
W
yrzykow

ski et al. (E
ds.)

Parallel Processing
and Applied M

athem
atics

Roman Wyrzykowski
Jack Dongarra
Konrad Karczewski
Jerzy Wasniewski (Eds.)

 123

LN
CS

 8
38

5

10th International Conference, PPAM 2013
Warsaw, Poland, September 8–11, 2013
Revised Selected Papers, Part II

Parallel Processing
and Applied Mathematics

PPAM
2013

`

Lecture Notes in Computer Science 8385

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7407

http://www.springer.com/series/7407

Roman Wyrzykowski • Jack Dongarra
Konrad Karczewski • Jerzy Waśniewski (Eds.)

Parallel Processing
and Applied Mathematics

10th International Conference, PPAM 2013
Warsaw, Poland, September 8–11, 2013
Revised Selected Papers, Part II

123

Editors
Roman Wyrzykowski
Konrad Karczewski
Institute of Computer and

Information Science
Czestochowa University of Technology
Czestochowa
Poland

Jack Dongarra
Department of Computer Science
University of Tennessee
Knoxville, TN
USA

Jerzy Waśniewski
Informatics and Mathematical Modelling
Technical University of Denmark
Kongens Lyngby
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-55194-9 ISBN 978-3-642-55195-6 (eBook)
DOI 10.1007/978-3-642-55195-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937670

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume comprises the proceedings of the 10th International Conference on
Parallel Processing and Applied Mathematics, PPAM 2013, which was held in
Warsaw, Poland, September 8–11, 2013. The jubilee PPAM conference was organized
by the Department of Computer and Information Science of the Czestochowa Uni-
versity of Technology, under the patronage of the Committee of Informatics of the
Polish Academy of Sciences, in cooperation with the Polish-Japanese Institute of
Information Technology. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Nine previous events have been held in different
places in Poland since 1994. The proceedings of the last six conferences have been
published by Springer-Verlag in the Lecture Notes in Computer Science series
(Nałęczów, 2001, vol. 2328; Częstochowa, 2003, vol. 3019; Poznań, 2005, vol. 3911;
Gdańsk, 2007, vol. 4967; Wrocław, 2009, vols. 6067 and 6068; Toruń, 2011, vols.
7203 and 7204).

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of
PPAM 2013 was on models, algorithms, and software tools that facilitate efficient and
convenient utilization of modern parallel and distributed computing architectures, as
well as on large-scale applications.

This meeting gathered the largest number of participants in the history of PPAM
conferences – more than 230 participants from 32 countries. A strict refereeing pro-
cess resulted in the acceptance of 143 contributed presentations, while approximately
44 % of the submissions were rejected. Regular tracks of the conference covered such
important fields of parallel/distributed/cloud computing and applied mathematics as:

– Numerical algorithms and parallel scientific computing
– Parallel non-numerical algorithms
– Tools and environments for parallel/distributed/cloud computing
– Applications of parallel computing
– Applied mathematics, evolutionary computing, and metaheuristics

The plenary and invited talks were presented by:

– Fran Berman from the Rensselaer Polytechnic Institute (USA)
– Ewa Deelman from the University of Southern California (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National Labo-

ratory (USA), and University of Manchester (UK)
– Geoffrey Ch. Fox from Indiana University (USA)
– Laura Grigori from Inria (France)
– Fred Gustavson from the IBM T.J. Watson Research Center (USA)
– Georg Hager from the University of Erlangen-Nuremberg (Germany)
– Alexey Lastovetsky from the University College Dublin (Ireland)

– Miron Livny from the University of Wisconsin (USA)
– Piotr Luszczek from the University of Tennessee (USA)
– Rizos Sakellariou from the University of Manchester (UK)
– James Sexton from the IBM T.J. Watson Research Center (USA)
– Leonel Sousa from the Technical University of Lisbon (Portugal)
– Denis Trystram from the Grenoble Institute of Technology (France)
– Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of

Technology (USA)
– Richard W. Vuduc from the Georgia Institute of Technology (USA)
– Robert Wisniewski from Intel (USA)

Important and integral parts of the PPAM 2013 conference were the workshops:

– Minisympsium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ortí from the
Universidad Jaime I (Spain), and Robert Strzodka from NVIDIA

– Special Session on Multicore Systems organized by Ozcan Ozturk from Bilkent
University (Turkey), and Suleyman Tosun from Ankara University (Turkey)

– Workshop on Numerical Algorithms on Hybrid Architectures organized by Prze-
mysław Stpiczyński from the Maria Curie Skłodowska University (Poland), and
Jerzy Waśniewski from the Technical University of Denmark

– Workshop on Models, Algorithms and Methodologies for Hierarchical Parallelism
in New HPC Systems organized by Giulliano Laccetti and Marco Lapegna from the
University of Naples Federico II (Italy), and Raffaele Montella from the University
of Naples Parthenope (Italy)

– Workshop on Power and Energy Aspects of Computation organized by Richard W.
Vuduc from the Georgia Institute of Technology (USA), Piotr Luszczek from the
University of Tennessee (USA), and Leonel Sousa from the Technical University of
Lisbon (Portugal)

– Workshop on Scheduling for Parallel Computing, SPC 2013, organized by Maciej
Drozdowski from Poznań University of Technology (Poland)

– The 5th Workshop on Language-Based Parallel Programming Models, WLPP 2013,
organized by Ami Marowka from the Bar-Ilan University (Israel)

– The 4th Workshop on Performance Evaluation of Parallel Applications on Large-
Scale Systems organized by Jan Kwiatkowski from Wrocław University of Tech-
nology (Poland)

– Workshop on Parallel Computational Biology, PBC 2013, organized by David A.
Bader from the Georgia Institute of Technology (USA), Jarosław _Zola from Rutgers
University (USA), and Bertil Schmidt from the University of Mainz (Germany)

– Minisymposium on Applications of Parallel Computations in Industry and Engi-
neering organized by Raimondas Čiegis from Vilnius Gediminas Technical Uni-
versity (Lithuania), and Julius Žilinskas from Vilnius University (Lithuania)

– Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz
Kamieniarz and Wojciech Florek from A. Mickiewicz University in Poznań
(Poland)

VI Preface

– Minisymposium on Applied High-Performance Numerical Algorithms in PDEs
organized by Piotr Krzy _zanowski and Leszek Marcinkowski from Warsaw Uni-
versity (Poland), and Talal Rahman from Bergen University College (Norway)

– Minisymposium on High-Performance Computing Interval Methods organized by
Bartłomiej J. Kubica from Warsaw University of Technology (Poland)

– Workshop on Complex Colective Systems organized by Paweł Topa and Jarosław
Wąs from AGH University of Science and Technology in Kraków (Poland)

The PPAM 2013 meeting began with five tutorials:

– Scientific Computing on GPUs, by Dominik Göddeke from the University of
Dortmund (Germany), and Robert Strzodka from NVIDIA

– Design and Implementation of Parallel Algorithms for Highly Heterogeneous HPC
Platforms, by Alexey Lastovetsky from University College Dublin (Ireland)

– Node Level Performance Engineering, by Georg Hager from the University of
Erlangen-Nuremberg (Germany)

– Delivering the OpenCl Performance Promise: Creating and Optimizing OpenCl
Applications with the Intel OpenCl SDK, by Maxim Shevtsov from Intel (Russia)

– A History of A Central Result of Linear Algebra and the Role of that Gauss,
Cholesky and Others Played in Its Development, by Fred Gustavson from the IBM
T.J. Watson Research Center (USA)

The PPAM Best Poster Award is granted to the best poster on display at the PPAM
conferences, and was established at PPAM 2009. This award is bestowed by the
Program Committee members to the presenting author(s) of the best poster. The
selection criteria are based on the scientific content, and on the quality of the poster
presentation. The PPAM 2013 winners were Lars Karlsson, and Carl Christian K.
Mikkelsen from Umea University, who presented the poster ‘‘Improving Perfect
Parallelism.’’ The Special Award was bestowed to Lukasz Szustak, and Krzysztof
Rojek from the Częstochowa University of Technology, and Pawel Gepner from Intel,
who presented the poster ‘‘Using Intel Xeon Phi to Accelerate Computation in
MPDATA Algorithm.’’

A new topic was introduced at PPAM 2013: Power and Energy Aspects of Com-
putation (PEAC). Recent advances in computer hardware rendered the issues related
to power and energy consumption as the driving metric for the design of computa-
tional platforms for years to come. Power-conscious designs, including multicore
CPUs and various accelerators, dominate large supercomputing installations as well as
large industrial complexes devoted to cloud computing and the big data analytics. At
stake are serious financial and environmental impacts, which the large-scale com-
puting community has to now consider and embark on careful re-engineering of
software to fit the demanding power caps and tight energy budgets.

The workshop presented research into new ways of addressing these pressing issues
of energy preservation, power consumption, and heat dissipation while attaining the
best possible performance levels at the scale demanded by modern scientific
challenges.

Preface VII

The PEAC Workshop, as well as the conference as a whole, featured a number of
invited and contributed talks covering a diverse array of recent advances, including:

– Cache-aware roofline model for monitoring performance and power in connection
with application characterization (by L. Sousa et al.)

– Resource scheduling and allocation schemes based on stochastic models (by M.
Oxley et al.)

– A comprehensive study of iterative solvers on a large variety of computing plat-
forms including modern CPUs, accelerators, and embedded computers (by Enrique
S. Quintana-Ortí et al.)

– Energy and power consumption trends in HPC (by P. Luszczek)
– Sensitivity of graph metrics to missing data and the benefits they have for overall

energy consumption (by A. Zakrzewska et al.)
– Cache energy models and their analytical properties in the context of embedded

devices (by K. de Vogeleer et al.)
– Predictive models for execution time, energy consumption, and power draw of

algorithms (by R. Vuduc)

The organizers are indebted to the PPAM 2013 sponsors, whose support was vital to
the success of the conference. The main sponsor was the Intel Corporation. The other
sponsors were: IBM Corporation, Hewlett-Packard Company, Rogue Wave Software,
and AMD. We thank to all the members of the international Program Committee and
additional reviewers for their diligent work in refereeing the submitted papers. Finally,
we thank all of the local organizers from the Częstochowa University of Technology,
and the Polish-Japanese Institute of Information Technology in Warsaw, who helped
us to run the event very smoothly. We are especially indebted to Gra _zyna Kołak-
owska, Urszula Kroczewska, Łukasz Kuczyński, Adam Tomaś, and Marcin Woźniak
from the Częstochowa University of Technology; and to Jerzy P. Nowacki, Marek
Tudruj, Jan Jedliński, and Adam Smyk from the Polish-Japanese Institute of Infor-
mation Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2015, which will be held September
6–9, 2015, in Kraków, the old capital of Poland.

January 2014 Roman Wyrzykowski
Jack Dongarra

Konrad Karczewski
Jerzy Waśniewski

VIII Preface

Organization

Program Committee

Jan Węglarz Poznań University of Technology, Poland
(Honorary Chair)

Roman Wyrzykowski Częstochowa University of Technology, Poland
(Program Committee Chair)

Ewa Deelman University of Southern California, USA
(Program Committee Vice-Chair)

Francisco Almeida Universidad de La Laguna, Spain
Pedro Alonso Universidad Politecnica de Valencia, Spain
Peter Arbenz ETH, Zurich, Switzerland
Piotr Bała Nicolaus Copernicus University, Poland
David A. Bader Georgia Institute of Technology, USA
Michael Bader TU München, Germany
Włodzimierz Bielecki West Pomeranian University of Technology,

Poland
Paolo Bientinesi RWTH Aachen, Germany
Radim Blaheta Institute of Geonics, Czech Academy of Sciences
Jacek Bła _zewicz Poznań University of Technology, Poland
Adam Bokota Częstochowa University of Technology, Poland
Pascal Bouvry University of Luxembourg
Tadeusz Burczyński Silesia University of Technology, Poland
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak AGH Kraków, Poland, and University of

Amsterdam, The Netherlands
Christopher Carothers Rensselaer Polytechnic Institute, USA
Jesus Carretero Universidad Carlos III de Madrid, Spain
Raimondas Čiegis Vilnius Gediminas Technical University,

Lithuania
Andrea Clematis IMATI-CNR, Italy
Jose Cunha University Nova of Lisbon, Portugal
Zbigniew Czech Silesia University of Technology, Poland
Jack Dongarra University of Tennessee and ORNL, USA,

and University of Manchester, UK
Maciej Drozdowski Poznań University of Technology, Poland
Erik Elmroth Umea University, Sweden
Mariusz Flasiński Jagiellonian University, Poland
Franz Franchetti Carnegie Mellon University, USA
Tomas Fryza Brno University of Technology, Czech Republic
Pawel Gepner Intel Corporation

Domingo Gimenez University of Murcia, Spain
Mathieu Giraud LIFL and Inria, France
Jacek Gondzio University of Edinburgh, UK
Andrzej Gościński Deakin University, Australia
Laura Grigori Inria, France
Adam Grzech Wroclaw University of Technology, Poland
Inge Gutheil Forschungszentrum Juelich, Germany
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politecnica de Catalunya, Barcelona,

Spain
Ladislav Hluchy Slovak Academy of Sciences, Slovakia
Florin Isaila Universidad Carlos III de Madrid, Spain
Ondrej Jakl Institute of Geonics, Czech Academy of Sciences
Emmanuel Jeannot Inria, France
Bo Kågström Umea University, Sweden
Alexey Kalinov Cadence Design System, Russia
Aneta Karaivanova Bulgarian Academy of Sciences, Sofia
Eleni Karatza Aristotle University of Thessaloniki, Greece
Ayse Kiper Middle East Technical University, Turkey
Jacek Kitowski Institute of Computer Science, AGH, Poland
Jozef Korbicz University of Zielona Góra, Poland
Stanislaw Kozielski Silesia University of Technology, Poland
Dieter Kranzlmueller Ludwig Maximillian University, Munich, and

Leibniz Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Piotr Krzy _zanowski University of Warsaw, Poland
Mirosław Kurkowski Częstochowa University of Technology, Poland
Krzysztof Kurowski PSNC, Poznań, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Jakub Kurzak University of Tennessee, USA
Giulliano Laccetti University of Naples Federico II, Italy
Marco Lapegna University of Naples Federico II, Italy
Alexey Lastovetsky University College Dublin, Ireland
Joao Lourenco University Nova of Lisbon, Portugal
Hatem Ltaief KAUST, Saudi Arabia
Emilio Luque Universitat Autonoma de Barcelona, Spain
Vyacheslav I. Maksimov Ural Branch, Russian Academy of Sciences
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences
Pierre Manneback University of Mons, Belgium
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poznań, Poland
Jarek Nabrzyski University of Notre Dame, USA
Raymond Namyst University of Bordeaux and Inria, France
Maya G. Neytcheva Uppsala University, Sweden
Gabriel Oksa Slovak Academy of Sciences, Bratislava

X Organization

Ozcan Ozturk Bilkent University, Turkey
Tomasz Olas Częstochowa University of Technology, Poland
Marcin Paprzycki IBS PAN and SWPS, Warsaw, Poland
Dana Petcu West University of Timisoara, Romania
Enrique S. Quintana-Ortí Universidad Jaime I, Spain
Jean-Marc Pierson Paul Sabatier University, France
Thomas Rauber University of Bayreuth, Germany
Paul Renaud-Goud Inria, France
Jacek Rokicki Warsaw University of Technology, Poland
Gudula Runger Chemnitz University of Technology, Germany
Leszek Rutkowski Częstochowa University of Technology, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Olaf Schenk Università della Svizzera Italiana, Switzerland
Stanislav Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw,

Poland
Happy Sithole Centre for High Performance Computing,

South Africa
Jurij Silc Jozef Stefan Institute, Slovenia
Karolj Skala Ruder Boskovic Institute, Croatia
Peter M.A. Sloot University of Amsterdam, The Netherlands
Leonel Sousa Technical University of Lisbon, Portugal
Radek Stompor Université Paris Diderot and CNRS, France
Przemysław Stpiczyński Maria Curie Skłodowska University, Poland
Maciej Stroiński PSNC, Poznań, Poland
Ireneusz Szcześniak Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Christian Terboven RWTH Aachen, Germany
Andrei Tchernykh CICESE Research Center, Ensenada, Mexico
Suleyman Tosun Ankara University, Turkey
Roman Trobec Jozef Stefan Institute, Slovenia
Denis Trystram Grenoble Institute of Technology, France
Marek Tudruj Polish Academy of Sciences and Polish-Japanese

Institute of Information Technology, Warsaw,
Poland

Bora Uçar Ecole Normale Superieure de Lyon, France
Marian Vajtersic Salzburg University, Austria
Jerzy Waśniewski Technical University of Denmark
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Andrzej Wyszogrodzki IMGW, Warsaw, Poland
Ramin Yahyapour University of Göttingen/GWDG, Germany
Jianping Zhu Cleveland State University, USA
Julius Žilinskas Vilnius University, Lithuania
Jarosław _Zola Rutgers University, USA

Organization XI

Contents – Part II

Workshop on Scheduling for Parallel Computing (SPC 2013)

Scheduling Bag-of-Tasks Applications to Optimize Computation
Time and Cost . 3

Anastasia Grekioti and Natalia V. Shakhlevich

Scheduling Moldable Tasks with Precedence Constraints and Arbitrary
Speedup Functions on Multiprocessors . 13

Sascha Hunold

OStrich: Fair Scheduling for Multiple Submissions 26
Joseph Emeras, Vinicius Pinheiro, Krzysztof Rzadca, and Denis Trystram

Fair Share Is Not Enough: Measuring Fairness in Scheduling
with Cooperative Game Theory . 38

Piotr Skowron and Krzysztof Rzadca

Setting up Clusters of Computing Units to Process Several Data Streams
Efficiently . 49

Daniel Millot and Christian Parrot

The 5th Workshop on Language-Based Parallel Programming Models
(WLPP 2013)

Towards Standardization of Measuring the Usability of Parallel Languages . . . 65
Ami Marowka

Experiences with Implementing Task Pools in Chapel and X10 75
Claudia Fohry and Jens Breitbart

Parampl: A Simple Approach for Parallel Execution of AMPL Programs . . . 86
Artur Olszak and Andrzej Karbowski

Prototyping Framework for Parallel Numerical Computations 95
Ondřej Meca, Stanislav Böhm, Marek Běhálek, and Martin Šurkovský

Algorithms for In-Place Matrix Transposition. 105
Fred G. Gustavson and David W. Walker

FooPar: A Functional Object Oriented Parallel Framework in Scala 118
Felix Palludan Hargreaves and Daniel Merkle

Effects of Segmented Finite Difference Time Domain on GPU 130
Jose Juan Mijares Chan, Gagan Battoo, Parimala Thulasiraman,
and Ruppa K. Thulasiram

Optimization of an OpenCL-Based Multi-swarm PSO Algorithm on an APU. . . 140
Wayne Franz, Parimala Thulasiraman, and Ruppa K. Thulasiram

Core Allocation Policies on Multicore Platforms to Accelerate Forest
Fire Spread Predictions . 151

Tomàs Artés, Andrés Cencerrado, Ana Cortés, and Tomàs Margalef

The 4th Workshop on Performance Evaluation of Parallel Applications
on Large-Scale Systems

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 163
Domingo Benitez, Eduardo Rodríguez, José M. Escobar,
and Rafael Montenegro

Analysis of Partitioning Models and Metrics in Parallel Sparse
Matrix-Vector Multiplication . 174

Kamer Kaya, Bora Uçar, and Ümit V. Catalyürek

Achieving Memory Scalability in the GYSELA Code to Fit Exascale
Constraints . 185

Fabien Rozar, Guillaume Latu, and Jean Roman

Probabilistic Analysis of Barrier Eliminating Method Applied
to Load-Imbalanced Parallel Application . 196

Naoki Yonezawa, Ken’ichi Katou, Issei Kino, and Koichi Wada

Multi-GPU Parallel Memetic Algorithm for Capacitated Vehicle Routing
Problem. 207

Mieczysław Wodecki, Wojciech Bo_zejko, Michał Karpiński,
and Maciej Pacut

Parallel Applications Performance Evaluation Using the Concept
of Granularity. 215

Jan Kwiatkowski

Workshop on Parallel Computational Biology (PBC 2013)

Resolving Load Balancing Issues in BWA on NUMA Multicore
Architectures . 227

Charlotte Herzeel, Thomas J. Ashby, Pascal Costanza,
and Wolfgang De Meuter

K-mulus: Strategies for BLAST in the Cloud . 237
Christopher M. Hill, Carl H. Albach, Sebastian G. Angel, and Mihai Pop

XIV Contents – Part II

Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment
Backtracking for Short DNA Sequences . 247

Yongchao Liu and Bertil Schmidt

Accelerating String Matching on MIC Architecture for Motif Extraction. . . . 258
Solon P. Pissis, Christian Goll, Pavlos Pavlidis, and Alexandros Stamatakis

A Parallel, Distributed-Memory Framework for Comparative
Motif Discovery . 268

Dieter De Witte, Michiel Van Bel, Pieter Audenaert, Piet Demeester,
Bart Dhoedt, Klaas Vandepoele, and Jan Fostier

Parallel Seed-Based Approach to Protein Structure Similarity Detection 278
Guillaume Chapuis, Mathilde Le Boudic - Jamin, Rumen Andonov,
Hristo Djidjev, and Dominique Lavenier

Minisymposium on Applications of Parallel Computation
in Industry and Engineering

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 291
Peter Arbenz, Daniel Hupp, and Dominik Obrist

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides
by Using GPU . 301

Raimondas Čiegis, Andrej Bugajev, Žilvinas Kancleris, and Gediminas Šlekas

OpenACC Parallelisation for Diffusion Problems, Applied
to Temperature Distribution on a Honeycomb Around the Bee Brood:
A Worked Example Using BiCGSTAB . 311

Hermann J. Eberl and Rangarajan Sudarsan

Application of CUDA for Acceleration of Calculations in Boundary Value
Problems Solving Using PIES . 322

Andrzej Kuzelewski, Eugeniusz Zieniuk, and Agnieszka Boltuc

Modeling and Simulations of Beam Stabilization in Edge-Emitting
Broad Area Semiconductor Devices . 332

Mindaugas Radziunas and Raimondas Čiegis

Concurrent Nomadic and Bundle Search: A Class of Parallel Algorithms
for Local Optimization . 343

Costas Voglis, Dimitrios G. Papageorgiou, and Isaac E. Lagaris

Parallel Multi-objective Memetic Algorithm for Competitive Facility
Location . 354

Algirdas Lančinskas and Julius Žilinskas

Contents – Part II XV

Parallelization of Encryption Algorithm Based on Chaos System
and Neural Networks. 364

Dariusz Burak

Minisymposium on HPC Applications in Physical Sciences

Simulations of the Adsorption Behavior of Dendrimers 377
Jarosław S. Kłos and Jens U. Sommer

An Optimized Lattice Boltzmann Code for BlueGene/Q 385
Marcello Pivanti, Filippo Mantovani, Sebastiano Fabio Schifano,
Raffaele Tripiccione, and Luca Zenesini

A Parallel and Scalable Iterative Solver for Sequences of Dense
Eigenproblems Arising in FLAPW . 395

Mario Berljafa and Edoardo Di Napoli

Sequential Monte Carlo in Bayesian Assessment of Contaminant Source
Localization Based on the Sensors Concentration Measurements 407

Anna Wawrzynczak, Piotr Kopka, and Mieczyslaw Borysiewicz

Effective Parallelization of Quantum Simulations: Nanomagnetic
Molecular Rings . 418

Piotr Kozłowski, Grzegorz Musiał, Michał Antkowiak, and Dante Gatteschi

DFT Study of the Cr8 Molecular Magnet Within Chain-Model
Approximations . 428

Valerio Bellini, Daria M. Tomecka, Bartosz Brzostowski,
Michał Wojciechowski, Filippo Troiani, Franca Manghi, and Marco Affronte

Non-perturbative Methods in Phenomenological Simulations
of Ring-Shape Molecular Nanomagnets . 438

Piotr Kozłowski, Grzegorz Musiał, Monika Haglauer, Wojciech Florek,
Michał Antkowiak, Filippo Esposito, and Dante Gatteschi

Non-uniform Quantum Spin Chains: Simulations of Static
and Dynamic Properties. 448

Artur Barasiński, Bartosz Brzostowski, Ryszard Matysiak, Paweł Sobczak,
and Dariusz Woźniak

Minisymposium on Applied High Performance Numerical Algorithms in PDEs

A Domain Decomposition Method for Discretization of Multiscale Elliptic
Problems by Discontinuous Galerkin Method . 461

Maksymilian Dryja

XVI Contents – Part II

Parallel Preconditioner for the Finite Volume Element Discretization
of Elliptic Problems . 469

Leszek Marcinkowski and Talal Rahman

Preconditioning Iterative Substructuring Methods Using Inexact Local Solvers . . . 479
Piotr Krzyzanowski

Additive Schwarz Method for Nonsymmetric Local Discontinuous
Galerkin Discretization of Elliptic Problem . 489

Filip Z. Klawe

Fast Numerical Method for 2D Initial-Boundary Value Problems
for the Boltzmann Equation . 499

Alexei Heintz and Piotr Kowalczyk

Simulating Phase Transition Dynamics on Non-trivial Domains 510
Łukasz Bolikowski and Maria Gokieli

Variable Block Multilevel Iterative Solution of General Sparse Linear
Systems . 520

Bruno Carpentieri, Jia Liao, and Masha Sosonkina

An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal
Sparse Solver for Radical 2D Hierarchical Meshes 531

Hassan AbouEisha, Piotr Gurgul, Anna Paszyńska, Maciek Paszyński,
Krzysztof Kuźnik, and Mikhail Moshkov

Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver 541
Stanislaw Gepner, Jerzy Majewski, and Jacek Rokicki

Modification of the Newton’s Method for the Simulations of Gallium
Nitride Semiconductor Devices. 551

Konrad Sakowski, Leszek Marcinkowski, and Stanislaw Krukowski

Numerical Realization of the One-Dimensional Model of Burning Methanol . . . 561
Krzysztof Moszyński

Minisymposium on High Performance Computing Interval Methods

A Shaving Method for Interval Linear Systems of Equations 573
Milan Hladík and Jaroslav Horáček

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication
in CUDA . 582

Alexander Dallmann, Philip-Daniel Beck, and Jürgen Wolff von Gudenberg

Contents – Part II XVII

GPU Acceleration of Metaheuristics Solving Large Scale Parametric
Interval Algebraic Systems . 591

Jerzy Duda and Iwona Skalna

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities
Using the Adjoint and Interval Analysis . 600

Grzegorz Kozikowski and Bartłomiej Jacek Kubica

Subsquares Approach – A Simple Scheme for Solving Overdetermined
Interval Linear Systems . 613

Jaroslav Horáček and Milan Hladík

Using Quadratic Approximations in an Interval Method for Solving
Underdetermined and Well-Determined Nonlinear Systems 623

Bartłomiej Jacek Kubica

The Definition of Interval-Valued Intuitionistic Fuzzy Sets
in the Framework of Dempster-Shafer Theory . 634

Ludmila Dymova and Pavel Sevastjanov

Interval Finite Difference Method for Solving the Problem of Bioheat
Transfer Between Blood Vessel and Tissue . 644

Malgorzata A. Jankowska

Workshop on Complex Collective Systems

Bridging the Gap: From Cellular Automata to Differential Equation Models
for Pedestrian Dynamics . 659

Felix Dietrich, Gerta Köster, Michael Seitz, and Isabella von Sivers

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 669
Marek Bukáček, Pavel Hrabák, and Milan Krbálek

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics. . . 679
Hubert Mróz, Jarosław Wąs, and Paweł Topa

Modeling Behavioral Traits of Employees in a Workplace with Cellular
Automata . 689

Petros Saravakos and Georgios Ch. Sirakoulis

Probabilistic Pharmaceutical Modelling: A Comparison Between
Synchronous and Asynchronous Cellular Automata. 699

Marija Bezbradica, Heather J. Ruskin, and Martin Crane

The Graph of Cellular Automata Applied for Modelling Tumour
Induced Angiogenesis . 711

Paweł Topa

XVIII Contents – Part II

Neighborhood Selection and Rules Identification for Cellular Automata:
A Rough Sets Approach . 721

Bartłomiej Płaczek

Coupling Lattice Boltzmann Gas and Level Set Method for Simulating
Free Surface Flow in GPU/CUDA Environment . 731

Tomir Kryza and Witold Dzwinel

Creation of Agent’s Vision of Social Network Through Episodic Memory 741
Michał Wrzeszcz and Jacek Kitowski

The Influence of Multi-agent Cooperation on the Efficiency
of Taxi Dispatching . 751

Michał Maciejewski and Kai Nagel

Basic Endogenous-Money Economy: An Agent-Based Approach 761
Ivan Blecic, Arnaldo Cecchini, and Giuseppe A. Trunfio

Author Index . 771

Contents – Part II XIX

Contents – Part I

Algebra and Geometry Combined Explains How the Mind Does Math 1
Fred G. Gustavson

Numerical Algorithms and Parallel Scientific Computing

Exploiting Data Sparsity in Parallel Matrix Powers Computations 15
Nicholas Knight, Erin Carson, and James Demmel

Performance of Dense Eigensolvers on BlueGene/Q 26
Inge Gutheil, Jan Felix Münchhalfen, and Johannes Grotendorst

Experiences with a Lanczos Eigensolver in High-Precision Arithmetic 36
Alexander Alperovich, Alex Druinsky, and Sivan Toledo

Adaptive Load Balancing for Massively Parallel Multi-Level Monte
Carlo Solvers . 47

Jonas Šukys

Parallel One–Sided Jacobi SVD Algorithm with Variable Blocking Factor 57
Martin Bečka and Gabriel Okša

An Identity Parareal Method for Temporal Parallel Computations 67
Toshiya Takami and Daiki Fukudome

Improving Perfect Parallelism . 76
Lars Karlsson, Carl Christian Kjelgaard Mikkelsen, and Bo Kågström

Methods for High-Throughput Computation of Elementary Functions 86
Marat Dukhan and Richard Vuduc

Engineering Nonlinear Pseudorandom Number Generators. 96
Samuel Neves and Filipe Araujo

Extending the Generalized Fermat Prime Number Search Beyond One Million
Digits Using GPUs . 106

Iain Bethune and Michael Goetz

Iterative Solution of Singular Systems with Applications 114
Radim Blaheta, Ondřej Jakl, and Jiří Starý

Statistical Estimates for the Conditioning of Linear Least Squares Problems. . . 124
Marc Baboulin, Serge Gratton, Rémi Lacroix, and Alan J. Laub

Numerical Treatment of a Cross-Diffusion Model of Biofilm
Exposure to Antimicrobials . 134

Kazi Rahman and Hermann J. Eberl

Performance Analysis for Stencil-Based 3D MPDATA Algorithm
on GPU Architecture. 145

Krzysztof Rojek, Lukasz Szustak, and Roman Wyrzykowski

Elliptic Solver Performance Evaluation on Modern Hardware Architectures. . . 155
Milosz Ciznicki, Piotr Kopta, Michal Kulczewski, Krzysztof Kurowski,
and Pawel Gepner

Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS
Software Package . 166

Tomasz Olas

Scalable Parallel Generation of Very Large Sparse Benchmark Matrices 178
Daniel Langr, Ivan Šimeček, Pavel Tvrdík, and Tomáš Dytrych

Parallel Non-Numerical Algorithms

Co-operation Schemes for the Parallel Memetic Algorithm 191
Jakub Nalepa, Miroslaw Blocho, and Zbigniew J. Czech

Scalable and Efficient Parallel Selection . 202
Christian Siebert

Optimal Diffusion for Load Balancing in Heterogeneous Networks 214
Katerina A. Dimitrakopoulou and Nikolaos M. Missirlis

Parallel Bounded Model Checking of Security Protocols 224
Mirosław Kurkowski, Olga Siedlecka-Lamch, Sabina Szymoniak,
and Henryk Piech

Tools and Environments for Parallel/Distributed/Cloud Computing

Development of Domain-Specific Solutions Within the Polish Infrastructure
for Advanced Scientific Research . 237

J. Kitowski, K. Wiatr, P. Bała, M. Borcz, A. Czy_zewski, Ł. Dutka,
R. Kluszczyński, J. Kotus, P. Kustra, N. Meyer, A. Milenin, Z. Mosurska,
R. Pająk, Ł. Rauch, M. Sterzel, D. Stokłosa, and T. Szepieniec

Cost Optimization of Execution of Multi-level Deadline-Constrained
Scientific Workflows on Clouds . 251

Maciej Malawski, Kamil Figiela, Marian Bubak, Ewa Deelman,
and Jarek Nabrzyski

XXII Contents – Part I

Parallel Computations in the Volunteer–Based Comcute System 261
Paweł Czarnul, Jarosław Kuchta, and Mariusz Matuszek

Secure Storage and Processing of Confidential Data on Public Clouds 272
Jan Meizner, Marian Bubak, Maciej Malawski, and Piotr Nowakowski

Efficient Service Delivery in Complex Heterogeneous and Distributed
Environment. 283

Mariusz Fras and Jan Kwiatkowski

Domain-Driven Visual Query Formulation over RDF Data Sets 293
Bartosz Balis, Tomasz Grabiec, and Marian Bubak

Distributed Program Execution Control Based on Application Global
States Monitoring in PEGASUS DA Framework . 302

Damian Kopański, Łukasz Maśko, Eryk Laskowski, Adam Smyk,
Janusz Borkowski, and Marek Tudruj

Application of Parallel Computing

New Scalable SIMD-Based Ray Caster Implementation for Virtual Machining. . . 317
Alexander Leutgeb, Torsten Welsch, and Michael Hava

Parallelization of Permuting XML Compressors . 327
Tyler Corbin, Tomasz Müldner, and Jan Krzysztof Miziołek

Parallel Processing Model for Syntactic Pattern Recognition-Based Electrical
Load Forecast. 338

Mariusz Flasiński, Janusz Jurek, and Tomasz Peszek

Parallel Event–Driven Simulation Based on Application Global
State Monitoring. 348

Łukasz Maśko and Marek Tudruj

Applied Mathematics, Evolutionary Computing and Metaheuristics

It’s Not a Bug, It’s a Feature: Wait-Free Asynchronous Cellular Genetic
Algorithm . 361

Frédéric Pinel, Bernabé Dorronsoro, Pascal Bouvry, and Samee U. Khan

Genetic Programming in Automatic Discovery of Relationships in Computer
System Monitoring Data . 371

Wlodzimierz Funika and Pawel Koperek

Genetic Algorithms Execution Control Under a Global Application State
Monitoring Infrastructure . 381

Adam Smyk and Marek Tudruj

Contents – Part I XXIII

Evolutionary Algorithms for Abstract Planning . 392
Jaroslaw Skaruz, Artur Niewiadomski, and Wojciech Penczek

Solution of the Inverse Continuous Casting Problem with the Aid
of Modified Harmony Search Algorithm . 402

Edyta Hetmaniok, Damian Słota, and Adam Zielonka

Influence of a Topology of a Spring Network on its Ability to Learn
Mechanical Behaviour . 412

Maja Czoków and Jacek Miękisz

Comparing Images Based on Histograms of Local Interest Points. 423
Tomasz Nowak, Marcin Gabryel, Marcin Korytkowski, and Rafał Scherer

Improved Digital Image Segmentation Based on Stereo Vision and Mean
Shift Algorithm . 433

Rafał Grycuk, Marcin Gabryel, Marcin Korytkowski, Jakub Romanowski,
and Rafał Scherer

Minisymposium on GPU Computing

Evaluation of Autoparallelization Toolkits for Commodity GPUs 447
David Williams, Valeriu Codreanu, Po Yang, Baoquan Liu, Feng Dong,
Burhan Yasar, Babak Mahdian, Alessandro Chiarini, Xia Zhao,
and Jos B.T.M. Roerdink

Real-Time Multiview Human Body Tracking Using GPU-Accelerated PSO. . . 458
Boguslaw Rymut and Bogdan Kwolek

Implementation of a Heterogeneous Image Reconstruction System for
Clinical Magnetic Resonance . 469

Grzegorz Tomasz Kowalik, Jennifer Anne Steeden, David Atkinson,
Andrew Taylor, and Vivek Muthurangu

X-Ray Laser Imaging of Biomolecules Using Multiple GPUs 480
Stefan Engblom and Jing Liu

Out-of-Core Solution of Eigenproblems for Macromolecular Simulations . . . 490
José I. Aliaga, Davor Davidović, and Enrique S. Quintana-Ortí

Using GPUs for Parallel Stencil Computations in Relativistic
Hydrodynamic Simulation . 500

Sebastian Cygert, Daniel Kikoła, Joanna Porter-Sobieraj,
Jan Sikorski, and Marcin Słodkowski

XXIV Contents – Part I

Special Session on Multicore Systems

PDNOC: An Efficient Partially Diagonal Network-on-Chip Design 513
Thomas Canhao Xu, Ville Leppänen, Pasi Liljeberg, Juha Plosila,
and Hannu Tenhunen

Adaptive Fork-Heuristics for Software Thread-Level Speculation 523
Zhen Cao and Clark Verbrugge

Inexact Sparse Matrix Vector Multiplication in Krylov Subspace Methods:
An Application-Oriented Reduction Method. 534

Ahmad Mansour and Jürgen Götze

The Regular Expression Matching Algorithm for the Energy Efficient
Reconfigurable SoC . 545

Paweł Russek and Kazimierz Wiatr

Workshop on Numerical Algorithms on Hybrid Architectures

Performance Evaluation of Sparse Matrix Multiplication Kernels on
Intel Xeon Phi . 559

Erik Saule, Kamer Kaya, and Ümit V. C�atalyürek

Portable HPC Programming on Intel Many-Integrated-Core Hardware with
MAGMA Port to Xeon Phi . 571

Jack Dongarra, Mark Gates, Azzam Haidar, Yulu Jia, Khairul Kabir,
Piotr Luszczek, and Stanimire Tomov

Using Intel Xeon Phi Coprocessor to Accelerate Computations in
MPDATA Algorithm. 582

Lukasz Szustak, Krzysztof Rojek, and Pawel Gepner

Accelerating a Massively Parallel Numerical Simulation in Electromagnetism
Using a Cluster of GPUs . 593

Cédric Augonnet, David Goudin, Agnès Pujols, and Muriel Sesques

Multidimensional Monte Carlo Integration on Clusters with Hybrid
GPU-Accelerated Nodes . 603

Dominik Szałkowski and Przemysław Stpiczyński

Efficient Execution of Erasure Codes on AMD APU Architecture 613
Roman Wyrzykowski, Marcin Woźniak, and Lukasz Kuczyński

AVX Acceleration of DD Arithmetic Between a Sparse Matrix and Vector . . . 622
Toshiaki Hishinuma, Akihiro Fujii, Teruo Tanaka, and Hidehiko Hasegawa

Contents – Part I XXV

Using Quadruple Precision Arithmetic to Accelerate Krylov Subspace
Methods on GPUs. 632

Daichi Mukunoki and Daisuke Takahashi

Effectiveness of Sparse Data Structure for Double-Double and
Quad-Double Arithmetics . 643

Tsubasa Saito, Satoko Kikkawa, Emiko Ishiwata, and Hidehiko Hasegawa

Efficient Heuristic Adaptive Quadrature on GPUs: Design and Evaluation 652
Daniel Thuerck, Sven Widmer, Arjan Kuijper, and Michael Goesele

An Efficient Representation on GPU for Transition Rate Matrices for
Markov Chains . 663

Jarosław Bylina, Beata Bylina, and Marek Karwacki

Eigen-G: GPU-Based Eigenvalue Solver for Real-Symmetric Dense Matrices . . . 673
Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida

A Square Block Format for Symmetric Band Matrices 683
Fred G. Gustavson, José R. Herrero, and Enric Morancho

Workshop on Models, Algorithms, and Methodologies for Hierarchical
Parallelism in New HPC Systems

Transparent Application Acceleration by Intelligent Scheduling of Shared
Library Calls on Heterogeneous Systems . 693

João Colaço, Adrian Matoga, Aleksandar Ilic, Nuno Roma, Pedro Tomás,
and Ricardo Chaves

A Study on Adaptive Algorithms for Numerical Quadrature on Heterogeneous
GPU and Multicore Based Systems. 704

Giuliano Laccetti, Marco Lapegna, Valeria Mele, and Diego Romano

Improving Parallel I/O Performance Using Multithreaded Two-Phase I/O
with Processor Affinity Management. 714

Yuichi Tsujita, Kazumi Yoshinaga, Atsushi Hori, Mikiko Sato,
Mitaro Namiki, and Yutaka Ishikawa

Storage Management Systems for Organizationally Distributed Environments
PLGrid PLUS Case Study . 724

Renata Słota, Łukasz Dutka, Michał Wrzeszcz, Bartosz Kryza,
Darin Nikolow, Dariusz Król, and Jacek Kitowski

The High Performance Internet of Things: Using GVirtuS to Share High-End
GPUs with ARM Based Cluster Computing Nodes 734

Giuliano Laccetti, Raffaele Montella, Carlo Palmieri,
and Valentina Pelliccia

XXVI Contents – Part I

Workshop on Power and Energy Aspects of Computation

Monitoring Performance and Power for Application Characterization
with the Cache-Aware Roofline Model . 747

Diogo Antão, Luís Taniça, Aleksandar Ilic, Frederico Pratas,
Pedro Tomás, and Leonel Sousa

Energy and Deadline Constrained Robust Stochastic Static Resource Allocation. . . 761
Mark A. Oxley, Sudeep Pasricha, Howard Jay Siegel,
and Anthony A. Maciejewski

Performance and Energy Analysis of the Iterative Solution of Sparse Linear
Systems on Multicore and Manycore Architectures 772

José I. Aliaga, Hartwig Anzt, Maribel Castillo, Juan C. Fernández,
Germán León, Joaquín Pérez, and Enrique S. Quintana-Ortí

Measuring the Sensitivity of Graph Metrics to Missing Data 783
Anita Zakrzewska and David A. Bader

The Energy/Frequency Convexity Rule: Modeling and Experimental
Validation on Mobile Devices . 793

Karel De Vogeleer, Gerard Memmi, Pierre Jouvelot, and Fabien Coelho

Author Index . 805

Contents – Part I XXVII

Workshop on Scheduling for Parallel
Computing (SPC 2013)

Scheduling Bag-of-Tasks Applications
to Optimize Computation Time and Cost

Anastasia Grekioti and Natalia V. Shakhlevich(B)

School of Computing, University of Leeds, Leeds LS2 9JT, UK
{scag,n.shakhlevich}@leeds.ac.uk

Abstract. Bag-of-tasks applications consist of independent tasks that
can be performed in parallel. Although such problems are well known
in classical scheduling theory, the distinctive feature of Grid and cloud
applications is the importance of the cost factor: in addition to the tra-
ditional scheduling criterion of minimizing computation time, in Grids
and clouds it also important to minimize the cost of using resources.
We study the structural properties of the time/cost model and explore
how the existing scheduling techniques can be extended to handle the
additional cost criterion. Due to the dynamic nature of distributed sys-
tems, one of the major requirements to scheduling algorithms is related
to their speed. The heuristics we propose are fast and, as we show in
our experiments, they compare favourably with the existing scheduling
algorithms for distributed systems.

Keywords: Scheduling · Bag-of-tasks applications · Heuristics

1 Introduction

An important feature of the Grid and cloud infrastructure is the need to deliver
the required Quality of Service to its users. Quality of Service is the ability of
an application to have some level of assurance that users’ requirements can be
satisfied. It can be viewed as an agreement between a user and resource provider
to perform an application within a guaranteed time frame at a pre-specified
cost. As a rule, the higher the cost paid by the user, the faster resources can be
allocated and the smaller execution time a resource provider can ensure.

While time optimization is the traditional criterion in Scheduling Theory,
the cost optimization is a new criterion arising in Grid and cloud applications.
In fact the cost- and time-factors are in the centre of resource provision on a
pay-as-you-go basis.

The problem we study arises in the context of Bag-of-Tasks applications.
It can be seen as the problem of scheduling a set of independent tasks on
multiple processors optimizing computation time and cost. Formally, a BoT
application consists of n tasks {1, 2, . . . , n} with given processing requirements
τj , j = 1, . . . , n, which have to be executed on m uniform processors Pk, k =
1, . . . , m, with speed- and cost-characteristics sk and ck. For a BoT application

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 3–12, 2014.
DOI: 10.1007/978-3-642-55195-6 1, c© Springer-Verlag Berlin Heidelberg 2014

4 A. Grekioti and N.V. Shakhlevich

a deadline D is given, so that all tasks of the application should be completed
by time D.

Each processor may handle only one task at a time. If task j is assigned to
processor Pk, then it should be completed without preemption; the time required
for its completion is τj/sk and the cost of using processor Pk is ck × τj/sk,
or equivalently c̄kτj , where ck is the cost of using processor Pk per second,
while c̄k = ck/sk is the cost of using processor Pk per million instructions. To
distinguish between the two types of cost-parameters, we call the initial given
cost-values ck as absolute costs and the adjusted values c̄k = ck/sk as relative
costs.

If 0 − 1-variables xkj represent allocation of tasks j, 1 ≤ j ≤ n, to processors
Pk, k = 1, . . . , m, then the makespan of the schedule Cmax and its cost K are
found as

Cmax = max
k=1,...,m

⎧
⎨

⎩

n⎜

j=1

τj

sk
× xkj

⎫
⎬

⎭
, K =

m⎜

k=1

c̄k

n⎜

j=1

τjxkj .

The problem consists in allocating tasks to processors so that the execution
of the whole application is completed before the deadline D and the cost K
is minimum. Adopting standard scheduling three-field notation, we denote the
problem by Q|Cmax ≤ D|K, where Q in the first field classifies the processors
as uniform, having different speeds, Cmax ≤ D in the second field specifies that
the BoT application should be completed by time D, and K in the third field
specifies the cost minimization criterion. Note that developing successful cost-
optimization algorithms for problem Q|Cmax ≤ D|K is useful for solving the
bicriteria version of our problem, Q||(Cmax,K). Such an algorithm, if applied
repeatedly to a series of deadline-constrained problems with different values of
deadline D, produces a time/cost trade-off which can be used by a decision maker
to optimize two objectives, computation time Cmax and computation cost K.

In this study, we explore the structural properties of the time/cost model.
Based on these properties, we identify the most appropriate scheduling tech-
niques, developed for makespan minimization, and adopt them for cost optimiza-
tion. In our computational experiments we show that our algorithms compare
favourably with those known in the area of distributed computing that take into
account processors’ costs, namely [1,2,7,11].

2 Heuristics

Scheduling algorithms for distributed systems are often developed without recog-
nizing the link with related results from scheduling theory. In particular, the
existing time/cost optimization algorithms do not make use of such schedul-
ing approaches as the Longest Processing Time (LPT) rule and the First Fit
Decreasing (FFD) strategy. Both approaches have been a subject of intensive
research in scheduling literature and they are recognized as the most successful

Scheduling BoT Applications to Optimize Computation Time and Cost 5

approximation algorithms for solving problem Q|Cmax ≤ D|−, the version of our
problem which does not take into account processor costs, see, e.g., [3,4,8].

Both algorithms, LPT and FFD, prioritize the tasks in accordance with
their processing requirements giving preference to longest tasks first. In what
follows we assume that the tasks are numbered in the LPT-order, i.e., in the
non-increasing order of their processing requirements:

τ1 ≥ τ2 ≥ · · · ≥ τn. (1)

We adopt the LPT- and FFD-strategy for a selected subset of processors,
taking into account the deadline D.

Algorithm ‘Deadline Constrained LPT’

1. Select unscheduled tasks one by one from the LPT-list (1).
2. Assign a current task to the processor selected from the given subset of proces-

sors in such a way so that the task has the earliest completion time.
3. If allocation of a task violates the deadline D, keep the task unscheduled.

The FFD algorithm, initially formulated in the context of bin-packing, oper-
ates with a fixed ordering of processors (usually, the order of their numbering)
and with a list of tasks in the LPT-order (1). It differs from the ‘Deadline Con-
strained LPT’ by Step 2, which for FFD is of the form:

2. Assign a current task to the first processor on the list for which deadline D
is not violated.

The above two rules are not tailored to handle processor costs. In order
to adjust them for solving the cost minimization problem Q|Cmax ≤ D|K, we
exploit the properties of the divisible load version of that problem, in which
preemption is allowed and any task can be performed by several processors
simultaneously. As shown in [9], there exists an optimal solution to the divisible
load problem in which processors are prioritized in accordance with their relative
costs. If processors are renumbered so that

c̄1 ≤ c̄2 ≤ . . . ≤ c̄m, (2)

then in an optimal solution to the divisible load problem, processors {P1, P2,
. . . , Pu−1} with the smallest relative cost c̄i are fully occupied until time D,
one processor Pu with a higher cost can be partly occupied while the remaining
most expensive processors {Pu+1, . . . , Pm} are free. We call such a schedule as a
box-schedule emphasizing equal load of the cheapest processors.

In order to solve the non-preemptive version of the problem Q|Cmax ≤ D|K,
which corresponds to scheduling a BoT application, we aim to replicate the shape
of the optimal box-schedule as close as possible achieving the maximum load of
the cheapest processors in the first place. The required adjustment of the FFD
algorithm can easily be achieved if processors are renumbered by (2). We call the
resulting algorithm ‘FFD Cost’ (for ‘FFD with Processors Prioritized by Cost’).

6 A. Grekioti and N.V. Shakhlevich

For adjusting the LPT-strategy, notice that it naturally achieves a balanced
processor allocation, which in our case is needed only for a subset of cheapest
processors. There are several ways of identifying that subset. The two algorithms
presented below are based on two different principles of processor selection: in
the first algorithm, we group processors with equal relative cost and apply the
LPT-strategy to each group; in the second algorithm, we consider one group
of r cheapest processors {P1, . . . , Pr}, loading them as much as possible by the
LPT-strategy; the remaining processors {Pr+1, . . . , Pm} are loaded one by one
with unscheduled jobs. The solution of the smallest cost is selected among those
constructed for different values of r, 1 ≤ r ≤ m.

Algorithm ‘LPT Groups’ (LPT with Groups of Equivalent Processors)

1. Form groups G1, . . . , Gg of processors putting in one group processors of the
same relative cost c̄i. Keep group numbering consistent with processor num-
bering (2) so that the groups with the smallest indices contain the cheapest
processors.

2. Consider the groups one by one in the order of their numbering. For each
group Gi, apply ‘Deadline Constrained LPT’ until no more tasks can be
allocated to that group.

Algorithm ‘LPT One Group’ (LPT with One Group of Cheapest Processors)

1. For r = 1, . . . , m,
(a) Select r cheapest processors and apply to them ‘Deadline Constrained

LPT’.
(b) For the unscheduled tasks and remaining processors {Pr+1, . . . , Pm} apply

‘FFD with Processors Prioritized by Cost’.
2. Select r which delivers a feasible schedule of minimum cost and output that

schedule.

Since the LPT and FFD strategies have comparable performance in practice,
we introduce the counterpart of the latter algorithm with the FFD strategy
applied to r cheapest processors. In addition, we use the result from [8] which
suggests that the performance of FFD can be improved if the processors in the
group are ordered from slowest to fastest.

Algorithm ‘FFD One Group’ (FFD with One Group of Cheapest Processors) 3

1. For r = 1, . . . , m,
(a) Select r cheapest processors and re-number them in non-decreasing order

of their speeds. For the selected processors, apply classical FFD with
processors considered in the order of their numbering.

(b) For the unscheduled tasks and remaining processors {Pr+1, . . . , Pm} apply
‘FFD with Processors Prioritized by Cost’.

2. Select r which delivers a feasible schedule of minimum cost and output that
schedule.

Scheduling BoT Applications to Optimize Computation Time and Cost 7

The above heuristics are designed as a modification of time-optimization
algorithms. Below we propose one more heuristic based on the cost-optimization
algorithm from [10]. It should be noted that unlike most of scheduling algorithms,
designed for cost functions depending on task completion times, the algorithm
from [10] addresses the model with processor costs.

The approximation algorithm developed in [10] is aimed at solving a more
general problem with unrelated parallel machines. This is achieved by imposing
restrictions on allocation of long tasks. Depending on the value of the selected
parameter t, a task is allowed to be assigned to a processor only if the associated
processing time of the task on that processor does not exceed t. We adopt this
strategy in the algorithm presented below.

Algorithm ‘FFD Long Tasks Restr.’ (FFD with Restrictive Allocation of Long
Tasks)

1. For each combination of k ∈ {1, . . . , m} and ω ∈ {1, . . . , n} repeat (a)–(c):
(a) Define parameter t = τσ/sk which is used to classify allocation of task j

to processor i as “small” or “large” depending on whether τj/si ≤ t or
not.

(b) Consider processors one by one in the order of their numbering (2). Repeat
for each processor Pi:

Allocate to Pi as many “small” unscheduled tasks from the LPT-list
(1) as possible, without violating deadline D.

(c) If all tasks are allocated, calculate the cost Kt of the generated schedule,
else set Kt = ∞.

2. Set K = min
t∈{τl/sk}

{Kt}.

To conclude we observe that the proposed heuristics are fast (their time com-
plexity ranges from O(mn) to O(m2n2), assuming n ≥ m) and therefore are suit-
able for practical applications. In the next section we evaluate the performance
of our heuristics empirically comparing them with the known cost-optimization
algorithms.

3 Computational Experiments

We have performed extensive computational experiments in order to evaluate
the performance of our algorithms and to compare them with the published
ones. Figure 1 represents the situation we have observed in most experiments.

The experiments are based on two data sets for processors, denoted by PrI
and PrII, and two types of data sets for BoT applications consisting of n tasks,
n ∈ {25, 50}. Combining the data sets for processors with those for tasks we
generate four classes of instances, denoted by PrI-25, PrI-50 and PrII-25, PrII-
50. It should be noticed that we have explored the performance of the algorithms
on larger instances as well. While the overall behaviour is similar, the differences
in the performance of algorithms become less noticeable. This observation is in
agreement with the theoretical result on asymptotic optimality of the algorithms

8 A. Grekioti and N.V. Shakhlevich

Fig. 1. Algorithm performance

we propose. In a recent study [5] on the workloads of over fifteen grids between
2003 and 2010, it is reported that the average number of tasks per BoT is between
2 and 70 while in most grids the average is between 5 and 20. In order to analyse
the distinctive features of the algorithms, in what follows we focus on instances
with n ∈ {25, 50}.

Data set PrI for processors uses the characteristics of m = 11 processors
from [1]; data set PrII uses the characteristics of m = 8 processors from [6]
which correspond to US-West Amazon EC2.

The data sets for tasks are generated in the same fashion for n = 25 and
n = 50. For each value of n, 100 data sets have been created; in each data
set the processing requirements of the tasks are random integers sampled from
a discrete uniform distribution, as in [1,2], so that τj ∈ [1 000, 10 000] for
j = 1, . . . , n.

The generated processors’ data sets and tasks’ data set are then combined
to generate 4 classes of instances, each class containing 100 tasks’ data sets.

Using the data sets for processors and tasks, the instances are produced by
considering each combination of data sets and introducing a series of deadlines
D for each such combination. The range of deadlines for each combination is
defined empirically making sure that for the smallest deadline is feasible (i.e.,
there exists a feasible schedule for it) and that the largest deadline does not
exceed the maximum load of one processor (assuming that all tasks can be
allocated to it). Since the deadline ranges differ, the actual number of instances
for each combination of processors’ and tasks’ data sets varies greatly: there 1579
instances in class PrI-25, 3093 instances in PrI-50, 861 instances in PrII-25 and
1645 instances in PrII-50.

The comparison is done with the following algorithms known in the context
of Grid scheduling:

– ‘DBC-cA’ for the version of the ‘Deadline and Budget Constrained (DBC)
cost optimization’ algorithm by Buyya & Murshed [1], which uses processors’
absolute costs [1],

– ‘DBC-cR’ for the version of the previous algorithm, which uses processors’
relative costs,

– ‘DBC-ctA’ for the version of the ‘Deadline and Budget Constrained (DBC)
cost-time optimization’ algorithm by Buyya et al. [2], which uses processors’
absolute costs,

– ‘DBC-ctR’ for the version of the previous algorithm, which uses processors’
relative costs,

Scheduling BoT Applications to Optimize Computation Time and Cost 9

– ‘HRED’ for the algorithm ‘Highest Rank Earliest Deadline’ by Kumar et al.
[7],

– ‘SFTCO’ for the algorithm ‘Stage Focused Time-Cost Optimization’ by Son-
mez & Gursoy [11].

We have implemented all algorithms in Free Pascal 2.6.2 and tested them on
a computer with an Intel Core 2 Duo E8400 processor running at 3.00 GHz and
6 GB of memory. All heuristics are sufficiently fast to be applied in practice. Con-
sidering the heuristics we propose, the fastest two are ‘LPT Groups’ and ‘FFD
Cost’ which solve instances with 50 tasks in about 0.02 s; the actual running
time of heuristics ‘LPT One Group’ and ‘FFD One Group’ does not exceed
0.41 s for all instances, while ‘FFD Long Tasks Restr.’ has the highest time
complexity and runs on large instances for 4.28 s. As far as the existing algorithms
are concerned, the five heuristics ‘DBC-cA’, ‘DBC-ctA’, ‘DBC-cR’, ‘DBC-
ctR’ and ‘SFTCO’ are comparable with our two fastest heuristics producing
results in 0.01–0.02 s; the running time of ‘HRED’ is 1–1.45 s.

The summary of the results is presented in Tables 1, 2 and 3. In each table,
the best results for each class of instances are highlighted in bold. In Table 1 we
present the percentage of instances for which each algorithm produces no-worse
solutions (of a lower or equal cost) and the percentage of instances for which
each algorithm produces strictly better solutions (of a strictly lower cost) in
comparison with any other algorithm; the latter percentage value is given in the
parentheses. For each class of instances we present with bold numbers the best
performance for the known and new algorithms. Notice that the best results are
achieved by algorithms ‘LPT One Group’ and ‘FFD Long Tasks Restr.’.

While Table 1 indicates that the algorithms we propose are in general of
better performance, the actual entries in the table do not reflect to which extent
the new algorithms are superior in comparison with the known algorithms.

Table 1. Percentage of instances for which algorithms produce no worse solutions and
strictly better solutions, in parentheses

Grid scheduling algorithms PrI-25 PrI-50 PrII-25 PrII-50

DBC-ctA [2] 2.44(0) 1.6(0) 0(0) 0(0)
DBC-ctR [2] 2.44(0) 1.6(0) 6.86(0) 5.2(0)
DBC-cA [1] 4.72(0) 3.74(0) 0(0) 0(0)
DBC-cR [1] 4.72(0) 3.74(0) 7.32(0) 5.78(0.06)
HRED [7] 1.29(0.07) 0.71(0.05) 6.71(0) 4.45(0)
SFTCO [11] 0(0) 0(0) 0(0) 0(0)

Proposed algorithms PrI-25 PrI-50 PrII-25 PrII-50

FFD One Group 18.9(5.41) 18.16(4.62) 12.73(2.36) 9.99(0.92)
LPT One Group 23.01(2.88) 26.25(4) 14.63(2.29) 13.75(2.37)
LPT Groups 11.99(1.06) 12.42(0.85) 9.68(0) 8.26(0.06)
FFD Cost 13.49(0) 13.54(0) 10.37(0) 9.07(0)
FFD Long Tasks Restr. 17.01(3.5) 18.25(4.71) 31.71(19.59) 43.5(33.68)

10 A. Grekioti and N.V. Shakhlevich

A general comparison of the two groups of algorithms, the known and the
new ones, is performed in Table 2. In the first column we list 4 classes of instances
considered in the experiments. In the second column we provide the percentage
of instances in each class, for which the best solution (in terms of the strictly
lower cost) is found by one of the existing algorithms. In the third column we
provide the percentage of instances in each class, for which the best solution is
found by one of the new algorithms. The last column specifies the percentage of
instances for which the best solutions found by the existing algorithms and the
new ones have the same cost. It is easy to see that the algorithms we propose
outperform the existing ones producing strictly lower cost schedules in more
than 85 % of instances.

A special attention should be given to instances with tight deadlines. Our
experiments show that the new algorithms fail to produce feasible schedules
meeting a given deadline in less than 0.46 % of instances in all classes, while for
the existing algorithms the number of fails range between 0.43 %–100 %.

Our next table (Table 3) evaluates the quality of the solutions produced by
various algorithms. It is based on the values of the relative deviation

θ = 100 × (K − LB)/LB,

in percentage terms, of cost K of heuristic solutions from the lower bound values
LB. For each instance, the LB-value is found as the cost of the box-schedule
optimal for the relaxed model with preemption allowed.

The maximum and the average deviation is then calculated over all instances
in each class reflecting the worst and the average performance of each algorithm.
The best results for each class of instances are highlighted in bold for the known
and new algorithms. It should be noted that the entries in the last two columns
for algorithm SFTCO are empty as that algorithm failed to produce deadline
feasible solutions in all instances of classes PrII-25 and PrII-50.

The algorithms we propose have average percentage deviation from the lower
bound between 0.03 %–1.09 %, while the same figures for the known algorithms
are between 0.58 %–162 %. The worst case performance of algorithms, mea-
sured by the maximum percentage deviation from the lower bound, is between
0.31 %–5.74 % for our algorithms and between 4.16 %–287.4 % for known ones.
Thus in all scenarios our algorithms outperform the known Grid scheduling
heuristics.

Table 2. Percentage of strictly lower cost solutions and ties for existing and proposed
algorithms

Lowest cost (existing) Lowest cost (proposed) Ties

PrI-25 2.91 85.12 11.97
PrI-50 4.75 88.78 6.47
PrII-25 9.76 88.50 1.74
PrII-50 4.98 94.41 0.61

Scheduling BoT Applications to Optimize Computation Time and Cost 11

Table 3. The maximum relative deviation θ (in percentage) of cost K of heuristic
solutions from LB (the average relative deviation in parentheses)

Grid scheduling algorithms PrI-25 PrI-50 PrII-25 PrII-50

DBC-ctA [2] 17.55(4.33) 7.27(1.56) 81.56(39.47) 79.92(35.28)
DBC-ctR [2] 17.55(4.40) 7.27(1.65) 9.81(2.16) 4.90(0.86)
DBC-cA [1] 13.80(2.56) 6.44(0.95) 68.51(29.26) 66.56(24.99)
DBC-cR [1] 14.58(2.68) 6.44(1.11) 9.57(1.4) 4.16(0.58)
HRED [7] 19.77(9.19) 9.49(4.41) 15.58(5.43) 7.19(2.59)
SFTCO [11] 287.4(162) 275.4(137) -(-)a -(-)a

Proposed algorithms PrI-25 PrI-50 PrII-25 PrII-50

FFD One Group 5.23(0.75) 1.04(0.25) 2.11(0.41) 0.99(0.14)
LPT One Group 4.32(0.73) 1.04(0.21) 1.79(0.29) 0.99(0.09)
LPT Groups 4.99(1.09) 2.22(0.48) 2.9(0.51) 0.99(0.19)
FFD Cost 5.74(0.89) 1.29(0.31) 2.11(0.46) 0.99(0.17)
FFD Long Tasks Restr. 3.6(0.78) 1.04(0.26) 1.35(0.13) 0.31(0.03)
a No feasible solutions found by Algorithm SFTCO in all instances of classes PrII-25

and PrII-50.

One more observation can be done in relation to the asymptotic optimality
of our algorithms. Table 3 supports the fact that as the number of tasks increases
from 25 to 50, the solutions found become closer to lower bounds. The proof of
the asymptotic optimality of the algorithms is omitted in the current paper.

The performance of the known algorithms can be summarized as follows.
The best amongst those algorithms are the DBC-algorithms from [1] and [2].
Algorithms DBC-cA and DBC-ctA load the processors giving preference to
those with the lowest absolute cost ck, while DBC-cR and DBC-ctR give
preference to the processors with the lowest relative cost c̄k, approximating the
box-schedule introduced in Sect. 2. Due to the optimality of the latter schedule
for the preemptive version of the problem [9], it is expected that DBC-cR
and DBC-ctR should outperform DBC-cA and DBC-ctA. That behaviour is
clearly observed in our experiments with processors’ data set PrII; experiments
with data set PrI are less indicative since in PRI the orderings of processor based
on ck and c̄k are very similar.

The algorithms from [1] and [2] consider the tasks without taking into account
their processing requirements, while all our algorithms make use of the LPT task
order. The algorithm from [7] performs task allocation in a fashion similar to the
SPT order rather than LPT, which might explain its poor performance. Finally,
the algorithm from [11] prioritizes the tasks in the LPT order, but the authors
use a strange ratio si/c̄i = s2i /ci to prioritize the processors; the meaning of that
ratio and its justification are not provided.

Analysing the performance of our algorithms we conclude that the best per-
formance is achieved by either LPT One Group or FFD Long Tasks Restr..
In the instances with tight deadlines, algorithm LPT One Group outperforms
the others as it is more successful in finding deadline feasible schedules. The

12 A. Grekioti and N.V. Shakhlevich

third best algorithm is FFD One Group. Finally, a slightly worse performance
of algorithms LPT Groups and FFD Cost is compensated by their faster
running times.

4 Conclusions

In this study we propose new cost optimization algorithms for scheduling Bag-
of-Tasks applications and analyse them empirically. Our algorithms are aimed
at replicating the shape of a box-schedule, which is optimal for a relaxed ver-
sion of the problem. This is achieved by combining the most successful classical
scheduling algorithms and adjusting them for handling the cost factor.

In comparison with the existing algorithms, new algorithms find strictly lower
cost schedules in more than 85 % of the instances; they are fast and easy to
implement and can be embodied in a Grid broker.

Acknowledgements. This research was supported by the EPSRC funded project
EP/G054304/1 “Quality of Service Provision for Grid applications viaIntelligent
Scheduling”.

References

1. Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for grid computing. Concurr. Com-
put. Pract. Exp. 14, 1175–1220 (2002)

2. Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling parameter
sweep applications on global grids: a deadline and budget constrained cost-time
optimization algorithm. Softw. Pract. Exp. 35, 491–512 (2005)

3. Coffman, E.G., Garey, M.R., Johnson, D.S.: Application of Bin-Packing to Multi-
processor Scheduling. SIAM J. Comput. 7, 1–17 (1978)

4. Gonzalez, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform proces-
sors. SIAM J. Comput. 6, 155–166 (1977)

5. Iosup, A., Epema, D.: Grid computing workloads. IEEE Internet Comput. 15,
19–26 (2011)

6. Javadi, B., Thulasiram, R., Buyya, R.: Statistical modeling of spot instance prices
in public cloud environments. In: 4th IEEE International Conference on Utility
and Cloud Computing, Melbourne, Australia, pp. 219–228 (2011)

7. Kumar, S., Dutta, K., Mookerjee, V.: Maximizing business value by optimal assign-
ment of jobs to resources in grid computing. Eur. J. Oper. Res. 194, 856–872 (2009)

8. Kunde, M., Steppat, H.: First fit decreasing scheduling on uniform multiprocessors.
Discrete Appl. Math. 10, 165–177 (1985)

9. Shakhlevich, N.V., Djemame, K.: Mathematical models for time/cost opti-
mization in grid scheduling. Report 2008.04, School of Computing, Univer-
sity of Leeds (2008). http://www.engineering.leeds.ac.uk/computing/research/
publications/reports/2008+/2008 04.pdf

10. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

11. Sonmez, O.O., Gursoy, A.: A novel economic-based scheduling heuristic for com-
putational grids. Int. J. High Perform. Comput. Appl. 21, 21–29 (2007)

http://www.engineering.leeds.ac.uk/computing/research/publications/reports/2008+/2008_04.pdf
http://www.engineering.leeds.ac.uk/computing/research/publications/reports/2008+/2008_04.pdf

Scheduling Moldable Tasks with Precedence
Constraints and Arbitrary Speedup Functions

on Multiprocessors

Sascha Hunold(B)

Research Group Parallel Computing,
Vienna University of Technology, Vienna, Austria

hunold@par.tuwien.ac.at

Abstract. Due to the increasing number of cores of current parallel
machines, the question arises to which cores parallel tasks should be
mapped. Thus, parallel task scheduling is now more relevant than ever,
especially under the moldable task model, in which tasks are allocated
a fixed number of processors before execution. Scheduling algorithms
commonly assume that the speedup function of moldable tasks is either
non-decreasing, sub-linear or concave. In practice, however, the resulting
speedup of parallel programs on current hardware with deep memory
hierarchies is most often neither non-decreasing nor concave.

We present a new algorithm for the problem of scheduling moldable
tasks with precedence constraints for the makespan objective and for
arbitrary speedup functions. We show through simulation that the algo-
rithm not only creates competitive schedules for moldable tasks with
arbitrary speedup functions, but also outperforms other published heuris-
tics and approximation algorithms for non-decreasing speedup functions.

Keywords: Multiprocessor scheduling · Homogeneous processors ·
Moldable tasks · Makespan optimization · Speedup functions

1 Introduction

The problem of scheduling parallel tasks has been intensively studied, and it
originally stems from the need of improving the utilization of massively parallel
processors (MPPs) [1]. Researchers attempted to understand the implications of
different job scheduling strategies on the utilization of parallel systems theoret-
ically and practically. Drozdowski distinguishes between three types of parallel
tasks [2] (called job flexibility by Feitelson et al. [1]): (1) the rigid task requires
a predefined fixed number of processors for execution, (2) the moldable task for
which the number of processors is decidable before the execution starts, but
stays unchanged afterwards, and (3) the malleable task, where the number of
processors may vary during execution.

We focus on the moldable task model. The reason is mostly practical, since
the malleable model would require additional effort from programmers, e.g., to

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 13–25, 2014.
DOI: 10.1007/978-3-642-55195-6 2, c© Springer-Verlag Berlin Heidelberg 2014

14 S. Hunold

5
1
0

2
0

5
0

1
0
0 NAS PB / LU, Class A

ti
m

e
[s

]

0 10 20 30 40

1
0
0

1
4
0

1
8
0

2
2
0

nb. of cores

w
o
rk

[s
]

1 4 7 10 13 16 19 22 25 28 31

0
.0

0
.5

1
.0

1
.5

2
.0

PDGEMM / matrix size = 2048

nb. of cores

ru
n

ti
m

e
[s

]

Fig. 1. Left: work (top) and run-time (bottom) of LU benchmark (4 sockets, 48 cores,
AMD Opteron 6168); Right: execution times of PDGEMM (20 runs per core count,
GBit Ethernet, AMD Opteron 6134)

redistribute data or synchronize thread groups. Pthreads or OpenMP programs
are typical examples of moldable tasks as users can specify the number of threads
before the execution of a parallel program. MPI applications are examples of
moldable programs for distributed memory machines.

Today, researchers in parallel computing face the question of how to program
the available processors (or cores) efficiently. One approach is to model an appli-
cation as directed cyclic graphs (DAGs), where edges make data dependencies
explicit and nodes represent computations. The MAGMA library is an example,
where DAGs represent parallel applications [3].

To execute moldable tasks of a DAG, a scheduling algorithm has to determine
(1) the next task to be executed and (2) the set of processors to which a task
is mapped. In the scheduling literature, this is known as scheduling problem for
moldable tasks with precedence constraints [2] (sometimes also called malleable
task scheduling [4–7]). A common assumption is that the run-time function of
each parallel task is non-increasing and the corresponding work function is non-
decreasing in the number of processors. The work is defined as the product of
run-time and number of processors. Figure 1 shows two examples where this
assumption is violated in practice. The two plots on the left show run-time and
work of the NAS LU benchmark on a 48-core shared-memory machine (median
of five runs). The run-time is almost non-increasing but the corresponding work
decreases several times, e.g., at 21 or 31 cores. The chart on the right shows the
run-time of PDGEMM from ScaLAPACK (using GotoBLAS). Since this matrix
multiplication routine works best on a square processor grid, we see an increased
run-time for 11 or 13 processors. This “zigzagging” was already observed by van
de Geijn and Watts [8]. One could solve this problem of the 0run-time function
by using (k − 1) instead of k processors if the run-time on (k − 1) processors is
smaller. The resulting run-time function would be non-increasing, but the work
function could still be decreasing (similar to the plot on the left-hand side).

Scheduling Moldable Tasks with Arbitrary Speedup Functions 15

Therefore, we propose an algorithm for scheduling non-preemptive mold-
able tasks with precedence constraints for (1) non-increasing run-time and non-
decreasing work functions and also (2) arbitrary run-time and work functions.
In the three-field notation of Graham et al., we investigate P |any,NdSub, prec|
Cmax and P |any, prec|Cmax, where P denotes the number of processors, any the
moldable tasks, prec the precedence constraints, and NdSub the nondecreasing
sublinear speedup1. Our objective is to minimize the makespan Cmax.

We make several contributions to moldable task scheduling. First, we propose
a new algorithm (CPA13)2 that supports arbitrary run-time functions of mold-
able tasks. We show through simulation that our algorithm is competitive in the
cases considered. Second, we compare schedules produced by CPA13 with sched-
ules produced by several approximation algorithms with performance guarantees.
To the best of our knowledge, this is the first experimental study that evaluates
both CPA-style algorithms and approximation algorithms through simulation.
We show that our new algorithm CPA13 produces shorter schedules even when
the run-time function of each parallel task is non-increasing. Previous studies
of moldable task scheduling algorithms use the absolute makespan to compare
heuristics. However, such analysis provides little evidence of the schedule quality.
Hence, as third contribution, we compare algorithms by their performance ratio,
which is the ratio of makespan and lower bound.

Section 2 introduces notation and Sect. 3 discusses related work. We introduce
the new scheduling algorithm and show complexity results in Sect. 4, while Sect. 5
presents the simulation results before we conclude in Sect. 6.

2 Definitions and Notation

We consider the problem of scheduling n moldable tasks with precedence con-
straints on m identical processors under the makespan objective Cmax. We study
the offline and clairvoyant version of the problem, i.e., the entire DAG and the
processing times for each node are known to the scheduler. The application is
represented as directed acyclic graph G = (V,E), where V = {1, . . . , n} denotes
the set of moldable tasks and E ⊆ V × V represents the set of edges (arcs)
between tasks (e = |E|). For every task vj , pj(i) denotes the execution time of
task j on i processors, and wj(i) = i · pj(i) denotes its work. Further, variable
αj refers to the number of processors allotted to task j.

The functions pj(i) and wj(i) are often assumed to be monotonic [10, Chap.
26], i.e., pj(i) is non-increasing and wj(i) non-decreasing in i. Formally, pj(i) ≥
pj(k), and wj(i) ≤ wj(k), for i ≤ k. Some algorithms require that pj(i) not only
needs to be non-increasing, but also convex in the interval [1,m]. The work W
of a DAG is computed as W =

⎧
vi

pi(αi)αi.

1 For more details on notation see [2,9,10].
2 Critical Path and Area-based Scheduling (CPA), “13” refers to the present year.

16 S. Hunold

3 Related Work

The problem of scheduling rigid tasks, where precedence constraints are given as
a set of chains P2|sizej , chain|Cmax is strongly NP-hard for m ≥ 2 [10]. For the
more general problem of scheduling moldable tasks with precedence constraints
several approximation algorithms exist. Lepère et al. presented an approxima-
tion algorithm with performance guarantee of 3 +

√
5 ≈ 5.236 [4], where the

scheduling problem is decomposed into an allotment and a mapping problem.
The allotment problem is solved by applying Skutella’s method for obtaining
an approximate solution to the discrete time-cost trade-off problem [11]. Jansen
and Zhang improved the approximation ratio (to ≈ 4.73) by changing the round-
ing strategy for the fractional solution produced by the linear relaxation of the
discrete problem [5]. The algorithms presented in [4–6] require monotony of run-
time and work, and the most recent algorithm (with approximation ratio ≈ 3.29)
also requires that “the work function of any malleable task is non-decreasing in
the number of processors and is convex in the processing time” [6].

Radulescu and van Gemund used similar observations as reported in [4,5] for
solving the allotment problem. Thus, the Critical Path and Area-based Schedul-
ing (CPA) algorithm is based on the fact that the average work W/m and the
length of the critical path L are lower bounds of Cmax [12]. CPA starts by allo-
cating a single processor to each task, inspects the tasks on the critical path, and
then adds one processor to the task that decreases the average processor utiliza-
tion (runtime / number of processors) the most. The allocation process repeats
until the critical path L is smaller than the average work (W/m). Bansal et al.
discovered that CPA should take task parallelism better into account [13]. More
precisely, the allocation routine of CPA often produces large processor allot-
ments, with the consequence that tasks—which can potentially be executed in
parallel—need to run sequentially. Bansal et al. introduced the Modified CPA
(MCPA) algorithm, which considers the depth of tasks in the allocation phase.
In particular, no more processors are allotted to a task if already m processors
have been allotted to tasks in the same depth. We showed in previous work how
low-cost improvements to MCPA, such as relaxing the allotment constraints per
precedence level or allowing allocation reductions, can improve the performance
significantly [14].

Desprez and Suter attempted to optimize both the makespan and the total
work when scheduling a DAG [15]. They proposed the bi-criteria optimization
algorithm BiCPA that computes the processor allotment for m different cluster
sizes [1, 2, . . . ,m] and selects the allotment that optimizes a given makespan-
work ratio. BiCPA produces “short” and “narrow” schedules, yet it increases
the computational complexity significantly.

All algorithms described above assume non-increasing run-time and non-
decreasing work functions. For the case of arbitrary run-time functions, only
few algorithms have been proposed. Günther et al. presented an FPTAS for this
scheduling problem [7]. As the general problem is strongly NP-hard, they looked
at DAGs with bounded width and developed a dynamic program. For practical
applicability, the FPTAS has a rather large complexity of O((n3

σ)2τm2τ), where

Scheduling Moldable Tasks with Arbitrary Speedup Functions 17

Table 1. Overview of notation used in the present article

m – number of processors n – number of tasks (nodes)
e – number of edges (|E|) L – length of critical path
W – overall work of DAG G – min.rel. run-time improvement
vj – task j αj – processors allotted to task vj
pj(k) – run-time of task j with k processors bj – benefit of task j

rj – rel. run-time improvement lbj – bottom level of task vj
lpj – precedence level of task vj m̃d – nb. processors in prec. level d

ω denotes the maximum width of a DAG. In previous work, we already addressed
the challenge of arbitrary run-time functions by using an evolutionary algorithm
(EA) to find short schedules [16]. The proposed algorithm EMTS takes allotment
solutions of several heuristics, like CPA and MCPA, and optimizes them using
an (μ+λ)-EA. When generating and evaluating many offspring, EMTS can find
short schedules, while having the disadvantage of an increased run-time.

In sum, efficient heuristics and approximation algorithms only exist for non-
increasing run-time and non-decreasing work functions, and previous algorithms
without such limitations have high computational demands.

4 Scheduling Algorithm

Our proposed scheduling algorithm applies concepts of the algorithms discussed
before, e.g., reducing the critical path while keeping the overall work small.
Lepère et al. and Jansen/Zhang also applied this concept in their algorithms.
We define the following requirements for our scheduling algorithm: several pub-
lished articles addressed the problem of CPA that allotments can grow too big
regardless of their speedup. To solve this problem, we introduce the relative run-
time threshold G, which defines the minimum runtime improvement that a larger
allotment needs to provide to be considered as possible solution. As shown later,
this threshold is key for short and compact schedules. Task parallelism should be
conserved as much as possible. To do so, MCPA checks all the visited nodes in a
certain DAG depth, but may unmark once visited nodes. In contrast, our algo-
rithm considers all allotments of those nodes that were once marked. In addition,
the mapping function that selects processors for ready tasks has often been over-
looked in previous studies. Since we showed that reducing processor allotments
in the mapping step can significantly improve the overall schedule [14], CPA13
applies a binary search strategy to find a possibly smaller task allotment that
does not increase the estimated completion time.

4.1 Pseudocode

Algorithm 1 presents the allotment function of our algorithm named CPA13. For
an easier comprehension we summarize the notation in Table 1. Let us highlight
the main steps of the algorithm. In the initialization phase, each task is allotted

18 S. Hunold

Algorithm 1. CPA13 allocation procedure
1: for all vj ∈ V do
2: αj ← 1
3: mark vj as UNVISITED
4: Aj ← list of increasing allotment sizes for which:

∀ai, ak ∈ Aj , i < k : pj(i) > pj(k)
5: k̃ ← 1
6: for k in 2 . . . |Aj | do
7: bjk ←

(
pj(ak̃

)

a
k̃

− pj(ak)

ak

)

8: rjk ← pj(ak̃
)−pj(ak)

pj(ak̃
)

9: if rjk ≥ G then

10: k̃ ← k
11: store (k, bjk) in list of possible allotments for task vj
12: while L > W/m do
13: VCP ← collect tasks on critical path
14: (vb, α̃b, bb) ← (nil, m, 0.0) // initialize current best temporary values
15: m̃d ←∑vl∈Ṽ αl where Ṽ = {vk ∈ V s.t. lbk = d ∧ vk marked VISITED }
16: for all vj ∈ VCP do
17: bjk , ajk ← benefit and size of task’s vj next larger allocation
18: s ← ajk − αj // absolute increase in number of processors
19: if m̃dj + s ≤ m ∧ bjk > bb then
20: (vb, α̃b, bb) ← (vj , ajk , bjk) // current best
21: if vb �= nil then
22: αb ← α̃b // increase allotment of task vb
23: mark vb as VISITED
24: recompute L and W
25: else
26: break // terminate while loop

one processor and marked unvisited. We also pre-compute the possible benefit
and the relative execution time reduction of each processor allotment (line 6–11).

In the second phase (line 12), we compute the critical path and select the
task with the greatest benefit value. We allot more processors to this task unless
the number of processes in this precedence level is exceeded (lines 19–20) (The
precedence level denotes the shortest path to a node from the source node). After
changing the allotment of one task on the critical path, we need to recompute L
and W . The allotment process repeats until either the critical path L is smaller
than (or equal to) W/m or no more task satisfies the precedence level constraint
or provides additional run-time benefit.

Algorithm 2 presents the mapping procedure of CPA13, which first considers
all ready tasks and extracts the task with highest priority. We use the highest
bottom level as priority, i.e., the longest path from a node to the sink of the DAG.
After extracting the ready task vj , the procedure selects the αj processors that
first become idle. However, this allotment of vj might be packed (decreased in
size) without increasing its completion time. In order to find such a smaller
processor allotment for vj we perform a binary search on vj ’s allotments.

Scheduling Moldable Tasks with Arbitrary Speedup Functions 19

Algorithm 2. CPA13 mapping procedure
1: while not all tasks scheduled do
2: vj ← find tasks with maximum lbj
3: LET Cj = τj + pj(αj) be the completion time of vj

if vj is allocated αj processors that become available first at time
τj

4: αi ← use binary search to find an allocation αi ≤ αj s.t. τi + pj(αi) ≤ Cj

5: schedule vj onto first αi processors that become available

Table 2. Summary of complexity results, “t.p.” stands for “this paper”

Algorithm Allocation procedure Mapping procedure

CPA [12] O(nm(n + e)) [12] O(n log n + nm + e)
MCPA [13] O(nm(n + e)) [12] O(n log n + nm + e)
BiCPA-S [15] O(nm(n + e)) [15] O(m(n log n + nm + e))
JZ06 [5] O(LP (mn, n2 + mn)) [4] O(mn + e)
JZ12 [6] O(LP (mn, n2 + mn)) [4] O(mn + e)
CPA+NM+R t.p. O(nm(n + e)) [12] O(n log n + nm + e)
MCPA+NM+R t.p. O(nm(n + e)) [12] O(n log n + nm + e)
EMTS [16] input dependent [12] O(r(n log n + nm + e))
CPA13 t.p. O(nm(n + e)) [14] O(n(log n + m log m) + e)

4.2 Asymptotic Run-Time Analysis

We determine the run-time complexity of CPA13 (the number of operations to
perform) by examining the allocation and the mapping step separately. In the
allocation phase of CPA13 (Algorithm 1), the benefit of a processor allotment is
computed for all tasks (O(nm)). The body of the loop (line 12) determines the
number of processors per precedence level (O(n)) and the critical path (O(n+e)).
After selecting and modifying the best task, the critical path needs to be updated
((O(n + e)). The outer loop (line 12) is executed at most n · m times since then
each tasks will have m processors allotted to it. Thus, the complexity of the
allocation phase is O(nm(n + e)).

The mapping procedure (Algorithm 2) first extracts the task with highest
priority (O(log n) using a heap) and selects the processors that become idle
next (O(m)). We apply a binary search (O(log m)) on the processors, but which
need to be sorted by increasing finishing time first (O(m log m)). Upon mapping
a task, the algorithm visits every outgoing edge to detect ready tasks. In total
over all iterations, O(e) edges are visited in the procedure. Given that the loop in
line 1 runs once for every task, the overall complexity of the mapping procedure
is O(n(log n + m log m) + e).

Additionally, we present the asymptotic run-times of both the allocation and
mapping procedure of related algorithms in Table 2. JZ06 and JZ12 denote the
algorithms of Jansen and Zhang from 2006 [5] and 2012 [6]. The authors state
that the LIST scheduling function requires O(nm) operations, while LP (p, q)
denotes “the time to solve a linear program with p variables and q constraints” [5].

20 S. Hunold

As the number of edges may be greater than mn, we updated this run-time to
O(mn+ e). The suffix “NM+R” behind CPA and MCPA identifies our modified
versions, which are aware of possibly increasing run-time functions (discussed in
Sect. 5). The evolutionary algorithm EMTS is input-dependent as it takes solu-
tions of other heuristics for obtaining the initial population, and its run-time
grows with the number of generations produced in the optimization process.
Thus, EMTS calls the mapping function for each individual, and r denotes the
total number of individuals created.

5 Evaluation

We use simulation to evaluate CPA13 for two reasons: (1) Simulations allows
us to obtain a statistically significant number of results. (2) Not many truly
moldable applications exist, which would limit the variety of experiments.

5.1 DAGs and Platforms

We consider two types of DAGs in the simulation: (1) application DAGs that
mimic existing parallel algorithms and (2) synthetic random DAGs. Strassen’s
matrix multiplication algorithm and the Fast Fourier Transformation (FFT) are
examples of application-oriented DAGs. To obtain different computation and
scalability ratios, we keep the shape of these DAGs fixed but change the number
of operations of each task. The synthetic DAGs are generated with DAGGEN [17]
and contain 20, 50 or 100 nodes. Four parameters influence the DAG generation
process: the width controls how many task can run in parallel, the regularity
defines the uniformity of the number of tasks per DAG level, density specifies
the number of edges, and jump denotes if and how many DAG levels an edge
(arc) may span. In total, we created 400 FFT, 100 Strassen, 108 layered and
324 irregular DAGs. Layered DAGs have edges only between adjacent precedence
levels (jump = 0) and the tasks in one tree level have an equal number of
operations.

The number of operations per task depends on a data size d (number of ele-
ments) and a function applied to the data, which were both randomly selected.
The function f(d) that is applied to the d elements defines the number of oper-
ations and is one of the following: stencil – d, sorting – d log d, matrix multipli-
cation – (

√
d)3. Function f(d) and data size d only define the sequential time

of a task. To obtain the parallel run-time, we apply Amdahl’s model and pick
the non-parallelizable fraction β (see next section) of f(d), which is selected ran-
domly from a uniform distribution between 0 and 0.25. Due to the page limit
we refer to [15,16] for more details.

The platform model has two parameters: (1) the number of processors m
and (2) the speed of the processor (in GLFOPS). We use two machine models
in the simulations. The first models a Grid’5000 cluster (Grelon) with m =
120 processors providing 3.1 GFLOPS each (obtained with HP-LinPACK). The

Scheduling Moldable Tasks with Arbitrary Speedup Functions 21

other machine has m = 48 processors running at 6.7 GFLOPS (measured with
GotoBLAS2), modeling a shared-memory system at TU Vienna.

We apply two different run-time models to parallel tasks in our simulation.
Run-time Model 1: Since each task in the DAG generation process is assigned

(1) a number of operations to perform and (2) the fraction of non-parallelizable
code, we apply Amdahl’s law to obtain a run-time model. Let pi(1) be the sequen-
tial run-time of task vi, determined by the ratio of the number of operations and
the speed of the processor. Let β, 0 ≤ β ≤ 1, be the non-parallelizable fraction
of a parallel task, then the run-time of task vi on k processors is bounded by
p1i (k) = (β + 1−β

k) ·pi(1). Applying this formula yields a non-increasing run-time
and non-decreasing work function for each parallel task. In addition, the run-
time function is also convex over the interval [1,m], which is required to apply
algorithm JZ12.

Run-time Model 2: Figure 1 has shown that the run-time of PDGEMM is
larger with an odd number of processors or if the number of processors has no
integer square root. We model the second runtime function accordingly, but base
it on the Amdahl model p1i (k). Equation (1) shows the runtime function p2i (k),
which may increase if allocations get larger.

p2i (k) =

⎨
⎩⎩⎩⎜

⎩⎩⎩⎫

p1i (1) if k = 1,

s1 · p1i (k) if k > 1 ∧ k is odd,
s2 · p1i (k) if k > 1 ∧ k is even, but

√
k not an integer,

p1i (k) otherwise.

(1)

s1 and s2 are the slowdown factors applied when the number of processors is odd
or has no integer square root. In the simulations, we set s1 = 1.3 and s2 = 1.1
to reflect the observed run-time behavior of PDGEMM.

5.2 Simulation Results

Run-time Model 1. The first set of simulations compares algorithms that were
designed for non-increasing run-time functions with CPA13. This experiment
answers two questions: (1) What is the overall schedule quality of CPA13 com-
pared with the lower bound? (2) How good are CPA13’s solutions compared
with solutions of approximation algorithms?

In previous studies of CPA, algorithms have been compared without a base-
line, so it was uncertain whether experimental findings have significant impact.
Since the problem is strongly NP-hard, we use the lower bound as an approxima-
tion of the optimum as done by Albers and Schröder [18]. The length of the crit-
ical path and the average work per processor are lower bounds of the makespan.
Thus, the lower bound of the makespan is LB = max

⎬⎧n
j=1 wj(1)/m,L∈

⎭
,

where L∈ denotes the shortest possible critical path. To compute L∈ we allocate
k processors to task vj with k = arg min

l
pj(l), then we compute the critical path

using this processor allotment and determine its length.

22 S. Hunold

CPA13

JZ12

JZ06

BiCPA

MCPA

CPA

1 2 3 4
Performance Ratio

m = 48

1 2 3 4 5 6
Performance Ratio

irregular

layered

Strassen

FFT

m = 120

Fig. 2. Performance ratios of scheduling algorithms for each DAG class (Run-time
Model 1); m = 48 (left) and m = 120 (right) processors

Figure 2 compares the performance ratio (makespan of algorithm / lower
bound) of the algorithms under Run-time Model 1. The CPA13 threshold for
the relative gain was set to G = 0.01, i.e., an allocation needs at least 1 %
of runtime improvement to be considered. We can see that CPA13 achieves the
lowest performance ratio, while MCPA obtains a slightly better ratio for Strassen
DAGs on 48 processors and for layered DAGs on 120 processors. The reason is
that CPA13 optimizes not only the makespan but also tries to keep the total
work small. For a chain of parallel tasks, MCPA may allocate all processors to
some task, whereas CPA13 stops if the efficiency threshold is exceeded. Thus,
MCPA produces larger allocations with slightly shorter runtime, but which leads
to slightly shorter schedules. The graph also shows that the performance ratio of
CPA13 decreases on the bigger machine. Overall, in the cases considered, CPA13
is comparable and mostly better than JZ12, which has an approximation ratio of
≈ 3.29. We also experimented with larger DAGs, for which the linear programs
of JZ06 and JZ12 have many constraints. On an Intel Core i7 (2.3 GHz) using
IBM CPLEX, the time for solving instances with 1000 tasks and 120 processors
took on average 49 s with JZ12 and 28 s with JZ06. In contrast, CPA13 produces
solution for these instances in an average time of 2.5 s, which shows its scalability.

Run-time Model 2. The second study examines parallel tasks with arbitrary run-
time functions. Here, we also include the meta-heuristic EMTS that performs
an evolutionary schedule optimization [16].

Since CPA and MCPA only assume non-increasing run-time functions, we
make both algorithms non-monotony-aware. To do so, we change the run-time
function of a parallel task as follows: We use the run-time of the next smaller

Scheduling Moldable Tasks with Arbitrary Speedup Functions 23

algorithm m work ratio
√
Cmax · W ratio

CPA13 120 / 48 3.88 / 2.01 2.17 / 1.75
JZ12 120 / 48 3.17 / 1.85 2.16 / 1.74
JZ06 120 / 48 5.62 / 2.45 2.94 / 2.02
BiCPA 120 / 48 2.09 / 1.62 1.84 / 1.67
MCPA 120 / 48 4.05 / 2.07 2.57 / 1.99
CPA 120 / 48 4.08 / 2.08 2.67 / 2.07

Fig. 3. Performance ratios of evaluated scheduling algorithms for several DAG classes;
m = 48 (left) and m = 120 (right) processors (Run-time Model 2)

processor allocation if the run-time increases when the number of processors
increases, e.g., if in the original execution time model pj the execution time of
pj(k) < pj(k + 1), we set in the modified model p̃j(k + 1) = pj(k). Then the
following holds: let 1 ≤ k, k≥ ≤ m, k < k≥, so p̃(k≥) ≤ p̃(k). Yet, this newly con-
structed run-time function p̃ is neither convex in run-time nor non-decreasing
in work. For this reason, we cannot apply JZ06 or JZ12 but we can use CPA
and MCPA with p̃. We distinguish them from the original versions by appending
“NM+R” to the name, where “R” stands for allotment “reduction” in the follow-
ing case: after the allocation procedure of CPA+NM+R or MCPA+NM+R has
finished, processor allotments may be reducible, i.e., a task vj has k processors
allotted, but ∃k≥, k≥ < k for which p̃(k≥) = p̃(k). If so, we assign k≥ processors to
task vj since the smaller allotment is not increasing the task’s run-time.

Figure 3 shows the distribution of performance ratios over all DAG classes.
The chart reveals that CPA13 produces mostly schedules that are close to the
lower bound with a performance ratio of less than three. EMTS is a meta-
heuristic that takes allotments produced by MCPA, CPA, and CPA13 as input
and attempts to optimize them. In the simulations, we instantiated an (10 +
100)-EA for EMTS, i.e., μ = 10 parents and λ = 100 offspring per generation. We
stopped EMTS after evaluating 10 EA generations. It is therefore not surprising
that EMTS has a slightly better performance ratio than CPA13. However, we
can state that CPA13 already produces very short schedules since EMTS hardly
can optimize them further.

6 Discussion and Conclusions

The performance of parallel applications on current hardware depends on many
factors such as deep memory hierarchies. As a result, run-time functions of a par-
allel program depending in the number of processors are neither non-increasing
or strictly convex. Hence, we designed a scheduling algorithm for moldable tasks
with precedence constraints and for arbitrary run-time functions. We identified
key ingredients for producing short schedules for moldable tasks through careful
investigation of different problem instances, which are: (1) force task parallelism,

24 S. Hunold

(2) avoid allotments with small parallel efficiency and (3) adjust allotments to
reduce idle times in the mapping phase.

We showed in a detailed simulation study that the algorithm CPA13 improves
schedule not only in the case of arbitrary run-time functions but also for non-
increasing run-time functions. One major contribution lies in the comparison of
CPA and its variants to known approximation algorithms. Our results revealed
that CPA13 generates the shortest schedules among the competitors in most
cases. Yet, our results are limited to the cases studied here since CPA13 has no
performance guarantee, which could be addressed in future work.

References

1. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg
(1997)

2. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009)
3. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for

multicore with GPU accelerators. In: HIPS Workshop, pp. 1–8 (2010)
4. Lepère, R., Trystram, D., Woeginger, G.: Approximation algorithms for scheduling

malleable tasks under predence constraints. Int. J. Found. Comput. Sci. 13(04),
613–627 (2002)

5. Jansen, K., Zhang, H.: An approximation algorithm for scheduling malleable
tasks under general precedence constraints. ACM Trans. Algorithms 2(3), 416–
434 (2006)

6. Jansen, K., Zhang, H.: Scheduling malleable tasks with precedence constraints. J.
Comput. Syst. Sci. 78(1), 245–259 (2012)

7. Günther, E., König, F.G., Megow, N.: Scheduling and packing malleable and par-
allel tasks with precedence constraints of bounded width. J. Comb. Optim. 27(1),
164–181 (2014)

8. van de Geijn, R.A., Watts, J.: SUMMA: scalable universal matrix multiplication
algorithm. Concurr. Pract. Exp. 9(4), 255–274 (1997)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete
Math. 5, 287–326 (1979)

10. Leung, Y.J.T. (ed.): Handbook of Scheduling: Algorithms, Models and Perfor-
mance Analysis. Chapman & Hall/CRC, Boca Raton, FL, USA (2004)

11. Skutella, M.: Approximation algorithms for the discrete time-cost tradeoff problem.
Math. Oper. Res. 23(4), 909–929 (1998)

12. Radulescu, A., van Gemund, A.: A low-cost approach towards mixed task and data
parallel scheduling. In: ICPP, pp .69–76 (2001)

13. Bansal, S., Kumar, P., Singh, K.: An improved two-step algorithm for task and
data parallel scheduling in distributed memory machines. Parallel Comput. 32(10),
759–774 (2006)

14. Hunold, S.: Low-cost tuning of two-step algorithms for scheduling mixed-parallel
applications onto homogeneous clusters. In: CCGrid, pp. 253–262 (2010)

15. Desprez, F., Suter, F.: A bi-criteria algorithm for scheduling parallel task graphs
on clusters. In: CCGrid, pp. 243–252 (2010)

Scheduling Moldable Tasks with Arbitrary Speedup Functions 25

16. Hunold, S., Lepping, J.: Evolutionary scheduling of parallel tasks graphs onto
homogeneous clusters. In: CLUSTER, pp. 344–352 (2011)

17. Suter, F.: DAGGEN: a synthetic task graph generator. https://github.com/
frs69wq/daggen

18. Albers, S., Schröder, B.: An experimental study of online scheduling algorithms.
J. Exp. Algorithmics 7, 3 (2002)

https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen

OStrich: Fair Scheduling
for Multiple Submissions

Joseph Emeras1, Vinicius Pinheiro2(B),
Krzysztof Rzadca3, and Denis Trystram4,5

1 Laboratoire d’Informatique de Grenoble CEA - CNRS, Grenoble, France
joseph.emeras@imag.fr

2 Laboratory for Parallel and Distributed Computing,
University of São Paulo, São Paulo, Brasil

vinicius.pinheiro@ime.usp.br
3 Institute of Informatics, University of Warsaw, Warsaw, Poland

krzadca@mimuw.edu.pl
4 Grenoble Institute of Technology, Grenoble, France

5 Institut Universitaire de France, Vesoul, France
trystram@imag.fr

Abstract. Campaign Scheduling is characterized by multiple job sub-
missions issued from multiple users over time. This model perfectly suits
today’s systems since most available parallel environments have multiple
users sharing a common infrastructure. When scheduling individually
the jobs submitted by various users, one crucial issue is to ensure fair-
ness. This work presents a new fair scheduling algorithm called OStrich
whose principle is to maintain a virtual time-sharing schedule in which
the same amount of processors is assigned to each user. The comple-
tion times in the virtual schedule determine the execution order on the
physical processors. Then, the campaigns are interleaved in a fair way
by OStrich. For independent sequential jobs, we show that OStrich guar-
antees the stretch of a campaign to be proportional to campaign’s size
and the total number of users. The stretch is used for measuring by what
factor a workload is slowed down relative to the time it takes on an
unloaded system. The theoretical performance of our solution is assessed
by simulating OStrich compared to the classical FCFS algorithm, issued
from synthetic workload traces generated by two different user profiles.
This is done to demonstrate how OStrich benefits both types of users, in
contrast to FCFS.

Keywords: Job scheduling · Fairness · Job campaigns · Multi-user ·
Workload traces

1 Introduction

High performance computing (HPC) systems are usually shared by multiple users
who compete for the usage of the processors in order to execute their jobs. Most

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 26–37, 2014.
DOI: 10.1007/978-3-642-55195-6 3, c© Springer-Verlag Berlin Heidelberg 2014

OStrich: Fair Scheduling for Multiple Submissions 27

of such systems embrace users and projects around a common infrastructure that
simplifies resource management and application execution through a centralized
scheduler. In the past, most users were oriented toward the maximization of
the throughput but the popularization of those systems attracted other types of
users. Nowadays, the users turned to the optimization of the response-time [8].
Workload of response-time users is composed of multiple submissions released
sequentially over time [10,17,22,24]. For such users, the criterion of throughput
is not meaningful as they are more interested in the flow time of each submission.

In this work, the problem of multiple submissions on parallel system is
narrowed to the notion of Campaign Scheduling, introduced in [18] and ana-
lyzed under restrictive assumptions. The campaign scheduling problem models
a user submission pattern commonly found in parallel systems used for scientific
research: a user submits a set of jobs, analyzes the outcomes and then resubmits
another set of jobs. In other words, the campaigns are sets of jobs issued from
a user and they must be scheduled one after the other since the submission of a
new campaign depends on the outcome of the previous one. As this pattern is
an interactive process, the objective from the user point of view is to minimize
the time each campaign spent in the system, namely the campaign’s flow time.
As soon as a campaign finishes, soon the user is ready to submit the next one.

We propose in this paper a new on-line scheduling algorithm (called OStrich)
that explicitly maintains fairness between the users by bounding the worst-case
stretch of each campaign. We show that user’s performance does not depend on
the total load of the system, but only on the number of users competing for the
processors and on its own workload. We are also able to quantify and optimize
the performance of each user.

The rest of this paper is organized as follows. In the next section, we give an
overview of the state-of-the-art of scheduling with multiple users. In Sect. 3 we
present a formal model of Campaign Scheduling. This model is an extension of
what was defined in [18]. Section 4 is dedicated to the description of our solution,
a new algorithm for the problem of campaign scheduling with multiple users. The
theoretical results are depicted and analyzed in Sect. 5. Our solution is assessed
through simulations that uses user profiles based on short and long job lengths.
This is presented in Sect. 6. Finally, we present our conclusions and future work
in Sect. 7.

2 State-of-the-Art

The main works related to this paper address the problem of optimizing various
users criteria and the use of fair policies on parallel systems. The Multi-Users
Scheduling Problem was introduced for a single processor and two users by
Agnetis et al. [1]. This study focused on optimization problems. The authors
show that when both users are interested each in their makespan, the problem
can be solved in polynomial time. Saule and Trystram [21] extended the analysis
for scheduling independent sequential jobs belonging to k different users on m
identical processors. This is an offline problem where all the jobs are known

28 J. Emeras et al.

in advance and can be immediately executed. They proved that the problem
becomes strongly NP-hard as soon as one user aims at optimizing the makespan.

Fairness is an important issue while designing scheduling policies and it has
gained growing attention in the last decade. However, it is still a fuzzy concept
that has been handled in many different ways, varying according to the target
problems. In [19,20], several metrics are proposed for expressing the degree of
unfairness in various systems. Both works evaluate the unfairness of algorithms
such as FCFS, backfilling and processor sharing, but fairness is associated with
the jobs and their service requirements. Thus, the concept of fairness is seen as
“fairness between jobs” instead of “fairness between users” as we propose.

There are two classical approaches to share a resource between users in a
system: space sharing and time sharing. In space sharing, the resource is divided
into subsets that are assigned to each party. This can be more easily applied to
divisible resources such as computer memory, bandwidth and parallel systems.
For indivisible resources like single processing units and I/O devices, time sharing
may be a more appropriate approach, since it gives time slices to the parties in
a round-robin fashion. During each time slice the resource is available to just
one user.

In this work, we propose that fair schedules can be achieved through a com-
bination of both strategies, ruled by a fair allocation metric. In the literature,
one of the accepted and used metrics is the stretch, i.e. the flow time normalized
by the job’s processing time. The stretch and flow metrics were first studied by
Bender et al. [3] for continuous job streams. Stretch optimization was also
studied for independent tasks without preemption [4], Bag-of-Tasks applica-
tions [7,16], multiple parallel task graphs [6] and for sharing broadcast band-
width between clients requests [23].

The concept of campaign is related to the bag-of-task model [2,14] and the
groups of jobs model [13]. However, campaigns differ from bag-of-tasks as the
jobs belonging to a single campaign have different lengths, sizes and dependen-
cies. Unlike the group of jobs model, we assume that a user does not submit
the subsequent campaign until the previous one was completed. Our scheduling
algorithm uses the concept of a virtual completion time. Similar ideas are used
for fair queuing in communication networks (see [11] and the references within).

3 Model and Problem Definition

The model consists of k users (indexed by u) sharing the processors on a parallel
platform composed of m identical processors. The processors are managed by
a centralized scheduler. A user workload is composed of successive campaigns
where each campaign, indexed by i is submitted at a time denoted by tui and
is composed of a set of independent and non-preemptive sequential jobs. We
consider an on-line problem in which any particular campaign i (and its jobs)
is unknown to the scheduler until it is submitted. A campaign is defined as the
set Ju

i containing the jobs released by a user u in one submission; nu
i denotes

the number of jobs of a campaign and nu the total number of jobs released in
all the campaigns of user u.

OStrich: Fair Scheduling for Multiple Submissions 29

The jobs inside a campaign are indexed by j. The job’s length is denoted by
pui,j and, so, the total workload within campaign i is: Wu

i =
∑

j pui,j . A job, once
started, cannot be interrupted nor preempted. The job start time is denoted by
sui,j and its completion time is denoted by Cu

i,j .
The start time of a campaign is denoted by sui . It is defined as the time the

first job starts, sui � minjs
u
i,j . The campaign’s completion time Cu

i is the time
the last job completes, Cu

i � maxjC
u
i,j .

The campaign’s flow time, denoted as Δu
i , is equal to the amount of time the

jobs of a campaign stay in the system: Δu
i � Cu

i − tui .
The campaign’s stretch is denoted by Du

i and is defined as a generalization of
a job’s stretch. Formally, a job stretch Du

i,j is equal to the relative degradation of
its flow time, Du

i,j = (Cu
i,j − tui,j)/pui,j , where pui,j is the job length (and, thus, the

job’s optimum flow time) [3]. Determining a single campaign’s optimum flow time
means solving the general scheduling problem, so it is NP-hard. Thus, instead, we
use a lower bound on campaign’s flow time defined by lui = max(Wu

i /m, pumax),
where pumax = maxj pui,j . Consequently, the campaign’s stretch is defined as Du

i =
Δu

i /lui .
A user u cannot submit her-his next campaign i + 1 until her-his previous

campaign i completes, thus tui+1 ≥ Cu
i . The time between the completion of

campaign i and the submission of the next one (i + 1), called the think time, is
denoted as ttui+1 = tui+1 − Cu

i .
The objective is to minimize the per-user and per-campaign stretch Du

i . We
consider stretch (in contrast to the flow time), as it weights the responsiveness of
the system by the assigned load; it is natural to expect that small workloads will
be computed faster than larger ones. We consider it on a per-user basis, as this
results in fairness of the system towards individual users. Moreover, considering
stretch of each campaign (rather than the overall stretch) guarantees that not
only the final result, but also the intermediate ones are timely computed.

The problem of minimizing per-user and per-campaign stretch Du
i is NP-

hard, as when restricted to a single user (k = 1) and to a single campaign, it is
equivalent to the classical problem of minimization of the makespan on identical
parallel processors (P ||Cmax) [18,21].

4 Algorithm

We propose in this section a new scheduling algorithm called OStrich. The algo-
rithm guarantees the worst-case stretch of each campaign of each user Du

i to
be proportional to the campaign’s workload and the number of active users in
the system. OStrich’s principle is to create a virtual fair-sharing schedule that
determines the execution priorities of the campaigns in the real schedule. The
algorithm maintains a list of ready-to-execute campaigns ordered by their pri-
orities and interactively selects the next job from the highest priority campaign.
Any scheduling policy can be used to determine the execution order of jobs within
a single campaign; for instance LPT [12] (or, more appropriately, MLPT [15])
or Shortest Processing Time (SPT) [5].

30 J. Emeras et al.

The virtual fair-sharing schedule is maintained by dividing the processors
between the active users at each given moment. The processors are divided evenly
among the users, independently of users’ submitted workload. The priority of a
user’s campaign is determined by its virtual completion time, i.e. the completion
time in the virtual schedule. The campaign with the shortest virtual completion
time has the priority of execution. This virtual completion time is denoted by
C̃u

i for a campaign Ju
i (more generally, we will use x̃ for denoting a variable x in

the virtual schedule). That way, if a user u submits a campaign at time tui , its
virtual completion time is defined as the total workload of the campaign divided
by its share of processors, added by its virtual start time. More formally:

C̃u
i (t) = W̃u

i /(m/k̃(t)) + s̃ui = k̃(t)W̃u
i /m + s̃ui . (4.1)

Note that the share of a user is defined as the number of processors m divided
by the number of active users at moment t, denoted by k̃(t). By active users,
we mean the users with unfinished campaigns at time t, according to the virtual
schedule. Formally, k̃(t) is defined as k̃(t) =

∑k
u 1{u, t} where 1{u, t} is an

indicating function that returns 1 if ∃i | C̃u
i > te and 0 otherwise.

A campaign starts in the virtual schedule after it is submitted, but also not
sooner than the virtual completion time of the previous campaign (the previous
campaign can be completed earlier in the real scheduler than in the virtual
schedule). So, according to this:

s̃ui = max(tui , C̃u
i−1). (4.2)

This condition guarantees that at each time moment, at most one campaign of
each user is executing in the virtual schedule, as it happens on the real scheduler.
Thus, the number of allocated processors depends on the number of active users,
and not the system load. Additionally, OStrich does not allow a campaign to
start before its virtual start time (sui ≥ s̃ui). This mechanism keeps the real
schedule in accordance with the fair principles of the virtual schedule: a user is
not able to take a greater share of the processors than what is assigned in the
virtual schedule.

The virtual completion time of the campaigns can be updated on two events:
the submission of a new campaign and the completion of a campaign in the
virtual schedule. These events may change the number of active users k̃(t) and,
thus, modify the virtual completion times of other active campaigns. Besides,
at each event e occurring at time te, the virtual workload of a campaign (W̃u

i)
must be redefined based on how much it is left to be executed in the virtual
schedule. The remaining workload of a campaign is defined by taking the time
passed since the last event occurrence te−1 and multiplying it by campaign’s
share of processors on that time interval. Considering all the events passed after
the campaign’s submission, the workload formula is W̃u

i =
∑

j pui,j −∑
e(m.(te−

te−1)/k̃(te−1)).

OStrich: Fair Scheduling for Multiple Submissions 31

5 Theoretical Analysis

In this section, the worst case stretch of a campaign is to analyzed. The idea for
the proof is to bound the completion time of the last job of a campaign using
a “global area” argument compared to the virtual schedule. In this proof, pmax

denotes the maximum job length in the system. “Area” is a measure in terms
of amount of time × number of processors. The virtual schedule is denoted by
V and the real schedule by R. To simplify the formulation of proofs, we will say
that the virtual schedule V “executes” jobs, even though V is just an abstraction
used for prioritizing real jobs. At time t, a job is “executed” by V if in V there
is a fraction of processors assigned to this job.

5.1 Worst-Case Bound

As V can assign a job an arbitrary fraction of processors (from τ to m), a
schedule in V is represented by horizontal load streams, one for each active
user. Idle intervals can be present in V only when there are no ready jobs to
be executed. In turn, R must execute each job on a single processor, thus some
processors can be idle even when there are ready jobs. This can happen when
tui < s̃ui and the ready jobs of campaign i must wait until moment s̃ui arrives.
So, the question is whether the idle times that might additionally appear in R
can cause a systematic delay of R compared to V. The following lemma shows
that once R is delayed by an area of mpmax, the delay does not grow further, as
there is always a ready job to be executed.

The lemma considers only the idle time in the “middle” of the schedule, i.e.,
after the start time of the first job and up to the start time of the last job; this
is sufficient to characterize the on-line behavior of OStrich.

Lemma 1. The total idle area in R (counted from the earliest to the latest job
start time) exceeds the total idle area in V by at most mpmax.

Proof. Consider first a V schedule with no idle times. Assume by contradiction
that t is the first time moment when the total idle area in R starts to exceed
mpmax. Thus, at least one processor is free at time t and there is no ready jobs
to be executed. As V has no idle times, at time t the area executed by V exceeds
the area executed by R by more than mpmax. Thus, the area exceeding mpmax

is ready to be executed at R: as a single job has an area of at most pmax, an
area of mpmax is composed of at least m jobs. Thus, at least m jobs are being
executed, or ready to be executed in R. This contradicts the assumption that
there is at least one free processor at R at time t.

If there is idle time in V, each idle period can be modeled as a set of dummy
jobs {JI} that are executed by V, but not necessarily (and/or not completely)
by R. If R executes {JI} entirely, the thesis is true by the argument from the
previous paragraph (as {JI} contributes with the same amount

∑
pI of idle

area to V and to R). If R executes {JI} partially (as {J ∈
I}, with 0 ≤ p∈

I ≤ pI)
the contribution of these jobs to the idle area of R (

∑
p∈
I) is smaller than to V

(
∑

pI). �

32 J. Emeras et al.

R starts to execute jobs from campaign Ju
i when this campaign has the

shortest completion time in V. Yet, it is possible that after some, but not all,
jobs from Ju

i have started, another user v submits her/his campaign J
(v)
j having

a lower area than what remains of Ju
i , and thus gaining higher priority. Thus, Ju

i

is executed in R in so-called pieces: two jobs Jk, Jl ∈ Ju
i belong to the same piece

iff no job from other campaign J
(v)
j starts between them (�J ∈ : J ∈ J

(v)
j ∧ sJk <

sJ ∗ < sJl).
The following lemma bounds the completion time of the last piece of the

campaign. After a campaign is completed in the virtual schedule, it cannot be
delayed by any other newly-submitted campaign; thus it has the highest priority
and its remaining jobs are executed in one piece (i.e., the last piece). The lemma
upper-bounds the virtual area having higher priority by the area of the campaign,
as in the worst case k users submit campaigns of equal area, thus ending at the
same time in V, and thus being executed in arbitrary order in R.

Lemma 2. The completion time Cu
i,q of the last piece q of a campaign Ju

i is
bounded by a sum:

Cu
i,q ≤ tui + k

Wu
i−1

m
+ pmax + (k − 1)

Wu
i

m
+ pmax +

Wu
i

m
+ pumax. (5.1)

Proof. In (5.1), tui +kWu
i−1/m expresses the maximum time a campaign may wait

until the virtual completion time of the previous campaign Ju
i−1 of the same user;

(k−1)Wu
i /m bounds the time needed to execute other users’ campaigns that can

have higher priority; Wu
i /m + pumax bounds the execution time of the campaign

Ju
i ; and two pmax elements represent the maximum lateness of R compared to

V and the maximum time needed to claim all the processors.
From (4.1), (4.2) and knowing that tui ≥ s̃ui−1 (the next campaign cannot be

released before the previous one starts), s̃ui ≤ tui + kWu
i−1/m.

There is no idle time in R in the period [s̃ui , sui,q), otherwise, the last piece
could have been started earlier.

We denote by A the area of jobs executed in R after the time moment s̃ui
and until s̃ui,q. We claim that A ≤ mpmax + (k − 1)Wu

i + W ∈u
i , where W ∈u

i is
the area of jobs from campaign Ju

i executed until sui,q. The Fig. 1 facilitates the
visualization of these notations, including the area A (shaded area).

To prove the claim, we analyze job J executed in R in the period [s̃ui , sui,q).
First, J is not executed in V after sui,q. If J is in V after sui,q, J has lower priority
than jobs from campaign Ju

i , so OStrich would not choose J over jobs from
campaign Ju

i .
Second, if J is executed in V before s̃ui , it means that R is “late” in terms

of executed area: but the total area of such “late” jobs it at most mpmax (from
Lemma 1).

Thus, if J has a corresponding area in the virtual schedule executed in the
period [s̃ui , sui,q), the area A of the jobs started in the real schedule in this period
is equal to the area of the virtual schedule between [s̃ui , sui,q) plus the lateness
mpmax. Recall that from time sui,q till the start of the last job of Ju

i , the campaign

OStrich: Fair Scheduling for Multiple Submissions 33

Fig. 1. Analysis of OStrich: bound for the campaign stretch

Ju
i has the highest priority (as it is not interrupted by any other campaign).

Thus, at the latest, sui,q corresponds to the time moment C̃u
i in the virtual

schedule when the campaign Ju
i completes (plus the lateness pmax). Thus, by

definition of the virtual schedule, sui,q ≤ pmax + s̃ui + k
Wu

i

m .
Starting from sui,q, the remaining jobs of Ju

i start and complete. Ju
i can claim

all processors at the latest pmax after sui,q. Then, by using classic lower bounds,
it takes Wu

i /m + pumax to complete the campaign. �

The following theorem states that in OStrich the stretch of a campaign
depends only on the number of active users and the relative area of two consec-
utive campaigns.

Theorem 1. The stretch of a campaign is proportional to the number of active
users k1 and the relative area of consecutive campaigns. Du

i ∈ O(k(1 + Wu
i−1

Wu
i

)).

Proof. The result follows directly from Lemma 2. Recall that, for campaign Ju
i ,

the stretch Du
i is defined by Du

i = (Cu
i −tui)/lui = (Cu

i − tui)/max(Wu
i /m, pumax).

Also, Cu
i = Cu

i,q, i.e. the completion time of a campaign is equal to the comple-
tion time of its last “piece”. Replacing Cu

i by the definition of Cu
i,q taken from

Lemma 2, we have

Du
i ≤

kWu
i−1

m + 3pmax + kWu
i

m
max(Wu

i

m , pumax)
≤ k(1 +

Wu
i−1

Wu
i

) + 3mpmax.

For a given supercomputer, m is constant; similarly, the maximum size of a
job pmax can be treated as constant, as it is typically limited by system admin-
istrators. Hence, Du

i ∈ O(k(1 + Wu
i−1/Wu

i)). �
1 The number of active users may vary on time. Here, we assume that k is the biggest

value it assume during the execution of the campaign.

34 J. Emeras et al.

It is worth noting that the stretch does not dependent on the current total
load of the system. Heavily-loaded users do not influence the stretch of less-
loaded ones. Also, this bound is tight (the proof is available at [9]).

6 Simulations

In this section, we analyze the performance of OStrich. We present a simulation
to demonstrates that OStrich results in lower stretch values against. The results
produced by OStrich are compared with a FCFS classical algorithm that sched-
ules campaigns in a First-In-First-Out order. Despite its simplicity, we chose
FCFS because it is a widely used strategy, easy to understand and to implement
and jobs do not starve. The simulator plays the role of a centralized scheduler:
it takes an instance of a user workload as inputs; and it calculates the cam-
paign stretches and the max-stretch per user obtained by each algorithm in an
environment composed of m = 64 identical processors.

We run 40 instances where instance is composed of 104 jobs. For each job we
set its length p according to the user profile. In order to observe how different
user profiles are affected by each algorithm, we defined 2 user profiles: short
and long. Short users submit short jobs with lengths uniformly taken from the
range [1; 3.6 × 103] (seconds as time unit). Long users submit long jobs with
lengths uniformly taken from the range [3.6 × 103; 3.6 × 104]. Each job starts
a new campaign with probability of 0.02; otherwise, it belongs to the previous
campaign. If the job starts a new campaign, we set the owner of this campaign
according to a uniform distribution.

(a) Stretch values by intervals (b) Max campaign stretch per user

Fig. 2. Ostrich vs FCFS: comparing stretch values of campaigns

OStrich: Fair Scheduling for Multiple Submissions 35

In general, the results confirm our expectations and show that OStrich results
in significantly lower max stretches than FCFS. The Fig. 2a shows the distribu-
tion of stretch values for all campaigns. The number of campaigns with stretch
lower than 2 for OStrich is more than twice the number obtained with FCFS.
More important, though is the number of high stretch values above: while on
OStrich this number decreases rapidly towards 0 as stretch increases, with FCFS
it is bigger than 2600 above 20, representing 42.3 % of the total. The occurrence
of stretch values above 20 is only 117 for OStrich (1.3 %).

The Fig. 2b shows the max stretch average per user profile (in a log scale) and
here we can see how OStrich accomplishes its purpose: short users are penalized
by FCFS with big stretch values (whose average is above 50) while OStrich
does not heavily discriminate users by their profiles, guaranteeing a more fair
treatment for all the users (average of 12.8 for short users). For long users, FCFS
and OStrich have almost the same performance (average of 6.3 for FCFS and
6.8 for OStrich).

7 Concluding Remarks

We have presented in this work a new scheduling algorithm for the problem of
scheduling multiple submissions issued by many users. OStrich algorithm has
been designed to handle the problem of fairness between users by defining exe-
cution priorities according to a criterion based on stretch. The principle of the
proposed solution is to dynamically determine the priorities between the cam-
paigns based on a fair time-sharing virtual schedule. We proved that OStrich
delivers performance guarantee for the max stretch value of a user campaign
that depends only on the user workload and on the number of active users.

The performance of our algorithm is assessed by running simulations on
workloads composed of two types of users sharing a parallel system. The results
show that, for short job user profiles, OStrich achieves lower stretches than the
FCFS while it remains as good as FCFS for long job users; moreover distribu-
tion of stretches among users is more equal. Therefore, OStrich delivers a good
compromise between fairness and user performance without worsening overall
performance.

Acknowledgement. Krzysztof Rzadca is partly supported by Polish National
Research Center SONATA grant UMO-2012/07/D/ST6/02440 Work partly supported
by the French-Polish scientific cooperation program POLONIUM. Vinicius Pinheiro is
partly supported by the CAPES/COFECUB Program (project number 4971/11-6).

References

1. Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Scheduling problems
with two competing agents. Oper. Res. 52(2), 229–242 (2004)

2. Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Marchal, L., Robert, Y.: Cen-
tralized versus distributed schedulers for bag-of-tasks applications. IEEE Trans.
Parallel Distrib. Syst. 19(5), 698–709 (2008)

36 J. Emeras et al.

3. Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for
scheduling continuous job streams. In: Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’98, pp. 270–279. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (1998). http://dl.
acm.org/citation.cfm?id=314613.314715

4. Bender, M.A., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for
stretch scheduling. In: Proceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’02, pp. 762–771. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (2002). http://dl.acm.org/citation.
cfm?id=545381.545482

5. Bruno, J., Coffman, J.E.G., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Commun. ACM 17(7), 382–387 (1974). http://doi.acm.org/
10.1145/361011.361064

6. Casanova, H., Desprez, F., Suter, F.: Minimizing stretch and makespan of mul-
tiple parallel task graphs via malleable allocations. In: 2010 39th International
Conference on Parallel Processing (ICPP), September 2010, pp. 71–80 (2010)

7. Celaya, J., Marchal, L.: A fair decentralized scheduler for bag-of-tasks applications
on desktop grids. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), May 2010, pp. 538–541 (2010)

8. Donassolo, B., Legrand, A., Geyer, C.: Non-cooperative scheduling considered
harmful in collaborative volunteer computing environments. In: Proceedings of
the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid,
Computing, CCGRID’11, pp. 144–153 (2011)

9. Emeras, J., Pinheiro, V., Rzadca, K., Trystram, D.: Fair scheduling for multiple
submissions. Research Report RR-LIG-033, LIG, Grenoble, France (2012)

10. Feitelson, D.: Workload modeling for computer systems performance evaluation
(2005). http://www.cs.huji.ac.il/feit/wlmod/wlmod.pdf

11. Ghodsi, A., Sekar, V., Zaharia, M., Stoica, I.: Multi-resource fair queueing for
packet processing. ACM SIGCOMM Comput. Commun. Rev. 42(4), 1–12 (2012)

12. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM JOURNAL
ON APPLIED MATHEMATICS 17(2), 416–429 (1969)

13. Iosup, A., Jan, M., Sonmez, O.O., Epema, D.H.J.: The Characteristics and Per-
formance of Groups of Jobs in Grids. In: Kermarrec, A.-M., Bougé, L., Priol, T.
(eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 382–393. Springer, Heidelberg (2007)

14. Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks in
large-scale distributed systems. In: Proceedings of the 17th International Sympo-
sium on High Performance Distributed Computing, pp. 97–108. ACM (2008)

15. Lee, C.Y.: Parallel machines scheduling with nonsimultaneous machine avail-
able time. Discrete Appl. Math. 30, 53–61 (1991). http://dx.doi.org/10.1016/
0166-218X(91)90013-M

16. Legrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of
biological requests. In: Proceedings of the Eighteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA’06, pp. 103–112. ACM, New
York, NY, USA (2006). http://doi.acm.org/10.1145/1148109.1148124

17. Mehrzadi, D., Feitelson, D.G.: On extracting session data from activity logs. In:
Proceedings of the 5th Annual International Systems and Storage Conference,
SYSTOR’12, pp. 3:1–3:7 (2012)

18. Pinheiro, V., Rzadca, K., Trystram, D.: Campaign scheduling. In: IEEE Interna-
tional Conference on High Performance Computing (HiPC), Proceedings (2012,
accepted for publication)

http://dl.acm.org/citation.cfm?id=314613.314715
http://dl.acm.org/citation.cfm?id=314613.314715
http://dl.acm.org/citation.cfm?id=545381.545482
http://dl.acm.org/citation.cfm?id=545381.545482
http://doi.acm.org/10.1145/361011.361064
http://doi.acm.org/10.1145/361011.361064
http://www.cs.huji.ac.il/feit/wlmod/wlmod.pdf
http://dx.doi.org/10.1016/0166-218X(91)90013-M
http://dx.doi.org/10.1016/0166-218X(91)90013-M
http://doi.acm.org/10.1145/1148109.1148124

OStrich: Fair Scheduling for Multiple Submissions 37

19. Raz, D., Levy, H., Avi-Itzhak, B.: A resource-allocation queueing fairness measure.
SIGMETRICS Perform. Eval. Rev. 32(1), 130–141 (2004)

20. Sabin, G., Kochhar, G., Sadayappan, P.: Job fairness in non-preemptive job
scheduling. In: Proceedings of the 2004 International Conference on Parallel
Processing, ICPP’04, pp. 186–194 (2004)

21. Saule, E., Trystram, D.: Multi-users scheduling in parallel systems. In: Proceedings
of IEEE International Parallel and Distributed Processing Symposium, May 2009,
pp. 1–9. Washington, DC, USA (2009)

22. Shmueli, E., Feitelson, D.: Using site-level modeling to evaluate the performance
of parallel system schedulers. In: 14th IEEE International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems, 2006,
MASCOTS 2006, September 2006, pp. 167–178 (2006)

23. Wu, Y., Cao, G.: Stretch-optimal scheduling for on-demand data broadcasts. In:
Proceedings of Tenth International Conference on Computer Communications and
Networks, pp. 500–504 (2001)

24. Zakay, N., Feitelson, D.G.: On identifying user session boundaries in parallel work-
load logs. In: Proceedings of the 16th Workshop on Job Scheduling Strategies for
Parallel Processing. The Hebrew University, Israel (May 2012). http://www.cs.
huji.ac.il/feit/parsched/jsspp12/p12-zakay.pdf

http://www.cs.huji.ac.il/feit/parsched/jsspp12/p12-zakay.pdf
http://www.cs.huji.ac.il/feit/parsched/jsspp12/p12-zakay.pdf

Fair Share Is Not Enough: Measuring Fairness
in Scheduling with Cooperative Game Theory

Piotr Skowron(B) and Krzysztof Rzadca

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
{p.skowron,krzadca}@mimuw.edu.pl

Abstract. We consider the problem of fair scheduling in a multi-
organizational system in which organizations contribute their own
resources to the global pool and the jobs to be processed on the common
resources. We consider on-line, non-clairvoyant scheduling of sequential
jobs without preemption. To ensure that the organizations are willing to
cooperate the scheduling algorithm must be fair.

To characterize fairness, we use a cooperative game theory approach.
The contribution of an organization is computed based on how this orga-
nization influences the utility (which can be any metric, e.g., flow time,
turnaround, resource allocation) of all organizations. Formally, the con-
tribution of the organization is its Shapley value in the cooperative game.
The scheduling algorithm should ensure that the contributions of the
organizations are close to their utilities. Our previous work proves that
this problem is NP-hard and hard to approximate.

In this paper we propose a heuristic scheduling algorithm for the
fair scheduling problem. We experimentally evaluate the heuristic and
compare its fairness to fair share, round robin and the exact exponential
algorithm. Our results show that fairness of the heuristic algorithm is
close to the optimal. The difference between our heuristic and the fair
share algorithm is more visible on longer traces with more organizations.
These results show that assigning static target shares (as in the fair share
algorithm) is not fair in multi-organizational systems and that instead
dynamic measures of organizations’ contributions should be used.

Keywords: Fair scheduling · Game theory · Algorithm

1 Introduction

A large fraction of contemporary supercomputing resources is run by consortia
of independent organizations: from local supercomputing centers shared by a
few research groups to international grids, such as Grid5000, DAS or Planet-lab.
Each participating organization grants access to its resources to other members
of the consortium; in return, an organization expects to be given a fair access
to other resources. The role of the consortium is to coordinate access to the

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 38–48, 2014.
DOI: 10.1007/978-3-642-55195-6 4, © Springer-Verlag Berlin Heidelberg 2014

Fair Share Is Not Enough: Measuring Fairness in Scheduling 39

resources through a scheduler. Fairness is crucial to the existence of such systems:
if an organization feels that it is treated unfairly, it may quit the consortium,
thus reducing the pool of the resources accessible by others.

Fairness is one of the key problems in scheduling. Most existing approaches
[2,6–10,18] are based on distributive fairness: agents (users, projects or orga-
nizations) are assigned a target share of the available resources. The sched-
uler’s goal is to produce schedules with an average utilization per agent close
to the target share. However, distributive fairness does not correspond with
agents’ goals: an agent, rather than being given an equal share of resources,
wants its jobs to be completed fast. Alternative approaches consider agents’ util-
ities (and, sometimes, possible actions of agents). Kostreva et al. [11] proposes
an axiomatic characterization of fairness based on multi-objective optimization;
Rzadca et al. [16] applies this concept to scheduling in a multi-organizational
system. [3,4] optimizes the global makespan with an additional constraint that
each organization must be at least as well-off as if it acted alone. See [17] for
more detailed related work.

In our previous work [17], we considered the problem of fairness by deter-
mining the Shapley value of each organization (we summarize these results in
Sect. 3). The Shapley value is a concept commonly used in the cooperative game
theory. For an organization, its Shapley value expresses the relative value of
the organization to the others. Thus, it represents a fair amount of utility an
organization should get from the schedule. In contrast to other works [1,12–14]
using monetary valuations for jobs, we proposed to compute the Shapley value
directly as a function of how organization’s processors increase other organiza-
tion utilities; and how organization’s jobs decrease others utilities. The problem
is that an exact scheduling algorithm that produces schedules approximating the
Shapley value is exponential (O(3n)).

The contribution of this paper is the following. First, we propose a
practical heuristic that schedules jobs according to an estimated Shapley value
(Algorithm DirectContr in Sect. 4). The heuristic estimates the contribution
of an organization by the number of CPU-timeunits an organization contributes
for computing jobs of other organizations; the algorithm schedules the jobs to
minimize the maximal difference between the utility and the contribution over
all organizations. Second, we conduct extensive simulation experiments to ver-
ify fairness of commonly-used scheduling algorithms (Sect. 5). The experiments
show that although the fair share algorithm is considerably better than round
robin (which does not aim to optimize fairness), our heuristic constantly out-
performs fair share, being close to the optimal algorithm and the randomized
approximation algorithm. The main conclusion is that ensuring that each party
is given a fair share of resources (the distributive fairness approach) might not be
sufficient in systems with dynamic job arrival patterns. An algorithm based on
the Shapley value, that explicitly considers the organization’s impact on other
organizations’ utilities, produces more fair schedules.

40 P. Skowron and K. Rzadca

2 The Scheduling Model

We consider a multi-organizational model in which the organizations may coop-
erate; the set of cooperating organizations is called a coalition and denoted as
C. Every subset of a coalition is also a coalition; however, to emphasize that we
are considering a subset of the organizations from a particular C, we will refer
to such subsets as to subcoalitions of C. Each organization O(u) participating in
a coalition C is contributing its local resources (its processors) to the coalition’s
global pool. In return, each organization from C can use all the processors from
the coalition’s pool to process its own jobs.

The jobs of the organizations may compete for the processors (this happens
when in a given time moment there are more jobs waiting for execution than
the total number of free processors), so the organizations need to agree on the
scheduling algorithm. Each organization wants its jobs to be processed as fast as
possible. The satisfaction of an organization from a schedule can be quantified by
a utility function. The utility function of the organization can be any metric that
depends on the completion times of the jobs owned by this organization. The
classic utilities in the scheduling theory are: flow time, tardiness, turnaround,
resource utilization, etc. Hereinafter we will use ψ when referring to the utility
function.

The total utility of the organizations participating in coalition C is called the
value of the coalition and denoted as v(C). Thus, v(C) =

∑
O(u)∈C ψ(O(u)).

We consider on-line, non-clairvoyant scheduling of sequential jobs. The
started jobs cannot be stopped, canceled, or preempted. The organizations decide
about the order of processing their own jobs: the jobs of a single organization
must be executed in the order they were presented by the organization. The
processors are identical.

3 Fairness by the Shapley Value

In this section we describe our approach to fair scheduling by computing the
Shapley value. The section summarizes the theoretical results from our previous
work [17].

3.1 Computing the Shapley Value

The core idea of our approach lies in computing the effective influence an orga-
nization has on the utility of other organizations. The standard, budget-based
approaches, when computing the load of an organization, just compute the num-
ber of CPU-seconds consumed by the jobs belonging to the organization. This
approach ignores the fact that the resources used in peak load periods should be
comparatively more expensive than the resources used during low load periods.
Similarly, resources contributed by an organization are more valuable during
peak load times than when other resources are already idle. Their value directly

Fair Share Is Not Enough: Measuring Fairness in Scheduling 41

stems from their ability to execute waiting jobs and thus improve the overall
performance.

Taking this approach, the marginal contribution of the organization O(u)

to a coalition C (O(u) /∈ C) is v(C ∪ {O(u)}) − v(C)), i.e., the difference of the
total utility of organizations belonging to C (including O(u)) when O(u) joins
C. Intuitively, the marginal contribution of the organization O(u) to a coalition
C measures how the presence of the organization O(u) influences (increases or
decreases) the completion times of the jobs (the utility) of all organizations
participating in C.

The contribution φ(u)(C) of the organization O(u) is its Shapley value.
Intuitively, the Shapley value expresses the relative worth of an organization. For-
mally, let LC denote all orderings of the organizations from the coalition C. Each
ordering ≺C can be associated with a permutation of the set C, thus |LC | = |C|!.
For the ordering ≺C∈ LC we define ≺C (O(i)) = {O(j) ∈ C : O(j) ≺C O(i)} as the
set of all organizations from C that precede O(i) in the order ≺C . The Shapley
value can be expressed [15] in the following form:

φ(u)(v(C)) =
1

|C|!
∑

∈C∈LC

(
v(≺C (O(u)) ∪ {O(u)}) − v(≺C (O(u))

)
. (1)

When computing the contribution φ(u)(C) of the organization O(u) to a coali-
tion C we consider the process of formation of C—we consider that the organiza-
tions may join C in different orders. For each such an order ≺, the organization
O(u) joins some already formed subcoalition C≥ ⊂ C. This subcoalition C≥ consists
of the organizations that joined before O(u), and so of the organizations that are
before O(u) in ≺. The organization O(u) joining C≥ ⊂ C changes the value of the
coalition by v(C≥ ∪ {O(u)}) − v(C≥)) (this is the marginal contribution of O(u) to
C≥). The contribution of the organization O(u) to a coalition C is the expected
marginal contribution of O(u) when the expectation is taken over all orders of
the organizations from C.

An ideally-fair scheduling algorithm should ensure that for each organization
O(u), its utility is equal to its contribution, ∀u ψ(O(u)) = φ(u)(v(C)); however, as
the scheduling problem is discrete, such a solution may not exist. Instead, the goal
should be to construct in each time moment a schedule that is as fair as possible.
More formally, an on-line scheduling algorithm, when there is a free processor,
should choose a job of an organization O(u)◦ that, after being scheduled, minimizes
the distance of contributions to utilities, |∑u ψ(O(u)) − φ(u)(v(C))|.

The problem is that, in order to compute contribution φ(u)(v(C)), each of 2|C|

possible coalitions must be analyzed. The complexity of the resulting scheduling
algorithm is O(|O|(2|O| ∑ m(u) + 3|O|)) [17].

3.2 Strategy-Resilient Utility Functions

When defining fairness we need to compare values of utility functions. In distrib-
utive fairness the utilities of the organizations should be proportional to their
weights. In Shapley fairness (Sect. 3.1) the utilities should be close to the

42 P. Skowron and K. Rzadca

contributions. However, most of the classic utility functions create incentives for
organizations to manipulate their workload. An organization can change its util-
ity by e.g. merging, splitting or delaying their jobs. E.g., consider a job released
and started in time 0 and completed in time 2. The flow time of the job is 2. If the
job is split into two smaller jobs – one started in time 0 and completed in time 1
and the other started in time 1 and completed in time 2, then the total flow time of
the two jobs is 3. Thus, by splitting a job, the organization can later require better
service by claiming that it obtained worse service from what it actually got.

A strategy-resilient (non-manipulable) utility function exists [17]. Let σ
denote a schedule of the jobs of a given organization. We assume that σ is a
set of pairs (s, p), each pair representing a single job; s denotes the start time
and p denotes the processing time of a job. If the job is not yet completed (p is
not known), we set p = (t − s). A strategy-resilient utility function in time t has
the following form:

ψsp(σ, t) =
∑

(s,p)∈σ:s≤t

p

(

t − s + (s + p − 1)
2

)

. (2)

Intuitively, in ψsp the jobs are considered as sets of unit-size tasks. Each
task obtains a utility proportional to the time in which it completes. If a job
completes at time tc, at time t it gets a utility equal to (t−tc). This function can
be thought of as the throughput of the jobs of an organization. If we consider a
fixed set of jobs with equal processing times, maximization of ψsp is equivalent
to minimization of the flow time [17]. The utility function ψsp takes into account
only the completed jobs and the completed unit-size parts of the jobs (by setting
p = (t − s) whenever job is still being processed), thus it is adequate for non-
clairvoyant models).

4 Algorithms

In this section we describe the algorithms that we evaluate. We start by a
description of the exact exponential fair algorithm Ref [17]; we then describe a
randomized algorithm Rand [17] approximating Ref; our new heuristic
DirectContr; and the reference algorithms RoundRobin and FairShare
in three versions differing by what the algorithm balance: the shares of assigned
processors in FairShare, the utility functions in UtFairShare and the number
of concurrently executed jobs in CurrFairShare.

REF. This algorithm is a direct implementation of the definition from Sect. 3.1.
It is based on the concepts of utilities and contributions of the organizations.
The contribution of the organization is defined by its Shapley value.

The referral algorithm schedules the jobs to ensure that the contributions of
organizations are as close to their utilities as possible. Calculating the Shapley
value for the organization is NP-hard and hard to approximate [17]. The core
difficulty lies in the fact that to calculate the Shapley value in each time moment
one has to know the schedules for each subset—with k organizations there are

Fair Share Is Not Enough: Measuring Fairness in Scheduling 43

2k such subsets. As the result, the practical usage of the algorithm Ref is lim-
ited and we can only use this algorithm as a benchmark for evaluating other
algorithms.

RAND. Taking into account the computational hardness of the algorithm Ref,
in our previous work [17] we proposed a randomized algorithm. Instead of remem-
bering the schedules for all 2k subsets, the algorithm for each organization O(u)

selects only N random subsets not containing O(u). The contribution of O(u) is
calculated based on the marginal contribution of O(u) only to these N subsets
(the idea is similar to Monte-Carlo methods for computing the Shapley value).
Such approach guarantees that for sufficiently large N with high probability we
can get arbitrarily good approximation bounds for the fairness [17]. Although
this algorithm has good theoretical properties, it requires a large N to produce
high-quality schedules.

DIRECTCONTR (see Algorithm 1). The algorithm keeps for each organization
O its utility ψsp[O] and its estimated contribution φ[O]. The estimate of the

Algorithm 1. DirectContr: a heuristic algorithm for Shapley-fair scheduling.

Notation:
own(M), own(J) — the organization owning the processor M , the job J
wait(O) — the set of released, but not-yet scheduled jobs of the organization O
at time t
Initialize(C):

foreach O(u) ∈ C do

finUt[O(u)] ← 0; finCon[O(u)] ← 0 ;

φ[O(u)] ← 0; ψ[O(u)] ← 0 ;

Schedule(tprev, t): // tprev is the time of the previous event

foreach O(u) ∈ C do

φ[O(u)] ← φ[O(u)] + (t − tprev)finCon[O(u)];

ψ[O(u)] ← ψ[O(u)] + (t − tprev)finUt[O(u)];

γ ← generate a random permutation of the set of all processors;
foreach m ∈ γ do

if not FreeMachine(m, t) then
J ← RunningJob(m);
finUt[own(J)] ← finUt[own(J)] + t − tprev ;
finCon[own(m)] ← finCon[own(m)] + t − tprev ;
φ[own(J)] ← φ[own(J)] + 1

2
(t − tprev)(t − tprev + 1);

ψ[own(m)] ← ψ[own(m)] + 1
2
(t − tprev)(t − tprev + 1);

foreach m ∈ γ do

if FreeMachine(m, t) and
⋃

O(u) wait(O(u)) ∀= ≥ then

org ← argmaxO(u):wait(O(u)) ∈=∅(φ[O(u)] − ψ[O(u)]) ;

J ← first waiting job of org ;
startJob(J , m) ;
finUt[org] ← finUt[org] + 1 ;
finCon[own(m)] ← finCon[own(m)] + 1 ;

44 P. Skowron and K. Rzadca

contribution of each organization is assessed directly (without considering any
subcoalitions) by the following heuristic. On each scheduling event t we consider
the processors in a random order and assign waiting jobs to free processors. The
job that is started on processor m increases the contribution φ̃ of the owner of
m by the utility of this job.

In the pseudo code, finUt[O] denotes the number of the unit-size parts of the
jobs of the organization O that are completed before tprev. From Eq. 2 we know
that the utility in time t of the unit-size parts of the jobs of the organization O
that are completed before tprev is greater by (t − tprev)finUt[O] than this utility
in time tprev (line 1); the utility of the unit-size parts of the job completed
between tprev and t is equal to

∑t−tprev
i=1 i = 1

2 (t − tprev)(t − tprev + 1) (line 1).
Similarly, finCon[O] denotes the number of the completed unit-size parts of the
jobs processed on the processors of the organization O. The algorithm updates
the utilities and the estimates of the contributions. The waiting jobs are assigned
to the processors in the order of decreasing differences (φ − ψ) of the issuing
organizations (similarly to Ref).

ROUNDROBIN. The algorithm cycles through the list of organizations to deter-
mine the job to be started.

FAIRSHARE [10]. This is perhaps the most popular scheduling algorithm using
the idea of distributive fairness. Each organization is given a target weight (a
share). The algorithm tries to ensure that the resources used by different organi-
zations are proportional to their shares. More formally, whenever there is a free
processor and some jobs waiting for execution, the algorithm sorts the organiza-
tions in the ascending order of the ratios: the total time of the processor already
assigned for the jobs of the organization divided by its share. A job from the
organization with the lowest ratio is started.

In all versions of fair share, in the experiments we set the target share to the
fraction of processors contributed by an organization to the global pool.

UTFAIRSHARE. This algorithm uses the same idea as FairShare. The only
difference is that UtFairShare tries to balance the utilities of the organizations
instead of their resource allocation. Thus, in each step the job of the organization
with the smallest ratio of utility to share is selected.

CURRFAIRSHARE. This version of the fair share algorithm does not keep
any history; it only ensures that, for each organization, the number of currently
executing jobs is proportional to its target share.

5 Simulation Experiments

5.1 Settings

To run simulations, we chose the following workloads from the Parallel Work-
load Archive [5]: 1. LPC-EGEE1 (cleaned version), 2. PIK-IPLEX2, 3. RICC3,
1 http://www.cs.huji.ac.il/labs/parallel/workload/l lpc/index.html
2 http://www.cs.huji.ac.il/labs/parallel/workload/l pik iplex/index.html
3 http://www.cs.huji.ac.il/labs/parallel/workload/l ricc/index.html

http://www.cs.huji.ac.il/labs/parallel/workload/l_lpc/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_pik_iplex/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_ricc/index.html

Fair Share Is Not Enough: Measuring Fairness in Scheduling 45

4. SHARCNET-Whale4. We selected traces that closely resemble sequential
workloads (in the selected traces most of the jobs require a single processor).
We replaced parallel jobs that required q > 1 processors with q copies of a
sequential job having the same duration.

In each workload, each job has a user identifier (in the workloads there are
respectively 56, 225, 176 and 154 distinct user identifiers). To distribute the jobs
between the organizations we uniformly distributed the user identifiers between
the organizations; the job sent by the given user was assigned to the correspond-
ing organization.

Because Ref is exponential, the experiments are computationally-intensive;
in most of the experiments, we simulate only 5 organizations.

The users usually send their jobs in consecutive blocks. We also considered
a scenario when the jobs are uniformly distributed between organizations (cor-
responding to a case when the number of users within organizations is large,
in which case the distribution of the jobs should be close to uniform). These
experiments led to the same conclusions, so we present only the results from the
case when the user identifiers were distributed between the organizations.

For each workload, the total number of the processors in the system was
equal to the number originally used in the workload (that is 70, 2560, 8192 and
3072, respectively). The processors were assigned to organizations so that the
counts follow Zipf and (in different runs) uniform distributions.

For each algorithm, we compared the vector of the utilities (the utilities per
organization) at the end of the simulated time period (a fixed time tend): ψ with
the vector of the utilities in the ideally fair schedule ψ◦ (computed by Ref).
Let ptot denote the total number of the unit-size parts of the jobs completed in
the fair schedule returned by Ref, ptot =

∑
(s,p)∈σ∗:s≤tend

min(p, tend − s). We
calculated the difference Δψ = |ψ − ψ◦| =

∑
O(u)(ψ(u) − ψ(u),◦) and compared

the values Δψ/ptot for different algorithms. The value Δψ/ptot is the measure
of the fairness that has an intuitive interpretation. Since delaying each unit-size
part of a job by one time moment decreases the utility of the job owner by one,
the value Δψ/ptot gives the average unjustified delay (or unjustified speed-up)
of a job due to the unfairness of the algorithm.

5.2 Results

We start with experiments on short sub-traces of the original workloads. We
randomly selected the start time of the experiment tstart and set the end time
to tend = tstart +5 ·104. For each workload we run 100 experiments (on different
periods of workloads of length 5 · 104). The average values of Δψ/ptot, and the
standard deviations are presented in Table 1.

From this part of the experiments we conclude that: (i) The algorithm Rand
is the most fair algorithm regarding the fairness by the Shapley Value;
but Rand is the second most computationally intensive algorithm (after Ref).
(ii) All the other algorithms are about equally computationally efficient.

4 http://www.cs.huji.ac.il/labs/parallel/workload/l sharcnet/index.html

http://www.cs.huji.ac.il/labs/parallel/workload/l_sharcnet/index.html

46 P. Skowron and K. Rzadca

Table 1. The average delay (or the speed up) of jobs due to the unfairness of the
algorithm Δψ/ptot for different algorithms and different workloads. Each row is an
average over 100 instances taken as parts of the original workload. The duration of the
experiment is 5 · 104

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC
Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

RoundRobin 238 353 6 33 145 38 2839 357
Rand (N = 15) 8 21 0.014 0.01 6 6 162 187
DirectContr 5 11 0.02 0.15 10 7 537 303
FairShare 16 25 0.3 1.38 13 8 626 309
UtFairShare 16 25 0.3 1.38 38 67 515 284
CurrFairShare 87 106 0.3 1.58 145 80 1231 243

Table 2. The average delay (or the speed up) of jobs due to the unfairness of the
algorithm Δψ/ptot for different algorithms and different workloads. Each row is an
average over 100 instances taken as parts of the original workload. The duration of the
experiment is 5 · 105

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC
Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

RoundRobin 4511 6257 242 1420 404 1221 10850 13773
Rand (N = 15) 562 1670 1.3 7 26 158 771 1479
DirectContr 410 1083 0.2 1.4 60 204 1808 3397
FairShare 575 1404 2.3 12 94 307 2746 4070
UtFairShare 888 2101 1.2 5 120 344 4963 6080
CurrFairShare 1082 2091 2.2 11 180 805 5387 9083

The algorithm DirectContr is the most fair. (iii) The algorithm FairShare,
which is the algorithm mostly used in real systems, is not much worse than
DirectContr. (iv) Arbitrary scheduling algorithms like RoundRobin may
result in unfair schedules. (v) The fairness of the algorithms may depend on the
workload. In RICC the differences are much more visible than in PIK-IPLEX.
Thus, although DirectContr and FairShare are usually comparable, on some
workloads the difference is important.

In the second series of experiments, we verified the effect of the duration of
the simulated workload on the resulting fairness measure (the ratio Δψ/ptot). As
we changed the duration of the experiments from 5 · 104 to 5 · 105, we observed
that the unfairness ratio Δψ/ptot was increasing. The value of the ratio for
tend − tstart = 5 · 105 are presented in Table 2. The relative quality of the algo-
rithms is the same as in the previous case. Thus, all our previous conclusions
hold. However, now all the algorithms are significantly less fair than the exact
algorithm. Thus, in long-running systems the difference between the approaches
becomes more important. If there are a few organizations, the exact Ref or the

Fair Share Is Not Enough: Measuring Fairness in Scheduling 47

Fig. 1. The effect of the number of the organizations on ratio Δψ/ptot

randomized Rand algorithms should be used. In larger systems, when the com-
putational cost of these is too high, DirectContr clearly outperforms Fair-
Share.

Last, we verified the effect of the number of the organizations on the ratio
Δψ/ptot. The results from the experiments conducted on LPC-EGEE data set
are presented in Fig. 1. As the number of organizations increases, the unfair-
ness ratio Δψ/ptot grows; thus the difference between the algorithms is more
significant. This confirms our previous conclusions. The relative fairness of the
algorithms is the same as in our previous experiments.

6 Conclusions

In this paper we present DirectContr, a heuristic algorithm for the prob-
lem of Shapley-fair scheduling. We conduct extensive experimental evaluation of
the fairness of our algorithm comparing it to other algorithms used in real sys-
tems. We conclude that the randomized algorithm is the closest to the referral
exponential algorithm, yet it is also the most computationally intensive. Among
computationally-tractable algorithms, DirectContr, our heuristic, is the clos-
est to the referral algorithm, although on shorter workloads with relatively few
organizations, the fair share algorithm is similar. The difference between algo-
rithms becomes significant in longer-running systems with many organizations.
The main conclusion from our work is that in multi-organizational systems, the
distributive fairness used by fair share does not result in truly-fair schedules; our
heuristic better approximates the Shapley-fair schedules.

Acknowledgements. This work is partly supported by Polish National Science Cen-
ter Sonata grant UMO-2012/07/D/ST6/02440

48 P. Skowron and K. Rzadca

References

1. Carroll, T.E., Grosu, D.: Divisible load scheduling: an approach using coalitional
games. In: Proceedings of the ISPDC (2007)

2. Chaskar, H.M., Madhow, U.: Fair scheduling with tunable latency: a round-robin
approach. IEEE/ACM Trans. Netw. 11(4), 592–601 (2003)

3. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Multi-organization schedul-
ing approximation algorithms. Concurr. Comput. Pract. Exp. 23(17), 2220–2234
(2011)

4. Dutot, P.-F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms for
the multi-organization scheduling problem. IEEE Trans. Parallel Distrib. Syst. 22,
1888–1895 (2011)

5. Feitelson, D.G.: Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/
workload/

6. Goyal, P., Vin, H.M., Chen, H.: Start-time fair queueing: a scheduling algorithm for
integrated services packet switching networks. In: Proceedings of the SIGCOMM,
pp. 157–168 (1996)

7. Gulati, A., Ahmad, I.: Towards distributed storage resource management using
flow control. SIGOPS Oper. Syst. Rev. 42(6), 10–16 (2008)

8. Gulati, A., Ahmad, I., Waldspurger, C.A.: PARDA: proportional allocation of
resources for distributed storage access. In: FAST Proceedings, February 2009

9. Jin, W., Chase, J.S., Kaur, J.: Interposed proportional sharing for a storage service
utility. SIGMETRICS Perform. Eval. Rev. 32(1), 37–48 (2004)

10. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (1988)
11. Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multi-

ple criteria analysis. Eur. J. Oper. Res. 158(2), 362–377 (2004)
12. Mashayekhy, L., Grosu, D.: A merge-and-split mechanism for dynamic virtual orga-

nization formation in grids. In: PCCC Proceedings, pp. 1–8 (2011)
13. Mishra, D., Rangarajan, B.: Cost sharing in a job scheduling problem using the

Shapley value. In: Proceedings of the EC, pp. 232–239 (2005)
14. Moulin, H.: On scheduling fees to prevent merging, splitting, and transferring of

jobs. Math. Oper. Res. 32(2), 266–283 (2007)
15. Osborne, M.J., Rubinstein, A.: A Course in Game Theory, vol. 1. MIT Press,

Cambridge (1994)
16. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource manage-

ment in dedicated grids. In: CCGRID Proceedings (2007)
17. Skowron, P., Rzadca, K.: Non-monetary fair scheduling – cooperative game theory

approach. In: SPAA (see also the extended arxiv version) (2013)
18. Wang, Y., Merchant, A.: Proportional-share scheduling for distributed storage sys-

tems. In: FAST Proceedings, pp. 4–4 (2007)

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

Setting up Clusters of Computing Units
to Process Several Data Streams Efficiently

Daniel Millot and Christian Parrot(B)

Telecom SudParis, Institut Mines-Telecom, Évry, France
{Daniel.Millot,Christian.Parrot}@mines-telecom.fr

Abstract. Let us consider an upper bounded number of data streams
to be processed by a Divisible Load application. The total workload is
unknown and the available speeds for communicating and computing
may be poorly a priori estimated. This paper presents a resource selec-
tion method that aims at maximizing the throughput of this processing.
From a set of processing units linked by a network, this method con-
sists in forming an optimal set of master-workers clusters. Results of
simulations are presented to assess the efficiency of this method experi-
mentally. Before focusing on the proposed resource selection method, the
paper comes back on the adaptive scheduling method on which it relies.

Keywords: Adaptive scheduling · Parallel processing · Master-worker
model · Load balancing · Heterogeneous context · Dynamic context

1 Introduction and Related Works

We consider an application that processes data acquired as streams, during an
a priori unknown time-lapse. The throughput of the streams is supposed to
be unlimited. Each data stream is arbitrarily associated to one processing unit
in order to be processed. We assume that each data stream can be split into
chunks as small as necessary for the scheduling and that each chunk can be
processed independently of the others. Such applications, that can be found in
many different domains [1,2], look like a Divisible Load application [3], but we
assume that the total workload is unknown.

Each processing unit which acquires a data stream can split the flow into
chunks and distribute the chunks to be processed to other computation units,
via a network. Each unit which receives a load can process it and send back the
result of its processing; as a lot of data parallel applications [4,5]. We assume
that the communication speeds are high enough, in relation to the computation
speeds, make the execution of this application to benefit from an execution in
parallel.

According to the master-workers paradigm, the processing units which
distribute the load act as masters and the computation units which do the
processing act as workers [6]. Besides, we assume that the computation units

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 49–61, 2014.
DOI: 10.1007/978-3-642-55195-6 5, c© Springer-Verlag Berlin Heidelberg 2014

50 D. Millot and C. Parrot

have an unlimited buffering capability, unlike [7]. The resources, for both com-
municating and processing, can be heterogeneous as for [8,9] and the durations
of communicating and processing a chunk are supposed to be affine with respect
to the chunk size.

Let us assume that the available communication speeds, available compu-
tation speeds and latencies that characterize these resources, and that we call
execution parameters in the sequel, may be inaccurately specified; only estimates
of the execution parameters are a priori available to the scheduler.

We assume that computation can overlap communication. We consider a
1-port bi-directional communication model between master and workers. This
model allows a communication from master to worker to overlap a communi-
cation from worker to master. But, with such a communication model, only
one communication from, or to, one processing unit (master or worker) can be
performed at the same time. This feature fits in with the behavior of message
passing communications when messages are big enough [10].

We call “round” a sequence of consecutive actions leading the master to
feed all the workers once and collect the corresponding results. As a result of
the unawareness of the total workload, the minimization of the makespan is
impossible and the scheduling must proceed in an iterative way, as the workload
flows in. Therefore the scheduling has to be multi-round.

The processing of each data stream can be split into three phases. The start-
up phase begins when the master starts to send the very first chunk to a worker
and ends when each worker has received a chunk to process. Then begins the
streaming phase which ends when the last data item in the stream has been
acquired by the master. Eventually, the cleanup phase begins and it lasts until
the master has received the very last result of processing of each worker.

When the cleanup phase begins, the total workload happens to be known
and the makespan can be minimized by making the workers complete their
work simultaneously [11]. In order to reduce as much as possible the cost of
communication between workers to reallocate the chunks so as to balance their
remaining load, when the cleanup phase begins, it is convenient to upper-bound
the workload discrepancy between workers during the streaming phase. A usual
way to do that is to make asymptotically periodic the distribution of the chunks,
during the streaming phase. This strategy has the extra-advantage of facilitating
the reduction of the risk of contentions when workers compete to communicate
with the master [12].

Later on in this paper, we will consider that the start-up duration is negligible
compared to the streaming phase duration; unlike [13,14]. The legitimacy of this
assumption increases with the ratio of the total workload to the load distributed
at the very first round. Under this assumption it is reasonable to focus on the
streaming phase and to aim at maximizing the throughput during this period.

In order to iteratively adjust the schedule to the possible inaccuracy of the
specification of the execution parameter (and possibly even to their variation over
time), it is relevant to arbitrarily set the frequency of the successive steps of this
adaptation. The higher this frequency, in other words, the smaller the chunk

Setting up Clusters of Computing Units 51

sizes, the faster the adaptation; but unfortunately the longer the time wasted in
latencies. We want the adjustment of the schedule for the next round to be based
only on the measurement of durations like those of communicating or processing
of the previous rounds. Indeed, this measurement is the best benchmark to
estimate the actual value of the execution parameters.

Based on these remarks, the AS4DR (Adaptive Scheduling for Distributed
Resources) method [15] automatically adapts the schedule to both: the het-
erogeneity of the workers and the poorness of the estimation of the execution
parameters. But, it deals with only one data stream, processed by only one
master-workers platform. This method sets the chunk size for each worker at
each round by assuming that the execution parameters for the next round will
be identical to the one of the previous round. Let αw,i be the size of the chunk
sent to a worker w for round i. Let τ and σw,i be respectively the wanted and
the measured time durations between the start of the sending of a chunk of size
αw,i and the end of the reception of the corresponding result by the master. The
basic idea of the AS4DR multi-round method is to adapt αw,i according to:

αw,i := αw,i−1
τ

σw,i−1
for i > 1. (1)

It has been proved [12] that with a multi-port communication model and linear
costs for computations and communications, an asymptotic periodic schedule can
be installed without knowing the execution parameters. This result can cope with
an heterogeneous but steady-state context. Unfortunately this approach gener-
ates idleness of the workers between the processing of successive chunks, while
the workers communicate with their master. Taking over this principle, AS4DR
prevents this kind of idleness by making computation overlap communication.
The asymptotic periodicity of the schedule with AS4DR remains when the costs
for computations and communications are affine. With the aid of the estimate
of the execution parameters and, before the launch of the AS4DR scheduler, a
step called CIP (for Contentions and Idleness Prevention) determines a value for
τ , large enough to involve without contention all the workers into the schedul-
ing [15]. It has been proved that AS4DR maximizes the CPU-efficiency of the
workers in a heterogeneous but steady-state context [16]. Tests that have been
performed experimentally assess these theoretical results, when considering a
single master-workers platform. More, other tests have shown that AS4DR can
adapt the schedule to not only the poorness of the estimates, but to the varia-
tion over time of the execution parameters as well [17]. But using an evermore
increasing amount of resources makes the increase of the value of τ ultimately
impossible, without reconsidering the hypothesis according to which the work-
load for a round is negligible with respect to the total workload. Section 2 reminds
the way AS4DR schedules when considering only one data stream and only one
master-workers platform.

To overcome this scaling-up difficulty, the constraint which bounds the
number of data stream to one can be relaxed. Let M be an upper bound of the
number of data streams. In this new context the preliminary step CIP is replaced

52 D. Millot and C. Parrot

by another one which, for a given value of τ , selects workers to form master-
workers clusters so that contentions are avoided. So, AS4DR is able to install
an asymptotic periodic schedule for each data stream which, in the absence of
contentions thus obtained, prevents the idleness of the workers; with the excep-
tion of latencies. The choice of the value of τ depends on several criteria. Of
course, to reduce as much as possible the time wasted in latencies, the value of τ
should be as large as possible. But, on the other hand, the smaller τ , the faster
the adaptation of the schedule to the poorness of the estimate of the execution
parameters and also the more balanced the remaining workload between workers
when the cleanup phase begins. When the execution parameters vary over time,
the value of τ should be smaller than the smallest steady state period. When the
upper bound M of the number of data streams is big enough with respect to the
number of available workers, all workers can be involved into the processing. In
this case, as all workers are fully used, the global throughput is maximum ; for
a given value of τ . On the contrary, if some workers are not selected (because of
their lesser profitability for the global throughput), the throughput is not neces-
sarily maximum, but the selected workers are fully used. Section 3 presents this
preliminary step. Finally, we conclude in Sect. 4.

2 Presentation of the AS4DR Method

To allow the overlapping between communication and computation, the AS4DR
scheduler splits each chunk it has to deliver to a worker into two subchunks.
So sending subchunks of arbitrarily chosen sizes α̇w,1 and α̈w,1 to each worker
w for the first round, the AS4DR scheduler then sends to worker w, for each
round i, two subchunks ṡ and s̈ of respective sizes α̇w,i and α̈w,i such that:
α̇w,i + α̈w,i = αw,i.

Let θw denotes the constant ratio between α̇w,i and αw,i. From estimates
of the execution parameters, a preliminary step (for instance CIP) sets τ and
(αw,1, θw)
0∈w∈N−1

; where N denotes the number of workers. The round i for worker w

is composed of three phases: transmission in a row of the data from master to
worker for subchunks ṡ and s̈, worker computation on the received data, trans-
mission in a row of the computation result from worker to master for subchunks
ṡ and s̈. It is worth noticing that the result corresponding to the s̈ subchunk of
some round is returned to the master just after the result corresponding to the
ṡ subchunk of the next round has itself been returned. Let us denote Ċw,i the
measured time spent to process the subchunk ṡ of round i and fw the latency of
computation, for worker w. We define

σw,i ≡ Ċw,i − fw
θw

+ 2fw. (2)

When the communications between master and workers are contention-free, and
if the workload is set with the aid of (1) and (2), then the effective duration of
the rounds linearly converges to τ for any worker; whatever the initial (strictly

Setting up Clusters of Computing Units 53

Fig. 1. Contention-free asymptotic schedule

positive) workload. So, the schedule established according to the AS4DR method
is stable within the meaning of Lyapounov and, in addition, is asymptotically
stable [16].

Besides, there exists [16] a lower bound and an upper bound: θmin
w,i and θmax

w,i

such that, in the absence of contentions, AS4DR method prevents the idleness
between the processing of two successive subchunks, if and only if, θmax

w,i+1 ≥
θw ≥ θmin

w,i+1, ∀i.
To prevent contentions, the instant each worker accesses to the master is set

far enough from the instants the others access too, by introducing time delays
dw before posting the very first subchunk to each worker w. Figure 1 illustrates
the model of asymptotic τ -periodic (thus round-robin) schedule we are seeking,
when N=4. Let us define the delay dw:

dw ≡ (1 + λw) max
⎧
Ḋw−1 + D̈w−1, R̈w−1 + Ṙw

⎨
(modulo N); (3)

where: λw stands for a positive constant factor (the greater the inaccuracy of
the estimate of the execution parameters, the greater λw), Ḋw (resp. D̈w, Ṙw

and R̈w) denotes an a priori estimate of the time spent to communicate the ṡ
data (resp. s̈ data, ṡ result and s̈ result), for worker w. These durations can be
computed with the help of a priori estimates of the execution parameters [16].

Besides, the time intervals dw should allow all the workers to be served during
the first round, i.e. within a τ period. Thus, to prevent contention, it is sufficient
that τ verify:

N−1⎩

w=0

dw ≤ τ. (4)

54 D. Millot and C. Parrot

3 Resource Selection for AS4DR in a Multiple Data
Streams Context

3.1 Method

Let W be the set of all available workers. Let xm,w equals one if the worker w
is selected in the cluster m, and xm,w equals zero otherwise. As one worker can
belong to one cluster at most,

M−1⎩

m=0

xm,w ≤ 1,∀w ∈ W. (5)

Let T be the global throughput,

T =
M−1⎩

m=0

⎩

w≥W
twxm,w; (6)

where tw, the potential throughput of worker w in the absence of idleness between
the processing of any successive subchunks, verifies:

tw =
⎜

1 − 2
fw
τ

⎫

Fw;

where Fw and fw respectively denote the available computation speed and the
computation latency, of worker w. In order to prevent contentions, and thus to
make the use of AS4DR possible, we have seen (4) that necessarily,

⎩

w≥W
dwxm,w ≤ τm, ∀ 0 ≤ m ≤ M − 1; (7)

where τm is the wanted duration for the rounds of cluster m. To form a set
of clusters which maximizes the global throughput, when considering M data
streams at most, we want to find (xm,w)0∈m∈M−1,w≥W that maximizes T, given
by (6), subject to constraints (7) and (5). This problem looks like a Multiple
Knapsack problem. But as the value of τm cannot be set a priori, since it depends
on the workers selected for cluster m, the same wanted duration τ is set for the
rounds of all clusters. This choice has the advantage of upper bounding the load
discrepancy between the different clusters uniformly.

Besides, the time lag dw, defined by (3), depends on the worker w − 1, the
one that precedes w in the round robin distribution for the cluster which w
belongs to. As this worker w − 1 is a priori unknown, we need to reformulate the
Multiple Knapsack problem to make the weight for worker w be independent
from worker w − 1. For that, let us tighten up the constraints of the problem.

We define
◦
dw, as follows:

◦
dw ≡ (1 + λw) max

⎧
Dmax, R̈max + Ṙw

⎨
; where

⎬
⎭⎞

⎭⎠

Dmax ≡ max
w≥W

⎧
Ḋw + D̈w

⎨
,

R̈max ≡ max
w≥W

R̈w.

Setting up Clusters of Computing Units 55

As dw is smaller than
◦
dw, the feasible space defined by the following constraints:

⎩

w≥W

◦
dwxm,w ≤ τ, ∀ 0 ≤ m ≤ M − 1, (8)

is a subspace of the one previously defined by (7). So, the tightened problem we
have to solve now is: find (xm,w)0∈m∈M−1,w≥W that maximizes T, given by (6),
subject to constraints (8) and (5).

Unfortunately, the coefficients tw,
◦
dw and τ are not positive integers, like for

the classical Multiple Knapsack problem. To overcome this last complication, the
resource selection problem is reformulated. According to the machine number

representation, tw,
◦
dw and τ are rational numbers. So, in order to make the

problem be formulated like a Multiple Knapsack problem, (6) can be multiplied
by the least common multiple of the denominators of (tw)w≥W whereas, (8) can
be multiplied by the least common multiple of the denominators of (dw)w≥W and
τ . This new problem can be solved in a classical way by a Multiple Knapsack
method. If the whole set of workers happens to be selected to participate in the
processing, then the solution of this problem maximizes the global throughput;
for a given wanted duration for the rounds τ . Of course, as the presented method
to select the workers is based on the underlying scheduling method: AS4DR,
nothing allows one to claim that the global throughput is optimal if only a part
of the whole set of workers happens to be selected. Of course, there exists a value
of M big enough to make all the workers be ultimately involved into the schedule.
Because of the successive transformations of the resource selection problem, the
number of actually formed clusters is possibly no more minimal (but still smaller
than M).

The next section is devoted to the experimental assessment of the resource
selection method. The method described in [18] has been chosen to solve the
Multiple Knapsack problem posed by the resource selection.

3.2 Experimental Assessment

All the simulations, which results are presented in this section, have been con-
ducted with the SimGrid framework [19]. We consider 10 sets (Sk)0∈k∈9 of values
for the execution parameters of the workers, given (speeds in bytes/second and
latencies in seconds) in Table 1. Each of these sets is randomly a priori allo-
cated to 100 workers among the 1000 available workers. Let us denote, BD

w (resp.
BR

w) the available communication speed of the link from the master to worker
w (resp. from worker w to the master). To make Fw, BD

w and BR
w varying over

time, in a way that facilitates the correlation of the variations with their effects
on the scheduling, each of these parameters can only take two values. According
to the 10 profiles (Pk)0∈k∈9 of variation shown in Fig. 2,

(
Fw, BD

w, BR
w

⎢
alter-

natively takes the reference value (in Table 1):
(
(Fw)ref ,

(
BD

w

⎢

ref
,

(
BR

w

⎢

ref

⎢
,

and the perturbed value:
(
(1 − δk) (Fw)ref , (1 − δk)

(
BD

w

⎢

ref
, (1 − δk)

(
BR

w

⎢

ref

⎢
;

where δk takes a strictly positive value given in Table 2. Each profile is randomly

56 D. Millot and C. Parrot

Table 1. Reference values

Computation Communication Communication Number
master −→ wi master ←− wi of

Speed Latency Speed Latency Speed Latency workers

S0 1.0e+0 1.0e − 2 1.0e+6 1.0e − 2 1.0e+6 1.0e − 2 100
S1 1.0e+2 1.0e − 1 1.0e+7 1.0e − 3 1.0e+7 1.0e − 3 100
S2 1.0e+1 1.0e − 3 1.0e+8 1.5e − 2 1.0e+8 1.5e − 2 100
S3 1.0e+3 1.0e − 2 1.0e+9 1.0e − 2 1.0e+9 1.0e − 2 100
S4 1.0e+0 1.0e − 3 1.0e+6 1.0e − 2 1.0e+6 1.0e − 2 100
S5 1.0e+2 1.0e − 1 1.0e+7 1.0e − 3 1.0e+7 1.0e − 3 100
S6 1.0e+1 1.0e − 4 1.0e+8 1.0e − 2 1.0e+8 1.0e − 2 100
S7 1.0e+3 1.0e − 2 1.0e+9 1.0e − 2 1.0e+9 1.0e − 2 100
S8 1.0e+0 1.0e − 3 1.0e+6 1.0e − 3 1.0e+6 1.0e − 3 100
S9 1.0e+2 1.0e − 2 1.0e+7 1.0e − 2 1.0e+7 1.0e − 2 100

Table 2. Dynamic values

δ0 0.0
δ1 0.1
δ2 0.2
δ3 0.3
δ4 0.4
δ5 0.5
δ6 0.6
δ7 0.7
δ8 0.8
δ9 0.9

P9

P8

P7

P6

P5

P4

P3

P2

P1

P0

0 100 300 500 700 900 1100 1300 1500 1700 1900

Fig. 2. Perturbed execution parameter as a function of time (in seconds)

Setting up Clusters of Computing Units 57

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32

31 workers

62 workers

124 workers

248 workers

496 workers
992 workers

throughput

M

T

Fig. 3. Throughput as a function of the upper bound of the number of data streams: M

allocated to 100 workers. In this context, the coefficient δk characterizes the
variations of the execution parameters and is called “dynamicity” in the sequel;
with δ9 the amplitude of the variation of the execution parameters is maximum,
whereas it is minimum (steady state context) with δ0. For each simulation, the
dynamicity is the same for all the workers.

Figure 3 shows the variation of the global throughput (in bytes/second) as a
function of M, the upper bound of the number of data streams. For each value
of M, the total number of selected workers is given. The execution parameters
for this simulation are those of Table 1; dynamicity equals δ0, and the a priori
estimate of the execution parameters equals their real values. As best workers are
selected in priority, the greater the number of workers involved in the scheduling,
the lower the increase of the throughput.

Figure 4 represents the mean value of the measured durations (in seconds) of
the very first rounds: σ, for all selected workers, as a function of the elapsed time
(in seconds), when τ equals 100 s, in steady state context (dynamicity=δ0). For
this experiment, the initial workload is set to a value that could have resulted
from a computation based on poor estimates of the execution parameters. This
initial workload is set to −80% of the load computed with the aid of the real
execution parameters; those of Table 1, when the latency for computation, for all
the workers, is set to: 0.1, 0.5 and 0.9, successively. Figure 4 shows the conver-
gence towards τ of the mean value of σ. As expected, the smaller the processing
latencies, the faster the adaptation of σ to τ . Figure 4 illustrates the adaptation
of the workload to the poorness of the estimation of the execution parameters.

Although the throughput remains the ultimate performance indicator,
the throughput does not highlight the rate of time really spent in processing.

58 D. Millot and C. Parrot

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 200 300 400 500 600 700 800 900 1000

computation latency = 0.1
computation latency = 0.5
computation latency = 0.9

time

σmean
τ

Fig. 4. Mean value of s as a function of elapsed time

80%

85%

90%

95%

100%

1 2 4 8 16 32 64 128 256 512 1024

computation latency = 0.00
computation latency = 0.01
computation latency = 0.10

τ

CPUeff

Fig. 5. CPUeff as a function of τ , for several values of the dynamicity = δ0

Thus, let us define CPUeff the CPU-efficiency:

CPUeff ≡ 1 − CPU idleness
elapsed time

.

Figure 5 illustrates that the way to set the value of τ must depend on the
computation latency; as long as these latencies are not negligible compared to
τ . This simulation has been performed in steady state context (dynamicity=δ0),

Setting up Clusters of Computing Units 59

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 2 4 8 16 32

computation latency = 0.00
computation latency = 0.01

δ0, δ1, δ2, δ3
δ4

δ5

δ6

δ7

δ8

δ9
τ

CPUeff

Fig. 6. CPUeff as a function of τ , for several values of the dynamicity

with the full knowledge of the execution parameters of Table 1, but the com-
putation latencies for all the workers are replaced by the values: 0.0, 0.01 and
0.1, successively. Figure 5 also reminds one that, according to the value of the
computation latency, there exists an optimal value for τ . The existence of such
an optimal value is due to a compromise between two necessities. It is necessary
to make τ as great as possible in order to minimize the time wasted in latencies;
by reducing the number of rounds. On the other hand, the smaller the value of
τ , the earlier the worker starts to process.

