βuα

)
+

1
1− γs

σ r
αβ , (158)

πneq
αα = −2hρc2

s

1− γv
∂αuα +

1
1− γv

σ r
αα , (159)

π�neq
αα = −2hρc2

s γv

1− γv
∂αuα +

1
1− γv

σ r
αα . (160)

Comparing (75) with (44) we can read off the relations between the hydrodynamic
fluctuations and the random noise,

σ̄ f
αβ = − 1

1− γs
σ̄ r
αβ , (161)

σ f
αα = − 1

1− γv
σ r
αα . (162)

Therefore, the random noise inserted at the microscopic (LB) level must have the
following covariances:

〈
σ̄ r
αβ σ̄

r
γδ

〉

μρc4
s

=
(
1− γ2

s
)[

δαγδβδ +δαδ δβγ −
2
3
δαβδγδ

]
, (163)

〈
σ r
αασ r

ββ

〉

μρc4
s

= 6
(
1− γ2

v
)
, (164)

〈
σ̄ r
αβσ

r
γγ

〉
= 0. (165)

The random stress has a typical amplitude of
√μρc2

s and is obtained from the
second-order moment of the fluctuations in nneq

i . Therefore, a typical fluctuation
in the population density is of order

√μρ . Combining this scaling with (126) and
(127), suggests dimensionless variables
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n̂i =
ni√

aciμρ
, (166)

m̂k =
mk√
wkμρ

, (167)

which transform using the symmetric basis vectors defined in (123),

m̂k =∑
i

êkin̂i, (168)

n̂i =∑
k

êkim̂k. (169)

The stochastic collision operator can then be implemented independently for each
mode mk,

m̂�neq
k = γkm̂neq

k +ϕkrk, (170)

where rk are independent Gaussian random variables with zero mean and unit
variance. The dimensionless constants ϕk are determined by expressing the ran-
dom stresses σ r

αβ in terms of the rk and ϕk and then calculating the covariance

matrix [102]. For example, σ r
xy =

√μρc2
sϕ7r7, while σ r

αα =
√

6μρc2
sϕ4r4. Com-

parison with (163)–(165) shows that the correct stress correlations are obtained for

ϕk =
(
1− γ2

k
)1/2

. (171)

At the hydrodynamic scale, only fluctuations in stress contribute to the time evo-
lution of the momentum density (44) so in principle it is sufficient to add random
fluctuations to the modes m4, . . . ,m9 only: In the original derivation of the fluc-
tuating LB equation [98, 100], the kinetic modes were projected out entirely, i.e.,
γk = ϕk = 0 for k = 10,11, . . . ,18. More recently, Adhikari et al. [101] have ar-
gued that the kinetic modes should be thermalized as well. They extended (170) to
the kinetic modes (k = 10, . . . ,18), with γk = 0 (as in [98, 100]) but with ϕk = 1,
which then satisfies (171). It was demonstrated numerically that this leads to more
accurate fluctuations at short length scales, but the theoretical justification remained
somewhat obscure. From the discussion so far, we can see that both procedures give
the same random stresses σ r

αβ , and hence are not different from the point of view
of fluctuating hydrodynamics. This has been clarified recently [102], by analyz-
ing the LB model in terms of statistical mechanics. A purely microscopic approach
was taken, in which the stochastic collisions were viewed as a Monte Carlo [116]
process. Knowledge of the probability distribution of the LB variables n then makes
it possible to check whether or not a given collision rule satisfies the condition of de-
tailed balance. It can be shown [102] that the kinetic modes must be thermalized in
order to satisfy detailed balance, in agreement with the procedure proposed in [101].
The theory will be outlined in Sect. 3.6.
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3.6 Statistical Mechanics of Lattice-Boltzmann Models

The starting point of the statistical mechanical development in [102] is the notion
of a GLG. We define νi(r, t) in (30) as the number of particles with velocity ci at
site r at time t. In contrast with the standard LB model, νi is a (positive) integer;
in contrast with lattice-gas models, νi � 1. The state at a particular lattice site,
ν(r, t), is modified by the collision process, subject to the constraints of mass and
momentum conservation; the post-collision state, ν�(r, t), is then propagated to the
neighboring sites (30).

Although a deterministic GLG collision operator would be difficult to construct,
we can nevertheless determine the distribution in a homogeneous equilibrium state
from the conservation laws alone. First we note that there is an entropy associated
with each νi,

Si = −(νi lnνi −νi −νi ln ν̄i + ν̄i) , (172)

where ν̄i is the mean value of νi in the homogeneous state. Each velocity direction i
at each lattice point has a degeneracy exp(Si), which can be derived from a Bernoulli
process. Particles are selected for the velocity direction i with probability p0, with
p0 chosen so that on average a total of ν̄ = Nr p0 particles will be selected from a
reservoir of Nr particles. Then the probability to select exactly ν particles is given
by the binomial distribution,

p(ν) =
Nr!

ν!(Nr −ν)!

(
ν̄
Nr

)ν (
1− ν̄

Nr

)Nr−ν
. (173)

Equation (172) results from calculating ln p(ν) in the limit of Nr → ∞, at fixed ν̄ .
Under the usual assumption that in the equilibrium state the populations correspond-
ing to different lattice sites and different directions are uncorrelated, the entropy per
lattice site is S(ν) = ∑i Si.

The populations at a given lattice site are sampled from a probability distribution
proportional to exp [S (ν)], but subject to the constraints of fixed mass and momen-
tum density, which characterize the homogeneous state:

P(ν) ∝ exp [S (ν)]δ

(

μ∑
i
νi −ρ

)

δ

(

μ∑
i
νici − j

)

. (174)

Consistency with the formalism developed in the previous sections requires

μν̄i = ρaci . (175)

The equilibrium or mean populations for a given ρ and j are found by maximizing
P or, more conveniently, by maximizing S and taking into account the conservation
laws by Lagrange multipliers:
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∂S
∂νi

+λρ +λ j · ci = 0, (176)

μ∑
i
νi −ρ = 0, (177)

μ∑
i
νici − j = 0. (178)

The exact solution is
νeq

i = ν̄i exp
(
λρ +λ j · ci

)
, (179)

where the Lagrange multipliers, λρ and λ j, are found from the constraint equa-
tions (177) and (178). Solving these equations in terms of a power series in u, and
disregarding terms of order O(u3), one finds the standard equilibrium distribution
given in (97). This approach has been previously proposed within the framework of
the “entropic lattice-Boltzmann” method [108,109], which however, focuses exclu-
sively on the deterministic LB model.

Within the statistical–mechanical framework we have developed for the LB
model, the population densities ni fluctuate around mean values determined by the
hydrodynamic flow fields. Thus, the non-equilibrium distribution is sampled from
P(nneq) which is Gaussian distributed about the equilibrium [102],

P(nneq) ∝ exp

(

−∑
i

(
nneq

i

)2

2μneq
i

)

δ

(

∑
i

nneq
i

)

δ

(

∑
i

ci nneq
i

)

. (180)

The variance of the fluctuations is controlled by the mass density μ , associated
with an LB particle. A small number of particles gives rise to large fluctuations
and vice versa. For simplicity we will ignore the effects of flow on the variance
of the distribution, replacing neq

i by its u = 0 value. This can be justified at the
macroscopic level by the Chapman–Enskog expansion [102]. Rewriting (180) in
terms of normalized variables n̂i [see (166)], and transforming to the normalized
modes [see (167) and (169)] eliminates the explicit constraints,

P(m̂neq) ∝ exp

(

−1
2 ∑k>3

m̂neq2
k

)

. (181)

Fluctuations only arise in the non-conserved modes, while the conserved modes
have no non-equilibrium contribution, i.e., mneq

k = 0 for k ≤ 3.
We now reinterpret the update rule (170),

m̂�neq
k = γkm̂neq

k +ϕkrk, (182)

as a Monte Carlo move. The transition probability is then identical to the probability
of generating the random variable rk,
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ω
(
m̂neq

k → m̂�neq
k

)
=
(
2πϕ2

k
)−1/2

exp

[

−
(
m̂�neq

k − γkm̂neq
k

)2

2ϕ2
k

]

, (183)

and for the reverse transition the same formula holds, with the pre- and post-
collisional populations exchanged. The condition of detailed balance [116],

ω
(
m̂neq

k → m̂�neq
k

)

ω
(
m̂�neq

k → m̂neq
k

) =
exp
[
−(m̂�neq

k )2/2
]

exp [−(m̂neq)2/2]
, (184)

then holds if and only if
ϕk =

(
1− γ2

k
)1/2

, (185)

as before (171). The important point is that this relation, which in the previous sub-
section was only proved for the stress modes, can now be shown to hold for all
non-conserved modes. It is a necessary condition for consistent sampling of the
thermal fluctuations, not just on the macroscopic hydrodynamic level (for which
the stress modes alone are sufficient), but also on the microscopic LB level itself.
Although assigning γk = 0 (and ϕk = 1) to all kinetic modes is obvious and straight-
forward [101], the present analysis shows that this is not necessary. Other values of
γk and ϕk are possible as well, so long as they satisfy (185), and specific values may
be desirable for a more accurate treatment of boundary conditions [113, 114].

3.7 External Forces

An external force density f(r, t) can be introduced into the LB algorithm by an
additional collision operator Δ ′′

i ,

Δi =∑
j
Li j

(
n j −neq

j

)
+Δ ′′

i . (186)

For simplicity, we only consider the deterministic case; the analysis of the fluctu-
ating part (Δ ′

i ) remains the same. Application of the new collision operator should
leave the mass density unchanged, but increase the momentum density by hf. This
implies the following conditions on the moments of Δ ′′

i :

∑
i
Δ ′′

i = 0, (187)

∑
i
Δ ′′

i ci = hf. (188)

Consequently the definition of the fluid velocity is no longer unique: one can le-
gitimately choose any value for u between ρ−1 (∑i nici) and ρ−1 (∑i nici +hf) (i.e.,
between the pre-collisional and post-collisional states). However, numerical [98]
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and theoretical [100, 117, 118] analysis shows that the optimum value is just the
arithmetic mean of the pre- and post-collisional velocities. We define the momen-
tum density as

j =∑
i

nici +
h
2

f, (189)

and the corresponding flow velocity as u = j/ρ . Consistency with (66) requires that
we use this value for u to calculate neq

i (97):

∑
i

neq
i ci = j, (190)

∑
i

nneq
i ci = −h

2
f. (191)

In [100] the usual moment condition ∑i nneq
i ci = 0 was maintained. In comparison

with the present approach this makes a small error of order f 2 to the distribution,
which leads to spurious terms in the Chapman–Enskog analysis. In contrast the
present approach leads to a clean result, entirely equivalent to the force-free case.
This may be of consequence when there are strongly inhomogeneous forces, such
as are considered in Sect. 4. However, it should also be noted that these differences
vanish in the low Reynolds number limit.

Since Δ ′′
i (neq) = 0, the Chapman–Enskog expansion of Δ ′′

i starts at order ε1 [cf.
(56)]:

Δ ′′
i = εΔ ′′(1)

i + ε2Δ ′′(2)
i + · · · . (192)

Following the procedure of Sect. 3.2, we take moments of (57) and (59) and obtain
similar equations for the mass and momentum density [cf. (74) and (75)]:

∂tρ +∂α jα = 0, (193)

∂t jα +∂βπ
eq
αβ +

1
2
∂β
(
π�neq
αβ +πneq

αβ

)
= fα . (194)

However, the second moment leads to a force-dependent contribution to the non-
equilibrium momentum flux, which can be derived as before, beginning with (76)
and substituting the equilibrium expressions for πeq

αβ (79) and Φeq
αβγ (98). The time

derivative of the momentum flux now generates terms involving uf + fu from the
momentum conservation equation on the t1 time scale [cf. (99)]:

π�neq
αβ −πneq

αβ = hρc2
s
(
∂αuβ +∂βuα

)
+h
(
uα fβ +uβ fα

)
. (195)

Spurious terms proportional to uf can be eliminated from (194), by including the
second moment of Δ ′′

i ,

Σαβ =
1
h∑i

Δ ′′
i ciαciβ , (196)

so that the stress update is now [cf. (135) and (136)]
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π�neq
αβ = γsπ̄neq

αβ +
1
3
γvπneq

γγ δαβ +hΣαβ . (197)

Equations (195) and (197) form a linear system for πneq
αβ and π�neq

αβ . Solving these
equations as before (139)–(142), and inserting the result into (194), we obtain a
Newtonian stress with unchanged values for the viscosities by choosing Σαβ such
that

Σαβ =
1
2

(1+ γs)
[

uα fβ +uβ fα −
2
3

uγ fγδαβ
]

+
1
3

(1+ γv)uγ fγδαβ . (198)

The moment conditions expressed by (187), (188) and (198) are uniquely satisfied
by the choice

Δ ′′
i = aci

[
h
c2

s
fαciα +

h
2c4

s
Σαβ

(
ciαciβ − c2

sδαβ
)]

, (199)

where Δ ′′
i only affects the modes m1, . . . ,m9. This result has been derived previ-

ously [118] within the context of the LBGK model; here we have presented the
derivation in the more general MRT framework.

4 Coupling the LB Fluid to Soft Matter

The fundamental algorithmic problem in soft matter simulations is the coupling
between the solid and fluid phases. A key attraction of LB methods is the sim-
plicity with which geometrically complex boundaries can be incorporated. The first
correct implementation of a moving boundary condition was described in the pro-
ceedings of a workshop on LGCA [119]; a more accessible source is [120]. The
idea was to modify the bounce-back rule for stationary surfaces such that the steady-
state distribution was consistent with the local surface velocity. By constructing the
boundary-node interactions along the individual links, the viscous stress remains un-
changed. Subsequently, we showed numerically that this algorithm gives accurate
hydrodynamic interactions between spherical particles suspended in a lattice-gas
fluid [120]. Nevertheless, it quickly became clear that the fluctuating LB model was
a more useful computational tool, for the reasons outlined in Sect. 3. The LG algo-
rithm for the moving boundary condition carries over in a simple and direct way
to the LB method [98]. A number of improvements to the bounce-back boundary
condition have been proposed over the years, and we will summarize some of the
more practical approaches in Sect. 4.4.

More recently an entirely different approach has been proposed [121, 122] in
which particles couple to the fluid through a frictional drag. This method has the
advantage of greatly reducing the number of LB grid points in the simulation, at
the cost of a representation that is only correct in the far field. The method has been
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applied to polymers [43,122,123] and to suspended solid particles [124–128]. In the
latter case the surface is described by a number of sources distributed over the sur-
face of the particle. The distributed forces resemble the Immersed Boundary (IB)
methods [129], which are common in finite-difference and finite-element simula-
tions; this connection has only been recognized recently [130]. We will summarize
these developments and add some new ideas and interpretation of the force coupling
methods. In a related development [131, 132], conventional immersed boundary
methods are being used in conjunction with an LB fluid. However, the coupling
in this case is implicit, solving for the velocity of the interface through a force bal-
ance, which corresponds to the high friction limit of [124–128]. Here, we will only
consider inertial coupling, since the theory for thermal fluctuations has not been
worked out for the implicit schemes.

4.1 Boundary Conditions

To simulate the hydrodynamic interactions between solid particles in suspension,
the LB model must be modified to incorporate the boundary conditions imposed on
the fluid by the solid particles. The basic methodology is illustrated in Fig. 1. The
solid particles are defined by a boundary surface, which can be of any size or shape;
in Fig. 1 it is a circle. When placed on the lattice, the boundary surface cuts some of
the links between lattice nodes. The fluid particles moving along these links interact

Fig. 1 Location of boundary nodes for a curved surface. The velocities along links cutting the
boundary surface are indicated by arrows. The locations of the boundary nodes are shown by solid
squares, and the fluid nodes by solid circles. The open circles indicate nodes in the solid adjacent
to fluid nodes
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with the solid surface at boundary nodes placed halfway along the links. Thus, a
discrete representation of the particle surface is obtained, which becomes more and
more precise as the particle gets larger.

In early work, the lattice nodes on either side of the boundary surface were treated
in an identical fashion [98,120], so that fluid filled the whole volume of space, both
inside and outside the solid particles. Although the fluid motion inside the particle
closely follows that of a rigid solid body [99], at short times the inertial lag of the
fluid is noticeable, and the contribution of the interior fluid to the particle force and
torque reduces the stability of the particle velocity update. Today, most simulations
exclude interior fluid, although the implementation is more difficult when the parti-
cles move. The moving boundary condition [98] without interior fluid [133] is then
implemented as follows. We take the set of fluid nodes r just outside the particle
surface, and for each node all the velocities cb such that r+cbh lies inside the parti-
cle surface. An example of a set of boundary node velocities is shown by the arrows
in Fig. 1. Each of the corresponding population densities is then updated according
to a simple rule which takes into account the motion of the particle surface [98];

nb′(r, t +h) = n∗b(r, t)−
2acbρub · cb

c2
s

, (200)

where n∗b(r, t) is the post-collision distribution at (r, t) in the direction cb, and cb′ =
−cb. The local velocity of the particle surface,

ub = U+Ω× (rb −R), (201)

is determined by the particle velocity U, angular velocity Ω, and center of mass R;
rb = r+ 1

2 hcb is the location of the boundary node.
As a result of the boundary node updates, momentum is exchanged locally be-

tween the fluid and the solid particle, but the combined momentum of solid and
fluid is conserved. The forces exerted at the boundary nodes can be calculated from
the momentum transferred in (200), and the particle forces and torques are then
obtained by summing over all the boundary nodes associated with a particular par-
ticle. It can be shown analytically that the force on a planar wall in a linear shear
flow is exact [98], and several numerical examples of LB simulations of hydrody-
namic interactions are given in [99]. Figure 2 illustrates the accuracy that can be
achieved with the MRT collision operator described in Sect. 3.4. Even with small
particles, only 5b in diameter, the hydrodynamic interactions are within 1% of a
precise numerical solution [21], down to separations between the particle surfaces
s = r − 2a ∼ b, corresponding to s ∼ 0.4a, where a is the sphere radius. Periodic
boundaries with a unit cell size L = 12a were used, with the pair inclined at 30◦

to a symmetry axis; other geometries give a very similar level of agreement. We
emphasize that there are no adjustable parameters in these comparisons. In particu-
lar, in contrast to previous work [99, 104], there is no need to calibrate the particle
radius; the correct particle size arises automatically when the eigenvalues of the
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Fig. 2 Hydrodynamic interactions from LB simulations with particles of radius a = 2.5b. The
solid symbols are the LB friction coefficients, ζ pll and ζ perp, for the relative motion of two spheres
along the line of centers (left) and perpendicular to the line of centers (right). Results are compared
with essentially exact results from a multipole code [21] in the same geometry (solid lines)

kinetic modes of the MRT model have the appropriate dependence on the shear
viscosity [114].

To understand the physics of the moving boundary condition, one can imagine
an ensemble of particles, moving at constant speed cb, impinging on a massive wall
oriented perpendicular to the particle motion. The wall itself is moving with velocity
ub 	 cb. The velocity of the particles after collision with the wall is −cb +2ub and
the force exerted on the wall is proportional to cb−ub. Since the velocities in the LB
model are discrete, the desired boundary condition cannot be implemented directly,
but we can instead modify the density of returning particles so that the momentum
transferred to the wall is the same as in the continuous velocity case. It can be seen
that this implementation of the no-slip boundary condition leads to a small mass
transfer across a moving solid–fluid interface. This is physically correct and arises
from the discrete motion of the solid surface. Thus, during a time step h the fluid
is flowing continuously, while the solid particle is fixed in space. If the fluid cannot
flow across the surface there will be large artificial pressure gradients, arising from
the compression and expansion of fluid near the surface. For a uniformly moving
particle, it is straightforward to show that the mass transfer across the surface in a
time step h (200) is exactly recovered when the particle moves to its new position.
For example, each fluid node adjacent to a planar wall has five links intersecting the
wall. If the wall is advancing into the fluid with a velocity U, then the mass flux
across the interface (from 200) is ρU. Apart from small compressibility effects, this
is exactly the rate at which fluid mass is absorbed by the moving wall. For sliding
motion, (200) correctly predicts no net mass transfer across the interface.
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4.2 Particle Motion

An explicit update of the particle velocity

U(t +h) = U(t)+
h
m

F(t) (202)

has been found to be unstable [99] unless the particle radius is large or the particle
mass density is much higher than the surrounding fluid. In previous work [99] the
instability was reduced, but not eliminated, by averaging the forces and torques over
two successive time steps. Subsequently, an implicit update of the particle velocity
was proposed [134] as a means of ensuring stability. A generalized version of that
idea, which can be adapted to situations where two particles are in near contact, was
developed in [104]. Here we sketch an elaboration of this idea, which is consistent
with a Trotter decomposition of the Liouville operator [135–139]. We will only
consider the update of the position and linear velocity explicitly; the extension to
rotational motion is straightforward [104].

The equations of motion for the suspended particles are written as

Ṙi = Ui, (203)
mU̇i = Fh

i (Ri,Ui)+Fc
i (R

N), (204)

where we have separated the forces into a hydrodynamic component Fh
i , which

depends on the particle position and velocity, and a conservative force Fc
i , which

depends on the positions of all particles. The hydrodynamic force depends on the
fluid degrees of freedom as well, but these remain unchanged during the particle
update and need not be considered as dynamical variables here.

A second-order Trotter decomposition [135–139] breaks the update of a single
time step into three independent components: a half-time step update of the positions
at constant velocity, a full-time step update of the velocities with fixed positions, and
a further half time step update of the positions using the new velocities:

Ri(t + 1
2 h) = Ri(t)+

h
2

Ui(t), (205)

U̇i =
1
m

[
Fh

i (Ri(t + 1
2 h),Ui)+Fc

i (R
N(t + 1

2 h))
]
, (206)

Ri(t +h) = Ri(t + 1
2 h)+

h
2

Ui(t +h). (207)

In the absence of velocity-dependent forces this is just the Verlet scheme, but the
solid–fluid boundary conditions (200) introduce a hydrodynamic force that depends
linearly on the particle velocity [104, 134],

Fh
i (Ri,Ui) = Fh

0(Ri)−ζ (Ri) ·Ui. (208)
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The velocity independent force is calculated at the half-time step

Fh
0(Ri(t + 1

2 h)) =
b3

h ∑b
2n∗b(r, t)cb, (209)

where the sum is over all the boundary nodes, b, describing the particle surface
and cb points towards the particle center. The location of the boundary nodes is
determined by the particle coordinates Ri(t + 1

2 h), which should be evaluated at the
half-time step as indicated. The post-collision populations, n�

b, are calculated at time
t but arrive at the boundary nodes at the half-time step also. The components of the
matrix

ζ (Ri(t + 1
2 h)) =

2ρb3

c2
s h ∑

b
acb cbcb (210)

are high-frequency friction coefficients, which describe the instantaneous force on a
particle in response to a sudden change in velocity. Complete expressions, including
rotation, are given in [104].

The LB fluid and the solid particles are coupled by an instantaneous momentum
transfer at the half-time step, which is therefore presumed to be conservative:

Ui(t + 1
2 h) = Ui(t)+

h
2m

Fc
i (R

N(t + 1
2 h)), (211)

U�
i (t + 1

2 h) = Ui(t + 1
2 h)+

h
m

Fh
i (Ri(t + 1

2 h), Ũi(t + 1
2 h)), (212)

Ui(t +h) = U�
i (t + 1

2 h)+
h

2m
Fc

i (R
N(t + 1

2 h)). (213)

However, it is not entirely clear what velocity should be used in (212): among the
possibilities discussed in [104] are an explicit update Ũi(t + 1

2 h) = Ui(t + 1
2 h), an

implicit update Ũi(t + 1
2 h) = U�

i (t + 1
2 h), and a semi-implicit update Ũi(t + 1

2 h) =
[Ui(t + 1

2 h)+U�
i (t +

1
2 h)]/2. It has been pointed out [140] that, even for a Langevin

equation with constant friction, there are deviations in the temperature for finite val-
ues of h. However, the semi-implicit scheme satisfies the FDT exactly for constant
friction. Here we will consider a different model for the velocity, assuming that the
hydrodynamic force is distributed over the time step. For simplicity we consider a
single component of the velocity,

mU̇ = −ζU +Fh
0 +Fc, (214)

where ζ , Fh
0 and Fc are constant in this context. The solution of (214) over a time

interval h is

U(t +h) = U(t)exp(−α)+
Fh

0 +Fc

ζ
[1− exp(−α)] , (215)
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where α = ζh/m is the dimensionless time step. Equation (215) is stable for all
values of α , satisfies the FDT exactly, and, when there is no conservative force,
encompasses previous algorithms as limiting cases. Both explicit [98] and implicit
[104, 134] schemes are consistent with an expansion of (215) to linear order in α ,
while the semi-implicit method [104] can be derived from a second-order expansion
in α . The steady-state velocity U(t +h) =U(t) satisfies the force balance Fh +Fc =
0 exactly. This new result may lead to more accurate integration of the particle
positions and velocities in the large α limit.

To complete the update, the velocity Ũi(t + 1
2 h) is needed to calculate the mo-

mentum transfer to the fluid (200). An explicit update [98] can be done in a single
pass since Ũi(t + 1

2 h) = Ui(t) is already known, but an implicit or semi-implicit
update requires two passes through the boundary nodes. The first pass is used to
calculate Fh

0 so that (212) can be solved for Ũi(t + 1
2 h) [104]. This velocity is used

to update the population densities in a second sweep through the boundary nodes.
In the present case we calculate Ũi(t + 1

2 h) by enforcing consistency between the
sequential update (211)–(213) and (215):

αŨi(t + 1
2 h) = Ui(t) [1− exp(−α)]+

(
Fh

0 +Fc
)[α

ζ
− 1− exp(−α)

ζ

]
. (216)

This ensures overall momentum conservation as before.
When there are short-range conservative forces between the particles, the LB

time step is frequently too large for accurate integration of the interparticle forces.
The LB time step can be divided into an integer number of substeps, but the question
then arises as to how to best incorporate the hydrodynamic forces, since Fh should,
in principle, be calculated at t + 1

2 h. One possibility is to use the fact that ζ varies
slowly with particle position and accept the small error associated with using R(t)
rather than R(t + 1

2 h). Or this solution could be used as a predictor step for calculat-
ing R(t + 1

2 h), which could then be followed by one or more corrector cycles with
increasingly more accurate calculations of ζ (t + 1

2 h). The corrector cycles should
not involve a significant overhead since the boundary nodes would be largely the
same from one cycle to the next, and the time-consuming lookup of LB population
densities could be avoided.

Although the momentum exchange between fluid and solid occurs instanta-
neously at the half time step, in calculating Ũi(t + 1

2 h) we have made the assumption
that the hydrodynamic force is distributed over the time step. We actually attempted
to derive an update for the velocity assuming that the hydrodynamic force acts over
a very small fraction of the time step, but this has not led to a sensible result as yet.
It is not entirely clear if the assumption that the hydrodynamic force acts over the
whole time step is valid, and does not, for example, produce an artificial dissipa-
tion. To resolve this question will require a detailed analysis of the fully coupled
system, along the lines given in Sect. 4.5 for the simpler case of frictional coupling.
A similar analysis for solid–fluid boundary conditions is an open area for further
research.
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4.3 Surfaces Near Contact

When two particle surfaces come within one grid spacing, fluid nodes are excluded
from regions between the solid surfaces, leading to a loss of mass conservation.
This happens because boundary updates at each link cause mass transfer across the
solid–fluid interface, which is necessary to accommodate the discrete motion of
the particle surface (see Sect. 4.1). The total mass transfer in or out of an isolated
particle is

ΔM = −2h3ρ
c2

s

[

U ·∑
b

acb cb

]

= 0, (217)

regardless of the particle’s size or shape.
Although the sum ∑b acb cb is zero for any closed surface [104], when two parti-

cles are close to contact some of the boundary nodes are missing and the surfaces
are no longer closed. In this case ΔM = 0 and mass conservation is no longer en-
sured. Two particles that remain in close proximity never reach a steady state, no
matter how slowly they move, since fluid is constantly being added or removed,
depending on the particle positions and velocities. If the two particles move as a
rigid body mass conservation is restored, but in general this is not the case. The
accumulation or loss of mass occurs slowly, and in many dynamical simulations it
fluctuates with changing particle configuration but shows no long-term drift. How-
ever, we typically enforce mass conservation, particle-by-particle, by redistributing
the excess mass among the boundary nodes [104]. An alternative idea is to ensure
that there is always at least one fluid node in the gap between the particle surfaces.
In dense suspensions it would be quite inaccurate to insert an artificial excluded
volume around the particles, but a more promising idea is to cut back the particle
surfaces along planes perpendicular to the line of centers [141,142]. It remains to be
seen if the hydrodynamic interactions retain the level of accuracy shown in Fig. 2.