In Fig. 6 we can see that the higher the dynamicity, the smaller τ must be.
Figure 6 also confirms that, even in a dynamic context, the smaller τ is, the
higher the effects on the efficiency of the time wasted in latencies are. This sim-
ulation has been performed with several values of dynamicity, with the execution
parameters of Table 1, but the CPU latencies for all the workers were replaced
by the values: 0.0 and 0.01, successively.

4 Conclusion

This paper addresses the problem of setting up clusters of heterogeneous distrib-
uted resources to process several data streams of a Divisible Load application.
As the total workload is unknown, a very first workload, corresponding to the
wanted duration for the very first round: τ , must be a priori set from estimates
of the characteristics of the resources. To facilitate the contention prevention,
the wanted duration for all the rounds and for all workers has been arbitrarily
set to τ . For the moment the value of τ is empirically set, according to both
the poorness of the a priori estimate of the execution parameters and the fre-
quency of their possible variation over time. If only a part of the whole set of

60 D. Millot and C. Parrot

available computation units are involved into the scheduling, then we can only
claim that the selected computation units are fully used. If the whole set of
available processing units are involved into the scheduling, then the presented
method succeeds in maximizing the global throughput, for an a priori set value
of τ . Compared to using pure hardware performance figures, such as bandwidth
or CPU frequency to adapt the workload at each round, the method has the
extra advantage of taking into account characteristics of the software such as
algorithmic complexity.

The way to adapt the workload at each round generates a risk of instability,
when the execution parameters vary over time. A study of the stability of the
method should lead to tighten up the way τ is set and should help to design new
patterns of adaptation of the chunksize.

References

1. Lee, C., Hamdi, M.: Parallel image processing application in a network of work-
station. Parallel Comput. 21, 137–160 (1995)

2. Altılar, D.T., Paker, Y.: An optimal scheduling algorithm for stream based parallel
video processing. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp.
731–738. Springer, Heidelberg (2003)

3. Robertazzi, T.G.: Ten reasons to use divisible load theory. IEEE Comput. 36(5),
63–68 (2003)

4. Altilar, D., Paker, Y.: An optimal scheduling algorithm for parallel video process-
ing. In: Proceedings of the International Conference on Multimedia Computing
and Systems. IEEE Computing Society Press (1998)

5. Dong, L., Bharadwaj, V., Ko, C.C.: Efficient movie retrieval strategies for movie-
on-demand multimedia services on distributed networks. Multimedia Tools Appl.
20(2), 99–133 (2003)

6. Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y.: Scheduling divis-
ible loads on star and tree networks: results and open problems. IEEE Trans.
Parallel Distrib. Syst. 16(3), 207–218 (2005)

7. Drozdowski, M., Wolniewicz, P.: Optimizing divisible load scheduling on heteroge-
neous stars with limited memory. Eur. J. Oper. Res. 172(2), 545–559 (2006)

8. Rosenberg, A.L., Chiang, R.C.: Toward understanding heterogeneity in comput-
ing. In: Proceeding of the 24th International Parallel and Distributed Processing
Symposium (IPDPS’10), vol. 1, pp. 1–10. IEEE Computing Society Press, April
2010

9. Beaumont, O., Marchal, L., Robert, Y.: Scheduling divisible loads with return
messages on heterogeneous master-worker platforms. In: Bader, D.A., Parashar,
M., Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 498–507.
Springer, Heidelberg (2005)

10. Saif, T., Parashar, M.: Understanding the behavior and performance of non-
blocking communications in MPI. In: Danelutto, M., Vanneschi, M., Laforenza, D.
(eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 173–182. Springer, Heidelberg (2004)

11. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads
in parallel and distributed systems. IEEE Computing Society Press, Los Almitos
(1996)

Setting up Clusters of Computing Units 61

12. Drozdowski, M.: Selected problems of scheduling tasks in multiprocessor computing
systems. Ph.D. thesis, Instytut Informatyki Politechnika Poznanska, Poznan (1997)

13. Bharadwaj, V., Ghose, D., Mani, V.: Multi-installment load distribution in tree
networks with delays. IEEE Trans. Aerosp. Electron. Syst. 31(2), 555–567 (1995)

14. Yang, Y., Casanova, H.: Extensions to the multi-installment algorithm: affine costs
and output data transfers. Technical Report CS2003-0754, Dept. of Computer
Science and Engineering, University of California, San Diego (2003)

15. Millot, D., Parrot, C.: Scheduling on unspecified heterogeneous distributed
resources. In: Proceedings of the 25th International Symposium on Parallel and
Distributed Processing Workshops (IPDPSW’11), vol. 1, pp. 45–56. IEEE Com-
puting Society Press, May 2011

16. Millot, D., Parrot, C.: Fundamental results on the AS4DR scheduler. Technical
Report RR-11005-INF, TELECOM sudParis, Évry, France (2011)

17. Millot, D., Parrot, C.: Some tests of adaptivity for the AS4DR scheduler. In: Pro-
ceedings of the 41th International Conference on Parallel Processing (ICPP’12),
pp. 323–331. IEEE Computing Society Press, September 2012

18. Pisinger, D.: An exact algorithm for large multiple knapsack problems. Eur. J.
Oper. Res. 114(3), 528–541 (1999)

19. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a generic framework for large-
scale distributed experiments. In: Proceedings of the 10th International Conference
on Computer Modeling and Simulation (ICCMS’10), pp. 126–131. IEEE Comput-
ing Society Press, March 2008

The 5th Workshop on Language-Based
Parallel Programming Models

(WLPP 2013)

Towards Standardization of Measuring
the Usability of Parallel Languages

Ami Marowka(B)

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
amimar2@yahoo.com

Abstract. The efforts of the research community and the software
industry to make the art of parallel programming easier continue. Mea-
suring the usability of contemporary parallel programming languages and
libraries by empirical studies is the key to understanding how program-
mers are thinking, designing, coding, and debugging parallel programs.
In this paper we take apart into their component ingredients the empir-
ical experiments done in the recent years. By analyzing each component
separately we can better understand what is missing in these experi-
ments and thereby improve the outcome of future studies. The result of
this work is a set of recommendations that aims to make usability stud-
ies more convincing so that parallel language designers will take them
seriously.

Keywords: Usability · Parallel language · Empirical study · Produc-
tivity

1 Introduction

The paradigm shift towards many-core computing is irreversible. Parallelism is
the only feasible economic solution for increasing performance per watt. While
power-efficient many-core processors have become commonplace, development of
software for these processors has lagged behind. The main stumbling block for the
widespread adoption of parallel computing in mainstream software development
is the lack of user-friendly development tools (languages, libraries, debuggers,
and performance analyzers) that ease parallel programming especially for inexpe-
rienced programmers. Furthermore, adding parallelism can cause new problems
to the application such as deadlock, race conditions, synchronization, commu-
nication, heterogeneity, load-balancing, and non-determinism. These problems
make parallel programming cumbersome and error-prone.

Usability of a parallel language is measured by how easy it is to learn how to
design, develop, code, test and debug a parallel program by using the language
features [1]. Therefore, it directly affects the productivity of software developers.
In the last two decades empirical studies were performed, usually with novice
programmers as experiment subjects, for measuring quantitatively the usability
of new paradigms and for comparing them. Such empirical studies are crucial

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 65–74, 2014.
DOI: 10.1007/978-3-642-55195-6 6, c© Springer-Verlag Berlin Heidelberg 2014

66 A. Marowka

tools for understanding what is missing in these paradigms and how we can
improve the usage of future languages and tools. However, not enough work has
been done to assess the usability of parallel languages or to develop criteria for
such assessments. As a result, the usability measurement of a parallel language
is usually based on how easily a toy parallel application or, less frequently by the
use of a small set of simple parallel algorithms, can be coded as compared to MPI.
Without a doubt, we must collect more information on how parallel programming
is done and how its practice is affected by different processor architectures, tools,
and languages.

We performed an in-depth examination of the field experiments that were
conducted during the last two decades for measuring the usability of various
parallel languages and libraries. Our main observation from reading these exper-
iment reports was the lack of standardization for measuring the usability of par-
allel tools. In other words, we found a complete mess in this important research
field.

In this paper we present the methodological building blocks of previous
empirical experiments. Our intent is to study the pros and cons of each mod-
ule of these experiments in order to be able to define a standard for parallel
usability that will be supported and adopted by the research community. There
is no reason why the same community that defined many software standards
and standards de facto such as benchmarks for measuring performance of micro-
processors and supercomputers cannot agree on a standard for the assessment
of language usability.

In particular, we make the following contributions:

1. We identify and describe the modules that comprised the past empirical
studies.

2. We recommend how to modify the context of these modules and which
modules are missing and must be added.

3. We present an overview of related work on the usability of parallel
programming languages.

The remainder of this paper is structured as follows. In Sect. 2 we review the
components of past experiments. In Sect. 3 we give an overview of related work.
We conclude and present directions for future work in Sect. 4.

Remark: Hereafter we use the term parallel language to represent parallel
programming models, libraries, or language extensions that enable parallelism
in explicit or implicit manners.

2 The Building Blocks of Empirical Experiments

2.1 The Algorithms

A glance over past empirical studies reveals that many different kinds of algo-
rithms were used to evaluate the usability of a specific parallel language. A few
of them are simple algorithms, others demand more sophisticated solutions and

Towards Standardization of Measuring the Usability of Parallel Languages 67

still others are just toys applications. Some experiments used only one algo-
rithm while others adopted a suite of algorithms wherein each one represented
a different design pattern.

Among the single-algorithm experiments are algorithms that compute a tran-
sitive closure [4]; that model heat flow between identical blobs connected by
rods of varying conductivity [5]; the Smith-Waterman local sequence matching
algorithm [6]; the sparse-matrix dense-vector multiplication [14]; a simple string
manipulation algorithm [9], and a toy application called sync-gallery [16].

Among the multiple-algorithm experiments one can find the nearest neigh-
bor applications (Game of Life, Grid of Resistors) [13]; Kernels of NAS Par-
allel Benchmark, GUPS, Histogram and N-Queens applications [15], and the
Cowichan Problems [7,8].

There are also others experiments that used only syntactic, pen and paper
analysis without empirical experiment [2], or used an analysis of a corpus of
many open-source applications developed by unknown many programmers [10].

A single-algorithm suite can assess only a small fraction of the expressive
potential of a given language and therefore is not an appropriate solution for
usability measurement. A multiple-algorithm suite is the preferred choice. It is
advisable that such a suite will contain a set of problems for novice programmers
and another set of problems for parallel professional programmers. Moreover, the
problems have to represent the most commonly used parallel design patterns. A
good starting point for such a suite would be the Cowichan Problems.

The Cowichan Problems are a suite of seven problems (elastic net, Gaussian
elimination, halving shuffle, invasion percolation, Game of Life, Mandelbrot Set,
and point normalization). These problems cover different aspects of parallelism
(data-parallelism vs. task-parallelism) from different angles (regular vs. irregu-
lar communication patterns). They were designed to address issues such load-
balancing and non-determinism and to represent numerical and symbolic appli-
cations. Furthermore, the most interesting point in the design of the Cowichan
problems is the fact that they are chainable. This means they can be concate-
nated to reflect real-life applications where the output of one problem is the
input of a second problem.

2.2 The Languages

Many parallel languages, libraries, and language extensions were evaluated in the
field experiments. Some of them were designed for shared-memory architectures
while others were intended for distributed-memory architectures. But there are
languages that were designed for both architectures. Usually the tested languages
are research languages that are self-evaluated or compared to a standard de
facto language. However, the strangest experiments are those that compared
the usability between shared-memory (apples) and message-passing languages
(oranges). The results of such a comparison are so obvious and thus biased
toward the shared-memory languages. The reason is that the new shared-memory
languages offer a higher level of abstraction and thus achieve coding with fewer
lines of code (LOC) as compared to an implementation with MPI. Moreover,

68 A. Marowka

the downside of higher abstraction, loss of performance, is never measured or
mentioned in those experiments.

Among the self-evaluated languages that were studied are Orca [7], Correct
Object-Oriented Pattern-based Parallel Programming System (CO2P3S) [8] that
implemented the Cowichan problems suite and Microsoft TPL [10]. But most
of the experiments are based on comparisons: Enterprise vs. PVM [4], Java
implementations of Actor model vs. transactional memory (TM) vs. shared-
memory [5], multi-threaded Java vs. SCOOP [9], Java 7 vs. Habanero-Java (HJ)
[2], MPI vs. UPC vs. X10 [6], MPI vs. OpenMP [13], MPI vs. XMTC [14], UPC
vs. MPI [15], and Java vs. TM [16].

Empirical studies aim to discover unacceptable results and not only to con-
firm a priori known results. For example, programming with transactional mem-
ory (TM) is considered to be easier than programming with locks. Rossbach and
Hofmann [16] had very interesting findings. The student-subjects who partici-
pated in the experiment claimed that programming with transactions is harder
to use than those with coarse-grain locks, but slightly easier to use than those
with fine-grained locks. However, an examination of the students’ code disclosed
that over 70 % of the students made synchronization errors with fine-grained
locking as compared to less than the 10 % who made errors with transactions.

2.3 The Hardware Platforms

Surprisingly, most of the empirical studies conducted in the past did not report
on the parallel machines that were used during the experiments. It is important
to do so for the following reasons:

1. Experiments should be reproducible and without detailed descriptions of the
hardware platform or the results will not be comparable. For example, there
is a difference between developing and running an algorithm on a dual-core
machine and doing so on a 64-core machine especially from scalability point
of view. We will elaborate more on this issue later.

2. A language that was designed for Petaflop supercomputers is not like a lan-
guage that was designed for multicore machines. In order to increase the
reader confidence in the report this information is essential.

3. There are experiments that use simulations rather than real machines. In
these cases the results should be taken with a grain of salt.

A few experiments mention the hardware platforms. In [7] the authors used
a network of 80 workstations, in [4] a network of 50 SUN 4 workstations, and
in [8] a SGI Origin 2000 machine with 46 MIPS R100 processors. In [14] the
authors compared MPI vs. XMTC. The MPI implementations were run on a
24-processor SUN SunFire system while the XMTC implementations run on
prototype compiler simulator software.

2.4 The Parallel Debuggers

Debugging, profiling, and analyzing a parallel program are highly tedious and
difficult tasks. Although parallel debuggers, visual profilers, and performance

Towards Standardization of Measuring the Usability of Parallel Languages 69

analyzers exist and are improving all the time, finding a bug in a parallel program
is like finding a needle in a haystack. The complexity of parallel debugging is due
to the invisible problems and to the timing complexity of parallel program flow
that harden on finding temporary bugs, whose appearance cannot be predicted.
Therefore, using such a tool set is crucial for bug-free programming and an
integral part of any developer’s tool box.

Unfortunately, none of the experiments reported on the use of such a tool set
by the human-subjects.

A standard for measuring the usability of parallel languages must include an
examination of how debugging tools were used during the experiment.

2.5 The Human-Subjects

Most of the usability studies were performed in an academic setting as part of
a parallel programming course. Usually the human-subjects were graduate stu-
dents inexperienced in parallel programming. For example, in [7] six graduate
student novices in parallel programming participated in the experience; in [9]
67 B.Sc. students participated after taking a course on parallel programming;
in [8] the authors performed the experiment by themselves; in [2] the authors
performed a pen and paper assessment without human-subjects and in [16] 237
undergraduate students who were inexperienced in parallel programming partic-
ipated in the experiment.

Recruiting qualified human-subjects for participation in an empirical exper-
iment is a very critical mission because it will determine the final quality of the
results. The reports of past field experiments show that there are cases where
the participants simply left the lab in the middle of the experiment or failed to
complete their tasks in time. In [19] the authors admit that they failed to recruit
enough qualified subjects.

2.6 The Metrics

Effective metrics are critical for measuring different aspects of parallel usability.
Unfortunately, the metrics that are used today do not yield enough observational
insights required for analyzing the data produced during controlled experiments.

The most common, though controversial, metric is the lines of code (LOC).
There is a consensus among researchers that the LOC metric is a weak one and
that better metrics must be developed. Therefore in [15] the authors added the
number of characters (NOC) metric while the conceptual programming effort
was measured by the number of parameters passed, the number of keywords
used, and the number of function calls and their types. In [7] the authors mention
three metrics but do not use them in their analysis: Halstead’s “program volume”
measure, McCabe’s cyclomatic complexity and measures based on decomposition
of flow-graphs

There are cases where empirical studies assessed the usability of a given paral-
lel language without using metrics at all, and others that used heuristic metrics.

70 A. Marowka

In [6] the “time to first correct parallel solution” metric was used to measure
productivity. This time was further broken down using heuristic algorithms to
identify development phases such as authoring, debugging, and program execu-
tion. In [16] the metrics used are the time spent designing, coding, debugging,
checking the accuracy of the program and how many bugs were found. In [5]
three metrics were used: the time taken for subjects to complete the task, the
number of (non-comment) lines of code in the final program, and the subjective
rating. In [13] the programming effort was measured by the time taken for serial
coding, parallelization, debugging, and tuning. The code expansion factor was
measured by LOC and cost per LOC (in person-hours).

2.7 The Experiment Duration

Many-core programming demands new programming skills and a different kind
of problem-solving. Sequential programming is a deterministic and predictable
process. Therefore, it arises intuitively from the way programmers solve problems
using algorithms. In contrast, many-core programming is intrinsically a nonde-
terministic process. Parallelism requires the programmer to think in a way that
humans find difficult. However, it is possible to learn how to think in parallel and
how to write bug-free parallel programs. In other words, it takes time to teach
a new programming paradigm plus a new parallel language plus new debugging
tools. Furthermore, it takes time to internalize the new concepts and to be able
to parallelize algorithms efficiently for both inexperience programmers and pro-
fessional programmers. Unfortunately, from the reports of past experiments we
are not convinced that the time duration that was given for training and for
solving the problems was enough.

From the experiments that reported and recorded times we noticed the fol-
lowing findings. In [7] the experiments took up to 9 months. In [4] a 50 min
tutorial was given for each tested language and the experiment’s duration was
two weeks. In [5] only four hours of training were given to each student. In [9]
the training phase ran during a two-hour lecture session which was followed by
a test phase of two hours. In citebib13 there were participants that finished the
tasks after a few hours and others after a few days. In [6] two days of tutorials
were given for each language followed by two days of intense parallel program-
ming. In [13,16] the experiments were conducted as part of a semester course
in high performance programming, and in [14] the programmers were given a
deadline of two weeks and they were allowed to work on the assignment in their
own time.

2.8 Usability vs. Scalability

Usability of a parallel language cannot ignore the aspect of performance. If a
given parallel language is easy to learn and enables one to design, code, test and
debug a parallel program easily but produces programs that are not scalable then
it is useless. Unfortunately, in most of the past experiments the participants were
not asked to try to achieve an a priori defined speedup.

Towards Standardization of Measuring the Usability of Parallel Languages 71

New programming frameworks provide high abstractions that are less general
but more easily understood. However, abstractions also increase productivity and
code correctness at the expense of performance. This trade-off must be measured
and weighed accordingly, especially when a comparison is made between a low-
level programming model such as MPI and a high-level programming model such
as OpenMP.

Since usability comprises the time it takes to achieve a solution with a certain
performance, the experiment must define minimum and maximum performance
objectives.

2.9 Human vs. Machine

Can off-line and blind analysis done by a machine replace on-line observations
of human-subjects in studying the usability of a parallel language?

We do not think so, but there are others who believe it can. For example, Okur
and Dig [10] studied the usage of Microsoft’s Task Parallel Library (TPL) and
Parallel Language Integrated Query (PLINQ). The experiment analyzed a corpus
of 655 open-source applications (from Github [17] and Microsoft’s CodePlex
[18]) developed with C# by 1609 unknown programmers. Such a syntactic and
semantic analysis cannot tell anything about the skills of the programmers or
interview them in order to understand why they did what they did. The authors’
findings raise questions without the possibility of answering them. For example,
they found a piece of code that was parallelized by the programmer, who was
not aware that the code actually runs serially. However, since the programmer
remains anonymous nobody can ask her/him if she/he was aware of the mistake
and why she/he did not check that the code indeed runs in parallel. A simple
check could immediately reveal that the code runs serially.

We prefer controlled experiments where the tested environment is instru-
mented to record all editing, compiling, and execution actions. During the exper-
iment the human-subjects are asked to write down comments and can be helped
by available assistants. Furthermore, in [5] the subjects’ screens were recorded,
and a webcam recorded the subject to monitor off-computer events. A snapshot
of the project directory was taken at 1-minute intervals, and instrumented tools
logged each invocation of the compiler and each run of the resulting program.
In [6] the programming activities of the study participants were recorded, both
through face-to-face observations by the experiment teams as well as through
frequent automated sampling of the programs being written, so that it was later
possible to analyze the progress of each study participant in great detail, includ-
ing the thought processes and the difficulties encountered.

3 Related Work

Sadowski et al. [3] summarize the research that has been done so far by the
software engineering community in order to study the usability of parallel pro-
gramming models and languages. The authors outline the research challenges

72 A. Marowka

for increasing productivity of parallel programming languages, such as how to
incorporate software maintenance, program correctness, and resilience in the face
of failure as part of usability evaluation. Moreover, they highlight five research
topics that may improve the usability assessment (programming metaphors, visu-
alization techniques, correctness comprehension, social support, and improved
cost models). The authors emphasize an important observation that is worth
quoting: “parallel programming is difficult, and... writing a correct parallel pro-
gram is even more difficult. In fact, writing correct parallel programs may be
even more difficult than novice programmers realize”. The authors conclude that
better metrics and a comprehensive taxonomy of parallel problems are needed
for improving the evaluation of parallel programming productivity.

Ebcioglu et al. [6] studied the productivity of three parallel programming
models (MPI, UPC, and x10) with 27 novice parallel programmers who were
asked to parallelize the Smith-Waterman local sequence matching algorithm.
From the analysis of automated and non-automated observations such as sam-
pling of the source code changes, recording of the results of compilation and
execution, face-to-face observations, and interviews, the authors observed that
the programmers showed an inability to use the right concise abstractions; a lack
of programming style; a lack of knowledge of parallel design idioms, and a lack
of knowledge dealing with non-deterministic programming.

In [9,11,12], Nanz et al. present the design of a study template for com-
paring the usability of parallel programming languages. The authors claim that
their methodology improves the objectivity of an empirical experiment because
it reduces the influence of the trainers on the trainees during the study of a new
language (regarding the ways problems should be solved in parallel) and during
the examination of the solutions (regarding the subjectivity of the interpreta-
tion of the solutions). The template is based on a self-study of the languages to
be compared, a self-comparison survey, and a self-evaluation scheme for inter-
preting the comparison survey. The authors used their approach for comparing
the usability of multithreading Java and SCOOP (Simple Concurrent Object-
Oriented Programming). Sixty-seven students participated in the experiment
and found that SCOOP’s usability is better.

In [13] Hochstein et al. studied the programmer productivity with an empha-
sis on novice HPC programmers. They conducted a controlled empirical study
across multiple universities and classes of HPC courses. The results of the field
experiments were analyzed in order to understand the impact of various parallel
programming models and applications on the effort of the programmer to cre-
ate an efficient parallel program. The experiments included 69 novice parallel
programmers in three classes who were asked to parallelize two applications:
the Game of Life and Grid of Resistors using MPI and OpenMP on Network-
of-Workstations and shared-memory machine respectively. The analysis of the
collected data used three metrics: Effort (time of serial coding, parallelization,
debugging, and tuning), code expansion Factor (measured by LOC) and cost
per LOC (in person-hours). The authors examined a few well-known hypotheses
regarding the developing efforts required to program with MPI and OpenMP
and did not find any new exceptional insights.

Towards Standardization of Measuring the Usability of Parallel Languages 73

In [16] Rossbach et al. present an empirical study to measure the usability
of traditional programming with locks as compared to programming with trans-
actions. The human-subjects were 237 undergraduate students inexperienced in
parallel programming who took 5 classes over 3 semesters during 3 different
school years. They were asked to parallelize the same problems (that produced
a set of 1323 parallel programs) with the two programming paradigms (in Java).
The designers of the experiment evaluated the usability by analyzing the final
reports of the students regarding the amount of time they spent designing, cod-
ing, and debugging each programming task and by checking the correctness of the
programs. The students claimed that programming with transactions is harder
to use than coarse-grain locks, but slightly easier to use than fine-grained locks.
However, examination of the students’ code showed that over 70.

4 Conclusions

A standard benchmark suite for measuring usability is needed to enable a com-
parison of different parallel programming paradigms. The Cowichan suite can be
a good starting point. Implementing such a benchmark will produce a detailed
report in order to evaluate the weaknesses and strengths of the tested language.
To achieve this goal, new metrics and methods for assessment of the usability
of parallel languages have to be developed. Furthermore, empirical studies have
to focus first on exploring state-of-the-art parallel programming languages and
models before designing new parallel languages.

References

1. Nielsen, J. http://www.useit.com/alertbox/20030825.html
2. Cave, V., Budimlic, Z., Sarkar, V.: Comparing the usability of library vs. language

approaches to task parallelism. In: Proceedings of the Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’10, 18 October 2010, Reno, NV,
USA (2010)

3. Sadowski, C., Shewmaker, A.: The last mile: parallel programming and usability.
In: FoSER 2010, 7–8 November 2010, Santa Fe, New Mexico, USA (2010)

4. Szafron, D., Schaeffer, J., Edmonton, A.: An experiment to measure the usability
of parallel programming systems. Concurr. Pract. Exp. 8(2), 147–166 (1996)

5. Luff, M.: Empirically investigating parallel programming paradigms: a null result.
In: Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU) (2009)

6. Ebcioglu, K., Sarkar, V., El-Ghazawi, T., Urbanic, J., Center, P.S.: An experi-
ment in measuring the productivity of three parallel programming languages. In:
Workshop on Productivity and Performance in High-End Computing (PPHEC)
(2006)

7. Wilson, G.V., Bal, H.E.: An empirical assessment of the usability of Orca using
the Cowichan problems. IEEE Parallel Distrib. Technol. 4(3), 36–44 (1996)

8. Anvik, J., Schaeffer, J., Tan, K.: Why not use a pattern-based parallel programming
system? In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 81–86. Springer, Heidelberg (2003)

http://www.useit.com/alertbox/20030825.html

74 A. Marowka

9. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Design of an empirical study for
comparing the usability of concurrent programming languages. In: International
Symposium on Empirical Software Engineering and Measurement. pp. 325–334
(2011)

10. Okur, S., Dig, D.: How do developers use parallel libraries? In: FSE (2012)
11. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: Empirical assessment of languages

for teaching concurrency: methodology and application. In: Proceedings of the
CSEE&T’11, pp. 477–481. IEEE Computer Society (2011)

12. Nanz, S., Torshizi, F., Pedroni, M., Meyer, B.: A comparative study of the usability
of two object-oriented concurrent programming languages. http://arxiv.org/abs/
1011.6047 (2010)

13. Hochstein, L., Carver, J., Shull, F., Asgari, S., Basili, V.: Parallel programmer
productivity: a case study of novice parallel programmers. In: Proceedings of the
SC’05, p. 35. IEEE (2005)

14. Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J.: A pilot study to compare
programming effort for two parallel programming models. J. Syst. Softw. 81(11),
1920–1930 (2008)

15. Cantonnet, F., Yao, Y., Zahran, M., El-Ghazawi, T.: Productivity analysis of the
UPC language. In: Proceedings of the IPDPS’04 (2004)

16. Rossbach, C.J., Hofmann, O.S., Witchel, E.: Is transactional programming actually
easier? In: Proceedings of the PPoPP’10, pp. 47–56. ACM (2010)

17. GitHub. https://github.com
18. CodePlex Open Source Project Hosting. http://codeplex.com
19. Halverson, C.A., Carver, J.: Climbing the plateau: getting from study design to

data that means something. In: Workshop on Evaluation and Usability of Pro-
gramming Languages and Tools (PLATEAU) (2009)

http://arxiv.org/abs/1011.6047
http://arxiv.org/abs/1011.6047
https://github.com
http://codeplex.com

Experiences with Implementing Task Pools
in Chapel and X10

Claudia Fohry1(B) and Jens Breitbart2

1 Research Group Programming Languages/Methodologies, University of Kassel,
Kassel, Germany

fohry@uni-kassel.de
2 Engineering Mathematics and Computing Lab (EMCL), Heidelberg University,

Heidelberg, Germany
jens.breitbart@iwr.uni-heidelberg.de

Abstract. The Partitioned Global Address Space (PGAS) model is a
promising approach to combine programmability and performance in
an architecture-independent way. Well-known representatives of PGAS
languages include Chapel and X10. Both languages incorporate object
orientation, but fundamentally differ in their way of accessing remote
memory as well as in synchronization constructs and other issues of lan-
guage design.

This paper reports on and compares experiences in using the lan-
guages. We concentrate on the interplay between object orientation and
parallelism/distribution, and other issues of coding task parallelism. In
particular, we discuss the realization of patterns such as objects that
internally contain distributed arrays, and suggest improvements such as
support for activity-local and place-local data, as well as scalar variable-
based reduction. Our study is based on Unbalanced Tree Search (UTS),
a well-known benchmark that uses task pools.

Keywords: Chapel · X10 · PGAS · UTS · Task pool

1 Introduction

The goal of high-productivity parallel programming has led to the Partitioned
Global Address Space (PGAS) programming model and its concretization in a
number of languages/systems such as Chapel and X10. PGAS languages expose
to the programmer a shared memory that is split into disjoint partitions. Each
partition comprises distinct computing resources that have faster access to local
than to remote memory.

Chapel and X10 have similar goals and a similar level of maturity, but dif-
fer in many other aspects. Chapel was introduced by Cray, and X10 by IBM,
both at the beginning of this century and with funding from the DARPA “High
Productivity Computing Systems” project. The paper refers to Chapel version
1.8.0, and X10 version 2.4. A brief survey of the languages is given in Sect. 2.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 75–85, 2014.
DOI: 10.1007/978-3-642-55195-6 7, c© Springer-Verlag Berlin Heidelberg 2014

76 C. Fohry and J. Breitbart

We base our comparison on Unbalanced Tree Search (UTS), a benchmark for
studying issues such as load balancing or characteristics of the implementation
language [6]. Unlike previous Chapel and X10 implementations of UTS [3,13],
our programs use both multiple nodes and multiple threads per node. UTS is
implemented with task pools, deploying a fixed number of long-running workers
and a distributed data structure for mutual access. The benchmark and this
setting were selected to study communication, synchronization, and the interplay
between object-orientation and parallelism/distribution in a simple framework.
They may set Chapel at some disadvantage by not appreciating its rich set of
built-in data parallel features.

Our focus is expressiveness of the languages, moreover some preliminary per-
formance numbers are included. We report on our experiences in deploying the
available language constructs, discuss variants for coding common patterns such
as objects that internally contain distributed arrays, and suggest improvements
such as support for activity-local and place-local data as well as scalar variable-
based reduction. Moreover, we touch on diverse issues such as objects vs. records
and locality optimization.

The paper starts with background on Chapel, X10, task pools and UTS in
Sect. 2. That section also details the task pool variant that we selected. Section 3
gives an overview of our implementations, and then organizes language assess-
ment along various topics. Thereafter, Sects. 4, 5 and 6 are devoted to perfor-
mance, related work and conclusions, respectively.

2 Background and Benchmark

2.1 Chapel

The following introduction is by necessity brief, for further information see [2].
A Chapel program runs on some number of locales, each of which comprises

processors and a memory partition. The on statement places a code block on
a particular locale. Within the block, all variables in scope may be read and
written, although accesses to remote locales are more expensive.

Parallel tasks are created with, e.g., begin or coforall. Task creation can
be combined with code placement, for an example see Sect. 3.4. Chapel does not
expose threads, but tasks are transparently mapped to threads by a configurable
tasking layer.

In Chapel, synchronization is almost exclusively based on synchronization
variables, which are declared with type qualifier sync or single. The former
hold a value of some primitive type, and additionally have state full or empty. A
write to a full sync variable blocks the calling task, as does a read from an empty
one. When the variable changes state, one of the waiting tasks may proceed.

The base language has C-like syntax. Arrays are defined over multidimen-
sional domains and may be distributed, e.g. blockwise or cyclic. Constants may
be marked as configurable, in this case they may be overwritten at the command
line.

Experiences with Implementing Task Pools in Chapel and X10 77

Chapel programs are composed of modules, which contain data, functions,
classes etc. Classes have the usual functionality, including constructors, inheri-
tance, nesting, and generics. Records resemble classes, but variables of this type
directly hold the values of all fields.

2.2 X10

Many Chapel concepts have an analogue in X10 [17], except for using different
terminology:

Chapel locale domain on task begin record sync statement

X10 place region at activity async struct finish

The concrete realization differs, e.g. X10 structs are less flexible than Chapel
records. Unlike in Chapel, variables may only be accessed if they are stored at
the current place, are globally accessible through a GlobalRef, or have been
copied with at.

at copying rules are complex, yet in general single-assignment variables (spec-
ified with val) are copied, whereas normal variables (specified with var) are not.
The X10 standard library supports place-local data, which are accessed through
a PlaceLocalHandle that may be communicated and resolved at any particular
place.

The major synchronization construct, atomic, encloses a critical section and
operates intra-place. All read and write accesses to shared variables must be
protected, and all critical sections at a place are mutually exclusive.

In many respects, the base language resembles Java. We used the most ele-
mentary type of arrays, called rails. There is no equivalent of a Chapel module,
but classes may have static fields, and support inheritance, nesting, and generics.

2.3 Task Pools

Many irregular applications are composed of sub-computations (tasks) that vary
in size. Task pools are a well-known pattern to map these tasks to execution
resources at runtime, and thereby achieve load balancing. Task Pools may be
implemented in either the user program or the runtime system, and come in var-
ious forms. In the following, we only describe the variant that we implemented,
which resembles the one in [10]. Note that the task pool literature uses the term
task different from PGAS languages. To avoid confusion, we denote the execution
resources, which will correspond to X10 activities or Chapel tasks, as workers.

A task pool is a data structure from which idle workers repeatedly take a
task, compute it, possibly insert new tasks, take the next task etc., until the
pool is empty. The data structure is distributed. Each worker maintains a split
queue [10], which is a kind of circular buffer that comprises a private and a public

78 C. Fohry and J. Breitbart

portion. It is double-ended, such that head denotes the first free position of the
private part, and tail the last filled position of the public part. The elements
in-between head and tail are divided into nprivate elements in the private
pool, followed by npublic elements in the public pool.

The task pool is accessed by push and pop operations: push inserts a task
at position head, and pop takes a task out from the same end. If the private
pool holds 2k elements, for some constant k, push additionally releases k ele-
ments to the public pool. Analogously, if pop discovers an empty private pool,
it acquires k elements from the public pool. Operations acquire and release
do not move tasks, but shift the division line between the private and public
portions. Synchronization is required for the public pool only.

When acquire fails, the worker tries to steal k tasks from some other worker.
Therefore, it first cycles through all workers of its own place, and then through
those of the others. When no victim is found after one global cycle, the worker
terminates. Termination detection is actually more complex [11], but we rely on
the simple scheme for brevity.

2.4 UTS

A task pool may either be provided as a reusable component, e.g. by a library,
or be used as a pattern to implement a particular algorithm. We considered the
second scenario with the Unbalanced Tree Search (UTS) benchmark [6].

UTS consists in extracting a tree and counting the number of nodes. For
given tree shape parameters, a node holds all information about the subtree
rooted in it, and thus may be deleted after having been expanded. The informa-
tion is encoded in a 20-byte node descriptor, using some cryptographic method.
Naturally, a task corresponds to the expansion of one node, and is represented
by this node descriptor.

Open-source implementations of UTS are available for various systems,
among them Chapel and X10 [3,6,13–15]. They will be discussed in Sect. 5. We
reused parts of the implementations [3,15], chiefly the respective native inter-
faces to the C cryptographic tools, and the deployment of place local handles
from [15]. Our own code can be obtained from the first author’s homepage.

3 Language Assessment

3.1 Overview of Implementations

In both languages, we implemented UTS with the task pool variant described in
Sect. 2.3. Our implementation uses both multiple places and multiple activities
per place. Workers are realized by long-running activities/Chapel tasks that
are started after the task pool has been filled with initial tasks. The functional
components of all program variants are similar:

– setting parameters of the tree
– generating and initializing the distributed data structure for the task pool

Experiences with Implementing Task Pools in Chapel and X10 79

– expanding the root and inserting initial tasks into the task pool
– managing the workers that process the tasks
– managing the split queues with push, pop, release and acquire
– realizing the steal operation, including definition of the cyclic order and

moving tasks to another place
– computing the result number of nodes by reduction
– invoking C functions for initializing the root and decoding node descriptors.

The X10 standard library includes basic local data structures, but neither
Chapel nor X10 provide split queues, which therefore had to be implemented
manually. For simplicity, we assume that the public pools never overflow.

3.2 Object-Orientation and Parallelism

The Encapsulation Problem. In object-oriented programming, data struc-
tures are often coded as classes, such that each instance of the class represents
an instance of the data structure. The reference to this instance is stored in a
variable, and operations are invoked by method calls on this variable. Thus, the
variable provides a single access point to the data structure, abstracting away
all details of the internal representation at the caller site:

var s: Stack = new Stack();
s.push(elem);

When the data structure is distributed and accessed from different places, such
as our task pool, there is currently no equivalent for this convenient notation,
since a single access point s, located in a single place, hurts performance.

To solve the problem, we distributed the data structure across places and
addressed the local portions. We implemented several variants of this
“distributed-first” approach, which all share the drawback that they provide
less encapsulation than the above “objects-first” approach. In particular, they
do not hide, at the caller site, the fact that the task pool is distributed. Thus,
a programmer must decide between either the well-structured but inefficient
“objects-first”, or the more efficient but less modular “distributed-first” app-
roach.

X10 Implementation. We start the discussion of“distributed-first” variants
with X10, since X10 provides some library support with its PlaceLocalHandle
(PLH). As explained in Sect. 2.2, a PLH supports access to place-local data, and
thus simplifies addressing the local portion when invoking task pool operations.
Nevertheless, declaration and initialization of the distributed structure remain
the responsibility of the user:

val tp = PlaceLocalHandle.make[InfosPerPlace](...)

In this code fragment, InfosPerPlace is a user-defined class which, as illustrated
in Fig. 1(a), chiefly contains a rail of split queues. As can be seen in the figure,

80 C. Fohry and J. Breitbart

(a) Pool structure in X10 (b) Pool structure in Chapel

Fig. 1. Implementation variants

use of the PLH requires a two-level addressing scheme, in which the PLH resolves
to place-local information, and then a particular split queue is selected.

A split queue object encapsulates all data of a worker and the respective
methods, which has the advantage that split queue methods can directly access
the local data through instance fields. Access to remote queues goes through
variable tp, which is stored in the split queue object.

Chapel Variant. As Chapel does not support a PLH-like construct, we had
to explicitly work with a distributed (or replicated) array. We use a one-level
addressing scheme, i.e., we have one entry per worker (as opposed to per locale).
The Chapel variant is illustrated in Fig. 1(b). Access to remote queues is enabled
by declaring the distributed array at module scope.

Place-Local and Activity-Local Data. Comparing the two variants, the
PLH concept is appealing since it eliminates the need for explicit indexing. When
place-internal indexing is needed instead, the advantage is, however, lost. For
our application, PLH-like support for activity-local data would have been most
useful. It would have enabled a similar program structure as in Fig. 1(b), but
with simpler addressing. While our use of activity-local data is to some degree
application-specific, long-running activities reduce the overhead, e.g. for initial-
izing data structures, and may therefore be valuable beyond our application.
As an application may mix place-local and activity-local data, we suggest to
support both in both languages.

3.3 References, Values, and Copying

In both languages, a tree node may be represented by either an object, or a
record (struct). From a performance point of view, records may be cheaper as
they do not incur the typical indirection and method resolution costs of objects.
Moreover, memory allocation is cheaper if one large block is allocated for all

Experiences with Implementing Task Pools in Chapel and X10 81

records in the task pool, as compared to allocating pieces of memory for each
node object. At the backside, record assignment and parameter passing by value,
e.g. in push, involve expensive copying and should therefore be avoided.

In addition to class-based versions, we implemented record-based versions
that avoid copying by expanding children directly into their task pool entry.
A problem arises during the generation of initial tasks, when a child is to be
expanded into a remote queue. Chapel calls a C function to decode a node
descriptor, which takes as arguments pointers to both the parent and future
child descriptors, but it is not possible to pass a pointer to remote memory to
this function. Therefore, the parent descriptor is first copied to a remote variable,
and then the C function is called. This shows up limits of native code integration
with Chapel.

In the X10 program, remote access to native code was easier. Since the reused
code from [15] represents a node by a C++ object, that object is automati-
cally copied to the remote place when its native code is required. The approach
appears easier but less efficient, especially as X10 generates a deep copy and
inclusion of fields can not be controlled at the C++ side.

3.4 Worker Management and Initialization

The base functionality for starting worker tasks is obvious, e.g.:

coforall loc in Locales do on loc
coforall tid in 0..#numWorkersPerLoc do runWorker(tid);

The corresponding X10 code is slightly longer, as there is no equivalent of
coforall, and async must be ended by finish. Activity-local data would help
managing the task identifier tid.

To allow stealing, the above coforall loop may only be entered after the
task pool has been initialized, especially references to the remote split queues
must have been set. Task pool initialization is by itself distributed, but the pool
must not be used before initialization has finished. This can be achieved, e.g.,
by a barrier. There are various opportunities to implement this barrier, e.g. in
Chapel pairwise synchronization before a worker’s first steal access to a victim
locale can be implemented with synchronization variables.

3.5 Reduction

Reduction is a well-known pattern to combine multiple values. It can be effi-
ciently parallelized, in our setting by first combining the values within each
worker, then within each place, and finally within the overall program. UTS
uses reduction to compute the result number of nodes.

Chapel and X10 provide language support for reduction only on the assump-
tion that the values are stored in an array, which has several drawbacks:

– The values must be kept in an array even if it does not match the application’s
structure. In our Chapel variant, e.g., a local value would logically belong to

82 C. Fohry and J. Breitbart

the Worker class, and thus the array needs to be defined and filled just for
the purpose of reduction.

– In the array, false sharing between neighbored values is likely.

OpenMP defines reduction differently [7]: A user program declares a scalar vari-
able with some keyword for reduction, and specifies the operator. The system
transparently defines local copies, collects values locally, and synchronizes the
update of the global result. At least in Chapel, a similar scheme should be pos-
sible and would be desirable from a user’s point of view.

3.6 Diverse Language Issues

Split Queue Synchronization. Synchronization is required for the public pool. The
steal critical section, e.g., includes checking npublic, modifying npublic/tail,
and copying the tasks out of the pool. It is kept short by first making a local
copy of the tasks, and sending it to the remote place after the critical section.
X10 critical sections are coded with atomic, whereas our Chapel programs use
a synchronization variable that holds npublic.

Remote Access. A Chapel programmer may inadvertently access remote vari-
ables. Tool support might help and, unlike X10’s at, not impose any restric-
tions. When using a PLH, a similar problem occurs when the user forgets at as
in for <allPlaces> { tp().init(); }, where tp is always evaluated at the
origin. An X10 at only copies val’s. When they need to be computed before
being sent, both a var and a val variable for the same purpose are needed,
which blows up the code and requires copying.

Constants and Parameters. In Chapel, tree parameters are naturally stored in
configurable variables that can be easily overwritten on the command line. Para-
meter passing in X10 is more complicated.

In Chapel, val-like variables may be declared with single, i.e., there is some
redundancy between const and single. Possibly, const may be removed if the
config label is extended to single, and single values are replicated across
places.

Language vs. Library. By releasing central functionality to the library, chances
for integration may be dismissed. In X10, for instance, a language construct such
as at(allPlaces) would appear elegant.

4 Performance

We run experiments on a cluster of 8-core Intel Xeon E5–2670 processors, with
2 processors per node and Infiniband network. For X10, compiler option -O
was used, and for Chapel gasnet/ibv for multi-node and none for single-node
execution.

Table 1 shows running times for the T1L sample of UTS [14], which is a
geometric tree with branching factor 4 and maximum depth 13. The results

Experiences with Implementing Task Pools in Chapel and X10 83

Table 1. Running times of different program versions (averaged over 3 runs).

Chapel class Chapel struct X10 class X10 struct

1 Place 1 Thread 72.8 365.5 44.8 36.4
1 Place 4 Threads 26.6 138.8 16.9 12.6
1 Place 16 Threads 23.5 65.7 7.3 4.5
4 Places 4 Threads 143.0 1286.0 6.1 5.4

suggest a performance advantage of X10 over Chapel. In X10, the struct-based
variant was slightly faster than the class-based one, while in Chapel the record-
based variant were inferior.

The results can only be considered a snapshot, as the current versions of
the languages do not yet exhaust their performance potential. For instance, the
release notes state that Chapel 1.8.0 is not suitable for in-depth performance
comparisons, and the X10 atomic sections induce unneeded serialization. Most
of all, we did not tune the performance, and therefore there is likely much room
for improvements in all versions.

5 Related Work

As mentioned in Sect. 2.4, UTS has already been implemented with Chapel and
X10. The previous Chapel implementation [3] starts with one task queue. As
soon as it has reached a certain size, it is split into two queues, and a new
Chapel task is started to process the second queue. The program runs within
a single place only. The previous X10 implementation [13] focuses on termi-
nation detection, and performance tuning includes low-level functionality such
as IndexedMemoryChunk. This way, it achieves excellent and scalable perfor-
mance. In contrast, we took the position of a high productivity programmer and
did not tune the performance. The previous X10 implementation deploys only
one activity per place and a cooperative work stealing algorithm that does not
require synchronization. Unlike these implementations, we closely followed the
traditional task pool pattern.

Beyond UTS, several experience reports on coding applications with Chapel
and X10 have been published. Referring to older language versions, Shet et
al. [12] discuss experiences with a quantum chemistry kernel. Their work includes
a central task pool, which is simpler than ours. Weiland [16] presents a nice
comparative survey of language features in earlier language versions. Khaldi
et al. [4] compare six parallel languages and discuss aspects of expressiveness
such as synchronization constructs with the Mandelbrot example. Several recent
papers report on experiences in coding applications such as constraint-based
local search and the fast multipole method in X10 [9].

While we have used task pools as a benchmark for language design, Chapel
and X10 also deploy task pools in the runtime system, to map activities/tasks
to threads, see e.g. [5]. Problems of combining object orientation and parallelism

84 C. Fohry and J. Breitbart

have been discussed since a long time [1,8]. This paper focused on encapsulation,
and was specific to the PGAS setting.

6 Conclusions

This paper has evaluated Chapel and X10 from a user’s perspective, working out
both differences and common grounds such as difficulties in integrating object
orientation and parallelism. We suggested several modifications to strengthen the
languages such as support for place-local and activity-local data, scalar variable-
based reduction, and the omission of const.

Our work was based on a single benchmark, with focus on task parallelism
and object orientation. Before drawing conclusions on the usability of the lan-
guages in general, one needs to consider more benchmarks and put a stronger
emphasis on performance.

References

1. Agha, G., Wegner, P., Yonezawa, A. (eds.): Research Directions in Concurrent
Object-Oriented Programming. MIT Press, Cambridge (1993)

2. Chapel Language Specification, Version 0.94. http://chapel.cray.com/papers.html
(2013)

3. Dinan, J., et al.: Unbalanced Tree Search (UTS) benchmark in Chapel.
Program source https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/
studies/uts/ (2007)

4. Khaldi, D., Jouvelot, P., Ancourt, C., Irigoin, F.: Task parallelism and data distri-
bution: an overview of explicit parallel programming languages. In: Kasahara, H.,
Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760, pp. 174–189. Springer, Heidelberg
(2013)

5. Kumar, V., et al.: Work-stealing by stealing states from live stack frames of a
running application. In: Proceedings of the ACM SIGPLAN X10 Workshop (2011)

6. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.-W.:
UTS: an unbalanced tree search benchmark. In: Almási, G., Caşcaval, C., Wu, P.
(eds.) LCPC 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007)

7. OpenMP Application Program Interface, Version 3.1. http://www.openmp.org
(2011)

8. Philippsen, M.: A survey on concurrent object-oriented languages. Concurr. Pract.
Exp. 12(10), 917–980 (2000)

9. Publications Using X10. http://x10-lang.org (2013)
10. Ravichandran, K., Lee, S., Pande, S.: Work stealing for multi-core HPC clusters.

In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011, Part I. LNCS, vol.
6852, pp. 205–217. Springer, Heidelberg (2011)

11. Saraswat, V., et al.: Lifeline-based global load balancing. In: Proceedings of the
ACM Symposium on Principles and Practice of Parallel Programming, pp. 201–212
(2011)

12. Shet, A.G., et al.: Programmability of the HPCS languages: a case study with
a quantum chemistry kernel. In: Proceedings of the International Parallel and
Distributed Processing Symposium. IEEE (2007)

http://chapel.cray.com/papers.html
https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/uts/
https://chapel.svn.sourceforge.net/svnroot/chapel/trunk/test/studies/uts/
http://www.openmp.org
http://x10-lang.org

Experiences with Implementing Task Pools in Chapel and X10 85

13. Tardieu, O., et al.: X10 for productivity and performance at scale: a submission to
the 2012 HPC Class II challenge. In: Proceedings of the SC Conference on High
Performance Computing, Networking, Storage and Analysis. http://x10-lang.org
(2012)

14. UTS. http://hpcrl.cse.ohio-state.edu/wiki/index.php/UTS
15. X10 Code for UTS. http://x10.svn.sourceforge.net/viewvc/x10/benchmarks/

trunk/UTS/
16. Weiland, M.: Chapel, Fortress and X10: novel languages for HPC. Technical report,

HPCx Consortium (2007)
17. X10 Language Specification, Version 2.4. http://x10-lang.org (2013)

http://x10-lang.org
http://hpcrl.cse.ohio-state.edu/wiki/index.php/UTS
http://x10.svn.sourceforge.net/viewvc/x10/benchmarks/trunk/UTS/
http://x10.svn.sourceforge.net/viewvc/x10/benchmarks/trunk/UTS/
http://x10-lang.org

Parampl: A Simple Approach for Parallel
Execution of AMPL Programs

Artur Olszak1(B) and Andrzej Karbowski2,3

1 Institute of Computer Science, Warsaw University of Technology,
Warsaw, Poland

A.Olszak@ii.pw.edu.pl
2 Institute of Control and Computation Engineering,

Warsaw University of Technology, Warsaw, Poland
A.Karbowski@elka.pw.edu.pl

3 NASK, Research and Academic Computer Network, Warsaw, Poland

Abstract. Due to the physical processor frequency scaling constraint,
current computer systems are equipped with more and more processing
units. Therefore, parallel computing has become an important paradigm
in the recent years. AMPL is a comprehensive algebraic modeling lan-
guage for formulating optimization problems. However, AMPL itself does
not support defining tasks to be executed in parallel. Although in last
years the parallelism is often provided by solvers, which take advantage
of multiple processing units, in many cases it is more efficient to for-
mulate the problem in a decomposed way and apply various problem
specific enhancements. Moreover, when the number of cores is perma-
nently growing, it is possible to use both types of parallelism.

This paper presents the design of Parampl - a simple tool for parallel
execution of AMPL programs. Parampl introduces explicit asynchronous
execution of AMPL subproblems from within the program code. Such an
extension implies a new view on AMPL programs, where a programmer
is able to define complex, parallelized optimization tasks and formulate
algorithms solving optimization subproblems in parallel.

Keywords: AMPL · Parallel · Optimization · Modeling languages

1 Introduction

In recent years, due to the physical processor frequency scaling constraint, the
processing power of current computer systems is mainly increased by employ-
ing more and more processing units. As hardware supported parallelism has
become a standard nowadays, parallel computing and parallel algorithms are
recently much of interest. In this paper, we focus on solving optimization prob-
lems and defining such problems using AMPL [1]. AMPL - A Modeling Language
for Mathematical Programming is a comprehensive algebraic modeling language
for linear and nonlinear optimization problems with continuous and discrete

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 86–94, 2014.
DOI: 10.1007/978-3-642-55195-6 8, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Execution of AMPL Programs 87

variables. AMPL allows to express an optimization problem in a declarative
way, very similar to its mathematical form. However, despite being a declarative
language, AMPL also allows the constructions present in procedural languages
which allow to define the program flow - assignments, conditional expressions
and loops. Thus, AMPL makes it possible to define a program that solves multi-
ple problems sequentially and calculates the result based on the solutions of the
subproblems. However, processing of the subproblems cannot be explicitly par-
allelized. For individual problems, the parallelism is often provided by solvers,
which take advantage of multiple hardware processing units and employ multi-
threading when solving optimization tasks. Parallel solvers can greatly improve
the performance of solution calculation, utilizing opportunities for parallelism to
make use of all available hardware processing units. However, in many situations,
it is more efficient to formulate the problem itself in a decomposed way taking
advantage of the problem structure and apply various problem specific enhance-
ments and heuristics, which may not be obvious for the solvers or impossible
to recognize at all, e.g. applying Benders decomposition or Lagrangean relax-
ation [2].

In this paper, we present Parampl, a simple tool for parallel execution of
AMPL programs. Parampl introduces a mechanism for explicit parallel execution
of subproblems from within the AMPL program code. The mechanism allows
dispatching subproblems to separate threads of execution, synchronization of
the threads and coordination of the results in the AMPL program flow, allowing
a modeler to define complex parallel algorithms solving optimization problems
as subtasks.

The rest of this paper is organized as follows. Section 2 describes the related
work. Section 3 presents the design of Parampl, including a brief introduction
to the usage of Parampl in AMPL programs. The evaluation of Parampl and
experimental results are presented in Sect. 4. Section 5 concludes the study.

2 Related Work

There have been a few works related to extending algebraic modeling languages
with constructs allowing defining optimization problems in a decomposed way.
One of the solutions is Kestrel [3]. Kestrel is an application that imitates a solver
and submits an optimization job to be executed on a remote machine (NEOS
server). In AMPL program, Kestrel is chosen as a solver (instead of the solver
name). The remote solver and other Kestrel parameters are specified within the
kestrel options option while the NEOS server IP address and port are specified
by the neos server option:

kestrel instead of the solver name
option solver kestrel;

configuration of kestrel:
option kestrel_options ’solver=<solverName>’;
option neos_server ’www.neos-server.org:3332’;

88 A. Olszak and A. Karbowski

The optimization task is then submitted for remote execution by a regular
call of solve command. Upon receiving a task, the NEOS server returns the job
number and the job password:

Job has been submitted to Kestrel Kestrel/NEOS Job number: 6893
Kestrel/NEOS Job password: FaahsrIh

Depending on the mode of operation, Kestrel either waits for the NEOS
Server to send back the solver’s results (blocking) or the solve command call
returns immediately, in which case the returned job number and password allow
to retrieve the solution for a previously submitted job:

configure Kestrel to continue the previously submitted job:
option kestrel_options ’job=6893 password=FaahsrIh’;
solve;

However, such a solution is sometimes not flexible enough - it depends on the
NEOS server and to submit multiple parallel tasks to it (without any extension),
it requires user interaction. Thus, in our opinion, Parampl is a much simpler
and more convenient alternative to the Kestrel interface, as Parampl allows to
submit multiple problems for parallel execution and retrieve the solutions within
the program code, without the need of any user interaction.

A very interesting approach was presented in [4]. The authors present a
structure-conveying algebraic modeling language for mathematical and stochas-
tic programming (SML). The language is an extension of AMPL which allows
definition of the model from sub-models. The main extension over AMPL is
the introduction of the block keyword used to define sub-models. The block sec-
tions group together sub-model entities and allow them to be repeated over an
indexing set:

block nameofblock {j in nameofset} : {
...

}

The blocks may contain any number of set, param, subject to, var, minimize
or nested block definitions. Such an extension allows the modeler to express
the nested structure of the problem in a natural and elegant way. The solution
is generic as the block structure is passed to the solvers within the problem
definition file, so SML can be used with any structure-exploiting solver.

SET [5] is another approach which allows defining the structure of the prob-
lem in a separate structure file. In [6] the authors prove that AMPL’s declared
suffixes can be used to define the structure of the problem in many common
situations. Furthermore, several approaches targeted at stochastic programming
have been proposed, for example sMAGIC [7], SAMPL [8], and StAMPL [9].

In this paper, we present a different approach that enables a modeler to
define a fork-join structure of the program flow, allowing processing the results
of the subtasks by a coordination algorithm. Our solution is not dependent on
the solver used and the parallel execution and results retrieval is handled on the
AMPL level by the modeler.

Parallel Execution of AMPL Programs 89

3 Design of Parampl

Let us consider a very simple AMPL program, which solves sequentially the
same problem for two sets of parameters p1, p2 and stores the results in one
vector res:

var x{i in 1..3} >= 0;

param res {i in 1..6}
param p1 {iter in 1..2};
param p2 {iter in 1..2};
param iter;

minimize obj:
p1[iter] - x[1]^2 - 2*x[2]^2 - x[3]^2 - x[1]*x[2] - x[1]*x[3];

subject to c1:
8*x[1] + 14*x[2] + 7*x[3] - p2[iter] = 0;

subject to c2:
x[1]^2 + x[2]^2 + x[3]^2 -25 >= 0;

let p1[1] := 1000;
let p1[2] := 500;
let p2[1] := 56;
let p2[2] := 98;

for {i in 1..2} {
Define the initial point.
let {k in 1..3} x[k] := 2;

let iter := i;

solve;

#store the solution
for {j in 1..3} {

let res[(i-1)*3 + j] := x[j];
};

};

display res;

Individual calls of the solve command will block until the solution is cal-
culated. Using Parampl, it is possible to solve multiple problems in parallel.
Parampl is a program written in Python programming language, which is
accessed from AMPL programs by calling two AMPL commands:

90 A. Olszak and A. Karbowski

- paramplsub - submits the current problem to be processed in a separate
thread of execution and returns:

write ("bparampl_problem_" & $parampl_queue_id);
shell ’python parampl.py submit’;

- paramplret - retrieves the solution (blocking operation) of the first submitted
task, not yet retrieved:

shell ’python parampl.py retrieve’;
if shell_exitcode == 0 then {

solution ("parampl_problem_"& $parampl_queue_id &".sol");
remove ("parampl_problem_"& $parampl_queue_id &".sol");

}

The paramplsub script saves the current problem to a .nl file (using AMPL
command write) and executes Parampl with the parameter submit. When exe-
cuted with the parameter submit, Parampl creates a unique identifier for the
task, renames the generated .nl file to a temporary file and executes a solver in
a separate process passing the problem file to it. Information about the tasks
being currently processed by Parampl is stored in the jobs file - new tasks are
appended to this file. The tasks submitted in this way are executed in parallel
in separate processes. After calculating the solution, the solver creates a .sol file
with the file name corresponding to the temporary problem file passed to the
solver upon execution. The solution may be afterwards passed back to AMPL
by calling the paramplret script.

The paramplret script executes Parampl with the parameter retrieve, which
is a blocking call, waiting for the first submitted task from the jobs file (not
yet retrieved) to finish - a notification file is generated. The solution file is then
renamed to the .sol file known by the paramplret script and is then passed to
AMPL using AMPL command solution. At this point, the temporary .nl file
is deleted and the job id is removed from the jobs file. After calling the script
paramplret, the solution is loaded to the main AMPL program flow as if the solve
command was called.

The problem presented above may be run in parallel using Parampl in the
following way:

for {i in 1..2} {
Define the initial point.
let x[1] := 2; let x[2] := 2; let x[3] := 2;

let iter := i;

execute solver (non blocking execution):
commands paramplsub;

};

Parallel Execution of AMPL Programs 91

the tasks are now being executed in parallel...

for {i in 1..2} {
retrieve solution from the solver:
commands paramplret;

#store the solution
for {j in 1..3} {

let res[(i-1)*3 + j] := x[j];
};

};

In the above scenario, both problems are first submitted to Parampl, which
creates a separate process for solving each of them (parallel execution of the
solvers). In the second loop, the solutions for both subtasks are retrieved back
to AMPL and may be then processed.

Before calling the Parampl scripts, the parampl must be configured within
the AMPL program - the solver to be used and the queue id should be set. The
queue id is the unique identifier of the task queue, which is a part of the names
of temporary files created by Parampl, which allows executing Parampl in the
same working directory for different problems and ensures that the temporary
problem, solution and jobs files are not overwritten. The options for the chosen
solver should be set in the standard way, e.g.:

option parampl_options ’solver=ipopt’;
option parampl_queue_id ’powelltest’;

option ipopt_options ’mu_init=1e-6 max_iter=10000’;

4 Evaluation and Experiments

The efficiency of Parampl was evaluated on a machine equipped with Intel
Core i7–2760QM processor with all 4 cores enabled and Intel SpeedStep, C-
States Control, Intel TurboBoost and HyperThreading technologies disabled.
The machine was running Windows 7 64-bit operating system, AMPL ver.
20130704 and Python ver. 3.3.2.

The application tested was a decomposed version of generalized problem 20
presented in [10], formulated below:

min
y∈Rn

0.5 · (y2
1 + y2

2 + . . . + y2
n)

yk+1 − yk ≥ −0.5 + (−1)k · k, k = 1, . . . , n − 1

y1 − yn ≥ n − 0.5

92 A. Olszak and A. Karbowski

The decomposed algorithm divides the vector y ∈ R
n into p equal parts (assum-

ing that p is a divisor of even n). Let us denote:

xi,j = y(i−1)·ni+j , i = 1, . . . , p, j = 1, . . . , ni,

xi =
⎧
xi,1, xi,2, . . . , xi,ni

⎨T

⎧
xT
1 , xT

2 , . . . , xT
p

⎨T
= y

where n1 = n2 = . . . = np = n
p . We may then divide all n constraints into p + 1

groups: constraints dependent only on xi subvector for every i = 1, . . . , p:

yk+1 − yk ≥ −0.5 + (−1)k · k, k = (i − 1) · ni + j, j = 1, . . . , ni − 1

that is

xi,j+1 − xi,j ≥ −0.5 + (−1)k(i,j) · k(i, j), j = 1, . . . , ni − 1,

where k(i, j) = (i − 1) · ni + j, and p constraints involving different subvectors
xi and xi+1:

yk+1 − yk ≥ −0.5 + (−1)k · k, k = i · ni, i = 1, . . . , p − 1

y1 − yn >= n − 0.5

The latter constraints may be written as:

xmod(i,p)+1,1 − xi,ni
≥ ci, i = 1, . . . , p

where
ci = −0.5 + (−1)(i·ni) · (i · ni)

We define the dual problem as:

max
λ≥0

min
xi∈X,i=1,...,p

L(x, λ) (1)

where

L(x, λ) =
p⎩

i=1

ni⎩

j=1

0.5 · x2
i,j +

p⎩

i=1

λi · ⎜
ci + xi,ni

− xmod(i,p)+1,1

⎫

=
p⎩

i=1

⎬

⎭

⎬

⎭
ni⎩

j=1

0.5 · x2
i,j + λi · xi,ni

− λmod(p−2+i,p)+1 · xi,1

⎞

⎠ + λi · ci

⎞

⎠

The inner optimization in (1) decomposes into p local problems:

min
xi∈X

ni⎩

j=1

0.5 · x2
i,j + λi · xi,ni

− λmod(p−2+i,p)+1 · xi,1 (2)

Parallel Execution of AMPL Programs 93

Table 1. Simulation results: 4 cores, n = 6720

p Sequential Sequential Parallel Speedup Overall
solve [s] Parampl [s] Parampl [s] speedup

1 1126.9 1143.4 — — —
2 873.7 890.9 525.3 1.66 2.15
3 580.7 580.9 225.8 2.57 4.99
4 793.9 801.4 252.3 3.15 4.47
5 707.9 709.0 228.6 3.10 4.93

which may be solved independently, if possible, in parallel. The external - dual
problem (the coordination problem) may be solved in the simplest case by the
steepest ascent gradient algorithm (iterative):

λi := λi + α · ⎜
ci + x̂i,ni

(λ) − x̂mod(i,p)+1,1(λ)
⎫
, i = 1, 2, . . . , p

where α is a suitably chosen step coefficient and x̂(λ) is the optimal vector built
of solutions of local problems (2). The algorithm terminates when no significant
change of the result vector is achieved.

For the simulations, we used the solver IPOPT [11] ver. 3.11.1 with problem
scaling disabled (nlp scaling method=none), initial value for the barrier parame-
ter mu init=1e-6 and the maximum number of iterations max iter=10e6. Three
variants of the algorithm were tested - sequential (solving the subproblems by
calling the blocking solve command), sequential Parampl (using paramplsub and
paramplret calls) and parallel (in every iteration, paramplsub was first called for
all the subproblems, after which the results were retrieved by calling paramplret).
The results of simulations for n = 6720 and various values of p are presented in
Table 1. The column “speedup” presents the speedup achieved when compared
to the sequential execution of the decomposed algorithm while “overall speedup”
is the speedup in comparison to the calculation time for the original problem.

The decomposed algorithm that we tested appeared to be very sensitive to
the problem size (the efficiency varies significantly for various values of n and p
- for some problems, more iterations are needed to achieve the same accuracy
of the results). It is however a very good example to demonstrate the effect of
running programs in parallel on many cores. In the presented simulation results,
the effect of employing the parallelism is clearly visible. The larger the number
of subtasks, the larger speedup is achieved. The values of speedup are however
lower than their upper limit (Amdahl’s law), which is caused by the differences
of solving times for individual subproblems1. Thus, if the differences between
computation times for individual subproblems might be significant, the number
of parallel subproblems should be greater than the number of physical processor
1 The time of calculations of the AMPL mathematical instructions in the sequential

part, i.e. the time of execution of the coordination algorithm is rather negligible.
However, for much smaller problems and large numbers of subproblems and itera-
tions, we noticed that significant portion of the execution time is the startup time
of the Python virtual machine and thus the speedup drops sharply.

94 A. Olszak and A. Karbowski

cores available to minimize the relative time when some cores are idle while
waiting for the remaining tasks to complete. It is worth mentioning that the
overall speedup reached (compared to the original problem calculation time)
is even greater than the number of cores, which was achieved by applying a
problem specific heuristic (although the accuracy might be slightly worse). Such
a speedup could not be achieved just by employing a parallel solver nor any
universal automated tool detecting the problem structure.

5 Conclusion

In this paper, the design and usage of Parampl was presented, a parallel task
submission extension for AMPL. Our experimental results prove that Parampl
equips AMPL with a possibility of defining complex parallel algorithms solving
optimization problems. It is able to take advantage of multiple processing units
while computing the solutions. Parampl is very easy to deploy and use in AMPL
programs and its implementation in Python programming language makes it
platform independent.

References

1. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming, 2nd edn. Duxbury Press, Belmont (2002)

2. Boschetti, M., Maniezzo, V.: Benders decomposition, Lagrangean relaxation and
metaheuristic design. J. Heuristics 15, 283–312 (2009)

3. Dolan, E.D., Fourer, R., Goux, J.-P., Munson, T.S., Sarich, J.: Kestrel: an interface
from optimization modeling systems to the NEOS server. INFORMS J. Comput.
20, 525–538 (2008)

4. Colombo, M., Grothey, A., Hogg, J., Woodsend, K., Gondzio, J.: A structure-
conveying modelling language for mathematical and stochastic programming.
Math. Program. Comput. 1(4), 223–247 (2009). doi:10.1007/s12532-009-0008-2

5. Fragnière, E., Gondzio, J., Sarkissian, R., Vial, J.-P.: Structure exploiting tool in
algebraic modeling languages. Manage. Sci. 46, 1145–1158 (2000)

6. Fourer, R., Gay, D.M.: Conveying problem structure from an algebraic modeling
language to optimization algorithms. In: Laguna, M., González Velarde, J.L. (eds.)
Computing Tools for Modeling, Optimization and Simulation. Interfaces in Com-
puter Science and Operations Research, vol. 12, pp. 75–89. Kluwer, Boston (2000)

7. Buchanan, C.S., McKinnon, K.I.M., Skondras, G.K.: The recursive definition of
stochastic linear programming problems within an algebraic modeling language.
Ann. Oper. Res. 104(1–4), 15–32 (2001)

8. Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling lan-
guages for stochastic programming. INFORMS J. Comput. 21(1), 107–122 (2009)

9. Fourer, R., Lopes, L.: StAMPL: a filtration-oriented modeling tool for multistage
stochastic recourse problems. INFORMS J. Comput. 21, 242–256 (2009)

10. Powell, M.J.D.: On the quadratic programming algorithm of Goldfarb and Idnani.
Math. Program. Stud. 25, 46–61 (1985)

11. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

http://dx.doi.org/10.1007/s12532-009-0008-2

Prototyping Framework for Parallel Numerical
Computations

Ondřej Meca, Stanislav Böhm(B), Marek Běhálek, and Martin Šurkovský

Department of Computer Science, FEI VŠB Technical University of Ostrava,
Ostrava, Czech Republic

{ondrej.meca,stanislav.bohm,marek.behalek,martin.surkovsky}@vsb.cz

Abstract. Our research is focused on the simplification of parallel pro-
gramming for distributed memory systems. Our goal is to build a uni-
fying framework for creating, debugging, profiling, and verifying parallel
applications. The result of this effort is an open source tool Kaira. In
this paper, we focus on prototyping of parallel applications. We have
extended Kaira by the ability to generate parallel libraries. More pre-
cisely, we present a framework for fast prototyping of parallel numerical
computations. We demonstrate our idea on a combination of parallel
libraries generated by our tool Kaira and GNU Octave. Hence, a user
can verify the idea in a short time, create a real running program and
verify its performance and scalability.

Keywords: Prototyping · Parallel computing · Visual programming ·
Libraries

1 Introduction

Parallel computers are more and more available nowadays. A lot of people par-
ticipate in developing parallel programs, but there are well-known difficulties of
parallel programming. For example the user must learn how to use different spe-
cialized tools for profiling or debugging. Also, it usually takes more time to get
a working parallel application that can be tested. Therefore, it can be difficult
for many non-experts (even if they are experienced programmers of sequential
applications) to make their programs run in parallel on a computer cluster.

The overall goal of our research is to reduce some complexity in parallel
programming. In this paper, we focus on parallel application prototyping. More
precisely, we present a framework for fast prototyping of parallel numerical com-
putations. Hence, a user can verify his/her idea in a short time, create a real run-
ning program, and verify its performance and scalability. To address numerical
computations, we demonstrate our idea on the combination of parallel libraries
generated by our tool Kaira and GNU Octave1 (Which we will now simply refer
to as “Octave” in text). However, this approach can be easily generalized and

1 http://www.gnu.org/software/octave/

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 95–104, 2014.
DOI: 10.1007/978-3-642-55195-6 9, c© Springer-Verlag Berlin Heidelberg 2014

http://www.gnu.org/software/octave/

96 O. Meca et al.

generated libraries can be combined with other tools. We have chosen Octave
because it represents a good example of a prototyping software, where users can
easily experiment with their ideas.

2 Related Work

This section presents tools which have implemented ideas similar to Kaira and
from which we have drawn inspiration. First, there were tools for visual pro-
gramming of parallel applications. These tools were developed mainly in the
90s. As an example we can name GRADE [9], CODE [11] or HeNCE [3]. It is
hard to evaluate these tools because they are no longer available or they run on
no longer available hardware or operating systems. The semantics of our tools is
similar to CODE but as far we know, CODE is not able to show a state of the
application through the visual model. The same holds also for HeNCE that had
similar features like CODE but expressiveness of its language was restricted. In
GRADE, the application could be visually debugged but the visual language is
based on different concept in comparison to our tool.

Despite that we are not aware of any such tool that is still actively developed
or become widely accepted, we think that the visual approach to developing par-
allel applications is interesting and it deserve another chance. Parallel computers
are more common and more accessible today; therefore, more scientific and engi-
neering applications can profit from such hardware and not all of them require
optimized handmade solutions. Additionally, we want to create a unified envi-
ronment, where the same visual model is used not only during the development,
but also to simplify various supportive activities.

A more successful approach to more abstract parallel programming is stream
processing (StreamIt [12], FumeJava, Fastflow, etc.). FlumeJava [6] can be
described as follows. It is a Java library for developing data-parallel pipelines. It
offers lazy colle ction types and operations (map, filter, count, etc.), automati-
cally generating and running a sequence of MapReduces only when the actual
results are requested. MapReduce offers a good abstraction where many real
parallel problems can be expressed. But data-flow is inherently limited by the
target MapReduce framework – all data are processed uniformly in alternating
and isolated map and reduce steps. From the perspective of these tools our tool
offers a more low-level approach, less abstract programs. and more control over
final applications. In our approach, we want to offer a more flexible environment
where the user has more control to experiment with parallel algorithms.

Another approach is to introduce special constructions or annotations into
widely used languages. As an example, we can name OpenMP2, Unified Par-
allel C3 [5] or Cilk++ [10]. The combination with standard languages makes
these frameworks good prototyping tools, because a sequential program can be
gradually parallelized. Many standard patterns, like parallelization of an inde-
pendent for-cycle, can be also easily expressed in these tools. Our approach may
2 http://openmp.org/wp/
3 http://upc.lbl.gov/

http://openmp.org/wp/
http://upc.lbl.gov/

Prototyping Framework for Parallel Numerical Computations 97

need more work in the initial phase, because drawing a visual model is more
demanding than setting up some annotations. But such model is useful for clear
representation of the inner state of a running application, so it can speed up
understanding of the application’s behavior during testing, profiling, and other
supportive activities.

If standard algorithms from a specific area are needed it is often the best
solution to use some specialized libraries with tuned implementations. Consider-
ing numerical computations, there are specialized libraries for parallel numerical
computations - for example libraries PETSc4 and Trilinos5. However, when some
special needs are required, it can be hard to adjust these libraries. They can be
good prototyping tools and they can solve different problems, but if we want to
experiment with different parallelization approaches, then they are usually not
sufficient.

Use of such libraries is compatible with our approach. It is possible to combine
their sequential parts with Kaira. For example, considering numerical compu-
tations, Kaira controls the overall data flow and Trilinos matrices are used for
computations themselves.

3 Tool Kaira

This section serves as an overview for our tool Kaira; for more details see [1,2].
Our goal is to simplify the development of Message Passing Interface (MPI)6

parallel applications and create an environment where all activities (prototyping,
debugging, performance prediction, profiling, etc.) are unified under one concept.

The key aspect of our tool is the usage of visual models. In the first place,
we have chosen visual models to obtain an easy and clear way to describe and
expose parallel behavior of applications. The other reason is that a distributed
state of an application can be shown through such visual model. The represen-
tation of an inner-state of distributed applications by a proper visual model can
be more convenient than traditional ways like back-traces of processes and mem-
ory watches. Using this approach, we provide visual simulations where the user
observes the behavior of the developed application. It can be used on incomplete
applications from an early stage of development; therefore, it is a very useful fea-
ture for a prototyping tool. In a common way of development of MPI programs,
it often takes a long time to get the developed application to a state where its
behavior can be observed. We also use the same visual model for debugging and
profiling. The user specifies through the visual model what to measure and Kaira
generates a tracing version of the application recording its own runs. The record
is presented back to the user through the original visual model of the application.

On the other hand, we do not want to create applications completely through
visual programming. Sequential parts are written in the standard program-
ming language (C++) and combined with the visual model that catches parallel
4 http://www.mcs.anl.gov/petsc/
5 http://trilinos.sandia.gov/
6 http://www.mpi-forum.org/docs/docs.html

http://www.mcs.anl.gov/petsc/
http://trilinos.sandia.gov/
http://www.mpi-forum.org/docs/docs.html

98 O. Meca et al.

aspects and communication. We want to avoid huge unclear diagrams; therefore,
we visually represent only what is considered as “hard” in parallel program-
ming. Ordinary sequential codes are written in a textual language. Moreover,
this design allows for easy integration of existing C++ codes and libraries.

It is important to mention that our tool is not an automatic parallelization
tool. Kaira does not automatically detect parallelizable sections. The user has
to explicitly define them, but they are defined in a high-level way and the tool
derives implementation details.

Semantics of the Kaira visual programming language is based on Coloured
Petri nets (CPNs) [8]. Petri nets are a formalism for description of distributed
systems. They also provide well-established terminology, natural visual repre-
sentation of models for their editing, and their simulations. The modeling tool
CPN Tools7 inspired us how to show visual models.

To demonstrate how our models work, let us consider a model in Fig. 1. It
presents a problem where some jobs are distributed across computing nodes and
results are sent back to process 0. When all these results arrive, they are written
into a file. Circles (places in terminology of Petri nets) represent memory spaces.
Boxes (transitions) represent actions. Arcs run from places to transitions (input
arcs) or from transitions to places (output arcs). When a transition is executed it
takes values (tokens) from places according to input arcs. When a computation
in a transition is finished, then it produces new tokens to places according to
output arcs. A computation described by this diagram runs on every process.
Transferring tokens between processes are defined by the expression followed
after character “@” in expressions on output arcs. A double border around a
transition means that there is a C++ function inside. It is executed whenever
the transition is fired. A double border around a place indicates an associated
C++ function that defines the initial content of the place.

Fig. 1. The example of a model

4 Libraries

The infrastructure of libraries in Kaira is based on modules. A module is a
model in Kaira enriched by an interface (depicted as a gray rectangle around the
model). From a set of modules, Kaira generates a C++ library. As an example,
consider the module in Fig. 2. It takes two input integers (x, y) and outputs a
7 http://cpntools.org/

http://cpntools.org/

Prototyping Framework for Parallel Numerical Computations 99

Fig. 2. The module sum

single integer (z). The example of a bigger module is presented in Sect. 5. When
a library is generated from this module, we obtain the C++ library with the
following interface:

void c a l i b i n i t (int argc , char ∗∗ argv) ;
void sum(int &x , int &y , int &z) ;

It is possible to use such library in any sequential C++ application. This
application can be compiled and run through MPI infrastructure. The applica-
tion will be executed in process 0 sequentially. When it calls a generated function,
then the computation will be run across all MPI processes according to the struc-
ture of the module. When the function is finished (i.e. the module is finished)
then the program continues again sequentially.

The library can be also generated in the Remote Procedure Call (RPC) mode.
Kaira generates both server and client parts. The client side is a library that has
the same interface as was described in the example above, but when a function
is called it sends a request through a network to the server where a requested
computation is executed.

4.1 Octave Libraries

Octave offers a possibility to create C++ modules (so called “oct-files”). It
makes calling C++ functions accessible in the Octave environment. We use
this infrastructure; Kaira is able to generate an oct-file that wraps our par-
allel libraries. Hence, the user is able to use modules smoothly in Octave in a
similar way as in C++ applications. The important aspect of such integration
is interoperability between data types. Kaira contains conversion functions for
basic data types likes numbers or vectors. The user must provide conversion
functions for own data types.

5 Case Study

As an example we have chosen a variant of the Finite Element Tearing and Inter-
connecting (FETI) domain decomposition method – Total-FETI [4]8. Omitting
other aspects like numerical scalability; parallelization of Total-FETI can be very
8 The model and source codes used in this example are available on the website of our

project http://verif.cs.vsb.cz/kaira.

http://verif.cs.vsb.cz/kaira

100 O. Meca et al.

straightforward. In [4], the basic idea is to decompose the domain into N sub-
domains. After the discretization, we get a block diagonal stiffness matrix (Eq. 2
in [4]), where matrices K1 . . .KN are stiffness matrices for corresponding sub-
domains. Using such block diagonal stiffness matrix K, we are usually able to
divide computations and perform them in parallel (see the following equation).

K =

⎡
⎢⎣
K1

. . .

KN

⎤
⎥⎦ ,x =

⎡
⎢⎣
x1

...
xN

⎤
⎥⎦ ,Kx =

⎡
⎢⎣
K1x1

...
KNxN

⎤
⎥⎦ . (1)

Such straightforward approach is far from being optimal. More advanced
approaches were published in [7], where the authors focus on performance and
usage of thousands of processors. In their solution, they use the library PETSc.
Of course, such solution is much more time and resource demanding and rel-
atively very complicated. On the other hand, Octave implementation that we
start with roughly follows steps from paper [4] and it is relatively simple and
readable. With such implementation, it is easy to explore different mathematical
aspects or perform different experiments, but it is hard to address issues related
to parallel programming.

More precisely, in the Octave API, there are external packages9 for paral-
lel/distributed computing. Package general contains two functions (parcellfun
and pararrayfun) that evaluate functions using multiple processes. But it is
restricted only to shared memory architectures. For distributed memory there
are packages openmpi ext and parallel. These packages are basic wrappers to
MPI functions and simple sockets API. In both cases, they are quite low-level
interfaces from a programmer’s point of view. Tasks like debugging and profiling
can be complicated considering development environments for Octave.

At the beginning, we had a working sequential implementation of Total-FETI
for Octave. The most time consuming operation is a solution of linear system
Ky = x. As was suggested in [4], Cholesky factorization of the stiffness matrix is
used ([L,ans,P]=chol(K,’lower’)). The following Octave code performs this
time consuming computation:

function y=Kplus aux (L , P, x)
Lt=L ’ ;
Pt=P ’ ;
y=P∗(Lt \(L\(Pt∗x))) ;

end

Total-FETI iteratively computes the result and thus uses Kplus aux several
times. We want to parallelize this operation using Kaira and explore its proper-
ties. Module Kplus par from the Fig. 3 defines the parallel computations. In this
model we use types Matrix and SparseMatrix which are native types offered by
the Octave C++ interface.

Matrices L and P are a block diagonal. First, they are (along with vector
x) divided according to their block diagonal structure (transition Divide). By

9 All mentioned packages are available at http://octave.sourceforge.net

http://octave.sourceforge.net

Prototyping Framework for Parallel Numerical Computations 101

Fig. 3. Module Kplus par

this action we obtain N smaller tasks. These tasks are processed by transition
Compute. A source code in the transition Compute performs the same compu-
tation like the original Octave function Kplus aux, but using a single block that
represents one sub-domain. The following source code is stored in the transi-
tion Compute. The user needs to write only the three lines in the body of the
function. The rest is a template generated by the tool.

struct Vars {
Matrix x ; Matrix y ;
SparseMatrix L ; SparseMatrix P;
int n ;

} ;
void t r a n s i t i o n f n (CaContext &ctx , Vars &var) {

SparseMatrix Lt=var .L . t ranspose () ;
SparseMatrix Pt=var .P . t ranspose () ;
var . y = var .P∗(Lt . s o l v e (var . L . s o l v e (Pt∗var . x))) ; }

}
When all partial results are produced, transition Combine is fired and the

resulting vector is composed. After that, the module is terminated and the data
are transmitted back to the Octave. In the original source code for Octave, the
only change is the call of the generated function (instead of the original sequential
one). It has one additional parameter N indicating the number of sub-domains.

The model shown in Fig. 3 represents a solution for a shared memory system.
If the resulting application is started in a configuration with multiple threads,
then it is performed in parallel. An extension of this net for usage with distributed
memory is easy. We just need to modify the existing arc inscription: (Lblock,
Pblock, xblock, n) to: (Lblock, Pblock, xblock, n)@n and (n, y) to (n, y)@0. It
causes that blocks will be assigned to MPI processes according to their positions
and results are sent back to process 0.

102 O. Meca et al.

5.1 Experiments and Results

Now with the existing model, a user is able to use various features of Kaira.
For example it is possible to perform simulations of module executions indepen-
dently on Octave code (Fig. 4), where the user manually controls the simulation.
Additionally, it is possible to run the application in the tracing mode where
the execution of a module is recorded. Such recorder execution can be replayed
using the original model or some performance statistics can be obtained (like
execution times for each transition, etc).

Fig. 4. A screenshot of a simulation

To test the module’s performance, we solve a displacement of a 1D string
that is fixed on both ends. We prepare a stiffness matrix where each sub-domain
has 500000 discretization steps and we use 30 sub-domains. The measurement
was performed on a computer with 8 processors AMD Opteron/2500 (having a
total of 32 cores). A computation of original Kplus aux takes in average 21.79 s
in the pure Octave solution. We measured runs of the library generated from our
module Kplus par. The test was performed in RPC mode, where both client and
server run on the same computer. The measured times for multithreading and
MPI backends are listed in Table 1.

These results are consistent with reasonable expectations. They show that
there is a communication cost related to the RPC mode (difference between
running times for multithreading with and without RPC). This cost is fixed due

Table 1. Running times (in seconds) of Kplus par using threads and MPI

Nodes 1 2 4 8 16 32

Threads + RPC 25.30 19.87 10.32 8.02 7.70 7.76
MPI + RPC 25.19 20.88 16.89 15.36 16.55 16.39
Threads (no RPC) 21.71 11.05 6.51 4.35 4.06 3.93

Prototyping Framework for Parallel Numerical Computations 103

to the fixed problem size. It also presents a bottleneck for further performance
improvements. For multithreading we reached this bottleneck around 16 cores.
At this point, a time to distribute matrices is much bigger than a time to per-
form the computation itself. Usage of MPI introduces additional communication
overhead, because data are distributed between nodes using MPI functions.

The execution of the sequential version (using only one core) of the whole
computation takes approximately 320 s while the function Kplus aux was used 5
times. For real problems, the number of iterations can be different (usually big-
ger) and when the stiffness matrices contain more non-zero elements, the func-
tion Kplus aux will be more time consuming. We present these results mainly
to prove, that we are able to get a working parallel solution with reasonable
performance and even if the obtained solution may not be the most optimal, we
were able to develop it fast.

To keep the presented solution simple, the stiffness matrix K is divided and
distributed for every computation. To improve the performance further, we can
store these blocks in computing nodes and use them several times, while they
do not change during the computation. Mentioned matrices are sparse, but they
are usually huge. Their size is based on the number of primary variables and
there can be millions of primary variables in real problems. So for real experi-
ments the memory consumption often becomes an issue (usually even before the
performance). In fact, we do not need to compose the whole stiffness matrix.
When we divide its blocks between computing nodes, we can handle a problem
originally too large for a single computer. This can be an even bigger advantage
than just the performance improvement.

6 Conclusion

The paper presents our tool Kaira and its ability to generate parallel libraries.
Also it demonstrates their usage in a combination with Octave. Such combi-
nation allows rapid prototyping of parallel numerical computations. On a real
example (TotalFETI method), we demonstrated that it takes only a few lines of
C++ code and a relatively simple model based on CPNs to get a working par-
allel application with reasonable performance. Further, this model can be easily
extended and we are use the same visual model for debugging and profiling.
Thus, an inexperienced user does not have to learn additional tools.

Kaira is still being actively developed. We are trying to improve the process
of gathering information from the model to provide functions like performance
prediction or verification. From the perspective of this paper, we are also focused
on additional simplifications for binding Octave types and allow for preserving
data on computing nodes during consecutive computations. We also want to
extend our approach to Matlab.

Acknowledgments. The work is partially supported by: GAČR P202/11/0340, the
European Regional Development Fund in the IT4Innovations Center of Excellence
project (CZ.1.05/1.1.00/02.0070) and Grant of SGS No. SP2013/145, VŠB - Technical
University of Ostrava, Czech Republic.

104 O. Meca et al.

References

1. Böhm, S., Běhálek, M.: Generating parallel applications from models based on
petri nets. Adv. Electr. Electron. Eng. 10(1), 28–34 (2012)

2. Böhm, S., Běhálek, M.: Usage of Petri nets for high performance computing. In:
Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-Performance
Computing, FHPC ’12, pp. 37–48. ACM, New York (2012) http://doi.acm.org/10.
1145/2364474.2364481

3. Browne, J.C., Dongarra, J., Hyder, S.I., Moore, K., Newton, P.: Visual program-
ming and parallel computing. Technical report, Knoxville, TN, USA (1994)

4. Dostál, Z., Horák, D., Kučera, R.: Total FETI-an easier implementable variant of
the FETI method for numerical solution of elliptic PDE. Commun. Numer. Meth.
Eng. 22(12), 1155–1162 (2006). http://dx.doi.org/10.1002/cnm.881

5. El-Ghazawi, T., Smith, L.: UPC: unified parallel C. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06. ACM, New York. http://doi.
acm.org/10.1145/1188455.1188483 (2006)

6. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. SIGPLAN Not. 41(11), 151–162
(2006)

7. Horák, D., Dostál, Z.: Parallelization of the total-FETI-1 algorithm for contact
problems using PETSc. In: Proceedings of the Second International Conference
on Parallel, Distributed, Grid and Cloud Computing for Engineering. Civil-Comp
Press, Stirlingshire (2011)

8. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

9. Kacsuk, P., Cunha, J., Dózsa, G., Lourenco, J., Fadgyas, T., Antao, T.: A graphi-
cal development and debugging environment for parallel programs. Parallel Com-
put. 22(13), 1699–1701 (1997). http://www.sciencedirect.com/science/article/pii/
S0167819196000750 (distributed and parellel systems: Environments and tools)

10. Leiserson, C.: The Cilk++ concurrency platform. J. Supercomput. 51(3), 244–257
(2010). http://dx.doi.org/10.1007/s11227-010-0405-3

11. Newton, P., Browne, J.C.: The code 2.0 graphical parallel programming language.
In: Proceedings of the 6th International Conference on Supercomputing, ICS ’92,
pp. 167–177. ACM, New York. http://doi.acm.org/10.1145/143369.143405 (1992)

12. Thies, W., Amarasinghe, S.: An empirical characterization of stream programs
and its implications for language and compiler design. In: Proceedings of the 19th
International Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, pp. 365–376. ACM, New York (2010)

http://doi.acm.org/10.1145/2364474.2364481
http://doi.acm.org/10.1145/2364474.2364481
http://doi.acm.org/10.1145/1188455.1188483
http://doi.acm.org/10.1145/1188455.1188483
http://www.sciencedirect.com/science/article/pii/S0167819196000750
http://www.sciencedirect.com/science/article/pii/S0167819196000750
http://doi.acm.org/10.1145/143369.143405

Algorithms for In-Place Matrix Transposition

Fred G. Gustavson1,2 and David W. Walker3(B)

1 IBM T. J. Watson Research Center (emeritus), Yorktown Heights, USA
2 Ume̊a University, Ume̊a, Sweden

3 School of Computer Science and Informatics, Cardiff University, Cardiff, UK
WalkerDW@cardiff.ac.uk

Abstract. This paper presents an implementation of an in-place swap-
based algorithm for transposing rectangular matrices, and a proof of
correctness is also sketched. The implementation is based on an algorithm
described by Tretyakov and Tyrtyshnikov [4], but we have introduced a
number of variations. In particular, we show how the original algorithm
can be modified to require constant additional memory. We also identify
opportunities for exploiting parallelism.

Keywords: Matrix · Transpose · Permutations · Performance ·
Parallelism

1 Introduction

The transposition of rectangular matrices appears in linear algebra computa-
tions, and is important in a number of areas. For example, a common approach
to finding the discrete Fourier transform of a three-dimensional array is to per-
form a 1D transform with respect to each dimension in turn and to transpose
the data with respect to two of the dimensions between each of the transfor-
mation stages. This is done to ensure that the data being transformed in 1D is
always contiguous; this improves performance by using cache efficiently, and it
facilitates parallelization.

Let A be a contiguous matrix of size n×m elements. Given extra memory of
size nm matrix elements, an out-of-place matrix transposition can be performed
by simple memory-to-memory copies, but only by using large stride operations.
However, for sufficiently large matrices this is often not an efficient use of mem-
ory. In such cases an in-place transposition algorithm is preferable because it
evaluates the transpose using less memory. In Sect. 4 the in-place swap-based
transposition algorithm of Tretyakov and Tyrtyshnikov [4] is described. This uses
min (n,m) extra storage. Henceforth, for brevity, this is called the TT algorithm.
Specifically, we give variations of the TT algorithm, and discuss their charac-
teristics; i.e., the amount of extra memory required, the efficiency of memory
access, the potential for parallelization, and their costs. The novel contributions
of this paper are as follows:

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 105–117, 2014.
DOI: 10.1007/978-3-642-55195-6 10, c© Springer-Verlag Berlin Heidelberg 2014

106 F.G. Gustavson and D.W. Walker

1. To the best of the authors’ knowledge theirs is the first implementation of the
TT algorithm, and this paper presents the results of a practical performance
study of this algorithm for the first time.

2. The paper shows that the additional O(m) memory required by the TT algo-
rithm to transpose an n × m matrix can be reduced to O(1).

3. The paper highlights opportunities for parallelism, and demonstrates that a
divide-and-conquer approach can reduce the number of swaps required in a
key component of the TT algorithm.

4. The paper compares the measured runtimes of the TT algorithm and other
in-place transposition algorithms, and shows that these can execute faster
than the TT algorithm, even though they have a higher swap count. This is
attributed to more irregular memory access patterns in the TT algorithm.

The remainder of this paper is organised as follows. Section 2 introduces
some notation and terminology, and Sect. 3 outlines the use of cycle-following
algorithms for in-place matrix transposition. This is followed in Sect. 4 by a
description of the swap-based TT algorithm [4]. Variants of the TT algorithm
are discussed in Sect. 5, with particular attention to memory requirements and
the potential for exploiting parallelism. The paper’s main conclusions are then
presented in Sect. 6.

2 Notation and Terminology

Computer memory may be viewed as a linear sequence of uniformly-spaced stor-
age locations. A set of items a0, a1, . . . , ar−1 is said to be stored contiguously if
item ai is stored starting at the next storage location following the end of item
ai−1, for i = 1, . . . , r−1. The standard storage scheme for a matrix of size n×m
can be specified by a mapping from row i and column j to a offset number k.
Thus, for a column-major order (CMO) matrix the mapping is k = j × n + i,
while for a row-major order (RMO) matrix it is k = i × m + j.

It should be noted that transposing a CMO matrix is equivalent to trans-
forming its storage scheme from CMO to RMO. Similarly, transposing a RMO
matrix is equivalent to transforming its storage scheme from RMO to CMO.

3 Matrix Transposition Based on Cycle Following

There is a vast literature on in-place matrix transposition and the more gen-
eral topic of in-place permutation. A detailed discussion can be found in the
recent paper by Gustavson, Karlsson and Kagstrom [2], which also contains a
full section on related work on in-place transposition.

For a CMO matrix A of size n × m, aij stored at index k = jn + i is
stored at index k̂ = im + j of AT, which is also stored in CMO format. So the
basic idea behind cycle-following algorithms is that matrix transposition can be
viewed as a permutation k̂ = P (k) of the integers 0, 1, . . . , q, where q = mn − 1.

Algorithms for In-Place Matrix Transposition 107

The elements k = 0 and k = q are always invariant under P , and for 0 < k < q
we have:

P (k) = km mod q.

If the permutation P is applied repeatedly eventually one returns to the
starting index, i.e., there is some integer c such that k = P c(k). The values
k, P (k), . . . , P c−1(k) define a cycle of the permutation, and c is called the cycle
length. In general, the transposition of a matrix can be viewed as the union
of several disjoint cycles. For example, consider n = 5 and m = 3, where q =
mn−1 = 14. The corresponding transposition permutation contains the following
fives cycles:

(0) (3, 9, 13, 11, 5, 1) (7) (10, 2, 6, 4, 12, 8) (14)

Elements k = 0, 7, 14 are cycles of length 1 and require no data movement. The
first cycle of length 6 requires the following data movement. First make a copy
of A[1], the element of A at index 1. Then move A[5] ≤ A[1], A[11] ≤ A[5],
A[13] ≤ A[11], A[9] ≤ A[13], and A[3] ≤ A[9]. Finally move the copy of A[1] to
A[3]. By treating the cycle (10, 2, 6, 4, 12, 8) in the same way the transposition
is completed.

Cycle-following algorithms for in-place transposition consist of a first phase
in which exactly one member of each cycle is identified. This is referred to as
the cycle set leader. In the second phase P−1 is applied to each cycle leader and
the appropriate elements are moved round the cycle.

4 Matrix Transposition Based on Swaps

The TT paper [4] transposes in-place a n × m matrix A with n ≥ m, where A is
stored in CMO. It has two main phases. In the first phase A is partitioned in-
place over its rows into a set of k+1 contiguous sub-matrices Ai, i = 0, . . . , k, each
of which is stored contiguously in CMO. This is done by means of k applications
of the unshuffle operation, described below. In the second phase these k +1 sub-
matrices Ai are transposed. This completes the transposition of A. This approach
is readily adapted to handle the transposition of matrices stored in row-major
order and/or the case n < m. The transposition of each sub-matrix in-place can
be done independently, so either all the sub-matrices can be generated and then
transposed, or each can be transposed as soon as it is generated before generating
the next sub-matrix. In our implementation we have chosen the former approach
for clarity of exposition as well as to expose parallelism.

As discussed in Sects. 4.1 and 4.2, the two phases of the TT algorithm for
transposing an n × m matrix may be described in terms of the following swap-
based operations:

1. Unshuffle vectors of contiguous values. Consider the following contiguous
sequence of columns of the n × m matrix A: a1b1a2b2 . . . ambm where each ai

is itself a contiguous vector of τa elements, and each bi is a contiguous vector

108 F.G. Gustavson and D.W. Walker

of τb elements, with τa ≥ τb and initially τa + τb = n. Then the unshuffle
operation corresponds to the following transformation:

a1b1a2b2 . . . ambm ≤ a1a2 . . . amb1b2 . . . bm (1)

The number of swaps for this operation does not exceed 2mτa + 3mτb +
m2/2 [4]. Also, m elements of additional storage are required.

2. Shuffle vectors of contiguous values. The shuffle operation performs the oper-
ations of unshuffle in reverse order so the operation bound and additional
storage value are identical. Shuffle performs the transformation

a1a2 . . . amb1b2 . . . bm ≤ a1b1a2b2 . . . ambm. (2)

3. The vector transposition of a pmq × m matrix, where 0 < p < m, q > 0, and
the vector length is p. This is equivalent to the transposition of an mq × m
matrix in which each element is a column vector of length p. The authors
of [4] report that the number of swaps for this operation does not exceed
pmq+1, and an additional q items of storage are required.

4. The in-place transposition of a square matrix. For a k×k matrix this requires
k(k − 1)/2 swaps and additional storage for one item.

5. The out-of-place transposition of a non-square matrix having fewer than m
entries. This operation requires an index calculation followed by a copy for
each matrix element, and uses an additional m items of storage.

6. A permutation. Given a vector c of vector elements and a permutation vector
v, i.e., a vector containing the integers 1 to n in some order, then the permu-
tation induced by v causes the vector at c(i) to be stored at index v(i) of c.
For example, if c = (1, 2, 3, 4, 5, 6) and v = (2, 4, 1, 6, 5, 3), then applying the
permutation v to c gives (3,1,6,2,5,4).

4.1 The Partition Phase

The partition phase proceeds as follows. First n is expressed as a radix-m number
consisting of k + 1 digits: n = nkm

k + nk−1m
k−1 + · · · + n1m + n0 where 0 ∈

ni < m, and nk ∞= 0. The matrix A is written as A = {Ak, Ak−1, . . . , A1, A0},
where Ak is an nkm

k × m matrix consisting of the first nkm
k rows of A, Ak−1

is an nk−1m
k−1 × m matrix consisting of the next nk−1m

k−1 rows of A, and so
on, with A0 being an n0 × m matrix consisting of the last n0 rows of A. Thus,
in general Ai is an nim

i × m matrix, whose elements are stored in CMO.
The transformations carried out in each phase of the transpose algorithm are

illustrated in Fig. 1 for a 26× 4 matrix. Since 26 = 1× 42 +2× 4+2 the original
matrix is partitioned into k + 1 = 3 sub-matrices of size 16 × 4, 8 × 4, and 2 × 4.
As may be seen in the middle matrix shown in Fig. 1, each of the sub-matrices
is stored contiguously in column-major order.

A high-level description of the algorithm of [4] is shown in Algorithm 1, in
which the IPSB Partition routine overwrites the input matrix, A, with the sub-
matrices Ai for i = 0, 1, . . . , k. As discussed above, the sub-matrices generated
have a special form: Ai has size nim

q ×m, where ni < m and q ≥ 0. The routine

Algorithms for In-Place Matrix Transposition 109

Fig. 1. Transformations carried out in
each phase of the swap-based matrix
transpose algorithm illustrated with a
26 × 4 matrix. Each square represents
one matrix element, and the continu-
ous line between cell centers shows the
order in which they are stored, starting
in the top left corner. Phase 1 is carried
out in k = 2 stages: (26) → (16, 10) →
(16, 8, 2).

Phase 1 Phase 2

Algorithm 1. IPSB Transpose: In-Place Swap-Based Matrix Transpose
Input: Matrix A of size n × m, and work-space w of size iw.
Output: The number of swaps performed. The matrix A is overwritten by AT.
k = NumberOfDigits(n,m) - 1;
nswaps = IPSB Partition(A, n, m, w, iw);
foreach sub-matrix Ai, i = 0,1,. . .,k do

ni = Digit(i,n,m); q = Power(m,i);
nswaps = nswaps + IPSB PowerTranspose(Ai,ni,q,m,w,iw);

end
return [nswaps]

IPSB PowerTranspose uses swap-based methods to transpose matrices of this
type. Algorithm 1 also contains some auxiliary routines: NumberOfDigits(n,m)
returns the number of digits in the base-m representation of n; Digit(i,n,m)
returns digit i in such a representation; and Power(m,i) returns mi.

The type of partitioning described above can be performed using k appli-
cations of the unshuffle operation. The matrix is initially stored contiguously
in CMO as follows: ak

1 . . . a0
1a

k
2 . . . a0

2 . . . ak
m . . . a0

m where ai
j is column j of sub-

matrix Ai. In the first application of the unshuffle operation τa = nkm
k and

τb = n − τa, and the columns of the first sub-matrix, Ak, are gathered together
and made contiguous as follows:

ak
1 . . . a0

1a
k
2 . . . a0

2 . . . ak
m . . . a0

m ≤ ak
1a

k
2 . . . ak

mak−1
1 . . . a0

1a
k−1
2 . . . a0

2 . . . ak−1
m . . . a0

m.

In the second application of the unshuffle operation the columns of Ak−1 are
gathered together and made contiguous, and in general in the ith application
of the unshuffle operation the columns of Ak+1−i are gathered and made con-
tiguous. Thus, after k applications of the unshuffle operation the columns of the

110 F.G. Gustavson and D.W. Walker

Algorithm 2. IPSB Partition: In-Place Swap-Based Partitioning of Matrix
Input: Matrix A of size n × m, and work-space w of size iw.
Output: The number of swaps performed. The matrix A is overwritten by

sub-matrices Ai, i = 0, 1, . . . , nd − 1, where nd is the number of digits in n
to the base m.

nd = NumberOfDigits(n,m); mpow = Power(m,nd-1); p = 0; nt = n;
while mpow > 0 do

ni = nt/mpow; la = ni ∗ mpow; lb = nt-la;
nswaps = nswaps + Unshuffle(A[p],la,lb,w,iw);
p = p + m ∗ la; nt = lb; mpow = mpow/m;

end
return [nswaps]

sub-matrices are ordered as follows: ak
1 . . . ak

mak−1
1 . . . ak−1

m . . . a0
1 . . . a0

m which is
the required ordering. The IPSB Partition routine is presented in Algorithm 2.

4.2 The Transpose Phase

In the transpose phase each of the now contiguous k + 1 sub-matrices Ai is
transposed. Each Ai has size nim

i × m and it is transposed as follows:

1. Perform a vector transpose with vector size ni. As shown in Fig. 2, this results
in the matrix being stored as mi matrices Bj , j = 1, . . . , mi, each of size
ni × m.

2. Each Bj is transposed by dividing its columns into gi = m/ni square matrices
of order ni and one ni×ri matrix Rj , where ri = m mod ni. Thus Rj contains
the last ri columns of Bj . Each of the square ni × ni sub-matrices of each
Bj is transposed in-place, and each Rj matrix is also transposed in place.
The TT paper [4] gives no specific guidance on how to transpose the Rj , but
our implementation uses a recursive call to our general transpose algorithm.
The recursion terminates when the matrix to be transposed has fewer than
m elements, when an out-of-place algorithm is used to do the transposition.

3. At this stage of the algorithm the storage for each Bj contains:

w1
1 . . . w1

ni
. . . wgi

1 . . . wgi
ni

ω1 . . . ωni

where wp
q represents the qth row of the pth square matrix, and ωq the qth

column of matrix RT
j . Note that τ(wp

q) = ni and τ(ωq) = ri. Ignoring for now
the ωq, the following permutation is performed:

w1
1 . . . w1

ni
. . . wgi

1 . . . wgi
ni

≤ w1
1w

2
1 . . . wgi

1 . . . w1
ni

w2
ni

. . . wgi
ni

.

In [4] this requires an extra array of size nigi, which does not exceed m.
4. The shuffle operation is used to complete the transposition of each Bj by

performing the following transformation:

w1
1w

2
1 . . . wgi

1 . . . w1
ni

w2
ni

. . . wgi
ni

θ1 . . . θni → w1
1w

2
1 . . . wgi

1 θ1 . . . w1
ni

w2
ni

. . . wgi
ni

θni .

These four operations that constitute the transpose phase are illustrated in Fig. 2
for a particular sub-matrix Ai with q = 1, n1 = 3, and m = 8.

Algorithms for In-Place Matrix Transposition 111

4.3 The Exchange Operation

Algorithm 1 gives a high level view of the TT [4] algorithm of Tretyakov and
Tyrtyshnikov, and further details are given in Algorithms 2 and 3. However,
the exchange operation forms an important building block of the shuffle and
unshuffle operations. It takes two contiguous vectors of length p and q that are
contiguous themselves and reverses their order in-place:

a1 . . . apb1 . . . bq ≤ b1 . . . bqa1 . . . ap (3)

The exchange operation requires only one extra element, regardless of the values
of p and q. We show in [3] that the number of swaps performed is

p + q − gcd (p, q). (4)

If p ≥ q, the items b1 . . . bq are exchanged with a1 . . . aq to give b1 . . . bqaq+1 . . . ap

a1 . . . aq. However, if p < q, then items a1 . . . ap are exchanged with bq−p+1 . . . bq
to give bq−p+1 . . . bqb1 . . . bq−pa1 . . . ap.

(1)
Block

transpose

(2)
Tranpose

matrices in
each block
of ni rows

(3)
Permute

(4)
Shuffle

Fig. 2. Transformations carried out in the second phase of the swap-based matrix
transpose algorithm for one sub-matrix, illustrated for the case q = 1, n1 = 3, and
m = 8. Each square represents one matrix element, and the continuous line between
cell centers shows the order in which they are stored.

Assuming, without loss of generality, that p ≥ q, then after the first exchange
the b1 . . . bq are in the correct location, and the order of aq+1 . . . ap and a1 . . . aq

needs to be reversed, which can be done by repeating the process.

4.4 The Shuffle and Unshuffle Operations

The exchange operation is repeatedly used in the shuffle and unshuffle opera-
tions. The shuffle operation is the same as the unshuffle operation, but performs
its steps in reverse order, so only the unshuffle operation, which performs the
reordering shown in Eq. 1, will be described here. In Eq. 1 each ai and bi is a
vector of length τa and τb, respectively.

112 F.G. Gustavson and D.W. Walker

Algorithm 3. IPSB PowerTranspose: In-Place Transpose of pmq × m Matrix
Input: Matrix A of size pmq × m, and work-space w of size iw.
Output: The number of swaps performed. The matrix A is overwritten by AT.
nswaps = nswaps + IPSB VectorTranspose(A,p,q,m,w,iw); ni = p;
foreach ni × m block matrix Bj, j = 1, 2, . . . , mq do

bptr = (j − 1)*ni*m; gi = m/ni; sbptr = bptr; ri = Mod(m,ni);
foreach ni × ni sub-block of current block, k = 0, 1, . . . , gi − 1 do

nswaps = nswaps + IPSB SquareTranspose(A(sbptr),ni);
sbptr = sbptr+ni*ni;

end
nswaps = nswaps + IPSB Transpose(A(sbptr),ri,ni,w,iw); ! see Algorithm 1;
nswaps = nswaps + IPSB Permute(A(bptr),ni,m,w,iw); ! see 3 of Sect. 4.2;
nswaps = nswaps + IPSB Shuffle(A(bptr),gi ∗ ni,ri,ni,w,iw); ! see 4 of Sect. 4.2;

end
return [nswaps]

The algorithm for the unshuffle operation proceeds in m steps. At the start of
step j, for j = 1, . . . , m−2, the first j of the a vectors are assumed to have been
placed in their correct positions through a four-step process, described below,
that may result in aj+1 being split into two parts, āj+1 and ãj+1, such that,
when together again, aj+1 = āj+1ãj+1. Thus, in general, at the start of step j
the ordering is:

a1 . . . aj āj+1bv1 . . . bvj
ãj+1bvj+1aj+2 . . . bvm

(5)

where v1, . . . , vm is a permutation of the indices 1, . . . , m;.
In step j item aj+1 is moved to its correct location, so that at the end of step

j (and the beginning of step j + 1) we have

a1 . . . aj+1āj+2bv1 . . . bvj+1 ãj+2bvj+2aj+3 . . . bvm
(6)

The proof of correctness of the unshuffle operation is to show the induction
hypothesis of Eq. 5 is true. TT in [4] show this by breaking down step j into the
following four substeps that transform the ordering from that shown in Eq. 5 to
that shown in Eq. 6.

1. Use swaps to move ãj+1 to the correct position immediately after āj+1,
thereby reforming aj+1. This may cause a split in one of the b vectors to
give: a1 . . . aj+1b̃vr

bvr+1 . . . bvj
bv1 . . . bvr−1 b̄vr

bvj+1aj+2 . . . bvm
.

2. Possibly split vector aj+2 by swapping the positions of b̃vr
and āj+2 to give:

a1 . . . aj+1āj+2bvr+1 . . . bvj
bv1 . . . bvr−1 b̄vr

bvj+1 b̃vr
ãj+2 . . . bvm

.
3. Use the exchange operation on bvj+1 b̃vr

to get b̃vr
bvj+1 which then gives

a1 . . . aj+1āj+2bvr+1 . . . bvj
bv1 . . . bvr

bvj+1 ãj+2 . . . bvm
.

4. The permutation vector v has possibly changed in going from Eq. 5 to Eq. 6.
So, record its change in this step: v1 . . . vm ≤ vr+1 . . . vjv1 . . . vrvj+1 . . . vm.
This is done by applying an exchange operation to v in which the first set

Algorithms for In-Place Matrix Transposition 113

of items is v1 . . . vr and the second set of items is vr+1 . . . vj . After this the
ordering is that given in Eq. 6, in readiness for the next substep.

After step m − 2 we have, according to Eq. 6,

a1 . . . am−1āmbv1 . . . bvm−1 ãmbvm
. (7)

In step m − 1 the exchange operation is then used to exchange to bv1 . . . bvm−1

and ãm to give
a1 . . . ambv1 . . . bvm

(8)

and in step m a vector permute inverse operation is then applied using the
permutation vector v to obtain the required ordering: a1 . . . amb1 . . . bm.

5 Variations and Alternatives to the TT Algorithm

5.1 A Divide-and-Conquer Version of the Shuffle and Unshuffle
Operations

The shuffle and unshuffle operations described in Sect. 4.4 can be implemented
using a readily parallelisable divide-and-conquer (DAC) approach that uses
exchange operations. To illustrate this consider a case with m = 8, and divide the
a and b vectors into groups as follows: (a1b1a2b2)(a3b3a4b4)(a5b5a6b6)(a7b7a8b8).
Now exchange the first b vector with the second a vector in each group to give:
(a1a2b1b2)(a3a4b3b4)(a5a6b5b6)(a7a8b7b8). Next group as follows:(a1a2b1b2a3a4

b3b4)(a5a6b5b6a7a8b7b8), and exchange the first pair of b vectors with the second
pair of a vectors in each group to give: (a1a2a3a4b1b2b3b4)(a5a6a7a8b5b6b7b8).
The final step is to treat all the vectors as a single group and exchange the first
set of four b vectors with the second set of four a vectors to obtain the required
ordering: (a1a2a3a4a5a6a7a8b1b2b3b4b5b6b7b8).

We found it not possible to derive a closed-form expression for the number
of swaps in the algorithms given by TT for the shuffle and unshuffle operations.
However, for the DAC-based shuffle and unshuffle algorithms with np-way par-
allelism, where m and np are powers of 2, the number of swaps is:

[

m

(

1 − 1
np

)

+
(

m

2np

)

log2

(
m

np

)]

(τa + τb − g). (9)

where g is the greatest common divisor of τa and τb. If np = 1 the number of
swaps for the sequential case is obtained, and an upper bound on the speed-up
can be calculated as:

S(m,np) =
np log2 m

2(np − 1) + log2
(

m
np

) . (10)

This is an upper bound because all sources of overhead arising from the parallel
execution (synchronization, data movement) have been ignored. The maximum

114 F.G. Gustavson and D.W. Walker

amount of parallelism that can be extracted from the DAC-based algorithm
corresponds to the case np = m/2 for which the upper bound on the speed-up
reduces to:

log2 m

2
(
1 − 1

m

) (11)

The lefthand plot in Fig. 3 compares the number of swaps measured
for the unshuffle operation for the algorithm given by TT with the number for
the DAC-based algorithm described above. The dashed line shows results for the
case in which maximum parallelism is exploited for each value of m, i.e., when
np = m/2. Even for the sequential DAC-based algorithm for large problems the
swap count is lower than for the TT case. In general, we have found that the
relative number of swaps for the TT algorithm and our DAC-based algorithm
depends of the values of τa, τb, and m, and for smaller values of m the number
of swaps may be larger in the DAC case. However, the DAC-based algorithm
avoids splitting any a or b vectors, and avoids permuting the b vectors. For
the parallel DAC-based algorithm with np = 4 and 16 the swap count is always
lower than that measured for the TT case. As a consequence the measured times
for the unshuffle operation are lower for the DAC-based algorithm, as shown in
the righthand plot in Fig. 3. These timings were obtained on a 12-core system
composed of two Intel Xeon E5649 processors, using a gfortran compiler with
the -O3 flag set. The DAC-based algorithm was parallelised using OpenMP. It
is evident from the timings that the speed-up for the DAC-based algorithm is
less than would be expected from Eq. 10. When the speed-ups were measured
without setting the -O3 compiler flag they were much closer to the value given
by Eq. 10, so it may be that compiling for OpenMP inhibits optimizations that
the compiler would otherwise make. This issue is still being investigated. Note
that since the shuffle and unshuffle operations carry out the same number of
swaps, the results in Fig. 3 also hold for the shuffle operation.

5.2 The Use of Constant Additional Memory

The TT algorithm [4] requires additional space for m matrix elements to find
AT for a matrix of size n × m, with n > m. This additional space is used
in transposing the ni × ri matrices Rj , as mentioned in step 2 of Sect. 4.2, in
performing the permutation in step 3 of Sect. 4.2, and in the shuffle and unshuffle
operations. However, it appears to us that only constant additional space is
required for the following reasons:

1. The ni × ri matrices Rj can be made as small as one pleases by the principle
of infinite descent. Instead of using m as the bound for ending the recursion
a constant, say 100, can be used instead.

2. The permutation vector v of step 3 of phase 2 can be avoided by instead
applying the unshuffle operation gi − 1 times.

3. The permutation vector v of size m used in the shuffle and unshuffle operations
in Sect. 4.4 can be avoided by using a readily parallelisable divide-and-conquer
approach that uses exchange operations, as explained above.

Algorithms for In-Place Matrix Transposition 115

4 6 8 10 12 14 16
12

16

20

24

28

32

TT
1
4
16

Log (m)2

Lo
g

 (N
um

be
r o

f s
w

ap
s)

2

11 12 13 14 15 16 17 18
-6

-4

-2

0

2

4

6

TT

DS
DP

Log (m)2

Lo
g

 (E
xe

cu
tio

n
tim

e)
2

Fig. 3. Performance results as a function of problem size for the unshuffle operation
for τa = 1152 and τb = 640. Left : Number of swaps. The red curve shows the results
for the algorithm given by TT. The solid black lines show numbers for the DAC-based
algorithm and are labelled by the number of processors, np. Right : Measured execution
times. Results for the algorithm given by TT, the sequential DAC-based algorithm
(DS), and the parallel DAC-based algorithm (DP) are shown.

The three items above are the only places where extra storage of length m is
used. For each of them we have removed their use in our implementation.

5.3 Exploiting Parallelism

In addition to the DAC-based algorithm for the shuffle and unshuffle opera-
tions, the TT algorithm provides other opportunities for improving performance
through parallelism:

1. After the matrix has been partitioned, each of the sub-matrices can then be
transposed in parallel by calling routine IPSB PowerTranspose.

2. In IPSB PowerTranspose both loops can be parallelised. Thus, each ni × m
matrix Bj can be processed in parallel, as also can each of the gi square ni×ni

sub-matrices of each Bj , giving rise to gim
i-way parallelism.

5.4 Novel Algorithms for Matrix Transposition

We have investigated alternative in-place matrix transposition algorithms and
compared their performance with that of the TT algorithm. The main differ-
ence between these algorithms is in how they partition the matrix. As noted
in Sect. 4.1, the TT algorithm partitions an n × m matrix, with n > m, based
on the base-m representation of m. We have developed the following alternative
partitionings:

1. GIP Transpose. The General-In-Place Transpose partitions the matrix into
q square matrices of size m × m and one other matrix of size r × m, where
n = qm + r and 0 ∈ r < m. It is simple to transpose these square matrices
in place. The remaining r × m matrix is transposed in a similar way to steps
2–4 in Fig. 2.

116 F.G. Gustavson and D.W. Walker

2. GCD Transpose. This variant first partitions the matrix into m matrices, Bi

for i = 0, . . . m − 1, of size q × m and one matrix, R, of size r × m, where
n = qm + r and 0 ∈ r < m. Each of the Bi matrices is then partitioned and
transposed as in the GIP Transpose algorithm. The remaining panel matrix,
R is transposed in a similar way to steps 2–4 in Fig. 2.

Both the GIP and GCD transpose algorithms can be readily parallelised as each
of the matrices produced by the partitioning can be independently transposed.

We have compared the overall measured performance of the TT, GIP, and
GCD in-place transpose algorithms in terms of the number of swaps and the
execution time. The results are presented in Fig. 4, in which the righthand plot
also shows the performance of a naive implementation of the cycle-following
algorithm described in Sect. 3, where the poor performance of this approach is
ascribed to its irregular memory accesses.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

1600000000

1800000000

2000000000

GIPT

TT

GCD(dac)

GCD(split)

n = 16384

m

N
um

be
r o

f s
w

ap
s

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

10

20

30

40

50

60

IPT

GCD(split)
GIP(split)

GCD(dac)

TT

n = 16384

m

Ti
m

e
in

 se
co

nd
s

Fig. 4. Performance results for in-place transposition of an n×m matrix as a function
m for n = 16384. Left : Number of swaps; Right : Measured execution times. The data
labelled “TT” shows the results for the TT algorithm. The data labelled “GCD(dac)” is
for the GCD transpose algorithm using the sequential DAC-based version of the shuffle
and unshuffle operations. The data labelled “GCD(split)” is for the GCD transpose
algorithm using a variant to the TT algorithm for the shuffle and unshuffle operations.
The data shown in red and labelled “GIPT” is for the GIP transpose algorithm. The
data labelled “IPT” in the righthand plot shows timings for a simple cycle-following
algorithm.

The most interesting aspect of the plots in Fig. 4 is that although the TT
algorithm has the least number of swaps it has a longer execution time than
the GCD and GIP transpose algorithms for values of m greater than about
5000. We have examined the cache behavior for these algorithms using the
Cachegrind tool [1], and preliminary analysis suggests that cache performance is
the cause of the longer execution times seen for large m. However, further work
is required to fully understand the impact of caching on the performance of these
algorithms.

Algorithms for In-Place Matrix Transposition 117

6 Conclusions

This paper has described in detail the swap-based algorithm of TT [4]. We have
implemented this algorithm and reported on some variations that have the poten-
tial for improving performance, either by introducing parallelism, reducing the
number of operations, or optimising the use of hierarchical memory. We have also
described a variant of the TT algorithm that requires constant additional mem-
ory, rather than additional memory for m matrix elements. Our future work will
involve understanding the parallel performance of our DAC-based implementa-
tion of the shuffle and unshuffle operations, and analysing the caching behavior
of the TT, GCD and GIP transpose algorithms.

Acknowledgements. The authors are grateful to Dr. Jóse-Ramón Herrero of Uni-
versitat Politècnica de Catalunya for his helpful comments.

References

1. Cachegrind: Cachegrind description. http://valgrind.org/docs/manual/cg-manual.
html (2013) Accessed 21 Nov 2013

2. Gustavson, F.G., Karlsson, L., Kagstrom, B.: Parallel and cache-efficient in-place
matrix storage format conversion. ACM Trans. Math. Softw. 38(3), 17:1–17:32
(2012)

3. Gustavson, F.G., Walker, D.W.: Proof of the swap count for the exchange opera-
tion. Technical report, School Computer Science and Informatics, Cardiff University,
Cardiff, U.K (2013)

4. Tretyakov, A.A., Tyrtyshnikov, E.E.: Optimal in-place transposition of rectangular
matrices. J. Complex. 25, 377–384 (2009)

http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/docs/manual/cg-manual.html

FooPar: A Functional Object Oriented Parallel
Framework in Scala

Felix Palludan Hargreaves and Daniel Merkle(B)

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{daniel,felhar07}@imada.sdu.dk

Abstract. We present FooPar, an extension for highly efficient Parallel
Computing in the multi-paradigm programming language Scala. Scala
offers concise and clean syntax and integrates functional programming
features. Our framework FooPar combines these features with parallel
computing techniques. FooPar is designed to be modular and supports
easy access to different communication backends for distributed memory
architectures as well as high performance math libraries. In this article
we use it to parallelize matrix-matrix multiplication and show its scala-
bility by a isoefficiency analysis. In addition, results based on a empirical
analysis on two supercomputers are given. We achieve close-to-optimal
performance wrt. theoretical peak performance. Based on this result we
conclude that FooPar allows programmers to fully access Scalas design
features without suffering from performance drops when compared to
implementations purely based on C and MPI.

Keywords: Functional programming · Isoefficiency · Matrix multipli-
cation

1 Introduction

Functional programming is becoming more and more ubiquitous (lambda
functions introduced in C++11 and Java8) due to higher levels of abstraction,
better encapsulation of mutable state, and a generally less error prone program-
ming paradigm. In HPC settings, the usual argument against the added func-
tional abstraction is performance issues. FooPar aims to bridge the gap between
HPC and functional programming by hitting a sweet spot between abstraction
and efficiency not addressed by other functional frameworks.

There exists a multitude of map-reduce based frameworks similar to Hadoop
which focus on big data processing jobs, often in cloud settings. Other functional
parallel frameworks like Haskell’s Eden (semi-explicit parallel programming via
skeletons) [13] and Scala’s Spark [21] focus on workload balancing strategies
neglecting performance to increase abstraction. While many different functional
frameworks are available, most seem to value abstraction above all else. With
FooPar, we reach asymptotic and practical performance goals comparable to
even optimized C-code.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 118–129, 2014.
DOI: 10.1007/978-3-642-55195-6 11, c© Springer-Verlag Berlin Heidelberg 2014

FooPar: A Functional Object Oriented Parallel Framework in Scala 119

In this paper (after definitions and a brief introduction to isoefficiency in
Sect. 2) we will introduce FooPar in Sect. 3 and describe its architecture, data
structures, and operations it contains. The complexity of the individual opera-
tions on the (parallel) data structures will be shown to serve as basis for parallel
complexity analysis. A matrix-matrix multiplication algorithm will be designed
using the functionality of FooPar; the implementation will be analyzed with
an isoefficiency analysis in Sect. 4. Test results showing that FooPar can reach
close-to theoretical peak performance on large supercomputers will be presented
in Sect. 5. We conclude with Sect. 6.

2 Definitions, Notations, and Isoefficiency

The most widespread model for scalability analysis of homogeneous parallel sys-
tems (i.e. the parallel algorithm and the parallel architecture) is isoefficiency
[7,12,17] analysis. The isoefficiency function for a parallel system relates the
problem size W and the number of processors p and defines how large the prob-
lem size as a function in p has to grow in order to achieve a constant pre-given
efficiency. Isoefficiency has been applied to a wide range of parallel systems (see,
e.g. [3,9,11]). As usual, we will define the message passing costs, tc, for parallel
machines as tc := ts + tw · m, where ts is the start-up time, tw is the per-
word transfer time, and m is the message size. The sequential (resp. parallel)
runtime will be denoted as TS (resp. TP). The problem size W is identical to
the sequential runtime, i.e. W := TS . The overhead function will be defined as
To(W,p) := pTP −TS . The isoefficiency function for a parallel system is usually
found by an algebraic reformulation of the equation W = k · To(W,p) such that
W is a function in p only (see e.g. [7] for more details). In this paper we will
employ broadcast and reduction operations for isoefficiency analysis for parallel
matrix-matrix multiplication with FooPar. Assuming a constant cross-section
bandwith of the underlying network and employing recursive doubling leads to a
one-to-all broadcast computational runtime of (ts+tw ·m) log p and the identical
runtime for an all-to-one reduction with any associative operation λ. All-to-all
broadcast and reduction have a runtime of ts log p + tw · (p − 1). A circular shift
can be done in runtime ts + tw · m if the underlying network has a cross-section
bandwith of O(p).

3 The FooPar Framework

FooPar is a modular extension to Scala [16] which supports user extensions
and additions to data structures with proven Scala design patterns. Scala is a
scalable language pointing towards its ability to make user defined abstractions
seem like first class citizens in the language. The object oriented aspect leads to
concise and readable syntax when combined with operator overloading, e.g. in
matrix operations. Scala unifies functional and imperative programming making

120 F.P. Hargreaves and D. Merkle

Fig. 1. Conceptional overview of the layered architecture of FooPar.

it ideal for high performance computing. It builds on the Java Virtual Machine
(JVM) which is a mature platform available for all relevant architectures. Scala
is completely interoperable with Java, which is one of the reasons why many
companies move their performance critical code to a Scala code base [1]. Today,
efficiency of byte-code can approach that of optimized C-implementations within
small constants [10]. Further performance boosts can be gained by using Java
Native Interface; however, this adds an additional linear amount of work due to
memory being copied between the virtual machine and the native program. In
other words, super linear workloads motivate the usage of JNI.

Figure 1 depicts the architecture of FooPar. Using the builder/traversable
pattern [15], one can create maintainable distributed collection classes while
benefiting from the underlying modular communication layer. In turn, this means
that user provided data structures receive the same benefits from the remaining
layers of the framework as the ones that ship with FooPar. It is possible to
design a large range of parallel algorithms using purely the data structures within
FooPar although one is nor restricted to that approach.

A configuration of FooPar can be described as FooPar-X-Y-Z, where
X is the communication module implemented on JVM, and Y is the
native code used for networking and Z is the hardware configuration,
e.g. X ∈ {MPJ − Express,OpenMPI,FastMPJ,SharedMemory,Akka}, Y ∈
{MPI, Sockets} and Z ∈ {SharedMemory, Cluster, Cloud}. Note that this is not
an exhaustive listing of module possibilities. In this paper we only use Y = MPI
and Z = Cluster and do not analyze Shared Memory parallelisation. Therefore,
we will only use the notation FooPar-X.

FooPar: A Functional Object Oriented Parallel Framework in Scala 121

Fig. 2. A distributed map operation. Fig. 3. Output of the distributed map
operation (arbitrary order).

3.1 Technologies

Currently, FooPar uses the newest version of Scala 2.10. The Scalacheck frame-
work is a specification testing framework for Scala which is used to test the
methods provided by FooPar data structures. JBLAS, a high performing lin-
ear algebra library [2] using BLAS via JNI is used to benchmark FooPar with
an implementation of distributed matrix-matrix multiplication. Intel R©’s Math
Kernel Library offers an high-performing alternative with Java bindings, and
will also be used for benchmarking.

3.2 SPMD Operations on Distributed Sequences

FooPar is inspired by the SPMD/SIMD Principle often seen in parallel hard-
ware [4]. The Option monad in Scala is a construct similar to Haskell’s maybe
monad. Option is especially suited for SPMD patterns since it supports map
and foreach operations. Listing 1.1 exemplifies this characteristic approach in
FooPar. Here, ones(i) counts the number of 1’s in the binary representation
of i. mapD distributes the map operation on the Scala range seq.

Listing 1.1. SPMD example

1 def ones(i: Int): Int = i.toBinaryString.count(_ == ’1’) val seq = 0

2 to worldSize - 3 val counts = seq mapD ones

3 println(globalRank+":"+counts)

In SPMD, every process runs the same program, i.e. every process generates
seq in line 3. If combined with lazy-data objects, this does not lead to unnec-
essary space or complexity overhead (cmp. Figs. 2 and 3). While every process
generates the sequence, only some processes perform the mapD operation.

3.3 Data Structures

FooPar relies heavily on the interpretation of data structures as process-data
mappings. As opposed to many modern parallel programming tools, FooPar
uses static mappings defined by the data structures and relies on the user to

122 F.P. Hargreaves and D. Merkle

Table 1. A selection of operations on distributed sequences in FooPar.

Operation Semantic Notes Tp (parallel runtime)

mapD(λ) Each process
transforms one
element of the
sequence using
operation λ
(element size m)

This is a
non-communicating
operation

Θ(Tλ(m))

reduceD(λ) The sequence with p
elements is reduced
to the root process
using operation λ

λ must be an
associative operator

Θ(log p(ts + twm +
Tλ(m)))

allGatherD All processes obtain
a list where element
i comes from
process i

Process i provides
the valid ith element

Θ((ts + twm)(p− 1))

apply(i) All processes obtain
the ith element of
the sequence

sementically
identical to a
one-to-all broadcats

Θ(log p(ts + twm))

partition input. This decision was made to ensure efficiency and analyzability.
By using static mappings in conjunction with SPMD, the overhead and bot-
tleneck pitfalls induced by master worker models are avoided and program-
simplicity and efficiency are achieved. In FooPar, data partitioning is achieved
through proxy- or lazy objects, which are easily defined in Scala. In its current
state, FooPar supports distributed singletons (aka. distributed variables), dis-
tributed sequences and distributed multidimensional sequences. The distributed
sequence combines the notion of communication groups and data. By allowing
the dynamic creation of communication groups for sequences, a total abstrac-
tion of network communication is achieved. Furthermore, a communication group
follows data structures for subsequent operations allowing for advanced chained
functional programming to be highly parallelized. Table 1 lists a selection of
supported operations on distributed sequences. The given runtimes are actually
achieved in FooPar, but of course they depend on the implementation of collec-
tive operations in the communication backend. A great advantage of excluding
user defined message passing is gaining analyzability through the provided data-
structures.

4 Matrix-Matrix Multiplication in FooPar

4.1 Serial Matrix-Matrix Multiplication

Due to the abstraction level provided by the framework, algorithms can be
defined in a fashion which is often very similar to a mathematical definition.
Matrix-matrix multiplication is a good example of this. The problem can be

FooPar: A Functional Object Oriented Parallel Framework in Scala 123

1 //Initialize matrices

2 val A = Array.fill(M, M)(MJBLProxy(SEED, b))

3 val Bt = Array.fill(M, M)(MJBLProxy(SEED, b)).transpose

4
5 //Multiply matrices

6 for (i <- 0 until M; j <- 0 until N)

7 A(i) zip Bt(j) mapD { case (a, b) => a * b } reduceD (_ + _)

Algorithm 1: Generic algorithm for matrix-matrix multiplication with FooPar.

defined as (AB)i,j :=
∑n−1

k=0 Ai,kBk,j , where n is the number of rows and columns
in matrices A and B respectively. In functional programming, list-operations
can be used to model this expression in a concise manner. The three methods,
zip, map and reduce are enough to express matrix-matrix multiplication as a
functional program (for an introduction to functional programming concepts
refer to [20]). A serial algorithm for matrix-matrix multiplication based on a
2d-decomposition of the matrices could look like this:

Ci,j ← reduce (+) (zipWith (·) Ai∈ BT
j∈), ∀(i, j) ∈ R × R (1)

Here, R = {0, . . . , q − 1}, and the sub-matrices are of size (n/q)2. Operation
zipWith is a convenience method roughly equivalent to: map ◦ zip, which takes
2 lists and a 2-arity function to combine them.

4.2 Generic Algorithm for Parallel Matrix-Matrix Multiplication

To illustrate the simplicity of complexity analysis, the parallel version of the
algorithm can be written in a more verbose fashion as follows:

Ci,j ← reduceD (+) (mapD (·) (zip Ai∈ BT
∈j)), ∀(i, j) ∈ R × R (2)

Operation zip is ∈ Θ(1) due to lazy evaluation. We use a block size m = (n/q)2.
For mapD (multiplication of sub-matrices) we have Tmult(m) = Θ(m3/2), for
reduceD (summation of sub-matrices) we have Tsum(m) = Θ(m). In asymptotic
terms the parallel runtime TP is therefore:

TP =

zip
︷︸︸︷
Θ(1) +

mapD
︷ ︸︸ ︷

Θ((n/q)3) +

reduceD
︷ ︸︸ ︷

Θ((n/q)2 log q)

Since Ci,j is independent both in i and j, the q2 operations can all run in parallel.
Using q processors per reduction leads then to p = q2 ·q processors and the overall
asymptotic runtime Θ((n/p)2 log p).

Using the framework, some parts of the analysis can be carried out indepen-
dently of the lambda operations used in an algorithm. What is left is a generic
algorithm which shows precisely the communication pattern used in the algo-
rithm. As a coincidence, the communication pattern is essentially identical to
that of the well known DNS algorithm [5,9].

124 F.P. Hargreaves and D. Merkle

Algorithm 1 shows a complete FooPar implementation, which is practically
identical to the pseudo code. Note, that the algorithm uses proxy-objects which
are simply objects containing lazy data using Scala’s lazy construct [14].

Isoefficiency Analysis for the Generic Algorithm: We start by determin-
ing the non-asymptotic parallel runtime. We assume the number of processors
is p = q3 (i.e. q = p1/3) and matrices A and B of size n × n. Splitting A and
B into q × q blocks leads to a block size of (n/q)2. The zip operation has a
runtime of q2 due to nop instructions carried out in iterations where the current
process is not assigned to the operation. An implicit conversion (runtime q2) is
needed to extend the functionality of standard Scala arrays. The mapD opera-
tion has a runtime of q2 + (n/q)3 and the reduceD operation has a runtime of
q2 +log q +(n/q)2 log q. As q2 = p2/3, this leads to an overall parallel runtime of

Tp = 4 · p2/3 +
n3

p
+ 1/3

(

log p +
(

n2

p2/3

)

log p

)

,

and the corresponding cost p · TP ∈ Θ(4p5/3 + n3). Therefore this approach is
cost-optimal for p ∈ O(n9/5). The overhead for this basic implementation is

To = pTp − TS = 4p5/3 +
p

3

(

log p +
(

n2

p2/3

)

log p

)

.

Following an isoefficiency analysis based on W = K · To(W,p) leads to

W = n3 = K4p5/3 + Kp

(

log p +
(

n2

p2/3

)

log p

)

.

Examining the terms individually shows that the first term of K · To(W,p) con-
straints the scalability the most. Therefore, the isoefficiency function for the
basic algorithm is W ∈ Θ(p5/3). Figure 4 shows the communication pattern
implemented by Algorithm 1.

4.3 Grid Abstraction in FooPar for Parallel Matrix-Matrix
Multiplication

In [8] an isoefficiency function in the order of Θ(p log3 p) was achieved by using
the DNS algorithm for matrix-matrix multiplication. The bottleneck encoun-
tered in the basic implementation is due to the inherently sequential for loop
emulating the ∀ quantifier. Though Scala offers a lot of support for library-as-
DSL like patterns, there is no clear way to offer safe parallelisation of nested for
loops while still supporting distributed operations on data structures. To combat
this problem, FooPar supports multidimensional distributed sequences in con-
junction with constructors for arbitrary Cartesian grids. Grid3D is a special case
of GridN, which supports iterating over 3D-tuples as opposed to coordinate lists.
Using Grid3D an algorithm for matrix-matrix multiplication can be implemented

FooPar: A Functional Object Oriented Parallel Framework in Scala 125

Fig. 4. (a) Process (i, j, k) contains blocks Ai,k and Bk,j (b) local multiplication Ci,j =
Ai,k × Bk,j , (c) reduction (summation): (i, j, 0) contains the (partial) result matrix.

1 val R = 0 until DIM

2 val G = Grid3D(R, R, R)

3
4 val GA = G mapD { case (i, j, k) => A(i)(k) }

5 val GB = G mapD { case (i, j, k) => B(k)(j) }

6
7 val C = ((GA zipWithD GB)(_ * _) zSeq) reduceD (_ + _)

Algorithm 2: Matrix-matrix multiplication in FooPar using Grid Abstraction.

as seen in Algorithm 2. zSeq is a convenience method for getting the distributed
sequence, which is variable in z and constant in the x, y coordinates of the cur-
rent process. By using the grid data structure, we safely eliminate the overhead
induced by the for-loop in Algorithm 1 and end up with the same basic commu-
nication pattern as shown in Fig. 4. Operation mapD has a runtime of Θ((n/q)3)
and reduceD a runtime of Θ(log q+(n/q)2 log p). Due to space limitations we will
not present the details of runtime and isoefficiency analysis but refer to [9], as
the analysis given there is very similar. Parallel runtime, TP , and cost are given
by TP = n3/p + log p +

(
n2/p2/3

)
log p and cost ∈ Θ(n3 + p log p + n2p1/3 log p).

This leads to an isoefficiency function in the order of Θ(p log3 p), identical to the
isoefficiency achieved by the DNS algorithm.

5 Test Results

Parallel Systems and their Interconnection Framework: In this study we
focus on analyzing scalability, efficiency and flexibility. We tested FooPar on
two parallel systems: the first system is called Carver and is used to analyze the
peak performance and the overhead of FooPar. It is an IBM iDataPlex system
where each computing node consists of two Intel Nehalem quad-core proces-
sors (2.67 GHz processors, each node has at least 24 GB of RAM). The system
is located at the Department of Energy’s National Energy Research Scientific

126 F.P. Hargreaves and D. Merkle

Computing Center (NERSC). All nodes are interconnected by 4X QDR Infini-
Band technology, providing maximally 32 Gb/s of point-to-point bandwidth. A
highly optimized version of Intel’s Math Kernel Library (MKL) is used, which
provides an empirical peak performance of 10.11 GFlop/s on one core (based
on a single core matrix-matrix multiplication in C using MKL). This will be
our reference performance to determine efficiency on Carver. Note, that the
empirical peak performance is very close to the theoretical peak performance of
10.67 GFlop/s on one node. The largest parallel job in Carver’s queuing system
can use maximally 512 cores, i.e. the theoretical peak is 5.46 TFlop/s.

The second system has basically the same hardware setup. The name of the
system is Horseshoe-6 and it is located at the University of Southern Denmark.
Horseshoe-6 is used in order to test the flexibility of FooPar. The math libraries
are not compiled towards the node’s architecture, but a standard high perform-
ing BLAS library was employed for linear algebraic operations. The reference
performance on one core was measured again by a matrix-matrix multiplication
(C-version using BLAS) and is 4.55 GFlop/s per core.

On Carver Java bindings of the nightly-build OpenMPI version 1.9a1r27897
[6] were used in order to interface to OpenMPI (these Java bindings are not
yet available in the stable version of OpenMPI). On Horseshoe-6 we used three
different communication backends, namely (i) OpenMPI Java bindings (same
version as on Carver), (ii) MPJ-Express [18], and (iii) FastMPJ [19]. Note, that
changing the communication backend does not require any change in the Scala
source code for the parallel algorithmic development within FooPar.

For performance comparison of FooPar and C we also developed a highly
optimized parallel version of the DNS algorithm for matrix-matrix multiplica-
tion, using C/MPI. MKL (resp. BLAS) was used on Carver (resp. Horseshoe-6)
for the sub-matrix-matrix multiplication on the individual cores. Note, that the
given efficiency results basically do not suffer any noticable fluctuations when
repeated.

Results on Carver: Efficiencies for different matrix sizes, n, and number of
cores, p, are given in Fig. 5. As communication backend, we used OpenMPI. We
note that we improved the Java implementation of MPI Reduce in OpenMPI:
the nightly build version implements an unnecessarily simplistic reduction with
Θ(p) send/receive calls, although this can be realized with Θ(log p) calls. I.e.,
the unmodified OpenMPI does not interface to the native MPI Reduce function,
and therefore introduces an unnecessary bottleneck.

For matrix sizes n = 40000 and the largest number of cores possible (i.e.
p = 512) Algorithm 2 achieves 4.84 TFlop/s, corresponding to 88.8 % efficiency
w.r.t. the theoretical peak performance (i.e. 93.7 % of the empirically achiev-
able peak performance) of Carver. The C-version performs only slightly better.
Note, that the stronger efficiency drop (when compared to Horseshoe-6 results
for smaller matrices) is due to the high performing math libraries; the absolute
performance is still better by a factor of ≈2.2. We conclude that the computation

FooPar: A Functional Object Oriented Parallel Framework in Scala 127

Fig. 5. Efficiency results for matrix-matrix multiplication (size n × n) with Grid
Abstraction; x-axis: number of cores used; the value for n and the communication
backend employed are given in the legend. Left: results on Carver, Right: results on
Horseshoe-6; efficiency is given relative to empirical peak performance on one core (see
text).

and communication overhead of using FooPar is neglectable for practical pur-
poses. While keeping the advantages of higher-level constructs, we manage to
keep the efficiency very high. This result is in line with the isoefficiency analysis
of FooPar in Sect. 4.

Results on Horseshoe-6: On Horseshoe-6 we observed that the different back-
ends lead to rather different efficiencies. When using the unmodified OpenMPI
as a communication backend, a performance drop is seen, as expected, due to the
reasons mentioned above. Also MPJ-Express uses an unnecessary Θ(p) reduction
(FastMPJ is closed source). However, if FooPar will not be used in an HPC
setting and efficiency is not be the main objective (like in a heterogeneous sys-
tem or a cloud environment), the advantages of “slower” backends (like running
in daemon mode) might pay off.

6 Conclusions

We introduced FooPar, a functional and object-oriented framework that com-
bines two orthogonal scalabilities, namely the scalability as seen from the per-
spective of the Scala programming language and the scalability as seen from the
HPC perspective. FooPar allows for isoefficiency analyses of algorithms such
that theoretical scalability behavior can be shown. We presented parallel solu-
tions in FooPar for matrix-matrix multiplication and supported the theoretical
finding with empirical tests that reached close-to-optimal performance w.r.t. the
theoretical peak performance on 512 cores.

128 F.P. Hargreaves and D. Merkle

Acknowledgments. We acknowledge the support of the Danish Council for Inde-
pendent Research, the Innovation Center Denmark, the Lawrence Berkeley National
Laboratory, and the Scientific Discovery through Advanced Computing (SciDAC) Out-
reach Center. We thank Jakob L. Andersen for supplying a template C-implementation
of the DNS algorithm.

References

1. Scala in the enterprise. Ecole Polytechnique Federale de Lausanne (EPFL). http://
www.scala-lang.org/node/1658 (2013). Accessed 4 May 2013

2. Abeles, P.: Java-Matrix-Benchmark - a benchmark for computational efficiency,
memory usage and stability of Java matrix libraries. http://code.google.com/p/
java-matrix-benchmark/ (2013). Accessed 12 Feb 2013

3. Bosque, J.L., Robles, O.D., Toharia, P., Pastor, L.: H-Isoefficiency: scalability met-
ric for heterogenous systems. In: Proceedings of the 10th International Confer-
ence of Computational and Mathematical Methods in Science and Engineering
(CEMMSE 2010), pp. 240–250 (2010)

4. Darema, F.: The SPMD model: past, present and future. In: Cotronis, Y., Don-
garra, J. (eds.) EuroPVM/MPI 2001. LNCS, vol. 2131, p. 1. Springer, Heidelberg
(2001)

5. Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algorithms. SIAM J.
Comput. 10(4), 657–675 (1981)

6. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, pp. 97–104 (2004)

7. Grama, A., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of paral-
lel algorithms and architectures. IEEE Parallel Distrib. Technol. Syst. Appl. 1(3),
12–21 (1993)

8. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing. Addison Wesley, Reading (2003)

9. Gupta, A., Kumar, V.: Scalability of parallel algorithms for matrix multiplication.
In: Proceedings of the 22nd International Conference on Parallel Processing, ICPP,
vol. 3, pp. 115–123 (1993)

10. Hundt, R.: Loop recognition in C++/Java/Go/Scala. In: Proceedings of Scala
Days (2011)

11. Hwang, K., Xu, Z.: Scalable Parallel Computing. McGraw-Hill, New York (1998)
12. Kumar, V., Rao, V.N.: Parallel depth first search, part II: analysis. Int. J. Parallel

Prog. 16(6), 501–519 (1987)
13. Loogen, R., Ortega-Mallén, Y., Peña, R.: Parallel functional programming in Eden.

J. Funct. Program. 15, 431–475 (2005)
14. Odersky, M.: The Scala language specification (2011)
15. Odersky, M., Moors, A.: Fighting bit rot with types (experience report: Scala

collections). In: Proceedings of the 29th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2009), vol. 4
of Leibniz International Proceedings in Informatics, pp. 427–451 (2009)

16. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima, New York
(2010)

http://www.scala-lang.org/node/1658
http://www.scala-lang.org/node/1658
http://code.google.com/p/java-matrix-benchmark/
http://code.google.com/p/java-matrix-benchmark/

FooPar: A Functional Object Oriented Parallel Framework in Scala 129

17. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill,
Blacklick (2003)

18. Shafi, A., Manzoor, J.: Towards efficient shared memory communications in MPJ
express. In: Proceedings of the 25th IEEE International Symposium on Parallel
Distributed Processing 2009 (IPDPS), pp. 1–7 (2009)

19. Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: scalable Java message-passing
communications on parallel systems. J. Supercomput. 1, 117–140 (2012)

20. Thompson, S.J., Wadler, P.: Functional programming in education - introduction.
J. Funct. Program. 3(1), 3–4 (1993)

21. Zaharia, M., Chowdhury, N.M.M., Franklin, M., Shenker, S., Stoica, I.: Spark:
cluster computing with working sets. Technical Report UCB/EECS-2010-53, EECS
Department, University of California, Berkeley (2010)

Effects of Segmented Finite Difference Time
Domain on GPU

Jose Juan Mijares Chan1,2, Gagan Battoo1,
Parimala Thulasiraman1(B), and Ruppa K. Thulasiram1

1 Department of Computer Science,
University of Manitoba, Winnipeg, MB, Canada

2 Department of Electrical and Computer Engineering,
University of Manitoba, Winnipeg, MB, Canada

thulasir@cs.umanitoba.ca

Abstract. Finite Difference Time Domain (FDTD) is the most popular
method in computational electromagnetics. In acoustics, FDTD is often
used as a numerical analysis technique to model mechanical wave and
acoustics. FDTD in general is computationally expensive in terms of
time due to its large number of time steps for accurate precision and is
data parallel in nature. However, it is also memory bounded. Although
previous work on FDTD has studied the effect of parallelizing FDTD on
accelerators to reduce computational cost, the memory bounded problem
has not been studied. In this work we consider the segmented FDTD
(SFDTD) algorithm that divides the problem space into segments to
reduce computational redundancy and also reduce memory. We exploit
the memory hierarchy of the GPU to efficiently implement the SFDTD
algorithm. To the best of our knowledge, this is the first work that studies
the implementation of the SFDTD algorithm on GPU and its effect on
memory.

Keywords: GPU · CUDA · Segmented FDTD · Acoustics

1 Introduction

Among the numerical analysis techniques, Finite Difference Time Domain
(FDTD) is the most popular method in computational electromagnetic. In 1966,
Yee [25] presented the basis of FDTD numerical technique for solving Maxwell’s
curl equation. In 1977, Holland [7] applied Yee’s algorithm to electromagnetic
pulse coupling problems. Taflove [20] in 1980 coined the descriptor Finite Dif-
ference Time Domain (FDTD). Since then, a large number of publications in
applying FDTD has cover many different problems such as in microwave circuits,
optics, antenna and radiation problems. FDTD finds its applications in the field
of “Acoustic Engineering” (a branch that deals with sound and vibration) as
well. In this paper, we focus on applying FDTD to acoustic wave propagation.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 130–139, 2014.
DOI: 10.1007/978-3-642-55195-6 12, c© Springer-Verlag Berlin Heidelberg 2014

Effects of Segmented Finite Difference Time Domain on GPU 131

In acoustic wave propagation, FDTD is used as a numerical analysis
technique to model a mechanical wave and its acoustics. This phenomenon is
described by two first order acoustic differential equations. One of the equations
is a variation of Newton’s second law. This equation considers small signals that
is described in terms of pressure and velocity where pressure is a scalar field and
velocity is a vector field. In acoustics, there is one vector field and one scalar field
unlike two vector fields in electromagnetics. A detailed explanation of FDTD in
acoustics is given in Sect. 2.

One of the important considerations in FDTD simulation is the proper
truncation of finite simulation domain to approximate infinite space. Truncat-
ing boundaries may cause reflections. Therefore, proper boundary conditions
are needed to minimize these reflections from the truncated boundary. Several
absorbing boundary conditions [1,5,13,16,17] were developed for this purpose.
One of the well-known absorbing boundary condition for electromagnetic waves
is the perfectly matched layer (PML) by Berenger [1]. The reduction in reflec-
tion depends on parameters such as the grid spacing, the attenuation factor, the
length of the PML zone,time-step and precision. Finer grid spacing, for example,
reduces reflections to a large extent with a high computational cost. With the
computational resources of multicore architectures, we can take advantage of
finer grid spacing. In this work, we use PML for acoustic [27].

In general, FDTD is computationally intense in terms of time due to its
large number of time steps for accurate precision and is also memory bound
due to large data size [23]. There has been several works demonstrating the use
of parallel processing in reducing the computational cost. Ju [9] and Yu [26]
parallelize FDTD on a Beowulf cluster of 16 PCs using MPI.

FDTD can be categorized as a regular algorithm. The data structure used is
usually a multi-dimensional array. At each time step, the data elements within
an array can be calculated independently exhibiting large amount of parallelism,
suitable for data parallel SIMT architectures. Recently, Xu et al. [24] used FDTD
as a kernel in the microwave tomography algorithm. They implemented the algo-
rithm on Cell BE. The electromagnetic community has studied the implemen-
tation of FDTD and its variations on Nvidia GPU [3,8,15,18,21,28] showing a
reduction on the computational cost or execution time of the FDTD simulation
by using GPUs. However, on the GPU, the number of data transfers and long
memory latency impact drastically the algorithmic performance.

There has been some work on developing memory-efficient FDTD algorithms
[11]. In 2008, Wu et al. [22] proposed an algorithm to reduce 3D FDTD problem
to 2D and showed that this algorithm reduces computational requirements for
large scale problems. Following this work, the authors proposed an improvement
to their original algorithm by dividing the problem space into segments to fur-
ther reduce computational redundancy and also reduce memory [23]. They called
their algorithm, Segmented FDTD (SFDTD). They show that the CPU execu-
tion time increases linearly and not exponentially as dictated by the standard
FDTD algorithm.

132 J.J.M. Chan et al.

In this paper, we study SFDTD simulation with PML as the absorbing
boundary condition on a Nvidia GPU, GeForce GTX 260, for acoustic wave
propagation. We use the various memory features of the GPU and discuss the
effects of varying the segment size and its impact on memory usage. To our
knowledge this is the first work that studies the implementation of the SFDTD
algorithm on GPU. This work tests the feasibility of SFDTD on GPU. Therefore,
as our initial study we consider 1D SFDTD.

2 The Finite Difference Time Domain Method

The FDTD method is a precise modelling technique for acoustic simulations.
The principal benefit of FDTD is the possibility of modelling the wave propaga-
tion over dense meshes with multiple materials. But in some cases, the method
demands intensive calculations and the full knowledge of the properties of all
the objects interacting in the simulation [12, Chapter 3].

The wave propagation phenomena involves particles compression or relax-
ation denoting changes on pressure and velocity as a function of time and space.
For simplicity, we consider the special case of homogeneous isotropic mediums
with no losses, where the velocity of the wave is kept almost constant. The
wave propagation is explained by two laws, the conservation of mass and the
conservation of momentum [19, Chapter 6] which are expressed as,

∂v
∂t

= −1
ρ
�p

∂p

∂t
= −κ�v (1)

where p denotes the acoustic pressure, v the vector velocity, ρ is the density of
the medium, while κ = ρc2 is the bulk modulus. As mentioned in the previous
section, we use PML to reduce the effect of reflections at the boundaries [1].
Using Yee’s staggered mesh and central difference approximation [4] together
with PML, the pair of Eqs. (1) are modified to,

v
n+ 1

2
i+ 1

2
=

⎧
⎨⎨⎩

⎨⎨⎜

v
n− 1

2
i+ 1

2
− Δt

ρΔx

⎫
pn

i+1 − pn
i

⎬
i ∈ (L,N − L), (2a)

v
n− 1

2
i+ 1

2
e−καΔt − 1 − e−καΔt

καρΔx

⎫
pn

i+1 − pn
i

⎬
else. (2b)

pn+1
i =

⎧
⎨⎩

⎨⎜

pn
i − κ

Δt

Δx

⎭
v

n+ 1
2

i+ 1
2

− v
n+ 1

2
i− 1

2

⎞
i ∈ (L,N − L), (3a)

pn
i e−καΔt − 1 − e−καΔt

αΔx

⎭
v

n+ 1
2

i+ 1
2

− v
n+ 1

2
i− 1

2

⎞
else. (3b)

here, the simulation is performed over a space of size NΔx and within a max-
imum time of T seconds. The simulation space is represented with N points
uniformly distributed by Δx, where the spatial position i is located at xi = iΔx
from the origin. Similarly for the simulation time, a uniformly distributed grid

Effects of Segmented Finite Difference Time Domain on GPU 133

is employed using a Δt spacing, where the temporal index n corresponds to the
point in time tn = nΔt. The PML regions are located at the boundaries of the
simulation space. With a length of LΔx, the PML region can have a size of
0 < LΔx < NΔx

2 , and behaves according to Eqs. (2b,3b) with an attenuation
factor of α.

The simulation stability is achieved by fulfilling the Courant-Friedrich-Lewy
(CFL) Criterion [2]. This rule of thumb consists of defining the upper limit for
the time step in terms of the velocity of sound in the medium, vm, and the grid
spacing in 1D. This is Δt = min

⎠
Δx
vm

}
.

3 Segmented FDTD and Its Implementation on GPU

In algorithms like FDTD using staggered grids, the memory is limited to the
simulation capacity and the space availability for storing results; also, when
FDTD is applied to pulsed waves, the information concentrates in spots instead
of spreading through the simulation space. Recently, among the electromagnetics
community, the SFDTD was proposed for simulating acoustics in tubular shapes
probing to reduce the usage of memory during simulation [23].

The main idea of SFDTD is to divide the simulation space and evaluate the
FDTD of a segment where the pulsed wave is present, and then pass the necessary
information to continue evaluating it in the next segment as the wave travels
to the next segment. This is achieved by a establishing a set of segments, S,
where the k-th segment, Sk, is a section of space where the wave will propagate
from the interface Cstart

k to Cend
k , passing through a block, Bk, as shown in

Fig. 1. In order to sustain continuity, the minimum size of the interfaces has to
be larger than a cycle from the lowest wave frequency expected in the simulation.

To transfer the wave captured on Sk to another segment, a steady state must
be achieved as the wave is at Cend

k . This is inspected by evaluating an error
function [14, Chapter 2] of Sk excluding Cend

k . Letting DCB = Cstart
k ∪ Bk and

applying a difference operator using central difference method, D = |ΔDCB |,
then the following summation becomes the error function,

⎢
D ≤ Th, (4)

where Th is an educated guess used to compare if the pulsed wave is located at
Cend

k . If Eq. (4) is true, the wave in Cend
k is copied into Cstart

k+1 , then Sk is erased
allowing to reuse the memory space of Sk. This type of problem suits GPUs
architectures due to its simple operations and data parallelism.

In our implementation, two issues were addressed, the flow dependency and
memory access latency. The flow dependency can be observed in the calculation
of the velocity (2a) and pressure (3a) equations. It causes race conditions among
threads reading and writing on the velocity points. A solution is to solve it
through synchronization, but it is at expenses of depreciating the performance.
To avoid the memory access latency a faster memory banks, such as registers, can
be used instead. Solving both issues, the calculations of each dependent velocity

134 J.J.M. Chan et al.

Fig. 1. Segmented simulation space and simulation states

points is stored in registers, as in wait-free algorithms [6], thereby avoiding race
condition and reducing memory access latency as much as possible.

In Algorithm 1, we present the implementation of SFDTD using two seg-
ments, dS0 and dS1. From line 2–10, the initialization of the memory spaces
for the two segments is done in the GPU and CPU. In line 10 to 19, it encom-
passes a simulation within the time index n, and upon completion this counter
is been incremented on line 17. In line 12, the FDTD with its PML implementa-
tion gets calculated based on Eqs. (2a,2b,3a,3b); once done, the space formed by
dCstart

0 ∪ dB0 gets tested for the steady state as defined in Eq. (4). If it is false,
dS0 will be transfer to the CPU; otherwise, the wave at dCend

0 is transferred
to dCstart

1 in dS1, and then dS1 is transferred to dS0, so the memory space is
reused. At the same time dS1 is transferred to the CPU to keep track of it. Then,
in line 18, the simulation state for iteration n is written to the hard drive.

4 Results

In order to compare the performance of the SFDTD and the FDTD, a group
of experiments were conducted on a GeForce GTX 260 connected through a
PCIe v2 x16 bus. The experiments encompassed the FDTD and the SFDTD
evaluation for an iteration, which corresponds to lines 12–18 at Algorithm 1.
The experiments focused on different segment sizes, reviewing (1) the kernel
execution time, (2) the influences on the saving to disk time, (3) the commu-
nication transfer time between CPU and GPU, (4) and a review of the total
execution time and speed-up factor of the algorithms. The simulation length
was selected based on the maximum off-chip memory available on the GPU,
in this case approximately 895 MB. This allows us to execute upto 55M-points
using IEEE 754 floating point representation, where each pair of points represent
the velocity (2a,2b) and pressure (3a,3b) points previously discussed. In the case
of the SFDTD, the segment size was defined to be 32, 1k, 32k, and 1M, in an
attempt to investigate the effect of changing the segment size from small to large.

Effects of Segmented Finite Difference Time Domain on GPU 135

Algorithm 1. GPU implementation of Segmented FDTD
1 Begin

2 Let n ← 0 be the time index

3 Let Δt be the time-step in the simulation

4 Let T be the Maximum time of simulation

5 Let S0 and S1 be segments in the CPU

6 Let dS0 and dS1 be segments in the GPU

7 Let dB0 be a block from dS0 in the GPU

8 Let dCstart
0 and dCend

0 be the interfaces from dS0 in the GPU

9 Let dCstart
1 and dCend

1 be the interfaces from dS1 in the GPU

10 Memory transfer from S0 to dS0

11 While nΔt < T
12 Calculate FDTD (dS0)
13 If Steady State

(
dCstart

0 ∪ dB0

)
= false

14 Memory transfer dS0 to S0

15 Else

16 Memory transfer dCend
0 to dCstart

1 , dS1 to S0, dS1 to dS0

17 Let n ← n + 1
18 Save (S0)
19 End

The way that CUDA architecture allows fine-grained data and thread parallelism
nested within a coarse-grained data and task parallelism [10], allows both algo-
rithms to be used efficiently. For both, the number of threads selected per block
was 32, and the number of blocks were adjusted so each threads calculates a
pressure and velocity point. For both methods, the results were averaged over
30 iterations.

Kernel Execution Time. As shown in Fig. 2, the FDTD processing time grows
linearly at rate of 0.706ms/point; meanwhile, the SFDTD remains almost con-
stant, independently of the segment size. This is because the FDTD algorithm
covers the complete simulation length within an iteration, but the SFDTD just
covers the segment where the wave is spotted.

Writing to Hard Drive Time. The results in Fig. 3 show how the compacted
structure of the SFDTD allows almost constant operation time, meanwhile the
FDTD grows as the simulation length grows.

Communication Transfer Time. For both methods, the communication
transfer time between CPU and GPU is limited to the lowest speed element
on the communication path, the PCIe bus with a bandwidth of 3.0GBs−1. From
Fig. 4, the SFDTD shows to perform better combining large simulations lengths
and small segment sizes.

Total Execution Time. Considering that in Algorithm 1 and counting the
delay for synchronization as part of each instruction, the iteration execution time
can be described as, Texec = Tkernel+2Tcomm+Tstoring where Tkernel is the time

136 J.J.M. Chan et al.

106 107 10810−5

10−4

10−3

10−2

10−1

Simulation Length (in points)

Ti
m

e
(in

 s
ec

on
ds

)

FDTD SFDTD 32 SFDTD 1k SFDTD 32k SFDTD 1M

Fig. 2. Average kernel execution time for FDTD and SFDTD

106 107 10810−6

10−4

10−2

100

102

Simulation Length (in points)

Ti
m

e
(in

 s
ec

on
ds

)

FDTD SFDTD 32 SFDTD 1k SFDTD 32k SFDTD 1M

Fig. 3. Average writing to hard drive time for FDTD and SFDTD

106 107 10810−5

10−4

10−3

10−2

10−1

100

Simulation Length (in points)

Ti
m

e
(in

 s
ec

on
ds

)

FDTD SFDTD 32 SFDTD 1k SFDTD 32k SFDTD 1M

Fig. 4. Average communication transfer time from CPU to GPU and vice versa

Effects of Segmented Finite Difference Time Domain on GPU 137

106 107 10810−4

10−2

100

102

Simulation Length (in points)

Ti
m

e
(in

 s
ec

on
ds

)

FDTD SFDTD 32 SFDTD 1k SFDTD 32k SFDTD 1M

Fig. 5. Average total execution time for FDTD and SFDTD

106 107 10810−2

100

102

104

106

Simulation Length (in points)

S
pe

ed
up

SFDTD 32 SFDTD 1k SFDTD 32k SFDTD 1M

Fig. 6. Speed-up factor of SFDTD compared against FDTD

for the kernel execution, Tstoring is the time for writing to the hard drive, and
Tcomm is the communication transfer time. As previously mentioned, Tstoring is
the bottleneck, due to the off-chip memory to hard drive transfers. For example,
in Figs. 2, 3, 4 the SFDTD with segment size of 1M shows a Tkernel = 0.012 s,
Tcomm ≈ 0.049 s. which are insignificant compared to Tstoring = 1.036 s. Based
on the results and applying a linear regression, Texec can be expressed in terms
of the segment size, ς. This is Texec = (0.0021ς + 4.6521)ms.

The total execution time can be observed in Fig. 5, and it is clear how the
SFDTD presents a similar behaviour as observed before in Figs. 2, 3, 4. However,
the only in the case where the segment size is large (1M) and nearly equal to the
simulation length shows the FDTD to perform better. The impact in the speed-
up caused by selecting the SFDTD algorithm and the segment size provides a
one to five orders of magnitude growth, having its peak at the smaller segment
sizes. This effect can be observed in Fig. 6.

138 J.J.M. Chan et al.

5 Conclusion

The proposed SFDTD algorithm exploit the memory access mechanism, with
different types of fast memories (registers and shared memory) found in CUDA
architecture. This allows an efficient use of fine-grained parallelism nested on
a coarse-grained parallelism. In this paper, it has been shown that regardless
of the segment size, the iteration execution time remains constant for different
simulation space size. Also it was shown that the bottleneck is located at stor-
ing to disk, followed by the communication transfer time. But still, the SFDTD
execution time is relatively minute compared to that using the normal FDTD
implementation. Future works and discussion will be focus to 2D and 3D imple-
mentations, in addition to the instruction efficiency within the kernel.

References

1. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic
waves. J. Comput. Phys. 114(2), 185–200 (1994)

2. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of math-
ematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

3. Demir, V., Elsherbeni, A.: Utilization of CUDA-OpenGL interoperability to display
electromagnetic fields calculated by FDTD. In: Computational Electromagnetics
International Workshop (CEM), pp. 95–98 (2011)

4. Drumm, I.: Implementing the FDTD tutorial. University of Salford - EPSRC
Summer School, Salford, UK. http://www.acoustics.salford.ac.uk/res/drumm/
FDTD-FE/Implementing%20FDTD%20Tutorial.doc (2007)

5. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simu-
lation of waves. Math. Comput. 31(139), 629–651 (1977)

6. Herlihy, M.P.: Impossibility and universality results for wait-free synchronization.
In: Proceedings of the 7th Annual ACM Symposium on Principles of Distributed
Computing, PODC ’88, pp. 276–290. ACM, New York (1988)

7. Holland, R.: THREDE: a free-field EMP coupling and scattering code. IEEE Trans.
Nucl. Sci. 24(6), 2416–2421 (1977)

8. Ireland, D., Tee, W.C., Bialkowski, M.: Accelerated biomedical simulations using
the FDTD method and the CUDA architecture. In: Microwave Conference Pro-
ceedings (APMC), 2011 Asia-Pacific, pp. 70–73. IEEE (2011)

9. Ju, F., Xing, C.: A study of parallel FDTD for simulating complex antennas on a
cluster system. In: Microwave Conference Proceedings, 2005. APMC 2005. Asia-
Pacific Conference Proceedings, vol. 5, p.4 (2005)

10. Kirk, D.B., Wen-mei, W.H.: Programming Massively Parallel Processors: A Hands-
on Approach. Morgan Kaufmann, Boston (2010)

11. Kondylis, G.D., De Flaviis, F., Pottie, G.J., Itoh, T.: A memory-efficient formula-
tion of the finite-difference time-domain method for the solution of Maxwell equa-
tions. IEEE Trans. Microwave Theor. Tech. 49(7), 1310–1320 (2001)

12. Kowalczyk, K.: Boundary and medium modelling using compact finite difference
schemes in simulations of room acoustics for audio and architectural design appli-
cations. Ph.D. thesis, Queen’s University Belfast (2010)

13. Lindman, E.: Free pace boundary conditions of the time dependent wave equation.
J. Comput. Phys. 18(1), 66–78 (1975)

http://www.acoustics.salford.ac.uk/res/drumm/FDTD-FE/Implementing%20FDTD%20Tutorial.doc
http://www.acoustics.salford.ac.uk/res/drumm/FDTD-FE/Implementing%20FDTD%20Tutorial.doc

Effects of Segmented Finite Difference Time Domain on GPU 139

14. Lipták, B.G.: Instrument Engineers’ Handbook: Process Control and Optimization,
vol. 2. CRC Press, Boca Raton (2005)

15. Livesey, M., Stack, J., Costen, F., Nanri, T., Nakashima, N., Fujino, S.: Devel-
opment of a CUDA implementation of the 3D FDTD method. IEEE Antennas
Propag. Mag. 54(5), 186–195 (2012)

16. Moore, T., Blaschak, J., Taflove, A., Kriegsmann, G.: Theory and application of
radiation boundary operators. IEEE Trans. Antennas Propag. 36(12), 1797–1812
(1988)

17. Mur, G.: Absorbing boundary conditions for the finite-difference approximation of
the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. Com-
pat EMC 23(4), 377–382 (1981)

18. Nagaoka, T., Watanabe, S.: Accelerating three-dimensional FDTD calculations on
GPU clusters for electromagnetic field simulation. In: 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
pp. 5691–5694 (2012)

19. Schroeder, M., Rossing, T.D., Dunn, F., Hartmann, W.M., Campbell, D.M.,
Fletcher, N.H.: Springer Handbook of Acoustics, 1st edn. Springer, New York
(2007)

20. Taflove, A.: Application of the finite-difference time-domain method to sinu-
soidal steady-state electromagnetic-penetration problems. IEEE Trans. Electro-
magn. Compat EMC 22(3), 191–202 (1980)

21. Unno, M., Aono, S., Asai, H.: GPU-based massively parallel 3-D HIE-FDTD
method for high-speed electromagnetic field simulation. IEEE Trans. Electromagn.
Compat. 54(4), 912–921 (2012)

22. Wu, Y., Lin, M., Wassell, I.: Path loss estimation in 3D environments using a mod-
ified 2D finite-difference time-domain technique. In: 2008 IET 7th International
Conference on Computation in Electromagnetics, CEM 2008, pp. 98–99 (2008)

23. Wu, Y., Wassell, I.: Introduction to the segmented finite-difference time-domain
method. IEEE Trans. Magn. 45(3), 1364–1367 (2009)

24. Xu, M., Thulasiraman, P., Noghanian, S.: Microwave tomography for breast cancer
detection on cell broadband engine processors. J. Parallel Distrib. Comput. 72(9),
1106–1116 (2012)

25. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

26. Yu, W., Liu, Y., Su, Z., Hunag, N.T., Mittra, R.: A robust parallel conformal finite-
difference time-domain processing package using the MPI library. IEEE Antennas
Propag. Mag. 47(3), 39–59 (2005)

27. Yuan, X., Borup, D., Wiskin, J., Berggren, M., Eidens, R., Johnson, S.: Formulation
and validation of Berenger’s PML absorbing boundary for the FDTD simulation of
acoustic scattering. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 816–
822 (1997)

28. Zhang, C., Qin, Y., Zhao, G., Zhu, Y.: Two-dimensional FDTD simulation for the
acoustic propagation in a piezoelectric superlattice. In: 2009 IEEE International
Ultrasonics Symposium (IUS), pp. 2031–2032 (2009)

Optimization of an OpenCL-Based Multi-swarm
PSO Algorithm on an APU

Wayne Franz(B), Parimala Thulasiraman, and Ruppa K. Thulasiram

University of Manitoba, Winnipeg, Canada
{umfranzw,thulasir,tulsi}@cs.umanitoba.ca

Abstract. The multi-swarm particle swarm optimization (MPSO) algo-
rithm incorporates multiple independent PSO swarms that cooperate by
periodically exchanging information. In spite of its embarrassingly par-
allel nature, MPSO is memory bound, limiting its performance on data-
parallel GPUs. Recently, heterogeneous multi-core architectures such as
the AMD Accelerated Processing Unit (APU) have fused the CPU and
GPU together on a single die, eliminating the traditional PCIe bottleneck
between them. In this paper, we provide our experiences developing an
OpenCL-based MPSO algorithm for the task scheduling problem on the
APU architecture. We use the AMD A8-3530MX APU that packs four
x86 computing cores and 80 four-way processing elements. We make effec-
tive use of hardware features such as the hierarchical memory structure
on the APU, the four-way very long instruction word (VLIW) feature for
vectorization, and global-to-local memory DMA transfers. We observe a
29% decrease in overall execution time over our baseline implementation.

Keywords: PSO · Parallel evolutionary computing · APU · OpenCL

1 Introduction

As we move into the multi-core era, parallel systems are becoming increasingly
heterogeneous, incorporating everything from multi-core CPUs to accelerators,
GPUs, and FPGAs. This complicates the task of scheduling a parallel workload.

Formally, the task matching problem seeks to map a set of tasks T (of differing
lengths) to a set of distributed machines M (with varying capabilities) such that
the overall time required to complete all tasks (makespan) is minimized. Task
matching has been well-studied, and is known to be NP-complete [2]. Therefore,
heuristics such as Particle Swarm Optimization (PSO) [3] are often considered.
PSO simulates a group (or swarm) of particles as they move and interact within a
solution space. Each particle encodes a set of inputs to an optimization problem
via its coordinate values. PSO imposes forces to push particles toward more
promising areas of the solution space.

We consider the multi-swarm PSO (MPSO) implemented by Solomon et al.
[6]. This work applied MPSO to task matching using CUDA on a discrete GPU.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 140–150, 2014.
DOI: 10.1007/978-3-642-55195-6 13, c© Springer-Verlag Berlin Heidelberg 2014

Optimization of Multi-swarm PSO 141

While these types of approaches present good discussions of thread-to-data map-
ping strategies and impressive speedup results, further optimizations are achiev-
able by taking simple efficiency metrics like device utilization into account.

Recently, AMD introduced a new architecture that combines a CPU and
GPU together on a single die (AMD calls this an Accelerated Processing Unit,
or APU). In this paper, we provide our experiences developing and optimizing
MPSO in OpenCL on the APU architecture.

2 Architecture and Runtime System

The Open Computing Language (OpenCL) is a parallel language and runtime
system developed for heterogeneous devices. OpenCL refers to threads as work-
items. Work-items can be combined into workgroups to synchronize or share
information. The host (CPU) launches kernels (functions that execute on the
GPU), transferring any required data from host to device memory.

Our on-die GPU [1] consists of five compute units (CUs), each with 16
Processing Elements (PEs). Each PE is a very large instruction word (VLIW)
processor with four arithmetic logic units (ALUs). We use OpenCL vector data
types of size four to match this arrangement.

AMD hardware runs work-items in groups of 64 called wavefronts. Each CU
executes one wavefront at a time. However, CUs can maintain the states of up
to 32 wavefronts (active wavefronts). During global memory accesses, another
wavefront may be swapped in and executed to hide latency.

GPUs provide three main types of memory. Global memory is large (512 MB),
but has a high latency. To accommodate the VLIW layout of the PEs, the mem-
ory bus is 128 bits wide. A feature called coalescing provides enhanced perfor-
mance when consecutive work-items access contiguous chunks of memory.

Constant memory is a read-only store (64 KB) that provides a broadcast
function. When multiple work-items access the same location, data is read once
and broadcast to all work-items.

Local memory is a small (32 KB/CU), fast store. When each work-item in
a quarter wavefront accesses consecutive chunks of 8 bytes, all memory banks
are active. If the access pattern differs, multiple work-items will access the same
memory bank (a bank conflict), and it will service the requests sequentially.

3 Algorithm, Implementation and Optimization

This section describes the MPSO algorithm, the implementation of each of the
kernels in this algorithm, and their optimization. We compare vectorized (using
four-element vector data types) kernels, unvectorized (using scalar data types)
kernels, and optimized variants.

We define the following symbols: n, the user-defined maximum number of
iterations; s, the number of swarms; p, the number of particles per swarm; d =
|T |, the number of dimensions; m = |M |, the number of machines; and e, the
number of particles exchanged between swarms at each interval.

142 W. Franz et al.

Our GPU only allows one kernel to be executed at once. This makes it impor-
tant to ensure that kernel occupancy (device utilization) is as high as possible.
Kernel occupancy [1] is the ratio of the number of active wavefronts per CU
to the maximum number of wavefronts supported per CU. Estimated Kernel
Occupancy (EKO) refers to occupancy as measured by AMD profiling tools.

3.1 MPSO Algorithm

In PSO, each particle k maintains three pieces of information: a position vector
Xk, a personal-best position vector X́k, and a velocity vector Vk. Each swarm j
also maintains the position of the best solution seen so far by any particle, X̂j .
On each iteration i, velocity is modified according to the following equation [5]:

V i+1
k = ω ∗ V i

k + c1 ∗ R1 ∗ (X́k − Xi
k) + c2 ∗ R2 ∗ (X̂j − Xi

k) (1)

Position is then updated using:

Xi+1
k = Xi

k + V i+1
k (2)

R1 and R2 are vectors of random numbers between 0 and 1 (selected from a
uniform distribution), while c1, c2, and ω are user-defined weighting parameters
used to balance the forces exerted by each of the three terms.

In our solution space, each dimension represents a task, while each coordinate
value along a dimension represents a machine that task may map to. Our MPSO
algorithm arranges independent swarms in a ring topology. Every given number
of iterations, the e best particles from each swarm replace the e worst particles of
its neighbour. Ranking is performed using an objective function, which accepts a
position Xk, and returns a fitness fk, a measure of solution optimality. To prevent
redundant calculations, we also store the current and personal-best fitnesses (f i

k

and f́ i
k, respectively) for each particle, and the swarm-best fitness f̂j for each

swarm. An outline of sequential MPSO is shown in Algorithm 1.
Optimizations below are illustrated using s = 60 and p = 128 for a total of

n = 1000 iterations. For other PSO parameters, we set d = 80, m = 8, e = 24,
c1 = 2.0, c2 = 1.4, and ω = 1.0. We exchange particles every 10 iterations.
Execution time is averaged over 30 trials to account for stochastic variation.

3.2 Data Layout

We employ a lookup table called an Estimated Time to Complete (ETC) matrix
[6] to prevent redundant makespan calculations. An ETC value at row i, column
j records the time that machine i requires to execute task j. We generate the
matrix using the host (CPU) while the initial random number generation and
particle initialization kernels are running on the device.

Particle data is stored in global memory arrays. Values are ordered by dimen-
sion (in groups of four for VLIW performance), then particle index. This ensures
coalescing within kernels that map one work-item to each particle.

Optimization of Multi-swarm PSO 143

Algorithm 1. Sequential MPSO Algorithm
1: Initialize particle positions and velocities randomly
2: for iteration i = 0 to n− 1 do
3: for swarm j = 0 to s− 1 do
4: for particle k = 0 to p− 1 do
5: Calculate f i

k from Xi
k

6: Update V i
k using (1)

7: Update P i
k using (2)

8: Update best values (X́i
k, X̂j , f́

i
k, f̂k) if necessary

9: if i mod numSwapIters = 0 then
10: Overwrite e worst particles in next swarm with e best in this swarm
11: end if
12: end for
13: end for
14: end for

3.3 Random Number Generation

MPSO requires a large number of random values. Salmon et al. [4] recently
proposed a counter-based parallel pseudo random number generator that is well-
suited for the GPU. The only state storage requirements are simple counter
values that are incremented before each call. We keep a large (142 MB) buffer of
random numbers in global memory, which is refilled on demand. Our completed
kernel consumes 8 registers per CU, yielding an 87.5 % EKO.

3.4 Particle Initialization

This kernel uses one work-item per particle dimension (s ∗ p ∗ d work-items) to
initialize X and V in the ranges [0,m − 1] and [0, 2m], respectively. In addition,
f́ and f̂ are set so as to ensure an update on the first fitness calculation. Since
the work-item-to-data mapping is one-to-one, it is easy to use four-way vector
data types, reducing the number of required work-items by a factor of four.

Register usage is very low, since few calculations are performed. This is desir-
able because there is a pool of registers allocated to each CU. Therefore if kernel
instances require many registers, fewer wavefronts can be run simultaneously on
the CU [1]. This kernel achieves 100 % EKO.

Table 1 shows the average run time for vectorized and unvectorized versions
of this kernel. The table shows two effects of vectorization. First, it significantly
decreases the percentage of time that the fetch unit is busy, as it generates only
one quarter of the memory requests.

Second, vectorization increases the ALU-Op-to-Fetch-Op Ratio slightly. This
ratio can be used to determine the memory-boundedness of a kernel. If it is
low, the kernel is more memory-bound. However if it is high, the kernel is more
compute-bound, increasing the effectiveness of wavefront context switching.

In this case, the small difference is due to an increase in the number of
calculations performed per work-item. However, 9.03 ALU ops is far too few to

144 W. Franz et al.

cover the latency period of 300–600 cycles incurred by a single global memory
fetch. In spite of the memory system’s ability to keep up with our requests, and
100% EKO, execution time is still limited by memory-boundedness here.

3.5 Update Fitness

This kernel is our objective function. We map one work-item to each particle k
to calculate fk, then write this value to global memory. To do this, we use a local
memory buffer of size m for each work-item. Work-items iterate through their
particle’s dimensions (tasks), and add the time required for the chosen machine
(axis value) to the local array. This time is retrieved from the ETC matrix.

This kernel requires a large number of registers, severely limiting the number
of wavefronts we can launch, and resulting in an EKO of only 50 %. The low
number of active wavefronts will also limit opportunities for context switching.

In kernels that use local memory, it is common [6] to assign each swarm to
one workgroup. We relax this constraint and incorporate as many swarms into
one workgroup as possible. Since the execution of each workgroup is limited to
one CU, allocating larger workgroups increases device utilization.

The makespan computation incurs a number of irregular local memory
accesses and bank conflicts because we do not know in advance which machine
each task will map to. The most achievable approach for vectorization is to cause
each work-item to handle a vector of four dimensions (tasks) at once. However, the
values along these dimensions may not refer to consecutive machines. This means
that on each iteration, each work-item must make four scalar ETC accesses (rather
than one four-element access), and four atomic writes to local memory (as multi-
ple tasks could map to the same machine).

One avenue for optimization is to “cache” the four previously read local
memory values in registers. If subsequent tasks map to the same machine, we
can skip a read, grabbing the data from the register. However, this introduces
a number of conditional statements, which are a bottleneck for data-parallel
hardware. Applying this technique actually resulted in a small increase (0.11 ms)
in average kernel execution time.

3.6 Update Bests

In this kernel, we update the particle-best and swarm-best fitnesses and posi-
tions, launching one work-item per particle. The kernel operates in two phases.

The first involves a simple comparison between f́ i−1
k and f i

k for each particle
k. If an update is required, each work-item overwrites f́k and X́i

k in their global
memory arrays. The second phase performs a parallel reduction to find f̂j for
each swarm j and update it, if necessary. Finally, work-items cooperate to update
the X̂j , if necessary. There is a relationship between these two phases that we
can exploit: f̂j will only ever be set to a newly updated f́k.

The second phase requires local memory buffers for the parallel reduction.
We can increase the efficiency of our code by re-using these buffers during the

Optimization of Multi-swarm PSO 145

first phase to store information about which particles’ best values were updated.
This information will allow us to exploit the relationship mentioned above.

In phase 1, we perform the comparison and write the boolean result to local
memory. Phase 2 reuses the local buffer to perform a reduction, skipping over any
unneeded values. Finally, f̂j and X̂j are updated in global memory, if necessary.

As we move from the unvectorized to the vectorized kernel, register usage
forces a 25 % decrease in EKO (see Table 2). However, this is outweighed by the
increase in the ALU-to-fetch ratio that vectorization brings.

Table 1. Particle initialization (T: Avg.
time, FB: Fetch unit busy)

Kernel T (ms) ALU:Fetch FB (%)

unvec 0.988 7.52 22.65
vec 0.980 9.03 6.85

Table 2. Update bests (T: Avg. time, R:
Registers)

Kernel T (ms) R EKO (%) ALU:Fetch

unvec 0.224 6 100 76.5
vec 0.081 9 75 194.5

3.7 Update Position/Velocity

In this kernel, we update each particle’s current velocity and position. Since
Eq. (1) allows each dimension to be calculated independently, we can launch a
full s ∗ p ∗ d work-items. Note that in Eq. (1), the same swarm-best positions
(X̂j) are read by all p ∗ d work-items in a swam j. Therefore, we place them in
constant memory to take advantage of broadcasting.

Table 3 shows the effect of vectorization (with each work-item handling four
dimensions). EKO is limited to 75 % due to the number of registers required
for the calculation. One option to reduce register usage is to break the kernel
into multiple pieces, one for each of the terms in Eq. (1). However, each kernel
would have to store/reload partial results using global memory, and there are
not enough ALU operations in each term to cover the resulting latency.

A second option is to attempt to use local memory in place of one or more
registers. OpenCL provides a function that asynchronously copies data from
global to local memory (via a DMA transfer) within a kernel. We were able to
replace a single register using this call. As Table 3 shows, this was enough to raise
the EKO. However, overall MPSO execution time also rises, as local memory’s
bandwidth is lower than that of registers. To support four-way vectorization,
each work-item must read four (rather than the optimal two) values from local
memory, causing bank conflicts, and further increasing execution time.

A third option involves combining this kernel with an adjacently launched
kernel. This should allow the compiler to re-use registers between what was
previously separated code. The update bests kernel is launched immediately
before this kernel, and is our only practical candidate for a merger (the following
kernel is only invoked on iterations when particle swapping occurs).

One problem here is that the update bests kernel requires s ∗ p work-items,
while the update position/velocity kernel requires s∗p∗d work-items. Ordinarily,

146 W. Franz et al.

Table 3. Update position/velocity

Kernel Avg. time (ms) Registers EKO (%) MPSO time (s)

unvec 1.209 6 75 2.749
vec 1.005 9 75 1.981
vec (async copy) 1.127 8 87.5 2.087
vec (combined) 1.177 10 75 2.124

we could simply launch the maximum number of required work-items and restrict
the parallelism for the update bests code. However, this is complicated by the
fact that the kernels require different work-item-to-data mapping strategies.

Each work-item in the update position/velocity kernel operates indepen-
dently. As a result, the kernel may split the work for one swarm across multi-
ple workgroups. Work-items performing the update bests kernel must cooperate
using local memory. Since local memory cannot be used for inter-workgroup com-
munication (only intra-workgroup), all work-items operating on a swarm must
be members of the same workgroup.

With this in mind, we launch the combined kernel using s ∗ p work-items,
and implement a loop that iterates through the update position/velocity kernel
code d times. While this will increase the individual execution time of a kernel
instance, it has little effect on occupancy.

Table 3 shows the result of this strategy. The register usage of the combined
kernel is less than the sum of usage counts of the individual kernels. Unfortu-
nately, this is not enough to increase EKO. The loop pushes the combined kernel
execution time slightly above the combined duration of the original kernels.

3.8 Find Best/Worst Particles

In this kernel, we must determine the indices of the particles with the e best and
e worst fitnesses in each swarm. This information is stored in global memory
buffers so that the exchange can be done by a later kernel.

We begin by mapping one work-item to each particle, employing an algo-
rithm used by Solomon et. al. [6]. This involves copying fitness data to local
memory and performing e parallel reductions. Tracking the particle-indices of
these particles requires additional local buffers. In total, five buffers of size p are
used.

Four-way vectorization will quadruple the local memory requirements per
CU. Instead, we use two-way vectorization, which also provides a more efficient
access pattern for local memory. Table 4 shows statistics for this kernel. Local
memory usage drops the EKO to only 25 %. With this in mind, we consider an
alternative algorithm requiring less local memory.

Our new algorithm performs an all-to-all comparison, recording the number
of times each element wins. After this process, the ids of the work-items with
the highest (lowest) e win counts are the indices of the e best (worst) particles.

Optimization of Multi-swarm PSO 147

This approach is complicated by the fact that particles can have identical
fitnesses. We use a race condition (in a loop) to detect this case, by forcing all
work-items to write their id to a local memory location corresponding to their
win count. Values are then read back. If a work-item finds an unexpected value,
it increments its win count by one. Otherwise it is masked out of the loop.

This loop stops when all work-items read back their own ids. Using a separate
local memory variable to record the loop’s stopping condition pushes our local
memory usage over the top, limiting occupancy. Instead, we temporarily re-use
an existing local memory buffer element on each iteration.

This approach uses only p local memory space, removing the cap on EKO.

Table 4. Find best/worst (T: Avg. time,
M: Local memory usage)

Kernel T (ms) M (bytes) EKO (%)

unvec (initial) 1.850 6144 62.5
vec (initial) 1.658 12288 25
vec (alt) 0.269 2048 100

Table 5. Swap particles (T: Avg. time,
R: Registers)

Kernel T (ms) R EKO (%)

unvec 2.463 7 100
vec 0.048 20 37.5
vec (shared) 0.646 8 87.5

3.9 Swap Particles

This kernel performs the actual particle exchange between swarms. Here we
launch one work-item for each dimension of every particle to be exchanged (s∗e∗d
work-items). The e best particles in each swarm overwrite the e worst particles in
the next swarm. Specifically, X, V , X̂, and f̂ are overwritten. Current fitnesses
will be recalculated on the next iteration before they are needed.

This kernel makes a large number of global memory accesses. A vectorized
algorithm makes fewer, larger accesses, reducing the average time (see Table 5).
However, a large number of index calculations are needed to move the array
values between swarms. Vectorization drives up register usage, limiting EKO.

We could attempt to replace registers that deal with best and worst particle
indices with local memory. One limitation of the asynchronous copy function is
that it must be called with the same arguments for all work-items in a work-
group. For the best indices, this is not a problem. But for the worst indices, we
must retrieve the next swarm’s value (an offset of one). This means that there
will be wrap-around in the global memory array we are reading from. Since we
are handling multiple swarms per workgroup, this leads to different values for
different work-items in the same workgroup. We therefore manually copy the
worst indices to local memory using a loop.

The asynchronous copy call also forces us to move the best and worst indices
from constant memory to global memory (OpenCL provides no means of copying
from constant to local memory asynchronously). This seems to allow the compiler
to significantly reduce register usage. We speculate that as constant memory is
read-only, the compiler uses some extra registers to store the retrieved values.

148 W. Franz et al.

Table 5 shows that this increases EKO significantly. Unfortunately, the
decrease in bandwidth when moving to local memory, coupled with inability
of global memory to broadcast, still results in a larger kernel execution time.

4 Results

Our test system uses an AMD A8-3530MX APU. This device incorporates a
quad core CPU at 1.90 GHz with 6 GB of RAM, and an on-die Radeon HD
6620G graphics processor. All experiments were compiled with Visual Studio
2010 using the AMD APP SDK v2.7 implementation of OpenCL 1.2. Hardware
performance counters were measured using AMD CodeXL software.

Optimizations that alter kernel occupancy tend to perform better with large
input sizes than small ones. We present the results of a simple scaling experiment
below. We fix s at 60 and scale up p in the range [4, 256]. The other MPSO
parameters remain as presented in Sect. 3.1. We run each instance 30 times and
average execution time to account for stochastic variance.

Figure 1 shows the effect that scaling p has on execution time. The gap
between unvectorized and vectorized algorithms widens as p increases. This is
true in spite of the fact that unvectorized kernels generally have a higher occu-
pancy level. This trend reveals multiple levels of parallelism at work. In addition
to parallelism at the work-item level (corresponding to kernel occupancy), there
is also parallelism at the ALU level (corresponding to vectorization). In this case,
the latter outweighs the former and we see the widening gap in the graph.

The slight rises and falls in the slopes of the lines result from combining
multiple swarms into the same workgroup. In cases where the mapping works out
evenly, we see a lower execution time due to an increase in parallel efficiency. But
if an extra swarm narrowly fails to fit into a workgroup, the hardware scheduler
my need to launch an extra round of workgroups on the CUs.

The update fitness caching optimization exhibits no improvement over the
vectorized algorithm. Combining the update position/velocity and update bests
kernels ultimately results in a higher execution time than the plain vectorized
algorithm. This line does not quickly diverge from the vectorized series because
the EKO of the combined kernel remains identical to both separate versions.
However, the combined kernel suffers from lower parallelism at the work-item
level, since it must iterate for the position/velocity section.

Moving the position/velocity kernel to local memory significantly increases
execution time (though it increased occupancy) due to the lower bandwidth of
local memory. On the other hand, moving the swap kernel to local memory has
only a small effect. We attribute this to the fact that the local swap kernel
uses much less local memory than the local position/velocity kernel. Finally,
our alternative find best/worst algorithm decreases execution time slightly, in a
manner relatively proportional to swarm size.

Our largest input size is the rightmost point in Fig. 1. Moving from the
unvectorized to the best-performing algorithm (find best/worst alt), we see a
decrease of 1.51 s, or approximately a 29 % improvement.

Optimization of Multi-swarm PSO 149

Fig. 1. Execution time as the number of particles per swarm increases.

5 Conclusion

This work has traced the optimization process of an MPSO algorithm on an APU
architecture. We have investigated optimizations to improve kernel occupancy
and vectorization, optimize memory access patterns, and reduce register usage.

Many of the ideas presented here can be directly applied to other parallel
population-based algorithms. It is worth noting that even those ideas that did
not consistently provide benefit to us may prove worthwhile in other contexts or
on other devices.

Funding for this work was provided in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and the University of Manitoba.

References

1. Advanced Micro Devices: AMD Accelerated Parallel Processing OpenCL Program-
ming Guide. http://developer.amd.com/download/AMD Accelerated Parallel
Processing OpenCL Programming Guide.pdf (2012)

2. Fernandez-Baca, D.: Allocating modules to processors in a distributed system. IEEE
Trans. Softw. Eng. 15(11), 1427–1436 (1989)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Perth, Western Australia, vol. 4, pp. 1942–1948
(1995)

4. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers: as
easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, Seattle, WA, USA, November
2011, pp. 16:1–16:12. http://doi.acm.org/10.1145/2063384.2063405 (2011)

http://developer.amd.com/download/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/download/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://doi.acm.org/10.1145/2063384.2063405

150 W. Franz et al.

5. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
Evolutionary Computation, IEEE World Congress on Computational Intelligence,
Anchorage, AK, USA, May 1998, pp. 69–73 (1998)

6. Solomon, S., Thulasiraman, P., Thulasiram, R.: Collaborative multi-swarm PSO for
task matching using graphics processing units. In: ACM Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation (GECCO), Dublin,
Ireland, July 2011, pp. 1563–1570. http://doi.acm.org.proxy1.lib.umanitoba.ca/10.
1145/2001576.2001787 (2011)

http://doi.acm.org.proxy1.lib.umanitoba.ca/10.1145/2001576.2001787
http://doi.acm.org.proxy1.lib.umanitoba.ca/10.1145/2001576.2001787

Core Allocation Policies on Multicore Platforms
to Accelerate Forest Fire Spread Predictions

Tomàs Artés(B), Andrés Cencerrado, Ana Cortés, and Tomàs Margalef

Computer Architecture and Operating Systems Department,
Universitat Autònoma de Barcelona, Campus UAB, Edifici Q,

08193 Bellaterra, Spain
{tomas.artes,andres.cencerrado,ana.cortes,tomas.margalef}@uab.cat

http://caos.uab.es

Abstract. Software simulators are developed to predict forest fire
spread. Such simulators require several input parameters which usually
are difficult to know accurately. The input data uncertainty can provoke
a mismatch between the predicted forest fire spread and the actual evo-
lution. To overcome this uncertainty a two stage prediction methodology
is used. In the first stage a genetic algorithm is applied to find the input
parameter set that best reproduces actual fire evolution. Afterwards, the
prediction is carried out using the calibrated input parameter set. This
method improves the prediction error, but increments the execution time
in a context with hard time constraints. A new approach to speed up the
two stage prediction methodology by exploiting multicore architectures
is proposed. A hybrid MPI-OpenMP application has been developed and
different allocation policies have been tested to accelerate the forest fire
prediction with an efficient use of the available resources.

Keywords: Forest fire · Simulation · Data uncertainty · Hybrid MPI-
OpenMP · Evolutionary computation · Resource assignment · Multicore
architecture

1 Introduction

Some natural hazards involve serious consequences from the environmental, eco-
nomic and social point of view. Therefore, it is critical to react as soon as possible
to minimize their effects. This work focuses on forest fire spread prediction. This
kind of natural disasters are among the most worrisome in southern European
countries. To deal with this hazard, models which describe the forest fire spread
have been developed and implemented in simulators. In the case of forest fire,
the Rothermel model [1] is one of the most used and proven. FARSITE [2] is a
widely used simulator which implements this model. To perform a simulation,
it requires a set of parameters that describes the environment where the fire is
taking place. These input parameters may present several difficulties: some of
them are not uniform along the forest fire scenario, others can present a tempo-
ral variability, others must be estimated by interpolated measures, others must

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 151–160, 2014.
DOI: 10.1007/978-3-642-55195-6 14, c© Springer-Verlag Berlin Heidelberg 2014

152 T. Artés et al.

be obtained from complementary models. This fact results in a certain degree
of uncertainty in input data that provokes a lack of accuracy in the prediction.
A calibration method has been used to reduce the uncertainty of the input data
set [3]. In this method the prediction is based on two stages where firstly a
calibration is carried out and afterwards the prediction is done. The first stage
consists on searching the input parameters set that best reproduces the actual
fire behavior. This search is carried out applying a Genetic Algorithm (GA)
[4] over a certain number of iterations. Once the preset number of iterations is
reached, the best set of parameters is used to carry out the prediction for the
following time step. Although this prediction approach provides better results
in terms of quality degree, it is more computing demanding. The increase in
the time needed to obtain a satisfactory prediction result could not always be
a feasible approach when dealing with emergencies. For this reason, the cali-
bration stage has been implemented using a message passing Master/Worker
paradigm to take advantage of parallel/distributed systems. The two stage pre-
diction scheme was originally designed to run each fire spread simulation using
a single core. In previous studies, it has been stated that every fire spread sim-
ulation lasts shorter or longer depending on the particular setting of the input
parameters. Actually, the time needed to complete every generation of the cal-
ibration stage is bounded by the worker that lasts longer. Therefore, the just
mentioned master/worker scheme using a single core per worker could eventu-
ally generate unbalance among workers. For this reason, the kernel of the used
simulator (FARSITE) has been parallelized using OpenMP in order to reduce
execution time. In this context, it is not worthy dedicating the same amount
of resources to short and long simulations. Therefore, a methodology to char-
acterize FARSITE which allows us to assess, beforehand, the execution time
of a given scenario has been developed. This ability enables the possibility of
designing core allocation policies to minimize the total execution time of the
prediction scheme and, to use the available resources more efficiently. In Sect. 2,
the two stage methodology and its implementation are described. Subsequently,
in Subsect. 2.1 the results of the kernel parallelization are detailed. In Sect. 3,
the methodology used to detect slower kernel executions is briefly presented.
The results of the hybrid MPI-OpenMP with different core allocation policies
are shown in Sect. 4. Finally, conclusions and future work are described in Sect. 5.

2 Hybrid MPI-OpenMP Master/Worker Prediction
Scheme

A simulator independent data-driven prediction scheme is used to calibrate the
input data set provided to the simulator [3]. For this purpose, a previous cali-
bration step is introduced, as can be seen in Fig. 1. So, the input data set used
for the prediction stage is calibrated in this first stage for each prediction step.
Based on the hypothesis that the meteorological conditions will not suddenly
change from the calibration stage to the prediction stage, the calibrated data set
could be used to produce a more accurate prediction.

Core Allocation Policies on Multicore Platforms 153

Fig. 1. 2 stage prediction method

Because of their outstanding results within this framework [5] this work is based
on the use of GA as calibration technique. The algorithm starts from an initial
random population of individuals, each one representing a scenario to be simu-
lated. An individual is composed of a number of different genes that represent
input variables such as dead fuel moistures, live fuel moistures, wind speed and
direction, among others. Each individual is simulated and it is evaluated com-
paring the predicted and real fire propagation by estimating the fitness func-
tion described in Eq. 1. This fitness function computes the symmetric difference
between predicted and real burned areas.

Difference =
UnionCells − IntersectionCells

RealCells − InitCells
(1)

In Eq. 1, UnionCells is the number of cells which describe the surface burned
considering predicted fire and the real fire. IntersectionCells is the number of
cells burned in the real map and also in the predicted map, and RealCells are
the cells burned in the real map. InitCells is the number of cells burned at
the starting time. This difference takes into account the wrong burned cells
and the mistaken for burned cells. According to this fitness function the whole
population is ranked and the genetic operators selection, elitism, mutation and
crossover are performed over the population, producing an evolved population
which will have, at least, the best individual of the last generation (elitism).
The new population is then evaluated in the same way. This iterative process
allows us to find a good input parameter set, but it involves high computational
cost due to the large amount of simulations required. Therefore, it is essential
to speed up the execution keeping the accuracy of the prediction. For this rea-
son, an implementation of the two stage methodology has been developed using
High Performance Computing techniques. Since the GA fits the Master/Worker
paradigm, an MPI implementation has been developed. At the first stage, the

154 T. Artés et al.

master node generates an initial random population which is distributed among
the workers. Then, the workers simulate each individual and evaluate the fit-
ness function. The errors generated by the workers are sent to the master which
sorts the corresponding individuals by their error before applying the genetic
operators and producing a new population. This iterative process is repeated
a fixed number of times. The last iteration (generation) contains a population
from which the best individual is taken as the best solution, and then it is used
in the prediction stage. Since every simulation can be carried out in a parallel
way, the individual whose simulation takes longer determines the elapsed time
for that particular generation. In order to shorten simulation times, FARSITE
has been analyzed with profiling tools such as OmpP [6] and gprof [7] to deter-
mine which regions of the code could be parallelized with OpenMP. The result
of such analysis determined the particular loops that could be parallelized using
OpenMP pragmas. The results of such parallelization have been presented in [8].
The parallelized loops represents about 60 % of one iteration execution time. It
means that 40 % of the iteration execution time is sequential and it implies that
the speed up is not linear, but is limited by such sequential part.

2.1 Evaluating the Hybrid Scheme

In order to have an snap shot of the Hybrid Master/Worker scheme potential,
we performed two preliminary test experiments. For this purpose, we used as a
terrain, a geographical zone of high risk of forest fire located in the North-East
of Spain, Cap de Creus. In this terrain, a synthetic fire has been simulated using
as input setting information provided by the local meteorological centre SMC
(Catalan Meteorological Service) obtained from the Automatic Weather Sta-
tion Network (XEMA). The vegetation types has been obtained from CORINE
land cover data base [9]. The obtained fire spread was used as a real fire for
comparison purposes. The computational platform used was a 32 nodes IBM
x3550 cluster where each computing node has two dual core Intel Xeon 5160
and 12 GB of memory at 667 Mhz. The first experiment consists of executing
the hybrid Master/Worker prediction scheme using a random initial popula-
tion of 25 individuals, which was evolved 10 generations using one core for each
individual. The resulting evolved populations obtained at each iteration of the
GA, are recorded and reused again but using 4 core per individual. This way,
both cases use the same individuals at each iteration and they only differ in the
cores assigned to each individual. Figure 2 depicts the calibration errors evolu-
tion through obtained over the evolution of the population and shows the elapsed
time to execute the 25 individuals of each iteration. As it was expected, the exe-
cution time is reduced significantly when the number of cores is increased. For
example, the total execution time is reduced from 72693 s to 27174 s. The error
evolution is consistent because the error for the next generation must be equal,
as least, to the last generation. This is due to the elitism genetic operator. The
best individual is introduced without changes to the next population to evalu-
ate. If crossover or mutation operator does not create a new individual better
than the individual chosen by elitism, there are no error improvement. This fact

Core Allocation Policies on Multicore Platforms 155

produces a stair like behaviour when plotting the error for each generation. Bear-
ing in mind the results obtained in this preliminary study, to increase the num-
ber of cores assigned to FARSITE simulations (individuals of the GA algorithm)
could not always be a benefit in terms of final execution time. In particular, for
those short simulations (several seconds) that will not bound the duration of a
given generation, it will not be useful to allocate more than one core. Therefore,
in order to be able to determine how many cores to assign to each FARSITE
simulation (individual evaluation in the GA scheme), it is necessary to be able
to asses before running the simulation, its execution time. In the next section,
we describe a methodology to characterize FARSITE that allows us determin-
ing in advance the duration of a given FARSITE simulation for a certain input
settings. In particular, the estimated execution time is defined by and interval
time called class.

Fig. 2. Execution time and error considering 1 and 4 cores

3 FARSITE Characterization

As it has been mentioned, the execution time of a single simulation on the same
map and simulating the same time can vary from seconds to several minutes or
even hours depending on the input settings of the fire spread simulator. Con-
sequently, in order to design core allocation strategies, we need to be able to
anticipate the execution time of a certain input setting without the necessity of
running that simulation. For this purpose, we propose a real time strategy to
rapidly assess for a given input scenario (simulator input setting) an execution
interval time where the corresponding FARSITE simulation time will fit. This
strategy has been successfully tested for several forest fire spread simulators as
is reported in [10]. To be operative during a real hazard, this execution-time
estimation of a given scenario must be inferred as quickly as possible, keeping
the cost of carrying out this operation to a minimum, in terms of time needed.
For this reason, we rely on the field of Artificial Intelligence to be able to auto-
matically learn from stored knowledge, so as to provide smart decisions. In par-
ticular, we use Decision Trees to extract this knowledge from certain database.
The FARSITE characterization (or simulator kernel characterization) is fulfilled

156 T. Artés et al.

by means of carrying out large sets of executions (on the order of thousands)
counting on different initial scenarios (different input data sets), and then, apply-
ing knowledge-extraction techniques from the information they provide, i.e. we
record the execution times from the experiment, and then we establish a classi-
fication of the input parameters according to the elapsed times they produced.
Specifically, we follow this sequence of steps:

– Training database building: Currently, we work with training databases com-
posed of 12000 different scenarios.

– Determination of execution time classes: The whole training database is exe-
cuted, and every par [scenario, execution time] is recorded. After this, the
histogram of execution times is analyzed. Identifying the local minimums of
the histogram the upper and lower boundaries of each execution time class
are determined. Figure 3 depicts the histogram of execution times obtained
for FARSITE. From the analysis of this histogram the resulting classes are
the following:

• Class A: ET ≤ 270 s.
• Class B: 270 seconds < ET ≤ 750.
• Class C: 750 seconds < ET ≤ 1470 s.
• Class D: 1470 seconds < ET ≤ 3600 s.

– Decision Tree building: once we have determined how many classes we will
consider, then we are ready to build the Decision Tree. For this purpose, we
rely on the C4.5 algorithm, specifically, the J48 open source Java implemented
in the Weka data mining tool [11].

These steps are carried out off-line, in a preparation phase before any real emer-
gency is under analysis. Once this methodology has been followed, only one
final step remains: the application of the built Decision Tree with the scenario
describing the ongoing fire, in order to assess in advance the execution time its
simulation will produce. This action supposes a negligible cost, in terms of time
overhead (on the order of a few seconds) and enables the ability of deciding at
real-time how many cores allocate to each simulation depending on its estimated
execution time class. The results of applying Decision Trees were validated in
[12], where it is demonstrated that we reach 96.4 % correct classifications. In
the following section, we reported an experimental study where different core
allocation strategies have been analyzed in terms of speedup an efficiency.

4 Experimental Study

By means of the simulator kernel Characterization described in Sect. 3, we are
able to identify those individuals that will last longer in a given iteration of the
Hybrid Master/Worker prediction scheme. This fact allows us to take advan-
tage of the OpenMP parallel version of FARSITE, determining a real-time core-
allocation strategy for each individual in a generation in order to save as much

Core Allocation Policies on Multicore Platforms 157

Fig. 3. Histogram of execution times using FARSITE. vertical dotted lines indicate
the defined classification boundaries.

overall execution time as possible. Thus, in this section, the benefits of apply-
ing the FARSITE characterization together with the developed Hybrid Mas-
ter/Worker prediction scheme are evaluated. For this purpose, we conducted an
experimental study consisting of applying different core-allocation policies and
analyzing the obtained speedup and efficiency. The execution platform and the
terrain where the experiments have been performed are the same that the ones
used in Sect. 2. The experiments carried out consist of executing the Hybrid Mas-
ter/Worker prediction scheme using 9 different initial populations each one com-
posed of 25 individuals and the GA iterates 10 generations. As it was done in the
preliminary study reported in Sect. 2.1, the intermediate populations obtained
at each generations for the case of one single core allocation per simulations,
have been recorder to be able to reproduce the same evolution with different
allocation policies which are listed following:

– All-1: The basic case, where each individual is allocated to one core.
– C2D4: Individuals belonging to class C are allocated to 2 cores. Individuals

belonging to class D are allocated to 4 cores. The rest of individuals are
allocated to one core.

– D4: Individuals belonging to class D are allocated to 4 cores. The rest of
individuals are allocated to one core.

– All-4: All the individuals are allocated to 4 cores. It is worth mentioning
that, for this experimental study, the workers are limited to execute only an
individual per generation. This fact reduces the efficiency because parts of the
workers are waiting for the slowest simulation to end.

It is worth mentioning that, for this experimental study, the workers are lim-
ited to execute only an individual per generation. This fact reduces the effi-
ciency because some workers are waiting for the slowest simulation to end but it
ensures seeing the effects of the different core-allocations. Figure 4(a) shows the
results obtained. This figure presents the average speedup (sequential execution

158 T. Artés et al.

time/parallel execution time) obtained by applying the 4 different allocation
policies. As it was expected, policy All-4 was the most favorable in terms of
speedup and it is useful to compare to the speedup reached by the other poli-
cies. It can also be observed that policy C2D4 is the most close to the maximum
speedup obtained by policy All-4. Policy D4 gets a slightly lower value than
policy C2D4. This means that there are cases in which C individuals execution
time become the slowest ones executed with one core and this fact determines the
execution time. Thus, in such cases, allocating C individuals to 2 cores would be
suitable. However, if the efficiency (speedup/number of cores) is considered, All-
1 strategy presents a very poor efficiency since it needs 100 cores to be executed.
So, it results in a very poor resource utilization. Figure 4(b) shows the average
efficiency for each policy. Between the extreme policies All-1 and All-4, execu-
tions of policy D4 are using significantly less cores than policy C2D4 achieving
a minimally less speedup. It can be observed that assigning strictly 4 cores to
D individuals (policy D4) provides better efficiency than policy C2D4 where C
individuals are assigned 2 cores. Figure 5(a) depicts the obtained speed up values
for each case. As can be seen in Fig. 5(a), policies D4 and C2D4 almost reach the
same speed up as the one obtained when allocating every simulation to 4 cores.
In some cases, such as 1, 3 and 5, shortening class D individuals may cause that
class C individuals become the lengthiest simulation at each generation. This

(a) Average Speedup. (b) Average Efficiency.

Fig. 4. Speedup and Efficiency for the 4 scheduling policies.

(a) Speedup per case (b) Core usage per case

Fig. 5. Speedup and core usage for the 4 allocation policies.

Core Allocation Policies on Multicore Platforms 159

can be observed in Fig. 5(b). The benefit obtained by the application of these
simple policies can also be analyzed. For instance, considering cases 4 and 6, we
are able to obtain almost the same speedup as the most favorable case, in terms
of execution time (policy All-4) by adding only 3 and 6 cores, respectively. In
general terms, policy C2D4 requires only 7 cores extra to be implemented, but
the gain is relevant.

5 Conclusions and Future Work

Nowadays, the existing forest fire spread simulation tools provide us with more
accurate results as well as the ability to use more complex simulation features.
However, the predictions based on a single-simulation strategy still presents the
serious disadvantage of not being able to effectively deal with the uncertainty
related to the context of an environmental emergency management. In this paper,
we describe two kind of uncertainties which may lead us to inaccurate predic-
tions: uncertainty in the values of the input parameters of the simulator, and
uncertainty in the time needed to deliver a fire spread prediction. In order to deal
with the former, we describe a two-stage prediction framework based on the iter-
ative calibration of the input parameters according to the actual evolution of the
fire. The later issue is tackled by means of an Artificial Intelligence technique
(specifically, Decision Trees) to classify in advance the different sets of input
parameters according to the expected execution time they will produce. How-
ever, while these methods clearly benefits the consecution of our goal, the need
arises to address the problem of efficient computational resources exploitation.
The proposed calibration technique for the two-stage prediction framework, GA,
presents outstanding results as regards the improvement in the quality of our
predictions, but it is very computational demanding, since it needs the execution
of multiple simulations at the same time. Taking advantage of the fact that we
are able to estimate how long a simulation will last before its execution, we pro-
pose to rely on this technique to decide how to allocate the different simulations
to the available resources. The results obtained in the reported experimental
study demonstrate the great benefit we obtain, mainly in terms of absolute time
savings in the prediction process, by means of the application of simple core-
allocation policies. This allows us to set out the main question of our ongoing
work: the implementation of an intelligent scheduling system for the optimization
of the available resources in order to enhance the quality of our predictions as
quick as possible. For instance, it would be an important advantage to be able to
dynamically group the fastest simulations in subsets of computational resources,
allocating the slowest ones to other dedicated subsets, according to the specific
needs of each case. Ongoing work is also related to add to our methodologies the
capability to automatically adapt to new computing resources appearance in real
time. The results obtained open up these new challenges with good expectations
and a guaranteed background.

Acknowledgements. This research has been supported by MICINN-Spain under
contract TIN2011-28689-C02-01.

160 T. Artés et al.

References

1. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels.
Director (INT-115), 40 p (1972)

2. Finney, M.A.: FARSITE, Fire Area Simulator-model development and evaluation.
Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Ser-
vice, Rocky Mountain Research Station (1998)

3. Abdalhaq, B., Cortés, A., Margalef, T., Luque, E.: Enhancing wildland fire pre-
diction on cluster systems applying evolutionary optimization techniques. Future
Gener. Comput. Syst. 21(1), 61–67 (2005)

4. Denham, M., Wendt, K., Bianchini, G., Cortés, A., Margalef, T.: Dynamic data-
driven genetic algorithm for forest fire spread prediction. J. Comput. Sci. 3(5),
398–404 (2012). (Advanced Computing Solutions for Health Care and Medicine)

5. Denham, M., Wendt, K., Bianchini, G., Cortés, A., Margalef, T.: Dynamic data-
driven genetic algorithm for forest fire spread prediction. J. Comput. Sci. 3(5),
398–404 (2012)

6. Fürlinger, K., Gerndt, M.: ompP: a profiling tool for OpenMP. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005
and IWOMP 2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)

7. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a call graph execution profiler.
SIGPLAN Not. 39(4), 49–57 (2004)

8. Artés, T., Cencerrado, A., Cortés, A., Margalef, T.: Relieving the effects of uncer-
tainty in forest fire spread prediction by hybrid mpi-openmp parallel strategies.
Procedia Comput. Sci. 18(2013), 2278–2287 (2013). (International Conference on
Computational Science)

9. Bossard, M., Feranec, J., Otahel, J.: CORINE land cover technical guide Adden-
dum 2000. Technical report No 40, European Environment Agency, Kongens
Nytorv 6, DK-1050 Copenhagen K, Denmark (2000)

10. Cencerrado, A., Rodŕıguez, R., Cortés, A., Margalef, T.: Urgency versus accuracy:
dynamic driven application system natural hazard management. Int. J. Numer.
Anal. Model. 9, 432–448 (2012)

11. Holmes, G., Donkin, A., Witten, I.H.: Weka: a machine learning workbench. In:
Proceedings of the 1994 Second Australian and New Zealand Conference on Intel-
ligent Information Systems 1994. pp. 357–361. IEEE (1994)

12. Cencerrado, A., Cortés, A., Margalef, T.: On the way of applying urgent computing
solutions to forest fire propagation prediction. Procedia Comput. Sci. 9, 1657–1666
(2012)

The 4th Workshop on Performance
Evaluation of Parallel Applications

on Large-Scale Systems

The Effect of Parallelization on a Tetrahedral
Mesh Optimization Method

Domingo Benitez(B), Eduardo Rodŕıguez, José M. Escobar,
and Rafael Montenegro

SIANI Institute, University of Las Palmas de Gran Canaria, Las Palmas de Gran
Canaria, Spain

{dbenitez,erodriguez,jmescobar,rmontenegro}@siani.es

Abstract. A parallel algorithm for simultaneous untangling and
smoothing of tetrahedral meshes is proposed in this paper. This algo-
rithm is derived from a sequential mesh optimization method. We provide
a detailed analysis of its parallel scalability and efficiency, load balancing,
and parallelism bottlenecks using six benchmark meshes. In addition, the
influence of three previously-published graph coloring techniques on the
performance of our parallel algorithm is evaluated. We demonstrate that
the proposed algorithm is highly scalable when run on a shared-memory
computer with up to 128 Itanium 2 processors. However, some paral-
lel deterioration is observed. Here, we analyze its main causes using a
theoretical performance model and experimental results.

Keywords: Mesh optimization · Parallel performance evaluation

1 Introduction

Engineering design and analysis of real systems are becoming increasingly com-
plex. The 80/20 design/analysis ratio seems to be a common industrial experi-
ence: design and analysis account for about 80 % and 20 % of time, respectively.
In the design process, there are many methods that are time consuming. On
average, mesh generation accounts for 20 % of overall time and may take as
much CPU-time as field solver, which may need of many man-months [18]. In
our Meccano method for tetrahedral mesh generation, the most time-consuming
phase is devoted to mesh optimization [15]. On the other hand, mesh generation
tools frequently produce meshes with inverted and/or poorly shaped elements.
So, untangling and/or smoothing techniques are applied to improve the mesh
quality before or during the numerical analysis. In all these problems, improv-
ing the speed of mesh optimization with parallelism helps users solve problems
faster.

In [8] we propose a simultaneous untangling and smoothing algorithm for
tetrahedral meshes, in contrast with other techniques that require two separate
and consecutive steps, one for untangling and another for smoothing. For very
large tangled meshes, the runtime of our sequential algorithm may be long.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 163–173, 2014.
DOI: 10.1007/978-3-642-55195-6 15, c© Springer-Verlag Berlin Heidelberg 2014

164 D. Benitez et al.

The improvement of our technique using parallel computation is not trivial
because two vertices of the same tetrahedron cannot be simultaneously opti-
mized on different processors. In this paper, we propose a parallel algorithm
for simultaneously untangling and smoothing tetrahedral meshes with a num-
ber of vertices far greater than the number of available processors. Additionally,
the performance of this algorithm on a shared-memory computer is analyzed.
We show that our algorithm is highly scalable and compute-bound. However,
the OpenMP thread scheduling overhead significantly deteriorates the parallel
performance.

Section 2 summarizes our sequential approach to mesh untangling and
smoothing. Section 3 describes its parallelization. The methodology we used to
evaluate the performance of this parallel algorithm is explained in Sect. 4. Its
results are presented in Sect. 5. Finally, Sect. 6 provides the main conclusions.

2 Our Approach to Tetrahedral Mesh Optimization

Let us consider M to be a tetrahedral mesh. Usual techniques to improve the
quality of a mesh without inverted tetrahedra are based upon local smoothing
[6]. These techniques consist of finding the new position xv that each inner mesh
node v must hold, in such a way that they optimize an objective function. Such
a function is based on a certain measurement of the quality of the local submesh
Nv ≤ M that is formed by the set of tetrahedra connected to the free node v.
As it is a local optimization process, we cannot guarantee that the final mesh is
globally optimal. Nevertheless, after repeating this process several times for all
the nodes of the mesh M, quite satisfactory results can be achieved.

The algebraic quality metrics proposed by Knupp [13] provide us an appro-
priate framework to define objective functions. In this paper, we use,

K(xv) =
n∑

i=1

([ηi(xv)]p)
1
p (1)

being n the number of elements in Nv, p is usually chosen as 1 or 2, ηi = 1/qi
is the distortion of the i-th tetrahedron of Nv, and qi is the mean ratio quality
measure of a tetrahedron given by q = 3σ

2
3 /|S|2, where |S| is the Frobenius

norm of matrix S associated to the affine map from the ideal element (usually
an equilateral tetrahedron) to the physical one, and σ is the determinant of
matrix S: σ = det(S). Specifically, the weighted Jacobian matrix S is defined as
S = AW−1, being A = (x1 − x0,x2 − x0,x3 − x0) the Jacobian matrix, and
xj , j = 0, . . . , 3 the coordinates of the vertices of the tetrahedron. The constant
matrix W is derived from the ideal element. For more details, see [8].

Objective functions like (1) do not work properly when there are inverted
elements (σ < 0). This is because they present singularities (barriers) when any
tetrahedron of Nv changes the sign of its Jacobian matrix. In [8] we proposed
a suitable modification of the objective function such that it is regular all over
R

3. It consists of substituting the term σ in the quality metrics by the positive

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 165

and increasing function h(σ) = 1
2 (σ +

≥
σ2 + 4δ2). When a feasible region exists

(subset of R3 where a free node v could be placed, being its Nv a valid submesh),
the minima of the original and modified objective functions are very close and,
when this region does not exist, the minimum of the modified objective function
is located in such a way that it tends to untangle Nv. With this approach, we can
use any standard and efficient unconstrained optimization method to find the
minimum of the modified objective function [1]. In this way, our method allows
simultaneous untangling and smoothing of tetrahedral meshes, in contrast with
other techniques that require two separate and consecutive steps.

3 Parallel Algorithm for Mesh Untangling and Smoothing

Algorithm 1 shows our sequential method for simultaneous untangling and smoo-
thing of tetrahedral meshes. It has the following inputs: M is a tetrahedral mesh,
IT is a function that provides its total number of inverted tetrahedra, Nv is the
set of tetrahedra connected to a free node v, and xv is the initial position of
v. The algorithm iterates over all the nodes and adjusts the spatial coordinates
xv of a free node v in each step; x̂v is its position after optimization, which is
provided by the procedure OptimizeNode. Then, Q saves the lowest quality of a
tetrahedron when the above-mentioned quality function (q) is used (it is 0 if any
tetrahedron is tangled). The function called quality measures the increment in
Q between successive iterations of mesh optimization. The mesh is optimized
until it is completely untangled: IT(M) = 0, and successive iterations increase
the minimum mesh quality less than λ = 5%: ΔQ < λ. The algorithm also stops
when the number of optimization iterations is larger than maxIter.

Algorithm 1. Sequential algorithm for the mesh optimization method
1: Q ← 0

2: j ← 0

3: while (IT(M) > 0 or ΔQ ≥ λ) and j ≤ maxIter do
4: for each vertex v ∈ M do
5: x̂v ← OptimizeNode(xv,Nv)

6: end for
7: ΔQ ← quality(M)

8: j ← j + 1
9: end while

Algorithm 2 is a parallel algorithm for our mesh optimization method. Its
inputs M, IT, Nv, xv, OptimizeNode, quality, λ, and maxIter have the same
meanings as described for Algorithm 1. This algorithm has to prevent two adja-
cent nodes from being simultaneously optimized in parallel. On the contrary,
new inverted mesh tetrahedra may be created [10]. Thus, when the sequential
Algorithm 1 is parallelized, a computational dependency appears between adja-
cent vertices. This justifies the use of a graph coloring technique in our parallel
algorithm to find mesh vertices that do not have computational dependency.

166 D. Benitez et al.

Algorithm 2. Parallel algorithm for the mesh optimization method
1: I ← Coloring(G=(V,E))

2: Q ← 0

3: j ← 0

4: while (IT(M) > 0 or ΔQ ≥ λ) and j ≤ maxIter do
5: for each independent set Ii ∈ I do
6: for all each vertex v ∈ M do in parallel
7: x̂v ← OptimizeNode(xv,Nv)

8: end for
9: end for

10: ΔQ ← quality(M)

11: j ← j + 1
12: end while

We implemented graph coloring with procedure Coloring, which is expressed
as follows. Let us consider G = (V,E) to be the graph associated to the tetrahe-
dral mesh M, where V is its set of vertices (without spatial information), and
E is the set of their edges, then Coloring is a procedure to color G = (V,E).
An independent set or color, Ii, is a set of non-adjacent vertices: v ∈ Ii ∞ v /∈
adj(Ii, G = (V,E)), being adj(Ii, G = (V,E)) the set of vertices that are adja-
cent to all vertex z ∈ Ii, z ≈= v. In this way, the graph G = (V,E) of a tetrahedral
mesh M is partitioned in a disjoint sequence of colors, I = {I1, I2, . . . }.

Three different and previously published coloring methods called C1, C2, C3
were implemented. C1 is a sequential coloring method that has been used for
mesh smoothing [10]. It requires the use of the asynchronous coloring heuristic
proposed in [12]. This heuristic is based on Luby’ s Monte Carlo algorithm for
determining the maximal independent set [14]. C2 is a parallel version of C1
for shared-memory computers that was proposed by Jones and Plassmann [12]
for distributed-memory computers. C3 is an parallel greedy coloring algorithm
that was proposed by Catalyurek et al. [5]. Section 5 compares the impact of
these graph coloring methods on the performance of our parallel optimization
method.

The vertex set with the same color (Ii) is equipartitioned among the available
processors. Each processor optimizes its assigned set of vertices in a sequential
fashion. At each sequential step, OptimizeNode procedure is applied to a single
vertex v with the method described in Sect. 2. The new vertex spatial position
is available to other processors by writing to shared memory. Each subsequent
parallel phase optimizes another color until all vertices are optimized. Finally,
the exit criteria are the same as the ones used for the sequential algorithm.

Previous studies on parallel algorithms for mesh optimization include the
work of Freitag et al. [10], which relies on a theoretical shared-memory model
with results using distributed-memory computers. Another similar study was
published by Shontz and Nistor [17], which provides performance results for
mesh simplification algorithms on GPUs although they do not use graph coloring
algorithms to find mesh vertices that do not have computational dependency.

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 167

Table 1. Description of the tangled tetrahedral meshes

NAME m T IT DEGREE OBJECT

“m = 6358” 6358 26446 2215 26 Bunny
“m = 9176” 9176 35920 13706 26 Tube
“m = 11525” 11525 47824 1924 26 Bone
“m = 39617” 39617 168834 83417 26 Screwdriver
“m = 201530” 201530 840800 322255 26 Toroid
“m = 520128” 520128 2201104 1147390 26 HR toroid

Legends. NAME: name of the tetrahedral mesh. m: total number of mesh vertices. T:
total number of mesh tetrahedra. IT: total number of inverted tetrahedra. DEGREE:
maximum vertex degree. OBJECT: short description of the real object that is meshed.

4 Experimental Methodology

Our experiments were conducted on a HP Integrity Superdome node with 128
Itanium 2 cores, multithreading disabled, and 1TB NUMA shared memory. Algo-
rithms 1 and 2 were applied on six tangled tetrahedral meshes (see Table 1). All
these meshes were constructed with a tool that applies an strategy for adaptive
mesh generation based on the Meccano method [15], using surface triangulations
from different repositories as input data [16]. We also used the Intel C++ com-
piler 11.1 with -O2 on a Linux system. The source code of the parallel version
included OpenMP directives, which were disabled when the serial version was
compiled [9]. Both versions were profiled with PAPI [4], which uses performance
counter hardware [11]. All versions were run with processor and memory binding
enabled, and the processors were not shared among other user or system level
workloads. For each mesh, we run the parallel version using a given maximum
number of threads between 1 and 128. Since our algorithms are CPU-bound,
there is little sense in using more threads than available cores. We use the fol-
lowing performance metrics: wall-clock time, true speedup, parallel efficiency,
and load balancing, which were averaged over more than 30 runs. Each run was
divided into two phases. The first phase loops over all vertices repetitively and

Table 2. Best execution times for the complete parallel algorithm (Algorithm 2)

NAME SRT BPRT BNC BSU BPE (%) BCA C I MMQ AMQ

“m = 6358” 17.3 1.5 72 11.7 16.2 C1 29 25 0.13 0.66
“m = 9176” 37.3 1.2 88 31.9 36.3 C3 29 26 0.26 0.68
“m = 11525” 33.7 1.1 120 29.7 24.8 C3 10 38 0.11 0.65
“m = 39617” 87.4 1.6 128 54.9 42.9 C1 31 11 0.17 0.73
“m = 201530” 2505.4 81.3 128 30.8 24.1 C2 21 143 0.23 0.67
“m = 520128” 2259.7 41.9 120 54.0 45.0 C3 34 36 0.22 0.68

Legends. NAME: mesh name. SRT: serial runtime (s). BPRT: best parallel runtime (s);
its number of cores: BNC, speedup: BSU, parallel efficiency: BPE, coloring algorithm:
BCA, colors: C, untangling/smoothing iterations: I, minimum mesh quality: MMQ,
and average mesh quality: AMQ.

168 D. Benitez et al.

(a) (b) (c)

Fig. 1. (a) The tangled (upper) and untangled (lower) meshes called “m = 6358”. True
speedup and parallel efficiency of: (b) body of the main loop (line 7 of Algorithm 2),
(c) complete parallel Algorithm 2, when the graph coloring technique is C3.

completely untangles a mesh; at the same time, the mesh is also smoothed. The
second phase smoothes the mesh until the exit criteria is met. Table 2 shows the
number of untangling and smoothing iterations (I) for each mesh.

5 Performance Evaluation

5.1 Performance Scalability

When the execution time of the main mesh optimization procedure is profiled
in both versions of our algorithms, line 5 of sequential Algorithm 1 vs. line 7 of
parallel Algorithm 2, we achieve results for true speedup as depicted in Fig. 1(b)
when the “m = 6358” mesh is optimized. As can be seen, the true speedup
linearly increases as the number of cores increases. Figure 1(b) also shows the
parallel efficiency of the main mesh optimization procedure of Algorithm 2
(line 7). Note that up to 128 cores, the parallel efficiency is always above 67 %.
Similar results were obtained for the rest of meshes. These results indicate that
the main computation of our parallel algorithm is highly scalable. This perfor-
mance scalability is caused by the parallel processing of independents sets of
vertices (colors) that is made in each optimization iteration of the Algorithm 2
(line 7).

When the execution times of the complete sequential and parallel algorithms
are profiled, we obtained results for true speedup as depicted in Fig. 1(c) when
the “m = 6358” mesh is optimized. Note that in this case, the speedup does not
increase so linearly as when the main mesh optimization procedures of algorithms
are profiled, and maximum parallel efficiency is lower than 20 %. Table 2 shows
the best results for all tetrahedral meshes. Note that the maximum parallel
efficiency is 45 %, which was obtained when “m = 520128” mesh was optimized.
Furthermore, the number of cores with best speedup depends on the benchmark
mesh. In some cases, these highest performance results are obtained when the
number of cores is lower than maximum (see column BNC in Table 2).

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 169

We investigated the causes of this degradation with a performance model.
SpeedUp is modeled as the ratio between the sequential (TS) and the parallel
execution times when k cores are activated (TP,k):

SpeedUp =
TS

TP,k
(2)

being TP,k the sum of the idealized parallel execution time (Tk, without overhead
and with perfect load balancing) and the average performance overhead (Ok) [3]:

TP,k = Tk + Ok , , Tk =
TS

k
∞ SpeedUp =

k

1 + Ok

Tk

(3)

Tk =
Nk

IPCk × f
, , Ok =

NO,k

IPCO,k × f
∞ SpeedUp =

k

1 + NO,k×IPCk

Nk×IPCO,k

(4)

N is the total number of executed instructions excluding no-operation instruc-
tions: Nk during mesh optimization tasks, and NO,k during parallel thread
scheduling; IPC is the number of executed instructions per clock cycle during
the runtime: IPCk during mesh optimization tasks, and IPCO,k during parallel
thread scheduling; and f is the fixed clock speed of 1.6 GHz. N and IPC are
obtained during profiling with performance counter hardware [7,11].

In Fig. 2, real speedups (graphic marks) are overlapped with predictions of
our performance model (lines) when three benchmark meshes are optimized.
Real data were obtained using dynamic OpenMP thread scheduling and color-
ing algorithm C3. The average precision of the performance model for all meshes
was 95.6 %. Based on these results, we can conclude that for our complete paral-
lel Algorithm 2, true speedup and parallel efficiency deteriorate as the number of
cores increases because they tend to be dominated by the loop-scheduling over-
head. We note that this parallel overhead is caused by the Itanium 2 instructions
(NO,k) that are generated when the OpenMP directive that implements line 6 is
compiled. Figure 2 also shows that the speedup is maximum at certain number
of processors. Our model indicates that it is due to the quadratic polynomial
form of the overhead time (Ok) as the number of threads increases.

5.2 Load Balancing

The error produced by the above-described model may be caused by other
sources of performance degradation; for example, load imbalance between proces-
sors. The load imbalance of k cores (Lk) is measured as follows:

Lk = 100% × tmax − tmin

tavg
, , tmax ∧ tavg ∧ tmin > 0 (5)

where tmax, tavg, tmin are respectively the maximum, average and minimum
execution times of the parallel threads without parallel loop-scheduling overhead
(line 7 of Algorithm 2). As Lk is smaller, the difference between maximum and
minimum thread execution time is smaller than the average execution time of

170 D. Benitez et al.

Fig. 2. Comparison of real data and data predicted by the performance model for the
true speedup of parallel Algorithm 2.

threads. In these cases, threads tend to be stalled less time because load is more
balanced, and so performance is better.

We note that the load imbalance of our parallel algorithm for the six bench-
mark meshes when all graph coloring algorithms and up to 128 Itanium 2 proces-
sors are used is mainly caused by the number of active threads. The higher the
number of active threads, the higher the load imbalance. This means that as the
loop-scheduling overhead instructions increase, the main computation of threads
is more unbalanced. We tested our parallel algorithm on other x86 parallel com-
puters, and the same effect on load imbalance was observed [2].

5.3 Parallelism Bottlenecks

We applied the profiling methodology described in [7] to analyze the perfor-
mance inefficiencies caused by bottlenecks in processor functional units, cache
memories, and NUMA shared memory. When up to 128 Itanium 2 processors are
used, the stall cycles of parallel threads are in the range [29 %. . . 58 %]. These stall
cycles are related to double-precision floating-point arithmetic units (from 70 %
to 27 % of stall cycles), data loads (from 16 % to 55 %), and branch instructions
(from 5 % to 14 %). Stall cycles due to data load instructions are mainly caused
by cache memory latencies. NUMA memory latencies cause less than 1 % of data
stall cycles, which is corroborated by monitoring the NUMA memory bandwidth
usage that was never higher than 5 %. Thus, our parallel algorithm is compute
bound and memory binding techniques have low impact on performance.

Another performance bottleneck was identified in the machine code that is
generated by the compiler for Itanium 2 processors. On average, 40 % of executed
instructions are no-operation instructions. This is caused by the long instruc-
tion format where up to three explicit instructions are included [11]. When the
compiler cannot schedule a bundle of at least three instructions, no-operation

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 171

instructions are used to fill some instruction slots. Enhancing the instruction level
parallelism of our main optimization procedure may improve thread perfor-
mance. However, it is a time-consuming task because the algorithms would
have to be hand coded. Conventional x86 architectures do not suffer from this
performance bottleneck because their instruction formats only include one
instruction [2].

5.4 Influence of Graph Coloring Algorithms on Parallel
Performance

Many papers evaluate the performance of graph coloring algorithms on parallel
computers [5,10,12]. However, for the authors’ knowledge, their impacts on the
performance of algorithms that use these coloring algorithms is rarely reported.

First of all, we confirmed the performance results published in previous
papers for C1, C2 and C3 coloring algorithms. Then, we investigated their
influence on the performance of our parallel optimization algorithm. Since graph
coloring aids in discovering parallelism, the time involved in graph coloring is
only considered when profiling our parallel algorithm and not the sequential
algorithm. When up to 128 processors and the six benchmark meshes are used,
the percentage of total runtime that is required by the graph coloring methods
C1, C2 and C3 ranges respectively from 0.8 % to 3.4 %, from 2.4 % to 12.9 %,
and from 0.1 % to 1.9 %. This means that the computational load required by
our parallel algorithm is much heavier than required by these graph coloring
algorithms.

However, the total execution time depends on the selected coloring algo-
rithm. We note that our parallel algorithm achieves the best performance on the
Itanium2-based computer when the C3 graph coloring technique is used. This is
due to the lowest number of colors in which C3 groups the vertices of each mesh
with respect to the other graph coloring methods C1 and C2. A lower number
of vertex groups allow a larger number of vertices to be processed in parallel.

6 Conclusions and Future Work

We have proposed a new parallel algorithm for simultaneous untangling and
smoothing of tetrahedral meshes. It is based on successive optimization itera-
tions. In each of them, the spatial coordinates of independent sets of vertices
are modified in parallel. The performance evaluation of this algorithm on a 128-
core shared-memory computer using six meshes shows that it is a scalable and
efficient parallel algorithm. It is due to the graph coloring method that is used
to identify independent sets of vertices without computational dependency. We
have additionally analyzed the causes of the parallel performance deterioration.
We conclude that it is mainly due to loop-scheduling overhead of the OpenMP
programming methodology. When analyzing hardware usage, we observe that
our parallel algorithm is compute-bound because it uses the functional units and
cache memory during 99 % of runtime. Finally, we also investigated the influence

172 D. Benitez et al.

of three graph coloring methods on the performance of our parallel algorithm.
They have low impact on the total execution time. However, the performance of
our parallel algorithm depends on the selected coloring method. In this paper,
we have shown that the C3 coloring method [5] allows our parallel algorithm to
achieve the highest parallel performance on a Itanium2-based computer.

The demonstrated scalability potential of our compute-bound parallel algo-
rithm for shared-memory architectures encourages us to extend our work to
achieve higher performance improvements from GPUs. The main problem will
be to reduce the negative impact of global memory random accesses when non-
consecutive mesh vertices are optimized by the same streaming multiprocessor.

Acknowledgments. This work has been supported by the Spanish Sec. Estado Univ.
e Inv., Min. Economa y Competitividad and FEDER, contract: CGL2011-29396-C03-
01. It has been also supported by Fondo Sec. CONACYT SENER Hidrocarburos,
contract: 163723, and two CESGA ICTS projects.

References

1. Bazaraa, M., Sherali, H., Shetty, C.M.: Nonlinear Programming. Wiley, New York
(1993)

2. Benitez, D., Rodŕıguez, E., Escobar, J.M., Montenegro, R.: Performance evaluation
of a parallel algorithm for simultaneous untangling and smoothing of tetrahedral
meshes. In: Proceedings of the 22nd International Meshing Roundtable, pp. 579–
598. Springer (2014)

3. Bronevetsky, G., Gyllenbaal, J., De Supinski, B.R.: CLOMP: accurately character-
izing OpenMP application overheads. Int. J. Parallel Prog. 37(3), 250–265 (2009)

4. Browne, S., Dongarra J., Garner N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: Proceedings of the ACM/IEEE Conference on Supercomputing. IEEE
Computer Society (2000)

5. Catalyurek, U.V., Feo, J., Gebremedhin, A.H., Halappanavar, M., Pothen, A.:
Graph coloring algorithms for multicore and massively multithreaded architectures.
Parallel Comput. 38(10–11), 576–594 (2012)

6. Dompierre, J., Labbé, P., Guibault, F., Camarero, R.: Proposal of benchmarks for
3D unstructured tetrahedral mesh optimization. In: Proceedings of the 7th Inter-
national Meshing Roundtable, pp. 459–478. Sandia National Laboratories (1998)

7. Ekman, P.: Studying program performance on the Itanium 2 with pfmon. www.
pdc.kth.se/∼pek/ia64-profiling.txt (2003)

8. Escobar, J.M., Rodŕıguez, E., Montenegro, R., Montero, G., González-Yuste, J.M.:
Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Methods
Appl. Mech. Eng. 192, 2775–2787 (2003)

9. Escobar, J.M., Cascón, J.M., Rodŕıguez, E., Montenegro, R.: A new approach
to solid modeling with trivariate T-splines based on mesh optimization. Comput.
Methods Appl. Mech. Eng. 200(45–46), 3210–3222 (2011)

10. Freitag, L., Jones, M.T., Plassmann, P.E.: A parallel algorithm for mesh smoothing.
SIAM J. Sci. Comput. 20(6), 2023–2040 (1999)

11. Intel: Intel Itanium 2 processor reference manual (251110-003). Intel (2004)

www.pdc.kth.se/~pek/ia64-profiling.txt
www.pdc.kth.se/~pek/ia64-profiling.txt

The Effect of Parallelization on a Tetrahedral Mesh Optimization Method 173

12. Jones, M.T., Plassmann, P.E.: A parallel graph coloring heuristic. SIAM J. Sci.
Comput. 14(3), 654–669 (1993)

13. Knupp, P.M.: Algebraic mesh quality metrics. SIAM J. Sci. Comput. 23(1), 193–
218 (2001)

14. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 4, 1036–1053 (1986)

15. Montenegro, R., Cascón, J.M., Escobar, J.M., Rodŕıguez, E., Montero, G.: An
automatic strategy for adaptive tetrahedral mesh generation. Appl. Numer. Math.
59(9), 2203–2217 (2009)

16. Shape repositories. www.cyberware.com, http://graphics.stanford.edu/data/
3Dscanrep, www-roc.inria.fr/gamma/gamma/download/download.php

17. Shontz, S.M., Nistor, D.M.: CPU-GPU algorithms for triangular surface mesh sim-
plification. In: Proceedings of the 21st International Meshing Roundtable, pp. 475–
492. Springer (2013)

18. Von Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward
Integration of CAD and FEA. Wiley, New York (2009)

www.cyberware.com
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep
www-roc.inria.fr/gamma/gamma/download/download.php

Analysis of Partitioning Models and Metrics
in Parallel Sparse Matrix-Vector Multiplication

Kamer Kaya1, Bora Uçar2(B), and Ümit V. Çatalyürek1,3

1 Department of Biomedical Informatics,
The Ohio State University, Columbus, USA

{kamer,umit}@bmi.osu.edu
2 CNRS and LIP, ENS Lyon, Lyon, France

bora.ucar@ens-lyon.fr
3 Department of Electrical and Computer Engineering,

The Ohio State University, Columbus, USA

Abstract. Graph/hypergraph partitioning models and methods have
been successfully used to minimize the communication among processors
in several parallel computing applications. Parallel sparse matrix-vector
multiplication (SpMxV) is one of the representative applications that
renders these models and methods indispensable in many scientific com-
puting contexts. We investigate the interplay of the partitioning metrics
and execution times of SpMxV implementations in three libraries: Trili-
nos, PETSc, and an in-house one. We carry out experiments with up
to 512 processors and investigate the results with regression analysis.
Our experiments show that the partitioning metrics influence the perfor-
mance greatly in a distributed memory setting. The regression analyses
demonstrate which metric is the most influential for the execution time
of the libraries.

Keywords: Parallel sparse-matrix vector multiplication · Hypergraph
partitioning

1 Introduction

Repeated sparse matrix-vector (SpMxV) and sparse matrix-transpose-vector
multiplies that involve the same large, sparse matrix are the kernel operations
in various iterative algorithms involving sparse linear systems. Such iterative
algorithms include solvers for linear systems, eigenvalues, and linear programs.
Efficient parallelization of SpMxV operations is therefore very important in vir-
tually all large scale scientific computing applications. A number of partitioning
methods and models based on hypergraphs have been used to enable efficient
parallelization of SpMxV. These partitioning methods address different commu-
nication cost metrics for some variants of parallel SpMxV operations. In general,
the importance of the communication cost metrics, such as the total volume of
communication, the total number of messages and these two quantities on per

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 174–184, 2014.
DOI: 10.1007/978-3-642-55195-6 16, c© Springer-Verlag Berlin Heidelberg 2014

Analysis of Partitioning Models and Metrics 175

processor basis, depends on the machine architecture, problem size, and the
underlying parallel algorithm. In this study, we investigate the effects of the
partitioning methods in order to identify the most relevant metrics and quantify
their effects in various configurations. Our aims are to help the partitioner devel-
opers identify the important metrics, and to help the users of those partitioners
to identify the most suitable partitioning method for their use case.

The standard hypergraph based models minimize the total volume of com-
munication explicitly [7]. Some more recent variants do that while imposing a
limit on the total number of communication by a 2D partitioning approach [6,9].
More sophisticated approaches [3,12,13] minimize different communication cost
metrics on top of the total volume. Experimental investigations in these studies
demonstrate that different communication cost metrics and their interplay can
be important to achieve scalable parallel algorithms. It is therefore important to
understand the effects of different metrics (optimized by different partitioning
models) on the running time of applications under different configurations.

The contribution of this paper is two-fold. We designed and conducted several
experiments in a system with 512 processors to show the effects of partitioning
models and metrics on SpMxV performance. As far as we know, this is the first
work which compares the existing partitioning models and metrics in modern
architectures with modern software following message-passing paradigm. Our
experiments confirm that it is difficult, if not impossible, to define the correct
partitioning model and metric without analyzing the characteristics of the input
matrices and the SpMxV library being used. We experimented with three exist-
ing libraries, PETSc [1,2], Trilinos [10], and an in-house library SpMV [14]. In
order to overcome the mentioned difficulty, we carefully analyze the results using
regression analysis techniques and relate the execution time of SpMxV imple-
mentations to different partitioning metrics. We portray this analysis, which
forms out the second contribution, in detail so as to suggest improved objec-
tive functions for partitioning software and a guideline to choose partitioning
methods for practitioners. Although, we only had an access to a 512-processor
machine, the experiments and their analysis show that to scale larger systems,
one needs to be more careful while partitioning the matrix—in our experiments
the fact that the communication metrics greatly related to the execution time is
observable starting from 64 processors.

2 Parallel SpMxV Operation and Software

Consider the sparse matrix-vector multiply operation of the form y ≤ Ax, where
the nonzeros of the m × n matrix A are partitioned among K processors such
that each processor Pk owns a mutually disjoint subset of nonzeros, A(k) where
A =

∑
k A

(k). The vectors y and x are also partitioned among processors, where
the processor Pk holds x(k), a dense vector of size nk, and it is responsible for
computing y(k), a dense vector of size mk.

The standard parallel SpMxV algorithm [9,14,15] based on the described
onzero and vector entry partitioning is called the row-column-parallel algorithm.
In this algorithm, each processor Pk executes the following steps:

176 K. Kaya et al.

1. Expand: Send entries of x(k) that are needed by others. Receive entries of x
that are needed but owned by others.

2. Scalar multiply-adds: Perform ȳ ≤ A(k)x̄, where x̄ contains x(k) and the
received entries of x.

3. Fold: Send partial results from ȳ to the responsible processors. Receive con-
tributions to the y(k) vector.

If A is distributed columnwise, and the x-vector entries are partitioned con-
formably with the column partition of A, then the expand operation is not
needed. Similarly, if A is distributed rowwise, and the y-vector entries are par-
titioned conformably with the rows of A, then the fold operation is not needed.

2.1 Libraries

There are different implementations of the above algorithm. We summarize three
implementations with which we have experimented. Two of the implementations
are in the well-known general libraries Trilinos [10] and PETSc [1,2]; the third
one, SpMV, is an in-house library [14].

Algorithm 1. ParSpMxV-Trilinos variant
Input: A, x, µ
Output: y

1 Send and Receive x vector entries so that each processor has the required
x-vector entries

2 Compute y
(k)
i ∈ aij xj for the local nonzeros, i.e., the nonzeros for which

µ(aij)=Pk

3 Send and Receive local nonzero partial results y
(k)
i to the processor µ(yi) ←=Pk,

for all nonzero y
(k)
i

4 Compute yi ∈∑ yλ
i for each yi with µ(yi)=Pk

Trilinos provides an implementation which can be described as in Algo-
rithm 1 from the point of view of the processor Pk. In this implementation,
the expand operations are finished before doing any computation. Then, all the
scalar multiply-add operations are performed. Later on, the fold operations are
completed. Trilinos uses Irecv/Isend and waitall communication primitives
to handle the communications at steps 1 and 2 of Algorithm 1. It issues Irecvs,
performs Isends and then before commencing the computations ensures that all
in the incoming data is received by using the waitall operation.

PETSc provides an implementation of the above algorithm only for the row-
parallel case. Algorithm 2 summarizes that implementation from the point of
view of Pk. First, the expand operation is initiated using Irecv and Isend
primitives. Then, instead of waiting the reception of all necessary x-vector entries,
it performs some local computations so as to overlap communication and compu-
tations. In particular, the processor Pk performs scalar multiply-add operations

Analysis of Partitioning Models and Metrics 177

Algorithm 2. ParSpMxV-Overlap-PETSc variant
Input: A, x, µ
Output: y

1 Send local xj (i.e., µ(xj)=Pk) to those processors that have at least one
nonzero in column j

2 Compute yk
i ∈ aij xj for the local nonzeros and local xj , i.e., the nonzeros for

which µ(aij)=Pk and µ(xj)= Pk

3 Receive all non-local xj (i.e., µ(xj) ←=Pk)

4 Compute yk
i ∈ yk

i +aij xj for the local nonzeros and non-local xj , i.e., the
nonzeros for which µ(aij) = Pk and µ(xj) ←= Pk

Fig. 1. The zones of the matrix A(k) of processor Pk with respect to the vector x
assuming a row-parallel algorithm.

using local aij ’s for which μ(xj) = Pk and there is no aiσ with μ(xσ) ≥= Pk.
Then, upon verifying the reception of all needed x-vector entries using waitall,
Pk continues with scalar multiply-add operations with the nonzeros on the rows
that has at least one nonzero in a column j for which μ(xσ) ≥= Pk. The imple-
mentation can also be seen in an earlier technical report [11]. Figure 1 describes
the algorithm pictorially. After issuing Isends and Irecvs (for x̂

(k)
σ), processor

Pk performs the computations associated with the horizontally shaded matrix
zone. Then, waitall is executed to have all x(k) before continuing with the
rows that are below the horizontal ones. Note that the local matrices are actu-
ally permuted into the displayed form (local rows and the interface rows). The
advantage of this implementation with respect to the Algorithm 1 is that it
allows overlap between the reception of messages for the expand operation and
scalar multiply-add operations with the nonzeros in local rows.

Consider again the matrix A(k) of processor Pk as shown in Fig. 1. Before
executing the waitall operation, there are some more scalar multiply-add oper-
ations that Pk can perform before the reception of any x̂

(k)
σ . These operations

are related to the nonzeros that are in the hatched zone in the figure. In order to
exploit the hatched zone for communication computation overlap, one can store
that zone in the compressed column storage (CCS) format. This way, one can
delay the invocation of the waitall operation for some more time. In fact, we can
get rid of the waitall operation and maximize the communication computation

178 K. Kaya et al.

overlap by performing all scalar multiply-operations that involve a received x-
vector entry before waiting the reception of any other message. This requires
storing the vertically shaded zones of the matrix in Fig. 1 in CCS format: with
this, when Pk receives x̂

(k)
σ , it can visit the respective column and perform all

operations. This way of storing the vertically shaded and hatched zones in CCS
maximizes the amount of overlap in the strict sense (optimal amount of overlap)
when a processor receives a single message from each sender (as should be the
case in a proper SpMxV code). The third library that we investigate in this work,
SpMV [14], implements this approach for row-parallel and row-column parallel
algorithms (see descriptions in the accompanying technical report [8]).

2.2 Investigated Partitioning Metrics and Methods

We study the practical effects of five different metrics: the maximum number of
nonzeros assigned to a processor (MaxNnz) which defines the load balance; the
total communication volume (TotVol); the maximum send volume of a proces-
sor (MaxSV); the total number of messages (TotMsg); and the maximum num-
ber of messages sent by a processor (MaxMS). Our investigations are necessarily
experimental, yet some a priori results can be told about these metrics, see the
accompanying technical report [8] and the references therein.

We investigated the rowwise and columnwise partitioning methods CN and
RN (the naming convention corresponds to the hypergraph models in the original
paper [7]) among the one-dimensional partitioning approaches. Among the two-
dimensional ones we investigated the fine grain (FG), and checkerboard (CB)
partitioning models (see [9] and the references therein). These four methods
try to reduce the total volume of communication and obtain load balance; the
2D methods implicitly reduce the total and maximum number of messages per
processor. We also used a block partitioning (BL) model whose aim is just to have
load balance in rowwise partitioning of the matrices. In this model, we traverse
the rows from 1 to m, generate a part with approximately τ/K nonzeros, and
continue with the next part when this number is exceeded. For matrices based on
2D meshes, we used another rowwise partitioning model called MP. This model
tiles the 2D plane with a diamond-like shape [4, Sect. 4.8] and associates each
shape (corresponding to a set of rows) with a processor. This approach balances
the volume and the number of messages the processors send and receive.

3 Experimental Investigations

We carried our experiments on a 64-node cluster where each node has a 2.27 GHz
dual quad-core Intel Xeon (Bloomfield) CPU and 48 GB main memory. Each core
in a socket has 64 KB L1 and 256 KB L2 caches, and each socket has an 8 MB
L3 cache shared by 4 cores. The interconnection network is 20 Gbps DDR Infini-
Band. For parallelism, mvapich2 version 1.6 is used. We built SpMV, PETSc,
and Trilinos with gcc 4.4.4 and used optimization flag -O3. For PETSc experi-
ments, we used the matrix type MPIAIJ and the multiplication routine MatMult.

Analysis of Partitioning Models and Metrics 179

Table 1. Properties of the experiment matrices.

Matrix Description n τ Matrix Description n τ

atmosmodl Atmosp.

model.

1,489,752 10,319,760 cage15 DNA electrop. 5,154,859 99,199,551

TSOPF RS Opt. pow.

flow

38,120 16,171,169 HV15R 3D engine fan 2,017,169 283,073,458

Freescale1 Semicon.

sim.

3,428,755 17,052,626 mesh-1024 5-point stencil 1,048,576 5,238,784

rajat31 Circuit sim. 4,690,002 20,316,253 mesh-2048 5-point stencil 4,194,304 20,963,328

RM07R Comp. fluid

dyn.

381,689 37,464,962 mesh-4096 5-point stencil 16,777,216 83,869,696

We used PaToH [5] with default setting quality for partitioning the matrices
(this allows 0.03 imbalance). Since each node has 8 cores, we have 512 processors
in total. In the experiments, we use K ∈ {1, 8, 16, 32, 64, 128, 256, 512}. For an
experiment with K ≥= 1 processors, we fully utilize K/8 nodes of the cluster. To
measure the time of one SpMxV operation (in secs), we do 500 multiplications
for each execution. The tables and figures show the averages of these 500 runs.

We used seven large real-life square matrices from different application
domains that are available at the University of Florida (UFL) Sparse Matrix Col-
lection (http://www.cise.ufl.edu/research/sparse/matrices) and three syntheti-
cally generated matrices corresponding to 5-point stencil meshes in 2D with sizes
1024 × 1024, 2048 × 2048, and 4096 × 4096. The properties of the matrices are
given in Table 1.

In the experiments on real-life matrices, we use PETSc with rowwise models
CN and BL, and SpMV and Trilinos with all models except MP. For meshes,
we added MP to each library’s model set. The reason is technological: PETSc
provides SpMxV routines only for rowwise partitioning.

We designed a set of experiments to show the effect of different partition-
ing metrics in the actual running time of SpMxV computations. Our first two
sets of experiments (Fig. 2 and Table 2 of the accompanying technical report
[8]) showed clearly that the total volume of communication, the total number
of messages, the maximum number and volume of messages sent by a processor
affect significantly the running time of SpMxV. Which one of these four com-
munication metric is the most important in different libraries? To what extent?
What about their combinations? In order to answer these questions we carried
out the following regression analysis.

3.1 Regression Analysis

To evaluate the performance of the libraries with respect to the partitioning
metrics, we use linear regression analysis techniques and solve the nonnegative
least squares problem (NNLS). In NNLS, given a variable matrix V and a vector
t, we want to find a dependency vector d which minimizes ∞Vd− t∞ s.t. d ≈ 0.
In our case, V has five columns which correspond to the partitioning metrics
MaxNnz, TotVol, MaxSV, TotMsg, and MaxSM. Each row of V corresponds to

http://www.cise.ufl.edu/research/sparse/matrices

180 K. Kaya et al.

(a) SpMV

(b) PETSc

(c) Trilinos

116 64 128 256 512
100

101

102

K
E

xe
cu

tio
n

tim
e

CN

RN

FG

CB

BL

116 64 128 256 512
100

101

102

K

E
xe

cu
tio

n
tim

e

CN

BL

116 64 128 256 512
100

101

102

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

Fig. 2. Mean SpMxV times on real-life matrices in log scale for each library with
respect to partitioning model.

an SpMxV execution where the execution time is put to the corresponding entry
of t. Hence, we have the same V but a different t for each library. We apply a
well-known technique in regression analysis and standardize each entry of V by
subtracting its column’s mean and dividing it to its column’s standard deviation
so that the mean and the standard deviation of each column become 0 and 1,
respectively. This way, the units are removed and each column becomes equally
important throughout the analysis. We then used MATLAB’s lsqnonneg to
solve NNLS. Each entry of the output di shows the dependency of the execution
time to the partitioning metric corresponding to the ith column of V. Tables 2, 3,
and 4 show the dependency values found in various settings.

We first apply regression analysis to each library with all matrices and row-
wise partitioning models CN (column-net) and BL (block). The analysis shows
that when K ∧ 64, SpMxV performance depends rigorously on the maximum
number of nonzeros assigned to a processor. In this case, the dependency values

Analysis of Partitioning Models and Metrics 181

Table 2. Regression analysis of SpMV, PETSc and Trilinos with all matrices and
models CN and BL.

8 ∀ K ∀ 64 128 ∀ K ∀ 512
Metric SpMV PETSc Trilinos SpMV PETSc Trilinos

MaxNnz 8.02 7.81 6.80 0.49 0.44 0.83
TotVol 0.18 0.38 1.00 0.39 0.36 1.06
MaxSV 1.66 1.53 2.20 0.00 0.00 0.11
TotMsg 0.15 0.28 0.00 7.90 8.03 4.51
MaxSM 0.00 0.00 0.00 1.22 1.18 3.49

Table 3. Regression analysis of SpMV and Trilinos with all matrices and partitioning
models. PETSc is not shown in this table because it cannot handle all the schemes.

8 ∀ K ∀ 32 64 ∀ K ∀ 128 256 ∀ K ∀ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos

MaxNnz 8.43 7.54 2.75 2.52 0.00 0.02
TotVol 0.23 0.89 0.52 1.94 0.38 0.98
MaxSV 1.35 1.57 1.57 1.69 0.04 0.50
TotMsg 0.00 0.00 4.66 2.38 6.24 3.06
MaxSM 0.00 0.00 0.49 1.47 3.34 5.44

Table 4. Regression analysis of SpMV and Trilinos with mesh-based matrices and all
partitioning models.

8 ∀ K ∀ 32 64 ∀ K ∀ 128 256 ∀ K ∀ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos

MaxNnz 8.97 9.38 8.83 9.05 5.10 5.47
TotVol 0.00 0.00 0.00 0.24 0.00 0.00
MaxSV 0.72 0.48 0.43 0.09 0.92 0.52
TotMsg 0.00 0.00 0.42 0.07 0.42 0.99
MaxSM 0.31 0.14 0.33 0.55 3.55 3.02

for MaxNnz are 8.02, 7.81, and 6.80 for SpMV, PETSc, and Trilinos, respec-
tively. As Table 2 shows, the next important metric is MaxSV with values 1.66,
1.53, and 2.20. The latency-based (TotMsg, MaxSM) partitioning metrics do not
effect the performance for K ∧ 64. However, when K gets larger, these metrics
are of utmost importance. Furthermore, the importance of MaxNnz decreases
drastically for all the libraries. For SpMV and PETSc, MaxNnz becomes the 3rd
important variable, whereas for Trilinos, it is the 4th. This shows that SpMV and
PETSc handle the increase in the communication metrics better than Trilinos.

When K ≈ 128, the dependency of Trilinos to TotMsg is much less than
that of SpMV and PETSc. On the contrary, Trilinos’ MaxSM dependency is
almost 1.75 times more than SpMV and PETSc. This is expected since Trilinos
uses Algorithm 1 which has no communication-computation overlap due to the

182 K. Kaya et al.

use of waitall primitive. Such primitives can cause close coupling among the
processors. When MaxNnz and the variance on the number of messages per
processor are large, the overhead due to the bottleneck processor can result in
poor SpMxV performance. Note that the dependency profiles of SpMV and
PETSc, which are similar due to the communication-computation overlap, do
not point out a similar bottleneck.

We extend the regression analysis to all matrices and all partitioning models
and show the results in Table 3. The performance of SpMV and Trilinos rigor-
ously depend on MaxNnz if K ∧ 32, and on TotMsg and MaxSM when K ≈ 256.
Once again, Trilinos’ MaxSM dependency is higher than that of SpMV due to the
waitall primitive. To see the effect of matrix structure on regression analysis,
we use only mesh-based matrices in the next experiment. As Table 4 shows, we
observe that for these matrices, the performance of SpMV and Trilinos mostly
depend on MaxNnz even when K ≈ 64. Note that these matrices are banded
and the communication metrics have relatively lower values compared to those
of real-life matrices. Hence, the most dominant factor is MaxNnz.

In the light of the regression analysis experiments, we note that the par-
titioning metrics effect the performance of parallel SpMxV libraries. The best
metric (or function of metrics) that needs to be minimized depends on the num-
ber of processors, the size and structure of the matrix, which we are planning
to investigate in the future, and even the library itself. Although some of these
variables are known while generating the partitions, predicting the others may
need a preprocessing phase. For example, we already know that the libraries in
this paper are employing point-to-point communication primitives which makes
the connectivity metric suitable. However, if collective communication primi-
tives, e.g., MPI ALLGATHER, had been used, it would be better to minimize the
cut-net metric as the main partitioning objective (however, we should note that
such collective operations introduce unnecessary synchronization and messages
especially for large K values). On the other hand, the matrix structure can be
different for each input and a partitioner needs either a manual direction or a
preprocessing to predict the best metric for each matrix.

3.2 Summary of Further Results

We provide summary of some further results and refer the interested reader to
the accompanying technical report [8]. We observed that for all libraries and
partitioning methods, minimizing TotMsg is more important than minimizing
MaxSV for reducing the execution time, especially when K is large. Starting from
K = 64, the difference becomes obvious in favor of TotMsg which is concordant
with the regression analyses. For K ∈ {8, 16}, minimizing MaxSV or TotMsg
are equally important.

The checkerboard method (CB) which is demonstrated (see Fig. 4 in [8]) to
reduce most of the communication cost metrics seems to be the method of choice
when K is not small (when K is small, there is no much difference between the
models as also revealed by the regression analysis before). The relative per-
formances of the partitioning methods do not change with the increasing K.

Analysis of Partitioning Models and Metrics 183

However, their difference tend to increase and hence, the model used for par-
titioning becomes more important as the parallel matrix-vector multiplication
times of the libraries show in Fig. 2. When K is 256, the only significant reduction
on the execution time is obtained by SpMV with the CB model.

4 Conclusion

We have carried out a detailed study to understand the importance of parti-
tioning models and their effects in parallel SpMxV operations. As mentioned in
the experiments, minimizing the right metric with the right partitioning model
is crucial to increase throughput. For example, for the real-life matrices in our
test set, CB model is the only one which can obtain a significant reduction on
the SpMxV time when K is increased from 128 to 256 (after that we did not
see any speed up). It is obvious that the other models fail to obtain such a
reduction since the gain by dividing MaxNnz by two does not compensate the
communication overhead induced by multiplying K by two. Hence, assuming
the communication overhead is doubled on the average, doubling K increases
the relative importance of communication on SpMxV four times.

Matrices from today’s scientific and industrial applications can be huge. If one
has only a few processors, partitioning may not matter, since the contribution of
communication to the execution time will be low and the overall improvement on
SpMxV via a good partitioning will be insignificant. However, as the regression
analyses of Sect. 3.1 show, after a number of processors, the communication over-
head will start to dominate the SpMxV time. For our experiments, this number
is somewhere between 32 and 64, and it depends on the characteristics of the
matrix, the library, and the architecture used for SpMxV operations. Although
it may be more than 64, considering the advancements on CPU hardware, we
can easily argue that this number will remain highly practical and partitioning
will matter more for systems that are larger than those considered here.

References

1. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D.,
Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech-
nical report ANL-95/11 - Revision 3.2, Argonne National Laboratory (2011)

2. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-
allelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M.,
Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–
202. Birkhäuser Press, Basel (1997)

3. Bisseling, R.H., Meesen, W.: Communication balancing in parallel sparse matrix-
vector multiplication. Electron. Trans. Numer. Anal. 21, 47–65 (2005)

4. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, Oxford (2004)

5. Çatalyürek, Ü.V., Aykanat, C.: PaToH: A multilevel hypergraph partitioning tool,
Version 3.0. Bilkent University, Department of Computer Engineering, Ankara,
06533 Turkey. PaToH. http://bmi.osu.edu/umit/software.htm (1999)

http://bmi.osu.edu/umit/software.htm

184 K. Kaya et al.

6. Çatalyürek, Ü.V., Aykanat, C.: A hypergraph-partitioning approach for coarse-
grain decomposition. In: Supercomputing’01 (2001)

7. Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parall. Distr. 10(7),
673–693 (1999)

8. Çatalyürek, Ü.V., Kaya, K., Uçar, B.: On analysis of partitioning models and
metrics in parallel sparse matrix-vector multiplication. Technical report INRIA,
France (2013)

9. Çatalyürek, Ü.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix par-
titioning: models, methods, and a recipe. SIAM J. Sci. Comput. 32(2), 656–683
(2010)

10. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

11. Saad, Y., Malevsky, A.V.: P-SPARSLIB: A portable library of distributed memory
sparse iterative solvers. Technical report umsi-95-180, Minnesota Supercomputer
Institute, Minneapolis, MN (1995)

12. Uçar, B., Aykanat, C.: Minimizing communication cost in fine-grain partitioning
of sparse matrices. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869,
pp. 926–933. Springer, Heidelberg (2003)

13. Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in par-
titioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM
J. Sci. Comput. 25(6), 1837–1859 (2004)

14. Uçar, B., Aykanat, C.: A library for parallel sparse matrix-vector multiplies. Tech-
nical report BU-CE-0506, Department of Computer Engineering, Bilkent Univer-
sity, Ankara, Turkey (2005)

15. Vastenhouw, B., Bisseling, R.H.: A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47(1), 67–95 (2005)

Achieving Memory Scalability in the GYSELA

Code to Fit Exascale Constraints

Fabien Rozar1,2(B), Guillaume Latu1, and Jean Roman3

1 IRFM, CEA Cadarache, 13108 Saint-Paul-les-Durance, France
fabien.rozar@cea.fr

2 Maison de la simulation, CEA Saclay, 91191 Gif sur Yvette, France
3 INRIA, Institut Polytechnique de Bordeaux, CNRS, 33405 Talence, France

Abstract. Gyrokinetic simulations lead to huge computational needs.
Up to now, the semi-Lagrangian code Gysela performed large simula-
tions using a few thousands cores (65k cores). But to understand more
accurately the nature of the plasma turbulence, finer resolutions are
wished which make Gysela a good candidate to exploit the compu-
tational power of future Exascale machines. Among the Exascale chal-
lenges, the less memory per core issue is one of the must critical. This
paper deals with memory management in order to reduce the memory
peak, and presents an approach to understand the memory behaviour of
an application when dealing with very large meshes. This enables us to
extrapolate the behaviour of Gysela for expected capabilities of Exas-
cale machine.

Keywords: Exascale · Memory scalability · Memory footprint reduc-
tion · Plasma physics

1 Introduction

The architecture of the supercomputers will considerably change in the next
decade. Since several years, CPU frequency does not increase anymore. Conse-
quently the on-chip parallelism is dramatically increasing to offer more perfor-
mance. Instead of doubling the clock-speed every 18–24 month, the number of
cores per compute node follows the same law. These new parallel architectures
are expected to exhibit different levels of memory and one tendency of these
machines is to offer less and less memory per core. This fact has been identified
as one of the Exascale challenges [11] and is one of our main concerns.

In the last decade, the simulation of turbulent fusion plasmas in Tokamak
devices has involved a growing number of people coming from the applied math-
ematics and parallel computing fields [1]. These applications are good candidates
to be part of the scientific applications that will be able to use the first generation
of Exascale computers. The Gysela code already efficiently exploits supercom-
puting facilities [8]. In this paper we especially focus on its memory consumption.
This is a critical point to simulate larger physical cases while using a constrained
available memory.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 185–195, 2014.
DOI: 10.1007/978-3-642-55195-6 17, c© Springer-Verlag Berlin Heidelberg 2014

186 F. Rozar et al.

Fig. 1. Numerical scheme for one time step of Gysela

A module has been developed to provide a way to generate memory traces for
the specific Gysela application. However, our final goal (not achieved yet) is to
define a methodology and a versatile and portable library to help the developer
optimize memory usage in scientific parallel applications.

The goal of the work presented here is to decompose and reduce the memory
footprint of Gysela to improve its memory scalability. We present a tool which
provides a visualization of the memory allocation/deallocation of Gysela in
off-line mode. An other tool allows us to predict the memory peak depending
on some input parameters. This is helpful to check whether future simulation
memory needs fit into available memory.

This article is organized as follow. Section 2 describes shortly the Gysela
code. Section 3 presents the memory consumption of Gysela. Section 4 presents
the module implemented to generate a trace file of allocation/deallocation in
Gysela. It also illustrates the visualization and prediction tool capabilities to
handle the data of the trace file. Section 5 shows an example of reduction of the
memory footprint and a study of the memory scalability thanks to the prediction
tool. Section 6 concludes and presents some future works.

2 Overview of GYSELA

This section gives an overview of the global Gysela algorithm and introduces
the main data structures used.

Gysela is a global nonlinear electrostatic code which solves a gyrokinetic
Vlasov-Maxwell system. Gysela is a coupling between a Vlasov solver that
modelizes the motion of the ions inside a tokamak and a Maxwell solver that
computes the electrostatic field which applies a force on the ions. The Vlasov
equation is solved with a semi-Lagrangian method [6] and the Maxwell equation
is reduced to the numerical solving of a Poisson-like equation [7].

In this gyrokinetic model, the main unknown is a distribution function f
which represents the density of ions at a given phase space position. The execu-
tion of Gysela is decomposed in the initialization phase, iterations over time,
and the exit phase. Figure 1 illustrates the numerical scheme used during a time
step. fn represents the distribution function, Φn the electric potential and En the
electric field which corresponds to the derivative of Φn. The Vlasov step performs
the evolution of fn over time and the Field-solver step computes En. Periodi-
cally, Gysela executes diagnostics which export meaningful values extracted
from fn, En and saves the results in HDF5 files.

Achieving Memory Scalability in the Gysela Code 187

The distribution function f is a 5 dimensions variable and evolves over time.
The first 3 dimensions are in space, xG = (r, θ, ϕ) with r and θ the polar coor-
dinates in the poloidal cross-section of the torus, while ϕ refers to the toroidal
angle. The two last coordinates are in velocity space: v‖ the velocity along the
magnetic field lines and μ the magnetic moment.

Let Nr, Nθ, Nϕ, Nv‖ be respectively the number of points in each dimen-
sion r, θ, ϕ, v‖. In the Vlasov solver, each value of μ is associated with a
set of Mpi processes (a Mpi communicator). Within each set, a 2D domain
decomposition allows us to attribute to each Mpi process a sub-domain in
(r, θ) dimensions. Thus, a Mpi process is then responsible for the storage of
the sub-domain defined by f(r = [istart, iend], θ = [jstart, jend], ϕ = ∗, v‖ =
∗, μ = μvalue). The parallel decomposition is initially set up knowing local val-
ues istart, iend, jstart, jend, μvalue. These 2D domains are derived from a classical
block decomposition of the r domain into pr sub-domains, and of the θ domain
into pθ sub-domains. The numbers of Mpi processes used during one run is
equal to pr × pθ × Nμ. The OpenMP paradigm is then used in addition to Mpi
(#T threads in each Mpi process) to use fine-grained parallelism.

3 Memory Bottleneck

3.1 Analysis

A Gysela run needs a lot of amount of memory to be executed. During a run
of Gysela, each Mpi process is associated with a μ value (Sect. 2) and sees
the distribution function as a 4D array and the electric field as a 3D array. The
remaining of the memory consumption is mostly related to arrays used to store
precomputed values, Mpi user buffers to concatenate data to send/receive and
OpenMP user buffers to compute temporary results. Almost all the arrays are
allocated during the initialization of Gysela.

In order to better understand the memory behaviour of Gysela, each allo-
cation (allocate statement) is logged by storing: the array name, the type, and
the size. Using these data we have done a strong scaling presented on the Table 1
(16 threads per Mpi process). From the memory point of view, the strong scal-
ing study consists in doing a run with a large enough mesh and evaluating the
memory consumption for a process increasing step by step the number of Mpi
processes used for the simulation. If for a given simulation with n processes
we use x Giga Bytes of memory per process, in the ideal case, one can hope
that the same simulation with 2n processes would use x

2 Giga Bytes of mem-
ory per process. In this case, is it said that the memory scalability is perfect.
But in practice, this is generally not the case because of parallelization memory
overheads.

Table 1 shows the evolution of the memory consumption with the number
of cores for a Mpi process. The percentage of memory consumption compared
with the total memory of the process is given for each type of data structures.
The dimensions of the mesh are set to: Nr = 1024, Nθ = 4096, Nϕ = 1024,
Nv‖ = 128, Nμ = 2. This mesh is bigger than the meshes used in production

188 F. Rozar et al.

Table 1. Strong scaling: static allocation sizes in (GB per Mpi process) and percentage
of the total for each kind of data

Number of cores 2k 4k 8k 16k 32k
Number of Mpi processes 128 256 512 1024 2048

4D structures 209.2 107.1 56.5 28.4 14.4
67.1 % 59.6 % 49.5 % 34.2 % 21.3 %

3D structures 62.7 36.0 22.6 19.7 18.3
20.1 % 20.0 % 19.8 % 23.7 % 27.1 %

2D structures 33.1 33.1 33.1 33.1 33.1
10.6 % 18.4 % 28.9 % 39.9 % 49.0 %

1D structures 6.6 3.4 2.0 1.7 1.6
2.1 % 1.9 % 1.7 % 2.0 % 2.3 %

Total per MPI process in GBytes 311.5 179.6 114.2 83.0 67.5

nowadays, but match further needs, especially those expected for multi-species
physics. The last case with 2048 processes requires 67.5 GB of memory per Mpi
process. We usually launch a single Mpi process per node. One can notice the
memory required is much more than the 64 GB of a Helios1 node or than the
16 GB of a Blue Gene/Q node. Table 1 also illustrates that 2D structures and
many 1D structures do not benefit of the domain decomposition. In fact, the
memory cost of the 2D structures does not depend on the number of processes
at all, but rather on the mesh size and the number of threads. On the last case
with 32k cores, the cost of the 2D structures is the main bottleneck. It takes
49 % of the whole memory footprint.

In Gysela, the memory overhead for large simulations is due to various
reasons. Extra memory can be needed, for example to store some coefficients
during an interpolation (for the Semi-Lagrangian solver of the Vlasov equation).
Mpi buffers appear also as memory overhead. The Mpi subroutines accept as
input 1D array which often requires to copy the data we want to send or receive
in an appropriate way. We have reduced some of these memory overheads. It has
improved the memory scalability and has allowed us to run bigger physical cases.

3.2 Approach

There are two ways to reduce the memory footprint of a parallel application.
On the one hand one can increase the number of nodes used for the simulation.
Since the size of structures which benefit of a domain decomposition will decrease
along with the number of Mpi processes. On the other hand, we can manage
more finely the allocations of arrays in order to reduce the memory costs that
do not scale with the number of threads/Mpi processes and to limit the impact
of all allocated data at the memory peak.

To achieve the reduction of the memory footprint and to push back the
memory bottleneck, we choose to focus on the second approach.
1 http://www.top500.org/system/177449

http://www.top500.org/system/177449

Achieving Memory Scalability in the Gysela Code 189

In the original version of the code, most of the variables are allocated dur-
ing the initialization phase. This approach is rightful for structures which are
persistent variables in opposition to temporary variables that could be dynami-
cally allocated. In this configuration, firstly, one can determine early the memory
space required without actually executing a complete simulation. This allows a
user to know if the case submitted can be run or not. Secondly, it avoids exe-
cution overheads due to dynamic memory management. But a disadvantage of
this approach is that variables used locally in one or two subroutines consume
their memory space during the whole execution of the simulation. As the mem-
ory space becomes a critical point when a large number of cores are employed,
we have allocated a large subset of these as temporary variables with dynamic
allocation. This has reduced the memory peak with a negligible impact on the
execution time. Also, we notice that some persistent variables can be deallo-
cated at the memory peak time which can decrease memory footprint. However,
one issue with dynamic allocations is that we lost the two main advantages of
the static allocations, and particularly the ability to determine in advance the
memory space required to run a simulation.

4 Customised Modeling and Tracing Memory Tools

To follow the memory consumption of Gysela and to measure the memory foot-
print reduction, three different tools has been developed: a Fortran module to
generate a trace file of allocations/deallocations, and a visualization + prediction
Python script which exploits the trace file. The information retrieved from the
execution of Gysela thanks to the instrumentation module is a key component
of our memory analysis. The implementation of these helpful tools is detailed in
the following sections.

4.1 Trace File

Various data structures are used in Gysela, and in order to handle their allo-
cations/deallocations, a dedicated Fortran module was developed to log them
to a file: the dynamic memory trace. As the Mpi processes have almost the same
dynamic memory trace, in the current implementation, we produce a single trace
file for the allocations/deallocations of the Mpi process 0.

Overview. In the community of performance analysis tools dedicated to parallel
application, different approaches exist. But almost all of them relies on trace files.
A trace file collects information from the application to represent one aspect of
its execution: execution time, number of Mpi messages send, idle time, memory
consumption and so on. But to obtain these information, the application have
to be instrumented. The instrumentation can be made at 4 levels: in the source
code, at the compilation time, at the linking step or during the execution (just
in time).

190 F. Rozar et al.

The Scalasca performance tool [5] is able to instrument at the compilation
time. This approach has the advantage to cover all code parts of the application
and it allows the customization of the retrieved information. This systematic
approach gives a full detailed trace but the record of information in all subroutine
of the code may induce a consequent overhead in execution time. Also with an
automatic instrumentation, it would be difficult to retrieve the expression of
an allocation, like we do (cf. next section). The tool set EZTrace [2] offers the
possibility to intercept calls to a set of functions. This tool can quickly instrument
an application thanks to a link with third-party libraries at the linking step.
Unlike our approach, this one does not need an instrumentation of the code but
you cannot hope to retrieve the allocation expression in this approach. The tools
Pin [9], DynamoRIO [3] or Maqao [4] produce an instrumentation during the
execution time. The advantage here is the generic aspect of the method. Any
program can be instrumented this way, but unlike our approach, these ones often
introduce a quite large overhead of execution time.

The tool we have developed allows us to measure the performance of Gysela,
from the memory point of view. A visualization tool has been developed to deal
with the provided trace file. It offers a global view of the memory consumption
and an accurate view around the memory peak to help the developer to reduce
the memory footprint. The terminal output of the post processing script gives
precious information about the arrays allocated at the memory peak. Given a
trace file, we can also extrapolate the memory consumption in function of the
input parameters. This allows us to investigate the memory scalability. As far
as we know, there is no equivalent tool to profile the memory behaviour in the
HPC community.

Implementation. A dedicated Fortran module of instrumentation has been
developed. This instrumentation will generate a trace file. Then we practice a
post-mortem analysis on it. The instrumentation module offers an interface, take
and drop, which wraps the calls to allocate and deallocate. The take and
drop subroutines perform the allocation and deallocation of the array handled
and they log their memory action in the dynamic memory trace file.

For each allocation and deallocation, the module logs the name of the array,
its type, its size and the expression of number of elements. The expression is
required to make prediction. For example, the expression associated to this allo-
cation:

integer, dimension(:,:), pointer :: array

integer :: a0, a1, b0, b1

allocate(array(a0:a1, b0:b1))

is
(a1 − a0 + 1) × (b1 − b0 + 1) (1)

To be able to evaluate these allocation expressions, the variables inside them
must be recorded. Either the value of the variable is logged, either an arithmetical

Achieving Memory Scalability in the Gysela Code 191

Fig. 2. Evolution of the dynamic mem-
ory consumption during Gysela
execution

Fig. 3. Allocation and deallocation
of arrays used in different Gysela
subroutines

expression depending on other recorded variables is logged. This is done respec-
tively by the subroutines write param and write expr. The writing of expression
saves the relationship between parameters in the trace file. This is essential for
the prediction tool (Sect. 4.3). The following code is an example of recording the
parameters a0, a1, b0, b1:

call write_param(’a0’, 1); call write_param(’a1’, 10)

call write_param(’b0’, 1); call write_expr(’b1’, ’2*(a1-a0+1)’)

To retrieve the temporal aspect of the memory allocation, the entry/exit to
selected subroutines is recorded by the interfacewrite begin sub andwrite end sub.
This allows us to localize where happen the allocations/deallocations which is an
essential aspect for the visualization step.

4.2 Visualization

In order to address memory consumption, we have to identify the parts of the
code where the memory usage reaches its peak. The log file can be large, some
Mega Bytes. To manage this amount of data, a Python script was developed
to visualize them. This tool will help the developer to understand the memory
cost of the handled algorithms, and so give him some hints how and where it
is meaningful to decrease the memory footprint. These information are given
thanks to two kinds of plot.

Figure 2 plots the dynamic memory consumption in GB along time. The X
axis represents the chronological entry/exit of instrumented subroutines. The
Y axis gives memory consumption in GB. Figure 3 shows which array is used
in which subroutine. The X axis remains identical as previously and the Y axis
shows a name of array. Each array is associated to a horizontal line of the picture.
The allocation of an array matches a rectangular filled in dark or light grey color

192 F. Rozar et al.

in its corresponding line. The width of rectangles depends on the subroutines
where allocation/deallocation happens.

In Fig. 2 one can locate in which subroutine the memory peak is reached.
In Fig. 3 one can then identify the arrays that are actually allocated when the
memory peak is reached. Thanks to these information, we exactly know where
to modify the code in order to reduce the global memory consumption.

4.3 Prediction

To anticipate our memory requirements to run a given simulation, we need to
predict the memory consumption for a given input parameter set. Thanks to the
expressions of array size and the value or expression of numerical parameters
contained in the trace file, we can model the memory behaviour off-line. The
idea here is to reproduce allocations with any input set of parameters.

Sometimes, a parameter value cannot be expressed as a one line arithmeti-
cal expression (e.g. multi criteria optimization loop to determine the value).
To manage this case and in order to be faithful, the Fortran piece of code
which returns the value is call from Python script. This is possible thanks to a
compilation of the Fortran needed sources with f2py [10].

By changing the value of input parameters, our prediction Python tool
offers the possibility to extrapolate the Gysela memory consumption on greater
meshes and even on supercomputer configurations which do not exist yet, as the
Exascale ones. The results of this tool are presented in the Sect. 5.2.

5 Results

5.1 Memory Footprint Reduction

Reduce the memory footprint is equivalent to cut down the memory peak. The
Figs. 4 and 5 show the impact on memory of some modifications of the code. After
analysis of the code, we noticed that during the memory peak, the transposition
structure ftransp%values and the distribution function fnb%values contain the
same data organized differently. We obtain the trace of the Fig. 5 in deallocating
fnb%values during the memory peak.

With this tool, one can see that depending on the size of the mesh and
the number of Mpi processes and OpenMP threads, the memory peak moves.
This behavior can be explained by the dependencies between the size of some
characteristic arrays and the value of some input parameters. For example, Mpi
buffer sizes are sensitive to parallelization parameters. In Gysela, the sizes of
temporary buffer are sensitive to the number of points in r and theta dimensions.

The visualization tool gives a new point of view of the source code. This tool
helped us to iteratively reduce the memory overhead and thus to improve the
memory scalability.

Achieving Memory Scalability in the Gysela Code 193

Fig. 4. First trace visualization Fig. 5. Second trace visualization

5.2 Prediction over Large Meshes

Scalability. The Table 2 presents the strong scaling test with the new dynamic
allocations, and several algorithmic improvements we have done thanks visual-
ization tool (not detailed here). The prediction tool allows us to reproduce the
Table 1 on the same mesh, i.e. Nr = 1024, Nθ = 4096, Nϕ = 1024, Nv‖ = 128,
Nμ = 2.

Table 2. Strong scaling: memory allocation size and percentage of the total for each
kind of data at the memory peak moment

Number of cores 2k 4k 8k 16k 32k
Number of Mpi processes 128 256 512 1024 2048

4D structures 207.2 104.4 53.7 27.3 14.4
79.2 % 71.5 % 65.6 % 52.2 % 42.0 %

3D structures 42.0 31.1 18.6 15.9 11.0
16.1 % 21.3 % 22.7 % 30.4 % 32.1 %

2D structures 7.1 7.1 7.1 7.1 7.1
2.7 % 4.9 % 8.7 % 13.6 % 20.8 %

1D structures 5.2 3.3 2.4 2.0 1.7
2.0 % 2.3 % 3.0 % 3.8 % 5.1 %

Total per Mpi process in GBytes 261.5 145.9 81.9 52.3 34.3

The Table 2 outputs the memory consumption at the memory peak. It is
obtained by keeping the mesh size constant and changing the number of Mpi
processes and OpenMP threads. The prediction script replays the allocation/de-
allocation of trace file with the new parameters. As you can see on the bigger case
(32k cores), the consumption of the 2D structures were reduced by 20.8 %. Also
the memory gain on this case is of 50.8% on the global consumption relatively
to Table 1. The 4D structures contain the most relevant data used during the
computation, and they consume the major part of the memory as they should.
The memory overheads have been globally reduced which improves the memory
scalability of Gysela and allows larger simulations to be run.

194 F. Rozar et al.

Investigation. By using the prediction tool, larger meshes can be investigated
and the size of the machine required to handled this amount of data can be
estimated. With the actual implementation, to run the mesh Nr = 2048, Nθ =
4096, Nϕ = 2048, Nv‖ = 256, Nμ = 2, the number of cores needed is of 524k
cores, with 64 GB per process and 16 threads per process.

6 Conclusion

The work described in this paper focuses on a memory modeling and tracing
module and some post processing tools which enable one to improve the memory
scalability. With this framework, the understanding of the memory footprint
behaviour along time is accessible. Also, the generated trace file can be reused
to extrapolate the memory consumption for different input sets of parameter
in off-line mode; this aspect is important both for end-user who needs greater
resolutions or features with greedy memory needs, and for developer to design
algorithms for Exascale machine.

With these tools, a reduction of 50.8% of the memory peak has been
achieved and the memory scalability of the Gysela has been improved. Our
next objective is to implement a versatile C/Fortran library. The work presented
in this paper is a first step toward building a methodology that helps developers
to improve memory scalability of parallel applications.

References

1. Åström, J.A., et al.: Preparing scientific application software for exascale comput-
ing. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 27–42.
Springer, Heidelberg (2013)

2. Aulagnon, C., Martin-Guillerez, D., Rué, F., Trahay, F.: Runtime function
instrumentation with EZTrace. In: Caragiannis, I., et al. (eds.) Euro-Par
Workshops 2012. LNCS, vol. 7640, pp. 395–403. Springer, Heidelberg (2013).
http://link.springer.com/chapter/10.1007/978-3-642-36949-0 45

3. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: CGO 2003, pp. 265–275. IEEE (2003). http://ieeexplore.
ieee.org/xpls/abs all.jsp?arnumber=1191551

4. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J.T., Jalby, W.,
et al.: Maqao: modular assembler quality analyzer and optimizer for itanium 2.
In: The 4th Workshop on EPIC Architectures and Compiler Technology, San Jose
(2005). http://www.labri.fr/perso/barthou/ps/maqao.pdf

5. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. CCPE 22(6), 702–719 (2010). http://
onlinelibrary.wiley.com/doi/10.1002/cpe.1556/full

6. Grandgirard, V., Sarazin, Y., Garbet, X., Dif-Pradalier, G., Ghendrih, P., Crou-
seilles, N., Latu, G., Sonnendrucker, E., Besse, N., Bertrand, P.: Computing ITG
turbulence with a full-f semi-Lagrangian code. Commun. Nonlinear Sci. Numer.
Simul. 13(1), 81–87 (2008)

7. Hahm, T.S.: Nonlinear gyrokinetic equations for tokamak microturbulence. Phys.
Fluids 31(9), 2670–2673 (1988)

http://link.springer.com/chapter/10.1007/978-3-642-36949-0_45
http://link.springer.com/chapter/10.1007/978-3-642-36949-0_45
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1191551
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1191551
http://www.labri.fr/perso/barthou/ps/maqao.pdf
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1556/full
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1556/full

Achieving Memory Scalability in the Gysela Code 195

8. Latu, G., Grandgirard, V., Crouseilles, N., Dif-Pradalier, G.: Scalable quasineutral
solver for gyrokinetic simulation. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 221–231.
Springer, Heidelberg (2012)

9. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: ACM SIGPLAN Notices, vol. 40, pp. 190–200. ACM
(2005). http://dl.acm.org/citation.cfm?id=1065034

10. Peterson, P.: F2py: a tool for connecting fortran and python programs. Int. J. Com-
put. Sci. Eng. 4(4), 296–305 (2009). http://cens.ioc.ee/∼pearu/papers/IJCSE4.4
Paper 8.pdf

11. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technol-
ogy challenges. In: Palma, J., Daydé, M., Marques, O., Lopes,
J. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 1–25. Springer,
Heidelberg (2011). https://www.nersc.gov/assets/NERSC-Staff-
Publications/2010/ShalfVecpar2010.pdf

http://dl.acm.org/citation.cfm?id=1065034
http://cens.ioc.ee/~pearu/papers/IJCSE4.4_Paper_8.pdf
http://cens.ioc.ee/~pearu/papers/IJCSE4.4_Paper_8.pdf
https://www.nersc.gov/assets/NERSC-Staff-Publications/2010/ShalfVecpar2010.pdf
https://www.nersc.gov/assets/NERSC-Staff-Publications/2010/ShalfVecpar2010.pdf

Probabilistic Analysis
of Barrier Eliminating Method Applied
to Load-Imbalanced Parallel Application

Naoki Yonezawa1(B), Ken’ichi Katou1, Issei Kino1, and Koichi Wada2

1 Kanagawa University, Hiratsuka, Kanagawa, Japan
yonezawa@info.kanagawa-u.ac.jp

2 University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract. In order to reduce the overhead of barrier synchronization,
we have proposed an algorithm which eliminates barrier synchronizations
and evaluated its validity experimentally in our previous study. As a
result, we have found that the algorithm is more effective to the load-
imbalanced program than load-balanced program. However, the degree of
the load balance has not been discussed quantitatively. In this paper, we
model the behavior of parallel programs. In our model, the execution time
of a phase contained in a parallel program is represented as a random
variable. To investigate how the degree of the load balance influences
the performance of our algorithm, we varied the coefficient of variation
of probability distribution which the random variable follows. Using the
model, we evaluated the execution time of parallel programs and found
that theoretical results are consistent with experimental ones.

Keywords: Barrier elimination · Probabilistic analysis · Time
reduction

1 Introduction

Since barrier synchronization is a simple means to guarantee the order of data
producing and data consuming, it is often used in parallel programs. However,
barrier synchronization causes the processors’ idle time to increase. To reduce the
overhead of barrier synchronization, several methods [1–4] have been proposed.
In our method [3,4] which targets on the distributed shared memory environment
realized on a PC cluster, the compiler analyzes the dependency between the
data producers and the data consumers. Then, the compiler replaces the barrier
synchronization with message passing code which sends the data to consumer’s
side. Through evaluation, we have found that the algorithm is more effective to
the load-imbalanced program than load-balanced program. However, the degree
of the load balance has not been discussed quantitatively.

In this paper, in order to analyze the effect of the method theoretically, we
propose probabilistic model to describe the degree of the load balance and evaluate
the effectiveness of a barrier eliminating algorithm in terms of the load balance.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 196–206, 2014.
DOI: 10.1007/978-3-642-55195-6 18, c© Springer-Verlag Berlin Heidelberg 2014

Probabilistic Analysis of Barrier Eliminating Method 197

Fig. 1. Eliminating barriers

The rest of this paper is organized as follows: in Sect. 2, we propose a proba-
bilistic model to investigate the barrier eliminating algorithm. With the model,
one can describe data dependencies among processors as well as the degree of
the load balance. We also show how to compute the execution time of a paral-
lel program mathematically. Using the results obtained from our model, Sect. 3
discusses the effect of the barrier eliminating algorithm when applied to three
typical dependency patterns. In Sect. 4, we describe related work. Finally, we
conclude our study and describe our future work in Sect. 5.

2 A Probabilistic Analysis of a Barrier Eliminating
Algorithm

In this section, at first, we define a behavioral model of a parallel program
and introduce the mathematical symbols for discussion. Then, we construct the
probabilistic model which describes the behavior of parallel program. Finally, we
introduce the coefficient of variation to represent the degree of the load balance
among processors.

2.1 The Behavioral Model of Parallel Program

Before Eliminating Barriers. Figure 1(a) shows the behavioral model of a
parallel program on which this paper targets. In this model, a program contains
a loop whose iteration has one and only barrier synchronization. We call an
iteration of the loop a phase. The task in a phase is divided into n subtasks and
the subtasks are assigned to n processors. At runtime, when a processor arrives

198 N. Yonezawa et al.

a barrier synchronization, the processor stalls. After all the other processors
arrives the barrier synchronization, all processors execute the next phases.

It is expected that the execution times of a phase are equal among processors
if the phase contains the equally-divided subtasks and a barrier synchronization.
However, the execution of a parallel program in the real world is influenced by
the external factors including cache misses and the network delay. These cause
randomness, i.e., the execution time of a processor in a phase can differ from
the one of another processor in the same phase. In order to model the execution
of such programs, we denote the execution time of Processor j in Phase i by
X

(i)
j , i = 1, 2, . . . , j = 1, 2, . . . , n, where {{X

(i)
j }n

j=1}∈
i=1 are independent and

identically distributed random variables (i.i.d. r.v.’s). At this time, the execution
time of Phase i is T

(i)
n = max(X(i)

1 ,X
(i)
2 , . . . , X

(i)
n) because the execution time of

the phase is the execution time of the slowest processor. Therefore, the execution
time of m phases with n processors before eliminating barriers is B

(m)
n = T

(1)
n +

T
(2)
n + · · · + T

(m)
n and the mean execution time becomes E(B(m)

n) = mE(T (1)
n).

After Eliminating Barriers Partially. In this paper, we use the term
dependent on part to represent a situation that a processor depends on sev-
eral processors rather than all other processors. Dependent on part situations
appear in many parallel programs. On the other hand, the term dependent on
all represents a situation that a processor depends on all other processors. The
case of ‘before eliminating barriers’ we showed in Sect. 2.1 is dependent on all
throughout all phases.

In general, before Processor j proceeds Phase i in dependent on all situation,
it has to wait for the finish of Phase (i − 1) performed by all other processors.
On the other hand, in dependent on part situation, Processor j has to wait for
the finish of Phase (i − 1) performed by not all but several processors as shown
in Fig. 1(b). In this paper, we call depended processors of Processor j in Phase
i a group of the processors for which Processor j has to wait at the beginning
of Phase i. We denote by S

(i)
j the set of depended processors’ IDs. Note that

about S
(i)
j :

– j ∈ S
(i)
j because Processor j always depends on itself.

– S
(1)
j is empty set for all j because there is no memory access before Phase 1.

We also denote by X
(1,i)
j the execution time of Processor j from the beginning

of a program, that is Phase 1, to the end of Phase i. X
(1,i)
j is decomposed as

follows:
X

(1,i)
j = max

⎧
X

(1,i−1)
k

⎨

k≥S
(i)
j

+ X
(i)
j , i = 2, 3, 4, . . .

In other words, X
(1,i)
j is the sum of the longest execution time of depended

processors at the end of Phase (i−1) and the execution time of Phase i performed
by Processor j.

Probabilistic Analysis of Barrier Eliminating Method 199

We also denote the execution time of the program in which all processors
execute by A

(m)
n . Then, A

(m)
n = max(X(1,m)

1 ,X
(1,m)
2 , . . . , X

(1,m)
n), that is, the

random variable A
(m)
n represents the execution time of m phases with n proces-

sors after eliminating barriers partially.

2.2 The Definition of Dependency Matrix

To represent partial dependency, it is necessary to describe depended processors,
that is, the group of processors for which a processor has to wait at the beginning
of a phase. To achieve this, we propose a dependency matrix in this paper as
follows:

D =

⎩

⎜
⎜
⎜
⎫

d11 d12 . . . d1n

d21 d22 . . . d2n

...
...

. . .
...

dm1 dm2 . . . dmn

⎬

⎭
⎭
⎭
⎞

.

The element of matrix D is a binary vector dij . The size of dij is equal
to the number of processors, that is, |dij | = n. Each element of dij represents
dependency among processors. More specifically,

k-th element of dij =

⎠
1, if k ∈ S

(i)
j

0, if k /∈ S
(i)
j .

If k-th element of dij is 1, Processor j has to wait for Processor k at the beginning
of Phase i.

The following is an example of dij :

d35 = (0, 1, 0, 0, 1, 1).

In this example, the number of processors is 6 due to |d35| = 6. d35 represents
that Processor 5 has to wait the end of Phase 2 performed by Processor 2, 5,
and 6 at the beginning of Phase 3. Because Processor 5 has to wait for itself,
the fifth element of di5, i = 1, 2, . . . ,m is always 1.

Given a D and {{X
(i)
j }n

j=1}m
i=1, one can calculate an execution time A

(m)
n .

2.3 Probability Distribution of the Execution Time

The performance of barrier elimination may vary significantly depending on the
distribution of random variables which represent the execution time for each
processor and each phase. In this study, we assume that a random variable
follows one of three probability distributions: exponential distribution, Erlang
distribution, and hyper-exponential distribution.

In exponential distribution whose parameter is λ, the CDF (cumulative dis-
tribution function) for X

(i)
j is assumed in the form

F (x) = P (X(i)
j ≤ x) = 1 − e−λx

200 N. Yonezawa et al.

Table 1. Coefficients of variation (CV)

E100 E4 E2 M H2(a) H2(b) H2(c)
λ1 = 5λ λ1 = 10λ λ1 = 100λ

0.1000 0.5000 0.7071 1.0000 1.5100 1.6186 1.9850

for i = 1, 2, . . . and j = 1, 2, . . . , n, so that the PDF (probability density func-
tion) is in the form f(x) = λe−λx and expectation value (mean execution time)
becomes E(X(i)

j) = 1
λ .

The CDF of Erlang distribution are

F (x) = 1 − e−λkx
k−1∑

r=0

(λkx)r

r!
,

where k is the number of phases1. The expected value of random variables which
follow the above Erlang distribution is also 1

λ . We chose k as k = {2, 4, 100}.
The CDF of hyper-exponential distribution are

F (x) = 1 −
k∑

j=1

Cje
−λjx,

where {Cj}k
j=1 is an arbitrary discrete distribution. We chose these parameters as

follows so that E(X(i)
j) = 1

λ : (k,C1, C2, λ1, λ2) = (2, 1
2 , 1

2 , 5λ, 5
9λ), (2, 1

2 , 1
2 , 10λ,

10
19λ), (2, 3

5 , 2
5 , 100λ, 400

994λ).
Wedenote exponential distribution,Erlangdistribution, andhyper-exponential

distribution by M, Ek, and Hk, respectively, derived from Kendall’s notation in
queuing theory.

The adoption of these distributions for the execution time is based on the fol-
lowing idea. For non-negative random variables with the same expectation value,
the coefficient of variation (CV) is the most useful and popular characteristic
parameter for comparing the degree of variation. The CV c(X) for non-negative
random variable X is defined by c(X) =

⎢
V (X)/E(X), where V (X) is variance

of X, i.e., V (X) = E(X2) − E(X)2. It is clear that for fixed value of E(X), as
increases the value of c(X), the variance of X also increases. In the field of prob-
ability theory, M, Ek, and Hk are the most typical distribution with different
CV. It is well known that c(X) = 1 for M, c(X) < 1 for Ek, and c(X) > 1 for
Hk. In other words, for the same value of expectation, Ek shows lower variance
and Hk shows higher variance comparing with M.

Table 1 shows CVs for the seven distributions. Hereafter, we assume that
λ = 1 without loss of generality.
1 The term of phase which is used in the context of probability theory is unrelated to

a phase which is included in parallel program.

Probabilistic Analysis of Barrier Eliminating Method 201

3 Evaluation

To investigate how much impacts brought by the differences of the load balance
among processors in executing parallel programs on the effect of the barrier elimi-
nating algorithm, we calculated the execution time for three kinds of dependency
patterns with varying the coefficient of variation.

We calculated the execution time using Monte Carlo simulation. We varied
the number of phases m = {2, 3, . . . , 10} as well as the number of processors
n = {2, 4, 8, 16, 32}. We made three kinds of typical dependency patterns (DPs)
and stored them in dependency matrices D. The details of each D are described
later.

We performed five simulations for a pair of (m,n) with the initial number
of steps N , that is, 103. We consider that the simulations are successful if all
the five execution times are equal when the times are rounded off to the second
decimal place. If the rounded times are not equal, we increase N by ten, and then
perform five simulations again. Consequently, we observed that 45 simulations
for all pairs of (m,n) are successful before N reached 1010.

3.1 Results

In DP-1, a processor depends on neighbors and itself. More exactly, Processor j
depends on Processor j − 1, j, and j + 1. Exceptionally, Processor 1 depends on
Processor 1 and 2 as well as Processor n depends on Processor n−1 and n. This
dependency pattern appears in some applications including image processing and
physics simulation, in which the value of a point is computed using neighboring
points. The part of D for n = 4 used in DP-1 is as follows:

D =

⎩

⎜
⎜
⎜
⎫

(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 1, 1)
(1, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 1, 1)

...
...

...
...

⎬

⎭
⎭
⎭
⎞

.

Dependency is fixed as phase ID increases.
Table 2 show the execution time for E100 and H2(a). Due to limitations of

space, the results for three other distributions are not shown but their values
take place between E100 and H2. As mentioned above, the expected value of
the execution time for a single phase is 1 (= 1

λ). For n = 2, the DP is identical
to the pattern in the case that all barriers are remained. Furthermore, with
respect to E2, M, and H2(a), the execution time obtained by simulation for
n = 2 is identical to the execution time obtained by mathematical analysis
shown in Yonezawa et al. [5], in which it is assumed that a random variable
follows one of E2, M, and H2(a). Therefore, this imply the correctness of our
simulation.

202 N. Yonezawa et al.

Table 2. The execution time (DP-1)

n (E100) n (H2(a))
m 2 4 8 16 32 2 4 8 16 32

2 2.11 2.19 2.26 2.31 2.36 3.32 4.82 6.41 8.01 9.57
3 3.17 3.28 3.36 3.43 3.49 4.98 7.06 9.10 11.04 12.88
4 4.23 4.36 4.46 4.54 4.61 6.64 9.31 11.76 14.01 16.10
5 5.28 5.45 5.56 5.65 5.73 8.30 11.57 14.42 16.96 19.26
6 6.34 6.53 6.66 6.77 6.85 9.96 13.82 17.07 19.89 22.40
7 7.39 7.62 7.77 7.88 7.97 11.62 16.07 19.73 22.81 25.51
8 8.45 8.70 8.87 8.99 9.09 13.28 18.33 22.38 25.72 28.61
9 9.51 9.79 9.97 10.10 10.20 14.94 20.58 25.04 28.63 31.70
10 10.56 10.87 11.07 11.21 11.32 16.60 22.83 27.70 31.53 34.77

In DP-2, all processors depend on a single specific producer. It is also known
as ‘single writer, multiple reader’. This pattern appears in master-worker type
applications. The part of D for n = 4 used in DP-2 is as follows:

D =

⎩

⎜
⎜
⎜
⎫

(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

...
...

...
...

⎬

⎭
⎭
⎭
⎞

.

As in DP-1, dependency is fixed as phase ID increases.
DP-3 is similar to DP-2 since all processors depend on a single producer.

However, producer’s ID is incremented when processors go to the next phase
in DP-3. If Processor n is the producer in a phase, Processor 1 becomes the
next producer in the next phase. This pattern appears in some applications
including Gaussian elimination method in which the rows of matrix is assigned
to processors in block-cyclic manner. The part of D for n = 4 used in DP-3 is
as follows:

D =

⎩

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎫

(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(1, 1, 0, 0) (0, 1, 0, 0) (0, 1, 1, 0) (0, 1, 0, 1)
(1, 0, 1, 0) (0, 1, 1, 0) (0, 0, 1, 0) (0, 0, 1, 1)
(1, 0, 0, 1) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 1)

...
...

...
...

⎬

⎭
⎭
⎭
⎭
⎭
⎭
⎭
⎞

.

Unlike DP-1 and 2, dependency is varied as phase ID increases.

3.2 Discussion

Figure 2 shows the ratio of improvement which is calculated by 100×(1−Tp/Tb),
where Tb is the execution time in the case that all barriers are remained and Tp

is the execution time in DP-1, 2, or 3 for m = 10 and n = 8, 32.

Probabilistic Analysis of Barrier Eliminating Method 203

Fig. 2. The ratio of improvement (m = 10; n = 8, 32)

The common trends among three kinds of DPs are (1) if CV increases, namely,
if the loads among processors is more imbalanced, the ratio of improvement also
increases, (2) if n, the number of processors, increases, the ratio of improve-
ment also increases. These trends are also observed in Yonezawa et al. [5]. For
example, the ratio of improvement in the case that all random variables follow
E100 is 11.87 % for n = 32 in DP-2 while the ratio in the case that all random
variables follow H2(c) is 61.41 %. Since the program contains much idle time for
H2, once barriers are partially eliminated, the opportunities to move the execu-
tion of phases forward increases. This decreases idle time and therefore increases
the ratio of improvement. If n increases, the deviation of the execution time
among processors increases. This causes idle time if all barriers are remained.
Eliminating several barriers mitigates the deterioration for larger n.

The ratio of improvement in DP-2 and 3 are greater than DP-1. It is caused by
the number of depended processors. In general, when the number of 1s included
in dependency matrix D increases, the number of depended processors also
increases. In this evaluation, the number of 1s in D for DP-2 is equal to the
one for DP-3 while D for DP-1 has more 1s than two other DPs.

Whereas the number of 1s in D is the same between DP-2 and 3, the exe-
cution times differ. In DP-3, a producer in a phase depends on the previous
producer directly. However, there are depended producers which influence indi-
rectly from the past phases. This makes a chain of dependency across phases and
the producer in Phase j, j > n, depends on all processors directly or indirectly.

DP-1 spends more time compared with DP-2 and 3. It is caused by the
number of chains of dependency. In DP-1, a processor depends on two neighbors.
Therefore, two chains are generated for the processor. This brings rapid growth
of the number of depended processors indirectly.

In this paper, we consider an imaginary optimal situation, where all barri-
ers are removed and all phases are performed consecutively with disregarding
dependencies among processors. Consequently, the execution time include no
idle time in the situation and is regarded as the upper bound of the effect of
barrier eliminating method. We call the relative execution time optimal degree,

204 N. Yonezawa et al.

Fig. 3. Optimal degree (DP-1: n = 32)

which are calculated based on the optimal execution time. Although the value of
optimal degree can be affected by the kinds of DPs and CVs, due to limitations
of space, we show the result with varying CV while fixing DP. One can consider
that a CV is near to optimal if the optimal degree is close to 1. Figure 3 shows
optimal degree for n = 32 in DP-1. While we omit the results for two other DPs,
optimal degree tends to decrease when CV increases in three DPs. For example,
optimal degree in the case that all random variables follow E100 is 0.94 in DP-1
while optimal degree in the case that all random variables follow H2(c) is 0.63.
With E100, the idle time are inherently short even if all barriers are remained
due to a good load balance. In contrast to E100, H2(c) causes long idle time,
which cannot be removed even after several barriers are eliminated.

Figure 4 shows speedup for m = 10 in DP-1, which is calculated based
on mn(= mn

λ), that is, the execution time for uniprocessor. Speedup tends to
decrease when CV increases. For example, the maximum speedup is 28.27 for
n = 32 in DP-1 when all random variables follow E100. In contrast, the speedup
is limited to 6.73 for H2(c).

From the comparison among the results of DP-1, 2, and 3, we found that
the obtained effect of eliminating barriers is higher if a processors depends on

Fig. 4. Speedup (DP-1: m = 10)

Probabilistic Analysis of Barrier Eliminating Method 205

less other processors. Even if a processor depends on few other processors, the
excess barriers force the processor to wait for other non-depended processors.
If a processor depends on quite a few other processors as in DP-3, the effect of
eliminating barriers is limited due to the necessary interprocessor communica-
tions even after eliminating barriers. With regard to the load balance, we found
that a better speedup is obtained if a load balance is better while the less effect
of eliminating barrier is obtained. If loads among processors are imbalanced as
in H2, barrier elimination can contribute to improve the performance of parallel
programs. These observations are consistent to the experimental results we have
executed on PC clusters.

4 Related Work

There are several methods [1,2] to eliminate barrier synchronizations besides
the method [3,4] we investigate in this paper. In both methods, however, some
theoretical model is not constructed and no mathematical evaluation is carried
out.

Sun and Peterson [6] represent the execution time by using random variables
as in this paper. They focus on a method to approximate the execution time
while we aim to optimize parallel programs by eliminating barriers partially.

5 Conclusion

In this paper, we proposed a probabilistic model which describes the behavior of
a parallel program and measured the effect of the algorithm of barrier elimina-
tion. In our model, random variables show the execution time for one phase in
which one processor performs. By introducing dependency matrix, we extended
the model we have proposed in our previous work so that our extended model
represents dependencies among processors.

For evaluation, we executed three kinds of parallel program in simulation. In
order to investigate how a load balance influences the effect of barrier eliminating
method, we adopted three probability distributions, that is, exponential distri-
bution, Erlang distribution, and hyper-exponential distribution. We obtained
the ratio of improvement, the optimal degree, and the speedup. Based on these
results, we found that a better speedup is obtained if a load balance is better
while the less effect of eliminating barrier is obtained.

In the future, we plan to make our study more accurate by sampling execution
times of processors in runtime of real applications and then applying the samples
to our model.

References

1. Dwarkadas, S., Cox, A.L., Zwaenepoel, W.: An integrated compile-time/run-time
software distributed shared memory system. In: Proceedings of International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
pp. 186–197 (1996)

206 N. Yonezawa et al.

2. Tseng, C.W.: Compiler optimizations for eliminating barrier synchronization. In:
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, July 2005, pp. 144–155 (1995)

3. Yonezawa, N., Wada, K.: Reducing idle times on matrix programs by eliminating
barrier synchronization. IEICE J. J91-D(4), 907–921 (2008)

4. Yonezawa, N., Wada, K., Aida, T.: Barrier elimination based on access depen-
dency analysis for OpenMP. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P.,
Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 362–373. Springer,
Heidelberg (2006)

5. Yonezawa, N., Kino, I., Wada, K.: Probabilistic analysis of time reduction by elim-
inating barriers in parallel programmes. Int. J. Commun. Netw. Distrib. Syst. 6(4),
404–419 (2011)

6. Sun, J., Peterson, G.D.: An effective execution time approximation method for par-
allel computing. IEEE Trans. Parallel Distrib. Syst. 23(11), 2024–2032 (2012)

Multi-GPU Parallel Memetic Algorithm
for Capacitated Vehicle Routing Problem

Mieczysfflaw Wodecki1, Wojciech Bożejko2(B), Michaffl Karpiński1,
and Maciej Pacut1

1 Institute of Computer Science, University of Wrocfflaw,
Joliot-Curie 15, 50-383 Wrocfflaw, Poland

{mwd,michal.karpinski,maciej.pacut}@ii.uni.wroc.pl
2 Institute of Computer Engineering, Control and Robotics, Wroclaw University

of Technology, Janiszewskiego 11-17, 50-372 Wrocfflaw, Poland
wojciech.bozejko@pwr.wroc.pl

Abstract. The goal of this paper is to propose and test a new memetic
algorithm for the capacitated vehicle routing problem in parallel com-
puting environment. In this paper we consider a simple variation of the
vehicle routing problem in which the only parameter is the capacity of the
vehicle and each client only needs one package. We analyze the efflciency
of the algorithm using the hierarchical Parallel Random Access Machine
(PRAM) model and run experiments with code written in CUDA.

Keywords: Metaheuristics · Vehicle routing problem · GPGPU

1 Introduction

In Capacitated Vehicle Routing Problem (CVRP) we consider the following sce-
nario: we own a delivery business that sends goods to clients via trucks. Transport
begins at the base station. The time needed to travel from base station to every
client (and from every client to every other client) is known. We can look at
this set-up as a full weighted graph with one highlighted vertex. The goal is to
deliver every package to clients in the smallest possible time according to their
demands. The capacity of each truck is fixed. The truck needs to go back to
the base station to reload when empty. A general CVRP assume that demand of
every client, number of trucks and their capacity are not bound by any assertion.
The vehicle routing problems have been attracting the interest of combinator-
ial optimization experts for over 50 years. The motivation to study this class of
problems lies in its relevance to the real world as well as in its difficulty. One
of books that are worth mentioning is [7]. It is an overview of main VRP varia-
tions (including CVRP). The authors show both exact and heuristic methods of

The work was supported by the OPUS grant DEC-2012/05/B/ST7/00102 of Polish
National Centre of Science.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 207–214, 2014.
DOI: 10.1007/978-3-642-55195-6 19, c© Springer-Verlag Berlin Heidelberg 2014

208 M. Wodecki et al.

finding the solutions. Large portion of the book covers the main variations, like:
VRP with time windows, backhauls, pickup and delivery.

In our variation of the CVRP we assume that every client demands exactly
one package and we have only one delivery truck with fixed capacity. It is easy to
see that with these constraints our problem transforms into a permutation prob-
lem. Furthermore, it is very similar to the classical Traveling Salesman Problem
(TSP) [3] with only difflerence being exclusion of the base station from permuta-
tion. Therefore, only vertices that represent clients are being permutated. Next,
we can evenly partition the resulting permutation into sets of size equal to the
capacity of the truck. These sets represent paths the truck will make with each
round of deliveries.

The similarity to the TSP doesn’t end here. If we set the capacity of the truck
to the number of clients, then CVRP becomes TSP. Because of that, further in
the paper (in the experiments section), we test how well our algorithm performs
in solving TSP problem on well known data sets taken from TSPLIB [8].

The memetic algorithm that we propose is the combination of Simple Genetic
Algorithm [9] and Simulated Annealing [6]. It can be parallelized in a very nat-
ural way on multiple GPUs using the Island Model [2,4,10]. Each GPU contains
one population. We apply series of genetic operators to the population. In addi-
tion, after each iteration of the algorithm, the local search algorithm is run on
every specimen for further solution improvement. Thanks to the parallel nature
of the GPU, we can apply all these functions to each of the specimen at the
same time, which greatly accelerates the computation.

The rest of the paper is organized as follows: firstly, we give a specification
of the CVRP variation we will be solving. Next, we introduce a new memetic
multi-GPU algorithm and give its theoretical analysis of time complexity and
cost. After that we show the results of the performed experiments. The main
goal is to show the scalability of the algorithm.

2 Capacitated Vehicle Routing Problem

Let us consider a full weighted undirected graph G = ≤V,E,w≥, where V =
{v1, · · · , vn} is the set of vertices, E is the set of edges, and w : E ∈ N is the
weight function. Let v1 be the base station. The problem is to find a disjoint full
partitioning Xm = {X1, · · · ,Xk} of set V1 = V \ {v1} and permutations σi for
each Xi such that:

Xm = minarg
X∈P

k⎧

i=1

⎨

⎩
|Xi|−1⎧

j=1

w(σi(j), σi(j + 1)) + w(v1, σi(1)) + w(σi(|Xi|), v1)
⎜

⎫ ,

where P is a set of all valid partitionings. In our variation the size of each set
Xi in partitioning is constrained and it is equal to c, which is the parameter of
the problem. We can interpret c as the capacity of the truck. Note that with this
constraint the truck always takes exactly c packages from the base station. Also
note that since the partitioning X is disjoint, the truck never visits the same
client twice and is only going back to the base station after the loading is empty.

Multi-GPU Parallel Memetic Algorithm for Capacited VRP 209

The problem formulated in such way is NP-complete, which can be shown
with the reduction from Minimum Assignment Problem [1].

3 The GPU Algorithm

To solve the capacited vehicle routing problem we chose memetic algorithm,
which is a modification of a genetic algorithm by addition of local search in each
iteration. The evolutionary operators used are: CX, OX, PMX [5]. Algorithm
1.1 presents a parallel version of the memetic algorithm.

Algorithm 1.1. Parallel memetic algorithm schema

parfor(1..g) do
population = random_population();
while(termination_conditon()) do
parfor(1..c) do

calculate_fitness(population);
mutation(population);
crossover(population);
local_search(population);
selection(population);

end
out_migration = select_migration(population);
broadcast(out_migration);

in_migration = receive();

population.append(in_migration);
selection(population);

end
return best(population);

end

3.1 Algorithm Analysis

We use the hierarchical PRAM model in the analysis. The hierarchy consists
of CPU and its memory and multiple GPUs with their memory and cores. We
assume that the number of islands is equal to number of GPUs, and the size of
population on each isle is equal to the number of cores on GPU (all GPUs are
the same).

Let’s assume following denotations:

– T (g, c, n, i) - time of execution of algorithm on g GPUs, each with c cores on
data of size n on i iterations

– C(g, c, n, i) - cost of execution of algorithm with argument named above.
Equation for cost is C(g, c, n, i) = g · c · T (g, c, n, i).

210 M. Wodecki et al.

Execution time is influenced by following variables:

– n - number of vertices in graph
– g - number of islands (equal to number of GPUs)
– c - size of population on each isle (equal to number of cores)
– e - number of specimen sent to other islands on every migration
– i - number of performed iterations
– f - frequency of migrations
– cross(n), mut(n), eval(n) - time costs of single crossover, mutation and eval-

uation
– prcross, prmut - probability of applying crossover and mutation

Time complexity is calculated as follows:

T (g, c, n, i) = Tinit + i · (Tcross + Tmut + Teval + Ti sel)+

+
i

f
· To sel,

Tinit = O
⎬c · n

c

⎭
,

Tcross = O

⎞
prcross · cross(n) · ⎠

c
2

)

c

⎢

,

Tmut = O

⎥
prmut · mut(n) · c

c

)

,

Teval = O

⎥
eval(n) · c

c

)

,

Ti sel = O

⎥

log
⎥

c +
⎥

c

2

)

· prcross

))

,

To sel = O (log(c + e · (p − 1))) .

Tinit, Tcross, Tmut, Teval are divided by c, because each GPU has c cores that can
perform those operations in parallel. Ti sel equals to the time of parallel sorting of
population enlarged by the specimens that were created during crossover. To sel

equals to the time of parallel sorting of population enlarged by the specimens
received from other islands. Costs of crossover, mutation and evaluation are at
most linear with respect to n. From the above assumptions we have:

T (g, c, n, i) ∞ O(i · (n + prcross · n · c) +
i

f
· n · (log(c + e · g))).

Assuming that the amount of exchanged specimens and the probability of muta-
tion are usually small, we can treat those values as constants, resulting with:

T (g, c, n, i) ∞ O(i · n +
i

f
· n · log(c + g)).

With the above simplification we can estimate the cost as:

C(g, c, n, i) ∞ O(c · (g · i · n +
i

f
· g2)).

Multi-GPU Parallel Memetic Algorithm for Capacited VRP 211

We chose a model of the speedup where we require the sequential and parallel
algorithm to perform the same number of iterations. For each iteration of the
sequential algorithm, the parallel algorithm performs g times more iterations
because it operates on g GPUs. To calculate the speedup we launch the sequential
algorithm for i · g iterations and the parallel algorithm for i iterations on each
GPU.

S(g, c, n, i) =
T (1, c, n, i · g)
T (g, c, n, i)

=
n · (g · i)

i · n + i
f (n · log g)

=
n · g

n + 1
f (n · log g)

.

For obtaining maximal performance n must be close to the number of cores, so
we substitute c = n. The number of cores in one nVidia Tesla S2050 GPU is 448.
The optimal frequency obtained from our experiments equals 50. Final form of
the speedup is:

S(g, 448, 448, i) =
448 · g

448 + 1
50 (448 · log g)

(1)

4 Computational Experiments

The implementation of the algorithm was written in C++ using CUDA and
OpenMPI library. All the tests were performed on nVidia Tesla S2050 1U Com-
puting System.

The first batch of tests we executed on randomly generated data using one
GPU. Our goal was to empirically determine the best parameters for our pro-
gram. In Table 1 we can see the performance results of the basic crossover oper-
ators: PMX, OX and CX. We measure the performance in number of iterations
the algorithm has to make in order to reach certain reference solution using one
of the crossover operators. Total of 1000 difflerent results were generated at this
stage of experiments and the size of input data was increasingly larger. In over
99 % cases the CX operator yielded best results, as it had the fastest convergence
rate. We selected a few most interesting results.

We picked the best value for probability of mutation in similar manner. This
time we plotted 1000 graphs from execution of program run on randomly gener-
ated data. This time we only chose CX operator for crossover, paying attention to
the previous results. We studied the plots for mutation probability values ranged

Table 1. Performance for crossover operators on single GPU (n - number of clients).

n OX PMX CX

30 19 20 10
51 69 56 32
99 354 249 101

300 2510 1223 467
501 11559 5979 234
999 23043 7384 1534

212 M. Wodecki et al.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
oa

l f
un

ct
io

n

Number of iterations

m=0.78

m=0.49

m=0.15

Fig. 1. Algorithm performance on single GPU with different mutation probabilities.

from 0.01 to 1.00. High values of prmut obviously produces random results. No
signs of convergence was seen. We concluded, that the best value is prmut = 0.15.
In Fig. 1 we present the selected plots (tests executed on very large input).

The data sets with the known optimal results for our CVRP variation does
not exist, so it is hard to test the algorithms performance. To summarize our
experiments we need to refer our results to some previous results. In order to
make a comparison with the results of other researchers, we fixed the capacity of
the truck to the number of cities. Now we could solve instances of the traveling
salesman problem, so we were able to use the known data sets, which gives us
at least some knowledge about the performance of the algorithm. In Table 2 we
can see the results of this set of tests. We present percentage relative deviation
of optimal solutions to selected problem instances taken from TSPLIB.

Table 2. Comparison of memetic algorithm to selected TSPLIB instances.

problem prd problem prd

bayg29 0.00 bays29 0.00
brazil58 0.55 brg180 1.65
gr120 1.01 hk48 0.87
gr17 0.00 si1032 7.79
gr21 0.00 si175 1.48
gr24 0.00 si535 6.92
gr48 0.73 swiss42 0.24

Multi-GPU Parallel Memetic Algorithm for Capacited VRP 213

0

1

2

3

4

5

0 1 2 3 4

S
pe

ed
up

Number of GPUs

linear

theoretical

experimental

Fig. 2. Comparison of experimental and theoretical speedup.

Finally we show how the experimental speedup relates to the theoretical
speedup (Eq. 1). We measured 1000 experimental speedups and plotted its aver-
age on the same graph that we plotted the theoretical speedup. Results are
shown in Fig. 2.

5 Conclusions

Speedup results were satisfactory enough, but not ideal. We believe it’s due to
a very simple parallel model. Note that we could only test speedup for limited
number of GPUs due to the fact that nVidia Tesla S2050 Computing System
has only 4 GPUs. Either way, in Fig. 2 we can see that the experimental speedup
behaves similarly as the theoretical speedup. On another note our memetic algo-
rithm can be used in solving TSP as the results were not far away from optimal.

The vehicle routing problem and its many variations are NP-complete. It
would seem that our variation might not be computionally hard, since we greatly
simplified the constrains. Unfortunately our variation is NP-complete, which we
show in difflerent paper that is not yet published. We also explore more variations
of CVRP adding more constraints to the problem discussed here. It may be
reassuring that if we set the capacity of the truck to 2, the problem becomes
trivially easy to compute. On the other hand, it might not even be practically
usable. Either way, we believe that it is important to be aware of the barriers
relaying in computing difficulty of the problem, which is another motivation to
study simplified versions of the NP-complete problems.

214 M. Wodecki et al.

References

1. Bandelt, H., Crama, Y., Spieksma, F.: Approximation algorithms for multi-
dimensional assignment problems with decomposable costs. Discrete Appl. Math.
49, 25–40 (1994)

2. Bożejko, W., Uchroński, M., Wodecki, M.: The new golf neighborhood for the flex-
ible job shop problem, Proceedings of the ICCS 2010. Procedia Computer Science
1, 289–296 (2010)

3. Bożejko, W., Wodecki, M.: On the theoretical properties of swap multimoves. Oper.
Res. Lett. 35(2), 227–231 (2007). (Elsevier Science Ltd.)

4. Bożejko, W., Wodecki, M.: Parallel genetic algorithm for minimizing total weighted
completion time. In: Rutkowski, L., Siekmann, J., Tadeusiewicz, R., Zadeh, L.A.
(eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 400–405. Springer, Heidelberg
(2004)

5. Deepa, S.N., Sivanandam, S.N.: Introduction to Genetic Algorithms. Springer, Hei-
delberg (2008)

6. Gelatt, C.D., Kirkpatrick, S., Vecchi, M.P.: Optimization by simulated annealing.
Sci. New Ser. 220(4598), 671–680 (1983)

7. Toth, P., Vigo, D.: The Vehicle Routing Problem. Society for Industrial and
Applied Mathematics, Philadelphia (2001)

8. TSPLIB data sets. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
9. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. Massa-

chusetts Institute of Technology, Cambridge (1999)
10. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Parallel Applications Performance Evaluation
Using the Concept of Granularity

Jan Kwiatkowski(B)

Institute of Informatics,
Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
jan.kwiatkowski@pwr.wroc.pl

Abstract. With the advent of multi-core processors and the growing
popularity of local clusters installations, better understanding of parallel
applications behaviour becomes a necessity. On the other hand perfor-
mance evaluation constitutes an intrinsic part of every application devel-
opment process. The performance analysis can be carried out analytically
or through experiments. When using experimental approach, its results
are based on wall-time measurements and requires consecutive applica-
tion executions which is time-consuming. In the paper an alternative
approach is proposed. Utilizing the decomposition of execution time, a
separate analysis of the computation time and overheads related to par-
allel execution are used to calculating the granularity of application and
then determining the efficiency of the application. The usefulness of the
new technique has been evaluated by comparing its results with those of
classical ones. The obtained results suggest that the presented method
can be used for performance evaluation of parallel applications.

Keywords: Performance evaluation · Application granularity

1 Introduction

Performance evaluation constitutes an intrinsic part of every application devel-
opment process. In parallel programming the goal of the design process is not to
optimise a single metrics like for example speed. A good design has to take into
consideration memory requirements, communication cost, efficiency, implemen-
tation cost, and others. Therefore performance evaluation of parallel programs
are very important for the development of correct and efficient parallel appli-
cations. In general the performance analysis can be carried out analytically or
through experiments. In the first case it is call performance modelling, when in
the second one performance measurement. A typical approach to performance
measurement based on instrumenting the application, monitoring its execution
and finally analysing its performance using collected information by some dedi-
cated tool. The instrumentation can used some specific hardware features as for
example the performance counters as well as architectural features such as trap

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 215–224, 2014.
DOI: 10.1007/978-3-642-55195-6 20, c© Springer-Verlag Berlin Heidelberg 2014

216 J. Kwiatkowski

or breakpoint instructions. On the other hand in performance measurement two
different approaches can be distinguish, the first when the time measurement is
included as additional code in the evaluated application and the second one when
some specific external tool is used for time measurement, for example, profilers.
Later, the second approach can be divided onto two classes of tools, the first
which modified existing operating system and the second one which are auto-
nomic. Independently on the used evaluation method, analytical or experimental
the same performance metrics are used [2]. For parallel application performance
evaluation various metrics are used - the run time, speedup or efficiency are all
usually measured using the wall-clock time [3] and requires consecutive appli-
cation executions which is time-consuming. In the papers [5,7,9] the methods,
which overcome above problem for single core processors have been proposed.

In the paper an alternative approach that is extension of both methods men-
tioned above is proposed. It based on the concept of granularity and decomposi-
tion of the execution time between the time devoted to the computations and the
overhead related to the parallel application execution and can be used for multi-
core processors. The paper is organised as follows. Section 2 briefly describes
different metrics used during parallel application performance evaluation. The
idea of using granularity in performance evaluation as well as discussion related
to components of parallel run time is presented in Sect. 3. The next section illus-
trates the experimental results obtained during evaluation of different parallel
algorithms using proposed method and briefly describes these algorithms. The
comparison of obtained results with results of standard methods is also included.
Finally, Sect. 5 outlines the work and discusses ongoing work.

2 Performance Metrics

During performance evaluation of parallel applications different metrics are used
[3,4,8]. The first one is the parallel run time (truntime). It is the time from
the moment when computation starts to the moment when the last processor
finishes its execution. The parallel run time is composed as an average of three
different components: computation time, communication time and idle time.
The computation time (tcomp) is the time spent on performing computation by
all processors, communication time (tcomm) is the time spent on sending and
receiving messages by all processors, the idle time (tidle) is when processors stay
idle. So, it can be described by the equation truntime = (tcomp + tcomm + tidle)/p,
where p is a number of used processors. Moreover the computations time consists
of the parallelized part of the sequential algorithm, additional computations
that have to be performed in the parallelized version of the algorithm and the
computations needed to deal with the communication (e.g. data marshalling):
tcomp = tcomp single+tcomp ovhd comp+tcomp ovhd comm. The communication time
tcomm is defined as the time which processors spend waiting for the data from
other processors to arrive or (if the synchronous transfer is used) waiting for
other parties to receive the data sent. The CPU time they spend on sending
their data is already included in tcomp ovhd comm.

Parallel Applications Performance Evaluation 217

The parallel run time of a parallel algorithm depends not only on the size of
the problem but also on the complexity of the interconnection network and the
number of processors used. The next commonly used metric is speedup, which
captures the relative benefit of solving a given problem using a parallel system.
There exist different speedup definitions. Generally the speedup (S) is defined
as the ratio of the time needed to solve the problem on a single processor to the
time required to solve the same problem on a parallel system with p processors.
Depending on the way in which sequential time is measured we can distinguish
absolute, real and relative speedups. Theoretically, speedup cannot exceed the
number of processors used during program execution, however, different speedup
anomalies can be observed [6].

Both above mentioned performance metrics do not take into account the util-
isation of processors in the parallel system. While executing a parallel algorithm
processors spend some time on communicating and some processors can be idle.
Then the efficiency (E) of a parallel program is defined as a ratio of speedup to
the number of processors. In the ideal parallel system the efficiency is equal to
one but in practice efficiency is between zero and one, however because of dif-
ferent speedup anomalies, it can be even greater than one. Similar to efficiency
metrics is efficacy (η) that is a ratio of the speedup to square to the number of
processors. When the efficacy has maximum value for some number of processors
it means that this number of processors maximize application speedup per unit
of cost. The next measure, which is often used in the performance evaluation of
parallel programs, is the cost of solving a problem by the parallel system. The
cost is usually defined as a product of the parallel run time and the number of
processors. The next useful measure is the scalability of the parallel system. It
is a measure of its capacity to increase speedup in proportion to the number of
processors. We say that a system is scalable when the efficiency is the same for
increasing the number of processors and the size of the problem [4].

Concluding the above short description of different performance metrics we
can say that during experimental performance evaluation of parallel programs we
need to measure the run time of sequential and parallel programs. However, there
is a question: Is it possible to evaluate a parallel program using the above metrics
by executing only a parallel version of the program on a parallel computer?

3 Using Granularity for Performance Analysis

In general the granularity of a parallel computer is defined as a ratio of the time
required for a basic communication operation to the time required for a basic
computation operation and for parallel algorithms as the number of instruc-
tions that can be performed concurrently before some form of synchronisation
needs to take place. Let’s defined the granularity of the parallel application sim-
ilarly to above definition for parallel computers as the ratio of the amount of
computation to the amount of communication within a parallel algorithm imple-
mentation (G = Tcomp/Tcomm). This definition can be used for calculating the
granularity of a single process executed on the single processor as well as for

218 J. Kwiatkowski

the whole program using total communication and computation times of all pro-
gram processes. Let us to calculate parallel program efficiency using the above
definition of granularity. For this aim we defined the overhead function, which
determines all overheads in the parallel algorithm compared with the best serial
algorithms.

The overhead function is a function of problem size and the number of proces-
sors and is defined as follows [4]:

To(W,p) = p ≤ Tp − W (1)

where W denotes the problem size, Tp denotes time of parallel program execution
and p is the number of used processors. The problem size is defined as the
number of basic computation operations required to solve the problem using the
best serial algorithm. Let us assume that a basic computation operation takes
one unit of time. Thus the problem size is equal to the time of performing the
best serial algorithm on a serial computer. Based on the above assumptions after
rewriting the Eq. (1) we obtain the following expression for parallel run time:

Tp =
W + To(W,p)

p
(2)

Then the resulting expression for efficiency takes the form:

E =
1

1 + To(W,p)
W

(3)

Recalling that the parallel run time consists of computation time, commu-
nication time and idle time. If we assume that the main overhead of parallel
program execution is communication time then Eq. (3) can be rewritten as fol-
lows:

E =
1

1 + Ttotal comm

W

(4)

The total communication time is equal to the sum of the communication
time of all performed communication steps. Assuming that the distribution of
data among processors is equal then the communication time can be calculated
using equation Ttotal comm = p ≤ Tcomm. Note that the above is true when the
distribution of work between processors and their performance is equal. Similarly,
the computation time is the sum of the time spent by all processors performing
computation. Then the problem size W is equal to p ≤ Tcomp.

Finally, substituting the problem size and total communication time in Eq. (4)
by using above equations we get:

E =
1

1 + Tcomm

Tcomp

=
1

1 + 1
G

=
G

G + 1
(5)

It means that using the concept of granularity we can calculate the efficiency
and speedup of parallel algorithms.

Parallel Applications Performance Evaluation 219

Taking into consideration the brief discussion related to the parallel run
time from previous section we can determined that in the above consideration
not all overheads that appears during parallel program execution are consid-
ered. Moreover during experiments the measurements are performed mainly for
the computations time (tcomp) and the wall-clock time (twall) that represents
parallel run time. Then when computational overheads can be neglected all
determined overheads can be expressed by: toverhead = twall − tcomp. Then dur-
ing performance measurement instead of granularity isogranularity defined as
(Giso = tcomp/toverhead) will be used.

Concluding above consideration it is possible to evaluate a parallel applica-
tion using such metrics as efficiency and speedup by measuring only the compu-
tation and wall-clock times during execution of parallel version of a program on
a parallel computer.

4 Case Studies

To confirm the usefulness of the theoretical analysis presented in the previous
section the series of experiments were performed. During the experiments three
different algorithms were used: K-means, solving longest common subsequence
problem (LCS) and Cannon Matrix Multiplication. The tests were executed on
cluster located at the Institute of Informatics, Wroclaw University of Technol-
ogy. The cluster is equipped with 13 homogeneous IBM HS21 with Xeon Quad
Core X5365 - 3.0 GHz, space-shared nodes connected with the fast Ethernet
network switch. To avoid the execution time anomalies [6] the experiments were
performed for data sizes sufficiently larger than CPU cache size and smaller than
the main memory limits. Because the experiments were performed in a multi-
user environment the execution times depended on computer load, therefore the
presented results are the averages from the series of 10 identical experiments
performed. Moreover the results of measurement lying in the distance above 1.5
interquartile range of the whole series were treated as erroneous and omitted,
and the measurement was repeated. To evaluate the accuracy of the new method
the relative error defined as S−S

S where S is the actual speedup and S is the
estimated one is presented for each tested algorithm.

K-means is one of the algorithms that is used for solving the clustering prob-
lem [10]. It classifies a given data set (for example point in 2-dimension space)
into defined fixed number of clusters k (predefined). In the first algorithm’s step
so called centroids for each cluster should be chosen - one for each cluster. These
centroids can be defined in random way however the better choice is to place
them as much as possible far away from each other. In the next step all points
from the data set are assign to the nearest centroid. After completion of this step
the new centroids for each cluster are calculated using the means metrics for the
created clusters. Then we repeated the second step using these new centroids.
The process is continue as long as the differences between coordinates of new
and old centroids are satisfied. Alternatively the process can be finished after
predefined number of iterations. Concluding algorithm aims at minimizing some
defined objective function, for example a squared error function.

220 J. Kwiatkowski

The above algorithm was parallelized in the following simple way. The chosen
processor reads input data, and then distributes them to other processors. Each
processor received N/p data, when p is a number of available processors and
N is the number of input data. Then each processor generates the appropriate
number of centroids (it depends on the number of received data, and number of
predefined clusters) and exchanges information about them with other proces-
sors. After completion of above step each processor has information about all the
centroids and performs the second step of the sequential algorithm. In the next
step each processor calculates the data necessary to calculate new centroids (the
number of point in each cluster and sums of points coordinates) and exchange
this information with other processors. Then the new centroids are calculated, in
parallel by all processors (execution replication), and again the process returns
to the second step of sequential algorithm. The algorithm ends when the stop
criterion is met. Then the chosen processor collects clustering results from other
processors and merge them.

The next algorithm solves a problem to find the length of the longest common
subsequence of two sequences A and B and it bases on matrix LCS|A|×|B|. Let
lcsk,g be an element of matrix LCS and it is the length of the longest common
subsequence for the first k elements from A and g first elements from B [1]. The
solution is given by the recurrence formulation:

lcsk,g =

⎧
⎨

⎩

0 for k < 1 or g < 1
lcsk−1,g−1 + 1 for k, g ≥ 1 and A[k] = B[g]
max(lcsk−1,g, lcsk,g−1 for k, g ≥ 1 and A[k] ∈= B[g]

(6)

The computation goes from k = 1 and g = 1 to k = |A| and g = |B|. We can see
from formulation, that to compute value for pair k, g we neeed only maximum
three value computed earlier, which are very near in the matrix.

In the parallel case a strip of the matrix with size |A| × (|B|/p) is assigned
to each processor. The first processor computes ms rows of its part of submatrix
and then send the right most result to second processor. The second processor
starts its computation of this same number of rows, and right result sends to
next processor. In this same time the first processor computes the next ms rows
in its submatrix. This mean, that processors compute in pipeline and for one
processor there are |A|/ms messages sent and received. In whole computation
each processor send (except last one) and receive (except first one) a whole
column of data of length |A|.

The last algorithm Cannon Matrix Multiplication algorithm as the classical
parallel algorithm has been implemented according with its definition [4].

4.1 Experimental Results

In the experiments performed for K-means algorithm data set sizes 20000, 100000
and 200000 were used. The number of generated clusters was 20, 100 and 200,
respectively. Moreover different hardware configurations by means different num-
ber of cores from each processor were used. Received results are presented on
Figs. 1, 2, 3, and 4.

Parallel Applications Performance Evaluation 221

Fig. 1. K-means algorithm speedup and estimated speedup - 1 core at each node

The first test was performed using 1 core from 1, 2, 4, 8, 12, and 13 proces-
sors, its results are presented on Fig. 1. As can be seen the actual speedup and
estimated speedup are very close, only when using 12 processors and the size of
data set is equal 20000 there are large differences between actual and estimated
speedup and the precise relative error is over 20 %, when for other cases between
0,2 % and 5 %.

In the second test 2, 4, 8, 16, 24 and 26 processing units (cores), two from each
processor were used. Results of this test are presented on Fig. 2. As previously
can be seen that the actual speedup and estimated speedup are very close. The
difference appears when using 12 processors and the size of data set is equal
20000 as previously. However for this test the precise relative error values are
slightly larger, between 0,2 % and 6 % and over 30 % for the first case.

In the third test 4, 8, 16, 24, 48 and 52 processing units (cores), four for
each processor were used. Results of this test are presented on Fig. 3. In this test
results are satisfied, too however for case when the size of the data set is equal

Fig. 2. K-means algorithm speedup and estimated speedup - 2 cores at each node

222 J. Kwiatkowski

Fig. 3. K-means algorithm speedup and estimated speedup - 4 cores at each node

Fig. 4. K-means algorithm speedup and estimated speedup

20000 the precise relative error is much larger, between 1 % and 30 %, when for
other cases between 0,4 % and 6 %.

In the last test performed for K-means algorithm 2, 4, 8, 12, 13, 16, 24, 26,
48 and 52 processing units (cores) randomly chosen from 52 available at cluster
were used. As during the previous tests the worst results are for size of data set
equals 20000, the precise relative error values are between 0,8 % and 30 %. In
two other cases are between 0,2 % and 6 %.

The experiments for the LCS algorithm were performed for the constant size
of both strings |A| = |B| = 10000. The ms sizes of 4, 5, 10, 100 and 1000 were
used for test. The measurements were performed for 1, 4, 9, 16 and 25 processing
units (cores randomly chosen from 52 available at cluster).

The Fig. 5 presents the application actual and the estimation speedup values.
Although the shapes of the functions are similar, even at the first glance it can
be noted that in the case of the smaller ms values the estimated speedups are
shifted upwards comparing to the actual results and the precise relation error is
even over 100 %, when for larger ms is between 0 % and 7 %.

Parallel Applications Performance Evaluation 223

Fig. 5. LCS algorithm speedup and estimated speedup

In the experiments performed for the Cannon Matrix Multiplication algo-
rithm the matrix sizes 504*504, 840*840 and 1008*1008 were used. The mea-
surements were performed for 1, 4, 9, 16 and 25 processing units (cores) randomly
chosen from 52 available at cluster.

On the Fig. 6 the actual and estimated speedups are presented. It can be seen
that the estimated speedups closely match the actual ones for the larger matrix
than for the smaller one. The precise relative error values are between 1 and 10

Fig. 6. Cannon Matrix Multiplication speedup and estimated speedup

5 Conclusions and Future Work

The paper propose a new way of calculating speedup and efficiency of parallel
algorithms. The method is based on the idea of granularity and makes it possible
to calculate the efficiency and speedup of parallel algorithm by executing only
the parallel version of a program on a parallel computer. The method requires

224 J. Kwiatkowski

only the readily available data, without the need of installation of additional
software or application modifications, we need only to measure wall-clock time
and computational time. The experiments performed proved that the estima-
tion accuracy is sensitive for different hardware structures when using multicore
processors. For all analysed algorithms the results obtained are similar: the shape
of diagrams is similar and the value of speedup is close. When the additional
computational overhead is present, the accuracy is reduced.

The project is in current study, the first received results are very promising.
Further research should investigate the possibility of using the isogranularity for
evaluation algorithms with speedup anomalies, as well as the possibility of using
isogranularity for scalability analysis.

References

1. Alves, C.E.R., Cceres, E.N., Song, S.W.: Sequential and parallel algorithms for the
all-substrings longest common subsequence problem. Universidade de So Paulo,
Instituto de Matemtica e Estatstica (2003)

2. Cremonesi, P., Rosti, E., Serazzi, G., Smirni, E.: Performance evaluation of parallel
systems. Parallel Comput. 25, 1677–1698 (1999). (North-Holland)

3. Foster, I.: Designing and Building Parallel Programs. Addison-Wesley, Reading
(1995). (http://www.mcs.anl.gov/dbpp/text/book.html)

4. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of
parallel algorithms and architectures. IEEE Parallel Distrib. Technol. 1, 12–21
(1993)

5. Kwiatkowski, J.: Evaluation of parallel programs by measurement of its granularity.
In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM
2001. LNCS, vol. 2328, pp. 145–153. Springer, Heidelberg (2002)

6. Kwiatkowski, J., Pawlik, M., Konieczny, D.: Parallel program execution anomalies.
In: Proceedings of the First International Multiconference on Computer Science
and Information, Wisla, Poland (2006)

7. Kwiatkowski, J., Pawlik, M., Konieczny, D.: Comparison of execution time decom-
position methods for performance evaluation. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1160–
1169. Springer, Heidelberg (2008)

8. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing. The Benjamin/Cummings Publishing Company Inc., Redwood City (1995)

9. Pawlik, M., Kwiatkowski, J., Koniecznym, D.: Parallel program performance evalu-
ation with execution time decomposition. In: Proceedings of the 16th International
Conference on Systems Science, Wroclaw, Poland (2007)

10. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of the Fifth Symposium on Mathematical, Statistics, and
Probability, pp. 281–297. University of California Press, Berkeley (1967)

http://www.mcs.anl.gov/dbpp/text/book.html

Workshop on Parallel Computational
Biology (PBC 2013)

Resolving Load Balancing Issues in BWA
on NUMA Multicore Architectures

Charlotte Herzeel1,4(B), Thomas J. Ashby1,4, Pascal Costanza3,4,
and Wolfgang De Meuter2

1 imec, Kapeldreef 75, 3001 Leuven, Belgium
{charlotte.herzeel,ashby}@imec.be

2 Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussel, Belgium
wdmeuter@vub.ac.be

3 Intel, Veldkant 31, 2550 Kontich, Belgium
pascal.costanza@intel.com

4 ExaScience Life Lab, Kapeldreef 75, 3001 Leuven, Belgium
http://www.exascience.com

Abstract. Running BWA in multithreaded mode on a multi-socket
server results in poor scaling behaviour. This is because the current
parallelisation strategy does not take into account the load imbalance
that is inherent to the properties of the data being aligned, e.g. varying
read lengths and numbers of mutations. Additional load imbalance is
also caused by the BWA code not anticipating certain hardware char-
acteristics of multi-socket multicores, such as the non-uniform memory
access time of the different cores. We show that rewriting the parallel
section using Cilk removes the load imbalance, resulting in a factor two
performance improvement over the original BWA.

Keywords: BWA · Multithreading · NUMA · Load balancing · Cilk

1 Introduction

Burrows-Wheeler Aligner (BWA) [1] by Li and Durbin is a widely used short
read alignment tool. It uses the Burrows-Wheeler transformation of the reference
genome, which not only minimises the memory needed to store the reference,
but also allows for a strategy for matching the reads that operates in the order
of the read length. The technique was originally proposed in the context of text
compression [5] and the matching process needed to be adapted for short read
alignment to handle mismatches due to mutations (such as SNPs) and indels [1].
There are different options to handling mismatches, and BWA presents one solu-
tion. Other short read aligners based on Burrows-Wheeler transformation, such
as Bowtie and SOAP2, use different strategies for mismatches, which are con-
sidered to produce faster albeit less accurate results than BWA [1,6,7].

In order to reduce the overall execution time, BWA supports multithreaded
execution when appropriate hardware resources are available. In this mode, the

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 227–236, 2014.
DOI: 10.1007/978-3-642-55195-6 21, c© Springer-Verlag Berlin Heidelberg 2014

228 C. Herzeel et al.

reads are evenly distributed over the available cores of a multicore processor so
that they can be aligned in parallel. In theory, this should give a linear speedup
compared to sequential or single-core execution.

To evaluate the effectiveness of BWA’s multithreaded mode, we set up a
scaling experiment on both a 12-core and a 40-core multi-socket processor. The
workload we use is a read set from the 1000 Genomes Project [8] (NA20589)
with approximately 15 million of soft-clipped reads between 37–108 bp. Figure 1
shows the scaling of our workload on an Intel Xeon X5660 processor with 12
cores (2 sockets × 6 cores). BWA does not achieve linear speedup (red line). At
12 threads, we measure that BWA achieves 9x speedup, 73 % of the potential,
linear, speedup (blue line). The scaling behaviour of BWA gets worse as the
number of cores and sockets of the target processor increases. Figure 2 shows the
scaling behaviour of our workload on a 40-core Intel Xeon E7-4870 processor (4
sockets × 10 cores). Again, BWA does not achieve linear speedup (red line). The
speedup measured for 40 cores indicates a speedup of 13.9x, only 35 % of the
potential (blue line).

Fig. 1. Scaling of BWA on 12 cores. Red: linear speedup. Blue: measured speedup
(Color figure online).

Our hypothesis is that the bad scaling behaviour of BWA is due to the
fact that the parallelisation of BWA does not take into account load balancing.
BWA evenly distributes the reads over the available cores at the beginning of
the execution, but this may cause load imbalance when different reads require
different times to process. In the worst case, an unlucky core gets all the difficult
reads so that it still has to work while other cores are idle because they finished
aligning their cheap reads. We claim that the cost of aligning reads varies because
both the read length and numbers of mutations varies for the different reads in
a workload. Also, the memory layout and the NUMA architecture of our multi-
socket processors has an impact on the alignment cost of individual reads.

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures 229

Fig. 2. Scaling of BWA on 40 cores. Red: linear speedup. Blue: measured speedup
(Color figure online).

In the rest of this paper, we analyse the cause of the load imbalance in BWA
in more detail. We also present a Cilk-based parallelisation strategy that removes
the load imbalance, allowing us to achieve more than a factor two speedup
compared to the original code.

2 BWA Implementation

Short read alignment is a massively data parallel problem. In a typical work-
load millions of reads, up to 100 bp (200 characters) long, need to be aligned.
Reads are aligned independently from one another. Hence read alignment can
be parallelised as a data parallel loop over the read set.

Concretely, the BWA code1 sets up pthreads equal to the number of cores
on the target processor.2 Each pthread executes a sequential alignment loop for
an equal share of the reads. Linear speedup for such an implementation is only
guaranteed if the work to be done is roughly equal for each pthread, in order to
avoid load imbalance. To detect if there is load imbalance possible, we inspect
the algorithm that is executed to align reads.

2.1 Burrows-Wheeler Alignment Algorithm

The algorithm underlying the BWA code is well-documented [1], but we repeat it
briefly to discuss the challenges it presents for efficient multithreaded execution.

The Burrows-Wheeler alignment algorithm relies on the definition of two aux-
iliary data structures. These data structures are defined in terms of a compress-
ible version of the reference, which is created via the so-called Burrows-Wheeler
1 We always refer to the latest version of BWA, i.e. the bwa-0.6.2 download on [2].
2 This is actually configured via the -t parameter.

230 C. Herzeel et al.

transformation. E.g. BWT (abracadabra) would be ard$rcaaaabb. Given the
Burrows-Wheeler transformation of the reference, the table c tab stores for each
character c in the (genetic) alphabet how many characters occur in the trans-
formation that are lexicographically smaller than c. A second table, occ tab is
defined so that a function occ(occ tab, c, k) returns the number of occurrences of
the character c in the prefix BWT (ref)[1...k]. In principle, the table occ tab has
for each character as many entries as the length of the reference, but BWA only
stores the information for every 32 characters. For the human reference, occ tab
is around 3 GB large [1].