When two particles are in near contact, the fluid flow in the gap cannot be
resolved. For particle sizes that are typically used in multiparticle simulations
(a < 5b), the lubrication breakdown in the calculation of the hydrodynamic inter-
action occurs at gaps of the order of 0.1a. However, in some flows, notably the
shearing of a dense suspension, qualitatively important physics occurs at smaller
separations, typically down to 0.01a. Here we outline a method to implement lubri-
cation corrections into a LB simulation.

For particles close to contact, the lubrication force, torque, and stresslet can be
calculated from a sum of pairwise-additive contributions [29], and if we consider
only singular terms, they can be calculated from the particle velocities alone [143].
In LB simulations [100, 144] the calculated forces follow the Stokes flow results
down to a fixed separation, approximately equal to the grid spacing b, and remain
roughly constant thereafter (see Fig. 2). The simplest lubrication correction is to take
the difference between the lubrication force at a gap s and the force at some cut off
distance sc; i.e.,
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Fig. 3 Hydrodynamic interactions including lubrication, with particles of radius a = 2.5b. The
solid symbols are the LB friction coefficients, ζ pll and ζ perp, for the relative motion of two spheres
along the line of centers (left) and perpendicular to the line of centers (right). Results are compared
with essentially exact results from a multipole code [21] in the same geometry (solid lines)

Fl = −6πη
a2

1a2
2

(a1 +a2)2

(
1
s
− 1

sc

)
U12 · R̂12R̂12, s < sc (218)

Fl = 0, s > sc, (219)

where U12 = U1 −U2, s = |R12|−a1 −a2 is the gap between the two surfaces, and
the unit vector R̂12 = R12/|R12|. Numerical tests of this procedure for the older 10-
moment LB model are reported in [104]. Results for the MRT model are shown in
Fig. 3, using a cutoff distance sc = 1.1b for the parallel component and sc = 0.7b
for the perpendicular component. Even this simple form for the correction gives an
accurate description of the lubrication regime, with the largest deviations occurring
near the patch points. A more accurate correction can be obtained by calibrating
each distance separately as in Stokesian dynamics and related methods [21, 145].

4.4 Improvements to the Bounce-Back Boundary Condition

The bounce-back boundary condition remains the most popular choice for simula-
tions of suspensions, because of its robustness and simplicity. The results in Figs. 2
and 3 show that accurate hydrodynamic interactions, within 1–2%, can be achieved
with quite small particles, particularly when combined with the MRT model. The
reason that bounce-back works so well, despite being only first-order accurate, is
that the errors in the momentum transfer tend to cancel when averaged over a
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Results are a single standard deviation in the friction coefficients, calculated from 100 independent
positions with respect to the grid

random sampling of boundary node positions [114]. In fact bounce-back can some-
times be more accurate than interpolation, where the errors, though locally smaller,
do not cancel.

The most important deficiency of the bounce-back algorithm is the dependence
of the force on the position of the nodes with respect to the grid. The results in
Figs. 2 and 3 are averages over 100 independent configurations, in which the rela-
tive positions of the particles are the same but the pair is displaced randomly with
respect to the underlying lattice. However, the variance in the friction for randomly
sampled grid locations is small, typically of the order of 1%, as can be seen in Fig. 4.
Nevertheless there is a much larger fluctuation in the force around the particle sur-
face, which is particularly problematic if the particles are deformable [146, 147].
Thus, while the bounce-back method is quite accurate on average, locally the errors
can be large. A detailed analytical and numerical critique of the bounce-back algo-
rithm can be found in [148], together with an analysis of several of the modifications
mentioned below. The most practical higher-order boundary conditions are adapted
from the link bounce-back algorithm outlined in Sect. 4.1.

More sophisticated boundary conditions have been developed using finite-volume
methods [149,150] and interpolation [151–153]. A simple, physically motivated in-
terpolation scheme has been proposed [151,154], which both improves the accuracy
of the bounce-back rule and is unconditionally stable for all boundary positions; the
scheme has both linear and quadratic versions. A more general framework for this
class of interpolation schemes has been extensively analyzed in a comprehensive
and seminal paper [113]; the Multi-Reflection Rule proposed in [113] is the most
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accurate boundary condition yet discovered for LB methods. However, interpola-
tion requires additional fluid nodes in the gap between adjacent particle surfaces.
The bounce-back rule requires only one grid point between the surfaces but lin-
ear interpolation requires at least two grid points, while quadratic interpolation and
multi-reflection require three. Recently, it was proposed that only the equilibrium
distribution needs to be interpolated [114]. Although this is more complex to im-
plement than linear interpolation, it has the advantage that the velocity distribution
at the boundary surface may be used to provide an additional interpolation point. In
this way the span of fluid nodes can be reduced to that of the bounce-back rule, while
obtaining second-order accuracy in the flow field. In conjunction with an appropri-
ate choice of collision operator [113], the location of the hydrodynamic boundary
remains independent of fluid viscosity, unlike the linear and quadratic interpola-
tions [151]. For viscous fluids, where γs > 0, the equilibrium interpolation rule is
more accurate than either linear or quadratic interpolation [114].

4.5 Force Coupling

The force-coupling algorithm [121, 122] starts from a system of mass points which
are coupled dissipatively to the hydrodynamic continuum. The particles are spec-
ified by positions ri, momenta pi, masses mi, and phenomenological friction co-
efficients Γi. They interact via a potential V

(
rN
)
, giving rise to conservative forces

Fc
i =−∂V/∂ri. The fluid exerts a drag force on each particle based on the difference

between the particle velocity and the fluid velocity ui = u(ri),

Fd
i = −Γi

(
pi

mi
−ui

)
. (220)

Momentum conservation requires that an equal and opposite force be applied to
the fluid. Both discrete and continuous degrees of freedom are subject to Langevin
noise in order to balance the frictional and viscous losses, and thereby keep the tem-
perature constant. The algorithm can be applied to any Navier–Stokes solver, not
just to LB models. For this reason, we will discuss the coupling within a (contin-
uum) Navier–Stokes framework, with a general equation of state p(ρ). We use the
abbreviations ηαβγδ for the viscosity tensor (46), and

πE
αβ = pδαβ +ρuαuβ (221)

for the inviscid momentum flux or Euler stress (79). Since the fluid equations are
solved on a grid, whereas the particles move continuously, it will be necessary to
interpolate the flow field from nearby lattice sites to the particle positions [122].

The addition of a point force into the continuum fluid equations introduces a
singularity into the flow field, which causes both mathematical and numerical dif-
ficulties. On the other hand, the flow field around a finite-sized particle can be
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generated by a distributed force located entirely inside the particle [155, 156]. This
flow field is everywhere finite, and the force density appearing in (17) can be written
as

f(r) = −∑
i

Fd
i Δ(r,ri), (222)

where Δ(r) is a weight function with compact support and normalization

∫
d3rΔ(r,ri) = 1. (223)

Compact support limits the set of nodes r to those in the vicinity of ri and ensures
that the interactions remain local. Away from solid boundaries, translational invari-
ance requires that

Δ(r,ri) = Δ(r− ri). (224)

The function Δ(r,ri) plays a dual role, both interpolating the fluid velocity field
to the particle position,

u(ri) =
∫

d3rΔ(r,ri)u(r), (225)

and then redistributing the reactive force to the fluid, according to (222). Within the
context of polymer simulations, Δ has been regarded as an interpolating function for
point forces, but it can equally well be regarded as a model for a specific distributed
force, contained within an envelope described by Δ(r− ri). The flow fields from
a point force and a distributed force are similar at large distances from the source,
but the distributed source has the advantage that the near field also corresponds to
a physical system, namely finite-size particles. We will adopt the distributed source
interpretation both here and in Sect. 4.6.

The Langevin equations of motion for the coupled fluid–particle system are

d
dt

ri =
1
mi

pi, (226)

d
dt

pi = Fc
i +Fd

i +Ff
i , (227)

∂tρ +∂α jα = 0, (228)
∂t jα +∂βπE

αβ = ∂βηαβγδ ∂γuδ + f h
α +∂βσ f

αβ , (229)

where the force density applied to the fluid includes both dissipative and random
forces,

fh(r) = −∑
i

(
Fd

i +Ff
i

)
Δ(r,ri). (230)

The Langevin noises for the particles and fluid, Ff
i and σ f

αβ , satisfy the usual moment
conditions:

〈
F f

iα

〉
= 0, (231)



138 B. Dünweg and A.J.C. Ladd
〈
σ f
αβ

〉
= 0, (232)

〈
F f

iα (t)F f
jβ
(
t ′
)〉

= 2kBTΓiδi jδαβδ
(
t − t ′

)
, (233)

〈
σ f
αβ (r, t)σ f

γδ
(
r′, t ′

)〉
= 2kBTηαβγδ δ

(
r− r′

)
δ
(
t − t ′

)
. (234)

By construction, this coupling is local, and conserves both the total mass

M =∑
i

mi +
∫

d3rρ (235)

and the total momentum
P =∑

i
pi +

∫
d3rρu. (236)

Galilean invariance is ensured by using velocity differences in the coupling between
particles and fluid (220). A finer point is that the interpolation uses u (and not j),
so that the velocity field enters strictly linearly. We will prove that the fluctuation–
dissipation theorem (FDT) holds for this coupled system, proceeding in three steps
that successively take more terms into account.

Let us look first at the conservative system where the particles and fluid are com-
pletely decoupled

d
dt

ri =
1
mi

pi, (237)

d
dt

pi = Fc
i , (238)

∂tρ +∂α jα = 0, (239)
∂t jα +∂βπE

αβ = 0. (240)

The dynamics of the particles and the Euler fluid can be described within the frame-
work of Hamiltonian mechanics [157]. The Hamiltonians for the particles

Hp =∑
i

p2
i

2mi
+V, (241)

and fluid,

H f =
∫

d3r
(

1
2
ρu2 + ε(ρ)

)
, (242)

are conserved quantities, with ε(ρ) the internal energy density of the fluid.
As a second step, we consider a system where particles and fluid are still decou-

pled, but are subject to dissipation and noise:

d
dt

ri =
1
mi

pi, (243)
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d
dt

pi = Fc
i −

Γi

mi
pi +Ff

i , (244)

∂tρ +∂α jα = 0, (245)
∂t jα +∂βπE

αβ = ∂βηαβγδ ∂γuδ +∂βσ f
αβ . (246)

These Langevin equations are known to satisfy the FDT [15, 42, 158–160]. We
briefly sketch the formalism used for the proof, since this will be needed for the
final step in which we consider the fully coupled system.

Instead of describing the stochastic dynamics via a Langevin equation, we use the
Fokker–Planck equation, which is the evolution equation for the probability density
in phase space. For an N-particle system,

∂tP
(
rN ,pN)= (L1 +L2 +L3)P

(
rN ,pN) , (247)

where rN ,pN denote the positions and momenta of all N particles. The three opera-
tors L1, L2, and L3 describe the Hamiltonian, frictional, and stochastic part of the
dynamics; they can be found via the Kramers–Moyal expansion [15, 159]:

L1 = −∑
i

(
∂
∂ri

· pi

mi
+

∂
∂pi

·Fc
i

)
, (248)

L2 =∑
i

Γi

mi

∂
∂pi

·pi, (249)

L3 = kBT∑
i
Γi

∂ 2

∂p2
i
. (250)

The FDT holds if the Boltzmann factor, exp(−Hp/kBT ), is a stationary solution of
the Fokker–Planck equation. Using β = (kBT )−1 to define the inverse temperature,
we have

L1 exp(−βHp) = 0 (251)

as a direct consequence of energy conservation in Hamiltonian systems. Further-
more, the relation

(L2 +L3)exp(−βHp) = 0 (252)

can be shown by direct differentiation.
For the fluid system, the phase space comprises all possible configurations of the

fields ρ(r), j(r), which we denote as [ρ] , [j]. The Fokker–Planck equation for the
fluid degrees of freedom can be written as

∂tP([ρ] , [j]) = (L4 +L5 +L6)P([ρ] , [j]) , (253)

where L4, L5, and L6 describe the Hamiltonian, viscous, and stochastic compo-
nents,
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L4 =
∫

d3r
(

δ
δρ

∂α jα +
δ

δ jα
∂βπE

αβ

)
, (254)

L5 = −ηαβγδ

∫
d3r

δ
δ jα

∂β ∂γuδ , (255)

L6 = kBTηαβγδ

∫
d3r

∫
d3r′

δ
δ jα(r)

δ
δ jγ(r′)

[
∂
∂ rβ

∂
∂ r′δ

δ
(
r− r′

)
]
, (256)

and δ . . ./δ . . . represents a functional derivative [161, see, e.g.,]. Replacing ∂/∂ r′δ
in the last equation with −∂/∂ rδ enables integration over r′:

L6 = −kBTηαβγδ

∫
d3r

δ
δ jα

∂β ∂γ
δ
δ jδ

, (257)

where we have exploited the symmetry of the viscosity tensor with respect to the
indexes γ and δ . Functional differentiation of the Boltzmann factor with respect to
j,

δ
δ jδ

exp
(
−βH f

)
= −βuδ exp

(
−βH f

)
, (258)

then shows that
(L5 +L6)exp

(
−βH f

)
= 0. (259)

Finally, the relation
L4 exp

(
−βH f

)
= 0 (260)

follows from energy conservation in Hamiltonian dynamics.
We now turn to the coupled system, with Hamiltonian H = Hp + H f . The

Fokker–Planck equation in the full phase space reads

∂tP
(
rN ,pN , [ρ] , [j]

)
=

(
10

∑
i=1

Li

)

P
(
rN ,pN , [ρ] , [j]

)
, (261)

with the operators L7–L10 to describe the coupling in the equations of motion:

L7 = −∑
i
Γi

∂
∂ piα

uiα , (262)

L8 = −∑
i
Γi

∫
d3rΔ (r,ri)

δ
δ jα(r)

(
1
mi

piα −uiα

)
, (263)

L9 = kBT∑
i
Γi

∫
d3rΔ (r,ri)

δ
δ jα(r)

∫
d3r′Δ

(
r′,ri

) δ
δ jα(r′)

, (264)

L10 = −2kBT∑
i
Γi

∂
∂ piα

∫
d3rΔ (r,ri)

δ
δ jα(r)

. (265)
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The coupling of the fluid velocity to the particles is described by L7, while L8
describes the drag on the fluid. The stochastic contributions include fluid–fluid cor-
relations via L9, and fluid–particle cross correlations via L10.

It should be noted that ui, being the result of the interpolation, depends on the
fields [ρ] and [j], so that δui/δ jα(r) is nonzero. Hence, the corresponding operators
in L8 do not commute. Explicit functional differentiation shows that (258) holds in
an analogous way for the interpolated velocity,

∫
d3rΔ (r,ri)

δ
δ jα(r)

exp(−βH) = −βuiα exp(−βH) . (266)

Explicit calculations, as outlined for the uncoupled system, show that

(L7 +L8 +L9 +L10)exp(−βH) = 0, (267)

which implies the exact FDT for the fully coupled system,

(
10

∑
i=1

Li

)

exp(−βH) = 0. (268)

An important consequence of this result is that a consistent simulation needs to
thermalize both fluid and particle degrees of freedom; any other choice will violate
the FDT.

The Langevin integrator for the particles is constructed in much the same way
as the velocity Verlet algorithm for MD. Although a Langevin analog to the Verlet
algorithm has been known for some time [162], straightforward derivations have
become available only recently, by applying operator-splitting techniques that were
previously limited to Hamiltonian systems [163]. We employ a second-order in-
tegrator [135–137], which reduces to the velocity Verlet scheme in the limit of
vanishing friction. Higher-order schemes are known [164], but they are consider-
ably more complicated. Specifically, we approximately integrate the equations

d
dt

ri =
1
mi

pi, (269)

d
dt

pi = Fc
i +Fd

i +Ff
i , (270)

assuming that the fluid velocity ui is constant over a time step h. This corresponds
to the Fokker–Planck equation for the particles

∂tP
(
rN ,pN , t

)
= (Lr +Lp)P

(
rN ,pN , t

)
(271)

with
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Lr = −∑
i

∂
∂ri

· pi

mi
, (272)

Lp = −∑
i

∂
∂pi

·Fc
i +∑

i
Γi

∂
∂pi

·
(

pi

mi
−ui

)
+ kBT∑

i
Γi

∂ 2

∂p2
i
. (273)

The formal solution

P
(
rN ,pN ,h

)
= exp [(Lr +Lp)h]P

(
rN ,pN ,0

)
(274)

is approximated by a second-order Trotter decomposition,

exp [(Lr +Lp)h] = exp(Lrh/2)exp(Lph)exp(Lrh/2)+O(h3). (275)

The operator splitting implies the following algorithm: a half-time step update of
the coordinates with constant momenta,

ri(t +h/2) = ri(t)+
h
2

pi(t)
mi

, (276)

followed by a full-time step momentum update, with constant coordinates,

pi(t +h) = C(1)
i (h)pi(t)+C(2)

i (h) [Fc
i +Γiui]+C(3)

i (h)θ i, (277)

and finally another half-time step coordinate update, with constant momenta,

ri(t +h) = ri(t +h/2)+
h
2

pi(t +h)
mi

. (278)

The coefficients in (277) are

C(1)
i (h) = exp

(
− Γi

mi
h
)

, (279)

C(2)
i (h) =

mi

Γi

[
1− exp

(
− Γi

mi
h
)]

, (280)

C(3)
i (h) =

√

mikBT
[

1− exp
(
−2

Γi

mi
h
)]

, (281)

where θiα are Gaussian random variables with zero mean and unit variance. Equa-
tion (277) is the exact solution of the momentum update, since (270) is a linear
Langevin equation describing Brownian motion in a harmonic potential [158]. Thus,
the only source of error in integrating the particle motion is derived from the Trot-
ter decomposition itself, (275). Nevertheless, it is important to limit the range of
random numbers, to ensure that very large steps do not occasionally occur. It is
therefore both desirable and more efficient to use distributions of random variates
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with finite range, which reproduce the Gaussian moments up to a certain order; in
the present case, O(h2) accuracy requires that moments up to the fourth cumulant
are correct. One possible choice is

P(θ) =
2
3
δ (θ)+

1
6
δ
(
θ −

√
3
)

+
1
6
δ
(
θ +

√
3
)

. (282)

After the update of the particle momenta, the fluid force density, fh(r) (230), is
distributed to the surrounding lattice sites. After one or more particle updates, the
fluid variables are updated for a single LB time step, with the external forces being
taken into account in the collision operator. This scheme is probably only first-order
accurate overall. It remains a challenge for the future to develop a unified framework
to describe the fully coupled system and analyze its convergence properties; the
algorithm could then perhaps be improved in a systematic fashion.

The input friction coefficient is not the same as the long-time friction coefficient,
which is measured by the ratio of the particle velocity to the applied force [122].
Consider an isolated particle with “bare” (or input) friction coefficient Γ dragged
through the fluid by a constant force F, resulting in a steady particle velocity U. The
force balance requires that

F = −Fd = Γ (U−u0), (283)

where u0 is the fluid velocity at the particle center, r0,

u0 =
∫

d3rΔ(r,r0)u(r). (284)

In the absence of thermal fluctuations, the deterministic fluid velocity field can be
calculated in the Stokes flow approximation using the Green’s function appropriate
to the boundary conditions [22],

u(r) =
∫

d3r′T(r,r′) ·FΔ(r′,r0). (285)

In an unbounded fluid, the Green’s function reduces to the Oseen tensor [22],
T(r,r′) = O(r− r′), with

O(r) =
1

8πηr

(
1+

rr
r2

)
, (286)

but Green’s functions are also known for periodic boundary conditions [165] and
planar boundaries [38, 39] as well. Combining (283), (284) and (285),

u0 = Tav ·F = ΓTav · (U−u0) , (287)

where Tav is the Green’s function averaged over the particle envelope,
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Tav(r0) =
∫

d3r
∫

d3r′Δ(r,r0)Δ(r′,r0)T(r,r′). (288)

In a system with translational invariance, Tav is independent of r0 and propor-
tional to the unit tensor by symmetry. Then from (287)

F =
Γ

1+μ∞Γ
U, (289)

where μ∞ = T av
αα/3 accounts for the renormalization of Γ . If the size of the particle

a is associated with the range of interaction of Δ , then dimensional analysis of (288)
suggests that μ∞ ∼ (ηa)−1. The effective friction coefficient, defined via F = ΓeffU,
is therefore diminished by the flow field induced by the applied force,

1
Γeff

=
1
Γ

+μ∞. (290)

This relation has been verified numerically by extensive computer experiments
[122, 140]. In the strong coupling limit, Γ → ∞, the effective friction saturates to
the limiting value Γeff = μ−1

∞ . This suggests assigning an effective radius to the in-
terpolating function,

1
a

= 6πημ∞. (291)

However, for smaller values of the input friction, the effective particle size is given
by

1
a

= 6πη
(

1
Γ

+μ∞
)

=
1
a0

+
1

gb
, (292)

where a0 =Γ /6πη is the input particle radius and gb = (6πημ∞)−1 depends on the
interpolating function. The interesting physical parameter is Γeff, which describes
the long-time behavior of the coupled system. Thus, to approach the continuum
limit, one should keep Γeff constant as the lattice spacing is decreased, and change
the bare coupling Γ as necessary.

It is not yet known how Tav(r0) behaves in the vicinity of a solid boundary,
when translational invariance is broken. The compact support of the weighting func-
tion Δ suggests that Tav is a local correction and therefore largely independent of
macroscopic boundary conditions. Numerical simulations with periodic boundary
conditions (Sect. 4.6) show that g is independent of system size and fluid viscosity.
The weak system-size dependence reported in [140] is entirely accounted for by the
difference between the periodic Green’s function [165] and the Oseen tensor. Thus,
in a periodic unit cell of length L, (292) requires a correction of order 1/L [19],

1
gb

=
1
a

+
2.84

L
− 1

a0
. (293)
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4.6 Interpolating Functions

In this section we consider translationally invariant interpolating functions, Δ(r,r0)
= Δ(r− r0) in more detail. For a discrete lattice, the interpolation procedure [cf.
(225)] reads

u(r0) =∑
r
Δ(r− r0)u(r), (294)

where r0 is the position of the particle, and r denotes the lattice sites. The normal-
ization condition

∑
r
Δ(r− r0) = 1 (295)

must hold for all particle positions, r0, in order for the conservation laws to be sat-
isfied exactly. We will assume the analysis of Sect. 4.5 carries over to the discrete
system with no more than second-order discretization errors. Proof of this assump-
tion remains for future work; here we numerically compare various choices of Δ .

Previous work, incorporating force coupling into spectral codes, used an isotropic
Gaussian distribution for Δ(r) [155], but this is not commensurate with cubic lattice
symmetry. Thus, we take Δ as a product of one-dimensional functions [129]

Δ(x,y,z) = φ
( x

b

)
φ
( y

b

)
φ
( z

b

)
. (296)

We first consider the two-point linear interpolating polynomial

φ2(u) =
{

1−|u| |u| ≤ 1,
0 |u| ≥ 1,

(297)

which satisfies the following moment conditions for all real-valued u and integer j:

∑
j
φ(u− j) = 1, (298)

∑
j

jφ(u− j) = u. (299)

It exactly conserves momentum and angular momentum of the particle and fluid.
However, φ2 violates the condition

∑
j
φ 2(u− j) = C, (300)

where C is a constant, independent of u. The importance of this condition is ex-
plained in [129].

The conditions in (298)–(300) can be satisfied by a three-point interpolation func-
tion,
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φ3(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1
3

(
1+

√
1−3u2

)
0 ≤ |u| ≤ 1

2 ,

1
6

(
5−3|u|−

√
−2+6|u|−3u2

)
1
2 ≤ |u| ≤ 3

2 ,

0 3
2 ≤ |u| .

(301)

An important property that emerges from φ3 is that the first derivative, φ ′
3(u), is

continuous throughout the whole domain of u. This ensures that the velocity field
varies smoothly across the grid, with a continuous spatial derivative ∇u. By contrast,
linear interpolation leads to a continuous velocity but discontinuous derivatives.

In order to test the various interpolation schemes we have determined the settling
velocity of a single particle in a periodic unit cell. A small force was applied to the
particle and a compensating pressure gradient (or uniform force density) was added
to the fluid, so that the net force on the system was zero. The steady-state particle
velocity was determined, without allowing the particle to move on the grid [99].
This procedure is valid in Stokes flow, where an arbitrarily small velocity may be
assumed, and gives a clean result for the variation in settling velocity with grid
position. We used (293) to convert the measured mobility to a single parameter g,
which does not depend on system size (L) or fluid viscosity (η). The mobility of the
particle is reduced by the periodic images [165], but the correction in (293) accounts
for the effects of the periodic boundaries quantitatively [99,120,166]. In simulations
of polymer solutions an average of g over all grid positions is used.

The smoother velocity field derived from three-point interpolation means that
the particle velocity is less dependent on the underlying grid than with linear
interpolation, as can be seen in Fig. 5. Here we show the variation in effective

50403020100
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g
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Fig. 5 Variation in settling velocity with grid location. The effective hydrodynamic radius was
determined from U = F/6πηa and converted to g using (293); g was found to be independent of
η and L, as expected. Results are shown at 56 different grid positions (labeled by the index n),
systematically varying the coordinates in steps of 0.1b. Particles with input radius a0 = b were
placed at coordinates (ib/10, jb/10,kb/10), with 0 ≤ i ≤ j ≤ k ≤ 5. Results are shown for the
two-point (circles), three-point (squares) and four-point (diamonds) interpolation schemes
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particle size, as determined by the parameter g (293), for linear (two point) interpo-
lation (297), three-point interpolation (301), and the four-point interpolation,

φ4(u) =

⎧
⎪⎪⎨

⎪⎪⎩

1
8

(
3−2|u|+

√
1+4|u|−4u2

)
0 ≤ |u| ≤ 1,

1
8

(
5−2|u|−

√
−7+12|u|−4u2

)
1 ≤ |u| ≤ 2,

0 2 ≤ |u|,
(302)

that is commonly used in immersed boundary methods [129]. As was recently no-
ticed [130], the four-point interpolation leads to a much smaller variation in effective
friction than linear interpolation. The parameter g varies with grid position by up to
20% in the case of linear interpolation, but by less than 1% with four-point interpo-
lation. On the other hand, linear interpolation requires an envelope volume of eight
grid points, while the four-point scheme requires 64 grid points. Away from the
strong-coupling limit, the grid dependence of the settling velocity is reduced since
there is a non-negligible input mobility apart from the lattice contribution.

Four-point interpolation is only necessary when using centered-difference ap-
proximations to the velocity and pressure fields [129], a situation that does not arise
in LB simulations. We see that the three-point scheme is also much smoother than
linear interpolation, with about a 3% variation in g. It is not as smooth as the four-
point interpolation, but requires only 27 grid points. Furthermore, the smaller span
of nodes means that the boundary surface is more tightly localized, and in fact the
hydrodynamic interactions obtained with three-point interpolations are just as accu-
rate as those obtained with four-point interpolation, as shown below.