Given the tables c tab and occ tab, finding out where (or whether) a read
matches the reference, is a simple calculation. Figure 3 shows pseudo code for
matching a read. The code consists of a loop that iterates over the characters of
the read (r). Each iteration references the occ tab and c tab to compute a new
starting point (sp) and end point (ep), which represent a range from which the
indexes—where the read matches the reference—can be calculated. The code
in Fig. 3 actually only works for reads that match the reference exactly. For
reads with mutations or indels, additional work is needed. For inexact matches,
multiple alternative matches are checked and explored using a priority queue to
direct the order in which the alternatives are explored. It is not important at this
point to understand all the details, the structure of the code remains roughly
the same as in Fig. 3. What is important to note is that for inexact matches
additional work is necessary. This is also observed by Li et al. in their GPU
implementation of SOAP2 [7].

The code in Fig. 3 embodies certain patterns that have consequences for
multithreaded code:

1. The ratio of memory operations versus other operations is high: 28 % (com-
puted with Intel R© VTuneTM Amplifier XE 2013). Memory operations may
have a high latency and stall processors.

2. In standard multicore servers, cores are clustered in sockets. Cores on different
sockets have different access times to different regions in memory, cf. non-
uniform memory access (NUMA). architecture. A core can access memory on
its own socket faster than memory on other, remote sockets. By default, each
pthread allocates memory on its own socket. In BWA, the tables c tab and
occ tab are allocated at the beginning of the execution, before the alignment
starts. This means that all pthreads which are not on the first socket will
have slower access time to these tables.

3. Aligning a read that matches some part of the reference exactly is cheaper
than matching a read that has mutations or indels.

4. Reads have varying lengths when quality clipping is used—in our example
workload between 37–100 bp. Since each character of a read needs to be
processed by the loop in Fig. 3, longer reads will take longer to match.

The above points are all sources for load imbalance amongst the pthreads:
There is load imbalance because certain threads will have slower access to the
c tab and occ tab tables, and there is load imbalance because certain threads will
have to handle longer or more mutated reads than others.

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures 231

Fig. 3. Alignment of a read (exact)

2.2 Measuring Load Imbalance

We can confirm the predicted load imbalance by measuring the average time
each pthread needs to align its read set. Figure 4 shows the time we measure
per pthread on our 12-core processor.3 Figure 5 shows the same for the 40-core
processor. In both cases, there is a clear load imbalance between the pthreads.

Fig. 4. BWA load imbalance on 12 cores.

3 Removing Load Imbalance with Cilk

Intel R© CilkTM Plus [3,4] is an extension for C/C++ for task-based parallel
programming. It provides constructs for expressing fork/join patterns and par-
allel for loops. These constructs are mapped onto tasks that are executed by a
dynamic work-stealing scheduler. With work stealing, a worker thread is created
3 Averages for 5 runs. Same distribution of reads across cores for each run.

232 C. Herzeel et al.

Fig. 5. BWA load imbalance on 40 cores.

for each core. Every worker thread has its own task pool, but when a worker
thread runs out of tasks, it steals tasks from worker threads that are still busy.
This way faster threads take over work from slower threads, balancing the overall
workload.

The advantage of using Cilk is that load imbalance amongst threads is han-
dled implicitly by the work-stealing scheduler. The programmer simply focuses
on identifying and creating the parallelism.

3.1 Cilk-Based Parallelisation

We replace the pthread-based parallel loop in BWA by a Cilk for loop. There are
some intricacies with regard to making sure that each worker thread has its own
priority queue for intermediate matches, to avoid contention of a shared queue.
Our solution is to initialise the priority queues before executing the parallel loop,
one for each worker thread. The priority queues are stored in a global array so
that they are globally accessible by the worker threads. Inside the for loop, we
use Cilk’s introspective operator for querying the running worker thread’s ID,
which we then use to identify the priority queue the worker thread accesses.

3.2 Improved Scaling Results

By using Cilk, the scaling behaviour of BWA improves drastically. Figure 6 com-
pares the Cilk-based scaling (green) with the original pthread code (blue) on
a 12-core Intel Xeon X5660 processor (2 sockets × 6 cores). To allow direct
comparison, our speedup graphs use the same baseline: 1-threaded execution of
unmodified BWA. With the Cilk version, we achieve a factor 10x speedup or 82 %
of the potential linear speedup (red), compared to 9x speedup or 73 % for the
pthread version. The results are even better for the 40-core Intel Xeon E7-4870

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures 233

processor (4 sockets × 10 cores), cf. Fig. 7. There the Cilk version achieves 30x
speedup, 75 % of the potential, versus 13.86x speedup or 35 % for the pthread ver-
sion. The difference in improvement between the 12-core and 40-core processors
is due to the fact that the 12-core processor has 2 sockets, whereas the 40-core
processor has 4. Hence in case of the 40-core processor, cores are more distant
from each other and load imbalance due to remote memory access is more severe.
Our companion technical report [10] offers a more detailed technical discussion
of these findings, as well as additional experiments with different data sets.

Fig. 6. Scaling of BWA on 12 cores using Cilk. Red: linear speedup. Blue: speedup
measured for original pthreads implementation. Green: speedup measured for our Cilk
solution (Color figure online).

4 Other Issues

Beyond load balancing, there are a number of other issues with BWA that ham-
per efficient multithreaded execution.

4.1 Memory Latency and Hyperthreading

When discussing the BWA algorithm in Sect. 2.1, we saw that the ratio of mem-
ory operations versus other operations is high (28 %). Memory operations have
high latency and stall the processor. This is worsened by the fact that the data
access pattern is random so that both caching and speculation often fail. Hyper-
threading can help in multithreaded applications where the threads have bad
latencies. We see a positive effect of hyperthreading with the Cilk-based version
of BWA, achieving super linear speedup with regard to the number of cores.
In contrast, activating hyperthreading has almost no effect for the original
pthread-based BWA.4 Further improvements using prefetching may be possible.
4 Graphs omitted due to space restrictions, see our technical report [10].

234 C. Herzeel et al.

Fig. 7. Scaling of BWA on 40 cores using Cilk. Red: linear speedup. Blue: speedup
measured for original pthreads implementation. Green: speedup measured for our Cilk
solution (Color figure online).

4.2 Parallel Versus Sequential Section

The graphs we showed so far only take into account the time spent in the parallel
section of BWA. However, the parallel section only comprises the alignment of
the different reads, but before the reads can be aligned, data structures need to
be initialised, e.g. loading the reads from a file into memory. This part of the
code makes up the sequential section of BWA as it is not parallelised.

Amdahl’s law states that the speedup to expect by parallelising a program is
limited by the time spent in the sequential section. Figure 8 shows the timings
for running BWA on 1 to 40 threads on our sample workload. The red part of
a timing shows the time spent on sequential execution, whereas the blue part
shows the time spent in the parallel section. As the number of threads increases,
the time spent in the sequential section becomes a dominating factor in the
overall execution time.

Using Amdahl’s law, we can predict the scaling behaviour of a program.
Figure 9 shows this for BWA: The red line is the ideal scaling behaviour to
expect when the parallel section scales linearly, but the sequential section stays
constant. The blue and green lines show the speedups we actually measure for
both the original BWA code and our Cilk version. The black line shows linear
speedup with regard to the available cores. We see that the red line is little more
than half of this. If we want BWA to get closer to linear speedup to reach the
potential of our processor, we need to parallelise or reduce the sequential section
substantially.

Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures 235

Fig. 8. Time spent on the parallel (blue) versus the sequential section (red) (Color
figure online).

Fig. 9. BWA overall scaling versus potential scaling. Black: linear speedup. Red: theo-
retical speedup via Amdhal’s law, when the parallel section would scale linearly. Blue:
speedup measured for original BWA parallelisation using pthreads. Green: speedup
measured for our Cilk solution (Color figure online).

5 Related Work

Parallel BWA (pBWA) [9] is an MPI-based implementation of BWA for cluster-
based alignment, focusing on inter-node level parallelism. The improvements
they claim for the multithreaded mode of BWA on a single node are already
integrated with the (latest) version of BWA (bwa-0.6.2) that we adapted. Hence
that work is complementary to ours.

236 C. Herzeel et al.

6 Conclusions

The multithreaded mode of BWA scales poorly on multi-socket multicore proces-
sors because the parallelisation strategy, which evenly distributes the reads
amongst available cores, suffers from load imbalance. We remove the load imbal-
ance by rewriting the parallel section of BWA in Cilk, a task parallel extension
for C/C++ based on a work-stealing scheduler that is capable of dynamically
load balancing running programs. Using Cilk, we improve the scaling behaviour
of BWA by more than a factor two, as shown by our experiments on both a
12-core and a 40-core processor. We refer the reader our technical report for
experiments with additional data sets and a more detailed discussion [10].

Other issues to investigate in the future include the possible latency and
bandwidth problems caused by the high number of memory operations, strategies
for further reducing the NUMA penalties such as replication of data structures,
as well as reducing the proportionally large sequential section.

Acknowledgments. This work is funded by Intel, Janssen Pharmaceutica and by the
Institute for the Promotion of Innovation through Science and Technology in Flanders
(IWT).

References

1. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

2. Burrows-Wheeler Aligner. http://bio-bwa.sourceforge.net/
3. Leiserson, C.E.: The Cilk++ concurrency platform. J. Supercomput. 51(3), 244–

257 (2010). (Kluwer Academic Publishers)
4. Intel Cilk Plus. http://software.intel.com/en-us/intel-cilk-plus
5. Farragina, P., Manzini, G.: Opportunistic data structures with applications. In:

41st IEEE Annual Symposium on Foundations of Computer Science, pp. 390–398.
IEEE Computer Society, Los Alamitos (2000)

6. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25:1–
R25:10 (2009). (Article: R25)

7. Li, R., Yu, C., et al.: SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics 25(15), 1966–1967 (2009)

8. Genomes Project. http://www.1000genomes.org/
9. Peters, D., Luo, X., Qiu, K., Liang, P.: Speeding up large-scale next generation

sequencing data analysis with pBWA. J. Appl. Bioinform. Comput. Biol. 1(1), 1–6
(2012)

10. Herzeel, C., Costanza, P., Ashby, T., Wuyts, R.: Performance analysis of BWA
alignment. Technical report, ExaScience Life Lab (2013)

http://bio-bwa.sourceforge.net/
http://software.intel.com/en-us/intel-cilk-plus
http://www.1000genomes.org/

K-mulus: Strategies for BLAST in the Cloud

Christopher M. Hill1(B), Carl H. Albach1, Sebastian G. Angel2,
and Mihai Pop1

1 Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA

{cmhill,calbach,mpop}@umd.edu
2 University of Texas, Austin, TX, USA

sebs@cs.utexas.edu

Abstract. With the increased availability of next-generation sequenc-
ing technologies, researchers are gathering more data than they are able
to process and analyze. One of the most widely performed analysis
is identifying regions of similarity between DNA or protein sequences
using the Basic Local Alignment Search Tool, or BLAST. Due to the
large amount of sequencing data produced, parallel implementations of
BLAST are needed to process the data in a timely manner. While these
implementations have been designed for those researchers with access to
computing grids, recent web-based services, such as Amazon’s Elastic
Compute Cloud, now offer scalable, pay-as-you-go computing. In this
paper, we present K-mulus, an application that performs distributed
BLAST queries via Hadoop MapReduce using a collection of established
parallelization strategies. In addition, we provide a method to speedup
BLAST by clustering the sequence database to reduce the search space
for a given query. Our results show that users must take into account
the size of the BLAST database and memory of the underlying hard-
ware to efficiently carry out the BLAST queries in parallel. Finally, we
show that while our database clustering and indexing approach offers
a significant theoretical speedup, in practice the distribution of protein
sequences prevents this potential from being realized.

Keywords: Bioinformatics · Cloud computing · Sequence alignment ·
Hadoop

1 Introduction

Identifying regions of similarity between DNA or protein sequences is one of
the most widely studied problems in bioinformatics. These similarities can be
the result of functional, structural, or evolutionary relationships between the
sequences. As a result, many tools have been developed with the intention of
efficiently searching for these similarities [1,5,8]. The most widely used applica-
tion is the Basic Local Alignment Search Tool, or BLAST [1].

With the increased availability of next-generation sequencing technologies,
researchers are gathering more data than ever before. This large influx of data

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 237–246, 2014.
DOI: 10.1007/978-3-642-55195-6 22, c© Springer-Verlag Berlin Heidelberg 2014

238 C.M. Hill et al.

has become a major issue as researchers have a difficult time processing and
analyzing it. For this reason, optimizing the performance of BLAST and devel-
oping new alignment tools has been a well researched topic over the past few
years. Take the example of environmental sequencing projects, in which the bio-
diversity of various environments, including the human microbiome, is analyzed
and characterized to generate on the order of several terabytes of data [16]. One
common way in which biologists use these massive quantities of data is by run-
ning BLAST on large sets of unprocessed, repetitive reads to identify putative
genes [11,15]. Unfortunately, performing this task in a timely manner while deal-
ing with terabytes of data far exceeds the capabilities of most existing BLAST
implementations.

As a result of this trend, large sequencing projects require the utilization of
high-performance and distributed systems. BLAST implementations have been
created for popular distributed platforms such as Condor [12] and MPI [2,4].
Recently, MapReduce [3] has become one of the de-facto standards for distrib-
uted processing. There are a few advantages of using the MapReduce framework
over other existing parallel processing frameworks. The entirety of the frame-
work rests in two simple methods: a map and a reduce function. The underlying
framework takes care of the communication between nodes in the cluster. By
abstracting the communication between nodes, it allows software developers to
quickly design software that can run in parallel over potentially thousands of
processors. Although this makes it simple to program, without direct control of
the communication, it may be more inefficient compared to other distributed
platforms.

While these parallel implementations of BLAST were designed to work on
large computing grids, most researchers do not have access to these types of
clusters, due to their high cost and maintenance requirements. Fortunately, cloud
computing offers a solution to this problem, allowing researchers to run their jobs
on demand without the need of owning or managing any large infrastructure.
Web-based services, such as Amazons Elastic Compute Cloud (EC2) [7], have
risen in recent years to address the need for scalable, pay-as-you-go computing.
These services allow users to select from a collection of pre-configured disk images
and services, and also allow more fine-grained customization down to the number
of CPUs, speed, and amount of memory in their rented cluster.

In this paper, we present K-mulus, a collection of Hadoop MapReduce tools
for performing distributed BLAST queries. We show that a limitation to previous
cloud BLAST implementations is their “one size fits all” solution to parallelizing
BLAST queries. We provide several different strategies for parallelizing BLAST
depending on the underlying cloud architecture and sequencing data, includ-
ing: (1) parallelizing on the input queries, (2) parallelizing on the database,
and then a (3) hybrid, query and database parallelization approach. Finally, we
describe a k-mer indexing heuristic to achieve speedups by generating data-
base clusters which results in a reduction of the search space during query
execution.

K-mulus: Strategies for BLAST in the Cloud 239

2 Methods

2.1 MapReduce

The MapReduce framework was created by Google to support large-scale parallel
execution of data intensive applications using commodity hardware [3]. Unlike
other parallel programming framework where developers must explicitly handle
inter-process communication, MapReduce developers only have to focus on two
major functions, called map and reduce.

Prior to running a MapReduce program, the data must be first stored in
the Hadoop Distributed File System (HDFS). The user then specifies a map
function that will run on the chunks of the input data in parallel. MapReduce is
“data aware,” performing computation at the nodes containing the required data
instead of transferring the data across the network. The map function processes
the input in a particular way according to the developers specifications, and
outputs a series of key-value pairs. Once all nodes have finished outputting their
key-value pairs, all the values for a given key are aggregated into a list (via
Hadoop’s internal shuffle and sort mechanisms), and sent to the assigned reducer.
During the reduce phase, the (key, list of values) pairs are processed. This list
of values is used to compute the final result according to the applications needs.
For more details and examples, please see [3].

2.2 Parallelization Strategies

K-mulus uses three main strategies to perform distributed BLAST queries using
Hadoop MapReduce. As we will show, the efficacy of these strategies are all
dependent on the underlying hardware and data being used.

Query Segmentation. Arguably the simplest way to parallelize an applica-
tion using MapReduce is to set the map function to the given application and
execute it on subsets of the input. The individual results of the map functions
are then aggregated by a single reducer. This query segmentation is the default

>seq_1
GSVEDTTG
>seq_2
SQSLAALL
>seq_3
NKCKTPQG
>seq_4
LMDKNRIE

>seq_1
GSVEDTTG
>seq_2
SQSLAALL

BLAST

1. Split fasta file into chunks. 2. Send chunks to compute
nodes to run BLAST.

Compute nodes must
have BLAST and DB
pre-loaded.>seq_3

NKCKTPQG
>seq_4
LMDKNRIE

BLAST

NR
Input.fasta

NR

Fig. 1. Query segmentation approach for parallelizing BLAST.

240 C.M. Hill et al.

implementation of CloudBLAST [13], a popular MapReduce implementation of
BLAST. Instead of writing custom map and reduce functions, CloudBLAST
takes advantage of Hadoop’s streaming extension that allows seamless, parallel
execution of existing software on Hadoop without having to modify the under-
lying application.

The first step of the query segmentation approach is to partition the query
file into a predetermined number of chunks (usually the number of computing
nodes) and send them to random nodes (Fig. 1). This partitioning of the query
sequences can be done automatically as the sequence files are uploaded to the
HDFS. The user must pay special attention to the size of their query sequence
file because the block sizes for the HDFS are 128 MB by default. It is possible
to underutilize the Hadoop cluster, since the map functions are often assigned
to blocks of the input data. If a user uploads a 128 MB sequence file to HDFS
and uses Hadoop’s streaming extension, then despite the number of nodes they
request, BLAST will be performed only using the node containing the block of
the data.

During runtime, the map function receives as input a block of FASTA-
formatted sequences. Each map function simply executes the included BLAST
binary against the included database sequences and outputs the results directly
to disk. Although there is no need to use a reducing step for this strategy, one
reducer can be used to aggregate the results.

Database Segmentation. Instead of segmenting the query, we can segment the
database into a predetermined number of chunks. By segmenting the database,
we can reduce the overhead of disk I/O for databases that do not fit completely
into memory. Otherwise, as soon as the database grows larger than the amount
of main memory, the runtime increases by orders of magnitude [2]. Therefore, it
is important to examine the underlying hardware limitations and database size
before using the default query segmentation approach.

During runtime, the query sequences are uploaded to the HDFS and sent to
all nodes using the DistributedCache feature of Hadoop. The DistributedCache
feature ensures that all nodes involved in the MapReduce have access to the same
files. The map function is only responsible for passing the path of the database
chunks to the reducer. Each reduce function executes BLAST on the complete
set of input sequences.

Since BLAST takes into account the size of the database when comput-
ing alignment statistics, the individual BLAST results must have their scores
adjusted for the database segmentation. Fortunately, BLAST provides the user
an option to specify the effective length of the complete database.

Hybrid Approach. One potential problem with the database segmentation
approach is that if we evenly partition the database across all nodes in our clus-
ter, then the database chunks may only fill up a small portion of the available
memory. In this case, we must use a hybrid approach, where we segment the
database into the least number of chunks that can fit entirely into memory.

K-mulus: Strategies for BLAST in the Cloud 241

Afterwards, we replicate the database chunks across the remaining machines.
During runtime, the query sequences are split and sent to the different the data-
bases chunks, but only sent once to each of the database chunk replicates. This
hybrid approach is also utilized by mpiBLAST [2], a widely-used distributed ver-
sion of BLAST using MPI, which can yield super-linear speed-up over running
BLAST on a single node.

During runtime, each map function receives a chunk of the query sequences
and is responsible for sending out the chunk to each database partition. For each
database partition i, the map function randomly selects a replicate to send the
query chunk to in the form of a tuple (dbi,replicate num, query chunk). The reducer
receives a collection of query chunks for a given database partition and replicate
and BLASTs the query chunk against the database partition.

2.3 K-mer Indexing

One of the original algorithms that BLAST uses is “seed and extend” alignment.
This approach requires that there be at least one k-mer (sequence sub-string
of length k) match between query and database sequence before running the
expensive alignment algorithm between them [1]. Using this rule, BLAST can
bypass any database sequence which does not share any common k-mers with
the query. Using this heuristic, we can design a distributed version of BLAST
using the MapReduce model. One aspect of BLAST which we take advantage of
is the database indexing of k-mers. While some versions of BLAST have adopted
database k-mer indexing for DNA databases, it seems that this approach has not
been feasibly scaled to protein databases [14]. For this reason, BLAST iterates
through nearly every database sequence to find k-mer hits. Here we describe an
approach for K-mulus that attempts to optimize this process by using lightweight
database indexing to allow query iteration to bypass certain partitions of the
database.

In order to cluster the database, for each sequence, we first create a vector
of bits in which the value at each position indicates the presence of a specific
sequence k-mer. The index of each k-mer in the vector is trivial to compute.
We then cluster these bit vectors using a collection of clustering algorithms: k-
means [6], and k-medoid [9]. Our algorithms perform clustering with respect to
the presence vectors of each input sequence. For each cluster, a center presence
vector is computed as the union of all sequence presence vectors in the cluster.
The distance between clusters is taken as the Hamming distance, or number
of bitwise differences, between these cluster centers. This design choice creates
a tighter correspondence between the clustering algorithm and the metrics for
success of the results, which depend entirely on the cluster presence vectors as
computed above. We also keep track of the centers for each cluster as they play
the crucial role of identifying membership to a cluster.

After the database has been clustered, we compare the input query sequences
to all centers. The key idea is that by comparing the input query sequence to
the cluster centers, we can determine whether a potential match is present in

242 C.M. Hill et al.

a given cluster. If this is the case, we run the BLAST algorithm on the query
sequence and the database clusters that we determined as relevant for the query.

3 Results

3.1 Comparison of Parallelization Approaches on a Modest Size
Cluster

We evaluated the different parallelization approaches of protein BLAST on
30,000 translated protein sequences randomly chosen from the Human
Microbiome Project [16] (Fig. 2). The sequences were BLAST against NCBI’s
non-redundant (nr) protein database (containing 3,429,135 sequences). For our
analyses we used a 46 node Hadoop (version 0.20.2) cluster. Each node had 2
map/reduce tasks and 2 GB of memory, reproducing a typical cloud
cluster.

The nr database used was 9 GB in size and unable to completely fit into the
memory of a single node in our cluster. We segmented the database into 100
and 500 chunks to test our database segmentation approach. With 100 database
chunks, the database will be roughly split across each reduce task. We included
a partitioning of 500 database chunks to show the effects of over-partitioning the
database.

Segmenting the database into 100 and 500 partitions resulted in a 26 % and
16 % decrease in runtime compared to the query segmentation approach, respec-
tively. Although using a smaller number of database partitions was faster, there
are still advantages for using more database partitions. Assuming an even distri-
bution of query workload, if a node fails near the end of its BLAST execution,
then that task must be restarted and the overall runtime is essentially doubled.
Over-partitioning the database allows for a failed task to restart and complete
faster.

Our hybrid query and database segmentation approach resulted in a 44 %
decrease in runtime compared to only query segmentation. Considering that the
memory of each node in our cluster was 2 GB, and the nr database was 9 GB, we
partitioned the database into 5 chunks, each roughly 2 GB in size. This allows
the databases to fit completely into memory at each node.

Fig. 2. Runtimes of different BLAST parallelization approaches.

K-mulus: Strategies for BLAST in the Cloud 243

3.2 Analysis of Database K-Mer Index

Using our clustering and k-mer index approach, we show noticeable speedups
on well clustered data. To demonstrate this we simulated an ideal data set of
1,000 sequences, where the sequences were composed of one of two disjoint sets
of 3-mers. The database sequences were clustered into two even-size clusters.
The sample query was 10,000 sequences, also comprising one of two disjoint
sets of 3-mers. Figure 3 shows the result of running BLAST on the query using
Hadoop’s streaming extension with query segmentation (the method used by
CloudBLAST to execute BLAST queries) and K-mulus. K-mulus running on
2 cores with 2 databases yields a 56 % decrease in runtime over BLAST using
Hadoop’s streaming extension on 2 cores. In practice, this degree of separability
is nearly impossible to replicate, but this model allows us to set a practical upper
bound for the speedup contributed by clustering and search space reduction.

For a more practical BLAST query using the nr database, our database
and k-mer indexing approach took 2.75x as long compared to the naive Hadoop
streaming method using a realistic query of 30,000 sequences from the HMP
project. The poor performance is due to the very high k-mer overlap between
clusters and uneven cluster sizes. Due to the high k-mer overlap, each query
sequence is being replicated and compared against nearly all clusters.

K-mulus’ database clustering and k-mer indexing approach shows poor per-
formance due entirely to noisy, overlapping clusters. In the worst case, K-mulus
will map every query to every cluster and devolve to a naive parallelized BLAST
on database segments, while also including some overhead due to database index-
ing. This is close to the behavior we observed when running our clustering and
k-mer index experiments on the nr database. In order to describe the best possi-
ble clusters we could have generated from a database, we considered a lower limit
on the exact k-mer overlap between single sequences in the nr database (Fig. 4).
We generated this plot by taking 50 random samples of 3000 nr sequences each,
computing the pairwise k-mer intersection between them, and plotting a his-
togram of the magnitude of pairwise k-mer overlap. This shows that there are
very few sequences in the nr database which have no k-mer overlap which makes
the generation of disjoint clusters impossible. Furthermore, this plot is optimistic

0
2
4
6
8

10
12
14
16

Query segmented Hybrid with k-mer index

R
u

n
ti

m
e

(m
in

u
te

s)

Parallelization Approach

1 core

2 cores

Fig. 3. Runtimes of database segmentation with k-mer index approach.

244 C.M. Hill et al.

Fig. 4. Pair-wise k-mer intersection of 50 random samples of 3000 original and repeat-
masked nr sequences.

in that it does not include BLASTs neighboring words, nor does it illustrate com-
parisons against cluster centers which will have intersection greater than or equal
to that of a single sequence.

One strategy to improve the separability of the clusters and reduce the k-mer
intersection between clusters is to use repeat masking software. In order to show
the improvement offered by repeat masking, we ran SEG [17] on the sequences
before computing the intersection (Fig. 4). On average, SEG resulted in a 6 %
reduction in the number of exact k-mer overlap between two given sequences.
Repeat masking caused a significant, favorable shift in k-mer intersection and
would clearly improve clustering results. However, the nr database had so much
existing k-mer overlap that using SEG preprocessing would have almost no effect
on the speed of K-mulus’ clustering and k-mer index approach.

4 Discussion

With Amazon EC2 and other cloud platforms supporting Hadoop, developers
should not make assumptions about the underlying hardware. Here we have
provided K-mulus, which gives users the versatility to handle the common ways
to perform distributed BLAST queries in the cloud without making assumptions
of the underlying hardware and data. The default approach of most Hadoop
implementations of BLAST is to segment the query sequences and run BLAST
on the chunks in parallel. This approach works best when the entire BLAST
database can fit into memory of a single machine, but as sequencing becomes
cheaper and faster, this will become less likely. Computing clusters provided
by services such as EC2 often contain commodity hardware with low memory,
which we have shown makes the default query segmentation approach poor in
practice. The query segmentation approach works quite well on more powerful
clusters that are able to load the entire database into memory. By providing
users with the different parallel strategies, they are free to choose the one that
is most effective with their data and hardware.

K-mulus: Strategies for BLAST in the Cloud 245

We have also provided a way to speed up BLAST queries by clustering and
indexing the database using MapReduce. The speedup potential is largely depen-
dent on the clusterability of the data. Protein sequences lie in high-dimensional
non-Euclidean space, so by comparing them, we encounter the curse of dimen-
sionality, where almost all pairs of sequences are equally far away from one
another. This problem maybe slightly alleviated if we are trying to cluster mul-
tiple data sets of highly redundant sequences (multiple deep coverage whole
genome sequencing projects with distinct, non-intersecting k-mer spectra).
Future work includes clustering and indexing the query sequences, which may
have higher redundancy than the database sequences.

Although our clustering and indexing approach was used on protein
sequences, the logical next step is to include nucleotide database indexing, which
has historically had more success in speeding up sequence alignment [8]. With a
four character alphabet and simplified substitution rules, nucleotides are easier
to work with than amino acids, and allow for much more efficient hashing by
avoiding of the ambiguity inherent in amino acids.

It should be noted that the parallelization strategies presented here would
also benefit other commonly used bioinformatics tools. Short read alignment
tools (such as Bowtie2 [10]) can be parallelized by partitioning the reference
index as well as the query sequences. More work needs to be done to determine
the best parallelization strategies for these tools running on commodity clusters.

Availability. Java source code for K-mulus are located at: https://github.com/
biocloud/k-mulus.

Acknowledgments. We would like to thank Mohammadreza Ghodsi for advice on
clustering, Daniel Sommer for advice on Hadoop, Lee Mendelowitz for manuscript
feedback, Katherine Fenstermacher for the name K-mulus, and the other members of
the Pop lab for valuable discussions on all aspects of our work.

This work is supported in part by grants from the National Science Foundation,
grant IIS-0844494 to MP.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. Darling, A., Carey, L., Feng, W.c.: The design, implementation, and evaluation of
mpiBLAST. In: Proceedings of ClusterWorld 2003 (2003)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

4. Dongarra, J.J., Hempel, R., Hey, A.J., Walker, D.W.: A proposal for a user-level,
message passing interface in a distributed memory environment. Technical report,
Oak Ridge National Lab., TN (United States) (1993)

5. Eddy, S.R., et al.: A new generation of homology search tools based on probabilistic
inference. Genome Inf. 23, 205–211 (2009). (World Scientific)

https://github.com/biocloud/k-mulus
https://github.com/biocloud/k-mulus

246 C.M. Hill et al.

6. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.
Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

7. Inc, A.: Amazon Elastic Compute Cloud (Amazon EC2). Amazon Inc. (2008).
http://aws.amazon.com/ec2/pricing

8. Kent, W.J.: BLAT-the BLAST-like alignment tool. Genome Res. 12(4), 656–664
(2002)

9. Van der Laan, M., Pollard, K., Bryan, J.: A new partitioning around medoids
algorithm. J. Stat. Comput. Simul. 73(8), 575–584 (2003)

10. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

11. Li, Y., Luo, H.M., Sun, C., Song, J.Y., Sun, Y.Z., Wu, Q., Wang, N., Yao, H., Stein-
metz, A., Chen, S.L.: EST analysis reveals putative genes involved in glycyrrhizin
biosynthesis. BMC Genomics 11(1), 268 (2010)

12. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Pro-
ceedings of the 8th International Conference of Distributed, Computing Systems,
June 1988 (1988)

13. Matsunaga, A., Tsugawa, M., Fortes, J.: CloudBLAST: combining MapReduce and
virtualization on distributed resources for bioinformatics applications. In: IEEE
Fourth International Conference on eScience, 2008. eScience’08, pp. 222–229. IEEE
(2008)

14. Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R., Schäffer,
A.A.: Database indexing for production MegaBLAST searches. Bioinformatics
24(16), 1757–1764 (2008)

15. Murray, J., Larsen, J., Michaels, T., Schaafsma, A., Vallejos, C., Pauls, K.: Identi-
fication of putative genes in bean (phaseolus vulgaris) genomic (Bng) RFLP clones
and their conversion to STSs. Genome 45(6), 1013–1024 (2002)

16. Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J.A.,
Bonazzi, V., McEwen, J.E., Wetterstrand, K.A., Deal, C., et al.: The NIH human
microbiome project. Genome Res. 19(12), 2317–2323 (2009)

17. Wootton, J.C., Federhen, S.: Statistics of local complexity in amino acid sequences
and sequence databases. Comput. Chem. 17(2), 149–163 (1993)

http://aws.amazon.com/ec2/pricing

Faster GPU-Accelerated Smith-Waterman
Algorithm with Alignment Backtracking

for Short DNA Sequences

Yongchao Liu(B) and Bertil Schmidt

Institut für Informatik, Johannes Gutenberg Universität Mainz,
55099 Mainz, Germany

{liuy,bertil.schmidt}@uni-mainz.de

Abstract. In this paper, we present a GPU-accelerated Smith-Waterman
(SW) algorithm with Alignment Backtracking, called GSWAB, for short
DNA sequences. This algorithm performs all-to-all pairwise alignments
and retrieves optimal local alignments on CUDA-enabled GPUs. To facil-
itate fast alignment backtracking, we have investigated a tile-based SW
implementation using the CUDA programming model. This tiled com-
puting pattern enables us to more deeply explore the powerful compute
capability of GPUs. We have evaluated the performance of GSWAB on a
Kepler-based GeForce GTX Titan graphics card. The results show that
GSWAB can achieve a performance of up to 56.8 GCUPS on large-scale
datasets. Furthermore, our algorithm yields a speedup of up to 53.4 and
10.9 over MSA-CUDA (the first stage) and gpu-pairAlign on the same
hardware configurations.

Keywords: Smith-Waterman · Sequence alignment · Alignment
backtracking · CUDA · GPU

1 Introduction

To identify optimal local alignments, the SW algorithm [1,2] has been widely
used due to its maximal sensitivity. This algorithm has also become a fundamen-
tal operation in many research areas, such as biological sequence database search
[3,4], multiple sequence alignment [5,6] and short-read alignment [7–9]. The SW
algorithm is a dynamic-programming-based approach with a linear space com-
plexity and a quadratic time complexity. This quadratic runtime feature makes
the SW algorithm computationally demanding for large-scale datasets, which
has driven a substantial amount of research to parallelize it based on high-
performance computing architectures ranging from loosely coupled to tightly-
coupled ones, including clouds [10], clusters [10] and accelerators [11]. Among
these architectures, recent research mainly focuses on the use of accelerators,
including field programmable gate arrays (FPGAs), single instruction multiple
data (SIMD) vector execution units on CPUs, multi-core Cell Broadband Engine
(Cell/BE), and general-purpose GPUs, especially CUDA-enabled GPUs.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 247–257, 2014.
DOI: 10.1007/978-3-642-55195-6 23, c© Springer-Verlag Berlin Heidelberg 2014

248 Y. Liu and B. Schmidt

For FPGAs, Oliver et al. [12,13] and Li et al. [14] proposed the use of lin-
ear systolic arrays and custom instructions, respectively. For SIMD vector exe-
cution units on CPUs, most investigations focus on the alignment of a single
sequence pair, which are generally based on two intra-task computational pat-
terns. One is to make SIMD vectors parallel to minor diagonals in the align-
ment matrix [15], and the other parallel to the query sequence by means of
a sequential [16] or striped [17] layout. In addition to intra-task paralleliza-
tion, some inter-task parallelization approaches have been investigated [18,19].
Compared to intra-task parallelization, the major advantages of inter-task par-
allelization are the independent alignment computation in SIMD vectors and
the runtime independence of scoring schemes. Theses two kinds of approaches
provide a general framework for other accelerators with SIMD vectors, including
Cell/BEs and general-purpose GPUs. On Cell/BEs, few parallel implementations
have been proposed [20,21], all of which are designed based on the intra-task
parallelization with the striped layout. For general-purpose GPUs, Liu et al.
[22] developed an initial OpenGL-based implementation. As the advent of the
CUDA programming model, a few implementations have been developed [23–30]
using CUDA.

However, almost all GPU-based implementations only calculate optimal local
alignment scores. MSA-CUDA [31] made the first attempt to retrieve optimal
alignments on CUDA-enabled GPUs. This algorithm employs the Myers-Miller
algorithm [32], whose major advantage is the probability of aligning very long
sequences as the alignment retrieval works in linear space. gpu-pairAlign [27]
proposed to directly record alignment moves while performing alignments. This
approach stores alignment moves in four bitwise backtracking matrices and has a
linear time complexity for alignment retrieval. Although the backtracking matri-
ces take much GPU device memory, this approach has been shown to work well
for short protein sequences. Recently, CUDAlign [29] has been extended to sup-
port alignment retrieval, but only for pairwise alignment of very long DNA
sequences. In addition, some programs for all-to-all sequence comparison such
as mpiBLAST [33], scalaBLAST [34] and pGraph [35] have been developed on
other high-performance computing platforms.

In this paper, we present GSWAB, a GPU-accelerated Smith-Waterman algo-
rithm with Alignment Backtracking for short DNA sequences. This algorithm
performs all-to-all pairwise alignments and traces back the optimal local align-
ments on GPUs. To facilitate fast alignment retrieval, we have investigated a
tile-based SW parallelization using the CUDA programming model. This tiled
computing pattern enables more deep exploration of the tremendous compute
power of CUDA-enabled GPUs. Our performance evaluation on a Kepler-based
GeForce GTX Titan graphics card show that GSWAB can yield a performance
of up to 56.8 GCUPS on large-scale datasets. In addition, on the same hardware
configurations, our algorithm is able to run up to 53.4× and 10.9× faster than
MSA-CUDA (the first stage) and gpu-pairAlign, respectively.

GPU-Accelerated Smith-Waterman Algorithm 249

2 Methods

2.1 The Smith-Waterman Algorithm

Given a sequence R, we define R[i, j] to denote the substring that starts at
position i and ending at position j, and R[i] to denote the i -th symbol. For a
sequence pair R1 and R2, the recurrence of the SW algorithm with affine gap
penalties is defined as

Hi,j = max{Hi−1,j−1 + sbt(R1[i], R2[j]), Ei,j , Fi,j , 0}
Ei,j = max{Ei−1,j − α,Hi−1,j − β}
Fi,j = max{Fi,j−1 − α,Hi,j−1 − β}

(1)

where Hi,j , Ei,j and Fi,j represent the local alignment score of two prefixes
R1[1, i] and R2[1, j] with R1[i] aligned to R2[j], R1[i] aligned to a gap and R2[j]
aligned to a gap, respectively. α is the gap extension penalty, β is the sum of gap
open and extension penalties, and sbt is a scoring function (usually represented
as a scoring matrix), which defines the matching and mismatching scores between
symbols. For protein sequences, we have a set of well-established scoring matrices
to use, such as the BLOSUM [36] and PAM [37] families. For DNA sequences,
we usually assign fixed scores for matches and mismatches. The recurrence is ini-
tialized as Hi,0 = H0,j = E0,j = Fi,0 = 0 for 0 ≤ i ≤ |R1| and 0 ≤ j ≤ |R2|. The
optimal local alignment score is the maximal alignment score in the alignment
matrix H and can be calculated in linear space.

To obtain optimal local alignment, one approach is to store all alignment
moves in an alignment backtracking matrix. This alignment retrieval works in
linear time complexity, but has a quadratic space complexity, making it not
suitable to very long sequences. An alternative approach is to use the linear-space
Myers-Miller algorithm [32], which targets global alignment. For local alignment,
we require two additional runs of score-only SW algorithm to gain the global
alignment range (corresponding to the optimal local alignment) before using the
algorithm. This approach favors very long sequences, but has a quadratic time
complexity for alignment retrieval.

2.2 GPU Architecture

A CUDA-enabled GPU is built around a fully configurable array of scalar proces-
sors (SPs) and further organizes the SPs into a set of multi-threaded streaming
multiprocessors (SMs). The GPU architecture has evolved through three gen-
erations: Tesla [38], Fermi [39] and Kepler [40]. From generation to generation,
some substantial changes in the architecture have been made, such as the SM
architecture, the configurability of shared memory size, and local/global memory
caching.

For an architecture, it may own varied number of SMs per GPU from product
to product, but has a fixed number of SPs per SM. Tesla configures each SM to
contain 8 SPs and Fermi 32 SPs. Kepler adopts a new SM architecture with 192
SPs per SM. In Tesla, all SPs per SM share a fixed-size 16 KB shared memory.

250 Y. Liu and B. Schmidt

Fermi introduces a size-configurable shared memory (16 KB or 48 KB) for the
first time, while Kepler further provides more flexible configurations (16 KB,
32 KB or 48 KB). As for local memory, the memory size per thread is up to 16 KB
in Tesla. However, both Fermi and Kepler allow up to 512 KB local memory per
thread. Tesla does not cache both local and global memory. From Fermi, a L1/L2
caching hierarchy has been introduced to cache local/global memory. The L1
cache is size-configurable and provides data caching for individual SMs, whereas
the L2 cache is fixed-size and provides unified data caching for the whole device.
In Fermi, the global memory caching in L1 can be disabled at compile time, but
the local memory caching in L1 cannot. Different from Fermi, Kepler does not
allow L1 to cache global memory any more, but reserves it only for local memory
accesses such as register spills and stack data. Kepler further opens the 48 KB
read-only data cache, which is only accessible by texture units in Fermi, to cache
read-only global memory data.

2.3 Parallelization Using CUDA

Given a set of sequences, GSWAB performs all-to-all pairwise alignments using
the SW algorithm and returns the optimal local alignments in the CIGAR format
[41], a compact representation of short-read (short DNA sequence) alignments,
for the sake of limited GPU device memory. In this algorithm, we have proposed
a tile-based SW algorithm with alignment backtracking based on the CUDA
programming model. This tiled computing pattern enables our algorithm to
more deeply exploit the powerful compute capability of CUDA-enabled GPUs.
In addition, GSWAB works on both Fermi-based and Kepler-based GPUs.

Tile-Based Smith-Waterman Algorithm. For a sequence pair R1 and R2,
GSWAB allocates a single backtracking matrix of size |R1| × |R2| with 2 bits
representing the value of each cell, since each cell depends on its left, upper
and upper-left neighbors. In the backtracking matrix, each cell must hold one
of the four alignment move types: move from the left cell (ML), move from
the upper cell (MU), move from the upper-left cell (MUL), and a stop code.
The stop code is assigned only if the corresponding cell value in matrix H is
zero. In this way, we can accomplish alignment retrieval only by means of the
backtracking matrix. For short DNA sequences of a few hundred nucleotides, we
can afford the memory overhead of the backtracking matrix, which are allocated
in local memory in order to benefit from the L1/L2 cache hierarchy. In our
implementation, both the alignment and backtracking matrices are partitioned
into small tiles of size 4× 4. The whole SW algorithm computation is conducted
by computing all tiles one-by-one. Figure 1 illustrates the tile-based processing
of the alignment matrix.

This tile-based computation can significantly improve data access perfor-
mance because of the following two reasons. First, all alignment moves in a
single tile can be represented by a 32-bit integer because each cell takes 2 bits.
This means that only a single write to the backtracking matrix is needed for one

GPU-Accelerated Smith-Waterman Algorithm 251

Fig. 1. Tile-based processing of the alignment matrix

tile computation, significantly reducing the number of writes to external device
memory. Secondly, the data access performance to the backtracking matrix can
get improved while tracing back the alignment. This is because all alignment
moves in a single tile, represented as a 32-bit integer, can be realized by only
a single data fetch from the backtracking matrix. While tracing back the align-
ment, if the next cell lies in the same tile with the current cell, we can reuse the
current tile value with no need of reloading. Albeit the existence of caches, the
alignment backtracking still can benefit from our data reuse, as the current tile
value is possibly swapped out of the caches. Figure 2 shows the pseudo-code of
our proposed approach.

Assuming R1 and R2 are indexed by i (0 ≤ i < |R1|) and j (0 ≤ j < |R2|)
respectively (see Fig. 2), our alignment backtracking starts from the cell (j∈, i∈)
with the maximal optimal local alignment score and does not stop until meeting
either of the two cases: one is that either of the two coordinates is less than zero;
and the other is that the current cell holds the stop code. During the alignment
retrieval, if the value held by the current cell is ML, it means a deletion at
position j∈ of R2 and subsequently we will decrease j∈ by 1 and move to the
next cell. If the current cell value is MU, it means a deletion at position i∈ of
R1 and then we will decrease i∈ by 1. If the current cell value is MLU, it means
a match/mismatch and then we will decrease both i∈ and j∈ by 1.

As query profile is not well-suited to all-to-all pairwise alignments, we did not
use it in our algorithm. Instead, we calculate the match and mismatch scores
between symbols by directly comparing their values. On the other hand, the
intermediate buffers for the SW algorithm are allocated in local memory, rather
than global memory. This is because writable global memory accesses can only
be cached by the unified L2 cache, whereas local memory can obtain additional
caching from the L1 cache per SM. All reads are stored in texture memory. To
facilitate the tile-based data access and to reduce the number of texture fetches,
for each read we have packed four successive symbols using the integer data type
with each symbol occupying 8 bits. In this manner, we can realize four symbols
by a single texture fetch.

252 Y. Liu and B. Schmidt

Fig. 2. Pseudocode of our tile-based SW algorithm with alignment backtracking

Alignment Launching. As the tasks of all-to-all pairwise alignments can be
conceptualized as a task matrix, GSWAB distributes all alignment tasks onto the
GPU using the cell-block-based task assignment approach in [31]. This task dis-
tribution divides the upper-triangle (or lower-triangle) of the whole task matrix
into many equally-sized cell blocks (i.e. sub-matrices), and assigns a single thread
block to process a single cell block. Within a thread block, a single thread is
assigned to align a single sequence pair for simplicity. To alleviate global memory
pressure on the storage of optimal alignments, we have conducted all alignments
in a multi-pass way. In each pass, we calculate the number NTB of thread blocks
at runtime as

NTB =
C × NSM × NMRT

NTPB
(2)

where C is a scaling factor (default = 64), NSM is the number of SMs on the
GPU, NMRT is the maximum number of resident threads per SM, and NTPB is
the number of thread per thread block configured by users (default = 64).

GPU-Accelerated Smith-Waterman Algorithm 253

3 Performance Evaluation

We have evaluated the performance of GSWAB using three Illumina-like single-
end short-read datasets. All datasets contain 2,000 short-reads, but have dif-
ferent read lengths: 100, 250 and 500. To ensure that all reads in any dataset
are closely related, we have generated each dataset using the Mason simulator
(http://www.seqan.de/projects/mason) from a small reference sequence of 1,000
nucleotides. To measure the speed of a SW implementation, we usually use the
runtime and GCUPS (billion cell updates per second) metrics. However, it should
be stressed that because of the variable number of cell accesses (usually depend-
ing on sequence similarities) in the alignment retrieval procedure, the GCUPS
metric might not be able to reflect the speed as precisely as the score-only cases.
Nevertheless, this metric does provide a more convenient approach to facilitating
users to estimate the runtime for a specific dataset. Hence, we have used the two
aforementioned metrics in this paper.

All tests are conducted on a Kepler-based GeForce GTX Titan graphics
card, with 14 SMs comprising 2,688 SPs and 6 GB RAM, which is installed in
a personal computer with an Intel i7 2700K quad-core 3.5 GHz CPU, 16 GB
memory and the Linux operating system (Ubuntu 12.04). This graphics card
has a core frequency of 876 MHz, a memory clock frequency of 3,004 MHz and a
L2 cache size of 1.5 MB.

We have first evaluated the performance of GSWAB using the aforemen-
tioned three datasets (see Table 1). From the table, GSWAB yields an average
performance of 49.6 GCUPS, with a maximum performance of 56.8 GCUPS and
a minimum of 40.0 GCUPS, for all datasets. Moreover, the speed gets improved
as the read length becomes larger.

Table 1. Runtime and GCUPS of our algorithm

Dataset #Seqs Time (s) GCUPS

100-bp 2,000 0.5 40.0
250-bp 2,000 2.4 52.1
500-bp 2,000 8.8 56.8

Finally, we have compared GSWAB to MSA-CUDA [42] and gpu-pairAlign
[27], both of which perform all-to-all pairwise alignments. In this evaluation, for
MSA-CUDA, we have only considered its first stage, which computes a pair-
wise distance matrix by means of all-to-all local alignments. Figure 3 shows
the speedups of GSWAB over MSA-CUDA and gpu-pairAlign. Compared to
MSA-CUDA, GSWAB achieves a speedup of 14.2, 23.0 and 53.4 for the 100-bp,
250-bp and 500-bp datasets, respectively. Moreover, the speedups significantly
get larger as the increase of read length. Compared to gpu-pairAlign, GSWAB
yields a speedup of 8.8, 10.2 and 10.9 for the 100-bp, 250-bp and 500-bp datasets,

http://www.seqan.de/projects/mason

254 Y. Liu and B. Schmidt

Fig. 3. Speedups over MSA-CUDA and gpu-pairAlign

respectively. Unlike MSA-CUDA, the speedups keep relatively consistent for dif-
ferent read lengths. This might be due to the different time complexities of the
alignment backtracking, where the time complexity is quadratic for MSA-CUDA,
but linear for both GSWAB and gpu-pairAlign.

4 Conclusions

We have presented GSWAB, a GPU-accelerated SW algorithm for short DNA
sequences, which performs all-to-all pairwise alignments and retrieves optimal
local alignments on CUDA-enabled GPUs. In GSWAB, we have investigated
a tile-based SW implementation to facilitate fast alignment backtracking on
GPUs. Our algorithm works on both the Fermi and Kepler architectures. The
most memory-consuming data structure is the backtracking matrix, whose device
memory footprint scales quadratically with the maximum allowable
DNA sequence length (default = 640 and configurable at compile time). The per-
formance of our algorithm has been evaluated on a Kepler-based GeForce GTX
Titan graphics card using three simulated datasets. The performance evaluation
reveals that our algorithm can produce a performance of up to 56.8 GCUPS. In
addition, GSWAB is able to run up to 53.4× and 10.9× faster than MSA-CUDA
(the first stage) and gpu-pairAlign on the same hardware configurations, respec-
tively. Although our algorithm is designed for all-to-all pairwise alignments, it
can be easily adopted to pure pairwise alignments with no changes of the core
code. Finally, we expect that our proposed parallelization can be further used
to accelerate some short-read alignment algorithms (e.g. [43–45]) based on the
seed-and-extend heuristic.

GPU-Accelerated Smith-Waterman Algorithm 255

References

1. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147, 195–197 (1981)

2. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162, 707–708 (1982)

3. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.
Proc. Nat. Acad. Sci. USA 85, 2444–2448 (1988)

4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215, 403–410 (1990)

5. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTALW: improving the sen-
sitivity of progressive multiple sequence alignment through sequence Weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22,
4673–4680 (1994)

6. Liu, Y., Schmidt, B., Maskell, D.L.: MSAProbs: multiple sequence alignment based
on pair hidden Markov models and partition function posterior probabilities. Bioin-
formatics 26, 1958–1964 (2010)

7. Liu, Y., Schmidt, B., Maskell, D.L.: CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform. Bioinformatics
28, 1830–1837 (2012)

8. Alachiotis, N., Berger, S.A., Stamatakis, A.: Coupling SIMD and SIMT architec-
tures to boost performance of a phylogeny-aware alignment kernel. BMC Bioin-
form. 13, 196 (2012)

9. Liu, C.M., Wong, T., Wu, E., Luo, R., Yiu, S.M., Li, Y., Wang, B., Yu, C., Chu,
X., Zhao, K., Li, R., Lam, T.W.: SOAP3: ultra-fast GPU-based parallel alignment
tool for short reads. Bioinformatics 28, 878–879 (2011)

10. Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J.Y., Bae, S.H., Li, H., Zhang, B.,
Wu, T.L., Ruan, Y., Ekanayake, S., Hughes, A., Fox, G.: Hybrid cloud and cluster
computing paradigms for life science applications. BMC Bioinform. 11, S3 (2010)

11. Liu, Y., Maskell, D.L., Schmidt, B.: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC
Res. Notes 2, 73 (2009)

12. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.L.: Using reconfig-
urable hardware to accelerate multiple sequence alignment with ClustalW. Bioin-
formatics 21, 3431–3432 (2005)

13. Oliver, T., Schmidt, B., Maskell, D.L.: Reconfigurable architectures for bio-
sequence database scanning on FPGAs. IEEE Trans. Circuit Syst. II 52, 851–855
(2005)

14. Li, T.I., Shum, W., Truong, K.: 160-fold acceleration of the Smith-Waterman algo-
rithm using a Field Programmable Gate Array (FPGA). BMC Bioinform. 8, I85
(2007)

15. Wozniak, A.: Using video-oriented instructions to speed up sequence comparison.
Comput. Appl. Biosci. 13, 145–150 (1997)

16. Rognes, T., Seeberg, E.: Six-fold speedup of Smith-Waterman sequence database
searches using parallel processing on common microprocessors. Bioinformatics 16,
699–706 (2000)

17. Farrar, M.: Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics 23, 156–161 (2007)

18. Alpern, B., Carter, L., Gatlin, K.S.: Microparallelism and high performance protein
matching. In: Proceedings of the 1995 ACM/IEEE Supercomputing Conference
(1995)

256 Y. Liu and B. Schmidt

19. Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD
parallelization. BMC Bioinform. 12, 221 (2011)

20. Wirawan, A., Kwoh, C.K., Hieu, N.T., Schmidt, B.: CBESW: sequence alignment
on Playstation 3. BMC Bioinform. 9, 377 (2008)

21. Szalkowski, A., Ledergerber, C., Krahenbuhl, P., Dessimoz, C.: SWPS3 fast multi-
threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Res.
Notes 1, 107 (2008)

22. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Streaming algorithms for bio-
logical sequence alignment on GPUs. IEEE Trans. Parallel Distrib. Syst. 18, 1270–
1281 (2007)

23. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinform. 9, S10
(2008)

24. Ligowski, L., Rudnicki, W.: An efficient implementation of Smith Waterman algo-
rithm on GPU using CUDA, for massively parallel scanning of sequence databases.
In: 2009 IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–8 (2009)

25. Liu, Y., Schmidt, B., Maskel, D.L.: CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized
SIMD abstractions. BMC Res. Notes 3, 93 (2010)

26. Khajeh-Saeed, A., Poole, S., Perot, J.: Acceleration of the Smith Waterman algo-
rithm using single and multiple graphics processors. J. Comput. Phys. 229, 4247–
4258 (2010)

27. Blazewicz, J., Frohmberg, W., Kierzynka, M., Pesch, E., Wojciechowski, P.: Protein
alignment algorithms with an efficient backtracking routine on multiple GPUs.
BMC Bioinform. 12, 181 (2011)

28. Hains, D., Cashero, Z., Ottenberg, M., Bohm, W., Rajopadhye, S.: Improving
CUDASW++, a parallelization of Smith-Waterman for CUDA enabled devices.
In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, pp. 490–501 (2011)

29. de Oliveira Sandes, E.F., de Melo, A.C.M.: Retrieving Smith-Waterman alignments
with optimizations for megabase biological sequences using GPU. IEEE Trans.
Parallel Distrib. Syst. 24(5), 1009–1021 (2013)

30. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinform. 14, 117 (2013)

31. Liu, Y., Schmidt, B., Maskell, D.L.: MSA-CUDA: multiple sequence alignment on
graphics processing units with CUDA. In: 20th IEEE International Conference on
Application-Specific Systems, Architectures and Processors (2009)

32. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comput. Appl. Biosci.
4, 11–17 (1988)

33. Darling, A., Carey, L., Feng, W.: The design, implementation, and evaluation of
mpiBLAST. In: 4th International Conference on Linux Clusters: The HPC Revo-
lution 2003 in Conjunction with ClusterWorld Conference and Expo (2003)

34. Oehmen, C.S., Baxter, J.: ScalaBLAST 2.0: rapid and robust BLAST calculations
on multiprocessor systems. Bioinformatics 29, 797–798 (2013)

35. Wu, C., Kalyanaraman, A., Cannon, W.R.: pGraph: efficient parallel construction
of large-scale protein sequence homology graphs. IEEE Trans. Parallel Distrib.
Syst. 23, 1923–1933 (2012)

36. Henikoff, S., Henikoff, J.: Amino acid substitution matrices from protein blocks.
PNAS 89, 10915–10919 (1992)

GPU-Accelerated Smith-Waterman Algorithm 257

37. Dayhoff, M., Schwartz, R., Orcutt, B.: A model of evolutionary change in proteins.
In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5, pp. 345–
358. National Biomedical Research Foundation, Washington DC (1978)

38. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified
graphics and computing architecture. IEEE Micro 28, 3955 (2008)

39. NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi.
NVIDIA Corporation Whitepaper (2009)

40. NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Kepler
GK110. NVIDIA Corporation Whitepaper (2012)

41. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth,
G., Abecasis, G., Durbin, R.: 1000 genome project data processing subgroup:
the sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079
(2009)

42. Liu, Y., Schmidt, B., Maskell, D.L.: Parallel reconstruction of neighbor-joining
trees for large multiple sequence alignments using CUDA. In: IEEE International
Symposium on Parallel and Distributed Processing (2009)

43. Rizk, G., Lavenier, D.: GASSST: global alignment short sequence search tool.
Bioinformatics 26, 2534–2540 (2010)

44. Liu, Y., Schmidt, B.: Long read alignment based on maximal exact match seeds.
Bioinformatics 28, i318–i324 (2012)

45. Langmead, B., Salzberg, S.: Fast gapped-read alignment with Bowtie 2. Nat. Meth-
ods 9, 357–359 (2012)

Accelerating String Matching
on MIC Architecture for Motif Extraction

Solon P. Pissis1,2(B), Christian Goll2,
Pavlos Pavlidis3, and Alexandros Stamatakis2

1 Florida Museum of Natural History, University of Florida, Gainesville, USA
solon.pissis@kcl.ac.uk

2 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
3 Foundation for Research and Technology – Hellas, Iraklio, Greece

Abstract. Identifying repeated factors that occur in a string of letters
or common factors that occur in a set of strings represents an important
task in computer science and biology. Such patterns are called motifs,
and the process of identifying them is called motif extraction. In biology,
motifs may correspond to functional elements in DNA, RNA, or pro-
tein molecules. In this article, we orchestrate MoTeX, a high-performance
computing tool for MoTif eXtraction from large-scale datasets, on Many
Integrated Core (MIC) architecture. MoTeX uses state-of-the-art algo-
rithms for solving the fixed-length approximate string-matching prob-
lem. It comes in three flavors: a standard CPU version; an OpenMP
version; and an MPI version. We compare the performance of our MIC
implementation to the corresponding CPU version of MoTeX. Our MIC
implementation accelerates the computations by a factor of ten com-
pared to the CPU version. We also compare the performance of our MIC
implementation to the corresponding OpenMP version of MoTeX running
on modern Multicore architectures. Our MIC implementation accelerates
the computations by a factor of two compared to the OpenMP version.

Keywords: Motif extraction · HPC · MIC architecture

1 Introduction

Identifying repeated factors that occur in a string of letters or common factors
that occur in a set of strings represents an important task in computer science
and biology. Such patterns are called motifs, and the process of identifying them
is called motif extraction. Motif extraction has numerous direct applications in
areas that require some form of text mining, that is, the process of deriving
reliable information from text [5]. Here we focus on its application to molecular
biology.

In biological applications, motifs correspond to functional and/or conserved
DNA, RNA, or protein sequences. Alternatively, they may correspond to (recently,
in evolutionary terms) duplicated genomic regions, such as transposable elements
or even whole genes. It is mandatory to allow for a certain number of mismatches

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 258–267, 2014.
DOI: 10.1007/978-3-642-55195-6 24, c© Springer-Verlag Berlin Heidelberg 2014

Accelerating String Matching on MIC Architecture for Motif Extraction 259

between different occurrences of the same motif since both, single nucleotide poly-
morphisms, as well as errors introduced by wet-lab sequencing platforms might
have occurred. Hence, molecules that encode the same or related functions do not
necessarily have exactly identical sequences.

A DNA motif is defined as a sequence of nucleic acids that has a specific
biological function (e.g., a DNA binding site for a regulatory protein). The pat-
tern can be fairly short, 5 to 20 base-pairs (bp) long, and is known to occur in
different genes [7], or several times within the same gene [9]. The DNA motif
extraction problem is the task of detecting overrepresented motifs as well as
conserved motifs in a set of orthologous DNA sequences. Such conserved motifs
may, for instance, be potential candidates for transcription factor binding sites.

A single motif is a string of letters (word) on an alphabet Σ. Given an integer
error threshold e, a motif on Σ is said to e-occur in a string s on Σ, if the motif and
a factor (substring) of y differ by a distance of e. In accordance with the pioneering
work of Sagot [10], we formally define the common motifs problem as follows:

The common motifs problem takes as input a set s1, . . . , sN of strings on
Σ, where N ≤ 2, the quorum 1 ≥ q ≥ N , the maximal allowed distance (error
threshold) e, and the length k for the motifs. It consists in determining all motifs
of length k, such that each motif e-occurs in at least q input strings. Such motifs
are called valid. The values for k, e, and q are determined empirically.

In accordance with [3], motif extraction algorithms can be divided into two
major classes: (1) word-based (string-based) methods that mostly rely on exhaus-
tive enumeration, that is, counting and comparing oligonucleotide sequence
(k-mer) frequencies; and (2) probabilistic sequence models, where the model para-
meters are estimated using maximum-likelihood or Bayesian inference methods.

Here, we focus on word-based methods for motif extraction. A plethora of
word-based tools for motif extraction, such as RISO [6,10], YMF [11], Weeder [7],
and RISOTTO [1], have already been released. The comprehensive study by
Tompa et al. [12] compared thirteen different word-based and probabilistic meth-
ods on real and synthetic datasets, and identified Weeder and YMF—which are
both word-based—as the most effective methods for motif extraction.

Very recently, we have introduced MoTeX, the first word-based HPC tool
for MoTif eXtraction from large-scale datasets [8]. It can be used to tackle the
common motifs problem by making a stricter assumption on motif validity, which
we will elaborate later on. MoTeX is based on string algorithms for solving the so-
called fixed-length approximate string-matching problem under the edit distance
model [4] and under the Hamming distance model [2]. Given that k ≥ w, where
w is the size of the computer word (in practice, w = 64 or w = 128), the time
complexity of this approach is O(N2n2) for the common motifs problem, where
n is the average sequence length. The analogous parallel time complexity is
O(N2n2/p), where p is the number of available processors.

Hence, MoTeX exhibits the following advantages: under the realistic assump-
tion that k ≥ w, time complexity does not depend on (i) the length k for the
motifs (ii) the size |Σ| of the alphabet, or (iii) the maximal allowed distance e.
Given the stricter assumption on motif validity, it is guaranteed to find globally

260 S.P. Pissis et al.

optimal solutions. Furthermore, the size of the output is linear with respect to
the size of the input. In addition, MoTeX can identify motifs either under the edit
distance model or the Hamming distance model. Finally, apart from the stan-
dard CPU version, MoTeX comes in two HPC flavors: the OpenMP-based version
that supports the symmetric multiprocessing programming (SMP) paradigm; and
the MPI-based version that supports the message-passing programming (MPP)
paradigm.

In [8], we demonstrated that MoTeX can alleviate the shortcomings of current
state-of-the-art tools for motif extraction from large-scale datasets. We showed
how the quadratic time complexity of MoTeX can be slashed, in theory and in
practice, by using parallel computations. The extensive experimental results pre-
sented in [8] are promising, both in terms of accuracy under statistical measures
of significance as well as efficiency; a fact that suggests that further research
and development of MoTeX is desirable. For instance, the MPI version of MoTeX
requires about one hour to process the full upstream Homo sapiens genes dataset
using 1056 processors, for any value of k and e, while current sequential pro-
grammes require more than two months for this task.

Our contribution. Many Integrated Core (MIC) architecture combines many
cores onto a single chip, the coprocessor. One can write parallel programs, using
the SMP paradigm, that can offload sections of code to run on the coprocessor—
or alternatively, that run natively on the coprocessor. The compiler provides the
language extensions to facilitate programming for MIC architecture such as prag-
mas to control the data transfer between the host CPU and the coprocessor. In
this article, we orchestrate MoTeX on MIC architecture. We compare the perfor-
mance of our MIC implementation, running on a single chip of MIC architecture,
to the corresponding CPU version of MoTeX running on the host CPU. Our MIC
implementation, using the full single-chip potential, accelerates the computa-
tions by a factor of ten compared to the CPU version. We also compare the
performance of our MIC implementation to the corresponding OpenMP version
of MoTeX running on a single chip of modern Multicore architectures. Our MIC
implementation accelerates the computations by a factor of two compared to the
OpenMP version, both using the full single-chip potential.

2 Definitions and Notation

In this section, in order to provide an overview of the algorithms used later on,
we give a few definitions.

An alphabet Σ is a finite non-empty set whose elements are called letters.
A string on an alphabet Σ is a finite, possibly empty, sequence of elements of
Σ. The zero-letter sequence is called the empty string, and is denoted by ε. The
length of a string x is defined as the length of the sequence associated with
the string x, and is denoted by |x|. We denote by x[i], for all 1 ≥ i ≥ |x|, the
letter at index i of x. Each index i, for all 1 ≥ i ≥ |x|, is a position in x when
x ∈= ε. It follows that the ith letter of x is the letter at position i in x, and that
x = x[1 . . |x|].

Accelerating String Matching on MIC Architecture for Motif Extraction 261

A string x is a factor of a string y if there exist two strings u and v, such
that y = uxv. Let the strings x, y, u, and v, such that y = uxv. If u = ε, then x
is a prefix of y. If v = ε, then x is a suffix of y.

Let x be a non-empty string and y be a string. We say that there exists an
(exact) occurrence of x in y, or, more simply, that x occurs (exactly) in y, when
x is a factor of y. Every occurrence of x can be characterised by a position in y.
Thus we say that x occurs at the starting position i in y when y[i . . i+|x|−1] = x.
It is sometimes more suitable to consider the ending position i + |x| − 1.

The edit distance, denoted by δE(x, y), for two strings x and y is defined as
the minimum total cost of operations required to transform string x into string
y. For simplicity, we only count the number of edit operations and consider that
the cost of each edit operation is 1. The allowed operations are the following:

– ins: insert a letter in y, not present in x; (ε, b), b ∈= ε;
– del: delete a letter in y, present in x; (a, ε), a ∈= ε;
– sub: substitute a letter in y with a letter in x; (a, b), a ∈= b, a, b ∈= ε.

The Hamming distance δH is only defined on strings of the same length. For
two strings x and y, δH(x, y) is the number of positions in which the two strings
differ, that is, have different letters.

3 Algorithms

In this section, we first formally define the fixed-length approximate string-
matching problem under the edit distance model and under the Hamming dis-
tance model. We then provide a brief description and analysis of the sequential
algorithms to solve it. Finally, we show how the common motifs problem can
be reduced to the fixed-length approximate string-matching problem, by using a
stricter assumption than the one in the initial problem definition for the validity
of motifs.

Problem 1 (Edit distance). Given a string x of length m, a string y of length n,
an integer k, and an integer e < k, find all factors of y, which are at an edit
distance less than, or equal to, e from every factor of fixed length k of x.

Problem 2 (Hamming distance). Given a string x of length m, a string y of
length n, an integer k, and an integer e < k, find all the factors of y, which are
at a Hamming distance less than, or equal to, e from every factor of fixed length
k of x.

Let D[0 . . n, 0 . . m] be a dynamic programming (DP) matrix, where D[i, j]
contains the edit distance between some factor y[i′ . . i] of y, for some 1 ≥ i′ ≥ i,
and factor x[max{1, j − k + 1} . . j] of x, for all 1 ≥ i ≥ n, 1 ≥ j ≥ m. This
matrix can be obtained through a straightforward O(kmn)-time algorithm by
constructing DP matrices Ds[0 . . n, 0 . . k], for all 1 ≥ s ≥ m − k + 1, where
Ds[i, j] is the edit distance between some factor of y ending at y[i] and the prefix
of length j of x[s . . s + k − 1]. We obtain D by collating D1 and the last row of
Ds, for all 2 ≥ s ≥ m − k + 1. We say that x[max{1, j − k + 1} . . j] e-occurs in
y ending at y[i] iff D[i, j] ≥ e, for all 1 ≥ j ≥ m, 1 ≥ i ≥ n.

262 S.P. Pissis et al.

Table 1. Matrix D and matrix M

0 1 2 3 4 5 6 7

G G G T C T A

0 0 1 2 3 3 3 3 3
1 G 0 0 1 2 2 2 3 3
2 G 0 0 0 1 1 2 3 3
3 G 0 0 0 0 1 2 3 3
4 T 0 1 1 1 0 1 2 2
5 C 0 1 2 2 1 0 1 2
6 T 0 1 2 3 2 1 0 1
7 A 0 1 2 3 3 2 1 0

(a) Matrix D for x := y :=
GGGTCTA and k := 3

0 1 2 3 4 5 6 7

G T G A A C T

0 0 1 2 3 3 3 3 3
1 G 0 0 2 2 3 3 3 3
2 T 0 1 0 3 2 3 3 2
3 C 0 1 2 1 3 2 2 3
4 A 0 1 2 3 1 2 3 2
5 C 0 1 2 3 3 2 1 3
6 G 0 0 2 2 3 3 2 1
7 T 0 1 0 3 2 3 3 2

(b) Matrix M for x := GTCACGT,
y := GTGAACT, and k := 3

Example 1. Let the string x := GGGTCTA, the string y := x, and k := 3. Table 1a
illustrates matrix D. Consider, for instance, the case where j = 6. Column 6
contains all e-occurrences of factor x[4 . . 6] = TCT, that is the factor of length
k = 3 ending at position 6 of x, in y. Cell D[4, 6] = 2, tells us that there exists
some factor y[i′ . . 4] of y, such that, for i′ = 2, δE(y[2 . . 4], x[4 . . 6]) = 2.

Iliopoulos, Mouchard, and Pinzon devised MaxShift [4], an algorithm with
time complexity O(m∞k/w≈n), where w is the size of the computer word. By
using word-level parallelism MaxShift can compute matrix D efficiently. The algo-
rithm requires constant time for computing each cell D[i, j] by using word-level
operations, assuming that k ≥ w. In the general case it requires O(∞k/w≈) time.
Hence, algorithm MaxShift requires time O(mn), under the assumption that
k ≥ w. The space complexity is O(m) since each row of D only depends on the
immediately preceding row.

Theorem 1 ([4]). Given a string x of length m, a string y of length n, an
integer k, and the size of the computer word w, matrix D can be computed in
time O(m∞k/w≈n).

Let M[0 . . n, 0 . . m] be a DP matrix, where M[i, j] contains the Hamming
distance between factor y[max{1, i − k + 1} . . i] of y and factor x[max{1, j − k +
1} . . j] of x, for all 1 ≥ i ≥ n, 1 ≥ j ≥ m. Crochemore, Iliopoulos, and Pissis
devised an analogous algorithm [2] that solves the analogous problem under the
Hamming distance model with the same time and space complexity.

Theorem 2 ([2]). Given a string x of length m, a string y of length n, an
integer k, and the size of the computer word w, matrix M can be computed in
time O(m∞k/w≈n).

Example 2. Let the string x := GTGAACT, the string y := GTCACGT, and k := 3.
Table 1b illustrates matrix M. Consider, for instance, the case where j = 7.

Accelerating String Matching on MIC Architecture for Motif Extraction 263

Column 7 contains all e-occurrences of factor x[5 . . 7] = ACT, that is, the factor
of length k = 3 ending at position 7 of x, in y. Cell M[6, 7] = 1, tells us that
δH(y[4 . . 6], x[5 . . 7]) = 1.

By making the following stricter assumption for motif validity, the common
motifs problem can be directly and efficiently solved using the above algorithms.

Definition 1. A valid motif is called strictly valid iff it occurs exactly, at least
once, in (any of) the input strings.

Consider, for instance, the DNA alphabet Σ = {A, C, G, T}. The number of
possible DNA motifs of length k := 10 is |Σ|k = 1, 048, 576. Given a dataset
with a size of ∧1 MB, the possibility that there exists a motif that is valid, but
not strictly valid, is rather unlikely. In other words, given such a dataset, the
possibility that there exists a pattern which does not occur exactly, at least
once, in the dataset and it also satisfies all the restrictions imposed by the input
parameters, is rather unlikely.

The common motifs problem (detecting strictly valid motifs) can be directly
solved by solving the fixed-length approximate string-matching problem for all
N2 pairs of the N input strings. Consider, for example, the common motifs
problem under the Hamming distance model. We use an array ur for each input
string sr, such that for all 1 ≥ r ≥ N , k ≥ j ≥ |sr|, ur[j] contains the total
number of strings in which motif sr[j − k + 1 . . j] e-occurs; we set ur[j] := 0,
for all 0 ≥ j < k. Array ur, for all 1 ≥ r ≥ N , can easily be computed, by
computing matrix M for pair (sr, st), for all 1 ≥ t ≥ N . While computing matrix
M, we increment ur[j] only once iff M[i, j] ≥ e, for some k ≥ i ≥ |st|; as soon as
we have computed the N different matrices M for sr, it suffices to iterate over
array ur and report sr[j − k + 1 . . j], for all k ≥ j ≥ |sr|, as a strictly valid
motif iff ur[j] ≤ q. An array vr, such that vr[j], for all 1 ≥ j ≥ |sr|, denoting
the total number of e-occurrences of motif sr[j −k +1 . . j] in s1, . . . , sN can also
be maintained. Maintaining arrays ur and vr does not induce additional costs.
Therefore, the common motifs problem can be solved in time O(n2) per matrix,
where n is the average length of the N strings, thus O(N2n2) in total.

Example 3. Let the input strings sr := GTGAACT, st := GTCACGT, e := 1, q := 2,
and k := 3. Further, let the current state of arrays ur and vr be:

j : 0 1 2 3 4 5 6 7

ur[j] : 0 0 0 0 1 0 1 0
vr[j] : 0 0 0 0 2 0 2 0

Table 1b illustrates matrix M. Arrays ur and vr are:

j : 0 1 2 3 4 5 6 7

ur[j] : 0 0 0 1 2 0 2 1
vr[j] : 0 0 0 1 3 0 3 1

and so the strictly valid motifs are sr[2 . . 4] = TGA and sr[4 . . 6] = AAC.

264 S.P. Pissis et al.

4 Implementation

MoTeX is implemented as a programme that solves the common motifs problem
for strictly valid motifs. MoTeX was implemented in the C programming language
under a GNU/Linux system. It is distributed under the GNU General Public
License (GPL). The open-source code and documentation are available at http://
www.exelixis-lab.org/motex. The mandatory input parameters are:

– a file with the N input strings in FASTA format (sequences);
– the length k for the motifs;
– the distance d (d := 0 for Hamming distance or d := 1 for edit distance);
– the maximal allowed distance e;
– the quorum q′ ≥ 100 (%) as the ratio of quorum q to N .

Given these parameters, MoTeX outputs a text file containing the strictly valid
motifs. For each reported motif, it also outputs the total number of sequences in
which the motif e-occurs at least once and the total number of its e-occurrences.

Apart from the standard CPU version, MoTeX comes in two HPC flavors: the
OpenMP version for shared memory systems and the MPI version for distributed
memory systems. The user can choose the best-suited version depending on: the
total size of the input sequences; the nature of the input dataset, for instance, a
few very long sequences or many relatively short sequences; the available HPC
architecture; and the number p > 1 of available processors.

Here we focus on the case when p ≥ N , where N is the number of input
sequences; that is, we have a large number of relatively short sequences. The
user can choose any of the two HPC versions. MoTeX evenly distributes the com-
putation of the N2 distinct DP matrices for the N input sequences in a straight-
forward manner across the p processors. Therefore, if p ≥ N , the common motifs
problem for strictly valid motifs can be solved in parallel in time O(N2n2/p).

4.1 MIC Implementation

Our MIC implementation is a parallel program that uses the SMP paradigm
by offloading sections of the code to run on the coprocessor. First, we used the
compiler option offload-attribute-target to flag every global routine and
global data object in the source file with the offload attribute target(mic).

The compiler supports two programming models: a non-shared memory
model and a virtual-shared memory model. In our implementation, we used the
non-shared memory model which is appropriate for dealing with flat data struc-
tures such as scalars, arrays, and structures that are bit-wise copyable. Data in
this model is copied back and forth between the host CPU and the coproces-
sor around regions of the offloaded code. The data selected for transfer is a
combination of variables implicitly transferred because they are lexically refer-
enced within offload constructs, and variables explicitly listed in clauses in the
pragma. Only pointers to non-pointer types are supported—pointers to pointer
variables are not supported. Arrays are supported provided the array element

http://www.exelixis-lab.org/motex
http://www.exelixis-lab.org/motex

Accelerating String Matching on MIC Architecture for Motif Extraction 265

type is a scalar or bitwise copyable structure or class—so arrays of pointers are
not supported. We therefore defined the following flat data structures:

– Sequence S = s1s2 . . . sN of size nN , where si is an input sequence, for all
1 ≥ i ≥ N , and n is the average sequence length;

– Array L of size N , such that L[i] stores the length of si+1, for all 0 ≥ i < N ;
– Array I of size N , such that I[i] stores the starting position of si+1 in S, for

all 0 ≥ i < N ;
– Array U of size nN , such that U[I[i] . . L[i] − 1] stores array u (see Sect. 3 for

details) of si+1, for all 0 ≥ i < N ;
– Array V of size nN , such that V[I[i] . . L[i] − 1] stores array v (see Sect. 3 for

details) of si+1, for all 0 ≥ i < N .

Then we placed the offload pragma before the code block computing the N2

distinct DP matrices for the N input sequences. While the instruction sets for
the host CPU and the coprocessor are similar, they do not share the same system
memory. This means that the variables used by the code block must exist on
both the host CPU and coprocessor. To ensure that they do, the pragmas use
specifiers to define the variables to copy between the host CPU and coprocessor:

– in specifier defines a variable as strictly an input to the coprocessor. The
value is not copied back to the host CPU. S, L, and I were defined by in;

– out specifier defines a variable as strictly an output of the coprocessor. U and
V were defined by out.

Therefore it becomes obvious that S, L, I, U, and V are copied either back or
forth between the host CPU and the coprocessor at most once.

Finally, the code-block statement following the offload pragma is converted
into an outlined function that runs on the coprocessor. This code is permitted to
call other functions. In order to ensure that these called functions are also avail-
able on the coprocessor, we marked the functions to be called by the offloaded
code block with the special function attribute declspec(target (mic)).

5 Experimental Results

The following experiments were conducted on a GNU/Linux system running on:

– Multicore architecture I: a single AMD Opteron 6174 Magny-Cours CPU
at 2.20 GHz with 12 cores;

– Multicore architecture II: a single Intel Xeon CPU E5-2630 0 at 2.30 GHz
with 6 cores;

– MIC architecture: a single Intel Xeon host CPU E5-2630 0 at 2.30 GHz
with a single Intel Xeon Phi 5110P coprocessor at 1.053 GHz with 60 cores.

We evaluated the time performance of our MIC implementation, denoted by
MoTeX-MIC (Xeon-Phi), running on the host CPU and the coprocessor against:
(i) the standard CPU version of MoTeX, denoted by MoTeX-CPU (Opt), and

266 S.P. Pissis et al.

 0

 500

 1000

 1500

 2000

 2500

8,0,2,1 8,1,2,1

E
la

ps
ed

 ti
m

e
[s

]

Length for motifs [bp], Distance [-], Max distance [-], Quorum [%]

MoTeX-CPU (Opt)
MoTeX-OMP -t 12 (Opt)

MoTeX-CPU (Xeon)
MoTeX-OMP -t 6 (Xeon)
MoTeX-MIC (Xeon-Phi)

(a) 1062 sequences of Bacillus subtilis

 0

 500

 1000

 1500

 2000

 2500

10,0,3,1 10,1,3,1

E
la

ps
ed

 ti
m

e
[s

]

Length for motifs [bp], Distance [-], Max distance [-], Quorum [%]

MoTeX-CPU (Opt)
MoTeX-OMP -t 12 (Opt)

MoTeX-CPU (Xeon)
MoTeX-OMP -t 6 (Xeon)
MoTeX-MIC (Xeon-Phi)

(b) 200 sequences of Homo sapiens

Fig. 1. Elapsed-time comparisons for the common motifs problem

(ii) the OpenMP version with 12 threads, denoted by MoTeX-OMP -t 12 (Opt),
both running on the Multicore architecture I; and (iii) the standard CPU ver-
sion of MoTeX, denoted by MoTeX-CPU (Xeon), and (iv) the OpenMP version
with 6 threads, denoted by MoTeX-OMP -t 6 (Xeon), both running on the Mul-
ticore architecture II. As input datasets for the programmes, we used 1062
upstream sequences of Bacillus subtilis genes of total size 240 KB and 200 and
1200 upstream sequences of Homo sapiens genes of total size 240 KB and 1.2 MB,
respectively, obtained from the ENSEMBL database. We measured the elapsed
time for each programme for different combinations of input parameters. In par-
ticular, we provided different values for the motif length k, the distance d used,
the maximal allowed distance e, and the quorum q′ as a proportion of sequences
in the input dataset.

As depicted in Figs. 1 and 2, our MIC implementation accelerates the compu-
tations by a factor of ten compared to the corresponding CPU version and by a
factor of two compared to the OpenMP version. We observe that, similar to other
architectures such as GPGPU, for the same input dataset, the speedup gained

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

12,0,4,1 12,1,4,1

E
la

ps
ed

 ti
m

e
[s

]

Length for motifs [bp], Distance [-], Max distance [-], Quorum [%]

MoTeX-OMP -t 12 (Opt)
MoTeX-OMP -t 6 (Xeon)
MoTeX-MIC (Xeon-Phi)

Fig. 2. Elapsed-time comparison for the common motifs problem using 1200 sequences
of Homo sapiens

Accelerating String Matching on MIC Architecture for Motif Extraction 267

from our MIC implementation increases as the ratio of the workload to the size
of the data transferred between the host CPU and the coprocessor increases.
For instance, notice that in Fig. 2, while the time efficiency of MoTeX-OMP -t
12 (Opt), MoTeX-OMP -t 6 (Xeon), and MoTeX-MIC (Xeon-Phi) is similar for
Hamming distance, the later programme becomes faster by a factor of two with
the same dataset for edit distance, which is computationally more intensive.

References

1. Pisanti, N., Carvalho, A.M., Marsan, L., Sagot, M.-F.: RISOTTO: fast extraction
of Motifs with mismatches. In: Correa, J., Hevia, A., Kiwi, M. (eds.) LATIN 2006.
LNCS, vol. 3887, pp. 757–768. Springer, Heidelberg (2006)

2. Crochemore, M., Iliopoulos, C.S., Pissis, S.P.: A parallel algorithm for fixed-
length approximate string-matching with k -mismatches. In: Elomaa, T., Mannila,
H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp. 92–101.
Springer, Heidelberg (2010)

3. Das, M., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinform.
8(Suppl 7), S21+ (2007)

4. Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: The Max-Shift algorithm for approxi-
mate string matching. In: Brodal, G., Frigioni, D., Marchetti-Spaccamela, A. (eds.)
WAE 2001. LNCS, vol. 2141, pp. 13–25. Springer, Heidelberg (2001)

5. Lothaire, M. (ed.): Applied Combinatorics on Words. Cambridge University Press,
New York (2005)

6. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
J. Comput. Biol. J. Comput. Mol. Cell Biol. 7(3–4), 345–362 (2000)

7. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder web: discovery of tran-
scription factor binding sites in a set of sequences from co-regulated genes. Nucleic
Acids Res. 32(Web-Server-Issue), 199–203 (2004)

8. Pissis, S.P., Stamatakis, A., Pavlidis, P.: MoTeX: a word-based HPC tool for MoTif
eXtraction. In: Gao, J. (ed.) Fourth ACM International Conference on Bioinfor-
matics and Computational Biology (ACM-BCB 2013), pp. 13–22 (2013)

9. Rombauts, S., Déhais, P., Van Montagu, M., Rouzé, P.: PlantCARE, a plant cis-
acting regulatory element database. Nucleic Acids Res. 27(1), 295–296 (1999)

10. Sagot, M.-F.: Spelling approximate repeated or common Motifs using a suffix tree.
In: Lucchesi, C., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 374–390.
Springer, Heidelberg (1998)

11. Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor
binding sites by statistical verrepresentation. Nucleic Acids Res. 31(13), 3586–3588
(2003)

12. Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov,
A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S.,
Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J.,
Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., Zhu, Z.: Assessing computa-
tional tools for the discovery of transcription factor binding sites. Nat. Biotechnol.
23(1), 137–144 (2005)

A Parallel, Distributed-Memory Framework
for Comparative Motif Discovery

Dieter De Witte1, Michiel Van Bel2,3, Pieter Audenaert1, Piet Demeester1,
Bart Dhoedt1, Klaas Vandepoele2,3, and Jan Fostier1(B)

1 Department of Information Technology (INTEC), Ghent University - iMinds,
Gaston Crommenlaan 8 bus 201, Ghent, Belgium

{dieter.dewitte,pieter.audenaert,piet.demeester,
bart.dhoedt,jan.fostier}@intec.ugent.be

2 Department of Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
3 Department of Plant Biotechnology and Bioinformatics, Ghent University,

Technologiepark 927, Ghent, Belgium
{michiel.vanbel,klaas.vandepoele}@psb.vib-ugent.be

Abstract. The increasing number of sequenced organisms has opened
new possibilities for the computational discovery of cis-regulatory ele-
ments (‘motifs’) based on phylogenetic footprinting. Word-based, exhaus-
tive approaches are among the best performing algorithms, however, they
pose significant computational challenges as the number of candidate
motifs to evaluate is very high. In this contribution, we describe a paral-
lel, distributed-memory framework for de novo comparative motif discov-
ery. Within this framework, two approaches for phylogenetic footprint-
ing are implemented: an alignment-based and an alignment-free method.
The framework is able to statistically evaluate the conservation of motifs
in a search space containing over 160 million candidate motifs using a
distributed-memory cluster with 200 CPU cores in a few hours. Software
available from http://bioinformatics.intec.ugent.be/blsspeller/

Keywords: Motif discovery · Phylogenetic footprinting · Parallel com-
puting · Distributed-memory

1 Introduction

Over the past decade, numerous computational methods have been proposed for
the discovery of cis-regulatory elements (so-called ‘motifs’) in genomic sequences
[1]. The most simple approaches are based on the notion of overrepresentation,
i.e., the observation that a specific word occurs more often in a DNA sequence
than would be expected by chance. However, as motifs are typically short and
degenerate, it is difficult to discriminate between true, functional motifs and
background noise.

As more and more organisms are being sequenced, methods based on phylo-
genetic footprinting are becoming increasingly attractive. The underlying idea is
that functional regions in the DNA are subjected to selective pressure, conserving

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 268–277, 2014.
DOI: 10.1007/978-3-642-55195-6 25, c© Springer-Verlag Berlin Heidelberg 2014

http://bioinformatics.intec.ugent.be/blsspeller/

A Parallel, Distributed-Memory Framework for Comparative Motif Discovery 269

them over long evolutionary distances, in contrast to non-functional DNA which
can diverge freely [2]. Such methods can therefore detect cis-regulatory elements
with increased sensitivity through the identification of conserved sequences.

We developed a word-based methodology for comparative motif discovery
(unpublished). Whereas most other methods restrict themselves to a (promising)
subset of candidate motifs [3,4], our method is exhaustive, i.e., all words (up to
a prespecified length and expressed in a degenerate alphabet) that appear in the
input sequences are scored for conservation. Additionally, whereas most existing
tools rely on pre-generated multiple sequence alignments [5–8] (MSA) to select
conserved motif instances, our method has the ability to run in both alignment-
based and alignment-free mode. The alignment-free mode has the advantage
that it can detect conserved motif instances, even for distantly related species
for which the generation of meaningful multiple sequence alignments is difficult.

In this contribution, we discuss the parallel framework for comparative motif
discovery in which these methods were implemented. The main motivation for
the development of such framework, is to make effective use of a large, distributed-
memory cluster in order to deal with the increased computational requirements
inherent to word-based phylogenetic footprinting. More specifically, the compu-
tational requirements are high because:

1. Our method exhaustively scores all words (up to a prespecified length) that
are present in the input sequences. The advantage of this exhaustive approach
is that optimal and complete results are produced (as opposed to statistical
methods which yield a limited number of local optima, e.g. MEME [9]).

2. We allow candidate motifs to be expressed in a degenerate alphabet, leading
to a combinatorial increase of the number of words to evaluate. Currently,
we allow words to be expressed in a five-letter alphabet (A, C, G, T and N),
however, more sensitive results could be obtained by allowing for two-fold
degenerate characters or even the full IUPAC alphabet, again at the cost of
increased computational requirements.

3. In order to avoid the recomputation of previously generated intermediate
results, we keep all words and their conservation information in memory.
Because of the large number of words, the memory requirements can exceed
what can be provided by a typical workstation, advocating the development
of a distributed-memory implementation.

4. In our current studies, we use four related organisms. The current trend is
to incorporate more and more organisms, as this may again improve the
sensitivity of the method.

5. In order to assess whether a word is significantly conserved, we employ the
genome-wide statistical evaluation that was introduced in [10]. This gives rise
to data dependencies between processes and hence, significant inter-process
communication. By carefully choosing how the data is partitioned across the
local memories of the different machines, communication volumes can be
minimized.

Additional motivation can be found by looking at the evolution of com-
puter hardware: since the introduction of the first multi-core CPU around 2003,

270 D. De Witte et al.

computational power of a CPU chip has mainly progressed by incorporating more
and more CPU cores. Additionally, powerful clusters are created by assembling a
large number of workstations and connecting them with an intercommunication
network. In order to take advantage of such hardware configurations, parallel
software methodologies must be developed.

This paper is organized as follows: in Sect. 2, the framework’s workflow is dis-
cussed, along with a discussion of how ‘conservation’ is quantified and how the
genome-wide statistical testing is performed. In Sect. 3, the parallel, distributed-
memory implementation is described. Section 4 presents results and current lim-
itations of the proposed framework, followed by a conclusion and future research
directions in Sect. 5.

Our parallel framework is open-source and can be obtained free of charge
from http://bioinformatics.intec.ugent.be/blsspeller.

2 Comparative Motif Discovery Framework

Consider a number of S related species for which orthologous genes are grouped
into so-called gene families. The promoter sequences upstream of the genes are
extracted. The assumption underlying phylogenetic footprinting is that the genes
within a family are regulated by the same (set of) transcription factors. In its
most simple form, each of the F different gene families contains a single promoter
sequence (2 strands) from each organism. The input hence consists of 2SF dif-
ferent promoter sequences1 with a total length of N = 2SFNs characters, where
Ns denotes the length of a single promoter sequence.

The framework consists of two phases: the intra-family and inter-family
phase. During the intra-family step, words are scored for conservation within
each family individually; in the inter-family step, a confidence score is estab-
lished for each word w by comparing the number of gene families in which w is
conserved to a background model. This statistical model was adopted from [10].
Both phases are now described in more detail.

Intra-family phase. During this step, each gene family is processed individually.
Given a specific gene family, all words with a length between lmin and lmax that
occur within that family are exhaustively enumerated and scored for conserva-
tion. The outcome for each word w is binary: either it is sufficiently conserved
within that family or it is not. The framework imposes no restrictions on what
kind of conservation metric is used. The goal of this phase is to count the number
of gene families in which each word w is conserved.

In our software, we provide two complementary ways of doing this. In the
alignment-based mode, we rely on pre-generated MSAs of the promoter sequences
in a family. Words are then enumerated by adopting a sliding window approach
and conservation is based on whether a word is aligned in several species within
the MSA. Alternatively, in the alignment-free mode, a generalized suffix tree
1 Note that we also take paralogous genes into account, hence our dataset is actually

slightly larger than described.

http://bioinformatics.intec.ugent.be/blsspeller

A Parallel, Distributed-Memory Framework for Comparative Motif Discovery 271

(GST) [11] is constructed [12] from the sequences within a family, and the speller
algorithm [13,14] is used to enumerate all words. The degree of conservation of
a word w is based only on the presence or absence of w in a promoter sequence,
regardless of the (relative) position or orientation of w. The alignment-free mode
is especially beneficial for organisms that are more diverged, for which the gen-
eration of MSAs is difficult or even impossible.

In both approaches, the degree of conservation of a given word w is quantified
in a biologically meaningful way, by means of the branch length score (BLS) [10].
The BLS ranges between 0 % (not conserved at all) to 100 % (fully conserved in
all sequences) and takes the phylogenetic relationships between the organisms
into account. If the BLS exceeds a certain threshold T , the word w is assumed
to be conserved in that gene family.

Every conserved word w is stored in a hash table, along with the number
of gene families Fw in which w is conserved. The hash table hence consists of
a large number of < w,Fw > key-value pairs. Words that are not conserved are
not stored in the table.

Inter-family phase. During this step, for each word w that is stored in the hash
table, it is established whether or not this word is significantly conserved in the
complete dataset, i.e., all gene families. A confidence score C is established by
comparing the number of gene families Fw in which w is conserved to the median
number of gene families Fbg in which random permutations of w are conserved
as follows:

C =
[

1 − Fbg

Fw

]

(1)

Stated more precisely, given a word w, the framework generates a large num-
ber (default value = 1000) of random permutations of w and establishes the
number of gene families in which these random permutations are conserved. Fbg

then denotes the median (or representative) value. Note that all information
needed to calculate the background model has already been generated during
the intra-family step and can be retrieved by simple lookup operations in the
hash table. The background model Fbg can be seen as the expected number of
gene families in which a word with the same length and character composition
will be conserved. If the candidate motif w is conserved in many more families
that what could be expected by chance, a high confidence C will be obtained.
All words w with a confidence C that exceeds a threshold (default value = 90 %)
are retained and are considered true motifs.

The framework allows for the use of several conservation thresholds Ti (i =
1 . . . t) in a single run. In that case, the hash table stores < w, Fw > pairs, where
Fw now denotes a vector that holds the number of gene families in which w is
conserved for each of the different thresholds Ti separately. A confidence value
C is then obtained as the maximum confidence calculated over all thresholds Ti.

C = max
i=1...t

[

1 − Fbg[i]
Fw[i]

]

(2)

272 D. De Witte et al.

The use of different thresholds provides for the detection of motifs that are
significantly conserved in only a subset of the species (and thus reduced conser-
vation threshold) in a single run and hence computationally efficient manner.

3 Distributed-Memory, Parallel Implementation

For realistic datasets, the sequential algorithm described in the previous section
is computationally demanding. Even though the total number of words Nw to
consider scales linearly with the total input size (Nw = O(N)), the number of
words to consider is huge. This results in very large runtimes for the sequential
algorithm.

Each word w that is conserved in at least one gene family is stored in ran-
dom access memory, along with the number of gene families Fw in which it is
conserved, and this for a number of BLS thresholds. The clear advantage of this
approach is a strong reduction in runtime during the calculation of the back-
ground model for each motif (see Sect. 2). The disadvantage is that the memory
requirements exceed what can be typically provided by a single workstation. A
parallel, distributed-memory framework (see Fig. 1) was developed to alleviate
both the runtime and memory bottlenecks.

In the intra-family phase, the different gene families are uniformly distributed
among the different parallel processes. Each process hence handles a subset of
the gene families, and has a local hash table in which its < w, Fw > pairs are
stored. This step is communication-free. At the end of this phase, a given word
w can be contained by several processes, each holding only partial values in their
respective Fw vectors.

In a single communication phase, these partial Fw vectors are accumulated.
This is achieved by redistributing all words over the different processes, such that
corresponding words are sent to the same process. That process can then sum
the partial Fw vectors for each word w. Additionally, we partition the different
words among the local memories of the different processes in such way that a
given word and its permutations end up in the same process. For example, both
the word w = CACGTG and w′ = AGTGCC belong to the same permutation
group and will end up in the same process. More specifically, for each word w,
a hash value h is computed that only depends on the character composition of
w, but not on the order of the characters within w. The words CACGTG and
AGTGCC hence yield the same hash value h. This value is used to determine
the process to which these words will be sent.

In order to obtain a uniform workload distribution during the inter-family
phase, we assign a weight Wg to each permutation group g that corresponds to
the maximum number of words represented by this permutation group:

Wg =
(nA + nC + nG + nT + nN)!

nA!nC !nG!nT !nN !
,

where nX denotes the number of characters X in a word of the permutation
group. This weight is used to attribute roughly the same number of words to
each process.

A Parallel, Distributed-Memory Framework for Comparative Motif Discovery 273

Fig. 1. Schematic overview of the parallel framework. In the intra-family step, the
different gene families are distributed among the P different parallel processes and
each process independently scores all words within those families for conservation. A
local hash table stores all < w,Fw > pairs which indicate in how many gene families w
has been conserved. During a single communication step, words are shuffled between
parallel processes such that a given word and its permutations end up in the same
process. In the inter-family step, partial Fw vectors are aggregated and for each word
w, the significance of conservation is determined.

274 D. De Witte et al.

During the inter-family phase, the confidence values C are computed for each
word w. This step can again be performed in parallel, as each process now holds
different words. Note that because of the particular distribution of words during
the previous step, this phase is now communication-free. Indeed, for every word
w, all random permutations of w that are conserved are stored in the hash table
of the same process. A certain random permutation that is not found in the
local hash table, is not conserved in any gene family. To speed up the confidence
calculations, only a single background model per permutation group is computed
to which the candidate motifs are compared.

4 Results and Current Limitations

The framework was implemented in C/C++ and the Message Passing Inter-
face (MPI) was used to handle the inter-node communication. All runs were
performed on a computer cluster consisting of 25 nodes, each node containing
two quad-core Intel Xeon L5420 CPUs and 16 GByte of RAM each (200 CPU
cores and 400 GByte of RAM in total). The nodes communicate through a QDR
Infiniband high-speed interconnection network.

As a dataset, we consider four monocot plant species: Oryza sativa ssp.
indica, Brachipodium distachyon, Sorghum bicolor and Zea mays. Using the
‘integrative orthology viewer’ in PLAZA 2.5 [15,16], the orthology relationships
between these grasses were inferred. We extracted two datasets, one with an
upstream promoter length Ns = 500 bp, and a second dataset with a promoter
length Ns = 2 kbp. In total, the dataset consists of F = 17 724 gene families
and 163 064 regulatory sequences (counting both forward and reverse strands).
All words that exist in these datasets were exhaustively enumerated. Words are
expressed in a 5-letter degenerated alphabet: the four bases A, C, G, T and the
N character. A maximum of three ‘N’ characters were allowed per word. Both
datasets were run using the alignment-based and alignment-free mode. Table 1
provides details for each run.

Clearly, the alignment-free mode is computationally more intensive than the
alignment-based mode. This is because the definition of ‘conservation’ during the
intra-family step is much more relaxed in the alignment-free mode, hence yielding
a much higher number of words that are found to be conserved and stored in
the hash table. However, because the same definition of ‘conservation’ is used
for both the candidate word w and its control motifs (i.e. random permutations
used to build the background model), the statistical test during the inter-family
phase is consistent, filtering only those motifs that are conserved in a much higher
number of families than expected in a random dataset. In the remainder of this
Section, we focus on the computational issues. We discuss the alignment-free run
on the 500 bp dataset.

During the intra-family phase, each process scores the conservation of each
word in a subset of all families. Using 96 parallel processes, each process is
attributed roughly 185 families. This step takes 48 minutes or 85 % of the total
runtime. The load was found to be well-balanced, as the required time per family

A Parallel, Distributed-Memory Framework for Comparative Motif Discovery 275

Table 1. Motif discovery on four monocotyldon species. The dataset consists of 17 724
gene families. AF = alignment-free, AB = alignmnent-based.

Promoter Modus Number of Runtime Number of words Number of
length Ns parallel processes P (walltime) per family (avg.) sign. motifs

500 bp AB 96 0h12 18 150 865 512
500 bp AF 96 0h57 178 000 1 356 004

2 kbp AB 96 0h30 28 000 902 983
2 kbp AF 200 4h25 628 000 1 689 998

is roughly equal for each family individually. Within this step, only 6 % of the
time is spent on the initial construction of the GSTs whereas 94 % of the time
is spent in the discovery algorithm and the computation of the BLS values.

In the communication phase, all words are repartitioned among the different
processes in such way that both a given word w and all permutations of w that
were found during the intra-family step are attributed to the same process. The
frequency vectors Fw corresponding to the same words are immediately merged
to limit the memory overhead. The total time for this step is 8 minutes time
or 14 % of the total runtime. The actual time spent redistributing the data is
5 minutes or 9 % of the total runtime, while the remaining time is spent on
the packing and unpacking of the motif frequency vectors and the merging of
corresponding motifs. Note that we use a high-speed Infiniband interconnection
network, but that the use of an Ethernet network is also possible, as this step
has only a limited contribution to the total runtime.

The inter-family phase is again communication-free and consist of the statis-
tical testing of all words w. It required only 20 s or 0.6 % of the total runtime.

Because no computations are duplicated in the parallel algorithm, and
because the single communication step has only a limited contribution to the
total runtime, we expect our algorithm to exhibit a significant speedup, com-
pared to the sequential algorithm. Note that we cannot process the complete
dataset on a single node, making it difficult to estimate the exact speedup. For
smaller datasets however, we achieve a speedup of up to 120, using 256 parallel
processes.

The main limitation of the framework however, lies in the increased mem-
ory requirements, compared to the sequential algorithm. Whereas the sequen-
tial algorithm requires only a single < w,Fw > pair for each individual word
w, the parallel algorithm has additional memory requirements because several
< w,Fw > pairs might be stored in the local memories of different parallel
processes. This is the case when w is found to be conserved in several gene
families, contained by different processes. Therefore, the aggregated memory
requirements at the end of the intra-family step are higher than in the sequen-
tial algorithm. For the largest simulation (2 kbp promoters and alignment-free
mode), each of the 200 processes required almost 2 GByte of memory, yielding
an aggregated memory requirement of roughly 400 GByte. Currently, this is the
main limitation of the framework.

276 D. De Witte et al.

5 Conclusion and Future Research directions

In this contribution, we have presented a parallel framework for comparative
motif discovery. The framework is word-based and gene-centric, as it takes a
number of orthologous promoter sequences from related species as input. A mea-
sure of conservation can be defined in a flexible way. The framework allows for
different alphabets (e.g. 4-letter alphabet, 4-letter alphabet + ‘N’ character,
or even the full IUPAC alphabet) and provides for a statistical evaluation of
candidate motifs based on count statistics. The framework can take advantage
of large distributed-memory clusters in order to deal with high computational
requirements.

Within this parallel framework, we have implemented two methodologies.
First, an alignment-based approach where conservation is scored based on pre-
generated multiple sequence alignments and second, an alignment-free approach
where conservation does not depend on the relative position or orientation of
the candidate motif. In both cases, the branch length score (BLS) was used to
quantify conservation, taking the phylogenetic relationships between the organ-
isms into account. Using this framework, we exhaustively processed four plant
species.

The framework is implemented using the Message Passing Interface (MPI),
but bears some conceptual resemblance with the map-reduce paradigm, where
two compute phases are effectively separated by a single communication step.
The framework can undoubtedly be cast in e.g. Hadoop’s map-reduce imple-
mentation. The advantage of using such scheme, is that Hadoop provides for an
automatic load balancing of both map and reduce phase and can recover from
node failures. More importantly, map-reduce can operate out-of-core, streaming
data to local hard disks if the local memory capacities turn out to be insufficient.
This should, in turn allow for the handling of a larger number of organisms, or
provide for more sensitive alphabets (e.g. the full IUPAC alphabet), with the
ultimate goal of obtaining a comparative motif discovery method with increased
sensitivity.

Acknowledgments. This work was carried out using the Stevin Supercomputer
Infrastructure at Ghent University, funded by Ghent University, the Hercules Founda-
tion and the Flemish Government - department EWI. This research fits in the Multidis-
ciplinary Research Partnership of Ghent University: Nucleotides to Networks (N2N).

References

1. Das, M.K., Dai, H.-K.: A survey of DNA motif finding algorithms. BMC Bioinform.
8(Suppl 7), S21 (2007)

2. Blanchette, M., Tompa, M.: Discovery of regulatory elements by a computational
method for phylogenetic footprinting. Genome Res. 12(5), 739–748 (2002)

3. Elemento, O., Tavazoie, S.: Fast and systematic genome-wide discovery of con-
served regulatory elements using a non-alignment based approach. Genome Biol.
6(2), R18 (2005)

A Parallel, Distributed-Memory Framework for Comparative Motif Discovery 277

4. Wu, J., Sieglaff, D.H., Gervin, J., Xie, X.S.: Discovering regulatory motifs in the
Plasmodium genome using comparative genomics. Bioinformatics 24(17), 1843–
1849 (2008)

5. Sieglaff, D.H., Dunn, W.A., Xie, X.S., Megy, K., Marinotti, O., James, A.A.: Com-
parative genomics allows the discovery of cis-regulatory elements in mosquitoes.
Proc. Natl. Acad. Sci. 106(9), 3053–3058 (2009)

6. Kumar, L., Breakspear, A., Kistler, C., Ma, L.J., Xie, X.: Systematic discovery of
regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes.
BMC Genomics 11, 208 (2010)

7. Ettwiller, L., Paten, B., Souren, M., Loosli, F., Wittbrodt, J., Birney, E.: The
discovery, positioning and verification of a set of transcription-associated motifs in
vertebrates. Genome Biol. 6(12), R104 (2005)

8. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lan-
der, E.S., Kellis, M.: Systematic discovery of regulatory motifs in human promot-
ers and 3’ UTRs by comparison of several mammals. Nature 434(7031), 338–345
(2005)

9. Bailey, T.L., Bodén, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren,
J., Li, W.W., Noble, W.S.: MEME SUITE: tools for motif discovery and searching.
Nucleic Acids Res. 37, 202–208 (2009)

10. Stark, A., Lin, M.F., Kheradpour, P., Pedersen, J.S., Parts, L., Carlson, J.W.,
Crosby, M.A., Rasmussen, M.D., Roy, S., Deoras, A.N., et al.: Discovery of func-
tional elements in 12 Drosophila genomes using evolutionary signatures. Nature
450(7167), 219–232 (2007)

11. Gusfield, D.: Algorithms on Strings, Trees, And Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

12. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw. Pract. Exp. 33(11), 1035–1049 (2003)

13. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with application to promoter and regulatory site consensus identification. J.
Comput. Biol. 7(3/4), 345–360 (2000)

14. Marschall, T., Rahmann, S.: Efficient exact motif discovery. Bioinformatics 25(12),
356–364 (2009)

15. Van Bel, M., Proost, S., Wischnitzki, E., Movahedi, S., Scheerlinck, C., Van de
Peer, Y., Vandepoele, K.: Dissecting Plant Genomes with the PLAZA comparative
genomics platform. Plant Physiol. 158(2), 590–600 (2012)

16. Proost, S., Van Bel, M., Sterk, L., Billiau, K., Van Parys, T., Van de Peer, Y., Van-
depoele, K.: PLAZA: a comparative genomics resource to study gene and genome
evolution in plants. Plant Cell 21, 3718–3731 (2009)

Parallel Seed-Based Approach
to Protein Structure Similarity Detection

Guillaume Chapuis1(B), Mathilde Le Boudic - Jamin1, Rumen Andonov1,
Hristo Djidjev2, and Dominique Lavenier1

1 INRIA/ IRISA Rennes, GenScale, Rennes, France
{guillaume.chapuis,mathilde.le boudic-jamin,

rumen.andonov,dominique.lavenier}@irisa.fr
2 Los Alamos National Laboratory, Los Alamos, NM, USA

djidjev@lanl.gov

Abstract. Finding similarities between protein structures is a crucial
task in molecular biology. Many tools exist for finding an optimal
alignment between two proteins. These tools, however, only find one
alignment even when multiple similar regions exist. We propose a new
parallel heuristic-based approach to structural similarity detection
between proteins that discovers multiple pairs of similar regions. We
prove that returned alignments have RMSDc and RMSDd lower than a
given threshold. Computational complexity is addressed by taking advan-
tage of both fine- and coarse-grain parallelism.

Keywords: Protein structure comparison · Parallel computing ·
Seed-based heuristic · Alignment graph

1 Introduction

A protein’s three dimensional structure tends to be better evolutionarily pre-
served than its sequence. Therefore, finding structural similarities between two
proteins can give insights into whether these proteins share a common func-
tion or whether they are evolutionarily related. Structural similarities between
two proteins are expressed by a one-to-one mapping (also called alignment) of
their three dimensional representations. The quality of these alignments is cru-
cial to correctly estimate protein functions and protein relations. Detecting the
longest alignment, when comparing protein structures, is frequently modeled as
finding the maximum clique [6,8], or enumerating all maximal cliques [3,10].
Both problems are NP-hard. In these approaches, cliques are looked for in so-
called product (or alignment) graphs, where each edge corresponds to matching
of similar internal distances (up to a user-defined threshold τ). All edges in the
target cliques satisfy this condition, but exactly this requirement leads to solving
NP-hard problems.

Here, we relax this condition and accept cliques such that edges correspond to
matching of similar internal distances up to 2τ . For this relaxed problem we pro-
pose a polynomial algorithm and its efficient parallel implementation comparing

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 278–287, 2014.
DOI: 10.1007/978-3-642-55195-6 26, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Seed-Based Approach to Protein Structure Similarity Detection 279

two protein structures that guarantees to return alignments with both RMSDc
and RMSDd less than a given threshold value, if such alignments exist. This
methodology also offers the possibility to return more than one alignment for a
single pair of proteins to address cases where two proteins share more than a sin-
gle similar region. Our approach takes advantage of internal distance similarities
among both proteins to search for an optimal transformation to superimpose
their structures. To the best of our knowledge, our tool is unique in the capac-
ity to generate multiple alignments with “good” RMSDc and RMSDd values.
Thanks to this property, the tool is able to detect structural repetitions within
a single protein and between related proteins. We do not require vertices in the
alignment graph to be ordered which make our algorithm suitable for detecting
similar domains when comparing multiple domained proteins. Computational
complexity is addressed by extensive use of parallel computing techniques.

1.1 Alignment Graphs

Undirected graphs G = (V, E) are represented by a set V of vertices and a set
E of edges between these vertices. In this paper, we focus on a subset consisting
of grid-like graphs, referred to as alignment graphs.

An m × n alignment graph G = (V, E) is a graph in which the vertex set
V is depicted by an m × n array T , where each cell T [i][k] contains at most
one vertex (i, k) from V . An example of such an alignment graph for protein
comparison is given in Fig. 1.

The matching of two proteins P1 and P2 can be solved by analyzing an
alignment graph G = (V, E), where V = {(v1, v2)|v1 ∈ V1, v2 ∈ V2} and V1

(resp. V2) is the set of atoms of interest in protein P1 (resp. protein P2). A
vertex (i, k) is present in V only if atoms i ∈ V1 and k ∈ V2 are compatible.
An example of incompatibility could be different electrostatic properties of the
two atoms. An edge ((i, k), (j, l)) is in E if and only if the distance between
atoms i and j in protein P1, d(i, j), is similar to the distance between atoms k
and l in protein P2, d(k, l). In our case, these distances are considered similar if
|d(i, j) − d(k, l)| < τ , where τ is a given threshold.

1.2 Relation to Protein Structure Comparison

In an alignment graph between two proteins P1 and P2, a subgraph with high
density of edges denotes similar regions in both proteins. Finding similarities
between two proteins can therefore be performed by searching the corresponding
alignment graph for subgraphs with high edge density. The highest possible edge
density is found in a clique, a subset of vertices that are all connected to each
other.

DAST [8], for Distance-based Alignment Search Tool, aims at finding the
maximal clique in an alignment graph. DAST uses alignment graphs where rows
(resp. columns) represent an ordered set of atoms V1 (resp. V2) from protein P1

(resp. protein P2). A vertex (i, j) is present in the graph if and only if residues
i and j belong to similar secondary structures in both proteins. An edge is

280 G. Chapuis et al.

Fig. 1. Example of an alignment graph used here to compare the structures of two
proteins. The presence of an edge between vertex (1, 1) and vertex (3, 2) means that
the distance between atoms 1 and 2 of protein 1 is similar to the distance between
atoms 1 and 3 of protein 2.

present between vertex (i, j) and vertex (k, l) if and only if |d(i, j)−d(k, l)| < τ ,
where τ is a given threshold. By construction, alignments returned by DAST are
guaranteed to have associated RMSDd strictly less than τ .

1.3 Measures for Protein Alignments

Many measures have been proposed to assess the quality of a protein alignment.
These measures include additive scores based on the distance between aligned
residues such as the TM-score [12] or the STRUCTAL score [11] and Root Mean
Square Deviation (RMSD) based scores, such as RMSD100, SAS and GSAS [5].
Given a set of n deviations S = s1, s2, ..., sn, its Root Mean Square Deviation is:

RMSD(S) =

√
√
√
√ 1

n ∗
n∑

i=1

s2i . Two different RMSD measures are used for protein

structure comparison: RMSDc, which takes into account deviations consisting
of the euclidean distances between matched residues after optimal superposition
of the two structures; RMSDd, which takes into account deviations consist-
ing of absolute differences of internal distances within the matched structures.
The measured deviations are |d(i, j) − d(k, l)|, for all couples of matching pairs
“i ↔ k, j ↔ l”. Let P be the latter set and Nm, its cardinality. We have that

RMSDd =
√

1
Nm

∗
∑

(ij,kl)∈P

(|d(i, j) − d(k, l)|2).

2 Methods

2.1 Our Approach

Looking for the maximal clique in a graph is a NP-complete problem [4]. Being
an exact solver, DAST faces prohibitively long run times for some instances.
We propose a polynomial approach to protein structure comparison that guar-
antees to return alignments with the following properties RMSDd < 2τ and

Parallel Seed-Based Approach to Protein Structure Similarity Detection 281

RMSDc < τ , if such exist. Our approach offers the possibility to return an
arbitrary number of distinct alignments. Returning multiple similar regions can
prove useful, for instance, when looking for a structural pattern that may be
present more than once in a protein or when comparing highly flexible pro-
teins. However, enumerating multiple similar regions requires a more systematic
approach than those developed in other existing heuristic-based tools. The com-
putational burden associated with such a systematic approach can nevertheless
be addressed by making use of multiple levels of parallelism.

Our method is inspired by the maximal clique search implemented in DAST.
Instead of testing the presence of all edges among a subset of vertices ad in DAST,
we only test the presence of edges between every vertex of the subset and an
initial 3-clique, referred to as seed. The correctness of the resulting algorithm
follows from geometric arguments, namely that the position of any 3-dimensional
solid object is determined by the positions of three of its points that are not
collinear.

2.2 Overview of the Algorithm

The algorithm consists of the following three steps:

– Seeds in the alignment graph are enumerated. In our case, a seed is a set of
three points in the alignment graph that correspond to two triangles (one in
each protein) with similar internal distances. This step is detailed in Sect 2.3.

– Each seed is then extended. Extending a seed consists in adding all pairs of
atoms, for which distances to the seed are similar in both proteins, to the set
of three pairs of atoms that make up the seed. Seed extension is detailed in
Sect. 2.4.

– Each seed extension is filtered. Extension filtering is detailed in Sect. 2.5 and
consists in removing pairs of atoms that do not match correctly.

Filtered extensions are then ranked according to their size - number of
aligned pairs of atoms - and a user-defined number of best matches are returned.
This process is explained in Sect. 2.7. The overall worst-case complexity of this
algorithm is O(|V | ∗ |E|3/2).

2.3 Seed Enumeration

A seed consists of three pairs of atoms that form similar triangles in both pro-
teins. A triangle IJK in protein P1 is considered similar to a triangle I ≥J ≥K ≥

in protein P2 if the following conditions are met: |d(I, J) − d(I ≥, J ≥)| < τ ,
|d(I,K) − d(I ≥,K ≥)| < τ and |d(J,K) − d(J ≥,K ≥)| < τ . Here, d denotes the
euclidean distance and τ is a user-defined threshold parameter. The default
value for τ is 2.0 Ångstrms.

In the alignment graph terminology, these conditions for a seed (vi = (I, I ≥),
vj = (J, J ≥), vk = (K,K ≥)) in graph G(V,E) translate to the following: (vi, vj) ∈
E, (vi, vk) ∈ E and (vj , vk) ∈ E.

282 G. Chapuis et al.

A seed thus corresponds to a 3-clique in the alignment graph; i.e., three
vertices that are connected to each other. Enumerating all the seeds is therefore
equivalent to enumerating every 3-clique in the input alignment graph.

Not all 3-cliques, however, are relevant. Suitable 3-cliques are composed of
triangles for which a unique transformation can be found to optimally super-
impose them. Namely, 3-cliques composed of triangles that appear to be too
“flat” will not yield a useful transformation. We thus ensure that the triangles
in both proteins defined by a potential seed are not composed of aligned points
(or points which are close to being aligned). The worst-case complexity of this
step is O(|E|3/2) using, e.g., the algorithms from [9].

2.4 Seed Extension

Extending a seed consists in finding the set of vertices that correspond to pairs
of atoms that potentially match well (see Sect. 2.5 for details) when the two
triangles defined by the seed are optimally superimposed. Finding a superset of
pairs of atoms that match well is performed by triangulation with the three pairs
of atoms composing the seed. The computational complexity associated to this
step is O(|V |).

2.5 Extension Filtering

In order to remove issues with symmetry (where the atoms in the extending
pair are roughly symmetrical with respect to the plane determined by the seed
atoms), we implemented a method to filter seed extensions. This method consists
in computing the optimal transformation T to superimpose the triangle from
the seed corresponding to the first protein onto the triangle corresponding to
the second. The optimal transformation is obtained using the fast, quaternion-
based method of [7]. For each pair of atoms (L,L’) composing the extension of
a seed, we compute the euclidean distance between T (L) and L≥. If the distance
is greater than a given threshold τ , the pair is removed from the extension. The
complexity of this step is O(|V |) per seed.

2.6 Guarantees on Resulting Alignments’ RMSD Scores

By construction, the filtering method ensures that the RMSD for a resulting
alignment is less than τ : the distance between two aligned residues after super-
imposition of the two structures is guaranteed to be less than τ .

Internal distances between any additional pair of atoms and the seed is also
guaranteed, by construction to be less than τ . Concerning internal distances
between two additional pairs of atoms, we ensure that in the worst possible
case, the difference is 2∗ τ , see Fig 2. The worst possible case happens when two
additional pairs of atoms vl = (L,L≥) and vm = (M,M ≥), added to the extension
of a seed (vi, vj , vk), have atoms L, L≥, M and M ≥ aligned, after superimposition,
and atoms from one protein lie within the segment defined by the two other
atoms. In such a case, the filtering step ensures that d(L,L≥) < τ and d(M,M ≥) <
τ ; it follows that |d(L,M) − d(L≥,M ≥)| < 2 ∗ τ .

Parallel Seed-Based Approach to Protein Structure Similarity Detection 283

Fig. 2. Illustration of the guarantee on the similarity of internal distances between two
pairs of atoms vl = (L,L′) and vm = (M,M ′), here represented in yellow, added to
a seed (vi, vj , vk) represented in blue. Dashed lines represent internal distances, the
similarity of which is tested in the alignment graph (color figure online).

2.7 Result Ranking

When comparing two proteins, we face a double objective: finding alignments
that are both long and have low RMSD scores. The methodology described in
Sect. 2.5 ensures that any returned alignment will have a RMSDd lower or equal
to twice a user-defined parameter τ . We can therefore leave the responsibility to
the user to define a threshold for RMSD scores of interest. However, ranking
alignments that conform to this RMSD threshold simply based on their lengths
is not an acceptable solution. In a given alignment graph, several seeds may lead
to very similar transformations and thus very similar alignments. The purpose of
returning multiple alignments for a single comparison is to find distinct similar
regions in both proteins. Therefore, when two alignments are considered similar,
we discard the shorter of the two.

Two alignments are considered similar, when they share defined number of
pairs of atoms. This number can be adjusted depending on the expected length
of the alignments or even set to a percentage of the smaller of the two compared
alignments. This methodology of ranking results ensures that no two returned
alignments match the same region in the first protein to the same region in the
second protein.

3 Parallelism

3.1 Overview of the Implemented Parallelism

The overall complexity of our algorithm being O(|V | ∗ |E|3/2), handling large
protein comparison with a decent level of precision - i.e., using alignment graphs
with a large number of edges - can prove time-consuming. Our approach is
however parallelizable at multiple levels.

Figure 3 shows an overview of our parallel implementation. Multiple seeds
are treated simultaneously to form a coarse-grain level of parallelism, while a
finer grain parallelism is used when extending a single seed.

284 G. Chapuis et al.

Fig. 3. Overview of the implemented parallelism.

3.2 Coarse-Grained Parallelism

Computations for enumerating seeds - see Sect. 2.3, extending seeds - see Sect. 2.4,
and filtering the resulting extensions - see Sect. 2.5, are independent processes,
which can be performed in parallel. A user-defined number of threads can be
spawned to handle, in parallel, computations for the various seeds present in the
graph. This parallelism is implemented using the openMP standard [2].

Threads, however need to share their results to populate a global list of
results. Inserting new entries in this global-result list would prove rather inef-
ficient, because thread safety would need to be ensured by using locks around
accesses to this result list. With such locks, threads would often stall whenever
inserting a new alignment and the time lost on these accesses would only increase
with the number of threads in use. In order to avoid any bottleneck when insert-
ing a new alignment in the result list, each thread has its own private list. These
lists are merged at the end of the computations to form a global result list. This
method prevents the need for a synchronization mechanism and allows threads
to be completely independent.

However, using this method can, in some cases, increase the total amount of
computations. Whenever a seed extension is smaller than the smallest alignment
present in the result list, it is discarded, thus avoiding the cost of a filtering step.
Since each thread has its own result list, the minimal size required for the thread
to consider filtering an extension is only a lower bound of the global minimal
size found so far by all threads. Sharing only this global minimal size among
threads is not a suitable solution, because no guarantee could be made on the
distinctness of two alignments from different threads and smaller similar regions
could be wrongly discarded.

3.3 Fine-Grained Parallelism

Seed extension makes extensive use of set intersection operations. In order to
speed up these particular operations, we implemented a bit vector representation
of the neighbors set of each vertex of the alignment graph. These bit vectors
represent the neighbors in the alignment graph of each vertex (cf. Fig. 4). For a
vertex vi, a bit is set at position j if and only if vertices vi and vj are connected
in the alignment graph.

Parallel Seed-Based Approach to Protein Structure Similarity Detection 285

Fig. 4. Bit vector representation of the neighbors of vertex vi in an alignment graph
G(V,E). In this example, vj unlike vk is a neighbor of vi.

This bit vector representation of the neighbors sets allows bit parallel compu-
tations of set intersection. A simple logic and operation over every word element
of the two sets yields the intersection.

Intersection operations also benefit from SSE1 instructions. A number of
atomic operations equal to the size of the SSE registers available on the machine
(typically 128 or 256) can be computed simultaneously. However, this sparse
approach to computing set intersections increases the number of atomic oper-
ations to perform. Namely, vertices, which are not neighbors of any of the two
vertices for which the intersection is computed, will induce atomic operations.
Such vertices would not be considered in a traditional approach to set intersec-
tion. This sparse approach is still faster in our case because alignment graphs
tend to be dense enough. The size of the resulting intersections is required for
the rest of our algorithm. Knowing the size of an intersection allows us to dis-
card seeds, when larger results have already been found. Computing the size of
a sparse set is not as trivial as it is with a dense set. In order to compute the
size of a sparse set, we use a built-in population count instruction (POPCNT)
available in SSE4. This operation returns, in constant time, the number of bits
set in a single machine word. For architectures without a built-in population
count instruction, a slower alternative is provided.

4 Results and Perspectives

In order to test the capacity of our approach to detect multiple regions of interest,
we considered two proteins (PDB IDs 4clna and 2bbma). These proteins are
each composed of two similar domains - named A and B (resp. C and D) for
the first protein (resp. second protein), separated by a flexible bridge Existing
approaches, such as ones based on contact map overlap (CMO) [1], tend to
match both proteins integrally, yielding larger alignments but poorer RMSD
scores. TM align [13], the reference tool for protein comparison, only matches
domain A onto domain C. The four top results of our tool for the comparison of
these two entire proteins correspond to all four possible combinations of domain
matching. Our tool was run using 12 cores of an Intel(R) Xeon(R) CPU E5645

1 Streaming SIMD Extensions.

286 G. Chapuis et al.

@ 2.40 GHz and the distance threshold was set to 7 Ångstrms and to 2 Ångstrms
in the alignment graph. Scores corresponding to these alignments are displayed
in Table 1.

Table 1. Details of the alignments returned by other tools - columns 2 through 4 -
and our method - columns 5 through 8. Best scores are in italics.

CMO PAUL TMAlign AC BD AD BC

of aligned residues 148 148 79 72 70 66 64
% of aligned residues 100 100 53.4 48.7 47.3 44.6 43.2
RMSDc 14.781 14.781 2.935 2.048 1.731 1.592 2.210
RMSDd 10.838 10.838 2.627 1.797 1.475 1.414 1.770
TM score 0.161 0.161 0.422 0.411 0.422 0.405 0.358

In order to test our coarse-grain parallel implementation, we compare run
times obtained with various numbers of threads on a single artificially large
instance. Any instance can be made artificially large by allowing a large number
of vertices and edges when creating the alignment graph. The input alignment
graph for this instance contains 15024 vertices for 9565358 edges. Computations
were run using a varying number of cores of an Intel(R) Xeon(R) CPU E5645
@ 2.40 GHz. Table 2 shows run times and speedups with respect to the number
of CPU cores. The gain in terms of speedup becomes less significant beyond 12
cores. Note that similar results - both in terms of length and RMSD scores -
can be obtained in less than 30 s with a sparser alignment graph.

Table 2. Run times and speedups for varying # of cores.

of cores 1 2 3 4 6 8 12 16 20 24

Run time (s) 6479 3696 2494 1932 1374 1072 781 723 676 643
Speedup 1 1.8 2.6 3.4 4.7 6.0 8.3 9.0 9.6 10.1

Figure 5 shows run times for graphs with a varying number of edges and
the same number of vertices - 21904. Computations were run using 12 cores

Fig. 5. Evolution of run times with respect to # of edges in the alignment graph.

Parallel Seed-Based Approach to Protein Structure Similarity Detection 287

of an Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz. Input alignment graphs were
all generated from the same two proteins and different parameters to allow a
varying number of edges.

This approach could be used to find similarities between RNA structures.
However, such structures can be much larger than proteins. Therefore, future
work includes further optimizations to allow larger alignment graphs to be
computed.

References

1. Andonov, R., Malod-Dognin, N., Yanev, N.: Maximum contact map overlap revis-
ited. J. Comput. Biol. 18(1), 27–41 (2011)

2. Dagum, L., Menon, R.: OpenMP: an industry standard api for shared-memory
programming. Comput. Sci. Eng. IEEE 5(1), 46–55 (1998)

3. Gibrat, J.-F., Madej, T., Bryant, S.H.: Surprising similarities in structure compar-
ison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)

4. Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, Heidelberg
(1972)

5. Kolodny, R., Koehl, P., Levitt, M.: Comprehensive evaluation of protein struc-
ture alignment methods: scoring by geometric measures. J. Mol. Biol. 346(4),
1173–1188 (2005)

6. Konc, J., Janežič, D.: Probis algorithm for detection of structurally similar protein
binding sites by local structural alignment. Bioinformatics 26(9), 1160–1168 (2010)

7. Liu, P., Agrafiotis, D.K., Theobald, D.L.: Fast determination of the optimal
rotational matrix for macromolecular superpositions. J. Comput. Chem. 31(7),
1561–1563 (2010)

8. Malod-Dognin, N., Andonov, R., Yanev, N.: Maximum cliques in protein structure
comparison. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 106–117. Springer,
Heidelberg (2010)

9. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 606–609. Springer, Heidelberg (2005)

10. Schmitt, S., Kuhn, D., Klebe, G., et al.: A new method to detect related function
among proteins independent of sequence and fold homology. J. Mol. Biol. 323(2),
387–406 (2002)

11. Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of DNA-binding
domains of bacteriophage repressors and the globin core. Curr. Biol. 3(3),
141–148 (1993)

12. Zhang, Yang, Skolnick, Jeffrey: Scoring function for automated assessment of pro-
tein structure template quality. Proteins: Struct. Funct. Bioinf. 57(4), 702–710
(2004)

13. Zhang, Yang, Skolnick, Jeffrey: Tm-align: a protein structure alignment algorithm
based on the tm-score. Nucleic Acids Res. 33(7), 2302–2309 (2005)

Minisymposium on Applications
of Parallel Computation in Industry

and Engineering

A Parallel Solver for the Time-Periodic
Navier–Stokes Equations

Peter Arbenz1(B), Daniel Hupp1, and Dominik Obrist2

1 Computer Science Department, ETH Zürich, Zürich, Switzerland
arbenz@inf.ethz.ch

2 Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland

Abstract. We investigate parallel algorithms for the solution of the
Navier–Stokes equations in space-time. For periodic solutions, the dis-
cretized problem can be written as a large non-linear system of equations.
This system of equations is solved by a Newton iteration. The New-
ton correction is computed using a preconditioned GMRES solver. The
parallel performance of the algorithm is illustrated.

Keywords: Time-periodic Navier-Stokes · Space-time parallelism ·
Nonlinear systems of equations · Newton iteration · GMRES

1 Introduction

Time-periodic problems arise in many fields. In fluid dynamics, especially with
biofluids, they are of particular interest. Pulsating blood flow induced by the
beating heart is probably the most prominent example. In this study we investi-
gate, as a proof of concept, a channel flow with an immersed disk as an oscillating
obstacle, see Fig. 1.

f

u

Fig. 1. Channel flow with oscillating disk.

In the classical approach to solve such problems, the transient behavior of
the fluid is simulated starting from an arbitrary initial state. This simulation is
continued until some periodic steady-state evolves.

Here, we model the fluid in space-time Ω × [0, T). We will impose periodic
boundary conditions in time. The discretization of the Navier–Stokes equations

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 291–300, 2014.
DOI: 10.1007/978-3-642-55195-6 27, c© Springer-Verlag Berlin Heidelberg 2014

292 P. Arbenz et al.

by finite differences in space and time leads to a very large nonlinear system of
equations that requires parallel solution. The parallelization is done by domain
decomposition where the subdomains partition space and time in a natural way.
This is an advantage over the classical approach where only space can be parti-
tioned. At the same time, the number of degrees of freedom is larger by O(T/Δt).

The advantages of this approach were already exploited for computing the
time-periodic shallow-water equation [1]. There it could be shown that the
steady-state solution can be obtained quickly, with the help of a two level circu-
lant preconditioner. The time-periodic Burgers equation was solved in [9]. There,
a truncated Fourier series is used for the time discretization instead. Also a fixed-
point iteration is proposed, which allows to compute different Fourier modes in
parallel.

Approaches that admit parallelization in time exist but are quite recent and
not very popular yet. A task parallel approach is the revisionist integral deferred
correction method, which is coupled with spatial domain decomposition in [2].
The parallelization in time is done by using a predictor-corrector method that
allows to compute different levels of the prediction and correction in parallel.
Another approach, which aims at domain decomposition in time, is parareal [7].
There, different time intervals are solved by different processors, given initial
conditions from a cheap, serial integrator. Through iterations, the overall result
gets the accuracy of the integrator done in parallel.

2 Statement of the Problem

The Navier–Stokes equation for incompressible flow can be written as

∂tu + (u · ∇) u = −∇p +
1

Re
Δu + force, x ∈ Ω, t > 0, (1a)

∇ · u = 0, x ∈ Ω, t > 0, (1b)
u(x, t) = ubc(x), x ∈ ∂Ω, t > 0, (1c)

where u denotes the velocity vector, p the pressure and force an external force
density. The Reynolds number Re is defined as Re = UrefLref/ν, where Uref and
Lref are reference velocity and reference length, respectively, and ν is the fluid
viscosity. With q := [uT , p]T we write (1) as

F (q) =
[
F force
u (q)
Fp(q)

]

=
[

=Fu
︷ ︸︸ ︷

∂tu + (u · ∇) u + ∇p − 1
ReΔu

∇ · u
−force

]

=
[
0
0

]

(2)

The oscillating disk is modeled by an immersed boundary force formulation to
enforce no-slip boundary conditions [8]. The computational domain Ω is divided
into a fluid domain Ωf(t) and a solid obstacle domain Ωob(t). The obstacle
domain is changing its position in time, according to its velocity uob(t). The
characteristic function of the obstacle domain is defined by

χ(x, t) =

{
1, x ∈ Ωob(t),
0, x ∈ Ωf(t),

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 293

uob(t)

Ωob(t)

Ωf(t)

Fig. 2. Computational
domain θ = θf ∈ θob.

which is a first order approximation of the inter-
face ∂Ωob(t) between fluid and obstacle Fig. 2. (In
the actual computation we use a smoothed version
of χ(x, t), see [5].) We enforce continuity of the
velocity across this interface, which we informally
write as

u(x, t) = uob(x, t) = uob(t), x ∈ ∂Ωob(t).

We formulate the immersed boundary force

force = χ(x, t)Fu(q) + χ(x, t)(u − uob).

Plugging this into the first equation of (2) yields

(1 − χ(x, t))Fu(q) + χ(x, t)(u − uob) = 0. (3)

The periodicity of the oscillating obstacle induces an equal periodicity on the
solution,

u(x, t) = u(x, t + T), p(x, t) = p(x, t + T), x ∈ Ω, t > 0. (4)

3 Discretization

The discretization is very similar to the shallow-water equation [1].

j

j + 1

i i + 1

Fig. 3. Staggered grid.

We consider a space-time domain Ω × [0, T],
where Ω = [0, Lx]× [0, Ly], which we discretize with
a staggered lattice, with Nx, Ny and Nt grid points.
Thus the grid points are xi = iΔx, yj = jΔy and
tk = kΔt, where Δx = Lx

Nx
, Δy = Ny

Ly
and Δt = T

Nt
.

The function values are approximated at grid points
of a staggered grid (cf. Fig. 3)

u
(k)

i,j+ 1
2

≈ u(xi, yj+ 1
2
, tk),

v
(k)

i+ 1
2 ,j

≈ v(xi+ 1
2
, yj , tk),

p
(k)

i+ 1
2 ,j+ 1

2
≈ p(xi+ 1

2
, yj+ 1

2
, tk).

This leads to NxNyNt unknowns for p, (Nx − 1)NyNt unknowns for u, and
Nx(Ny − 1)Nt unknowns for v. For discretizing (2) and (5), we use finite differ-
ences [6].

The following finite difference stencil is used for approximating the time
derivatives,

∂tf
(k)
i,j ≈ f

(k−2)
i,j − 4f

(k−1)
i,j + 3f

(k)
i,j

2Δt
.

This is different to our previous work on the shallow-water equation. Fur-
thermore, the scheme for the advective terms is changed from a central to a first
order upwind scheme.

294 P. Arbenz et al.

4 Numerical Solution Method

We employ Newton’s iteration method to solve the nonlinear equations (2)–(3).
To that end, we need the derivative of F with respect to the variable q. A
straightforward calculation gives [5]

DqF (u) =

[

∂t + ∂u
∂x

+ (u · ∇) − 1
ReΔ ∇

∇· 0

]

, x ∈ Ωf, (5)

and

DqF (u) =
[

I 0
∇· 0

]

, x ∈ Ωob. (6)

Newton’s method can now formally be written as in Algorithm 4.1.

Algorithm 4.1. Newton iteration for solving F (q) = 0

1: Choose an initial approximation q(0).
2: for τ = 0, . . . , maxIt-1 do
3: Compute F (λ) ← F (q(λ)).
4: if ∀F (λ)∀2 < γ then
5: exit.
6: else
7: Solve DqF (q(λ))d = −F (λ) for the Newton correction d.
8: Update q(λ+1) ← q(λ) + d.
9: end if

10: end for

This discretization of the Navier–Stokes equations introduce above leads to
the non-zero pattern of DqF (q) depicted in Fig. 4. Clearly, DqF has a 3×3 block
structure that is inherited by the three components u, v, and p. From (3) we see
that the nonzero diagonal blocks have 7 diagonals. The off-diagonal blocks have
two nonzero diagonals.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Fig. 4. Non-zero pattern for DqF (q) for Nx = Nt = 20 and Ny = 10.

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 295

5 Parallelization

Our code is parallelized making use of Trilinos [4]1, a collection of numeri-
cal software packages. This object-oriented library provides numerous paral-
lelized numerical packages. We use NOX, the package for nonlinear object-
oriented solutions. It provides different line search and stepping methods for
Newton methods. We will use it for its implemented backtracking and forcing
methods.

We also extensively use the Epetra package that provides distributed vectors
and distributed compressed row storage (CRS) matrices. They are distributed
such that each processor (core) holds the variables and associated matrix rows
of a block of the space-time domain. Because our space-time domain is a 3-
dimensional cuboid, the best and simplest partitioning scheme is the partition
in subcuboids. This reduces communication volume the most.

The matrices and vectors are distributed such that each process gets approxi-
mately the same number of rows. For DqF the spatial domain is divided into mx

intervals along the x-axis and my intervals along the y-axis. The time domain
is divided into mt intervals. Each process gets then equations corresponding to
all variables in one of these mxmymt blocks. Because of this partitioning we set
the number of processes equal to mxmymt.

The crucial step of the Newton iteration is the computation of the Newton
correction d from

DqF (q(σ))d = −F (σ). (7)

For applying Newton-Krylov method [10], we use the GMRES iterative solver
from the Trilinos package AztecOO together with the block ILUT precondi-
tioner [11], provided by AztecOO as well. This preconditioner constructs an
incomplete LU decomposition dropping matrix entries smaller in modulus than
a prescribed tolerance and allowing only a certain amount of fill-in. In this way
the number of the nonzeros of the LU factors can be controlled not to exceed
a certain amount relative to the original matrix. ILUT is a popular choice of
preconditioner for GMRES. We set the drop tolerance τ = 10−4 and set the fill
factor to 3, meaning that the factors have no more than three times as many
nonzeros as the original matrix. Up to now, this preconditioner has showed
to perform best with regard to computation time. Different perconditioners
were tested, for example a circulant preconditioner similar to the one used in [1].
Also a Schur-complement solver was investigated. Because the choice of the pre-
conditioner is crucial, more detailed investigation are planned for the future.

All computations and timing measurements were done on the Brutus cluster2

at ETH Zurich. We used the AMD Opteron 8380 Quad-Core CPUs that are
connected by an Infiniband QDR network.
1 http://trilinos.sandia.gov/
2 http://brutuswiki.ethz.ch/brutus/Brutus cluster

http://trilinos.sandia.gov/
http://brutuswiki.ethz.ch/brutus/Brutus_cluster

296 P. Arbenz et al.

6 Experiments

In this section, we discuss a channel flow in which the time-periodicity is intro-
duced by a disk that oscillates with a certain frequency f (see Fig. 1).

We use a domain Ω = [0, Lx]×[0, Ly] = [0, 12]×[0, 2], with a Poiseuille inflow

u(y, t) =
4
L2

y

(Ly − y) y, v(y, t) = 0.

At the outflow, we drive the solution toward the same profile by a penalty
function.

The reference length is half the channel width, i.e., Lref = 1. The reference
velocity is the maximum velocity at the inflow, Uref = 1. The frequency f is
chosen such that a prescribed Strouhal number St = f Lref/Uref is obtained.

The oscillating disk has radius Ly/10. The center of the disk depends on time,

xdisk(t) =
Lx

4
, ydisk(t) =

Ly

2
+

Ly

8
sin(2πft). (8)

We visualize a result that we obtained for Re = 200 and St = 0.2. The computa-
tional grid has Nx = 193, Ny = 49, and Nt = 250 grid points in the coordinate
directions x, y, and t. 128 cores are employed. In Figs. 5 and 6 two snapshots
of the periodic steady-state solution are shown taken at t = 0, and T/4, respec-
tively. Figure 5 shows the velocity field, Fig. 6 the pressure field together with the

2 3 4 5 6 7 8
x

0.0

0.5

1.0

1.5

2.0

y

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

(a) t = 0

2 3 4 5 6 7 8
x

0.0

0.5

1.0

1.5

2.0

y

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

(b) t = T/4

Fig. 5. Velocity field.

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 297

0.5

1.0

1.5

y

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.5

1.0

1.5
y

−0.3
−0.2
−0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2 3 4 5 6 7 8
x

2 3 4 5 6 7 8
x

(a) t = 0

(b) t = T/4

Fig. 6. Pressure field and isobars.

corresponding isobars. The boundary of the oscillating disk is well recovered by
the flow field, cf. Fig. 5. Furthermore the oscillating disk leads to a laminar oscil-
lating wake. The disturbance introduced by the oscillating disk is transported
with the base flow. The pressure field in Fig. 6 shows that the highest value is
obtained on the boundary of the disk, indicating a stagnation point.

0 500 1000 1500 2000 2500 3000

time[sec]

10−5

10−4

10−3

10−2

10−1

100

periodic:
||F(l)||2
||F0||2

classical:
||u(t)−u(t−T)||2
||u(T)−u(0)||2

Fig. 7. Comparison between
periodic and classic approach. A
marker corresponds in the classical
approach to the result after one
computed period of physical time,
in the periodic approach a dot
corresponds to one Newton step.

Comparison with Time-Stepping. We
compare our periodic solution approach with
the classical approach, as implemented in
IMPACT. IMPACT [3] is a massively parallel
incompressible Navier-Stokes solver, which
uses finite differences in space and a semi-
implicit time integration scheme. For both
approaches the same problem and the same
discretization is used as before.

The performance of both approaches is
compared by looking at the reduction of
the initial residual over computation time.
In case of the periodic approach the resid-
ual ||F ||2 is used. In the classical approach
||F ||2 is always zero, because the equations
are solved explicitly. In the classical approach
we use as a residual ||u(t) − u(t − T)||2,
the difference between one period of time.

298 P. Arbenz et al.

By construction, this difference is always zero in the periodic approach. Both
are scaled with their initial residual. The reason for that is, that both start with
the same initial guess: an undisturbed Poiseuille flow.

Figure 7 shows that the computation time to reduce the residual of the initial
guess by four orders of magnitude needs a similar amount of computation time.

Weak Scalability. First we want to investigate how the resolution influences
the performance of the algorithm. We set Re = 50 and St = 0.2 and use a grid
with Nx ×Ny ×Nt = 50i×25i×25i, where i varies from one to four. If we choose
the number of cores as 2 i3 the workload per core remains constant. In Fig. 8 we
can see how the performance deteriorates as the resolution increases. On the
right panel we see that the ILUT preconditioner loses quality as the number of
processors increases. Also, if the accuracy of the inner solves is insufficient then
the number of steps in the Newton iteration increases (Fig. 8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Newton Step

10−6

10−5

10−4

10−3

10−2

10−1

100

||F
|| 2

√
N

N ∼ 303

N ∼ 603

N ∼ 1253

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Newton Step

0

200

400

600

800

1000

it
er

N ∼ 303

N ∼ 603

N ∼ 1253

Fig. 8. Weak scaling. Left: residual norm vs. Newton step. Right: number of GMRES
steps to solve for Newton correction vs. Newton step (upper limit 1000).

Speedup. For measuring the speedup we consider the same geometry as before
but we set Re = 50 and St = 0.1. The computational grid is 144 × 72 × 72. The
problem has about 2.2 million degrees of freedom. The speedup for p processors
is obtained by dividing the computation time (wall-clock time) for one processor
by the computation time for p processors t1/tp. The efficiency is the speedup
divided by number of cores.

Table 1. Performance numbers.

p Time (min) Speedup Efficiency p Time (min) Speedup Efficiency

1 231 1 1.00 16 30.3 7.6 0.48
2 123 1.9 0.94 64 8.44 27.4 0.43
4 71.9 3.2 0.80 128 3.39 68.1 0.53
8 48.2 4.8 0.60

A Parallel Solver for the Time-Periodic Navier–Stokes Equations 299

148 16 64 128

Np

0.0

0.2

0.4

0.6

0.8

1.0
e
ffi

c
e
n
c
y

periodic

classical

Fig. 9. Strong scaling. Efficiencies of peri-
odic and classical approach.

In Table 1 we show execution
times, speedups and efficiencies for
various numbers of cores. The execu-
tion times are minima from several
runs. The corresponding convergence
behaviors are found in Fig. 10. From
this figure it appears that the core
number does not affect much the con-
vergence behavior. However, there are
differences at Newton step 4, where we
have faster convergence for 2, 64, and

128 cores. Further, for p = 2 and p = 128 the Newton iteration converges after
11 steps instead of 12. This partly explains the increase of the efficiency with
128 cores.

Additionally, we compare the efficiency between the classical approach and
the periodic approach. The classical approach uses the same spatial discretiza-
tion as the periodic approach, but uses a smaller time step, to satisfy the CFL
condition. In Fig. 9 we can see that the periodic approach scales much better
then the classical approach.

0 1 2 3 4 5 6 7 8 9 10 11
Newton Step

10−6

10−5

10−4

10−3

10−2

10−1

100

||F
|| 2

√
N

1 2 3 4 5 6 7 8 9 10 11
Newton Step

0

200

400

600

800

1000

it
er

Np = 2

Np = 4

Np = 8

Np = 16

Np = 64

Np = 128

Fig. 10. Strong scaling. Left: residual norm vs. Newton step. Right: number of GMRES
steps to solve for Newton correction vs. Newton step (upper limit 1000).

7 Conclusions

We have extended our earlier results on Burgers and the time-periodic shallow-
water equation [1,9] to the time-periodic Navier–Stokes equations. We have
replaced our time consuming, cumbersome multilevel preconditioner for the
correction equation inside the Newton iteration. We now use a block-Jacobi pre-
conditioner where the number of blocks equals the number of processors (cores).
In fact, we apply only an ILUT factorization instead of a full-fledged LU factor-
ization to save memory. The results show that the quality of the block-Jacobi
preconditioner worsens as the core number increases from 1 to 128. As a result
the number of inner iterations increases, and the upper limit is reached after some

300 P. Arbenz et al.

time. At this point also an effect on the (outer) Newton iteration is observed.
With an efficiency of more than 50 % we have reduced the execution time of the
discussed problem from almost 4 h on 1 core to less than 4 minutes on 128 cores.

In addition, we could show that our periodic approach scales better than the
classical approach. And, although in our approach the performance of the linear
solver is not optimal, the computation time to solve a problem is still not worse
than solving it with the classical approach.

References

1. Arbenz, P., Hiltebrand, A., Obrist, D.: A parallel space-time finite difference solver
for periodic solutions of the shallow-water equation. In: Wyrzykowski, R., Don-
garra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol.
7204, pp. 302–312. Springer, Heidelberg (2012)

2. Christlieb, A.J., Haynes, R.D., Ong, B.W.: A parallel space-time algorithm. SIAM
J. Sci. Comput. 34(5), C233–C248 (2012)

3. Henniger, R., Obrist, D., Kleiser, L.: High-order accurate solution of the incom-
pressible Navier-Stokes equations on massively parallel computers. J. Comput.
Phys. 229(10), 3543–3572 (2010)

4. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

5. Hupp, D.: A parallel space-time solver for Navier-Stokes. Master thesis, ETH
Zurich, Curriculum Computational Science and Engineering. http://dx.doi.org/
10.3929/ethz-a-009979902, May 2013

6. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential
Equations. SIAM, Philadelphia (2007)

7. Lions, J.-L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s.
C. R. Math. Acad. Sci. Paris 332(7), 661–668 (2001)

8. Mohd-Yusof, J.: Combined immersed-boundary/B-spline methods for simulations
of flow in complex geometries. Annual Research Briefs, pp. 317–327. NASA
Ames/Stanford Univ., Center for Turbulence Research. http://ctr.stanford.edu/
ResBriefs97/myusof.pdf (1997)

9. Obrist, D., Henniger, R., Arbenz, P.: Parallelization of the time integration for
time-periodic flow problems. PAMM 10(1), 567–568 (2010)

10. Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization tech-
niques for Newton-Krylov methods and applications to the fully coupled solution
of the Navier-Stokes equations. SIAM Rev. 48(4), 700–721 (2006)

11. Saad, Y.: IIUT: a dual threshold incomplete LU factorization. Numer. Linear Alge-
bra Appl. 1(4), 387–402 (1994)

http://dx.doi.org/10.3929/ethz-a-009979902
http://dx.doi.org/10.3929/ethz-a-009979902
http://ctr.stanford.edu/ResBriefs97/myusof.pdf
http://ctr.stanford.edu/ResBriefs97/myusof.pdf

Parallel Numerical Algorithms for Simulation
of Rectangular Waveguides by Using GPU

Raimondas Čiegis1(B), Andrej Bugajev1, Žilvinas Kancleris2,
and Gediminas Šlekas2

1 Vilnius Gediminas Technical University,
Saulėtekis av. 11, 10223 Vilnius, Lithuania

{rc,andrej.bugajev}@vgtu.lt
2 Semiconductor Physics Institute,

A. Goštauto 11, 01108 Vilnius, Lithuania
{kancleris,slekas}@pfi.lt

Abstract. In this article we consider parallel numerical algorithms to
solve the 3D mathematical model, that describes a wave propagation
in rectangular waveguide. The main goal is to formulate and analyze a
minimal algorithmic template to solve this problem by using the CUDA
platform. This template is based on explicit finite difference schemes
obtained after approximation of systems of differential equations on the
staggered grid. The parallelization of the discrete algorithm is based on
the domain decomposition method. The theoretical complexity model
is derived and the scalability of the parallel algorithm is investigated.
Results of numerical simulations are presented.

Keywords: Parallel algorithms · Numerical simulation · Wave propa-
gation · GPU · CUDA · Scalability analysis

1 Introduction

Some relatively new technologies have created new challenges for mathemati-
cians and programmers in the field of parallel computing. GPU (Graphics Process-
ing Unit), which is inside of the most video cards, is capable of doing huge num-
bers of FLOPS (floating point operations per second). In certain circumstances
new GPUs overcome any new CPU (Central Processing Unit) in terms of perfor-
mance/price. However, GPUs have many restrictions and require specific
algorithms to fit these restrictions and to use GPUs resources efficiently. The most
important task of efficient calculations on GPU is the implementation of the opti-
mal data transfers among different layers of memory. That is why the main GPU
computation efficiency indicator is GPU bandwidth. The bandwidth obtained in
application compared to the theoretical peak bandwidth shows how effectively
GPU is used.

Solving the Maxwell equations on CUDA with FDTD method was studied in
many papers. For example Adams [2] and Liuge [3] both showed good speed-ups

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 301–310, 2014.
DOI: 10.1007/978-3-642-55195-6 28, c© Springer-Verlag Berlin Heidelberg 2014

302 R. Čiegis et al.

comparing to traditional CPU computations. Micikevicius [4] has implemented
3D FDTD algorithm, this work is included in CUDA Software Development
Kit as an example project. However, there is a lack of mathematical formalism
and techniques that would make analysis of GPU technology closer to a classi-
cal mathematical theory of parallel algorithms. Our goal is to systematize the
GPU hardware engineering facts and specific properties of the parallel algorithms
developed for data parallel computations into one simple but robust template of
such algorithms. The optimal usage of this template for different algorithms is
based on a simple theoretical performance model. This model helps the user to
predict the complexity of computations and enables him to make the scalabil-
ity analysis of developed parallel algorithms. Then the performance of proposed
parallel algorithm can be optimized with respect to given parameters of the
model [5].

2 CUDA

All the technical details that are collected in this section were taken from the offi-
cial NVIDIA documents “NVIDIA CUDA C Programming Guide” and “CUDA
C Best Practices Guide”.

CUDA architecture. CUDA as programming model includes only the most impor-
tant (in terms of computation) aspects of GPUs architecture, hiding from pro-
grammer unneeded device hardware details. Generally the whole architecture
can be separated to host processor (i.e. CPU processor) and the device, i.e. GPU
itself. The device consists of array of streaming multiprocessors (SMs). They
execute blocks of threads. In general one SMs can execute more than one block
of threads simultaneously.

The GPU memory is divided into the following hierarchy: (a) host memory,
which is not actually a part of the device, but the device must transfer data
from/to host; (b) global memory, which is accessible by all threads that run
on all SMs; (c) shared memory, which is located on each SM and is accessible
only to the threads of the same block. Shared memory is much faster than
global memory, but it has a very limited size. There are also three more types
of memory: constant, texture and local memory spaces. Constant and texture
memories are used for read-only constants and they are placed on GPU cache.
The local memory actually is not a separate memory space. It is an abstraction
to the local scope of a thread and actually this memory is located on the global
memory.

Let us overview the most important steps for any algorithm implemented on
CUDA.

1. Task parallelization. The problem is split into blocks of SIMD (Single Instruc-
tion Multiple Data) tasks, which are performed by different threads in par-
allel. Array of blocks is constructed, and each block is indexed by using
one-, two- or three-dimensional indexing. Tasks in a block are assigned to
the threads, which are indexed inside the given block. All GPU operations

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides 303

are performed by warps (32 threads) or half-warps (16 threads). Data trans-
fers are performed by warp transactions and must satisfy data alignment
requirements to be performed effectively, these requirements vary on GPUs
with different compute capabilities.

2. Let us note the main aspects which are important in order to use threads
efficiently. First, each SM executes blocks of tasks that are given from array
of blocks. Second, a SM can simultaneously execute only a limited number of
thread blocks due to the following restrictions: there is the maximum num-
ber of active warps Nwmax, the maximum number of registers Nrmax, the
maximum size of shared memory and the maximum number of active blocks
Nbmax per SM.

GPU occupancy. The GPU occupancy is defined as the ratio of the number
of active warps per multiprocessor to the maximum number of possible active
warps. We note that a possibility to execute some other warps when one warp is
paused or stalled is the only way to hide memory latencies and keep the hardware
busy. Higher occupancy does not always leads to higher performance, there is
a point above which additional occupancy does not improve performance. How-
ever, low occupancy always interferes with the ability to hide memory latency,
resulting in performance degradation.

It is obvious that the number of active warps depends on the execution
configuration of the kernel, the memory resources of the multiprocessor, and
the resource requirements of the kernel. In order to choose optimal thread block
sizes, the CUDA Software Development Kit provides a simple CUDA Occupancy
Calculator, which helps users to take into account register and shared memory
requirements. In this paper we describe these requirements in the form, adapted
to a class of explicit data parallel algorithms, when we assume that each active
warp is using all 32 threads. Then the occupancy τ is calculated as

τ = NtNb/Ntmax, (1)

where Nt is the number of threads in a block, Nb is the number of active blocks
per SM, Ntmax is the maximal number of threads per SM. It is easy to see that
τ ∈ (0, 1]. Let Nr be the number of registers used per thread, Ns is the size
of shared memory per block, Nsmax, Nrmax and Nbmax are the total shared
memory, the number of registers and the maximum number of blocks per SM.
Then the main restrictions for GPU resources can be written as

{
Nt ≤ Ntmax, Nb ≤ Nbmax, NtNb ≤ Ntmax,

NbNs ≤ Nsmax, NbNtNr ≤ Nrmax.
(2)

The value of occupancy for any implementation of data parallel algorithms
can be estimated by parameters Nt, Ns and Nr. From (2) we obtain that the
number of active blocks per SM should satisfy conditions

Nb ≤ min (Nbmax, [Ntmax/Nt] , [Nsmax/Ns] , [Nrmax(NtNr)]) , (3)

304 R. Čiegis et al.

where [·] is the integer part of a real number. After we have parameters Nb

and Nt, τ is calculated from (1). Let us discuss how to obtain the maximum
occupancy value τ = 1, when all threads of SM are active. As it follows from
analysis given above, it is needed to have at least two active blocks 2 ≤ Nb ≤
Nbmax. Then from (1) and estimates of restriction on parameters we get the
estimates on Nt and Nb:

Nt ≤ Ntmax/2, Nb = Ntmax/Nt. (4)

Conditions (2), (4) give the required estimates

Ntmax

Nbmax
≤ Nt ≤ Ntmax

2
, Ns ≤ Nt

Nsmax

Ntmax
, Nr ≤ Nrmax

Ntmax
. (5)

Assuming that Ntmax/Nt = [Ntmax/Nt], (5) are necessary and sufficient condi-
tions for all threads to be active.

3 The Template of Numerical Algorithms

Three main goals are formulated for any parallel algorithm: to expose enough
parallelism, to balance work across the SMs and to minimize data transfers
with low bandwidth. Data parallel explicit numerical algorithms typically are
memory bound codes, since the arithmetic intensity of such algorithms is quite
low and not sufficient to hide latencies of communications. Thus they need more
occupancy to get the maximum performance.

At each time step, 3D FDTD problem can be represented by sequential
explicit calculations of solutions of very large sparse systems of linear equations.
One iteration can be described in the compact form M = F (A1, A2, . . . , Am),
where M,A1, A2, . . . , Am are Nx × Ny × Nz dimension arrays. Operator F is
defined on a given stencil of the grid

Mijk = f(Sijk(A1), Sijk(A2), . . . , Sijk(Am)),

where Sijk(A) is a subset of elements around the element Ai,j,k, described by a
stencil of the approximation algorithm, f is a problem dependent function. For
example, let us consider a classical cross stencil with radius s = 1, then Sijk is
defined as:

Si,j,k(A) =
{
Aijk, Ai−1,j,k, Ai+1,j,k, Ai,j−1,k, Ai,j+1,k, Ai,j,k−1, Ai,j,k+1

}
. (6)

To parallelize calculations it is necessary to split the corresponding data into
blocks and calculate them separately in parallel. Due to stencil requirements
each block must be expanded by additional elements called halo elements [4].

Here we formulate the main tasks of our project. First, we are interested to
investigate if the usage of shared memory can help to optimize the efficiency
of the code for various types of stencils (cross stencils with different radius
lengths, non-symmetrical stencils, full box stencils). Second, for devices of com-
pute capability 2.x instead of shared memory the device can use L1 memory,

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides 305

that is handled automatically. It is important to compare the efficiencies of both
strategies. Third, we want to test parallel algorithms implemented by OpenACC.
The main benefit of the last strategy is that optimizing code with directives is
quite easy compared to writing CUDA kernels. OpenACC is avoiding restruc-
turing of existing code for production applications, especially if the parallel code
is implemented in OpenMP.

Shared Memory Based Algorithms. Since shared memory on a device has
a very limited size, the sizes of blocks defining subtasks should be small enough.
To indicate the efficiency of data transfer, we define redundancy R as the ratio
between the number of elements accessed and the number of elements processed.
The redundancy R = R1 + R2 consists of read redundancy R1 and write redun-
dancy R2. We assume that the number of elements read is Nr, the number of
elements written is Nw, the number of elements processed is Np, then the redun-
dancy is calculated by the following formula: R = Nr/Np +Nw/Np. In ideal case
the number of elements read and written are equal to the number of elements
processed, then the read and write redundancies both are equal to 1 and the
overall redundancy is equal to 2. However, because of a stencil we need to read
halo elements, so R1 is bigger than one for stencil-driven calculations.

3D data splitting. We split 3D data in all three directions into blocks with sizes
Ntx ×Nty ×Ntz. Since calculations involve the information on a stencil set, then
to process the block of data we need to access halo elements from each side
of sub-block. The total number of additional elements is equal to 2(NtxNty +
NtyNtz + NtxNtz)s, where s is the radius of the stencil. So for one block the
overall redundancy is

R = 2 + 2s(NtxNty + NtyNtz + NtxNtz)/(NtxNtyNtz). (7)

2D data splitting. We split 3D data only in x and y directions into blocks with
sizes Ntx×Nty×Nz. Since the whole block can’t be placed into a shared memory,
we need to construct an algorithm how data should be processed. The whole
block is split into sub-blocks with sizes Ntx × Nty × Ntz and sub-blocks are
processed in z direction. Thus we can keep in shared memory a part of data
from the previous sub-block. To be exact, the neighbour sub-block in z direction
needs 2sNtxNty elements of the current sub-block. So this sub-block needs to
read only NtxNtyNtz + 2s(NtyNtz + NtxNtz) elements. The overall redundancy
is

R =
2NtxNtyNtz + 2s(NtyNtz + NtxNtz)

NtxNtyNtz
= 2 +

2s(Nty + Ntx)
NtxNty

. (8)

We see from (8) that the redundancy does not depend on Ntz, so it is optimal to
take Ntz = 1 in order to make Ntx and Nty as big as possible and to minimize
the redundancy (8). So the optimal sub-block becomes a slice in x and y plane.

This approach is already mentioned by Micikevičius [4]. However, he inter-
preted this approach in a different way – as two-pass approach, similar to one

306 R. Čiegis et al.

described for Cell processors. We have derived this algorithm from general data
splitting techniques of parallel computation theory.

Let us summarize this algorithm. 3D data is split into blocks of sizes Ntx ×
Nty×(Nz−2s). Thus we get a grid of blocks of the size

(Nx − 2s)
Ntx

× (Ny − 2s)
Nty

×1.

For each block data is processed iteratively by slices in z direction. Here we
present the pseudo code for calculations

for k = s → Nz − s − 1 do
calculate Mi,j,k for ∀i, j inside the block

end for

For the cross stencil halo elements in z direction can be stored in the registry
memory, since they are needed for one thread only. At the first step of each block
calculations, the required data is copied only for the first slice. The pseudo code
of this algorithm is the following:

for i = s → Nz − s − 1 do
if i == s then

sNtxNty elements of slices z = 0, . . . , s − 1 and z = s + 1, . . . , 2s − 1
are copied from device to registry memory;
NtxNty + 2s(Ntx + Nty) elements (with halo) of slice z = s
are copied from device to shared memory;

else
1. (i − s − 1)-th slice is deleted from registry memory;
2. The elements (without halo) of (i − 1)-th slice are copied from
shared to registry memory, then this shared memory is freed;
3. Shared halo elements from (i − 1)-th slice are deleted from
shared memory and halo elements from i-th slice are copied to it
from device;
4. Elements from i-th slice are copied from registry to shared memory;

end if
5. (i + s)-th slice is copied from device to registry memory;
6. Data from i-th slice is processed and written back to device;

end for

4 Theoretical Model for the Performance Evaluation

Simple but accurate complexity models of data parallel algorithms are con-
structed by using this standard form

T = ω1N + M(θ + ω2N + βN̄), (9)

where T is computation time of the algorithm, ω1 determines time required to
send one element from/to host to/from global memory, θ is data communication

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides 307

start-up time, ω2 determines time required to send one element from/to global
memory to/from shared memory, N is the number of communicating elements,
β determines the complexity of one basic computational operation, N̄ is the
number of such operations, M is the number of time steps.

In CUDA there are two main transfer operations: from host to global memory
and from global memory to shared/registry/cache. Assuming that the number
of time steps M is large enough we can neglect the initial and final data transfer
from and to host and global memory. Also we will assume that start-up costs
are negligible θ = 0, then we get a simplified performance model of one time
step algorithm

T = ω2N + βN̄. (10)

For explicit data parallel algorithms considered in this paper the cost of data
transfers between global and shared memory are the most important. Parameter
ω2 depends on many factors such as GPU occupancy τ, redundancy R and some
more specific aspects of algorithm implementation. We propose the following
simple formula to estimate ω2

ω2 = (1 + ωhdh)/W (τ), (11)

where W is bandwidth, a monotonically increasing function, that is determined
experimentally, τ ∈ (0, 1] is GPU occupancy, ωh is experimentally determined
constant, that shows the difference between transfer times of halo and regular
elements

dh =
number of transfers of arrays with halo elements

total number of transfers of arrays
.

We have assumed that (11) does not depend on R. The bandwidth W decreases
due to additional stalls of threads at synchronization points that are necessary
to perform shared memory management by the whole block of threads, i.e. it
describes the cost of using stencil in data accessing pattern.

In order to determine the function W (τ) we consider a simple benchmark
with three input arrays A, B, C, and one output array D. One-point grid stencil
Si,j,k(A) = Ai,j,k is used, so there are no halo elements. We take the kernel
function F which is defined by the pseudo-code

F (Ai,j,k, Bi,j,k, Ci,j,k) :
Begin
d = 1
for θ = 1 → K do

d = d + d ∗ Ai,j,k; d = d + d ∗ Bi,j,k; d = d + d ∗ Ci,j,k

end for
End

Here K is the number of iterations. In computational experiments we have used
3 different video cards, we will refer to them as GPU1, GPU2, GPU3:

308 R. Čiegis et al.

Table 1. Implementation efficiency analysis

GPU Bandwidth (GB/s) b.t. peak GFlops GFlops t. peak

GPU1 10.4 12.8 52.2 67
GPU2 83 128 579 874
GPU3 59.7 86.4 916 1425

Fig. 1. The bandwidth W (τ) for GPU1 device

– GPU1: GeForce 9400 GT, compute capability 1.1, 12.8 GB/s, 67.2 GFlops
– GPU2: GeForce GTX 460, compute capability 2.1, 128 GB/s, 1042 GFlops
– GPU3: GeForce GTX 650 Ti, compute capability 3.0, 86.4 GB/s, 1425 GFlops

In Table 1, we present the maximum values of GFlops and bandwidth (Gbytes/s)
that were achieved for this benchmark. Note that more GFlops can be achieved
for different benchmarks, but it is not important, since ω2 has the most important
impact on calculations. For the given test problem performance model (10) can
be rewritten as

T =
4N

W (τ)
+ 6KβN, (12)

here N = NxNyNz. Next we determine constant β by fixing τ and changing K.
All arithmetical calculations were done using 32 bit float data type.

Afterwards we fix K and change τ to determine W (τ). In all the following
computational experiments we use arrays sized 256 × 256 × 256, the number of
iterations is fixed to K = 10. It is worth to note, that the increase of these
values has a small effect on the obtained results. The value of τ was controlled
by allocating fictive shared memory arrays, that limits the maximum number of
active thread blocks per multiprocessor. Assuming that τ is limited by shared
memory, from (1) and (3) we got the occupancy value τ = Nt

[
Nsmax

Ns

]
/Ntmax.

Thus by allocating different-size shared memory arrays we can control τ by
choosing it from the range τ = Nt/Ntmax, 2Nt/Ntmax, . . . , 1. Using such
procedure the function W (τ) was determined from model (12) for different χ.
The obtained results are presented in Fig. 1.

In order to analyze the dependence of ω2 on sizes of blocks of threads in x
and y directions dx, dy, we have computed the test problem with different values

Parallel Numerical Algorithms for Simulation of Rectangular Waveguides 309

Table 2. Computation times with different sizes of thread blocks on GPU2

dx dy =32 dy = 64 dy = 128

1 — 0.090342 0.0883086
2 0.0902548 0.0857643 0.0838882
4 0.0914037 0.0876535 —
8 0.101497 — —

of these parameters. As a benchmark for each iteration we transfer three arrays
with halo elements from the global to the shared memory and copy one simple
array back to the global memory. Results are presented in Table 2.

It follwos that the computation times are roughly the same for different sizes
of block of threads. However, this conclusion does not apply to GPU3 card – in
this case ωh must be determined for each fixed block size. For GPU3 the smaller
block sizes give better results, our guess is that GPU3 manages to synchronize
smaller blocks better, since there are less threads for synchronization.

Thus we get from our theoretical performance model that ωh = TW (σ)−N
dhN . We

present values of parameters (ω0, ωh, β) for different GPUs, here ω0 = 1/W (1/3):
(4.22E−10, 7.5, 19.4E−12) for GPU1, (4.92E−11, 2.15, 1.60E−12) for GPU2,
(6.70E−11,−−, 0.92E−12) for GPU3. The value ωh for GPU3 depends on block
sizes, however it is similar to GPU2 value. So if ω has much larger impact on cal-
culation time than β, then the complexity model of GPU2 predicts the smallest
computation times.

Next we consider the numerical scheme which was used to solve 3D electro-
magnetic problem that describes a wave propagation in a rectangular waveguide.
The details of the algorithm are presented in [1]. The main part of one time step
calculations can be represented in the following form

Hx,ijk + = sz(Ey,i,j,k+1 − Ey,i,j,k) − sy(Ez,i,j+1,k − Ez,i,j,k),
Hy,ijk + = sx(Ez,i+1,j,k − Ez,i,j,k) − sz(Ex,i,j,k+1 − Ex,i,j,k),
Hz,ijk + = sy(Ex,i,j+1,k − Ex,i,j,k) − sx(Ey,i+1,j,k − Ey,i,j,k),
Ex,ijk + = sy(Hz,i,j,k − Hz,i,j−1,k) − sz(Hy,i,j,k − Hy,i,j,k−1),
Ey,ijk + = sz(Hx,i,j,k − Hx,i,j,k−1) − sx(Hz,i,j,k − Hz,i−1,j,k),
Ez,ijk + = sx(Hy,i,j,k − Hy,i−1,j,k) − sy(Hx,i,j,k − Hx,i,j−1,k),

where sx, sy, sz are constants. In the performance prediction model we used the
following parameters of GPU2 card: dh = 1/3, ωh = 3.27, W (2/3) = 9.46E −10,
β = 1.72E − 12, N = 2563 · 10 · 12, N̄ = 2563 · 10 · 36. Then we have predicted
computation time

T = (1 + ωhdh)N/W (τ) + βN̄ = 0.278 s. (13)

The real calculations took 0.177 s. So our model predicts correctly the main order
of computation time.

310 R. Čiegis et al.

Table 3. The comparison of shared memory and L1 cache usage for different stencils

Method 3 of 7 7 of 7 27 of 27

L1 cache 0.179 0.266 0.711
Shared memory, cross stencil 0.177 0.186 –
Shared memory, box stencil 0.227 0.226 0.231

Video cards of compute capability 2 and higher support data L1 caching
technology, that acts similarly to the shared memory, but the optimization is
done automatically. Can it replace the shared memory? The answer is positive
at least in some cases. We have done computational experiments with three
different patterns of stencils. First, we have used the standard cross stencil,
when seven points define the set of neighbours. In this case we have analyzed
two scenarios, when only three points of the set are used and when all seven
points are used. Second, we applied the full 3D box stencil with 27 neighbours.
Note, that this stencil enables also the implementation of algorithms requiring
smaller stencils (such as cross stencil). In Table 3 the results of experiments are
presented, where different stencils are used. The cases of shared memory and L1
cache usage are compared.

From the presented results we see that the box-type stencil for shared memory
implementation is an efficient and robust alternative to specific types of stencils.

References

1. Kancleris, Ž., Šlekas, G., Čiegis, R.: Sensitivity of asymmetrically necked planar
structure for microwave pulse power measurement in rectangular waveguide. IEEE
Sensors J. 13(4), 1143–1147 (2013)

2. Adams, S., Payne, J., Boppana, R.: Finite difference time domain (FDTD) simula-
tions using graphics processors. In: DoD High Performance Computing Moderniza-
tion Program Users Group Conference, pp. 334–338 (2007)

3. Liuge, D., Kang, L., Fanmin, K.,: Parallel 3D finite difference time domain sim-
ulations on graphics processors with Cuda. Comput. Intell. Softw. Eng. pp. 1–4
(2009)

4. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, pp. 79–84 (2009)

5. Starikovičius, V., Čiegis, R., Iliev, O.: A parallel solver for optimization of oil filters.
Math. Model. Anal. 16(2), 326–342 (2011)

OpenACC Parallelisation for Diffusion
Problems, Applied to Temperature Distribution

on a Honeycomb Around the Bee Brood:
A Worked Example Using BiCGSTAB

Hermann J. Eberl(B) and Rangarajan Sudarsan

Department of Mathematics and Statistics, University of Guelph,
Guelph, ON, N1G2W1, Canada

{heberl,rsudarsa}@uoguelph.ca

Abstract. We discuss a simple OpenACC implementation of the iter-
ative BiCGSTAB algorithm for linear systems. Problems of this type
arise in the numerical solution of diffusion-reaction problems, where the
linear solver constitutes the most computationally expensive component
of the simulation (∼80 % of time spent) and therefore has often been the
primary target for parallelization. We deploy and test this method on
a desktop workstation with two supported GPUs, one targeted for high
performance computing, one a consumer level GPU, to compute the tem-
perature distribution on a honeycomb around the bee brood. The paper
is written from a user’s, not from a GPU computing expert’s perspective
and aims to fill a gap we noticed between real world application problems
and the simple problems solved in introductory OpenACC tutorials or
in benchmarking studies.

Keywords: Diffusion equation · GPU · OpenACC · Krylov-subspace
methods · Honeycomb · Bee brood

1 Introduction

With the availability of multicore processors, multi-processoraut]Eberl, Hermann
J. aut]Sudarsan, Rangarajan desktop computers, and more recently also general
purpose computing graphical processing units, parallel computing has entered
mainstream in computational science [3,5]. In the past, parallel computers were
tools available to only select few researchers working on the computationally
most demanding problems, who used their years of training to optimally utilize
the parallel computing resources. With the current availability, every computa-
tional scientist has the opportunity to use them and has to face the steep learning
curve and challenges that come with parallel computing, in order to take advan-
tage of recent advances even in desktop computing technology. OpenACC is a
programming standard for GPU parallelization that is based on extensions of

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 311–321, 2014.
DOI: 10.1007/978-3-642-55195-6 29, c© Springer-Verlag Berlin Heidelberg 2014

312 H.J. Eberl and R. Sudarsan

the programing languages C and Fortran [8,10]. As in OpenMP for shared mem-
ory multi-processor/multi-core platforms, the user inserts directives in his code
to explicitly instruct the compiler to parallelize sections on a supported GPU
accelerator device. While OpenACC code is not as highly performing as hand
tuned, optimized CUDA code, it allows quick access to GPU computing without
major re-programming of existing code [2,15]. Therefore, it should be attractive
for occasional GPU computing users, and for scientists whose primary interest
is not to produce speed optimized production code, but to develop prototype or
research codes. Moreover, OpenACC codes have the advantage that compilers
that do not recognize its directives, ignore them without crying foul and produce
traditional CPU code instead. Several papers with benchmark tests of OpenACC
and comparisons against other approaches for such benchmark problems can be
found in the literature, e.g. [11], but applications to real world problems are only
slowly to emerge [2,15].

In this paper we want to investigate how one can utilize OpenACC on a
desktop workstation for the numerical solution of diffusion-reaction equations.
Problems of this type arise in many areas of computational science and engineer-
ing, such as mass and heat transfer studies, or wave propagation phenomena in
chemical engineering or mathematical biology and ecology. In diffusion problems,
the computationally most expensive part, and therefore the primary target for
parallelisation, is the solution of large, sparse, structured (often banded) lin-
ear algebraic systems [1,7]. As an example we use the stabilised biconjugate
gradient method BiCGSTAB [12] for this task. We describe its parallelization
with OpenACC and, for illustration purposes, use it to compute the tempera-
ture distribution on a honeycomb around the bee brood in a Langstroth beehive
on a workstation with two supported GPUs, one specific for high performance
computing, one a consumer level GPU that can be found in regular desktop PCs.