An important test of the force coupling scheme is its ability to represent the
hydrodynamic interactions between two spherical particles. As an example of the
accuracy of the different interpolation schemes, in Fig. 6 we show the hydrodynamic
interactions between two spheres moving along the line of centers. A small force is
applied to sphere 1, in the direction of the vector between 1 and 2, and the velocity of
sphere 2 is determined. From this we can calculate the hydrodynamic mobility μpll

12 .
The results are normalized by the mobility of the isolated sphere μ0 = (6πηa)−1.
Results were obtained for the two-point, three-point, and four-point interpolation
schemes, using a source particle placed on a grid point (0,0,0) in one instance
and in the center of the voxel (b/2,b/2,b/2) in the other. The simulations were
carried out in a periodic unit cell, with 20 grid points in each direction. Results are
compared with a spectral solution of the Stokes equations in a periodic geometry,
assuming the force density on the particle surface is constant. For an isolated pair of
particles this level of approximation includes the Oseen interaction and the Faxen
correction; it corresponds to the Rotne–Prager (RP) interaction [23] used in most
Brownian dynamics simulations of hydrodynamically interacting particles:

U2 =
[
T(R12)+

a2

12πηR5
12

(
R2

121−3R12R12
)]

·F1. (303)
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Fig. 6 Hydrodynamic interactions between a pair of spherical particles using the force-coupling
method. The normalized mobility μpll

12 /μ0 is plotted at various separations r. We fit the effective
hydrodynamic radius of each interpolating function to numerical solutions of the Stokes equations
with a uniform force density on the sphere. These results correspond to a Rotne–Prager description
of the hydrodynamic mobility and do not include lubrication. We show results at two different grid
locations, (0,0,0) (circles) and (b/2,b/2,b/2) (squares), for two-point (left), three-point (center)
and four-point (right) interpolation schemes

The periodic RP tensor can be calculated by Ewald summation [167] or by direct
summation of Fourier components, which converges if used in conjunction with
finite-volume sources [17, 168].

The results for the two-point interpolation show a significant dependence on the
exact grid position when the particles are close to each other, r < 4a, but the results
for the higher-order schemes are essentially independent of the grid. The three-
point integration scheme is of comparable accuracy to the four-point scheme but
requires less than half the number of grid points. It would seem to be the best choice
for applications even though the particle motion is not quite as smooth. When the
particles are widely separated, the simulations match almost perfectly with both the
Oseen and RP solutions for the same periodic geometry; the typical errors are of the
order of 0.1% of the Stokes velocity.

When the spheres are closer together, r < 3a, then the simulated hydrodynamic
interactions match the Rotne–Prager interaction rather better than the Oseen in-
teraction. This confirms that the weight function does make the particles behave
as volume sources, rather than points. The best fit between simulation results and
Stokes flow is obtained for an effective particle radius that is roughly 0.33w, where
w is the range of the weight function. So for two-point interpolation (w = 2b) the
effective size is about 0.7b, for three-point interpolation (w = 3b) it is about 1.0b,
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and for four-point interpolation (w = 4b) it is about 1.3b. The actual values used
in Fig. 6 are 0.8b, 1.0b, and 1.2b, respectively. The optimal hydrodynamic radius is
quite large, a ∼ b, corresponding to strong coupling, a0 ∼ 5b. It remains an open
question whether it is practical or desirable to run the fluctuating simulations with
such large input friction.

5 Applications with Hydrodynamic Interactions

In this section we will discuss applications of the LB method to simulations of soft
matter. We will briefly summarize some of our published work in this area, with the
aim of indicating the breadth of possible applications of the method. Results will be
summarized from simulations that cover a wide range of experimental length and
time scales – from nanometers to millimeters and from nanoseconds to seconds.

5.1 Short-Time Diffusion of Colloids

The first application of the fluctuating LB model was to the short-time diffusion of
hard-sphere colloids. At the time, a new experimental technique – Diffusing Wave
Spectroscopy (DWS) [169] – enabled the study of the dynamics of colloids on time
scales of a few nanoseconds. In general, the diffusion of a colloidal particle is a
Markov process, but at such short times the developing hydrodynamic flow field
gives rise to additional long-range correlations, analogous to the “long-time tails”
in MD [9]. Although the existence of long-time tails had been established theoreti-
cally [170,171] and by MD simulations [9], these experiments marked the first direct
observation of correlated hydrodynamic fluctuations. Brownian and Stokesian dy-
namics both neglect long-range dynamic correlations, using instead the Stokes-flow
approximation, which is typically only valid on time scales longer then 1μs.

Long-time tails occur naturally in the dynamics of lattice-gas models of col-
loidal suspensions [172] and even of the lattice gases themselves [173]. It might be
supposed that such correlations would be absent in a Boltzmann-level model, due
to the Stosszahlansatz closure assumption. The fluctuating LB model described in
Sect. 3 does not have any long-time tails in the stress autocorrelation functions, but
mode coupling between the diffusion of fluid momentum and the diffusion of the
colloidal particle does lead to an algebraic decay of the velocity correlation func-
tion of a suspended sphere [174]. In these simulations the particle-fluid coupling
was implemented via the link-bounce-back (BB) algorithm [98, 120] described in
Sect. 4.1. Figure 7 shows the decay of translational and rotational velocity from two
different types of computer experiment. In one case an initial velocity is imposed,
which decays away due to viscous dissipation, and in the other the particle is set
in motion by stress fluctuations in the fluid. Figure 7 shows that, within statisti-
cal errors, the normalized velocity correlation functions are identical to the steady
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Fig. 7 Decay of translational (U) and rotational (Ω ) velocity correlations of a suspended sphere.
The time-dependent velocities of the sphere are shown as solid symbols; the relaxation of the
corresponding velocity autocorrelation functions are shown as open symbols (with statistical error
bars). A sufficiently large fluid volume was used so that the periodic boundary conditions had no
effect on the numerical results for times up to t = 1,000 in lattice units (h = b = 1). The solid
lines are theoretical results, obtained by an inverse Laplace transform of the frequency-dependent
friction coefficients [175] of a sphere of appropriate size (a = 2.6) and mass (ρs/ρ = 12); the
kinematic viscosity of the pure fluid ηkin = 1/6

decay of the translational and rotational velocities of the sphere; thus our simula-
tions satisfy the fluctuation–dissipation theorem. Moreover, the simulations agree
almost perfectly with theoretical results derived from the frequency-dependent fric-
tion coefficients [175], even though there are no adjustable parameters in these
comparisons; thus we see that the fluctuating LB equation can account for the hy-
drodynamic memory effects that lead to long-time tails [9].

The simulations were also used to measure self diffusion in dense colloidal sus-
pensions, up to a solids volume fraction of 45%. The simulation data, shown in
Fig. 8, exhibits the same scaling with amplitude and time found in the DWS ex-
periments [176]. In Fig. 8 the amplitude of the mean-square displacement has been
normalized by its limiting value 6Dst, where Ds is the short-time self-diffusion co-
efficient. Ds(φ) is a monotonically decreasing function of concentration, because
neighboring particles increasingly restrict the hydrodynamic flow field generated
by the diffusing particle. Although the colloidal particles are freely moving in the
fluid, the no-slip boundary condition induces stresslets and higher force multipoles
on the particle surfaces; Ds(φ) is one average measure of these hydrodynamic in-
teractions. The normalized mean-square displacement has a single relaxation time,
so that when the time axis is scaled by τ all the data collapse onto a single curve,
which is the same as for an isolated sphere. The relaxation time τ is the viscous
diffusion time ρa2/η , of a single particle in a fluid of viscosity η , where η(φ)
is numerically similar to the high-frequency viscosity of the suspension [19]. This
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Fig. 8 Scaled mean-square displacement
〈
ΔR2(t)

〉
/6Dst at short times, vs. reduced time t/τ .

Simulation results for 128 spheres (solid symbols) are shown at packing fractions φ of 5%, 25%,
and 45%; the solid line is the isolated sphere result. The suspension viscosity at these packing
fractions is 1.14η0, 2.17η0, and 5.6η0 respectively, where η0 is the viscosity of the pure fluid

observation, which is in line with experimental measurements [176, 177], suggests
that the short-time diffusion is essentially mean field like.

5.2 Dynamic Scaling in Polymer Solutions

The classical theory [6] of the equilibrium dynamics of polymer chains in solution
is the Zimm model [178], which considers a single flexible chain in a good sol-
vent, such that its conformations are given by a random coil with excluded volume
segments:

R ∼ bNν . (304)

Here, R is the size of the coil, measured in terms of the gyration radius or the end-to-
end distance, while N denotes the number of monomers in the chain or the degree of
polymerization, and b is the monomer size. Long-range interactions like electrosta-
tics, or effects of poor solvent quality, are not considered. Furthermore, the solution
is considered to be dilute, such that the chains do not overlap and a single-chain
picture is sufficient. In other words, the standard Zimm model applies in the upper
left corner of the generic phase diagram given in Fig. 9. Here the exponent ν takes
the value ν ≈ 0.59 in three dimensions, because the excluded volume interaction
leads to swelling of the chain when compared to an ideal random coil (ν = 1/2). A
polymer with excluded-volume is thus a self-similar random fractal with dimension
1/ν .
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Fig. 9 Phase diagram of a polymer solution, in the c–T plane, where c is the monomer con-
centration and T is the temperature (parameterizing solvent quality). The static properties are
characterized by scaling laws which describe the dependence of the chain size R (gyration radius or
end-to-end-distance for example) on the degree of polymerization N. In the dilute limit (c → 0) the
so-called theta transition occurs, where at T =Θ , single isolated chains collapse from a swollen
random coil to a compact globule. For finite chain length N, this transition is “smeared out” over a
temperature region ΔT ∝ N−1/2, in which the chain conformations are Gaussian. BelowΘ , there is
phase coexistence between a “gas” of globules and a “liquid” of strongly interpenetrating Gaussian
chains. The corresponding critical point occurs at a very low concentration, cc ∝ N−1/2, and in the
vicinity of Θ , Θ −Tc ∝ N−1/2. The crossover region, which connects the regime of swollen iso-
lated coils with that of the concentrated (Gaussian) solution at high temperatures, is called the
semidilute regime. The dynamics is characterized by the Zimm model in the dilute limit where hy-
drodynamic interactions are important, and by the Rouse model for dense systems where they are
screened. For very dense systems or sufficiently long chains, where curvilinear motion dominates,
the Rouse model must be replaced by the reptation model (or the crossover behavior between these
two cases). The Rouse and Zimm models are briefly described in the text

The Zimm model is based on the Rouse model [6, 179], but includes long-
range hydrodynamic interactions between the segments. Both models predict self-
similarity, not only with respect to space, but also with respect to time. Therefore,
the dynamics is conveniently described in terms of an exponent z, connecting the
chain relaxation time τR with the size of the coil R:
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τR ∝ Rz. (305)

The internal degrees of freedom completely re-organize on a time scale τR, leading
to statistically independent conformations. This is also the time that the chain needs
to diffuse through a distance equal to its own size:

DcmτR ∼ R2, (306)

where Dcm is the translational diffusion coefficient, describing the center-of-mass
motion. These two relations can be combined to determine the scaling of Dcm with
chain size:

Dcm ∝ R2−z. (307)

In the Zimm model, the hydrodynamic interactions result in strongly correlated mo-
tions, such that the coil as a whole behaves like a Stokes sphere, Dcm ∝ R−1, or

z = 3. (308)

The Rouse model neglects hydrodynamic interactions and the monomer friction co-
efficients add up to give a total friction coefficient that is linearly proportional to N.
Since Dcm ∝ N−1 ∝ R−1/ν ,

z = 2+
1
ν

, (309)

corresponding to slower dynamics.
Self-similarity implies that the relaxation of the internal degrees of freedom also

scales with the exponent z on time scales τb 	 t 	 τR, where τb is the relaxation
time on the monomer scale b. In the space–time window b 	 l 	 R, τb 	 t 	 τR,
there is a scaling of the mean square displacement of a monomer,

〈
Δr2〉 ∝ t2/z, (310)

while the dynamic structure factor of a single chain of N monomers

S(k, t) =
1
N

〈
N

∑
i j=1

exp [ik · (ri(t)− r j(0))]

〉

(311)

scales as
S(k, t) = k−1/ν f

(
k2t2/z

)
. (312)

The Zimm model applies to dilute solutions, and, therefore, to the dynamics of
a single solvated chain. It has become a benchmark system, used to test the validity
of mesoscopic simulation methods. A single chain, modeled by bead–spring inter-
actions, coupled to a surrounding solvent to account for hydrodynamic interactions,
has been successfully simulated via (1) Molecular Dynamics [180–182], (2) Dissi-
pative Particle Dynamics [183, 184], Multi-Particle Collision Dynamics [185, 186],
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and by LB [122], applying the dissipative coupling described in Sect. 4.5. These
studies are nowadays all sufficiently accurate to be able to clearly distinguish be-
tween Rouse and Zimm scaling. However, a more demanding goal is to verify not
only the exponent, but also the prefactor of the dynamic scaling law.

The Kirkwood approximation to the diffusion constant,

D(K) =
kBT
ΓN

+
kBT
6πη

〈
1

RH

〉
, (313)

(Γ is the monomer friction coefficient) can be calculated from a conformational
average of the hydrodynamic radius RH,

〈
1

RH

〉
=

1
N2 ∑

i = j

〈
1
ri j

〉
. (314)

Highly accurate results for a single chain in a structureless solvent have been ob-
tained by Monte Carlo methods [187, 188]. However, a naive comparison will fail
badly. The expression for RH (314) assumes an infinite system, but in a simulation
the system is confined to a periodic unit cell, which is typically not substantially
larger than the size of the coil. The effects of periodic boundaries can be accounted
for quantitatively, by replacing the Oseen tensor with an Ewald sum that includes
the hydrodynamic interactions with the periodic images [167]. The consequences of
this have been worked out in detail for polymers [182] and colloids [19]. The main
result is that the hydrodynamic radius must be replaced by a system-size dependent
effective hydrodynamic radius; the leading-order correction is proportional to R/L,
where L is the linear dimension of the periodic simulation cell. Interestingly, inter-
nal modes, such as Rouse modes [6], where the motion of the center of mass has
been subtracted, have a much weaker finite-size effect, which scales as L−3, cor-
responding to a dipolar hydrodynamic interaction with the periodic images [122].
Taking the finite-size effects into account, the predictions of the Zimm model are
nicely confirmed.

However, the Zimm model is no longer valid as soon as the chains start to over-
lap. Here a double screening mechanism sets in: (1) Screening of excluded volume
interactions (Flory screening). In a dense melt, the chain conformations are not those
of a self-avoiding walk, but rather those of a random walk (ν = 1/2). Essentially,
this is an entropic packing effect: A swollen coil would take too much configura-
tion space from the surrounding chains. This effect can be understood in terms of
a self-consistent mean-field theory, which is expected to work well for dense sys-
tems where density fluctuations are suppressed [7]. (2) Screening of hydrodynamic
interactions. In dense melts, the dynamics is not Zimm-like, but rather Rouse-like,
or governed by reptation [6]. Reptation occurs for long chains in dense systems,
where topological constraints enforce an essentially curvilinear motion. We will not
be concerned with these latter effects, but rather with the mechanism which leads
to the suppression of hydrodynamic interactions. On the basis of the results of com-
puter simulations [43], we were able to develop a simple picture, which essentially
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confirmed the previous work by de Gennes [189], and completed it. The basic mech-
anism is chain–chain collisions. A monomer encountering another chain will deform
it elastically, inducing a stress along the polymer backbone instead of propagating
the signal into the surroundings. Since the chain arrangements are random, the fluid
momentum is also randomized, such that momentum correlations (or hydrodynamic
interactions) are destroyed.

The crossover region between dilute and dense systems is called the semidilute
regime. A semidilute solution is characterized by strongly overlapping chains which
are however so long and so dilute that the monomer concentration can still be con-
sidered as vanishingly small. Apart from b and R, there is now a third important
length scale, the “blob size” ξ with b 	 ξ 	 R. Essentially, ξ is the length scale on
which interactions with the surrounding chains become important; this length scale
controls the crossover from dilute to dense behavior. The chain conformations are
characterized by ν = 0.59 on length scales much smaller than ξ , while on length
scales substantially above ξ the exponent is ν = 1/2. The challenge for computer
simulations is that both behaviors need to be resolved simultaneously, which is only
possible for N > 103. Roughly 30 monomers are needed to resolve the random frac-
tal structure within the blob, while another 30 blobs per chain are needed to observe
the random walk regime. Furthermore, a many-chain system should be run without
self-overlaps, and this leads to the conclusion [43] that the smallest system to simu-
late semidilute dynamics contains roughly 5×104 monomers and 5×105 LB lattice
sites.

The picture which emerges from these simulations [43] can be summarized as
follows. Initially, the dynamics is Zimm-like, even for length scales beyond the blob
size. The reason is that hydrodynamic signals can spread easily throughout the sys-
tem, and just drag the chains with them. This continues until chain–chain collisions
start to play a role. The relevant time scale is the blob relaxation time τξ ∝ ξ 3, i.e.,
the time a blob needs to move its own size. From then on, the screening mecha-
nism described above becomes important, and the dynamics is Rouse-like. This is
only observable on length scales beyond the blob size, since on smaller scales all
dynamic correlations have decayed already. This is nicely borne out by single-chain
dynamic structure factor data (see Fig. 10), and explains the previous observation of
“incomplete screening” [190] in a straightforward and natural way.

5.3 Polymer Migration in Confined Geometries

Flexible polymers in a pressure-driven flow field migrate towards the center of the
channel, because of hydrodynamic interactions. The local shear rate stretches the
polymer and the resulting tension in the chain generates an additional flow field
around the polymer. This flow field becomes asymmetric near a no-slip boundary
and results in a net drift towards the center of the channel [191–193]. Recent simula-
tions [193, 194] show that hydrodynamic lift is the dominant migration mechanism
in pressure-driven flow, rather than spatial gradients in shear rate. Recently, we used
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Fig. 10 Scaling of the single-chain dynamic structure factor data, showing both Rouse and Zimm
scaling [43]. The wave number k has been restricted such that only length scales above the blob size
are probed (kξ < 1), while the size of the polymer chain as a whole does not yet matter (kRG > 1).
The data are labeled according to the time regimes; solid symbols refer to the short-time regime
below the blob relaxation time, t < τξ , while open symbols are for later times t > τξ . The upper
curve is for Rouse scaling (z = 4) and the lower curve for Zimm scaling (z = 3). One sees that
Zimm scaling works better in the short-time regime, while Rouse scaling holds for later times

numerical simulations to investigate a flexible polymer driven by a combination of
fluid flow and external body force [195], but ignoring the complications arising from
counterion screening in electrophoretic flows. We used the fluctuating LB model
(Sect. 3) in conjunction with the point-force coupling scheme described in Sect. 4.5.

We were surprised to find that the polymer migrates towards the channel center
under the action of a body-force alone, while in combination with a pressure-driven
flow the polymer can move either towards the channel wall or towards the channel
center. The external field and pressure gradient result in two different Peclet num-
bers: Pe = URg/D and Pef = γRg

2/D. Here U is the average polymer velocity with
respect to the fluid, and γ is the average shear rate. The interplay between force and
flow can lead to a wide variety of steady-state distributions of the polymer center of
mass across the channel [195]. For example, in a countercurrent application of the
two fields, the polymer tends to orient in different quadrants depending on the rela-
tive magnitude of the two driving forces. The polymer then drifts either towards the
walls or towards the center depending on its mean orientation. The results in Fig. 11
show migration towards the boundaries when the external force is small (Pe < 30),
but increasing the force eventually reverses the orientation of the polymer and the
polymer again migrates towards the center (Pe > 100).

The simulations mimic recent experimental observations of the migration of
DNA in combined electric and pressure-driven flow fields [196,197]. The similarities
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Fig. 11 Center of mass distributions for countercurrent application of an external body force and
pressure-driven flow in a channel of width H. The solid curve shows the level of migration under
the pressure-driven flow only. The flow Peclet number in all cases is Pef = 12.5. The boundary is
at y/H = 0 and the center of the channel is at y/H = 0.5; H = 8Rg

between these results suggest that hydrodynamic interactions in polyelectrolyte so-
lutions are only partially screened. In fact, within the Debye–Hückel approximation,
there is a residual dipolar flow field [198]. Although this flow is weak in comparison
to the electrophoretic velocity, its dipolar orientation enables it to drive a transverse
migration of the polymer. A recent kinetic theory calculation [199] supports these
qualitative observations.

5.4 Sedimentation

The previous examples have focused on sub-micrometer-sized particles, colloids
and polymers, where Brownian motion is an essential component of the dynam-
ics. For particles larger than a few micrometers, Brownian motion is negligible
under normal laboratory conditions and a suspension of such particles can be sim-
ulated using the deterministic version of the LB equation (see Sect. 3). There is an
interesting regime of particle sizes, from 1–100μm depending on solvent, where
Brownian motion is negligible, yet inertial effects are still unimportant. This cor-
responds to the region of low Reynolds number (Re = Ud/ηkin) but high Peclet
number (Pe = Ud/D). Here U is the characteristic particle velocity, d is the diame-
ter, and D is the particle diffusion coefficient. Because of the large difference in time
scale between diffusion of momentum and particle diffusion, it is quite feasible for
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Pe to be 6–10 orders of magnitude larger than Re. We have carried out a number
of simulations in this regime, with the aim of elucidating the role of suspension
microstructure in controlling the amplitude of the velocity fluctuations as the sus-
pension settles.

In a sedimenting suspension, spatial and temporal variations in particle con-
centration drive large fluctuations in the particle velocities, of the same order of
magnitude as the mean settling velocity. For particles larger than a few microme-
ters, this hydrodynamic diffusion dominates the thermal Brownian motion, and in
the absence of inertia (Re 	 1), the particle velocities are determined entirely by
the instantaneous particle positions. If the particles are randomly distributed, then
the velocity fluctuations will diverge with increasing container size [200], although
the density fluctuations may eventually drain out of the system by convection [201].
However, experimental measurements indicate that the velocity fluctuations con-
verge to a finite value as the container dimensions are increased [202, 203], but
the mechanism by which the velocity fluctuations saturate is not yet clear. Some
time ago, Koch and Shaqfeh suggested that the distribution of pairs of particles
could be modified by shearing forces induced by the motion of a third particle, and
that these changes in microstructure could in turn lead to a screening of the long-
range hydrodynamic interactions driving the velocity fluctuations [204]. However,
detailed numerical simulations found no evidence of the predicted microstructural
changes [205]. Instead the velocity fluctuations in homogeneous suspensions (with
periodic boundary conditions) were found to diverge with increasing cell size. More
recently, it has been proposed that long wavelength density fluctuations can be
suppressed by a convection diffusion mechanism [206, 207], but a bulk screening
mechanism cannot be reconciled with the results of computer simulations [144,205].
Alternatively, it has been suggested that the vertical walls of the container may mod-
ify, although not eliminate, the divergence of the velocity fluctuations [208]. Most
recently, it has been shown [209,210] that a small vertical density gradient can damp
out diverging velocity fluctuations.

LB simulations were used to test these theoretical ideas, comparing the be-
havior of the velocity fluctuations in three different geometries [211]. We found
striking differences in the level of velocity fluctuations, depending on the macro-
scopic boundary conditions. In a geometry similar to those used in laboratory
experiments [202, 203], namely a rigid container bounded in all three directions,
we found that the calculated velocity fluctuations saturate with increasing container
dimensions, as observed experimentally, but contrary to earlier simulations with
periodic boundary conditions [144, 205]. The main result is illustrated in Fig. 12,
and suggests that the velocity fluctuations in a bounded container are indepen-
dent of container width for sufficiently large containers. On the other hand, in
vertically homogeneous suspensions velocity fluctuations are proportional to the
container width, regardless of the boundary conditions in the horizontal plane.
The significance of this result is that it establishes that velocity fluctuations in a
sedimenting suspension depend on the macroscopic boundary conditions and that
laboratory measurements [202, 203, 212] are not necessarily characteristic of a uni-
form suspension, as had been supposed. Instead, the simulations show that vertical
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variations in particle concentration are responsible for suppressing the velocity fluc-
tuations, which otherwise diverge with increasing container size, in agreement with
theory [200] and earlier simulations [144, 205]. The upper and lower boundaries
apparently act as sinks for the fluctuation energy [201], while in homogeneous sus-
pensions velocity fluctuations remain proportional to the system size [200].

5.5 Inertial Migration in Pressure-Driven Flow

At still larger particle sizes, typically in excess of 100μm, the inertia of the fluid can
no longer be ignored. For suspended particles in a gravitational field, the Reynolds
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number grows in proportion to the cube of the particle size. Inertia breaks the sym-
metry inherent in Stokes flow and leads to new phenomena, and in particular the
possibility of lateral migration of particles. A particle in a shear flow experiences
a transverse force at non-zero Re, with a direction that depends on the velocity of
the particle with respect to the fluid velocity at its center. Thus, if the particle is
moving slightly faster than the fluid it moves crosswise to the flow in the direction
of lower fluid velocity and vice versa [213]; if it is moving with the local stream ve-
locity then it does not migrate in the lateral direction at all. Now in Poiseuille flow,
a spherical particle moves faster than the surrounding fluid because of the Faxen
force, proportional to the curvature in the fluid velocity field. Thus, particles tend
to migrate towards the channel walls [214]. However, near the wall the particle is
slowed down by the additional drag with the wall and so eventually migrates the
other way. At small Reynolds numbers (Re < 100), these forces balance when the
particle is at a radial position of roughly 0.6R, where R is the radius of the pipe.
In a cylindrical pipe, a uniformly distributed suspension of particles rearranges to
form a stable ring located at approximately 0.6R [215]. Theoretical calculations for
small particles in plane Poiseuille flow give similar equilibrium positions to those
observed experimentally [216,217]. The profile of the lateral force across the chan-
nel shows only one equilibrium position, which shifts closer to the boundary wall
as the Reynolds number increases. Our interest in this problem was sparked by two
recent experimental observations: first that particles tend to align near the walls to
make linear chains of more or less equally spaced particles [215, 218], and second
that at high Reynolds numbers (Re ∼ 1,000) an additional inner ring of particles
was observed when the ratio of particle diameter d to cylinder diameter D was of
the order of 1:10 [219]. Large particles introduce an additional Reynolds number,
Rep = Re(d/D)2, which may not be small, as assumed theoretically [216, 217]. We
used the LB method to investigate inertial migration of neutrally buoyant particles
in the range of Reynolds numbers from 100 to 1,000 [220]. Individual particles in a
channel with a square cross section migrate to one of a small number of equilibrium
positions in the cross-sectional plane, located near an edge or at the center of a face;
we could not identify any stable positions for single particles near the center of the
channel.

To investigate multiparticle suspensions, random configurations of particles were
prepared at a volume fraction φ = 1% and size ratio H/d = 9.1. The Reynolds
number in the simulations varied between 100 and 1,000. An initially uniform dis-
tribution, shown in Fig. 13a, evolves into three different steady-state distributions
depending on Re. At Re = 100 (Fig. 13b) particles are gathered around the eight
equilibrium positions and strongly aligned in the direction of the flow, making lin-
ear chains of more or less uniformly spaced particles. Similar trains of particles
were observed in laboratory experiments [218]. At Re = 500 (Fig. 13c) the parti-
cles are gathered in one of the four most stable positions, near each corner. By a
Reynolds number of 500, the trains are unstable and the spacing between the par-
ticles is no longer uniform. Instead transient aggregates of closely spaced particles
are formed, again near the corners of the duct. However, at still higher Reynolds
number, Re = 1,000, there is another change in particle configuration (Fig. 13d),
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Fig. 13 Snapshots of particle configurations in a duct flow at different Reynolds numbers; the flow
is into the plane of the paper: a Initial configuration, b Re = 100, c Re = 500, d Re = 1,000. The
ratio H/d = 9.1, the number of particles N = 32 and the volume fraction φ = 1%

and particles appear in the center of the duct. A central band was first observed in
experiments in a cylindrical pipe [219], but its origin remains unclear. We observe
that the central particles have a substantial diffusive motion in the velocity-gradient
plane, whereas the particle trains exhibit little transverse diffusion. Since there are
no single-particle equilibrium positions at the duct center, the presence of particles
in the inner region is clearly due to multi-body interactions. Nevertheless, this mi-
gration cannot be a shear-induced migration of the kind that occurs in low-Reynolds
number flows [221].