The paper is written from a user’s, not from a GPU computing expert’s
perspective. It tries to fill a gap that we feel exists between the research literature
and introductory OpenACC tutorials. The reader can easily and quickly find
tutorials on the internet, which often focus on the most simple applications of
parallelization directives, such as the parallelization of single loop nests with
constant scalar coefficients. Some, e.g. [9,13], discuss the Jacobi method for the
solution of diffusion problems, a basic linear iteration that lends itself directly
and in a straight forward manner to loop level parallelization. For real world
problems, however, one would resort to more involved but faster methods, such
BiCGSTAB [12]. We want to show how methods of this class can be parallelised
in OpenACC.

2 Mathematical Model

2.1 General Setting

Many applications in science an engineering involve the numerical solution of
systems of diffusion-advection-reaction equations of the form

ut = ≤ (D(t, x, u)≤u) − ≤(v(t, x)u) + f(t, x, u), x ≥ Ω ∈ R
d, t ∞ 0 (1)

OpenACC Parallelisation for Diffusion Problems, Applied to Temperature 313

where d ≥ {2, 3}. Here, the dependent variable is the r-dimensional vector val-
ued function u(t, x); the r × r matrix valued function D(t, x, u) contains the
self- and cross-diffusion coefficients, v(t, x) denotes the underlying convective
velocity field, and the r-dimensional vector valued function f(t, x, u) subsumes
reactions, sinks, and sources; for specific applications (1) needs to be augmented
with appropriate consistent initial and boundary conditions. Characteristic for
most problems of this type is that time-explicit methods usually are subject to
heavy time-step constraints, which mandate the use of implicit or semi-implicit
methods. After discretization, in every time step, one or more algebraic systems
must be solved. Depending on D and f , and on the time integration method
used (full implicit vs. linearly implicit vs. semi-implicit) these algebraic systems
can be nonlinear or linear. Nonlinear systems are typically reduced to solving a
family of linear problems, e.g. by Newton-like methods or fix-point iterations.

If one considers the sometimes simpler special case of a time-independent or
steady-state problem

0 = ≤ (D(x, u)≤u) + f(x, u), x ≥ Ω ∈ R
d (2)

then spatial discretization leads directly to such a linear or nonlinear algebraic
system, depending on D, f . In any case, the computational core problem of
solving diffusion-reaction problems of type (1) or (2) is to solve one or many
linear systems of the form

Ax = b, A ≥ R
N×N , x, b ≥ R

N , (3)

where matrix A contains the discretisation of the (linearized) diffusion-reaction
operator, vector b contains sinks/sources, additional reaction terms, contribu-
tions of boundary conditions, and in time-dependent problems information from
the previous time level. Vector x is the numerical approximation of the solution
u on the computational grid. N is the number of grid points.

For common spatial discretisation schemes, such as standard Finite Differ-
ence, Finite Element, or Finite Volume methods, the system matrices A are
sparse, often structurally symmetric (e.g. banded) but typically not symmetric
if D is not diagonal or v ≈∧ 0. In many cases, the matrix can be represented in
sparse diagonal format.

2.2 OpenACC Parallelization of the Linear Solver

We focus on the parallelization of the linear solver for (3), which is the compu-
tationally most demanding part of the solution of diffusion problems. A popu-
lar class of numerical methods for such problems are iterative Krylov subspace
methods [12], and among those BiCGSTAB is often the method of choice for
non-symmetric problems, whereas the Conjugate Gradient (CG) method is typ-
ically preferred for symmetric problems. Krylov subspace methods require per
iteration step only few matrix-vector products (two in the case of BiCGSTAB,
one for CG), few inner products and several vector additions and multiplications

314 H.J. Eberl and R. Sudarsan

of vectors with scalars. These scalars are not constants but change dynamically
from iteration to iteration, as the method converges to the solution.

We discuss here in detail the more widely applicable BiCGSTAB algorithm.
The basic algorithm has been extensively described in the literature [12]. The
simpler CG method can be treated similarly. In the next section we will present
results for both methods.

When parallelizing the method, the approach is to parallelize the vector
operations and the matrix-vector product. In OpenACC this is accomplished
by inserting the loop-directive. A crucial aspect in parallel computing is the
trade-off between maximizing parallel execution of the work to be done and
minimizing communication between nodes. In GPU computing, this means to
minimize the communication between the GPU device and the host device. The
most efficient GPU algorithms are those that live entirely on the GPU with-
out accessing host memory or invoking host CPU computations. Therefore, we
implement the method such that communication between device and host is
only required in the beginning (to hand over data from the host to the device)
and at the end (to hand back the result) of the BiCGSTAB method. To this
end we define a single OpenACC data region inside which all calculations take
place. The auxiliary vector and scalar variables used by the algorithm are cre-
ated directly in the GPU device memory and need not to be communicated with
the host. As a consequence, all parallel kernels (including for the computation
of the matrix-vector and inner products) can use existing data without commu-
nicating with the host. Pseudocode of the parallelized BiCGSTAB algorithm,
indicating where OpenACC directives are used, is given in Algorithm 1. This
algorithms calls for the evaluation of matrix-vector products in lines 5, 19, 26
and inner products in lines 13, 20, 27, 28. Fortran stubs of a subroutine for the
matrix vector product with sparse matrix in diagonal format and a function
for the inner products can be found in Appendix A. In applications, in which
the sparse matrix is stored in a different format, the former has to be replaced
accordingly. At present, OpenACC does not support Fortran array assignments
and built in array functions, such as dot product. Therefore, the latter has do
be provided. Both, matrix-vector product subroutine and inner product func-
tion, assume that they are called from within a parallel data region. Stopping
criteria for the iterative method are implemented as reduction operations in the
last parallel loop region, starting at line 30.

3 Example: Temperature on a Honey Bee Comb

3.1 Problem Description

As a test we study a scalar stationary linear problem of type (1), which requires
only a single solution of a linear system: the steady state temperature distri-
bution around the bee brood in a honeycomb frame of a Langstroth hive, as
introduced in [4], see also [14]. Honeybee colonies must keep the temperature
around their brood in a narrow band of few degrees. Temperatures below or
above will lead to malformations or death of the brood. The content of the

OpenACC Parallelisation for Diffusion Problems, Applied to Temperature 315

Data: matrix A, right hand side b; initial guess for solution x
Result: solution x

1 OpenACC Data Region
2 copyin: A, b;
3 copy: x;
4 create: v, p, r, s, t, u;
5 r0 := Ax ;
6 OpenACC Parallel Loop
7 present: r0, b, v, p, r;
8 for j = 1, ..., n do
9 r0,j := bj − r0,j ;

10 vj := pj := 0, rj := r0,j ;

11 ρ := α = ω0 := 1;
12 for i = 1, 2, ... do
13 ρi := (r0, r) ;
14 β := (ρi/ρi−1)(α/ω);
15 OpenACC Parallel Loop
16 present: p, r, v; firstprivate: β, ω;
17 for j = 1, ..., n do
18 pj := rj + β(pj − ωvj);

19 v := Ap ;
20 δ1 := (r0, v) ;
21 α := ρi/δ1;
22 OpenACC Parallel Loop
23 present: s, r, v; firstprivate: α;
24 for j = 1, ..., n do
25 sj := rj − αvj ;

26 t := As ;
27 δ2 := (t, s);
28 δ3 := (t, t);
29 ω := δ2/δ3 ;
30 OpenACC Parallel Loop
31 present: p, s, x, r, t, u; firstprivate: α, ω;
32 for j = 1, ..., n do
33 uj := αpj + ωsj ;
34 xj := xj + uj ;
35 rj := sj − ωtj ;

Algorithm 1. BiCGSTAB algorithm for the solution of the linear algebraic
system Ax = b with A ≥ R

N×N , b, x ≥ R
N . Lower case Latin letters are

vectors in R
n (with the exception of integer counters i, j), Greeks are scalars.

OpenACC blocks are indicated by OpenACC, OpenACC clauses are bold
faced. OpenACC currently does not support Fortran array assignments, hence
vector operations must be implemented as explicit loops, as indicated here.

316 H.J. Eberl and R. Sudarsan

Table 1. Model parameters used in the simulation of (4)

Parameter Symbol Unit Air Honey Pollen Bees Pupae

Conductivityheat
generation

k Wm−1K−1 0.02624 0.60 0.15 0.61 0.61

G Wm−3 0 0 0 2.9 · 104 103

individual comb cells varies across the comb. Cells can be occupied by honey,
pollen, pupae, bees, or be unoccupied (air), see also Fig. 1. This leads to a linear,
non-homogeneous diffusion problem with spatially varying coefficients,

0 = ≤ (k(x)≤u) + G(x). (4)

on a rectangular domain Ω = L × H. We use H = 0.08m, L = 0.1 m. Distrib-
uted parameter k is the local thermal conductivity and G is the heat generation
rate. Both depend on the local content of the honey bee comb and are summa-
rized in Table 1. Following [4], we prescribe at the boundary the temperature as
u = 34oC. The steady state temperature distribution according to this model
provides a reference for comparison of the efficiency of so-called heater bees, i.e.
worker bees who actively engage in producing heat in order to keep the brood
warm, which is described by a non-autonomous transient version of (4), see [4].

We use a standard 2nd order Finite Difference based Finite Volume method
on a uniform grid of size n×m [6], with Δx = Δy, and m := H

L n. The dependent
variable u is computed in the centers of the grid cells. The material properties
heat conductivity and heat generation are also given in the centers of the grid
cell. The heat fluxes J := −k(x)≤u must be evaluated at the faces of the grid
cells. We obtain them as the harmonic average from the neighbouring grid cells.
The flux at the interface between grid cells (i, j) and (i + 1, j) is given by

Ji+1/2,j = − 2ki+1,jki,j

ki+1,j + ki,j
· ui+1,j − ui,j

Δx
,

where ui,j , ki,j denote u and k in the center of cell (i, j). For the heat fluxes
across the remaining edges of cell (i, j) we have accordingly

Ji−1/2,j = − 2ki,jki−1,j

ki,j + ki−1,j
· ui,j − ui−1,j

Δx
,

Ji,j+1/2 = − 2ki,jki,j+1

ki,j + ki,j+1
· ui,j+1 − ui,j

Δx
,

Ji,j−1/2 = − 2ki,jki,j−1

ki,j + ki,j−1
· ui,j − ui,j−1

Δx
.

The coefficients of matrix A are then obtained from the linear equations for ui,j

1
Δx

(
Ji+1/2,j − Ji−1/2,j

)
+

1
Δx

(
Ji,j+1/2 − Ji,j−1/2

)
= Gi,j

OpenACC Parallelisation for Diffusion Problems, Applied to Temperature 317

In boundary cells this expression accesses points outside the domain which are
eliminated in the usual way by replacing the grid external values with the bound-
ary data, which leads to additional contributions to the right hand side in these
cells. In order to be able to use our linear solver, we convert the problem from
grid notation to vector notation using the lexicographical grid ordering

π : {1, ..., n} × {1, ...,m} ∃ {1, ..., nm}, (i, j) 	∃ (i − 1)m + j

such that xπ(i,j) := ui,j , etc. The resulting linear system takes then the form

Ax = b, A ≥ R
nm×nm, x, b ≥ R

nm.

Model (4) is a linear scalar problem without convective terms. This is the
simplest problem of type (1). Matrix A is symmetric and in a real application
study would be tackled more efficiently with the Conjugate Gradient method
(CG). We present below results obtained with both methods.

Fig. 1. top: frame of a honeybee hive showing the heterogeneity of cell contents (cour-
tesy Cody Thompson); bottom left: Distribution of cell content across the honey bee
comb in the computational model: air (dark blue), honey (light blue), pollen (green),
pupae (yellow), bees (red); bottom right: temperature distribution u according to
(4) (Color figure online).

318 H.J. Eberl and R. Sudarsan

 0

 3e+08

 6e+08

 9e+08

 1.2e+09

 1.5e+09

 0 1e+06 2e+06 3e+06
 0

 0.5

 1

 1.5

 2

 2.5

 3
tim

e

re
l.

tim
e

di
ffe

re
nc

e

gridpoints

CPU
GPU 1
GPU 2

GPU 1 vs CPU
GPU 2 vs CPU

GPU 2 vs GPU 1

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 0 1e+06 2e+06 3e+06
 0

 0.5

 1

 1.5

 2

 2.5

 3

tim
e

re
l.

tim
e

di
ffe

re
nc

e

gridpoints

CPU
GPU 1
GPU 2

GPU 1 vs CPU
GPU 2 vs CPU

GPU 2 vs GPU 1

Fig. 2. Results for the test problem for BiCGSTAB (left) and the Conjugate Gradient
method (right): Compute time, as reported by Fortran subroutine system clock, in
dependence of grid size. Shown are absolute values (lines) and execution times relative
to each other (symbols). GPU1: Tesla K20c, GPU2: GeForce GTX650. Slightly different
stopping criteria were used for both methods, therefore execution times should not be
directly compared.

3.2 Results

The tests were run on a custom built workstation with an Intel Core i7-3970X
Extreme CPU (3.5 GHZ, 15 MB cache) and 16 GB RAM under Ubuntu 12.04.
It has two OpenACC supported NVIDIA GPUs, a Tesla K20c (5 GB global
memory, 13 multiprocessors with 2496 cores) and a consumer level GeForce GTX
650 (1 GB, 2 multiprocessors, 384 cores). The Portland Group Fortran compiler
version 13.3.0 was used; optimization was restricted to the compiler options that
are recommended to work well in most cases. We solve (4) for grid resolutions
n × m = 0.8n2 for n = 200, ..., 2000, and record the computation time required
by the linear solver on CPU and GPUs.

In Fig. 1 we show a photograph of a brood comb and the distribution of comb
content in the computational model, along with the computed temperature. The
bottom part of the comb is empty (air), the top part of the comb is filled with
honey. Brood (pupae) is found in the center, surrounded by cells with pollen.
Interspersed in the brood are pockets occupied with heater bees. The temper-
ature is highest where the bees are and decreases toward the boundary of the
domain. The brood is contained in a region with temperature between approx.
36 ∈C and 37.5 ∈C. Although the distribution of the brood in the honeycomb is
symmetric in y-direction, the resulting temperature distribution is not, due to
spatially heterogeneous heat conductivity.

In Fig. 2 we plot the time used for the solution of the linear system on the
CPU and both GPUs, for the OpenACC BiCGSTAB algorithm described in
Algorithm 1 and for a corresponding OpenACC implementation of the conju-
gate gradient method (implementation not discussed here due to space restric-
tions). The performance of both methods is qualitatively similar. Computing
time increases with gridsize for all three types of hardware. For the smallest
grid resolution the CPU computations are faster than the GPUs. As the grid

OpenACC Parallelisation for Diffusion Problems, Applied to Temperature 319

increases, the Tesla K20 performs best. The relative computing time between
GPU and CPU levels off at a ratio of approximately 0.16:1 (BiCGSTAB) or
0.13:1 (CG). For the consumer level GPU GeForce GTX650 we observe a ratio
of 0.42:1 (BiCGSTAB) and 0.35:1 (CG). The ratio of compute times between
both GPUs for our problem levels off at approx. 2.7:1 for both methods. We
observe a clear acceleration of the computation on the GPUs compared to the
CPU, provided the grid is large enough so that communication between host
and device becomes small compared to the time needed for the actual computa-
tions. In the case of BiCGSTAB this is achieved by inserting four explicit loop
parallelization directives in the linear solver and one each in the matrix-vector
product and the inner-product.

4 Conclusion

The numerical simulation of diffusion-reaction problems in science and engineer-
ing involves the solution of structured, large, sparse linear systems. This often is
the computationally most expensive part and the primary target for paralleliza-
tion. With GPU computing becoming widely accessible, even on desktops and
workstations, directive based GPU programming language extensions become
attractive for many users who want to benefit from the hardware quickly, with-
out extensive re-programming of their codes. We demonstrate here an OpenACC
parallelization of BiCGSTAB, a Krylov subspace linear solver, that gives quick
access to the GPU compute capabilities. For sufficiently large problems the Ope-
nACC parallelized GPU version clearly outperforms the CPU version, not only
on the HPC GPU system, but also on the OpenACC supported consumer level
GPU.

Acknowledgement. Hardware and compiler (excluding the Tesla K20c) were pur-
chased with a NSERC-RTI Grant. The TESLA K20c was donated by NVIDIA. We
thank Larry Banks for the setup of the equipment and two anonymous referees for
useful suggestions.

Appendix

A OpenACC Fortran Code-stubs

The following code stubs are provided for illustration only. They are copied from
the source codes used here but changed to reflect the notation in the text. The
authors do not guarantee their proper working if copied from here and do not
assume responsibility for any damages this might cause.

Matrix-vector product y := Ax for sparse diagonal format. In the fol-
lowing code, d is the number of diagonals, sparse matrix A is an n × d array,
ioff contains the offsets of the sub-diagonals. A, x, d, ioff are handed over to the
subroutine, y is returned.

320 H.J. Eberl and R. Sudarsan

do j =1, d
i o = i o f f (j)
i 1 = max0(1 ,1− i o)
i 2 = min0 (n , n−i o)

! $acc p a r a l l e l l oop copyout (y) &
! $acc presen t (x , d iag) f i r s t p r i v a t e (io)
do i=i1 , i 2

y (i) = y (i)+A(i , j)∗x (i+i o)
enddo
! $acc end p a r a l l e l l oop

enddo

Scalar product ddt := xT y. In the following code stub x, y are n-arrays
handed over to the function, the real variable ddt is returned.

! $acc k e rn e l s loop p r i v a t e (ddt) reduc t ion (+: ddt)
do i =1,n

ddt=ddt+x(i)∗y (i)
enddo

References

1. Čiegis, R., Čiegis, R., Jakušev, A., Šaltenienė, G.: Parallel variational iterative
algorithms for solution of linear systems. Math. Mod. An. 12, 1–16 (2007)

2. Herdman, J.A., Gaudin, W.P., McIntosh-Smith, S., Boulton, M., Beckingsdale,
D.A., Mallinston, A.C., Jarvis, S.A.: Accelerating hydrocodes with OpenACC,
OpenCL and CUDA. In: Proceedings of the SC Companion: High Performance
Computing Networking Storage and Analysis, pp. 465–471 (2012)

3. Herlihy, M., Luchangco, V.: Distributed computing and the multicore revolution.
ACM SIGCAT News 39, 62–72 (2008)

4. Humphrey, J.A.C., Dykes, E.S.: Thermal energy conduction in a honey bee comb
due to cell-heating bees. J. Theor. Biol. 250, 194–208 (2008)

5. Marowka, A.: Parallel computing on any desktop. Commun. ACM 50, 75–78 (2007)
6. Morton, K.W.: Numerical solution of convection-diffusion problems. Chapman and

Hall, London (1996)
7. Muhammad, N., Eberl, H.J.: OpenMP parallelization of a mickens time-integration

scheme for a mixed-culture biofilm model and its performance on multi-core
and multi-processor computers. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W.,
Naughton, T.J. (eds.) HPCS 2009. LNCS, vol. 5976, pp. 180–195. Springer, Hei-
delberg (2010)

8. The OpenACC Application Programming Interface Version 1.0. http://www.
openacc.org/sites/default/files/OpenACC.1.0 0.pdf

9. Poole, D.: Introduction to OpenACC Directives. http://on-demand.gputechconf.
com/gtc/2012/presentations/S0517A-Monday-Programming-GPUs-OpenACC.
pdf

10. The Portland Group, PGI Accelerator Compilers OpenACC Getting Started
Guide, Version 13.2. http://www.pgroup.com/doc/openACC gs.pdf

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0517A-Monday-Programming-GPUs-OpenACC.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0517A-Monday-Programming-GPUs-OpenACC.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0517A-Monday-Programming-GPUs-OpenACC.pdf
http://www.pgroup.com/doc/openACC_gs.pdf

OpenACC Parallelisation for Diffusion Problems, Applied to Temperature 321

11. Reyes, R., López, I., Fumero, J.J., de Sande, F.: Directive based programming
for GPUs: a comparative study. In: Proceedings of the IEEE 14th International
Conference on HPCC, pp. 410–417 (2012)

12. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-
phia (2003)

13. Strelchenko, A.: Parallel programming with OpenACC directives. http://
linksceem.eu/ls2/images/stories/openacc.pdf

14. Sudarsan, R., Thompson, C.G., Kevan, P.G., Eberl, H.J.: Flow currents and venti-
lation in Langstroth beehives due to brood thermoregulation efforts of honeybees.
J. Theor. Biol. 295, 168–193 (2012)

15. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC – first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012)

http://linksceem.eu/ls2/images/stories/openacc.pdf
http://linksceem.eu/ls2/images/stories/openacc.pdf

Application of CUDA for Acceleration of
Calculations in Boundary Value Problems

Solving Using PIES

Andrzej Kuzelewski, Eugeniusz Zieniuk, and Agnieszka Boltuc(B)

Institute of Computer Science, University of Bialystok,
Sosnowa 64, 15-887 Bialystok, Poland

{akuzel,ezieniuk,aboltuc}@ii.uwb.edu.pl
http://ii.uwb.edu.pl

Abstract. The main purpose of this paper is examination of an
application of modern parallel computing solutions to speed up the calcu-
lation in the numerical solution of parametric integral equations systems
(PIES). Solving boundary value problems by PIES sometimes requires
large computing time, particularly in more complex problems. This paper
presents use of graphics cards programming in general-purpose applica-
tions (GPGPU). The boundary value problems modelled by 3D Navier-
Lamé equations are solved using PIES and NVidia CUDA technology.
The testing example shows that the use of GPGPU significantly increases
speed of calculations in PIES.

Keywords: Parametric integral equations systems · CUDA · GPGPU ·
Boundary value problems

1 Introduction

For many years the authors of this paper have worked on developing and appli-
cation of parametric integral equations systems (PIES) to solve boundary value
problems. PIES has been already used to solve problems modelled by 2D and 3D
partial differential equations, such as: Laplace, Poisson, Helmholtz and Navier-
Lamé [7–10,12,14]. These equations were solved numerically using PIES. This
method includes a shape of a boundary of considered problem in its mathemati-
cal formalism. In order to include a shape of a boundary, the curves (eg. Bézier,
B-spline and others) and the surfaces (such as Coons, Bézier and others) known
from computer graphics was applied in PIES. It results a small number of control
points required to define the shape of a boundary.

Former studies focused on accuracy and efficiency of the results obtained
using PIES in comparison with well-known algorithms such as FEM or BEM
as well as analytical methods. The authors have taken into consideration more
sophisticated problems such as identification of boundary geometry [11,13], as
well. These studies confirmed the effectiveness of PIES, however analyzed more

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 322–331, 2014.
DOI: 10.1007/978-3-642-55195-6 30, c© Springer-Verlag Berlin Heidelberg 2014

Application of CUDA for Acceleration of Calculations 323

complex problems forced the authors to pay attention to computing time, as well.
In general, the greater number of input data, the longer an algorithm works. It
was noticed in the case of some more complex problems, which were modelled
by 3D Navier-Lamé equations and solved using PIES, as well.

Increasing speed of the algorithm can be achieved in the following ways:
by optimization of the existing code as well as use more advanced computers,
multiprocessor machines, clusters or GPUs. Recently, researchers increased their
focus on the implementation of graphics cards (GPUs) for numerical calculations
in general-purpose applications (GPGPU), due to great possibility to improve
computing performance [3,5,6]. It is related to the architecture of graphics cards
(multi-processor and multi-threaded), very fast floating-point arithmetic units
and use of high-speed memory. Therefore, the authors examined an application
of modern parallel computing solutions to increase efficiency of calculations in
the numerical solution of PIES. It was decided to use Compute Unified Device
Architecture (CUDA) - parallel computing platform and programming model
invented by NVidia [1].

This paper presents a possibility of acceleration numerical calculations in
PIES using CUDA technology. The boundary value problems modelled by 3D
Navier-Lamé equations were considered.

2 PIES for 3D Navier-Lamé Equations

PIES for three-dimensional Navier-Lamé equations were obtained as the result of
analytical modification of boundary integral equation (BIE). A detailed descrip-
tion of the methodology of modification for 2D problems modelled by various
differential equations is presented in [7–10]. Generalization of mentioned method-
ology to 3D problems results the following formula of PIES [8]:

1
2
ul(v1, w1) =

n⎧

j=1

vj⎨

vj−1

wj⎨

wj−1

{Ulj(v1, w1, v, w)pj(v, w)−

Plj(v1, w1, v, w)uj(v, w)}Jj(v, w)dvdw

(1)

where function Jj(v, w) is the Jacobian, vl−1 < v1 < vl, wl−1 < w1 < wl,
vj−1 < v < vj , wj−1 < w < wj , {l, j} = 1, 2, ..., n, whilst n - is the number of
parametric patches that create the domain boundary in 3D.

Integrands Ulj(v1, w1, v, w), Plj(v1, w1, v, w) in (1) are presented in the
following matrix form [8]:

U
∈
lj(v1, w1, v, w) =

1
16π(1 − ν)μη

⎩

⎜
U11 U12 U13

U21 U22 U23

U31 U32 U33

⎫

⎬ , μ =
E

2(1 + ν)
, (2)

P
∈
lj(v1, w1, v, w) =

1
8π(1 − ν)η2

⎩

⎜
P11 P12 P13

P21 P22 P23

P31 P32 P33

⎫

⎬ . (3)

324 A. Kuzelewski et al.

The individual elements in the matrices (2) and (3) in the explicit form can
be found in [8]. Integrands (2) and (3) include in its mathematical formalism the
shape of a closed boundary surface. It is created using appropriate relationships
between the patches (l, j = 1, 2, ..., n), which are defined in Cartesian coordinates
as follows [8]:

η1 =P
(1)
j (v, w) − P

(1)
l (v1, w1), η2 = P

(2)
j (v, w) − P

(2)
l (v1, w1),

η3 = P
(3)
j (v, w) − P

(3)
l (v1, w1), η =

⎭

η2
1 + η2

2 + η2
3 ,

(4)

where P
(1)
j , P

(2)
j , P

(3)
j are the scalar components of the vector surface Pj(v, w) =

⎞
P

(1)
j (v, w), P (2)

j (v, w), P (3)
j (v, w)

⎠T
, which depends on v and w parameters. This

notation is also valid for the surface marked by l with parameters v1, w1, i.e. for
j = l and parameters v = v1 and w = w1. Parameters ν and E in (2) and (3)
are material constants: Poisson’s ratio and Young modulus respectively.

In 3D problems modelled using PIES, vector functions Pj(v, w) have the form
of parametric surface patches widely applied in computer graphics. The main
advantage of presented approach, compared with BIE, is analytical inclusion of
the boundary directly in PIES. The boundary is not included in mathematical
formalism of BIE, however is defined in general way by the boundary integral.
Therefore, discretization of the boundary into elements is required, as is the
case of BEM. The advantages of including the boundary directly in mathematical
equations (PIES) were widely presented in 2D [7–10] and 3D [8,12,14] problems.

The application of PIES for solving 2D and 3D problems allows to eliminate
discretization of the boundary, as well as the boundary functions. In previous
studies, the boundary functions both defined as boundary conditions, as well
as obtained after solving PIES are approximated by Chebyshev polynomials
[7,9,10]. Unlike the problems modelled by Laplace’s equation, ones described by
the Navier-Lamé equations require boundary functions in vector form. Therefore,
it were generalized previously used approximating series. They represent scalar
components of vectors of displacements uj(v, w) and stresses pj(v, w). Boundary
functions on each j surface are approximated by the following series:

uj(v, w) =
N⎧

p=0

M⎧

r=0

u(pr)
j L

(p)
j (v)L(r)

j (w), (5)

pj(v, w) =
N⎧

p=0

M⎧

r=0

p(pr)
j L

(p)
j (v)L(r)

j (w), (6)

where u(pr)
j , p(pr)

j are unknown coefficients, and L
(p)
j (v), L

(r)
j (w) have the fol-

lowing form:

L
(k)
j (x) =

(x − x0)(x − x1)...(x − xi−1)(x − xi+1)...(x − xl)
(xj − x0)(xj − x1)...(xj − xi−1)(xj − xi+1)...(xj − xl)

, (7)

where: k = {p, r}, l = {M,N},x = {v, w}.

Application of CUDA for Acceleration of Calculations 325

After substituting (5) and (6) to (1) and writing down at proper colloca-
tion points [2] we obtain a system of linear algebraic equations with respect to
unknown coefficients. Coefficients u

(pr)
j or p

(pr)
j can be obtained by solving the

mentioned system [8]. It should be noticed that always one of these coefficients on
the individual segments are derived from boundary conditions by approximating
series (5) or (6).

After solving PIES only solutions on the boundary are obtained. They are
represented by approximation series (5) or (6). In order to obtain solutions in
the domain, analytical modification of integral identity from BIE is required.
New integral identity is formulated in the same way as in 2D problems [7,8].
The identity uses the results which were previously obtained by solving PIES
and it take the following form [8]:

u(x) =
n⎧

j=1

vj⎨

vj−1

wj⎨

wj−1

{̂Uj(x, v, w)pj(v, w)−

̂Pj(x, v, w)uj(v, w)}Jj(v, w)dvdw

(8)

Integrands in identity (8) are presented in the following form [8]:

̂U
∈
j (x, v, w) =

1
16π(1 − ν)μ≤≥r

⎩

⎢
⎜

Û11 Û12 Û13

Û21 Û22 Û23

Û31 Û32 Û33

⎫

⎥
⎬ , μ =

E

2(1 + ν)
, (9)

̂P
∈
j (x, v, w) =

1
8π(1 − ν)≤≥r 2

⎩

⎢
⎜

P̂11 P̂12 P̂13

P̂21 P̂22 P̂23

P̂31 P̂32 P̂33

⎫

⎥
⎬ . (10)

Where ≤≥r1 = P
(1)
j (v, w) − x1, ≤≥r2 = P

(2)
j (v, w) − x2, ≤≥r3 = P

(3)
j (v, w) − x3,

≤≥r =
√≤≥r1 2 + ≤≥r2 2 + ≤≥r3 2.

The individual elements in the matrices (9) and (10) in the explicit form
can be found in [8]. Integrands (9) and (10) in identity (8) are very similar to
functions (2) and (3). The main difference is that functions (9) and (10) require,
besides surface patches, coordinates of points x = {x1, x2, x3} in the domain
where solutions are searched.

In parallel implementation of PIES only the most time-consuming functions
were parallelized: procedure of the system generation - equations (1), (2), (3) and
searching solutions in domain - equations (8), (9), (10). It is strictly connected
with numerical calculation of integrals. Solving the system of algebraic equations
is still calculated in serial way.

Parallel part of computations is as follows: 1. compute table of parameters
η from (4) for all collocation points and Gauss-Legendre quadrature coefficients
(CUDA kernel), 2. compute tables of integrands (2) and (3) (CUDA kernel), 3.
compute table of integrals (1) (CUDA kernel). Table of integrals is sent to CPU
where system of algebraic equations is built and solved in serial way. Solutions of

326 A. Kuzelewski et al.

the system are sent back to GPU and second part of parallel computations are
started: 1. compute tables of integrands (9) and (10) (CUDA kernel), 2. compute
solutions (8) (CUDA kernel).

3 General-Purpose GPU - CUDA Technology

The architecture of graphics processing units (GPUs) significantly differs from
central processing units (CPUs). GPU is composed of multiple floating point
units (FPU) and arithmetic and logic units (ALUs). It is connected with the
nature of performed calculations - the same operations are executed in parallel
on large amounts of data. Using a lot of pixels, texels or vertices is typical in
graphics applications, therefore GPUs are rated as SIMD (single instruction,
multiple data).

Comparing to traditional methods of GPGPU programming (eg. OpenCL),
NVidia CUDA [1] is much simpler and more intuitive. CUDA is based on C
programming language and allows to code GPGPU in parallel computing par-
adigm. Serial part of CUDA application code is running in CPU (called host)
and parallel part in GPU (called device). Data flow in CUDA is shown in Fig. 1.
It is divided into four basic steps: 1. initiation of the program (host), 2. copy
data from host to device, 3. calculations in the GPU, 4. copy data from device
to host.

Fig. 1. Data flow diagram in CUDA

Application of CUDA for Acceleration of Calculations 327

CUDA is based on use of scalable multi-threaded array streaming multi-
processors (SMs). Each multiprocessor consists of eight CUDA cores (general-
purpose scalar processors), a multithreaded instruction unit and shared memory.
A scalar processor can compute one arithmetic operation of add or multiply per
clock cycle and two in the case of multiply-and-add operation [1].

The most popular approach to programming CUDA devices is connected with
division of the problem into smaller problems, which instructions form functions
called kernels. Kernels are executed on a part of threads divided into blocks.
Each 32 threads in the block are called warp. All threads within a block can
communicate with one another and be synchronized using the synchronization
functions. In order to use a larger number of threads within one kernel the blocks
of threads are grouped into grids.

Threads can retrieve data from different types of GPU memory. Each thread
has access to GPU global memory, which has large capacity, but low bandwidth.
Another type is local memory - private to each thread. It has the same parame-
ters as global memory. It stores the variables that should be located in registers.
However, due to the small size of the memory of registers (8192 bytes per mul-
tiprocessor) when variables occupy too much space, the compiler automatically
move some of them to local memory.

Threads within the block can use the software-managed shared memory
stored on the chip (called on-chip memory). It is shared by all threads in a
single block and has size up to 48 KB. It is much faster than global memory.
There is constant memory as well as memory of textures.

CUDA is a very convenient tool to parallelize computations using GPUs,
however optimization of application performance is quite difficult. First of all,
a programmer should focus on three main problems: memory access as well as
code optimization, and configuration of kernel boot parameters.

Another problem, important from the scientific computation point of view,
is floating point arithmetic precision. The newest graphics cards allow to use
double-precision floating-point operations, older ones - only single-precision. It
is particularly important for the high precision calculations.

4 Testing Example

The testing example concerns the problem described by Navier-Lamé equations
shown in Fig. 2a. The considered element is firmly fixed at the bottom and
subjected to a uniform normal load p = 1MPa acting along the upper part of
left side. The values of material constants selected for the calculation are Young’s
modulus E = 1MPa and Poisson’s ratio ν = 0.3.

The shape of the boundary is modelled by 7 rectangular Bézier surfaces of the
third degree (curved boundary fragments) and 6 flat rectangular Coons surfaces.
A complete declaration of the boundary defined in PIES by 13 surfaces requires
112 points (control points of Bézier and corner points of Coons surfaces). In
Fig. 2a, for clarity, only four main points of each surface are marked. On each
surface we have defined the same number of collocation points (from 16 to 64)
and finally have solved the system of 624 to 2496 algebraic equations.

328 A. Kuzelewski et al.

Fig. 2. Considered geometry modelled in a) PIES, b) BEM (BEASY)

NVidia QuadroFX 580 works at 1.125 GHz with 512 MB 128-bit GDDR3
memory (4 streamline multiprocessors each composed by 8 CUDA cores) was
used during tests. It is older graphic card which allows to use only the single-
precision floating-points operations. Its peak performance is 108 GFlops. Intel
Xeon E5507 (4 cores, 4 threads, 2.26 GHz, 4 MB cache memory, peak perfor-
mance 36.26 GFlops) was used to solve serial version of PIES. Originally, PIES
in serial (written in pure C++) implementation running only on CPU uses the
double-precision floating-points operations. However, for comparative purposes,
the authors present results for single-precision serial version.

Serial version of PIES was compiled using g++ 4.4.3 with standard settings,
whilst parallel PIES by nvcc V0.2.1221 CUDA 5.0 release with standard settings,
as well. Numerical tests were carried out in 64-bit Ubuntu Linux operation sys-
tem (kernel 2.6.37).

In order to verify an accuracy of the results obtained by parallel (CUDA)
implementation of PIES it was made a comparison with the solutions obtained
by PIES in serial implementation and commercial application of BEM BEASY.
Therefore, the considered geometry was modelled in BEASY (Fig. 2b), where
the mesh for which the minimum number of elements gives stable numerical
solutions was applied. Finally, it were used 104 quadrilateral and triangular
quadratic elements defined by 475 nodes. The number of algebraic equations
that had to be solved was 1425.

Application of CUDA for Acceleration of Calculations 329

Table 1. Comparison of accuracy of the results

No. of No. of Relative error norm (in [%])
quadrature collocation Serial version Parallel version
coefficients points of PIES (C++) of PIES (CUDA)

x y z x y z

32 16 0.538 0.880 0.844 0.538 0.880 0.633
25 0.442 0.406 0.554 0.442 0.407 0.565
36 0.184 0.122 0.088 0.182 0.121 0.126
49 0.247 0.172 0.171 0.243 0.168 0.037
64 0.154 0.118 2.223 0.150 0.116 2.000

64 16 0.101 0.372 0.263 0.138 0.416 0.122
25 0.114 0.135 0.088 0.087 0.133 0.039
36 0.241 0.217 0.121 0.191 0.174 0.168

4.1 Comparison of Accuracy of the Results

In order to verify an accuracy of the results, it were computed relative error
norm L2 between solutions obtained by parallel version of PIES and BEASY
(treated as exact). This is connected with the lack of analytical solutions of the
problem. Solutions from two cross-sections were analyzed, i.e. x = 1.5,−4.5 ∈
y ∈ 1.0, z = 1.0 and 0.25 ∈ x ∈ 2.25, y = −2.0, z = 1.0. Error norm L2 was
computed using the following formula [4]:

∞ e ∞L2
=

1
∣
∣U i

∣
∣
max

√
√
√
√ 1

K

K⎧

i=1

(
Ui − U i

)2
(11)

where: K - is the number of obtained numerical solutions Ui in domain, whereas
U i - appropriate solutions from BEASY

The values of the obtained error norms are presented in Table 1. Tests were
carried out for different numbers of collocation points and different number of
Gauss-Legendre quadrature coefficients. The coefficients appear in solving PIES
during calculation of matrix elements which require numerical integration. Both
serial and parallel version of PIES were tested for single-precision floating-point
operations.

As it can be seen from the Table 1, both serial and parallel version of PIES
gives results close to MEB and almost the same relative error norms. Despite use
of single-precision floating-point numbers in CUDA and serial PIES, there was
no significant decrease in accuracy of the obtained solutions. It should be noted
that with other examples results may be a bit worse than presented one. It is
possible that floating points errors partly compensate a true error of calculations.

4.2 Comparison of Applications Performance

The results of increased speed of parallel version of PIES compared to serial
version of PIES is presented in Table 2. Tests were carried out for different num-

330 A. Kuzelewski et al.

Table 2. Speedup of parallel PIES

No. of No. of Application execution time (in [s])
quadrature collocation Serial version Parallel version Speedup
coefficients points of PIES (C++) of PIES (CUDA)

32 16 77.50 5.97 12.98
25 185.72 14.75 12.59
36 391.23 33.50 11.68
49 748.07 70.01 10.69
64 1302.17 136.70 9.53

64 16 303.01 18.40 16.47
25 722.22 43.67 16.54
36 1507.90 92.26 16.34

bers of collocation points and different number of Gauss-Legendre quadrature
coefficients. Both serial and parallel version of PIES use single-precision floating
point operations.

Parallel version of PIES is up to sixteen times faster than serial one. It
should be noticed that solving the system of algebraic equations is still computed
in serial way. There is no application optimization in terms of use high-speed
CUDA device memory.

5 Conclusions

The paper presents the possibility of acceleration of numerical calculations in
solving 3D boundary problems modelled by Navier-Lamé equations. It has been
achieved by PIES parallelized using CUDA.

Results of solving boundary value problems using parallel version of PIES
are obtained up to sixteen times faster than serial one. It should be noticed that
any GPU memory optimization was not performed and NVidia QuadroFX 580
is rather old and a bit slow graphics card.

Despite the use of single-precision floating-point numbers in CUDA, parallel
version of PIES gives results almost the same as single-precision serial version
of PIES. Solutions are very close to ones obtained using commercial application
of BEM (BEASY), as well.

This paper is one of the first attempt to use CUDA technology in 3D bound-
ary value problems solved by PIES. Results strongly suggest the chosen direction
of studies should be continued.

Acknowledgements. The scientific work is founded by resources for science in the
years 2010–2013 as a research project.

Application of CUDA for Acceleration of Calculations 331

References

1. CUDA, C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-
guide/

2. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and
Applications. SIAM, Philadelphia (1977)

3. Kiss, I., Gyimóthy, S., Badics, Z., Pávó, J.: Parallel realization of the element-by-
element FEM technique by CUDA. IEEE Trans. Magn. 48, 507–510 (2012)

4. Mukherjee, S., Mukherjee, X.Y.: Boundary Methods Elements, Contours and
Nodes. CRC Press, Boca Raton (2005)

5. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn A.E.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In:
Eurographics 2005 State of the Art Reports, pp. 21–51. Dublin, Ireland (2005)

6. Takahashi, T., Hamada, T.: GPU-accelerated boundary element method for
Helmholtz equation in three dimensions. Int. J. Numer. Method Eng. 80,
1295–1321 (2009)

7. Zieniuk, E.: Bézier curves in the modification of boundary integral equations (BIE)
for potential boundary-values problems. Int. J. Solids Struct. 40, 2301–2320 (2003)

8. Zieniuk, E.: Computational method PIES for Solving Boundary Value Problems
(in polish). PWN, Warszawa (2013)

9. Zieniuk, E., Boltuc, A.: Bézier curves in the modeling of boundary geometries for
2D boundary problems defined by Helmholtz equation. J. Comput. Acoust. 14,
1–15 (2006)

10. Zieniuk, E., Boltuc, A.: Non-element method of solving 2D boundary problems
defined on polygonal domains modeled by Navier equation. Int. J. Solids Struct.
43, 7939–7958 (2006)

11. Zieniuk, E., Boltuc, A., Kuzelewski, A.: Algorithms of identification of multi-
connected boundary geometry and material parameters in problems described by
Navier-Lamé equation using the PIES. In: Pejas, J., Saeed, K. (eds.) Advances in
Information Processing and Protection, pp. 409–418. Springer, New York (2007)

12. Zieniuk, E., Szerszen, K.: Triangular Bézier patches in modelling smooth boundary
surface in exterior Helmholtz problems solved by PIES. Arch. Acoust. 34, 1–11
(2009)

13. Zieniuk, E., Szerszen, K., Boltuc, A.: Convergence analysis of the boundary geome-
try identification obtained by genetic algorithms in the PIES. In: Saeed, K., Pejas,
J., Mosdorf, R. (eds.) BioMetrics, Computer Security Systems and Artificial Intel-
ligence Applications, vol. III, pp. 333–340. Springer, New York (2006)

14. Zieniuk, E., Szerszen, K., Kapturczak, M.: A numerical approach to the determi-
nation of 3D stokes flow in polygonal domains using PIES. In: Wyrzykowski, R.,
Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS,
vol. 7203, pp. 112–121. Springer, Heidelberg (2012)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Modeling and Simulations of Beam Stabilization
in Edge-Emitting Broad Area Semiconductor

Devices

Mindaugas Radziunas1(B) and Raimondas Čiegis2

1 Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
Mindaugas.Radziunas@wias-berlin.de

2 Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania
rc@vgtu.lt

Abstract. A 2+1 dimensional PDE traveling wave model describing
spatial-lateral dynamics of edge-emitting broad area semiconductor
devices is considered. A numerical scheme based on a split-step Fourier
method is presented and implemented on a parallel compute cluster.
Simulations of the model equations are used for optimizing of existing
devices with respect to the emitted beam quality, as well as for creating
and testing of novel device design concepts.

Keywords: Broad area device · Traveling wave model · Numerical
scheme · Simulations · Beam improvement

1 Introduction

High power high brightness edge-emitting (EE) broad area semiconductor (BAS)
lasers and optical amplifiers are compact devices playing a key role in different
laser technologies. They have a relatively simple geometry (Fig. 1(a)) allowing
an efficient pumping through a broad electric contact on the top of the device
and are able to operate at the high power (tens of Watts) regimes. However, once
operated at high power regimes, BAS devices suffer from a relatively low quality
of the emitted beam which has undesirable broad optical and lateral spectra.
A high quality of the beam amplified in BAS amplifiers or generated by BAS
lasers is a very important issue of the modern semiconductor laser technology,
and there are several BAS device concepts for improving of the emitted beam.

Mathematical modeling, simulations and analysis play a significant role in
optimization of existing devices or creation of novel design concepts [1]. Typi-
cally, the length (z dimension) and width (x-dimension) of EE BAS devices (see
Fig. 1(a)) are in a few millimeter and hundreds of micrometer range, respec-
tively, whereas the height (y dimension) of the active zone where the optical
beam is generated and amplified is, typically, not larger than a micrometer.
Since full 3-dimensional dynamical simulations of semiconductor devices with
different spatial and temporal scales is not possible, we replace all y-dependent

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 332–342, 2014.
DOI: 10.1007/978-3-642-55195-6 31, c© Springer-Verlag Berlin Heidelberg 2014

Modeling and Simulations of Broad Area Semiconductor Devices 333

Fig. 1. Schemes of different EE BAS device configurations. (a): standard EE BAS
laser. (b): BAS laser with a dual angular plane wave injection. (c): BAS amplifier with
a spatially periodic electrical contact.

quantities by some effective vertical averages. To simulate the generation and/or
propagation of the optical fields along the cavity of EE BAS devices we use a
2+1 dimensional system of PDEs, described briefly in this paper. The model is
based on the traveling wave (TW) equations for counter-propagating and lat-
erally diffracted slowly varying optical fields which are coupled to the ODE for
induced polarizations and diffusive rate equation for carrier densities [2,3]. The
well-posedness of this model was studied in [4], while different algorithms used
for the numerical integration of the model were considered in [5–7].

Precise dynamic simulations of long and broad or tapered devices and tun-
ing/optimization of the model with respect to one or several parameters, require
huge CPU time and memory resources. A proper resolution of rapidly oscillat-
ing fields in typical BAS devices on a sufficiently large optical frequency range
requires a fine space (106–107 mesh points) and time (up to 106 points for typical
5 ns transients) discretization. Dynamic simulations of such devices can easily
take one or even several days of computations on a single processor computer.
Some speedup of computations can be achieved by using problem-dependent
relations of the grid steps, including also variable steps in the lateral dimension.
All these grid optimizations, however, are not sufficient when one- or a few-
parameter studies with the simulation times up to 1000 ns should be performed.
It is obvious, that the required computations in an acceptable time can only be
done by means of parallel computers and parallel solvers.

In this paper we present a split-step Fourier method based numerical algo-
rithm for the integration of the 2+1 dimensional traveling wave model of BAS
devices. It was implemented on the parallel compute cluster at the Weierstrass
Institute in Berlin and was successfully used for simulations of different BAS
devices with an improved quality of the beam [3,8–11]. In this paper we present
two examples of such BAS devices (see Fig. 1(b) and (c)) which were proposed
in our theoretical papers [12–14]. In the first device, a pair of coherently injected
plane waves at the adjoint angles to the laser axis (Fig. 1(b)) can create a peri-
odic carrier grating, which in turn can suppress all but one lateral modes of
the laser [12,13]. The second device has periodically modulated (PM) electrical
contact or active zone in both spatial directions (Fig. 1(c)), what can lead to a
significant improvement of the amplified beam in BAS amplifiers [14].

334 M. Radziunas and R. Čiegis

2 Mathematical Model

After an appropriate scaling, the traveling wave (TW) model for longitudi-
nal-lateral dynamics of the complex slowly varying amplitudes of the counter-
propagating fields E±(z, x, t), polarization functions P±(z, x, t) and real carrier
density function N(z, x, t) can be written as follows [7]:

⎧
τ

τt
± τ

τz

⎨

E± = − i

2
τ2

τx2
E± − i

⎩

ω(N, ≤E≤2) − i
D
2

⎜

E± − iθ∈E∈,

τ

τt
P± = iβP± + χ

⎫
E± − P±⎬

, (1)

1
μ

τ

τt
N = D

τ2

τx2
N + I(z, x) − R(N) − ≥e

⎭

σ=±
Eσ≥ ⎞

G(N, |E±|2) − D⎠
Eσ ,

where ≤E≤2 = |E+|2 + |E−|2 is proportional to the local field intensity, whereas
the operators ω, D and functions G, ñ, R denote the propagation factor, the
Lorentzian approximation of the material gain dispersion, the gain peak value,
the refractive index change, and the spontaneous recombination, respectively:

ω(N, |E±|2) = δ − ñ(N) +
i
⎫
G(N, ≤E≤2) − π

⎬

2
, DE±=g

⎫
E± − P±⎬

,

G(N, ≤E≤2) =
g◦Ntr

1 + ε≤E≤2 log
⎧

max(N,N≥)
Ntr

⎨

, ñ(N) = 2σNtr

√
N/Ntr, (2)

R(N) = AN + BN2 + CN3.

In general, this model should be considered in the unbounded region Q =
Qz,x × (0, T], where Qz,x = {(z, x) : (z, x) ∈ (0, L) × R} is the spatial domain,
L represents the device length, x is the coordinate of the unbounded lateral axis
of the device, and T is the length of the time interval where we perform the inte-
gration. In our numerical simulations we choose a large enough lateral interval
[−X,X] containing the considered BAS device and assume that the field and
carrier density functions E± and N are periodic along the lateral axis:

E±(z, x + 2X, t) = E±(z, x, t), N(z, x + 2X, t) = N(z, x, t), (z, x, t) ∈ Q. (3)

This assumption restricts our considerations of the model equations to the trun-
cated domain QX = QX

z,x × (0, T], QX
z,x = {(z, x) : (z, x) ∈ (0, L) × [−X,X]}.

The boundary conditions for the optical fields E± at the device facets (z, x) ∈
0 × [−X,X] and (z, x) ∈ L × [−X,X] in (1) are given by

E−(L, x, t) = r1(x)E+(L, x, t) + F [E+(L, ·, t − τ)] ,
E+(0, x, t) = r0(x)E−(0, x, t) + a(x, t), (x, t) ∈ [−X,X] × [0, T], (4)

where r0,1, a and F are the field amplitude reflectivity coefficients, the complex
amplitude of the optical field injection, and another optical source determined
by the reinjected delayed optical field [10], respectively. The initial conditions

E±(z, x, 0) = E±
0 (z, x), P±(z, x, 0) = P±

0 (z, x), N(z, x, 0) = N0(z, x) (5)

Modeling and Simulations of Broad Area Semiconductor Devices 335

are defined for (z, x) ∈ QX
z,x. If properly stated, they are not important, since

after some transients the trajectories approach one of the stable attractors.
The coefficients θ±, δ, π, g◦, σ, Ntr, N≥, ε, μ, D, I, A, B and C repre-

sent the complex field coupling due to the Bragg grating, the static detuning
due to the built-in refractive index profile, the internal losses of the field, the
differential gain, the differential index, the carrier density at the transparency,
the gain clamping carrier density, the nonlinear gain compression, the scaling
factor related to the ratio of the photon and carrier life times, the carrier diffu-
sion coefficient, the current injection density, and three recombination factors,
respectively. Finally, g, β and χ denote the amplitude, the central frequency and
the half width at half maximum of the Lorentzian fitting of the gain profile.

Most of the parameters are spatially non-homogeneous and even discontin-
uous depending on the device geometry. More details about the meaning and
typical values of all parameters can be found in [2,3]. Normalization of the
equations and typical values of the normalized parameters are given in [7]. It is
noteworthy, that χ ∞ 102÷103 and μ ∞ 10−3 represent the fast relaxation of the
polarizations P± and slow dynamics of the carrier density N , respectively. Typi-
cal size of the dimensionless domain is determined by X ∞ 5÷30 and L ∞ 1÷10,
whereas D ∞ 0.5 and most of other parameters are of order O(1).

3 Numerical Scheme

The computation domain QX is discretized using a uniform in space and time
grid QX

h = QX
h,z,x × βh,t, where QX

h,z,x = βh,z × βh,x, and

βh,x = {xj : xj = j hx, j = −J/2, . . . , J/2 − 1, hx = 2X/J},

βh,z = {zk : zk = k h, k = 0, . . . , K, h = L/K},

βh,t = {tm : tm = m h, m = 0, . . . , M, M = T/h}.

The time discretization step h is equal to the spatial step in z-direction, what
allows an accurate optical field propagation along the characteristic lines z ± t =
const. We note, that h is the maximal allowed time step: its further increasing
violates the Courant-Friedrichs-Lewy (CFL) condition and, therefore, stability
of the numerical schemes.

All spatially depending parameters P (z, x), spatially and temporarily
depending functions F (x, t) and unknown functions U(z, x, t) in Eqs. (1)–(5)
are approximated by their grid analogs defined on QX

h :

Pk,j = P (zk, xj), Fm
j = F (xj , tm), Um

k,j ∞ U(zk, xj , tm).

When constructing numerical schemes we exploit a discrete Fourier trans-
form of complex and real laterally-periodic functions U(z, x, t), where U = E± or
U = N . Namely, we assume that a complex function Uj(z, t) := U(z, xj , t) (repre-
senting the fields E+ and E−) on the uniform lateral mesh βh,x can be expressed

336 M. Radziunas and R. Čiegis

as a linear combination of the orthonormal grid-functions eiτβxj/X |J/2−1
β=−J/2:

Uj(z, t) =
⎢
F−1

⎥
Ûβ(z, t)

∣
∣J/2−1

β=−J/2

)]

j
:=

1
J

J/2−1⎭

β=−J/2

Ûβ(z, t)eiτβxj/X , (6)

where the Fourier coefficients Ûβ(z, t) are defined as

Û(z, t) =
⎢
F

⎥
Uj(z, t)

∣
∣J/2−1

j=−J/2

)]

β
:=

J/2−1⎭

j=−J/2

Uj(z, t)e−iτβxj/X . (7)

These transforms are used for the approximation of ρ2

ρx2 U at any grid point xj

by the second derivative of the trigonometric interpolant:

τ2

τx2
U(z, xj , t) ∞ 1

J

J/2−1⎭

β=−J/2

⎧

−π22

X2

⎨

Ûβ(z, t)eiτβxj/X . (8)

When U represents the carrier density N and is real, it can be expressed as a
linear combination of the real orthogonal grid-functions cos (πxj/X) |J/2

β=0, and
sin (πxj/X) |J/2−1

β=1 . An equivalent complex expression of such combination can
be written as (6) with the complex Fourier coefficients (7) satisfying the relations
N̂−J/2 = N̂≥

−J/2 and N̂β = N̂≥
−β, = 0, . . . , J/2 − 1.

3.1 Splitting Scheme

The TW model (1)–(5) is integrated numerically using a splitting scheme, where
the lateral field diffraction and carrier diffusion are resolved with the fast Fourier
transform, and the remaining coupled hyperbolic system in (1) is integrated
along the characteristics using finite differences. The stiff ODE for the polariza-
tion functions P± in (1) (χ is large !) is resolved using an exponentially weighted
scheme with the values for E± at the same time layer, which ensures, that
limγ≤∩ P± = E±.

Let us assume, that the grid functions E±,m
k,j , P±,m

k,j and Nm
k,j are known

for the time layer tm. In the time-stepping algorithm we split the diffraction,
diffusion processes and the nonlinear interaction. To find the grid functions at
the new time layer tm+1 we proceed as follows. In the first step of our algorithm
we consider only the nonlinear interaction and make a simple prediction of the
carrier density at the new time layer:

Ñm+1
k,j − Nm

k,j

μh
= − ⎫

G(Nm
k,j , ≤Em

k,j≤2) − g
⎬ ≤Em

k,j≤2 − g ≥e
⎭

σ=±
Eσ,m≥

k,j P σ,m
k,j (9)

+ Ik,j − Ñm+1
k,j R

⎫
Nm

k,j

⎬

Nm
k,j

, k = 0, . . . , K, j = −J/2, . . . , J/2−1.

Modeling and Simulations of Broad Area Semiconductor Devices 337

We use a simple implicit-explicit linearized scheme at this step.
In the next step we neglect the field diffraction and find intermediate approx-

imations for the optical fields and new polarization functions:

Ẽ±,m+1
k,j − E±,m

k∈1,j

h

= −i
ω

⎥
Ñm+1

k,j , ≤Em
k,j≤2

)
Ẽ±,m+1

k,j + ω
⎥
Nm

k∈1,j , ≤Em
k∈1,j≤2

)
E±,m

k∈1,j

2

− gk,j(Ẽ
±,m+1
k,j − P±,m+1

k,j) + gk∈1,j(E
±,m
k∈1,j − P±,m

k∈1,j)
4

− i
θ∈

k,jẼ
∈,n+1
k,j + θ∈

k∈1,jE
∈,m
k∈1,j

2
, k, k ≈ 1 ∈ {0, . . . , K};

Ẽ+,m+1
0,j = r0,jẼ

−,m+1
0,j + am+1

j , Ẽ−,m+1
K,j = r1,jẼ

+,m+1
K,j + Fh

⎢
E

+,m+1− τ
h

K,·
]
, (10)

P±,m+1
k,j =

χk,j

⎫
1 − e(iωk,j−γk,j)h

⎬

χk,j − iβk,j
Ẽ±,m+1

k,j + e(iωk,j−γk,j)hP±,m
k,j , k = 0, . . . , K,

j = −j/2, . . . , j/2−1.

We note, that the scheme above is linear with respect to Ẽ±,m+1
k,j and P±,m+1

k,j

and can be separately resolved for each k = 0, . . . , K.
In the final step of our algorithm we take into account the carrier diffusion

and field diffraction. Namely, we solve the linear equations

τ

τt
N = μD

τ2

τx2
N,

⎧
τ

τt
± τ

τz

⎨

E± = − i

2
τ2

τx2
E±

within the time (and space) interval of length h, whereas the initial conditions
are given by the previously obtained estimates Ñ and Ẽ±. To integrate these
equations we use lateral discretizations of the functions N and E±, approximate
their second lateral derivatives by (8) and solve the resulting systems of the
differential equations in the (lateral) Fourier domain:

N̂β(z, t + h) = e−μD π2�2

X2 hN̂β(z, t), Ê±
β (z ± h, t + h) = ei π2�2

2X2 hÊ±
β (z, t).

The inverse discrete Fourier transform (6) and the discretization of the functions
N and E± along the longitudinal z direction give us the following equations,
which completes the description of our numerical scheme:

Nm+1
k,j =

1
J

J/2−1⎭

β=−J/2

e−μD π2�2

X2 h

J/2−1⎭

s=−J/2

Ñm+1
k,s e−i 2π�s

J

 ei 2π�j
J ,

E±,m+1
k,j =

1
J

J/2−1⎭

β=−J/2

ei π2�2

2X2 h

J/2−1⎭

s=−J/2

Ẽ±,m+1
k,s e−i 2π�s

J

 ei 2π�j
J , (11)

k = 0, . . . , K, J = −j/2, . . . , j/2−1.

338 M. Radziunas and R. Čiegis

3.2 Parallelization

Numerical scheme (9)–(11) is well suited for the execution on parallel clusters
of computers. We use the domain decomposition technique. To distribute the
computational work among different processes πl|nl=1 we decompose the com-
putational grid QX

h along the longitudinal z- direction into n non-overlapping
sub-grids QX,l

h .
Any process πl operates on the sub-grid

QX,l
h = βl

h,z × βh,x × βh,t, βl
h,z = βh,z ∧ [(l − 1)sh,min{(ls − 1)h,L}] ,

s = ceil ((K + 1)/n) , l = 1, . . . , n.

A schematic representation of the full computational grid and its splitting to
smaller sub-grids is given in Fig. 2.

Before computing the grid functions at the next time layer (empty bullets in
Fig. 2) each process πl should exchange the current time layer values of E±, P±

and N at the boundaries of the sub-grid QX,l
h (light bullets in the same figure)

with the adjacent processes πl−1 and πl+1. This information is recorded to the
specially created ghost grid points (small dots) at the adjacent side of the sub-
grids QX,l−1

h and QX,l+1
h . The left and right ghost points of the sub-grid QX,l

h in
the consequent computations of the process πl are treated like usual grid points
(z(l−1)s−1, xj , t

m) and (zls, xj , t
m) which are not directly accessible by πl.

The processes π1 and πn operating on the end sub-grids QX,1
h and QX,n

h

have no left or right adjacent sub-grid. The required sub-grid boundary infor-
mation in these cases is given by the longitudinal boundary conditions (4)
including optional optical injection and optical feedback functions a(x, t) and
F [E+(L, x, t− τ)] (thick empty in-pointing arrows in the same figure). The scal-
ability analysis of the proposed parallel algorithm can be done as in [5]. It proves
that the algorithm scales linearly with respect to the number of processors used
to solve the given problem.

...

...

s s s s
t

F[E (L,x,t−)]τ

E (L,x,t)π nπ n−1π 2π1
z

E,P,N E,P,N

z zz

t

t

m

m+1

m+1

s z z

a(x,t)

0 1 s−1 z (n−1)s−1 (n−1)s z =LK

+

+~ ~...

Fig. 2. Scheme of the computational grid (z and t coordinates only). Vertical dashed
lines: splitting of the grid QX

h to smaller sub-grids QX,l
h . Full and empty bullets: the

actual (already computed) and the next time layers, respectively. Arrows: data streams
which should be read or recorded by different processes πl before the next time iteration.
Small dots: ghost points of the sub-grid containing an information received from the
corresponding border point (light bullets) of the adjacent sub-grid.

Modeling and Simulations of Broad Area Semiconductor Devices 339

In addition to the solution of the scheme (9)–(11) on the sub-grid QX,n
h , the

last process πn records the emitted field E+(L, x, t) and calculates distributions
of the optical feedback (if considered). Thus, the fact that QX,n

h has, possibly,
less grid points then the other sub-grids (the size of βn

h,z can be smaller than s)
could be advantageous seeking to speed up the simulations.

The numerical scheme (9)–(11) and the parallel algorithm were implemented
and executed on a 48 node HP Blade server using the HPMPI library. The nodes
are interconnected via Infiniband 4xDDR (20 Gbit/s).

4 Simulations of BAS Devices

Mathematical modeling and fast numerical simulations are a powerful method
used in optimization of the existing BAS devices or in creation of the novel
design concepts for different real world applications. Below in this section we
simulate two theoretically proposed BAS devices (shown also in Fig. 1(b) and
(c)) showing an improved quality of the emitted beam.

4.1 Stabilization of a BAS Laser by a Dual Off-Axis Optical
Injection

In our theoretical papers [12,13] a new control method of BAS lasers was pro-
posed, which, as we believe, should suppress all but one optical mode, i.e., should
stabilize the emitted beam. This control is achieved by a pair of coherent optical
plane waves injected into the BAS laser at the adjacent angles to the laser axis
(Fig. 1(b)). In the non-scaled model, this optical injection is described by the
function

a(x, t) = a0e
i(ωt+αk0−τ/2) + a0e

i(ωt−αk0+τ/2) = 2a0e
iωt sin (πk0x)

entering boundary conditions (4). The parameters ±π, k0, and β in the expres-
sion above denote the free space angles of the injected beams (see Fig. 1(d)),
the central wave-vector of the emitted field, and the frequency detuning of the
optical injection from the central frequency k0c (c: speed of light in vacuum).
The factor |a0|2 is proportional to the intensity of the optical field injected into
the laser.

We have performed a series of simulations for the fixed detuning (β = 0 in
this example) and increased intensity of the optical injection (i.e., parameter
|a0|2). The observed laser dynamics (optical spectra, far-fields, field intensities)
for different injection intensities is summarized in Fig. 3. Here one can distin-
guish three qualitatively different regimes, separated by thin vertical lines in
Fig. 3. Once the injection intensity is too small, the spatial-temporal dynamics
of the system is similar to that one of the free-running BAS laser. This can be
recognized by multiple peaks of the optical spectrum (panel (a)), by scattered
far-field instants (panel (b)), as well as by a non-stationary output field (differing
minimal and maximal intensities in panel (c)). For moderate and large injected

340 M. Radziunas and R. Čiegis

0.1 0.15 0.2 0.25 0.3
injection power [W]

1

1.5

2

ou
tp

ut
 p

ow
er

 [W
]

0

300

150

−150

−300fr
eq

ue
nc

y
[G

H
z]

an
gl

e
[d

eg
re

es
]

0

2

4

−4

−2

0

−60

−20

−40

60

50

40

30

20

stabilization injection
lockingregion

irregular
dynamics

(b)

(a)

(c)

dB

dB

Fig. 3. Stabilization of the BAS laser by
the optical injection. (a): mapping of the
optical spectra, (b): mapping of the far-
fields computed at some time instant, and
(c): maximal, minimal and mean power of
the emitted field for the increased injec-
tion power and fixed ω = 0.

-200 -100 0 100 200
lateral coordinate x [μm]

1

2

3

4

5

de
ns

ity

 [1
024

/m
3]

 z = 0.8mm
 z = 4.8mm

-1 0 1
free space angle [degrees]

0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 p

ow
er z = 0.8 mm

z = 2.4 mm
z = 4.0 mm
z = 5.6 mm

-200 -100 0 100 200
lateral coordinate x [μm]

-1 0 1
free space angle [degrees]

Fig. 4. Amplification of the optical
beam in the equally biased conven-
tional (left) and the PM EE BAS
amplifiers with (dx, dz) = (8, 400)µm,
and Q = 1.02 (right). First and second
rows show lateral distributions of the
carrier density and central part of the
far-fields computed for selected longi-
tudinal positions z.

field intensities the laser operates at a continuous wave regime (a single spec-
tral line in panel (a) and coinciding minimal and maximal powers in panel (c)).
An inspection of the far-fields at these injections, however, allows us to distin-
guish two different regimes. Namely, for moderate injections we have a stationary
state which has a well pronounced central angular component (a stabilized mode
of the laser), whereas for larger injections only the angular components corre-
sponding to the injected beam angles π are present. In this regime our BAS laser
is operating like an amplifier for the injected beams, but does not generate light
by itself.

4.2 BAS Amplifiers with Periodically Modulated Electrical
Contacts

An elegant way to improve the lateral beam profile in EE BAS amplifiers was
suggested in the recent theoretical work [14]. It was shown, that a periodic
modulation of the gain and refractive index in both longitudinal and lateral
directions (see Fig. 1(c)) can lead to a significant compression of the far-fields,
what is desirable in the real world applications.

A crucial condition for the desired beam shaping is a proper choice of the
lateral and longitudinal modulation periods dx and dz, which in the non-scaled
model should satisfy the relation Q = d2

xk0nb

τdz
∞ 1, where nb is the background

refractive index in the semiconductor device (typically about 3÷3.5). The math-
ematical model used in [14], however, was oversimplified: it was neglecting a

Modeling and Simulations of Broad Area Semiconductor Devices 341

strong nonlinear interaction of carriers and optical fields in high-power devices,
i.e., was only suitable for simulations of very small fields (and polarizations)
which have no impact to the carrier distribution (see the carrier rate equation
in Eq. (1)).

In the present work we have performed simulations of a standard BAS ampli-
fier (left panels of Fig. 4) and of a BAS amplifier with the PM electrical contact
(right panels of the same figure) operating in moderate and high power regimes.
In these regimes the carrier distribution is strongly depleted, causing lateral
irregularities in the carrier (i.e., gain and refractive index) modulation ampli-
tudes: see the black curves in the first row panels of Fig. 4, representing the
carrier densities at z = 4.8 mm. The simulations have shown, that the desired
beam shaping in the PM BAS amplifiers can be also obtained using our more
realistic modeling approach: compare the far-fields of the simple (left) and PM
amplifiers (right) at the lower row panels of Fig. 4. It is noteworthy, that even
though a part of the field amplified in the PM device is radiated at ∞±7.2◦ side
band components, the intensity of the remaining central angle field still can be
higher than that one of the field amplified in the conventional BAS device.

In conclusion, we have presented a numerical scheme for the 2+1 dimensional
PDE model describing the dynamics of BAS devices, and discussed its imple-
mentation on the parallel cluster of computers. The mathematical model and
the numerical scheme were applied for the study of the beam stabilization in
different configurations of BAS devices.

Acknowledgments. The work of M. Radziunas was supported by DFG Research
Center Matheon. The authors would like to thank Mark Lichtner for implementation
of the numerical schemes on the parallel compute cluster.

References

1. Wenzel, H.: Basic aspects of high-power semiconductor laser simulation. IEEE J.
Sel. Top. Quantum Electron. 19(5), 1502913 (2013)

2. Bandelow, U., et al.: Impact of gain dispersion on the spatio-temporal dynamics
of multisection lasers. IEEE J. Quantum Electron. 37, 183–188 (2001)

3. Spreemann, M., et al.: Measurement and simulation of distributed-feedback
tapered master-oscillators power-amplifiers. IEEE J. Quantum Electron. 45, 609–
616 (2009)

4. Lichtner, M., Radziunas, M., Recke, L.: Well posedness, smooth dependence and
center manifold reduction for a semilinear hyperbolic system from laser dynamics.
Math. Meth. Appl. Sci. 30, 931–960 (2007)

5. Čiegis, R., Radziunas, M., Lichtner, M.: Numerical algorithms for simulation of
multisection lasers by using traveling wave model. Math. Model. Anal. 13, 327–
348 (2008)

6. Laukaitytė, I., et al.: Parallel numerical algorithm for the traveling wave model.
In: Čiegis, R., Henty, D., Kagstrom, B., Žilinskas, J. (eds.) Parallel Scientific Com-
puting and Optimization, vol. 27, pp. 237–251. Springer, New York (2009)

342 M. Radziunas and R. Čiegis

7. Čiegis, R., Radziunas, M.: Effective numerical integration of traveling wave model
for edge-emitting broad-area semiconductor lasers and amplifiers. Math. Model.
Anal. 15, 409–430 (2010)

8. Radziunas, M., et al.: Mode transitions in distributed-feedback tapered master-
oscillator power-amplifier. Opt. Quantum Electron. 40, 1103–1109 (2008)

9. Tronciu, V.Z., et al.: Improving the stability of distributed-feedback tapered
master-oscillator power-amplifiers. Opt. Quantum Electron. 41, 531–537 (2009)

10. Jechow, A., et al.: Stripe-array diode-laser in an off-axis external cavity: theory
and experiment. Opt. Express 17, 19599–19604 (2009)

11. Tronciu, V.Z., et al.: Amplifications of picosecond laser pulses in tapered semicon-
ductor amplifiers: numerical simulations versus experiments. Opt. Commun. 285,
2897–2904 (2012)

12. Radziunas, M., Staliunas, K.: Spatial rocking in broad area semiconductor lasers.
Europhys. Lett. 95, 14002 (2011)

13. Radziunas, M., Staliunas, K.: Spatial “rocking” for improving the spatial quality
of the beam of broad area semiconductor lasers. In: SPIE Proceeding, vol. 8432,
p. 84320Q (2012)

14. Herrero, R., et al.: Beam shaping in spatially modulated broad area semiconductor
amplifiers. Opt. Lett. 37, 5253–5255 (2012)

Concurrent Nomadic and Bundle Search:
A Class of Parallel Algorithms

for Local Optimization

Costas Voglis1,2(B), Dimitrios G. Papageorgiou3, and Isaac E. Lagaris2

1 Nodalpoint Systems LTD, Athens, Greece
voglis@cs.uoi.gr

2 Department of Computer Science, University of Ioannina, 1186,
45110 Ioannina, Greece

3 Department of Materials Science and Engineering, University of Ioannina, 1186,
45110 Ioannina, Greece

Abstract. We present a family of algorithms for local optimization that
exploit the parallel architectures of contemporary computing systems
to accomplish significant performance enhancements. This capability is
important for demanding real time applications, as well as, for prob-
lems with time–consuming objective functions. The proposed concur-
rent schemes namely nomadic and bundle search are based upon well
established techniques such as quasi-Newton updates and line searches.
The parallelization strategy consists of (a) distributed computation of
an approximation to the Hessian matrix and (b) parallel deployment of
line searches on different directions (bundles) and from different start-
ing points (nomads). Preliminary results showed that the new parallel
algorithms can solve problems in less iterations than their serial rivals.

Keywords: Parallel local search · Nomadic search · Concurrent search ·
Nested parallelism · Line search · Quasi-Newton

1 Introduction

Optimization has broad practical applications in engineering, science and man-
agement. Many of these may either have expensive function evaluations or require
real–time response. For example we refer to aircraft design, molecular modeling,
space trajectory planning, optimal sea routing etc. High performance parallel
computing can provide powerful tools for solving optimization problems.

Nowadays the computing power of a single core CPU has reached a premium
that is improving at a very slow pace. The direction for performance enhance-
ment has turned from pushing the CPU clock higher up, towards creating multi-
core parallel architecture systems. However these hardware developments alone
cannot change the picture overnight. Suitable software must be developed based
on algorithms that can exploit the parallel features of the hardware in order

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 343–353, 2014.
DOI: 10.1007/978-3-642-55195-6 32, c© Springer-Verlag Berlin Heidelberg 2014

344 C. Voglis et al.

to reach the desired performance levels. In critical real time applications, an
untimely (delayed) result is at best useless if not costly or catastrophic. In addi-
tion, large scale tough problems with expensive objectives, left aside or aban-
doned as hopeless goals due to the extremely long computational times they
required, are now being reconsidered in the light of parallel processing.

Parallelizing a sequential algorithm usually results in minor performance
gains and often the new algorithm is not equivalent to the original. However, an
algorithm designed afresh aiming to exploit parallelism, is naturally expected to
attain high levels of performance. Monte–Carlo methods are inherently parallel
and their implementation on parallel systems is quite straightforward. Global
optimization methods are also parallelizable rather easily due to the nature of
the problem itself. The case of local optimization is quite hard and indeed very
few inherently parallel methods exist. Most of them are advertised as parallel
by adopting a parallel linear system solver. Algorithms of that kind are not
genuinely parallel optimization algorithms, since they treat in parallel only the
bookkeeping operations and not the calls to the objective function. The work of
Chen and Han [1], describes a method called “Parallel Quasi-Newton”, which
handles a special case where the objective function is partially separable and
hence updating conjugate subspaces is effective for large scale sparse optimiza-
tion problems. In the article of Chen, Fel and Zheng [2], a “Parallel Quasi-Newton
algorithm” is presented that divides the processors in two groups that operate
asynchronously and avoids updating the Hessian at every iteration. However the
gain, if any, in the case of time consuming objectives is minimal, since the main
cost is not in updating an n × n matrix. Byrd, Schnabel and Shultz [3], discuss
a parallelization scheme for the BFGS method based on estimating the gradient
and part of the Hessian by finite differencing (which lends itself to extensive
parallel computation) and in addition on parallel linear algebra solvers. A simi-
lar philosophy is followed for the Newton method, in the work by Conforti and
Musmanno [4]. Earlier in [5], Laarhoven presented a method that exploits par-
allel calls to estimate via updating, (and not via finite differencing) the inverse
Hessian matrix. His work is based upon a 1973 NASA–report by Straeter [6],
that indeed capitalizes on the capabilities offered by parallel processing systems.
Phua et al. [7], describe a method where line searches are applied in parallel to
several descent directions produced via different Hessian updates. Among the
various schemes the SR1, BFGS and the Biggs [8] updates are being considered.
An interesting review appeared in 1995 by Schnabel [9], commending on the
prospects of parallel non-linear optimization in a broader framework where also
the field of global optimization was considered.

In the present article we present optimization algorithms suitable for execution
on parallel systems. Our main focus is to accelerate the solution process without
much concern for the amount of utilized resources such as the number of proces-
sors/cores, memory size, disc space, communication switches etc. One line we pur-
sue is based on a population of M neighbouring points xi which are used to obtain,
via SR1 updating, approximations to the corresponding M Hessians. Next, from
each of these M points, a line search is started in the direction determined by:

Concurrent Nomadic and Bundle Search 345

hi = −B−1
i gi ≡ −Higi, ∀i = 1, 2, . . . , M

Bi, Hi and gi denote a modified Hessian, its inverse and the gradient at the point
xi correspondingly. From the new points that emerged after the line–searches, we
pick the one with the lowest function value and repeat the process anew; i.e. we
pick M − 1 additional points in its neighbourhood, estimate the corresponding
(M) Hessian matrices and so on so forth, until a termination criterion prevails.

A second approach comes from noticing that trust region methods solve a
modified Hessian problem (B + aI)h = −g, where a is a parameter determined
by the constraint |h(a)| ≤ ρ, ρ being a proper trust radius controlled externally
according to the quality of the quadratic local fit to the objective function.

From the current point we calculate M directions hi, by picking M values
ai, for the parameter a inside a proper range. In the next step, a line search
is started along each direction hi. From the resulting new points, the best one
is selected as the current point. This process is repeated until a convergence
criterion is satisfied.

The detailed procedures are described in Sect. 2. Benchmarking experiments
have been performed and the results are presented in Sect. 3. Conclusions and
directions for further research are contained in Sect. 4.

2 Algorithmic Presentation

In this section we describe in detail the proposed algorithmic schemes. We start
with the nomadic search and then we analyse the bundle search. We conclude
the section with the presentation of a nested combined scheme.

2.1 Concurrent Nomadic Search

Concurrent nomadic search’s main iteration step consists of four basic opera-
tions:

– Definition of a nomadic group, i.e. a set of M points x1, x2, . . . , xM .
– Estimation of a positive definite approximation to the corresponding Hessians

Bi ≈ ∇2f(xi), i = 1, . . . , M .
– Solution of the linear systems: Bihi = −∇f(xi), to obtain search directions

hi, i = 1, . . . , M .
– Application of M line search procedures to compute the new points as: xi +

αihi, i = 1, . . . , M .

The algorithm starts by creating a set of M points x1, x2, . . . , xM relatively close
to each other and randomly chosen in the vicinity of x1, which is considered to
be the starting point. Each point is assigned a Hessian matrix Bi, i = 1, . . . , M
which is estimated via SR1 updates from the rest M −1 points. The SR1 update
formula shown in Eq. (1) has been already used for estimating a Hessian from
neighboring points [10,11].

346 C. Voglis et al.

B∈
i = Bi +

(y − Bis) (y − Bis)
≥

(y − Bis)
≥

s
(1)

s = xi − xj , y = ∇f(xi) − ∇f(xj)

Equation (1) is applied for every point xi using information communicated by
the rest M − 1 points. This procedure can be performed concurrently at the
extra communication cost of broadcasting location (xi) and gradient (∇f(xi))
information. Since the SR1 update does not maintain positive definiteness, we
modify each Hessian matrix using a variant of Choleski decomposition. The
Hessian is first decomposed into Choleski LDLT factors and if the diagonal
matrix D contains negative elements, it is modified so as to enforce positive
definiteness. The search direction hi, is determined by replacing the estimated
Hessian Bi, with a convex combination B∈

i ≡ (1−μi)Bi+μiI, with μi ∈ [0, 1], that
creates directions that are Newton–dominant for low values of μi and gradient–
dominant for high values of μi. Note that μi is calculated so as to favour a
Newton–dominant direction for points with a relatively low objective value, and
a gradient–dominant direction for points with a relatively high objective value,
as indicated by relation (2).

μi =
f(xi) − Fs

Fb − Fs
, ∀i = 1, 2, . . . ,M (2)

where Fs = min f(xi) and Fb = max f(xi). The algorithm then performs con-
currently M line searches along the hi directions and computes M new points
xi + λihi, where λi is the step calculated by the line search procedure. From
that point onwards, concurrent nomadic search can either keep these new points
and repeat the procedure or maintain the best point and resample M − 1 points
anew (periodic reset).

In Fig. 1 we provide a two dimensional illustration of the basic steps and in
Algorithm (1) we lay out a detailed description. We consider that the function
and gradient evaluations as well as the line searches are the time consuming
parts of the algorithm. If M computational resources are available the concurrent
execution of the nomadic search can be performed in two steps: (i) computing
the function and its gradient and (ii) performing the line search. The line search
procedure contains a small (bounded) number of successive function and gradient
evaluations.

Nomadic search differs from a Newton method that estimates the Hessian
with SR1 updates, in that not only one, but M Hessians are being estimated
and M line–search procedures are applied. Since the extra effort is undertaken
in parallel, and assuming the availability of M cores, there is no time surcharge.
Note also that the Hessians are further transformed via the convex combination
with the identity matrix, so that the resulting search directions are properly
biased towards the gradient or the Newton direction, as dictated by the respec-
tive local values of the objective function. Another important feature of the
proposed algorithm is that it does not require O(n) points for approximating
the Hessian, in contradistinction to Straeter’s approach [6] or to numerical dif-
ferentiation of the gradient.

Concurrent Nomadic and Bundle Search 347

Fig. 1. Nomadic search algorithm 2-D illustration

Algorithm 1. Nomadic search algorithm
Input: Objective function, f : X ∗ R

n → R; number of points: M; , small radius: R, a
small number τ > 0

Output: Best detected solution: x∗, f
(
x∗).

1 Select at random M − 1 points, x2, x3, · · · , xM , such that
|x1 − xj | ≤ R, ∀j = 2, · · · , M.

2 Calculate fi = f(xi), gi = ∇f(xi) ∀i = 1, 2, · · · , M (in parallel)

3 if termination then
x∗ = x1 f

(
x∗) = f1

return
end

4 for i = 1, 2, · · · , M do
Use SR1 updates from all other points xj with j �= i, to obtain an approximate

Hessian Bi ≈ ∇2f(xi).

Decompose (Choleski) Bi = LiDiLT
i , and modify Di so as to render Bi positive

definite.
end

5 Calculate Fs = min
i

{fi} and Fb = max
i

{fi}

6 Calculate μi = (1 − τ)
fi − Fs

Fb − Fs
, ∀i = 1, 2, · · · , M (in parallel)

7 Solve
[
(1 − μi)Bi + μiI

]
hi = −gi, ∀i = 1, 2, · · · , M (in parallel)

8 Apply a line–search ∀i = 1, 2, · · · , M as: (in parallel)
π∗

i = arg min
π

f(xi + πhi)

Set fi = f(xi + π∗
i hi) (already calculated during the line–search).

9 Set: xi ← xi + π∗
i hi, ∀i = 1, 2, · · · , M (in parallel)

10 Find the index k for which fk = min
i

{fi}, ∀i = 1, 2, · · · , M

11 Swap x1 and xk

12 if periodic reset then
Repeat from Step 1

else
Repeat from Step 2

end

2.2 Bundle Search Algorithm

Bundle search maintains a single point and a set of N descent directions (the
bundle) originating from it, along each of which a line–search is to be concur-
rently applied. The algorithm begins with an estimation of the Hessian matrix,
using the same technique as in the case of Nomadic search. The N descent
directions are calculated by solving in parallel, N linear systems of the form:

[(1 − μi)B + μiI]hi = −g, ∀i = 1, 2, . . . , N

348 C. Voglis et al.

where the quantities μi are appropriately chosen in [0, 1] The bundle contains
directions that are biased towards the steepest descent for large μi and towards
the Newton direction for small μi. The rationale behind this choice is to exploit
the steepest descent if the current point is far from the minimum, and the Newton
direction if it is close to it. In Fig. 2 we illustrate on the left side, information
communication for Hessian approximation, and on the right side the extend
of the bundle. In Fig. 2(b) direction h1 corresponds to the Newton (−B−1g)
while hN to the steepest descent (−g) direction. In two dimensions the bundle
resembles a uniform fan of descent directions between −g and −B−1g. In the
case of problems of higher dimensionality, the directions of the bundle are not
coplanar. After having applied the line searches, the bundle algorithm keeps the
point x∈ = x + λJhJ with the lowest function value. The next iteration involves
random sampling of M −1 points around the kept one and estimation of the new
Hessian matrix via M − 1 SR1 updates. A complete description of the bundle
search is presented in Algorithm 2.

Similar to the nomadic search, bundle search performs two time consuming
tasks. Function and gradient calculation for the SR1 updating of the Hessian, and
the line searches. Assuming again that we do have N processing units available,
a single iteration of the bundle search costs as much as a single function plus
gradient evaluation and a line search. The communication costs are reduced in
comparison to nomadic search, since in this scheme we have to update only one
Hessian matrix.

Fig. 2. Bundle search 2-D example

2.3 Nested Nomadic and Bundle Search

In order to take advantage of both nomadic and bundle search methodologies,
we propose a nested scheme that involves an outer iteration following nomadic
search and an inner iteration with bundles of directions. In this scheme we
maintain M points xi, i = 1, . . . , M and perform all–to–all SR1 updates to
approximate M Hessian matrices Bi, i = 1, . . . , M . From each point we then

Concurrent Nomadic and Bundle Search 349

Algorithm 2. Bundle search algorithm
Input: Objective function, f : X ∗ R

n → R; number of directions: N; number of points:
M; small radius: R, a small number τ > 0

Output: Best detected solution: x∗, f
(
x∗).

1 if termination then
x∗ = x f

(
x∗) = f

return
end

2 Decompose (Choleski) B = LDLT , and modify D so as to render B positive definite.

3 Solve
[
(1 − μi)B + μiI

]
hi = −g, ∀i = 1, 2, · · · , N (in parallel)

where μi ∈ [0, 1], ∀i = 1, · · · , N.

4 Apply a line–search ∀i = 1, 2, · · · , N as: (in parallel)
π∗

i = arg min
π

f(x + πhi)

Set fi = f(x + π∗
i hi) (already calculated during the line–search).

5 Find the index k for which fk = min
i

{fi}, ∀i = 1, 2, · · · , N

6 Set: x ← x + π∗
khk.

7 Set f ← fk, and g ← ∇f(xk)
8 Select at random M − 1 points, x2, x3, · · · , xM , such that

|x − xj | ≤ R, ∀j = 2, · · · , M.

9 Calculate the Hessian approximation at x via SR1 using the adjacent points
x2, x3, · · · , xM .

10 Go to 1

Algorithm 3. Nested nomadic and bundle scheme
Input: Objective function, f : X ∗ R

n → R; number of points: M; number of directions
N small radius: R, a small number τ > 0

Output: Best detected solution: x∗, f
(
x∗).

1 Select at random M − 1 points, x2, x3, · · · , xM , such that
|x1 − xj | ≤ R, ∀j = 2, · · · , M.

2 Calculate fi = f(xi), gi = ∇f(xi) ∀i = 1, 2, · · · , M (in parallel)

3 if termination then
x∗ = x1 f

(
x∗) = f1

return
end

4 Estimate Bi ≈ ∇2f(xi) and decompose so as to render it positive definite
∀i = 1, 2, · · · , M (in parallel)

5 Calculate Fs = min
i

{fi} and Fb = max
i

{fi} needed in μi = (1 − τ)
fi − Fs

Fb − Fs

6 Solve
[
(1 − μi)Bi + μiI

]
hi = −gi, ∀i = 1, 2, · · · , M (in parallel)

// For all points

for i = 1, 2, . . . , M do
// Begin bundle search

for j = 1, 2, . . . , N do

7 Solve
[
(1 − μ̃j)Bi + μ̃jI

]
hj = −gi, where μ̃j = (1 − τ)

j − 1

N − 1
.

8 Apply a line–search π∗
j = arg min

π
f(xi + πhj)

Set f̃j = f(xi + π∗
j hj).

end

9 Find the index k for which fk = min
j

{f̃j}, ∀j = 1, 2, · · · , M

10 Set: xi ← xi + π∗
khk, fi ← fk, and gi ← ∇f(xk).

end

11 Find the index k for which fk = min
i

{fi}, ∀i = 1, 2, · · · , M

12 Swap x1 and xk

13 if fresh restart then
Repeat from Step 1

else
Repeat from Step 2

end

define N directions by following the bundle search methodology. The points
xi, i = 1, . . . , M of the next iteration are taken from the results of the N line

350 C. Voglis et al.

searches. In this nested scheme we define M × N line search tasks in parallel
(Step 8 of Algorithm 3). In Algorithm 3 we present the nested scheme.

The nested scheme is even more demanding on computational resources, but
we expect to further reduce the length of execution times. Efficient implementa-
tion of nested schemes need advanced runtime support [12,13] which is currently
available and supported by OpenMP API.

3 Numerical Experiments

We have implemented all parallel algorithms in Matlab in order to measure
their effectiveness with respect to the number of iterations. It is not a true par-

Table 1. Speedup in iterations for M = 8, 16

MP (8) MD(8) Nested (4 × 2) MP (16) MD (16) Nested (4 × 4)

SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS

Heli 3 1.40 1.80 1.75 2.25 1.11 1.42 1.62 2.08 1.50 1.93 1.40 1.80

Gaussian 3 1.86 1.71 1.63 1.50 1.86 1.71 2.17 2.00 2.17 2.00 2.17 2.00

Var Dim. 2 2.00 2.00 2.00 2.00 1.60 1.60 2.00 2.00 2.00 2.00 2.00 2.00

Watson 2 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80 1.60 1.80

Brown 4 16.00 55.56 24.00 83.33 12.00 41.67 16.00 55.56 18.00 62.50 16.00 55.56

Gulf 3 5.81 1.33 5.55 1.27 6.78 1.56 6.42 1.47 7.63 1.75 7.18 1.65

Trigon 2 1.67 1.17 2.00 1.40 1.67 1.17 2.00 1.40 2.00 1.40 2.00 1.40

Rosen. 2 3.00 2.54 2.44 2.06 1.44 1.22 2.05 1.74 4.33 3.67 2.05 1.74

Beale 2 1.44 1.56 1.63 1.75 0.57 0.61 1.86 2.00 1.86 2.00 0.65 0.70

Wood 4 0.59 0.68 0.79 0.89 0.71 0.81 0.73 0.83 0.81 0.93 0.92 1.04

Cheby. 2 1.50 1.50 1.20 1.20 0.86 0.86 1.50 1.50 2.00 2.00 1.00 1.00

Cubic 2 3.48 1.30 3.64 1.36 1.48 0.56 3.64 1.36 5.33 2.00 1.18 0.44

De Jong1 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

De Jong2 2 1.50 1.31 1.41 1.24 0.65 0.57 1.50 1.31 1.50 1.31 0.67 0.58

Goldstein 2 1.33 1.44 2.00 2.17 1.33 1.44 1.71 1.86 2.00 2.17 1.71 1.86

Branin 2 1.00 1.00 2.00 2.00 1.00 1.00 1.20 1.20 1.50 1.50 1.00 1.00

Shekel5 4 2.83 2.50 3.40 3.00 2.83 2.50 2.83 2.50 3.40 3.00 3.40 3.00

Shekel10 4 1.50 2.00 1.80 2.40 1.29 1.71 1.50 2.00 1.80 2.40 1.50 2.00

Six hump 2 6.00 1.60 7.50 2.00 4.29 1.14 6.00 1.60 7.50 2.00 5.00 1.33

Colville 4 1.57 2.07 1.29 1.71 0.69 0.91 1.22 1.61 1.47 1.93 1.10 1.45

Bazaraa 2 5.50 4.50 2.20 1.80 1.69 1.38 1.83 1.50 2.20 1.80 7.33 6.00

Quadratic 2 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00

Var Dim. 10 2.78 2.78 2.78 2.78 3.13 3.13 2.78 2.78 3.57 3.57 3.13 3.13

Watson 10 2.45 2.20 1.07 0.96 1.75 1.57 3.27 2.93 1.11 1.00 2.58 2.32

Trigon 10 2.80 3.93 3.23 4.54 3.23 4.54 4.67 6.56 3.82 5.36 3.50 4.92

Rosen. 10 4.86 1.69 8.95 3.11 3.94 1.37 7.88 2.74 10.94 3.81 5.12 1.78

Quadratic 10 20.00 8.67 30.00 13.00 12.00 5.20 60.00 26.00 60.00 26.00 20.00 8.67

Var Dim. 50 2.09 0.36 1.44 0.25 1.28 0.22 1.64 0.29 2.09 0.36 1.92 0.33

Watson 50 1.45 0.90 0.47 0.29 0.74 0.46 2.44 1.51 0.34 0.21 0.95 0.59

Trigon 50 2.24 2.55 3.70 4.22 2.74 3.13 3.27 3.73 3.70 4.22 4.72 5.39

Rosen. 50 1.57 0.91 1.02 0.59 1.19 0.69 2.14 1.23 2.24 1.29 1.89 1.09

Quadratic 50 15.73 7.82 15.73 7.82 6.92 3.44 28.83 14.33 43.25 21.50 12.36 6.14

Var Dim. 100 1.57 43.48 1.89 52.63 0.92 25.64 1.29 35.71 2.77 76.92 2.57 71.43

Watson 100 1.32 7.35 0.39 2.16 0.66 3.69 1.54 8.55 0.86 4.78 0.98 5.46

Trigon 100 7.93 1.77 4.79 1.07 9.49 2.12 8.34 1.86 9.68 2.16 9.88 2.20

Rosen. 100 1.84 0.81 1.00 0.44 2.00 0.88 2.40 1.05 1.53 0.67 2.02 0.88

Quadratic 100 7.90 6.52 5.03 4.15 2.44 2.01 15.09 12.45 18.44 15.22 5.03 4.15

Speedup: 3.84 5.17 4.20 6.08 2.75 3.61 5.65 5.92 6.46 7.49 3.80 5.86

Concurrent Nomadic and Bundle Search 351

allel implementation, e.g. using Matlab’s parallel toolbox, but it is used as a
proof of concept for the efficiency of the nomadic, bundle and the combined
search. The comparison is made against two well known quasi–Newton sequen-
tial algorithms: BFGS and SR1, each with a line search. All methods in the
comparison table share the same line search code. The basic computational cost
of these methods per iteration is one function and gradient evaluation and one
line search. Considering the communication costs negligible with respect to func-
tion/gradient evaluation, it is plausible to claim that one iteration of a sequential
quasi–Newton algorithm and that of our proposed parallel methodologies, take
the same amount of time. Hence in this study we compare the number of iter-
ations to provide a proof–of–concept, expecting that the estimated speedup is
close to that of a real parallel implementation.

We used a part of the well established Moré optimization test functions [14]
and some instances from the Dixon-Szego test set. For every test function we
report the number of iterations each algorithm performed in order to reach the
target minimizer starting from a pre-specified point. All numbers reported are
averages of twenty runs with different random seeds. We have experimented with
values of M = 8, 16, 48, 64. In Table 1 we present relative speedups, with respect
to serial BFGS and DFP methods, up for the cases M = 8, 16 and in Table 2 for
the cases M = 48, 64. In the last row we present the average speedup for all test
functions.

By inspecting the result tables we can see that the proposed parallel algo-
rithms can result in 6 times less iterations than their serial competitors which
represent the state–of–the–art in the field on numerical optimization. A closer
look reveals that in some cases (eg. Quadratic 50, 100, Rosenbrock 10, Brown
and Dennis, Trigonometric) the speed up in terms of iterations is noteworthy
when M is greater than 16. These results indicate that with a proper implemen-
tation and a sufficiently heavy objective function evaluation, nomadic, bundle
and nested concurrent searches may be used to accelerate convergence by a sub-
stantial factor. Is obvious though that the speedup does not scale well with M .
This can be attributed to the fact that near the minimum all directions tend to
coincide with the Newton direction, hence in these last iterations the alternatives
offer almost no advantage. Dynamic allocation of computational resources and
batch optimization schemes may increase the overall ratio.

4 Conclusions

We have presented three parallel methods for the problem of local optimization
with line searches. A multipoint or concurrent nomadic search, a multi–direction
or concurrent bundle search, and a combination of the two. All use SR1 updates
from randomly sampled points to estimate required Hessian matrices. Prelimi-
nary simulation results clearly indicate that they may significantly reduce the
number of iterations, and consequently the overall computational time, needed
by well established and widely used serial rival methods.

For the nomadic search algorithm the selection of points for the next itera-
tion is an issue that needs further examination. This is a practical, yet important

352 C. Voglis et al.

Table 2. Speedup in iterations for M = 48, 64

MP (48) MD (48) Nested (12 × 4) MP (64) MD (64) Nested (16 × 4)

SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS SR1 BFGS

Heli 3 1.62 2.08 1.75 2.25 1.91 2.45 1.62 2.08 1.75 2.25 1.91 2.45

Gauss 3 2.17 2.00 1.86 1.71 2.17 2.00 2.17 2.00 2.17 2.00 2.17 2.00

VarD 2 2.00 2.00 2.67 2.67 2.00 2.00 2.00 2.00 2.67 2.67 2.67 2.67

Wats 2 1.60 1.80 2.67 3.00 1.60 1.80 1.60 1.80 2.00 2.25 2.00 2.25

Brow 4 16.00 55.56 20.57 71.43 18.00 62.50 16.00 55.56 18.00 62.50 18.00 62.50

Gulf 3 7.18 1.65 10.17 2.33 8.13 1.87 7.63 1.75 12.20 2.80 8.13 1.87

Trigon 2 2.00 1.40 1.67 1.17 2.00 1.40 2.00 1.40 2.00 1.40 2.00 1.40

Rosen. 2 3.90 3.30 3.00 2.54 1.77 1.50 3.55 3.00 3.25 2.75 2.05 1.74

Beale 2 1.86 2.00 1.63 1.75 1.18 1.27 2.17 2.33 1.63 1.75 1.00 1.08

Wood 4 0.88 1.00 0.81 0.93 1.22 1.39 0.96 1.09 0.88 1.00 1.38 1.56

Cheby. 2 1.50 1.50 1.50 1.50 1.00 1.00 1.50 1.50 1.50 1.50 1.00 1.00

Cubic 2 3.81 1.43 5.33 2.00 3.81 1.43 4.44 1.67 5.33 2.00 3.64 1.36

Jong1 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Jong2 2 1.60 1.40 1.85 1.62 1.60 1.40 1.60 1.40 1.85 1.62 0.89 0.78

Gold 2 2.00 2.17 2.40 2.60 1.71 1.86 1.71 1.86 2.40 2.60 2.00 2.17

Branin 2 1.20 1.20 1.50 1.50 1.20 1.20 1.20 1.20 1.50 1.50 1.20 1.20

S5 4 2.83 2.50 3.40 3.00 3.40 3.00 2.83 2.50 3.40 3.00 3.40 3.00

S10 4 1.50 2.00 1.80 2.40 1.50 2.00 1.50 2.00 1.80 2.40 1.50 2.00

Hump 2 6.00 1.60 10.00 2.67 5.00 1.33 6.00 1.60 7.50 2.00 5.00 1.33

Colv 4 1.57 2.07 1.38 1.81 1.16 1.53 1.57 2.07 1.38 1.81 1.29 1.71

Baza 2 2.75 2.25 2.20 1.80 5.50 4.50 3.67 3.00 2.20 1.80 4.40 3.60

Quad 2 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00 3.00 9.00

VarD 10 4.17 4.17 4.17 4.17 3.57 3.57 4.17 4.17 4.17 4.17 3.57 3.57

Wats 10 3.50 3.14 1.58 1.42 3.27 2.93 3.50 3.14 1.48 1.33 3.50 3.14

Trigon 10 4.20 5.90 10.50 14.75 5.25 7.38 3.82 5.36 4.67 6.56 6.00 8.43

Rose 10 8.57 2.98 12.31 4.28 9.61 3.34 7.43 2.58 12.71 4.42 10.65 3.70

Quad 10 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00 60.00 26.00

VarD 50 1.92 0.33 1.92 0.33 2.30 0.40 2.09 0.36 1.92 0.33 2.30 0.40

Wats 50 3.45 2.14 0.83 0.51 2.22 1.38 4.00 2.48 1.16 0.72 2.63 1.63

Trigon 50 4.05 4.62 3.40 3.88 5.00 5.71 3.15 3.59 3.54 4.04 4.72 5.39

Rose 50 3.36 1.93 9.09 5.24 3.33 1.92 5.38 3.10 9.26 5.33 3.70 2.13

Quad 50 57.67 28.67 86.50 43.00 28.83 14.33 173.00 86.00 173.00 86.00 34.60 17.20

VarD 100 1.71 47.62 1.50 41.67 2.57 71.43 1.71 47.62 1.33 37.04 2.57 71.43

Wats 100 1.08 6.02 1.31 7.30 2.54 14.08 1.29 7.19 1.43 7.94 2.17 12.05

Trigon 100 11.52 2.57 20.17 4.50 20.17 4.50 13.83 3.09 16.13 3.60 16.69 3.72

Rose 100 3.97 1.74 6.33 2.77 4.18 1.83 4.03 1.77 11.90 5.21 4.50 1.97

Quad 100 33.20 27.40 55.33 45.67 15.09 12.45 41.50 34.25 55.33 45.67 20.75 17.13

Speedup: 7.31 7.19 9.65 8.81 6.43 7.53 10.77 8.99 11.82 9.46 6.70 7.72

issue, since it may affect seriously the performance of the method. For the Hessian
of the maintained point (or points) one may consider to either discard the exist-
ing information and proceed as in the initialization step using the SR1 scheme,
or to continue updating the existing Hessian. Another question that may arise
in the second case, is whether a periodic reset is then necessary and at what fre-
quency. In addition, the Hessian may also be updated right after the line search
application, for instance via a BFGS or any other Quasi-Newton formula. It is a
matter of further investigation if this will enhance the methods performance or
not. Most Hessian issues referred to above, need to be investigated for the case
of the bundle search as well. We intend first to implement these methods in a

Concurrent Nomadic and Bundle Search 353

real parallel system (MPI multicore cluster) and then we would like to address
the above important issues.

Acknowledgments. This work is co-financed by the European Union and Greece
Operational Program “Human Resources Development” -NSFR 2007–2013 - European
Social Fund.

References

1. Chen, M.-Q., Han, S.-P.: A parallel quasi-Newton method for partially separable
large scale minimization. Ann. Oper. Res. 14, 195–211 (1998)

2. Chen, Z., Fel, P., Zheng, H.: A parallel quasi-Newton algorithm for unconstraint
optimization. Computing 55, 125–133 (1995)

3. Byrd, R.H., Schnabel, R.B., Shultz, G.A.: Parallel quasi-Newton methods for
unconstrained optimization. Math. Program. 42, 273–306 (1988)

4. Conforti, D., Musmanno, R.: A parallel asynchronous Newton algorithm for
unconstrained optimization. J. Optim. Theor. Appl. 77, 305–322 (1993)

5. van Laarhoven, P.J.M.: Parallel variable metric algorithms for unconstrained opti-
mization. Math. Program. 33, 68–81 (1985)

6. Straeter, T.A.: A parallel variable metric optimization algorithm. NASA Technical
Note D-7329, Hampton, VA (1973)

7. Phua, P.K.H., Fan, W., Zeng, Y.: Self-scaling parallel quasi-Newton methods. In:
Fourth International Conference on Optimization: Techniques and Applications,
Australia (1998)

8. Biggs, M.C.: A note on minimization algorithms which make use of non-quadratic
properties of the objective function. J. Inst. Math. Appl. 12, 337–338 (1973)

9. Schnabel, R.B.: A view of the limitations, opportunities, and challenges in parallel
nonlinear optimization. Parallel Comput. 21, 875–905 (1995)

10. Fayez Khalfan, H., Byrd, R.H., Schnabel, R.B.: A theoretical and experimental
study of the symmetric rank-one update. SIAM J. Optim. 3(1), 1–24 (1993)

11. Tu, W., Mayne, R.W.: Studies of multi-start clustering for global optimization.
Int. J. Numer. Meth. Eng. 53(9), 2239–2252 (2002)

12. Voglis, C., Hadjidoukas, P.E., Dimakopoulos, V.V., Lagaris, I.E., Papageorgiou,
D.G.: Task-parallel global optimization with application to protein folding. In:
High Performance Computing and Simulation (HPCS), pp. 186–192. IEEE (2011)

13. Narang, A., Srivastava, A., Katta, N.P.K.: Distributed scalable collaborative fil-
tering algorithm. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 353–365. Springer, Heidelberg (2011)

14. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization
software. ACM Trans. Math. Softw. (TOMS) 7(1), 17–41 (1981)

Parallel Multi-objective Memetic Algorithm
for Competitive Facility Location

Algirdas Lančinskas(B) and Julius Žilinskas

Institute of Mathematics and Informatics, Vilnius University,
Akademijos 4, 08663 Vilnius, Lithuania

{algirdas.lancinskas,julius.zilinskas}@mii.vu.lt
http://www.mii.vu.lt

Abstract. A hybrid genetic algorithm for global multi-objective opti-
mization is parallelized and applied to solve competitive facility location
problems. The impact of usage of the local search on the performance of
the parallel algorithm has been investigated. An asynchronous version of
the parallel genetic algorithm with the local search has been proposed
and investigated by solving competitive facility location problem utiliz-
ing hybrid distributed and shared memory parallel programming model
on high performance computing system.

Keywords: Facility location · Multi-objective optimization · Memetic
algorithms

1 Introduction

The location of facilities is important for firms that provide goods or services
to customers in a certain geographical area. There are a lot of facility location
models proposed in literature [1–3]. They vary on different properties such as
location space, which can be continuous or discrete, customer behavior, function
of facility attraction, etc. Most of the models deal with Competitive Facility
Location (CFL), where a new firm wants to enter the market. The entering
firm competes with other firms already in the market, with respect to maximize
the market share or profit, taking into account the behavior of customers in
the region of interest. Some variants of models of behavior of customers have
been proposed by Huff [4], where attraction that particular customer feels to
the facility is measured by the ratio of the quality value of the facility and the
distance between the facility and the customer.

Another case in CFL is firm expansion. Here firm already in the market is
interested in increasing its market share by establishing a set of new facilities.
The expanding firm is aimed at maximization of the market share of the new
facilities, however, the new facilities can attract customers that already served
by other facilities belonging to the expanding firm, thus causing the effect of
cannibalism. Thus the expanding firm faces a multi-objective optimization prob-
lem with the following two objectives: (1) to maximize market share of the new
facilities, and (2) minimize the effect of cannibalism.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 354–363, 2014.
DOI: 10.1007/978-3-642-55195-6 33, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Multi-objective Memetic Algorithm for CFL 355

2 Multi-objective Optimization

Usually it is impossible to find the solution which would be the best according
to many objectives – the best solution by one objective could be not the best or
even the worst by another one.

In terms of multi-objective optimization, it is said that solution x1 dominates
solution x2 if and only if (1) solution x1 is not worse than solution x2 by all
objectives, and (2) solution x1 is strictly better than solution x2 by at least one
objective.

Such a dominance relation is denoted by x1 ≤ x2, and solution x1 is called
dominator of x2. The number of dominators of the solution x2 is called non-
dominance rank (or simply Pareto rank) of x2, and the solution which has no
dominators is called non-dominated or Pareto-optimal. The set of non-dominated
solutions is called Pareto set, and the set of corresponding values of objective
functions is called Pareto front.

Finding the exact Pareto front is usually difficult and time consuming, or even
impracticable task. Therefore algorithms, providing an approximation of the true
Pareto front are often used. Recently evolutionary algorithms (EAs) became very
popular for estimation of the solution of various practical optimization problems,
including the multi-objective ones. These algorithms are easy to implement,
require little knowledge about the problem being solved, and are well suited
to parallel computing. Multi-Objective EAs (MOEAs) can yield a whole set of
potential solutions, which are all optimal in some sense, and give the option
to assess the trade-offs between different solutions. Different MOEAs have been
proposed in the literature (see [5]), most popular of which are Vector Evaluated
Genetic Algorithm (VEGA) [6], Strength Pareto Evolutionary Algorithm (SPEA
and SPEA2) [7,8], Pareto Archived Evolutionary Strategy (PAES) [9], and Non-
dominated Sorting Genetic Algorithm (NSGA, NSGA-II) [10,11].

3 Memetic Algorithm Based on NSGA-II

The term memetic was introduced by Moscato [12], and refers to hybridization of
evolutionary or any population-based approach with a local search. In this paper
we consider a memetic algorithm, derived by incorporation of a local search into
Non-dominated Sorting Genetic Algorithm.

3.1 Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm (NSGA) was firstly proposed by
Srinivas and Deb [10], and was one of the first multi-objective optimization
algorithms applied to various problems [13,14]. The updated version of the algo-
rithm, NSGA-II, was proposed by Deb et al. [11].

The algorithm begins with an initial set P1, called parent population, consist-
ing of N candidate solutions (individuals), randomly generated over the feasible
area. A new child population Q1 of the same size as the parent population is

356 A. Lančinskas and J. Žilinskas

generated by applying genetic operators (selection, crossover, and mutation) to
the individuals of the parent population. Both populations are merged into one
2N -size population R1, whose individuals are evaluated by the dominance rela-
tion between each other. A new parent population P2 is formed by selecting
N least dominated individuals from R1. If two or more individuals are equally
dominated, then a crowding distance estimator [15] is used to choose the most
promising one. A population P2 is then used as a parent population to generate
a child population Q2 in the next iteration, called generation. Such an iterative
process is continued till the stopping criterion is satisfied. The stopping criterion
usually is based on the number of generations or function evaluations.

3.2 Memetic Algorithm

In this section we will describe a memetic algorithm derived by hybridizing
NSGA-II and Multi-Objective Single Agent Stochastic Search (MOSASS).

The local search MOSASS begins with an initial solution x and returns a set
A of non-dominated solutions. A candidate solution x′ is generated by adding a
random vector ξ, generated utilizing Gaussian perturbations: x′ = x+ξ. If x′ ≤ x
then x is updated by x′; if x′ � x, but is not dominated by any solution in A≥{x},
then A is supplemented by x′, thus forming the set of non-dominated solutions. If
neither of the latter conditions are satisfied, then an opposite candidate solution
x′′ = x − ξ is considered. The mean and the standard deviation of the Gaussian
perturbation are dynamically adjusted with respect to the repetitive successes
and failures in generating a candidate solution.

The concept of MOSASS and its incorporation into NSGA-II have been intro-
duced in [16]. An updated version of a hybrid algorithm, called NSGA/LSP, was
developed in [17], where probabilistic generation of a neighbor candidate solution
in the local search, called MOSASS/P, has been applied.

NSGA/LSP begins with performing NSGA-II generations as described in
Sect. 3.1. If the number G of NSGA-II generations performed since the last local
search (or the start of the algorithm if the local search has not yet performed)
exceeds the predefined value, then the local search is initiated. An auxiliary set
PL of the predefined number k of individuals is created from the population Pg,
where g stands for the number of generations, performed since the start of the
algorithm. The set PL is formed by choosing all non-dominated individuals, and
removing |PL| − k randomly selected ones, if |PL| > k; in a case of |PL| < k,
the set PL is supplemented by k − |PL| individuals, randomly selected from the
dominated ones.

Each individual in PL is locally optimized by MOSASS/P using the prede-
fined budget EL of evaluations of the objective function. The local optimiza-
tion of a single individual returns a set of individuals which are non-dominated
between each other (for more details we refer to [17]). Since the set PL of indi-
viduals are locally optimized, the whole local optimization returns |PL| sets of
newly generated individuals. All these sets are combined into one set Rg together
with the parent population Pg. Individuals of the set Rg are then evaluated with
respect to the dominance relation, and the set is reduced to the size of N by

Parallel Multi-objective Memetic Algorithm for CFL 357

removing the most dominated individuals. The algorithm is continued by reset-
ting the counter G to 0, and performing regular NSGA-II generations using the
reduced set R as the parent population Pg+1.

4 Parallel Memetic Algorithm

Although NSGA-II is known as fast, it still requires a lot of computational
resources solving complex optimization problems. There are some works related
to the parallelization of NSGA-II [18–20], however most of them are based on
parallelization of function evaluations. Another part of the algorithm causing the
bottleneck effect in parallel computing is the Pareto ranking of the individuals.
Several strategies to utilize parallel computing for Pareto ranking have been pro-
posed in [21], and investigated using a large scale High Performance Computing
system in [22].

This research is aimed on parallelization of the memetic algorithm for multi-
objective optimization, described in Sect. 3.2. In contrast with parallel version
of NSGA-II, proposed in [22], NSGA/LSP has additional part, devoted for the
local search, which needs to be parallelized. Although MOSASS/P is iterative
and the local optimization of a single individual is considered as a sequential part
of the algorithm, the optimization of different individuals can be considered as
independent tasks and assigned to different computing resources. On the other
hand, the local optimization of a set PL of individuals returns |PL| sets, each of
which consists of up to EL newly generated individuals, thus possibly causing
the bottleneck effect when managing the sets.

The developed parallel memetic algorithm, is based on the master-slave strat-
egy where all processors have equal computational workload, except the master
one, which additionally has to form a new parent population and is responsible
for communication between processors. The algorithm, called ParNSGA/LSP, is
based on the following process:

(1) The master processor generates the initial parent population P1 and dis-
tributes it among all slaves.

(2) Each processor (including the master) evaluates objective functions of the
corresponding subset P i

1 ∈ P1 of individuals, where i = 1, 2, . . . , p stands
for the ID of the processor; p – the total number of processors; |P i

1| equals
to N/p. The master then gathers the information about objective values
and sets the generation counter g = 1.

(3) The master processor distributes the parent population Pg among the
slaves.

(4) The algorithm behaves depending on the value of g indicating the number
of the current generation.
• If the value of g is not divisible by the predefined number EL, then a

regular NSGA-II generation is performed. Each processor generates an
appropriate part Qi

g of the child population Qg, and evaluates objective
functions values of the newly generated individuals;

358 A. Lančinskas and J. Žilinskas

• If the value of g is divisible by EL then the local search is initiated. The
master processor forms the set PL of individuals to be locally optimized,
and distributes the formed set among the slaves. Each processor performs
local optimization of the corresponding subset P i

L of individuals, thus
obtaining |P i

L| sets of new individuals. All the obtained sets are combined
into one set Qi

g.
(5) The master processor gathers the subpopulations Qi

g from the slaves, com-
bines them into one child population Qg, and distributes it among the
slaves.

(6) Each processor combines the received child population Qg together with
the parent population Pg into one population Rg = Qg ≥ Pg, and evaluates
the Pareto ranks of each i+ j · p-th individual in Rg, where i stands for the
ID of the processor, j = 1, 2, . . ., and i + j · p ∞ |Rg|.

(7) The master processor gathers all information about the Pareto ranks, counts
the total values, and distributes them among the slaves.

(8) All processors continue with forming a new parent population Pg+1 by
selecting N least dominated solutions from Rg, increasing the generations
counter g by one, and proceeding to the next generation (4-th step).

If the number of processors is larger than the number of solutions, selected
for the local search (p > |PL|), then |PL −k| processors have to be idle while the
local optimization is being performed. In order to avoid such an idle time of some
processors, an asynchronous version of the parallel algorithm has been developed
and denoted by AsyncParNSGA/LSP. The algorithm is based on assignment of
the appropriate number of regular NSGA-II generations for processors which are
idle during the local search. The number of the generations to be performed in
parallel with the local search is chosen with respect to perform the same number
of evaluations of objective functions as during the local search.

Distribution of the information among the slave processors as well as gath-
ering of the information from the slaves is performed following the hierarchic
fashion as illustrated in Fig. 1. Communication between processors is performed
using Message Passing Interface (MPI) libraries. Although the illustrated strat-
egy for distribution/gathering of the information is quite fast, and communica-
tion costs are insignificant using several or several tens of processors, it still can
be time consuming using several hundreds or thousands of processors.

In order to reduce the costs of communication between the processors, a
hybrid shared-distributed memory parallel programming model (MPI-OpenMP)
has been utilized. The processors are grouped into p1 groups each of which
consists of p2 shared memory processors, where p1 · p2 = p. In each of the
groups processors communicate through the shared memory using OpenMP,
whereas communication between the groups is performed using MPI. In contrast
with the usage of MPI alone, where information can be distributed/gathered
in log2 p operations of MPI, using MPI-OpenMP distribution/gathering of the
information can be performed using log2 p1 MPI operations, where p1 < p.

Parallel Multi-objective Memetic Algorithm for CFL 359

Fig. 1. Illustration of distribution of the information among (left), and gathering
from (right) the processors, using distributed memory parallel programming model.

5 Numerical Experiments

Parallel algorithm ParNSGA/LSP has been applied to solve CFL using the High
Performance Computing (HPC) system HECToR (High End Computing Teras-
cale Resource) at Edinburgh Parallel Computing Centre (EPCC).

It was expected to locate 5 facilities thus defining the number of variables
equal to 10 (each facility has 2 coordinates). Real data with geographical coordi-
nates and populations of around 12000 cities and villages in Lithuania has been
used.

The algorithm has been run for 256000 function evaluation using population
of 1024 individuals (250 generations of NSGA-II). The local search has been
performed after every 10240 (10 generations of NSGA-II) function evaluations
for 512 best solutions. Two values of the parameter EL defining the number of
function evaluations devoted for the local search have been investigated: EL =
10240 and EL = 20480.

Computations have been performed using up to 128 nodes containing 16
AMD Opteron 2.3 GHz shared memory processors per each node (2048 proces-
sors in total). Performance of the algorithms has been measured by the speed-up
of the algorithm

Sp =
T0

Tp
, (1)

where T0 stands for duration of the sequential algorithm, and Tp – for duration
of the parallel algorithm using p processors.

The performance of ParNSGA/LSP has been compared with the performance
of parallel version of the classical NSGA-II algorithm, denoted by ParNSGA,
parallelized under the same strategy as ParNSGA/LSP.

Results, obtained using ParNSGA and ParNSGA/LSP with EL = 10240 and
EL = 20480 (10 and 20 generations, respectively) are presented in Fig. 2, where
the horizontal axis represents the number of processors, and the vertical axis –
the speed-up of the algorithm. The results show that the algorithm with the local
search has a better speed-up if the number of processors is less than or equal

360 A. Lančinskas and J. Žilinskas

 0

 200

 400

 600

 800

128 256 512 1024

Sp

p

ParNSGA

ParNSGA/LSP (EL = 10240)

ParNSGA/LSP (EL = 20480)

Fig. 2. Speed-up of ParNSGA and ParNSGA/LSP using different EL values

to 512. We can also see, that memetic algorithm, which devotes more function
evaluations for the local search, has a better speed-up also.

When the number of processors is larger than the number of solutions selected
for the local optimization, some processors became idle while the local search is
being performed. Therefore, the performance of the algorithm ParNSGA/LSP
when using 1024 processors is worse than the performance of ParNSGA which
does not use the local search. In order to avoid such an idle time of some proces-
sors, an asynchronous version of parallel algorithm AsyncParNSGA/LSP with
EL = 20480 has been investigated. The comparison of AsyncParNSGA/LSP ver-
sus ParNSGA/LSP is shown in Fig. 3. From the figure we can see that devotion
of NSGA generations for idle processors significantly increases the performance
of the parallel algorithm.

Since the algorithm ParNSGA/LSP is synchronous, it has the same behaviour
as the sequential NSGA/LSP. Therefore, the precision of the algorithms must
be the same. The same applies to the precision of AsyncParNSGA/LSP if p ∞
|PL|. In a case of p > |PL| the behavior of the parallel algorithm differs from
the behavior of the sequential one, thus possibly changing the precision of the
approximation. The investigation of the impact of the asynchrony showed that
the average precision of the approximation obtained using AsyncParNSGA/LSP
was less than 2 % lower than the precision of the approximation obtained by
ParNSGA/LSP.

Third experiment has been devoted to investigate the impact of utilization of
hybrid distributed-shared memory parallel computing model. All processors have
been grouped into groups of 16 shared memory processors. Processors within a
group communicate with each other through shared memory (using OpenMP),
and communication between groups has been performed by passing messages
(using Message Passing Interface, MPI). The respective parallel algorithms have
been denoted by AsyncParNSGA/LSP (MPI) and AsyncParNSGA/LSP (MPI-
OMP). The local search has been performed after 20480 function evaluations.
The obtained results, presented in Fig. 4, show that utilization of hybrid mem-

Parallel Multi-objective Memetic Algorithm for CFL 361

 0

 200

 400

 600

 800

128 256 512 1024

Sp

p

ParNSGA/LSP

AsyncParNSGA/LSP

Fig. 3. Speed-up of synchronous and asynchronous versions of ParNSGA/LSP

 0

 200

 400

 600

 800

128 256 512 1024

Sp

p

AsyncParNSGA/LSP (MPI)

AsyncParNSGA/LSP (MPI-OMP)

Fig. 4. Speed-up of AsyncParNSGA/LSP using distributed and hybrid distributed-
shared memory parallel programming models

ory parallel computing model has significant impact on the performance of the
algorithm – the speed-up using 64 groups of 16 shared memory processors has
been increased by 17 %.

6 Conclusions

A hybrid (memetic) genetic algorithm for global multi-objective optimization
with the local search has been parallelized, and applied to solve competitive facil-
ity location problem using a high performance computing system. Two versions
of the parallel algorithm have been proposed and experimentally investigated
using distributed and hybrid shared-distributed memory parallel programing
models.

Results of the experimental investigation showed that, despite the additional
communication costs caused by the local search, the speed-up of the hybrid
algorithm is notably better than the speed-up of the parallel version of the

362 A. Lančinskas and J. Žilinskas

classical NSGA-II. Results also show that utilization of the hybrid distributed-
shared memory parallel programing model can significantly increase the speed-up
of the parallel hybrid algorithm for global multi-objective optimization.

Acknowledgments. This research was funded by a Grant (No. MIP-063/2012) from
the Research Council of Lithuania.

References

1. Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models:
a survey. Pap. Reg. Sci. 65, 47–57 (1998)

2. Plastria, F.: Static competitive facility location: an overview of optimisation
approaches. Eur. J. Oper. Res. 129(3), 461–470 (2001)

3. ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental
problem categories in discrete location science. Eur. J. Oper. Res. 184(3), 817–848
(2008)

4. Huff, D.L.: Defining and estimating a trade area. J. Mark. 28, 34–38 (1964)
5. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for

Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)
6. Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms.

In: Proceedings of the 9th International Joint Conference on Artificial Intelligence,
IJCAI’85, vol. 1, pp. 593–595. Morgan Kaufmann, San Francisco (1985)

7. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

8. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Evolutionary Methods for
Design Optimization and Control with Applications to Industrial Problems, pp.
95–100 (2001)

9. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

10. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2, 221–248 (1994)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

12. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, California Institute
of Technology (1989)

13. Mitra, K., Deb, K., Gupta, S.K.: Multiobjective dynamic optimization of an indus-
trial nylon 6 semibatch reactor using genetic algorithms. J. Appl. Polym. Sci. 69(1),
69–87 (1998)

14. Weile, D.S., Michielssen, E., Goldberg, D.E.: Genetic algorithm design of Pareto
optimal broadband microwave absorbers. IEEE Trans. Electromagn. Compat.
38(3), 518–525 (1996)

15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.)
PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

Parallel Multi-objective Memetic Algorithm for CFL 363

16. Lančinskas, A., Žilinskas, J., Ortigosa, P.M.: Local optimization in global multi-
objective optimization algorithms. In: 2011 Third World Congress on Nature and
Biologically Inspired Computing (NaBIC), pp. 323–328. doi:10.1109/NaBIC.2011.
6089613 (2011)

17. Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic
search in non-dominated sorting genetic algorithm. Nonlinear Anal. Model. Control
18(3), 293–313 (2013)

18. Branke, J., Schmeck, H., Deb, K., Reddy, S.M.: Parallelizing multi-objective evolu-
tionary algorithms: cone separation. In: CEC2004 Congress on Evolutionary Com-
putation, vol. 2, pp. 1952–1957 (2004)

19. Deb, K., Zope, P., Jain, S.: Distributed computing of Pareto-optimal solu-
tions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E.,
Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer,
Heidelberg (2003)

20. Streichert, F., Ulmer, H., Zell, A.: Parallelization of multi-objective evolutionary
algorithms using clustering algorithms. In: Coello Coello, C.A., Hernández Aguirre,
A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 92–107. Springer, Heidelberg
(2005)

21. Lančinskas, A., Žilinskas, J.: Approaches to parallelize Pareto ranking in NSGA-
II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.
(eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg
(2012)

22. Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility loca-
tion problems using parallel NSGA-II on large scale computing systems. In: Man-
ninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 422–433. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1109/NaBIC.2011.6089613
http://dx.doi.org/10.1109/NaBIC.2011.6089613

Parallelization of Encryption Algorithm Based
on Chaos System and Neural Networks

Dariusz Burak(B)

Faculty of Computer Science and Information Technology, West Pomeranian
University of Technology, ul.Żofflnierska 49, 71-210 Szczecin, Poland

dburak@wi.zut.edu.pl

Abstract. In this paper, the results of parallelizing of encryption algo-
rithm based on a chaos system and neural networks are presented. A data
dependence analysis of loops was applied in order to parallelize the algo-
rithm. The parallelism of the algorithm is demonstrated in accordance
with the OpenMP standard. As a result of my study, it was stated that
the most time-consuming loops of the algorithm are suitable for paral-
lelization. The efflciency measurement of a parallel program is showed.

Keywords: Neural networks · Chaotic system · Encryption algorithm ·
Parallelization · OpenMP

1 Introduction

One of the most important functional features of cryptographic algorithms used
in industry and engineering is cipher speed. This feature is extremely impor-
tant, in case of stream ciphers and block ciphers since they usually work on
large data sets. Thus even not much differences of speed may cause the choice of
the faster cipher by the user. Therefore, it is all-important to parallelize encryp-
tion algorithms in order to achieve faster processing using multicore processors
and multiprocessing systems. In recent years, besides classical ciphers such as
Rijndael, Camellia, IDEA or A5, alternative approaches of constructing ciphers
based on application of the theory of chaotic dynamical systems has been devel-
oped. Futhermore neural networks are introduced to design encryption algo-
rithms considering the complicated and time-varying nature of the structures.
Chaotic neural networks are particulary suitable for data protection. Nowadays,
there are many descriptions of various ciphers based on chaotic maps, for instance
[1–10]. The critical issue in chaotic ciphers is program implementation.

Unlike parallel implementations of classical block ciphers, for instance AES
[11], IDEA [12], there are only a few parallel implementations of chaotic block
ciphers, for instance [13]. Being seemingly a research gap it is absolutely funda-
mental to show real functional advantages and disadvantages of the encryption
algorithm using software or hardware implementation.

The main contribution of the study is developing a parallel algorithm in
accordance with OpenMP of the cipher designed by Lian and Chen presented in

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 364–373, 2014.
DOI: 10.1007/978-3-642-55195-6 34, c© Springer-Verlag Berlin Heidelberg 2014

Parallelization of Encryption Algorithm 365

[14] (called further LC encryption algorithm). [14] is based on transformations of
a source code written in the C language representing the sequential algorithm.

This paper is organized as follows. The next section briefly describes the
LC encryption algorithm. In Sect. 3, parallelization process is fully described. In
Sect. 4, the experimental results obtained for developed parallel algorithm are
presented. Finally, concluding remarks are given in Sect. 5.

2 Description of the LC Encryption Algorithm

The LC encryption algorithm was published by Lian and Chen in 2011 [14]. The
neural networks composed of two layers are used to construct the encryption
algorithm, as shown in Fig. 1. The first layer generates the random sequences
with chaos, and the second layer encrypts the data content.

Fig. 1. The LC encryption algorithm.

According to the neural networks, the encryption operation is composed of
two steps.

Firstly, the random sequences are generated as follows:
Yj,t = (f(Kj,t

2J
) − 0.5)QZ ,

(j = 0, 1, ..., U − 1, t = 0, 1, ..., n − 1),
where:
Q is a integer satisfying Q > 0,
Z is a integer satisfying Z > 0,
J is a positive integer,
f() is the function defined by:⎧
f(x) = hu(x)
h(x) = 4x(1 − x) ,

where:
h() is a Logistic map [15],
hu() means to iterate h() for u times.
The encryption sub-key is updated in the following:
Kj,t+1 = Kj,t ⊕ Ci,t,

366 D. Burak

(i = 0, 1, ..., I − 1),
where:
⊕ is XOR operation.
Secondly, the random sequences are used to encrypt the data content. Before

encryption, the plain-content is preprocessed as follows:

P(i, t) =

⎨
⎩

⎜

Q
2 , Pi,t <

Q
2 ,

Pi,t,
Q
2 ≤ Pi,t < L − Q

2 ,

L − Q
2 − 1, Pi,t ≥ L − Q

2 ,

.

Then, the data content is encrypted by:
Ci,t = (

⎫U−1
j=0 wi,jYj,t + Pi,t) mod L,

where:
wi,j = −1 or 1 (i = 0, 1, ..., I − 1, and j = 0, 1, ..., U − 1).
The decryption process is also composed of two steps. Firstly, the random

sequences are generated as follows:⎬
Y k
j,t = f(Kj,t) = Yj,t, s

k
j = 1

Y k
j,t = 0, skj = 0

,

where:
(j = 0, 1, ..., U − 1).
Only the U − Z sequences are generated in this way, while the other Z

sequences are kept as zeros.
Secondly, the random sequences are used to decrypt the data content by:
P k
i,t = (

⎫U−1
j=0 wk

i,jY
k
j,t + Ci,t) mod L,

where:
wk

i,j = −wi,j (j = 0, 1, ..., U − 1).
More detailed description of LC encryption algorithm is given in [14].

3 Parallelization Process of the LC Encryption Algorithm

Given the fact that proposed algorithm can work in block manner it is necessary
to prepare a C source code representing the sequential LC encryption algorithm
working in Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher
Feedback (CFB), Output Feedback (OFB) and Counter (CTR) modes of oper-
ation before I start parallelizing process. The source code of the LC encryption
algorithm in the essential ECB mode contains sixteen for loops. Fourteen of
them include no I/O functions. Some of these loops are time-consuming. Thus
their parallelization is critical for reducing the total time of the parallel algorithm
execution.

In order to find dependences in program a research tool for analyzing array
data dependences called Petit was applied. Petit was developed at the University
of Maryland under the Omega Project and is freely available for both DOS and
UNIX systems [16,17].

The OpenMP standard was used to present parallelized loops. The OpenMP
Application Program Interface (API) [18–20] supports multiplatform shared

Parallelization of Encryption Algorithm 367

memory parallel programming in C/C++ and Fortran on all architectures includ-
ing Unix and Windows NT platforms. OpenMP is a collection of compiler direc-
tives, library routines and environment variables which could be used to specify
shared memory parallelism. OpenMP directives extend a sequential program-
ming language with Single Program Multiple Data (SPMD) constructs, work-
sharing constructs, synchronization constructs and help us to operate on both
shared data and private data. An OpenMP program begins execution as a sin-
gle task (called a master thread). When a parallel construct is encountered,
the master thread creates a team of threads. The statements within the parallel
construct are executed in parallel by each thread in a team. At the end of the par-
allel construct, the threads of the team are synchronized. Then only the master
thread continues execution until the next parallel construct will be encountered.
To build a valid parallel code, it is necessary to preserve all dependences, data
conflicts and requirements regarding parallelism of a program [18–20].

The process of the LC encryption algorithm parallelization can be divided
into the following stages:

– carrying out the dependence analysis of a sequential source code in order to
detect parallelizable loops,

– selecting parallelization methods based on source code transformations,
– constructing parallel forms of program loops in accordance with the OpenMP

standard.

There are the following basic types of the data dependences that occur in
for loops: a Data Flow Dependence, a Data Anti-dependence and an Output
Dependence [21–24]. Additionally, control dependence determines the ordering
of an instruction i, with respect to a branch instruction so the instruction i is
executed in a correct program order.

At the beginning of the parallelization process, I carried out experiments
with sequential LC algorithm for a 5 megabytes input file in order to find the
most time-consuming loops of this algorithm. It appeared that the algorithm
has two computational bottlenecks: the first is enclosed in the function lc enc()
and the second is enclosed in the function lc dec(). The lc enc() function enables
enciphering of the whichever number of data blocks and the lc dec() one does
the same for deciphering process (analogically to similar functions of the classic
cryptographic algorithms like DES- the des enc(), the des dec(), LOKI91- the
loki enc(), the loki dec or IDEA- the idea enc(), the idea dec() presented in [25]).
Thus the parallelization of for loops included in these functions has a unique
meaning.

The bodies of the most time-consuming loops included in these functions are
the following:

Loop 3.1 of the encryption process

for (i=0;i<num/BUFFSIZE;i++) {
fread(buff,sizeof(byte),BUFFSIZE,fplain);
for (j=0;j<BUFFBLOCKS;j++) {

368 D. Burak

for (k=0;k<U_VALUE;k++) {
Y[k]=((logisticequation((key[k]/pow(2,J_VALUE)),

ITERS)) - 0.5)*(Q_VALUE/Z_VALUE);
}
for (k=0;k<I_VALUE;k++) {

Ywyn=0;
for (l=0;l<U_VALUE;l++) {

Ywyn += wages[k][l]*Y[l];
}
buffout[I_VALUE*j+k]=((byte)round(Ywyn*L_VALUE)+

(buff[I_VALUE*j+k]))%L_VALUE;
}

}
fwrite(buffout,sizeof(byte),BUFFSIZE,fcipher);
fflush(fcipher);

}.

Loop 3.2 of the decryption process

for (i=0;i<num/BUFFSIZE;i++) {
fread(buff,sizeof(byte),BUFFSIZE,fcipher);
for (j=0;j<BUFFBLOCKS;j++) {

for (k=0;k<U_VALUE;k++) {
Y[k]=((logisticequation((key[k]/pow(2,J_VALUE)),

ITERS)) - 0.5)*(Q_VALUE/Z_VALUE);
}
for (k=0;k<I_VALUE;k++) {

Ywyn=0;
for (l=0;l<U_VALUE;l++) {

Ywyn += (-1)*wages[k][l]*Y[l];
}
buffout[I_VALUE*j+k]=((byte)round(Ywyn*L_VALUE) +

(buff[I_VALUE*j+k]))%L_VALUE;
}

}
write(buffout,sizeof(byte),BUFFSIZE,fplain);
fflush(fplain);

}.

The declaration of constants is as follows:

#define U_VALUE 15 //key length (in bytes)
#define Q_VALUE 10 //parameter Q (LC encryption algorithm)
#define Z_VALUE 10 //parameter Z (LC encryption algorithm)
#define L_VALUE 256 //corresponding to 256 ASCII characters
#define I_VALUE 12 //block size (in bytes)
#define J_VALUE 8 //parameter J (LC encryption algorithm)

Parallelization of Encryption Algorithm 369

#define ITERS 31 //the number of iterations of the Logistic map
#define BUFFBLOCKS 5 //number of blocks allocated in data buffer
#define BUFFSIZE (BUFFBLOCKS*I_VALUE).

The declaration of variables is the following:

int i, j, k, l, num, wages[I_VALUE][U_VALUE];
double Ywyn, Y[U_VALUE];
byte buff[BUFFSIZE], buffout[BUFFSIZE], key[U_VALUE];
FILE *fplain, *fcipher;.

The logisticequation() function definition:

double logisticequation(double initial,int iter) {
int i;

for (i=0;i<iter;i++)
initial=(double)4*initial*(1-initial);

return initial;
}.

Taking into account the strong similarity of loops 3.1 and 3.2, I examined
only the loop 3.1. Subsequently this analysis is valid in case of the loop 3.2.

The actual parallelization process of the loop 3.1 consists of the six following
stages:

– separation of the Sequence Generation Layer from Encryption Layer; all cal-
culations placed in Sequence Generation Layer (see bellow for the first loop
of parallel form of 3.1 loop) has to be executed before starting the processing
for the next layer;

– removal of multiplication from Encryption Layer; multiplication has to be
calculated immediately after all calculations placed in Sequence Generation
Layer are completed (see bellow for the first loop of parallel form of loop 3.1);

– indexing variable privatization (k) using OpenMP (based on the results of
data dependence analysis) for the first loop;

– adding appropriate OpenMP directive and clauses (#pragma omp parallel for
private() shared()) for the first loop;

– suitable variables privatization (j,k,l,Ywyn) using OpenMP (based on the
results of data dependence analysis) for the nested loop (indexing by j) in
the case of the third loop (see bellow);

– adding appropriate OpenMP directive and clauses (#pragma omp parallel for
private() shared()) for the third loop.

The steps above result in the following parallel form of 3.1 loop in accordance
with the OpenMP standard:

//the sequence generation layer loop
#pragma omp parallel for private(k) shared(Y,key)

370 D. Burak

for (k=0;k<U_VALUE;k++) {
Y[k]=((logisticequation((key[k]/pow(2,J_VALUE)),ITERS))

- 0.5)*(Q_VALUE/Z_VALUE);
}

//the multiplication loop
for (k=0;k<I_VALUE;k++) {

_Ywyn[k]=0;
for (l=0;l<U_VALUE;l++) {

_Ywyn[k] += wages[k][l]*Y[l];
}

}

//the encryption layer without multiplication loop
for (i=0;i<num/BUFFSIZE;i++) {

fread(buff,sizeof(byte),BUFFSIZE,fplain);
#pragma omp parallel for private(j,k,l,Ywyn)

shared(Y,buffout,wages,buff)
for (j=0;j<BUFFBLOCKS;j++) {

for (k=0;k<I_VALUE;k++) {
buffout[I_VALUE*j+k]=((byte)round(_Ywyn[k]*L_VALUE)

+ (buff[I_VALUE*j+k]))%L_VALUE;
}

}
fwrite(buffout,sizeof(byte),BUFFSIZE,fcipher);
fflush(fcipher);

}.

The loop 3.2 was parallelized in a similar way as the loop 3.1.

4 Experimental Results

In order to study the efficiency of the presented LC parallel code I used eight
Quad-Core Intel Xeon Processors 7310 Series - 1.60 GHz and the Intel C++
Compiler ver. 12.1 (that supports the OpenMP 3.1). The results received for a
20 MB input file using two, four, eight, sixteen and thirty-two cores versus the
only one have been shown in Table 1. The number of threads is equal to the
number of processors.

The total running time of the LC algorithm consists of the following opera-
tions:

– data receiving from an input file,
– sub-keys generation,
– data encryption,
– data decryption,
– data writing to an output file (both encrypted and decrypted text).

Parallelization of Encryption Algorithm 371

Table 1. Speed-up of the parallel LC algorithm in the ECB mode of operation.

Number of
threads

Speed-up of the
encryption process

Speed-up of the
decryption process

Speed-up of the whole
LC algorithm

1 1.00 1.00 1.00
2 1.96 1.99 1.41
4 3.80 3.90 1.92
8 6.20 6.30 2.34
16 6.40 6.40 2.48
32 6.20 6.20 2.30

Thus the total speed-up of the LC parallel algorithm depends heavily on the
five factors:

– the degree of parallelization of the loop included in the lc enc() function (3.1),
– the degree of parallelization of the loop included in the lc dec() function (3.2),
– the method of reading data from an input file,
– the method of writing data to an output file,
– the block size of the LC encryption algorithm.

The results confirm that the loops included both the lc enc() and the lc dec()
functions are parallelizable with high speed-up (see Table 1).

The block method of reading data from an input file and writing data to
an output file was used. The following C language functions and block sizes
was applied: fread() function and 4096-bytes block for data reading and fwrite()
function and 256-bytes block for data writing.

Table 2. Speed-ups of the parallel LC algorithms in the CTR, CBC and CFB mode
of operation.

Number of Operation Speed-up of the Speed-up of the Speed-up of the
threads CTR mode of CBC mode of CFB mode of

operation operation operation

1 Encryption 1.00 1.00 1.00
1 Decryption 1.00 1.00 1.00
2 Encryption 1.90 1.00 1.00
2 Decryption 1.90 1.90 1.90
4 Encryption 3.50 1.00 1.00
4 Decryption 3.37 3.70 3.70
8 Encryption 6.00 1.00 1.00
8 Decryption 6.10 6.10 6.10

16 Encryption 6.20 1.00 1.00
16 Decryption 6.30 6.20 6.20
32 Encryption 6.00 1.00 1.00
32 Decryption 6.10 6.00 6.00

372 D. Burak

Using the fwrite() function is crucial; choosing, for example, the fprintf()
function I got much longer time of executing tasks.

During experiments I chose the block size equal to 32 bytes. My tests showed
that this size of block gives a good encryption/decryption speed of the LC
encryption algorithm.

In accordance with Amdahl’s Law [26] the maximum speed-up of the LC
encryption algorithm is limited to 4.524, because the fraction of the code that
cannot be parallelized is 0.221.

I also parallelized the LC encryption algorithm in the CTR, CBC and CFB
modes of operation (based on recommendation detailed described in [27]) (when
possible). The results are presented in Table 2.

When the LC algorithm operates in the ECB and CTR modes of operation,
both the encryption and decryption processes are parallelizable and speed ups
of the whole algorithm are similar (see- Table 2). For the CBC and CFB modes
only the decryption process is parallelized so the values of speed-up are lower
than for the ECB and CTR modes of operation (see- Table 2).

5 Conclusions

In this paper, I describe the parallelization process of the LC encryption algo-
rithm which was divided into parallelizable and unparallelizable parts. I have
shown that the time-consuming for loops included in the functions responsible
for the encryption and decryption processes are parallelizable. Altogether I par-
allelized eleven loops (from among sixteen ones). The experiments have shown
that the application of the parallel LC encryption algorithm for multiprocessor
and multi-core computers would considerably boost the time of the data encryp-
tion and decryption. I believe that the speed-ups received for these operations
are satisfactory. Moreover, the developed parallel LC encryption algorithm can
be also helpful for hardware implementations

References

1. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem using a
chaotic map. Trans. IEICE Jpn. E73(7), 1041–1044 (1990)

2. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J.
Bifurcat. Chaos 8(6), 1259–1284 (1998)

3. Scharinger, J.: Fast encryption of image data using chaotic Kolmogorov flows. J.
Electron. Imaging 7(2), 318–325 (1998)

4. Kocarev, L., Jakimoski, G.: Logistic map as a block encryption algorithm. Phys.
Lett. A 289(4–5), 199–206 (2001)

5. Yi, X., Tan, C.H., Siew, C.K.: A new block cipher based on chaotic tent maps.
EEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(12), 1826–1829 (2002)

6. Chen, G., Mao, Y.B., Chui, C.K.: A symmetric image encryption scheme based on
3D chaotic cat maps. Chaos Solitons Fractals 12, 749–761 (2004)

7. Mao, Y.B., Chen, G., Lian, S.G.: A novel fast image encryption scheme based on
the 3D chaotic baker map. Int. J. Bifurcat. Chaos 14(10), 3613–3624 (2004)

Parallelization of Encryption Algorithm 373

8. Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic
standard map. Chaos, Solitons and Fractals 26(1), 117–129 (2005)

9. Xua, S., Wang, J., Yang, S.: A novel block cipher based on chaotic maps. In:
Congress on Image and Signal Processing, vol. 3 (2008)

10. Pareek, N.K., Patidar, V., Sud, K.K.: Block cipher using 1D and 2D chaotic maps.
Int. J. Inf. Commun. Technol. 2(3) (2010)

11. Bielecki, W.: Exploiting loop-level parallelism in the AES algorithm. WSEAS
Trans. Comput. 5(1), 125–133 (2006)

12. Beletskyy, V., Burak, D.: Parallelization of the IDEA algorithm. In: Bubak, M.,
van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3036,
pp. 635–638. Springer, Heidelberg (2004)

13. Burak, D., Chudzik, M.: Parallelization of the discrete chaotic block encryption
algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.
(eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 323–332. Springer, Heidelberg
(2012)

14. Lian, S., Chen, X.: Traceable content protection based on chaos and neural net-
works. Appl. Soft Comput. 11(7), 4293–4301 (2011)

15. Zhusubaliyev, Z.T., Mosekilde, E.: Bifurcations and Chaos in Piecewise-smooth
Dynamical Systems. World Scientific Publishing Co., Pte. Ltd., Singapore (2003)

16. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: New
User Interface for Petit and Other Extensions. User Guide (1996)

17. The Omega Project: Frameworks and Algorithms for the Analysis and Transfor-
mation of Scientific Programs. http://www.cs.umd.edu/projects/omega/

18. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP - Portable Shared Memory
Parallel Programming. The MIT Press, Cambridge (2007)

19. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Paral-
lel Programming in OpenMP. Morgan Kaufmann Publishers, Inc., San Francisco
(2001)

20. OpenMP Application Program Interface. Version 3.1 July 2011 (2011)
21. Moldovan, D.I.: Parallel Processing: From Applications to Systems. Morgan Kauf-

mann Publishers, Inc., San Mateo (1993)
22. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-

mann Publishers Inc., San Francisco (1997)
23. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Depen-

dencebased Approach. Morgan Kaufmann Publishers, Inc., San Francisco (2001)
24. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and

Tools, 2nd edn. Prentice Hall, Upper Saddle River (2006)
25. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in

C, 2nd edn. Wiley, New (1995)
26. Amdahl, G.M.: Validity of the single-processor approach to achieving large scale

computing capabilities. In: AFIPS Conference Proceedings, pp. 483–485 (1967)
27. Dworkin, M.: Recommendation for block cipher modes of operation: methods and

techniques. NIST Special, Publication 800–38A, Dec (2001)

http://www.cs.umd.edu/projects/omega/

Minisymposium on HPC Applications
in Physical Sciences

Simulations of the Adsorption Behavior
of Dendrimers

Jarosfflaw S. Kfflos1,3(B) and Jens U. Sommer1,2

1 Leibniz Institute of Polymer Research, Dresden e. V., 01069 Dresden, Germany
klos@ipfdd.de

2 Institute for Theoretical Physics, Technische Universität Dresden,
01069 Dresden, Germany

3 Faculty of Physics, Adam Mickiewicz University, Umultowska 85,
61-614 Poznań, Poland

Abstract. Using Monte Carlo simulations we study adsorption of
dendrimers with flexible spacers onto a flat surface in a wide range
of molecular weight, N , generation number, G, spacer length, S, and
the monomer-surface interaction strength parameter, τ . Our calcula-
tions indicate that for large values of N the dendrimers exist in three
τ -dependent regions referred to as non-adsorbed, critical and adsorbed.
Slightly below the critical point of adsorption, τc, a weakly adsorbed
state is approached in which the molecules stick to the surface and are
spherical in shape. By further lowering τ below a spacer-length depen-
dent value, τ∈(S) < τc, a jumplike transition into a strongly adsorbed
state occurs. Here, the dendrimers become flat and their lateral size is
described by a 2D mean-field model.

Keywords: Polymer · Dendrimer · Adsorption · Simulation

1 Introduction

For the sake of design of nanodevices with optimal transport properties it is
crucial to understand the behavior of dendrimers near surfaces. Adsorption of
PAMAM (polyamidoamine) dendrimers was examined with the use of atomic
force microscopy and optical reflectometry [1,2]. Experiments also considered
the influence of ionic strength and solution pH on the molecular dimension of
PAMAMs and their structural properties at the interface between an aqueous
solution and a hydrophobic or hydrophilic substrate [3–5].

Lattice simulations showed that adorbed dendrimers spread out and flatten
down on the surface with increasing interaction strength. It was reported that
depending on G and the interaction strength the molecules exist in five diffierent
configurational states: A desorption region, a weak adsorption region in which
the shape of adsorbed dendrimers is only weakly perturbed and three more
regions in which the dendrimers display diffierent conformational features [6].
Using Brownian dynamics simulations the effiects of the strength of hydropho-
bicity, dendrimer generation and hydrophobicity distributions on the dendrimer

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 377–384, 2014.
DOI: 10.1007/978-3-642-55195-6 35, c© Springer-Verlag Berlin Heidelberg 2014

378 J.S. Kfflos and J.U. Sommer

Fig. 1. LEFT: Dendrimer architecture for G = 2 and S = 2. RIGHT: Snapshots of the
G6 dendrimer with spacer S = 32 at (a) τ = 1.0, (b) τ = 0.9, (c) τ = 0.75. Red (blue)
circles represent the terminal groups (the core) (Color figure online).

conformation, monomer distributions within dendrimers and near the surface
were examined as well [7]. Brownian dynamics simulations were carried out to
inspect adsorption of charged dendrimers onto oppositely charged flat surfaces
for various screening lengths, dendrimer generation, and dendrimer charge dis-
tribution [8].

In this work we consider adsorption of dendrimers using Monte Carlo simula-
tions based on the bond fluctuation model (BFM) [9–12]. While the adsorption
behavior of linear chains is well understood in terms of surface critical phenom-
ena [13], the influence of dendrimer architecture, see Fig. 1 LEFT, on adsorption
is still an open problem.

2 Model and Simulation Details

In the BFM we used, a bead is a simple cube represented by eight lattice sites
on a simple cubic lattice. Beads are connected with bonds so as to form the
required molecular architecture. In the model diffierent beads must not occupy
even one same lattice site due to the excluded volume condition, and the bond
vectors have to belong to a certain set of allowed vectors only. The allowed
vectors are chosen is such a way that the excluded volume condition prevents
them from crossing each other. In the framework of the Monte Carlo approach
trial moves are performed by moving a bead by one (out of six) lattice site
and by testing the new conformation and bonds against the above mentioned
restrictions on the beads and bonds [9]. Since we studied the adsorption behavior
of single dendrimers the calculations were carried out using the serial version of
the BFM only. It should be stressed that two parallizable versions of the BFM
were already implemented on GPU hardware. The codes were tested for various
static and dynamic properties of dense polymer system and compared with the
standard implementation. The parallel implementations of the BFM on graphics

Simulations of the Adsorption Behavior of Dendrimers 379

processors were reported to outperform by a factor of up to 50 times an equivalent
implementation on single CPU processor [14].

We examined single G3–G7 dendrimers with the core of two bonded units,
branching functionality f = 3 and spacer length S = 1, 2, 4, 8, 16, 32 in a cubic
box with periodic boundaries in the x- and y- directions and with an impene-
trable wall at z = 0. One of the dendrimers’ terminal groups was immobilized
and attached at the adsorbing surface at z = 0. Trial conformations were gen-
erated and accepted using the bond fluctuation model along with the standard
Metropolis test [15]. Each bead was subject to an attraction exerted on it by
the surface. Whenever a bead touched (detouched from) the surface the system
energy decreased (increased) by δ, which leads to the reduced temperature

τ =
kBT

δ
, (1)

where kB and T denote the Boltzmann constant and the absolute temperature.
Moves at (offi) the surface were always accepted. Depending on G and S the
dendrimers were equilibrated for a maximum of 107 MCS (Monte Carlo Steps; in
one MCS on average each monomer is selected to be moved in a randomly chosen,
one of the six directions by a single lattice unit), whereas averages were calculated
for 103–105 equilibrium configurations stored every 104th MCS. An equilibrium
state was considered achieved once the means of various measured quantities
characterizing the molecules such as the radius of gyration and the number of
adsorbed monomers did not reveal systematic changes. Throughout the paper
the errors we calculated using the rebinning method [16] are smaller than the
smbols’ size. By carrying out two independent runs based on diffierent sequences
of random numbers and initiated with two diffierent starting conformations of the
G5 dendrimer with spacers S = 8 and S = 32 at three diffierent temperatures,
we also successfully checked the method for its convergence. The results from
both calculations agreed with each other within statistical fluctuations. Even at
the highest adsorption energy considered monomer movements did not reveal
any freezing effiect (note that adsorbed monomers are always movable in the
direction parallel to the substrate). To avoid kinetic trapping gradual lowering
of τ was applied.

3 Results

3.1 Adsorption Transition

To examine the adsorption behavior of dendrimers we first consider the adsorp-
tion order parameter m = M/N , where M denotes the number of monomers in
contact with the surface [13]. In Fig. 2 we display this quantity as a function of τ
at the fixed generation number G. It is clearly seen that the dendrimers display
an adsorption transition manifested through an increase in m from nearly zero
in the extreme of high τ up to some finite values approaching one at low τ -
values. Obviously, in the limit of low τ adsorption is complete and all monomers
are in contact with the surface. Based on the order parameter we can roughly

380 J.S. Kfflos and J.U. Sommer

0

0.25

0.5

0.75

1

M
/N

S=1
S=2
S=4
S=8
S=16
S=32

0 0.5 1 1.5 2
τ

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2
τ

0

0.25

0.5

0.75

1

a) G=3 b) G=4

c) G=5 d) G=6

e) G=7

Fig. 2. Fraction of adsorbed monomers M/N vs τ at fixed G and varying S.

distinguish between the three regions: The crossover from the non-adsorbed to
the adsorbed state at around τ ≤ 1, see snapshot in Fig. 1(a) RIGHT. For lower
values of τ the number of adsorbed monomers increases sharply with lowering
τ , see Fig. 1(b) RIGHT. For very low τ almost all of the monomers are on the
surface (m ≤ 1), see Fig. 1(c) RIGHT. Note that due to packing constraints in
2D for the G7-dendrimer with the shortest spacer, S = 1, the order parameter
saturates at m ≥ 0.6.

By analogy with adsorption of linear chains we consider m as a function of
N at constant τ [13,17]. Under the assumption of criticality and for large values
of N the behavior of m(N) splits into three classes according to three regimes
(non-adsorbed, critical, adsorbed):

m ∈
⎧
⎨

⎩

N−1 for τ > τc

Nφ−1 for τ = τc

N0 for τ < τc.
(2)

In Fig. 3 LEFT we plot m(N) for fixed G under the variation of S. The splitting
of isotherms into the three asymptotic classes is clearly visible. As the best
estimate for the critical point we can take 1.0 ∞ τc ∞ 1.05. It is interesting
to note that for G > 4, see Fig. 3(c)–(e) LEFT, the isotherms for τ = 0.9
change from non-adsorption to adsorption behavior with increasing S. Increasing
S reduces excluded volume constraints and increases the strength of adsorption
of individual spacers which drives the dendrimer from the non-adsorbed into an
adsorbed asymptotics. In Fig. 3 RIGHT we plot m(N) for fixed S with increasing
G. For S = 1 the asymptotic behavior tends to non-adsorbed independently

Simulations of the Adsorption Behavior of Dendrimers 381

Fig. 3. LEFT: (RIGHT:) Isotherms of the order parameter M/N vs N at fixed G (S).

of τ . This illustrates the strong excluded volume interactions which results in
packing-dominated conformations for large G. Also, for large S-values m tends
to non-adsorbed with sufflciently high G as a consequence of packing effiects.

3.2 Shape and Size of Dendrimers

In the strongly adsorbed state dendrimers are not isotropic. In order to ana-
lyze the shape of the dendrimers we consider the relative shape anisotropy, a.
In particular, a = 0, a = 1/4 and a = 1 for spherical, oblate and extremely
elongated ellipsoides, respectively [18–20]. In Fig. 4 LEFT we display a (τ) for
various spacers at G = 7. A jumplike transition scenario corresponding to a
collapse of the structure (from nearly spherical to flat) in the direction perpen-
dicular to the surface is seen for long spacers. For G = 7 one can observe the
shift in the transition with respect to S. For S = 16 the collapse is centred at
about τ∈(S = 16) = 0.9 which is reduced to τ∈(S = 8) = 0.75 for S = 8. For low
τ -values the shape anisotropy reaches a ≥ 0.25 which signals that the polymers
are oblate. Furthermore, we note that τ∈ < τc, i.e., the shape-transition temper-
atures are below the critical point of adsorption. In particular, slightly below τc

the dendrimer is in the weakly adsorbed state where its shape remains spherical.
Since the adsorbing interface breaks the isotropy of the system, we have to

distinguish between the parallel, Rg≥, and perpendicular, Rg◦, components of
the dendrimers’ radius of gyration, Rg. At high τ the dendrimers are nearly
isotropic and their extension corresponds to the 3D behavior. In our previous
work we showed [12] that the mean field argument [21] is able to describe the

382 J.S. Kfflos and J.U. Sommer

16

64

R
g|

|

τ=0.1
τ=0.25

10000 1e+06 1e+08
(GS)2N

25

τ=1.1
τ=1.25
τ=1.5

25

125τ=0.4
τ=0.5

10000 1e+06 1e+08
(GS)2N

5

25

τ=1.75
τ=2

6

36

τ=0.6
τ=0.75

36

τ=0.9
τ=1
τ=1.05

0.4 0.8 1.2 1.6 2
τ

0.2

0.22

0.24

0.26

α

a) b)

c) d)

e) f)

g)

0 0.5 1 1.5 2
τ

0

0.1

0.2

a

S=1
S=2
S=4
S=8
S=16

G=7

Fig. 4. LEFT: a (τ) for various spacers and G = 7. RIGHT: (a–f) Scaling behavior of
Rg∅ at the considered τ -values for S ≥ 4. The lines are fits to the data points of the
form Eq. 6. (g) Exponent α vs τ . The horizontal dashed lines indicate α obtained from
averaging the results in the respective asymptotic regions (2D and 3D).

scaling of the free dendrimer’s size in a good solvent according to

Rg◦ ∈ Rg≥ ∈
⎜
(GS)2 N

⎫1/5

for τ ≈ τc. (3)

On the other hand in the limit of low τ -values when the dendrimers are nearly 2D
objects we expect the free energy to take the form (with unit-carrying pre-factors
omitted, length units are taken in units of a Kuhn segmet)

F

kBT
=

R2
g≥

GS
+

GSN

R2
g≥

, (4)

leading to

Rg≥ ∈
⎜
(GS)2 N

⎫1/4

for τ ∧ τc. (5)

In Fig. 4(a)–(f) we display Rg≥ as a function of (GS)2N at various τ . According
to Eqs. 3 and 5 we fit the data to a power law

Rg≥ ∈ ⎬
(GS)2N

⎭α
. (6)

It is seen from Fig. 4(a)–(f) that the proposed scaling relation is well obeyed
for all G and S ∃ 4, except for the intermediate region 0.75 ∞ τ ∞ 0.9 where

Simulations of the Adsorption Behavior of Dendrimers 383

some discrepancies occur. In Fig. 4(g) we plot α (τ). In the strong adsorption
region we obtain α ≥ 0.25 with a slight tendency to increase as the intermediate
region is approached. At higher τ -values around τ = 0.9 the exponent decreases
sharply to α ≥ 0.20 as the weak adsorption region is entered. Both limiting values
correspond to the predicted asymptotic behavior in 2D and 3D and crossover
between both regions is jumplike.

4 Summary and Conclusions

Using the bond fluctuation model we have investigated adsorption of dendrimers
onto a flat surface. By analyzing the adsorption order parameter we have found
that, depending on the reduced temperature τ , the molecules can exist in three
states referred to as non-adsorbed, critical and adsorbed, respectively. Our
results indicate that below the critical temperature of adsorption, τc ≥ 1.01,
a number of monomers are adsorbed while the dendrimer as a whole is only
weakly perturbed and retains its spherical shape. At a characteristic tempera-
ture, τ∈ < τc, the dendrimer undergoes a jumplike transition into a flat con-
formation. This shape transition is demonstrated by the behavior of the shape
anisotropy of the dendrimer which takes values corresponding to flat objects
a ≥ 0.25. In the flatly adsorbed state the lateral extension of the dendrimer fol-
lows the scaling behavior for a 2D-object. According to the mean-field prediction
we obtain a scaling of Rg≥ ∈ N1/4.

Acknowledgments. Support from DFG contract numbers SO-277/2-1 and KL 2470/
1-1 is acknowledged. Part of the calculations were carried out at ZIH of the TU Dresden.

References

1. Li, J., Piehler, L.T., Qin, D., Baker, J.R., Tomalia, D.A.: Visualization and charac-
terization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir
16(13), 5613–5616 (2000)

2. Longtin, R., Maroni, P., Borkovec, M.: Transition from completely reversible to
irreversible adsorption of poly(amido amine) dendrimers on silica. Langmuir 25,
2928–2934 (2009)

3. Pericet-Camara, R., Papastavrou, G., Borkovec, M.: Atomic force microscopy study
of the adsorption and electrostatic self-organization of poly(amidoamine) den-
drimers on mica. Langmuir 20(8), 3264–3270 (2004)

4. Betley, T.A., Holl, M.M.B., Orr, B.G., Swanson, D.R., Tomalia, D.A., Baker, J.R.:
Tapping mode atomic force microscopy investigation of poly(amidoamine) den-
drimers: efflects of substrate and PH on dendrimer deformation. Langmuir 17(9),
2768–2773 (2001)

5. Müller, T., Yablon, D.G., Karchner, R., Knapp, D., Kleinman, M.H., Fang, H.,
Durning, C.J., Tomalia, D.A., Turro, N.J., Flynn, G.W.: AFM studies of high-
generation PAMAM dendrimers at the liquid/solid interface. Langmuir 18(20),
7452–7455 (2002)

384 J.S. Kfflos and J.U. Sommer

6. Mansfield, M.L.: Surface adsorption of model dendrimers. Polymer 37(17), 3835–
3841 (1996)

7. Suman, B., Kumar, S.: Brownian dynamics simulations of hydrophobic dendrimer
adsorption. Mol. Simul. 35(1–2), 38–49 (2009)

8. Suman, B., Kumar, S.: Adsorption of charged dendrimers: a Brownian dynamics
study. J. Phys. Chem. B 111, 8728 (2007)

9. Deutsch, H.P., Binder, K.: Interdifflusion and self-difflusion in polymer mixtures: a
Monte Carlo study. J. Chem. Phys. 94(3), 2294–2304 (1991)

10. Carmesin, I., Kremer, K.: The bond fluctuation method: a new efflective algorithm
for the dynamics of polymers in all spatial dimensions. Macromolecules 21(9), 2819
(1988)

11. Trautenberg, H.L., Hölzl, T., Göritz, D.: Evidence for the absence of bond-crossing
in the three-dimensional bond fluctuation model. Comput. Theor. Polym. Sci. 6,
135 (1996)

12. Kfflos, J.S., Sommer, J.U.: Properties of dendrimers with flexible spacer-chains: a
Monte Carlo study. Macromolecules 42, 4878 (2009)

13. Eisenriegler, E., Kremer, K., Binder, K.: Adsorption of polymer chains at surfaces:
scaling and Monte Carlo analyses. J. Chem. Phys. 77(12), 6296–6320 (1982)

14. Nedelcu, S., Werner, M., Lang, M., Sommer, J.U.: GPU implementations of the
bond fluctuation model. J. Comp. Phys. 231(7), 2811–2824 (2012)

15. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21, 1087
(1953)

16. Ambegaokar, V., Troyer, M.: Estimating errors reliably in Monte Carlo simulations
of the ehrenfest model. Am. J. Phys. 78, 150–157 (2010)

17. Descas, R., Sommer, J.U., Blumen, A.: Grafted polymer chains interacting with
substrates: computer simulations and scaling. Macrom. Theor. Sim. 17, 429–453
(2008)

18. Theodorou, D.N., Suter, U.: Shape of unperturbed linear polymers: polypropylene.
Macromolecules 18, 1206–1214 (1985)

19. Rudnick, J., Gaspari, G.: The asphericity of random walks. J. Phys. A: Math. Gen.
19, L191–L193 (1986)

20. Maiti, P.K., Çaǧin, T., Wang, G., Goddard III, W.: Structure of pamam den-
drimers: generations 1 through 11. Macromolecules 37, 6236–6254 (2004)

21. Boris, D., Rubinstein, M.: A self-consistent mean field model of a starburst den-
drimer: dense core vs dense shell. Macromolecules 29, 7251–7260 (1996)

An Optimized Lattice Boltzmann Code
for BlueGene/Q

Marcello Pivanti1, Filippo Mantovani2, Sebastiano Fabio Schifano1(B),
Raffaele Tripiccione1, and Luca Zenesini1

1 Università di Ferrara and INFN, Ferrara, Italy
schifano@fe.infn.it

2 Facultät für Physik, Univesität Regensburg, Regensburg, Germany

Abstract. In this paper we describe an optimized implementation of
a Lattice Boltzmann (LB) code on the BlueGene/Q system, the latest
generation massively parallel system of the BlueGene family. We con-
sider a state-of-art LB code, that accurately reproduces the thermo-
hydrodynamics of a 2D-fluid obeying the equations of state of a perfect
gas. The regular structure of LB algorithms offers several levels of algo-
rithmic parallelism that can be matched by a massively parallel computer
architecture. However the complex memory access patterns associated to
our LB model make it not trivial to efficiently exploit all available par-
allelism. We describe our implementation strategies, based on previous
experience made on clusters of many-core processors and GPUs, present
results and analyze and compare performances.

Keywords: Lattice Boltzmann · High performance computing ·
Massively parallel architectures · Performance Analysis

1 Introduction

Computational techniques are ubiquitous in fluid-dynamics to obtain reliable
solutions to the non-linear equations of motion in regimes interesting for physics
or engineering. Over the years, several numerical approaches have been theore-
tically developed and implemented on massively parallel computers.

The Lattice Boltzmann (LB) method is a flexible approach, able to cope with
many different fluid equations (e.g., multi-phase, multicomponent and thermal
fluids) and with complex geometries or boundary conditions. LB builds on the
fact that the details of the microscopic-scale interaction among fluid components
do not change the structure of the equations of motion at the macroscopic scale,
but only modulate the values of the macroscopic parameters (e.g., viscosity). LB
then simulates some synthetic dynamics of fictitious particles that, appropriately
averaged, provides the correct values of the macroscopic observables of the flow;
see [1] for an introduction.

LB schemes are local (they do not require the computation of non local fields –
e.g. pressure– and interactions in coordinate space are among nearest neighbors),

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 385–394, 2014.
DOI: 10.1007/978-3-642-55195-6 36, c© Springer-Verlag Berlin Heidelberg 2014

386 M. Pivanti et al.

so they are a natural target for efficient implementations on massively parallel
systems. Starting from early attempts on experimental machines [2], recent works
have focused on parallelizing the code both inside one processing node and across
many nodes [3,4]. GPUs implementations have been reported in [5] and early
experience with many-core processors has been studied in [6].

In this paper we discuss and apply optimization strategies for the Blue-
Gene/Q (BG/Q) massively parallel system; in this machine a good match in
combining inter-node and intra-node parallelism is needed to obtain satisfactory
performance. We consider a state-of-the-art LB method (described below) which
has a large computational load and a non trivial pattern of memory access.

Following this overview section, this paper briefly reviews the LB algorithm
that we consider and then describes the main features of BG/Q. A detailed
description of our LB implementation follows, while the next section presents and
comments performance results. The paper ends with our concluding remarks.

2 The Lattice Boltzmann Methods

In this section we briefly describe the Lattice Boltzmann approach to the numer-
ical solution of a class of Navier-Stokes equations that describe fluid flows. The
Thermal-Kinetic description in D dimensions of a compressible gas/fluid of vari-
able density, ρ, local velocity u, internal energy, K and subject to a local body
force density, g (gravity), is given by the following equations:

∂tρ + ∂i(ρui) = 0 (1)
∂t(ρuk) + ∂i(Pik) = ρgk (2)

∂tK +
1
2
∂iqi = ρgiui (3)

where Pik and qi are the momentum and energy fluxes; the indexes identify space
coordinates, and sums over repeated indexes is implied.

In the continuum, one shows that it is possible to recover exactly these equa-
tions, starting from the Boltzmann equation and introducing a suitable shift of
the velocity and temperature fields entering in the local equilibrium [7]. The dis-
cretized counterpart of the continuum description (adopted in this paper) uses
a set of fields fl(x, t) associated to so-called populations; the latter can be visu-
alized as pseudo-particles moving in appropriate directions on a discrete mesh
(see Fig. 1). The master evolution equation in the discrete mesh is:

fl(x + clΔt, t + Δt) − fl(x, t) = −Δt

τ

(
fl(x, t) − f

(eq)
l

)
; (4)

subscript l runs over the discrete set of velocities, cl (see again Fig. 1), and
equilibrium population densities depend on the hydro-dynamical (macroscopic)
fields on the lattice, f

(eq)
l = f

(eq)
l (x, ρ, ū, T̄).

In this paper we consider a state-of-the-art LB method that correctly
describes the behavior in two dimensions of a compressible fluid that obeys

An Optimized Lattice Boltzmann Code for BlueGene/Q 387

the equation of state of a perfect gas. All details are in [7,8]. This algorithm uses
37 populations (it is a so called D2Q37 model), much more than necessary in
other established LB methods (e.g., D2Q9 or D3Q19).

In short, macroscopic fields are defined in terms of the LB populations:
ρ =

∑
l fl, ρu =

∑
l clfl, DρT =

∑
l |cl − u|2 fl. When going into all math-

ematical details, one finds that shifts and renormalizations have to be applied
to the averaged hydrodinamical quantities to correct for lattice discretization
effects. After performing these manipulations, one recovers the correct thermo-
hydrodynamical equations :

Dtρ = −ρ∂iu
(H)
i (5)

ρDtu
(H)
i = −∂ip − ρgδi,2 + ν∂jju

(H)
i (6)

ρcvDtT
(H) + p∂iu

(H)
i = k∂iiT

(H) (7)

where we introduce the material derivative, Dt = ∂t + u
(H)
j ∂j , and neglect vis-

cous dissipation in the heat equation (usually small); superscript H denotes the
lattice-corrected quantities, cv is the specific heat at constant volume for an ideal
gas p = ρT (H), and ν and k are the transport coefficients.

LB methods have a large degree of available parallelism. Defining y = x +
clΔt and rewriting the main evolution equation as:

fl(y, t + Δt) = fl(y − clΔt, t) − Δt

τ

(
fl(y − clΔt, t) − f

(eq)
l

)
(8)

one easily identifies the overall structure of the computation that evolves the
system by one time step Δt; for each point y in the discrete grid one:

1. gathers from neighboring sites the values of the fields fl corresponding to
populations that drift towards y, and then

2. performs all mathematical processing needed to compute (on a point-by-point
basis) the quantities appearing in the equation above.

The key remark is that both steps above are completely uncorrelated for different
points of the grid, so they can be parallelized according to any convenient scheme,
as long as step (1) is done before step (2).

These features are well suited for emerging HPC architectures, that foresee
a large number of processing nodes, each made by many processing-cores, and
the cores themselves able to perform SIMD operations. The challenge then rests
in matching algorithm-level parallelism with all available computing resources.

Further help comes from the simple node-to-node communication pattern
required by the LB method when implemented on a multi-node system. The eas-
iest approach is that of tiling the physical grid on the set of available processors,
so nearest-neighbor data moves translate to communications between nearest-
neighbor processors assembled in a torus topology. Finally, note that all remote
communications can be done at just one specific point in the main iteration loop,
before population data is gathered for processing.

388 M. Pivanti et al.

Fig. 1. Velocity vectors (cl) for the LB populations of the D2Q37 model. Population
labelling is arbitrary; populations associated to each site are stored at consecutive
memory address in the order defined by their labels.

At each time-step the update algorithm processes each lattice-point by apply-
ing in sequence two computationally relevant kernels, propagate and collide.
Kernel propagate moves populations across the lattice points according to the
pattern shown in Fig. 1. For each site, it updates the populations associated
to it, gathering the new values from 36 neighbor sites at distance up to 3 in
the physical lattice. The load of this kernel is dominated by memory copies at
sparse memory addresses. The other key kernel, collide, computes the collisional
operator on the population values gathered in the previous phase. This kernel
performs all mathematical steps associated to Eq. 8, operating on the popula-
tions sitting at each site. This is the most floating-point intensive part of the
code, performing around 7660 double-precision operations per site.

3 The Blue Gene/Q System

The Blue Gene/Q (BG/Q) machine is the latest generation massively parallel
systems of the Blue Gene family developed by IBM.

BG/Q is a five-dimensional toroidal grid of nodes. Each node has one A2
processor, running at 1.6 GHz. It contains 18 cores; 16 cores are used by the
application program, one by the operating system, and one is redundant. Each
core is a 4-way multi-threaded CPU, executing up to 4 independent threads. Each
core has 16(D) + 16(I) KB of L1-cache, and a SIMD floating point unit; the latter
executes QPX vector instructions, that compute 4 double-precision operations in
parallel. All in all, the node has a peak performance of 204.8 GFlops. All cores
share a 32 MB L2-cache; external memory is 16 GB, handled by two memory
controllers; the effective (read or write) bandwidth is close to 30 GB/s. Finally,
the processor includes an interface to the 5D torus network, based on ten duplex
links of 2 GB/s each. See [9] for more details.

Each node runs an instance of Compute Node Kernel (CNK), a lightweight
version of the Linux kernel. The machine can be programmed using a standard
MPI approach, handling parallelism both among and within the nodes. Alterna-
tively, intra-node parallelism can be managed via openMP or PThread libraries.

An Optimized Lattice Boltzmann Code for BlueGene/Q 389

Performance on BG/Q heavily relies on the ability of programmers, compilers
and run-time support to carefully exploit parallelism at all levels. Mapping the
code in a balanced way on a large number of processing elements is relatively
straightforward in our case; however, more delicate issues relate to:

– core parallelism: the code should allow all cores to work in parallel exploiting
either breaking down the application is in several sub-tasks, each run by a
different core, or partitioning the data-set among the cores, each executing
the same task on different data items.

– vector programming: each core processes the data-set of the application using
QPX vector instructions and exploiting streaming-parallelism (SIMD);

SIMD optimizations can be applied either by the compiler, or by the program-
mer by coding with intrinsic functions. In the first case the program is a scalar
code (all variables are scalar) and the compiler – if it detects specific conditions
– automatically inserts SIMD streaming instructions. For example, if no data
dependencies occur between iterations in a loop, the compiler can (partially)
unroll it, so two or more iterations are processed in parallel by vector instructions.
This easily applied approach is limited in performance by the ability of the com-
piler to identify parallelizable structures. In an often more efficient approach, the
programmer codes the algorithm using vector variables, processed by so called
intrinsic functions which directly map onto vector assembly instructions. For
example, a double precision fused-multiply-add on vectors of 4 double-precision
elements reads d = vec madd (a, b, c), where a, b, c, d are vector vari-
ables of type vector4double.

4 Implementation of the D2Q37 Model

In this section we describe the structure of our BG/Q optimized D2Q37 LB
code, its data-structures, implementation and optimization details.

We consider a physical lattice in 2 dimensions of size Lx × Ly. We split it
on N nodes along the X dimension: each node hosts a sub-lattice of Lx/N × Ly

sites. One could consider a different mapping, e.g. splitting along Y ; however,
since we plan to use our code for physics simulations with many aspect-ratios
(both Lx > Ly and Lx < Ly) and communication overheads are small (see later
for details) we arbitrarily pick one of the two options. This mapping implies that
nodes are virtually arranged at the edges of a ring, so each node is connected
with a previous and a next one. This connectivity can be easily and efficiently
mapped on the 5D-torus of BG/Q. Communications use the MPI library.

The physical variables associated to each lattice site are 37 double preci-
sion floating-point values, representing the populations of the model. On each
node, populations are stored in column-major order, as this makes node-to-node
communications more efficient (see later). We keep two copies of the lattice in
memory. Each step of the algorithm reads one copy and updates the other, mak-
ing the implementation of the code much simpler. For 2D systems memory is
not a critical resource, and the memory footprint required to store our lattices

390 M. Pivanti et al.

is not too large. On each node we also allocate three halo-columns, at the right
and left edges of the sub-lattice belonging to that node. Population data com-
ing from the three adjoining physical columns of the neighbor nodes is copied
to the halos in one node-to-node communication phase, at the beginning of the
propagate phase. Once this is done, all remaining steps are local to each node so
they run independently and concurrently.

The lattice is arranged in memory according as an Array of Structure (AoS):
population members of a site are stored one after the other. This improves
the locality of populations associated to each site, and better suits the cache
structure, see [3], improving the performance of the collide kernel.

Our code tries to exploit all parallelism opportunities: the simulation is orga-
nized as a multi-node program, on each node we use a multi-threaded program
and, last but not least, each thread uses vector instructions.

To exploit-core parallelism within each node the sub-lattice is further sliced
along the X dimension, and each slice is processed by a different thread. Paral-
lelism within the core is managed using the openMP library: we configure the
program to run 1 up-to 4 threads per core.

The assignment of slices to threads is different at different stages of the
program: when the program executes the collide kernel, all slices have the same
size (since the work load is the same at all lattice sites). Things are different
for the propagate kernel: in this phase one must first perform a node-to-node
communication to retrieve from neighboring nodes (and store into the halos)
the data items needed to process the two sets of three columns laying close to
the sub-lattice edges; remote data are however not needed to process all other
lattice points. We therefore split the sub-lattice of each node among the Nt

threads running on that node: the first and the last three columns are managed
by threads 0 and Nt − 1, and all other columns are evenly split on the other
threads. Threads 0 and Nt − 1 need to perform node-to-node communications,
but they have a much smaller computational load: in this way we almost fully
hide communication overheads.

We structure the code of each thread as follows (see also Fig. 2):

1. threads 0 and Nt −1 perform MPI send-receives to update halos with neigh-
bor nodes; they then execute propagate on three columns each;

2. concurrently with step 1, the remaining threads run propagate in parallel on
their lattice slices;

3. threads synchronize at the end of steps 1 and 2. They then execute the bc
kernel on the three rows at the top and bottom of the lattice, enforcing
boundary conditions (e.g., a constant temperature and zero velocity), by
adjusting the population variables close to the top and bottom of the lattice;

4. finally, all threads start computing the collide kernel, each on a different (and
equally sized) slice of the lattice.

Within each thread, we introduce a further level of parallelism and process
several lattice-sites in parallel: we use QPX streaming instructions acting on
vectors gathering population variables from 4 sites. We have handcrafted our

An Optimized Lattice Boltzmann Code for BlueGene/Q 391

for (step = 0 ; step < MAXSTEP ; step++) {
#pragma omp barrier

if (tid == 0 | | tid == N_t − 1) {
MPI_Sendrecv (. . .) ; // update halos

propagate () ; // apply propagate () to left - and right -halos

} else {
propagate () ; // apply propagate () to inner part

}
#pragma omp barrier

bc (TOP) ; // apply bc() to three upper row -sites

bc (LOW) ; // apply bc() to three lower row -sites

#pragma omp barrier

collide (. . .) ; // apply collide ()

}

Fig. 2. Code executed by each thread. The various phases are executed by a variable
number of threads, and are synchronized through barriers.

vectorized routines, using intrinsic functions. We divide the lattice in 4 parts
along the Y dimension, and we pack together populations of sites at distance
Ly/4 on one 256-bit QPX vector. We then process together 4 lattice sites, using
a mix of operations which is the same for all sites packed on the same QPX
vector.

5 Performance Analysis

In this section we present and comment on performance results. We focus on the
two main kernels – propagate and collide – since all other steps in the program
have a truly negligible impact on running time.

We start by analyzing single-node performance; our results are shown in
Fig. 3. We see that there is roughly a factor 2X in performance between the
handcrafted vectorized version of the code and the one automatically vector-
ized by the compiler: the latter is probably not able to spot all opportunities
for vectorization; so, while this result may be encouraging for an automatic
tool, if performance is top priority, human intervention on the code is still nec-
essary. Performance increases significantly as the number of threads grows for
the collide kernel. This is expected, since increasing the number of threads run
by one core helps hides latency between dependent operations in this strongly
compute-bound kernel. This is less evident for propagate, as in this case the
performance bottleneck is associated to complex address patterns and to short
bursts of memory accesses. All in all the node delivers approximately 30% of its
peak performance, using some 75% of its memory bandwidth.

The performance of the full production-grade code as a function of the num-
ber of cores in shown in Fig. 4 in a strong-scaling regime for two lattice sizes,
namely 16384 × 8192 and 32768 × 1024. Our first choice is a typical size for

392 M. Pivanti et al.

Fig. 3. Bandwidth of the propagate kernel (left vertical scale) and floating-point perfor-
mance of the collide kernel (right vertical scale) as a function of the number of threads
on a lattice of 1024 × 8192 sites running on one BG/Q node. We compare scalar and
QPX-enabled codes. We also include for reference the bandwidth performance of a
memory-copy benchmark.

Fig. 4. Performance of the full (production-grade) code for two lattice sizes as a func-
tion of the number of processing cores. We plot performance for runs using 1, 2 and 4
threads per core.

a state-of-the-art simulation, while our second choice has a somewhat awk-
ward form-factor that we have picked to try to expose latency effects in the
node-to-node communication structure. The picture shows excellent scaling fig-
ures, clearly stretching to the largest number of cores (or threads) on which the
physical system can be mapped.

Figure 5 analyzes the reasons behind the scaling figures seen above, by plot-
ting – again as a function of the number of cores – the (normalized) ratio of
performance over number of cores. This ratio should be constant for perfect
strong scaling; we see that this is clearly so for the collide kernel, while the
propagate kernel shows clear (albeit limited) evidence for super-scaling.

We find a clean explanation of this behavior in Fig. 6, where we plot his-
tograms of the execution times of the propagate kernel; we distinguish between
the threads handling lattice columns close to the halo (these threads perform a
node-to-node communications) and the threads (handling the bulk of the lattice)

An Optimized Lattice Boltzmann Code for BlueGene/Q 393

Fig. 5. Ratio of speed-up over number of cores for the propagate and collide kernels,
as a function of the number of cores. We plot values for runs using 1, 2 and 4 threads
per core. This ratio equals 1 for perfect scaling.

Fig. 6. Histograms of the propagate kernel execution-time for runs with three different
numbers of cores (2048, 4096, 8192), using one thread per core. For each run, we build
separate histograms for threads requiring node-to-node communications (w/ comm)
and for threads without communications (w/o comm); for easy comparison we use the
same scales for all the three panels.

that do not perform communications. In spite of a large variance of the measure-
ments, one clearly sees that (i) the threads that contain a communication step
are faster than the others (except when the largest number of cores is used), and
(ii) the execution time of threads not performing communications scales much
faster than perfect scaling would imply. Point (i) above shows that we have hid-
den communication latency almost perfectly in the application, while point (ii)
is due to cache effects in this strongly memory-bound routine, that become more
favorable as the lattice handled by each core gets smaller.

6 Conclusions

In this paper we have described the details of an optimized implementation of
a state-of-the-art LB code. The program has been structured in such a way to
match the parallel structure of the algorithm with the parallel features of the

394 M. Pivanti et al.

target computing system. Once an appropriate “coarse-grained” structure of the
code and of the mapping of the variables on the node have been defined, the low-
est level of parallelism (SIMD vectorization) can be automatically exploited by
the compiler. However, if performance is top priority, also this final step must
be handled by a programmer.

Performance results at the one node level are not as good as those reported
for GPUs (Ref. [5] quotes ≤130 Gflops per GPU), which results the best option as
long as the lattice size fits the available amount of memory (≥8 GB). Simulation
of larger lattices must be split over a several GPUs, and in this situation, superior
network integration makes the BG/Q implementation a better option in terms
of strong-scaling.

Acknowledgements. We would like to thank CINECA (Bologna, Italy) and the
Jülich Supercomputing Center (Jülich, Germany) for access to the Fermi and Juqueen
BG/Q systems. This work has been done in the framework of the COKA and SUMA
projects of INFN (Italy).

References

1. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford
University Press, Oxford (2001)

2. Bartoloni, A., et al.: LBE simulations of Rayleigh-Benard convection on the APE100
parallel processor. Int. J. Mod. Phys. C4, 993 (1993)

3. Pohl, T., et al.: Optimization and profiling of the cache performance of parallel
lattice Boltzmann codes. Parallel Process. Lett. 13(4), 549 (2003)

4. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance
of simple lattice Boltzmann kernels. Comput. Fluids 35, 910 (2006)

5. Biferale, L., et al.: A multi-GPU implementation of a D2Q37 lattice Boltzmann
code. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 640–650. Springer, Heidelberg (2012)

6. Biferale, L., et al.: Optimization of multi-phase compressible lattice Boltzmann
codes on massively parallel multi-core systems. Procedia Comput. Sci. 4, 994–1003
(2011)

7. Sbragaglia, M., et al.: Lattice Boltzmann method with self-consistent thermo-
hydrodynamic equilibria. J. Fluid Mech. 628, 299 (2009)

8. Scagliarini, A., et al.: Lattice Boltzmann methods for thermal flows: continuum limit
and applications to compressible Rayleigh-Taylor systems. Phys. Fluids 22, 055101
(2010)

9. Chen, D., et al.: The IBM Blue Gene/Q interconnection network and message unit.
In: Proceedings of the 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, vol. 26 (2011)

A Parallel and Scalable Iterative Solver
for Sequences of Dense Eigenproblems Arising

in FLAPW

Mario Berljafa1 and Edoardo Di Napoli2,3(B)

1 School of Mathematics, The University of Manchester, Alan Turing Building,
Manchester M13 9PL, UK

m.berljafa@maths.man.ac.uk
2 Jülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm-Johnen straße,

52425 Jülich, Germany
e.di.napoli@fz-juelich.de

3 Aachen Institute for Advance Study in Computational Engineering Science,
Schinkelstraße 2, 52062 Aachen, Germany

dinapoli@aices.rwth-aachen.de

Abstract. In one of the most important methods in Density Func-
tional Theory – the Full-Potential Linearized Augmented Plane Wave
(FLAPW) method – dense generalized eigenproblems are organized in
long sequences. Moreover each eigenproblem is strongly correlated to the
next one in the sequence. We propose a novel approach which exploits
such correlation through the use of an eigensolver based on subspace iter-
ation and accelerated with Chebyshev polynomials. The resulting solver,
parallelized using the Elemental library framework, achieves excellent
scalability and is competitive with current dense parallel eigensolvers.

Keywords: Chebyshev polynomials · Subspace iteration · Eigenprob-
lem sequence · Density functional theory · Elemental

1 Introduction

We present a methodological approach to solve for eigenpairs of sequences of
correlated dense eigenproblems arising in Density Functional Theory (DFT).
The novelty of this approach resides in the use of approximate solutions in
combination with a simple block eigensolver based on polynomially accelerated
subspace iteration. When parallelized for distributed memory architectures this
iterative method is a viable alternative to conventional dense eigensolvers both
in terms of scalability and performance. Ultimately our approach will enable the
DFT specialists to simulate larger and more complex physical systems.

Within the realm of condensed-matter physics, DFT is considered the stan-
dard model to run accurate simulations of materials. The importance of these
simulations is two-fold: on the one hand they are used to verify the correctness
of the quantum mechanical interpretation of existing materials. On the other

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 395–406, 2014.
DOI: 10.1007/978-3-642-55195-6 37, c© Springer-Verlag Berlin Heidelberg 2014

396 M. Berljafa and E. Di Napoli

hand, simulations constitute an extraordinary tool to verify the validity of new
atomistic models which may ultimately lead to the invention of brand new mate-
rials.

Each simulation consists of a series of self-consistent field (SCF) cycles; within
each cycle a fixed number Nk of independent eigenvalue problems is solved.
Since dozens of cycles are necessary to complete one simulation, one ends up
with Nk sequences made of dozens of eigenproblems. The properties of these
eigenproblems depend on the discretization strategy of the specific DFT method
of choice. In this paper we will exclusively consider the Full-Potential Linearized
Augmented Plane Waves method (FLAPW). This DFT method gives rise to
dense hermitian generalized eigenproblems (DGEVP) with matrix size typically
ranging from 2,000 to 20,000.

In FLAPW only a fraction of the lowest part of the eigenspectrum is required.
The eigenvalues inside this fraction correspond to the energy levels below Fermi
energy and their number never falls below 3 % or exceeds 20 % of the eigenspec-
trum. The relatively high number of eigenpairs in combination with the dense
nature and the size of the eigenproblems inevitably lead to the choice of direct
eigensolvers. Direct eigensolvers follow a constrained path of linear transforma-
tions starting from the generalized eigenproblem and arriving to a tridiagonal
one. In turn, the tridiagonal problem is solved iteratively using one of the two
methods available for computing just a fraction of the spectrum, namely bisec-
tion inverse iteration (BXINV) [1] and multiple relatively robust representations
(MRRR) [2,3].

Until very recently, the computational strategy on parallel distributed mem-
ory architecture favored the use of ScaLAPACK [4] implementation of BXINV.
Modern and efficient dense libraries, like ELPA [5] and EleMRRR [6], improve
the performance but do not change the overall computational strategy: each
problem in the sequence is solved in complete independence from the previous
one. The latter choice is based on the view that problems in the sequence are
considered only loosely connected. In fact despite the solution of one problem
ultimately determine the initialization of the next, it does so in such a mathe-
matically indirect manner that two successive problems seem to be quite inde-
pendent. In this paper we propose a completely different strategy which tries to
maximally exploit the sequence of eigenproblems using an iterative eigensolver
as opposed to a direct one.

The originality of our approach, in spite of the assumed loose connection
between eigenproblems, is in the use of the solutions of one problem in the
sequence as input when solving the next one. By its inherent nature only an
iterative method would be able to accept eigenvectors as input. On the other
hand not all such methods are capable of maximally exploiting the information
inputed. In this regards one of the most effective methods is Subspace Iteration
(SI). We have implemented a version of this method accelerated with Chebyshev
polynomials. The end result is an algorithm (ChFSI) whose bulk of computations
is performed making use of the highly optimized Basic Linear Algebra Subrou-
tines (BLAS) library and can be easily parallelized on shared and distributed

A Parallel Iterative Eigensolver for FLAPW 397

memory architectures. In this paper we present preliminary results for a dis-
tributed memory version of ChFSI implemented using the Elemental library
framework [7].

2 FLAPW Simulations on Large Parallel
Architectures

Every DFT method is based on a variational principle stemming from the funda-
mental work of Kohn and Hohenberg [8], and its practical realization [9]. Central
to DFT is the solution of a large number of coupled one-particle Schrödinger-like
equations known as Kohn-Sham (KS).

⎧
�2

2m
≤2 + Veff [n(r)]

⎨

τi(r) = Eiτi(r) ; n(r) =
⎩

i

fiτi(r)

Due to the dependence of the effective potential Veff on the charge density n(r),
in itself a function of the orbital wave functions τi(r), the KS equations are
non-linear and are generally solved self-consistently.

The KS equations need to be “discretized” in order to be solved numeri-
cally. Intended in its broadest numerical sense, the discretization translates the
KS equations in a non-linear eigenvalue problem. Eigenproblems generated by
distinct discretization schemes have numerical properties that are often signifi-
cantly different; for sake of simplicity we can group most of the schemes in three
classes. The first and the second classes make respectively use of plane waves
and localized functions to expand the one-particle orbital wave functions τi(r)
appearing in the KS equations

τi(r) −≥ τk,i(r) =
⎩

G

cGk,iωG(k, r). (1)

Methods in the third class do not use an explicit basis for the τi(r)’s but dis-
cretize the KS equations on a grid in real space using finite differences.

The eigenvalue problems emerging from the first two discretization classes
consist of dense matrices of small-to-moderate size while, within real space meth-
ods, one ends up with very large sparse matrices. Due to the dramatically dif-
ferent set of properties of the eigenproblems, each DFT method uses a distinct
strategy in solving for the required eigenpairs. For instance it is quite com-
mon that methods based on plane waves (ABINIT, VASP, PARATEC, Castep,
. . .) use direct eigensolvers while real space methods (PARSEC, GPAW, Octo-
pus, . . .) make use of iterative eigensolver based on Krylov- or Davidson-like
subspace construction. From the point of view of software packages for distrib-
uted memory architectures, the choice between direct or iterative eigensolvers
leads respectively to the use of traditional parallel libraries like ScaLAPACK or
PARPACK [10].

In this paper we deal with a specific instance of a plane wave method which
splits the basis functions support domain: in a spherical symmetric area around

398 M. Berljafa and E. Di Napoli

each atom, ωG receive contributions by augmented radial functions, while plane
waves are supported in the interstitial space between atoms. This discretization
of the KS equations – known as FLAPW – translates in a set of Nk quite dense
DGEVPs ⎩

G′
(Ak)GG′ cG

′
k,i = θk,i

⎩

G′
(Bk)GG′ cG

′
k,i,

each one labeled by a value of the plane wave vector k. The role of eigenvectors
is played by the n-tuple of coefficients ck,i expressing the orbital wave functions
τi in terms of the basis wave functions ωG.

The entries of each DGEVP matrix are initialized by evaluating numerically
a series of expensive multiple integrals involving the ωGs. Since we are dealing
with non-linear eigenvalue problems, each DGEVP has to be solved in a chain
of SCF-cycles labeled by β

Ak ck,i = θk,iBk ck,i −≥ P
(σ)
k : A

(σ)
k c

(σ)
k,i = θ

(σ)
k,iB

(σ)
k c

(σ)
k,i (β = 1, . . . , N).

All along the sequence the solutions of all P
(σ−1)
k are used to initialize the new

eigenproblems P
(σ)
k . In particular the eigenvectors c

(σ−1)
k,i are used to derive

the orbital functions τ
(σ−1)
k,i which in turn contribute to the charge density

n(σ−1)(r). At the next cycle n(σ−1)(r) contributes to modify the potential Veff

which causes the functional form of the ω
(σ)
G s to change. These new basis func-

tion set directly determines the initialization of the entries of A
(σ)
k and B

(σ)
k and

indirectly the new eigenvectors c
(σ)
k,i. The result are a number Nk of sequences

of eigenproblems
⎜

P
(1)
k . . . P

(N)
k

⎫
, one sequence for each fixed k, where the

eigenpairs (θ(N)
k,i , c

(N)
k,i) converged within tolerance to the solution of the original

non-linear problem.
In theory the chain of computations that goes from P

(σ−1)
k to P

(σ)
k implies a

connection between eigenvectors of successive eigenproblems. The entries of P
(σ)
k

are in fact the result of multiple integrals between ω
(σ)
G and operators depending

on the new charge density n(σ−1)(r). All these quantities are modified by c
(σ−1)
k,i

in a distinct non-linear fashion. Consequently there is no known mathemati-
cal formulation which makes this connection explicit. Correlation between the
eigenvectors becomes evident only numerically [11].

When solving for an eigenvalue problem the first high level choice is between
direct and iterative eigensolvers. The first are in general used to solve for a
large portion of the eigenspectrum of dense problems. The latter are instead the
typical choice for sparse eigenproblems or used to solve for just few eigenpairs
of dense ones. In FLAPW the hermitian matrices Ak and Bk are quite dense,
have size not exceeding 20,000, and each P

(σ)
k is solved for a portion of the lower

spectrum not bigger than 20 %. Consequently, when each DGEVP is singled out
from the rest of the sequence, direct solvers are unquestionably the method of

A Parallel Iterative Eigensolver for FLAPW 399

(a) Distribution of computing time. (b) Random vs Approximate vectors.

Fig. 1. The data in this figure refers to eigenproblems of distinct sizes n relative to
the same physical system Au98Ag10. Plot (a) represents the computing fractions of
EleChFSI’s main algorithmic steps w.r.t. the total computing time. Plot (b) shows
the speed-up of EleChFSI when inputed approximate solutions as opposed to random
vectors.

choice. Currently, most of the codes based on FLAPW methods [12–14] use the
algorithms BXINV or MRRR directly out of the ScaLAPACK or ELPA library.

If the use of direct solvers is the obvious choice when each P
(σ)
k is solved in

isolation, the same conclusion may not be drawn when we look at the entire
sequence of

⎜
P

(σ)
k

⎫
. In [11] it is shown how the correlation between eigenvectors

of successive DGEVPs becomes manifest in the evolution of the angles χ
(σ)
k,i =

∈c(σ−1)
k,i , c

(σ)
k,i∞. In particular the χ

(σ)
k,i decrease almost monotonically as a function

of cycle index β, going from ≈10−1 down to ≈10−8 towards the end of the
sequence.

The empirical evolution of the eigenvectors suggests that they can be
“reused” as approximate solutions, and inputed to the eigensolver at the succes-
sive cycle. Unfortunately no direct eigensolver is capable of accepting vectors as
approximate solutions. Therefore if we want to exploit the progressive collinear-
ity of vectors as the sequence progresses, we are lead to consider iterative solvers;
these solvers by their own nature build approximate eigenspaces by manipulat-
ing approximate eigenvectors. In particular we need a block iterative eigensolver
that accepts at the same time many vectors as input. Among the many choices
of block solvers, the Chebyshev Filtered Subspace Iteration method (ChFSI)
showed the highest potential to take advantage of approximate eigenvectors [15]
(see also Fig. 1(b)). Since the core of the algorithm is based on the repetitive use
of matrix-matrix multiplications, the use of the BLAS 3 library makes it very
efficient and easy to scale.

400 M. Berljafa and E. Di Napoli

3 The Parallel Chebyshev Subspace Iteration

Subspace Iteration complemented with a Chebyshev polynomial filter is a well
known algorithm in the literature [16]. A version of it was recently developed for
a real space discretization of DFT by Chelikowsky et al. [17,18] and included in
the PARSEC code [19].

SI is probably one of the earliest iterative algorithms to be used as numer-
ical eigensolver. It is by definition a block solver since it simply attempts to
build an invariant eigenspace by multiplying a block of vectors with the oper-
ator to be diagonalized. It is a known fact that any implementation based on
subspace iteration converges very slowly. By using a polynomial filter on the ini-
tial block of inputed vectors the method experiences a high rate of acceleration.
Unfortunately the block of vectors spanning the invariant subspace could easily
become linearly dependent. In order to avoid such an occurrence SI is usually
complemented with some re-orthogonalization procedure.

Algorithm 1. Chebyshev Filtered Subspace Iteration with locking
Input: Matrix H(λ) of the DGEVP reduced to standard form, approximate eigenvec-

tors Ŷ (λ−1)def=
[
ŷ
(λ−1)
1 , . . . , ŷ

(λ−1)
nev

]
and eigenvalues θ

(λ−1)
1 and θ

(λ−1)
nev+1.

Output: Wanted eigenpairs (τ, Y) .

1: Estimate the largest eigenvalue. γ Lanczos
2: repeat
3: Filter the vectors, Ŷ = Cm(Ŷ). γ Chebyshev filter
4: Re-orthonormalize Ŷ . γ QR algorithm
5: Compute Rayleigh quotient G = Ŷ †H(λ)Ŷ . γ Rayleigh-Ritz (Start)
6: Solve the reduced problem GŴ = Ŵ τ̂.
7: Compute Ŷ = Ŷ Ŵ . γ Rayleigh-Ritz (End)
8: for i = converged → nev do γ Deflation & Locking (Start)
9: if Res(Ŷ:,i, τ̂i) < tol then

10: τ =
[
τ τ̂i

]
11: Y =

[
Y Ŷ:,i

]
12: end if
13: end for γ Deflation & Locking (End)
14: until converged ≥ nev

Our ChFSI algorithm is a slightly more sophisticated version of the basic
SI and is specifically tailored for DFT-like eigenproblems. The whole algorithm
is illustrated in the Algorithm 1 scheme. Notice that the initial input is not
the initial P (σ) but its reduction to standard form H(σ) = L−1A(σ)L−T where
B(σ) = LLT, and Ŷ (σ−1) are the eigenvectors of H(σ−1). ChFSI uses few Lanczos
iterations (line 1) so as to estimate the upper limit of the eigenproblem spec-
trum [20]. This estimate is necessary for the correct usage of the filter based on
Chebyshev polynomials [16]. After the Chebyshev filter step (line 3) the result-
ing block of vectors is re-orthonormalized using a simple QR algorithm (line 4)

A Parallel Iterative Eigensolver for FLAPW 401

followed by a Rayleigh-Ritz procedure (line 5). At the end of the Rayleigh-Ritz
step eigenvector residuals are computed, converged eigenpairs are deflated and
locked (line 13) while the non-converged vectors are sent again to the filter to
repeat the whole procedure.

The Chebyshev polynomial filter is at the core of the algorithm. The vectors
Ŷ are filtered exploiting the 3-terms recurrence relation which defines Chebyshev
polynomials of the first kind

Cm+1(Ŷ) = 2 H Cm(Ŷ) − Cm−1(Ŷ) ; Cm(Ŷ) def= Cm(H) · Ŷ . (2)

This construction implies all operations internal to the filter are executed through
the use of ZGEMM, the most performant among BLAS 3 routines. Since roughly
90% of the total CPU time is spent in the filter (see pie chart in Fig. 1), the mas-
sive use of ZGEMM makes ChFSI quite an efficient algorithm and potentially a
very scalable one.

The parallel MPI version of ChFSI (EleChFSI) is implemented within the
Elemental library, a framework for distributed memory dense linear algebra.
The core of the library is the two-dimensional cyclic element-wise (“elemental”
or “torus-wrap”) matrix distribution (default distribution hereafter). The p MPI
processes involved in the computation are logically viewed as a two-dimensional
r × c process grid with p = r × c. The matrix A = [aij] ∧ Fn×m is distributed
over the grid in such a way that the process (s, t) owns the matrix

As,t =

⎬

⎭
⎞

aτ,β aτ,β+c . . .
aτ+r,β aτ+r,β+c . . .

...
...

⎠

⎢ ,

where δ ∃ (s + πr) mod r and δ ∃ (t + πc) mod c, and πr and πc are arbi-
trarily chosen alignment parameters.

For a given number p > 1 of processors there are several possible choices
for r and c forming different grid shapes (r, c) def= r × c. Since the grid shape
can have a significant impact on the overall performance, careful experiments
should be undertaken in order to determine the best choice of (r, c). Another
parameter which affects performance is the algorithmic block size. This term
refers to the size of blocks of input data and is correlated to the square root
of the L2 cache [21]. In practice, the effective size of the algorithmic block not
only depends on the algorithm itself, but it is also affected by the architecture.
Figure 2 shows that for EleChFSI a block size of 256 is always recommended
independently of the number of cores or grid shape. This effect is imputable to
the large number of matrix multiplications carried on by the filter.

In the EleChFSI algorithm the Hamiltonian and the approximate eigenvec-
tors are distributed using the default distribution over the r × c grid employing
the Elemental library DistMatrix class1 which internally “hides” the details
about the matrix data-type, size, leading dimension, and alignments. The net
1 The library provides several other matrix distributions [7].

402 M. Berljafa and E. Di Napoli

Fig. 2. The data in this plot refer to a DGEVP of Δ = 20, size n = 13, 379, and number
of sought after eigenpairs nev = 972, corresponding to the physical system Au98Ag10.
The eigenproblem was repeatedly solved with EleChFSI using 16, 32, and 64 cores, all
possible grid shapes (r, c) and three distinct algorithmic block sizes.

effect is to lift the user from the burden of passing all those attributes to inter-
nal routines as it is customary in (P)BLAS and (Sca/P)LAPACK libraries. The
resulting separation of concerns allows for the parallelization of the Chebyshev
filter in a straightforward fashion by calling the distributed memory implemen-
tation of ZGEMM. However, due to the generalization of the 3-term recursive
relation, care must be taken with the distribution update of diagonal entries of
the Hamiltonian.

The reduced eigenproblem in the Rayleigh-Ritz step is solved using a parallel
implementation of the MRRR eigensolver – EleMRRR [6] – which is an inte-
gral part of Elemental. The deflation and locking mechanism deserves particular
attention. When only a portion of the vectors are locked, the algorithm has to
re-filter a number of vectors that may, in general, no longer have the same align-
ment πc. To overcome this problem the Elemental interface provides (among
others) the routine View, which takes as arguments two distributed matrices
A and B and four integers i, j, height and width and makes A a view of the
height × width sub-matrix of B starting at coordinate (i, j).2 The View routine
works purely on pointers and fully handles the distribution details eliminating
the need of allocating additional memory where to copy the data.

The communication for the computations is performed almost entirely in
terms of collective communication within rows and columns of the process grid.
Such strategy in general implies that a square grid shape is usually the best
2 The function is overloaded, and there are thus other different definitions.

A Parallel Iterative Eigensolver for FLAPW 403

Table 1. Simulation data

Material nev Δmax n Material nev Δmax n

25 5,638 13 3,893
Au98Ag10 972 25 8,970 Na15Cl14Li 256 13 6,217

25 13,379 13 9,273

option [22]. However, since in our case we are solving for a small fraction of
the eigenspectrum, the matrix of vectors Ŷ (σ) is tall and skinny. Consequently
we expect that a narrow rectangular grid shape will do a better job than a
square and wider one. This deduction is confirmed by Fig. 2; independently of
the number of cores the optimal grid shape is either (2m, 4) or (2m+1, 2), where
m > 2.

4 Numerical Results and Conclusions

The set of numerical tests presented here were performed on two distinct phys-
ical systems using three different sizes for the volume of the reciprocal space
defining the range of the vector G appearing in (1). Consequently we obtained
three sequences of eigenproblems for each physical systems3. The data of the
sequences of eigenproblems are summarized in Table 1. All our numerical tests
were performed on JUROPA, a large general purpose cluster where each node
is equipped with 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors at
2.9 GHz and 24 GB memory (DDR3, 1066 MHz). The nodes are connected by
an Infiniband QDR network with a Fat-tree topology. The tested routines were
compiled using the Intel compilers (ver. 12.0.3) with the flag -O3 and linked
to the ParTec’s ParaStation MPI library (ver. 5.0.26). The Elemental library
(release 0.79) was used in conjunction with Intel’s MKL BLAS (ver 11.0). All
CPU times were measured by running each test multiple times and taking the
average of the results. Eigenproblems were solved by EleChFSI by requiring the
eigenpairs absolute residuals to be lower than 10−10.

As already mentioned in the previous sections, Fig. 1 shows unequivocally
the great advantage EleChFSI obtains from the use of the eigenvectors Ŷ (σ−1)

as input in solving the next eigenproblem H(σ) in the sequence. This behavior is
independent of the physical system or spectral properties of the eigenproblems:
EleChFSI experiences speed-ups higher that 2X and often well above 3X towards
the end of the sequence. Figure 2 also illustrate which is the optimal choice of grid
shape and algorithmic block size. The remaining numerical tests were performed
using exclusively the strategies outlined above.

Figure 3 illustrate the scalability, both strong and weak, of EleChFSI. Plot
(a) shows a steady decrease of CPU time as the number of cores increases. The
rate of reduction is practically the same for both systems despite their size differ
3 We selected only sequences corresponding to the first k vector.

404 M. Berljafa and E. Di Napoli

(a) EleChFSI’s Strong scalability. (b) EleChFSI’s Weak scalability.

Fig. 3. EleChFSI’s scalability for an increasing number of cores. In plot (a) the size of
the eigenproblems are kept fixed while the number of cores is progressively increased.
Eigenproblems of the two bigger system in Table 1 are tested, namely n = 13, 379 and
n = 9, 273. In plot (b) all the systems are tested keeping the ratio of data per processor
fixed. Times are weighted a posteriori by a factor keeping into account the ratio of
operations per data varies in a non-predictable fashion with the size of the system.

by more than 30%. This plot shows that EleChFSI is extremely efficient even
when the ratio of data per processor is not optimal. The weak scalability plot
makes manifest the great potential of this algorithm for eigenproblems originat-
ing from FLAPW methods. The almost flatness of the two lines implies that
large size eigenproblems can greatly exploit large supercomputing architectures.
In other words EleChFSI has the potential of allowing the users of FLAPW-
based codes to generate more complex physical systems made of thousands of
atoms as opposed to just few hundreds.

Compared to direct solvers, EleChFSI promises to be quite competitive.
Depending on the number of eigenpairs computed, our algorithm is on par or
even faster than EleMRRR. In plot (a) of Fig. 4 EleChFSI appears to fall behind
the direct solver when using just 64 cores. The situation improves substantially
with 128 cores and at the end of the sequence both algorithms are on par. The
situation is even more favorable in plot (b) where EleChFSI is already faster
than EleMRRR for half of the eigenproblems in the sequence (64 cores). When
the tests are repeated with 128 cores EleChFSI is distincly the faster of the two
algorithms. Since the fraction of the spectrum computed in plot (a) and (b)
is respectively ≈7 % and ≈3 %, Fig. 4 shows that EleChFSI scales better than
EleMRRR and is more performant when the number of eigenpairs is not too
high.

In conclusion, not only EleChFSI showed to take the greatest advantage from
the progressive collinearity of eigenvectors along the sequence, but it proved
to easily adapt to parallel architectures. We showed how such an algorithm,
parallelized for distributed memory architectures, scales extremely well over a
range of cores commensurate to the size of the eigenproblems. Compared to
direct eigensolvers, EleChFSI is competitive with routines out of ScaLAPACK

A Parallel Iterative Eigensolver for FLAPW 405

(a) Au98Ag10 - n = 13, 379 (b) Na15Cl14Li - n = 9, 273

Fig. 4. Comparing EleChFSI with EleMRRR on eigenproblems of increasing self-
consistent cycle index Δ. For the size of eigenproblems here tested the ScaLAPACK
implementation of BXINV is comparable with EleMRRR [6]. For this reason a direct
comparison with the BXINV solver is not included here.

and Elemental. Eventually the use of EleChFSI in FLAPW-based codes will
enable the final user to access larger physical systems which are currently out of
reach.

Acknowledgements. This research was in part supported by the VolkswagenStiftung
through the fellowship “Computational Sciences”. We are thankful to the Jülich Super-
computing Center for the computing time made available to perform the numerical
tests. Special thanks to Daniel Wortmann and the FLEUR team for providing the
input files that generated the eigenproblems used in the numerical tests.

References

1. Peters, G., Wilkinson, J.H.: The calculation of specified eigenvectors by inverse
iteration. In: Bauer, F. (ed.) Linear Algebra, vol. 2 of Handbook for Automatic
Computation, pp. 418–439. Springer, Berlin, Heidelberg (1971)

2. Dhillon, I.S.: A New O(n2) algorithm for the symmetric tridiagonal eigen-
value/eigenvector problem, Ph.D. thesis, Computer Science Division, Department
of Electrical Engineering and Computer Science, University of California, Berkeley,
CA, USA (1997)

3. Dhillon, I.S., Parlett, B.N.: Multiple representations to compute orthogonal eigen-
vectors of symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1–28 (2004)

4. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1987)

5. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L.,
Lang, B., Lederer, H., Willems, P.R.: Parallel solution of partial symmetric eigen-
value problems from electronic structure calculations. Parallel Comput. 37(12),
783–794 (2011)

6. Petschow, M., Peise, E., Bientinesi, P.: High-performance solvers for dense Her-
mitian eigenproblems. SIAM J. Sci. Comput. 35(1), c1–c22 (2013)

406 M. Berljafa and E. Di Napoli

7. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Ele-
mental: a new framework for distributed memory dense matrix computations. ACM
Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

8. Hohenberg, P.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871
(1964)

9. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138 (1965)

10. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM,
Philadelphia (1998)

11. Di Napoli, E., Blügel, S., Bientinesi, P.: Correlations in sequences of general-
ized eigenproblems arising in density functional theory. Comput. Phys. Commun.
183(8), 1674–1682 (2012)

12. Blügel, S., Bihlmayer, G., Wortmann, D.: FLEUR. http://www.flapw.de
13. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: Wien2k. http://www.

wien2k.at/
14. Dewhurst, K., Sharma, S., Ambrosch-Draxl, C.: The exciting code. http://

exciting-code.org/
15. Di Napoli, E., Berljafa, M.: Block iterative eigensolvers for sequences of correlated

eigenvalue problems. Comput. Phys. Commun. 184(11), 2478–2488 (2013)
16. Saad, Y.: Numerical methods for large eigenvalue problems. SIAM, Philadelphia

(2011)
17. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Parallel self-consistent-field cal-

culations via chebyshev-filtered subspace acceleration. Phys. Rev. E 74(6), 066704
(2006)

18. Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Self-consistent-field calcula-
tions using chebyshev-filtered subspace iteration. J. Comput. Phys. 219(1), 172–
184 (2006)

19. Kronik, L., Makmal, A., Tiago, M.L., Alemany, M.M.G., Jain, M., Huang, X.,
Saad, Y., Chelikowsky, J.R.: Parsec - the pseudopotential algorithm for real-space
electronic structure calculations: recent advances and novel applications to nano-
structures. Phys. Status Solidi B 243(5), 1063–1079 (2006)

20. Zhou, Y., Li, R.C.: Bounding the spectrum of large hermitian matrices. Linear
Algebra Appl. 435(3), 480–493 (2011)

21. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 1–25 (2008)

22. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn, R.A.: Collective communi-
cation: theory, practice, and experience. Concurrency Comput. Pract. Exp. 19(13),
1749–1783 (2007)

http://www.flapw.de
http://www.wien2k.at/
http://www.wien2k.at/
http://exciting-code.org/
http://exciting-code.org/

Sequential Monte Carlo in Bayesian Assessment
of Contaminant Source Localization Based

on the Sensors Concentration Measurements

Anna Wawrzynczak1,2(B), Piotr Kopka1,3, and Mieczyslaw Borysiewicz1

1 National Centre for Nuclear Research, Świerk-Otwock, Poland
a.wawrzynczak@ncbj.gov.pl

2 Institute of Computer Science, Siedlce University, Siedlce, Poland
3 Poland Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract. Accidental atmospheric releases of hazardous material pose
great risks to human health and the environment. In this context it
is valuable to develop the emergency action support system, which can
quickly identify probable location and characteristics of the release source
based on the measurement of dangerous substance concentration by the
sensors network. In this context Bayesian approach occurs as a powerful
tool being able to combine observed data along with prior knowledge to
gain a current understanding of unknown model parameters.

We have applied the methodology combining Bayesian inference with
Sequential Monte Carlo (SMC) to the problem of the atmospheric con-
taminant source localization. The algorithm input data are the on-line
arriving concentrations of given substance registered by the distributed
sensor’s network.

We have proposed the different version of the Hybrid SMC along with
Markov Chain Monte Carlo (MCMC) algorithms and examined its effec-
tiveness to estimate the probabilistic distributions of atmospheric release
parameters. The proposed algorithms scan 5-dimensional parameters’
space searching for the contaminant source coordinates, release strength
and atmospheric transport dispersion coefficients.

Keywords: Bayesian inference · Stochastic reconstruction · MCMC
methods · SMC methods

1 Introduction

Environmental sensors have been deployed in various cities for early detection
of contaminant releases into the atmosphere. Accidental atmospheric releases of
hazardous material pose great risk to human health and the environment. During
the event of an atmospheric release of chemical, radioactive or biological materi-
als, emergency responders need to, as soon as possible, determine the location of
source of dispersed substance. Such information help responders to make time-
critical decisions regarding precautions for peoples safety, plans for evacuation

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 407–417, 2014.
DOI: 10.1007/978-3-642-55195-6 38, c© Springer-Verlag Berlin Heidelberg 2014

408 A. Wawrzynczak et al.

and management of emergency services. In this context it is valuable to develop
the emergency system which based on measurements of the concentration of dan-
gerous substance by the network of sensors can inform about probable location
of the release source. Moreover, the contamination source’s location should be
found as soon as possible.

It is clear that knowing gas source and wind field we can calculate the
expected gas concentration for any downwind location. On the other hand,
given concentration measurements and knowledge of the wind field and other
atmospheric air parameters, finding the location of the source and its parame-
ters is ambiguous. The problem has no unique solution and can be considered
only in the probabilistic frameworks. To create the model realistically reflecting
the real situation based only on a sparse point-concentration data is not trivial.
This task requires specification of set of model’s parameters. In the framework of
Bayesian statistics all quantities included in the mathematical model are mod-
eled as random variables with joint probability distributions. This randomness
can be interpreted as parameter variability, and is reflected in the uncertainty of
the true values expressed in terms of probability distributions. Bayesian methods
reformulate the problem into searching for a solution based on efficient sampling
of an ensemble of simulations, guided by comparisons with data. This method-
ology provides probabilistic estimates of parameters, which in turn are used to
produce a forward dispersion model, which is necessary to obtain data to com-
pare with real observations e.g.[1,2].

Previously [3,4] we have applied the methodology combining Bayesian infer-
ence with Marcov Chain Monte Carlo (MCMC) methods to the problem of the
contaminant source localization. In this paper we propose the application of the
Sequential Monte Carlo (SMC) methods combined with the Bayesian inference
to the problem of the localization of the atmospheric contamination source. We
present the possibility to connect MCMC and SMC to provide additional benefit
in the process of event reconstruction. Proposed algorithms were tested on the
synthetic release experiment.

2 Problem Setup

2.1 Synthetic Data

Our main goal is to conduct dynamic inference on an unknown atmospheric
release and its impact as more information (data) accumulates. To test the pro-
posed methods we require some concentration data. To satisfy this requirement
we have performed the simulation with use of the atmospheric dispersion second-
order Closure Integrated PUFF Model (SCIPUFF). SCIPUFF is an ensemble
mean dispersion model designed to compute the time-dependent field of expected
concentrations resulting from one or more sources. The model solves the trans-
port equations using a second-order closure scheme and treats releases as a col-
lection of Gaussian puffs [5]. In simulation we assumed that we have 10 sensors
distributed over 15 km × 15 km area, the location of sensors was chosen randomly
within the domain (Fig. 1). The contamination source was located at x = 2 km,

SMC in Bayesian Assessment of Contaminant Source Localization 409

y = 8 km, z = 50 m within the domain, the simulated release was continuous
with rate q = 500 g/s and started one hour before first sensors measurements.
The wind was directed along x axis with speed 5 m/s. Further in this paper we
assume that the only algorithm input information we have, are reported every
15 min (in subsequent time steps) during 1.5 h concentrations of dispersed sub-
stance registered by 10 sensors (Fig. 1). We run algorithms searching for the
source of contamination just after first information from sensors (time step = 1)
and update the obtained probabilities with use of the developed algorithms by
subsequent sensors registrations.

2.2 Forward Dispersion Model

In Bayesian approach the problem of finding the most probable localization of
contamination source is reduced to the problem of specification of set of disper-
sion model’s parameters, which depends on the applied model. The aim is to
find the source distribution for which model will generate concentrations closest
to those actually measured. To do so, a forward dispersion model is needed to
calculate the concentration CM

i at the points i of sensors locations for the tested
set of model parameters M at each algorithm step. The applied model can not
be to complicated as far the time of computation is crucial. Moreover, advanced
dispersion models require large set of parameters to be specify, which leads to
the large space of scanned parameters. In this paper we have adopted the fast-
running Gaussian plume dispersion model (eg. [6]) as the forward model. This
choice was motivated by the requirement of the limiting the computational time
and the requirement to do not use the same model like was used to generate the
testing synthetic data.

The Gaussian plume dispersion model for uniform steady wind conditions
can be written as follows:

C(x, y, z) =
q

2πσyσzV̄
exp

[

−1
2

(
y

σy

)2
]

× (1)

{exp

[

−1
2

(
z − H

σz

)2
]

+ exp

[

−1
2

(
z + H

σz

)2
]

}

where C(x, y, z) is the concentration at a particular location, V is the wind speed
directed along x axis, q is the emission rate or the source strength and H is the
height of the release; y and z are the distance along horizontal and vertical
direction, respectively; σy and σz are the standard deviation of concentration
distribution in the crosswind and vertical direction. We assume to work under
Pasquill stability type C in the urban environment for which the Briggs formula
are [7]: σy = 0.22x · (1 + x · 4 · 10−5)−0.5 and σz = 0.2x. However, in scanning
algorithm we assume that we do not know exact behavior of the plume and
consider those coefficients as not completely known. Thus, they are taken as
σy = ζ1 · x · (1 + x · 4 · 10−5)−0.5 and σz = ζ2 · x where values ζ1 and ζ2 are
sampled by algorithm within interval [0, 0.4].

410 A. Wawrzynczak et al.

Fig. 1. Distribution of the sensors and the release’s source over the domain(left panel)
and the synthetic concentration registered by the 10 sensor in 6 subsequent intervals
(right panel)

To summarize, in this paper the searched model’s parameters’ space is:

M = (x, y, q, ζ1, ζ2). (2)

3 Theoretical Backgrounds

3.1 Bayesian Inference

A good introduction to Bayesian theory can be found in [8]. Bayes’ theorem, as
applied to an emergency release problem, can be stated as follows:

P (M |D) ∝ P (D|M)P (M) (3)

where M represents possible model configurations or parameters and D are
observed data. For our problem, Bayes’ theorem describes the conditional prob-
ability P (M |D) of certain source parameters (model configuration M) given
observed measurements of concentration at sensor locations (D). The probabil-
ity P (D|M), for fixed D, is called the likelihood function, while P (M) is the
prior distribution. To estimate the unknown source parameters M using Eq. (3),
the posterior distribution P (M |D) must be sampled.

Value of likelihood function for a sample is computed by running a forward
dispersion model with the given source parameters M and comparing the model
predicted concentrations in the points of sensors location with actual data D,
as:

ln[P (D|M)] = ln[λ(M)] = −
∑N

i=1[log(CM
i) − log(CE

i)]2

2σ2
rel

(4)

where CM
i are the predicted by the forward model concentrations at the sensor

locations i, CE
i are the sensor measurements, N is the number of sensors; and

σ2
rel is the standard deviation of the combined forward model and measurement

SMC in Bayesian Assessment of Contaminant Source Localization 411

errors. The value of σ2
rel can be varied depending on the observation errors and

model formulation. The closer the predicted values are to the measured ones, the
higher is the likelihood of the sampled source parameters. After calculation value
of the likelihood function for the proposed state its acceptance is performed as:
ln(λprop)

ln(λ) ≥ U(0, 1) where λprop of the likelihood value of the proposal state, λ is
the previous likelihood value, and U(0, 1) is a random number generated from
a uniform distribution in the interval (0, 1). This condition is more likely to be
satisfied if the likelihood of the proposal is only slightly lower than the previous
likelihood value. It gives a chance to choose even a little “worse” state, because
the probability of acceptance depends directly on the quality of proposed state.

We use a sampling procedure with the Metropolis-Hastings algorithm to
obtain the posterior distribution P (M |D) of the source term parameters given
the concentration measurements at sensor locations [8,9]. This way we com-
pletely replace the Bayesian formulation with a stochastic sampling procedure
to explore the model parameters’ space and to obtain a probability distribution
for the source location.

The posterior probability distribution (3) is computed directly from the
resulting samples defined by the algorithm described below and is estimated
with

P (M |D) ≡ π̂N (M) =
1
N

N∑

i=1

δ(Mi − M) (5)

which represents the probability of a particular model configuration M giving
results that match the observations at sensors locations. Equation (5) is a sum
over the entire samples set of length N of all the sampled values Mi. Thus
δ(Mi − M) = 1 when Mi = M and 0 otherwise. In the case of MCMC parts
interpretation is as follows: if a Markov chain spends several iterations at the
same location value of P (M |D) increases through the summation.

3.2 Sequential Monte Carlo

SMC is designed to sample from dynamic posterior distributions, both in terms
of use the dynamic nature of the model and also in terms of reusing previous
calculations eg. [10,11].

Sequential Importance Resampling. Sequential importance resampling
(SIR) is a sequential version of importance sampling (IS) and combines IS with
resampling procedure [12] . At the center of the SMC approach in our case is the
generation of a weighted sample using IS method. IS uses a proposal distribution
q(.), that is close to target distribution π(.) and from which it is easy to generate
samples. The basic methodology is given below:

1. Generate a sample of size N from the proposal distribution q(M) :
M(i) ∼ q(M), i = 1, ..., N .

412 A. Wawrzynczak et al.

2. Compute the importance weights: w̌(M(i)) ∝ π(M(i))

q(M(i))
, i = 1, ..., N and define

w(M(i)) = w̌(M(i))∑N
j=1 w̌(M(j))

.

3. The distribution π(·) is then approximated by
π̌N (M) ≡ ∑N

i=1 w(M(i))δ(Mi − M) which places the probability mass
w(M(1)), ..., w(M(N)) on the support points M(1), ...,M(N).

Hence, the weights would be proportional to the value of likelihood (4). In our
case to calculate the weight we use of the following formula:

w̌(M(i)) ∝ − 1
ln[λ(M(i))]

, i = 1, ..., N (6)

Resampling is used to avoid the situation when almost all (except only a few) of
the importance weights are close to zero. Resampling procedure create new set of
samples based on the existing particles (particle = sample+weight). It is similar
to repeating sampling with replacement. Basic idea of resampling methods is
to eliminate samples which have small normalized importance weights and to
concentrate upon samples with large weights. So, for i = 1, ..., N are chosen
samples with an indexes k(i) distributed according to the discrete distribution
with N elements satisfying P (k(i) = l) = w(M(i)) for l = 1, ..., N ; then for
i = 1, ..., N for samples Mk(i) are assigned the weights w(M(i)) = 1

N .
Effective sample size is N̂eff = 1∑N

i=1 w(M(i))
2 where w(M(i)) are normalized

weights. If all weights are equal 1/N then effective sample size is N . In the
contrast to a situation where all weights = 0, except for one weight = 1, effective
sample size is equal 1.

Sequential Monte Carlo Algorithms. The SMC algorithm needs some set
of samples to be initialized. An ideal way to generate this initial sample is use
MCMC data from first K iterations in all time steps. The resulting equally
weighted MCMC set of samples can then be passed on to SMC for processing in
the subsequent iteration.

We assume that the information from the sensors arrive subsequently in six
time steps. We start to search for the source location (x, y), release rate (q)
and model parameters ζ1 and ζ2 after first sensors’ measurements (based on the
data in time t = 1, see (Fig. 1)). Thus, scanning algorithm is run with obtaining
the first measurements from the sensors. Based on this information we obtain
the probability distributions of the searched parameters (5) starting from the
randomly chosen set of parameters M . The forward calculation are performed
for the actual state M and likelihood function λ is calculated. Then we apply
random walk procedure “moving” our Markov chain to the new position. Details
of the algorithm can be found in [3,4]. After K iteration we pass all the samples
(from all 10 chains)to the sequential procedure. We compute importance weights
by and normalize them, next we use roulette procedure to draw N̂eff samples
from the set generated by Markov Chain.

SMC in Bayesian Assessment of Contaminant Source Localization 413

In this paper, we consider the following variants of scanning algorithms:

1. MCMC. In this algorithm, the parameter space scan in each time step t is
independent form the previous ones. So, in this case we don’t use information
from past calculations. MCMC don’t use sequential mechanism.

2. SMC via Maximal Weights. In subsequent SMC calculations algorithms
uses the results obtained by SMC in the previous time steps to run calculation
with use of the new measurements. As the first location of Markov chain M t

0

it select the set of M parameters for which weight in previous time step was
the highest. So, for t > 1:
M t

0 ∼ arg (M ∈ {
M t−1

0 , ...,M t−1
n

}
) max w(M t−1

i). With this approach, we
always start with the best values of the model (previously found) and correct
the result with new information from sensor.

3. SMC via Rejuvenation and Extension. In contrast to the SMC via Max-
imal Weights this algorithm as the first location of Markov chain M t

0 at the
time t > 1 chooses the set of parameters M selected randomly from previous
realization of resampling procedure in t − 1 with use of the uniform dis-
tribution: M t

0 ∼ U(M t−1
0 ,M t−1

1 , ...,M t−1
n) a uniform distribution {1, ..., n}.

Applying the new knowledge (new measurements) the current chain is
“extended” starting from selected position with use of the new data in the
likelihood function calculation.

4 Results

Algorithms described in Sect. 3.2 have been tested on the same synthetic data set
(Fig. 1). In our calculation we use 10 Markov chains in each time step. Figure 2
presents the traces, of 4 Markov chains and samples after resampling in SMC
via Maximal Weight algorithm for 4 time steps, in the location space. The num-
ber of iteration n for each Markov chain is n = 8000. This number was chosen

Fig. 2. The traces of four Markov chains in the location space for MCMC (left panel)
and samples after resampling in SMC via Maximal Weight algorithm for 4 time steps.
The source location is marked by triangle

414 A. Wawrzynczak et al.

based on the numerical experiments as the number of iteration needed to reach
convergence for each sampled model parameters M . Statistical convergence to
the posterior distribution was monitored by computing between-chain variance
and within-chain variance [3,8]. One of the important aspects of stochastic pro-
cedure of calculating the posterior distribution is choosing burn-in phase. The
burn-in factor represents the number of samples needed at the beginning for the
Markov chain to actually reach the state when it is sampling from the target
distribution. These initial samples are discarded and not used for inference. In
our calculation the burn-in was fixed at 1000 iterations.

Figures 3 and 4 shows the marginal probability distribution for x and y coor-
dinates of source location within the considered domain calculated by MCMC
and SMC via Maximal Weights algorithms. The exact source location, set up

Fig. 3. Posterior distribution as inferred by the Bayesian event reconstruction for
MCMC algorithm for x an y parameters. Posterior distributions were averaged based
on the data for all Markov chains in each time step. Vertical lines represent the target
value.

Fig. 4. Posterior distribution as inferred by the Bayesian event reconstruction for SMC
via Maximal Weights algorithm for x an y parameters. Posterior distributions were
averaged based on the data for all samples in each time step. Vertical lines represent
the target value.

SMC in Bayesian Assessment of Contaminant Source Localization 415

5000 10000 15000
0

0.02

0.04

MCMC

x

P
.(x

)

5000 10000 15000
0

0.05

0.1

y

P
.(y

)

5000 10000 15000
0

0.02

0.04

SMC Maximal Weights

x

P
.(x

)

5000 10000 15000
0

0.05

0.1

y
P

.(y
)

5000 10000 15000
0

0.02

0.04

SMC Rejuvenation and Extension

x

P
.(x

)

5000 10000 15000
0

0.05

0.1

y

P
.(y

)

Fig. 5. Posterior distribution as inferred by the Bayesian event reconstruction for all
applied algorithms for x an y parameter. Posterior distributions were averaged over
data for all time steps. Vertical lines represent the target value.

in creation of the testing data, is marked by the vertical line. The distributions
obtained from SMC via Rejuvenation and Extension were very similar to results
of SMC via Maximal Weights. One can see that all algorithms found, with high
probability, the contamination source location in the crosswind y direction. The
high peek in the histogram is justified by the sensitivity of the used forward
dispersion model to this parameter. Another situation is with the x coordinate
of the source. The MCMC algorithm do not find the right x value. At the same
time for the two SMC algorithms the synthetic true answer lies within a region
of high posterior probability. It is worth to mention that these algorithms (SMC
via Maximal Weights, SMC via Rejuvenation and Extension) use the probabil-
ity distributions obtained based on information from previous measurements to
update the distribution with use of the new data which can be seen from Fig. 4.
This methodology makes these algorithms more effective in location the most
probable value of considered parameters. However, none of the methods found
the correct release rate q. This is caused by the simplicity of the applied forward
dispersion model. We do not consider here the results for ζ1, ζ2 due to difference
of the SCIPUFF and Gaussian models in its estimation.

To effectively compare the results given by all proposed algorithms we have
estimated the joint marginal distribution of x and y parameters. Figure 5 presents
the posterior distributions averaged based on the data for all time steps for all
samples. We see that, in contrary to MCMC method, both modifications of
SMC methods successfully find the true location of contaminant source assumed
in creation of the synthetic data.

5 Conclusions

We have presented a methodology to reconstruct a source of contamination
based on a set of sparse measurements. The method combines Bayesian infer-
ence with SMC sampling and produces posterior probability distributions of

416 A. Wawrzynczak et al.

the parameters describing the unknown source. Developed dynamic data-driven
event reconstruction model, which couples data and predictive models through
Bayesian inference, successfully found the solution to the stated inverse problem
i.e. having the downwind concentration measurement and knowledge of the wind
field algorithm found the most probable location of the source. We have examined
various version of the SMC algorithms i.e. SMC via Maximal Weights, SMC via
Rejuvenation and Extension and compare its effectiveness to estimate the prob-
abilistic distributions of searched parameters with MCMC. We have shown the
advantage of the SMC algorithms that in different ways use the source location
parameters probability distributions obtained basing on available measurements
to update the marginal probability distribution. The probabilistic aspect of the
solution optimally combines a likely answer with the uncertainties of the avail-
able data. Among several possible solutions, the Bayesian source reconstruction
is solely able to find values of the model parameters that are more consistent
with the data available and its uncertainties. The stochastic approach used in
this paper is completely general and can be used in other fields where the para-
meters of the model bet fitted to the observable data should be found.

Acknowledgments. This work was supported by the Welcome Programme of the
Foundation for Polish Science operated within the European Union Innovative
Economy Operational Programme 2007-2013 and by the EU and MSHE grant nr
POIG.02.03.00-00-013/09. The work was supported by the project VI.B.08 under the
NCBiR national programme: “Improving labour and safety conditions: 2nd stage”.

References

1. Watzenig, D.: Bayesian inference for inverse problems - statistical inversion. Elek-
trotech. Informationstechnik 124(7–8), 240–247 (2007)

2. Senocak, I., Hengartner, N.W., Short, M.B., Daniel, W.B.: Stochastic event recon-
struction of atmospheric contaminant dispersion using Bayesian inference. Atmos.
Environ. 42(33), 7718–7727 (2008)

3. Borysiewicz, M., Wawrzynczak, A., Kopka, P.: Stochastic algorithm for estimation
of the model’s unknown parameters via Bayesian inference. In: Proceedings of the
Federated Conference on Computer Science and Information Systems, pp. 501–508.
IEEE Press (2012)

4. Borysiewicz, M., Wawrzynczak, A., Kopka, P.: Bayesian-based methods for the
estimation of the unknown model’s parameters in the case of the localization of
the atmospheric contamination source. Found. Comput. Decis. Sci. 37(4), 253–270
(2012)

5. Sykes, R.I. et al.: PC-SCIPUFF Version 1.2PD Technical Documentation. ARAP
Report No. 718. Titan Corporation (1998)

6. Turner, D.B.: Workbook of Atmospheric Dispersion Estimates. Lewis Publishers,
USA (1994)

7. Panofsky, H.A., Dutton, J.A.: Atmospheric Turbulence. John Wiley, New York
(1984)

8. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis. Chapman
& Hall/CRC, Boca Raton (2003)

SMC in Bayesian Assessment of Contaminant Source Localization 417

9. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Prac-
tice. Chapman & Hall/CRC, Boca Raton (1996)

10. Doucet, A., de Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo Methods in
Practice. Springer, New York (2001)

11. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York
(2001)

12. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process. 140(2),
107–113 (1993)

Effective Parallelization of Quantum
Simulations: Nanomagnetic Molecular Rings

Piotr Kozfflowski1, Grzegorz Musiaffl1(B), Michaffl Antkowiak1,
and Dante Gatteschi2

1 Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85,
PL-61-614 Poznań, Poland

gmusial@amu.edu.pl
2 Department of Chemistry, INSTM and Universitá di Firenze,

via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy

Abstract. The effective parallelization of processing exploiting the MPI
library for the numerically exact quantum transfer matrix (QTM) and
exact diagonalization (ED) deterministic simulations of chromium-based
rings is proposed. In the QTM technique we have exploited paralleliza-
tion of summation in the partition function. The efflciency of the QTM
calculations is above 80 % up to about 1000 processes. With our test pro-
grams we calculated low temperature torque, specific heat and entropy
for the chromium ring Cr8 exploiting realistic Hamiltonian with single-
ion anisotropy and the alternation of the nearest neighbor exchange cou-
plings. Our parallelized ED technique makes use of the self-scheduling
scheme and the longest processing time algorithm to distribute and diag-
onalize separate blocks of a Hamiltonian matrix by slave processes. Its
parallel processing scales very well, with efflciency above 90 % up to
about 10 processes only. This scheme is improved by processing more
input data sets in one job which leads to very good scalability up to
arbitrary number of processes. The scaling is improved for both tech-
niques when larger systems are considered.

Keywords: Parallelization of processing · MPI · Numerical simula-
tions · Nanomagnetic rings · Heisenberg model

1 Introduction

The parallelization of processing based on the MPI library [1] for modeling of
molecular nanomagnets is proposed. Message passing model is exploited, as it
effiectively works in every computer system with the distributed, shared or mixed
type of memory and fits well separate processors connected by fast or slow com-
munication network. Molecular rings made of transition-metal ions immersed in a
non-magnetic environment became of recent interest as potential building blocks
of envisaged hybrid or quantum computers or as a basis of an efflcient storage
device [2]. The intra-cluster ferro- or antiferromagnetic interactions are usually

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 418–427, 2014.
DOI: 10.1007/978-3-642-55195-6 39, © Springer-Verlag Berlin Heidelberg 2014

Effective Parallelization of Quantum Simulations 419

modeled with a Heisenberg Hamiltonian. Yet, there are subtle, but important
for future applications, phenomena like e.g. S-mixing, which cannot be described
within the giant spin approximation [3] and require inclusion of anisotropic terms
to the Heisenberg Hamiltonian [4,5]. Anisotropy lowers the symmetry of the
model and thus makes exact algebraic approaches infeasible due to increase of
computational complexity of the problem. Therefore for anisotropic models the
perturbative methods are usually used instead.

To avoid the problems of accuracy and limited range of application pertinent
to many perturbative methods we have developed [6–8] parallel versions of two
exact computational techniques: quantum transfer matrix (QTM) and exact
diagonalization (ED), using MPI [1]. In this paper we test the scalability of
both methods applied to simulations of the ring shaped molecular nanomagnet
Cr8 (QTM and ED) and its derivative Cr8Ni (ED) on several high performance
multicomputers.

Our work supplements some effiorts to include parallel processing in mag-
netism (see e.g. openMP parallelization for Householder [9] and Lanczos [10]
methods).

2 Physical Setup

The Cr8 ring can be modeled using the quantum spin (s = 3/2) Hamiltonian of
the form

H =
4∑

j=1

(Jos2j−1 · s2j + Jes2j · s2j+1)

+
8∑

j=1

[
D(sz

j)
2 − gμBB

(
sx

j sin θ + sz
j cos θ

)]
, (1)

where Jo,e are the nearest-neighbor exchange integrals for ‘odd’ and ‘even’ pairs,
respectively, D is the site-independent single-ion anisotropy, B is the external
magnetic field applied in the x-z plane, whose direction forms an angle θ with the
z axis, g is the corresponding Landé factor and μB stands for Bohr magneton. We
assume periodic boundary conditions (j + 8 ≤ j) because of the ring geometry
of the molecule. The physical quantities of interest: the magnetic torque τ , the
specific heat C and the entropy S are defined as follows:

τy = −gμBB (≥Sx∈ cos θ − ≥Sz∈ sin θ) , C = −T

(
∂2F

∂T 2

)

B

, S = −
(

∂F

∂T

)

B

(2)

We specify here the only non-zero y-th component of the magnetic torque as the
magnetic field is in the x-z plane. The free energy F and the thermal averages
of the total spin components ≥Sx∈ and ≥Sz∈ present in Eq. (2) can be calculated
from the partition functions Z, Zx and Zz:

F = −kBT ln Z , ≥Sx,z∈ =
Zx,z

Z
, Z = Tre−βH , Zx,z = TrSx,ze−βH . (3)

420 P. Koz�lowski et al.

The traces in Eq. (3) go over 48 dimensional spin space and are hard to compute
because of their size and the presence of non-commuting operators in H.

To overcome these problems we employ the transfer matrix technique to
factorize exp(−βH) and to obtain the results in reasonable time, we run our
program in many parallel processes. For the magnetic field along the zth axis
(θ = 0) we have also performed exact diagonalization of the Hamiltonian (1),
calculating both eigenvalues and eigenvectors.

3 Quantum Transfer Matrix Technique and Parallel
Processing

Hamiltonian (1) can be written as a sum of two non-commuting Hamiltonians
Ho and He. Then, with the help of the Trotter formula, the related partition
function Z can be expressed as the limit:

Z = lim
m→∞ Zm = lim

m→∞ Tr
(
e− β

m Ho
e− β

m He
)m

. (4)

To optimize the numerical calculations the m-th approximant to the partition
function (Zm) is represented as a product of the matrices V o, V e and shift
operators P, P† ([6–8] and references therein)

Zm = Tr
[(

V oP†P†)4 P† (
V eP†P†)4 P

]m

, (5)

with V o,e = eHo,e
12 ∞ 1̂∞ 1̂∞ 1̂1, being sparse matrices with no more than 16 non-

zero elements in each column and each row. The two-spin Hamiltonians Ho,e
12 are

defined as follows:

Ho,e
12 = Jo,e

(

sz
1s

z
2 +

1
2
(s+1 s−

2 + s−
1 s+2)

)

+
1
2

(
D[(sz

1)
2 + (sz

2)
2]

− g μBB [(sz
1 + sz

2) cos θ + (sx
1 + sx

2) sin θ]) . (6)

Only these two Hamiltonians have to be diagonalised to calculate matrices V o,e

and then Zm. One can calculate approximants Zx
m and Zz

m in a similar way.
The trace in (5) is calculated by acting with the operators V o,e, P and P†

on all the base vectors. However, we exploit the symmetry of the system and
take into account only non-equivalent vectors reducing in this way the number
of operations approximately by a factor of 1/8. Due to the sparsity of V o,e, P
and P† only m48 operations have to be performed in (5) instead of 2m416 for
regular matrix vector multiplication.

The thermodynamic quantities are obtained by extrapolation of the corre-
sponding approximants (to m ≈ ∧) which for large enough m should be linear
functions of 1/m2 [11]. Unfortunately, for our system at low temperatures these
linear extrapolations are justified only for very big values of m (∃103 ÷ 104)
which is a challenge for scalability of our parallelized programs.
1 The symbol ∈ denotes the tensor product and 1̂ is a 16 × 16 identity operator.

Effective Parallelization of Quantum Simulations 421

Fig. 1. The m dependence of the torque τy
m and the z-th component of total spin

←Sz∀m approximants for Cr8 in the field B = 10 T for two different temperatures.
Jo = Je = 16, 94 K, D = −0, 34 K, θ = 6◦

One can see in the insets of Figs. 1 and 2 that the linearity of various approxi-
mants (τy

m, ≥Sz∈m, and Cm) as functions of 1/m2 at temperature 0.05K becomes
apparent only for m > 1000. We notice that at T = 0.05K dependence of
τm and ≥Sz∈m on 1/m2 is approximately linear also for smaller values of m
(40 < m < 160), but the appropriate extrapolations give wrong results. For
the entropy at temperature T = 0.05K (Fig. 2) one has to go even beyond
m = 5000 to obtain physically correct results i.e. S > 0. For such large values of
m (m > 1000) the execution times of the sequential job are equal to a couple of
days even if relatively small systems like Cr8 are considered.

Fig. 2. The m dependence of the specific heat Cm and entropy Sm approximants for Cr8
in the field B = 7 T for two different temperatures. Jo = Je = 16, 94 K, D = −0, 34 K,
θ = 65◦

These results show the large scale of challenges in modeling of nanomag-
nets and motivated us to parallelize our Fortran code for distributed computer
systems with message passing implemented in the MPI library. Summation in
Eq. (5) is distributed uniformly among parallel processes to calculate the par-
tition functions Zm, Zx

m and Zz
m. We have used function MPI Reduce which

organizes tree-like communication.

422 P. Koz�lowski et al.

4 Exact Diagonalization Technique and Parallel
Processing

The exact diagonalization technique is also a powerful tool to calculate the ther-
modynamic quantities. However, for the nanomagnet under consideration the
size of the Hamiltonian matrix (48 × 48), makes sequential processing of numer-
ical diagonalization impossible in realistic time if no additional conditions are
imposed. The ED technique is used for θ = 0 in Eq. (1). In this case the Hamil-
tonian takes on a block diagonal form, in the basis formed by eigenvectors of the
z projection of the total spin, i.e. Sz =

∑8
j=1 sz

j . The 48 diagonal matrix blocks
can be unequivocally labeled by the eigenvalues M of Sz and by the symmetry a
of the eigenstate, with a = 1 for symmetric vectors and a = 0 for antisymmetric
ones.

Fig. 3. Left: Sizes of the Hamiltonian matrix blocks for different values of M . Right:
The processing times t for individual Hamiltonian matrix blocks: two lower curves
illustrate the calculation time of the eigenvalues only, whereas two upper ones stand
for the calculation time of both the eigenvalues and the eigenvectors

The main difflculty in parallel ED processing is due to the sizes of matrix
blocks which diffier from one another by several orders of magnitude varying from
4068 × 4068 to 1 × 1 for Cr8 nanomolecule, as shown in the left graph of Fig. 3.
For even M ’s the size of symmetric boxes (a = 1) is always greater than that of
antisymmetric ones (a = 0), whereas for odd M ’s these sizes are equal to each
other. For the lowest M only symmetric 1 × 1 boxes exist.

The right graph of Fig. 3 presents processing times for calculation of eigen-
values only and eigenvalues together with eigenvectors for all the matrix blocks.
Thus, for the Cr8 nanomagnet the job has to perform 48 independent diag-
onalization tasks for each Hamiltonian matrix block which can be processed
concurrently.

To parallelize our C++ code for distributed computer systems, we have used
message passing implemented in the MPI library in the master-slave model
of communication with the asymmetric star-like topology. It means that the
processes responsible for diagonalization of the largest blocks communicate most

Effective Parallelization of Quantum Simulations 423

rarely with the master process. The master process fulfills only the scheduling
role and assigns tasks to p slave processes, using Longest Processing Time (LPT)
algorithm: the tasks are sorted by the block size and are assigned in decreas-
ing order [12]. The self-scheduling scheme organizing the work of p + 1 parallel
processes in our program uses the MPI ANY SOURCE and MPI ANY TAG
arguments in the function MPI RECV call, so that the master process always
first receives a result which was calculated most recently. Each of p slave process
calculates the block of the Hamiltonian matrix labeled by the numbers M and
a obtained from the master process, diagonalizes it and sends the eigenvalues
back to the master process. When any of the slave processes finishes its job,
the master process receives calculated eigenvalues and sends back the label of
the next block waiting in a sorted queue or MPI BOTTOM when the queue is
already empty. After obtaining MPI BOTTOM a slave stops.

5 Quantum Transfer Matrix Results

Our QTM simulations described above were first performed on multicomputer
“reef” built up of 22 nodes with two dual-core Intel Xeon 3 GHz CPUs and of
122 nodes with two quad-core Intel Xeon 2.33 GHz CPUs with OpenMPI library
[1] and InfiniBand technology of interconnect links. The main part of processing
within our program consists in parallel calculation of the partition functions
(Eq. (5)) distributed uniformly among parallel processes as explained above.

Fig. 4. The dependence of the efflciency E on the number of parallel processes p in
the QTM simulations run on “reef” (left) and “galera” (right). The ideal efflciency is
shown with a broken line. The error bars mark a standard deviation

To determine scaling of our simulations with p parallel processes, we calcu-
late efflciency E defined as u = tseq/(ptpar) [13], where tseq and tpar denote the
sequential and parallel execution times of our program, respectively. The sta-
tistics for each value p was estimated from several runs, varying the number of
cores per node used.

The p dependence of efflciency E of our simulations performed on multi-
computer “reef” presented in the left graph of Fig. 4 proves good, though not

424 P. Koz�lowski et al.

perfect, scalability of processing in our program. No significant diffierences in
execution times were observed if various number of nodes for a fixed number
of CPU cores were engaged. The efflciency seems to have two small maxima
for p = 10 and p = 32 what may suggest the optimal number of processes for
practical calculations.

The sequential execution of our test program for Cr8 nanomolecule takes
about 52 h. The communication between the parallel processes takes rather small
fraction of the execution time since the slave processes send to the master process
only few numbers at the end of the execution. Therefore, most of the error bars
in the left graph of Fig. 4, also for a big number of processes, touch the value 1
of efflciency E. It means that for almost each number p processing within our
program can scale perfectly (cf. [14]).

The additional tests have been made on a larger multicomputer “galera”
consisting of 672 nodes, each with two Intel Xeon Quad Core 2,33 GHz CPUs
and InfiniBand technology of interconnect links. We tested two diffierent MPI
implementations: Intel MPI and MVAPICH. The results for efflciency E are
presented in the right graph in Fig. 4 in log-linear scale. Here the sequential
execution of our programs takes only about 13 h. The statistics for each number p
of parallel processes is done from several runs. For all values of p large oscillations
(up to 50%) of the execution time, expressed by the error bars (see the right
graph in Fig. 4), can be observed. It should be pointed out, that for almost each
p the shortest runs scale perfectly (E = 1) which means that the managing
system of the multicomputer should be blamed for lower efflciency. Less optimal
scaling observed for p = 1024 is additionally due to the size of our model. The
sum in Eq. (5) for Cr8 goes over 8355 non-equivalent states which cannot be
uniformly distributed among p = 1024 parallel processes so that each of them
has to process only 8 or 9 elements of the sum.

Our parallelized program described above enabled us to calculate the torque τ
for very low temperatures (below 1K), hardly accessible with sequential process-
ing. At T = 50mK we had to take the large (up to 5120) values of m (see Eq. 4).
The specific heat C and the entropy S were calculated in slightly higher tem-
peratures (around 1 K) to compare them to the experimental data. The more
detailed description and discussion of the physical results can be found in [15].

6 Exact Diagonalization Results

The same multicomputer “reef” has been used for parallel simulations of Cr8
nanomolecular ring by means of the ED technique described above. High effl-
ciency (E > 0.9) demonstrating good scalability of our problem with respect to
the number of slave processes p can be observed (the left graph of Fig. 5) only up
to some value p = pmax, with pmax = 10 when only eigenvalues are calculated
and pmax = 9 when both eigenvalues and eigenvectors are determined. This
limit in scalability follows from the above explained structure of the problem:
the sizes of matrix blocks vary from 4068×4068 to 1×1. Thus, only a few matrix
blocks of the Hamiltonian are of large size (see Fig. 3). For larger values of p the

Effective Parallelization of Quantum Simulations 425

Fig. 5. Left: The dependence of efflciency E on the number of parallel processes p for
the ED method. The ideal efflciency is shown with a broken line, the error bars mark
standard deviation. Right: The execution times as a function of process id for one job
distributed over 32 parallel processes with 1, 2, 3 and 4 input data sets.

execution time is dominated by the time spent on diagonalization of the largest
blocks, which cannot be reduced. Adding more slave processes leads to poorer
efflciency as the total execution time cannot be shorter than time needed for
diagonalization of the largest matrix block corresponding to M = 0. Therefore
for p > pmax, for which the total execution time is equal to the diagonalization
time of the largest blocks, one can see decrease of the efflciency in the left graph
of Fig. 5. Also here error bars for each p are estimated on the basis of several
runs with variation of the number of cores per node used.

For larger molecules, e.g. larger chromium-based rings, sequential processing
time dramatically increases and one can hardly obtain results in realistic time.
However in this case also the number of large diagonal blocks in the Hamiltonian
increases, which should gives rise to better scalability (increase of pmax).

In order to extend the limited scalability of our ED simulations, we have
added the possibility to perform concurrent processing for many initial data
within one job. The same LPT algorithm was used but it has got more matrix
blocks available. This leads to lower latencies in parallel processes. The sim-
ulations have been performed on multicomputer “huygens” with 3328 Power6
4.7 GHz processor cores in SARA Computing and Networking Services in Ams-
terdam. The results of our tests for the larger Cr8Ni nanomolecule performed
on 32 computing cores are shown in the right graph of Fig. 5.

The large latencies within the job processing one input data set in 32 parallel
processes are clearly seen. The reason for these latencies is explained above. The
good scalability of the Cr8Ni nanomolecule simulations is limited to about 12
parallel processes. The right graph in Fig. 5 shows that in the job processing
two input data sets concurrently these latencies are much smaller. This graph
proves also that processing of three (and more) input data sets concurrently in
one job is enough to practically eliminate latencies within 32 parallel processes.
For larger number of parallel processes the required number of data sets to be

426 P. Koz�lowski et al.

used simultaneously in one job in order to eliminate latencies can be determined
in a similar way.

For the data presented in the right graph of Fig. 5 we have used ScaLA-
PACK procedures for diagonalization of matrix blocks instead of the ones from
Numerical Recipes. Thus, the times are shorter than these presented in Fig. 3.
Moreover, in this implementation the master process also performs calculations
as each of the slave processes.

7 Conclusions

We have analyzed the efflciency of the QTM parallel simulations of the chromium-
based molecular ring Cr8. Our parallelized code enabled us to calculate the
torque, the specific heat and the entropy in the low temperature regime, which
is inaccessible with sequential processing. These simulations scale very well up
to about thousand of parallel processes where the limit due to the size of the
system is reached. For larger systems perfect scaling can be extended to much
larger number of processes.

We have demonstrated for two chromium rings Cr8 and Cr8Ni that up to
pmax ∃ 10 processes the simulations based on the ED method and exploiting
the LPT algorithm with self-scheduling scheme scale very well giving efflciency
E > 0.9. The particular value of pmax is determined by the number of large
diagonal blocks in the Hamiltonian and it increases with the size of the system.
It is demonstrated that the extension of the parallelization scheme allowing for
simultaneous processing of many input data sets in one job extends scalability
to arbitrary number of processes limited only by the number of available input
data sets.

It is worth noting that both methods are complementary and can be eas-
ily applied to other ring-shaped nanomagnets. QTM provides precise values of
thermodynamic quantities for complicated anisotropic Hamiltonians and rela-
tively large systems, whereas ED works better for simpler and smaller systems
but gives access to more detailed information in the form of the energy level
structure. The QTM technique is usually more time-consuming than ED but
has much better scaling properties and requires less computer memory than the
latter. In the case of both methods parallelization of processing extends their
applicability to much larger and more complex systems.

Acknowledgments. The authors acknowledge helpful discussions with Prof. F.
Esposito, M. Kupczyk and M. Pospieszny. This work was supported in part by the
MNiSW within the project No. N519 579138. Numerical calculations were carried out
on the multicomputer “reef” in the Supercomputing and Networking Center in Poznań,
“galera” in the Academic Computer Center in Gdańsk and “huygens” in SARA Com-
puting and Networking Services in Amsterdam. A part of simulations was also per-
formed on multicomputer “pearl” in Faculty of Physics at Adam Mickiewicz University
in Poznań (incorporated in a scientific grid environment).

Effective Parallelization of Quantum Simulations 427

References

1. http://www.mpi-forum.org/ - MPI Forum Home Page
2. Meier, F., Levy, J., Loss, D.: Quantum computing with antiferromagnetic spin

clusters. Phys. Rev. B 68, 134417 (2003)
3. Carretta, S., Santini, P., Affronte, M., Ghirri, A., Sheikin, I., Piligkos, S., Timco,

G., Winpenny, R.E.P.: Topology and spin dynamics in magnetic molecules. Phys.
Rev. B 72, 060403(R) (2005)

4. Baker, M.L., Timco, G., Piligkos, S., Mathieson, J.S., Mutka, H., Tuna, F.,
Kozlowski, P., Antkowiak, M., Guidi, T., Gupta, T., Rath, H., Woolfson, R.J.,
Kamieniarz, G., Pritchard, R.G., Weihe, H., Cronin, L., Rajaraman, G., Collison,
D., McInnes, E.J.L., Winpenny, R.E.P.: A classification of spin frustration in mole-
cular magnets from a physical study of large odd-numbered-metal, odd electron
rings. Proc. Natl. Acad. Sci. U.S.A. 109, 19113 (2012)

5. Antkowiak, M., Kozlowski, P., Kamieniarz, G., Timco, G.A., Tuna, F., Winpenny,
R.E.P.: Detection of ground states in frustrated molecular rings by the in-field local
magnetization profiles. Phys. Rev. B. 87, 184430 (2013)

6. D’Auria, A.C., Esposito, U., Esposito, F., Kamieniarz, G., Matysiak, R.: Exact
simulations of quantum rings and characterization of hexanuclear manganese and
dodecanuclear nickel cyclic complexes. J. Phys. Condens. Matter 13, 2017 (2001)

7. Kamieniarz, G., Matysiak, R., D’Auria, A.C., Esposito, F., Benelli, C.: Large-scale
simulations of the finite-temperature properties of the molecular assemblies Mn6
and Ni12. Comput. Phys. Commun. 147, 194 (2002)

8. Kamieniarz, G., Matysiak, R.: Simulations of the low-dimensional magnetic sys-
tems by the quantum transfer-matrix technique. Comp. Mat. Sci. 28, 353 (2003)

9. Honecker, A., Schüle, J.: OpenMP implementation of the householder reduction for
large complex Hermitian eigenvalue problems. Adv. Parallel Comput. 15, 271–278
(2008)

10. Schnack, J., Hage, P., Schmidt, H.-J.: Efflcient implementation of the lanczos
method for magnetic systems. J. Comput. Phys. 227, 4512 (2008)

11. Suzuki, M.: Quantum statistical monte carlo methods and applications to spin
systems. J. Stat. Phys. 43, 883 (1986)

12. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 416 (1969)

13. Van de Velde, E.F.: Concurrent Scientific Computing. Springer, New York (1994)
14. Matysiak, R., Haglauer, M., Kamieniarz, G., D’Auria, A.C., Esposito, F.: Applica-

tion of parallel computing in the transfer-matrix simulations of the supramolecu-
lar rings. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.)
PPAM 2004. LNCS, vol. 3019, pp. 475–480. Springer, Heidelberg (2004)

15. Koz�lowski, P., Musia�l, G., Haglauer, M., Florek, W., Antkowiak, M., Esposito, F.,
Gatteschi, D.: Non-perturbative methods in phenomenological simulations of ring-
shape molecular nanomagnets. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol. 8385, pp. 438–447. Springer,
Heidelberg (2014)

http://www.mpi-forum.org/

DFT Study of the Cr8 Molecular Magnet Within
Chain-Model Approximations

Valerio Bellini1,2(B), Daria M. Tomecka3, Bartosz Brzostowski4,
Michaffl Wojciechowski4, Filippo Troiani1, Franca Manghi1,

and Marco Affironte1

1 CNR-INFM-National Research Center on nanoStructures and bioSystems at
Surfaces (S3), Via Campi 213/A, 41100 Modena, Italy

valerio.bellini@unimore.it
2 Istituto di Struttura della Materia (ISM) - Consiglio Nazionale delle Ricerche

(CNR), I-34149 Trieste, Italy
3 Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85,

61-614 Poznań, Poland
4 Institute of Physics, University of Zielona Góra, ul. Prof. Szafrana 4a,

65-516 Zielona Góra, Poland

Abstract. We present a density functional theory (DFT) study of the
electronic and magnetic properties of the Cr8 molecular ring. The all-
electron linearized augmented plane wave method (LAPW) implemented
in the Wien2k package and pseudopotential method implemented in
SIESTA package are used to calculate the electronic states, exchange
coupling parameters of an infinite chain model system of Cr8. We demon-
strate how, under opportune modifications to the ring cycle structure,
different one-dimensional chain models can be devised, with the capabil-
ity of mimicking with good approximation the electronic and magnetic
properties of the original Cr8 molecule. Such models offer an unique
opportunity, in virtue of the reduced computational effort, to carry out
extensive investigations of a whole set of molecules belonging to the Cr-
based molecular rings family.

Keywords: Density functional theory · Cr antiferromagnetic rings

1 Introduction

We present in the following a density-functional study of one-dimensional chain
model systems, which aim to mimic the electronic and magnetic properties of the
Cr8 antiferromagnetic (AFM) molecular ring. This molecule is the first member
of a vast family of cyclic Cr-based organometallic magnets [1] to be synthesized
with high yield [2] and attracted much interest in virtue of possible applications
in quantum information processing [3,4] and interesting fundamental properties
[5–8]. The Cr8 molecule is characterized by a perfect antiferromagnetic coupling
between the eight s = 3/2 Cr spins, which lead, at zero field, to an S = 0

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 428–437, 2014.
DOI: 10.1007/978-3-642-55195-6 40, c© Springer-Verlag Berlin Heidelberg 2014

DFT Study of the Cr8 Molecular Magnet 429

ground state. The study of molecules of this size within an all-electron first princi-
ple method, as the linearized augmented plane wave (LAPW) technique [9] imple-
mented in the Wien2k simulation package [10], which is our method of choice to
study the electronic and magnetic properties of such systems, represents a severe
task even for modern parallel computers [11]. Alternatively, fast gaussians-based
quantum chemistry packages, such as NWChem could be employed with success
[12,13].

The amount of cpu time at disposal for scientific calculations increases year
after year, and the optimization of the codes plays also a crucial role in the
improvement of scientific computing. On the other side it is of evident impor-
tance the possibility to scale down the size of the systems under interest, by
devising toy models or smaller replications which eventually could give reliable
information and delve the knowledge of the, larger, real systems under inter-
est. The advantages are twofold: computation becomes more feasible and the
reduced number of degrees of freedom might help in capturing the underlining
the physics, at least on the qualitative level.

Our scope is to show that under opportune conditions, we can devise several
one-dimensional models obtained by straightening the cyclic structure, lining up
with a certain periodicity the Cr atoms, without altering in a sensible manner
the ground state magnetic properties of the original ring molecule.

Alternatively, calculations can be speed up using diffierent methods as well
as with the help of diffierent computational packages. We would like to present
fairly good results acquired with the help of SIESTA suit [14,15], that uses
pseudopotential method [16,17]. In our Siesta calculations exchange and cor-
relation effiects are accounted for by the generalized gradient local approxima-
tion (GGA) with exchange-correlation potential proposed by Perdew, Burke and
Ernzerhof (PBE) [18].

2 Chain Models and Computational Details

The molecular units used to build the chain models are shown in Fig. 1. As
discussed in a previous work [19], the model of Fig. 1(a) is built from a single
repetition unit of a Cr8 molecule, i.e. a segment which represents 1/8 of the whole
ring structure. All the Cr atoms line up on a single line, and therefore we call this
model a “linear” chain. By changing the repeated unit, for instance by keeping
only one forth of the whole ring (two Cr-Cr segments) or a larger number of Cr-
Cr segments, we could construct diffierent models as depicted in Fig. 1(b) and (c),
which somehow contains larger untouched portions of the original molecule. For
the segments in Fig. 1(a)–(c) the periodic boundary conditions are imposed in
the direction of segments and the coordination symmetry for Cr ions is preserved.
The names “zigzag” and “snake” indicates how the Cr atoms are placed around
the linear direction along which we will repeat the unit. The assignment of the
nearest-neighbour couplings Ji (i = 1, 2, 3) is determined in Fig. 1(a)–(c), too.
In order to give an idea on the computational gain we report in Table 1 several
parameters characterizing the size of the model systems.

430 V. Bellini et al.

Fig. 1. Simulation units of the three different chain model systems of Cr8. The size and
color representation is following: large gray Cr, medium grey C, small grey F, medium
black O and small black H. For details of the structures see the text.

Fig. 2. Computational unit cell of the three different chain model systems of Cr8. The
color representation as in Fig. 1

We have accommodated the repetition units depicted in Fig. 1 into supercells,
applying periodic boundary conditions, and considering enough vacuum space
to decouple the diffierent images. Computational supercells for “linear”, “zigzag”
and “snake” chain models are presented in Fig. 2(a), (b) and (c) respectively. The
total number and the number of inequivalent atoms are listed in Table 1 for the
chain models as well as for the original Cr8 molecule. The number of APWs
necessary to ensure converged results, as evident from Table 1, is extremely
reduced for all the chain models. Well converged magnetic properties can be
obtained by using around 100–150 APWs per atom in cell, which corresponds to
an energy cutoffi of 10–13 Ry depending on the size of the simulation cell. The

DFT Study of the Cr8 Molecular Magnet 431

Table 1. Comparison between different quantities characterizing the effort to simulate
the different type of chain models and the Cr8 molecule; the N. of atoms in the unit
cell, the N. of inequivalent atoms in the unit cell and the N. of cores vs. CPU time
needed for a single iteration of the self-consistency cycle (see text for details of the
computing machines).

“linear” “zigzag” “snake” Cr8

Wien2k Matrix size (N. of APWs) ≈ 3000 ≈ 6500 ≈ 9000 ≈ 15000
Nr of atoms/unit cell 20 40 60 160
Nr of inequivalent atoms/unit cell 11 21 31 20
Wien2k No. of cores/time per 1 iter [min] 1/10 8/10 32/20 64/40
Siesta No. of cores/time per 1 iter [min] 4/0.4 4/2 4/5.4 4/11.1

gain is tremendous for the “linear” chain model, while when we move towards
longer and more curved models, as for the “snake” one, the computational gain
decreases sensibly. Overall the chain model systems of Cr8 described above are
computationally much more convenient as compared to the original molecule,
and under proper modifications, are applicable to several other members of the
cyclic Cr-based magnetic molecule family, allowing for a more extensive study
of their magnetic properties. In the case of the “snake” model, despite the larger
number of inequivalent atoms due to the presence of the inversion symmetry
operation alone, one is faced still with a reduction of around 50 % in the num-
ber of APWs, which because of the non linear scaling of an eigenvalue problem,
means that the “snake” model can be simulated twice as fast with half the num-
ber of CPUs than the Cr8 molecule. The elapsed time, in minute, are relative to
simulations performed on a multiprocessors, shared memory, BM BladeCenter
LS21 Cluster, composed of 1280 4-way nodes, each containing 2 Opteron dual-
core processors, with a clock of 2.4 GHz, 8 GB of memory, and with a global
peak performance of 26.6 TFlops. Obviously, increasing further the repetition
unit, will lead to a model which does not represent anymore a real advantage in
terms of computing effiort, compared to the original molecule.

Since pseudpotential-based approach is less computationally demanding than
all electron method it allows to obtain results for these models with relatively
small computing effiort. On the other hand, testing and selection of a suitable
pseudopotential is a tedious and time-consuming [20]. The SIESTA computa-
tions were performed using just one computer, equipped with 24 GB of memory
and 6-core processor with a clock of 2.67 GHz. However only four cores and
1 GB per core were used. SIESTA does not use any symmetry in its calculations
whatsoever, apart from the time reversal symmetry for k-points. Therefore the
greatest computational gain for chain models is achieved through decreasing the
total number of atoms within the super cell. This leads to proportional decrease
in the number of atomic orbitals, that are used in computations.

432 V. Bellini et al.

Fig. 3. Total and atom/orbital projected density of states (DOS) of the chain model
of Cr8 (a) and of the Cr8 molecule (b) in the AFM ground state within the GGA
approach and pseudopotential method.

3 Results and Discussion

3.1 “linear” Chain Model

Let us focus for the moment on the ‘linear” chain model of Fig. 1(a). Distances
and angles between the Cr atoms and the atoms composing the bridges are kept
identical within a single Cr-Cr segment, while the order of appearance of the
bridges in the second Cr-Cr segment is varied, switching the Cr-F and one of
the Cr-O bonds.

In order to investigate whether such bond rearrangement influences the elec-
tronic states and the magnetic interaction between the spins located at the
Cr atoms we show in Fig. 3(a) and (b) respectively the total density of states
(DOS), as well as the partial DOS obtained by the projections onto the Cr(3d),
F(2p), C(2p) and O(2p) orbitals, of the “linear” chain model and of Cr8 original
molecule in the AFM ground state configuration (both obtained from Siesta).
Similar results for the chain model and Cr8 molecule calculated from Wien2k
can be found in Ref. [19] in Fig. 5.

The density of states of the chain model and of the Cr8 original molecule are
very similar, throughout the whole energy range; a small shift at lower energies

DFT Study of the Cr8 Molecular Magnet 433

is observed for some states, while in the crucial (for the magnetic properties)
range around Fermi energy the model works very well. For the results from
Siesta package discrepancy at low energies is natural for this method, because
only selected valence states are taken into account.

Moreover we find that magnetic moments and spin density distributions in
the original molecule and in the model complex are also very similar. In order to
test the real effiectiveness of the chain model in resembling the magnetic prop-
erties of the original ring Cr8 molecule, the exchange interaction parameters J
must be addressed. The unique J parameter is extracted by simply mapping the
ab-initio total energies of the antiferromagnetic (ground state) and ferromagnetic
states (respectively ETOT

AFM and ETOT
FM) onto an effiective spin Ising Hamiltonian,

H = 2Js1 · s2 , (1)

where s1,2 = s = 3/2 is the spin of the Cr ions, yielding

J =
[ETOT

FM − ETOT
AFM]

4s2
. (2)

For Wien2k within the generalized gradient approximation (GGA) to the
exchange-correlation functional (more precisely, the one suggested by Perdew et
al. in 1996, i.e. PBE96 [18]), we obtain the value Jchain = 6.2 meV in qualitative
agreement with the value of JCr8 = 5.8 meV obtained for Cr8 ring [11], while the
value inferred by the experiments is JExp = 1.5 meV. Also for SIESTA calcula-
tion for chain model we obtain similar value of exchange interaction parameter
J = 6.5 meV [21]. As discussed in Ref. [11], the overestimation of the exchange
parameters testimonies the error of local exchange and correlation functionals
in describing the electron-electron correlations in such molecules, as much as it
happens in parent chromia bulk oxides [22].

Inclusion of static correlation in the LDA+U method [23] or hybrid function-
als [12] improves the agreement with the experiments; the value of J which best
fit the experiments is found assuming an Hubbard repulsion term of U = 5 eV,
which is consistent with the value assumed for Cr8 in Ref. [11], and with values
already used in Cr oxides bulk compounds.

3.2 “zigzag” and “snake” Chain Models

Very similar results to the one discussed above for the simple “linear” chain
model are found for the other two models. We supply in Table 2 the exchange
interaction parameters that can be extracted by total energy diffierences between
diffierent magnetic configurations, using the corresponding spin Hamiltonian. In
the case of the “linear” and original molecule, because of the special symmetry
and of the number (two) of inequivalent Cr atoms in the cell, only one J is
present, while respectively for the “zigzag” and the “snake” models, two and
three exchange parameters can be defined, if one considers only nearest neighbor
(nn) couplings between the Cr ions (see Fig. 1).

434 V. Bellini et al.

Table 2. Comparison between values of the exchange interaction parameters (in meV)
extracted and averaged from the different systems (see Fig. 1 for reference).

LAPW method Pseudopotential method
“linear” “zigzag” “snake” Cr8 “linear” “zigzag” “snake” Cr8

J1 6.2 6.3 6.2 5.8 6.5 6.0 6.0 6.6
J2 7.0 7.4 6.9 7.1
J3 6.1 6.0

Moreover the system of equations relating the spin degrees of freedom are
over-determined, i.e. there are more equations than variables, and depending on
the subset of the magnetic configurations used for extracting the J’s, small diffier-
ences are found. For instance, in the “zigzag” model there are three inequivalent
Cr atoms, and we can, upon choosing proper initial conditions, converge towards
four diffierent magnetic configurations, i.e. ferromagnetic, antiferromagnetic, and
two “ferrimagnetic” solutions, where two subsequent Cr spin moments point into
the same direction. Having 4 diffierent spin-distributions, and only three parame-
ters (the two Js and the implicit electronic term) there exist 4!/((4 − 3)!3!) = 4
possible subsets, for each of which a set of Js could be extracted. We find in our
calculations with LAPW method that J1 spans values in the range 6.0–6.5 meV,
and J2 spans values in the range 6.8–7.3 meV. Similar reasonings can be carried
out for the “snake” model, where having 4 inequivalent atoms, it is possible
to converged 8 diffierent magnetic solutions; four parameter (three Js and the
implicit electronic term) can be extracted from 4 magnetic solutions only so
that 8!/((8 − 4)!4!) = 70 possible subsets could be chosen. Again the variations
in J1, J2 and J3 are of the same order of magnitudes and amount 0.5 eV. The
situation is similar for results obtained with SIESTA. Here we can also observe,
that the values of exchange parameters for diffierent chain models are close to
each other. It is worth mentioning, that identical tendency was noticed for Cr8
molecule, when the two diffierent alternating nearest neighbor exchange para-
meters were considered [14]. The J’s reported in Table. 2 for the “zigzag” and
“snake” chains are averaged over this subset choices. Though the values of J
are still overestimated in comparison to empirical ones, they are in agreement
with other theoretical calculations. This suggests that the “snake” and “zig-zag”
approximations do not improve the J’s estimates.

Both the variation for each Js as well as the diffierent values of the Js, i.e. J1
≤= J2 ≤= J3 have a twofold origin. First, one is subjected to intrinsic errors when
trying to extract the exchange parameters by mapping total energies onto spin
Hamiltonians, due to non-complete localization of the spins and to the existence
of higher order interactions beyond Ising model between the electrons, which,
although of smaller entity, are often present in magnetic systems. Secondly, there
is a small error induced by the structural rearrangement concept underlying the
physcics of above discussed models. Both these source of error are basically
hidden, being of the same order of magnitude as the numerical precision of a
whatsoever code based on density-functional methods.

DFT Study of the Cr8 Molecular Magnet 435

In the over-determined models, we could exploit the exceeding number of
possible solutions, in order to check whether next-nearest neighbor (nnn) inter-
actions between the Cr ions are present. These type of interactions have not
been considered for the Cr8 molecule, where magnetic and spectroscopic data
available could be explained very nicely only with the existence of nearest neigh-
bor coupling. In the “zigzag” model we could add one nnn interaction, while
in the “snake” model we could had two nnn interactions. The “zigzag” model
becomes well-determined, and the nnn coupling that could be extracted has a
value of Jnnn = −0.2 meV which is more than one order of magnitude smaller
than the nn Js. Similar values could be extracted, choosing, diffierent subsets of
solutions in the “snake” model. In virtue of the discussion above on the error
bar associated to the nn Js, we could state that, if present, such magnetic inter-
actions between next-nearest neighbor Cr ions are very small in Cr-based cyclic
molecular magnets. If this holds for closed Cr homometallic rings (Cr8, Cr10),
we could not exclude the existence of longer range interactions in open ring
molecules or in heterometallic wheel complexes, when smaller distance between
the paramagnetic ions, diffierent type of bridges as well as eventually larger
spin delocalization might play a more important role than what is observed
here.

4 Summary and Outlook

To conclude, we have presented a density-functional investigation of possible
chain model systems, with diffierent sizes, which are able to describe the electronic
and magnetic properties of the original ring-shaped Cr8 molecule. There is a
whole experimental literature describing the family of cyclic molecular magnets,
with Cr, and eventually other transition metal ions, as paramagnetic centers.
In fact, by varying the experimental conditions, as well as the components of
the synthesis reaction, a whole series of homo- and hetero-metallic Cr-based
cages have been engineered [For recent reviews on this subject see Refs. [24] and
[1]]. Looking into the diffierent molecules belonging to this family, depending
on the cage structure, symmetry of the paramagnetic centers and nature of the
bridges, it is likely to individuate an atom, with proper coordination, which
could act as the inversion center of the curvature, as, for instance, happens
in the Cr12Ni seahorse molecule. [24] The lack of symmetry operations, except
inversion, can be exploited in the longer chain models for investigating in a
systematic manner, for instance, how diffierent bridges, other than carboxylate,
can transmit the magnetic interaction between the paramagnetic centers, and
also how the attachment of functionalizing molecules or atoms, as sulfur groups,
procedure needed in order to graft with success such inorganic molecules to
surfaces, [25] influences the type and strength of the magnetic coupling between
the paramagnetic ions.

Furthermore we have shown that the linear models give results that are con-
sistent with the method. Also the diffierences between the results obtained within
diffierent packages are insignificant, which means that they are independent on

436 V. Bellini et al.

the computational software. Within this context methods based on pseudopo-
tentials seem to be promising for solving problems mentioned above. Especially
since they allow for huge computational speed up in conjunction with proposed
models.

Acknowledgments. The calculations were performed on computer facilities granted
by the CNR-INFM Iniziativa Trasversale Calcolo Parallelo at the CINECA supercom-
puting center (Italy), Poznan Supercomputing and Networking Center (Poland) as
well as within DECI programme by the PRACE-2IP (FP7/2007-2013) under grant
agreement no RI-283493. Support from the Polish MNiSW through the grant No N519
579138 is also acknowledged.

References

1. Affronte, M., Carretta, S., Timco, G.A., Winpenny, R.E.P.: A ring cycle: studies
of heterometallic wheels. Chem. Commun. 18, 1789 (2007)

2. van Slageren, J., Sessoli, R., Gatteschi, D., Smith, A.A., Helliwell, M., Winpenny,
R.E.P., Cornia, A., Barra, A.L., Jansen, A.G.M., Rentschler, E., Timco, G.A.:
Magnetic anisotropy of the antiferromagnetic Ring [Cr8F8Piv16]. Chem. Eur. J. 8,
277 (2002)

3. Meier, F., Levy, J., Loss, D.: Quantum computing with spin cluster qubits. Phys.
Rev. Lett. 90, 047901 (2003)

4. Troiani, F., Ghirri, A., Affronte, M., Carretta, S., Santini, P., Amoretti, G.,
Piligkos, S., Timco, G., Winpenny, R.E.P.: Molecular engineering of antiferromag-
netic rings for quantum computation. Phys. Rev. Lett. 94, 207208 (2005)

5. Baker, M.L., Timco, G.A., Piligkos, S., Mathieson, J.S., Mutka, H., Tuna, F.,
Kozowski, P., Antkowiak, M., Guidi, T., Gupta, T., Rath, H., Woolfson, R.J.,
Kamieniarz, G., Pritchard, R.G., Weihe, H., Cronin, L., Rajaraman, G., Colli-
son, D., McInnes, E.J.L., Winpenny, R.E.P.: A classification of spin frustration in
molecular magnets from a physical study of large oddnumbered-metal, odd electron
rings. Proc. Natl. Acad. Sci. 109, 19113 (2012)

6. Baker, M.L., Guidi, T., Carretta, S., Ollivier, J., Mutka, H., Gudel, H.U., Timco,
G.A., McInnes, E.J.L., Amoretti, G., Winpenny, R.E.P., Santini, P.: Spin dynamics
of molecular nanomagnets unravelled at atomic scale by four-dimensional inelastic
neutron scattering. Nat. Phys. 8, 906 (2012)

7. Kozffllowski, P., Kamieniarz, G., Antkowiak, M., Tuna, F., Timco, G.A., Winpenny,
R.E.P.: Phenomenological modeling of the anisotropic molecular-based ring Cr7Cd.
Polyhedron 28, 1852 (2009)

8. Antkowiak, M., Kozowski, P., Kamieniarz, G., Timco, G.A., Tuna, F., Winpenny,
R.E.P.: Detection of ground states in frustrated molecular rings by the in-field local
magnetization profiles. Phys. Rev. B 87, 184430 (2013)

9. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975)
10. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k, An Aug-

mented Plane Wave + Local Orbitals Program for Calculating Crystal Properties.
Techn. Universität Wien, Austria (2001). (K. Schwarz, Techn. Universität Wien,
Austria)

11. Bellini, V., Olivieri, A., Manghi, F.: Density-functional study of the Cr8 antiferro-
magnetic ring. Phys. Rev. B 73, 184431 (2006)

DFT Study of the Cr8 Molecular Magnet 437

12. Bellini, V., Affronte, M.: A density-functional study of heterometallic Cr-based
molecular rings. J. Phys. Chem. B 114, 14797 (2010)

13. Bellini, V., Lorusso, G., Candini, A., Wernsdorfer, W., Faust, T.B., Timco,
G.A., Winpenny, R.E.P., Affronte, M.: Propagation of spin information at supra-
molecular scale through hetero-aromatic linkers. Phys. Rev. Lett. 106, 227205
(2011)

14. Ślusarski, T., Brzostowski, B., Tomecka, D., Kamieniarz, G.: Electronic struc-
ture and magnetic properties of a molecular octanuclear chromium-based ring.
J. Nanosci. Nanotechnol. 11, 9080 (2011)

15. Brzostowski, B., Lemański, R., Ślusarski, T., Tomecka, D., Kamieniarz, G.:
Chromium-based rings within the DFT and FalicovKimball model approach. J.
Nanopart. Res. 15, 1528 (2013)

16. Ordejón, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional
calculations for very large systems. Phys. Rev. B (Rapid Comm.) 53, R10441
(1996)

17. Soler, J.M., Artacho, E., Gale, J.D., Garćıa, A., Junquera, J., Ordejón, P., Sánchez-
Portal, D.: The siesta method for ab initio order-N materials simulation. J. Phys.
Condens. Matter 14, 2745 (2002)

18. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made
simple. Phys. Rev. Lett. 77, 3865 (1996)

19. Tomecka, D., Bellini, V., Manghi, F., Affronte, M., Kamieniarz, G.: Ab-initio study
on a chain model of the Cr8 molecular magnet. Phys. Rev. B 77, 224401 (2008)

20. Brzostowski, B., Ślusarski, T., Kamieniarz, G.: DFT study of octanuclear molecular
chromium-based ring using new pseudopotential parameters. Acta Phys. Pol. A
121, 1115 (2012)

21. Ślusarski, T., Brzostowski, B., Tomecka, D., Kamieniarz, G.: Application of the
package SIESTA to linear models of a molecular chromium-based ring. Acta Phys.
Pol. A 118, 967 (2010)

22. Rohrbach, A., Hafner, J., Kresse, G.: Ab initio study of the (0001) surfaces of
hematite and chromia: influence of strong electronic correlations. Phys. Rev. B 70,
125426 (2004)

23. Liechtenstein, A.I., Katnelson, M.I., Antropov, V.P., Gubanov, V.A.: Local spin
density functional approach to the theory of exchange interactions in ferromagnetic
metals and alloys. J. Magn. Magn. Materials 67, 65 (1987)

24. McInnes, E.J.L., Piligkos, S., Timco, G.A., Winpenny, R.E.P.: Studies of chromium
cages and wheels. Coord. Chem. Rev. 249, 2577 (2005)

25. Corradini, V., Biagi, R., del Pennino, U., Renzi, V.D., Gambardella, A., Affronte,
M., Muryn, C.A., Timco, G.A., Winpenny, R.E.P.: Isolated heterometallic Cr7Ni
rings grafted on Au(111) surface. Inorg. Chem. 46, 4937 (2007)

Non-perturbative Methods in Phenomenological
Simulations of Ring-Shape Molecular

Nanomagnets

Piotr Kozfflowski1, Grzegorz Musiaffl1(B), Monika Haglauer1, Wojciech Florek1,
Michaffl Antkowiak1, Filippo Esposito2, and Dante Gatteschi3

1 Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85,
PL-61-614 Poznań, Poland

gmusial@amu.edu.pl
2 Dipartimento di Scienze Fisiche, Universitá di Napoli, Piazzale V. Tecchio 80,

I-80125 Napoli, Italy
3 Department of Chemistry, INSTM and Universitá di Firenze,

via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy

Abstract. Two non-perturbative numerically exact methods: exact
diagonalization and quantum transfer matrix are applied to computa-
tionally complex Heisenberg-like spin models of ring shaped molecular
nanomagnets and implemented in the high performance computing envi-
ronment. These methods are applicable to the wide class of ring-shaped
nanomagnets. For the hypothetical antiferromagnetic nanomagnet Ni12
the influence of single-ion anisotropy on the ground states is investigated.
For Cr8 it is demonstrated that the alternation of the nearest-neighbor
bilinear exchange couplings leads to small changes in the magnetic torque
with respect to the uniformly coupled system. Specific heat and entropy
for Cr8 are showed to be good indicators of crossing fields. The applica-
bility of the Lande rule to both systems is checked.

Keywords: Molecular nanomagnet · Quantum transfer matrix · Exact
diagonalization · Heisenberg Hamiltonian · Magnetic torque · High per-
formance computing

1 Introduction

Molecular clusters have been in focus for more than thirty years [1] attracting
a lot of scientific interest and giving rise to the emerging field of molecular
nanotechnology. Many scientific research in this field was motivated by foreseen
applications e.g. in storage media and hybrid or quantum computers [2]. Precise
modeling of such systems plays thus a very important role and is a part of
common effiort which constantly works out practical applications of molecular
nanomagnets [3].

A very interesting class of molecular clusters are nanomagnets which contain
a core made of transition-metal ions. These magnetic molecules are shielded from

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 438–447, 2014.
DOI: 10.1007/978-3-642-55195-6 41, © Springer-Verlag Berlin Heidelberg 2014

Non-perturbative Methods in Phenomenological Simulations 439

one another by a shell of organic ligands and therefore behave like separate quan-
tum magnets. Since their quantum microscopic properties can be observed on a
macroscopic scale they are of interest both, from theoretical and experimental
point of view.

Phenomenological modelling of such molecules is based on the assumption
that the intercluster interactions are negligible and that the properties of a
system are determined by strong intracluster exchange coupling. In the first
approximation a pure Heisenberg Hamiltonian is used [4]. However, the
experimental findings indicate more complex interactions, suggesting inclusion
of non-Heisenberg terms to the Hamiltonian. A standard approach to these
more complex models is based on perturbative techniques [5], which however
are approximate and have a limited area of application.

In this paper two non-perturbative, numerically exact methods: exact diag-
onalization (ED) [6] and quantum transfer matrix (QTM) [7] are implemented
in the high performance computing environment and applied to simulate ring
shaped molecular nanomagnets Ni12 and Cr8. We consider more complex inter-
actions in the Hamiltonian than those used in the literature discussed above.

2 Spin Models and Thermodynamic Quantities

We focus on the applications of our methods to the ring-shape molecular nano-
magnets Ni12(Ni12(O2CMe)12(chp)12(H2O)6(thf)6) [8], Cr8 (Cr8F8Piv16) [4],
Cr9 [9,10], V8 and V10 [11] (chp = 6-chloro-2-pyridonate, thf = tetrahydrofuran,
Piv = pivalate). The first two nanomagnets are modelled in this work. Ni12 has
the properties of a single molecular magnet (SMM), i.e. large spin in the ground
state and zero field splitting (ZFS) of the low laying states. It can be modelled
with s = 1 quantum spin ring with the prevailing ferromagnetic exchange inter-
actions [12]. In this paper we assume antiferromagnetic couplings and study the
dependence of the energy spectrum on the single-ion anisotropy by means of
ED. In particular we analyze the pattern of level crossings. Since there is no
Ni12 compound with antiferromagnetic nearest neighbor interactions we do not
compare our results with the experiment and our study has up to now a purely
theoretical significance. It can however reveal the relevance of the anisotropic
effiects for magnetic and thermodynamic properties of molecular magnets.

The chromium molecule can be modeled with the 8 membered s = 3/2
antiferromagnetically coupled quantum spin ring. In the previous investigations
[4,13] the nearest neighbor exchange coupling and single ion anisotropy were
determined on the basis of inelastic neutron scattering (INS), electron paramag-
netic resonance and susceptibility measurements. They were also confirmed by
fitting to specific heat data [13]. The symmetry of the molecule suggests the
possibility of the alternation of the couplings [14], but neither fitting to the
INS data [13] nor the calculations for the susceptibility and specific heat [15]
are able to detect possible bond alternation. Here we analyze sensitivity of the
low-temperature magnetic torque to the bond alternation of the couplings. We
calculate also the low temperature specific heat and entropy as functions of the
magnetic field. The calculations are performed by means of the QTM technique.

440 P. Kozfflowski et al.

To model the molecular rings we use the following quantum spin (s = 3/2
for Cr8 and s = 1 for Ni12) Hamiltonian:

H =
n/2∑

j=1

(Jos2j−1 · s2j + Jes2j · s2j+1)

+
n∑

j=1

(
D(sz

j)
2 − gμBB

(
sx

j sin θ + sz
j cos θ

))
, (1)

where Jo,e are nearest-neighbor exchange integrals for ‘odd’ and ‘even’ pairs,
respectively, n is the number of sites (n = 8 for Cr8 and n = 12 for Ni12), D is the
(site-independent) single-ion anisotropy, B is the external magnetic field applied
in the x− z plane and forming an angle θ with the z axis, g is the corresponding
Landé factor and μB stands for Bohr magneton. Periodic boundary conditions
(j + n ≤ j) are assumed due to the ring geometry.

Starting from the free energy

F = −kBT ln Z , Z = Tre−βH, (2)

one can calculate the thermodynamic functions of interest, like e.g. the specific
heat C, the magnetic susceptibility χ and the entropy S by numerical diffieren-
tiation of F , or by using the first two moments of the total spin operators

χ = lim
m→∞ β(gμB)2

(≥(Sz)2∈ − ≥Sz∈2) (3)

τy = −gμBB (≥Sx∈ cos θ − ≥Sz∈ sin θ) . (4)

≥...∈ stands for thermal average and τ is a magnetic torque defined as a vector
product of the averaged total magnetization M =

∑n
i=1≥si∈ and the magnetic

field B
τ = M × B . (5)

Since the magnetic field is applied in the x − z plane the torque has only y-th
component defined by equation (4). We notice that the last quantity is very
sensitive to the anisotropy. From the definition (Eq. 5) it is equal to zero if
anisotropy is vanishing because then external magnetic field is collinear with the
total magnetization.

3 Numerical Methods

In exact diagonalization technique only non-alternating couplings are taken into
account. The diagonalization is done numerically and exploits the symmetries
of the Hamiltonian, which is invariant with respect to the renumbering of sites
(1, 2, . . . , N − 1, N) ∞ (2, 3, . . . , N, 1) generated by the shift operator

P ≤
∑

sz
1

. . .
∑

sz
N

| sz
2 . . . sz

Nsz
1∈≥sz

1s
z
2 . . . sz

N | , (6)

Non-perturbative Methods in Phenomenological Simulations 441

and the mirror reflection corresponding to the transformation (1, 2, . . . , N −
1, N) ∞ (N, N − 1, . . . , 2, 1). As a result the eigenstates of the Hamiltonian
are classified by three quantum numbers (Sz, k, r), where −ns ≈ Sz ≈ ns is the
z component of total spin, 0 ≈ k ≈ n/2 corresponds to translational invariance
and r = ±1 is related to the mirror reflection.

The quantum transfer matrix technique applies the Trotter formula to the
exponent of the Hamiltonian (1) expressed as a sum of two non-commuting
Hamiltonians Ho and He. Then the partition function can be written as

Z = lim
m→∞ Zm = lim

m→∞ Tr
(
e− β

m Ho
e− β

m He
)m

. (7)

The symmetries of the Ho and He allow us to express Zm with the help of a
single sparse matrix V and the shift operators P, P† ([7] and references therein)

Zm = Tr
[(

V oP†P†)n/2 P† (
V eP†P†)n/2 P

]m

. (8)

The trace in (8) goes over 48 dimensional spin space. In a similar way one can
calculate any m-th approximant ≥A∈m of a quantity A such as e.g. total spin
moments ≥Sx∈, ≥Sz∈ and ≥(Sz)2∈ which are used in equations (3) and (4).

≥A∈m = TrA
[(

V oP†P†)n/2 P† (
V eP†P†)n/2 P

]m

/Zm . (9)

The thermodynamic quantities are then calculated for diffierent values of the
Trotter index m and extrapolated to m ∞ ∧. It is worth noting that the trace in
equations (8) and (9) is calculated by subsequent matrix-vector multiplications.
Due to the sparsity of the matrices involved such operation is numerically very
efflcient and does not require much computer memory.

Both methods have been parallelized and their high efflciency of process-
ing have been demonstrated in real-life computing on several high performance
multicomputers [16].

4 Results

We have applied the exact diagonalization technique to the evenly and antifer-
romagnetically coupled s = 1 spin ring of 12 sites which models the hypothetical
Ni12 nanomolecule and we have calculated the energy levels as a function of the
uniform magnetic field B applied along the z axis. The single-ion anisotropy was
included and fixed to the value D/|J | = 0.1. The presence of positive anisotropy
substantially modifies the energy levels structure of this molecule [12]. Like in
the case of negative anisotropy one can observe that with increasing magnetic
field B magnetization increases in a characteristic step-like manner. In Fig. 1 the
lowest energy levels are presented as a function of the magnetic field. The mag-
netization steps begin precisely at the so called crossing fields at which the lowest
energy levels intersect. For each energy level in Fig. 1 magnetization M = −S
with S shown in the legend box. Although, S is not a good quantum number

442 P. Kozfflowski et al.

0 2 4 6 8 10 12 14
B/|J| [T/K]

-19

-18

-17

-16

E
/|J

|

S=0 (0,0,1)
S=1 (-1,6,1)
S=2 (-2,0,1)
S=3 (-3,6,-1)
S=4 (-4,0,1)

Fig. 1. The magnetic field B/|J | dependence of the low lying energy spectrum for the
uniformly antiferromagnetically coupled s = 1 spin ring of 12 sites with the single-ion
anisotropy D/|J | = 0.1

at non-zero D values (see the next paragraphs), but for small D/|J | values it
is still numerically applicable, as S values remain close to ones indicated in the
legend box. We can group E levels as multiplets of the approximate total spin.
For our model we have that the level with S = 1 becomes the ground state at
B/|J | = 2.61; the level with S = 2 at B/|J | = 5.30; the level with S = 3 at
B/|J | = 8.84 and the level with S = 4 at B/|J | = 12.54. In comparison to
the model with negative anisotropy [15,17] the crossing fields are much bigger
leading to much fewer magnetization steps in the same range of the magnetic
field. Nevertheless at least the first few crossing fields are still experimentally
accessible.

In many finite quantum spin systems the so-called Landé band [18,19] can
be observed. Let E0(S) denote the minimum energy for all states with a given
total spin number S, which is a good quantum number in the absence of the
anisotropy. The classical Landé rule for a system with even number n of spins s
says that gaps ΔS = E0(S) − E0(S − 1), S = 1, 2, . . . , ns, form an arithmetic
series: ΔS = SΔ1. Therefore E0(S) − E0(0) = Δ1S(S + 1)/2, where, according
to the Lieb-Mattis theorem [20], E0(0) is the ground state energy. It can be
shown that for n even Δns = 4s, so Δ1 should be equal to 4/n and the ground
state energy E0(0) = −s(ns + 2). However, it is satisfied for n = 4 only and
in the classical limit s ∞ ∧ [21], so hereafter this value is denoted as Δc

1 and
referred to as the classical gap. For small n and large s the Landé rule is satisfied
approximately, in particular ΔS ∃ SΔ1 for small S, even for Δ1 	= Δc

1. This
behavior, sometimes called ’the quantum Landé rule’, is often used to determine
thermodynamic properties at low temperatures [13].

Taking into account also the results received for six spins s = 3/2 (unpub-
lished) and s = 5/2 [22] we have calculated three parameters: the ratio Δc

1/Δ1,
E0(ns)−E0(0) compared to the classical value 2s(ns+1), and the ratio ΔS/SΔ1

for a couple values of S; the results are collected in Table 1.

Non-perturbative Methods in Phenomenological Simulations 443

Table 1. Comparision of exact diagonalization results with the classical and quantum
Landé rules (all figures in %; see text for details)

n s
Δc

1
Δ1

2s(ns+1)
E0(ns)−E0(0)

Δ2
2Δ1

Δ3
3Δ1

Δ4
4Δ1

Δ5
5Δ1

6 5/2 96.382 98.238 99.952 99.876 99.759 99.602
6 3/2 94.496 97.110 99.965 99.773 99.380 98.685
8 3/2 89.510 95.285 99.803 99.051 98.214 97.186
12 1 68.842 90.060 88.393 86.142 83.937 81.764

The classical Landé rule is quite well satisfied in the ‘classical’ limits, i.e. for
large s (s ∞ ∧) and for small n (n ∞ 4). When n = 12 and s = 1 the calculated
gap Δ1 ∃ 0.484 ∃ 1.5Δc

1. However, the gap E0(ns) − E0(0) does not diffier from
the classical value so dramatically. It is caused by the fact that for larger S
ΔS/SΔc

1 tends to 1 which is reached at S = ns. It confirms that the quantum
effiects are most important near the ground state of the isotropic Heisenberg
antiferromagnet (small S). The values of ratios ΔS/SΔ1 for S = 2, 3, 4, 5 in
three top lines show that the qunatum Landé rule can be used for systems
with small n and large s. On the other hand, the fourth line indicates that
for large systems with small spin number s the Landé rule gives a very rough
approximation of the thermodynamic properties and, for example, the estimated
values of the exchange integrals have very low precision (at most two decimal
digits).

Using the quantum transfer matrix technique we have calculated the low
temperature magnetic torque (Fig. 2) the magnetic specific heat (Fig. 3) and
the entropy (Fig. 4) for the Cr8 ring with the parameters determined by INS
in [13] (Jo = Je = 16.94K and D = −0.34K) as the parameters from DFT
calculations are much less accurate [23,24]. Our results obtained for the torque
qualitatively agree with the theoretical predictions found in [14] for the same
parameters, but diffier as concerns the precise values. The almost perfect match
is obtained when we rescale our data by a factor 1.46. This diffierence may be due
to the negligence on our side of exchange anisotropy, which in [14] is taken into
account by means of the point-dipole approximation. Both theoretical results do
not reproduce well details of the experimental curve, namely the precise position
of the crossing fields and the character of the steps, which are less steep in the
experiment (cf. Fig. 2 in [14]).

The effiect of bond alternation (ΔJ = |Jo − Je| > 0) is rather small (see
Fig. 2). We keep the mean value of the couplings J̄ = (Jo +Je)/2 = 16.94K and
ΔJ ≈ 0.4J̄ since only then a good fit to the susceptibility data is obtained [15].
It is worth noting that when the couplings are alternated the crossing fields (i.e.
the magnetic fields at which the torque drops) shift towards higher values (see
the inset in Fig. 2), which fits better the experimental results obtained in [14]
(see Fig. 2 in [14]). Yet, a better fitting would probably require introduction of
exchange anisotropy.

444 P. Kozfflowski et al.

0 5 10 15 20 25 30
B [T]

-0,4

-0,3

-0,2

-0,1

0

τ
/ N

A
μ B

 [T
]

13,5 14 14,5 15 15,5

-0,38

-0,36

-0,34

-0,32

-0,3

-0,28

ΔJ=0
ΔJ=0.2 J
ΔJ=0.4 J

Fig. 2. The magnetic torque τ of Cr8 for T = 50 mK, J̄ = 16.94 K and θ = 6. The
lines serve as a guide for the eye

0 2 4 6 8
B [T]

0

0,1

0,2

0,3

0,4

0,5

C
/R

Fig. 3. The magnetic specific heat C of Cr8 for T = 0.9 K, Jo = Je = 16.94 K and
θ = 65°

The low temperature specific heat as a function of the magnetic field is shown
in Fig. 3. In this case only a qualitative comparison is possible, since the results
in the literature [14], both experimental and theoretical, are given in arbitrary
units. We can only say that the position of the minimum at B = 7T , related to
the level crossing, agrees precisely with our result. Also the shape of the C curve
resembles that of the experiment. We emphasize that due to the high precision
of our method, we could determine that the value of C for B = 7T is very small
(C/R = 0.0027±0.0001) but is not vanishing. The influence of bond alternation
on specific heat was investigated in our previous paper [15] and was found to be
negligible as long as J̄ is kept constant and ΔJ ≈ 0.4J̄ .

We have also calculated the entropy for the same parameters as the specific
heat (Fig. 4). With increasing field an unusual rise of the entropy can be observed
with a maximum at B = 7T . As this maximum precisely corresponds to the

Non-perturbative Methods in Phenomenological Simulations 445

0 2 4 6 8
B [T]

0

1

2

3

4

5

6

S
N

A

Fig. 4. The entropy S of Cr8 for T = 0.9 K, Jo = Je = 16.94 K and θ = 65°

minimum of the specific heat (cf. Fig. 3) it can be related to the energy level
crossing [14]. When the separation between two low-lying energy levels decreases
the number of accessible microscopic states increases leading to larger values of
the entropy. Thus, the analysis of this quantity may be considered as another
way to determine the values of crossing or anti-crossing fields.

To obtain the results in a real time we used a parallelized version of our For-
tran code. The most demanding were calculations of the torque at T = 50mK.
One point in Fig. 2 required about 20 days of sequential CPU time. Thanks to
the application of the high performance parallel computing we reduced this time
to about 15 h (with 32 CPU cores engaged).

5 Conclusions

The ED and QTM techniques exploited here give precise, reliable results also
for complex systems for which the perturbative methods are usually used. Both
techniques have been parallelized with high efflciency, implemented in high per-
formance computing environment [16] and can be applied to a number of existing
ring-shape molecular nanomagnets Ni12 [8], Cr8 [4], Cr9 [9], V8 and V10 [11] and
their analogues. The first two ones are modelled in this work.

Using the ED technique we discovered that the change of the anisotropy
sign modifies significantly the energy structure of the anisotropic, antiferromag-
netically coupled Ni12 spin ring placed in the magnetic field. As a result the
crossing fields have diffierent distribution leading to more sparse magnetization
steps induced by the field. This finding indicates importance of the single-ion
anisotropy in antiferromagnetic metal rings for the energy level structure, which
influences their thermodynamic properties.

We have shown that large antiferromagnetic systems with small spins (s ≈
5/2) do not satisfy the Landé rule, even in its ‘quantum’ version, especially near
the ground state (for small total spin S). This problem had been previously

446 P. Kozfflowski et al.

discussed by Engelhardt and Luban [21] and we confirmed that for n > 10
deviation from the Landé rule cannot be neglected. It has to be stressed that the
Quantum Monte Carlo method gives large numerical errors when S < ns/10 [21],
so the first energy gap Δ1 can be precisely determined only for small systems.
With the exact diagonalization methods presented here, we can calculate Δ1

also for significantly larger systems.
Exploiting the QTM method we demonstrated that the bond alternation

in Cr8 model leads to small changes in the magnitude of torque, however the
positions of the steps are shifted towards the higher values. This fits better the
experimental findings. Nevertheless the fitting is not perfect since the experimen-
tal torque steps are wider and lower than those obtained from our calculations.
The reasons may be related both, to the experimental setup and to the negligence
of some microscopic parameters, like e.g. exchange anisotropy.

By exact calculation of the low temperature specific heat (for Cr8) as a
function of the magnetic field we confirmed the location of the first minimum
and found that the precise value of C at this point is very small but not vanishing
as suggested earlier. Our results for the entropy imply the possibility of using
this quantity to determine positions of the crossing or anti-crossing fields.

Acknowledgments. This work was supported in part by the MNiSW within the
project No. N519 579138. Numerical calculations were carried out on the platforms of
the Supercomputing and Networking Center in Poznań and of the Academic Computer
Center in Gdańsk. Part of simulations was also performed on multicomputer pearl in
Faculty of Physics at Adam Mickiewicz University.

References

1. McInnes, E.J.L., Piligkos, S., Timco, G.A., Winpenny, R.E.P.: Studies of chromium
cages and wheels. Coord. Chem. Rev. 249, 2577 (2005)

2. Meier, F., Levy, J., Loss, D.: Quantum computing with antiferromagnetic spin
clusters. Phys. Rev. B 68, 134417 (2003)

3. Blagg, R.J., et al.: Magnetic relaxation pathways in lanthanide single-molecule
magnets. Nature Chem. 5, 673 (2013)

4. Baker, M.L., et al.: Spin dynamics of molecular nanomagnets unravelled at atomic
scale by four-dimensional inelastic neutron scattering. Nat. Phys. 8, 906 (2012)

5. Liviotti, E., Carretta, S., Amoretti, G.: S-mixing contributions to the higher-order
anisotropy terms in the efflective spin Hamiltonian for magnetic clusters. J. Chem.
Phys. 117, 3361 (2002)

6. Kamieniarz, G., Matysiak, R., Florek, W., Wafflcerz, S.: Characterization of some
mesoscopic rings: simulation techniques. J. Magn. Magn. Mat. 203, 271 (1999)

7. Kamieniarz, G., Matysiak, R.: Transfer matrix simulation technique: efflective-
ness and applicability to the low-dimensional magnetic systems. J. Comput. Appl.
Math. 189, 471 (2006)

8. Andres, H., et al.: Studies of a nickel-based single-molecule magnet. Chem. Eur. J.
8, 4867 (2002)

9. Baker, M.L., et al.: A classification of spin frustration in molecular magnets from a
physical study of large odd-numbered-metal, odd electron rings. Proc. Natl. Acad.
Sci. U.S.A. 109, 19113 (2012)

Non-perturbative Methods in Phenomenological Simulations 447

10. Antkowiak, M., Kozlowski, P., Kamieniarz, G., Timco, G.A., Tuna, F., Winpenny,
R.E.P.: Detection of ground states in frustrated molecular rings by the in-field local
magnetization profiles. Phys. Rev. B 87, 184430 (2013)

11. Laye, R.H., Murrie, M., Ochsenbein, S., Bell, A.R., Teat, S.J., Raftery, J., Güdel,
H.-U., McInnes, E.J.L.: Solvothermal syntheses of high-nuclearity vanadium(iii)
clusters. Chem. Eur. J. 9, 6215 (2003)

12. Kamieniarz, G., Haglauer, M., Musiaffl, G., D’Auria, A.C., Esposito, F., Gatteschi,
D.: Single-ion anisotropy efflects on the energy spectra of spin S = 1 Heisenberg
ring. Inorg. Chim. Acta 360, 3941 (2007)

13. Carretta, S., et al.: Microscopic spin Hamiltonian of a Cr8 antiferromagnetic ring
from inelastic neutron scattering. Phys. Rev. B 67, 094405 (2003)

14. Carreta, S., Santini, P., Amoretti, G., Afflronte, M., Ghirri, A., Sheikin, I., Piligkos,
S., Timco, G., Winpenny, R.E.P.: Topology and spin dynamics magnetics in mole-
cules. Phys. Rev. B 72, 060403(R) (2005)

15. Kamieniarz, G., Kozfflowski, P., Musiaffl, G., Florek, W., Antkowiak, M., Haglauer,
M., D’Auria, A.C., Esposito, F.: Phenomenological modeling of molecular-based
rings beyond the strong exchange limit: bond alternation and single-ion anisotropy
efflects. Inorg. Chim. Acta 361, 3690 (2008)

16. Kozfflowski, P., Musiaffl, G., Antkowiak, M., Gatteschi, D.: Efflective parallelization
of quantum simulations: nanomagnetic molecular rings. In: Wyrzykowski, R., Don-
garra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part II. LNCS, vol.
8385, pp. 418–427. Springer, Heidelberg (2014)

17. Antkowiak, M., Kozfflowski, P., Musiaffl, G., Florek, W., Kamieniarz, G., Esposito,
F.: Modeling of the experimental molecular-based ring-shaped nanomagnets. Acta
Phys. Polon. A 118, 965 (2010)

18. Schnack, J., Luban, M.: Rotational modes in molecular magnets with antiferro-
magnetic Heisenberg exchange. Phys. Rev. B 63, 014418 (2000)

19. Waldmann, O.: Spin dynamics of finite antiferromagnetic Heisenberg spin rings.
Phys. Rev. B 65, 024424 (2001)

20. Lieb, E., Mattis, D.: Ordering energy levels of interacting spin systems. J. Math.
Phys. 3, 749 (1962)

21. Engelhardt, L., Luban, M.: Low-temperature magnetization and the excitation
spectrum of antiferromagnetic Heisenberg spin rings. Phys. Rev. B 73, 054430
(2006)

22. Florek, W., Bucikiewicz, S.: Néel probability and spin correlations in some non-
magnetic and nondegenerate states of the hexanuclear antiferromagnetic ring Fe6:
Application of algebraic combinatorics to finite Heisenberg spin systems. Phys.
Rev. B 66, 024411 (2002)

23. Tomecka, D.M., Bellini, V., Troiani, F., Manghi, F., Kamieniarz, G., Afflronte, M.:
Ab initio study on a chain model of the Cr8 molecular magnet. Phys. Rev. B 77,
224401 (2008)

24. Brzostowski, B., Lemański, R., Ślusarski, T., Tomecka, D., Kamieniarz, G.:
Chromium-based rings within the DFT and Falicov-Kimball model approach. J.
Nanopart. Res. 15, 1528 (2013)

Non-uniform Quantum Spin Chains:
Simulations of Static and Dynamic Properties

Artur Barasiński1, Bartosz Brzostowski1(B), Ryszard Matysiak2,
Paweffl Sobczak3, and Dariusz Woźniak1

1 Institute of Physics, University of Zielona Góra, Prof. Z. Szafrana 4A,
65-516 Zielona Góra, Poland

B.Brzostowski@if.uz.zgora.pl
2 Institute of Engineering and Computer Education, University of Zielona Góra,

Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
3 Faculty of Physics, A. Mickiewicz University, ul. Umultowska 85,

61-614 Poznań, Poland

Abstract. Since magnetic materials are often composed of magnetically
isolated chains, their magnetic properties can be described by the one-
dimensional quantum Heisenberg model. The quantum transfer matrix
(QTM) method based on a checkerboard structure has been applied for
quantum alternating spin chains. To increase the length of the transfer
matrix in the Trotter direction we apply the density-matrix renormaliza-
tion technique and check the efficiency of parallelization for a part of the
code: the construction of the transfer matrix. Next, using the Matrix
Product State representation, the time evolution of the ground-state
magnetization has been performed after the sudden change in applied
field.

Keywords: Static and dynamic magnetic properties · Heisenberg model ·
Numerical simulations · Parallel processing

1 Introduction

The main features of magnetic properties of many compounds can be ade-
quately described within the framework of interacting spin chains governed by
the Heisenberg model [1,2]. Often the reason is simple: the relevant interactions
between magnetic ions are along one-dimensional chains whereas the energy
exchange between the diffierent chains is negligible [3]. Using a real-space decom-
position scheme and the Trotter formula for the noncommuting operators the
zero- and finite-temperature behaviors of the Heisenberg chains can be studied.

2 The Thermodynamic Properties

We consider the S = 1/2 Heisenberg Hamiltonian consisting of an isotropic
exchange term and the Zeeman term, where the g–factors and μB have been

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 448–457, 2014.
DOI: 10.1007/978-3-642-55195-6 42, c© Springer-Verlag Berlin Heidelberg 2014

Non-uniform Quantum Spin Chains 449

set to one. J is an exchange coupling constant, B is an external magnetic field
acting along the α–th coordinate axis (α = x, y, z) and N stands for the number
of sites.

H = −J
N−1⎧

i=1

⎨
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Sz

i Sz
i+1

⎩ − B
N⎧

i=1

Sα
i . (1)

For the spin system described in (1) we can calculate the canonical partition
function Z = Tr e−βH. The values of matrix elements of e−βH cannot be calcu-
lated for large N because of noncommuting operators in (1). To eliminate this
restriction, we look for systematic approximants to the partition function Z. We
express Hamiltonian (1) as a sum of the spin–pair Hamiltonians Hi,i+1 and in
the checkerboard decomposition we divide the Hamiltonian (1) into two non-
commuting parts [4] each part defined by the commuting spin–pair operators
Hi,i+1. Then the series of the classical approximants of the quantum thermal
values can be found, using the general Suzuki–Trotter formula [4]. The partition
function is calculated from the expression

Z = lim
m∈≥ Zm = lim

m∈≥Tr

⎜

⎫
N/2⎬

i=1

V2i−1,2i

N/2⎬

i=1

V2i,2i+1

⎭

⎞

m

= lim
m∈≥Tr [V1V2]

mN/2
,

(2)
where Vi,i+1 = e−βHi,i+1/m, i = 1, 2, · · · , N and m is a natural number (referred
to as the Trotter number). For odd sites i all Vi,i+1 become the same form V1,
whereas for even sites the same form V2. So, the approximant Zm can be calcu-
lated numerically, without any restrictions on the value of N , by the quantum
transfer–matrix (QTM) method. In the limit N ≤ ≥ the partition function Z
is equal to the highest eigenvalue of the global transfer matrix (TM) V = V1V2.
The computation of Zm is possible for relatively small values of m, because of
the size of the transfer matrix which is crucial for storage usage. As the leading
errors in taking a finite m approximant are of the order of 1/m2, an extrapolation
to infinity is reasonable but not always reliable enough.

For infinite chains (the macroscopic limit) it is better to reverse the transfer
direction. For this purpose, we must define a new local transfer matrix Lr,r+1 and
a unitary shift operator D [5]. These operators act in a Hilbert space H2m whose
dimension is independent of N . In this case the global TMs can be expressed
in terms of two operators L1,2 and L2,3: Wr = (Lr,r+1D+)m (r = 1, 2) and the
m–th classical approximant to the partition function can be written as:

Zm = Tr (W1W2)
N/2

. (3)

As previously, in the limit N ≤ ≥ the partition function Z is equal to the
highest eigenvalue of the global transfer matrix W = W1W2. The thermody-
namic functions are related to the free energy which can be calculated by means
of the formula f = −kBT ln Z.

450 A. Barasiński et al.

2.1 The Extrapolation Method

On the example of the specific heat C/T = −(∂2f/∂T 2)B we present how effiec-
tively extrapolate data beyond the region available for the QTM approach. To
obtain a certain value of specific heat calculated from the partition function (3),
the dependence of the calculated specific heat on Trotter index m should be
analyzed for a given temperature and extrapolated to infinity where the leading
term is known C(1/m2). For low temperatures the dependence C(1/m2) signif-
icantly deviates from linear character and with increasing m the specific heat
values change significantly. It is worth mentioning that Quantum Monte Carlo
methods have the advantages of linear scaling with system size and no system-
atic approximations, so they can also be used to study the low-temperature
dependence of the specific heat [6,7].

In order to improve the accuracy of the QTM-based estimation for low tem-
peratures, the analysis of the specific heat as a function of 1/m2 was made
[8]. A function described by the extrapolation polynomial of the degree k (k =
1, . . . , kmax) in the form Cm/T =

⎠k
j=0 aj · ⎨

1
m2

⎩j was developed to fit all the
points Cm corresponding to mmin, . . . , mmax. The extrapolation procedure starts
with mmin = 2 and is continued till m = mmax − 1. In each step the number of
fitted points n (n = mmax − mmin + 1) is fixed and a number of extrapolations
are performed with polynomials of the degree k (1 ∈ k ∈ n − 1, but not more
than 10). In this way for a given field and temperature we obtain a set of extrap-
olated values for diffierent values of n and k and we can present the variation of
the data with n for the fixed degree k of the polynomial. We observed that the
variation of the data decreases with increasing degree k and the reliability of the
estimates increases for k ∞ 4 (see Fig. 1).

3 4 5 6 7 8
n - number of approximants

0.22

0.23

0.24

0.25

0.26

0.27

C
/T

 [J
/(K

2 m
ol

e)
]

k = 2
k = 3
k = 4
k = 5
k = 6
exact diagonalization

Fig. 1. The extrapolated values of specific heat versus the number of points n for which
the polynomials are constructed. Each particular plot corresponds to the polynomial
of a given degree k. The figure has been drawn for the finite chain with N = 20 where
B = 0 and T = 3.0 K. A dashed line presents results based on the exact diagonalization
method. The error bars are smaller than the symbol sizes.

Non-uniform Quantum Spin Chains 451

2.2 The DMRG Method

Due to new slow-relaxing magnetic nanosystems, a scientific interest has been
focused on one-dimensional magnetic materials with large spins [9] recently.
Unfortunately, since a size of the Hilbert space grows here dramatically, only cal-
culations with m < 10 are available in practice. It has occurred that to increase
the length of the transfer matrix in the Trotter direction, the density-matrix
renormalization-group (DMRG) method [10] can be applied. The method was
originally developed by White [11] for quantum spin chains at the ground state.
Its adaptation - based on the transfer matrix approach - to the calculation of
the thermodynamical properties of one-dimensional quantum systems was first
proposed by Bursill et al. [12] and fully developed by Wang and Xiang [13] as
well as by Shibata [14]. The iterative truncation algorithm for constructing the
effiective transfer matrices has been applied to a number of systems [15–18] for
attaining the Trotter index m of several dozens.

3 Time Evolution

On the other hand, the DMRG method has occurred to be a variational method
within the space of Matrix Product States (MPS) [19]. It is related to the fact
that for physical systems, e.g. where only nearest-neighbours interactions are
present, only minor part of Hilbert space is involved [20–22]. It corresponds to
assigning a finite entanglement content to spins in the ground state. Therefore,
any state of the spin chain can be presented in the MPS representation

|ψ≈ =
d1,...,dN⎧

σ1,...,σN

D1,...,DN−1⎧

a1,...,aN−1

Mσ1
1,a1

Mσ2
a1,a2

. . . MσN−1
aN−2,aN−1

MσN
aN−1,1 |σ1 . . . σN ≈

where di is dimension of the local base {σi} at the i–th site whereas Di are
related to the entanglement of neighbouring spins. In an analogous manner any
operator can be written as a Matrix Product Operator (MPO):

O =
d1,...,dN⎧

σ1,...,σN

d1,...,dN⎧

σ∗
1,...,σ∗

N

W σ1σ∗
1W σ2σ∗

2 . . . WσNσ∗
N |σ1 . . . σN ≈∧σ◦

1 . . . σ◦
N |

Due to the above representation the state space grows only polynomially
in the system size (not exponentially as usual). Thus, the time of calculations
is significantly reduced for one-dimensional strongly correlated systems, taking
into account both their static and dynamic properties.

When the variational principle is applied, the ground state can be found very
smoothly by the minimization procedure ∧ψ|H|ψ≈ under the constrain ∧ψ|ψ≈ = 1
[23]. Moreover, the time evolution can also be performed very efflciently. So,
discretize time as t = nΔt can be used and when for the Hamiltonian (1) a

452 A. Barasiński et al.

second-order Trotter decomposition is applied [22] the time-evolution operator
can be presented as:

e−iHΔt = e−iHoΔt/2e−iHeΔte−iHoΔt/2 + O(Δt3)

where

Ho = −J

N/2⎧

i=1

⎨
Sx
2i−1S

x
2i + Sy

2i−1S
y
2i + Sz

2i−1S
z
2i

⎩

He = −J

N/2−1⎧

i=1

⎨
Sx
2iS

x
2i+1 + Sy

2iS
y
2i+1 + Sz

2iS
z
2i+1

⎩ − B

N⎧

i=1

Sz
i

Then the time evolution algorithm takes a very simple form [22]: one starts from
|ψ0≈ and repeats the following steps

1. Applying the MPO of the odd bonds to |ψ(t)≈.
2. Applying the MPO of the even bonds to e−iHoΔt/2|ψ(t)≈.
3. Compressing the MPS |ψ(t+Δt)≈ = e−iHeΔt/2e−iHoΔt/2|ψ(t)≈ to the starting

dimension.

It is worth adding that finite temperature calculations can be carried out based
on mixed-states time evolution [22].

4 Simulations Results

Molecular materials have already shown their great potential [2]. When magnetic
properties are considered, one of the examples are the ferromagnetic bimetal-
lic and polymetallic complexes that stimulated interest in the quantum chain
Heisenberg model applied to investigate various mixed spin systems. For the thio-
cyanate bridge compounds the anisotropic alternating (S = 1/2 and S = 3/2)
spin Hamiltonian [24] is employed. Its formula is such as in (1), but the Pauli
operators located on even sites have been replaced by 3/2 spin operators. The
high accuracy results are successfully fitted to the corresponding experimental
susceptibility and magnetization data measured [24].

4.1 Finite-Temperature Static Properties

In this section we present numerical results for the infinite chain. The main
numerical problem is the calculation of the global transfer matrix W which is
given as a complex sum of nested multiplications of the matrix elements Vi,i+1

(2). The calculation of the original transfer matrix elements was distributed
among a number of processes. We have used coarse-grained homoparallelism:
the work was split on the identical independent subtasks [25].

We have tested the parallel version of our algorithm on the part of the full
code, where individual elements of the transfer matrix are the subject of dis-
tribution between the parallel processes. It has been developed using the MPI

Non-uniform Quantum Spin Chains 453

0 10 20 30 40 50 60
Number of processors - p

0

10

20

30

40

50

60

Sp
ee

d-
up

 -
S p

Fig. 2. The speed-up Sp of the parallel computation for the number of processors
p ≤ 64. The full line describes the function Sp = p. For p < 30 the error bars are
smaller than the symbol size. The dashed line corresponds to the slope 0.75, whereas
the dotted one to an almost horizontal line (the lines are only a guide for the eye).

library and implemented on Intel Core microarchitecture (IA-32) with 46 dual-
core Xeon EM64T 3 GHz processors. We have analyzed the speed-up which has
been computed as the quotient of the CPU time Ts of sequential version of the
algorithm divided by the maximum CPU time Tp used by parallel algorithm [26].
For the sequential version of the algorithm we need about 1800 s of CPU time.

The speed-up of the parallel job is drawn in Fig. 2. One can see that when
the number of processors p is less than 35, an efflciency is close to 75%. Further
increasing of p is practically useless as dots form here almost a horizontal line.
We suppose that the complexity of the calculations (e.g., the size of the transfer
matrix) is a reason. We expect that for the full DMRG code (more complex) the
better scalability would be found.

4.2 Zero-Temperature Dynamic Properties

Our initial attempts to parallelize the code using the MPS formalism, have not
been successful. However, it was found that the evolution operator acting on the
state can run in parallel on each site. The neck of the bottle is compressing the
MPS states to the starting dimension, which must occur sequentially, site by
site.

In order to study the ground-state magnetization dynamics we have consid-
ered the alternating Heisenberg chain with N = 100 sites (S = 3/2 on odd sites
and s = 1/2 on even sites). To perform the time evolution of the magnetization,
first the magnetic field B was fixed as Bx = 0.5 (for the case of a weak field) or
Bx = 5 (for the case of a strong field) determining the initial state |ψ0≈ which is
calculated by a variational optimisation scheme. Next, at time t = 0 the field B
is changed instantaneously to the value Bz = 0.5 and the unitary time evolution

454 A. Barasiński et al.

Fig. 3. The time evolution of the magnetization components for the ferromagnetic
alternating chain. The calculations were done for the two central spins of the chain.
The z-th component is zero with the uncertainty smaller than 10−9.

Fig. 4. The time evolution of the magnetization components for the antiferromagnetic
alternating chain. The calculations were performed for the two central spins. The z-th
component is zero with the uncertainty smaller than 10−9.

of the system is performed. The initial state |ψ0≈ evolves and the magnetiza-
tion is recorded for subsequent moments of time. Our results are presented in
Figs. 3 and 4 for the ferromagnetic (J > 0) and antiferromagnetic (J < 0) cases,
respectively.

The curves in Fig. 3 demonstrate the influence of the magnetic field Bz for the
period of oscillation of the magnetization components Mx and My. In order to
understand the frequency of the oscillations we have studied a single spin S = 1/2
experiencing only Zeeman interaction with an external magnetic field Bz that
can be solved analytically. We have found that the Mx (My) magnetization
varies with time as a cosine function cos(Bzt) (− sin(Bzt)). Because the total
magnetisation operator commutes with the Hamiltonian the Mz is zero all time.

For the antiferromagnetic case (Fig. 4), of course, the same relation between
the period of the oscillations and the value of the field is observed. A significant
diffierence is the behaviour of the amplitudes of the oscillations. While for the
ferromagnetic case the amplitude of magnetization reaches the value 3/2 or 1/2

Non-uniform Quantum Spin Chains 455

50 100 150 200 250
N

2000

4000

6000

8000

tim
e

[s
]

measured times
reference line

Fig. 5. Time of computations for the alternating Heisenberg chain with various lengths
at the initial field Bx = 0.5. The Di parameters are equal to 16.

depending on the spin, for the antiferromagnetic case the magnetization ampli-
tude is always somewhat smaller. Moreover, for the antiferromagnetic case the
strong initial magnetic field Bx changes substantially the initial state setting all
the spins in accordance with the field. As a result, both magnetizations oscillate
as in the ferromagnetic case.

Finally, we have decided to evaluate the time complexity of MPS-based
calculations for the ground-state magnetization dynamics. For each of lengths
N = 50, 100, 150, 200, 250 several computations have been performed for the
weak initial field. As one can see in Fig. 5 the average time grows linearly with a
chain length. Since in the direct computations the time grows exponentially the
MPS-based calculations provide a huge increase in speed. Moreover, the memory
size is also reduced dramatically: the number of elements of the state vector is
decreased from 8

N
2 to 192N while the number of Hamiltonian elements is scaled

down from 8N to 600.
There are two sources of error: the noncommutativity of Hamiltonian oper-

ators when the Trotter decomposition is applied and truncation of the bond
dimensions of the MPS after each time step. As a measure of the error, one can
take the energy that is fixed during the time evolution. It turned out that ferro-
and antiferromagnetic systems are subject to diffierent energy errors. While for
the former, the error is around 10−12, then for the antiferromagnetic case it is
five orders larger (energy values are of the order 10). Although the intermediate
area of the initial field between Bx = 0.5 and Bx = 5 has not been systematically
studied, we noticed that there is an error even greater.

5 Conclusions

Our results have shown that for the S = 1/2 spin systems one can go to relatively
large m and, providing an appropriate extrapolation, get very accurate results for
thermodynamic functions. The accuracy of the present QTM estimated results
is comparable with that of DMRG results for temperature T = 2 K, (kBT/J =
0.077) diffiering by less than 1%.

456 A. Barasiński et al.

For systems with higher spins, because of the large size of matrices, one
is able to go only to m < 10 and even providing very efflcient extrapolation
technique the accurate results are beyond our reach. Then the application of the
DMRG approach to the QTM method seems to be promising [24] allowing the
construction of effiective transfer matrices with high m. In order to accelerate our
calculations, we have tested the parallel version of the code, where the original
transfer matrix is build. We have found that above a certain number of processors
the speed-up grows extremely slowly. In our opinion it is related to the low
complexity of the calculations. We expect that it is possible to estimate the
optimal number of processors with respect to the code complexity, but it requires
further considerations.

In order to simulate the dynamics of quantum chains the Matrix Product
States representation was employed. The time evolution of the zero-temperature
magnetization has been performed after the sudden change in applied field. Our
results show significantly diffierent behavior depending on the initial value of the
magnetic field. We have not built the parallel version of the code but the time
complexity of MPS-based calculations has occurred to be linear.

Acknowledgments. The calculations were performed on computer facilities granted
by Poznan Supercomputing and Networking Centre (Poland) as well as within DECI
programme by the PRACE-2IP (FP7/2007-2013) under grant agreement no RI-283493.
Support from the Polish MNiSW through the grant No N519 579138 is also acknowl-
edged.

References

1. Kahn, O.: Molecular Magnetism. Wiley-VCH, New York (1993)
2. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University

Press, Oxford (2006)
3. Steiner, M., Villain, J., Windsor, C.G.: Theoretical and experimental studies on

one-dimensional magnetic systems. Adv. Phys. 25, 87 (1976)
4. Delica, T., Leschke, H.: Formulation and numerical results of the transfer-matrix

method for quantum spin chains. Physica A 176, 736 (1990)
5. Kamieniarz, G., Matysiak, R.: Transfer matrix simulation technique: effectiveness

and applicability to the low-dimensional magnetic spin systems. J. Comput. Appl.
Math. 189, 471 (2006)

6. Syljůasen, O.F., Sandvik, A.W.: Quantum Monte Carlo with directed loops. Phys.
Rev. E 66, 046701 (2002)

7. Androvitsaneas, P., Fytas, N.G., Paspalakis, E., Terzis, A.F.: Quantum Monte
Carlo simulations revisited: the case of anisotropic Heisenberg chains. Philos. Mag.
92, 4649 (2012)

8. Matysiak, R., Kamieniarz, G., Gegenwart, P., Ochiai, A.: Specific heat of the poly-
domain Yb4As3 system: agreement between spin - 1/2 modelling and experiment.
Phys. Rev. B 79, 224413 (2009)

9. Coulon, C., Miyasaka, H., Clerac, R.: Single-chain magnets: theoretical approach
and experimental systems. Struct. Bond. 122, 163 (2006)

Non-uniform Quantum Spin Chains 457

10. Schollwoeck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77,
259 (2005)

11. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys.
Rev. B 48, 10345 (1993)

12. Bursill, R.J., Xiang, T., Gehring, G.A.: The density matrix renormalization group
for a quantum spin chain at non-zero temperature. J. Phys. Condens. Matter 8,
L583 (1996)

13. Wang, X.Q., Xiang, T.: Transfer-matrix density-matrix renormalization-group the-
ory for thermodynamics of one-dimensional quantum systems. Phys. Rev. B 56,
5061 (1997)

14. Shibata, N.: Thermodynamics of the anisotropic Heisenberg chain calculated by
the density matrix renormalization group method. J. Phys. Soc. Jpn. 66, 2221
(1997)

15. Sobczak, P., Barasinski, A., Drzewinski, A., Kamieniarz, G., Klak, J., Bienko,
A., Mrozinski, J.: Magnetic properties and DMRG modeling of the 1D bimetallic
thiocyanate bridged compound (CuL1)[Co(NCS)4(L1 = N − rac− 5, 12 −Me2 −
[14] − 4, 11 − dieneN4). Polyhedron 28, 1838 (2009)

16. Barasinski, A., Drzewinski, A., Kamieniarz, G.: Quantum effects and Haldane gap
in magnetic chains with alternating anisotropy axes. Comput. Phys. Commun.
182, 2013 (2011)

17. Sobczak, P., Barasinski, A., Kamieniarz, G., Drzewinski, A.: Anisotropic planar
Heisenberg model of the quantum heterobimetallic zigzag chains with bridged
ReIV − CuII magnetic complexes. Phys. Rev. B 84, 224431 (2011)

18. Barasinski, A., Kamieniarz, G., Drzewinski, A.: Magnetization-based assessment of
correlation energy in canted single-chain magnets. Phys. Rev. B 86, 214412 (2012)

19. Östlund, S., Rommer, S.: Thermodynamic limit of density matrix renormalization.
Phys. Rev. Lett. 75, 3537 (1995)

20. Verstraete, F., Cirac, K.: Matrix product states represent ground states faithfully.
Phys. Rev. B 73, 094423 (2006)

21. Verstraete, F., Murg, V., Cirac, K.: Matrix product states, projected entangled pair
states, and variational renormalization group methods for quantum spin systems.
Adv. Phys. 57, 143 (2008)

22. Schollwoeck, U.: The density-matrix renormalization group in the age of matrix
product states. Ann. Phys. 326, 96 (2011)

23. Wozniak, D., Drzewinski, A., Kamieniarz, G.: Matrix-product states for the Ising
model in a transverse field. Acta Phys. Superficierum 12, 187 (2012)

24. Barasinski, A., Sobczak, P., Drzewinski, A., Kamieniarz, G., Bienko, A., Mrozinski,
J., Gatteschi, D.: Anisotropy and magnetic properties of the bimetallic thiocyanate-
bridged chains: density-matrix renormalization approach. Polyhedron 29, 1485
(2010)

25. Bauer, Barr E.: Practical Parallel Programming. Academic Press Inc, San Diego
(1992)

26. Van de Velde, E.F.: Concurrent Scientific Computing. Springer, New York (1994)

Minisymposium on Applied
High Performance Numerical

Algorithms in PDEs

A Domain Decomposition Method
for Discretization of Multiscale Elliptic

Problems by Discontinuous Galerkin Method

Maksymilian Dryja(B)

Department of Mathematics, Univeristy of Warsaw,
Banacha 2, 02-097 Warsaw, Poland

dryja@mimuw.edu.pl

Abstract. In this paper boundary value problems for second order
elliptic equations with highly discontinuous coefficients are considered
on a 2D polygonal region. The problems are discretized by a discontin-
uous Galerkin (DG) with finite element method (FEM) on triangular
elements using piecewise linear functions.

The goal is to design and analyze a parallel algorithm for solving the
discrete problem whose rate of convergence is independent of the jumps
of the coefficients. The method discussed is an additive Schwarz method
(ASM) which belongs to a class of domain decomposition methods and
is one of the most efficient parallel algorithm for solving discretizations
of PDEs.

It turns out that the convergence of the method presented here is
almost optimal and only weakly depends on the jumps of coefficients.
The suggested method is very well suited for parallel computations.

Keywords: Interior penalty method · Discontinuous Galerkin method ·
Elliptic equations with discontinuous coefficients · Finite element method ·
Additive Schwarz method

1 Introduction

We consider boundary value problems (BVPs) for second order elliptic equa-
tions with highly discontinuous coefficients posed on a 2D polygonal region. The
problem is discretized by a discontinuous Galerkin (DG) method with FEM
on triangular elements and piecewise linear functions, see [1,3], and references
therein. The goal of this paper is to design and analyze a parallel algorithm for
solving the discrete problem with rate of convergence independent of the jumps
of coefficients.

The proposed algorithm is an additive Schwarz method (ASM) with overlaps
and belongs to a class of domain decomposition methods and it is one of the
most efficient parallel algorithms for solving discretizations of PDEs, see [5].

This work was supported in part by the Polish National Science Centre Grant no
2011/01/B/ST1/01179.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 461–468, 2014.
DOI: 10.1007/978-3-642-55195-6 43, c© Springer-Verlag Berlin Heidelberg 2014

462 M. Dryja

In the paper the results obtained in [4] for continuous piecewise linear finite
element discretization are extended to DG discretization. They are more general
comparising to the results of [4].

The presented ASM is two-level with a special coarse space defined on large
triangles of coarse triangulation, i.e. a multiscale coarse space. This is a space of
continuous functions which are discrete harmonic on edges of the coarse triangles
and inside of them in the sense of corresponding bilinear forms. The local spaces
are defined in a standard way, on the fine triangulation, on extensions of coarse
triangles; these spaces contain discontinuous functions. For literature on the
topic see [4,5], and references therein.

It turns out that the convergence of the discussed ASM is dependent of the
jumps of the coefficients on the boundary of coarse triangles only. For some
distributions of jumps, the convergence of the ASM is also independent of these
jumps.

The paper is organized as follows. In Sect. 2, differential and discrete problems
are formulated. In Sect. 3, a two level ASM for solving the discrete problem is
designed and analyzed. The main result is Theorem 5, which guarantees the opti-
mality of the method. Section 4 is devoted to an implementation of the method
discussed.

2 Differential and Discrete DG Problems

We consider the following elliptic problem:
Find u∈ ≤ H1

0 (Ω) such that

a(u∈, v) = f(v), ≥v ≤ H1
0 (Ω) (1)

where
a(u, v) =

∫

Ω

ρ(x)∈u · ∈vdx, f(v) =
∫

Ω

fvdx.

We assume that Ω is a polygonal region, f ≤ L2(Ω) and ρ(x) ∞ ρ0 > 0, and
ρ ≤ L≥(Ω). Under these assumptions problem (1) is well posed.

We will also assume that ρ0 ∞ 1. This can be fulfilled by scaling (1). It is
used in the analysis of preconditioner discussed in Sect. 3.

Let T h(Ω) be a triangulation of Ω with triangular elements Ki and the mesh
parameter h. It is constructed as a refinement of the coarse triangulation of Ω
consisting of large triangles Ωl of diameter Hl, l = 1, · · · , L,Hl = diam(Ωl)
and H = max Hl. The refinement procedure is repeated several times, where
one step of the process is to split each triangle into four smaller ones, obtained
by connecting the midpoints of its edges. Let Xi(Ki) denote a space of linear
functions on Ki and

Xh(Ω) = ΠN
i=1Xi(Ki), Ω̄ = ≈N

i=1Ki,

be the space in which problem (1) is approximated. Note that Xh(Ω) ∧∃ H1(Ω)
and its elements do not vanish on ∂Ω, in general.

Domain Decomposition by Discontinuous Galerkin Method 463

The discrete problem for (1) is of the form:
Find u∈

h ≤ Xh(Ω) such that

âh(u∈
h, vh) = f(vh), vh ≤ Xh(Ω), (2)

where for u, v ≤ Xh(Ω), u = {ui}N
i=1, ui ≤ Xi(Ki),

âh(u, v) =
N∑

i=1

âi(u, v), f(v) =
N∑

i=1

∫

Ki

fvidx.

Since we use linear elements, we can assume without loss of generality that
ρ|Ki

= ρi is constant on Ki. Here

âi(u, v) = ai(u, v) + si(u, v) + pi(u, v),

ai(u, v) =
∫

Ki

ρi∈ui · ∈vidx,

si(u, v) =
∑

Eij◦∂Ki

∫

Eij

ωij [nT
i ρi∈ui(vj − vi) + nT

i ρi∈vi(uj − ui)] ds,

pi(u, v) =
∑

Eij◦∂Ki

σ

h

∫

Eij

γij(ui − uj)(vi − vj) ds

where Eij = Eji = ∂Ki ∩ ∂Kj , Eij ∃ ∂Ki and Eji ∃ ∂Kj ; ni = nEij
is the unit

normal vector to Eij pointing from Ki to Kj ;

ωij ≡ ωEij
=

ρj

ρi + ρj
, ωji ≡ ωEji

=
ρi

ρi + ρj

and
γij ≡ γEij

=
2ρiρj

ρi + ρj
;

σ is a positive penalty parameter (sufficiently large, see below Lemma 1). For
boundary egdes these definitions extend straightforwardly, setting for Eij ∃ ∂Ω:
ωij = 1, ωji = 0, vj = uj = 0 and γij = ρi.

To analyze problem (2) we introduce some auxiliary bilinear forms and a
broken norm. Let

dh(u, v) =
N∑

i=1

di(u, v), di(u, v) = ai(u, v) + pi(u, v) (3)

and let the weighted broken norm in Xh(Ω) be defined by

‖ u ‖21,h≡ dh(u, u)=
N∑

i=1

{‖ (ρi)1/2∈ui ‖2L2(Ki)
+

∑

Eij◦∂Ki

σ

h
γij ‖ ui−uj ‖2L2(Eij)

}.

(4)

464 M. Dryja

Lemma 1. There exists σ0 > 0 such that for σ ∞ σ0 there exist positive con-
stants C0 and C1 independent of ρi and h such that for any u ≤ Xh hold

C0di(u, u) ∅ âi(u, u) ∅ C1di(u, u)

and
C0dh(u, u) ∅ â(u, u) ∅ C1dh(u, u).

For the proof we refer the reader to [2]; see also [3] or [1].
Lemma 1 implies that the discrete problem (2) is well posed if the penalty

parameter σ ∞ σ0. Below σ is fixed and assumed to satisfy the above condition.
The error bound is given by

Theorem 2. Let u∈ and u∈
h be the solutions of (1) and (2). For u∈

|Ki
≤ H2(Ki)

holds

‖ u∈ − u∈
h ‖21,h∅ Mh2

N∑

i=1

ρi|u∈|2H2(Ki)

where M is independent of h, u∈ and ρi.

The proof follows from Lemma 1; for details see, for example, [3].

3 ASM with a Multiscale Coarse Space

We design and analyze a two-level additive Schwarz method (ASM) for solving
the discrete problem (2). For that the general theory of ASMs is used, see [5].
The decomposition of Xh(Ω) consists of the local spaces defined on subdomains
extended from the coarse triangles Ωl, and the global space of continuous discrete
harmonic functions related to the coarse triangulation.

3.1 Decomposition of Xh(Ω)

Let

Xh(Ω) = V (0)(Ω) +
L∑

l=1

V (l)(Ω) (5)

where V (0)(Ω) is a coarse space while V (l)(Ω), l = 1, . . . L, are local spaces
associated with Ωl. They are defined as follows. For l = 1, . . . , L, Ωl is extended
to Ω≤

l by adding triangles from the fine triangulation around ∂Ωl which intersect
∂Ωi by vertex and/or edge. In this way we get an overlapping partitioning of Ω,

Ω̄ =
L⋃

l=1

Ω̄≤
l

with overlap δl ≈ 2h defined as

δl = dist(∂Ω≤
l \ ∂Ω, ∂

o

Ωl \ ∂Ω)

Domain Decomposition by Discontinuous Galerkin Method 465

where
o

Ωl denotes the interior part of Ωl which is not overlapped by any other
Ωp for p ∧= l; see [5, p. 198] for figures which exemplify such decomposition.

The local spaces V (l)(Ω) for l = 1, . . . , L are defined as

V (l)(Ω) = {{vi}N
i=1 ≤ Xh(Ω) : vi = 0 on Ki ∧∃ Ω̄≤

l}. (6)

Thus V (l)(Ω) is the restriction of Xh(Ω) to Ω̄≤
l and zero outside of Ω̄≤

l.
The coarse space V (0)(Ω) is defined in a special way. The functions in V (0)(Ω)

are going to be piecewise linear continuous on the fine triangulation and discrete
harmonic on ∂Ωl and in Ωl. Let ν be the set of all vertices of Ω̄l. With each x(k) ≤
ν, a function Φk(x) is associated with support on a union of coarse triangles Ωl

for which x(k) is a common vertex. On the set ν, we set Φk(x(k)) = 1 and
Φk(x) = 0 otherwise. Next we define Φk on the boundary of each Ωl. Let x(k) be
a vertex of Ωl and let Flp denote an edge of Ωl shared with Ωp, Flp = ∂Ωl ∩∂Ωp.
Let aΩl

(·, ·) be the restriction of a(·, ·) to Ω̄l, i.e.

aΩl
(u, v) =

∑

Ki◦Ω̄l

(ρi∈u,∈v)L2(Ki) = (ρ(l)∈u, ∈v)L2(Ωl), (7)

where by definition ρ(l) = ρi on Ki ∃ Ω̄l. Then the restriction of aΩl
(·, ·) to Flp

is defined as
aFlp

(u, v) = (ρlpDτu,Dτv)L2(Flp) (8)

where Dτ is the tangential derivative and ρlp, on Flp, is the harmonic average
of the coefficients on Ωl and Ωp, i.e. ρlp = 2ρ(l)ρ(p)/(ρ(l) + ρ(p)). Note that in
this way ρlp = ρpl. On Flp, we define the values of Φk as the solution of the
one-dimensional problem:

aFlp
(Φk, v) = 0 ≥v ≤ o

V h(Flp) (9)

with Dirichlet boundary conditions Φk(x(k)) = 1 and Φk(x(m)) = 0 at the other

end, x(m), of Flp. Above,
o

V h(Flp) is the set of piecewise linear continuous func-
tions with zero values on ∂Flp. In addition we set Φk(x) = 0 on those edges of
Ωl which do not end at x(k).

Finally we extend Φk, already defined on ∂Ωl, into Ωl as a discrete harmonic
function in the sense of aΩl

(·, ·), i.e.
{

aΩl
(Φk, v) = 0, ≥v ≤ o

V h(Ωl)
with Φk(x) on ∂Ωl defined in (9).

(10)

Here v ≤ o

V h(Ωl) is a set of piecewise linear continuous functions defined on Ω̄l

with zero values on ∂Ωl.
Using these functions, the coarse space V (0)(Ω) is defined as

V (0) = span{Φk(x)}x(k)∩ν . (11)

Of course V (0) ∃ Xh(Ω).

466 M. Dryja

Remark 3. This space is called a multiscale coarse space and at the beginning it
was used to obtain more accurate approximation. In [4], V (0)(Ω) was used also
as a coarse space in ASM for the conforming (continuous) finite element method
in the case when the coefficients are piecewise constant across ∂Ωl, l = 1, . . . , L.

3.2 Inexact Solver

For u(0), v(0) ≤ V (0)(Ω), let

b0(u(0), v(0)) = dh(u(0), v(0)), (12)

where dh(·, ·) is defined in (3).
For l = 1, . . . , L we set

bl(u(l), v(l)) = dΩ′
l
(u(l), v(l)), u(l), v(l) ≤ V (l)(Ω) (13)

where for u(l) = {u
(l)
i }N

i=1, v(l) = {v
(l)
i }N

i=1

dΩ′
l
(u(l), v(l)) =

∑

Ki◦Ω̄′
l

{(ρi∈u
(l)
i ,∈v

(l)
i)L2(Ki) +

+
∑

Eij◦∂Ki

γij
σ

h
(u(l)

j − u
(l)
i , v

(l)
j − v

(l)
i)L2(Eij)}. (14)

3.3 The Operator Equation

For l = 0, 1, . . . , L let Tl : Xh(Ω) → V (l)(Ω) be defined by

bl(Tlu, v) = âh(u, v), v ≤ V (l)(Ω). (15)

Note that Tlu is defined uniquely for given u ≤ Xh(Ω) as the solution of local
problems defined on Ω≤

l for l = 1, . . . , L, and the global one for l = 0.
Let

T = T0 + T1 + · · · + TL. (16)

We replace (2) by the following operator equation

Tu∈
h = gh (17)

where gh =
∑L

l=0 gl, gl ≡ Tlu
∈
h. Note that to compute gl we do not need to know

u∈
h, the solution of (1).

Problems (2) and (17) are equivalent, what follows from the theorem below.
To formulate the convergence theorem for the discussed ASM we have to

introduce some notation. Let us for each Ωl define

ρ̄l = sup
Ki◦Ωh

l

ρi (18)

Domain Decomposition by Discontinuous Galerkin Method 467

where Ωh
l is a union of triangles Ki ∃ Ω̄l which intersect ∂Ωl by vertex and/or

edge.

Theorem 4. The operator T defined in (16) satisfies T = T ∈ > 0. Moreover,
for any u ≤ Xh(Ω) there holds

C0β
−1âh(u, u) ∅ âh(Tu, u) ∅ C1âh(u, u) (19)

where

β = max
l=1,...,L

ρ̄l
Hl

h

(

1 + log
Hl

h

)2

, (20)

with ρ̄l defined in (18), and C0 and C1 are positive constants independent of H,
h and the jumps of ρ(x).

Remark 5. The proof of Theorem 5 needs to check three key assumptions of
abstract theory of ASMs, see for example the book [5]. For that we need several
auxiliary lemmas, some of them are new. The proof is omitted here due to the
limit of pages. It will be published elsewhere together with supporting numerical
tests.

4 Implementation

Equation (17) can be solved efficiently by the conjugate gradient method. To
simplify the presentation we discuss here the Richardson’s method instead. The
latter is of the form: given u(0), iterate for n = 0, 1, . . .

u(n+1) = u(n) − τ∈(Tu(n) − gh) (21)

where we can set τ∈ = 2/(C1 + C0β
−1) according to Theorem 5. Since

r(n) ≡ (Tu(n) − gh) =
L∑

l=0

(Tlu
(n) − gh) =

L∑

l=0

Tl(u(n) − u∈
h) ≡

L∑

l=0

r
(n)
l , (22)

we need to compute r
(n)
l ≡ Tl(u(n) − u∈

h) for l = 0, 1, . . . , L. Note that these
problems, see (15), are independent of each other, therefore, they can be solved
in parallel. Problems for l = 1, . . . , L are local, and they are defined on Ω≤

l.
The problem for l = 0 is global and it is defined on the coarse triangulation

with piecewise linear continuous functions. The solution of the coarse problem
requires finding the coarse basis functions {Φk} for all the vertices x(k) of the
coarse triangles. This is a precomputation step and it should be carried out
before starting the iterative process (21).

The above implementation shows that the proposed algorithm is very well
suited for parallel computations.

468 M. Dryja

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontin-
uous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1770
(2001)

2. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontin-
uous coefficients. Comput. Methods Appl. Math. 3, 76–85 (2003)

3. Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with
weighted averages for advection-diffusion equations with locally small and
anisotropic diffusivity. IMAJ. Numer. Anal. 29, 235–256 (2009)

4. Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale
PDEs. Numer. Math. 106(4), 589–626 (2007)

5. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory,
Springer Series in Computational Mathematics, vol. 34. Spinger, Berlin (2005)

Parallel Preconditioner for the Finite Volume
Element Discretization of Elliptic Problems

Leszek Marcinkowski1(B) and Talal Rahman2

1 Faculty of Mathematics, University of Warsaw, Banacha 2,
02-097 Warszawa, Poland

L.Marcinkowski@mimuw.edu.pl
2 Faculty of Engineering, Bergen University College, Nygȧrdsgaten 112,

5020 Bergen, Norway
Talal.Rahman@hib.no

Abstract. In this paper we present a parallel preconditioner for the
standard Finite Volume (FV) discretization of elliptic problems, using
the standard continuous piecewise linear Finite Element (FE) function
space. The proposed preconditioner is constructed using an abstract
framework of the Additive Schwarz Method, and is fully parallel. The
convergence rate of the Generalized Minimal Residual (GMRES) method
with this preconditioner is shown to be almost optimal, i.e., it depends
poly-logarithmically on the mesh sizes.

Keywords: Finite Volume Element · Parallel Preconditioner · Domain
Decomposition Method · Additive Schwarz Method

1 Introduction

Finite Volume (FV) methods form an important class of discretization methods
for solving Partial Differential Equations (PDEs), which are quite popular and
have been in use in the engineering community for many years now. Finite Vol-
ume methods, in general, have some conservation properties that are desirable
in many engineering applications. A Finite Volume Element (FVE) method is a
FV method where a finite element space on a primal mesh is used to approx-
imate the solution and the equation is discretized on the corresponding dual
mesh, cf. [1] for an overview. A FVE method thus has the same flexibility of a
Finite Element Method (FEM) when it comes to solving on a complex domain
with complex boundary conditions, while at the same time it preserves the local
conservation properties like a FV method does.

Domain Decomposition Methods (DDM) form a class of effective parallel
solvers for systems of algebraic equations arising from the FEM or the FDM dis-
cretization of PDEs. There exist a considerable amount of research work devoted
towards the development of DDMs, that are available in the literature, cf. [2–4]

This work was partially supported by Polish Scientific Grant 2011/01/B/ST1/01179.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 469–478, 2014.
DOI: 10.1007/978-3-642-55195-6 44, c© Springer-Verlag Berlin Heidelberg 2014

470 L. Marcinkowski and T. Rahman

and the references therein. Additive Schwarz Methods (ASM) are among the
most popular DDMs, however, a large number of their research are based on
the FEM discretization, cf. e.g. [5–9] and the references therein, and only a few
papers that consider the FV discretization, cf. [10,11].

In this paper we propose a parallel ASM preconditioner for the nonsymmet-
ric system of equations arising from the FV discretization of the self-adjoint
elliptic second order problem in 2D. Preconditioned GMRES method is used to
solve the resulting preconditioned system, cf. [12–14]. The preconditioner uses
an abstract Schwarz framework where the solution space is decomposed into sub-
spaces associated with the subdomains and the subdomain edges, and a coarse
space associated with the skeleton which is the union of subdomain edges in the
interior of the domain.

The remainder of this paper is organized as follows, in Sect. 2 we present
the Finite Volume Element (FVE) discretization and describe its basic prop-
erties, and in Sect. 3 we recall the definition and basic convergence proper-
ties of the GMRES iterative method. Section 4 contains a description of the
Additive Schwarz Method preconditioner, and in Sect. 5 we briefly discuss its
implementation.

2 Finite Volume Element Discretization

Our aim is to find an approximation of the solution of the following self-adjoint
second order elliptic differential problem:

−≤(A(x)≤u)(x) = f(x) x ≥ Ω

u(s) = 0 s ≥ ∂Ω

where Ω is a polygonal domain on the plane, f ≥ L2(Ω) and A ≥ (W 1,∈(Ω))4

is a given symmetric matrix valued function such that

∈α > 0 ∞x ≥ Ω ∞ξ ≥ R
2 ξT A(x)ξ ≈ α∧ξ∧2

2

i.e. we assume an uniform ellipticity of the problem.
The weak formulation is to find u≥ ≥ H1

0 (Ω) such that

a(u≥, v) = f(v) ∞v ≥ H1
0 (Ω), (1)

where

a(u, v) =
⎧

Ω

(≤u)T A≤v dx, (2)

f(v) =
⎧

Ω

fv dx.