Our simulations suggest that the inner band of particles is the result of the forma-
tion of transient clusters of particles. We proposed [220] that at higher Reynolds
numbers (Re > 500) the trains become unstable and clusters of closely spaced
particles arise, as can be seen in Fig. 13c. Simulations of tethered pairs of parti-
cles have shown that additional equilibrium positions arise for pairs of particles at
Reynolds numbers in excess of 750 [220]. Thus, transient clusters are formed at
higher Reynolds numbers, which drift towards the center of the channel making the
additional ring observed in experiments [219] and simulations (Fig. 13d). Eventu-
ally, the cluster disintegrates from hydrodynamic dispersion and the particles return
to the walls. At steady state, there is a flux of pairs and triplets of particles moving
towards the center, balanced by individual particles moving towards the walls. This
also explains why the particles in the inner region are highly mobile, while those
near the walls have a very small diffusivity.
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Transition Path Sampling and Other Advanced
Simulation Techniques for Rare Events

Christoph Dellago and Peter G. Bolhuis

Abstract Computer simulations of molecular processes such as nucleation in first-
order phase transitions or the folding of a protein are often complicated by widely
disparate time scales related to important but rare events. Here, we will review sev-
eral recently developed computational methods designed to address the rare-events
problem. In doing so, we will focus on the transition path sampling methodology.
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1 Rare Events in Complex Systems

During the past few decades computer simulation methods such as molecular dy-
namics (MD) and Monte Carlo (MC) simulation have grown into powerful and
extremely versatile tools in theoretical condensed matter science. Today, these meth-
ods are run on fast computers to study complex systems consisting of up to millions
of particles of interest in physics, materials science, chemistry, and biology with
atomistic resolution. But despite the tremendous algorithmic advances and the steep
increase in raw computing power that we have witnessed recently, many interesting
and important processes still lie beyond the reach of current technology. The main
reason for this limitation is that frequently the behavior of the system of interest
is determined by phenomena occurring on vastly different time and length scales.
The structure and dynamics of polymer solutions, for example, involves character-
istic lengths ranging from the length of a chemical bond (∼1Å) and the persistence
length of a chain (∼1 nm), to the extension of a coil (∼10 nm), the inter-coil dis-
tance (∼0.1μm), and, finally, the size of the macroscopic sample (∼1 cm) [1]. The
time scales associated with the dynamics at the different levels of this hierarchy of
length scales span an even wider range from the femtosecond regime of bond vibra-
tions to the practically boundless characteristic times for coil motion near the glass
transition [2].

One strategy for overcoming the difficulties associated with the wide range of
length and time scales consists of coarse graining the description by eliminating
unimportant variables and retaining only those degrees of freedom that are essential
for the phenomena one wants to study. For example, the complexity of models for
polymer solutions is often reduced using bead-spring models, in which single par-
ticles replace whole groups of atoms [2], or by systematically integrating out part
of the microscopic degrees of freedom such that the total potential energy can be
written in terms of effective interactions [3,4]. Such simplified models can be simu-
lated very efficiently and the accessible time scales increase by orders of magnitude.
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Development of such models, however, requires considerable insight into the nature
of the problem (e.g., which degrees of freedom can be eliminated and which ones
are essential) and such knowledge is often unavailable. For instance, it is unclear
how one would go about coarse graining a supercooled liquid that approaches the
glass transition. In this case, the collective variables capturing the essential physics
of the process are unknown. This lack of a priori knowledge about mechanisms is
very common, precluding the possibility of any systematic coarse graining proce-
dure. Then, there is no way around a fully atomistic simulation, which, naturally,
is complicated by the presence of widely disparate time scales. While no general
solution to this problem exists, some progress has been made in the development of
methods for the simulation of processes dominated by rare events. These methods
and their applications are the subject of the present review article. In the following,
we will be only concerned with systems in which atoms are described as classi-
cal particles. (Note, however, that the determination of the potential energy surface
(PES) on which these atoms evolve may require quantum mechanical electronic
structure calculations.)

Rare events are important if the system’s dynamics consists of extended so-
journs in long-lived stable states punctuated by rapid transitions between such states.
(Here, we call a region of configuration space stable, if the system resides in it for
a long time. Of course, there is a certain amount of arbitrariness in such a defi-
nition, but as long as there is a clear separation of time scales such a definition
makes sense. In our terminology, “stable” also designates states that are thermody-
namically metastable.) Examples of such processes include nucleation in first-order
phase transitions, chemical reactions, transport phenomena in solids and liquids,
biomolecular isomerizations or even transitions of comets between different orbits
in the solar system [5]. Such transition events are rare, because the stable basins are
separated from each other by high potential energy barriers or entropic bottlenecks.
But while being rare, these transitions proceed swiftly when they occur. Consider,
for instance, the autoionization of a water molecule in the bulk liquid. Here, the
stable states between which the transition occurs are the intact water molecule H2O
and the dissociated fragments OH− and H+. From experiments we know that the
average life time of a water molecule before the dissociation reaction occurs is of
the order of ten hours for water under ambient conditions [6]. But when the reaction
occurs, driven by a rare fluctuation of the solvent, the sequence of molecular events
that lead to the formation of the separated ion pair takes place on a sub-picosecond
time scale [7]. Thus, in this case there is a wide gap of characteristic times spanning
more than 16 orders of magnitude. Time scale gaps of similar magnitude are also
observed in the crystallization of a supercooled liquid close to coexistence, which
proceeds via nucleation and growth. Since this process requires the formation of
a free energetically unfavorable crystallite of sufficient size, the nucleation takes
place rarely. But when it takes place, formation of the critical nucleus and subse-
quent growth happens quickly. (It is important to realize that in general the ascent
to the top of the free energy barrier occurs as rapidly as the descent from it. This
is simply required by the microscopic reversibility of the dynamics. Such barrier
crossing events are just rare rather than slow!)
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In principle, conventional computer simulations can be used to study the dynam-
ics of processes involving rare events. One could, for instance, just follow the time
evolution of the system with a MD simulation (using an empirical force field or
first principle methods for the force calculation) and observe what happens. In such
a case the time step required for a faithful simulation of the system is dictated by
the shortest characteristic time present in the system, usually the femtosecond time
scale of molecular bond vibrations and atomic collisions. Then, a very large number
of such time steps would be required to observe even one single transition event.
In simulating the autoionization of water with such a straightforward MD approach
of the order of 1020 time steps of femtosecond length would be required to observe
one single dissociation. The computational requirements of such a procedure are
clearly beyond current capabilities (and will stay there for a while), but even in less
extreme cases MD simulations of rare events are impractical (we would probably
not call these events “rare” if it were otherwise).

Similar computational complications can occur in the calculation of structural
(rather than dynamical) properties of complex systems. In MC simulations, for
instance, an accurate determination of the equilibrium properties of a molecular
system requires a proper sampling of all statistically relevant configurations. If, as
in the above examples, configuration space is partitioned into stable basins by high
(free) energy barriers, straightforward sampling with only local moves is unable to
accomplish exhaustive sampling in the available CPU time. The reason is that to
connect stable basins the system needs to traverse the low probability regions on the
free energy barriers. In this case, the number of simulation steps required to move
between adjacent stable regions by far exceeds the number of steps needed to ob-
tain converged averages within each such region. If one is interested in structural
properties only, which are mostly determined by the stable states rather than the
transition regions, it is often possible to exploit the freedom of MC simulations and
design moves that transport the system from one high likelihood region to another
without passing through energetic and entropic bottlenecks. MC methods based on
such smart moves have been developed and have led to huge increases in computa-
tional efficiency [8, 9]. Other recent approaches to find and/or identify stable states
include simulated annealing [10], genetic algorithms [11,12], hidden Markov mod-
els [13,14], and basin hopping [15]. These methods, however, are outside the scope
of this article. Here, we will focus on simulation methods designed to study the
mechanistic and kinetic details of the transition processes themselves.

Often, at low temperature, stable states are associated with regions around sin-
gle potential energy minima and transitions between these minima occur via saddle
points of the PES. Saddle points are then transition states, i.e., mountain passes
from which both stable states are equally accessible. In this case, a good strategy to
explore stable states and transition routes between them is to search for stationary
points on the PES, i.e., points such as minima and saddle points at which the gra-
dient of the potential energy vanishes. Methods to do that are discussed in Sect. 2.
The same section also includes a brief overview of the nudged elastic band method
(NEB) [16], action-based methods [17], the coarse molecular dynamics (CMD)
method [18], and the metadynamics method [19]. CMD and metadynamics are
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one-ended methods designed to explore the free energy landscape spanned by a few
appropriately selected collective variables and to identify possible transition path-
ways to adjacent stable states. In contrast, the NEB method and the action-based
methods are two-ended methods to determine pathways between two known stable
states. Once transition states on the potential or on the free energy surface (FES)
have been determined with these methods, the reaction kinetics can be studied with
transition state theory (TST), a topic which is covered in Sect. 3. The central idea
of this approach is to determine the flux through a so-called dividing surface sepa-
rating the stable states between which the transition occurs. We will discuss various
approaches based on this idea differing in how this flux is determined and which
approximations are used to do that.

For systems in which the dynamics consist of long stays in the basins around
potential energy minima interrupted by swift hops between them passing through
saddle points, the assumptions of TST are often obeyed and the long time dy-
namics can be studied with the accelerated MD methods [20] discussed in Sect. 4.
In these approaches, which include parallel replica dynamics, hyperdynamics, and
temperature-accelerated dynamics, the rate of escape from the minima is artificially
enhanced in one way or another. The natural dynamics on long time scales is then
reconstructed from such boosted simulations and often dramatic speed-ups can be
achieved.

While the methods considered in Sect. 2 are either static (transition state searches,
NEB) or replace the true dynamics of the system with an artificial time evolu-
tion (metadynamics), the transition path sampling (TPS) method [21–23] presented
and discussed in Sect. 5 deals with fully dynamical trajectories. On the basis of
a statistical and reaction-coordinate free description of transition pathways, this
methodology can be used to study the mechanism and the kinetics of transitions
between known stable states. The central idea of this method is to first define the set
of all reactive trajectories, i.e., the transition path ensemble (TPE) consisting of all
trajectories that connect the stable states of interest, and then to sample these trajec-
tories with MC methods acting in the space of trajectories, an idea that goes back
to work of Pratt [24]. In the underlying statistical mechanics of trajectories reaction
rate constants can be expressed in terms of path averages and various methods ex-
ist to evaluate these averages efficiently. As the TPS method does not require prior
knowledge of a reaction coordinate and does not rely on the identification of particu-
lar features of the PES, it can be applied to rare transitions in complex systems with
rugged PESs and/or entropic barriers. Owing to our own personal preferences and
expertise, among all the methods treated in this review article TPS will be discussed
in greatest detail.

A discrete version of TPS, in which pathways are viewed as sequences of ad-
jacent potential energy minima, was developed by Wales and collaborators and is
briefly discussed in Sect. 6.

Computational methods such as TPS yield sets of likely transition trajecto-
ries but do not automatically identify a small set of pertinent variables, ideally a
one-dimensional reaction coordinate, that can be used to understand the system’s
dynamics in terms of a simplified low-dimensional model. Visual inspection of the
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trajectories with a molecular viewing program may sometimes help to single out the
crucial variables, but, in general, for complex systems these variables remain hid-
den to the eye. Recently, a number of approaches have been developed to address the
important problem of finding appropriate reaction coordinates. In all of these meth-
ods, the so-called committor (or commitment probability) plays a central role. As
explained in Sect. 7, the committor is the probability that trajectories started from
a given configuration end up in a particular stable state. Several committor-based
analysis methods, including calculation of the transition state ensemble (TSE) and
committor distributions [25, 26], Bayesian path statistics [27], genetic neural net-
works (GNN) [28], and likelihood maximization [29], are discussed in Sect. 8. The
concept of the committor is seamlessly integrated into the string method [30–32]
whose conceptual basis is provided by transition path theory (TPT) [33]. The key
ideas of the string method are outlined in Sect. 9. In the following we will first de-
fine some basic concepts and then give a more detailed discussion of some of the
methodologies mentioned above for identifying transition mechanisms and deter-
mine reaction rates.

2 Exploring (Free) Energy Landscapes

Structure and dynamics of classical mechanical systems are essentially determined
by the total potential energy V (r) usually given as a function of the coordinates
r = {r1,r2, . . . ,r3N} of all N atoms. In molecular simulations, the potential energy
is either modeled as an empirical potential or calculated directly from a solution of
the electronic Schrödinger equation in the Born–Oppenheimer approximation. For
typical condensed matter systems V (r) is a complicated function with a multitude
of minima, maxima, saddle points, and singular points. Often, the potential energy
is pictured as a landscape in which the elevation in the z-direction corresponds to
the value of the potential energy at a particular configuration r represented by a
point in the xy-plane. An example of how one may imagine such a PES is shown
in Fig. 1.1 Although this suggestive perspective may assist our imagination, it is
important to keep in mind that the landscape picture is a drastic simplification as
the high-dimensional configuration space is represented by one or, at most, two
dimensions.

Under certain circumstances the properties of condensed systems can be un-
derstood in terms of characteristic points of the PES [37, 38]. Transport in or on
solids, chemical bond cleavage and formation, and reorganization processes in solid

1 Figure 1 depicts the PES for one particle in the fluid phase of the Gaussian core model [34,
35]. In this system, particles interact via a Gaussian pair potential, φ(r) = εexp(−r2/σ2), which
accurately describes the effective interaction of polymer coils in solution [36]. The parameters σ
and ε set the length and energy scales, respectively. The PES was calculated by translating one
particle in a plane while keeping all other particles fixed at the positions of a typical configuration
of the liquid phase at density ρ = 0.25σ−2 and temperature T = 0.01ε/kB for N = 1,000 particles.
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Fig. 1 Low-dimensional depiction of a complex PES as a landscape with numerous minima, max-
ima, and saddle points. The vertical elevation is given by the value of the potential energy and the
xy-plane corresponds to the system’s configuration space. At low temperatures, transitions be-
tween potential energy minima occur via saddle points that coincide with the mountain passes in
this topographic perspective

clusters often belong to this class of processes. According to the canonical distribu-
tion

ρ(r) =
1
Z

exp[−βV (r)], (1)

valid for systems in contact with a heat bath at temperature T , configurations of
low potential energy have higher probability to occur than those with high potential
energy. In (1) ρ(r) is the probability density for observing configuration r and β =
1/kBT is the reciprocal temperature. The configurational partition function

Z =
∫

dr exp[−βV (r)] (2)

normalizes the distribution of (1). (Note that, except in one dimension, also in micro-
canonical systems, i.e., systems evolving at constant energy, low-potential-energy
configurations carry a larger statistical weight than high-potential-energy configura-
tions.) At temperatures for which the thermal energy kBT is small compared to the
potential energy barriers separating neighboring potential energy minima, the sys-
tem will mainly fluctuate in the potential energy wells around the minima, the deep
valleys of the PES. At these points, which correspond to the stable structures of the
system, all first derivatives of the potential energy vanish and all second derivatives,
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i.e., the curvatures, are positive. Only rarely will a thermal fluctuation drive the sys-
tem far enough from one minimum so that it can cross a potential energy barrier and
move to an adjacent minimum. Because high-potential-energy configurations have
small statistical weight, such a transition between minima is most likely to succeed
if it crosses the potential energy barrier at its lowest point. This point is a first-order
saddle point in which all first derivatives vanish and curvatures are positive in all di-
rections but one. Wandering along this so-called unstable direction, the system can
cross the barrier at the lowest possible energetic expense. In the presence of thermal
noise the system does not pass exactly through the saddle point, or transition state
(TS), but will cross the potential energy barrier somewhere close to it, provided the
temperature is sufficiently low. In this low temperature case, both the equilibrium
thermodynamics as well as the dynamics of the system can be deduced from knowl-
edge of minima and saddle points and it is therefore desirable to have algorithms for
finding these stationary points, i.e., points with vanishing gradients. Some of these
methods will be briefly discussed in Sects. 2.1 and 2.2.

The landscape picture can be extended to systems at higher temperature, where
entropic effects may become important, by introducing the concept of a free en-
ergy landscape. The definition of a meaningful free energy requires that a number
of possibly collective coordinates q(r) = {q1(r),q2(r),q3(r), . . . ,qM(r)}, sufficient
for a description of the essential physics of the problem, have been identified. The
number M of selected collective variables is usually much smaller than the dimen-
sionality of configuration space. Such collective variables, each of which is a unique
function of the configuration r of the system, can, for instance, be dihedral angles of
a biomolecule undergoing an isomerization reaction or the size of a crystalline clus-
ter forming in an undercooled melt. The free energy as a function of the collective
variables is then defined as the logarithm of a reduced partition function,

F(q1,q2, . . . ,qM) = −kBT ln
∫

dr exp[−βV (r)]
M

∏
i=1

δ [qi −qi(r)], (3)

where the integration extends over the whole configuration space. The free energy
is related to the density distribution P(q1,q2, . . . ,qM) of the collective variables by

P(q1,q2, . . . ,qM) ∝ exp[−βF(q1,q2, . . . ,qM)]. (4)

The free energy F(q) is the effective interaction between the collective variables that
remains when all other degrees of freedom are integrated out. For the description of
the statistics of the collective variables the exponential exp[−βF(q)] plays the same
role the Boltzmann factor exp[−βV (r)] plays for the statistics of configurations.
One can therefore apply the landscape perspective also to free energies as defined
in (3) and view the surface depicted in Fig. 1 as an example of a FES. Minima in
the free energy landscape then correspond to stable states in which the system is
mainly observed. These stable states are separated by free energy barriers, which
are crossed when the system performs a transition from one free energy minimum
to another. It is, however, important to keep in mind that the free energy landscape
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is arbitrary in the sense that it strongly depends on the definition of the collective
coordinates. Therefore, it does not make sense to speak about the free energy land-
scape as if the free energy was a unique inherent property of the system. Rather,
free energy considerations are only meaningful if, at the same time, the collective
variables q(r) are specified. Nevertheless, provided these collective variables are
appropriately defined, exploration of free energy landscapes can be very fruitful.

One way of exploring the free energy landscape is the parallel tempering method
(PT) [39] (aka replica exchange (RE) [40, 41]). In PT/RE simulations one si-
multaneously runs many replicas of the system at different temperatures. At high
temperature, the phase space is sampled efficiently, but at low temperature barriers
are rarely crossed. A MC algorithm that occasionally exchanges replicas allows the
crossing of high barriers while rigorously obeying the Boltzmann distribution for
all temperatures. Subsequent application of (3) and (4) then yields the free energy
for an arbitrary set of collective variables q. The PT/RE technique is thus an order-
parameter-free method to determine important features of the free energy landscape
of complex systems. A major drawback is that it does not give any information on
the transition barriers, because these are not populated.

Established algorithms that do compute free energy barriers include umbrella
sampling (US) [9, 42], thermodynamic integration (TI) [43], blue moon sampling
[44], and the adaptive force method [45]. While these methods are extremely use-
ful, they often rely on the definition of a single collective variable. In this review, we
focus more on free energy methods that allow for multidimensional order parame-
ters. An example of a computational technique to explore the free energy landscape
efficiently using multiple collective variables is the metadynamics method [19] dis-
cussed in Sect. 2.5.

In the following sections, we will discuss several (but, due to space limitation,
not all) techniques to explore (free) energy landscapes.

2.1 Saddle Point Search Algorithms

As the optimization of functions is a problem ubiquitous in many areas of science
and technology, many numerical algorithms to find the location of local and global
minima of functions have been developed and can be used for the exploration of the
PES [46]. Methods for finding local minima can be roughly classified according to
the highest-order derivatives they require. The simplex method, for instance, only
necessitates evaluations of the energy itself. In other methods, such as the steepest
descent and the conjugate gradient methods, first derivatives of the energy must be
available. Finally, minimization procedures such as the Newton–Raphson algorithm
or the Broyden–Fletcher–Goldfarb–Shanno algorithm make use of the second deriv-
atives of the energy. As second derivatives are often not available (or only at a very
high computational price) for molecular systems (for instance, in ab initio calcula-
tions), steepest descent and conjugate gradient are often the methods of choice.

Finding the lowest of all energy minima, i.e., the global energy minimum, is
a much more challenging problem and several methods are available to address
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this important issue. As all these minimization algorithms have been described in
detail in other places (see, for instance, [37] and [46]) and, furthermore, they are not
central to this review article, we will not go into more detail on this topic here.

In general, finding saddle points on the PES is an even more complex prob-
lem than finding minima. The reason for this distinction is that a saddle point is
a minimum in all directions except one, in which it is a maximum. So, saddle
points cannot be found by simply walking uphill starting from a minimum. Rather,
one has to walk uphill while at the same time staying close to the valley bottom.
The eigenvector-following method is a formalization of this idea and allows one to
efficiently find saddle points in complex molecular systems [47–49]. A detailed ex-
planation of the eigenvector-following method including numerous applications to
clusters, biomolecules, and glasses can be found in the book by Wales [37]. Meth-
ods such as eigenvector following, which start from a single minimum, are called
single-ended methods. Other single-ended approaches are the activation-relaxation
technique (ART) of Mousseau and Barkema [50–52], the dimer method [53] as
well as the topological method of Tanase-Nicola and Kurchan [54, 55], in which
a population of stochastically evolving walkers is steered towards dynamical bot-
tlenecks by a birth/death process depending on the local stability properties of the
PES. Double-ended methods, on the other hand, start the saddle point search from
two points on different sides of the saddle point. Chain-of-states algorithms such as
the NEB method discussed in the next section, are examples for such double-ended
methods. Once the saddle point has been located using one of these methods, it is
straightforward to determine the so-called minimum energy path (MEP) by walk-
ing downhill starting from the slightly perturbed saddle point. Note, however, that
this minimum energy pathway is likely to differ from the dynamical path followed
during the transition and does not even have to be similar to it.

2.2 Nudged Elastic Band Method

Another approach to determine transition states and minimum energy pathways con-
sists of constructing a chain of states {r(0),r(1), . . . ,r(M)} that connects two known
adjacent potential energy minima. Here, each state r(i) is a complete replica of the
system’s configuration. As illustrated schematically in Fig. 2, the chain of states acts
like an elastic band with endpoints anchored in the minima. The central idea of most
chain of states methods is to let the intervening states relax in a way that minimizes a
particular object function S[r(0),r(1), . . . ,r(M)]. This object function usually depends
on the springs connecting adjacent states and on the underlying PES V (r) and is not
directly related to the dynamics of the system.2 For an object function constructed

2 If subsequent states in the chain of states are related by the rules of the natural underlying
dynamics one should speak about “trajectories” rather than “chain of states.” Methods based on
trajectories, such as TPS, the string method, and action-based methods are discussed later in this
review.
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Fig. 2 Chain of states connecting two adjoining potential energy minima. In the NEB method,
forces stemming from the springs connecting adjacent states act only in a direction tangential to
the chain as described by the tangent vector τ̂ . The forces f V

⊥ caused by the PES act only in the
directions orthogonal to τ̂

in a suitable way, the optimized chain will cross the potential energy barrier at the
saddle point and join the potential energy minima following the MEP. The various
existing chain-of-states methods differ in the particular form of the object function
and in the way it is minimized [56–62]. Other methods to find saddle points also
require knowledge of both potential energy minima they connect, but operate only
with a pair of images rather than with a whole chain of states [63,64]. Since among
the chain-of-states techniques the NEB method of Jonssón and collaborators [62] is
particularly efficient and has been used in numerous applications, we will describe
it in some detail here as an example. For a brief discussion of the relation of the
NEB method to other chain-of-states methods we refer the reader to [16, 62].

In the simplest form of the object function, each state r(i) is penalized with the
potential energy V [r(i)] at that point and adjacent states are coupled with a harmonic
spring,

S[r(0),r(1), . . . ,r(M)] =
M

∑
i=0

V [r(i)]+
k
2

M

∑
i=1

[r(i) − r(i−1)]2. (5)

When this function is minimized while keeping the chain endpoints fixed, two ef-
fects compete with each other: on the one hand, the states along the chain tend
towards the potential energy minima so that the sum of the potential energy terms
becomes small; on the other hand, the harmonic springs try to keep the states approx-
imately equidistant on a straight line to minimize the energy stored in the springs.
For an appropriately selected force constant k, the optimized elastic band will cross
the potential energy barrier near its lowest point (the transition state) and approxi-
mately follow the lowest energy band.

Such a straightforward approach is, however, plagued by two problems. First, the
harmonic springs, which favor a straight path with regularly spaced images, tend to
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pull the path away from the MEP and the saddle point. This tendency to cut corners
is particularly pronounced for large spring constants. Second, the images along the
chain tend to slide down along the chain towards the potential energy minima un-
der the action of the forces resulting from the underlying PES. This effect, which
leads to a poor resolution of the chain in the important transition state region, is
strongest for small spring constants. Often it is impossible to select a force constant
k of the harmonic springs in a way that reduces both problems simultaneously to a
satisfactory degree.

In the NEB method the “corner cutting” and “sliding down” problems are cured
by nudging the elastic band. This is done by projecting out the normal component
of the spring force and the parallel component of the physical force arising from the
underlying potential. Thus, the total force f NEB acting on image r(i) is given by

f NEB[r(i)] = f V
⊥ [r(i)]+ f s

‖ [r
(i)], (6)

where the normal physical force f V
⊥ is given by

f V
⊥ [r(i)] = −∇(i)V [r(i)]+ (∇(i)V [r(i)] · τ̂)τ̂ (7)

and the parallel spring force reads

f s
‖ [r

(i)] = k
[(

r(i+1) −2r(i) + r(i−1)
)
· τ̂
]
τ̂. (8)

Here, the gradient ∇(i) acts on the coordinates of image i only. The simplest way to
estimate the tangent vector τ̂ required for the projection is

τ̂ =
r(i+1) − r(i)

|r(i+1)− r(i)|
, (9)

but better expressions for τ̂ exist [65]. Using the NEB-forces from (6), which
completely eliminate the corner cutting and sliding down problems, one can re-
lax the elastic band efficiently towards the MEP, for instance with simple steepest
descent [62] or more sophisticated algorithms [62, 66]. With the climbing image
nudged elastic band method (CI-NEB) [67], it is possible to locate the saddle point
on the PES with high precision.

A NEB calculation usually requires only a few dozens of images and converges
in a few hundreds of steps. Another computational advantage of the NEB method
is that it is easy to implement on parallel computers and that it requires only first
derivatives of the potential energy. The MEP and the transition state obtained by a
NEB simulation are, however, purely static objects and the determination of kinetic
properties requires combination of the NEB method with other approaches such as
TST. The NEB method has been mainly applied, often in conjunction with harmonic
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TST (see Sect. 3), to study numerous transport processes and reactions in and on
solids [68–72] but also biomolecular isomerization processes [66, 73].

2.3 Action-Based Methods

The equations of motion of classical mechanics can be derived from variational prin-
ciples such as Hamilton’s principle of least action [74,75]. This principle states that
a physical path connecting a given initial configuration with a given final configura-
tion in time τ makes the action

S =
∫ τ

0
dt (K −V ) (10)

stationary. Here, K and V are the kinetic and the potential energy, respectively. Alter-
natively, Hamilton’s equations of motion can also be obtained from the stationarity
of

S =
∫ σ

0
ds
√

2(E −V ), (11)

where the integral extends over the arc length s of the path of total length σ and
E is the total energy of the system. In this so-called Jacobi formulation of the least
action principle pathways are parametrized by arc length rather than time [75]. Also,
this variational principle can be turned into an initial value problem with “equations
of motion” in which time derivatives are replaced by derivatives with respect to
arc length. While such variational principles embody a complete description of the
system’s dynamics, they are rarely used in practice and computational studies of the
dynamics of molecular systems are mainly carried out using MD simulations based
on the numerical integration of the equations of motion. For finding rare transition
pathways connecting known configurations, however, a direct application of least
action principles can be advantageous [17, 76].

The most straightforward way to implement the least action principle numeri-
cally consists of taking a global viewpoint, in which the whole trajectory, appro-
priately discretized, is considered at once. Accordingly, the integral of (10) [or of
(11)] is replaced by a sum obtained from a suitable quadrature formula as suggested
by Gillilan and Wilson [61]. Then, one searches for stationary points of the ac-
tion in the high-dimensional space spanned by all coordinates along the discretized
pathway. Such a direct numerical treatment is complicated by the fact that the sta-
tionarity condition of Hamilton’s least action principle does not imply that physical
pathways correspond to minima of the action as suggested by the (unfortunate) term
“least action.” Rather, physical pathways are, in general, located at saddle points of
the action surface.3 As mentioned above, finding saddle points is a burdensome task,

3 As shown by Jacobi, physical pathways can never correspond to maxima of the action [77].
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particularly in high-dimensional trajectory space. Therefore, this direct approach is
usually unfeasible [78].