We introduce a quasiuniform triangulation of the domain Ω: Th(Ω) = Th =
{τ} consisting of triangles τ , and let h = maxτ◦Th

diam(τ) be the parameter of

Parallel Preconditioner for the Finite Volume Element Discretization 471

Th. Let Ωh and ∂Ωh be the sets of vertices of the triangles of Th, which are in
Ω and on ∂Ω, respectively.

Let Sh be the finite element space of continuous functions which are piecewise
linear over Th and are equal to zero on ∂Ω. The degrees of freedom are associated
with the nodes which are the vertices of triangles, and we denote by Ω and ∂Ωh

respectively the set of nodes which are strictly inside Ω and ∂Ω.
We introduce a dual mesh T ≥

h of Th in the following way, see also [15,16].
Let xi, xj and xk be the vertices of a triangle τ . We connect xτ (a point yet
to be chosen inside τ) to the medians xij (the midpoints of the edges xixj

incident to xi) by the straight lines γij,τ . For each interior vertex xi, let ωi be
the polygon whose edges are γij,τ , for all τ sharing xi as a vertex. Similarly,
for each boundary vertex xi ≥ ∂Ω the control volume ωi is defined in the same
way, but restricting it to Ω. See Fig. 1 for an illustration. The collection of
all these control volumes constitute the dual mesh T ≥

h of the domain Ω, i.e.,
T ≥

h (Ω) = T ≥
h = {ωi}xi◦Ωh≤∂Ωh

.
The interior point of an element τ may be chosen in different ways, for the

present work, we choose the one which is most commonly used, namely the
centroid, resulting in the so-called Donald mesh, cf. e.g. [15,16].

Fig. 1. Example of an interior- and boundary node control volume (shaded).

We now introduce the space S≥
h associated with the dual mesh T ≥

h : let S≥
h ∃

L2(Ω) be the space of piecewise constant functions over T ≥
h , taking zero values

at the nodal points on ∂Ω.
We introduce two nodal bases, one for Sh and one for S≥

h, the nodal basis
{φi}xi◦Ωh

of Sh, where φi ≥ Sh equals one at xi and zero at the remaining
nodes of Ωh, and the basis {ψi}xi◦Ωh

of S≥
h, where ψi ≥ S≥

h is one over the
control volume ωi ≥ T ≥

h and zero over the remaining control volumes.

472 L. Marcinkowski and T. Rahman

The two standard interpolation operators, Ih : C(Ω) → Sh and I≥
h : C(Ω) →

S≥
h, are then defined as

Ihu =
⎨

xi◦Ωh

u(xi)φi ≥ Sh,

I≥
hu =

⎨

xi◦Ωh

u(xi)ψi ≥ S≥
h,

respectively. Let aFV (·, ·) be the FV bilinear form defined as aFV : Sh ×S≥
h → R

such that

aFV (u, v) = −
⎨

xi◦Ωh

vi

⎧

∂Vi

A≤unds u ≥ Sh, v ≥ S≥
h

and the nonsymmetric FV bilinear form ah(·, ·) be defined as ah : Sh × Sh → R

such that

ah(u, v) = aFV (u, I≥
hv) u, v ≥ Sh.

The discrete FVE problem will then be formulated as follows: find uh ≥ Sh such
that

ah(uh, v) = f(I≥
hv) ∞v ≥ Sh. (3)

The following error estimate applies, cf. e.g. Sect. 3 in [16]:

∧u≥ − uh∧H1(Ω) ≤ C h
⎩|u≥|H2(Ω) + ∧f∧L2(Ω)

⎜

provided that the solution u≥ ≥ H2(Ω). There also exist error estimates in the
L2 norm, cf. e.g. [16] and references therein.

By formulating the discrete problem in the standard nodal basis {φi}xi◦Ωh
,

we get the following system of algebraic equations

Bhu = f (4)

where Bh = (ah(φi, φj))i,j , f = (fj)xj◦Ωh
with fj =

⎫

Ω
f(x)ψi dx and u =

(ui)i with ui = uh(xi). We have uh =
⎬

xi◦Ωh
uiφi. The resulting system is

nonsymmetric which is in general very ill conditioned, and any standard iterative
method may perform badly due to the ill-conditioning of the system and of the
eigenspectrum.

The aim of this paper is therefore to solve such systems with the GMRES
method (cf. Sect. 3, [13]) preconditioned by an Additive Schwarz Method (ASM)
preconditioner (cf. [4]) in order to improve the convergence and the overall
performance.

3 GMRES Method

In this section, we briefly recall the GMRES method and state some of its proper-
ties. Given a starting vector u0 ≥ Sh, the aim is to solve iteratively the following
system of linear equations,

Parallel Preconditioner for the Finite Volume Element Discretization 473

Tu = g,

where T is an operator which is nonsingular but nonsymmetric, g ≥ Sh is a
given right-hand side vector, and u ≥ Sh the solution vector. In our case the
matrix formulation of T will be equal to M−1

ASMBh, where M−1
ASM is the ASM

preconditioner, cf. Sects. 4 and 5, while Bh is as in (4).
The GMRES method is a Krylov subspace iterative method. Let Kj be the

j-th Krylov subspace with respect to the operator T and the residual vector
r0 = g − Tu0, where u0 is some vector, which is defined as

Kj = Span(r0, T r0, . . . , T
j−1r0) j = 1, 2,

Starting with vector u0 ≥ Sh, in the GMRES iteration, the j-th approximation
can be defined as the solution of the following minimization problem: find uj ≥
u0 + Kj such that

∧g − Tuj∧a = min
u◦u0+Kj

∧g − Tu∧a (5)

with the norm induced by the inner product a(u, v), i.e.,

∧v∧a :=
⎭

a(v, v).

The implementation of GMRES method with respect to the inner product
a(u, v) is done with the help of the Arnoldi process, cf. e.g. [17]

The rate of convergence of the GMRES method can be characterized in terms
of the following two parameters,

αmin = min
u◦Sh\{0}

a(Tu, u)
∧u∧2

a

,

αmax = max
u◦Sh\{0}

∧Tu∧a

∧u∧a
,

and is formulated in the following theorem (cf. [12]).

Theorem 1 (Eisenstat-Elman-Schultz). If αmin > 0, then the GMRES
method is convergent and we have the following estimate:

∧g − Tuj∧a ≤
⎞

1 − α2
min

α2
max

⎠j/2

∧g − Tu0∧a.

where uj is the j-th approximation of the GMRES method as defined in (5).

The original results which can be found in [12], were given for the GMRES in
the standard l2 inner product in R

N , the lines of its proof however carry quite
straightforwardly over to the case of ∧ · ∧a norm, cf. [2].

474 L. Marcinkowski and T. Rahman

4 Additive Schwarz Method (ASM) Preconditioner

Our preconditioner is symmetric with respect to the bilinear form a(·, ·). Let Ω
be partitioned into a collection of polygonal substructures Ωk, such that

Ω =
N⋃

k=1

Ωk,

Ωk ∩ Ωl =

⎢
⎥

∅,
a closed common edge,
a common vertex,

which together form a coarse triangulation of Ω, which is shape regular in the
sense of [18].

We also assume that the triangulation Th is aligned with the subdomains
Ωk, i.e. any τ ≥ Th is contained in only one subdomain, hence, each subdomain
Ωk inherits the local triangulation Th(Ωk) = {τ ≥ Th : τ ∃ Ωk}. Let Γkl be the
common edge between two substructures Ωk and Ωl, and Γ = (

⋃N
k=1 ∂Ωk) \ ∂Ω

be the skeleton. Γ plays an important role in the construction of our method.
We define Ωk,h, Γkl,h as the sets of vertices of triangles of Th which are in

Ωk, Γkl, respectively.
We introduce our local subspaces Sh,k as restrictions to Ωk, of functions from

Sh, i.e.,

Sh,k = {u|Ωk
: u ≥ Sh} = {v ≥ C(Ωk) : v|τ ≥ P1(τ), τ ≥ Th(Ωk), v|∂Ωk∩∂Ω = 0},

and we let
S0

h,k = Sh,k ∩ H1
0 (Ωk).

Here P1(τ) is the space of linear polynomials defined over τ .
Let the local orthogonal projection operator Pk : Sh,k → S0

h,k, with respect
to a(u, v), be defined as

ak(Pku, v) = ak(u, v) ∞v ≥ S0
h,k,

and let the local discrete harmonic extension operator Hk : Sh,k → Sh,k be
defined as

Hku = u − Pku.

Note that Hku satisfies the following variational problem:

ak(Hku, v) = 0 ∞v ≥ S0
h,k

Hku = u on ∂Ωk.

If u|Ωk
= Hku ≥ Sh,k then we say that u is discrete harmonic in Ωk. If for

u ≥ Sh we have uk := u|Ωk
is discrete harmonic for all substructures then we call

this function piecewise discrete harmonic. It is important to note that a discrete
harmonic function in Sk,h is uniquely defined by the values at the nodal points
in ∂Ωk,h.

Parallel Preconditioner for the Finite Volume Element Discretization 475

In the abstract framework of ASM we are required to introduce a decompo-
sition of the global space Sh into the sum of smaller subspaces of Sh, as well as
define local bilinear forms over these subspaces, cf. [3,4]. For the present work
we consider only symmetric bilinear forms for the subspaces. The subspaces are
defined below.

The coarse space V0 is defined as the subspace of Sh of functions that are
piecewise discrete harmonic and are linear over all edges Γkl ∃ Γ. Note that
the dimension of V0 equals the number of the crosspoints (substructure vertices)
which are not on the boundary of Ω.

A local edge based subspace Vkl associated with Γkl, which is the edge shared
by the neighboring subdomains Ωk and Ωl, is defined as the space of piecewise
discrete harmonic functions defined by the values of the functions at the nodes
in Γkl,h and zero values at the nodes in all remaining edges Γij ∃ Γ which are
not Γkl. Note that u ≥ Vkl may have nonzero values only at nodes that are in
Ωk,h ∪ Γkl,h ∪ Ωl,h.

The last collection of subspaces are the local subspaces Vk, k = 1, . . . , N ,
with Vk being formed by the functions of S0

k,h, extended by zero onto other
subdomains, i.e.

Vk = {u ≥ Sh : u|Ωk
≥ S0

k,h and u|Ω\Ωk
= 0}

We thus have that

Sh = V0 +
N⎨

k=1

Vk +
⎨

Γkl⊂Γ

Vkl.

For the local solves we choose a(u, v) as the bilinear form, i.e. the symmetric
bilinear form, see (2).

We define the projection like operator T0 : Sh → V0, such that,

a(T0u, v) = ah(u, v) ∞v ≥ V0,

the local subspace operators, Tk : Sh → Vk, such that,

a(Tku, v) = ah(u, v) ∞v ≥ Vk,

for k = 1, . . . , N , and edge subspace operators Tkl : Sh → Vkl

a(Tklu, v) = ah(u, v) ∞v ≥ Vkl,

for all Γkl ∃ Γ.
Finally, the additive Schwarz operator T : Sh → Sh is defined as follows,

T = T0 +
N⎨

k=1

Tk +
⎨

Γkl

Tkl.

Using the above settings, the problem (3) can be reformulated as the following
equivalent system,

Tuh = g, (6)

476 L. Marcinkowski and T. Rahman

where

g = g0 +
N⎨

k=1

gk +
⎨

Γkl

gkl

with g0 = T0uh, gk = Tkuh k = 1, . . . , N , and gkl = Tkluh for all Γkl ∃ Γ.
In the following section we show that the preconditioned system has a better
conditioning than the original system.

Remark 1. Note that g, the right-hand side of (6), can be computed without the
knowledge of the solution vector uh as shown in Sect. 5.

4.1 The Convergence of the Preconditioned GMRES Method

We present the main result of this paper, namely an estimate of the convergence
rate of the GMRES method applied to our preconditioned system (3).

We have the following theorem.

Theorem 2. There exists h0 > 0 such that for all h < h0

∧Tu∧a ≤ C∧u∧a,

a(Tu, u) ≈ c

⎞

1 + log
⎞

H

h

⎠⎠−2

a(u, u) ∞u ≥ Sh,

where C, c are positive constants independent of h and H = maxk=1,...,N Hk

where Hk is the diameter of Ωk.

This theorem and Theorem 1 yield the following corollary.

Corollary 1. There exists h0 > 0 such that for all h < h0 the GMRES method
(5) applied to the system (6) is convergent and we have the following estimate:

∧g − Tuj∧a ≤ βj/2∧g − Tu0∧a.

where 0 ≤ β ≤
(
1 − C

⎩
1 + log

⎩
H
h

⎜⎜−4
)

< 1 for a constant C which is indepen-
dent of h and H and uj is the j-th iteration of GMRES method.

Thus we see that GMRES method is convergent with the rate only weakly poly-
logarithmically dependent on H/h.

As mentioned earlier, we can rewrite the problem (6) in the matrix formula-
tion as

M−1
ASMBhu = M−1

ASMf

with M−1
ASM being our ASM parallel preconditioner, see (4).

Remark 2. While the matrix Bh is nonsymmetric, the ASM preconditioner itself
in this paper is symmetric since we are using the symmetric bilinear form a(·, ·)
(cf. (2)) for all of our subspace problems. Alternatively, we could construct an
ASM preconditioner in the same way, but taking the nonsymmetric bilinear form
ah(·, ·) for the subspace problems. The resulting ASM preconditioner will then
be nonsymmetric, however, it will have the similar estimate.

Parallel Preconditioner for the Finite Volume Element Discretization 477

5 Implementation

In this section, we briefly discuss the implementation of our ASM preconditioner.
We propose to use the GMRES method to solve the preconditioned system (6),
however, for the simplicity of presentation, we describe the ideas of implemen-
tation through Richardson’s iteration.

Note that by Theorem 2 the operator T is positive definite with respect to
a(u, v) over Sh, i.e. a(Tu, u) > 0 for u �= 0, thus the Richardson method is
convergent for some positive values of its parameter τ .

The Richardson iterative method with the parameter τ is defined as follows:
Take any u(0) and iterate until convergence:

u(n+1) = u(n) − τ (T (u(n)) − g)
= u(n) − τ T (u(n) − u≥

h)
= u(n) − τ r(n)

, n ≈ 0.

Computing of r(n) = T (u(n)) − g requires solving the following problems:

� Local subdomain problem:
Compute rk ≥ Vk k = 1, . . . , N such that

a(rk, v) = a(Tk(u(n) − u≥
h), v)

= ah(u(n), v) − f(v) ∞v ≥ Vk.

� Local edge problem:
Compute rkl ≥ Vkl for all Γkl ∃ Γ such that

a(rkl, v) = a(Tkl(u(n) − u≥
h), v) = ah(u(n), v) − f(v) ∞v ≥ Vkl,

� Coarse problem:
Compute r0 ≥ V0 such that

a(r0, v) = a(T0(u(n) − u≥
h), v) = ah(u(n), v) − f(v) ∞v ≥ V0,

Then
r(n) = r0 +

⎨

γkl⊂Γ

rkl +
⎨

x◦V

⎨

s=1,2

rx,s.

Note that all these problems are independent so they can be solved in parallel.
The local subdomain problems are solved locally on their respective sub-

domains, the edge problems are solved locally over subdomain pairs, each pair
sharing an edge. The coarse problem is global but its dimension is low as long
the number of substructures is not too large.

References

1. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent
developments. Int. J. Num. Anal. Mod. 4(1), 14–34 (2013)

478 L. Marcinkowski and T. Rahman

2. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic
problems. SIAM J. Sci. Statist. Comput. 13(1), 243–258 (1992)

3. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Mul-
tilevel Methods For Elliptic Partial Differential Equations. Cambridge University
Press, Cambridge (1996)

4. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory.
Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

5. Dryja, M., Widlund, O.B.: Schwarz methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems. Comm. Pure Appl. Math. 48(2), 121–
155 (1995)

6. Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for C0 inte-
rior penalty methods. Numer. Math. 102(2), 231–255 (2005)

7. Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large
jumps in coefficients. Math. Comp. 65(216), 1387–1401 (1996)

8. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative
Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995)

9. Marcinkowski, L.: A balancing Neumann-Neumann method for a mortar finite
element discretization of a fourth order elliptic problem. J. Numer. Math. 18(3),
219–234 (2010)

10. Chou, S.H., Huang, J.: A domain decomposition algorithm for general covolume
methods for elliptic problems. J. Numer. Math. 11(3), 179–194 (2003)

11. Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic
problems. Comput. Meth. Appl. Mech. Engrg. 196(1–3), 24–32 (2006)

12. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for non-
symmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357
(1983)

13. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869
(1986)

14. Xu, J., Cai, X.C.: A preconditioned GMRES method for nonsymmetric or indefinite
problems. Math. Comp. 59(200), 311–319 (1992)

15. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint
elliptic problems. SIAM J. Numer. Anal. 35(5), 1762–1774 (1998)

16. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method
based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888
(2002)

17. Cai, X.C.: Some domain decomposition algorithms for nonselfadjoin elliptic and
parabolic partial differential equations. Ph.D. thesis, Courant Institute, New York
(1989)

18. Brenner, S.C.: The condition number of the Schur complement in domain decom-
position. Numer. Math. 83(2), 187–203 (1999)

Preconditioning Iterative Substructuring
Methods Using Inexact Local Solvers

Piotr Krzyzanowski(B)

Institute of Applied Mathematics, University of Warsaw, Banacha 2,
02-097 Warszawa, Poland

piotr.krzyzanowski@mimuw.edu.pl

Abstract. We consider several block preconditioners for iterative sub-
structuring algorithms with inexact subdomain solvers, including incom-
plete Cholesky and V-cycle multigrid. Numerical results show that block
triangular preconditioners are very competitive and in certain cases out-
perform presently used preconditioners based on full block triangular
decomposition.

Keywords: Preconditioning · Iterative substructuring · Domain decom-
position · Block preconditioner

1 Introduction

In recent years there has been significant progress made towards development
of fast and reliable parallel solvers for very large algebraic linear systems which
arise from discretizations of elliptic PDEs,

−div(K(x)∇U(x)) + C(x)U(x) = F (x), x ∈ Ω,

where Ω ⊂ Rd and K is a positive definite d × d symmetric matrix, and C is
a nonnegative scalar function defined on Ω. Discretization of the above PDE
with suitable boundary conditions by using Lagrangian finite elements leads to
a linear, ill-conditioned system of equations

Au = f, (1)

with a sparse, symmetric and positive definite matrix A of very large dimension.

1.1 Substructuring Methods

Among the most successful parallel solution methods for (1) there are those
based on the iterative substructuring paradigm. In this approach, one provides

This work has been supported by Polish National Science Centre research grant
2011/01/B/ST1/01179.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 479–488, 2014.
DOI: 10.1007/978-3-642-55195-6 45, c© Springer-Verlag Berlin Heidelberg 2014

480 P. Krzyzanowski

a decomposition of triangulation (and hence the domain Ω) into nonoverlapping
subdomains Ωi, i = 1, . . . , K (“substructures”) such that each Ωi is a union of
triangulation elements and

Ω = ∪K
i=1Ωi.

Introducing the interface between subdomains,

Γ = ∪K
i=1∂Ωi \ ∂Ω,

every unknown of the discretized PDE, which in case of Lagrangian elements
corresponds to the value of the discrete solution at certain point of the trian-
gulation element, belongs to exactly one of K + 1 sets: either to the interior
of one of Ωi’s or to the interface Γ . We can therefore partition the vector u of
the unknowns into smaller vectors, which we shall denote uI

1, . . . , u
I
K and uΓ ,

with uI
i corresponding to unknowns in the interior of Ωi and uΓ associated with

unknowns on Γ . The discrete system (1) can then be written in a block form
⎧

⎨
⎨
⎨
⎨
⎩

AII
1 AΓI

1
T

. . .
...

AII
K AΓI

K
T

AΓI
1 AΓI

K AΓΓ

⎜

⎫
⎫
⎫
⎫
⎬

⎧

⎨
⎨
⎨
⎩

uI
1
...

uI
K

uΓ

⎜

⎫
⎫
⎫
⎬

=

⎧

⎨
⎨
⎨
⎩

f I
1
...

f I
K

fΓ

⎜

⎫
⎫
⎫
⎬

, (2)

the structure of which promotes parallelization. Indeed, one first eliminates
in parallel all interior unknowns performing a block Gaussian elimination on
uI
1, . . . , u

I
K and then solves the Schur complement system

SuΓ = g, (3)

where

S = AΓΓ −
K⎭

i=1

AΓI
i (AII

i)−1AΓI
i

T

and g = fΓ − ⎞K
i=1 AΓI

i (AII
i)−1f I

i . After uΓ is found, one then in parallel
backsolves for all uI

1, . . . , u
I
K .

When the size of uΓ is still very large, it may be infeasible to construct matrix
S explicitly, which in addition will be denser than the original system matrix A.
In iterative substructuring thus, one turns to iterative solution of (3), usually
using some Krylov method. Then it is not necessary to form S directly, because
Krylov methods require only a procedure which computes the product Sx on
a supplied vector x. This product can be obtained again in a highly parallel
fashion, since

Sx = AΓΓ x −
K⎭

i=1

AΓI
i yi (4)

where yi = (AII
i)−1AΓI

i
T
x can be computed independently.

Iterative Substructuring Using Inexact Local solvers 481

1.2 Preconditioning in Iterative Substructuring

While the Schur complement matrix S is symmetric positive definite and is bet-
ter conditioned than A, its condition number still grows with the number of
the unknowns and therefore it is necessary to precondition S with some spec-
trally equivalent operator S0. There has been a lot of research done towards this
direction and we can refer the reader to monographs [1–3] and the literature
therein. Many of these preconditioners are highly parallel and utilize the same
original decomposition of the domain into substructures. Among them there are
wirebasket methods [4] and hierarchical basis methods [5] which require quite
detailed information about the underlying geometry but have almost optimal
convergence properties.

There is still some place for performance improvement on the side of parallel
solution of the local systems with matrices AII

i , i = 1, . . . , K. Indeed, in the
procedure described in Sect. 1.1 it has implicitly been assumed that these local
systems are always solved exactly, either by a direct sparse solver, or by some
iterative method which reduces the error down to the machine precision. When
the size of local problems is large, this can become very expensive, especially for
problems in 3D, for which direct sparse solvers suffer from high amount of fill-in
in Cholesky factors of AII

i ’s. In iterative substructuring, even small efficiency
improvement in the local problem solution can have an impact on the overall
solver performance, because local problems have to be solved every time the
product Sx is needed, that is, on every iteration of the method.

1.3 Iterative Substructuring with Inexact Local Solvers

This numerical study thus focuses on using inexact local solvers in order to
reduce the cost of solving the local systems and finally obtain a more effective
solution method of (1). We shall replace local solves (AII

i)−1uI by certain less
expensive (AII

i0)−1uI , where (AII
i0)−1 are symmetric positive definite operators

(the very AII
i0 matrices will never explicitly be formed). In this case we can no

longer use the (K + 1) step block Gaussian procedure described in Sect. 1.1 and
all unknowns will have to enter the iterative process [6]. In order to simplify the
notation we will gather all interior unknowns (uI

1, . . . , u
I
K) into one vector uI ,

obtaining a 2 × 2 block system

A
⎠

uI

uΓ

)

≡
⎠

AII AΓIT

AΓI AΓΓ

) ⎠
uI

uΓ

)

=
⎠

f I

fΓ

)

(5)

and denote

AII
0 = diag(AII

0,1, . . . , A
II
0,K) =

⎧

⎨
⎩

AII
0,1

. . .
AII

0,K

⎜

⎫
⎬ .

We shall keep in mind that both the multiplication AIIuI and the solution a
system with AII

0 can be done fully in parallel due to the block diagonal structure
of both AII and AII

0 .

482 P. Krzyzanowski

2 Preconditioning with Inexact Local Solvers

In what follows we shall concentrate on block preconditioners P, and the precon-
ditioned system will be P−1A. Deriving from the block LDLT decomposition,

A =
⎠

AII AΓIT

AΓI AΓΓ

)

=
⎠

I

AΓI AII−1
I

)⎠
AII

S

) ⎠
I AII−1

AΓIT

I

)

, (6)

most of the literature on this subject [1,2,6–8], considers the following precon-
ditioner based on full block decomposition:

PG =
⎠

I

AΓI AII
0

−1
I

)⎠
AII

0

S0

)⎠
I AII

0
−1

AΓIT

I

)

. (7)

Here, we assume that systems with AII
0 and S0 are cheaper to solve than exact

blocks AII and S. Because

P−1
G =

⎠
I −AII

0
−1

AΓIT

I

)⎠
AII

0
−1

S−1
0

) ⎠
I

−AΓIAII
0

−1
I

)

, (8)

application of P−1
G to a vector can be arranged in such a way that one solve

with S0 and two solves with AII
0 are required [3]. In order to make PG a good

preconditioner for A, one can choose AII
0 as a block diagonal matrix made up

from approximate solvers for AII
0,k which can easily be applied in parallel. This

method has been analyzed and backed up by convincing numerical experiments,
see e.g. [3,6,9].

Motivated by recent advances in a similar field — block preconditioning of
saddle point problems [10]— we will here consider three (five, counting sign vari-
ations) more candidates for a preconditioner, based on a part of decomposition
(7):

P±
L =

⎠
AII

0

±AΓI S0

)

, PD =
⎠

AII
0

S0

)

, P±
U =

⎠
AII

0 ±AΓIT

S0

)

.

(9)
Observe that solving a system with any of PL,PD,PU takes only one solve
with both S0 and AII

0 and thus the overall cost of local solves part in this
case is two times smaller than in the case of PG. Assuming that the cost of each
iteration is dominated by the application of the preconditioner, one can conclude
that the cost of one iteration with PL,PD,PU is roughly between 1/2 and 2/3
of the cost when PG is employed. This rough estimate should in practice be
balanced with parallelization and communication considerations and with the
actual complexity of application of S−1

0 .
According to the author’s knowledge, it is an open question if PL,PD,PU

are a viable alternative to PG in the context of iterative substructuring. Our aim
here is to perform a numerical comparison of these preconditioners on a model
problem to obtain at least a partial answer to this question.

Iterative Substructuring Using Inexact Local solvers 483

2.1 Krylov Iterative Method Considerations

By definition, PG and PD are symmetric and positive definite, so it is natural
to use them as preconditioners in the preconditioned conjugate gradient method
(PCG). On the other hand, PL and PU are nonsymmetric so it seems one has
to use more memory–consuming method such as the GMRES. However, it has
recently been observed [11–13] that it is possible to symmetrize the precondi-
tioned system with a means of an additional block diagonal matrix, HL for PL

and HU for PU , where

H±
L =

⎠
AII

0 ∓ AII

S0

)

, H±
U =

⎠
AII

0

S0 ∓ AΓΓ

)

. (10)

So, if only HL or HU is positive definite (which, in case of matrix subtraction
in (10), will in general require scaling either AII

0 or S0 by some constant), one
can apply a three–term–recurrence–based Krylov space method, such as the
conjugate residual method [14], to then symmetric matrix HLP−1

L A or HUP−1
U A.

It should be mentioned here that the algorithm can be arranged in such a way
that only one solve with both AII

0 and S0 is required per iteration and the
matrices AII

0 and S0 never need to be formed or applied to a vector, see [13] or
[10] for details.

Let us finally remark that in the case of “best” preconditioners AII
0 = AII

and S0 = S, we have that P−1
G A and (P+

U)−1A converge in one or two iterations,
respectively.

3 Numerical Experiments

We will consider a simple model problem: the Poisson equation,

−Δu = f

in a rectangle Ω, supplemented with zero Dirichlet boundary conditions. The
rectangle is composed of Nx × Ny unit squares, which will play the role of
subdomains Ωi, so that the total number of subdomains is K = Nx · Ny. Each
Ωi is then triangulated with a uniform mesh (consisting of squares of size h
halved into two triangles); the resulting triangulation of Ω is conforming and
uniform, too. The Laplacian is finally discretized using piecewise linear finite
element functions associated with the triangulation, resulting in a system of
linear algebraic equations of total N unknowns (N depending linearly on Nx

and Ny).
For the discretized right hand side f we will always supply the same vector

with random values uniformly distributed in (0, 1). The initial approximation
ũ will always be set to zero. The iteration will be stopped whenever the initial
residual, ||f − Aũ||2, is reduced 106 times.

Let us begin with a series of convergence speed tests for various choices of
the preconditioners and their diagonal blocks.

484 P. Krzyzanowski

As for the local solvers (AII
0,i)

−1 we will experiment with:

1. exact solve with AII
i ;

2. solvers based on incomplete Cholesky factorization of AII
i , with drop para-

meter δ; the resulting AII
0 will be denoted IC(δ);

3. solvers based on p multigrid V–cycle iterations for AII
i with 3 damped Jacobi

pre- and postsmoothings [15]; the resulting AII
0 will be denoted MGV(3, p).

For the approximate Schur complement system solvers S−1
0 we will consider:

1. exact solve with S0 = αS, where S = AΓΓ − AΓI(AII)−1AΓIT is computed
directly and α > 0.

2. for two subdomains case, the so-called J preconditioner, [1,2,16], based on
the square root of S.

We do not employ any further scaling of the above preconditioning blocks.
We will report both iteration counts (m) and solution times (t, in seconds)

obtained for a sequential implementation of the above algorithms in MAT-
LAB 7.1 on a personal computer with an Intel Core 2 Duo 2.4 GHz processor.
We report solver’s performance for best suited iterative method, that is, the
preconditioned conjugate gradient method (PCG) for PD and PG and the pre-
conditioned conjugate residual method (PCR) for P+

U (the performance of P−
U

turns out inferior to P+
U ; the performance of P±

L is similar to that of P±
U ; we do

not report results for either case here).
For a problem on a 320 × 320 grid decomposed into 10 × 10 subdomains, we

obtained results summarized in Table 1.
Experimental results for two subdomains and 512 × 256 grid are reported in

Table 2.
It turns out that for the performance of block preconditioners with inexact

solvers it is quite important that the local solvers are accurate enough: compare
IC(L, 10−2), for which the process diverges, and IC(L, 10−5), which produces
results very similar to using an exact solver. Similarly, the choice of the S0 block
also influences the convergence. In all experiments the convergence of PD was
dramatically slower than the competition, even in the case when exact solves
were applied inside PD. As for the comparison between P+

U and PG, it turns out
that when the cost of applying S−1

0 was relatively cheap, then P+
U performed

better in terms of the overall cost, cf. Table 2: while the number of iterations was
larger than for PG, the savings on the cost of every iteration were substantial
enough to give the triangular preconditioner an edge over PG.

Preconditioned iterative substructuring algorithms allow for several levels of
parallelism. On the base level, there is the domain decomposition paradigm (2),
which allows one to solve all local systems AII

0,1, . . . A
II
0,K in (9) independently,

where K is the number of subdomains. On the lower level, each local problem
can, if only sufficiently large, again be solved using some parallel method.

In order to assess the parallel performance, we ran several experiments using
PETSc 3.4.0 [17] toolkit which implements block preconditioners via the Field-
Split flexible class of preconditioners. Developed for multiphysics applications [18],

Iterative Substructuring Using Inexact Local solvers 485

Table 1. Number of iterations m and computing time t for a problem on a 320 × 320
grid decomposed into 10 × 10 subdomains.

m t AII
0 S0

PG 1 0.35 AII S
P+

U 2 1.33 AII S
PD 784 249.58 AII S
PG 3 4.40 MGV (3, 4) S
P+

U 8 9.38 MGV (3, 4) S
PD 793 751.21 MGV (3, 4) S
PG 3 1.24 IC(10−5) S
P+

U 7 3.36 IC(10−5) S
PD 799 280.87 IC(10−5) S
PG 31 7.05 IC(10−3) S
P+

U 92 25.43 IC(10−3) S
PG 231 51.18 IC(10−2) S
P+

U 280 76.53 IC(10−2) S
PG 2 0.74 AII 4S
P+

U 2 1.41 AII 4S
PG 4 6.08 MGV (3, 4) 4S
P+

U 7 8.72 MGV (3, 4) 4S
PG 4 1.50 IC(10−5) 4S
P+

U 7 3.47 IC(10−5) 4S

FieldSplit offers a framework in which it is possible to use preconditioners based
on either block relaxation, or block factorization — the latter using Schur com-
plement S or its approximation. Within blocks, either direct or inexact iterative
solvers can be used.

For three main types preconditioners: full-decomposition-based block PG,
triangular block P+

U and diagonal block preconditioner PD as well, we measured
time τ (in seconds, averaged over the course of the iteration) required to perform
one iteration of the iterative solver, on an SMP machine equipped with 64 GB
of RAM and 24, six–core, Intel Xeon 2.4 GHz processors using PETSc library.
On such a machine one cannot expect massive scalability, so in our experiments
we limited ourselves only to moderate number of MPI processes in our PETSc
code, equal to the number of subdomains, K = 16.

For the local inexact solvers AII
0 we used

– Cholesky factorization with MUMPS parallel solver (referred to as AII in the
following tables) — the most expensive “preconditioner”, which solves local
problems exactly;

– 10 iterations of the CG method for AII , preconditioned with an additive
Schwarz method with PETSc default settings (denoted ASM(II)) — a rela-
tively inexpensive, low accuracy preconditioner.

As the interface preconditioner, S0, we tested

– simple point Jacobi solver for (partially assembled) Schur complement matrix
— a very cheap and highly inaccurate preconditioner

486 P. Krzyzanowski

Table 2. Number of iterations m and computing time t for a problem on a 512 × 256
grid decomposed into two subdomains.

m t AII
0 S0

PG 4 5.36 AII J
P+

U 5 5.24 AII J
PD 224 159.82 AII J
PG 15 9.81 MGV (3, 4) J
P+

U 21 8.33 MGV (3, 4) J
PD 242 81.37 MGV (3, 4) J
PG 10 6.97 IC(10−5) J
P+

U 12 5.76 IC(10−5) J
PD 235 86.04 IC(10−5) J

Table 3. Comparison of the average wall-clock time required to perform one iteration
of the solver for a problem of 2.6·105 unknowns decomposed into 16 square subdomains
mapped onto 16 processors.

ASM(II) + ASM(ΓΓ) AII + Jacobi ASM(II) + Jacobi

PD 7.4 0.8 0.16
P+

U 6.9 0.8 0.17
PG 7.5 1.4 0.31

– 100 iterations of CG method for S preconditioned with an additive Schwarz
method with PETSc default settings (denoted ASM(ΓΓ)) — due to some lim-
itations of FieldSplit, we used this setting to simulate the use of an expensive,
yet modereately accurate preconditioner to S.

Table 3 summarizes the results for a problem with total 2.6 · 105 unknowns
decomposed into 16 square subdomains. The combination AII + ASM(ΓΓ)
turned out too costly to run on the machine under consideration.

Clearly, the cost of applying the preconditioner depends on its form and the
cost of applying (AII

0)−1 and S−1
0 . When the cost of local solves is dominating,

then triangular solver P+
U is almost twice less expensive than the full one, PG and

essentially as expensive as the diagonal one. It turns out then, that the additional
cost of multiplication by the off–diagonal block is negligible in parallel imple-
mentation and in this sense our conclusions from sequential runs provided in the
first table also extend to parallel implementations. This confirms our rough cost
estimates from Sect. 2. On the other hand, when the cost of S−1

0 is prohibitively
large (the case “ASM + ASM”), then the cost of applying the preconditioner
turns more or less the same for all types of preconditioners (surprisingly poor
performance of PD in this case can be, most probably, be attributed to uneven
load on the machine).

In practice, one will rather use more efficient and less expensive S0, such as
the balancing Neumann–Neumann method, which would then favor triangular

Iterative Substructuring Using Inexact Local solvers 487

preconditioners. Performance analysis of such a method is more complicated,
however, and will be the subject of a forthcoming paper.

4 Conclusions

In this paper, we introduced block triangular preconditioners as a viable alter-
native to full block decomposition when using inexact local solvers in iterative
substructuring of symmetric, elliptic PDEs. It turns out that triangular precondi-
tioners are not only cheaper to apply, but despite their lower convergence speed,
as compared to full block decomposition based their counterparts, in certain
cases they are more efficient in terms of the wall-clock time. Although triangular
preconditioning makes the problem apparently nonsymmetric, its symmetry can
be restored through a custom inner product, which makes it possible to iter-
ate using a short-term recurrence Krylov method, such as the PCR. It is also
remarkable, how poorly diagonal preconditioners behave in this situation.

Acknowledgments. This research has been supported by Polish National Science
Centre grant, number 2011/01/B/ST1/01179.

References

1. Toselli, A., Widlund, O.: Domain decomposition methods-algorithms and theory.
Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

2. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition. Cambridge
University Press, Cambridge (1996). (Parallel multilevel methods for elliptic partial
differential equations.)

3. Mathew, T.P.A.: Domain decomposition methods for the numerical solution of
partial differential equations. Lecture Notes in Computational Science and Engi-
neering, vol. 61. Springer, Berlin (2008)

4. Dryja, M., Smith, B., Widlund, O.: Schwarz analysis of iterative substructuring
algorithms for elliptic problems in three dimensions. SIAM J. Num. Anal. 31(6),
1662–1694 (1994)

5. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for
elliptic problems by substructuring. IV. Math. Comp. 53(187), 1–24 (1989)

6. Smith, B.F.: A parallel implementation of an iterative substructuring algorithm
for problems in three dimensions. SIAM J. Sci. Comput. 14(2), 406–423 (1993)

7. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of non-overlapping domain
decomposition algorithms with inexact solves. Math. Comp. 67(221), 1–19 (1998)

8. Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet domain decomposi-
tion method. I. An algebraic approach. Computing 47(2), 137–151 (1991)

9. Haase, G., Langer, U., Meyer, A.: The approximate Dirichlet domain decomposi-
tion method. II. Applications to 2nd-order elliptic BVPs. Computing 47(2), 153–
167 (1991)

10. Krzyżanowski, P.: Block preconditioners for saddle point problems resulting from
discretizations of partial differential equations. In: Axelsson, O., Karatson, J. (eds.)
Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equa-
tions. Bentham Publishers (2011)

488 P. Krzyzanowski

11. Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems
resulting from mixed approximations of elliptic problems. Math. Comp. 50(181),
1–17 (1988)

12. Stoll, M., Wathen, A.: Combination preconditioning and the Bramble-Pasciak+

preconditioner. SIAM J. Matrix Anal. Appl. 30(2), 582–608 (2008)
13. Krzyżanowski, P.: On block preconditioners for saddle point problems with singular

or indefinite (1, 1) block. Numer. Linear Algebra Appl. 18(1), 123–140 (2011)
14. Hackbusch, W.: Elliptic differential equations. Springer Series in Computational

Mathematics, vol. 18. Springer, Berlin (1992) (Theory and numerical treatment,
Translated from the author’s revision of the 1986 German original by R. Fadiman
and P.D.F. Ion.)

15. Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)
16. Dryja, M.: A finite element-capacitance method for elliptic problems on regions

partitioned into subregions. Numer. Math. 44(2), 153–168 (1984)
17. Smith, B., Gropp, W., McInnes, L.: PETSc 2.0 users manual. Technical

report ANL-95/11, Argonne National Laboratory. ftp://www.mcs.anl/pub/petsc/
manual.ps (1997)

18. Brown, J., Knepley, M.G., May, D.A., McInnes, L.C., Smith, B.: Composable linear
solvers for multiphysics. In: International Symposium on Parallel and Distributed
Computing, pp. 55–62 (2012)

ftp://www.mcs.anl/pub/petsc/manual.ps
ftp://www.mcs.anl/pub/petsc/manual.ps

Additive Schwarz Method
for Nonsymmetric Local Discontinuous Galerkin

Discretization of Elliptic Problem

Filip Z. Klawe(B)

Institute of Applied Mathematics and Mechanics,
University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

fzklawe@mimuw.edu.pl

Abstract. In this paper we design two-level additive Schwarz method
method for non-symmetric, elliptic problem in two dimensions with the
use of discerization by local discontinuous Galerkin method (LDG). To
construct the preconditioner, we use the domain decomposition method.
We also want to show the result of numerical tests regarding to this
preconditioner. Condition of the preconditioned system does not depend
on the size of fine mesh h, but only on the ratio of the coarse mesh size
H and the overlap measure δ.

Keywords: Parallel preconditioner · Local discontinuous Galerkin ·
Convection-diffusion

1 Introduction

The discontinuous Galerkin method (DG) was introduced by Reed and Hill [1]
in 1973 for hyperbolic equations. Since that time many DG methods have been
developed for various types of PDEs. The local discontinuous Galerkin method
(LDG) was introduced by Cockburn and Shu in [2] and further studied in [3,4]
for convection-diffusion problem.

Let us consider the problem
⎧−Δu + 2b · ≤u + cu = f in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded polygonal domain in R
2 with boundary ∂Ω. The function

f belongs to L2(Ω). Vector function b is constant and function c belongs to
L∞(Ω). Moreover, we assume that the solution of problem (1) exist.

The author is a PhD student of the International PhD Projects Programme of
Foundation for Polish Science operating within the Innovative Economy Operational
Programme 2007–2013 funded by the European Regional Development Fund (PhD
Programme: Mathematical Methods in Natural Sciences).

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 489–498, 2014.
DOI: 10.1007/978-3-642-55195-6 46, c∈ Springer-Verlag Berlin Heidelberg 2014

490 F.Z. Klawe

The aim of this paper is to present a parallel preconditioner for LDG dis-
cratization of (1) and to verify the method experimentally. In our design, we
will follow the methods proposed by Baker, Brenner and Sung [5], who con-
sidered Poisson equation and showed the construction of the preconditioner for
Poisson equation, as well as the results of Cai and Widlund [6], who designed a
preconditioner for the second order elliptic equations (non-symmetric case) but
discretized with the standard continuous Galerkin method.

The paper is organized as follows: Sect. 2 is dedicated to the presentation of
local discontinuous Galerkin method. In Sect. 3 we construct the preconditioner
for this problem. Section 4 concentrates on the implementation, and finally in
Sect. 5 we show the results of numerical experiment, which confirm the theoret-
ical results.

2 Construction of Discrete Problem

To construct the LDG method we use the mixed formulation. Let us rewrite (1)
in the form of ⎨

⎩

⎜

σ = ≤u in Ω,
−≤ · σ + 2b · ≤u + cu = f in Ω,

u = 0 on ∂Ω.
(2)

Our goal is to find the solution of the system (1). Using (2) we find the solution
u and also σ, which stands for gradient of the solution. Usage of the mixed
formulation causes that the dimension of considered problem is larger, but gives
us much more information. Mixed formulation is usually used to construct the
discontinuous Galerkin methods. It is also used in the implementation.

On the domain Ω we define a family of shape-regular triangulation denoted
by Th, where h is a mesh parameter. We consider two finite element spaces:

Vh =
⎫
v ≥ L2(Ω) : v|E ≥ P1(E) ∈E ≥ Th

⎬
,

Σh =
⎫
τ ≥ (L2(Ω))2 : τ |E ≥ (P1(E))2 ∈E ≥ Th

⎬
,

(3)

where P1(E) is the space of polynomial of degree less or equal to 1.
Let us denote by Eh the set of all edges of the triangulation elements. The

set Eh can be splitted into two sets namely: E int
h and Ebd

h . The set E int
h contains

all edges from Eh which are located inside Ω and Ebd
h contains all edges from

Eh which overlap with boundary ∂Ω. Finite element spaces Vh and Σh contain
discontinuous functions.

We use the average {{·}} and the jump [[·]] of the function on the edge, cf.
[5,7]. Both operators are defined for scalar and vector functions in the following
way. Let q be a function from Vh, then

{{q}} = 1
2 (q1 + q2) [[q]] = q1n1 + q2n2 for e ≥ E int

h ,
{{q}} = q [[q]] = qn for e ≥ Ebd

h ,
(4)

where n is the unit normal vector pointing outward Ω and n1 and n1 are the
unit normal vector pointing outwards to the elements of the triangulation E1

ASM for Nonsymmetric LDG Discretization of Elliptic Problem 491

and E2, respectively and e = E1 ∞ E2. Let ϕ be a function from Σh, then

{{ϕ}} = 1
2 (ϕ1 + ϕ2) [[ϕ]] = ϕ1 · n1 + ϕ2 · n2 for e ≥ E int

h ,
{{ϕ}} = ϕ [[ϕ]] = ϕ · n for e ≥ Ebd

h .
(5)

Using the mixed formulation we get the following system of equations
⎧H(uh, v) + G(σh, v) = F(v),

−G(τ , v) + D(σh, τ) = 0,
(6)

where uh ≥ Vh, σh ≥ Σh are unknowns, v ≥ Vh, τ ≥ Σh are the test functions
and the bilinear forms H(·, ·), G(·, ·), D(·, ·) and linear form F(·) are defined by

H(uh, v) =
⎭

e≥Eh

⎞

e

{{uh}}[[vb]] −
⎭

e≥Eh

⎞

e

{{v}}[[uhb]] −
⎭

e≥Eh

⎞

e

β · [[uh]][[v]] · b

+
⎭

E≥Th

b · ≤uhv −
⎭

E≥Th

b · ≤vuh +
⎭

e≥Eh

ηe

|e|
⎞

e

[[uh]][[v]] +
⎞

Ω

cuhv,

G(σh, v) =
⎭

E≥Th

⎞

E

≤v · σh −
⎭

e≥Eh

⎞

e

[[v]] · {{σh}} −
⎭

e≥Eint
h

⎞

e

β · [[v]][[σh]],

D(σh, τ) =
⎭

E≥Th

σ · τ ,

F(v) =
⎭

E≥Th

⎞

E

fv,

where β and η are the parameters of the method. It is assumed that β is bounded
and constant on each edge and η is bounded, nonnegative and constant on each
edge.

To eliminate the σ, we have to define lifting operators, for more details see
[5,7]. These operators appear in the bilinear form. Let us start from defining the
local lifting operators

⎠

Ω
re(ϕ) · τ = − ⎠

e
ϕ · {{τ}} e ≥ Eh, ∈τ ≥ Σh, re : L2(e) ≈ Σh,⎠

Ω
le(q) · τ = − ⎠

e
q[[τ]] e ≥ E int

h , ∈τ ≥ Σh, le : L2(e) ≈ Σh.
(7)

Global lifting operators are defined as a sum of the local lifting operators

r(ϕ) =
⎭

e≥Eh

re(ϕ) and l(q) =
⎭

e≥Eint
h

le(q). (8)

After the elimination of σ we obtain the form of LDG discratization which
depend only on uh, then reads: find uh ≥ Vh such that

Bh(uh, v) = F(v) ∈v ≥ Vh. (9)

where
Bh(uh, v) = A(uh, v) + S(uh, v), (10)

492 F.Z. Klawe

and

A(uh, v) =
⎭

E≥Th

⎞

E

(≤uh + r([[uh]]) + l(β · [[uh]])
⎢ · (≤v + r([[v]]) + l(β · [[v]])

⎢

+
⎭

e≥Eh

η

|e|
⎞

e

[[uh]] · [[v]] −
⎭

e≥Eint
h

⎞

e

β · [[uh]][[v]] · b +
⎞

Ω

cuhv (11)

and

S(uh, v) =
⎭

E≥Th

⎞

E

b · ≤uhv −
⎭

E≥Th

⎞

E

b · ≤vuh

+
⎭

e≥Eint
h

⎞

e

{{uh}}[[vb]] −
⎭

e≥Eint
h

⎞

e

[[buh]]{{v}}. (12)

Bilinear form A(·, ·) is symmetric and S(·, ·) is skew-symmetric.

3 Additive Schwarz Method

I this Section we design an overlapping additive Schwarz method for (9), cf. [8].
We assume that Th is obtained through a refinement procedure from the coarse,
shape regular triangulation TH . The elements of TH shall be denoted by Ωi,
i = 1, .., N , and will be referred to as “subdomains”. Thus, we can treat TH as
a decomposition of Ω into N subdomains of triangular shape.

Then we extend each subdomain to overlap its neighbours by an amount of δ,
in such a way that the boundary of extended domain does not cut through any
element of fine mesh. The new extended subdomain is named ⎥Ωi. The examples
of coarse mesh TH and the extended subdomain ⎥Ωi are presented on the Fig. 1.
Decomposition of Ω into subdomains fulfills the condition that every element
E ≥ Th should belong to at most Ns different ⎥Ωi and Ns should be independent
of N .

In order to define the additive Schwarz method, we define local finite element
spaces related to these subdomains and the coarse finite element spaces related
to the coarse triangulation. Let us start from the definition of local finite element
spaces

Vi =
{

v ≥ Vh : v|Ω\Ω̂i
= 0

}
∈ i = 1, .., N, (13)

and then the coarse finite element space

V0 = {v ≥ C0(Ω) : v|Ωi
≥ P1(Ωi) i = 1, .., N} . (14)

Definition 1. For i = 0, .., N , let us define projections Qi : Vh ≈ Vi and quasi-
projections Pi : Vh ≈ Vi by identifying

Bh(Qiw, v) = Bh(w, v),
A(Piw, v) = Bh(w, v),

which holds for v ≥ Vi and w ≥ Vh.

ASM for Nonsymmetric LDG Discretization of Elliptic Problem 493

Fig. 1. An example of coarse triangulation TH and the extended subdomain Ω̂i with
the elements of fine triangulation which belongs to Ω̂i. Size of the overlap presented
above is equal to fine mesh size, i.e. δ = h

Finally we define the operators Q(1) =
∑N

i=0 Qi and Q(2) =
∑N

i=0 Pi. Now
problem (9) is replaced by

Q(i)uh = g
(i)
h , g

(i)
h ∧

N⎭

k=0

g
(i)
k , (15)

where gk can be calculated as the definition of projection (quasi-projection,
respectively) and the right hand side of the original problem

Bh(g(1)k , v) = f(v) and Ah(g(2)k , v) = f(v) ∈v ≥ Vk. (16)

For the problems defined by (15) the following Theorem holds.

Theorem 1. Let c (from (1) be non-negative function from L∞, then the con-
vergence speed of the GMRES with preconditioner Q(1) or Q(2) applied to problem
(9) depends on the ratio H

δ and is independent of h.

The proof of this theorem will appear in the forthcoming paper.

4 Implementation

Problem may be presented in two ways, i.e. standard (9) and mixed formulation
(6). This leads to two different ways of analysis and problem implementation.
First approach was defined in [5] and assumes the use of the bilinear form Bh(·, ·).
This approach is very useful for analysis of the problem. The other approach is
discussed by Castillo and Sequeira in [10], where the authors solve the problem
using the LDG method and mixed formulation. This approach causes that the

494 F.Z. Klawe

system of linear equations becomes much bigger. Instead of 3 unknowns for each
element of triangulation we get 9 unknowns. Using this approach, we obtain the
solution of the problem u and the gradient of the solution σ. Our system is much
bigger, but the obtained solution gives us more information. Using the second
approach we do not need to implement the lifting operators, hence it is simpler
to implement.

Let us consider this problem from algebraic point of view. We identify
each function vh ≥ Vh with the vector of the coefficients, v = (α1, α2, ..., αN)T ,
vh =

∑
αivi and {vi}i=1,..,N is a set of nodal functions of Vh. Now, the functions

uh and σh correspond to vectors u and σ, respectively.
Taking nodal basis functions {vi} and {σi} from spaces Vh and Σh, respec-

tively as a test functions in (6), we construct the matrices H, G and D such that
H(vi, vj) = Hi,j , G(σi, vj) = Gi,j and D(σi,σj) = Di,j . We obtain the algebraic
system of equations (

H G

−G
T
D

)(
u
σ

)

=
(

f
0

)

. (17)

Matrix D is block diagonal, with 3 × 3 blocks, since Di,j = D(ϕi,ϕj) =⎠

Ω
ϕi · ϕj . This matrix can be easily inverted, hence

−D
−1

G
T (18)

is cheap to compute and after eliminating σ from (6) we arrive of

Bhu ∧ (H − GD
−1

G
T)u = f (19)

To compute the matrix Bh, we start from computing sparse matrices H, G
and D

−1. Then, we get the matrix Bh from (19). The nonzero elements of D,
G and H are possible only for the bases function which has support inside the
same element of triangulation or in two neighbouring elements of triangulation.
Therefore, Bh remains sparse.

We defined two preconditioners in the previous Section. First one was con-
structed by using the projections and second one by using the quasi-projections.
Now, we present the construction of first preconditioner.

We can define the restrictions from the finite element space Vh into the local
and coarse spaces, i.e. Ri : Vh ≈ Vi for i = 1, .., N , and let Ri be matrix
corresponding to this restriction. The restriction operator R0 is defined by the
interpolant RT

0 : V0 ≈ Vh. Operator RT
0 takes the vector from coarse space and

gives a vector from fine space that determines the corresponding coarse function.
Rewriting the system (15) in the algebraic form with preconditioner (for

Q(1)) we get the following system of equations
(

N⎭

i=0

R
T
i B

−1
i Ri

)

Bu =

(
N⎭

i=0

R
T
i B

−1
i Ri

)

f, (20)

and the the matrix
∑N

i=0 R
T
i B

−1
i Ri is a parallel preconditioner of the system,

because each Bi = RiBhR
T
i can be applied independently to the residual vector.

ASM for Nonsymmetric LDG Discretization of Elliptic Problem 495

Similarly, using the quasi-projection for construction of the preconditioner
(for Q(2)), we get the following system of equations

(
N⎭

i=0

R
T
i A

−1
i Ri

)

Bu =

(
N⎭

i=0

R
T
i A

−1
i Ri

)

f. (21)

5 Numerical Experiments

Let Ω be a square (0, 1) × (0, 1). We consider two test problems, cf. [6].

Problem 1. Let us consider the symmetric and indefinite Helmholtz equation
⎧−Δu − μu = f in Ω,

u = 0 on ∂Ω.
(22)

Problem 2. Let us consider a nonsymmetric and indefinite problem
⎧−Δu − ν(∂u

∂x + ∂u
∂y) − μu = f in Ω,

u = 0 on ∂Ω.
(23)

The aim of these tests is to assess the efficiency of both preconditioners
proposed in Sect. 4. All of the tests are done for the right hand side corresponding
to the exact solution u = xexy sin πx sin πy. We use LDG parameters β = (1, 1)T

and η = 1.
Each of these problems is solved in three ways, i.e. without preconditioner

and with one of the preconditioner presented in the previous Section. In all tests
we stop the GMRES method as soon as the ratio ◦ri◦h

◦r0◦h
is less then 10−3, where

the norm ∃ · ∃h is defined by

∃v∃2h =
⎭

E≥Th

⎞

E

|≤v|2 +
⎭

e≥Eh

1
|e|

⎞

e

|[[v]]|2, (24)

(cf. [5]) or after 400 iterations.
Tables 1–6 present the results of the numerical tests, i.e. the number of iter-

ation needed to achieve the proper ratio of the norms of residual vectors. We
show the number of iterations for the GMRES method without preconditioner,
named by no preconditioner in the tables, and the number of iterations for the
GMRES method with preconditioners (Q(1) and Q(2)). In the numerical tests
we take the different values of the mesh sizes and overlaps. For Problems 1 and 2
we analyze dependency of iterations numbers with the mesh sizes h and H and
with the size of the overlap δ.

In Tables 1 and 4 we present the result for constant ratio H
δ in two cases.

In the experiment we change parameters h, H and δ in such way that ratio H
δ

496 F.Z. Klawe

Table 1. Results for the Problem1 with μ = −3π2.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

15 5 2 5
2

166 12 12
30 10 4 5

2
325 12 13

45 15 6 5
2

401 12 13
60 20 8 5

2
401 12 14

15 3 1 3 166 8 9
30 6 2 3 325 9 9
45 9 3 3 401 9 9
60 12 4 3 401 9 9

Table 2. Results for the Problem1 with μ = −3π2. Dependency on overlap δ.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

80 10 1 10 401 10 10
80 10 2 5 401 9 9
80 10 3 10

3
401 9 9

80 10 4 5
2

401 10 10
80 10 5 2 401 11 11
80 10 6 5

3
401 12 12

80 10 7 10
7

401 12 13
80 10 8 10

8
401 12 12

Table 3. Results for the Problem1 with μ = −3π2. Dependency on coarse mesh size H.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

80 2 2 1 401 14 14
80 4 2 2 401 10 10
80 5 2 5

2
401 9 9

80 8 2 4 401 9 9
80 10 2 5 401 9 9
80 16 2 8 401 10 10
80 20 2 10 401 15 15

is equal to 5
2 (first case) or 3 (second case). The fluctuation of the iterations

number of GMRES method with usage of preconditioner is almost constant for
each problem. Only using the preconditioner Q(2) we can observe slow growth
of this number with the mesh sizes h is getting smaller.

In Tables 2 and 5 we present the results for constant mesh sizes h and H.
In all tests h = 1

80 and H = 8h. Size of overlap δ is changing form h to 8h. As
we can see small and big overlap implies higher number of iterations needed to
solve the preconditioned system.

In Tables 3 and 6 we present the results for constant mesh size h and overlap
size δ. In all tests h = 1

80 and δ = 2h. The coarse mesh size H is changing from 2h

ASM for Nonsymmetric LDG Discretization of Elliptic Problem 497

Table 4. Results for the Problem2 with μ = −3π2 and ν = −3π.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

15 5 2 5
2

145 12 17
30 10 4 5

2
298 12 18

45 15 6 5
2

401 12 18
60 20 8 5

2
401 12 18

15 3 1 3 145 13 16
30 6 2 3 298 14 17
45 9 3 3 401 14 17
60 12 4 3 401 14 18

Table 5. Results for the Problem2 with μ = −3π2 and ν = −3π. Dependency on
overlap δ.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

80 10 1 10 401 16 17
80 10 2 5 401 15 17
80 10 3 10

3
401 14 15

80 10 4 5
2

401 13 15
80 10 5 2 401 15 16
80 10 6 5

3
401 16 19

80 10 7 10
7

401 16 20
80 10 8 10

8
401 15 19

Table 6. Results for the Problem2 with μ = −3π2 and ν = −3π. Dependency on
coarse mesh size H.

h−1 H
h

δ
h

H
δ

no preconditioner Q(1) Q(2)

80 2 2 1 401 22 22
80 4 2 2 401 13 13
80 5 2 5

2
401 11 12

80 8 2 4 401 14 15
80 10 2 5 401 15 17
80 16 2 8 401 18 21
80 20 2 10 401 21 24

to 20h. If we omit the first test in these two tables, we can see that the number of
GMRES iterations in preconditioned system is growing with the ratio H

δ .
As we can see the number of iterations in the algorithms with precond-

tioner is independent of the mesh size h. The same results were presented in
[6], hence using the preconditioners constructed by Additive Schwarz method
for continuous Galerkin and local discontinuous methods makes the condition of
the problem independent of the mesh size h. Moreover, the number of iterations
needed for solving the problem with the use of preconditioner is lower for Q(1)

498 F.Z. Klawe

than for Q(2), hence solving the inexact problem gives us worse results. This
result is different than the one presented by Cai and Widlund in [6], where the
precondtioner constructed with usage the quasi-projections needs lower number
of iterations. Results of the numerical tests confirm the results presented in the
Theorem 1, proof of which will appear elsewhere. Tests show that even in the
case of negative function c the condition of the preconditioner is independent of
mesh size h.

References

1. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equa-
tion. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

2. Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-
dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463
(1998)

3. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the
local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM
J. Numer. Anal. 39, 264–285 (2001)

4. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of
the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer.
Anal. 38(5), 1676–1706 (2000)

5. Barker, A., Brenner, S., Sung, L.Y.: Overlapping Schwarz domain decomposition
preconditioners for the local discontinuous Galerkin method for elliptic problem.
J. Numer. Math. 1–25 (2011)

6. Cai, X., Widlund, O.: Domain decomposition algorithms for indefinite elliptic prob-
lems. SIAM J. Sci. Stat. Comput. 13(1), 243–258 (1992)

7. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779
(2002)

8. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer, Berlin (2005)

9. Brenner, S.: Two-level additive Schwarz preconditioners for nonconforming finite
element methods. Math. Comp. 65(215), 897–921 (1996)

10. Castillo, P., Sequeira, F.: Computational aspects of the local discontinuous
Galerkin method on unstructured grids in three dimensions. Math. Comput. Model.
57(910), 2279–2288 (2013)

Fast Numerical Method for 2D Initial-Boundary
Value Problems for the Boltzmann Equation

Alexei Heintz1 and Piotr Kowalczyk2(B)

1 Department of Mathematics, Chalmers University of Technology
and Göteborg University, SE-412 96 Göteborg, Sweden

heintz@chalmers.se
2 Institute of Applied Mathematics and Mechanics, University of Warsaw,

Banacha 2, 02-097 Warszawa, Poland
pkowal@mimuw.edu.pl

Abstract. We present a new numerical scheme for the initial-boundary
value problem for the Boltzmann equation in two-dimensional physical
space. It is based on a splitting procedure in which the collision equation
is solved using the adaptive algorithm for the computation of the full
three-dimensional Boltzmann collision operator on non-uniform velocity
grids introduced in the previous paper by the authors. The computation
of the collision operator is performed in parallel for every physical grid
cell. For the two-dimensional transport equation we use a second order
finite volume method. The numerical example showing the effectiveness
of our method is given.

Keywords: Boltzmann equation · Numerical methods · Non-uniform
grids

1 Introduction

In thisaut]Heintz, Alexeiaut]Kowalczyk, Piotr paper we present a deterministic
method for numerical solution of the two-dimensional initial-boundary value
problems for the classical Boltzmann equation [8]

∂f

∂t
+ v · ∇xf = Q(f, f) (1)

which is the main object in the kinetic theory of rarefied gases. In (1) the function
f := f(t,x,v), f : R+ × Ωx × R

3 → R+ is a probability density function of the
gas molecules which at time t and at the point x ∈ Ωx ⊂ R

d move with the
velocity v. The collision integral Q(f, f) describes changes in f due to collisions
between molecules. The Boltzmann equation (1) is equipped with the initial
f(0,x,v) = f0(x,v) and boundary f(t,x,v) = g(t,x,v), x ∈ ∂Ωx, conditions
for some suitably chosen functions f0 and g.

The numerical solution of the Boltzmann equation is very difficult because
of the nonlinearity of the collision integral, the large number of independent

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 499–509, 2014.
DOI: 10.1007/978-3-642-55195-6 47, c© Springer-Verlag Berlin Heidelberg 2014

500 A. Heintz and P. Kowalczyk

variables and the complicated integration over a five-dimensional cone in the
six-dimensional space of pre- and post-collisional velocities. Due to this numer-
ical complexity many practical computations of the Boltzmann equation are
based on various probabilistic Monte Carlo methods, see e.g. [4,17,22]. However
these methods have limited accuracy. Development of deterministic methods
for the Boltzmann equation is usually motivated (see [18,21]) by the desire of
higher precision results in situations when probabilistic methods are not effective
enough.

The discrete velocity models (DVM) defined on a uniform cubic grid of veloc-
ities were the first deterministic approximations to the Boltzmann equation.
Several different ideas led to various types of DVM all satisfying exact conserva-
tion laws in the discrete form [7,12,19,23]. All mentioned DVM methods have
high computational cost n7, where n denotes the number of points along one
coordinate direction in the uniform velocity grid.

The Kyoto group in kinetic theory has developed a family of finite difference
methods for the Boltzmann equation [15,18]. These computations demonstrate
precise results but they are very time and memory consuming.

Another class of deterministic methods is based on Fourier spectral technique.
A general spectral method based on the restriction of the Boltzmann equation
to a finite domain and on the representation of the solution by Fourier series was
first derived in [20] and developed further in [21]. The method was also applied to
spatially non-homogeneous Boltzmann equation [10,11]. Independently in [5,6]
the authors constructed fast algorithms based on Fourier transform approxima-
tion. In papers [9,16] a new important idea of semi-discretization was introduced.
This idea led to a great reduction of the computational cost up to the order
Nk log2 N for velocity dimension k and N the number of Fourier modes along
one coordinate direction, without losing spectral accuracy.

In our previous paper [13] we addressed a problem of approximating solu-
tions to the homogeneous Boltzmann equation discontinuous with respect to
the velocity variable. We combined two approaches: an adaptive velocity grid to
resolve discontinuities and a spectral method to approximate smooth terms in
the equation: the collision frequency and the gain term in the collision opera-
tor. This idea is based on the fact that the gain term Q+(f, f) in the collision
operator has certain smoothing properties and is actually smooth even for a dis-
continuous f . Collision frequency q−(f) is also a smooth function because it is
a convolution of f with a regular function.

The goal of the present paper is to show the effectiveness of the approach of
[13] in the case of spatially two-dimensional problems. The outline of the paper
is as follows. In Sect. 2 we present the Boltzmann equation and the Fourier
representation. In Sect. 3 we give the numerical framework of the paper. Sub-
section 3.1 describes the classical splitting scheme. In Subsect. 3.2 we introduce
the adaptive approximation of the distribution function in velocity space with
the spectral approximation of smooth terms in the collision operator, which is
based on the USFFT scheme and the standard spectral method (see [2,21]). In
Subsect. 3.3 we describe the numerical scheme used for the collisionless transport
step of the splitting method. In Sect. 4 we present the numerical example.

Numerical Method for the Boltzmann Equation 501

2 Boltzmann Equation

In this paper we consider the gas model of “hard sphere” molecules [3]. In this
model the collision operator Q(f, f) in (1) is defined as follows

Q(f, f)(v) :=
∫

R3

∫

S2
|v − w| [f(v∈)f(w∈) − f(v)f(w)] dω dw, (2)

where v, w are the velocities of the particles before the collision and v∈, w∈ —
the velocities of the particles after collision given by

v∈ :=
1
2

(v + w + |v − w|ω) , w∈ :=
1
2

(v + w − |v − w|ω) .

The collision operator (2) can be decomposed into the gain and the loss parts

Q(f, f)(v) = Q+(f, f)(v) − Q−(f, f)(v),

where

Q+(f, f)(v) =
∫

R3

∫

S2
|u|f(v − 1

2
(u − |u|ω))f(v − 1

2
(u + |u|ω) dω du (3)

and
Q−(f, f)(v) = f(v)q−(f)(v)

with q− denoting the collision frequency term

q−(f)(v) =
∫

R3
f(v − u)

∫

S2
|u| dω du. (4)

We have changed the variables u = v − w in (2) to get the above formulations.
We will use the following form of the Fourier transform

Fv(m)[f] := f̂m =
∫

R3
f(v)e2πı(v,m) dv (5)

and the inverse Fourier transform

F−1
m (v)[f̂] := f(v) =

∫

R3
f̂me−2πı(m,v) dm. (6)

One can reformulate the gain and collision frequency terms using the Fourier
transform:

Q+(f, f)(v) = F−1
l (v)F−1

m (v)
[
f̂lf̂mB̂(l,m)

]
,

q−(f)(v) = F−1
m (v)

[
f̂mB̂(m,m)

]
,

502 A. Heintz and P. Kowalczyk

where
B̂(l,m) =

∫

R3

∫

S2
|u|e2πı(l+m

2 ,u)e2πı|u|(m−l
2 ,ω) dωdu.

The kernel B̂(l,m) is a distribution, hence in order to use it in practical com-
putations we have to regularize it. We will choose in a proper way the constant
R > 0 and write the regularized kernel as

B̂R(l,m) =
∫

B(0,R)

∫

S2
|u|e2πı(l+m

2 ,u)e2πı|u|(m−l
2 ,ω) dωdu. (7)

We denote by Q+
R(f, f) and q−

R(f) the gain and collision frequency terms with
the regularized kernel B̂R. The kernel B̂R was computed analytically in [21] in
particular for hard sphere gas.

3 Numerical Algorithm

3.1 Splitting Method

The numerical procedure most commonly used for solving the non-stationary
Boltzmann equation consists in splitting the Boltzmann equation on each time
step into the transport step with the equation for collisionless gas and the relax-
ation step with the spatially homogeneous Boltzmann equation.

We divide the time interval [0, T] onto N equal subintervals of length Δt =
T/N . Assume that the approximate value fn of the distribution function at the
time nΔt has been computed. Then fn+1, the value of the distribution function
at the time (n + 1)Δt, is obtained in two steps:

1. the transport equation

∂f≥

∂t
+ v · ∇xf = 0 for t ∈ (nΔt, (n + 1)Δt] ,

f≥(kΔt) = fn ,
(8)

2. the relaxation equation

∂f≥≥

∂t
= Q(f≥≥, f≥≥) for t ∈ (nΔt, (n + 1)Δt] ,

f≥≥(nΔt) = f≥((n + 1)Δt) .
(9)

Finally, using the solution of (9) one sets

fn+1 = f≥≥((n + 1)Δt) .

The boundary conditions appropriate for the particular problem have to be taken
into account when solving the free flow stage (8) of the splitting procedure.

Numerical Method for the Boltzmann Equation 503

3.2 Relaxation Equation

Below we describe briefly the main points of the algorithm for the homogeneous
Boltzmann equation. For the detailed description we refer to [13].

For the numerical treatment of the Boltzmann equation we restrict the func-
tion f to a bounded domain Ωv. To discretize the velocity space we build a
nonuniform adaptive velocity grid Gv ⊂ Ωv with Nv denoting the number of
points in Gv which allows to resolve discontinuities and high gradients in f .

The velocity grid Gv is created in parallel with the computation of the values
of the solution at each time step and for each space point. We compute first
the values of the solution at the vertices of cubic cells on some initial uniform
coarse grid. We fix in advance a desired resolution (minimal grid step) in velocity
space and desired maximal variation of solution within the cells exceeding this
resolution. Then choosing cubes where variation of the solution is larger than
the desired maximal variation we divide these cells into eight similar smaller
ones, compute the values of the solution at the vertices of new cubes and then
continue the subdivision in the same way. The subdivision is stopped when the
minimal size of the cells is reached. In such a way we generate more grid points in
parts of Ωv where the function f changes rapidly and less in where the function
is almost constant.

For smooth terms in the equation: the gain term Q+(f, f) and the collision
frequency q−(f) we use a spectral representation, that is the projection onto the
basis of high (5-th or 7-th) order B-splines. This projection is a component of
the Unequally Spaced Fast Fourier Transform (USFFT) algorithm by Beylkin
[2] that we use for the computation of expressions (3) and (4) for Q+(f, f) and
q−(f).

Using a non-uniform approximation f̄ for f on the grid Gv we get the following
discrete in velocity variable approximation for the Fourier transform of f (5) (we
keep here the same notation for the Fourier transform of f and its approximation)

f̂m = Cm

∑

j

F̄j e2πı(vj ,m),

where F̄j is a sum of contributions to the node vj of the approximations f̄K on
cube K ∈ Gv. We adopt the USFFT algorithm here, because the standard Fast
Fourier Transform (FFT) algorithm commonly used for the fast computation
of trigonometric sums cannot be used here since the points vj in the velocity
grid Gv are not equidistant. The cost of the USFFT algorithm in our case can
be estimated as O(Nv) + O(N3 log N), where N = 4M with 2M denoting the
number of Fourier modes in one direction. A similar procedure is used to calculate
the inverse Fourier transform (6), uniformly discretized in Fourier domain, with
the cost the same as above.

The relaxation step of the splitting method is carried out using the standard
semi-implicit Euler scheme

fn+1 =
fn + Δt Q+

R(fn, fn)
1 + Δt q−

R(fn)
, (10)

504 A. Heintz and P. Kowalczyk

where fn = f(tn) denotes the solution f at time tn. The equation (10) is solved
for every v ∈ Gv and x ∈ Ωx.

The kernel B̂R (7) depends only on |l + m| and |l − m| (see [21]). Thus we
define T (|p|, |q|) := B̂R(l,m) with p = l + m and q = l − m and using the
inverse Fourier transform we discretize the regularized gain term Q+

R(f, f) (cf.
(7)) as follows

Q+
R(f, f)(v) =

∑

p

F (p)e−2πı(p,v),

where F (p) =
∑

q f̂p+q
2

f̂p−q
2

T (|p|, |q|). Here we calculate F (p) for every p with
a cost O(N6) and do the inverse USFFT to calculate Q+

R(f, f)(v). Similarly we
discretize the loss term Q−

R(f, f).
The total computational cost of the numerical approximation of the collision

operator is O(Nv)+O(N6 log N), where the first part includes approximation of
the solution on the adaptive velocity grid Ωv with Nv points and the second part
depends on the moderately large number N of Fourier modes taken along one
coordinate direction for the approximation of the collision operator. The velocity
grids for each point in physical space are independent, hence the computations
can be performed in parallel. This gives nearly linear performance gain as the
number of processors increases up to the size of the physical space grid. This
parallelization gives very high performance gain, because this step of the splitting
procedure has the largest computational complexity in our algorithm.

The FFT scheme conserves exactly only mass — momentum and energy are
conserved only up to the precision of the method. Hence we use the correction
technique proposed in [1] for enforcing exact conservation property.

3.3 Transport Equation

The transport equation (8) is solved numerically using the second order finite
volume scheme for the hyperbolic advection equation (see e.g. [7,14]). For com-
pleteness, we give a brief description of the scheme we use in our algorithm.

Let M denote the uniform partitioning of the domain Ωx into rectangles. Let
M ∈ M be a control cell having the vertices A, B, C, D. We denote by nAB the
unit outward normal to the side AB, by |AB| its length, by SAB the midpoint
of AB, and finally by MAB the cell adjacent to the side AB. Similar notation is
used for each of the other sides. Moreover, |M | stands for the area of the cell M
and SM for its center.

In what follows we suppress in the notation the explicit dependence of f on
the velocity variable. Let fn

M be an approximation of

1
|M |

∫

M

f(tn,x)dx (11)

and let g be a function defined on Ωx such that its restriction gM to the cell M
is defined as

Numerical Method for the Boltzmann Equation 505

gM (x) = fn
M + (∇xf)n

M (x − SM) for x ∈ M , (12)

where (∇xf)n
M denotes an approximation of the gradient of f on the cell M .

Let qAB be the flux through the side AB defined as follows

qAB =

{
v · nAB gin

AB |AB|, if v · nAB ≥ 0 ,

v · nAB gout
AB |AB|, if v · nAB < 0 ,

(13)

where

gin
AB = limM◦x≤SAB

g(x) ,

gout
AB = limM ∩◦x≤SAB

g(x) .

Likewise, we define the fluxes through the other sides of the cell M .
The second order finite volume scheme is defined as follows

fn+1
M = fn

M − Δt

|M | (qAB + qBC + qCD + qDA) .

The scheme preserves positivity and is stable under the condition (proof in [7])

max
v∈Ωv

max
M∈M

Δt

|M | max
XY

(max(v · nXY , 0)|XY |) ≤ 1
4

. (14)

We use the adaptive non-uniform grid for the velocity space. Hence the veloc-
ity grids corresponding to different space cells might not coincide. To overcome
this problem the required values of the distribution function in the neighboring
space cells are calculated in the velocity points using a piecewise linear approx-
imation within the cube of the velocity grid.

4 Numerical Example

In this section we present a results of numerical computations for a shock wave
reflection problem showing the effectiveness of our method in 2D case.

We investigate a problem of a planar shock wave moving in a tube with a
rectangular obstacle inside (see Fig. 1). We obtain the incoming shock wave as
follows. Initially the domain Ωx is divided into two parts Ω1 and Ω2 and in each
part the gas is in equilibrium. Hence the initial distribution function is given by

f0(x,v) =

{
M(ρ1, 0, T1,v), if x ∈ Ω1,

M(ρ2,u, T2,v), if x ∈ Ω2,

where M(ρ,u, T,v) = ρ
(2πRT)3/2

exp
(− (v−u)2

2RT

)
and T1, ρ1, T2, ρ2 are the gas

temperature and the density before and behind the shock, respectively, chosen to
satisfy the Rankine-Hugoniot relations for the shock with Mach number M = 2.8.

506 A. Heintz and P. Kowalczyk

Fig. 1. Domain of a shock wave reflection problem

x

y

0 10 20 30 40
0

5

10

15

20

25

30

x

y

0 10 20 30 40
0

5

10

15

20

25

30

Fig. 2. Shock wave: density contour lines for t = 300 (left) and t = 440 (right)

x

y

0 10 20 30 40
0

5

10

15

20

25

30

x

y

0 10 20 30 40
0

5

10

15

20

25

30

Fig. 3. Shock wave: temperature contour lines for t = 300 (left) and t = 440 (right)

Numerical Method for the Boltzmann Equation 507

The interaction of the gas with the boundary Ωx is modeled using the spec-
ular reflection

f(t,x,v) = f(t,x,v − 2(n(x) · v)n(x)) for x ∈ ∂Ωx\AB and v · n(x) > 0,

where n(x) denotes the inner unit normal to the boundary ∂Ωx at the point x.
This boundary condition is used on all the boundary except the left hand side
(the interval AB), where the constant inflow of the gas is given

f(t,x,v) = M(ρ2,u, T2,v) for x ∈ AB and v · n(x) > 0.

The numerical calculations presented here were performed for the domain
Ωx partitioned into rectangles with the sides Δx = Δy = 1.0 and the time
step was Δt = 0.035714, chosen to satisfy (14). In the calculations we used the
Boltzmann equation in a dimensionless form and assumed the Knudsen number
Kn = 1. Because of the high dimensionality of the considered problems (2D in
space and 3D in velocity), calculating experimentally the approximation order of
the scheme requires more powerful computer than the authors used and a better
implementation of the algorithm. Hence we note here only that the calculations
of the presented example took 26 hours using a 2-core processor.

In Figs. 2 and 3 we show the density and temperature contour lines for time
steps t = 300 and t = 440.

For time step t = 300 both the incoming shock wave and the shock reflected
from the obstacle are observed. At time step t = 440 the density shock wave
has reached the wall and we observe only the shock reflected from the obstacle,
whereas for the temperature shock wave we observe also the shock reflecting
from the wall. In all figures the incoming shock wave is moving from the left to
the right.

5 Conclusions

In this paper we present a new numerical method for the solution of the two-
dimensional initial-boundary value problems for the Boltzmann equation.

The method uses a splitting scheme to decouple the transport part and the
collision part of the equation. To solve the space homogeneous Boltzmann equa-
tion we use the fast algorithm presented in our previous paper [13]. A second
order finite volume scheme is used for the transport equation.

The numerical example shows the effectiveness of our method. Moreover the
algorithm can be very easily parallelized. The performance gain is nearly linear
as the number of processors increases up to the size of the physical grid.

References

1. Aristov, V.V., Tcheremisin, F.G.: The conservative splitting method for the solu-
tion of a Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz. 20(1), 191–207, 262
(1980)

508 A. Heintz and P. Kowalczyk

2. Beylkin, G.: On the fast fourier transform of functions with singularities. Appl.
Comput. Harmon. Anal. 2(4), 363–381 (1995)

3. Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Oxford
Engineering Science Series, vol. 42. Clarendon Press, Oxford (1994)

4. Bird, G.A.: Recent advances and current challenges for DSMC. Comput. Math.
Appl. 35(1–2), 1–14 (1998)

5. Bobylev, A., Rjasanow, S.: Difference scheme for the Boltzmann equation based
on the fast fourier transform. Eur. J. Mech. B Fluids 16(2), 293–306 (1997)

6. Bobylev, A.V., Rjasanow, S.: Fast deterministic method of solving the Boltzmann
equation for hard spheres. Eur. J. Mech. B Fluids 18(5), 869–887 (1999)

7. Buet, C.: A discrete-velocity scheme for the Boltzmann operator of rarefied gas
dynamics. Transp. Theory Statist. Phys. 25(1), 33–60 (1996)

8. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathemat-
ical Sciences, vol. 67. Springer, New York (1988)

9. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in
N log2 N . SIAM J. Sci. Comput. 28(3), 1029–1053 (2006). (electronic),
http://dx.doi.org/10.1137/050625175

10. Filbet, F., Russo, G.: High order numerical methods for the space non-
homogeneous Boltzmann equation. J. Comput. Phys. 186(2), 457–480 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00065–2

11. Filbet, F., Russo, G.: Accurate numerical methods for the Boltzmann equation.
In: Modeling and Computational Methods for Kinetic Equations. Model. Simul.
Sci. Eng. Technol., pp. 117–145. Birkhäuser, Boston (2004)

12. Goldstein, D., Sturtevant, B., Broadwell, J.: Investigation of the motion of discrete-
velocity gases. In: Muntz, E.P., et al. (eds.) Proceedings of the 16th International
Symposium on RGD. Progress in Astronautics and Aeronautics, vol. 118, pp. 100–
117 (1989)

13. Heintz, A., Kowalczyk, P., Grzhibovskis, R.: Fast numerical method for the Boltz-
mann equation on non-uniform grids. J. Comput. Phys. 227(13), 6681–6695 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.03.028

14. Hirsch, C.: Numerical Computation of Internal and External Flows. Wiley, New
York (1991)

15. Kosuge, S., Aoki, K., Takata, S.: Shock-wave structure for a binary gas mixture:
finite-difference analysis of the Boltzmann equation for hard-sphere molecules. Eur.
J. Mech. B Fluids 20(1), 87–101 (2001)

16. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann
collision operator. Math. Comp. 75(256), 1833–1852 (2006). (electronic).
http://dx.doi.org/10.1090/S0025-5718-06-01874-6

17. Nanbu, K.: Stochastic solution method of the master equation and the model
Boltzmann equation. J. Phys. Soc. Japan 52(8), 2654–2658 (1983)

18. Ohwada, T.: Structure of normal shock waves: direct numerical analysis of the
Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5(1), 217–234
(1993)

19. Panferov, V.A., Heintz, A.G.: A new consistent discrete-velocity model for the
Boltzmann equation. Math. Meth. Appl. Sci. 25(7), 571–593 (2002)

20. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann
equations. In: Proceedings of the Second International Workshop on Nonlinear
Kinetic Theories and Mathematical Aspects of Hyperbolic Systems (San Remo,
1994), vol. 25, pp. 369–382 (1996)

Numerical Method for the Boltzmann Equation 509

21. Pareschi, L., Russo, G.: Numerical solution of the Boltzmann equation. I. Spectrally
accurate approximation of the collision operator. SIAM J. Numer. Anal. 37(4),
1217–1245 (2000). (electronic)

22. Rjasanow, S., Wagner, W.: Stochastic numerics for the Boltzmann equation.
Springer Series in Computational Mathematics, vol. 37. Springer, Berlin (2005)

23. Rogier, F., Schneider, J.: A direct method for solving the Boltzmann equation.
Transp. Theory Statist. Phys. 23(1–3), 313–338 (1994)

Simulating Phase Transition Dynamics
on Non-trivial Domains

ffLukasz Bolikowski and Maria Gokieli(B)

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Prosta 69, 00-838 Warsaw, Poland

L.Bolikowski@icm.edu.pl, M.Gokieli@icm.edu.pl

Abstract. Our goal is to investigate the influence of the geometry and
topology of the domain Ω on the solutions of the phase transition and
other diffusion-driven phenomena in Ω, modeled e.g. by the Allen–Cahn,
Cahn–Hilliard, reaction–diffusion equations. We present FEM numerical
schemes for the Allen–Cahn and Cahn–Hilliard equation based on the
Eyre’s algorithm and present some numerical results on split and dumb-
bell domains.

Keywords: Diffusion · Cahn–Hilliard · Allen–Cahn · Stability · Finite
element

1 Introduction and Motivation

The Allen–Cahn equation:

ut − εΔu = u − u3 on (0,∞) × Ω (1)

where u = u(t, x), u(0, ·) = u0 given in some domain Ω and with the homogenous
Neumann boundary condition

∂

∂n
u = 0 on (0,∞) × ∂Ω,

is of reaction-diffiusion type. It is also a model of an order–disorder phase tran-
sition in alloys, u being then not a concentration, but a non-conserved order
parameter [1]. In any interpretation the equation is a dissipative system, driven
by the minimization of the free energy

F =
⎧

Ω

ε

2
|∇u(x)|2 +

1
4
u4 − 1

2
u2 dx

in the Hilbert space L2(Ω). It takes the so–called gradient form

du

dt
=

δF
δu

(u),

the Gateaux derivative here being taken in L2(Ω).

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 510–519, 2014.
DOI: 10.1007/978-3-642-55195-6 48, c© Springer-Verlag Berlin Heidelberg 2014

Simulating Phase Transition Dynamics on Non-trivial Domains 511

A second classical model of phase transition phenomena, also closely related
to diffiusion, is the Cahn–Hilliard equation [2,3]. Roughly, it can be written as:

ut − Δ(−εΔu − u + u3) = 0 on (0,∞) × Ω (2)

u(0, ·) = u0 given in Ω and with the boundary condition

∂

∂n
u =

∂

∂n
Δu = 0 on (0,∞) × ∂Ω.

Here, u is the concentration of one of the two components of an alloy or a
mixture.

As shown by Fife [4], this equation is also a gradient system for the same free
energy F , but this times in the space H̃−1, which the zero-average subspace of
the dual of H1(Ω).

The dynamics of both these equations are far from being trivial. One of their
main characteristics is the coexistence very diffierent time evolution scales: very
fast and very slow. This is closely related to the attractor’s structure of these
systems, and in particular to their steady states. Let us give an example, for the
simpler Allen–Cahn equation, considered in one space dimension only. Its steady
states are then given by

−εuxx + u3 − u = 0 on (a, b), u∈(a) = u∈(b) = 0.

Apart from constant solutions 0, −1 and 1, there are many states which are
close to 1 or −1 by the ends on the interval, and have one or more ‘transition
layers’ or ‘interfaces’ between these almost constant states. If we understand
by stability of these states their being or not ‘attractive’ for evolving solutions
in their neighborhood, one gets immediately that 1 and −1 are stable and 0 is
unstable (just considering the linearization of the left-hand-side operator around
these states and its eigenvalues). It is known also that more layers in the steady
state means more instability. The numerical experiments performed by Fusco
and Hale in 1989 [5] seemed to indicate additionally stability of the one-layer
solution. They discovered, however, by a theoretical study, that its apparent
immobility was only an extremely slow evolution toward a constant state — the
final transition occurring, on the contrary, instantaneously. The solution got the
name of ‘dormant instability’.

Things get more complicated when we pass to higher space dimensions. The
influence of the domain’s shape on the dynamics, and particularly on the char-
acter of the steady solutions, is extensively studied since the fundamental results
of Casten and Holland [6] and of Matano [7]. They found, independently, that in
a class of regions including convex domains and annuli, the only stable solution
of the reaction-diffiusion type Neumann problems were constants. Other shapes
have been considered from then on. The most studied one was the dumbbell, see
Fig. 1 ([8–14]). Other shapes have been considered in [13–16]. In [17] we stud-
ied this question domains, with a non-lipschitz boundary (see Fig. 1), obtaining
existence of non-constant stable equilibria.

512 fflL. Bolikowski and M. Gokieli

Fig. 1. Some shapes for which the question of reaction–diffusion/Allen–Cahn dynamics
have been studied theoretically.

The same question appears for the Cahn–Hilliard equation, it has been stud-
ied e.g. in [18–22], although the domain shape influence is very little known for
this case.

Let us also note that both equation coupled were also proposed as a model
of two simultaneously occurring phase transitions in alloys [23].

Numerical simulations for phase transitions are still few, and inexistant, as
far as we know, for complex domain shapes.

In [24] and [25], we proposed a numerical scheme and a solver for a system
of both equations with a more sophisticated nonlinearity. Special cases included
both equations taken separately. This fully implicit, nonlinear scheme was based
on a splitting method of Lions and Mercier [26]. Previous numerical studies of
phase transitions (see e.g. [27,28] and references therein for the method, [29,30]
for its application) were based on the same idea.

A much simpler and faster method, even if based on a similar splitting, has
been proposed by Eyre [31] and exploited by Vollmayr–Lee and Rutenberg in
[32]. They show that with an appropriate choice of parameters, this scheme
is semi-implicit (linearly implicit), and still stays a good approximation of the
original equations. This method has been used to get a finite diffierence scheme
on a square in [33,34]. Actually, for simple rectangular domains this semi implicit
scheme can be solved via the discrete cosine transform. This would be fast and
effiective, but inappriopriate for the object of our interest, i.e. complex domain
shapes. This is why we turn to the free element method.

We thus apply here the idea of Eyre, Vollmayr–Lee and Rutenberg to get a
finite element scheme solving both equations (Sect. 2) and show some numerical
results in split domains (Sect. 3). We hope that the conference will be an impulse
to continue and broaden these first experiments. In a forthcoming [35] we will
present a detailed proof of convergence and a solver for this method in a more
general setting.

2 Discrete Scheme

We assume that Ω is polygonal. In Ω we introduce a family of quasi–uniform
triangulations Th(Ω) consisting of elements that are tetrahedrons in 3D case

Simulating Phase Transition Dynamics on Non-trivial Domains 513

or triangles in 2D case, cf. [36] or Definition 4.4.13, p.106 in [37]. We call the
parameter of triangulation, and denote by h, the maximum over the diameters
of all the triangles.

We work with the simple generic case of linear finite elements over Th(Ω),
i.e. we introduce the space

V h = {v ∈ C(Ω) : v|T ∈ P1(T) ∀ T ∈ Th(Ω)},

where P1(T) is the set of linear polynomials over the element T ∈ Th(Ω). The
set of all nodal points, i.e. the vertices of elements of Th(Ω), is denoted by Ωh.

2.1 The Scheme for Allen–Cahn

We present the scheme for (1). Actually, the functions u3 and u could be replaced
by any increasing, locally lipschitz functions, but let them be fixed for clarity.
We use the scheme proposed in [32] with a2 = 0, a3 = 1 and a1 = a.

Let ũ be the value from the previous time step. The unknown value u is
obtained from:

u − ũ

τ
− εΔu = (1 − a)u + aũ − ũ3. (3)

Translated into the finite element method, (3) is: knowing ṽ = vn−1 ∈ V h,
find v = vn ∈ V h such that for all test functions φ ∈ V h

(1 + (a − 1)τ)
⎧

Ωh

vφ + τε

⎧

Ωh

∇v∇φ = (1 + aτ)
⎧

Ωh

ṽφ − τ

⎧

Ωh

ṽ3φ. (4)

This leads to a linear system of equations with a positive definite matrix,
having a unique solution for all n. As shown in [32], for a ≥ 4 this scheme is
gradient stable, i.e. it has the property of conserving the gradient structure of
the problem:

F(vn) ≤ F(vn−1).

Another property which is important from the modeling point of view is the
maximum principle: the solution stays in the interval [−1, 1].

The linear system if equations that we obtain from (4) can be solved by a
direct or an iterative method. We actually use the direct Cholesky decomposi-
tion. This part can be parallelized.

2.2 The Scheme for Cahn–Hilliard

We re-write (2) as: ⎨
ut = Δw
w = −ε2Δu + u3 − u

(5)

with the same boundary and initial conditions. The splitting allows to work with
test functions taken only from H1(Ω), and, in the discrete case, from V h — this
means that we can use only standard P1 finite elements.

514 fflL. Bolikowski and M. Gokieli

The weak formulation of the problem is then:
⎩
⎜⎫

⎜⎬

⎧

Ω

utϕ +
⎧

Ω

∇w∇ϕ = 0
⎧

Ω

wψ − ε2
⎧

Ω

∇u∇ψ −
⎧

Ω

(u3 − u)ψ = 0
(6)

which should be satisfied for all φ, ψ ∈ L≥(0, T ; H1(Ω)). See e.g. [24] for the
details of the weak formulation.

Time discretization is now done as previously, by substituting u with aũ +
(1−a)u, where ũ is the value from the previous time step. This gives the following
scheme: knowing ũ = un−1 ∈ V h, find (u,w) = (un, wn) ∈ V h × V h such that
for all pairs of test functions (φ, ψ) ∈ V h × V h

⎩
⎜⎜⎫

⎜⎜⎬

⎧

Ωh

u − ũ

τ
ϕ +

⎧

Ωh

∇w∇ϕ = 0
⎧

Ωh

wψ − ε2
⎧

Ωh

∇u∇ψ −
⎧

Ωh

(ũ3 − aũ − (1 − a)u)ψ = 0,

or
⎩
⎜⎜⎫

⎜⎜⎬

⎧

Ωh

uϕ + τ

⎧

Ωh

∇w∇ϕ =
⎧

Ωh

ũφ
⎧

Ωh

wψ + (1 − a)
⎧

Ωh

uφ − ε2
⎧

Ωh

∇u∇ψ =
⎧

Ωh

(ũ3 − aũ)ψ = 0.
(7)

This is again a semi-implicit scheme, leading to a linear system of equations, of
unknown (u,w) ∈ R

2N , with a regular matrix:

A =
⎭

M τG
(1 − a)M − εG M

⎞

,

where M is the mass matrix and G is the stiffiness matrix; det A = det(M2 +
τ(a − 1)MG + τεG2) > 0, see the forthcoming [35] for details.

3 Numerical Experiments

3.1 Results for Allen–Cahn

The computations for the Allen–Cahn equation has been performed with use
of the FreeFEM++ software on a domain which approximates non-Lipschitz
domains: we took two nearly circular subdomains and joined them by one node
to which we add two more very small elements, as shown on Fig. 2. On the right-
hand-side there, we show the smallest of all holes considered in our experiments.
More experiments with finer meshes would still be needed. However, the results
of simulations that we present below are in perfect accordance with the theory
established in [17]; it is thus clear that no numerical artefacts are observed here.

Simulating Phase Transition Dynamics on Non-trivial Domains 515

Fig. 2. Two close-up views on the FEM grid near the junction of the two subdomains.

Two experiments are shown in Fig. 3. They are performed with initial data
taken as random perturbations of the constant 0, the constant unstable solution.
The system evolves towards two diffierent states: a constant solution (equal to
−1) in case (a) and a nonconstant one, close to ±1 in each subregion in case (b).
None of this data seem to evolve. Whereas it is clear that the constant final state
in (a) is stable, we continue the computations for (b) in order to check if any
evolution towards a constant state can be seen. The non-constant state seems
stable. This is actually true, as shown tn the theretical paper [17]. However, for a
numerical confirmation and an insight into the dynamics of the studied process,
we plot a measure of the rate of change of the function u in time, defined as:

m(tn) =
⎧

Ω

|un − un−1|
τ

(8)

Here n is the time step, un the numerical solution at time step n, i.e. at tn =
nτ . The measure is more sensitive to changes of u than the rate of change of
mass (where mass is defined as

⎠

Ω
u), in particular: m(tn) = 0 implies un ≡

un−1 a.e. Figure 5 represents the measure for each of the experiments. Note that
logarithmic scale is used for the vertical axes (Fig. 4).

One can see that the evolution speed is (i) nearly constant but increasing
on big intervals of time, and (ii) changing rapidly on some very short intervals.
This phenomenon is known to correspond to the evolution on the attractor, (i)
following the invariant manifolds and (ii) near the unstable equilibria (see for
instance [5] for the Allen–Cahn case). Our graphs show also a much slower and
flatter part by the end of all the experiments, which makes one think there is a
particular feature of the final state — and this is actually its stability.

3.2 Results for Cahn–Hilliard

For the Cahn–Hilliard equation (2), experiments were performed on a dumbbell
domain. Here, the process is much slower and we focused up to now on the
experiments visualizing the spinodal decomposition and the nucleation processes.
The first one is occurring very rapidly, which again corresponds to the vicinity
of the steady state in the attractor. Then, we observe a very slow process of

516 fflL. Bolikowski and M. Gokieli

(a)

(b)

Fig. 3. Two experiments done with initial data u0 ≈ 0, with random perturbations.
The evolution is visualized at t = 0, t = 0, t = 10, t = 40, t = 100 and t = 1000 in (a)
and t = 0, t = 10, t = 100, t = 200, t = 1000 in (b). The numerical parameters are
time–step τ = 0.001, the diameter of the triangulation hmax = 0.00175. The physical
parameter ε = 0.09. The evolution is much slower.

Fig. 4. The interface in the final stage from Fig. 3(b), a close-up.

(a)
 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100

R
at

e
of

 c
ha

ng
e

of
 m

as
s

Time (b)
 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 50 100 150 200

R
at

e
of

 c
ha

ng
e

of
 m

as
s

Time

Fig. 5. The rate of mass change (8) for experiments of Fig. 3.

nucleation. It occurs at the same speed in the narrow channel and in the large
subregions. The theoretical and numerical stability analysis is still to be done.

The experiment in Fig. 6 is performed with the numerical scheme (7) again
using FreeFEM++.

Simulating Phase Transition Dynamics on Non-trivial Domains 517

Fig. 6. The nucleation process for the Cahn–Hilliard equation. The geometry of the
domain is similar to the previous one, but we add a channel between the two subregions.
The evolution is visualized at t = 0, t = 10, t = 700, t = 200, t = 5000. The legend
stands for both experiments. The parameters are as before time–step τ = 0.001, the
diameter of the triangulation hmax = 0.00175, ε = 0.09.

References

1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095
(1979)

2. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free
energy. J. Chem. Phys. 28(2), 258–267 (1958)

3. Cahn, J.W., Hilliard, J.E.: Spinodal decomposition - a reprise. Acta Metall. 19,
151–161 (1971)

4. Fife, P.C.: Models for phase separation and their mathematics (2000)
5. Fusco, G., Hale, J.K.: Slow-motion manifolds, dormant instability, and singular

perturbations. J. Dynam. Differ. Eqn. 1(1), 75–94 (1989)
6. Casten, R.G., Holland, C.J.: Instability results for reaction-diffusion equations with

Neumann boundary conditions. J. Differ. Eqn. 27, 266–273 (1978)
7. Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion

equations. Publ. Res. Inst. Math. Sci. 15, 401–454 (1979)
8. Hale, J.K., Vegas, J.: A nonlinear parabolic equation with varying domain. Arch.

Ration. Mech. Anal. 86, 99–123 (1984)
9. Vegas, J.M.: Bifurcations caused by perturbing the domain in an elliptic equation.

J. Differ. Eqn. 48, 189–226 (1983)
10. Jimbo, S.: The singularly perturbed domain and the characterization for the eigen-

functions with Neumann boundary condition. J. Differ. Eqn. 77(2), 322–350 (1989)
11. Jimbo, S.: Singular perturbation of domains and semilinear elliptic equations. III.

Hokkaido Math. J. 33(1), 11–45 (2004)
12. Jimbo, S., Morita, Y.: Remarks on the behavior of certain eigenvalues on a singu-

larly perturbed domain with several thin channels. Commun. Partial Differ. Eqn.
17(3/4), 523–552 (1992)

13. Arrieta, J.M., Carvalho, A.N., Lozada-Cruz, G.: Dynamics in Dumbbell domains.
I: continuity of the set of equilibria. J. Differ. Eqn. 231(2), 551–597 (2006)

518 fflL. Bolikowski and M. Gokieli

14. de Oliveira, L.A., Pereira, A.L., Pereira, M.C.: Continuity of attractors for a
reaction-diffusion problem with respect to variations of the domain (2005)

15. Dancer, E.: The effect of domain shape on the number of positive solutions of
certain nonlinear equations. J. Differ. Eqn. 74(1), 120–156 (1988)

16. Daners, D.: Dirichlet problems on varying domains. J. Differ. Eqn. 188(2), 591–624
(2003)

17. Bolikowski, fflL., Gokieli, M., Varchon, N.: The Neumann problem in an irregular
domain. Interfaces Free Bound. 12(4), 443–462 (2010)

18. Alikakos, N.D., Fusco, G.: Slow dynamics for the Cahn-Hilliard equation in higher
space dimensions: The motion of bubbles. Arch. Ration. Mech. Anal. 141(1), 1–61
(1998)

19. Alikakos, N., Fusco, G., Karali, G.: Motion of bubbles towards the boundary for
the Cahn-Hilliard equation. Eur. J. Appl. Math. 15(1), 103–124 (2004)

20. Alikakos, N., Bates, P.W., Fusco, G.: Slow motion for the Cahn-Hilliard equation
in one space dimension. J. Differ. Eqn. 90(1), 81–135 (1991)

21. Bates, P.W., Fusco, G.: Equilibria with many nuclei for the Cahn-Hilliard equation.
J. Differ. Eqn. 160(2), 283–356 (2000)

22. Sander, E., Wanner, T.: Unexpectedly linear behavior for the Cahn-Hilliard equa-
tion. SIAM J. Appl. Math. 60(6), 2182–2202 (2000). (electronic)

23. Cahn, J.W., Novick-Cohen, A.: Evolution equations for phase separation and order-
ing in binary alloys. J. Stat. Phys. 76(3–4), 877–909 (1992)

24. Gokieli, M., Marcinkowski, L.: Discrete approximation of the Cahn-Hilliard/Allen-
Cahn system with logarithmic entropy. Japan J. Ind. Appl. Math. 20(3), 321–351
(2003)

25. Gokieli, M., Marcinkowski, L.: A solver for the finite element approximation scheme
for the Cahn-Hilliard/Allen-Cahn system with logarithmic entropy. In: Aiki, T., et
al. (eds.) Current Advances in Nonlinear Analysis and Related Topics. GAKUTO
International Series. Mathematical Sciences and Applications 32. Gakkōtosho,
Tokyo (2010)

26. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear opera-
tors. SIAM J. Numer. Anal. 16, 964–979 (1979)

27. Elliott, C.M., French, D.A.: A nonconforming finite element method for the two-
dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)

28. Blowey, J.F., Copetti, M.I.M., Elliott, C.M.: Numerical analysis of a model for
phase separation of a multi-component alloy. IMA J. Numer. Anal. 16(1), 233–280
(1996)

29. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn-Hilliard equa-
tion. J. Comput. Phys. 212(1), 288–304 (2006)

30. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous galerkin method for the
Cahn-Hilliard equation. J. Comput. Phys. 218(2), 860–877 (2006)

31. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems.
Preprint (1997), University of Utah, Salt Lake City

32. Vollmayr-Lee, B.P., Rutenberg, A.D.: Fast and accurate coarsening simulation with
an unconditionally stable time step. Phys. Rev. E 68(6), 066703 (2003)

33. De Mello, E., Teixeira da Silveira Filho, O.: Teixeira da Silveira Filho, O.: Numer-
ical study of the Cahn-Hilliard equation in one, two and three dimensions. Physica
A 347, 429–443 (2005)

34. Cheng, M., Rutenberg, A.D.: Maximally fast coarsening algorithms. Phys. Rev. E
72(5), 055701 (2005)

Simulating Phase Transition Dynamics on Non-trivial Domains 519

35. Bolikowski, fflL., Gokieli, M., Marcinkowski, L.: The Eyre’s algorithm for solving
phase transition models – analysis and application (in preparation)

36. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equa-
tions. Springer, Berlin (1994)

37. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods.
Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

Variable Block Multilevel Iterative Solution
of General Sparse Linear Systems

Bruno Carpentieri1(B), Jia Liao1, and Masha Sosonkina2

1 Institute of Mathematics and Computing Science, University of Groningen,
9747 AG Groningen, The Netherlands
{b.carpentieri,j.liao}@rug.nl

2 Department of Modeling, Simulation and Visualization Engineering,
Old Dominion University, Norfolk, VA 23529, USA

msosonki@odu.edu

Abstract. We present numerical results with a variable block multilevel
incomplete LU factorization preconditioners for solving sparse linear sys-
tems arising, e.g., from the discretization of 2D and 3D partial differential
equations on unstructured meshes. The proposed method automatically
detects and exploits any available block structure in the matrix to maxi-
mize computational efficiency. Both sequential and parallel experiments
are shown on selected matrix problems in different application areas, also
against other standard preconditioners.

Keywords: Linear systems · Sparse matrices · Krylov methods ·
Algebraic preconditioners · Multilevel incomplete LU factorization ·
Graph compression

1 Introduction

We consider iterative solutions of sparse linear systems of the form

Ax = b (1)

typically arising from the finite element, finite difference or finite volume dis-
cretization of partial differential equations (PDEs) on unstructured meshes. Here
we denote by A = [aij] ≤ R

n×n a large and sparse matrix, b ≤ R
n is a given

right-hand side vector and x ≤ R
n is the unknown solution vector. We are par-

ticularly interested to design multilevel incomplete LU factorization methods for
this problem class that can exploit any existing block structure in the matrix,
and maximize computational efficiency.

It is known that many sparse matrices arising from the solution of systems
of partial differential equations exhibit a natural block structure inherited from
the underlying physical problem, e.g., when several physical quantities are asso-
ciated with the same mesh node. If the, say τ, distinct variables associated with
the same node are numbered consecutively, the permuted matrix has a sparse

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 520–530, 2014.
DOI: 10.1007/978-3-642-55195-6 49, c© Springer-Verlag Berlin Heidelberg 2014

Variable Block Multilevel Iterative Solution 521

block structure with nonzero blocks of size τ × τ. The blocks are usually fully
dense, as variables at the same node are mutually coupled. We call this form
of blocking a perfect block ordering. In multiphysics solution of coupled systems
of PDEs, the blocks may correspond to sets of unknowns associated to different
mathematical models, and thus may have variable size. Even in the case of gen-
eral unstructured matrices, it is sometimes possible to compute imperfect block
orderings by grouping together sets of columns and rows with a similar sparsity
pattern, and treating some zero entries of the reordered matrix as nonzeros, and
the nonzero blocks as dense, with a little sacrifice of memory [6].

In all these situations it is natural to consider block forms of multilevel fac-
torization methods that exploit any available block structure (either perfect or
imperfect) in the linear system, for the reasons explained below.

1. Memory. A clear advantage is to store the matrix as a collection of blocks using
the variable block compressed sparse row (VBCSR) format, saving column
indices and pointers for the block entries.

2. Stability. On indefinite problems, computing with blocks instead of single
elements enables a better control of pivot breakdowns, near singularities, and
other possible sources of numerical instabilities. Block ILU solvers may be
used instead of pointwise ILU methods.

3. Complexity. Grouping variables in clusters, the Schur complement is smaller
and hopefully the last reduced system is better conditioned and easier to
solve.

4. Efficiency. A full block implementation, based on higher level optimized BLAS
as computational kernels, may be designed leading to better flops to memory
ratios on modern cache-based computer architectures.

5. Cache effects. Better cache reuse is possible for block algorithms.

2 The VBARMS Preconditioner

The Variable Block Algebraic Recursive Multilevel Solver (VBARMS) is a block
variant of the ARMS preconditioner proposed by Saad and Suchomel in [8]. It
can be used for preconditioning Krylov subspace solvers in the solution of sparse
linear systems arising from the discretization of PDEs. An important feature
of VBARMS is that it combines dense and sparse linear algebra kernels in the
construction and in the application phase, achieving increased throughput during
the computation and better reliability on realistic applications. The VBARMS
method detects automatically any available block structure in the coefficient
matrix A by using a graph compression algorithm, and maximally exploits this
information during the factorization [1].

The complete pre-processing and factorization process of the VBARMS
method can be summarized in the following steps.

522 B. Carpentieri et al.

Step 1. Compute a block ordering PB of the coefficient matrix A, and permute
A block-wise as

⎧A ≥ PBAPT
B =

⎨

⎩
⎩
⎩
⎜

⎧A11
⎧A12 · · · ⎧A1p

⎧A21
⎧A22 · · · ⎧A2p

...
...

. . .
...

⎧Ap1
⎧Ap2 · · · ⎧App

⎫

⎬
⎬
⎬
⎭

, (2)

where the ni × ni diagonal blocks ⎧Aii, for i = 1, . . . , p are typically small
and dense, and the off-diagonal blocks ⎧Aij have size ni ×nj . We use a graph
compression algorithm proposed by Saad, described in [6], for discovering
any perfect or imperfect block structure in A, according to the definition
introduced in Sect. 1.

Step 2. Scale the matrix ⎧A in the form D1PBAPT
B D2, with two diagonal matri-

ces D1 and D2, so that the 1-norm of the largest entry in each row and column
is smaller or equal than one.

Step 3. Build the quotient graph G/B of ⎧A, where B denotes the partition into
blocks (2). The quotient graph is obtained by coalescing the vertices assigned
to block ⎧Aii into a supervertex Yi, for every i = 1, . . . , p. Formally, we may
define the quotient graph G/B as the pair {VB, EB} with

VB = {Y1, . . . , Yp} , EB = {(Yi, Yj) |∈v ≤ Yi, w ≤ Yj s.t.(v, w) ≤ E} .

An edge connects any supervertex Yi to another supervertex Yj iff there
exists an edge from a vertex in Aii to a vertex in Ajj in the graph {V,E} of
A.

Step 4. Find the independent-set ordering PI from the quotient graph G/B =
{VB, EB}, and apply the permutation to the matrix at Step 2 as

PID1PBAPT
B D2P

T
I =

⎞
D F
E C

⎠

. (3)

The upper left-most matrix D in the partitioning (3) is block diagonal,

D =

⎢
⎢
⎢
⎥

D1

D2

. . .
Dσ

,

but due to the block permutation, the blocks Di on the diagonal of D are
block sparse matrices, as opposed to simply sparse matrices in other forms
of multilevel ILU, e.g., in ARMS [8]. The matrices F , E, C are block sparse
because of the same reasons.

We use a simple form of weighted greedy algorithm for computing the
ordering PI . The algorithm is the same as the one used in ARMS, and
described in [8]. It consists of traversing the vertices G/B in the natural

Variable Block Multilevel Iterative Solution 523

order 1, 2, . . . , n, marking each visited vertex v and all of its nearest neighbors
connected to v by an edge and adding v and each visited node that is not
already marked to the independent set. We assign the weight ∞Y ∞F to each
supervertex Y .

Step 5. Compute the block LU factorization of matrix (3)
⎞

D F
E C

⎠

=
⎞

L 0
EU−1 I

⎠

×
⎞

U L−1F
0 A1

⎠

, (4)

where I is the identity matrix of appropriate size, L and U are the triangular
factors of the (block) LU factorization of D, and A1 is the Schur complement

A1 = C − ED−1F. (5)

Also A1 is block sparse; it has the same block partitioning of C.

Steps 3–5 can be repeated on the reduced system a few times until the
Schur complement is small enough. Denote by Aσ the reduced Schur comple-
ment matrix at level τ, for τ > 1. After scaling and preordering Aσ, a system
with the matrix

P
(σ)
I D

(σ)
1 AσD

(σ)
2 (P (σ)

I)T =
⎞

Dσ Fσ

Eσ Cσ

⎠

=
⎞

Lσ 0
EσU

−1
σ I

⎠

×
⎞

Uσ L−1
σ Fσ

0 Aσ+1

⎠

(6)

needs to be solved, with

Aσ+1 = Cσ − EσD
−1
σ Fσ. (7)

Calling

xσ =
⎞

yσ

zσ

⎠

, bσ =
⎞

fσ

gσ

⎠

the unknown solution vector and the right-hand side vector of system (6), the
solution process with the above multilevel VBARMS factorization consists of
level-by-level forward elimination followed by an exact solution on the last
reduced system and suitable inverse permutation.

In VBARMS we perform the factorization approximately for memory effi-
ciency. We use block ILU factorization with threshold to invert inexactly both
the upper leftmost matrix Dσ ≥ L̄σŪσ (with L̄ ≥ L and Ū ≥ U) at each level τ,
and the last level Schur complement matrix Aσmax

≥ L̄SŪS . It is important to
note that in this study the factorization is performed differently than in the orig-
inal implementation of VBARMS proposed in [1], for better efficiency. We use
a block variant of the ILUT algorithm based on the ikj-version of the Gaussian
elimination process. The index k in the inner loop runs from 1 to min(m, i − 1),
where m is the size of the independent set, instead of from 1 to i − 1 as is done
in standard Gaussian elimination. This results in a decomposition Dσ ≥ L̄σŪσ,
and an approximation to L̄−1

σ Fσ is also computed. In a second loop, an approxi-
mation EσŪ

−1
σ and an approximation of the Schur complement matrix Aσ+1 are

derived.

524 B. Carpentieri et al.

The block ILU method used in VBARMS is a straightforward block variant
of the one-level pointwise ILUT algorithm. The main difference is that we drop
blocks B ≤ R

mB×nB in L̄σ, Ūσ, L̄S , ŪS whenever ∈B∈F

mB ·nB
< t, for a given user-

defined threshold t. The block pivots in block ILU are inverted exactly by using
GE with partial pivoting. Finally, in assembling the Schur complement matrix
Aσ+1 at level τ, we take advantage of the finest block structure of Dσ, Fσ, Eσ,
Cσ, imposed by the block ordering PB on the small (usually dense) blocks in the
diagonal blocks of Dσ and the corresponding small off-diagonal blocks in Eσ and
Fσ; we call optimized level-3 BLAS routines [3] for computing Aσ+1 in Eq. (7).
Small blocks are dropped in the Schur complement at every level. The same
threshold is applied in all these operations. The algorithm may breakdown due
to singular blocks encountered in the block ILU factorization of the last level
Schur complement Aσmax

and of the upper leftmost matrices Dσ (at each level
τ). In our experiments we observed breakdowns only if the average block density
of the block ordering computed at Step 1 is low, say below 60 %.

The implementation of the VBARMS method is developed in the C language
and is based upon the ARMS code available in the ITSOL package [4]. The com-
pressed sparse storage format of ARMS is adapted to store block vectors and
matrices as a collection of contiguous nonzero dense blocks. In our implemen-
tation, the approximate transformation matrices EσŪ

−1
σ and L̄−1

σ Fl appearing
in Eq. (6), at step τ, are temporarily stored in the VBCSR format, but they are
discarded from the memory after assembling Aσ+1. We only store the factors
L̄σ, Ūσ at each reduction τ, and L̄S , ŪS , because these are the matrices needed
in the solving phase. Finally, we explicitly permute the matrix after Step 1 at
the first level as well as the matrices involved in the factorization at each new
reordering step.

3 Parallel Implementation

The parallelization of the VBARMS method is carried out by partitioning the
quotient graph G/B into separate subdomains, each assigned to a different
processing unit. Each node of the quotient graph, assigned to a subdomain i, rep-
resents one physical node of the underlying mesh and a cluster of fully coupled
unknowns of the linear system.

Following the parallel framework described in [5], local nodes are distin-
guished into interior nodes, those coupled only with local variables by the equa-
tions, and interface nodes, those that may be coupled with local variables stored
on processor i and with remote variables stored on other processors. Accordingly,
the vector of local unknowns xi is split in two parts: the subvector ui of internal
nodes followed by the subvector yi of local interface variables. The right-hand
side bi is split conformably in two subvectors fi and gi,

xi =
⎞

ui

yi

⎠

, bi =
⎞

fi

gi

⎠

.

The rows of the linear system assigned by the graph partitioning to the subdo-
main i are also split in two separate contributions, a local matrix Ai which acts

Variable Block Multilevel Iterative Solution 525

on the local variables xi = (ui, yi)T , and an interface matrix Ui which acts on the
remote subvectors of external interface variables, denoted as yi,ext. Therefore,
the local equations on processor i may be written as

Aixi + Ui,extyi,ext = bi

or also ⎞
Bi Fi

Ei Ci

⎠⎞
ui

yi

⎠

+
⎞

0∑
j≥Ni

Eijyj

⎠

=
⎞

fi

gi

⎠

, (8)

where Ni is the set of subdomains that are neighbors to subdomain i and the
submatrix Eijyj accounts for the contribution to the local equation from the jth
neighboring subdomain.

In our experiments, we use the VBARMS method to invert approximately the
matrix Ai on each processor. The solves with the matrices Ai are all performed
indepedently on all processors, clearly achieving high degree of parallelism. We
also consider a parallel implementation of VBARMS based on Schur complement
approaches. In Eq. (8), we can eliminate the vector of interior unknowns ui from
the first equations to obtain the local Schur complement system:

Siyi +
∑

j≥Ni

Eijyj = gi − EiB
−1
i fi ≈ g◦

i,

where Si is the local Schur complement matrix

Si = Ci − EiB
−1
i Fi.

Writing all the local Schur complement equations together results in the global
Schur complement system:

⎢
⎢
⎢
⎥

S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...
Ep1 Ep−1,2 . . . Sp

⎢
⎢
⎢
⎥

y1
y2
...

yp

=

⎢
⎢
⎢
⎥

g◦
1

g◦
2
...
g◦

p

, (9)

where the off-diagonal matrices Eij are already available from the data structure
of the distributed sparse linear system. One preconditioning step consists in
solving the global system (9) approximately, and computing the ui variables
from the local equations as

ui = B−1
i [fi − Fiyi].

This operation requires only a local solve. In our study we solve the global sys-
tem (9) approximately by a few steps of GMRES preconditioned by block Jacobi,
where the diagonal blocks are the local Schur complements Si. The factorization

Si = LSi
USi

526 B. Carpentieri et al.

is obtained from the LU factorization of the local matrix Ai,

Ai =
⎞

LBi
0

EiU
−1
Bi

LSi

⎠ ⎞
UBi

L−1
Bi

Fi

0 USi

⎠

.

This operations does not require any additional computation, as the factorization
of Ai is required for computing the ui variables.

In the next section, we report on numerical experiments to illustrate the
performance of the VBARMS code for solving realistic applications.

4 Numerical Results

We applied the VBARMS method on a set of sparse linear systems Ax = b
arising from different application areas. For each linear system, we give in Table 1
the size, application field, number of nonzero entries and the characteristics of
the block ordering computed by the compression algorithm. The column b-size
shows the average block size of A after the compression, and the column b-
density shows the ratio of the number of nonzero entries in A before and after
the compression. It is b-density = 100% if the graph compression algorithm
finds a perfect block structure in A with fully dense nonzero blocks, whereas
b-density < 100% means that some zero entries in the blocks are treated as
nonzeros in VBARMS. The matrix problems are extracted from Tim Davis’
matrix collection at the University of Florida [2], except for the problems denoted
RAE, STA004, STA008 that were kindly supplied by Professor Aldo Bonfiglioli
at University of Basilicata, Italy.

We use an algorithm proposed by Saad in [6] that discovers perfect or imper-
fect block structures in the system by comparing the sparsity patterns of consec-
utive rows. Briefly, the algorithm computes the inner product of a reference row
i with row j, for j > i; this product gives the cosine between the two rows. If the
corresponding angle is smaller than a given threshold ω , row j will be assigned
to the group of rows with similar pattern to row i. This is repeated for every row
i = 1, ..., n and j > i, but only for rows i and j that are not assigned to any group
yet, otherwise the inner product is skipped. In our experiments, we initially set
ω = 1 to find sets of rows and columns having the same pattern and discover
the presence of fully dense blocks in the matrix. We tested different values for ω ,
ranging from 0.7 to 1 on these two problems; with very little sacrifice in memory,
it was possible to obtain larger blocks with still high density around 90 %. The
computed block ordering was used in our experiments with the VBARMS.

We compared the sequential and parallel VBARMS preconditioners with the
original ARMS code [8] and the standard ILUT methods [7]. For the sequen-
tial version of ARMS and ILUT, we used the implementations available in the
ITSOL package [4]; for the parallel version we used the pARMS package [4].
Prior to the iterative solution, we scaled the system by rows and columns so
that the modulus of each entry of the scaled coefficient matrix was smaller
than one. By an abuse of notation we continue denoting by A the compressed
matrix in the experiments with VBARMS. We used physical right-hand sides

Variable Block Multilevel Iterative Solution 527

Table 1. Set and characteristics of test matrix problems.

Name Size Application nnz(A) b-size b-density (%)

RAE 52995 Turbulence analysis 1748266 4.00 97
CT20STIF 52329 Engine block 2600295 2.61 100
RAEFSKY3 21200 Fluid structure interaction 1488768 8.00 100
VENKAT01 62424 2D Euler solver 1717792 4.00 100
BMW7ST 141347 Car body 7318399 4.63 100
AUDIKW 1 943695 Structural problem 77651847 3.00 100
LDOOR 952203 Structural problem 42493817 6.92 100
STA004 891815 Fluid dynamics 55902869 1.56 100
STA008 891815 Fluid dynamics 55902989 1.56 100

Table 2. Performance comparison of sequential VBARMS versus ARMS.

Matrix Compression Method P-T I-T Total Its M-cost

RAE τ = 0.80, VBARMS 4.51 0.62 5.13 15 4.62
b-density = 95.83 %, ARMS 68.95 73.36 142.30 +1000 29.26
b-size = 4.67. ILUT 132.06 106.12 238.18 +1000 49.99

CT20STIF τ = 0.80 VBARMS 1.51 1.68 3.19 39 2.42
b-density = 86.76 % ARMS 18.63 40.81 59.44 +1000 8.27
b-size = 5.01. ILUT 90.60 49.13 139.73 +1000 11.86

RAEFSKY3 τ = 0.80, VBARMS 0.77 0.04 0.81 3 2.00
b-density = 95.22 % ARMS 5.07 0.05 5.12 3 4.01
b-size = 8.63. ILUT 1.81 0.06 1.87 6 2.39

VENKAT01 τ = 0.80, VBARMS 1.74 0.21 1.96 5 2.56
b-density = 100.00 % ARMS 0.72 0.16 0.88 6 2.32
b-size = 4.00. ILUT 1.81 0.09 1.27 4 4.18

BMW7ST τ = 0.80, VBARMS 6.54 0.23 6.77 2 3.67
b-density = 95.26 % ARMS 22.65 73.44 96.10 +1000 3.73
b-size = 5.90. ILUT 48.13 103.97 152.10 +1000 8.37

b when these were available, otherwise we set b = Ae with e = [1, . . . , 1]T . For
every run, we recorded the solution time from the start of the solve until either
the initial residual was reduced by six orders of magnitude or no convergence
was achieved after the prescribed maximum number of iterations of the flexible
GMRES (FGMRES) method [7]. We restarted FGMRES every 20 inner itera-
tions on the small problems (Tables 2–3), and every 100 inner iterations on the
larger problems (Table 4). One important parameter to tune in VBARMS is the
dropping threshold t. Small blocks B ≤ R

mB×nB are dropped in the incom-
plete factors L̄σ, Ūσ, L̄S , ŪS and in the last level Scur complement matrix Aσmax

whenever ∈B∈F

mB ·nB
< t. For each matrix problem, we tested different values for

the dropping parameter t in VBARMS, starting from t = 0.1 and decrement-
ing it by a factor of 10 in each run; we selected the value of t which gave the
best convergence result for the given problem. Finally, the number of levels of

528 B. Carpentieri et al.

Table 3. Performance analysis ofparallel VBARMS on 8 processors.

Matrix Compression Method P-T I-T Total Its M-cost

RAE τ = 0.80, SCHUR+VBARMS 1.56 98.00 99.56 714 7.19
b-density = 95.83%, BJ+VBARMS 1.25 3.79 5.03 251 3.46
b-size = 4.67%. BJ+ARMS 2.43 22.14 24.57 +1000 9.81

BJ+ILUT 3.30 27.85 31.15 +1000 13.36
CT20STIF τ = 0.80, SCHUR+VBARMS 0.38 1.82 2.20 40 2.59

b-density = 86.76%, BJ+VBARMS 0.20 0.62 0.82 37 1.96

b-size = 5.01. BJ+ARMS 0.80 28.59 29.39 +1000 6.93
BJ+ILUT 0.54 18.73 19.26 +1000 3.70

RAEFSKYY3 τ = 0.80, SCHUR+VBARMS 0.21 0.03 0.23 4 1.85
b-density = 95.22%, BJ+VBARMS 0.09 0.04 0.13 3 1.70
b-size = 8.63. BJ+ARMS 0.13 0.24 0.37 6 2.45

BJ+ILUT 0.08 0.32 0.40 8 1.80
VENKAT01 τ = 0.80, SCHUR+VBARMS 0.40 2.60 3.01 131 2.64

b-density = 100.00%, BJ+VBARMS 0.29 0.30 0.59 13 2.43
b-size = 4.00. BJ+ARMS 0.45 2.70 3.15 14 10.78

BJ+ILUT 0.20 0.24 0.44 13 3.96
BMW7ST τ = 0.80, SCHUR+VBARMS 12.18 14.09 26.27 58 4.00

b-density = 95.26%, BJ+VBARMS 0.09 0.51 1.41 5 2.63
b-size = 5.90. BJ+ARMS 3.95 57.47 61.41 +1000 4.34

BJ+ILUT 24.12 88.36 112.48 +1000 9.75

Table 4. Performance comparison of BJ + VBARMS and ARMS on larger matices.

Matrix Compression Method P-T I-T Total Its M-cost

AUDIKW 1 τ = 0.80, BJ+VBARMS 84.23 308.18 392.42 331 3.46
b-density = 96.40 %, BJ+ARMS 114.43 1785.02 1899.45 +3000 5.24
b-size = 3.16.

LDOOR τ = 0.80, BJ+VBARMS 18.43 99.12 117.55 340 3.90
b-density = 99.96 %, BJ+ARMS 48.59 1194.43 1243.01 +3000 7.66
b-size = 7.00.

STA004 τ = 0.60, BJ+VBARMS 19.14 81.14 100.27 92 3.88
b-density = 84.74 %, BJ+ARMS 9.36 65.92 75.28 145 2.87
b-size = 3.92.

STA008 τ = 0.60, BJ+VBARMS 44.82 195.89 240.71 256 5.27
b-density = 84.74 %, BJ+ARMS 151.64 7740.94 7892.57 +3000 11.83
b-size = 3.92.

recursive factorization in VBARMS and ARMS were calculated automatically
by the two codes, which stop when the Schur complement becomes too small to
continue reducing the matrix. The maximum allowed size for the last level Schur
complement matrix was set to 300. This value also determines the minimum size
of the independent sets in the greedy algorithm.

For each experiment, we report the time cost for computing the factorization
(column “P-T”) and for solving the linear system (column “I-T”), the ratio of
the total number of nonzeros in the factors to the number of nonzeros in the

Variable Block Multilevel Iterative Solution 529

coefficient matrix A (column “M-cost”), and the number of FGMRES iterations
(column “Its”). In Table 2 we report comparative results from our sequential
runs. The results highlight the robustness of the VBARMS preconditioner. This
is probably due to the better control of near-singularities of block ILU solvers,
and to the better conditioning of the Schur complement matrices that are smaller
and easier to invert. In our experiments on the small problems, we observed
that the triangular factors computed by VBARMS were well conditioned; con-
sequently, the triangular solves were numerically stable.

In Table 3 we show the parallel performance of VBARMS, also against paral-
lel ARMS and ILUT on the same problems. In these experiments, we compare the
block Jacobi preconditioner (denoted as BJ) with VBARMS, ARMS and ILUT
as local solvers, and the Schur complement method (denoted as SCHUR). In the
latter method, we use VBARMS as local solver and a fews steps of inner GMRES
iterations for solving the global Schur complement system; precisely, the inner
iterations are stopped after 100 steps or when the norm of the relative residual is
decreased by two orders of magnitude. Note that the outer FGMRES iterations
are stopped using the condition of the reduction of the initial residual by six
orders of magnitude, consistently with the sequential runs. We refer the reader
to Sect. 3 for a description of these preconditioners. We see that VBARMS can
be more efficient and numerically more stable than ARMS. The results reported
in Table 4 on larger problems confirm the trend. In our experiments, block Jacobi
was surprisingly more robust than the Schur complement-based preconditioner.
We found that the performance of the latter solver were strongly dependent on
the strategy used for scaling the Schur complement matrix. In the experiments
reported in Table 4 we scale the global Schur complement system prior to solv-
ing it. But this turns out not to be the best strategy for every problem, e.g., on
the VENKAT01 problem SCHUR converges in only 5 iterations without scaling,
at approximately the same memory cost as BJ. We shall look more closely into
the problem of finding an optimal parameter setting for the SCHUR solver in a
separate study.

5 Concluding Remarks

We have shown that exposing dense matrix blocks during the factorization may
lead to efficient and stable multilevel preconditioners. We are now developing
parallel preconditioners based on the restricted additive Schwarz and multilevel
Schur complement methods for solving large turbulence problems expressed in
implicit Newton-Krylov formulation, that was the starting point of this study.

References

1. Carpentieri, B., Liao, J., Sosonkina, M.: VBARMS: a variable block variant of
the algebraic multilevel solver for general linear systems. J. Comput. Appl. Math.
(2013). ISSN 0377–0427. doi:10.1016/j.cam.2013.04.036. 25 April 2013

http://dx.doi.org/10.1016/j.cam.2013.04.036

530 B. Carpentieri et al.

2. Davis, T.: Sparse matrix collection (1994). http://www.cise.ufl.edu/research/
sparse/matrices

3. Dongarra, J.J., Du Croz, J., Duff, I.S., Hammarling, S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990)

4. Li, N., Suchomel, B., Osei-Kuffuor, D., Saad, Y.: ITSOL: iterative solvers package
5. Li, Z., Saad, Y., Sosonkina, M.: pARMS: a parallel version of the algebraic recursive

multilevel solver. Numer. Linear Algebra Appl. 10, 485–509 (2003)
6. Saad, Y.: Finding exact and approximate block structures for ILU preconditioning.

SIAM J. Sci. Comput. 24(4), 1107–1123 (2002)
7. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia

(2003)
8. Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general

sparse linear systems. Numer. Linear Algebra Appl. 9(5), 359–378 (2002)

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

An Automatic Way of Finding Robust
Elimination Trees for a Multi-frontal Sparse
Solver for Radical 2D Hierarchical Meshes

Hassan AbouEisha1, Piotr Gurgul2, Anna Paszyńska3, Maciek Paszyński2(B),
Krzysztof Kuźnik2, and Mikhail Moshkov1

1 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
2 AGH University of Science and Technology, Krakow, Poland

3 Jagiellonian University, Krakow, Poland
paszynsk@agh.edu.pl

http://home.agh.edu.pl/~paszynsk

Abstract. In this paper we present a dynamic programming algorithm
for finding optimal elimination trees for the multi-frontal direct solver
algorithm executed over two dimensional meshes with point singulari-
ties. The elimination tree found by the optimization algorithm results
in a linear computational cost of sequential direct solver. Based on the
optimal elimination tree found by the optimization algorithm we con-
struct heuristic sequential multi-frontal direct solver algorithm resulting
in a linear computational cost as well as heuristic parallel multi-frontal
direct solver algorithm resulting in a logarithmic computational cost.
The resulting parallel algorithm is implemented on NVIDIA CUDA GPU
architecture based on our graph-grammar approach.

Keywords: Parallel multi-frontal direct solver · Elimination tree ·
Dynamic programming · Adaptive finite element method · Graph
grammar

1 Introduction

In this paper we present a dynamic programming algorithm for finding opti-
mal elimination trees of multi-frontal direct solver algorithm executed over the
computational grids resulting from adaptive finite element method simulations.
In particular we focus on the two dimensional h refined grids generated with
hierarchical shape functions [5]. The multi-frontal solver is the state of the art
algorithm for solution of sparse matrices resulting from finite element method
discretizations [1–3,6–9]. The multi-frontal solver algorithm browses the con-
structed elimination tree from leaves up to the root, merges frontal matrices
generated at leaves nodes, and eliminates fully assembled degrees of freedom.
The performance of the multi-frontal solver algorithm depends on the quality
of the elimination tree. The computational cost of the multi-frontal solver algo-
rithm for two dimensional regular grids is of the order of O(N1.5) for the sequen-
tial version [4] and O(NlogN) for the shared memory version [10], where N is

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 531–540, 2014.
DOI: 10.1007/978-3-642-55195-6 50, c© Springer-Verlag Berlin Heidelberg 2014

532 H. AbouEisha et al.

the number of elements. Different elimination trees result in a different computa-
tional cost of the multi-frontal solver algorithm. The paper presents one dynamic
programming algorithm that finds the optimal elimination tree for a given mesh
with point singularities. The algorithm browses all the possible elimination trees
and estimates the resulting cost of the multi-frontal algorithm for each of the
tree. It utilized the dynamic programming concept to minimize its cost. The
algorithm finds the optimal tree resulting in a linear cost of the multi-frontal
solver algorithm. Based on the exhaustive search we propose two heuristic algo-
rithms, sequential and parallel, that reconstructs the optimal tree in linear or
logarithmic time, respectively. The parallel algorithm has been implemented on
NVIDIA CUDA GPU with the graph grammar approach [10,12,13] The elimi-
nation trees found by our dynamic programming algorithm are the optimal one,
since we performed the exhaustive search over all the possible elimination trees.
We compare our heuristic algorithms constructed based on the dynamic pro-
gramming search, with trees provided by the METIS library [11] from MUMPS
solver [1–3].

2 Optimisation Algorithm

The search for the optimal elimination tree can be represented by the directed
acyclic graph (DAG) presented in Fig. 1. The root node of the DAG represents
the entire computational mesh, while child nodes represent possible partitions
of the mesh. Each sub-domain is consider for the recursive partitions, and we
get the tree of all possible partitions of the computational mesh. It is clear that
some sub-branches of the DAG are identical, and some of them are denoted on
Fig. 1 by red or green color. These sub-branches do not need to be regenerated,
since we can use pointers to already generated identical sub-branch. The optimal

Fig. 1. The DAG representing all possible partitions of the mesh. (Color figure online)

An Automatic Way of Finding Robust Elimination Trees 533

elimination trees are represented as binary sub-trees of this DAG. The optimi-
sation procedure utilize the cost function defined in the recursive way. The cost
of processing the internal node is defined as

Cost of processing internal node = Cost of processing first child +
Cost of processing second child +

Cost of elimination of common interface (1)

Each node of the elimination tree contains a frontal matrix with size b having
some number a of fully assembled degrees of freedom. Leaf nodes contain element
frontal matrices with fully assembled internal nodes which can be eliminated.
The cost C(a, b) of elimination of a fully assembled nodes from frontal matrix
of size b is equal to

C(a, b) =
b∑

m=(b−a)+1

3m2 =
a(6b2 − 6ab + 6b + 2a2 − 3a + 1)

2
(2)

This is just a number of operations for partial forward elimination algorithm.
Given a geometric description of the finite element mesh, the dynamic program-
ming algorithm works in two steps. In the first step, the DAG representing the
subproblems and dependency relations between them is constructed. Afterwards,
the algorithm continues its work by optimizing the DAG in a bottom-up app-
roach. The construction of the DAG is performed as follows. The first step starts
by adding a first node to the DAG corresponding to the initial mesh and the
main problem. At any subsequent step t > 1, any unprocessed node is processed
and this node is marked as processed. The algorithm terminates once all nodes
are processed. The processing of a node is done by examining all partitions that
are based on a straight lines (we call them later splitters) extending through the
submesh corresponding to the node under consideration. For each such splitter,
a pair of edges is drawn from the current node to the nodes corresponding to
submeshes below (left of) and above (right of) this horizontal (vertical) splitter.
After such processing, the current node is marked as processed. After building
the DAG, the algorithm moves to the optimization stage based on a given cost
function. This cost function specifies the cost of nodes in the DAG with zero
outdegree (we call them sinks) in addition to determining the cost of other non-
sink nodes by selecting best cost of all possible partitions. The algorithm begins
by assigning cost to the sinks in the DAG. Then for all non-sink nodes whose all
descendants are processed, each partition is assigned a cost function based on the
splitter used in the partition and the resulting submeshes. The partitions with
the optimal cost among all partitions are kept and other nodes are removed. The
optimization procedure continues this way until reaching the root of the tree.
The computational cost of the optimisation algorithm is O(N3).

In this section we present results of the optimisation procedure executed
for the radical mesh [14], namely the rectangular mesh with one point sigular-
ity located at the center of the bottom border. In the numerical experiments

534 H. AbouEisha et al.

we focused on the heat transfer problem, however the direct solver algorithm
is actually independent on the equation being solve. We utilized hierarchical
shape functions from hp finite elements [5] and performed experiments for sec-
ond, and fourth and order polynomials. The shape of the optimal elimina-
tion tree found by the optimization algorithm is presented in Fig. 2. This opti-
mal elimination tree browses the radical mesh level by level, starting from the
layer of elements surrounding the point singularity, up to the layer of boundary
elements.

3 Heuristic Algorithm

Based on the results of the optimization procedure we propose the following
heuristic algorithm. We focus here on the exemplary radical mesh refined towards
point singularity, described in Figs. 3 and 4. The direct solver algorithm browses
the elements of the h-refined computational mesh level by level, from the lowest
level up to the top level. The algorithm utilizes a single frontal matrix, which
size is proportional to the number of browsed nodes. Each row of the frontal
matrix is associated with one mesh node. The solver algorithm finds the fully
assembled nodes and places them at the top of the frontal matrix. Then, these
rows are eliminated by subtracting from all the remaining rows. Intuitively, we
can say that element interior nodes are fully assembled once the solver touches
the element, an element edge nodes are fully assembled once the solver algorithm

Fig. 2. The optimal elimination tree found by the optimization algorithm.

An Automatic Way of Finding Robust Elimination Trees 535

touches all elements adjacent to an edge, and finally element vertex nodes are
fully assembled once the solver algorithm touches all elements having the vertex.
Thus, on the bottom level we can eliminate nodes related to two interiors of the
bottom elements, as well as the nodes located on the common edge and common
bottom vertex, see left panel in Fig. 3. The remaining nodes must wait until the
solver algorithm browses the elements from the next level, compare right panel
in Fig. 3. The size of the frontal matrix is limited by the number of elements on
a particular level, and this implies the linear computational cost of the solver
algorithm. The computational cost of the heuristic algorithm as well as the direct
solver algorithm is linear O(N). We can also construct a heuristic algorithm for
multi-frontal direct solver, as illustrated in Fig. 4. In the multi-frontal approach
we construct an elimination tree with leaves related to the levels of the h refined
mesh. After the elimination of nodes located inside the levels, we end up with the
nodes located on the interfaces between levels. These interface nodes are process
within the top binary elimination tree. The elimination tree can be process in
sequential mode, where the linear computational cost of processing levels of the
mesh is followed by the rlogr cost for processing the interface nodes, where r is
the number of levels in the mesh.

Fig. 3. Left panel: two finite element computational mesh with one singularity, and
the first step of the solver algorithm. Right panel: the second step of the solver
algorithm.

Fig. 4. Multi-frontal elimination pattern.

536 H. AbouEisha et al.

4 Numerical Results for Sequential Solver

In this section we compare the heuristic frontal algorithm constructed based on
our optimization algorithm with multi-frontal MUMPS solver [1–3] with METIS
library [11]. The numerical results for radical mesh for polynomial orders of
approximation p = 2 and p = 4 are summarized in Fig. 5. They confirm the
linear computational cost of our heuristic sequential algorithm. They also prove
that the elimination tree for multi-frontal solver generated by METIS library
is actually equivalent to the optimal elimination tree found by our heuristic
algorithm. The number of degrees of freedom is small, however this strategy can
be generalized for more singularities. In particular, we can perform this level by
level elimination from bottom of the refinement tree up to the top, for each of the
singularities. The total time will be equal to a sum of times for local singularities.
To illustrate that process we also present the numerical results for the solver
executed for two singularities, see Fig. 6. Our heuristic frontal algorithm for two
singularities also delivers a linear cost, as well as it outperforms MUMPS with
METIS for higher orders of approximations.

Fig. 5. Comparison of our sequential frontal heristic algorithm with MUMPS with
METIS library for radical mesh for polynomial orders of approximation p = 2, 4.

Fig. 6. Comparison of our sequential heristic algorithm with MUMPS with METIS
library for radical mesh for polynomial orders of approximation p = 2, 5.

5 Graph Grammar Based Algorithm for Shared Memory
Parallel Machine

In this section we present a heuristic parallel algorithm expressed by graph
grammar model. The parallel algorithm has been constructed by analysing the

An Automatic Way of Finding Robust Elimination Trees 537

Fig. 7. Graph grammar productions generating the structure of the two finite element
mesh h refined towards point singularity.

strucutre of the optimal elimination tree presented in Fig. 2, found by the opti-
mization algorithm. The graph grammar model utilized in this paper is a new
model based on the hypergraph transformations [16]. We start with graph gram-
mar production responsible for generation of the structure of the computational
mesh. These graph grammar productions are presented in Fig. 7. The (P init)
graph grammar production generates the structure of the two initial finite ele-
ments. The finite element mesh vertices are denoted by v symbol, the finite
element mesh edges are denoted by either B or F1 symbols, depending on their
location on the boundary of the domain or inside the domain. The (P break
init left) and (P break init right) graph grammar productions refine the
mesh towards the central point singularity. The (P break init regularity)
graph grammar productions enforces the mesh regularity rules on the common
edge. After breaking of the initial mesh elements we can continue the refinement
process towards the central point singularity by executing (P break interior)
and (P enforce regularity) graph grammar productions. Since these graph
grammar productions have to be executed in a sequence, the process of genera-
tion of the h refined computational mesh is linear, however the most expensive
part of the algorithm is the generation of element frontal matrices and elimina-
tion of fully assembled nodes. This process can be executed in the logarithmic
time. To achive that we introduce in Fig. 8 the graph grammar productions (P
inner elems alpha1–4) and (P strip alpha1–3) modeling the generation of
the frontal matrices related to particular levels of the mesh, followed by graph
grammar productions (P inner elems beta1–3) modeling the elimination of
the fully assembled nodes. These graph grammar productions can be executed

538 H. AbouEisha et al.

Fig. 8. Graph grammar productions performing aggregation (alpha) and elimination
(beta) over mesh levels.

in parallel, over each level of the mesh at the same time. The alpha produc-
tions generate frontal matrices rows and columns related to particular nodes of
the mesh, and the beta productions eliminate fully assembled nodes. In Fig. 8
we present only the subset of all the productions. Having the internal nodes
eliminated from all the levels we can process the resulting interfaces in logarith-
mic time, using some additional graph grammar productions. In other words we
browse the elimination tree from Fig. 4 level by level. The resulting computa-
tional cost of the solver algorithm is O(logN) where N is number of nodes.

6 Numerical Results for Parallel Solver

Our heuristic algorithm for parallel solver delivers logarithmic computational
cost, see Fig. 9. The solver has been executed on GeForce GTX 560 Ti graphic
card with 8 multiprocessors, each one equiped with 48 cores. The total number
of cores is equal to 384. The global memory on graphic card was 1024 MB.
The comparison with parallel MUMPS executed on linux cluster shows that our

An Automatic Way of Finding Robust Elimination Trees 539

Fig. 9. Logarithmic computational cost of the parallel NVIDIA CUDA GPU solver
executed for polynomial order of approximation p = 1, 2.

algorithm delivers better logarithmic time than parallel MUMPS solver with
METIS library.

7 Conclusions and Future Work

In this paper we presented the optimization algorithm finding optimal elimi-
nation trees for multi-frontal direct solver working over the two dimensional
meshes with point singularities. The optimization algorithm performed global
search with dynamic programming algorithm resulting in the optimal elimina-
tion trees. The results of the optimisation procedure inspired us to construct
heuristic algorithms for direct solver solution resulting in linear computational
cost for sequential execution and logarithmic computational cost for parallel
NVIDIA CUDA run. The obtained heuristic algorithms can be generalized for
computational grids with many point singularities, and we can eliminated each
point singularity in a linear cost in sequential mode and in logarithmic cost in
parallel mode. The future work will involve generalization of the results into
three dimensions, as well as development of the parallel algorithms perform-
ing reutilization of LU factorizations in order to speedup further the solver
algorithm [14,15].

Acknowledgments. The work of MP and AP was supported by Polish National Sci-
ence Center grant UMO-2012/07/B/ST6/01229. The work of PG was partly supported
by The European Union by means of European Social Fund, PO KL Priority IV: Higher
Education and Research, “Activity 4.1: Improvement and Development of Didactic
Potential of the University and Increasing Number of Students of the Faculties Crucial
for the National Economy Based on Knowledge, Subactivity 4.1.1: Improvement of the
Didactic Potential of the AGH University of Science and Technology Human Assets”,
UDA POKL.04.01.01-00-367/08-00.

References

1. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Comput. Meth. Appl. Mech. Eng. 184, 501–520
(2000)

2. Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.-Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl.
23(1), 15–41 (2001)

540 H. AbouEisha et al.

3. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling
for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

4. Calo, V., Collier, N., Pardo, D., Paszyński, M.: Computational complexity and
memory usage for multi-frontal direct solvers used in p finite element analysis.
Procedia Comput. Sci. 4, 1854–1861 (2011)

5. Demkowicz, L.: Computing with hp-Adaptive Finite Elements, vol. I. Chapman &
Hall/Crc Applied Mathematics & Nonlinear Science (2006)

6. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983)

7. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear sys-
tems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984)

8. Geng, P., Oden, T.J., van de Geijn, R.A.: A parallel multifrontal algorithm and its
implementation. Comput. Meth. Appl. Mech. Eng. 149, 289–301 (2006)

9. Irons, B.: A frontal solution program for finite-element analysis. Int. J. Numer.
Meth. Eng. 2, 5–32 (1970)

10. Kuźnik, K., Paszyński, M., Calo, V.: Graph grammar-based multi-frontal parallel
direct solver for two-dimensional isogeometric analysis. Procedia Comput. Sci. 9,
1454–1463 (2012)

11. Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, University of Minesota, http://www.cs.umn.edu/metis

12. Paszyńska, A., Paszyński, M., Grabska, E.: Graph transformations for modeling
hp-adaptive finite element method with triangular elements. In: Bubak, M., van
Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol.
5103, pp. 604–613. Springer, Heidelberg (2008)

13. Paszyński, M., Paszyńska, A.: Graph transformations for modeling parallel hp-
adaptive finite element method. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1313–1322. Springer,
Heidelberg (2008)

14. Paszyński, M., Calo, V., Pardo, D.: A direct solver with reutilization of LU factor-
izations for h-adaptive finite element grids with point singularities. Comput. Math.
Appl. 65(8), 1140–1151 (2013)

15. Paszynski, M., Schaefer, R.: Reutilization of partial LU factorizations for self-
adaptive hp finite element method solver. In: Bubak, M., van Albada, G.D., Don-
garra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 965–974.
Springer, Heidelberg (2008)

16. Ślusarczyk, G., Paszyńska, A.: Hypergraph grammars in hp-adaptive finite element
method. Procedia Comput. Sci. 18, 1545–1554 (2013)

http://www.cs.umn.edu/metis

Parallel Efficiency of an Adaptive, Dynamically
Balanced Flow Solver

Stanislaw Gepner(B), Jerzy Majewski, and Jacek Rokicki

The Institute of Aeronautics and Applied Mechanics,
Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland

{sgepner,jmajewski,jack}@meil.pw.edu.pl
http://c-cfd.meil.pw.edu.pl

Abstract. Computations in Fluid Dynamics require minimisation of
time in which the result could be obtained. While parallel techniques allow
for handling of large problems, it is the adaptivity that ensures that
computational effort is focused on interesting regions in time and space.
Parallel efflciency, in a domain decomposition based approach, strongly
depends on partitioning quality. For adaptive simulation partitioning qual-
ity is lost due to the dynamic modification of the computational mesh.
Maintaining high efflciency of parallelization requires rebalancing of the
numerical load. This paper presents performance results of an adaptive
and dynamically balanced in-house flow solver. The results indicate that
the rebalancing technique might be used to remedy to the adverse effects
of adaptivity on overall parallel performance.

Keywords: Parallel cfd · Adaptation · Dynamic load balancing · Mesh
refinement · Parallel efflciency · Super linear speed-up

1 Introduction

Large scale scientific simulations require high efficiency of parallelization in
order to provide results in reasonable time. Commonly used domain decom-
position approach requires the computational domain to be partitioned into
subdomains, prior to the simulations. To maximize simulation performance, par-
titioning should minimize both processor idle time and the volume of interproces-
sor communication. This should be fulfilled throughout the simulation run time.
To this end a range of partitioning methods and tools have been developed
(see reference [5,11,12] for a survey). An example of an initial partitioning of a
computational geometry is shown in Fig. 1.

Adaptive techniques allow for high resolution computations of localized phe-
nomena (boundary layers, shock waves, etc), while limiting density of the dis-
cretization in less interesting regions. This increases the effectiveness with which
computational infrastructure is used, as the necessary amount of resources is
kept limited. Two alternative approaches to adaptivity are commonly used.
The first, is based on global remeshing of the entire computational domain, by

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 541–550, 2014.
DOI: 10.1007/978-3-642-55195-6 51, c© Springer-Verlag Berlin Heidelberg 2014

542 S. Gepner et al.

Fig. 1. Trace of the partitioning on the flow domain boundary around an Onera M6
wing geometry.

making use of an existing meshing techniques [1,3,6,13–15]. The second relies
on application of local modifications to the computational mesh only in regions
of interest [2,16,20,21].

The latter approach is particularly interesting for parallelization, since the
resulting workflow consists of a series of localized mesh modifications. In this
work a parallel adaptive algorithm described in [7,9] is used. The adaptive tech-
nique is based on edge splitting, employing predefined element division tem-
plates. Figure 2 presents both, the division templates for selected cases, and an
example of a mesh resulting from couple of adaptive steps. Adaptive changes are
driven by an error indicator based on estimated interpolation error (proportional
to the Hessian of the current numerical solution). The approach is explained in
detail in [1,2,6,13].

Adaptivity used during parallel computations might introduce significant
modifications to the distribution of computational load. This has negative
influence on the partitioning quality, and in consequence on the overall par-
allel effectiveness. Therefore a load balancing algorithm must be used together
with adaptivity in a parallel simulation. (See [2,16,19].) A variation of such an
approach, used in this work, has been described in [8] or [7]. The idea is to
force migration of the computational load from excessively loaded partitions, to
those possessing lesser workloads, as soon as the load balance indicator exceeds
a certain, predefined threshold.

To measure partitioning quality (following [17]) this work employs a relation
of the maximum numerical load, assigned to the computational processor, to the
average numerical load to quantify the load-balance.

The load balance indicator is defined in the following way. Let the total
computational effort, resulting from the problem being parallelized, be W . In
homogeneous, parallel computational environment, an optimal load distribution
is such that all computational processors are equally loaded. Therefore optimal
processor load is wopt = W/p, where p stands for the number of processors used.

Parallel Efflciency of an Adaptive, Dynamically Balanced Flow Solver 543

Fig. 2. Characteristic splitting templates (above) used for mesh refinement. Unadapted
and adapted meshes for a 3D wedge test case (below).

Marking the actual numerical load of the i-th processor by wi, and relating the
maximum of processor load to the optimal value a simple load balance indicator
is obtained:

β = max
0<i∈p

wi

wopt
(1)

Using (1) to estimate the quality of a partitioning reflects a heuristic observa-
tion that waiting for the most loaded processor to finish its work is responsible for
impeding parallel performance. Values, of the indicator β close to one, indicate
a well balanced numerical load. The increasing imbalance in the load distribu-
tion will be reflected by higher values of the indicator. It should be noted, that
(1) disregards the influence of communication overhead, resulting from given
partitioning.

It is assumed, throughout this paper, that numerical load resulting from a
grid based, finite element like method, is related to the number of degrees of
freedom the considered system is represented by. Therefore units of total work
W , are the Degrees of Freedom (DOFs).

Computational tests, both parallel and sequential have been carried out using
a parallel machine equipped with 20 AMD Quad-Core 2354 (2.2 GHz) processors
(in total up to 80 computational cores), with 2 GB of RAM memory per core.

2 Testing the Algorithmic Efficiency

The computational problem used for testing efficiency of parallelization comes
form stationary simulation of a transonic flow through 2D Scramjet like geometry
(Fig. 3). Problem is described by the set of Euler equations and discretized with

544 S. Gepner et al.

Fig. 3. Scramjet geometry and the resulting Mach filed contour.

the Residual Distribution method [4,18]. We use a sequence of homogeneous,
isotropic, unstructured meshes resulting in problems of increasing numerical
load, as they represent systems of increasing number DOFs. Flow parameters
are selected as to reflect the situation of Mach 2 at the inflow. Selected flow
regime results in a complex pattern of shock-waves to be created. Figure 3 shows
test problem geometry and the resulting Mach field contours.

While, ultimately, it is the total computational time required to finalize the
computation process, that is of interest, here we focus on measuring the speed at
which computations are carried out. Therefore all performance estimates focus
on measuring time required to perform an a-priori selected number of solver
(or solver-communication for parallel case) cycles, rather than measuring time
required to achieve a given convergence level.

Although, implicit schemes usually yield a better overall time performance, it
might be difficult to effectively compare performance results. A single iteration
of an implicit approach consists of a couple of sub steps. Amongst them are
assembly of a linear system, application of a preconditioning method and finally
the solution of the resulting system. Time performance of the whole process will
be strongly influenced by each of the mentioned procedures. Moreover number
of iterations necessary to achieve convergence of the linear system might vary as
the solution progresses.

Considering the difficulties of an implicit method, this work is focused on esti-
mating the computational performance of an explicit solver. We measure time
necessary to complete a given number of computational cycles (including com-
munication during synchronization sessions). All results presented are rescaled
to correspond to 1000 solver cycles.

3 Sequential Algorithmic Efficiency

To accurately estimate parallel efficiency of a computational process one
should compare results recorded for a sequential implementation. High paral-
lel efficiency of any computational process might have its roots in suboptimal
execution of the sequential code.

On the right Fig. 4 illustrates time required to perform a constant number
of solver iterations, as a function of computational load, proportional to the

Parallel Efflciency of an Adaptive, Dynamically Balanced Flow Solver 545

103 104 105 106 107

102

104

0.0013x1.03

Number of DOF’s

C
o
m

p
u
ta

ti
o
n
a
l
ti
m

e
[s

]

104 105 106 107
4.5

5

5.5

·105

∼
1
9
%

Number of DOF’s

D
O

F
’s

p
ro

ce
ss

ed
p
er

s
[1 s

]

Fig. 4. Time required to perform 1000 explicit iterations (left). The computational
performance measured as a number of DOF’s processed per second in a single iteration,
averaged over 1000 explicit iterations (right).

number of degrees of freedom. For comparison, a plot of a function fitted to the
results through power regression, is shown. It should be observed that results
indicate almost linear dependency of time on the numerical load applied.

Algorithmic efficiency, considered as speed at which computations are per-
formed plotted versus the computational load is shown as well in Fig. 4 to the
left. This illustrates the number of DOF’s processed per second, averaged over
1000 solver cycles. The plot indicates a decrease in achievable computational
speed, as the amount of work (related to the number of DOF’s) increases.

4 Parallel Performance

4.1 Parallel Performance for Undisturbed Partitioning

Each of the test case meshes is used as a base for a parallel simulation. We present
strong scaling results, in the form of speedup and execution time plots. Speedup
Sp is defined by a ratio of time T1, required for the computational task to be
finished in a sequential computation (single processor), to time Tp, registered
when computational problem is divided among p processors (Sp = T1

Tp
). Figure 5

illustrates parallel speedup resulting from parallelization of various test cases.
Same results have been presented in Fig. 6, where registered execution times have
been ploted. The results show, that parallelization of large problems results in
better than theoretical speedup (super linear speedup). While parallelization of
relatively small problems leads to an inefficient use of a parallel machine.

Performance results indicating super linear performance of some parallel algo-
rithms have already been reported (see [10]) and results form utilization of fast
cash memory for bigger part of the problem solved. Parallelization of a problem
not only increases the number of processors, but also the amount of fast cash
memory, which is available per subdomain. Additionally it should be noted that,

546 S. Gepner et al.

1 4 8 16 32 64 80
1
4
8

16

32

64

80

Number of processors p

S
p
ee

d
u
p
S
p

=
T
1

T
p

Number

of DOF’s

5.7 · 103

1.5 · 104

6.7 · 104

2.0 · 105

3.6 · 105

3.2 · 106

Fig. 5. Values of parallel speedup recorded for test cases with different number of
degrees of freedom.

20 21 22 23 24 25 26

100

101

102

103

104

Number of processors p

T
im

e
[s

]

Number

of DOF’s

5.7 · 103

1.5 · 104

6.7 · 104

2.0 · 105

3.6 · 105

3.2 · 106

Fig. 6. Time required for the completion a parallelized problem registered for test cases
with different number of degrees of freedom.

the sequential algorithmic performance tests, indicate a drop in computational
speed, recorded for relatively large problems. Super-linear speed-up recorded
for large test cases might be qualitatively correlated to the results presented in
Fig. 4.

Parallel Efflciency of an Adaptive, Dynamically Balanced Flow Solver 547

1 4 8 16 32 64 80
1
4
8

16

32

64

80

Number of processors p

S
p
ee

d
u
p
S
p

=
T
1

T
p

Fig. 7. Parallel speed-up registered for an adapted case with load balancing (),
compared with the adapted but not balanced () problem. For reference the unmod-
ified, original case is shown ().

4.2 Impact of Adaptivity on Parallel Performance

Modification to the mesh structure during a parallel run of a simulation will
result in the sub optimal distribution of the numerical load. Such a modification
is caused by an adaptive step, which results in changes to the computational
mesh being used.

The influence of adaptivity on the parallel performance is presented using
a test case originally resulting in 8.0 · 105 DOFs. Due to a single adaptive step
number of degrees of freedom is increased to around 1.0 · 106. All parallel per-
formance results for an adapted case are related to the sequential run on the
adapted mesh.

Figures 7 and 8 show a speed-up plot and execution time plots respectively.
Plots were obtained using parallel execution times registered for an adapted
case. For comparison, a reference in the form of plots of speedup and scaling
of the original (8.0 · 105 DOFs), unadapted case are shown. Values of the load
balance indicator, calculated with the use of formula 1, are shown for of the
measurements presented in Fig. 8 in numerical boxes. For the well partitioned
(initial case) it ranges from 1.0 to 1.05, while the adapted case yields results
above 2. The load imbalance, resulting from an adaptive step, and following
drop in parallel performance are substantial.

4.3 Parallel Performance with Dynamic Load Balancing

Results registered for the adapted case show necessity for rebalancing of the
numerical load, should the available computational resources be used efficiently.
A solution is to use the Dynamic Load balancing ([8] or [7]) strategy.

548 S. Gepner et al.

20 21 22 23 24 25 26

101

102

103

104

1.
00

1.
00

1.
00

1.
01

1.
04

1.
04

1.
04

1.
05

1.
0

1.
16

1.
22

1.
28

1.
49

1.
7

2.
04

2.
04

1.
00

1.
00

1.
04

1.
04

1.
05

1.
06

1.
05

1.
06

Number of processors p

T
im

e
[s

]

Fig. 8. Parallel scaling registered for an adapted case with load balancing (),
compared with the results for the unbalanced case (). For reference the unmodified
case is shown () Load balance indicator defined by Eq. 1 is provided for each of
the cases (see the numerical boxes).

Figures 7 and 8 show plots or parallel speedup and scaling respectively. Mea-
surements have been carried out for adapted and dynamically balanced test case
used in Sect. 4.2. Again values of calculated balance indicator have been added
to plots results in Fig. 8. Registered performance results for the dynamically bal-
anced case relate to those registered for the original, undisturbed cases presented
in Sect. 4.1.

5 Conclusions

Performance results of an explicit, adaptive, in-house flow solver have been
presented. Both sequential and parallel performance has been considered. Results
indicate high parallel performance, provided the numerical load is evenly distrib-
uted among sub domains. The influence of an adaptive process on the load dis-
tribution, and on to the parallel performance have been presented. Maintaining
balance of the numerical load through a Dynamic Load Balancing repartitioning
has been shown to recover high parallel performance of the adaptive application.

References

1. Alauzet, F., George, P.L., Mohammadi, B., Frey, P.J., Borouchaki, H.: Transient
fixed point-based unstructured mesh adaptation. Int. J. Numer. Meth. Fluids 43,
729–745 (2003)

Parallel Efflciency of an Adaptive, Dynamically Balanced Flow Solver 549

2. Alauzet, F., Li, X., Seegyoung Seol, E., Shephard, M.S.: Parallel anisotropic 3D
mesh adaptation by mesh modification. Eng. Comput. (Lond.) 21(3), 247–258
(2006)

3. Castro-Dfaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstruc-
tured mesh adaptation for flow simulation. Int. J. Numer. Meth. Fluids 25, 475–491
(1997)

4. Deconinck, H., Sermeus, K., Abgrall, R.: Status of multidimensional upwind resid-
ual distribution schemes and applications in aeronautics. In: AIAA Conference
Proceedings, pp. 2000–2328 (2000)

5. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A., Teresco, J.D., Faik,
J., Flaherty, J.E., Gervasio, L.G.: New challenges in dynamic load balancing. Appl.
Numer. Math. 52(2–3), 133–152 (2005). (ADAPT ’03: Conference on Adaptive
Methods for Partial Differential Equations and Large-Scale Computation.)

6. Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for transient flows simulations.
In: IMR, pp. 335–348 (2003)

7. Gepner, S., Majewski, J., Rokicki, J.: Dynamic load balancing for adaptive parallel
flow problems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J.
(eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 61–69. Springer, Heidelberg (2010)

8. Gepner, S., Rokicki, J.: Dynamic load balancing for parallelization of adaptive
algorithms. In: Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., van der Ven, H.,
Sørensen, K. (eds.) ADIGMA. NNFM, vol. 113, pp. 327–338. Springer, Heidelberg
(2010)

9. Gepner, S., Rokicki, J.: Investigation of parallel efflciency of an adaptive flow solver.
Procedia Comput. Sci. 1(1), 2673–2681 (2010). (ICCS 2010.)

10. Gustafson, J.L.: Fixed time, tiered memory, and superlinear speedup. In: Proceed-
ings of the Fifth Distributed Memory Computing Conference DMCC5 (1990)

11. Hendrickson, B., Devine, K.: Dynamic load balancing in computational mechanics.
Comput. Methods Appl. Mech. Eng. 184(2–4), 485–500 (2000)

12. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Comput. 26(12), 1519–1534 (2000). (Graph Partitioning and Parallel Com-
puting.)

13. Majewski, J.: An anisotropic adaptation for simulation of compressible flows. Math.
Model. Anal. 7, 127–134 (2002)

14. Majewski, J.: Anisotropic adaptation for flow simulations in complex geometries.
In: 36th Lecture Series on Computational Fluid Dynamics/ADIGMA Course on
HP-adaptive and HP-multigrid Methods. von Karman Institute for Fluid Dynamics
(2009)

15. Majewski, J., Athanasiadis, A.: Anisotropic solution-adaptive technique applied to
simulations of steady and unsteady compressible flows. In: Deconinck, H., Dick, E.
(eds.) Computational Fluid Dynamics 2006 - Proceedings of the 4th International
Conference on Computational Fluid Dynamics, ICCFD4, Ghent, Belgium, July
10–14, pp. 353–359. Springer, 2006

16. Park, Y.M., Kwon, O.J.: A parallel unstructured dynamic mesh adaptation algo-
rithm for 3-d unsteady flows. Int. J. Numer. Meth. Fluids 48, 671–690 (2005)

17. Rokicki, J., Żó�ltak, J., Drikakis, D., Majewski, J.: Parallel performance of overlap-
ping mesh technique for compressible flows. Future Gener. Comput. Syst. 18(1),
3–15 (2001)

18. Sermeus, K., Deconinck, H.: Solution of steady euler and navier-stokes equations
using residual distribution schemes. In: 33rd Lecture Series on Computational Fluid
Dynamics - Novel Methods for Solving Convection Dominated Systems (LS2003-
05). von Karman Institute for Fluid Dynamics (2003)

550 S. Gepner et al.

19. Troyer, C., Baraldi, D., Kranzlmüller, D., Wilkening, H., Volkert, J.: Parallel grid
adaptation and dynamic load balancing for a CFD solver. In: Di Martino, B.,
Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp.
493–501. Springer, Heidelberg (2005)

20. Waltz, J.: Parallel adaptive refinement for unsteady flow calculations on 3d unstruc-
tured grids. Int. J. Numer. Meth. Fluids 46, 37–57 (2004). doi:10.1002/fld.674

21. Zhu, Z., Wang, P., Tuo, S.: An adaptive solution of the 3-d euler equations on an
unstructured grid. Acta Mech. 155, 215–231 (2002). doi:10.1007/BF01176244

http://dx.doi.org/10.1002/fld.674
http://dx.doi.org/10.1007/BF01176244

Modification of the Newton’s Method
for the Simulations

of Gallium Nitride Semiconductor Devices

Konrad Sakowski1,2(B), Leszek Marcinkowski2, and Stanislaw Krukowski1,3

1 Institute of High Pressure Physics, Polish Academy of Sciences,
ul. Sokolowska 29/37, 01-142 Warsaw, Poland

konrad@unipress.waw.pl
2 Faculty of Mathematics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

3 Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University, ul. Pawinskiego 5a, 02-106 Warsaw, Poland

Abstract. In this paper we present application of the Newton’s method
for simulation of gallium nitride semiconductor devices in the steady
state.

The drift-diffusion model of carrier transport in the semiconduc-
tor material is used. It consists of three nonlinear elliptic differential
equations. We present a backtracking strategy for the coupled Newton’s
method, which takes into account the specific nature of the drift-diffusion
equations and improves convergence of the method.

Keywords: Drift-diffusion · van Roosbroeck equations · Gallium nitride ·
Coupled Newton method

1 Introduction

In modern times the computer simulation is an important tool of supporting
process of design and development of new devices. In this paper we focus on
numerical simulations of GaN-based semiconductor devices. A prime example of
such a device is a blue laser.

In our simulations we use the drift-diffusion model of transport of charge
carriers in the semiconductor material [7,10]. This model is called semi-classical,
as it assumes classic spatial movement mechanisms and quantum mechanical
carrier recombination. From the mathematical standpoint it is a system of three
nonlinear elliptic differential equations, which is called the van Roosbroeck
equations [8].

From the sixties of the 20th century this model is successfully used for sim-
ulation of semiconductor devices based on the variety of materials, for example
silicon (transistors) and gallium arsenide (red lasers) [4]. Unfortunately the tran-
sition to the gallium nitride devices is not straightforward. The drift-diffusion

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 551–560, 2014.
DOI: 10.1007/978-3-642-55195-6 52, c© Springer-Verlag Berlin Heidelberg 2014

552 K. Sakowski et al.

model relies on profound simplifications of physical phenomena. This method
yields fast simulations, but neglects some effects relevant for the gallium nitride
heterostructures.

Our goal is to develop an algorithm capable of performing simulations, which
is flexible enough to allow certain modifications of the standard drift-diffusion
model. These modifications include: the piezoelectric effect, trap-assisted tunnel-
ing, interfacial charges, etc. Also the doping of the gallium nitride devices is much
higher in comparison with the gallium arsenide, what leads to the convergence
problems.

These modifications may be achieved by transformations of the underlying
equations. Therefore we want to use a discretization of the van Roosbroeck
equations, which is possibly general. Thus we have chosen the Composite Dis-
continuous Galerkin Method [1,3].

This paper is organized as follows. In Sect. 2 a differential model is briefly
described. Then in Sect. 3 we propose a backtracking strategy for the Newton
method. In Sect. 4 we compare it with standard backtracking based on residuum
size and with the classic Newton method. Then we conclude in Sect. 5.

2 Drift-Diffusion Model

The drift-diffusion model describes relationship between the electrostatic poten-
tial and the charge carrier concentrations: electrons and holes [11,12]. Physical
derivation of this model is beyond the scope of this work, therefore we will focus
on the mathematical standpoint.

We start with the domain of our problem. Luminescent semiconductor devices
are generally made of planar layers deposited one on another, which vary in
composition of a semiconductor material or number of impurities. At opposite
ends metal contacts are attached, where the current can be applied. If this is the
case it flows through the device perpendicular to the deposited layers.

Since this flow is generally one-dimensional, we use a one-dimensional model
to describe the device. This seems reasonable, as it improves the a speed of
simulations greatly and reduces complexity of the problem. However, the results
presented in this paper may be extended to two or three dimensions.

2.1 Differential Problem

The differential problem is to find functions ψ,Fn, Fp : Ω ≤ R, where Ω is an
interval (polygon in 2D, polyhedron in 3D), such that

≥ ·
(
ε0ε(x)≥ψ(x)

)
= −qC(x, ψ, Fn, Fp),

≥ · (
μn(x)n(x, ψ, Fn)≥Fn(x)

)
= qR(x, ψ, Fn, Fp),

≥ · (
μp(x)p(x, ψ, Fp)≥Fp(x)

)
= −qR(x, ψ, Fn, Fp),

(1)

Since an algorithm presented in this paper does not rely on the particular
form of the operators presented in (1), we omit the explanation of this system.

The Newton’s Method for the Simulations of Semiconductor Devices 553

A detailed description may be found in [7,10], and an example of particular
form used by us in physical applications may be found in [9]. We would like
to mention that the coefficients ε0ε(x), μn(x)n(x) and μp(x)p(x) are all strictly
positive in Ω. Therefore the drift-diffusion system in the formulation (1) is a
system of nonlinear elliptic ordinary differential equations. The nonlinearity is
both differential and algebraic. The above system is written in an unscaled form,
with the potential ψ in volts and quasi-Fermi levels Fn, Fp in joules.

3 Algorithm

3.1 Discrete Problem

For discretization of the differential equations (1), we use the Composite Dis-
continuous Galerkin Method [3]. The algorithm we present is independent of a
discretization method, therefore we assume that ψ,Fn, Fp are some approxima-
tions of the potential and quasi-Fermi levels respectively and they belong to a
given discrete space. Let us denote

ψ = [ψ1, . . . , ψJ], Fn = [Fn,1, . . . , Fn,J], Fp = [Fp,1, . . . , Fp,J], (2)

where the coefficients of ψ,Fn, Fp in a basis of the discrete space and J is a
dimension of this space. We define ξ as

ξ = [ψ,Fn, Fp]. (3)

We would like to use the Newton method to find an approximate solution
of the discretized problem (1). Therefore let aψ, fψ, an, fn, ap, fp denote discrete
problem operators (Composite Discontinuous Galerkin Method operators in our
simulations) for left hand sides and right hand sides of the equations (1). Then
let us define residual functions

Gψ,j(ψ,Fn, Fp) := aψ(ψ,Fn, Fp, ϕ(j)) − fψ(ψ,Fn, Fp, ϕ(j)),
Gn,j(ψ,Fn, Fp) := an(ψ,Fn, ϕ(j)) − fn(ψ,Fn, Fp, ϕ(j)),
Gp,j(ψ,Fn, Fp) := ap(ψ,Fp, ϕ(j)) − fp(ψ,Fn, Fp, ϕ(j)),

(4)

where {ϕ(j)}J
j=1 is the base of the discrete space. Note that operators fψ, an, fn,

ap, fp are nonlinear in ψ, Fn, Fp, and linear in ϕ(j).
Then we define coupled residual function G as:

G(ξ) := [Gψ(ξ), Gn(ξ), Gp(ξ)], (5)

where
Gψ(ξ) := [Gψ,1(ξ), . . . , Gψ,J (ξ)],
Gn(ξ) := [Gn,1(ξ), . . . , Gn,J (ξ)],
Gp(ξ) := [Gp,1(ξ), . . . , Gp,J (ξ)].

(6)

If G(ξ) is zero, then ξ is a discrete solution. We may then pick some initial
approximation ξ0 and use the Newton’s method to find the approximate solution.

554 K. Sakowski et al.

p-GaN
Nd = 0
Na = 5 10

19
cm

-3

d = 300 nm

n-GaN
Nd = 5 10

18
cm

-3

Na = 0
d = 300 nm

n-GaN
Nd = 5 10

18
cm

-3

Na = 0
d = 499 nm

QW - In0.1Ga0.9N
Nd = 5 10

16
cm

-3

Na = 0
d = 3 nm

B - In0.015Ga0.9N
Nd =5 10

18
cm

-3

Na = 0
d = 5 nm

QW - In0.1Ga0.9N
Nd = 5 10

16
cm

-3

Na = 0
d = 3 nm

p-GaN
Nd = 0
Na = 5 10

19
cm

-3

d = 498 nm

Fig. 1. Schemes of devices used in simulations in this paper: a p-n diode and two
quantum well heterostructure.

3.2 Problems with the Newton’s Method

The Newton’s method is very sensitive to the initial approximation. Unfortu-
nately good initial approximations for the drift-diffusion model are available
only for devices in so-called steady state, where the current is not connected.
This is unsatisfactory, as the simulations mainly concern devices in operation.
The idea is then to start a simulation from the steady state, and then gradually
increase the voltage (bias) to the given value, which corresponds to changing of
the boundary conditions. The sketch of the algorithm is then as follows:

ξ0 := initial approximation();
i := 1;
for bias:=0 to bias max step bias step do

while ∈G(ξi−1)∈ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
ξi := ξi−1 + si;
i := i + 1;

end while
end for

In the above schema the bias max denotes the target voltage of the device.
This method may seem wasteful, as it needs additional outer loop for the bias.
On the other hand, it is often advisable to perform the simulation for a range
of voltages. For example simulation of the current-voltage characteristics, which
may be then compared with experiments, involves calculating the current density
as a function of the bias.

Unfortunately this straightforward algorithm does not perform well for the
drift-diffusion simulations of GaN-based devices, as it diverges in many cases.
The divergence as a result of overflows and underflows, which are easy to emerge
due to functions exp(±ψ), exp(±Fn), exp(±Fp) present in the coefficients n, p
(see [9]). Taking very small bias step may be a remedy, but this increases the
simulation time.

The Newton’s Method for the Simulations of Semiconductor Devices 555

Therefore the next step could be to improve the convergence by taking some
kind of backtracking method for the Newton’s iteration [2]. The idea is then to
scale the Newton’s method step by some coefficient 0 < λ ∈ 1 in every iteration
to ensure decrease of the norm ∞G(ξ)∞ for a given norm ∞·∞. In our simulations we
use R

n maximum norm. It can be shown [2] that if the Jacobian is nonsingular,
then it is possible to find λ small enough to reduce the norm ∞G(ξ)∞. When the
approximation ξ will be close enough to the solution, λ = 1 is taken and the
convergence would be as good as for the standard Newton’s method.

The algorithm with very simple strategy of choosing λ may be written as
follows (we omit the outer loop, as it does not change):

while ∈G(ξi−1)∈ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
λi := 1;
ξi := ξi−1 + si;
while ∈G(ξi)∈ > ∈G(ξi−1)∈ do

λi := λi/2;
ξi := ξi−1 + λi · si;

end while
i := i + 1;

end while

The following example shows that this method is still disadvantageous. We
present a simulation of a p-n GaN diode, which is a fairly simple device (Fig. 1).
The result of 11th outer step of the simulation is shown on Fig. 2. Note the
fluctuations of the functions Fn, Fp, which are erroneous from the physical
point of view. However taking into account only the residuum size ∞G(ξi)∞, this
step converged perfectly. Initial approximation (from the previous bias-step) was

a) b) c)

-10

-9

-8

-7

-6

-5

-4

-3

E
ne
rg
y
[e
V
]

0 100 200 300 400 500 600
Distance [nm]

Ec

Ev

Fn

Fp

10−50

10−40

10−30

10−20

10−10

1

1010

C
ar
rie

r
co
nc
en
tr
at
io
n
[c
m

−3
]

0 100 200 300 400 500 600
Distance [nm]

n
p

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
te
nt
ia
l[
V
]

0 100 200 300 400 500 600
Distance [nm]

ψ

Fig. 2. An example of a simulation of the 600 nm GaN p-n diode simulated using the
Newton method with linear backtracking. The bias is 1.38 V.