One approach suggested by Passerone and Parrinello [78,79] to circumvent these
difficulties consists of imposing energy conservation along the discretized path-
way by adding an appropriate term to the action. With suitable parameters, this
additional term transforms the stationarity condition of the original least action prin-
ciple into a true minimum condition. Since finding minima with methods such as
steepest descent or conjugate gradient minimization is relatively undemanding [46],
this modified method can be used to efficiently determine transition pathways in
complex many-particle systems. To enhance the quality of the calculation and re-
duce its numerical cost, a Fourier representation of pathways is beneficial in this
method [78, 80]. This way, paths are moved globally rather then locally resulting
in more rapid convergence. This method has been applied to several rare-event-
processes including the reorganization of a Lennard-Jones heptamer [78] and the
isomerization of alanine dipeptide in the gas phase [79].

An alternative action-based method, named stochastic difference equation (SDE),
has been devised by Elber and collaborators [17,76,81–83]. The central idea of this
algorithm is to consider the errors of finite time step MD as statistically distributed
and to use the distribution of these errors to write down a probability density func-
tion for approximate MD trajectories. In a sense, this method turns the imperfection
of finite time step trajectories into an advantage by using the errors to formulate a
convenient action functional. In the limit of small time steps this functional is the
so-called Gauss action, which measures the mean square deviation of the dynamics
from that prescribed by Newton’s equations of motion. The Gauss action is identical
to the so-called Onsager–Machlup action, introduced to study stochastic trajectories,
in the case of vanishing friction [84]. Minimization of this action, either for path-
ways parametrized by time or arc length [83], yields a stable and efficient algorithm
for determining pathways between known endpoints [85].

The fixed initial and final points of the trajectory provide additional stability
such that in the SDE method a substantially larger time step than in straightfor-
ward MD simulations can be used [81, 86]. Indeed, it is the large time step that
makes the SDE method powerful. As demonstrated in various applications includ-
ing conformational transitions of glycosyltransferase [87], ion permeation through
the gramicidin channel [88], the folding of protein A [89], the folding of cytochrome
c [90], and the folding of a helical peptide [91], the accessible time scales can be ex-
tended to microseconds or even milliseconds, far beyond the time scales of typical
MD simulations. In effect, by imposing fixed boundary conditions, the method ex-
cludes all trajectories that are numerically unstable. This essentially corresponds to
filtering out high frequency motion such as bond vibrations, which are unimportant
for large-scale molecular rearrangements. In activated processes, however, there are
often high frequency motions related to rare but fast barrier crossing events. Since
such high-frequency motions are also filtered out by the algorithm, action-based
methods with large time steps are appropriate only for transitions involving slow
diffusive barrier crossings rather than fast ballistic ones. In the latter case, methods
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such as TPS or the finite temperature string method described in Sects. 5 and 9,
respectively, are more suitable.

Algorithmically, action-based methods are similar to the NEB method since in
both cases a path functional is minimized. They differ, however, in the nature of the
particular functional. While in the NEB method a path functional is constructed in
an ad hoc way such that the path traverses the transition state separating reactants
from products, the functional minimized in action-based methods corresponds, in
principle, to the fully dynamical trajectories of classical mechanics. This property,
however, is lost if extremely large time steps are used. In this case, the method yields
a possible sequence of events that may be encountered by the system as it evolves
from its initial to its final state, but a dynamical interpretation of such a sequence of
states is not strictly permissible any more. Nevertheless, large time step trajectories
that minimize the Gauss (Onsager–Machlup) action can provide possible scenarios
for transitions that are computationally untreatable otherwise.

2.4 Coarse Molecular Dynamics

As explained above, the longest time scales accessible by MD simulations are lim-
ited by the short time steps dictated by the femtosecond time scale of the fastest
atomic motions. In the CMD method of Hummer and Kevrekidis this limitation is
overcome by considering the time evolution of the system in terms of a few “coarse”
variables [18, 92]. These M variables q = {q1(r),q2(r), . . . ,qM(r)}, each of which
is a function of the microscopic degrees of freedom r, are supposed to capture the
essential physics of the process of interest and therefore need to be selected with
care. For molecular systems the coarse variables can, for instance, include dihedral
angles, coordination numbers, solvent degrees of freedom, but also the geometry of
the unit cell of a crystal. The basic idea of CMD, then, is to consider the dynamics
only in the subspace spanned by the coarse variables and to effectively integrate out
all fast degrees of freedom on the fly. The time derivatives needed for propagation
of the coarse variables are determined from multiple short MD-runs carried out in
the full phase space of the system. Accordingly, a CMD simulation consists of the
following steps: for a given value of the coarse variables q many microscopic con-
figurations r consistent with the particular values of q are constructed. This so-called
lifting step is not unique and it can be carried out using biased MD simulations with
an appropriate equilibration period. Starting from these initial conditions, short (un-
constrained) MD trajectories in the full phase space are generated. The parameters
characterizing the systematic and stochastic time evolution of the coarse variables
are then determined by averaging over the trajectories. In this way one can estimate
the underlying FES as a function of the coarse variables and the corresponding ef-
fective diffusion coefficient. These parameters are subsequently used to propagate
the coarse variables in time. Assuming diffusive dynamics, analysis of this motion
yields the free energy F(q) and its minima and saddle points as well as the long-time
behavior of the system.



Transition Path Sampling 183

Hummer and Kevrekidis have used the CMD method to study the free energetics
and kinetics of the peptide fragment alanine dipeptide dissolved in water [18]. In
this case, the dihedral angles φ and ψ were selected as the only coarse variables,
which were propagated using multiple short MD runs of length 0.5 ps. From the
time evolution of the coarse variables, the authors mapped out the FES and deter-
mined the rate constants for interconversions between different stable states. Other
applications of the CMD method include the simulation of structural transitions in
crystals [93] and of the filling and emptying of carbon nanotubes in water [94].

2.5 Metadynamics

A very similar perspective is adopted in the metadynamics method of Laio,
Parrinello and collaborators [19, 95]. A recent account of metadynamics can be
found in [96]. Also in this method, designed for exploring FESs and for finding path-
ways connecting stable states, the dynamics of a set of properly selected collective
variables q = {q1(r),q2(r), . . . ,qM(r)} (the coarse variables of the CMD method)
is considered. As in the CMD method, each of these variables is a function of the
configuration r of the system.4 In their lower-dimensional subspace, these variables
evolve in time under the influence of the free energy F(q). To prevent the system
from getting trapped in free energy minima, a time-dependent bias potential FG(q, t)
is added to the equation of motion. The bias potential is designed to mark the regions
in the space of the collective variables q which have already been visited and to drive
the system away from them, enabling it to escape free energy minima. This idea of
a time dependent bias that destabilizes free energy minima is familiar from other
computational techniques such as the flooding method [97–99], the local elevation
method [100], or Wang–Landau sampling [101].

In the original version of metadynamics [19], called discrete metadynamics, the
exploration of the free energy landscape F(q) is driven by the forces

fi(q) = −∂F(q)
∂qi

. (12)

For a particular q, these forces can be evaluated as time averages in a MD simu-
lation carried out in the full phase space of the system (including all microscopic
degrees of freedom) with the collective variables q(r) constrained at q. In contrast
to the CMD method, where dynamical information is extracted from bursts of short
MD trajectories, only the static thermodynamic driving force is determined in the
constrained MD simulation of metadynamics. Using the forces fi(q) the collective

4 In certain situations it is convenient to include other degrees of freedom into the configuration r in
addition to the atomic coordinates. To study transitions between different structures of a crystalline
material with metadynamics, for instance, the parameters specifying the shape of the simulation
box are treated as dynamical variables.
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variables could then be propagated, for instance, in a steepest descent way,

qt+1
i = qt

i +δq
f t
i

| f t
i |

. (13)

Here, t numbers the time steps, qt
i are the collective variables at time t and f t

i = fi(qt)
is the force at qt . The control parameter δq specifies the step size. Such a time
evolution would, however, head towards the closest free energy minimum and get
trapped there. To prevent this from happening, a repulsive Gaussian potential is
deposited at every point visited in the space of the collective variables. Each of
these potentials acts at all later times such that the total force at time t is given
by the thermodynamic force plus a sum of the forces stemming from the Gaussian
potentials,

f̃ t
i = −∂F(qt)i

∂qi
−w

∂
∂qi

∑
t ′<t

exp

(

−|q−qt ′ |2
2σ2

q

)

. (14)

The parameters w and σq set the strength and the width of the bias potential, re-
spectively. By iterating the sequence of force calculations from a constrained MD
simulation (or from a MC simulation) and the propagation step of (13) one obtains
the time evolution of the collective variables. In the metadynamics terminology one
then speaks of a walker traveling through the low-dimensional space of the collec-
tive variables on the FES F(q).

The Gaussian potentials left behind by the walker yield a dynamics very dif-
ferent from that without this time dependent bias FG(q, t). The Gaussian potentials
gradually fill any free energy minimum, such that the walker is forced to escape
free energy minima and explore regions not visited before. This procedure permits a
quantitative estimation of the underlying FES. Once all of the accessible space has
been sampled in this way and all minima are filled up to nearly the same level, the
bias FG(q, t) built up during the simulation approximately compensates the free en-
ergy such that, up to a constant, F(q) is roughly given by the inverted bias potential,

F(q) ≈− lim
t→∞

FG(q, t) = −w∑
t ′<t

exp

(

−|q−qt ′ |2
2σ2

q

)

. (15)

The width σq determines the scale of the smallest features of the FES F(q) that
can be resolved. An increased resolution can be achieved by reducing σq albeit at
the cost of slower sampling. Note that the above relation for the free energy has
been introduced only heuristically. In contrast, the free energy calculation with the
continuous version of metadynamics has been put on a rigorous formal basis [102].

As the walker leaves free energy minima most easily through saddle points in
the free energy landscape, the metadynamics method is also capable of discover-
ing new pathways between stable states and it can help to identify the respective
mechanisms. Of course, the method is successful only if the space of the collec-
tive variables includes the degrees of freedom, which properly characterize the
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mechanism. Several improvements of the discrete metadynamics method as well
as procedures to estimate the error and select the parameters are available [103].

The same general idea of a Gaussian bias that builds up in time and forces the
system to explore new regions of configuration space was later incorporated di-
rectly into a MD simulation carried out in the full system including all microscopic
degrees of freedom [95]. In this version of metadynamics, also known as continuous
metadynamics forces originating from the bias potential formulated in terms of the
collective coordinates act directly on the atomic coordinates. For this purpose, the
time dependent forces

f G
i (r, t) = − ∂

∂ ri

w
τG

∫ t

0
dt ′ exp

(

−|q(r)−q(r(t ′))|2
2σ2

q

)

(16)

are added to the regular forces fi = −∂V (r)/∂ ri in the equations of motion of the
system. Here, the parameter w/τG controls the strength of the Gaussian bias poten-
tial. The bias forces of (16), the calculation of which requires the derivatives of the
collective variables with respect to the coordinates, can be easily incorporated in
any MD algorithm including Car–Parrinello MD [104]. As in the case of the dis-
crete version of metadynamics, the free energy F(q) can be reconstructed from the
accumulated bias potential. Under the assumption that the dynamics of the collec-
tive variables can be modeled by a Langevin equation, this relation can be proved
rigorously and an error analysis can be carried out that guides the choice of the simu-
lation parameters [102,105]. Because of the artificial nature of the biased dynamics,
the kinetics of the transformation can not be inferred directly from a metadynamics
run. Rather, the information from such a simulation about the topography of the FES
can be used as input for other approaches such as TST, TPS or the string method (all
discussed below), which are capable of computing reaction rate constants. A recent
improvement of metadynamics that combines the method with RE techniques has
been proposed by Laio and coworkers [106, 107].

To date, metadynamics (mainly in its continuous variant) has been used to deter-
mine the FES and find possible transition pathways in numerous condensed matter
systems. Applications include structural phase transitions [108, 109], chemical re-
actions [110–112], and biomolecular processes [113, 114].

3 Transition State Theory

In the previous section we have discussed computational methods for exploring po-
tential and free energy landscapes. While these methods can help to identify the
transition mechanism, they do not directly yield the rate at which these transitions
occur. Once the relevant dynamical bottlenecks that oppose transitions between the
stable states are determined, transition rates can be determined in the framework of
TST [115–118]. The basic idea of this procedure goes back to Marcelin, Eyring,
Horiuti, Polanyi, and Wigner [119–123], who realized the importance of transition
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states and developed the theory of chemical reaction kinetics. Since TST provides
the basis for other rare event simulation methods and since the central concepts of
the kinetics of rare events can be introduced in this context, we will discuss TST in
some detail in this section.

3.1 Reaction Rate Constants

Consider a system with a bistable free energy F(q) as shown in Fig. 3. Such a free
energy might be characteristic for a molecule in solution undergoing isomerizations
between two stable conformations A and B, i.e., for a unimolecular chemical reac-
tion

A � B, (17)

in which molecules of type A and B are converted into each other. In this case, the
collective variable (or reaction coordinate in the terminology of chemical reaction
theory) might be an angle or bond length, which markedly differs in the two stable
states. Imagine, now, that this system is followed for a long time and the value of q
is recorded in regular intervals. (In experiments q might not be directly accessible,
so let us just assume that the time evolution of q is followed in a computer simula-
tion.) If the free energy barrier ΔF is high compared to the thermal energy kBT , the
barrier top, which must be crossed during transitions from A to B corresponds to
low probability configurations. Accordingly, transitions from A to B and vice versa
occur only rarely.

This gap between the time scale for motion in A and B and that for transitions
between them is reflected in the trace q(t) shown in the top panel of Fig. 4, which
evidences how long stays in states A and B are interrupted by swift transitions be-
tween them. From a purely macroscopic point of view it makes sense to take a more
coarse grained perspective and consider only the statistics of the transitions between
A and B neglecting the detailed dynamics of q(t) in the stable states. This can be
done by following the time evolution of the indicator function hB[q(t)] as shown in

Fig. 3 Free energy F(q) as
a function of the reaction
coordinate q. A free energy
barrier of height ΔF located at
q∗ separates the stable states
A and B. The thin wiggly line
represents a trajectory going
from A to B
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Fig. 4 Top: Time evolution of the reaction coordinate q(t) for a system with a free energy F(q)
as shown in Fig. 3. Most of the time the reaction coordinate fluctuates around the values qA and
qB typical for the stable states A and B, respectively. Rarely (on the time scale of the stable state
fluctuations), the system switches between A and B. Bottom: Indicator function hB(t) for stable
state B as a function of time t

the bottom panel of Fig. 4. This indicator function is defined such that it is unity, if
the system is right of the barrier and 0 otherwise,

hB [q(r)] =
{

1 if q(r) ≥ q∗,
0 if q(r) < q∗. (18)

The indicator function hA(q) for state A is defined analogously. The indicator func-
tions hA and hB simply tell us whether the system resides in A or B.5

Using these indicator functions we can express the conditional probability to find
the system in state B at time t provided it was in A at time 0,

C(t) ≡ 〈hA[q(0)]hB[q(t)]〉
〈hA〉

. (19)

Here, the angular brackets 〈· · ·〉 denote an average over equilibrium initial condi-
tions, or, equivalently, a time average over a long trajectory, i.e.,

〈hA[q(0)]hB[q(t)]〉 = lim
τ→∞

1
τ

∫ τ

0
dt ′ hA[q(t ′)]hB[q(t ′ + t)] (20)

5 For indicator functions defined according to (18), hA and hB are simply related by hB = 1− hA
and definition of either hA or hB would suffice. Later, however, we will need regions A and B which
are not complementary to each other and therefore we write all expressions using hA and hB such
that they will remain valid later.
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and
〈hA〉 = lim

τ→∞

1
τ

∫ τ

0
dt ′ hA[q(t ′)]. (21)

The averages 〈hA〉 and 〈hB〉 are the probability to find the system in state A and B,
respectively, in a long equilibrium trajectory.

The time correlation function C(t) from (19) is a description of the transition
statistics in the equilibrium system described in terms of the microscopic degrees
of freedom. To make contact with a macroscopic description, appropriate for an
experiment in which many molecules of type A and B are present in the sample, it
is useful to consider the time evolution of the concentrations cA(t) = NA(t)/V and
cB(t) = NB(t)/V defined as the number of molecules per volume V of type A and B,
respectively. We imagine that the concentrations cA(t) and cB(t) can be determined
experimentally in a time-resolved way. Since molecules can only convert into each
other and are not created or destroyed, the total number of molecules N = NA(t)+
NB(t) as well as the sum cA(t)+ cB(t) are constant in time.

Consider now the case, where initially (at time 0) the system is prepared in a way
such that all molecules are of type A. For a dilute solution in which molecules do not
interact with each other, the concentration of molecules of type B as a function of
time can be expressed in terms of the conditional probability C(t) from (19) [124]:

cB(t) =
NB(t)

V
=

N
V

C(t) = (〈cA〉+ 〈cB〉)C(t), (22)

where 〈cA〉 and 〈cB〉 are the equilibrium concentrations to which the system relaxes
given enough time. Since the solution is dilute, the time evolution of the concentra-
tions cA(t) and cB(t) should also be described well by the phenomenological rate
equations

ċA(t) = −kAB cA(t)+ kBA cB(t),
ċB(t) = kAB cA(t)− kBA cB(t), (23)

where kAB and kBA are the forward and backward reaction rate constants, respec-
tively. These kinetic equations can be easily solved analytically and one finds that
the deviations ΔcA(t) = cA(t)−〈cA〉 and ΔcB(t) = cB(t)−〈cB〉 from their respec-
tive equilibrium concentrations decay exponentially,

ΔcA(t) = ΔcA(0)exp(−t/τrxn), (24)
ΔcB(t) = ΔcB(0)exp(−t/τrxn). (25)

The reaction time τrxn is given in terms of the forward and backward reaction rate
constants:

τ−1
rxn = kAB + kBA. (26)

It follows that for very different forward and backward reaction rate constants the
reaction time is dominated by the larger one of the two. The solution of the rate
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equations expressed in (24) and (25) describes the way non-equilibrium concentra-
tions relax towards equilibrium.

It follows from (25) that for the case considered above, where initially all mole-
cules were of type A, the concentration of molecules of type B evolves as

cB(t) = 〈cB〉 [1− exp(−t/τrxn)] . (27)

The phenomenological rate equations are expected to faithfully describe the kinetics
of the system for times larger than the molecular time scale τmol, within which
correlated barrier crossing events can take place, violating the assumptions of the
kinetic equations. Roughly speaking, the molecular correlation time τmol is the time
it takes for the system to forget how it got from A to B. For time t larger than τmol,
any new event is independent of the previous barrier crossing. In this time regime,
comparison of (22) and (27) yields

C(t) = 〈hB〉(1− exp(−t/τrxn)). (28)

Thus, also the time correlation function C(t) is expected to approach its asymptotic
value exponentially. This equality establishes a link between the microscopic dy-
namics of the system (left-hand side) and the phenomenological kinetic description
in terms of reaction rate constants (right-hand side). If there is a separation of time
scales, there will be a time regime τmol < t 	 τrxn in which C(t) grows linearly. It
follows from (28) that in this regime

C(t) ≈ kABt (29)

or, equivalently, the time derivative of C(t), also called the reactive flux, has a hori-
zontal plateau with height equal to the forward reaction rate constant kAB [125],

k(t) ≡ Ċ(t) ≈ kAB. (30)

This equation is the basis for the estimation of reaction rate constants with TST. In
the following sections we will discuss the various forms of TST that differ in how
the rate constant is calculated.

3.2 TST Reaction Rate Constant

The condition q(r) = q∗ for the collective coordinate q(r) defines a hypersurface
in configuration space that separates states A and B, the so-called dividing surface.
(For the time being we just assume that this dividing surface is appropriately chosen;
in later sections we will discuss how to define this surface in an optimum way.)
The goal of TST is to determine the flux through this surface. One can do that
by calculating the time derivative of the correlation function C(t). For stable states
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defined according to (18) we obtain

k(t) =
〈q̇(0)δ [q(0)−q∗]θ [q(t)−q∗]〉

〈θ [q∗ −q(0)]〉 , (31)

where θ(q) is the Heaviside step function. In deriving this equation we have ex-
ploited that hB(q) = θ(q− q∗) = 1− hA(q). The above equation indicates that the
flux k(t) can be viewed as the average rate of change q̇ of the reaction coordinate
at the dividing surface defined by q(r) = q∗, with the additional condition that after
time t the system is located in region B. This condition is violated for trajectories
that, coming from A, make a brief excursion into B and return to A within τmol due
to interactions of the reaction coordinate with other degrees of freedom. Such corre-
lated recrossings [126] of the dividing surface lead to a short time transient behavior
before the reactive flux approaches its plateau value kAB [125].

The central approximation made in TST is to neglect recrossings of the divid-
ing surface. This approximation corresponds to the assumption that all trajectories
which cross the dividing surface heading into B will relax into B. Any subsequent
crossing of the dividing surface is statistically independent. In this case, θ [q(t)−q∗]
can be replaced by θ [q̇(0)] and one obtains

kTST =
〈q̇δ [q−q∗]θ [q̇]〉

〈δ [q∗ −q]〉 × 〈δ [q∗ −q]〉
〈θ [q∗ −q]〉 , (32)

where we have dropped the argument of q and q̇ as the averages are over purely static
quantities. The first factor on the right-hand side of the above equation is simply the
average positive rate of change q̇ of the reaction coordinate and the second factor is
related to the free energy F(q):

kTST =
1
2
〈|q̇|〉q=q∗

e−βF(q∗)

∫ q∗
−∞ e−βF(q)dq

. (33)

Here, 〈· · ·〉q=q∗ denotes an ensemble average with q constrained at q∗. This expres-
sion shows the exponential dependence of the reaction rate constant on the free
energy difference between transition state and stable state. This dependence is char-
acteristic for activated processes and is also known as Arrhenius behavior. From
(33), which is the central result of TST, the following simple numerical procedure
can be devised: first, calculate the free energy F(q) as a function of the reaction
coordinate q(r) and determine the position q∗ of the free energy maximum. Then,
calculate the average positive flux 〈|q̇|〉q=q∗ . In some cases, this average can be cal-
culated analytically. If not, it can be determined, for instance, using a constrained
MD simulation. Finally, combine these elements according to (33). The TST ap-
proximation of the reaction rate constant is computationally efficient, because it
does not require the calculation of dynamical trajectories. However, TST can be
shown [125] to always overestimate the reaction rate constant as indicated in Fig. 5.
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Fig. 5 Typical behavior of the reactive flux k(t). For t < τmol correlated recrossings lead to a
reduction of k(t) with respect to k(0) before it settles on a plateau whose height equals the forward
reaction rate constant kAB. The TST approximation kTST of the reaction rate constant equals k(0),
the reactive flux at time t = 0

3.3 Harmonic Approximation

The calculation of reaction rate constants in TST can be further simplified if the
stable states correspond to single potential energy minima at rA and rB and if dur-
ing transitions the potential energy barrier is crossed near a saddle point rTS in the
PES as indicated in Fig. 6. In this version of TST these stationary points need to
be exactly located. At low temperatures one can then approximate the PES near
the stable states and the saddle points with a Taylor expansion truncated after the
quadratic term. In this harmonic approximation, all averages appearing in (32) can
be calculated analytically. To do that one first carries out a normal mode analysis
in the potential energy minimum A as well as in the TS by diagonalizing the mass
weighted Hessian

Hi j =
1

√mim j

∂ 2V (r)
∂ ri∂ r j

, (34)

where mi is the mass associated with degree of freedom ri. In the potential energy
minimum A, this normal mode analysis yields eigenvalues λA

i which are all pos-
itive. (Eigenvalues that vanish due to the translational and rotational invariance of
the Hamiltonian are disregarded.) The eigen-frequencies in the stable state are then

given by the square root of these eigenvalues, ωA
i =

√
λA

i . In contrast, at the saddle

point exactly one of the eigenvalues λTS
i is negative while all others are positive.

The normal mode corresponding to the negative eigenvalue is the so-called unstable
mode and it is in this direction that the system is assumed to cross the transition state
in the harmonic approximation. (The direction of the unstable mode is denoted by
a red arrow in Fig. 6.) Accordingly, the dividing surface is the plane normal to the
direction of the unstable mode. The frequencies at the transition state in directions

orthogonal to that of the unstable mode are given by ωTS
i =

√
λTS

i .
Using the normal modes that diagonalize the mass weighted Hessian both the

expressions 〈q̇δ [q−q∗]θ [q̇]〉 and 〈θ [q∗ −q]〉 appearing in (32) can be easily calcu-
lated analytically as canonical averages, yielding the TST-rate constant kha

TST in the
harmonic approximation,
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Fig. 6 Two-dimensional PES depicted with lines of equal potential energy. Here, the stable states
A and B correspond to minima in the PES and the transition state TS that needs to be crossed
during a transition between the stable states is a saddle point on the PES. The thick arrow indicates
the direction of the unstable mode and the dashed line is the planar dividing surface orthogonal to
this direction. The reactive trajectory shown in red recrosses the dividing surface twice

kha
TST =

1
2π

∏n
i=1ωA

i

∏n−1
i=1 ωTS

i
exp(−βΔV ), (35)

where n is the number of the non-vanishing eigenvalues in the minimum and
ΔV = V (rTS)−V (rA) is the potential energy difference between saddle point and
minimum. Thus, the reaction rate constant in the harmonic approximation can be
written in the Arrhenius form as the product of two factors,

kha
TST(T ) = ν exp(−βΔV ), (36)

where we have included the temperature T as an argument of kTST to emphasize the
temperature dependence of the reaction rate constant. The prefactor ν , depending on
the frequencies in the minimum and at the saddle point, is an entropic factor which
is large if the passageway at the saddle point is wide and small if it is narrow. While
this prefactor can play a role in some cases, it is usually the exponential dependence
on ΔV which is the dominating factor.

3.4 RRKM Theory

In the previous section we have determined the rate constant of a thermal system
at temperature T . Often, however, it is more appropriate to consider systems not
coupled to a heat bath and evolving at constant energy E. Also in this case the
harmonic approximation is applicable, but the averages of (32) are to be taken over
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the microcanonical ensemble

ρ(x) = δ [E −H(x)]/g(E), (37)

where
g(E) =

∫
dxδ [E −H(x)] (38)

is the density of states, H(x) is the total energy of the system and x denotes a state
in phase space including positions and momenta. The analytical calculation of these
microcanonical averages does not pose any problem and one obtains for the reaction
rate constant:

kRRKM(E) =
1

2π
∏n

i=1ωA
i

∏n−1
i=1 ωTS

i

[
E −V (rTS)
E −V (rA)

]n−1

. (39)

This is the Rice–Ramsperger–Kassel–Marcus (RRKM) expression of the reaction
rate constant at energy E [127]. For total energies E below the potential energy
of the transitions state, i.e., for E < V (rTS), k(E) vanishes. The canonical and the
microcanonical rate constants are related by a Laplace transform,6

k(T ) =
∫

dE k(E)g(E)exp(−βE)
∫

dE g(E)exp(−βE)
, (40)

and for systems with many degrees of freedom they are identical if one identifies
the temperature of the microcanonical system as β = ∂ lng(E)/∂E. RRKM theory
has been successfully used to calculate reaction rate constants for chemical reac-
tions in the gas phase, for instance for proton transfer in small protonated water
clusters [128].

3.5 Variational Transition State Theory

The application of TST and its more sophisticated improvements hinges on the de-
finition of a suitable reaction coordinate capable of capturing the essence of the
underlying mechanism. As explained above, in harmonic TST the reaction coordi-
nate is identified with the direction of the unstable mode at the transition state. In
this case, the dividing surface separating the stable states from each other is taken
to be a hyperplane orthogonal to this direction. When non-linear effects are impor-
tant such an approach may fail and the dividing surface must be found in a different
way. In some cases a physically motivated choice of a dividing surface may yield
satisfactory results.

6 Note that this is true in general and not only for TST reaction rate constants in the harmonic
approximation.
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Alternatively, a variational principle provides a more systematic guide for find-
ing a good dividing surface [121, 129–131]. This principle is based on the fact that
the rate constant obtained from TST is always larger than the true rate constant.
Hence, the optimum dividing surface is the one that minimizes the corresponding
rate constant. Jónsson and collaborators have used this principle to derive simula-
tion algorithms for finding the optimum hyperplanar dividing surface [132]. Further
improvements may be achieved using more general dividing surfaces expressed in
terms of curvilinear coordinates such as bending and torsional angles [133].

3.6 Dynamical Corrections

In TST, neglecting dynamical recrossings of the dividing surface leads to an over-
estimation of the transition rate constant. A procedure to calculate appropriate
corrections was suggested by Yamamoto [134] and Keck [135] and was further
developed by Bennett [136] and Chandler [125]. In this approach, dynamical tra-
jectories initiated at the dividing surface provide the necessary information. The
procedure is based on the exact calculation of the reactive flux k(t) using a particu-
lar factorization of (31):

k(t) =
〈q̇(0)δ [q(0)−q∗]θ [q(t)−q∗]〉

〈δ [q∗ −q(0)]〉 × 〈δ [q∗ −q(0)]〉
〈θ [q∗ −q(0)]〉 . (41)

This exact expression is similar to that of (32), but includes the full time dependence
of k(t). Written in a more suggestive way, the above equation reads

k(t) = 〈q̇(0)θ [q(t)−q∗]〉q=q∗
e−βF(q∗)

∫ q∗
−∞ e−βF(q)dq

. (42)

The second factor on the right-hand side of the above equation, which appears also
in the TST rate constant, depends on the free energy difference between transition
state and stable state and can be calculated using standard free energy estimation
methods. The first factor is an average over dynamical trajectories started from con-
figurations on the dividing surface, generated, for instance, using constrained MD
simulations [44]. For any particular initial condition, the rate of change q̇(0) of the
reaction coordinate at time 0 contributes to the average only if the system is located
in state B a time t later. Multiplication of the two factors yields k(t) and the reaction
rate constant kAB is then given by its plateau value as illustrated in Fig. 5.

It is practical to express the reaction rate constant kAB as the product of the TST
reaction rate constant and the transmission coefficient κ that corrects for the dynam-
ical recrossings:

kAB = κkTST. (43)

Accordingly, the transmission coefficient equals the plateau value of the function
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κ(t) =
〈q̇(0)θ [q(t)−q∗]〉q=q∗

〈q̇(0)θ [q̇(0)]〉q=q∗
. (44)

In the absence of recrossings of the dividing surface, the transmission coefficient
is unity, κ = 1, while it is smaller than one if recrossings occur. While both the
TST reaction rate constant kTST and the transmission coefficient κ strongly depend
on the location of the dividing surface, their product, i.e., the reaction rate constant
kAB does not. The efficiency of the reactive flux calculation, however, depends sen-
sitively on the properties of the dividing surface and it is optimal for a dividing
surface minimizing the number of recrossings. For a large number of recrossings,
the straightforward calculation of the transmission coefficient according to (44) be-
comes inefficient. A number of improved algorithms for estimating κ have been
put forward recently [117, 137, 138]. Some issues related to the optimum dividing
surface and the estimation of the transmission coefficient are discussed in [118].
Recently, dynamical systems theory has been used to develop a phase space formu-
lation of TST, in which the dividing surface is free of local recrossings [139–142].
How useful this approach will be for complex systems with many stationary points
is an open question.

4 Accelerated Molecular Dynamics

The term accelerated molecular dynamics refers to a set of simulation methods de-
signed to study the long-time basin hopping dynamics in systems dominated by
energetic effects (as opposed to entropic effects), for instance transport processes in
and on solids at low temperatures. In such systems long stays in the potential energy
basins near minima are interrupted by rapid transitions from one basin to another.
By artificially encouraging basin escape, these methods achieve high efficiency in-
creases with respect to simple MD simulation. While the introduced bias corrupts
the short time motion within the potential energy basins, proper corrections based
on TST make sure that the relative probabilities for escape through different routes
remain unchanged. Therefore, accelerated MD methods yield the correct sequence
of state-to-state transitions, thus reproducing the long-time dynamics of the system.
The main advantage of these methods, when applicable, is that they do not require
any prior knowledge of possible transition routes. Rather, the system itself finds its
way through the network of potential energy basins. A more coarse-grained view
is taken in the related kinetic Monte Carlo (KMC) method, in which no short time
dynamics is carried out at all [143, 144]. Instead, transitions between stable confor-
mations are executed at random according to the respective reaction rates. While
in early KMC work the list of possible transitions was established in advance, more
recently methods for finding these transitions and computing their reaction rate con-
stants on the fly have been put forward [145]. In the following, we will discuss
various accelerated MD methods, all developed by Voter and collaborators. For a
recent review on this topic we refer the reader to [20].
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4.1 Parallel Replica Dynamics

In the parallel replica dynamics method the time scale of MD simulations is ex-
tended by distributing the computation on many processors in a way that requires
only little information exchange between them yielding almost linear speed-up in
many cases. This method is applicable whenever the distribution of escape times t
from a potential (or free) energy basin is exponential,7

p(t) = k exp(−kt), (45)

where k is the rate constant for basin escape. The parallel replica method is partic-
ularly simple to implement and the most accurate accelerated method since it does
not rely on the TST assumption of no recrossings of the dividing surface.

A parallel replica simulation is carried out as follows. First, M identical copies
of a certain configuration, the replicas, are distributed on M processors. On each
of them, an MD simulation is run with randomization of the momenta for a short
dephasing time τdeph in order to eliminate correlations between the replicas. Af-
ter that, the MD simulations on all processors are run independently in parallel
until the first trajectory escapes the potential energy basin. (Basin escape can, for
instance, be detected by periodical steepest descent minimization. If such a mini-
mization converges to a different minimum than the previous one, a transition from
one basin to another must have happened between minimizations.) Once a transition
has occurred on one of the processors, all simulations are stopped and the clock is
advanced by the sum of the times elapsed on all processors. Finally, the trajectory
which has escaped the minimum is propagated for another short time τmol to permit
for possible correlated recrossings into the original basin (the total time must be
adjusted accordingly). The final configuration then serves as the starting point for a
new iteration of the whole procedure.

It can be shown [147] that for an exponential distribution of escape times the
way of time keeping described above yields the correct state-to-state dynamics
even if processors with varying speeds are used. Provided that the reaction time
per processor is long compared to the sum of dephasing time and recrossing time,
1/kM � τdeph + τmol, a parallel replica simulation carried out on M nodes leads to
an ideal M-fold increase in computing speed. This feature of the parallel replica
dynamics method has been exploited to study folding pathways of small proteins
on up to thousands of computers in parallel [148]. Other applications include the
simulation of chemical reactions [149], the growth of clusters of silicon intersti-
tials [150], and hydrogen diffusion in solids [151]. Recently, the parallel replica
dynamics method has been generalized to non-equilibrium situations with a time-
dependent rate constant for escape and has been applied to follow the time evolution
of a strained carbon nanotube [152].

7 The parallel replica formalism has been generalized to non-exponential escape time distributions.
In this case, the calculation of the advanced time becomes more involved [146].
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4.2 Hyperdynamics

The central idea of the hyperdynamics method is to carry out a molecular dynamics
simulation of the system on a PES Ṽ (r) modified by the addition of a non-negative
bias potential ΔV (r) [153, 154]:

Ṽ (r) = V (r)+ΔV (r). (46)

The hyperdynamics method is applicable to systems that obey the assumptions of
TST: there are no recrossings of the dividing surface or correlated hopping events.
(These assumptions need to be satisfied also on the modified surface.) The bias
ΔV (r) is constructed to vanish on the potential energy barriers and to have a finite
value only in the basins around the minima. Such a bias lifts the bottom of the min-
ima with respect to the transition states thus effectively lowering the height of the
potential energy barriers and facilitating escape from the basin. Since the PES re-
mains unchanged at the transition states, the relative escape rates through different
exit routes are the same with and without bias. Therefore, a hyperdynamics simula-
tion yields a realistic sequence of state-to-state hops while the short-time dynamics
within the minima is sacrificed by the bias potential. From the bias potential sam-
pled during the simulation, the overall boost, i.e., the factor by which the dynamics
is accelerated with respect to a regular MD simulation, can be determined as an
average over the trajectory on the modified PES [153]:

thyper

tMD
= 〈exp(βΔV )〉. (47)

Thus, for a given bias, the boost decreases with increasing temperature.
The construction of a computationally inexpensive bias function ΔV (r) that

yields large boost factors is a non-trivial matter. One approach to construct bias
potentials is based on the observation that near a potential energy minimum all
eigenvalues of the Hessian matrix are positive while there is exactly one nega-
tive eigenvalue at saddle points. Accordingly, one can define a bias potential that
is positive where the smallest eigenvalue of the Hessian is positive and zero else-
where [153]. Various improvements based on this general idea have been proposed
[20]. Other simpler bias functions are possible, but they lead to smaller speed-ups.
A comparison of different bias potentials can be found in [20]. Depending on the
system, boost factors of up to 105 have been obtained in hyperdynamics simula-
tions, for instance in the simulation of vacancy diffusion on surfaces [155]. Among
other applications, the hyperdynamics method has been used to study biomolecu-
lar systems [156], the thermal desorption of n-alkanes [157], and the dynamics of
adatoms [158].
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4.3 Temperature-Accelerated Dynamics

Also in the temperature-accelerated dynamics method the rate of basin escapes is
artificially increased [159]. In this case this is done by running a MD simulation
at a temperature Thigh which is chosen higher than the temperature T of interest.
At the higher temperature, transitions occur more frequently, though the basin es-
capes might occur through different routes than they would at the temperature T . To
reconstruct the right sequences of state-to-state hops from the high temperature tra-
jectory, one proceeds as follows. Whenever a transition from one basin to the next is
detected in the high temperature trajectory, the simulation is stopped and the nearest
saddle point is located (for instance with the NEB method described in Sect. 2.2).
The trajectory is reflected back into the basin it was about to leave and the simula-
tion is carried on. All attempted escapes are treated in this way. This procedure is
continued to a maximum time, for which a rigorous criterion exists [160]. From the
sequence of attempted escape events and the respective saddle point energies one
can then determine which transition would have happened first at the temperature of
interest. This transition is then carried out.

Temperature-accelerated dynamics relies on the validity of harmonic TST for the
basin escape both at Thigh and T . As a consequence, the high temperature Thigh, and
hence the boost factor, are controlled by the height of the lowest energy barrier for
escape. The speed-ups obtainable with the temperature-accelerated method often
exceed those of the other accelerated dynamics methods. In simulations of vapor
deposited crystal growth, for instance, boost factors of about 107 have been achieved
extending the accessible time range to the second regime [161]. The temperature-
accelerated dynamics method has been mainly used to study transport processes in
and on solids [162, 163].

5 Transition Path Sampling

TPS is a set of computational techniques to study the mechanism and the kinetics
of rare transitions occurring in complex systems. Its application is particularly ap-
propriate for complex systems in which the initial state A, such as the reactants of a
chemical reaction, as well as the final state B, the products, are known, but the reac-
tion mechanism is unknown. In this section we will first describe in detail the TPS
formalism and then discuss the salient capabilities as well as the limitations of TPS.
For more information on the formalism and the applications of TPS we refer the
reader to several review articles covering various aspects of TPS at different levels
of detail [124, 164–169].

The basic situation that can be addressed with the TPS method is illustrated in
Fig. 7. Here, the stable states A and B correspond to regions in configuration space
(or, more generally, in phase space) characterized in terms of the microscopic vari-
ables. Each of these regions is stable in the sense that if the system is initialized
in the region it will most likely stay inside it for a long time. The two regions
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Fig. 7 The regions A and B in configuration (or phase) space correspond to stable states in which
the system resides most of the time. Only dynamical trajectories that start in stable region A and
end in stable region B have a weight in the TPE that differs from zero

A and B are separated by an unknown and possibly rough barrier. The dynamics
of the system can be deterministic or stochastic, but in any case it is supposed
to be Markovian, i.e., the probability of the future time evolution is fully deter-
mined by the current microscopic state of the system and does not depend on
prior microscopic states. Many different kinds of dynamics belong to this class,
including deterministic dynamics such as Newtonian dynamics and thermostated
Nose–Hoover dynamics, as well as stochastic dynamics such as Langevin dynamics
and MC “dynamics”. If the system is initially placed in, say, A it will eventually
cross the free energy barrier and move into the other stable state, B. In general,
many different routes that carry the system from A to B are available and the search
for the “typical” pathway is meaningless. Instead, the goal of a TPS simulation is to
find all transition pathways and to extract mechanistic and kinetic information from
them.

5.1 Transition Path Ensemble

The basis of the TPS method is the definition of the ensemble of all reactive trajec-
tories, i.e., the ensemble of pathways that start in A at time 0 and end in B at time
T later. (We will return later to the problem on how to specify the time T .) Each
trajectory, or path, is represented by an ordered sequence of microscopic states:

x(T ) ≡ {x0,xΔt ,x2Δt , . . . ,xT }. (48)

Here xt denotes the complete microscopic state of the system at time t (xt is of-
ten called the time slice at time t). Depending on the dynamics, x consists of the
positions and momenta of particles, x = {r, p}, or of the positions x = {r} only.
Consecutive states along the trajectory are separated by a time increment Δt. Such a
trajectory could, for instance, result from carrying out L = T /Δt MD steps.

Since the underlying dynamics is assumed to be Markovian, the probability den-
sity for observing a particular L-step trajectory can be written as the product of the
distribution ρ(x0) of the initial conditions x0 with the product of all single time step
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transition probabilities:

P[x(T )] = ρ(x0)
T /Δt−1

∏
i=0

p(xiΔt → x(i+1)Δt). (49)

Naturally, the specific form of the single time step transition probabilities p(xt →
xt+Δt) depends on the particular type of dynamics one considers. Similarly, the
distribution of initial conditions must be appropriate for the situation under con-
sideration.

The path probability specified in (49) is the probability density for finding a
particular trajectory without any condition on where the path begins and where it
ends. In the TPS method one is, however, interested in a small set of pathways only,
namely those that connect A with B. In order to restrict the path ensemble accord-
ingly we assign a weight of 0 to all pathways that do not connect A with B. We can
do that by multiplying the path probability of (49) with the characteristic functions
of regions A and B acting on the initial and final point of the trajectories, respec-
tively:

PAB[x(T )] ≡ hA(x0)P[x(T )]hB(xT )/ZAB(T ). (50)

Here, the functions hA(x) and hB(x) are defined such that they are unity if the argu-
ment is located in the respective region and vanish otherwise,

hA (x) =
{

1 if x ∈ A,
0 if x /∈ A,

(51)

and hB (x) is defined analogously. While the specification of the initial and the final
state is not always a trivial task (the native and denaturated states of a protein are a
point in case), one can usually study the properties of A and B with straightforward
MD simulation and find a suitable description of them in terms of the microscopic
degrees of freedom. We will discuss this point in more detail below. The “path
partition function”

ZAB(T ) ≡
∫
Dx(T )hA(x0)P[x(T )]hB(xT ) (52)

is a factor that normalizes the path distribution of (50). Here, the notation

∫
Dx(T ) ≡

∫
· · ·
∫

dx0dxΔtdx2Δt · · ·dxT (53)

implies an integration over all time slices. Interestingly, the path partition function
ZAB(T ) equals the probability that an arbitrary trajectory of length T starts in A at
time 0 and ends in B at a time T later. This fact can be used to derive algorithms
for the calculation of reaction rate constants from the reversible work required to
manipulate ensembles of trajectories [170, 171].
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The path probability spelled out in (50) is a complete statistical description of all
pathways connecting A with B within time T . This set of pathways together with
the weight of (50) is called the transition path ensemble (TPE). Pathways sampled
from the TPE according to their statistical weight can be analyzed (subsequently or
on the fly) to yield information about the details of the transition mechanism.

To construct the TPE for a specific process one has to use the appropriate distrib-
utions of initial conditions and short time transition probabilities. For an equilibrium
system in contact with a heat bath, the distribution of initial conditions is canonical,
while for an isolated equilibrium system at constant energy the initial conditions are
distributed microcanonically.

The short time transition probabilities appearing in the trajectory weight are de-
termined by the underlying dynamics. For a classical mechanical system evolving
according to Hamilton’s equations of motion,

ṙ =
∂H(r, p)

∂ p
, ṗ = −∂H(r, p)

∂ r
, (54)

the time evolution is deterministic such that the microscopic state x0 of the system
at time 0 is mapped onto a unique state xt at time t,

xt = φt(x0). (55)

Accordingly, the short time transition probability is given by a Dirac delta function
without any stochastic spread,

p(xt → xt+Δt) = δ [xt+Δt −φΔt(xt)] . (56)

In this case, the transition path probability is simply given by a product of delta
functions,

PAB[x(T )] =
ρ(x0)

ZAB(T )
hA(x0)

T /Δt−1

∏
i=0

δ
[
x(i+1)Δt −φΔt(xiΔt)

]
hB(xT ), (57)

where
ZAB(T ) =

∫
dx0ρ(x0)hA(x0)hB(xT ). (58)

(Because of the properties of the Dirac delta function all integrations except the one
over x0 can be trivially carried out analytically.) The path ensemble from (57) is
equally valid for other types of deterministic dynamics such as thermostated Nose–
Hoover dynamics or Gaussian isokinetic dynamics.

If the system evolves stochastically, the short time transition probability is spread
out rather than singular. For instance, in the case of Brownian dynamics the time
evolution is given by [172, 173]
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mγ ṙ = −∂V (r)
∂ r

+F , (59)

where F is a delta-correlated Gaussian random force with zero mean and a variance
given by the fluctuation–dissipation theorem:

〈F(t)F(0)〉 = 2mγkBTδ (t). (60)

Then, the corresponding short time transition probability is Gaussian,

p(rt → rt+Δt) =
1√

2πσ2
exp

⎧
⎪⎨

⎪⎩
−

(
rt+Δt − rt + Δt

γm
∂V
∂ r

)2

2σ2

⎫
⎪⎬

⎪⎭
, (61)

with variance
σ2 =

2kBT
mγ

Δt. (62)

The finite width of the transition probability is a consequence of the random charac-
ter of the motion. Appropriate transition probabilities for other kinds of stochastic
dynamics can be easily derived [21].

The definition of the TPE also requires specification of the stable states A and
B. Often, this can be done by demanding that one-dimensional order parameters
qA(x) and qB(x) lie within appropriate limits. For instance, in the case of protein
folding it may be possible to define the initial and final states through the number
of native contacts. It is, however, important to realize that order parameters that are
sufficient to specify the stable states are not necessarily suitable for describing the
complete transition. (This distinguishes order parameters from reaction coordinates;
see Sect. 7 for a discussion of this issue.) But while order parameters do not need to
be good reaction coordinates, it is crucial that they clearly discriminate between the
stable states in the sense that no point in A belongs to the basin of attraction of B and
vice versa [124]. If the order parameters do not strictly discriminate between A and
B, the path sampling procedure may yield pathways that are not truly reactive and
may not sample the reactive trajectories at all. In complex systems the definition of
suitable order parameters is not a trivial issue and may require some trial-and-error
experimentation.

5.2 Sampling the Transition Path Ensemble

The central idea of TPS now is to generate reactive trajectories with a frequency
proportional to their probability in the TPE of (50). The generated pathways can then
be further analyzed to yield information on reaction rates and mechanisms. One way
to sample the TPE is by a MC procedure. In this approach, which is analogous to the
MC simulation of, say, a molecular liquid, a random walk through trajectory space
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is carried out in a way such that trajectories are sampled according to their statistical
weight. Here, the basic MC step consists of generating a new trajectory x(n)(T ), the
so-called trial trajectory, from an old one x(o)(T ) by some procedure that we will
specify later. This newly generated trajectory is then accepted or rejected depending
on how the statistical weight of the new trajectory in the TPE compares to that of
the old one. In case of an acceptance, the new trajectory becomes the current one.
If, on the other hand, the trial trajectory is rejected, the old trajectory remains the
current one. Iterating this procedure yields trajectories distributed according to the
TPE provided appropriate acceptance/rejection rules are used.

To derive an acceptance/rejection rule for pathways one can start from the de-
tailed balance condition

PAB

[
x(o)(T )

]
π
[
x(o)(T ) → x(n)(T )

]
=

PAB

[
x(n)(T )

]
π
[
x(n)(T ) → x(o)(T )

]
, (63)

which guarantees that the right ensemble is generated by requiring that the move
from an old path to a new path is exactly balanced by the reverse move from a
new path to an old one. According to the two-step nature of the MC procedure, the
transition probability π[x(o)(T )→ x(n)(T )] to move from the old path x(o)(T ) to the
new path x(n)(T ) is the product of the probability Pgen to generate the new path and
the probability Pacc to accept it,

π
[
x(o)(T ) → x(n)(T )

]
= Pgen

[
x(o)(T ) → x(n)(T )

]

×Pacc

[
x(o)(T ) → x(n)(T )

]
. (64)

Insertion of this form of the transition probability into the detailed balance condition
provides a condition for the acceptance probability that can be satisfied with the so-
called Metropolis rule [174]. The resulting acceptance probability is given by [124]:

Pacc

[
x(o)(T ) → x(n)(T )

]
= hA

[
x(n)

0

]
hB

[
x(n)
T

]

×min

⎧
⎨

⎩
1,

P
[
x(n)(T )

]
Pgen

[
x(n)(T ) → x(o)(T )

]

P
[
x(o)(T )

]
Pgen

[
x(o)(T ) → x(n)(T )

]

⎫
⎬

⎭
. (65)

It follows from this expression that only reactive trajectories, i.e., trajectories for
which hA[x(n)

0 ] = 1 and hB[x(n)
T ] = 1, can have a non-vanishing probability to be

accepted. Equation (65) provides a general expression from which the specific ac-
ceptance probability for a particular path generation procedure can be derived.

The efficiency of a TPS simulation, i.e., the rate at which trajectory space is
sampled, crucially depends on how in detail new trajectories are generated from
old ones. While various ways to do that have been proposed [164], the so-called
shooting algorithm has proven particularly useful (see Fig. 8). Since it is generally
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Fig. 8 In the shooting algorithm for deterministic dynamics a new path (blue) is generated from
an old one (red) by first randomly selecting one point on the old path, the shooting point. Then, the
particle momenta at that point are modified by addition of a small perturbation δ p. From the point
with perturbed momenta the equations of motion are integrated forward and backward to obtain a
complete trajectory. For small perturbations, the new trajectory will be close to the old one near
the shooting point but will then rapidly diverge from it due to the chaoticity of the underlying
dynamics

applicable and can be used to illustrate the general path sampling MC procedure, we
will briefly outline this method here. The basic idea of the shooting algorithm is to
exploit the natural tendency of the dynamics to converge towards the stable states.
In this procedure a new pathway is generated from an old one by picking a random
time slice x(o)

t ′ of the old path. Then, x(o)
t ′ is modified, for instance by adding a small

perturbation to the momenta, yielding x(n)
t ′ . (For stochastic dynamics no perturbation

is required, since the random noise will lead to different trajectories even if they start
from the same phase space point.) Starting from this modified state, the equations of
motion are integrated forward and backward to complete the new pathway. Since in
the shooting algorithm new trajectories are generated according to the rules of the
underlying dynamics, which we assume to be microscopically reversible here, most
factors in (65) cancel and the acceptance probability is particularly simple,

Pacc

[
x(o)(T ) → x(n)(T )

]
= hA

[
x(n)

0

]
hB

[
x(n)
T

]
min

[

1,
ρ(x(n)

t ′ )

ρ(x(o)
t ′ )

]

. (66)

Here, ρ(x) is the stationary distribution evaluated at x. For Newtonian dynamics
and a microcanonical distribution of initial conditions the acceptance probability
simplifies even further:

Pacc

[
x(o)(T ) → x(n)(T )

]
= hA

[
x(n)

0

]
hB

[
x(n)
T

]
. (67)

This expression implies that any new pathway that is reactive, i.e., that connects
A and B, is accepted. In the shooting algorithm for deterministic trajectories the
magnitude of the momentum perturbation can be used to control the average accep-
tance probability and hence to optimize the efficiency of the TPS simulation [175].
To enhance the ergodicity of a TPS simulation, it can be combined with PT [176]
carried out at the path level [177]. To increase the efficiency of TPS simulations
shooting moves can be complemented with so-called shifting moves and path re-
versal moves [165]. For diffusive barrier crossings it may be difficult to obtain a
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reasonable acceptance probability, because, due to the chaoticity of the underlying
dynamics, a new trajectory generated by the shooting algorithm might be very dif-
ferent from the old one even for very small momentum displacements. Bolhuis has
suggested an algorithm to circumvent this difficulty [178]. A further improvement
relies on using linearized equations of motion for small displacements [179].

The rules described above provide a method to sample properly weighted path-
ways by carrying out an importance sampling simulation in path space. To start this
procedure an initial pathway connecting A and B is required. One way to generate
such an initial trajectory is to run a long MD trajectory and wait until the transition
occurs spontaneously. In most situations, however, this may not be feasible. Often an
initial pathway can be generated by driving the system from A to B artificially. For
instance, biased trajectories obtained with steered MD can then be relaxed towards
the right ensemble of pathways [180]. In the case of a pressure-induced solid–solid
phase transition an initial transition pathway can be obtained by sufficiently over-
pressurizing the system [181]. Such a trajectory does not carry a large statistical
weight at less extreme conditions (its weight may even vanish), but can serve as a
starting point for the simulation which then relaxes to more important parts of tra-
jectory space. Similarly, a first folding trajectory of a protein may be obtained by
letting the protein unfold at high temperature. Again, the initial trajectory obtained
in this way is most likely not representative of the TPE at the temperature of interest,
but nevertheless provides a starting point for the TPS procedure. In other cases, it
may be possible to construct an initial reactive trajectory by hand [182]. Although
such a trajectory may not even be a truly dynamical path, it often suffices to initiate
the sampling procedure.

5.3 Kinetics from the Transition Path Ensemble

TPS harvests a large collection of trajectories connecting the initial to the final state.
However, this ensemble itself does not contain enough information to compute the
primary kinetic experimental observable, the rate constant. Nevertheless, the rate
constant can be computed by an additional procedure from the correlation function
introduced in Sect. 3 [165]

C(t) ≡ 〈hA(x0)hB(xt)〉
〈hA(x0)〉

, (68)

with hA and hB defined by (51). Because of the separation of timescales, this popu-
lation correlation function grows linearly in time, C(t)∼ kABt, for times τmol < t 	
τrxn. In that case, the time-dependent reaction rate

kAB(t) = Ċ(t) (69)
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reaches a plateau for τmol < t 	 τrxn. To calculate the rate constant with TPS we
express (68) as the ratio of two path ensemble averages,

C(t) =
∫
Dx(t)P[x(t)]hA(x0)hB(xt)∫

Dx(t)P[x(t)]hA(x0)
, (70)

where the integrals are over all possible paths of length t. The denominator does not
depend on time and equals the equilibrium population in A, 〈hA〉.

The next step is to define an order parameter λ (x) which can be used to describe
region B ≡{x : λB

min < λ (x) < λB
max} as well as the entire configuration space, −∞<

λ (x) < ∞, including A . Substitution of the indicator function hB(x) into (70) and
change of the integration order leads to

C(t) =
1

〈hA〉

∫
Dx(t)P[x(t)]hA(x0)

∫ λB
max

λB
min

dλδ [λ −λ (xt)] (71)

=
∫ λB

max

λB
min

dλ 〈δ [λ −λ (xt)]〉A ≡
∫ λB

max

λB
min

dλPA(λ , t),

where 〈· · ·〉A denotes path averaging over all trajectories originating in A. The func-
tion PA(λ , t) is the probability that at time t a path has reached λ , provided it started
in A. As the process of interest is rare, we are naturally dealing with low probabil-
ities. A path sampling equivalent of the US technique [42] can solve this problem
by dividing the λ -range into a number of windows, and computing the following
probability for each window Wi defined by λmin

i < λ (x) < λmax
i :

PAWi(λ , t) =
∫
Dx(t)P[x(t)]hA(x0)hWi(xt)δ [λ −λ (xt)]∫

Dx(t)P[x(t)]hA(x0)hWi(xt)
= 〈δ [λ −λ (xt)]〉AWi . (72)

Rematching the probabilities for all windows eventually yields PA(λ , t) and hence
through (71) correlation function C(t).

The combination of a path sampling simulation employing the shooting and
shifting MC moves, with an US algorithm in which the final region is transformed
continuously from spanning the entire phase space to only the final stable state of
interest B, yields PA(λ ), and, through (71), C(t) and, hence, the rate constant [165].

While the US procedure could be repeated for every t to yield the full correlation
function C(t), a computationally more convenient approach exists [21, 175], which
allows us to write the rate constant as

k(t) ≡ Ċ(t) =
〈ḣB(t)〉AB

〈hB(t ′)〉AB
C(t ′), (73)

where the first factor can be computed in a path sampling simulation with a fixed
length t. Knowledge of C(t ′) at time t ′ < t, leads to k(t) at all times t by multiplying



Transition Path Sampling 207

by this factor. Hence, the computationally expensive US scheme only has to be
carried out once for a time t ′ which can be much shorter than t. The estimate of
the first factor can be improved by using a special indicator function that is unity
whenever the path only visits B but does not necessarily end in it. We refer to [165]
for more details on this algorithm. A method for calculating activation energies
rather than full reaction rate constants has been presented in [183]. Applying a kind
of TI [43] in the space of trajectories, this method can also be used to calculate
reaction rate constants by starting from a state with known reaction rate constant
and slowly transforming the path ensemble into the ensemble of interest.

5.4 Transition Interface Sampling

The method discussed in the previous section is not necessarily the most efficient
way of calculating the kinetics in the TPS method. In particular, the requirement
that the path length has to be fixed a priori, plagues efficient implementation of path
sampling, even when applying the convenient factorization of (73) [184]. In contrast,
the transition interface sampling (TIS) method was developed with a flexible path
length in mind. This method defines a series of n + 1 multidimensional interfaces
by means of a suitable order parameter λi (just like the windows in the previous
section) and measures the effective positive flux through these interfaces (see Fig. 9).
The heart of the method is an expression for the rate constant that is essentially a
reinterpretation of the reactive flux,

kAB = Φ1,0PA(λn|λ1). (74)

The first term on the right-hand side, Φ1,0, is the effective positive flux of trajectories
that leave the stable state A (the boundary of which is defined by λ0) through the

Fig. 9 In the TIS method, a series of non-intersecting interfaces between regions A and B are
defined and the effective positive flux through these interfaces is measured. This is done in separate
path sampling simulations for each pair of adjacent interfaces. In the path ensemble belonging to
interfaces i and i+1, only pathways that start in A, cross interface i and then either cross interface
i + 1 or return to region A can have a non-vanishing weight (red pathways). Pathways that do not
cross interface i are not part of this ensemble (blue path)
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first interface λ1. Here, “positive” means that only crossings in the forward direction
towards B are counted and “effective” implies that recrossings are not counted be-
fore the trajectory goes back to A. The factor Φ1,0 is easily computed by conducting
a MD simulation in state A and counting the number of first crossings of interface
λ1 after the trajectory has left A, per unit time. The second term PA(λn|λ1) is the
conditional probability that a trajectory coming from A and crossing λ1 reaches
λn, which defines the boundary of B. This so-called crossing probability is more
difficult to compute, as the crossing is a rare event. However, this product can be
decomposed in a product of conditional probabilities,

PA(λn|λ1) =
n−1

∏
i=1

PA(λi+1|λi). (75)

Again PA(λ j|λi) denotes the probability that a trajectory that leaves A, and crosses
λi, will reach λ j before returning to A. Each of the factors in this product can be
computed in a path sampling simulation. This path sampling is done using the TIS
path ensemble, that, in contrast to the regular TPE, is defined as the collection of all
paths that leave A, cross λi, and either reach λ j or return to A as illustrated in Fig. 9.
The characteristic function h̃i j[x;T ] is unity for such paths and zero otherwise. The
TIS path sampling scheme consists of choosing a random slice on an existing path
that leaves A and crosses λi, reaches λ j or returns to A. From this slice a new path
is generated using the shooting algorithm, just as in the method described in the
previous sections. The main difference is that the integration is stopped when the
trajectory reaches A, or interface λ j. The new path is accepted when it is part of the
TIS ensemble, i.e., if it leaves A, crosses λi, and either reaches λ j or returns to A.
The acceptance criterion is then

Pacc

[
x(o)(T (o)) → x(n)(T (n))

]
= h̃i,i+1

[
x(n)(T (n))

]

×min

[

1,
T (o)

T (n)

ρ(x(n)
t ′′ )

ρ(x(o)
t ′ )

]

. (76)

Here, the factors T in the min-function account for the generating probability of
choosing the shooting slice. Note that t ′ and t ′′ denote the same slice, but are shifted
due to the change in path length. In addition to TIS shooting moves, sampling can
be enhanced by reversal of the pathways that start and end in A. While not creating
a new path, reversals allow for better exploration of the path space. The shifting
move is not required in TIS, as the paths end precisely at the boundary of A and
the interface i + 1. Note that the TIS path sampling has to be performed n times to
compute the rate constant. The crossing probability PA(λ |λ1) as a function of λ will
monotonously decrease until a plateau is reached in λ , which is equal to the desired
crossing probability. This feature is conceptually different from the plateau in the
time correlation function in previous sections. Nevertheless, the resulting value of
the rate constant is independent of the path sampling method used and only the
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efficiency and convergence properties might be affected. The flexible path length can
also be implemented in the regular TPS algorithm, only sampling A–B trajectories
[185].

Van Erp and Bolhuis proposed several enhancements of TIS in [138], notably a
configurational bias method to prune unsuccessful pathways.

5.5 Partial Path Sampling

The transition path simulation of processes involving diffusive barrier crossings can
require very long trajectories. In some cases, the efficiency of the simulation can
be dramatically enhanced by making use of loss of correlation along such long
pathways. The idea of the loss of correlation led to the partial path TIS (PPTIS)
method [186]. Here, instead of creating pathways that leave A, cross an interface,
and then return to A or continue to the next interface, one considers short trajecto-
ries (partial paths) that only span one or two interfaces. The framework of PPTIS is
that of TIS, except that the crossing probability now can depend on different starting
and ending interfaces. In particular, the PPTIS defines the single interface crossing
probabilities p±i , p∓i , p=

i , p‡
i . These quantities denote the different probabilities that

a path that crosses i starts or ends at the i− 1 or i + 1 interface. These probabil-
ities can be computed by a path sampling algorithm using only very short paths.
The integration can be stopped at the i− 1 or i + 1 interface. Both the forward and
backward rate constants can be determined:

kAB =
〈φ1,0〉
〈hA〉

P+
n , kBA =

〈φn−1,n〉
〈hB〉

P−
0 . (77)

Here P+
n and P−

n denote the long-distance crossing probabilities. For instance, P+
i is

the probability that a trajectory crosses i while coming from A directly (recall that
λ0 = λA, and λn = λB). P−

i is defined likewise for the reverse direction. Now, it is
possible to construct these long-distance crossing probabilities from single-interface
crossing probabilities by the following recursive relation [186]

P+
j ≈

p±j−1P+
j−1

p±j−1 + p=
j−1P−

j−1
, P−

j ≈
p∓j−1P−

j−1

p±j−1 + p=
j−1P−

j−1
. (78)

Here the big advantage with respect to TIS is that the paths become much shorter,
and hence a PPTIS approach is more efficient.

The assumption made in PPTIS is that there is sufficient memory loss between
the interfaces to justify the shorter paths. Hence, the interfaces should be chosen
sufficiently far apart. Moroni et al. devised special memory loss functions to test the
PPTIS assumption [186]. Van Erp and Bolhuis proposed in [138] a powerful combi-
nation of RE and (PP)TIS. Such a combination was shown to enhance the sampling
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efficiency dramatically in [187, 188]. The (PP)TIS can also be used for a simulta-
neous calculation of the reaction rate constant and the free energy along a selected
reaction coordinate [189].

5.6 Forward Flux Sampling

The forward flux sampling method (FFS) was conceived by Allen, Warren and ten
Wolde [190–192] to deal with stochastic non-equilibrium systems in which the
phase space distribution is not a priori known. Inspired by the TIS method, FFS
employs the notion of a set of interfaces along a reaction coordinate (see Fig. 9),
and even uses the same central reaction rate expression,

kAB = Φ1,0PA(λn|λ1). (79)

As in (PP)TIS, the flux factor can easily be computed by a straightforward MD
simulation. The main difference between FFS and TIS is the way that the crossing
probability is computed. Path sampling is based on microscopic reversibility, and
time reversal of trajectories, but for systems with inherent non-reversible dynamics,
reversal of trajectories is not an option. The prime example of such a system is an
irreversible chemical network in which there are sinks and sources. The change in
concentrations can be computed by stochastic dynamics in the forward direction, but
not backward. The solution of FFS is to do away with the backward shooting part
of TPS and only shoot forward from previous paths. The algorithm is bootstrapped
from a regular dynamical simulation. Whenever the first interface λ1 is crossed, the
crossing point is stored in memory, and the trajectory is halted and reinitialized in
state A. The resulting ensemble of crossing points is then used as initial points for
the computation of the crossing probability of the second interface λ2. This is done
by choosing, from the ensemble of initial crossing points, a random configuration
and integrate only forward until the next interface is crossed, or the path returns to
the initial state A. Because of the stochasticity of the dynamics, paths will diverge
even when starting from the same initial point. The shooting continues until there
are enough crossing points in the ensemble of the second interface. This procedure
is repeated for each interface until λn is reached. The forward flux approach not only
yields the rate constant, but also the complete transition pathways from A to B can
be reconstructed by gluing the successful shots together.

An advantage of FFS is that it does not require backwards pathways. Moreover,
because it is not a MC Markov chain, it does not suffer from decorrelation times that
plague Markov chains in general. In addition, FFS is not limited to non-equilibrium
dynamics. It is also applicable to regular KMC and even (stochastic) MD.

Nevertheless, FFS has several drawbacks that are worth mentioning. The first
is that the accuracy of the sampling very much depends on the quality of the first
interface ensemble. Once the ensemble is under-sampled, errors propagate through
the next interfaces. This does not happen in a MC method where each individual
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interface ensemble eventually converges. The other drawback is that the FFS does
not allow pathways to relax their initial part. This follows naturally because the part
of the path before the interface of interest is always fixed. Because of this effect, FFS
is more dependent on a good reaction coordinate than for instance TIS, and certainly
than TPS. Despite these drawbacks FFS is a powerful method, that has been used
in many applications such as nucleation [193], the folding of a lattice protein [194],
and chemical networks [190].

Allen and coworkers proposed several extensions of the FFS method in [192].

5.7 Milestoning

While not a path sampling simulation method in the strict sense, the milestoning
method of Elber and coworkers [195, 196] has enough similarity with PPTIS and
FFS to warrant a discussion in this section of the review. The Milestoning method
starts with a number of hyper-surfaces (very similar to the TIS interfaces) for which
a constraint equilibrium ensemble is prepared, for instance, according to the Boltz-
mann distribution. Starting from this ensemble, trajectories are initiated that are
continued until they reach a neighboring hyper-surface. The distribution of times
(path length) Ks(t) of these trajectories that lead to the neighboring hyper-surface
yields the entire kinetics of the system through the integral equations

Ps(t) =
∫ t

0

[
1−

∫ t−t ′

0
Ks(τ)dτ

]
Qs(t ′), (80)

Qs(t) = ηsδ (t)+
∫ t

0

[
K−

s+1(t − t ′)Qs+1(t ′)+Ks−1(t − t ′)Qs−1(t ′)
]

dt ′, (81)

where ns is the initial milestone distribution. Here, Ps(t) denotes the probability that
s is the last crossed milestone. Q(t) denotes the probability to make a transition to
milestone s at time t. The first equation states that Ps(t) is equal to the probability
to have come there at an earlier time t ′ and have not yet left. The second equation
gives the probability Qs to make a transition to a milestone s as a sum of the initial
distribution and the probability to first reach a neighboring milestone and then hop
to s. Together these two equations determine the Ps(t). From this both the kinetics
and the free energy can be determined.

The milestoning method provides a non-Markovian model for the kinetics be-
cause it contains the explicit time dependence of the distribution, which does not
have to be exponential [196]. Milestoning also does not depend on the separation of
timescales that most of the other methods take as a starting point.

The milestoning method can be extended to more than one order parameter. Elber
and coworkers have applied the method to biomolecular systems [196, 197]. For a
conformational transition of alanine dipeptide, they found an order of magnitude
efficiency enhancement with respect to straightforward MD.



212 C. Dellago and P.G. Bolhuis

5.8 Transition Path Sampling Applications

To date, TPS has been applied to processes in many fields ranging from physics
and materials science to chemistry and biology. One class of problems that has been
successfully addressed with TPS are first-order phase transitions in condensed ma-
terials. Above the spinodal, such transitions occur via the formation of a critical
nucleus of the stable phase in the metastable phase. Because of the free energetic
cost associated with the creation of an interface between the two phases, this process
involves the crossing of a free energy barrier. For this reason, nucleation is a rare
event and requires special computational techniques [198]. Nucleation processes
that have been studied with TPS include magnetization reversal in the Ising-model
[199], pressure-induced phase transitions in semiconductor nanoclusters [182], the
freezing of Lennard-Jonesium [200], phase separation and crystallization from the
melt [201], the solid–solid transition of terephthalic acid [202], the liquid–vapor
transition of methane [203], the wurtzite to rocksalt transition in bulk CdSe [204],
the boiling of water [205], pressure-induced transitions of alkali halides [206–211],
and crystallization from solution [212].

Chemical processes often involve rare events because of high energy barriers
that have to be crossed during reactions or entropic effects that are due to complex
solvent rearrangements. Chemical processes addressed with TPS methodologies in-
clude proton transfer in the water trimer [128], autoionization in liquid water [7],
hydrated proton transfer in water [213], the dissociation of acetic acid [214], C–
C bond formation in the methanol coupling reaction in chabazite [215], ligand
exchange at a Cr metal center [216], acid-catalyzed peptide hydrolysis [217], in-
corporation of Helium into C-60 [218], the dissociation of hydrogen peroxide with
iron(II) in aqueous solution [219], the Cl− + ClCH2CN SN2 reaction [220], kinetic
pathways of ion dissociation in water [25, 221], the isomerization and melting of
water clusters [222, 223], dynamics of hydrogen bonds in water [224], solvation
of NaCl [225, 226], cavitation between hydrophobic surfaces [227], diffusion of
isobutane in silicalite [228], micelle fusion and fission [229], and the trans-gauche
transition in liquid n-butane [230].

The application of TPS to biological processes has been recently reviewed
in [169].8 Biological processes investigated with TPS comprise the isomerization
of alanine dipeptide [26, 28, 233], the binding and unbinding of DNA base pairs
[234], the chorismate-mutase-catalyzed conversion of chorismate into prephenate
(enzyme-catalyzed reaction) [235], the collapse of a hydrophobic homopolymer in
solvent [236], the folding of the GB1 beta hairpin [237,238], the folding of the Trp-
cage mini-protein [185], the DNA repair process by polymerase [231, 239, 240],
the enzymatic reaction of the lactate dehydrogenase [241], the flip-flop of lipids in

8 On page 311 of [169] we incorrectly stated that the BOLAS method put forward by Radha-
krishnan and Schlick [231] is slightly biased. The BOLAS method, described in more detail in a
subsequent publication [232], is correct and can be used to study free energy barriers for complex
(biological) processes.
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membranes [242, 243], the activation mechanism of a signaling protein [244], and
closing pathways for DNA polymerase β [245].

TPS has also been used to address the glass transition [246], non-equilibrium
dynamics [247, 248], the sampling of trajectories with rare work values in the con-
text of Jarzynski’s non-equilibrium theorem [249–254], as well as the calculation of
entropy flow distribution functions in driven stochastic systems [255, 256].

6 Discrete Path Sampling

6.1 Discrete Path Sampling Theory and Algorithm

Wales and coworkers have developed a discrete path sampling (DPS) procedure to
compute rate constants and mechanism in complex systems [257, 258]. Although
this procedure is slightly different in spirit to the path sampling schemes mentioned
above, it is worthwhile to discuss this approach. The systems under consideration
are transitions that occur via a network of intermediate metastable states. Known
examples are the rearrangement of crystal structures and the rearrangement of fi-
nite (molecular) clusters, but also conformational changes in biomolecules. DPS is
essentially a way to sample Markovian state models efficiently. The advantage is
that one does not have to know all minima and stationary points of the system in ad-
vance, as is the case with KMC or master equation approaches. Rather, one creates
on-the-fly a database of minima and transition states representing the fastest overall
transition pathways.

In the DPS method, one starts with the master equation

dpα(t)
dt

= ∑
β =α

kβα pβ (t)− kαβ pα(t), (82)

where pα denotes the population probability in state α and kαβ is the rate con-
stant from state α to β . If all metastable states and their respective rate constants
are known, then the solution of the master equation is straightforward. In practice,
however, this would be a daunting task for most complex rearrangements. The DPS
approach is an attempt to circumvent such an exhaustive computation by obtaining
the most relevant pathways contributing the most to the overall rate.

When the network consists of metastable states such that the system stays for
a long time in either globally stable states A or B, and only rarely crosses the in-
termediate states i ∈ A∪B then the master equation can be rewritten in terms of
overall rate constants using two approximations. The first is the approximation of
local equilibrium in A and B, i.e., the probability pa(t) to be in a minimum a be-
longing to A is proportional to the overall probability to be in A, PA, according
to pa(t) = PA(t)peq

a /Peq
A , where the superscript “eq” denotes the equilibrium value.

The second approximation is the steady state assumption for all intermediate states
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i, dpi(t)/dt = 0. The overall master equation thus reads

dPA(t)
dt

= −kABPA(t)+ kBAPB(t), (83)

dPB(t)
dt

= +kABPA(t)− kBAPB(t), (84)

where

kAB =
1

Peq
A

∑
a,i1,i2,...,in,b

peq
a kai1 ki1i2 · · ·kinb

∑ j1 k j1i1 ∑ j2 k j2i2 · · ·∑ jn k jnin
, (85)

kBA =
1

Peq
B

∑
b,in,...,i2,i1,a

peq
b kbin · · ·ki2i1 ki1a

∑ j1 k j1i1 ∑ j2 k j2i2 · · ·∑ jn k jnin
. (86)

Here, the sum is over all possible paths from a minimum a ∈ A via an arbitrary num-
ber n of intermediates i ∈ A∪B to b ∈ B. The rate constants ki j for each transition
between intermediate i and j are computed from harmonic TST (see Sect. 3.3).

In practice these sums can be infinite, due to recrossings, and therefore one intro-
duces a method to compute the contribution due to recrossings based on the shortest
paths between A and B, by defining a propagation matrix A:

A =

⎧
⎪⎪⎨

⎪⎪⎩

0 ki2i1/∑γ ki1γ 0 · · · 0
ki1i2/∑γ ki2γ 0 ki3i2/∑γ ki2γ · · · 0

0 ki2i3/∑γ ki3γ 0 · · · 0
· · · · · · · · · · · · · · ·

⎫
⎪⎪⎬

⎪⎪⎭
, (87)

where the sums are over all neighbor states γ .
The contribution to the rate constant of a a−b or b−a path, respectively, is then

kab =
peq

a

Peq
A

kinb
kai1

∑γ ki1γ

∞

∑
p=n−1

[Ap]n1, (88)

kba =
peq

b

Peq
B

ki1a
kbin

∑γ kinγ

∞

∑
p=n−1

[Ap]1n, (89)

where the subscript refers to the corresponding matrix element. The corresponding
total rate constants kAB and kBA are given by

kAB = ∑
a,i1,i2,...,in,b

kab, (90)

kBA = ∑
b,in,...,i2,i1,a

kba. (91)

The DPS algorithm consists of starting from an initial path {a, i1, . . . , in,b} and per-
turbing this path by replacing a random intermediate or including a new intermediate
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in the path. When the a− b rate constant is found to become larger, then the trial
path replaces the current path. The sampling is finished when the fastest possible
path has been found. The overall kinetics is assumed to be dominated by the fastest
pathways.

The DPS method can be improved by the application of a graph transformation
[259], in order to decrease the number of minima in the database, while keeping the
properties of interest unchanged.

6.2 DPS Applications

Wales applied this scheme to several systems including the two-dimensional seven
particle LJ cluster (heptamer), the (H2O)8 water cluster, and the LJ38 cluster [258].
In a later paper, Evans and Wales applied DPS to the folding of the GB1 hairpin
in implicit solvent [260]. Employing the DPS scheme, they created a database of
several tens of thousand of minima and transitions states. A KMC simulation on
this database yielded an estimated folding time of around 30–90μs, about ten times
slower than the experimental one, which is reasonable considering the approxima-
tion made in the implicit force field and the harmonic approximation. Using graph
theoretical algorithms they found that the fastest path only contributed with a fold-
ing rate kaB = 10−48 s−1, about 50 orders of magnitude slower than the KMC value
or the experimental rate (≈106 s−1). This indicates that for this system the number
of pathways that should be included into the ensemble is truly enormous.

7 Reaction Coordinate and Committor

A collection of transition pathways in full atomistic detail, for instance harvested
with the TPS methods or from a long MD trajectory, does not directly result in a
detailed understanding of the underlying mechanism. The situation is similar to that
encountered when performing a straightforward MD simulation of a complex mole-
cular system, say, a protein in aqueous solution: a detailed trajectory, stored on a
computer in the form of a long list of particle positions and momenta at consecutive
times, does not automatically generate understanding of the simulated system. Only
further statistical analysis of the trajectory, perhaps guided by intuition, yields useful
information and helps to identify those variables that capture the relevant physical
features. Building on this insight, one can then describe the essential physics in
terms of low-dimensional models in which all irrelevant degrees of freedom have
been removed. Similarly, only further statistical analysis, carried out on a given set
of pathways or on-the-fly as the pathways are generated, helps to extract a descrip-
tion of the mechanism in terms of a few important variables, or, ideally, to find a
good reaction coordinate.
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The reaction coordinate is a function q(r), usually defined in configuration space,
whose value is presumed to provide a measure for the progress of a reaction. For
chemical reactions one may, for instance, expect a particular bond length or bond
angle to serve as a reaction coordinate. For a folding protein, the number of native
contacts may seem to lend itself as a reaction coordinate, and for a dissociating ion
pair the interionic distance may be assumed to quantify how far the dissociation has
proceeded. If judiciously chosen, such parameters may indeed change in a continu-
ous manner from one value characteristic for the state A to another value typical for
state B as the reaction occurs. The interionic distance certainly increases as the ions
dissociate, and native contacts form as the protein folds. But does that imply that
these parameters are “good” reaction coordinates? And what does “good reaction
coordinate” mean and how can we distinguish it from a “poor reaction coordinate”?

It is important to realize that in general the reaction coordinate q(r), like the
collective variables we use for free energy calculations, is a function we define with
some arbitrariness on the basis of what we already know about the process we would
like to study (we will discuss procedures that can be employed to facilitate the search
for a good reaction coordinate later). Our particular choice of q(r) may or may not
be suitable to describe the reaction of interest. From a good reaction coordinate we
expect to be able to tell how far a reaction has proceeded and what will most likely
happen next.9 The reaction coordinate q(r) should, for instance, tell us whether a
particular configuration r is a transition state, i.e., a configuration from which both
states A and B are equally accessible. By looking at the reaction coordinate q(r)
only, we should also be able to tell whether a reaction has just started or is about to
be completed.

In the rare events context one usually distinguishes between a reaction coordinate
and an order parameter. While the former is required to be a dynamically relevant
measure for the complete progress of the reaction from start to finish, the latter
is a variable that permits to discriminate between the stable states A and B but is
not necessarily suitable for describing the course of the reaction. A good reaction
coordinate can serve also as a good order parameter, but the inverse is not necessarily
true.

We can make the concept of the quality of a reaction coordinate q(r) more precise
by considering the so-called commitment probability, or committor. The commit-
tor pB(r) is defined as the probability that a trajectory started at configuration r
with random momenta reaches state B before it reaches state A (see Fig. 10). (The
commitment probability for state A is defined analogously.) The commitment prob-
ability was introduced as splitting probability already by Onsager, who used this
concept to analyze ion pair recombination [262]. It has proven very useful in the-
oretical studies of protein folding, where the committor is known as pfold [263],
and even in experimental work on liquid–solid nucleation [264]. Calculation of the
probability pB(r) involves a Maxwell–Boltzmann average over momentum space

9 The ability to predict the likely fate of a trajectory passing through a configuration r solely from
the value of the reaction coordinate q(r) at that configuration implies that the dynamics of the
system projected onto the reaction coordinate [173] is, at least approximately, Markovian [261].
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Fig. 10 The committor pB(r) for a particular configuration r measures the probability of a trajec-
tory started at r to relax into region B. Numerically, the committor can be calculated by starting
N trajectories from r, initialized with random momenta, and counting how many of them reach B
rather than A

and, in the case of stochastic dynamics, also an average of noise histories.10 The
committor is a statistical measure for how committed a particular configuration is
to state B. Configurations in or near region A will most likely have a very small
committor, pB ≈ 0, while configurations in or near B will have a committor close to
unity, pB ≈ 1. It is now natural to define the transition states as those intermediate
configurations that have equal probability to reach A and B, or, in other words, are
equally committed to either side, pA(r) = pB(r) = 1/2. The idea of using the com-
mittor to identify transition states goes back at least to Ryter [265, 266], and was
used by several authors in the theory of activated stochastic processes [267–269].

How is the committor now related to the reaction coordinate? As mentioned
above, one may expect a good reaction coordinate q(r) to provide sufficient infor-
mation to predict the likely fate of a trajectory passing through configuration r. But
this is exactly what the committor pB(r) does. By looking solely at the committor
we can tell how far a reaction has proceeded and what is likely to happen next. Com-
mittor values of 0 and 1 correspond to configurations that firmly belong to A and
B, respectively, while a committor value of 1/2 implies that the system is at a tran-
sition state from which it can access both stable states with equal probability. Thus,
in this almost tautological sense, the committor pB(r) itself is the perfect reaction
coordinate [28, 31, 261].11 This property of the committor also provides a criterion

10 It is worth noting that different definitions of the committor exist. If the full microscopic descrip-
tion of the system includes momenta, the committor can be considered for a point in configuration
space or for a point in phase space as is done in transition path theory (TPT) [31]. In the latter
case, the average extends only over noise histories for stochastic dynamics and for deterministic
dynamics the committor can only take the values 0 or 1. Furthermore, committor definitions can
differ in whether one requires the trajectories to “reach” B before A or to “relax” into B rather
than A. The latter definition is supposed to take into account correlated recrossing events into and
out of B. Particularly for reactions taking place in the so-called energy diffusion regime, where the
rate of energy dissipation is the main factor determining the kinetics, this definition seems more
appropriate. Note, however, that such a committor definition is not suitable as a basis for the TPT
discussed in Sect. 9, because some of the properties of the committor on which this theory is based
are lost.
11 It has been shown that for diffusive barrier crossing under certain not unduly restrictive condi-
tions the reaction coordinate that is optimum in the TST-sense is orthogonal to the committor-1/2
surface [270].
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for distinguishing a “good” reaction coordinate from a “poor” one. From any other
“good” reaction coordinate q(r) we require that it parametrizes the committor. In
other words, the value of the reaction coordinate at configuration r needs to deter-
mine, at least to a good approximation, the value of the committor at that point,
pB(r) = pB[q(r)]. For a “poor” reaction coordinate, on the other hand, there is no
one-to-one relation to the committor. But while the committor is the ideal reaction
coordinate in the sense explained above, it is very unspecific and does not directly
lead to physical insight, i.e., it does not automatically yield a low-dimensional de-
scription of the system in terms of a few specific collective variables that distill the
essential physics in a transparent way and can be probed or controlled in experi-
ments or simulations. In the following section we will discuss several approaches
for finding such variables.

8 Finding the Mechanism

Watching transition trajectories as molecular movies rendered on a computer is often
a fascinating but at the same time sobering experience. While the suggestive images
can provide useful insights and stimulate our imagination, important variables can
remain elusive. For such complex reactions the committor can serve as a guide to
identify relevant collective variables and test proposed reaction coordinates. In this
section we briefly review several computational tools and approaches based on this
concept.

8.1 Transition State Ensemble

Comparison of configurations with different committor values often yields valuable
information on the reaction mechanism. In particular, it can be helpful to examine
the properties of the transition state ensemble (TSE) which consists of the points
where transition pathways pierce the isocommittor-1/2 surface, i.e., the surface de-
fined by pB(r) = 1/2. Since transition pathways cross the isocommittor-1/2 surface
at different points that are not uniformly distributed, the TSE introduces a statistical
weight on this surface. For diffusive dynamics (and/or a committor defined in phase
space) the TSE is simply the equilibrium ensemble confined to the isocommittor-1/2
surface [31]. For non-diffusive dynamics and for a committor defined in configura-
tion space, however, these two ensembles may differ. In a TPS simulation, the TSE
can be determined by calculating the committor at regularly spaced points collected
from transition pathways. Since along each transition pathway the committor grows
continuously from pB = 0 in region A to pB = 1 in region B, the committor must
be 1/2 (or close to it) for one or more intermediate configurations. These configu-
rations are samples of the TSE. Analysis of the transition state ensemble has been
proven useful in the investigation of various complex processes, including ion pair
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separation in water [25], biomolecular isomerization [26], and the liquid–solid tran-
sition [200]. Further information can be gained by analyzing the local flux through
isocommittor surfaces [271].

8.2 Committor Distributions

As discussed above, a good reaction coordinate needs to parametrize the committor,
i.e., configurations with a particular value of the reaction coordinate should all have
the same committor. Therefore, isosurfaces of the reaction coordinate defined by
q(r) = constant should coincide, at least where they are mostly populated, with the
corresponding isocommittor surfaces. This is something that can be easily tested
by determining the probability distribution P(pB) of the committor for equilibrium-
weighted configurations with a particular value q∗ of the reaction coordinate [25]:

P(pB) = 〈δ [pB − pB(x)]〉q(r)=q∗ , (92)

where 〈· · ·〉q(r)=q∗ denotes an equilibrium average restricted to q(r) = q∗. If the
reaction coordinate is sufficient to specify the value of the committor, the commit-
tor distribution P(pB) will be sharply peaked around the corresponding committor
value, pB(q∗). For a poor reaction coordinate on the other hand, the committor dis-
tribution P(pB) will not be unimodal as configurations with the same value of the
reaction coordinate can have different committors.

For a proposed reaction coordinate q(r) it is instructive to determine the com-
mittor distribution P(pB) for the reaction coordinate constrained at the maximum
q∗ of the free energy barrier F(q) that separates the stable states from each other
(of course, this presupposes that the free energy as a function of q has such a bar-
rier). If q(r) is a good reaction coordinate, all configurations with q(r) = q∗ are
transition states and the distribution P(pB) is concentrated around pB = 1/2. A dis-
tribution P(pB) that does not have a single peak at pB = 1/2 indicates that degrees
of freedom other than q(r) are necessary to specify transition states and quantify the
reaction progress. In this case, different scenarios are possible [165]. If most config-
urations of the q(r) = q∗ ensemble belong to A and/or B, the committor distribution
will be peaked at 0 and/or 1. If diffusive barrier crossing occurs at q(r) = q∗ but in a
direction orthogonal to the q(r) = q∗ surface, the committor distribution is uniform
in the interval from 0 to 1 [165].

To assess the quality of a proposed reaction coordinate q(r) in practice, one has
first to decide on the particular value q∗ of the reaction coordinate at which the
committor analysis should be carried out. This can be done on the basis of the
free energy profile F(q) determined using standard methods such as TI or um-
brella sampling. Then, one generates a sample of equilibrium configurations with
the reaction coordinate fixed at q∗, for instance by constrained MD or MC simula-
tion. For each configuration the committor is calculated by “shooting off” a number
of trajectories and determining the fraction of trajectories that relax into the final
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state. The committor values calculated in this way are histogrammed yielding an
estimate of the committor distribution P(pB). A detailed statistical analysis of the
computation of committor histograms has been carried out by Peters [272]. Ini-
tially introduced to study ionic dissociation in water [25], committor distribution
analysis was subsequently applied to elucidate the mechanism of various complex
reactions [26, 28, 29, 199, 200, 202, 273].

8.3 Bayesian Path Statistics

An alternative definition of transition states was recently suggested by Hummer
[27,261] on the basis of a Bayesian relation between the TPE and the equilibrium en-
semble. Since in the TPE pathways are constrained to connect A and B, the density
distribution of microscopic states P(x|TP) visited along transition pathways differs
from the equilibrium distribution ρ(x).12 Using these two densities, the probability
P(TP|x) that a trajectory going through x is a transition path can be expressed as

P(TP|x) =
P(x|TP)P(TP)

ρ(x)
. (93)

Here, the normalizing factor P(TP) =
∫

dxρ(x)P(TP|x) is the overall likelihood
to be on a transition path averaged over all microscopic states x and it equals the
fraction of time spent on transition pathways on a long equilibrium trajectory. The
conditional probability P(TP|x) is large at points x that are common to many tran-
sition pathways but are rarely visited in equilibrium. Therefore, it makes sense to
identify transition states with those points at which P(TP|x) is a maximum, i.e., with
the points that have the largest probability that trajectories passing through them are
reactive [27].

The probability P(TP|x) is also simply related to the committor functions of the
stable states, P(TP|x) = pA(x̄)pB(x)+ pA(x)pB(x̄), where x̄ = {r,−p} results from
x = {r, p} by inversion of the momenta.13 For diffusive dynamics, x consists of the
positions r only and P(TP|x) = 2pB(x)[1− pB(x)]. It follows that in this case the
points r that maximize P(TP|r) lie on the surface defined by pB = 1/2 (at its max-
imum, p(TP|r) = 1/2). Thus, for diffusive dynamics the transition state definitions
via pB(r) and P(TP|r) are equivalent. In general, however, the points x maximiz-
ing P(TP|x) are isolated and do not form a dividing surface. Using the probability
density P(x|TP), the TSE defined previously can be expressed as

ρTSE(x) = δ [pB(x)−1/2] p(x|TP)/ZTSE, (94)

12 In this context, a transition pathway is defined to consist only of the trajectory segment between
A and B excluding points in A and B.
13 Here, the committor is defined for a point x in phase space by averaging over noise histories but
not over momenta. For Newtonian dynamics, the committor defined in this way is either 0 or 1.
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where ZTSE normalizes the distribution. It then follows from (93) that, as stated
above, for a committor defined in phase space the TSE is equal to the equilibrium
ensemble restricted to the isocommittor-1/2 surface [31].

While the Bayesian relation of (93) is correct in principle, the high dimensional-
ity of phase space makes its application difficult. In practice, its generalization for
projected dynamics is more useful, particularly for testing reaction coordinate can-
didates [27]. For a given reaction coordinate q(x), the probability P(TP|q) is defined
as an average of P(TP|x) over the equilibrium ensemble constrained at q(x) = q,

P(TP|q) =
∫

dxρ(x)δ [q−q(x)]P(TP|x)
∫

dxρ(x)δ [q−q(x)]
. (95)

This probability is related to the density of q in the TPE and in the equilibrium
ensemble by

P(TP|q) =
P(q|TP)P(TP)

P(q)
. (96)

The densities P(q|TP) and P(q) ∝ exp[−βF(q)] can be obtained from a transition
path simulation and an equilibrium free energy calculation, respectively. Equa-
tion (96) also provides the basis for a procedure to calculate reaction rate constants
[27].

The probability P(TP|q) calculated from (96) can be used to assess the quality
of reaction coordinates. For a good reaction coordinate, all transition states, i.e.,
the states x with large probability P(TP|x), should correspond to approximately the
same value of the reaction coordinate. Hence, the probability P(TP|q) should be a
sharply peaked function with a maximum at the transition state value of q. For a
poor reaction coordinate, on the other hand, P(TP|q) is expected to be rather fea-
tureless according to (95), as in this case no strong correlation between the value of
q(x) and the probability P(TP|x) exists. Best and Hummer have successfully used
this approach to test reaction coordinates for the folding of a simple three-helix
bundle protein and the collective dipole flip of ordered one-dimensional chains of
hydrogen-bonded water molecules in narrow carbon nanotubes [261].

8.4 Genetic Neural Networks

Ma and Dinner recently used genetic neural networks (GNN) [274, 275] to auto-
matically screen large sets of candidates for the reaction coordinate and identify
the few collective variables which best parametrize the committor [28]. The method
requires generation of a database computed from many different configurations of
the system. Each entry of the database consists of the committor pB and a possi-
bly long list of collective variables all calculated for the same configuration of the
system. To avoid a distorting bias it is important that the committor values included
in the database are approximately uniformly distributed in the range from 0 to 1.
A practical way to collect configurations for the database is by taking them from
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transition pathways, for instance harvested with TPS. The database is then divided
into a training set and a test set. After optimizing the weights of the neural network
on the training set for a given combination of a few collective variables, the quality
of the fit is assessed on the test set by determining the mean square deviation of the
predicted committor values from the true ones. Since for a large number of candi-
date variables an exhaustive test of all combinations of even only three or four of
them using this procedure is impossible, a genetic algorithm is employed to search
for the combination of variables that best predicts the committor, i.e., that yields the
smallest mean square deviation.

The GNN-method can be used to search efficiently through very large pools of
possible reaction coordinates. Computationally, the most expensive part of the pro-
cedure is the calculation of the committor values for a sufficiently large database;
the cost for the training of the neural networks and the genetic optimization are rel-
atively low. Ma and Dinner have applied the method to investigate the nature of the
reaction coordinate for the isomerization of alanine dipeptide in vacuum and explicit
solvent [28]. Their analysis comprised thousands of collective variables determined
for each of the more than one thousand entries of the database. The collective vari-
ables included internal degrees of freedom of the dialanine molecule as well as
solvent degrees of freedom. The genetic algorithm found that a combination of three
variables, a solute dihedral angle, a solute–solute distance and a solvent generated
electrostatic torque, is sufficient to parametrize the committor and, hence, specify
transition states. The previously unknown role of long-ranged electrostatic interac-
tions in this particular isomerization reaction was confirmed by the calculation of
appropriate committor distributions.

8.5 Likelihood Maximization

As in the GNN-approach discussed in the previous section, the likelihood maximiza-
tion method of Peters and Trout [29] determines the optimum reaction coordinate
by screening a possibly large set of collective variables and finding the combi-
nation of collective variables that best fits the observed data. But in contrast to
the GNN-method, the maximum likelihood approach does not require calculation
of commitment probabilities. Rather, it builds on information about accepted and
rejected shooting moves accumulated in a TPS simulation. This information is
then analyzed using maximum likelihood estimation (MLE), a method of statisti-
cal analysis to determine the parameters of a postulated underlying model from a
given finite set of data [276]. The central principle of this method is to find those
model parameters that maximize the likelihood to observe the particular data set. In
this sense, MLE looks for the most plausible explanation of the observations.

In order to apply this type of analysis to pathways generated in a TPS simulation,
the shooting algorithm described in Sect. 5.2 has to be slightly modified. Since in
this method one would like the acceptance probability of a shooting move attempted
from r to be governed by P(TP|r), the new momenta at r need to be drawn from
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the Maxwell–Boltzmann distribution rather than obtained by small perturbation of
the old momenta. This so-called aimless shooting algorithm differs from standard
shooting in another important point: the shooting points are selected from a small
region around the previous shooting point rather than from the whole path. Since
shooting points near transition states have a higher probability to lead to reactive
trajectories, this procedure leads to a population of shooting points that is densest
near transition states [29]. As the TPS simulation carried out in this way proceeds,
shooting points are stored together with the information on whether the trajectories
started from them where accepted or rejected (i.e., whether they were reactive or
not). This typically very large database is then subjected to a maximum likelihood
analysis.

Application of MLE requires the specification of the underlying model in the
form of parameter-dependent probability distributions for the data. In the approach
of Peters and Trout, the data consist of the observed acceptances and rejections for a
large number of shooting points together with the corresponding values of M collec-
tive variables q1, . . . ,qM calculated for the collected shooting points. Each attempted
shooting move, whether it is accepted or not, is viewed as a particular realization
of the process whose statistics is described by P(TP|q), the probability to be on
a transition path given a particular value q of the (at this point unknown) reaction
coordinate. This function P(TP|q) is the model, which depends on various parame-
ters. To specify the model and the parameters in detail, one first needs to postulate
a specific functional dependence of P(TP|q) on the reaction coordinate q (while the
qi are the collective variables, here the symbol q without subscript denotes the re-
action coordinate). For a good reaction coordinate, P(TP|q) is a function peaked at
the value of q corresponding to the transition state and it decays to zero away from
the peak [27]. The functional dependence chosen by Peters and Trout [29],

P(TP|q) = p0
[
1− tanh2(q)

]
, (97)

is of this general form. Definition of the model is completed by stipulating how the
reaction coordinate q depends on the M collective variables q1, . . . ,qM . A possibility
to do that is

q = α0 +
M

∑
k=1

αkqk +
M

∑
k,l=1

Aklqkql , (98)

but depending on the particular situation other definitions might be more appropri-
ate. On the basis of these definitions one can now construct a likelihood function,
which quantifies the probability of the observed data as a function of the model
parameters:

L(α) = ∏
r∈acc

P(TP|q(r)) ∏
r∈rej

[1−P(TP|q(r))] . (99)

Here, α denotes all model parameters including p0, the coefficients αi and the
matrix elements Aik. The products extend over all accepted and rejected shooting
points, respectively, and the dependence on the collective variables and the parame-
ters α has been dropped for clarity on the right-hand side. Maximizing the likelihood
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function L(α) (or its logarithm) with respect to the parameters α yields the best re-
action coordinate within the class of reaction coordinates permitted by the model.

Since it does not require the calculation of expensive committor histograms,
likelihood maximization is a flexible and computationally very efficient method
of finding reaction coordinates. Once a data set of shooting points with accep-
tance or rejection has been compiled, extension of the set of collective variables
or the underlying model does not require any substantial additional computational
effort. Algorithms are also available for screening large sets of collective variables
as possible contributors to the reaction coordinate [29]. Some improvements of the
maximum likelihood methods as well as a comparison with the GNN method of Ma
and Dinner [28] are provided in [277]. MLE has been used to identify the mech-
anistic details of nucleation in the Ising model [29] and of structural solid–solid
transitions of terephthalic acid [202].

9 Transition Path Theory and the String Method

As discussed in previous sections, the committor is the ideal reaction coordinate in
the sense that it exactly quantifies how far a reaction has proceeded. This concept
also provides the basis for transition path theory (TPT) [33, 278], a probabilistic
framework developed by Vanden-Eijnden and collaborators to study the statistical
properties of rare event trajectories. In TPT, isocommittor surfaces, i.e., surfaces on
which all points have the same committor value, play a prominent role. Trajectories
initiated from any point of an isocommittor surface have the same probability to
reach the final rather than the initial state first. It can be shown [31] that the distri-
bution of points where reactive trajectories pierce a given isocommittor surface is
identical to the equilibrium distribution confined to that surface. From the commit-
tor and the equilibrium distribution one can determine the distribution of reactive
trajectories, so-called reaction tubes, which contain entire reaction pathways with
high probability, as well as the reaction rates, providing useful statistical informa-
tion about the reaction mechanism.

One particular strength of TPT is that it provides a way to identify isocommittor
surfaces directly without the need to generate dynamical trajectories by integration
of the equations of motion, as is for instance done in several approaches described
in the previous sections of this article. As discussed in [31, 33, 278], the commit-
tor function can be determined in principle by solving the backward Kolmogorov
equation [279]. While this partial differential equation cannot be solved numeri-
cally except for simple, low-dimensional systems, it provides a starting point for
the derivation of approximate algorithms that can be implemented on a computer.
In the following, we will briefly outline the zero and finite temperature string meth-
ods, practical numerical approaches which follow from this perspective. We refer
the reader to [31, 33, 278] for a detailed exposition of TPT.

At low temperatures, the reaction tube will be very narrow and concentrated
mainly around the points of highest population on the isocommittor surfaces. In
the framework of TPT, this observation leads to the zero-temperature string method
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[30, 280], a numerical technique designed to find minimum energy pathways. In
the zero-temperature string method, which resembles the NEB method described in
Sect. 2.2, a path connecting A and B is represented by a smooth curve ϕ , the string.
The minimum energy pathway satisfies the condition

(∇V )⊥(ϕ) = 0, (100)

where (∇V )⊥ is the component of the gradient ∇V of the potential energy normal
to the string. The minimum energy pathway is the pathway one obtains by walk-
ing downhill from a saddle point in the steepest descent direction. For overdamped
dynamics at low temperatures, minimum energy pathways are the most likely tran-
sition routes. Once the minimum energy pathway is known, reaction rate constants
can be calculated via TST. Starting from an arbitrary string that connects A and B,
this minimum energy pathway can be found by evolving the string dynamically in a
steepest descent way using the forces f⊥ = −(∇V )⊥ until the string has converged.
In practice, this is done by discretizing the string and carrying out the steepest de-
scent dynamics on the images of the string. To enforce a particular parametrization
of the string, for instance one defined through the normalized arc length, an appro-
priate constraint must be added to the evolution equation. Periodically, the images
are redistributed on the string to exactly impose the parametrization that is only
approximately maintained by the constraint. The normal forces used in the string
method to drive the string from its initial form towards the minimum energy path-
way are identical to the normal forces applied in the NEB method [62]. The two
methods, however, differ in how the discrete images along the string are prevented
from sliding towards the stable states. While in the NEB-method this is done by
introducing tangential spring forces that act in a way to maintain approximately
equal spacing between the images, in the string method this is done by imposing
a certain parametrization as described above. Recently, an improved version of the
string method has been developed which does not evolve the string using the force
projection normal to the string [281]. Rather, the full force is used and then the
string is reparametrized (the same idea can also be applied to the NEB method).
In addition to being simple, this algorithm is also more accurate and stable. The
zero-temperature string method, which has been validated using the rearrangement
of a small Lennard-Jones cluster, has been used to study the pathways for thermally
induced switching of magnetic films [30].

At finite temperatures, the minimum energy pathway is, in general, not represen-
tative for the ensemble of possibly very different transition pathways. Nevertheless,
transition pathways often remain concentrated in one or a few transition tubes. If
transition pathways are localized in this way, the finite temperature string method
is applicable [282, 283]. Although the finite temperature string method has been
developed in a probabilistic setting for systems with Markovian stochastic dynam-
ics, it may be applied also to deterministic dynamics such as the Newtonian time
evolution mainly used in MD simulations. In this case, however, no rigorous jus-
tification of the method is available. The central assumption of this method is that
the isocommittor surfaces can be approximated by hyperplanes at least locally in
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the transition tube. The finite temperature string method then exploits the fact that
on the isocommittor surfaces the distribution of points lying on reactive trajectories
is identical to the equilibrium distribution restricted on that surface. It then follows
from a variational principle for the solutions of the backward Kolmogorov equa-
tion that the isocommittor hyperplanes are normal to a string ϕ(α), defined as the
average position of the equilibrium distribution on the hyperplane. Numerically the
string ϕ(α), which lies at the center of the transition tube, and the isocommittor sur-
faces can be found by a procedure which is iterated until self-consistency is reached,
i.e., until the hyperplanes are normal to the string ϕ(α). To do that in practice, the
string is discretized and a hyperplane is attached to each image of the string. Then,
the average position on each hyperplane is determined by carrying out independent
constrained simulations to sample the equilibrium distribution on the hyperplanes,
for instance with the blue moon sampling method [44]. This calculation yields a
new string and a new set of perpendicular hyperplanes. As in the zero temperature
string method, a particular parametrization is enforced by reparametrizing the string
appropriately. The procedure is then iterated until the string has converged. As a
result of a finite temperature string calculation one obtains the string at the center of
the reactive tube, which can be viewed as a smooth representative of high likelihood
transition pathways and which contains important information on the mechanism,
as well as the isocommittor surfaces, from which transition states and transition rate
constants follow. The finite temperature string method has been demonstrated to
be an effective method also for high-dimensional systems with complex potential
energy landscapes [282, 283] and has been employed to study the isomerization of
alanine dipeptide in implicit and explicit solvent [283].

To study rare transitions in very large systems, Vanden-Eijnden and cowork-
ers have recently developed a version of the string method in collective vari-
ables [32]. Provided that this set of collective variables q1(r),q2(r), . . . ,qM(r) is
sufficient to capture the essence of the transition mechanism in the sense that
the committor can be expressed as a function of these variables only, pB(r) =
pB(q1(r),q2(r), . . . ,qM(r)), this method yields the minimum free energy pathway
(MFEP) of the reaction and the isocommittor surfaces. The MFEP is the most likely
transition path in the space of the collective variables. Since in this method one
is interested only in the MFEP rather than in mapping out the whole free energy
landscape, the number of collective variables can be very large without adversely
affecting the efficiency of the method. In [284] the authors have used the string
method to study the hydrophobic collapse of a hydrophobic chain in more than
100,000 collective variables representing the water density. Analysis of the MFEP
indicates that the collapse occurs by hydrophobic dewetting as proposed earlier by
ten Wolde and Chandler [285] and that the system is driven over the barrier by a
collective solvent motion which does not involve the chain degrees of freedom.

The string method is particularly suitable for studying systems evolving stochas-
tically in the overdamped limit. The reason is that in the finite temperature string
method one makes the assumption that once the system has entered B coming from
A, any transition from B back to A is statistically uncorrelated. To satisfy this re-
quirement the stable states A and B need to be appropriately defined, possibly in
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phase space rather than only in configuration space as can be done for overdamped
dynamics. Often, however, it is already difficult to describe the stable states using
only configurational properties and a full phase space definition of the stable states is
even more challenging. An example where this issue creates problems are chemical
reactions with weak coupling to the solvent (i.e., the energy diffusion regime) [286].
In this case, energy dissipation after activation is very slow such that the molecule
may oscillate back and forth between the stable geometries several times before it
finally settles in one of the stable states. In the reactive flux method such correlated
recrossings are accounted for in the transmission coefficient and also time correla-
tion functions determined with TPS properly describe the energy diffusion regime.
In the string method, however, recrossings have to be eliminated by a suitable def-
inition of the stable states in phase space, often a very difficult task for systems in
which inertial effects are important.

The perspective adopted in the string method differs from that of other methods
such as TPS. In the latter, one considers dynamical trajectories parametrized by
physical time, while in the string method pathways are parametrized in a way that
is numerically advantageous. This change in perspective provides the basis for the
development of computational methods to determine the statistical properties of the
reaction process in terms of the committor. These methods, however, require some
approximations such as the assumption of hyperplanar isocommittor surfaces. Also,
the dynamical details of transition trajectories are lost in the statistical description of
the transition process. How to combine the statistical approach embodied in the TPT
framework with methods such as TPS that do not suffer from the above limitations
is an interesting but challenging open problem.

10 Conclusion

In this article we have reviewed several methods that allow the computational study
of processes in which rare events play an important role. Quite a few robust and ef-
ficient new methods, including metadynamics, the finite temperature string method
and TPS, have only become available during the last couple of years. These tech-
niques have shown great potential for allowing the numerical study of processes
that were hitherto not feasible. Nevertheless, all of these algorithms are somehow
limited in their range of applicability and in the type of information they yield. An
important challenge for the future will be to develop new techniques that combine
the strengths of the various methods in a complementary way. Only in this way
molecular simulation will truly be able to bridge the enormous time-scale gap that
lies between the microscopic and the macroscopic world.
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Force coupling 89, 136
Forces, external 124
Forward flux sampling 210
Free energy 32

bistable 186
Free energy landscape 175
Free energy surface (FES) 172
Functional form 4

G
Galilean invariance 111
Gaussian polymers 48
Generalized lattice gas (GLG) 102
Genetic neural networks (GNN) 221
Ghost particles 38
Giant unilamellar vesicles (GUV), modelling

63
Green–Kubo (GK) relations 6, 15

H
Harmonic approximation 191
Hydrodynamic interactions (HI) 89, 93

complex fluids 41
Hydrodynamic screening 89
Hyperdynamics 197

linearized 15

I
Immiscible fluids, color models 35
Ito calculus 94

K
Keller–Skalak theory 68
Kinematic viscosity 13

L
Lattice gas cellular automata (LGCA) 101
Lattice-Boltzmann (LB) method/models 4, 89,

100
equation, fluctuating 101
coupling to soft matter 126
statistical mechanics 122

Lees–Edwards boundary conditions 55
Lennard-Jones (WCA) potential 92
Likelihood maximization 222
Link-bounce-back (BB) algorithm 149
Liquid-solid fluidized beds 41

M
Maximum likelihood estimation (MLE) 222
Membrane hydrodynamics, modeling 66
Membrane viscosity 67
Membranes, dynamically triangulated surface

model 63
solvent-free, modeling 62

Mesoscale/mesoscopic methods 91, 97
Metadynamics 171, 183
Milestoning 211
Minimum energy path (MEP) 177
Mobility tensor 95
Molecular dynamics simulations (MD) 4, 42,

97, 98
MPC-AT, shear viscosity 27
Multiparticle collision dynamics (MPC) 4, 100

algorithms 28
Anderson thermostat (MPC-AT) 5, 90
without hydrodynamics 41

Multirelaxation time (MRT) model 114

N
Navier–Stokes 101
Non-ideal model 28
Nucleation 212
Nudged elastic band method (NEB) 171, 177

P
Parallel replica dynamics 196
Parallel tempering method (PT)/replica

exchange (RE) 176
Partial path sampling 209
Particle coupling, fluid, frictional drag 126
Particle-fluid systems 92
Particle motion 130
Peclet number 43
Phase separation, multi-component mixtures

31
Poiseuille flow 54
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Polymer dynamics 46
Polymer melts viscoelastic 79
Polymer migration, confined geometries 155
Polymer solutions 89

dynamic scaling 151
viscoelastic 79

Polymers, flow fields 54
Polymersomes, membrane viscosity 70
Potential energy surface (PES) 170
Pressure, equation of state 30
Pressure tensor 13
Pressure-driven flow, inertial migration 159

R
Random rotation 6
Rare events, complex systems 167, 169
Rate constant 167
Reaction coordinate/committor 215
Reaction rate constants 186
Red blood cells, capillary flow 76

deformation 76
modeling 65

Rod-like colloids, shear flow 54
Rotne–Prager interaction 147
Rotne–Prager tensor 95
RRKM theory 192

S
Saddle point search algorithms 176
Scale separation 92
Sedimentation 157

processes 41
Self-diffusion coefficient 21
Shear viscosity 13

collisional contribution 14, 25
kinetic contribution 13, 24

Soft matter 89
Solid particles in suspension, hydrodynamic

interactions 127
Solvent, coupling embedded object 38
SRD, cell-level thermostating 11

shear viscosity, collisional contribution 25
kinetic contribution 24

Stable states 170
Static/dynamic properties, qualitative 12
Stochastic difference equation (SDE) 181
Stochastic rotation dynamics (SRD) 4, 7
Stokes friction coefficient 92
Stokesian dynamics simulations (SD),

hydrodynamic interactions 41, 96
Stosszahlansatz closure assumption 149
Stratonovich calculus 94
Stress tensor, anisotropic 8

String method 224
Surface tension 33
Surfaces near contact 133
Suspensions, flocculation 41

T
Tank-treading 70
Temperature-accelerated dynamics 198
Terephthalic acid, structural solid–solid

transitions 224
Thermal boundaries 37
Thermal diffusivity 21
Thermal fluctuations 93
Thermal noise, D3Q19 Model III 118
Thermodynamic integration (TI) 176
Transition interface sampling 207
Transition path ensemble 172, 199

kinetics 205
Transition path sampling 172, 198

applications 212
Transition path theory (TPT) 173, 224
Transition pathway 167
Transition state ensemble 173, 218
Transition state theory (TST) 172, 185
Transport coefficients 29

collisional contribution 19
kinetic contribution 19
non-equilibrium calculations 24

TST reaction rate constant 189
Tumbling 70

U
Umbrella sampling (US) 176

V
Variational transition state theory 193
Velocity fluctuations 158
Vesicles, drug carriers 61

hydrodynamic flows 61
Viscoelastic fluids 79
Viscosity, kinetic contribution 20

W
Walker, metadynamics 184
Wall particles 38
WCA (Lennard-Jones) potential 92
Weissenberg number 55

Z
Zimm model 46
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