556 K. Sakowski et al.

1.8 × 1011, then four steps of the Newton method were performed with λ = 1,
which reduced the residuum as follows: 3.4×106, 6.5×103, 2.7×10−2, 6.6×10−4.
Thus the magnitude of the residuum was reduced by 14 orders, which is close to
the machine precision. The backtracking was not even used.

Unfortunately this iteration diverged few bias-steps later, due to underflow.
This is however not the case for every setting, sometimes the fluctuations vanish
for a large bias and the algorithm does not break.

Still the question remains why such an nonphysical fluctuations may be
present when the residuum is so small. The reason is that n and p are the
coefficients of the second and third equation of (1), which formally correspond
to Fn and Fp, respectively. On the left part of the device, where the fluctuations
of Fn emerged, the coefficient n is very small, more than a 20 orders of magnitude
smaller than on the other side of the device. Therefore this error is completely
neglected due to the precision of the floating point arithmetic. Similar effect is
observed for p.

Therefore we conclude that ∞G(ξi)∞ is not a good measure of quality of the
solution, as the residuum is not of the same order on the whole domain. We
must therefore search for better indicator of the status of the approximation.

3.3 Modification of Newton’s Method

The weakness of the backtracking algorithm presented in previous section is a
lack of estimate of the quality of approximations, as the residuum is suitable
only for some parts of a device. In this section we would like to show how to get
such an estimate which gives good results on the whole domain. Inspired by [5],
we would like to rewrite the problem in the Banach iteration scheme.

-10

-9

-8

-7

-6

-5

-4

-3

E
ne
rg
y
[e
V
]

0 100 200 300 400 500 600
Distance [nm]

Ec

Ev

Fn

Fp

-10

-9

-8

-7

-6

-5

-4

-3

E
ne
rg
y
[e
V
]

0 100 200 300 400 500 600
Distance [nm]

Ec

Ev

Fn

Fp

Fig. 3. Comparison of simulation results of the 600 nm GaN p-n diode simulated using:
(a) the Newton method with linear backtracking, (b) the Newton method with our
modification. The bias is 1.38 V.

The Newton’s Method for the Simulations of Semiconductor Devices 557

Let (ψ0, Fn,0, Fp,0) be some initial approximation. Let us define function T
as

ξi = T (ξi−1) (7)

where ξi = (ψi, Fn,i, Fp,i) is a solution of the discrete version of a following
system of differential equations

≥ ·
(
ε0ε≥ψi

)
= −qC(ψi−1, Fn,i−1, Fp,i−1),

≥ · (
μnn(ψi−1, Fn,i−1)≥Fn,i

)
= qR(ψi−1, Fn,i−1, Fp,i−1),

≥ · (
μpp(ψi−1, Fp,i−1)≥Fp,i

)
= −qR(ψi−1, Fn,i−1, Fp,i−1),

(8)

where ξi−1 = (ψi−1, Fn,i−1, Fp,i−1). If ξi = ξi−1, then ξi is a solution of the
discrete problem. Note that (8) is a system of three independent linear differential
equations, so T (ξi−1) may be computed easily.

We do not aim at finding a solution by Banach iteration for T , as generally
it is not a contraction. We would like to use T for estimate of the quality of
solutions in a following manner. Let us define H as

H(ξ) := T (ξ) − ξ. (9)

Assume that ξi−1 is close to the solution. Then ξi = T (ξi−1) ≈ ξi−1. Unlike n
and p, functions ψ, Fn and Fp have the same order of magnitude on the whole
domain, and they are of similar order under appropriate choice of units (ψ in
volts; Fn, Fp in electronvolts). Therefore elements of the vector H(ξi−1) do not
vary by orders of magnitude and ∞H(ξi−1)∞ may be used as an estimate of an
approximation ξi−1, because it has no drawbacks of ∞G(ξi−1)∞.

Therefore we propose the following modification of the inner loop:

while ∈H(ξi−1)∈ is not small do
si := −[DG(ξi−1)]

−1G(ξi−1);
λi := 1;
ξi := ξi−1 + si;
while ∈H(ξi)∈ > (1 + c)∈H(ξi−1)∈ do

λi := λi/2;
ξi := ξi−1 + λi · si;

end while
i := i + 1;

end while

Generally for c = 0 this modification tends to minimize ∞H(ξi)∞. Our obser-
vations show that it is often favorable to allow controlled growth of ∞H(ξi)∞ by
setting c > 0.

To illustrate usefulness of the function H, we will revisit our example from
the previous section (Fig. 2). The nonphysical solution had a residuum norm
6.6 × 10−4. However, if we measure ∞H(ξ)∞ for this approximation, we obtain
1.1 × 1014. Therefore without question ξ ∧≈ T (ξ), which is the information we
expect to gain.

558 K. Sakowski et al.

We have therefore repeated this simulation, using the algorithm proposed in
this section. The result is presented on the Fig. 3(b). In this case there are no
fluctuations of Fn, Fp, ∞G(ξ)∞ ≈ 3.2× 10−5 and ∞H(ξ)∞ ≈ 4.6× 10−6. Therefore
the residuum is similar as for the nonphysical case, but the latter value is much
lower, which corresponds to better quality of this approximation.

4 Comparison

As we pointed out in Sect. 3, the backtracking strategy proposed in this paper
may prevent divergence and lead to the approximations, which are physically
more favorable. Still we would like to show that it is also more efficient than the
standard Newton method in terms of iteration number and computational time.

Therefore we compare simulation results for a two quantum well heterostruc-
ture presented on Fig. 1. We take into account the classic Newton method, back-
tracking linesearch [2], and our backtracking strategy. Simulations account for
radiative recombination, Shockley-Read-Hall recombination with trap-assisted
tunneling [4], ionization of impurities and piezoelectric effect.

A goal of these simulations were to find an approximate solution of the drift-
diffusion equations for bias 4 V. We have to point out that it is not feasible to
compute the solution for nonzero bias with the Newton method alone, or using
the inner loop of the presented algorithms, as the initial approximations are only
available for so-called steady state of a device, when bias is zero. So to perform
our simulations we set bias max to 4 V. Every consecutive solution is used as
initial approximation for next inner loop. It is generally not a waste, as they
are also used to compute a IV characteristic on [0, bias max], which are used to
compare results with physical experiments in real simulations. To obtain a fine
IV characteristic, it is enough to have 10–20 steps, as it generally should not
fluctuate much.

Since the Newton method is sensitive to an initial approximation, generally
more steps should improve the convergence of the considered methods (number
of steps = 1 + bias max/bias step). However, too much steps would increase
the total iteration number and it is not very beneficial to the IV characteristic.

Results of these simulations are presented in Table 1. For each method we
performed few simulations with an outer iteration number varying from 21 to
331. Every method considered in this study diverged if the number of steps was
below 21.

In this setting, the most efficient was the Newton method with our back-
tracking strategy. The simulation took 284 s and 174 iterations in 21 steps. Next
one was the linear backtracking on ∞G(ξ)∞, with a stop condition on ∞H(ξ)∞,
which took 482 s and 377 iterations in 101 steps. For lower number of steps,
the latter method generally did not return satisfactory results. In comparison,
results of standard linear backtracking were acceptable for 161 steps (714 iter-
ations, 898 s). Note that the classic Newton method with no backtracking was
more efficient, so the linear backtracking did not help.

The Newton’s Method for the Simulations of Semiconductor Devices 559

Table 1. Comparison of efficiency of our modification with linear backtracking and
the classic Newton method, with stop conditions imposed on ∈G(ξ)∈ or ∈H(ξ)∈. In
this table we present an outer iterations number (steps), total iteration number of
the Newton method, computation time and average number of iterations per one step.
Simulations were performed on a standard desktop PC. In every simulation, the Newton
iteration steps were computed for G(ξ)

Generally setting the number of outer steps to a number high enough leads
to convergence of every tested method. Then the number of iterations become
similar, as methods need not backtrack due to good initial approximations.

Our simulations also reveals that imposing a stop condition on ∞H(ξ)∞ alone
leads to slightly better efficiency, but an improvement is not so profound.

One more possibility, which is not discussed in this paper, is application of the
Newton method directly to a problem H(ξ) = 0. However it that case Jacobian
DH is dense despite of finite element method discretization [6], and the method
is inefficient.

5 Conclusions

In this paper the novel backtracking strategy for the Newton method for the
drift-diffusion model is shown. This modification improves convergence of the
coupled Newton method applied to a discrete van Roosbroeck equation system.

We have shown that the standard backtracking strategies for the Newton
method, which base on a residuum size, are error-prone due to large fluctuations

560 K. Sakowski et al.

of the coefficients of the equations. Such a situation is common for the gallium
nitride semiconductor devices and the algorithm should take it into account.

The presented algorithm does not involve scaling of the unknown functions on
a differential level and it does not rely on the discretization. Therefore it allows
straightforward modifications of the underlying equations. Such modifications
may account for new recombination mechanisms, ionization of traps, interfacial
charges, etc. Examples of applications of our algorithm to real devices may be
found in [9].

Acknowledgements. The research was supported by European Union within Euro-
pean Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-
00-008/08).

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discon-
tinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5),
1749–1779 (2001)

2. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentiece-Hall Inc., Englewood Cliffs (1983)

3. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discon-
tinuous coefficients. Comput. Meth. Appl. Math. 3(1), 76–85 (2003)

4. Hurkx, G., Klaassen, D., Kmuvers, M.: A new recombination model for device
simulation including tunneling. IEEE Trans. Elect. Dev. 39, 331–338 (1992)

5. Jerome, J.W., Kerkhoven, T.: A finite element approximation theory for the drift
diffusion semiconductor model. SIAM J. Numer. Anal. 28(2), 403–422 (1991)

6. Kerkhoven, T., Saad, Y.: On acceleration methods for coupled nonlinear elliptic
systems. Numer. Math. 60, 525–548 (1992)

7. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations.
Springer, Wien (1990)

8. Polak, S.J., den Heijer, C., Schilders, W.H.A.: Semiconductor device modelling
from the numerical point of view. Int. J. Numer. Meth. Eng. 24, 763–838 (1987)

9. Sakowski, K., Marcinkowski, L., Krukowski, S., Grzanka, S., Litwin-Staszewska,
E.: Simulation of trap-assisted tunneling effect on characteristics of gallium nitride
diodes. J. Appl. Phys. 111, 123115 (2012)

10. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien
(1984)

11. Sze, S., Ng, K.: Physics of Semiconductor Devices. Wiley-Interscience, Berlin
(2006)

12. Wilkes, P.: Solid State Theory in Metallurgy. Cambridge University Press, Cam-
bridge (1973)

Numerical Realization of the One-Dimensional
Model of Burning Methanol

(Cluster Version)

Krzysztof Moszyński(B)

Faculty of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
kmoszyns@mimuw.edu.pl

http://www.mimuw.edu.pl

Abstract. This program developed for IBM Blue Gene/P is based on
the so-called method of time splitting. While currently the MPI standard
is used, in the future a version utilizing the OpenMP standard with
shared memory will be developed as well.

Keywords: Time splitting · Schur system · Parallel processing

1 Introduction

This mathematical model of methanol burning in oxygen in a chemical reac-
tor was recently proposed by Jerzy Baffldyga (Warsaw University of Technol-
ogy, Poland) and Marek Burnat (University of Warsaw, Poland). Corresponding
chemical reaction can be written as follows:

2CH3OH + 3O2 ≤ 2CO2 + 4H2O.

In equations describing this process the functions τ1, τ2, τ3, τ4 are so called α-
mass densities of the corresponding components CH3OH, O2, CO2, and H2O.
For the usual Euler densities we have

ωi(t, x) = θi

⎧

A
τi(t, x, β)dβ, i = 1, 2, 3, 4, (1)

where A is the set of velocities β, χ, · · · admitted in the model, and θi are
constants.

2 Equations of the Model

The model is defined by the following equations:

τit + βτix − δτxx − Ki =
1
θi

⎧

A
Mi(·, β, χ)dχ, i = 1, 2, 3, 4 (2)

This work is supported by grant Nr. G33-10 of the ICM - Interdisciplinary Center
for Mathematical and Computational Modeling of the University of Warsaw.
Author thanks R. Wyrzykowski for his valuable Remarks.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 561–569, 2014.
DOI: 10.1007/978-3-642-55195-6 53, c© Springer-Verlag Berlin Heidelberg 2014

562 K. Moszyński

where t ≥ [0, T] is time, x is a point in the reactor π = [0, L], β ≥ A = [−γ, γ].
Functions Ki describe kinetics of the chemical reactions and are defined as
follows:

K1(τ1, τ2) = −C1(C2τ1)q1(C2τ2)q2 < 0,

K2 = const. < 0,

K3 = −K1 > 0,

K4 = −2K1 > 0. (3)

where C1, C2, q1, q2 are positive constants, while K2 is a negative. Moreover, δ
is a small positive constant of diffiusion, and the right hand side of Eq. (2) is the
mixer. Let us define now this mixer. Put:

r(d) =

⎨
⎩⎜

⎩⎫

−d

1 + d
for d ∈ 0

−d

1 − d
for d < 0

di = |χ|τi(t, x, χ) − |β|τi(t, x, β)

Mi(t, x, β, χ) =

⎨
⎩⎩⎜

⎩⎩⎫

r(di)τ(t, x, β) for di ∈ 0 βχ ∈ 0
r(di)τ(t, x, χ) for di < 0 βχ ∈ 0
ηr(di)τ(t, x, β) for di ∈ 0 βχ < 0
ηr(di)τ(t, x, χ) for di < 0 βχ < 0

(4)

with a chosen constant η ≥ [0, 1). Observe that in this way the mixers are
controlled by the diffierences di of α - impulses for i = 1, 2, 3, 4.

Equations (2)–(4) are completed by initial conditions on [0, L] and Dirichlet
boundary conditions at x = 0 and x = L. Time variable t runs over the inter-
val [0, T]. Since certain initial conditions contain jumps, a spatial smoothing
procedure may be applied.

3 Numerical Realization on Cluster

Equations (2) are approximated by finite diffierences on 2D rectangular grid G,
with the basic time step τ = T/N and the space step h = L/M . Let tn = nτ
and xk = kh. Hence (tn, xk) ≥ G for 0 ∞ n ∞ N and 0 ∞ k ∞ M . Assume that
lp processors will be used, enumerated as usual: s = 0, 1, · · · , lp − 1. We assume
also that at any time-level tn, the processor of the number s will process all four
equations (2), but on the part of the grid G containing only the points with xk,
such that sR ∞ k ∞ (s + 1)R − 1, where R is a chosen integer. Observe that the
above conditions imply that the number M (of subintervals on the x-axis) has
to satisfy the condition M = lp · R − 1.

Such a decomposition strategy is motivated by nasty properties of mixers,
which, for any fixed pair (t, x), have to run over all ordered pairs (β, χ), executing
very large number of operations. Decomposition across the set A of admitted
velocities could force us to use the time consuming inter-processor data sending.

Numerical Realization of the One-Dimensional Model 563

Our goal is to make this program as fast as possible. We hope, we can succeed
with this strategy.

Here, approximation of Eq. (2) is mainly based on the so called time split-
ting method. This is a very old method, probably firstly invented and applied
in years 60s of 20-th century, by D.W. Paceman and H.H. Rachford jr.
For large bibliography, see for example [1]. This method, suitable mainly for
evolution problems, consists in dividing the numerical problem into some parts
and solving these parts independently at each time step (or at parts of each
step). These partial solutions are joined by initial conditions. Such a method
may allow to split, at each time step, a complex numerical problem into several
simple sub-problems, which are solved independently. Quality of such kind of
approximation was discussed by many authors. In general, algorithms of this
kind may give approximation of the order O(τ), but in some cases O(τ2) is
possible. The problem somewhat similar to this considered here, is discussed
in [2].

4 Splitting of Equation of the Model

We start with splitting of Eq. (2). The following example explains the general
scheme of the time splitting method used here. Suppose, we want to solve an
equation of the form

ut(t) = f(u) + g(u), u(0) = a0, (5)

where, if necessary, definitions of functions f and g may contain also definitions
of boundary conditions. Assume that on the t-axis there are defined grid points
tn, n = 0, 1, 2, · · · with a constant (“basic”) time-step τ , tn+1 = tn + τ . Starting
at the grid point tn, with initial condition u(tn) = an, we want to make one step
to the grid point tn+1. Applied approximation consists in the following splitting:

vt(t) = f(v), v(tn) = u(tn) = an, an+1 = v(tn+1)

wt(t) = g(w), w(tn) = an+1, u(tn+1) ≈ w(tn+1),

and so on. Above splitting scheme can be graphically presented as follows

tn+1 v(tn+1) w(tn+1) ∇ u(tn+1)
v ↑ ↘ w ↑

tn an an+1

(6)

For analysis of this approximation procedure see, for example [2].
We split system (2) into the following sub-systems.1

1. Pure linear transport

uit(t, x, β) + βuix(t, x, β) = 0, ui(tn, x, β) = τi(tn, x, β), i = 1, 2, 3, 4. (7)
1 Similar splitting was applied with success to another system of equations.

564 K. Moszyński

We consider separately cases β ∈ 0 with the left Dirichlet condition, and
β < 0 with right Dirichlet condition.

2. Diffusion

vit = δvixx, vi(tn, x, β) = ui(tn+1, x, β), i = 1, 2, 3, 4. (8)

with Dirichlet conditions on both sides.

3. Nonlinear terms

wit = Ki(w1, w2) +
⎧

A
Mi(t, x, wi, β, χ)dχ, (9)

wi(tn, x, β) = vi(tn+1, x, β), i = 1, 2, 3, 4.

According to schema (6), each subsystem has to be solved for t ≥ [tn, tn+1], and
τi(tn+1, x, β) ≈ wi(tn+1, x, β).

5 Algorithms for Subsystems

We introduce notation: λ = τ/h, μ = τ/h2;
e1 = [1, 0, · · ·]T , eR = [0, · · · , 1]T for R-dimensional column vectors;
un

k = u(tn, xk) for function u defined on the grid G.

1. Linear transport: ut + αux = 0
We use so called box scheme to approximate this equation. In case when
α ∈ 0 this (explicit, unconditionally stable!) scheme is as follows:

aun+1
k + bun+1

k−1 = bun
k + aun

k−1, k = 1,2, · · · ,M − 2,

un+1
M = un

M−1, (10)

where a = 1 + λα, b = 1 − λα.
Since we work in parallel, it is better to formulate this problem as the following
system of linear equations with two-diagonal matrix:

⎬

⎭
⎭
⎞

a · · · ·
b a · · ·
· · · · ·
· · · b a

⎠

⎢ x = f

where f is the vector defined by the right hand side of schema. In order to
adjust the system to parallel processing on lp processors, we write it down in
block form with quadratic blocks of size R × R:

⎬

⎭
⎭
⎞

A · · · ·
B A · · ·
· · · · ·
· · · B A

⎠

⎢

⎬

⎭
⎭
⎞

x0

x1

·
xp

⎠

⎢ =

⎬

⎭
⎭
⎞

f0
f1
·

fp

⎠

⎢

Numerical Realization of the One-Dimensional Model 565

where p = lp − 1. Observe that for s = 0, 1, · · · , lp − 1 all diagonal blocks are
two-diagonal, with a at main diagonal, and b at under-diagonal. All under-
diagonal blocks are of the form B = be1e

T
R. Parallel algorithm is as follows:

(a) In processor of number s = 0, 1, · · · , lp − 1, two systems of linear equa-
tions with matrix A are solved: first, with right hand side vector fs, and
second, with right hand side vector e1. Elements f0 and/or fM contain
additional terms coming from Dirichlet boundary conditions. Observe
that matrix of system is triangular, with only main diagonal and one
sub-diagonal, hence resolution of these two systems of size R is very
simple. Let the corresponding solutions be x̃s, and w, respectively, and
put zs = eT

Rxs for s = 0, · · · , lp − 1. It is easy to see that

x0 = x̃0,

xs = x̃s − bwzs−1, s = 1, · · · , lp − 1, (11)

From the above definition it follows that numbers

zs, s = 1, 2, · · · , lp − 1

satisfy the following two-diagonal system

Σz =

⎬

⎭
⎭
⎞

1 · · · · ·
g 1 · · · ·
· · · · · ·
· · · · g 1

⎠

⎢

⎬

⎭
⎭
⎞

z1
z2
·

zlp−1

⎠

⎢ =

⎬

⎭
⎭
⎞

x̃1

x̃2

·
x̃lp−1

⎠

⎢ , (12)

where g = beT
Rw. This is Schur system of our problem. Let us observe

that matrix Σ can be formed in each processor.
(b) In order to solve system (10) in parallel way in lp processors, we have

first to solve Schur system (12) in each processor. To do that, we
have to form a lp-dimensional vector Fs = [F (0)s, · · · , F (lp−1)s]T with
coordinates

F (j)s =
⎥

0 for j ∧= s
x̃s for j = s

in s-th processor.
Using now (only once!) MPI routine ALLREDUCE with option
“SUM” [5,6] for vectors Fs, s = 0, · · · , lp−1, we get in each processor
the complete right hand side vector x̃ of the SCHUR system. Now
it remains only to solve this SCHUR system, and we get the whole
vector z = [z1, · · · , zlp−1]T in each processor.

(c) The last step is to use s-th equation of formula (11) in s-th processor. In
such a way we get s-th coordinate xs of the solution in s-th processor.
Remark. Method described above is a two diagonal version of algorithm
“Divide and Conquer” first defined and used for three diagonal sys-
tems by Stefan Bondeli, ETH Zürich, in 1990, see [3]. Tests for the
“Divide and Conquer” algorithm [3] for various three-diagonal line-
ar systems of size up to 106 and on various numbers of processors up to

566 K. Moszyński

512 were done on IBM Blue Gene/P “Notos” in ICM (version of
4 processors per node). Time measured was very nearly inversely pro-
portional to the number of processors used. Hence this result may be
considered as very satisfactory.

2. Diffusion
For approximation of equation

ut = δuxx

with initial condition and Dirichlet boundary conditions at both sides, Crank
- Nicolson implicit scheme was applied:

dun+1
0 − aun+1

1 = d1u
n
0 + aun

1

dun+1
k − a(un+1

k−1 + un+1
k+1) = d1u

n
k + a(un

k−1 + un
k+1), k = 1, · · · ,M − 1

dun+1
M − aun+1

M−1 = d1u
n
M + aun

M−1,

where d = (1 + μδ), d1 = (1 − δμ), a = νμ
2 . Applying similar procedure of

parallelization for lp processors as for transport equation, we write down the
above 3-diagonal system in the form of R × R block system.

⎬

⎭
⎭
⎭
⎭
⎞

D −A · · ·
−AT D −A · ·

· −AT D −A ·
· · · · ·
· · · −AT D

⎠

⎢

⎬

⎭
⎭
⎭
⎭
⎞

x0

x1

x2

·
xp

⎠

⎢

=

⎬

⎭
⎭
⎭
⎭
⎞

f0
f1
f2
·

fp

⎠

⎢

,

where p = lp−1. Coordinates f0 and fM contain additional terms coming from
Dirichlet boundary conditions. Parallelization procedure [3] for this system
is very similar to that described for transport equation. The fact that the
block matrix is in the form A = aeReT

1 enables to apply the above mentioned
“Divide and Conquer” method. This procedure is a little more complicated
than in the case of the transport equation. Now, SCHUR system is tree
diagonal and of size 2(lp − 1). It is important that also in this case only one
application of MPI ALLREDUCE routine with option SUM [5] gives
resolution of the SCHUR system and hence very fast parallel resolution of
the whole system.

3. Nonlinear equations
In our problem the nonlinear sub-problems are: nonlinear equations related
to functions Mi corresponding to mixers

ui
∈ =

⎧

A
Mi(ui, ·)dχ,

and nonlinear equations of kinetics of chemical reactions

vi
∈ = Ki(vi, ·).

Numerical Realization of the One-Dimensional Model 567

It is proven in [2], that if the functions τi are all bounded in the supremum
norm, then the mixers ⎧

A
Mi(τi, ·)dχ

satisfy Lipschitz conditions with respect to the arguments τi. When the non-
linear part of the equation contains only mixer term, then we can solve
approximately corresponding diffierential equations with help of implicit trape-
zoidal rule, which is A-stable. Hence, the simple iteration method applied to
the resulting non-diffierential-nonlinear equation converges for τ small enough.
This procedure was possible in the case of the model of turbulent flow without
the chemical reactions terms (see [4] - also for results of numerical
experiments).

Unfortunately, functions Ki are not all regular enough and hence corre-
sponding nonlinear systems cannot be solved approximately with the above
method, because iteration does not converge in a satisfactory way. In this si-
tuation we decided to apply for both nonlinear systems simple explicit Euler
method:

un+1
ik = un

ik + τ

⎧

A
Mi(un

i , ·)dχ

with trapezoidal approximation of the integral over A, and

vn+1
i,k = vn

k + τKi(vn
k , ·).

Since explicit method is not so much secure as implicit trapezoidal one, pos-
sibility of subdivision of original basic time-step τ up to chosen number of
equal parts is provided for the whole nonlinear part of program.

6 Time Measuring on IBM Blue Gene/P “Notos”

“Notos” admits 4 processors per node, and in whole 1024 processors. Of course,
communication is fastest inside one node. In order to enable time measurement
using all resource of this system, we have chosen:

1. 4096 points on the interval [0,1.0] of x-axis,
2. A = [−40, 40] with 81 points,
3. T = 0.01,
4. δ = 0.01, θ = 0.1,
5. 10 time-steps, hence basic time-step is τ = 0.001,

Moreover:
6. At each time-step, integral

∫

A τ(x, β, χ)dχ was approximately computed with
trapezoidal rule,

7. For nonlinear parts of algorithm (chemical reactions and mixers) basic time-
step τ was divided by 10, hence nonlinear parts run ten times at each basic
time step.

568 K. Moszyński

The computing time for one complete basic time-step without ‘IO’ was mea-
sured. Results of time measurements are given in Table 1. This table has to show
how good is the “scaling” of this program. When “scaling” is optimal, computing
time is inversely proportional to the number of processors used.

For these measurements

4, 8, 16, 32, 64, 128, 256, 512, 1024

processors were used. Hence, at each measurement step, the number of processors
doubles.

In Table 1:

– column 1 gives the number of processors used;
– column 2 gives the computing time in seconds;
– column 3 gives the relative speedup Sp , where:

Sp =
time on one processor
time on p processors

.

Table 1. Measurement of computing time on “Notos”

1 2 3

4 110.16 4.000
8 55.10 7.997

16 27.67 15.924
32 14.06 31.339
64 7.27 60.610

128 3.49 126.257
256 2.21 199.385
512 1.62 272.000

1024 1.77 248.949

Remark. Observe that c1024<c512; this means that for certain p,

512 ∞ p ∞ 1024,

the speedup Sp begins to decrease. Clearly, the moment of this effiect of satura-
tion depends of sizes of all data used in this numerical experiment. The above
mentioned saturation effiect shows that in this case the application of more than
512 processors is rather useless.

7 Conclusion

Our numerical experiments on “Notos” IBM Blue Gene/P (4 processors per
node), as well as on “Boreasz” IBM Power775 (32 processors per node), have

Numerical Realization of the One-Dimensional Model 569

shown that the applied method gives rather satisfactory results with respect to
scalability of computation.

Let us observe that the size of the Schur matrix used in the linear part of our
problem rises with the number of applied processors. In the situation when the
size of the Schur matrix largely surpasses the size of a part of the main system
matrix allocated to each processor, the “scaling” of the program begins to go
down. This effiect has appeared early when the number of grid-points on x-axis,
and the number of points in the set A of admissible velocities are relatively
small. But in such a case the program works fast even when a small number
of processors is used. Hence, the question is to find a satisfactory equilibrium
between the numbers of grid-points on x-axis and in the set A (accuracy!),
and the expected speed of the program. This is very important to provide real-
time simulations of the chemical process. Further numerical experiments will be
needed to answer this question.

References

1. Janienko, N.N.: Metod drobnych šagov. Novosibirsk (perhaps there exists an English
version) (1966).

2. Moszyński, K.: On certain numerical application of the time-splitting method.
MIMUW IMSM report No. 201. http://www.mimuw.edu.pl (2011)

3. Bondeli, S.: Divide and conquer: a new parallel algorithm for solution of a tridiagonal
linear system of equations. In: Burkhart, H. (ed.) CONPAR 90 - VAPP IV. LNCS,
vol. 457, pp. 108–119. Springer, Heidelberg (1990)

4. Moszyński, K.: Simplified non Navier-Stokes model of turbulent flow and its first
numerical realization in 2D. MIMUW IMSM report No. 203. http://www.mimuw.
edu.pl (2011)

5. Barney, B.: Message passing interface. Lawrence Livermore National Laboratory.
https://computing.llnl.gov/tutorials/mpi/

6. Barney, B.: OpenMP. Lawrence Livermore National Laboratory. https://computing.
llnl.gov/tutorials/openMP/

http://www.mimuw.edu.pl
http://www.mimuw.edu.pl
http://www.mimuw.edu.pl
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

Minisymposium on High Performance
Computing Interval Methods

A Shaving Method
for Interval Linear Systems of Equations

Milan Hlad́ık(B) and Jaroslav Horáček

Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic

{hladik,horacek}@kam.mff.cuni.cz

Abstract. We propose an iterative improvement method for an enclo-
sure of the solution set of a system of interval linear equations. The
method sequentially cuts off (shaves) parts of a given enclosure that
contain no solution, yielding thus tighter enclosures. Since shaving can
be done independently in the coordinates, the procedure is easily paral-
lelized. Our approach is convenient for problems with wide input inter-
vals, where traditional methods give poor enclosures. Finally, we present
a limited computational study.

Keywords: Interval systems · Interval matrix · Parallelization

1 Introduction

Solving systems of linear equations is a fundamental problem in linear and
numerical algebra, and many other disciplines. Taking into account uncertain
measurements, errors and other inexactness, and handling these uncertainties
by the ranges of admissible values, we immediately face the problem of solving
systems with interval coefficients. Considering all possible evaluations of inter-
val data, the objective is to determine or at least tightly enclose all emerging
solutions. It is known that computing the optimal bounds for the solution is an
NP-hard problem [2,6] (even with a prescribed accuracy). That is why develop-
ing efficient algorithms for computing reasonably tight enclosures was a subject
of intensive research. Nowadays, there are many methods published [2,4,7–9,14],
but there is still enough open space for improvement.

In this paper, we propose a method, that, given an initial enclosure, itera-
tively cuts off some parts provably containing no solution. This approach is called
shaving, which is borrowed from the area of constraint satisfaction
problems [3,16].

Notation. The ith row of a matrix A is denoted by Ai∗, the jth column by A∗j ,
and the unit vector by ei := (0, . . . , 0, 1, 0, . . . , 0)T . The vector e = (1, . . . , 1)T is
the vector of ones. An interval matrix is defined as

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 573–581, 2014.
DOI: 10.1007/978-3-642-55195-6 54, c∈ Springer-Verlag Berlin Heidelberg 2014

574 M. Hlad́ık and J. Horáček

A = [A,A] = {A ≤ R
m×n | A ≥ A ≥ A},

where A ≥ A are fixed matrices. The set of all m×n interval matrices is denoted
by IR

m×n. By

Ac :=
1
2
(A + A), AΔ :=

1
2
(A − A)

we denote the midpoint and radius of A, respectively. Interval arithmetic is
defined, e.g., in books [7,8].

Interval Linear Systems. An interval linear system of equations is a family
of systems

Ax = b, A ≤ A, b ≤ b,

where A ≤ IR
n×n and b ≤ IR

n are given. The corresponding solution set is
defined as

Σ := {x ≤ R
n | ∈A ≤ A ∈b ≤ b : Ax = b}.

Any interval vector x ≤ IR
n containing Σ is called an enclosure of Σ. There are

various methods for computing more or less tight enclosures of the solution set;
see [2,4,7–9,14]. A linear relaxation method with iterative contraction of the
enclosure was presented in [1]. Notice that a more general concept of solutions,
so called AE-solutions, was studied, e.g., in [11,15].

2 A Shaving Method

Let x 0 ≤ IR
n be an initial enclosure of the solution set Σ. The idea behind

shaving methods is to take a slice x 0(α, i) of x 0 in the form of

x 0(α, i)j =
{
x 0

j if j ∞= i,
[x0

j − α, x0
j] if j = i,

(1)

where α ≈ 0 is a parameter. If we find that x 0(α, i) contains no solution, then
we cut off the slice and the tighter enclosure x 1 reads

x 1
j :=

{
x 0

j if j ∞= i,
[x0

j , x
0
j − α] if j = i.

This procedure can be repeated for various i ≤ {1, . . . , n}, and similarly for
shaving from below. Naturally, the larger α the more efficient the shaving.

To develop an efficient shaving method, we need to state some auxiliary
results.

Lemma 1. Let A ≤ R
n×n, b ≤ R

n and x ≤ IR
n. Then the linear system

Ax = b, x ≤ x

has no solution if and only if the linear system

AT w + y − z = 0, bT w + xT y − xT z = −1, y, z ≈ 0 (2)

is solvable.

A Shaving Method for Interval Linear Systems of Equations 575

Proof. By the well-known Farkas lemma (cf. [2]), the system Ax = b, x ≥ x ≥ x
has no solution if and only if the linear system

AT w + y − z = 0, bT w + xT y − xT z < 0, y, z ≈ 0

is solvable. Now, (2) is obtained after normalization. ∧∃
Now, we see that

Ax = b, A ≤ A, b ≤ b, x ≤ x (3)

has no solution if and only if (2) is solvable for each A ≤ A and b ≤ b. Checking
this strong solvability is known to be computationally difficult (more precisely,
co-NP-hard); see [2]. Below, we present an adaptation of the sufficient condition
developed in [5].

A Sufficient Condition for Strong Solvability of (2). The sufficient con-
dition consists of several steps. First, solve the linear programming problem

min bT
c w + xT y − xT z subject to AT

c w + y − z = 0, −e ≥ w ≥ e, y, z ≈ 0,

and denote by w∗, y∗, z∗ an optimal solution. The solution needn’t be computed
verified as it plays a role of a heuristic only. Suppose that the optimal value is
negative. If it is not the case, then (2) is not solvable for A := Ac, b := bc, and
hence x contains a solution. If y∗

i = 0 for some i, then we fix the variable yi = 0,
and similarly for the entries of z. If the equation system

AT w + y − z = 0, bT w + xT y − xT z = −1, (4)

with A ≤ A and b ≤ b, is square, we proceed along the lines given later below.
If it is overdetermined, then it has the form of AT w = 0, bT w = −1. Since a
positive multiple of w∗ solves this system for A := Ac, b := bc, we have that
Ac is singular, which contradicts the assumption that Σ is bounded by x 0. If
(4) is underdetermined, then we put some additional equations to the system to
be square. The left-hand side of the additional equations will be formed by an
orthogonal basis of the null space of (4), and the right-hand side is calculated
such that w∗, y∗, z∗ solves the equations. Denote the resulting square interval
system as

Cv = d, C ≤ C . (5)

Let v = (v1, v2), where v1 consists of free variables appearing from w, and v2

consists of non-negative ones originating from (y, z). Let v be an enclosure of
its solution set (the tighter, the better). If v2 ≈ 0, then (2) is solvable for each
interval instantiation, implying that (3) is not strongly solvable.

576 M. Hlad́ık and J. Horáček

Computing the Width of a Slice. Now, we employ the above ideas to handle
the problem of determining as large as possible slice of x 0 containing no solution.
Since the slice x has the form of (1), it depends of the parameter α ≈ 0, and the
interval system (5) depends on α, too. Thus, we have to determine a large value
of α such that an enclosure to (5) satisfies the non-negativity condition v2 ≈ 0.

The naive approach is to use a binary search for the optimal α. This would
require solving a series of interval linear systems of equations. In the following,
we give a simple method to calculating a feasible, not necessary optimal, value
of α.

Due to (1), the system (5) depends on α in this way

(C + αEij)v = d, C ≤ C , (6)

where Eij = eie
T
j is the matrix with 1 at position (i, j), and zeroes elsewhere.

Lemma 2. Let v∗ be a solution to Cv = d. Then the solution of (C+αEij)v = d

is v∗ − αv∗
j

1+αC−1
ji

C−1
∗i .

Proof. By the Sherman–Morrison formula for the inverse,

(C + αEij)−1 = (C + αeie
T
j)−1 = C−1 − α

1 + αC−1
ji

C−1
∗i C−1

j∗ ,

whence

(C + αEij)−1d = C−1d − α

1 + αC−1
ji

C−1
∗i C−1

j∗ d = v∗ − αv∗
j

1 + αC−1
ji

C−1
∗i .

∧∃
Let v be an enclosure to the solution set of (5) (with α = 0). By the above

lemma, an enclosure to the solution set of (6) reads

v − αv j

1 + αC−1
ji

C−1
∗i .

The denominator should be positive, otherwise it contains the zero. This gives
the first restriction on α that

α < − 1
C−1

ji

(7)

provided C−1
ji < 0. As long as C−1

ji ≈ 0, there is no such an restriction on α.
Next, denoting by I the index set of non-negative variables v2, we get that

vk − αv j

1 + αC−1
ji

C−1
ki ≈ 0, k ≤ I.

A Shaving Method for Interval Linear Systems of Equations 577

Since the left-hand side is an interval, its lower limit is required to be non-
negative, i.e.

vk − α

1 + αC−1
ji

v jC
−1
ki ≈ 0, k ≤ I.

Eliminating α, we obtain

α ≥ vk

v jC
−1
ki − vkC

−1
ji

. (8)

for each k ≤ I such that v jC
−1
ki > vkC

−1
ji . From formulae (7) and (8) we

determine the maximal α∗ for eliminating the slice x . In order that the result is
reliable, the formulae should be evaluated by interval arithmetic (even though
they contain real variables only).

The computational cost of this method for computing α∗ is low. We have to
calculate v , an enclosure to (5), and C−1

∗i , which is an enclosure to the solutions
set of the interval system

Cu = ei, C ≤ C .

In total, we need to solve only two interval linear systems of equations. On the
other hand, the computed α∗ may not be the largest possible width of the slice.

Remark 1 (Computational complexity). The computation of the width of a slide
requires solving a linear program, finding an orthogonal basis of the null space
and solving a sequence of interval linear systems. Thus, we arrive at the complex-
ity of O(iter · (LP + n3)), where LP is the running time for the linear program
and iter is the number of iterations. Therefore, the total computational time is

O(iter · n · (LP + n3)).

Since the number of iterations is typically very low, see Example 2, the overall
cost is low, too.

Iterative Improvement. Since α∗ needn’t be optimal, we can think of improv-
ing it by repeating the whole process. We put α := α∗, and v will be an enclosure
to (6). Similarly, C−1

∗i will be an enclosure to the solutions set of the interval
system

(C + αEij)u = ei, C ≤ C . (9)

We determine the corresponding slice width α≥, update α∗ := α∗ + α≥ and
repeat the process while improvement is significant (i.e., α≥ is large enough).
Each iteration requires solving two interval systems, however, since the systems
differ in one coefficient only, the new enclosures can be computed more effectively.

For instance, interval system solvers frequently use preconditioning by the
(approximative) inverse of the midpoint matrix. Since the midpoint of (6) differs
in the entry (i, j) only, its inverse is easily updated by using the Sherman–
Morrison formula.

578 M. Hlad́ık and J. Horáček

Updating the enclosure to (9) can be done even more efficiently. For a given
C ≤ C , we have by the Sherman–Morrison formula

(C + αEij)−1 = C−1 − α

1 + αC−1
ji

C−1
∗i C−1

j∗ .

Its ith column draws

(C + αEij)−1
∗i = C−1

∗i − α

1 + αC−1
ji

C−1
∗i C−1

ji =
1

1 + αC−1
ji

C−1
∗i .

Thus, C−1
∗i is updated as 1

1+αC−1
ji

C−1
∗i without solving any system. Since the jth

updated element C−1
ji may be overestimated, we rather compute it by 1

α+1/C−1
ji

instead of 1
1+αC−1

ji

C−1
ji . In summary, while the first iteration needs to solve two

interval systems, the others need to solve only one.

Remark 2. These results apply to parametric interval systems, too [11,12]. A
parametric interval system is a system of the form

A(p)x = b(b), p ≤ p,

where A(p) and b(p) depend on a vector of parameters p, whose domain is
p ≤ IR

k. Thus the entries of the system vary within intervals, but not necessar-
ily independently. Provided we employ a parametric interval solver [10,12], we
immediately obtain a shaving method for parametric interval systems.

3 Examples and Numerical Experiments

Example 1. Consider the interval linear system Ax = b, where

A ≤ A =
(−[6, 7] [8, 10]

[5, 6] −[1, 3]

)

, b ≤ b =
(−[10, 11]

[−1, 1]

)

.

The initial enclosure to the solution set Σ computed by the verifylss
function from the package INTLAB [13] written under MATLAB framework is

x 0 = ([−2.1891, 1.0385], [−3.2972, 0.1329])T .

Let i = 1. The α-cut calculated by formulae (7)–(8) has the value of α1 =
0.8521. Iterative improvement makes no progress here, so we can reduce the
upper limit of x 0

1 by α1 = 0.8521.
Let i = 2. Now, the α-cut has width α2 = 0.7142. The iterative improvement

process determines after other two cuts, α3 = 0.1669 and α4 = 0.0657. Thus, we
can reduce x 0

2 from above by the value of α2 + α3 + α4 = 0.9468.
Shaving from below fails since the initial enclosure is very tight from below.

Therefore, we terminate with the resulting enclosure

x 1 = ([−2.1891, 0.1864], [−3.2972,−0.8139])T .

A Shaving Method for Interval Linear Systems of Equations 579

−1

−2

−3

1−1−2 0
x1

x2

Fig. 1. (Example 1) The solution set is the blue (dark) polygon, the initial enclosure
is in light gray, and the reduced enclosure in gray. (color figure online)

Notice that the interval hull of Σ is

x 3 = ([−2.1579, 0], [−3.2632,−1])T ,

so the shaving method approaches the optimal enclosure. The solution set Σ,
the initial enclosure x 0, and the reduced enclosure x 1 after the shaving are
illustrated in Fig. 1.

Example 2. Herein, we present some randomly generated examples for various
dimensions. The input data for the system Ax = b were generated as follows.
The entries of Ac and bc were generated randomly in [−10, 10] with uniform
distribution. All radii of A are equal to the parameter δ > 0.

The computations were carried out in MATLAB 7.11.0.584 (R2010b) on a six-
processor machine AMD Phenom(tm) II X6 1090T Processor, CPU 800 MHz,
with 15579 MB RAM. Interval arithmetics and some basic interval functions
were provided by the interval toolbox INTLAB v6 [13].

Tables 1 and 2 display the results. Therein, n stands for the system size, δ
for the radii of the intervals, time for the running time in seconds, and cuts
denoted the total number of α-cuts applied. Each record is an average of 100
examples. The efficiency of the shaving is measured by sum and prod defined as

sum :=
∑n

i=1(x
1
Δ)i

∑n
i=1(x

0
Δ)i

, prod :=
∏n

i=1(x
1
Δ)i

∏n
i=1(x

0
Δ)i

,

where x 0 is the initial interval and x 1 the computed one. Thus, sum corresponds
to the sum of interval widths of x 1, while prod corresponds to the volume of x 1,
both related to x 0.

580 M. Hlad́ık and J. Horáček

Table 1. (Example 2) Randomly generated data without overall iterations.

n δ time sum prod cuts

5 0.5 0.2568 0.7137 0.1355 13.02
10 0.25 0.6375 0.7522 0.04950 30.94
20 0.05 1.879 0.7848 0.02756 61.09
50 0.025 14.58 0.8569 0.03647 187.2
100 0.01 78.78 0.9049 0.04051 373.8

Table 2. (Example 2) Randomly generated data with overall iterations.

n δ time sum prod cuts

5 0.5 0.4977 0.6465 0.07751 18.06
10 0.25 0.9941 0.6814 0.02184 45.06
20 0.05 3.136 0.7161 0.00639 87.77
50 0.025 26.65 0.8071 0.03424 281.9
100 0.01 228.5 0.8693 0.01531 946.3

Table 1 shows the results for the case, when the input interval vector is shaven
in each coordinate just once from the above and once from the below (including
iterative improvement). On the other hand, Table 2 shows the experiments for
the same data, where the shaving was repeatedly applied until no significant
cutting happen. We can observe that the overall iterations need approximately
twice more time, but the resulting intervals are yet more tight.

The interval radius δ was chosen to be large to study behavior for “hard”
instances. For narrow radii, the traditional methods yield tight enclosure, so the
proposed shaving method is not suitable (and, indeed, makes little progress in
reducing initial enclosures). Observe that with larger dimensions we decreased
the parameter δ. This is because wider intervals would make the matrix singular
(i.e., A would contain a singular matrix), and thus the solution set Σ would be
unbounded. Therefore, when we increase n, we have to decrease δ.

4 Conclusion

We proposed a polynomial time iterative method for reducing the initial enclo-
sure of the solution set of interval linear equations. The method cuts slices of
the enclosure that certainly do not contain any solution. Numerical experiments
discussed in the last section showed that the shaving method can effectively
handle the hard instances with wide intervals and significantly reduce the initial
overestimation.

Since we cut off independently in each coordinate from above and from below,
this shaving procedure is suitable for parallelization. However, implementation
of an efficient parallelization is not a straightforward task, and is left for the
future research.

A Shaving Method for Interval Linear Systems of Equations 581

Acknowledgments. M. Hlad́ık was supported by CE-ITI (GAP202/12/G061) of the
Czech Science Foundation. J. Horáček was supported by the Czech Science Foundation
Grant P402-13-10660S, and by the Charles University grant GAUK N0. 712912.

References

1. Beaumont, O.: Solving interval linear systems with linear programming techniques.
Linear Algebra Appl. 281(1–3), 293–309 (1998)

2. Fiedler, M., Nedoma, J., Ramı́k, J., Rohn, J., Zimmermann, K.: Linear Optimiza-
tion Problems with Inexact Data. Springer, New York (2006)

3. Goldsztejn, A., Goualard, F.: Box consistency through adaptive shaving. In: Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pp. 2049–
2054. ACM, New York (2010), http://doi.acm.org/10.1145/1774088.1774519

4. Hlad́ık, M.: A new operator and method for solving interval linear equations (2013),
http://arxiv.org/abs/1306.6739

5. Hlad́ık, M.: Weak and strong solvability of interval linear systems of equations and
inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)

6. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht
(1998)

7. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

8. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

9. Neumaier, A.: A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclo-
sure for linear interval equations. Reliab. Comput. 5(2), 131–136 (1999)

10. Popova, E.D.: Webcomputing service framework. Int. J. Inf. Theor. Appl. 13(3),
246–254 (2006)

11. Popova, E.D., Hlad́ık, M.: Outer enclosures to the parametric AE solution set. Soft
Comput. 17(8), 1403–1414 (2013)

12. Popova, E.D., Krämer, W.: Inner and outer bounds for the solution set of para-
metric linear systems. J. Comput. Appl. Math. 199(2), 310–316 (2007)

13. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Develop-
ments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht
(1999). http://www.ti3.tu-harburg.de/rump/

14. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.
Acta Numer. 19, 287–449 (2010)

15. Shary, S.P.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliab. Comput. 8(5), 321–418 (2002)

16. Trombettoni, G., Papegay, Y., Chabert, G., Pourtallier, O.: A box-consistency
contractor based on extremal functions. In: Cohen, D. (ed.) CP 2010. LNCS, vol.
6308, pp. 491–498. Springer, Heidelberg (2010). http://dx.doi.org/10.1007/978-3-
642-15396-9 39

http://doi.acm.org/10.1145/1774088.1774519
http://arxiv.org/abs/1306.6739

Finding Enclosures for Linear Systems Using
Interval Matrix Multiplication in CUDA

Alexander Dallmann(B), Philip-Daniel Beck, and Jürgen Wolff von Gudenberg

Chair of Computer Science II, University of Würzburg, Am Hubland,
97074 Würzburg, Germany

alexander.dallmann@uni-wuerzburg.de

Abstract. In this paper we present CUDA kernels that compute an
interval matrix product. Starting from a naive implementation we inves-
tigate possible speedups using commonly known techniques from stan-
dard matrix multiplication. We also evaluate the achieved speedup when
our kernels are used to accelerate a variant of an existing algorithm that
finds an enclosure for the solution of a linear system. Moreover the qual-
ity of our enclosure is discussed.

Keywords: GPGPU · Interval arithmetic · Linear algebra · Parallel
computing

1 Introduction

Today graphics cards like the NVIDIA Tesla series are used in workstations
as well as supercomputers to speed up computations using the highly parallel
execution model of the GPU architecture. Especially linear algebra routines like
matrix computations can be accelerated by outsourcing the computation to the
GPU.

In this paper we present GPU routines to carry out interval matrix compu-
tations, as well as routines that perform a real matrix product with directed
rounding. Also a routine for matrix computation in two-fold working precision
is implemented using error-free transformations [1]. We then show how those
routines can be applied to speed up a variant of an existing algorithm [2] for
computing an enclosure for the solution of a linear system.

2 Related Work

In [2] the implementation of an algorithm that finds an enclosure for the solution
of a linear system is described. The computation of a matrix-matrix product on
CUDA in two-fold working precision is discussed in [1]. General optimizations
for CUDA Kernels with matrix multiplication as an example are formulated in
[3]. Reference [4] discusses a parallel variant of the Interval Newton Method on
CUDA.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 582–590, 2014.
DOI: 10.1007/978-3-642-55195-6 55, c© Springer-Verlag Berlin Heidelberg 2014

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication 583

3 Preliminaries

3.1 Notation

Throughout the paper we will denote intervals by [], e.g. [x]. Interval vectors
and matrices will be written with a bold letter, e.g. [x] or [A]. For an indepth
covering of interval arithmetic we refer to [5] and [6]

3.2 Computing a Verified Enclosure of a Linear System

Finding the solution of a real linear system A · x = b, with A ∈ R
n×n and

b,x ∈ R
n, is a common numerical problem used in various applications. The

result x̃ of a numerical algorithm is usually some approximation of the real
solution, having some unknown error term e, so that x = x̃ + e. Using interval
arithmetic an algorithm that finds verified enclosures of the solution x̂ can be
implemented. The verified enclosure itself is obtained by applying Brouwer’s
fixed-point theorem.

The method we adapted is described in [2], where more details are given. It
uses a Newton-like method to find an enclosure [y] for the residual of Ax. To
do so, the iteration scheme

yk+1 = Rd︸︷︷︸
z

+ (I − RA)
︸ ︷︷ ︸

C

yk, k = 0, 1, ...

is used, with R being an approximate inverse of A. By replacing all iterates with
interval vectors, a result from [7] can be applied for this equation, that says that
if [y]k

∈⊂ [y]k+1 holds for any index k, R and A are regular and there exists a
unique solution y ∈ [y]k, where

∈⊂ means contained in the interior.
Having found an approximate solution x̃ for the original linear system, the

enclosure of the residual can be used to give a verified enclosure of the solution
by x̂ ∈ x̃ + [y]k+1

4 Implementation

All routines are implemented in C++/CUDA using version 5.0 of the CUDA
SDK and use double-precision to carry out floating-point computations.

For interval computations directed rounding must be available. In CUDA
the rounding-mode can be specified on an instruction level [8] using intrinsic
functions [9]. Thus fine grained control over the rounding-mode is possible.

In order to speed up computation we use a tiled matrix multiplication as
shown in Fig. 1. The result matrix is split into rectangular tiles and each tile is
computed by its own thread block. Due to hardware limitations, in our case, the
number of threads in a thread block is smaller than the number of cells in a tile.
It follows that every thread needs to compute multiple cells of the tile.

584 A. Dallmann et al.

Fig. 1. Model for multiplication of two matrics Cm×n = Am×k · Bk×n.

In [3] a scheme where every thread computes one or more rows of the tile
is described. The shared memory is used to reduce global memory access while
computing the rows. We adopted this approach for all our routines.

All routines have been tested with different tile and thread block sizes to
determine the fastest combination. The tile and thread block sizes are varied
between 256 × 16 and 64 × 8 and between 32 × 4 and 16 × 4 respectively.

We use the kernel template shown in Algorithm 1.1 for all our kernels. Only
the computation of the scalar product is varied according to the specific case.
Also kernels that don’t use tiling were developed to demonstrate the achieved
speed up.

Whenever appropriate the intrinsic FMA function [9] is used to speed up
computation and avoid additional round-off errors. All kernels are implemented
as C++ function templates and the decision for a concrete rounding-mode is
made at compile-time to reduce runtime overhead.

4.1 Interval Matrix-Matrix Product

An interval matrix-matrix product was implemented using the tiling scheme
described before. Since an interval consists of two floating-point numbers for
the lower and upper bound, more shared memory and registers are used by the
kernel compared to a kernel that executes floating-point matrix-matrix product.
This results in smaller possible thread block sizes.

4.2 Real Matrix-Matrix Product with Directed Rounding

As of version 5.0, CUBLAS routines do not support directed rounding. We
implemented a matrix-matrix multiplication routine that makes use of intrinsic

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication 585

Algorithm 1.1. Basic kernel template for matrix-matrix multiplication that
implements configuration in Fig. 1

Input: m, n, k, A, B, C

a tile, b tile, c tile ← positions of tiles.
results[TILE DIM Y] ← 0 // initialize dot-product results with 0.
shared cache[BLOCK DIM X][TILE DIM Y] ← 0 // shared memory cache
steps ← k/BLOCK DIM X
step ← 0
while step < steps do

shared cache ← load part of current sub-tile from b tile
results pos ← 0
while results pos < TILE DIM Y do

// Compute next term of scalar product for every row element
results pos ← results pos + 1

end while
step ← step + 1

end while
c tile ← results // store row of result back

functions to support all in IEEE-754 [10] specified rounding modes. As
mentioned before the decision for a specific rounding-mode is made at compile-
time to ensure that no overhead occurrs. The routines were implemented using
the same kernel template shown in Algorithm 1.1 to achieve a good
performance.

4.3 Matrix-Vector Product as in Two-Fold Working Precision

A matrix-vector product in higher precision is needed by the algorithm imple-
mented to demonstrate our routines. This is realized using error-free transfor-
mations to compute the dot product as in twice the working precision [11]. In [1]
an implementation of a matrix-matrix product using error-free transformations
is shown. We adapted this approach for our matrix-vector multiplication that
evaluates the dot-product in twice the working precision.

5 Verification Algorithm

In Sect. 3.2, we presented the basics for implementing an iterative a poste-
riori method for calculating an enclosure of a solution x̂ of a linear system
A · x = b. The start interval [x]0 of an iterative a posteriori interval method
does not neccessarily contain the correct solution x̂, but aims to find an enclo-
sure after some iteration steps. In this section we describe some details of our
implementation.

586 A. Dallmann et al.

Algorithm 1.2 gives an overview of all the neccessary steps.

Algorithm 1.2. LinSolve(A, b, [x]) [2]
1. Calculation of an approximate solution
2. Real residual iteration to improve approximate solution
3. Computation of enclosures [C] and [z] for C = I − RA and z = R(b − Ax̃)
4. Finding a verified enclosure of solution x̂

In step one, an approximate solution of x̃ is calculated, using an approxima-
tion of the inverse matrix R of A. We use existing routines from the MAGMA
library for calculating the inverse. Therefore matrix A is LU-factorized by using
Magama’s getrf routine. With Magma’s getri routine the inverse is subsequently
determined and x̃(0) is calculated as x̃(0) = R · b.

After that the approximate solution x̃(0) is refined using real residual itera-
tion. In every iteration step the scalar products are evaluated in two-fold working
precision to reduce rounding errors. The iteration is stopped after a fixed number
of iterations or if the desired accuracy is reached.

The symbol � is used to indicate that scalar products are evaluated in two-
fold working precision.

In step three, the verification step is prepared by calculating enclosures of
[C] and [z]. This step can be seen in Algorithm 1.3. Symbol ♦ means, that an
interval enclosure of the real result is calculated using directed rounding.

Algorithm 1.3. Computation of enclosures [C] and [z].
Input: A, R, x̃
[C] ← ♦(I − R · A);
d ← � (b − A · x̃) ;
[delta d] ← ♦ (b − A · x̃ − d) ;
[z] ← ♦ (R · d + R · [delta d]) ;
return [C], [z]

During the verification step shown in Algorithm 1.4, the algorithm tries to
calculate an enclosure for the real residual ŷ using an interval residual iteration.
Since we are using an a posteriori method, the starting interval may not contain
the searched fixed-point. The iteratees converge towards the fixed-point, but
may not contain it. Using τ-inflation this problem can be reduced.

After an enclosure for the residual has been computed an interval containing
the exact solution x̂ can be obtained [x̂] = x̃ + [ŷ].

6 Performance Measurements

Our performance tests were executed on a NVIDIA Tesla C2070 GPU with
CUDA compute capability 2.0 and Fermi architecture. The host was running
a Gentoo Linux 64 Bit system with an Intel Xeon E5504 quad-core CPU with
2 GHz and 8 GB RAM. NVidia Driver version 304.64 and CUDA SDK 5.0 were
installed. For comparison with CXSC we used version 2.5.3.

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication 587

Algorithm 1.4. VerificationStep [2]
Input: [ŷ], [z], [C]
θ ← 1000; pmax ← 10; p ← 0; [ŷ](0) ← [z];
repeat

[ŷ](p) ← [ŷ](p) · θ; {θ-Inflation}
[ŷ](p+1) ←

(
[z] + [C] · [ŷ](p)

)
;

IsVerified ←
(
[ŷ](p+1) ◦⊂ [ŷ](p)

)
;

p ← p + 1;
until IsVerified or (p ≥ pmax)
[ŷ] ← [ŷ](p);
return [ŷ], IsVerified ;

6.1 BLAS Routines

In Fig. 2 the performance of our fastest matrix-matrix multiplication kernel is
compared to the current CUBLAS dgemm operation. As can be seen we reach a
peak performance around 207 GFlops while CUBLAS peaks around 310 GFlops.
Our kernel reaches roughly 66% of the CUBLAS kernel performance so there is
still room left for improvements. We assume that it should be possible to produce
still faster versions of our interval routines.

When computing an interval matrix-matrix product every computation has
to be carried out for the upper and lower bound. It follows that such a kernel
needs more registers and shared memory as a corresponding floating-point kernel.
When reaching the maximum usable registers a CUDA kernel spills over into
global memory. Additional store and load instructions will be generated that

2
5
6

5
1
2

1
,0

2
4

2
, 0

4
8

4
,0

9
6

150

200

250

300

Matrix size

GFlops

cublas

directed rounding

Fig. 2. Performance of our matrix-matrix multiplication implementation that supports
directed rounding compared to current CUBLAS.

588 A. Dallmann et al.

2
5
6

5
1
2

1
,0

2
4

2
,0

4
8

4
,0

9
6

50

100

150

200

Matrix size

GFlops

16x4/64x8

32x4/128x8

32x4/128x16

without tiling

Fig. 3. Performance of interval matrix-matrix multiplication routines with different
block and tile dimensions.

Table 1. A table showing resource allocation for kernels with different dimensions.
Performance and Speedup against the routine without tiling are given for a problem
size of 4096×4096. SM = Shared Memory; Regs = Registers; W/SMP = Warps/Shared
Multiprocessor

No. Block Tile Regs SM W/SMP GFlops Speedup

1 32 × 4 128 × 8 57 4096 16 205 3.94
2 32 × 4 128 × 16 63a 8192 16 153 2.94
3 16 × 4 64 × 8 61 2048 16 209 4.02
4 8 × 8 8 × 8 36 0 16 52 1

aRegister limit is reached. Additional access to global memory is neccessary.

slow down the computation. In Fig. 3 we compare kernels that use different tile
and thread-block sizes. Details about the kernels can be found in Table 1.

Although all kernels reach the same occupancy of 16 warps per multiproces-
sor kernel 2 is a lot slower because the maximum register limit is reached and
additional store and load instructions to global memory are neccessary to cor-
rectly run the kernel. Kernel 1 and 3 are almost equally fast but since in kernel
3 the thread-block consists only of 64 threads it needs less shared memory, 8
blocks instead of 4 can be scheduled which seems to result in slightly better
overall latency-hiding.

6.2 Verification Algorithm

For measurement of our verification algorithm implementation, we used routines
from LAPACK to create random integer test-matrices. With these test-matrices
we measured performance for our optimized CUDA implementation averaged
over 10 test runs. For each run the measured time contains data transfer of

Finding Enclosures for Linear Systems Using Interval Matrix Multiplication 589

5 10 15 20
256

512

1024

2048

4096

8192

1.7 · 10−2

3.43 · 10−2

0.1

0.44

2.7

18.03

Time [s]

Size

double

Fig. 4. Performance measurement results for the linear system solver using the opti-
mized CUDA implementation

0

50
,0
00

1
· 10

5

1.
5
· 10

5

2
· 10

5

2.
5
· 10

5

3
· 10

5

256

512

1024

2048

4096

8192

4.39

35.05

353.37

3,037.29

24,763.6

2.01 · 105

Time [s]

Size

double

Fig. 5. Performance measurement results for CXSC - C++ verified toolbox implemen-
tation

matrices to the GPU, run time of the solving algorithm as well as copying back
results from the GPU. Figures 4 and 5 shows time measurements of our imple-
mentation and the reference CXSC implementation for matrix sizes of 256 up to
8192. The maximum matrix size was limited by available memory on the GPU.

Besides the fact that our implementation uses the GPU, the main difference
between our CUDA implementation and the compared CXSC implementation
is the quality of scalar-product calculation. CXSC uses exact evaluation of dot
products which results in tight enclosures of the exact floating-point dot product
result. The drawback of this approach is that exact evaluation is computation
intensive. In order to reduce accumulation of errors we use two-fold working
precision for dot product calculations where appropriate, still rounding-errors
accumulate and therefore, our enclosure is getting wider as matrix dimensions
increase. For a random testcase this effect can be seen in Table 2. Since we use
random integer test matrices CXSC finds the exact solutions, represented as
point-interval vectors while the width of our results increases with the problem
size. Overall, our implementation is less accurate, but as speedup also shows,
much faster than CXSC.

590 A. Dallmann et al.

Table 2. Interval vector width for optimized CUDA implementation and CXSC imple-
mentation for one test case

Size Width(CUDA) Width(CXSC) Speedup

256 7.92·10−11 0 257
512 2.9·10−10 0 1,023
1,024 7.13·10−9 0 3,522
2,048 1.39·10−8 0 6,900
4,096 4.53·10−8 0 9,158
8,192 1.89·10−7 0 11,129

7 Conclusion

In this paper we developed interval matrix routines on CUDA and success-
fully applied them to an existing method for finding enclosures of solutions for
linear systems. Applying common optimization techniques from floating-point
matrix multiplication improved the performance of those routines. Implement-
ing a known algorithm for finding the solution of a linear system showed that
promising speedups can be achieved using the GPU. Since our routines suffer
from loosing accuracy compared to exact but more computation intensive eval-
uation, investigations into exact evalution of scalar products on the GPU are
planned in the future.

References

1. Fujimoto, N.: Economical two-fold working precision matrix multiplication on
consumer-level CUDA GPUs. In: 2011 Second Workshop on Architecture and
Multi-Core Applications (WAMCA), pp. 24–29 (2011)

2. Hammer, R.: C++ Toolbox for Verified Computing. Springer, Heidelberg (1995)
3. Cui, X., Chen, Y., Mei, H.: Improving Performance of Matrix Multiplication and

FFT on GPU. In: 2009 15th International Conference on Parallel and Distributed
Systems (ICPADS), pp. 42–48 (2009)

4. Beck, P.-D., Nehmeier, M.: Parallel interval newton method on CUDA. In: Manni-
nen, P., Öster, P. (eds.) PARA. LNCS, vol. 7782, pp. 454–464. Springer, Heidelberg
(2013)

5. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001)

6. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Computer sci-
ence and applied mathematics. Academic Press, New York (1983)

7. Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. (Universität Karlsruhe
1980)

8. NVIDIA Corporation: Parallel Thread Execution ISA (Version 3.1). http://docs.
nvidia.com/cuda/pdf/ptx isa 3.1.pdf

9. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (Version 5.0).
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

10. IEEE 754–2008: IEEE Standard for Floating-Point Arithmetic (2008)
11. Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Com-

put. 26(6), 1955–1988 (2005)

http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_3.1.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Acceleration
of Metaheuristics Solving Large Scale
Parametric Interval Algebraic Systems

Jerzy Duda(B) and Iwona Skalna

AGH University of Science and Technology, Krakow, Poland
jduda@zarz.agh.edu.pl, skalna@agh.edu.pl

Abstract. A study on efficient solving of parametric interval linear
systems using GPU computing is presented. Several illustrative exam-
ples from structural mechanics are employed to show that the proposed
approach can significantly reduce computation time for this kind of prob-
lems. The stress is put on large uncertainties which are usually hard to
be dealt with other, less time-consuming methods.

Keywords: GPU computing · Parametric interval linear systems ·
Metaheurisitcs · Truss structures

1 Introduction

The paper is devoted to the GPU acceleration of solving large-scale linear alge-
braic systems with elements that are nonlinear functions of parameters vary-
ing within prescribed intervals. The problem of solving such systems is of a
great importance for reliability and risk analysis of civil engineering systems,
among others. The goal of the realised numerical computations is to obtain a
so-called hull solution, i.e., the tightest interval vector that encloses the solution
set of parametric interval linear systems. In general, the problem of computing
the hull solution is NP-hard, so the classical numerical approach tends to be
computationally extensive and ineffective. Better approximations can be usually
obtained using metaheuristic methods, which are in general designed to solve
complex optimisation problems. Nevertheless, for larger instances of the prob-
lem the computational time is unacceptable. In this paper, the GPU acceleration
techniques are used to speed up metaheuristic strategies. The proposed approach
is presented in Sect. 3. The rest of the paper is organised as follows. Parametric
interval linear systems are described in Sect. 2. In Sect. 4, computational experi-
ments for illustrative problem instances from structural mechanics with different
number of intervals as well as different uncertainty ranges are presented in order
to verify the usefulness of the proposed approach. The results for accelerated and
non-accelerated metaheuristics based on evolutionary algorithm and differential
evolution are presented. The paper ends with directions for future study and
concluding remarks.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 591–599, 2014.
DOI: 10.1007/978-3-642-55195-6 56, c© Springer-Verlag Berlin Heidelberg 2014

592 J. Duda and I. Skalna

2 Parametric Interval Linear Systems

A parametric linear system

A(p)x(p) = b(p), (1)

is a system of linear equations with coefficients that are, in general, nonlinear
functions of model parameters (p1, . . . , pK):

aij(p) = aij(p1, . . . , pK),
bi(p) = bi(p1, . . . , pK), i, j = 1, . . . , n. (2)

Very often, due to the scarcity or lack of data, the parameters pk are unknown.
This kind of uncertainty can be conveniently modelled using the interval app-
roach ([1,4,5]), where an uncertain parameter pk is bounded by a closed interval
pk = [p̌k−Δpk, p̌k+Δpk]. The centre p̌k of pk is considered as an approximation
of pk and Δpk > 0 is an upper bound for the error of that approximation. Obvi-
ously, appropriate interval methods are required to correctly propagate interval
uncertainty through a calculation (see, e.g., [1,4,5]).

Now, if the parameters are assumed to range within prescribed intervals,
pk ∈ pk (k = 1, . . . , K), the family of parametric linear system is obtained

A(p)x(p) = b(p), p ∈ p. (3)

This family is called a parametric interval linear system (PILS) in order to
underline its direct connection with interval linear systems and is usually written
in the following compact form

A(p)x(p) = b(p). (4)

The set of all solutions to the point linear systems from the family (3)

S(p) = {x ∈ Rn | ∃ p ∈ p A(p)x = b(p)} (5)

is called a parametric solution set. It is generally of a complicated non-convex
structure [2]. In practise, therefore, an interval vector x ∈, called an outer interval
solution, satisfying S(p) ⊆ x ∈ is computed instead. The tightest outer solution,
with respect to the inclusion property, is called a hull solution or simply a hull
and is defined by the following formula:

�S(p) =
⋂

{Y ∈ IRn | S(p) ⊆ Y } . (6)

It is quite obvious that the problem of computing the hull can be formulated
as a problem of solving the family of the following 2n constrained optimisation
problems:

xi = min{x(p)i | A(p)x(p) = b(p), p ∈ p},

xi = max{x(p)i | A(p)x(p) = b(p), p ∈ p}, i = 1, . . . , n.
(7)

Using GPU Computing for Solving Large Parametric Interval 593

Theorem 1. Let A(p)x(p) = b(p) and let xi and xi denote, respectively, the
solution of the i-th minimisation and maximisation problem (7). Then, the hull
solution

�S(p) = �{x(p) : A(p)x(p) = b(p), p ∈ p} = [x1, x1] × ... × [xn, xn]. (8)

Solving the problem (7) is a complex task, which stems mainly from the fact
that the function to be optimised is given implicitly. Obviously, the complexity
also grows with the size of the problem. Some experiments with using a global
interval optimisation (IGO) approach and metaheuristics strategies to solve
the problem (7) were already made. Each of those two competing approaches
has pros and cons. Interval global optimisation guaranties reliable results, i.e.,
�S(p) ⊆ x ∈

IGO, where x ∈
IGO denotes the result of IGO, but for larger problem

and larger uncertainties, the method is very inefficient. Metaheuristic strategies
seem to be winning when large uncertainties are involved. Nevertheless, for larger
problems the computational time is unacceptable. In this survey, an attempt to
decrease the computational time is made. To achieve this, the GPU-based meta-
heuristic strategies are developed.

3 Solving Systems of Linear Equations with GPU
Acceleration

GPU [8] computing offers unprecedented application performance by offloading
compute-intensive portions of the application to the GPU, while the remain-
der of the code still runs on the CPU. From a user’s perspective, applications
that requires extensive calculations simply run significantly faster. Although the
performance of the mainstream GPU devices for double precision is limited com-
paring to the dedicated GPGPU devices like NVIDIA Testla, they can still offer
a huge speed improvement for intensive calculations over traditional CPU units.

Contemporary GPUs and their programming environments have evolved to
the point where many real-world applications can be easily implemented on
them and run significantly faster than on multi-core systems. Today’s modern
computing architectures are built as hybrid systems with parallel-core GPUs
working in tandem with multi-core CPUs.

CPU+GPU is a powerful combination, because CPUs consist of a few cores
optimised for serial processing, while GPUs consist of thousands of smaller, more
efficient cores designed for parallel processing of the same operations on different
data. Thus the algorithms should be developed in such a way that serial portions
of the code are run on the CPU while parallel portions are run on the GPU.

The development of GPU accelerated applications can be further facilitated
by the use of popular numerical linear algebra libraries like BLAS (Basic Linear
Algebra Subroutine) [9] and LAPACK (Linear Algebra PACKage) [10]. The most
popular adaptations of these libraries to GPGPU environment are cuBLAS[11]
from NVIDIA (only BLAS procedures), CULA [12] provided by EM Photonics
(free for single type procedures) and MAGMA [13] developed at the University

594 J. Duda and I. Skalna

of Tennessee (open source license). For the purpose of the numerical experiments
presented in the following sections, procedures implemented in the CULA library
have been used, as the library can be easily integrated with Visual C++. How-
ever, similar results (at least in terms of magnitude) should be obtained with
the use of other GPU accelerated LAPACK libraries.

3.1 GPU Acceleration Strategy

The parametric interval linear systems considered in the paper (for trusses with
more than 100 nodes) are hard to be solved using standard approach. In our
previous studies we have shown that metaheuristics like genetic algorithms [7]
or differential evolution [3] can provide a good approximation of hull solution,
however, the computation time for real large problems is significant. In this study
we will then focus on the acceleration of metaheuristics solving large size PILS.

Most of the computation time in both metaheuristics is devoted to fitness
evaluation of solutions - according to C++ profiling tools it takes 88–99 % of total
execution time. This procedure involves calculation of a stiffness matrix (75 % of
the fitness calculation time) and solving the system of linear equations (25 %).
If BLAS library is used to generate the stiffness matrix, the second procedure
becomes the most time consuming (72 % of total fitness calculation). Thus the
most profitable is to transfer both calculation of the stiffness matrix (BLAS
supported or not) and solving of the equations system from CPU to GPU.

3.2 GPU Acceleration of Stiffness Matrix Calculation

In order to asses whether to use GPU acceleration of the stiffness matrix cal-
culation with the application of BLAS library (more specifically its DGEMM
procedure) three variants of GPU accelerations have been tested. In the first
variant both DGEMM and DGESV procedures were accelerated by GPU using
CULA library, while in the second only equations solving is accelerated by GPU
(DGESV procedure from CULA library), but the stiffness matrix is computed
by CPU (DGEMM procedure from OpenBLAS library). Finally in the third
variant, we wrote a dedicated CUDA kernel for the stiffness matrix calculation
and used CULA library for the GPU acceleration of equations solving. The code
of the kernel has been shown in in Fig. 1.

The results of the experiments with evolutionary algorithm (EA) with all
three variants of GPU acceleration of DGEMM and DGESV procedures, run for
the three different problems described in details in the next section, have been
gathered in Table 1. Last column contains execution times of EA with DGEMM
and DGESV procedures performed on CPU only.

The tests have shown that GPU acceleration of DGEMM procedure
from CuBLAS library did not contributed to the decrease of computation time
for the stiffness matrix, but caused a significant increase of this time (over
80 % for the largest problem). Development of a dedicated CUDA kernel for
the calculation of the stiffness matrix also did not provide any spectacular
improvement - for the largest problem this variant achieved 6 % advantage over

Using GPU Computing for Solving Large Parametric Interval 595

i ←− blockDim.x ∗ blockIdx.x + threadIdx.x
j ←− blockDim.y ∗ blockIdx.y + threadIdx.y
if i < N AND j < N then

i ←− 0
for k ←− 0 to NE do

if Ak∗N+i = 0 AND Ak∗N+j = 0 then
s ←− s + Ak∗N+i ∗ Ak∗N+j ∗ Bk

end if
Ci∗N+j ←− s

end for
end if

Fig. 1. Outline of CUDA kernel for stiffness matrix calculation

Table 1. Times [s] for GPU accelerated fitness calculation (stiffness matrix calcula-
tion/equation solving)

Problem Both CULA CULA/CPU Kernel/CULA Both CPU

Example1 1.94 0.72 2.19 2.43
Example2 125.49 70.55 77.36 73.22
Example3 1364.17 749.61 707.11 1907.84

non-GPU accelerated DGEMM procedure. The lack of improvement that has
been observed for the GPU acceleration of the stiffness calculation could be
caused by insufficient transfer rates of data from host to GPGPU device and
in the opposite direction (average transfer bandwidth in the test environment
was 1.5 GB/s) comparing to the computing power of the GPGPU device itself
(NVIDIA GTX 650Ti graphics card). DGEMM procedures had two be called
twice as the calculation of the stiffness matrix required two operations of matrix
multiplication. For the largest problem, however, all variants of GPU accelera-
tion performed faster when compared to CPU (variant with CUDA kernel was
2.7 times faster).

3.3 GPU Acceleration of Linear Equations Solving

A standard LAPACK library contains two procedures for solving linear equations
DGESV and DSGESV. Both of them use LU decomposition with partial pivot-
ing. LU decomposition (also known as LU factorisation) factors a matrix as the
product of a lower triangular matrix and an upper triangular matrix. Once an LU
decomposition is obtained, the system Ax = b can be solved. Gaussian elimina-
tion inverts L, so that from Ax = LUx = b, the system Ux = L−1b is obtained.
Then backward substitution finds x. Gaussian elimination uses partial pivoting.
The row with the biggest pi in absolute value is brought into the pivoting posi-
tion, i.e., if |pi| = max

j=1,2,...,m
|pj |, then the row of p1 is swapped with the row of pi

and pi is used as a pivot. This simple idea results in a dramatic improvement in

596 J. Duda and I. Skalna

Table 2. Times [s] for equation solved by GPU accelerated DGESV and DSGESV
procedures

n DGESV DSGESV Ratio

16 1.20 3.91 3.26
189 74.64 150.56 2.02
434 717.77 1144.70 1.59
560 1590.94 2296.01 1.44

the stability of the Gaussian elimination citation. DSGESV procedure first tries
to decompose the matrix using single precision and uses this factorisation within
an iterative refinement procedure to obtain a solution with double precision.
Using iterative refinement maybe profitable in terms of solving time in GPGPU
environment, as single precision operations are usually performed much faster
than their double precision equivalents. We performed experiments whether to
use GPU accelerated DGESV or DSGESV procedure (from CULA library) in
the metaheuristics. Times obtained for the both procedures that solved 32*n
equations used in the fitness evaluation procedure for the metaheuristics solving
parametric interval linear systems are provided in Table 2.

Base on the above experiments DGESV procedure (without iterative refine-
ment) was used in the main experiments, as for the analysed problems it per-
formed faster than DSGESV procedure (with refinement). However, this trend
decreased along with the problem size, and for very large problems DSGESV
procedure could be more profitable than DGESV.

4 Numerical Experiments

The effects of GPU acceleration for the metaheuristics have been tested on the
basis of three exemplary truss structures, each of different size: one floor four
bay two floor truss, five bay six floor truss and ten bay eleven floor truss. All
experiments were performed on a desktop computer with Intel E8300 CPU,
4 GB DDR2 RAM and NVIDIA GTX 650Ti GPU with 1 GB GDDR5 RAM.
The algorithms were coded in Microsoft VC++ 2008 with CUDA 5.01 platform
and CULA Dense R16a library installed.

Example 1. A small one floor four-bay truss (see Fig. 2) is first considered. There
are 10 nodes and 21 elements (bars). The elements are joint at nodes using
flexible, rotary joints. The truss is fully supported at nodes 1 and 5 which means
that there are 16 degrees of freedom. The elements of the truss have the cross-
section area A = 0.0001 m2 and modulus of elasticity is uncertain E = 200GPa±
10 %. Also the load acting downward is uncertain F = 20kN±20 %.

Displacements of two selected nodes, node 3 and node 8, are given in the
Table 3. Differential evolution gave a little better results (wider interval) than
evolutionary method. The execution time of 100 generations and 30 individuals
for both algorithms was similar.

Using GPU Computing for Solving Large Parametric Interval 597

Fig. 2. 4-bay 1-floor truss

Table 3. Displacement of selected nodes for Example 1

Method Node 3 Node 8 Time [s]

EOM [-0.0058263707, 0.0058538249] [-0.0034941384, -0.0013484597] 106.81
DE [-0.0058699821, 0.0058706921] [-0.0034963978, -0.0013457917] 109.55

Example 2. As a second example a finite element model for a 9-bay 9-floor truss
is considered. There are 100 nodes and 342 elements, resulting in 189 variables
and 342 uncertain parameters. The cross-section area A = 0.005 m2 and Young’s
modulus is uncertain E = 200GPa±10 %. The uncertain load F = 10kN±20 %
(Figs. 3).

The horizontal and vertical displacements of the upper left node are given
in Table 4. This time 40 generations and 16 individual were computed for each
algorithm. The computational time was significant (over 20 min), and was com-
parable with the time achieved by the metaheuristics without GPU acceleration,
when BLAS library was applied for the calculation of stiffness matrix (version
without BLAS run 3 times slower). According to our experiments, if the accu-
racy could be sacrificed, GPU procedures using float numbers instead of double
would save additional 52 % of time.

Example 3. The third and last example considers a finite element model for
a 14-bay 14-floor truss. There are 225 nodes and 812 elements, resulting in 434

Fig. 3. 9-bay 9-floor truss

598 J. Duda and I. Skalna

Table 4. Displacement of selected nodes for Example 2

Method Node 91 Node 100 time [s]

EOM [0.0000325971, 0.0000442695] [0.0001311467, 0.0001702184] 1482.81
DE [0.0000281077, 0.0000512565] [0.0001097428, 0.0001879121] 1474.20

Fig. 4. 14-bay 14-floor truss

Table 5. Displacement of selected nodes for Example 3

Method Node 211 Node 225 time [s]

EOM [0.0002260031, 0.0002810077] [0.0002781862, 0.0003191969] 14081
DE [0.0001999374, 0.0003216216] [0.0002361739, 0.0003721374] 14079

variables and 812 uncertain parameters. The cross-section area A = 0.005 m2

and Young’s modulus is uncertain E = 200GPa±15 %. The uncertain load F =
10kN±15 % (Figs. 4).

The horizontal and vertical displacements of the most upper left node are
given in Table 5. Like in the previous cases differential evolution achieved more
accurate solutions than evolutionary method. The calculations were performed
for 40 generations and 16 individuals and the computation time even with GPU
acceleration was very long (almost 4 hours). However, it was almost 3 times
shorter when no GPU acceleration was used. Additional 26 % of time would be
saved if single precision accuracy could be sufficient.

5 Conclusions

The paper presents the study on the acceleration of selected population-base
metaheuristics for solving parametric interval linear systems. Both evolution-
ary algorithm and differential evolution approach can be used to achieve good
approximation of the hull solution for such systems. However, for the problems

Using GPU Computing for Solving Large Parametric Interval 599

of a very large size, the computation time for metaheuristics become enormous.
As the most time consuming operation is the fitness evaluation of solutions in
a population, this task is the best candidate to be moved from CPU to GPU.
Continuous development of GPU technology allows to achieve significant acceler-
ation of algebraic calculations for a relatively small cost, even if double precision
is required. Classic procedures that can be found in BLAS and LAPACK libraries
have been ported into GPU accelerated libraries like CULA or MAGMA. How-
ever, the application of such libraries should be well thought and tested, as
the benefits of GPGPU computing may not always outweigh the costs of data
transfers to and from CPU, especially in budget systems. Writing a dedicated
kernel, limiting the transfers, can be one of the solutions to this problem. Nev-
ertheless further improvement in GPU technology will undoubtedly allow for
greater reduction of computation time allowing metaheuristics to achieve good
hull solution approximation for large PILS in an acceptable time.

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations (transl. by J.
Rokne from the original German ‘Einführung In Die Intervallrechnung’), pp. xviii–
333. Academic Press Inc., New York (1983)

2. Alefeld, G., Kreinovich, V., Mayer, G.: The shape of the solution set for systems of
interval linear equations with dependent coefficients. Mathematische Nachrichten
192(1), 23–36 (2006)

3. Duda, J., Skalna, I.: Differential evolution applied to large scale parametric interval
linear systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011.
LNCS, vol. 7116, pp. 206–213. Springer, Heidelberg (2012)

4. Moore, R.E.: Interval Analysis. Prentice-Hall Inc., New York (1966)
5. Neumaier, A.: Interval Methods for Systems of Equations, pp. xvi–255. Cambridge

University Press, Cambridge (1990)
6. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of

linear systems with interval data is np-hard. SIAM J. Matrix Anal. Appl. (SIMAX)
16, 415–420 (1995)

7. Skalna, I., Duda, J.: A comparison of metaheurisitics for the problem of solving
parametric interval linear systems. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.)
NMA 2010. LNCS, vol. 6046, pp. 305–312. Springer, Heidelberg (2011)

8. GPU accelerated computing. http://www.nvidia.com/object/what-is-gpu-
computing.html Accessed 15th May2013

9. Lawson, C.L., Hanson, R.J., Kincaid, D., Krogh, F.T.: Basic linear algebra sub-
programs for fortran usage. ACM Trans. Math. Softw. 5, 308–323 (1979)

10. LAPACK: Linear Algebra PACKage. http://www.netlib.org/lapack Accessed 15th
May 2013

11. CUDA CUBLAS Library. PG-05326-032 V02. NVIDIA Corporation http://docs.
nvidia.com/cuda/pdf/CUDA CUBLAS Users Guide.pdf (2010). Accessed15th
May 2013

12. CULAtools: GPU accelerated linear algebra. http://www.culatools.com Accessed
15th May 2013

13. Matrix algebra on GPU and multicore architectures. http://icl.cs.utk.edu/magma
Accessed 15th May 2013

http://www.netlib.org/lapack
http://docs.nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Guide.pdf
http://www.culatools.com
http://icl.cs.utk.edu/magma

Parallel Approach to Monte Carlo Simulation
for Option Price Sensitivities Using the Adjoint

and Interval Analysis

Grzegorz Kozikowski1 and Bartfflomiej Jacek Kubica2(B)

1 School of Computer Science, University of Manchester, Manchester, UK
grzegorz.kozikowski@mbs.ac.uk

2 Institute of Control and Computation Engineering,
Warsaw University of Technology, Warsaw, Poland

bkubica@elka.pw.edu.pl

Abstract. This paper concerns a new approach to evaluation of Option
Price sensitivities using the Monte Carlo simulation, based on the paral-
lel GPU architecture and Automatic Differentiation methods. In order to
study rounding errors, the interval arithmetic is used. Considerations are
based on two implementations of the algorithm – the sequential and par-
allel ones. For efficient differentiation, the Adjoint method is employed.
Computational experiments include analysis of performance, uncertainty
error and rounding error and consider Black-Scholes and Heston models.

Keywords: Option pricing · The greeks · Automatic Differentiation ·
The Adjoint · Calibration · Interval analysis · CUDA

1 Introduction

Nowadays, banks, investment funds and other asset management companies
demand accurate and fast market forecasts to make profitable and more mature
investments. In the recent years, one of major instruments traded by these insti-
tutions is a financial option. The options are now traded on many exchanges
throughout the world and take diffierent commodities into account.

In general, the option is a contract that gives the holder the right to make
further investments whose conditions are well-known at present. There exist two
fundamental, diffierent types of options. First, a call option gives a holder the
opportunity to buy the underlying asset by a specific date for a certain price.
When, the second - a put option is a contract that allows to sell the underlying
asset at a fixed time for a given price. The financial value of these contracts can
have positive or negative aspects and it is dependent on further movements in
the price of the asset until the expiration date.

For this reason, option pricing and evaluation of option price sensitivities
play an important role in hedging and risk management of assets. This paper
proposes an approach using GPGPU technology and Automatic Diffierentiation
to compute them efflciently. (see, e.g., [7,13]).

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 600–612, 2014.
DOI: 10.1007/978-3-642-55195-6 57, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 601

2 Option Pricing

2.1 General Approach to Pricing Options

In general, there are several factors affiecting further price of a stock option:

– current stock price and strike price – as an option is exercised at some time in
the future, the pay-offi for a call option is a diffierence between stock price and
strike price. Considering put options, the pay-offi will be amount by which the
strike price exceeds the stock price [7].

– time to expiration – for some specific options (American, exotic, etc.) a pay-offi
of an option increases with the time to expiration [7].

– volatility of stock price – is a measure of how unpredictable are future stock
price movements [7].

– risk-free interest rate – as interest rates in the economy increase, the expected
growth rate of the stock price tends to increase [7].

– dividends – have the effiect of reducing the stock price on the ex-dividend date
[7].

Most of existing financial models for option market take into account the fac-
tors above. Each model of the behaviour of the stock price is usually based on
stochastic calculus and considered as a stochastic process (changes of the value
are uncertain over time and are dependent on probability). Besides the stock
price, this process predicts the volatility and it is called the stochastic volatility
model, as well. In this model, the further price of asset S satisfies the following
diffierential equation [7]:

dS(t) = αS(t)dt + σ(t)S(t)dW (t) (1)

where σ(t) denotes a volatility and W (t) is a geometric Brownian motion. The
volatility is often represented as a function of several input-variables (except the
Black-Scholes model):

σ(t) = f(Y (t)), (2)
dY (t) = (a + bY (t))dt + cY (t)dV (t), (3)

where a and b are constants and dV (t) = ρdW (t)+
√

1 − ρ2dZ(t). The processes
V and W are correlated.

Black-Scholes Model. It assumes that stock price follows a generalized Wiener
process with a constant expected drift rate and a constant variance rate. For the
Black Scholes model, the asset price satisfies the following stochastic diffierential
equation:

dS(t) = αS(t)dt + σ(t)S(t)dW (t) , (4)

where W (t) is a generalized Wiener process, σ(t) is the volatility of stock price
and α is its expected rate of return.

602 G. Kozikowski and B.J. Kubica

Heston Model. This model was proposed by Steven Heston in 1993. Heston intro-
duced an intuitive extension of the Black Scholes model and he assumed that
the stock price follows the following diffiusion process [12]:

dSt+1 = μStdt +
√

σtSt · W 1
t . (5)

For the Heston Model, the volatility is represented as a mean reverting stochastic
process of the form:

dσt+1 = κ · (θ − σt) · dt + ξ · √
σtdW 2

t . (6)

where: θ is the long-term variance, κ – the mean reversion of volatility, ξ – the
volatility of volatility and σ0 – the initial volatility. dW 1

t and dW 2
t are correlated

random variables with normal distribution (the correlation factor is equal to ρ).

2.2 Discretization Schemes

The financial models mentioned above, describe the dynamics of stock price and
volatility driven by continuous stochastic processes. Unfortunately, numerical
methods rely on discrete models, only. Hence, the major stage of a simulation
performed on any computational device is to discretize a continuous time process
to a discrete time model.

Euler-Maruyama Formulas. This method is based on approximation of integrals
using the left-point rule [12]. Having in mind that we simulate St over the period
[0, T], we can discretize this interval as 0 < t1 < t2 < ... < tm = T where the
diffierence between the subsequent tk and tk+1 is equal to dt. Integrating the
stochastic diffierential equation:

dS(t) = αS(t)dt + σ(t)S(t)dW (t) (7)

we obtain:

St+dt = St +

t+dt∫

t

αS(u)du +

t+dt∫

t

σ(u)S(u)dW (u) , (8)

where
t+dt∫

t

αS(u)du ≈ αS(t)
t+dt∫

t

du = αS(t)dt. Using the left-point rule since

at time t the value S(t) is known. The right-hand rule would require that
S(t + 1) to be known at time t. In a similar fashion, the second integral might
be approximated.

t+dt∫

t

σ(u)S(u)dW (u) ≈ σ(t)S(t)

t+dt∫

t

dW (u) = σ(t)S(t)(Wt+dt − Wt) = σ(t)S(t)
√

dtZ

(9)

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 603

where Wt+dt − Wt and
√

dtZ have an identical distribution (Z is a standard
normal variable). Therefore, the discrete equation is as follows:

St+dt = St + αS(t)dt + σ(t)S(t)
√

dtZ (10)

Using these schemes, the recursive equations for the Heston Model might be
obtained. The discrete formulae are as follows:

St+1 = Ste
(r− 1

2σt)dt+
∈

σtdt·Z1

σt+1 = σt + κ · (θ − σt)dt + ξ ·
√

σtdtZ2

2.3 Monte Carlo Simulation

Most problems in financial engineering entail the evaluation of a particular func-
tion involving multi-variable integrals with a high level of computational com-
plexity. Unfortunately, in many cases these integrals cannot be evaluated in an
efflcient and analytic way. One of the methods dealing with these problems is
the Monte Carlo simulation. This method is the most popular and efflcient app-
roach for determining the results of functions too complicated to being solved
analytically. It comes from the fact, that the time taken to perform the Monte
Carlo simulation increases approximately linearly with the number of random-
samples, but other analytical routines tend to increase exponentially [7]. This
estimation process is used to compute correct prices for financial options.

As only functions dependent on random variables are considered, its funda-
mentals are based on the weak law of large numbers. Estimation of the input
function converges to the true likelihood as the number of generated random
variables increases. The standard algorithm (the plain method) is to generate
many random samples and evaluate the stochastic functions, whose results are
further averaged. In this manner, we will converge to the correct results as the
number of computed functions increases.

For financial models describing the evolution of a stock price or volatility, the
Monte Carlo method involves many possible scenarios. In detail, each scenario
denotes the sample pay-offi calculated and discounted at the risk-free interest
rate: Φ(St,θ) = e−rT (ST − K)+. The expected value of the option price is equal
to average of all the discounted payoffis, as follows:

vM,θ = E(Φ(Sθ)) ≈
∑i=M

i=0 Φ(St,θ)
M

(11)

Moreover, if we perform elementary mathematical operations for the expected
value, we must take into account all the sample paths. For example, let us
consider the diffierentiation:

dvM,θ

dθ
= E(

dΦ(Sθ)
dθ

) ≈
∑i=M

i=0
dΦ(St,θ)

dθ

M
. (12)

These values (known as the Greeks or Option Price Sensitivities) are very impor-
tant measures of the potential financial risk related to a portfolio of derivatives.

604 G. Kozikowski and B.J. Kubica

2.4 Option Price Sensitivities

Introduction. Most of the financial institutions, selling or buying options from
a client in the market, have to deal with problems of risk management. Aim-
ing at a revenue growth, financial companies have to constantly balance its
portfolio and neutralize risk of trading. In practice, transactions costs make fre-
quent re-balancing very expensive. Except for trying to eliminate all risks, option
traders focus on assessing risk and deciding whether it is acceptable. For hedging
financial instruments, traders often evaluate rates of change of further predicted
stock-price with diffierent input parameters. These studies are to examine dif-
ferent scenarios analysis. In this method, the impact on the option position of
alternative future scenarios is evaluated. As one could expect, rate of change
of some function with respect to the input parameter converges to a derivative
(when change of input parameter decreases). Hence, this approach is usually
considered as a problem of evaluating derivatives. Financiers tend to use these
values to quantify the diffierent aspects of the risk inherent in their option port-
folio. If the risk is acceptable, no adjustment is made to the portfolio, if it is
unacceptable, quantitative analysts take an appropriate position for either the
underlying asset or contract [7].

In practice, the second-order derivatives can be used, as well. Moreover, these
values can be obtained in diffierent manners which feature a various computa-
tional effiort and a various accuracy. In the next paragraph, there is discussed a
powerful approach - the Automatic Diffierentiation algorithms. One of them, the
Adjoint method is the most accurate and much more computationally-efflcient
than existing solutions.

Automatic Differentiation. In particular, an underlying method for obtaining the
first and the second-order derivatives is a combination of symbolic diffierentiation
and automatic diffierentiation. This approach allows to evaluate the exact deriv-
atives in the absence of round-offi errors (further details are described in [9,14]).
However, considering the symbolic solutions for Stochastic Diffierential Equa-
tions, we can state that evolution of the recursive formulas is usually long and
dependent on a particular parameter - time. In this case, the AD methods should
operate on the whole Kantorovich graph taking into account recursive depen-
dencies. Nevertheless, this approach is memory-demanding. Therefore, we should
rely only on a chain-rule as a dependency of subsequent variables, for example,
Si and Si+1 or σi and σi+1. By diffierentiating these functions we derive recursive
equations for derivatives. Therefore, the sensitivities are dependent only on the
previous computed sensitivities and some partial derivatives. The partial deriva-
tives can be obtained by Forward or Reverse Mode, whereas, the sensitivities are
previously equal to the initial statement and they further are correctly updated
through evolution with respect to time. The following table presents the recursive
formulas for the option price sensitivities for the Heston model. For clarity, only
some of the sensitivities are presented and only the Heston model is considered.

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 605

Table 1. Stock price

Sensitivity Recursive formula

δ
dSt+1
dS0

= dFt(St)
dSt

· dSt
dS0

σ0
dSt+1

dσ0
= dFt(St)

dSt
· dSt

dσ0
+ dFt(σt)

dσ0

κ
dSt+1

dκ
= dFt(σt)

dσt
· dσt

dκ
+ dFt(St)

dSt
· dSt

dκ

θ
dSt+1

dθ
= dFt(σt)

dσt
· dσt

dθ
+ dFt(St)

dSt
· dSt

dθ

ξ
dSt+1

dξ
= dFt(σt)

dσt
· dσt

dξ
+ dFt(St)

dSt
· dSt

dξ

In a similar way, all the second-order derivatives can be proved for other financial
models, as well. The partial derivatives are evaluated in a backward manner by
using the Adjoint algorithm (Table 1).

3 CUDA Technology

In recent years, performing computations on GPU becomes more and more pop-
ular. Programming using GPU API, like CUDA [1] or OpenCL [3] is more dif-
ficult than traditional CPU programming (see, e.g., [2]), but gives us the access
to powerful computational resources.

Implementations of interval methods in this environment (see, e.g., [8] and
the references therein, [5,10]) show a significant performance gain.

Monte Carlo methods are also, specifically appropriate for GPU implementa-
tions as they perform the same procedure on several independent data (randomly
chosen points).

Consequently, a proper implementation of option pricing algorithms on
CUDA (or other GPU API) should be very efflcient.

CUDA Random Library. Generating random realizations of varieties is an under-
lying process of the Monte Carlo method. For utilized here the CUDA technology,
NVIDIA delivers a high performance GPU-accelerated library for random num-
ber generation. The CURAND library enables a wide variety of algorithms for
random samples. The flexible model primarily allows to generate two fundamen-
tal types of random samples, pseudo-random and quasi-random numbers. The
library offiers several, most popular and truly random algorithms with a vari-
ous distribution, among others: Mersenne Twister or XORWOW methods for
pseudo-random samples or Sobol for quasi-random ones [4]. As CURAND con-
sists of two fundamental modules, the interface to generate random numbers for
the CPU side and kernel functions for GPU, it might be utilized for sequential
implementation.

606 G. Kozikowski and B.J. Kubica

4 Architecture of the Library for Option Price
Sensitivities

4.1 Introduction

It was crucial to effiectively adapt Automatic Diffierentiation methods for the (first
and second) derivatives of the recursive formulae (Euler-Maruyama scheme). An
important feature was the ability to utilize not only various financial models or
various discretization methods, but also diffierent arithmetic and diffierent data
types. Another essential demand was a flexible, optimized implementation in
terms of performance and lines of code. For this sake, the author designed own
object-oriented software with a strong focus on a generic paradigm. For a simu-
lation, it was decided to use a simple and relatively accurate method – the plain
Monte Carlo algorithm. Diffierent techniques of variance reduction will be consid-
ered as a further development.

The library was implemented in C++ and consists of the following modules:

– a template for arithmetic of diffierent types (numbers, intervals, etc.), includ-
ing overloaded operators,

– a template for financial models (Black Scholes, Heston, etc.),
– a generic code for the Monte Carlo methods – a template, initialized with

financial model and data type during compilation,
– Automatic Diffierentiation functions.

Due to GPU limitations, an efflcient, parallel implementation requires also some
sophisticated solutions for problems of sequential nature. In order to reach a
CUDA peak performance (to maximize throughput), an average evaluation and
reduction of intermediate results are processed in a proper manner, dependent
on the specific GPU architecture. Details can be found in [9].

4.2 Data Model

The Kantorovich Graph Representation. Kantorovich graphs [6] are used to rep-
resent the mathematical formulae, resulting from integrals’ discretization.

The most important class – Expression – represents an independent, single
term of a mathematical formula. Thanks to overloaded operators, the program
dynamically generates the Kantorovich graph representation for every analytical
model. This model is stored as a vector of nodes. This array is initialized in
the right order, overloaded operators assign the Kantorovich graph with the
priority of the subsequent operations. As the evaluation is performed starting
from independent variables through intermediate to the last one, there is no need
to sort the array in advance.

Each Node is an abstract structure representing a single operation consisting
of the following fields: left and right indicators to preceding nodes (possibly
empty) and operationType (exp, sin, variable, etc.). Unary operators utilize the
structures for binary terms (the right indicator is null).

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 607

Representation of a Path. The Monte Carlo simulation requires storage of rel-
atively large amount of generated paths, which might be difflcult. Fortunately,
combination of symbolic and automatic diffierentiation methods allows us to store
and operate only a small number of parameters. For evaluation and further dif-
ferentiation of a single path, we need as many temporary results as the number
of nodes per the Kantorovich graph. Each node corresponds to a pair or a triple
of the following variables: the value and one or two derivatives.

After computation of underlying asset and volatility for a single step (evolu-
tion with respect to time), these temporary values are updated. This approach
allows not only to evaluate volatility or underlying asset, but diffierentiate these
formulas according to the Forward Mode or the Reverse Mode algorithms. Addi-
tionally, a representation of a path supports a generic programming model. All
the values might be single- or double-precision numbers as well as intervals.

4.3 Parallel Approach – GPU

Diffierent path are processed in parallel, by diffierent threads. The first stage of
the parallel algorithm is the transfer of the Kantorovich graph representing both
volatility and underlying asset. Besides that, additional structures are prepared
and initialized in global memory, e.g., input parameters of an option or structures
for storing the final derivatives. All Kantorovich graphs and computation results
are stored in shared memory of a thread-block. Each thread is responsible for an
evaluation and diffierentiation of a single path. Representations of mathematical
models are distributed between thread-blocks. It seems an optimal approach
in terms of performance, but current architectures do not allow to utilize all
its horsepower. The number of threads within a thread-block depends on the
financial model and shared-memory constraints per thread-block. Nevertheless,
hundreds of paths are evaluated per thread-block and hundreds of thousands
paths per grid to gain performance boost.

First, all threads should perform parallel initialization of the random gener-
ator. Afterwards, during the second kernel execution, the appropriate algorithm
is processed. Then, each thread performs the following sequence of operations:

– generation of random samples with standard normal distribution (for i-th step
of evolution through time),

– evaluation of the volatility and the underlying asset (for the i-th step of
evolution through time),

– diffierentiation of the volatility and the underlying asset (for i-th step of evo-
lution through time),

– updating the volatility and underlying assets (σi ← σi+1 and Si ← Si+1),
– updating the final sensitivities, relying on the results (as above) and well-

known initial conditions.

After evaluation of maturities and the final derivatives for each path, all
the results are averaged according to the optimized reduction algorithm. Using
stream processing, we perform simultaneous data-transfer of some data and gen-
eration of random samples for another one. Details can be found in [9].

608 G. Kozikowski and B.J. Kubica

5 Computational Experiments

Computational experiments include studies of acceleration and uncertainty esti-
mation for the Monte Carlo simulation and examine both sequential and paral-
lel algorithm versions. Besides an evaluation of option prices, all the 1st-order
derivatives are computed by using the Adjoint method. Analysis of performance,
variance and rounding error have been investigated for Black-Scholes and Hes-
ton models. Tests were performed with a various range of paths and steps for
maturity time. For generating random samples the Mersenne-Twister algorithm
has been applied – implemented in the CURAND (GPU) and GNU Scientific
Library (CPU).

The sequential version has been tested on a single CPU machine with Intel
Xeon CPU X5650 and 48 GB RAM memory. The parallel one was run on NVIDIA
Tesla C2070 with 48 multiprocessors and 448 cores, respectively.

6 Performance Results

Analysis of the acceleration for a parallel version (using shared memory) was
compared to the CPU version. The vertical axis represents the ratio of run-time
of parallel version to the sequential one. The horizontal axis describes a various
number of sample paths for the Monte Carlo simulation. The time results for
GPU take into account kernel initialization, data-transfer and kernel execution.

Black-Scholes Model. Much smaller memory requirements for the Black-Scholes
model (only 13 nodes are necessary to store equations) allow to utilize a greater
number of threads within a thread block (about 461). As one could expect, the
speedup is proportional to the number of steps – evolution through time. For this
reason, the results for the simulation with greater number of steps (300 steps)
seem slightly better (simulation is 30 percents faster) (Tables 2, 3 and Fig. 1).

Heston Model. In contrast to the Black-Scholes model, the Heston equations
are much more complex and memory-demanding (29 nodes for two equations
representing stock price and volatility). Due to memory constraints of the Fermi
architecture for shared memory, a slightly smaller number of threads within a
thread-block is used (about 206 paths/per thread block). Considering the given
plots, we observe a negligible increase of the acceleration over the first 200,000

Table 2. Black-Scholes, steps = 100

NrPATHS TCPU [ms] TGPU [ms] Speedup

10000 615 6 90x
20000 1232 10 117x
50000 3083 30 102x
100000 6156 71 85x

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 609

Table 3. Black-Scholes, steps = 300

NrPATHS TCPU [ms] TGPU [ms] Speedup

10000 1822 14 123x
20000 3653 22 162x
50000 9128 62 147x
100000 18264 135 134x

 50

 60

 70

 80

 90

 100

 110

 120

 0 50000 100000 150000 200000 250000

S
pe

ed
up

Number of Paths

Black Scholes Steps=100

(a) Steps = 100

 100

 110

 120

 130

 140

 150

 160

 170

 0 50000 100000 150000 200000 250000
S

pe
ed

up

Number of Paths

Black Scholes Steps=300

(b) Steps = 300

Fig. 1. Parallel approach for CUDA – Black-Scholes model

Table 4. Heston, steps = 100

NrPATHS TCPU [ms] TGPU [ms] Speedup

10000 1537 20 75x
20000 3070 35 85x
50000 7684 90 84x
100000 15374 191 80x

Table 5. Heston, steps = 300

NrPATHS TCPU [ms] TGPU [ms] Speedup

10000 4600 55 83x
20000 9199 96 94x
50000 22981 238 96x
100000 45995 488 94x

paths. For 25000 paths, the line chart reaches the performance peak (96x). With
the increasing number of paths, we see a steady and smooth decrease of the
acceleration. This decline is motivated by data-transfer of large number of paths
and the derivatives via PCI-Express bus (Tables 4, 5 and Fig. 2).

610 G. Kozikowski and B.J. Kubica

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 0 50000 100000 150000 200000 250000

S
pe

ed
up

Number of Paths

Heston Steps=100

(a) Steps = 100

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0 50000 100000 150000 200000 250000

S
pe

ed
up

Number of Paths

Heston Steps=300

(b) Steps = 300

Fig. 2. Parallel approach for CUDA – Heston model

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0 50000 100000 150000 200000 250000

V
ar

ia
nc

e

Number of Paths

Black Scholes

(a) Black-Scholes Model

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0 50000 100000 150000 200000 250000

V
ar

ia
nc

e

Number of Paths

Heston

(b) Heston Model

Fig. 3. Variance results – option price

6.1 Estimation Uncertainty Results

The uncertainty tests were conducted on a various number of paths. The variance
results are evaluated for stock price and the delta sensitivity (the first-order
derivative of dST

dS0
).

Black-Scholes Model. With our expectations, change (decrease) of variance is
proportional to a square of the number of sample paths. Initially, the variance
stood at the level of 10−4, however, the sudden collapse might be observed
over next 50000 paths. Starting from 100,000 paths, the increasing number of
sample paths has an insignificant impact on change of the Monte Carlo estimator.
Finally, the variance is approximately equal to 1.7 ∗ 10−5 for 250,000 paths.

Heston Model. For the Heston model simulation, the variance measure is slightly
bigger than variability for the Black-Scholes. As expected, the line chart has a
declining trend and the variance is dependent on the number of sample paths
(the factor is proportional to square of the number of paths) (Fig. 3).

Rounding Error Analysis. The Monte Carlo simulation requires several arith-
metic operations throughout path evolution, which may increase the rounding
error. To manage this issue, we used the interval analysis (see, e.g., [11]). For
Monte-Carlo simulations, interval operators are applied to unary and binary

Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities 611

 0.1068

 0.107

 0.1072

 0.1074

 0.1076

 0.1078

 0.108

 0.1082

 0.1084

 0.1086

 0.1088

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

O
pt

io
n

P
ric

e

Number of Paths

Rounding Error - Black Scholes

Legend
lower bound
upper bound

(a) single-precision numbers

 0.1073

 0.1074

 0.1075

 0.1076

 0.1077

 0.1078

 0.1079

 0.108

 0.1081

 0.1082

 0.1083

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

O
pt

io
n

P
ric

e

Number of Paths

Rounding Error (Double) - Black Scholes

Legend
lower bound
upper bound

(b) double-precision numbers

Fig. 4. Black-Scholes model – option price

 0.837

 0.838

 0.839

 0.84

 0.841

 0.842

 0.843

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

O
pt

io
n

P
ric

e
S

en
si

tiv
ity

Number of Paths

Rounding Error - Black Scholes

Legend
lower bound
upper bound

(a) single-precision numbers

 0.838

 0.8385

 0.839

 0.8395

 0.84

 0.8405

 0.841

 0.8415

 0.842

 0.8425

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

O
pt

io
n

P
ric

e
S

en
si

tiv
ity

Number of Paths

Rounding Error (Double) - Black Scholes

Legend
lower bound
upper bound

(b) double-precision numbers

Fig. 5. Black-Scholes model – option price sensitivity

calculations for all the paths that are required to evaluate the option price and
its sensitivities, bounding the errors.

We investigated both single and double-precision numbers. For single-
precision, rounding errors were significant – diameters of resulting intervals
increase with the number of paths. Using double-precision numbers, the rounding
error occurred to be negligible, at least for the considered case-studies (Figs. 4, 5).

7 Conclusion

Automatic Diffierentiation is a powerful tool that can be useful for evaluating
option prices and the Greeks and modern GPUs allow its efflcient implementa-
tions. The paper investigated two common models – Black-Scholes and Heston.
Expectations of stochastic processes have been computed using Monte Carlo
methods. Using interval arithmetic allowed to bound numerical errors and use
imprecise parameters. The approach might be applicable also to calibrate theo-
retical financial models to market quotes. The interval approach might be com-
bined with other global optimization methods into the calibration process, which
is going to be subject of future research.

612 G. Kozikowski and B.J. Kubica

References

1. CUDA homepage. http://www.nvidia.com/object/cuda home.html
2. Nvidia, CUDA SDK Documentation. http://docs.nvidia.com/cuda/index.html
3. OpenCL homepage. http://www.khronos.org/opencl
4. Nvidia, CUDA CURAND Library. https://developer.nvidia.com/curand
5. Beck, P.-D., Nehmeier, M.: Parallel interval newton method on CUDA. In: Man-

ninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 454–464. Springer,
Heidelberg (2013)

6. Bücker, M.: Automatic Differentiation: Applications, Theory and Implementation.
Springer, Berlin (1981)

7. Hull, J.C.: Options, Futures and other Derivatives, 8th edn. Prentice Hall, Upper
Saddle River (2011)

8. Kozikowski, G.: Implementation of automatic differentiation library using the
OpenCL technology. BEng thesis, Faculty of Electronics and Information Tech-
nology, WUT (2011)

9. Kozikowski, G.: Evaluation of option price sensitives based on the Automatic Dif-
ferentiation methods using CUDA. Master’s Thesis, Faculty of Electronics and
Information Technology, WUT (2013)

10. Kozikowski, G., Kubica, B.J.: Interval arithmetic and automatic differentiation on
GPU using OpenCL. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol.
7782, pp. 489–503. Springer, Heidelberg (2013)

11. Kubica, B.J.: A class of problems that can be solved using interval algorithms.
Computing 94(2–4), 271–280 (2012). (SCAN 2010 proceedings)

12. Rouah, F. D.: Euler and Milstein Discretization. http://www.frouah.com/
finance%20notes/Euler%20and%20Milstein%20Discretization.pdf

13. Tadjouddine, E.M., Cao, Y.: An option pricing model calibration using algorith-
mic differentiation. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer and
Information Sciences II, pp. 577–581. Springer, London (2012)

14. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78, 1550–1560 (1990)

http://www.nvidia.com/object/cuda_home.html
http://docs.nvidia.com/cuda/index.html
http://www.khronos.org/opencl
https://developer.nvidia.com/curand
http://www.frouah.com/finance%20notes/Euler%20and%20Milstein%20Discretization.pdf
http://www.frouah.com/finance%20notes/Euler%20and%20Milstein%20Discretization.pdf

Subsquares Approach – A Simple Scheme
for Solving Overdetermined Interval Linear

Systems

Jaroslav Horáček(B) and Milan Hlad́ık

Faculty of Mathematics and Physics, Department of Applied Mathematics,
Charles University, Prague, Czech Republic

{horacek,hladik}@kam.mff.cuni.cz

Abstract. In this work we present a new simple but efficient scheme
– Subsquares approach – for development of algorithms for enclosing the
solution set of overdetermined interval linear systems. We are going to
show two algorithms based on this scheme and discuss their features. We
start with a simple algorithm as a motivation, then we continue with
an improved algorithm. Both algorithms can be easily parallelized. The
features of both algorithms will be discussed and numerically tested.

Keywords: Interval linear systems · Interval enclosure · Overdeter-
mined systems · Parallel computing

1 Introduction

In this paper we address the problem of solving overdetermined interval linear
systems (OILS). They can occur in many applications, e.g., computing eigenvec-
tors of interval matrices [2] or when solving various continuous CSP problems.
There exist a lot of efficient methods for solving square interval linear systems.
Solving overdetermined systems is a little bit more tricky, that is because we can
not use some favourable properties of matrices like diagonal dominance, positive
definiteness, etc. Nevertheless, there are some methods – Rohn method [8], linear
programming [3], Gaussian elimination [1] or the method designed by Popova [7].

Some of the methods return narrow enclosures of a solution set. But they
return a solution even if the system is unsolvable. Other methods often rely on
some kind of preconditioning which leads to enclosure overestimation and for
some systems (e.g., those with wide intervals) can not be done. It is very diffi-
cult to develop one method suitable for all types of systems. We would like to
present a scheme – Subsquares approach – which enables us to develop meth-
ods for solving overdetermined interval linear systems. We will derive a simple
method according to this scheme. Then, we will derive an improved method. Both
are suitable for parallel computing. Before introducing the scheme and derived
methods, it would be desirable to start with some basic interval notation and
definitions first.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 613–622, 2014.
DOI: 10.1007/978-3-642-55195-6 58, c© Springer-Verlag Berlin Heidelberg 2014

614 J. Horáček and M. Hlad́ık

2 Basics of Interval Arithmetics

In this text we work with closed real intervals x = [x, x], where x ≤ x. The
numbers x, x are called the lower bound and upper bound respectively.

We will use intervals as coefficients of matrices and vectors during our com-
putations. The interval representation may be useful in many ways – it may rep-
resent uncertainty (e.g., lack of knowledge, damage of data), verification (e.g.,
errors in measurement), computational errors (e.g., rounding errors in floating
point arithmetic), etc. Intervals and interval vectors will be denoted in boldface,
i.e., x , b. Interval matrices will be denoted by bold capitals, i.e., A,C .

Another notion we will use is the midpoint of an interval x , it is defined as
xc = (x+x)/2. By Ac we will denote the midpoint matrix of A. When comparing
two intervals we need the notion width of an interval x defined as w(x) = x−x.
If u is an n-dimensional interval vector we will define “width” and “volume” of
u as

W(u) =
n∑

i=1

w(u i), V(u) =
n∏

i=1

w(u i),

respectively.
Vector and matrix operations will be defined using the standard interval

arithmetic, for definition of interval operations and further properties of the
interval arithmetic do not hesitate to see e.g. [5].

We continue with definitions connected with interval linear systems. Let us
have an interval linear system Ax = b, where A is an m×n matrix. When m = n
we will call it a square system. When m > n we will call it an overdetermined
system. In the further text, when talking about an overdetermined system, we
will always use the notation Ax = b, where A is an m × n matrix.

It is necessary to state what do we mean by the solution set of an interval
linear system. It is the set

τ = {x | Ax = b for some A ∈ A, b ∈ b }.

We shall point out, that it is different from the interval least squares solution
set which is defined as

τlsq = {x | ATAx = AT b for some A ∈ A, b ∈ b }.

If a system has no solution, we call it unsolvable. The interval hull is an n-
dimensional box (aligned with axes) enclosing the solution set as tightly as pos-
sible. When we start using intervals in our computations (we have mentioned
its advantage already), many problems become NP-hard [4]. So is the problem
of finding the hull of the solution set [10]. It can be computed quite painfully
using, e.g., linear programming [3]. That is why we are looking for a little wider
n-dimensional box containing the hull. The tighter the better. We call it interval
enclosure. In an introduction section we named some methods for computing
interval enclosures of τ set. It can be proved that τ ⊆ τlsq. Therefore, we
can also use methods for computing the interval least squares as methods for

Subsquares Approach – A Simple Scheme 615

computing interval enclosures [3]. The routine verifylss from Matlab interval
toolbox Intlab uses this kind of approach. Because of using the interval least
squares this routine returns solution even if the whole system is unsolvable.

In this work we will provide numerical testing at various places in the text,
therefore we rather mention its parameters here. The testing will be done on
AMD Phenom II X6 1090T 3200 MHz, with 15.5 GB memory. We used Matlab
R2012b with toolbox for interval computation INTLAB v6 [11] and Versoft v10
[9] for verified interval linear programming.

All examples will be tested on random overdetermined systems. A random
system is generated in the following way. First, we generate a random solv-
able point overdetermined system. Coefficients are taken uniformly from interval
[−20, 20]. Then, we inflate the coefficients of this system to intervals of certain
width. The original point system is not necessarily a midpoint system of the new
interval system. Each of its coefficients is randomly shifted towards one of the
bounds of an interval in which it lies.

3 Subsquares Approach

By a square subsystem (we will also call it a subsquare) of an overdetermined
system we mean a system composed of some equations taken (without repetition)
from the original overdetermined system such that together they from a square
system. Some of the possibilities are shown in the Fig. 1. The rows represent
equations. For the sake of simplicity we will denote the square subsystem of
Ax = b created by equations i1, i2, . . . , in as A{i1,i2,...,in}x = b{i1,i2,...,in}. When
we use some order (e.g., dictionary order) of subsquares (here it does not depend
which one) the j-th system will be denoted Ajx = bj .

Let us suppose we can solve a square interval system efficiently and quickly.
We can take for example one of the following method – Jacobi method [5], Gauss-
Seidel method [5,6], Krawczyk method [5,6], etc. These methods usually can not
be applied to overdetermined systems. Nevertheless, we can use the fact that we
can solve the square systems efficiently together with the fact that the solution
set of an overdetermined interval system must lie inside the solution set of its
arbitrary subsquare. This follows from the fact that by removing some equations
from an overdetermined system we can only make the solution set of the smaller
system equal or larger (because we removed some restrictions).

When we chose some subsquares of an overdetermined system we can simply
provide an intersection of their solution enclosures or provide some further work.
We get a simple algorithm for solving overdetermined interval linear systems.
As a motivation for this approach let us take the randomly generated interval
system Ax = b (with rounded bounds), where

A =

⎡
⎢

[−0.8, 0.2] [−20.1, −19.5]
[−15.6, −15.2] [14.8, 16.7]
[18.8, 20.1] [8.1, 9.5]

⎣
⎤ , (1)

616 J. Horáček and M. Hlad́ık

Fig. 1. Various square subsystems

Fig. 2. Solution sets and hulls of subsquares (Color figure online)

b =

⎡
⎢

[292.1, 292.7]
[−361.9, −361.1]
[28.4, 30.3]

⎣
⎤ . (2)

In the Fig. 2 we can see the solution set and the hull of A{1,2}x = b{1,2} (red
color) and the same for A{2,3}x = b{2,3} (blue color). It can be seen that if we
provide intersection of the two hulls (or enclosures), the resulting enclosure of
the Ax = b solution set might get remarkably tighter.

Every method choosing subsquares from an overdetermined system and then
providing some further work over these subsquares we call subsquares method.
The principle of computing enclosure of solution set this way we call subsquares
approach.

3.1 Simple Algorithm

If we compute enclosures of square subsystems separately and then intersect
resulting enclosures, we get the simple Algorithm 1 for solving OILS.

Algorithm 1. Subsquares method – simple algorithm
Require: A, b
Ensure: enclosure x of the solution set of Ax = b

x = [−∈,∈]n

while not (terminal condition) do
choose randomly a subsquare of Ax = b
compute its enclosure x subsq

x := x ← x subsq

end while

Subsquares Approach – A Simple Scheme 617

Table 1. Simple subsq. method solving all subsquares – enclosures comparison

System av
⎥

W(xsubsq)

W(xhull)

⎦
av
⎥

V(xsubsq)

V(xhull)

⎦
av
⎥

W(xver)
W(xhull)

⎦
av
⎥

V(xver)
V(xhull)

⎦

5 × 3 1.0014 1.0043 1.1759 1.6502
9 × 5 1.0028 1.0140 1.1906 2.3831

13 × 7 1.0044 1.0316 1.2034 3.6733
15 × 9 1.0061 1.0565 1.1720 4.2902
25 × 21 1.0227 1.6060 1.0833 5.4266
30 × 29 1.0524 5.8330 1.0987 51.0466

Table 2. Simple subsq. method – unsolvability detection

System rad = 0.01 rad = 0.001 rad = 0.0001

15 × 10 2.1 2.0 2.0
25 × 21 2.2 2.0 2.0
35 × 23 2.2 2.0 2.0
50 × 35 2.4 2.0 2.0
73 × 55 2.9 2.1 2.0

100 × 87 7.1 2.1 2.0

This approach is a little bit naive, but it has its advantage. First, if we
compute enclosures of all possible square subsystems, we get really close to the
interval hull. The Table 1 shows the average ratios of widths and volumes of
enclosures x subsq, x ver returned by simple subsquares method and verifylss
compared to the interval hull xhull computed by linear programming. If we have
an m×n system, the number of all square subsystems is equal to

(
m
n

)
. However,

we can see that for n small or for n close to m the number
(
m
n

)
might not be

so large. That is why solving all subsquares pays off when systems are tall or
nearly-squared.

The second advantage is that Algorithm 1 can, in contrast to other methods,
often decide whether a system is unsolvable – if, in some iteration, the resulting
enclosure is empty after intersection, then the overdetermined system is unsolv-
able. The Table 2 shows average number of random subsquares chosen until the
unsolvability was discovered (empty intersection occurred). Each column rep-
resents systems of different coefficient radii. We can see that for systems with
relatively small intervals unsolvability was revealed almost immediately.

For most rectangular systems it is however not convenient to compute enclo-
sures of all or many square subsystems. The choice of subsquares and the solving
algorithm can be modified to be more economical and efficient.

3.2 Improved Algorithm

We wish to have a method that returns sharp enclosures, can reveal unsolvability
and is parallelizable. All can be done by the simple algorithm. However, there is
a problem – extremely long computation time for a general system.

618 J. Horáček and M. Hlad́ık

We would like to design an improved method, still using subsquares app-
roach, that can reduce the computation time and can work for more general
cases. First idea is choosing better strategy to “get together” various enclosures
of subsquares, not only intersection. We need an algorithm that allows to prop-
agate newly computed information faster. Second idea is selecting only some
subsquares, not all of them.

About the first idea. When we talk about immediate propagation of partially
computed solution, our mind can easily come to Gauss-Seidel iterative method
(GS). This method works for square interval systems. Let us have a square system
Cx = d . The method starts with an initial enclosure x (0). In k-th iteration each
entry of the current enclosure vector x (k−1) might be narrowed using the formula

x
(k)
i =

1
C ii

[
d i − (C i1x

(k)
1 + . . . + C i(i−1)x

(k)
i−1+

+ C i(i+1)x
(k−1)
i+1 + . . . + C inx

(k−1)
n)

]
∩ x

(k−1)
i .

Simply said, in each iteration this algorithm expresses x i from i-th equation of
Ax = b and intersects with the old value. It uses the newly computed values
immediately.

In our algorithm we will use GS iteration in a similar way for more square
subsystems simultaneously. Again, we start with some initial enclosure x (0). In
k-th iteration we provide k-th GS iteration step for all systems. The advantage of
this technique is that we express each variable according to formulas originating
from more systems. We expect the narrowing rate will be much better this way.
Similarly as in simple GS, if in some point of computation empty intersection
occurs, whole overdetermined system has no solution.

Iterative methods usually require a preconditioning. We will use the precon-
ditioning with A−1

c . There are still two yet not answered problems – initial enclo-
sure and terminal condition. To find x (0), we can take the resulting enclosure of
some other method. Or we can compute an enclosure of one square subsystem.
The algorithm will terminate after k-th iteration if e.g.

∀ i
∣
∣
∣ x

(k)
i − x

(k−1)
i

∣
∣
∣ < ω and

∣
∣
∣ x

(k)
i − x

(k−1)
i

∣
∣
∣ < ω,

for some small positive ω and i = 1, . . . , n.
About second idea. Now we would like to choose some subsystems. Here are

some desirable properties of the set of selected subsquares:

1. We do not want to have too many subsquares
2. We want to cover the whole overdetermined system by some subsquare
3. The overlap of subsquares is not too low, not too high
4. We take subsquares that narrow the resulting enclosure as much as possible

We can select subsquares randomly, but then we do not have the control over
this selection. This works fine, however, it is not clear how many subsquares
should we choose according to the size of the overdetermined system. Moreover,

Subsquares Approach – A Simple Scheme 619

experiments have shown that it is advantageous when subsquares overlap. That
is why we propose a different strategy.

First and second property can be solved by covering the system step by step
using some overlap parameter. About third property, experiments show that
taking overlap ≈ n/3 is a reasonable choice. Property four is a difficult task to
provide. We think deciding which systems to choose (in a favourable time) is
still an area to be explored. Yet randomness will serve us well. Among many
possibilities we tested, the following selection of subsystems worked well. During
our algorithm we divide numbers of equations of an overdetermined system into
two sets – Covered, which contains equations that are already contained in some
subsystems, and Waiting, which contains equations that are not covered yet. We
also use a parameter overlap to define the overlap of two subsequent subsquares.

The first subsystem is chosen randomly, other subsystems will be composed
of overlap equations with indices from Covered and n − overlap equations with
indices from Waiting. The last system is composed of all remaining uncovered
equations and then some already covered equations are added to form a square
system. This has described the Algorithm 2. The algorithm is not necessarily
optimal, it should serve as an illustration. The procedure randsel(n, S) selects n
random non-repeating numbers from the set S. The total number of subsquares
chosen by this algorithm is 1 +

⌈
m−n

n−overlap

⌉
.

The whole improved algorithm is summarized as Algorithm 3. The function
GS-iteration(Cx = d , y) applies one iteration of Gauss-Seidel method on the
(already preconditioned) subsquare Cx = d using y as initial enclosure. Method
has-converged() returns true if terminal condition (e.g., the one mentioned ear-
lier) is satisfied.

As we showed in [3], verifylss (using the interval least squares approach)
from INTLAB is one of the best and quite general method for overdetermined
systems that are solvable. That is why we wanted to compare our method with
this method. During our testing we realized verifylss works fine with small
intervals, however it is not too efficient when the intervals become relatively
large. We used enclosures returned by verifylss as inputs for the improved
method and tested if our algorithm was able to narrow them. The Table 3 shows
the results. Column rad shows radii of intervals of testing systems, we chose the
same radii for all coefficients of a system. We tested on 100 random systems.
For each system we chose 100 random subsquares sets and applied the improved
method on them. The fourth column shows average ratios of enclosure widths
of x subsq and x ver. If the ratio is 1, then we were not able to sharpen x ver. The
lower the number, the better narrowing of x ver by the improved method. Each
random selection of subsquares set usually produces a different ratio of enclosure
widths. The fifths collumn shows standard deviation. For each system we chose
one of the 100 subsquares sets that produces the best ratio. The sixth column
shows the average value of the best ratios found for each of 100 random systems.
Columns tver and tsubsq show computation times (in seconds) of verifylss and
the improved method respectively.

620 J. Horáček and M. Hlad́ık

Algorithm 2. Choosing square subsystems
Require: A, b, overlap
Ensure: set of subsquares of Ax = b

Systems ∀ ≥ {set of square subsystems}
Covered ∀ ≥ {numbers of covered equations by some subsystem}
Waiting ∀ {1, 2, . . . ,m} {numbers of equations to be covered}
Indices ∀ ≥ {numbers of equations of one subsquare}

while Waiting ∧= ≥ do
if Covered = ≥ then

Indices ∀ randsel(n, Waiting)

else if |Waiting| ≤ (n − overlap) then
Indices ∀ Waiting ∪ randsel(n − |Waiting|, Waiting)

else
Indices ∀ randsel(overlap, Covered) ∪ randsel(n−overlap, Waiting)

end if

Systems ∀ Systems ∪ {AIndicesx = bIndices}
Covered ∀ Covered ∪ Indices
Waiting ∀ Waiting \ Indices

end while
return Systems

The larger interval radii are, the more intensively our method sharpens
verifylss enclosures. When the interval radii are large it often happens that
verifylss returns infinite enclosure but when we use a different initial enclosure
and then apply our algorithm we get finite enclosure. The computation times of
the improved method are longer, but still not very demanding. We are dealing
with NP-hard problem and every improvement of enclosure (towards the hull)
might be more and more painfull.

3.3 Parallel Algorithm

The naive algorithm can be easily parallelized. All the square subsystems can
be solved in parallel and then all enclosures are intersected. We have only one
barrier at the end of computation.

If we take a look at computation times in the Table 3, we realize verifylss is
much faster. However, the time pay for gaining much precise enclosure using the
improved method is not too high. Moreover, even the improved algorithm can
be parallelized. Propagation of newly computed enclosure can be guaranteed
by sharing the currently computed enclosure vector x among processors as a
global variable. If we use Jacobi formula instead of Gauss-Seidel formula for one
iteration, the computation becomes of kind SIMD - single instruction multiple
data. Therefore it could be used even on GPUs – one pipeline narrows one

Subsquares Approach – A Simple Scheme 621

Algorithm 3. Subsquares method – improved version
Require: A, b, x (0)

Ensure: enclosure x of the solution set Ax = b
select k subsquares {A1x = b1, . . . ,Akx = bk} by Algorithm 2
x ∀ x (0)

converged ∀ false
while not converged do

for i = 1 to k do
x ∀ GS-iteration(Aix = bi, x)

end for
converged ∀ has-converged()

end while
return x

Table 3. Subsquare method shaving the verifylss enclosure

System Overlap rad av. rat best av. rat std tver tsubsq

15 × 10 3 0.01 0.9961 0.9677 0.0068 0.0043 0.0345
15 × 10 3 0.1 0.9778 0.8841 0.0316 0.0046 0.0472
15 × 10 3 0.25 0.8573 0.5851 0.1654 0.0071 0.0871
15 × 10 3 0.35 0.7495 0.3931 0.2285 0.0093 0.1287
25 × 13 5 0.01 0.9990 0.9862 0.0027 0.0045 0.0555
25 × 13 5 0.1 0.9924 0.9494 0.0126 0.0050 0.0770
25 × 13 5 0.25 0.9229 0.7111 0.0838 0.0089 0.1559
25 × 13 5 0.35 0.7563 0.3175 0.2366 0.0098 0.3476
37 × 20 7 0.01 0.9999 0.9964 0.0005 0.0065 0.0730
37 × 20 7 0.1 0.9964 0.9706 0.0063 0.0078 0.1109
37 × 20 7 0.25 0.8784 0.3197 0.1640 0.0147 0.4799
50 × 35 11 0.1 0.9708 0.7776 0.0478 0.0193 0.2939

variable from the interval enclosure vector, a bunch of pipelines computes over
one subsquare. Nevertheless, shared vector x might create a bottleneck. We
believe this could by prevented by the following behaviour of each pipeline.
When reading, each pipeline does not lock corresponding shared variable. After
each iteration it overwrites a shared variable only if it has better enclosure than
the one currently stored there. This is inspired with an observation, that in one
iteration not many computations over different subsquares improve the same
variable. However, we assume that there exist much more efficient ways how to
make parallel subsquares methods more efficient and memory collision avoiding.

4 Conclusion

In this paper we introduced a simple but efficient scheme – subsquares approach
– for enclosing the solution set of overdetermined interval linear systems. The
first method derived from this scheme was a little bit naive, but for tall or nearly-
square systems it was able to find almost the interval hull. The second method

622 J. Horáček and M. Hlad́ık

was a little bit more sophisticated but still quite simple. It worked well on interval
systems which coefficients were composed of wide intervals. This method was
able to significantly sharpen enclosures produced by verifylss Intlab routine.
Both methods were able to detect unsolvability of OILS. Moreover, they could
be easily parallelized. In the second method we choose the square subsystems
randomly, that is why sharpening produced by this method has variable results.
There is an open question whether for each OILS there exists a deterministically
chosen set of subsquares which gives the best possible enclosure, so we can avoid
the randomization.

Acknowledgement. Our research was supported by the grant GAČR P402/13/
10660S. Jaroslav Horáček was partially supported by the Grant Agency of the Charles
University (GAUK) grant no. 712912 and by GAUK no. SVV-2013–267313. Jaroslav
Horáček would like to thank to Jezci mix-research group for general support.

References

1. Hansen, E.R., Walster, G.W.: Solving overdetermined systems of interval linear
equations. Reliable Comput. 12(3), 239–243 (2006)

2. Hlad́ık, M., Daney, D., Tsigaridas, E.P.: An algorithm for addressing the real inter-
val eigenvalue problem. J. Comput. Appl. Math. 235(8), 2715–2730 (2011)

3. Horáček, J., Hlad́ık, M.: Computing enclosures of overdetermined interval linear
systems. Submitted to Reliable Computing, text available at http://arxiv.org/abs/
1304.4738 (2013)

4. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht
(1998)

5. Moore, R.E., Kearfott, R.B., Cloud, M.: Introduction to Interval Analysis. Society
for Industrial Mathematics, Philadelphia (2009)

6. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

7. Popova, E.D.: Improved solution enclosures for over- and underdetermined interval
linear systems. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005.
LNCS, vol. 3743, pp. 305–312. Springer, Heidelberg (2006)

8. Rohn, J.: Enclosing solutions of overdetermined systems of linear interval equa-
tions. Reliable Comput. 2(2), 167–171 (1996)

9. Rohn, J.: VERSOFT: Verification software in MATLAB / INTLAB, version 10.
http://uivtx.cs.cas.cz/∼rohn/matlab/ (2009)

10. Rohn, J., Kreinovich, V.: Computing exact componentwise bounds on solutions of
lineary systems with interval data is np-hard. SIAM J. Matrix Anal. Appl. 16(2),
415–420 (1995)

11. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.), Developments
in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)
http://www.ti3.tu-harburg.de/rump/

http://arxiv.org/abs/1304.4738
http://arxiv.org/abs/1304.4738
http://uivtx.cs.cas.cz/~rohn/matlab/
http://www.ti3.tu-harburg.de/rump/

Using Quadratic Approximations in an Interval
Method for Solving Underdetermined

and Well-Determined Nonlinear Systems

Bartfflomiej Jacek Kubica(B)

Institute of Control and Computation Engineering, Warsaw University of Technology,
Warsaw, Poland

bkubica@elka.pw.edu.pl

Abstract. This paper considers quadratic approximation as a narrow-
ing tool in an interval branch-and-prune method. We seek the roots of
such an approximate equation – a quadratic equation with interval para-
meters. Heuristics to decide, when to use the developed operator, are
proposed. Numerical results for some benchmark problems are presented
and analyzed.

Keywords: Nonlinear equations systems · Interval computations ·
Quadratic approximation · Interval quadratic equation · Heuristic

1 Introduction

In the paper [11] the author considered an interval solver for nonlinear systems –
targeted mostly at underdetermined equations systems – and its shared-memory
parallelization. In subsequent papers several improvements have been consid-
ered, including various parallelization tools [12] and using sophisticated tools
and heuristics to increase the efficiency of the solver [13]. As indicated in [13]
and [14], the choice of proper tools and the proper heuristic, for their selection
and parameterization, appeared to have a dramatic influence on the efficiency
of the algorithm.

2 Generic Algorithm

The solver uses interval methods.They are based on interval arithmetic opera-
tions and basic functions operating on intervals instead of real numbers (so that
result of an operation on numbers belong to the result of operation on inter-
vals, containing the arguments). We shall not define interval operations here;
the interested reader is referred to several papers and textbooks, e.g., [8,9,19].

The solver is based on the branch-and-prune (B&P) schema that can be
expressed by the following pseudocode:

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 623–633, 2014.
DOI: 10.1007/978-3-642-55195-6 59, c© Springer-Verlag Berlin Heidelberg 2014

624 B.J. Kubica

IBP (x(0); f)

+//+x(0) is the initial box, f(·) is the interval extension of the function f:Rn→R
m

// Lver is the list of boxes verified to contain a segment of the solution manifold
// Lpos is the list of boxes that possibly contain a segment of the solution manifold
L = Lver = Lpos = ∅ ;

x = x(0) ;
loop

process the box x, using the rejection/reduction tests ;
if (x does not contain solutions) then discard x ;
else if (x is verified to contain a segment of the solution manifold) then

push (Lver, x) ;

else if (the tests resulted in two subboxes of x: x(1) and x(2)) then

x = x(1) ;

push (L, x(2)) ;
cycle loop ;

else if (x is small enough) then push (Lpos, x) ;
if (x was discarded or stored) then

x = pop (L) ;
if (L was empty) then exit loop ;

else

bisect (x), obtaining x(1) and x(2);

x = x(1) ;

push (L, x(2)) ;
end if ;

end loop

end IBP

The “rejection/reduction tests”, mentioned in the algorithm are described in
previous papers (specifically [13] and [14]), i.e.:

– switching between the componentwise Newton operator (for larger boxes) and
Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

– the sophisticated heuristic to choose the bisected component [13],
– an initial exclusion phase of the algorithm (deleting some regions, not con-

taining solutions) – based on Sobol sequences [14].

Other possible variants (see, e.g., [11]) are not going to be considered.

3 Quadratic Approximations

3.1 Motivation

As stated above, the main tools used to narrow boxes in the branch-and-prune
process are various forms of the Newton operator. This operator requires the
computation of derivatives of (at least some of) the functions fi(·). This com-
putation – usually performed using the automatic difflerentiation process – is
relatively costly. Because of that, in [14] the author proposed a heuristic using
the Newton operator only for boxes that can be suspected to lie in the vicinity

Using Quadratic Approximations in an Interval Method 625

of a solution (or the solution manifold – in the underdetermined case). For other
areas we try to base on 0th-order information only, i.e., function values and not
gradients (or other derivatives). In [14] an “initial exclusion phase” was proposed,
when regions are deleted using Sobol sequences, inner solution of the tolerance
problem [19] and ε-inflation.

In [16] a similar approach (not using Sobol sequences, though) was consid-
ered for another problem – seeking Pareto sets of a multicriterion problem. Both
papers show that this approach can improve the branch-and-bound type algo-
rithms’ efficiency dramatically – at least for some problems.

However, as for some areas the Newton operators do not perform well, we can
try to use 2nd (or even higher) order information there. Obviously, this requires
Hesse matrix computations, which is very costly, but can be worthwhile.

3.2 Quadratic Approximation

Each of the functions fi(x1, . . . , xn) can be approximated by the 2nd order Taylor
polynomial:

x ∈ x → fi(x) ∈ fi(x̌) + g(x̌)T · (x − x̌) +
1
2

· (x − x̌)T · H(x) · (x − x̌), (1)

where g(·) and H(·) are interval extensions of the gradient and Hesse matrix of
fi(·), respectively.

By choosing a variable xj , we can obtain a univariate formula: x ∈ x →
fi(x) ∈ av2

j + b · v j + c, where vj = x − x̌j .
Obviously:

a =
1
2
Hjj(x),

b = gj(x̌) +
∑

k ∈=j

Hjk(x) · (xk − x̌k),

c =
1
2

∑

k ∈=j

(
gk(x̌) · (xk − x̌k) + Hjk(x) · (xk − x̌k)2

)

+
n∑

k=1,k ∈=j

n∑

l=k+1

Hjk(x) · (xk − x̌k) · (xl − x̌l).

3.3 Interval Quadratic Equations

A quadratic equation is a well-known equation type of the form ax2 + bx + c =
0. Methods of solving this equation in real numbers are common knowledge,
nowadays.

How can such methods be generalized to the case when a, b and c are intervals
and we have an interval x of possible values of the variable? Below, we present
two solutions: a straightforward one and a more sophisticated one, based on the
algorithm, described by Hansen [8].

626 B.J. Kubica

The Straightforward Approach. This approach is a simple (yet not näıve)
“intervalization” of the point-wise algorithm. It is provided by the author, but
it also resembles techniques of [6].

Please note, it is assumed that the interval a is either strictly positive or
strictly negative; for a = 0 the formulae for the quadratic equation do not make
sense – even using extended interval arithmetic is of little help.

So, as for the non-interval case, we start with computing the discriminant
of the equation: Δ = b2 − 4ac. If all possible values of Δ are guaranteed to
be negative, i.e., Δ < 0 then for no quadratic approximation can there be any
solutions, and we can discard the box x. Otherwise, we set: Δ ← Δ ∩ [0,+∞]
and compute the values:

x(1) =
−b − √

Δ

2a
, x(2) =

−b +
√

Δ

2a
. (2)

Please note, we cannot use the Viete formula x(1)x(2) = c
a to compute one of

the roots – c (and the other root) will often contain zero. However, we can use
the Viete formula for narrowing:

x(1) ← x(1) ∩ c
ax(2)

, x(2) ← x(2) ∩ c
ax(1)

. (3)

The two “interval solutions x(1) and x(2) can either be disjoint or not (if 0 ∈ Δ
then they always coincide, but for strictly positive Δ they can coincide, also).
Now we can have the following possibilities:

– two disjoint intervals, both having nonempty intersections with x – the domain
has been split, as for the Newton operator with extended arithmetic,

– two disjoint intervals, but only one of them has a nonempty intersection with
x – then we can contract the domain; if the interval solution belongs to the
interior of x, we can prove the existence of a solution (as for the Newton
operator),

– two coinciding intervals and at least one of them coincides with x – we narrow
the domain, but cannot prove the existence or uniqueness of a solution,

– intervals disjoint with x – then we can discard this area, obviously.

Hansen’s Approach. The book of Hansen and Walster [8] presents a sophis-
ticated and efficient approach to solve quadratic equations with interval coeffi-
cients. This approach is applicable if 0 ∈ a, also.

The essence is to consider upper and lower functions of f(x) = [f(x), f(x)]
and find x’s, where f(x) ≤ 0 ≤ f(x). It is assumed that a > 0; if it is not, we
can multiply both sides of the equation by (−1).

Please note, the upper and lower functions can be expressed as follows:

f(x) =
{

ax2 + bx + c for x ≥ 0
ax2 + bx + c for x < 0

, (4)

f(x) =
{

ax2 + bx + c for x ≥ 0
ax2 + bx + c for x < 0

. (5)

Using Quadratic Approximations in an Interval Method 627

The condition a > 0 implies that the upper function f(x) is convex. The
lower function can be either convex, concave or neither convex nor concave.

The algorithm can be presented as follows:

initialize the list S of points (represented by narrow intervals);
compute roots of f(x) and put them to the list S;
similarly, compute roots of f(x) and put them to the list S;
put −∞ and/or +∞ to S if f(x) ≤ 0 ≤ f(x) is fulfilled for these limits;
sort the list L with respect to lower bounds of the entries;
if (there are no entries in S) then the equation has no solutions;
if (there are exactly two entries in S: s1 and s2) then

the equation has one interval solution [s1, s2];
if (there are exactly four entries in S: s1, . . . , s4) then

the equation has two interval solutions: [s1, s2] and [s3, s4];
if (there are exactly six entries in S: s1, . . . , s6) then

the equation has three interval solutions: [s1, s2], [s3, s4] and [s5, s6];

In [8] it is specified that double roots should be stored twice on the list. Our
implementation does not distinguish the cases when the discriminant Δ > 0
or Δ = 0, as it would be very difficult from the numerical point of view. So,
the double root can be represented by two very close, probably coinciding, but
difflerent intervals.

Also, it is proven in the book that other numbers of solutions are not possible.
The case of three interval solutions can occur when f(x) is nonconvex and it has
four roots – two positive and two negative ones.

3.4 When to Use the Quadratic Approximation?

As stated above, crucial for designing successful interval algorithms is the choice
of a proper heuristic to choose, arrange and parameterize interval tools for a
specific box.

It seems reasonable to formulate the following advice a priori:

– not to use it when traditional (less costly) Newton operators, perform well,
– not to use it on too wide boxes – the ranges of approximations will grow at

least in a quadratic range with the size,
– probably, also not to use it on too narrow boxes – higher order Taylor models

do not have a better convergence than 1st order centered forms [18],
– if the Newton operator could not reduce one of the components as there were

zeros in both the nominator and the denominator of the formula (see, e.g.,
[13]); this indicates that the box might contain a singular (or near-singular)
point – we assume the Newton operator sets the flag singular in such a case.

In particular, the following heuristic appeared to perform well:

628 B.J. Kubica

heuristic_for_use_of_quadratic_approximation
perform the Newton operator of some type on x;
if (x was split or a solution has been verified) then return;
if (diameters of less than m components of x do not exceed the value

max
(
16.0
n , 1.0

)
) then return; // the box is too large

if (diameters of more than n − m components of x exceed the value
2.5
2+n) then return; // the box is too small

if (some component of x has been narrowed on both sides) then return;
for (k = 1; k ≤ m; ++k) do

if (the k-th equation has at least one quadratic term) then
compute the Hesse matrix of fk(·) on x;
compute the function value and gradient at the midpoint of x;
for each variable, compute coefficients a, b and c of the quadratic
approximation and try to solve the equation;

end if
end for
end heuristic_for_use_of_quadratic_approximation

The above procedure does not take singularities into account. We can modify it,
by changing the proper line to:

if (not singular and diameters of more than n − m components of x exceed
the value 2.5

2+n) then return;

Both versions of the heuristic will be called: “basic” and “singularity checking”
respectively, in the remainder.

4 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e., 8 Dual-
Core AMD Opterons 8218 with 2.6 GHz clock. The machine ran under control
of a Fedora 15 Linux operating system with the GCC 4.6.3, glibc 2.14 and the
Linux kernel 2.6.43.8.

The solver is written in C++ and compiled using GCC compiler. The C-XSC
library (version 2.5.3) [1] was used for interval computations. The parallelization
(8 threads) was done with TBB 4.0, update 3 [2]. OpenBLAS 0.1 alpha 2.2 [3]
was linked for BLAS operations.

According to previous experience (see [12]), 8 parallel threads were used to
decrease computation time. Please note that parallelization does not afflect the
number of iterations, but the execution time only.

The following test problems were considered.
The first one is called the Hippopede problem [11,17] – two equations in

three variables. Accuracy ε = 10−7 was set.
The second problem, called Puma, arose in the inverse kinematics of a 3R

robot and is one of typical benchmarks for nonlinear system solvers [4]. In the

Using Quadratic Approximations in an Interval Method 629

above form it is a well-determined (8 equations and 8 variables) problem with 16
solutions that are easily found by several solvers. To make it underdetermined
the two last equations were dropped (as in [11]). The variant with 6 equations
was considered in numerical experiments as the third test problem. Accuracy
ε = 0.05 was set.

The third problem is well-determined – it is called Box3 [4] and has three
equations in three variables. Accuracy ε was set to 10−5.

The fourth one is a set of two equations – a quadratic one and a linear one
– in five variables [7]. It is called the Academic problem. Accuracy ε = 0.05

The fifth problem is called the Brent problem – it is a well-determined
algebraic problem, supposed to be “difficult” [5]. Presented results have been
obtained for N = 10; accuracy was set to 10−7.

And the last one is a well-determined one – the well-known Broyden-banded
system [4,11]. In this paper we consider the case of N = 16. The accuracy
ε = 10−6 was set.

Results are given in Tables 1–4. The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, its gra-
dients and Hesse matrices evaluations,

– bisecs – the number of boxes bisections,
– preconds – the number of preconditioning matrix computations (i.e., per-

formed Gauss-Seidel steps),
– bis. Newt, del. Newt – numbers of boxes bisected/deleted by the Newton step,
– q.solv – the number of quadratic equations the algorithm was trying to solve,
– q.del.delta – the number of boxes deleted, because the discriminant of the

quadratic equation was negative,
– q.del.disj. – the number of boxes deleted, because the solutions of a quadratic

equation were disjoint with the original box,
– q.bisecs – the number of boxes bisected by the quadratic equations solving

procedure,
– pos.boxes, verif.boxes – number of elements in the computed lists of boxes

containing possible and verified solutions,
– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

5 Analysis of the Results

The proposed new version of our B&P algorithm resulted in an excellent speedup
for the Brent problem (for one of the algorithm versions – for the Hippopede
problem, also) and a significant one for Broyden16. For Puma6 the improve-
ment was marginal and for problems Box3 and Academic, the new algorithm
performed slightly worse than the version from [14]. It is worth noting that for
the Academic problem, although the computation time was slightly worse, the
accuracy was a bit better.

630 B.J. Kubica

Table 1. Computational results for the algorithm version from [14]

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 440450 3620757 2387475 5568107 43399916 2894815943
grad.evals 502708 3162744 2278533 4776696 65109780 835991376
Hesse evals — — — — — —
bisections 115947 263181 379718 1193829 2822816 25765546
preconds 219599 447788 523947 2165486 2709154 8542793
bis. Newt. 13 99 27 92 432298 357371
del. Newt. 24209 53491 236390 208841 441141 18290280
pos.boxes 43210 184888 0 886722 473 0
verif.boxes 17069 2520 1 91 805 1
Leb.poss. 8e-18 3e-9 0.0 0.028 9e-82 0.0
Leb.verif. 0.003 3e-7 1e-25 1e-5 3e-69 4e-137
time (s) <1 4 2 8 86 2752

Table 2. Computational results for the algorithm version using the quadratic approx-
imation as described in Sect. 3

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 240659 3509119 2365265 5652078 43055720 2670617370
grad.evals 271652 3103980 2297800 4850533 64434484 787247696
Hesse evals 44 3786 32734 2547 7134 4135728
bisections 60353 257957 377474 1211743 2788715 24112367
preconds 119833 442924 523643 2197282 2672319 8736413
bis. Newt. 9 103 27 58 432276 358069
del. Newt. 14130 52539 235653 212840 439606 17048221
q.solv. 81 7480 65327 12691 19577 22768329
q.del.delta 0 0 0 0 0 9634
q.del.disj. 0 8 135 0 92 11924
q.bisecs 0 4 0 0 23 698
pos.boxes 21254 181240 0 898837 476 0
verif.boxes 9230 2424 1 88 803 1
Leb.poss. 4e-18 2e-9 0.0 0.027 9e-82 0.0
Leb.verif. 0.005 3e-7 1e-25 7e-6 3e-69 3e-137
time (s) <1 4 2 7 87 2627

It seems, it is difficult to improve the performance of the algorithm, using
the 2nd order information – yet possible, at least for some problems.

It is worth noting that the algorithm cannot improve the performance on
bilinear problems – like the Rheinboldt problem, considered in the author’s ear-
lier papers (e.g., [11,13,14]). In such cases, we can try to transform the problem
using symbolic techniques, e.g., the Gröbner basis theory (see, e.g., [15] and the
references therein), but performance of this approach has yet to be investigated.

Using Quadratic Approximations in an Interval Method 631

Table 3. Computational results for the algorithm version using the quadratic approx-
imation solved by the Hansen method [8] and the basic heuristic

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 243336 3385431 2206661 5662094 42671592 2263804495
grad.evals 274676 2941828 2160304 4859064 63752945 691351646
Hesse evals 46 3586 29890 2822 5945 464702
bisections 60912 244445 355031 1213849 2757100 21219462
preconds 121182 417284 494074 2200090 2638126 5865559
bis. Newt. 10 111 28 46 429876 368942
del. Newt. 14174 52131 220406 212714 436998 14621392
q.solv. 87 7152 238676 14100 16410 2517097
q.del.delta 0 0 0 0 0 7915
q.del.disj. 0 8 105 0 91 7465
q.bisecs 1 4 0 0 83 11571
pos.boxes 21288 171496 0 900178 473 0
verif.boxes 9546 2384 1 100 804 1
Leb.poss. 4e-18 3e-9 0.0 0.027 9e-82 0.0
Leb.verif. 0.005 3e-7 1e-25 7e-6 3e-69 3e-137
time (s) <1 4 2 7 84 2304

Table 4. Computational results for the algorithm version using the Hansen method
[8] and the singularity checking version of the heuristic

Problem Hippopede Puma6 Box3 Academic Brent10 Broyden16

fun. evals 556401 3314879 1959329 5612877 18681704 2251193535
grad.evals 635136 2927917 2036653 4870740 18875731 673122158
Hesse evals 1034 28890 539611 54090 571691 666926
bisections 150912 241173 249471 1203934 606847 20641684
preconds 277789 413004 411630 2179986 257325 5077374
bis. Newt. 7 111 26 43 307988 370729
del. Newt. 35268 50611 243524 2041267 318117 14409198
q.solv. 2063 57624 1079109 270431 1537925 3608072
q.del.delta 0 0 0 0 107 14095
q.del.disj. 0 144 107 0 20346 11195
q.bisecs 1 4 0 3 15847 13642
pos.boxes 65184 168944 0 897399 394 0
verif.boxes 11392 1920 1 99 811 1
Leb.poss. 5e-18 3e-9 0.0 0.027 2e-83 0.0
Leb.verif. 0.002 6e-9 1e-25 8e-6 2e-48 2e-144
time (s) <1 4 3 7 31 2251

Performance of the method for the Hippopede problem is surprising – the
algorithm version using the straightforward approach is the best there and the
“singularity checking” heuristic version performs the worst. This remains to
be carefully investigated in the future.

632 B.J. Kubica

6 Conclusions

The proposed additional tool for interval branch-and-prune procedures, using
quadratic approximations, allows us to improve the performance for some prob-
lems. The obtained improvement was minor for some cases, but significant,
e.g., for the Broyden-banded problem and dramatic for the hard Brent prob-
lem. When the use of this tool is crucial, is going to be the subject of future
research.

References

1. C-XSC interval library. http://www.xsc.de
2. Intel Threading Building Blocks. http://www.threadingbuildingblocks.org
3. OpenBLAS library. http://xianyi.github.com/OpenBLAS/
4. Non-polynomial nonlinear system benchmarks. https://www-sop.inria.fr/coprin/

logiciels/ALIAS/Benches/node2.html
5. Difficult benchmark problems. http://www-sop.inria.fr/coprin/logiciels/ALIAS/

Benches/node6.html
6. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Con-

straints 15(3), 404–429 (2010)
7. Goldsztejn, A., Jaulin, L.: Inner and outer approximations of existentially quan-

tified equality constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp.
198–212. Springer, Heidelberg (2006)

8. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

9. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

10. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-
ryck, P.: Standardized notation in interval analysis. http://www.mat.univie.ac.at/
∼neum/software/int/notation.ps.gz (2002)

11. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations
systems. SCAN 2008 Proceedings. Reliable Comput. 15(3), 207–217 (2011).

12. Kubica, B.J.: Shared-memory parallelization of an interval equations systems solver
- comparison of tools. Pr. Nauk Politech. Warszawskiej. Elektron. 169, 121–128
(2009)

13. Kubica, B.J.: Tuning the multithreaded interval method for solving underdeter-
mined systems of nonlinear equations. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp.
467–476. Springer, Heidelberg (2012)

14. Kubica, B. J.: Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems. Presented ta SCAN2012 Conference, submit-
ted to Reliable Computing.

15. Kubica, B.J., Malinowski, K.: An interval global optimization algorithm combining
symbolic rewriting and componentwise Newton method applied to control a class
of queueing systems. Reliable Comput. 11(5), 393–411 (2005)

16. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking Pareto sets
of multi-criteria problems. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS,
vol. 7782, pp. 504–517. Springer, Heidelberg (2013)

http://www.xsc.de
http://www.threadingbuildingblocks.org
http://xianyi.github.com/OpenBLAS/
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node2.html
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node6.html
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node6.html
http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz
http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

Using Quadratic Approximations in an Interval Method 633

17. Neumaier, A.: The enclosure of solutions of parameter-dependent systems of equa-
tions. In: Moore, R. (ed.) Reliability in Computing. Academic Press, San Diego
(1988)

18. Neumaier, A.: Taylor forms - use and limits. Reliable Comput. 9, 43–79 (2003)
19. Shary, S. P.: Finite-difference Interval Analysis. XYZ (2010) (in Russian)

The Definition of Interval-Valued
Intuitionistic Fuzzy Sets in the

Framework of Dempster-Shafer Theory

Ludmila Dymova(B) and Pavel Sevastjanov

Institute of Computer and Information Science, Czestochowa University
of Technology, Dabrowskiego 73, 42-200 Czestochowa, Poland

dymowa@icis.pcz.pl

Abstract. In this report, a critical analysis of conventional operations
on interval-valued intuitionistic fuzzy values (IV IFV s) and their applica-
bility to the solution of multiple criteria decision making (MCDM) prob-
lems in the interval-valued intuitionistic fuzzy setting are presented. It
is shown that the classical definition of Atanassov’s interval-valued intu-
itionistic fuzzy set (A-IV IFS) may lead to controversial results. There-
fore, a new more constructive definition of A-IV IFS is proposed. It is
shown that this new definitions makes it possible to present IV IFV s in
the framework of interval-extended Dempster-Shafer theory of evidence
(DST) as belief intervals with bounds presented by belief intervals.

Keywords: Interval-valued intuitionistic fuzzy values · Interval extended
zero method · Interval-extended Dempster-Shafer theory

1 Introduction

Intuitionistic fuzzy set proposed by Atanassov [1], abbreviated here as A-IFS
(the reasons for this are presented in [10]), is one of the possible generaliza-
tions of Fuzzy Sets Theory which currently is used mainly for solving multiple
criteria decision making problems [7,13] and group decision making problem
[15,16] when the values of local criteria (attributes) of alternatives and/or their
weights are intuitionistic fuzzy values (IFV s). The concept of A-IFS is based
on the simultaneous consideration of membership μ and non-membership ν of
an element of a set to the set itself [1]. It is postulated that 0 ≤ μ + ν ≤ 1.

Interval-Valued Intuitionistic Fuzzy Sets (A-IV IFS), were introduced in
[2,3] as an interval extension of A-IFS. The fundamental characteristic of A-
IV IFS is that the values of its membership and non-membership functions
are intervals rather than exact numbers. Atanassov [4,5] defined some oper-
ations and relations concerning A-IV IFS. Xu and Chen [22] proposed the
interval-valued intuitionistic fuzzy weighted averaging operator for aggregation
of interval-valued intuitionistic fuzzy values, and gave an application to MCDM
with interval-valued intuitionistic fuzzy information. In [20,21], the complete set

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 634–643, 2014.
DOI: 10.1007/978-3-642-55195-6 60, c© Springer-Verlag Berlin Heidelberg 2014

The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework 635

of arithmetical operations on IV IFV s (including the operations of IV IFV s
comparison) and based on them interval-valued intuitionistic fuzzy weighted
averaging and weighted geometric operators was proposed.

Since different definitions of operations on IFV s and their aggregation were
proposed in the literature (see, for example [6,11]), in our recent paper [12] we
analysed their merits and drawbacks and extracted those of them that provide
the results of operations on IFV s and aggregation with acceptable properties.
As a result, a new set of operations on IFV s in the framework of DST was
proposed in [12].

As the classical A-IFS is an asymptotic case of A-IV IFS when interval-
valued membership and non-membership functions contract to points [3], we
can expect that undesirable properties of classical operations on IFV s revealed
in [6,12] should be the same for operations on IV IFV s presented in [20,21].

For these reasons the rest of this paper is set out as follows. Section 2 presents
the basic definition of A-IV IFS, the commonly used arithmetical operations on
IV IFV s, IFV s and the methods for their comparison. The undesirable proper-
ties of these operations presented in [6,12] and some new ones revealed recently
are analysed. In Sect. 3, we provide a critical analysis of commonly used basic
definition of A-IV IFS proposed in [3] to elicit its disadvantages which may lead
to controversial results and propose a new more constructive definition of A-
IV IFS. We show that this new definition makes it possible to present IV IFV s
in the framework of interval-extended DST as belief intervals with bounds pre-
sented by belief intervals. Finally, the concluding section summarises the paper.

2 The Basic Definitions of Interval-Valued Intuitionistic
Fuzzy Set Theory

In [3], Atanassov and Gargov defined A-IV IFS as follows.

Definition 1. Let X be a finite universal set. Then an interval-valued intuition-
istic fuzzy set Ã in X is an object having the form

Ã = {≥x,MÃ(x), NÃ(x)∈ |x ∞ X } , (1)

where MÃ(x) ≈ [0, 1] and NÃ(x) ≈ [0, 1] are intervals such that for all x ∞ X

supMÃ(x) + supNÃ(x) ≤ 1. (2)

Hereinafter, we shall deal with IV IFV s. Therefore we shall use the following
notation for IV IFV A:

A =
〈
[μL

A, μU
A], [νL

A, νU
A]

〉
, (3)

where [μL
A, μU

A] and [νL
A, νU

A] are interval valued degrees of membership and non-
membership to A.

636 L. Dymova and P. Sevastjanov

The complete set of operations on IV IFV s is presented in [20,21] as follows:

A ∧ B =
〈
[μL

A + μL
B − μL

AμL
B , μU

A + μU
B − μU

AμU
B], [νL

AνL
B, νU

AνU
B]

〉
, (4)

A ∃ B =
〈
[μL

AμL
B , μU

AμU
B], [νL

A + νL
B − νL

AνL
B , νU

A + νU
B − νU

AνU
B]

〉
, (5)

λA =
〈
[1 − (1 − μL

A)λ, 1 − (1 − μU
A)λ], [(νL

A)λ, (νU
A)λ]

〉
, (6)

Aλ =
〈
[(μL

A)λ, (μU
A)λ], [1 − (1 − νL

A)λ, 1 − (1 − νU
A)λ]

〉
, (7)

where λ > 0.
Let A1, A2, . . . , An be IV IFV s representing the values of n local criteria for

some alternative and w1, w2, . . . , wn be the real-valued weights of local criteria

such that wi > 0, i = 1 to n and
n∑

i=1

wi = 1.

Then based on the operations (4)–(7), the following interval-valued intu-
itionistic weighted arithmetic mean IV IWAM and interval-valued intuitionistic
weighted geometric mean IV IWGM operators were obtained [20,21]:

IV IWAM(A1, A2, ..., An) =
〈[

1 −
n∏

i=1

(1 − μL
Ai

)wi , 1 −
n∏

i=1

(1 − μU
Ai

)wi

]

,

[
n∏

i=1

(νL
Ai

)wi ,

n∏

i=1

(νU
Ai

)wi

]〉

, (8)

IV IWGM(A1, A2, ..., An) =
〈[

n∏

i=1

(μL
Ai

)wi ,

n∏

i=1

(μU
Ai

)wi

]

,

[

1 −
n∏

i=1

(1 − νL
Ai

)wi , 1 −
n∏

i=1

(1 − νU
Ai

)wi

]〉

. (9)

To compare IV IFV s, the so-called score S(A) and accuracy H(A) functions
were introduced in [20] as follows:

S(A) =
μL

A + μU
A − νL

A − νU
A

2
, S(A) ∞ [−1, 1], (10)

H(A) =
μL

A + μU
A + νL

A + νU
A

2
, H(A) ∞ [0, 1]. (11)

Then order relations between any pair of IV IFV s A and B were presented in
[20] as follows:

If (S(A) > S(B)), thenB is smaller thanA;
If (S(A) = S(B)), then
(1) If (H(A) = H(B)), thenA = B;
(2) If (H(A) < H(B)) thenA is smaller thanB.

(12)

It was proved in [20,21] that the operations (4)–(7) provide IV IFV s and have
the following algebraic properties:

The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework 637

Let A and B be IV IFV s. Then

A ∧ B = B ∧ A, (13)

A ∃ B = B ∃ A, (14)

λ(A ∧ B) = λA ∧ λB, (15)

(A ∃ B)λ = Aλ ∃ Bλ, (16)

λ1A ∧ λ2A = (λ1 + λ2)A, λ1, λ2 > 0, (17)

Aλ1 ∃ Aλ2 = Aλ1+λ2 , λ1, λ2 > 0. (18)

In the asymptotic case when μL
A → μU

A and νL
A → νU

A , IV IFV A reduces to the
ordinary IFV a: A → a = ≥μa, νa∈ and therefore from the above set of operations
on IV IFV s (4)–(12) we obtain the set of classical operations on ordinary IFV s:

a ∧ b = ≥μa + μb − μaμb, νaνb∈ , (19)

a ∃ b = ≥μaμb, νa + νb − νaνb∈ . (20)

λa =
〈
1 − (1 − μa)λ, νλ

a

〉
, (21)

aλ =
〈
μλ

a , 1 − (1 − νa)λ
〉
, (22)

where λ > 0.

IWAM = w1a1 ∧ w2a2 ∧ ... ∧ wnan =

〈

1 −
n∏

i=1

(1 − μai
)wi ,

n∏

i=1

νwi
ai

〉

. (23)

IWGM = awi
1 ∃ awi

2 ... ∃ awn
n =

〈
n∏

i=1

μwi
ai

, 1 −
n∏

i=1

(1 − νai
)wi

〉

, (24)

S(a) = μa − νa, S(a) ∞ [−1, 1], (25)

H(a) = μa + νa, H(a) ∞ [0, 1]. (26)

If (S(a) > S(b)), then b is smaller than a;
If (S(a) = S(b)), then
(1) If (H(a) = H(b)), then a = b;
(2) If (H(a) < H(b)) then a is smaller than b.

(27)

It was proved in [19] that operations (19)–(22) provide IFV s and have good
algebraic properties (13)–(18). Nevertheless, in [12] we showed that operation
(19)–(24) and (27) have some undesirable properties which may lead to the non-
acceptable results in applications:

638 L. Dymova and P. Sevastjanov

1. The addition (19) is not an addition invariant operation. Let a, b and c be
IFV s. Then a < b (according to (27)) does not always lead to (a ∧ c) <
(b ∧ c).

2. The operation (21) is not preserved under multiplication by a real-valued
λ > 0, i.e., inequality a < b (in sense of (27)) does not necessarily imply
λa < λb.

3. An important problem with the aggregation operation (23) is that it is not
consistent with the aggregation operation on the ordinary fuzzy sets (when
μ = 1 − ν). This can be easily seen from the following example.

Example 1. Let A = ≥0.1, 0.9∈, B = ≥0.9, 0.1∈ and w1 = w2 = 0.5. It is easy to
see that A and B are IF representations of ordinary fuzzy numbers. Then in the
framework of ordinary fuzzy sets, we get Ordinary Weighted Arithmetic Mean
OWAM = w1μA + w2μB = 0.5 · 0.1 + 0.5 · 0.9 = 0.5 and in the framework of
A-IFS from (23), we obtain IWAM = ≥0.7, 0.3∈. We can see that the resulting
value of μ obtained using IWAM is considerably greater than that obtained
from OWAM .

4. Another problem with the aggregation operation (23) is that it is not monotone
with respect to the ordering (27). Let a, b and c be IFV s. Then b > c > a
(in sense of (27)) does not always lead to IWAM(b, a) > IWAM(c, a).
Recently we found some undesirable properties of operations (20) and (24):

5. The multiplication (20) is not always monotone with respect to the ordering
(27). Consider an example:

Example 2. Let a = ≥0.4, 0.5∈, b = ≥0.35, 0.44∈, c = ≥0.001, 0.999∈. Then S(a) =
−0.1, S(b) = −0.09 and therefore according to (27) we get b > a. On the other
hand, a ∃ c = ≥0.401, 0.9995∈, b ∃ c = ≥0.351, 0.99944∈, S(a ∃ c) = −0.5985,
S(b ∃ c) = −0.64844. Therefore S(a ∃ c) > S(b ∃ c) and a ∃ c > b ∃ c opposite
to b > a.

6. The aggregation operation (24) is not monotone with respect to the ordering
(27). Consider an example: Let a = ≥0.4, 0.5∈, b = ≥0.35, 0.44∈, c = ≥0.1, 0.9∈,
w1 = 0.3, w2 = 0.7. Since S(a) = −0.1 and S(b) = −0.09 we get b > a. hand,
since IWGM(a, c) = ≥0.15155, 0.83795∈, IWGM(b, c) = ≥0.1456, 0.83235∈,
S(IWGM(a, c)) = −0.6864 and S(IWGM(a, b)) = −0.6868 we have
IWGM(a, c) > IWGM(b, c) opposite to the b > a.

As the classical A-IFS is the asymptotic case of A-IV IFS when interval-
valued membership and non-membership functions contract to points [3], we can
expect that undesirable properties of classical operations on IFV s presented
above should be the same for operations on IV IFV s from [20,21] presented in
this section.

3 The New Definitions of IV IFV

3.1 A New Definition of IV IFV in the Framework of A-IFS

First of all we shall analyse the commonly used definition of A-IV IFS (and
IV IFV as well), proposed by Atanassov and Gargov [3] (see Definition 1 above)

The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework 639

and reveal its drawbacks. As a result, a new more constructive definition will
be proposed. It is implicitly assumed in Definition 1 that the upper bound of
IV IFV A =

〈[
μL

A, μU
A

]
,
[
νL

A, νU
A

]〉
, is an ordinary IFV , i.e, μU

A + νU
A ≤ 1. If so,

there will be a hesitation degree πU
A at the upper bound of A such that μU

A +
νU

A +πU
A = 1. It is easy to see that in that case all other possible combinations of

μA, νA, πA in the intervals [μL
A, μU

A], [νL
A, νU

A], [πL
A, πU

A] provide μA +νA +πA < 1.
Therefore, there is only one IFV at the upper bound of IV IFV A. This a first
obvious drawback of Definition 1.

Let us consider A = ≥[0.6, 0.7] , [0.1, 0.25]∈. Since μU
A + νU

A = 0.7 + 0.25 =
0.95 < 1, then according to the Definition 1, A is a correct IV IFV . On the
other hand, on the bounds of A we have the following values of score functions
S(A)U = μU

A − νU
A = 0.45, S(A)L = μL

A − νL
A = 0.5. Since S(A)L > S(A)U , then

according to the rule (27) the lower bound of considered IV IFV A is greater
that its upper bound. Obviously, such result have no reasonable explanations.

It is easy to see that the Definition 1 says nothing about the left bound of
IV IFV . To overcome this problem, currently the following formal approach is
used (see, for example [18,23]):

If A is IV IFV then A =
〈[

μL
A, μU

A

]
,
[
νL

A, νU
A

]
,
[
πL

A, πU
A

]〉
, where πU

A = 1 −
μL

A − νL
A, πL

A = 1 − μU
A − νU

A . It is easy to show that such approach provides
wrong results. Let us consider A = ≥[0.3, 0.6] , [0.1, 0.2]∈. Since μU

A + νU
A = 0.6 +

0.2 = 0.8 < 1, then according to the Definition 1, A is a correct IV IFV . On the
other hand πU

A = 1−μL
A − νL

A = 1− 0.3− 0.1 = 0.6 and πL
A = 1−μU

A − νU
A = 1−

0.6−0.2 = 0.2. Then μU
A +νU

A +πU
A = 1.4. Therefore the upper bound of IV IFV

A is not a correct IFV . In our opinion, the above problem is based on faulty
treatment of interval arithmetic rules. The expressions for calculation of πU

A and
πL

A are implicitly based on the assumption that [μL
A, μU

A]+[νL
A, νU

A]+[πL
A, πU

A] = 1.
Since in the left hand side of this expression we have an interval and in the right
hand side we have a real value, then an equality is impossible. Taking into
account the above analysis, here we introduce a new definition of IV IFV such
that the upper and lower bound of IV IFV will always be ordinary IFV s and
upper bound will always be greater than a lower one in sense of rule (27).

Definition 2. Let X be a finite universal set. Then an interval-valued intuition-
istic fuzzy set Ã in X is an object having the form

Ã = {≥x,MÃ(x), NÃ(x)∈ |x ∞ X } , (28)

where MÃ(x) ≈ [0, 1] and NÃ(x) ≈ [0, 1] are intervals such that for all x ∞ X

supMÃ(x) + inf NÃ(x) ≤ 1, inf MÃ(x) + sup NÃ(x) ≤ 1. (29)

The definition for IV IFV is obtained from Definition 2 as follows.

Definition 3. An interval-valued intuitionistic fuzzy value A is an object having
the form

A =
〈[

μL
A, μU

A

]
,
[
νL

A, νU
A

]〉
, (30)

640 L. Dymova and P. Sevastjanov

where μL
A, μU

A, νL
A, νL

A ∞ [0, 1] and

μL
A + νU

A ≤ 1, μU
A + νL

A ≤ 1. (31)

It is easy to see that
〈
μU

A, νL
A

〉
is the maximal (in sense of rule (27)) IFV attain-

able in A =
〈[

μL
A, μU

A

]
,
[
νL

A, νU
A

]〉
. Therefore

〈
μU

A, νL
A

〉
is the upper bound of

IV IFV . Similarly,
〈
μL

A, νU
A

〉
is the lower bound of IV IFV A. It is easy to see

that the upper bound of such IV IFV is always not lesser of its lower bound in
sense of rule (27) and these bounds are correct IFV s. It is clear that for any
correct IFV ≥μ, ν∈ such that μ ∞ [

μL
A, μU

A

]
and ν ∞ [

νL
A, νU

A

]
we have

〈
μL

A, νU
A

〉

≤ ≥μ, ν∈ ≤ 〈
μU

A, νL
A

〉
.

So it is implicitly assumed that IV IFV is a set of correct IFV s bounded
according to the Definition 3. This is in compliance with a practice of obtaining
IV IFV s in many real-world situations and seems to be justified enough from
methodological point of view. Really, when we are dealing with intervals, they
should have the left bounds that are lesser than right ones. If we analyse real-
valued intervals, then they should consist of real values. If we introduce integer-
valued intervals, then they should consist of integer numbers. Similarly, IV IFV s
should be intervals consist of only IFV s.

3.2 A New Definition of IV IFV in the Framework of
Interval-Extended DST

At first, we present a brief description of some fundamentals of DST needed for
the subsequent analysis.

The origins of the Dempster-Shafer theory go back to the work by A.P. Demp-
ster [8,9] who developed a system of upper and lower probabilities. Following
this work his student G. Shafer [14] included in his 1976 book “A Mathematical
Theory of Evidence” a more thorough explanation of belief functions.

Below we provide an introduction to basic ideas of this theory. Assume A is
a subset of X. It is important to note that a subset A may be treated also as
a question or proposition and X as a set of propositions or mutually exclusive
hypotheses or answers [17]. A DST belief structure has associated with it a
mapping m, called basic assignment function (or mass assignment function),
from subsets of X into a unit interval, m : 2X → [0, 1] such that m(∅) = 0,∑

A∈X

m(A) = 1. The subsets of X for which the mapping does not assume a zero

value are called focal elements.
In the framework of classical Dempster-Shafer approach, it is assumed that

the null set is never a focal element. In [14], Shafer introduced a number of mea-
sures associated with DST belief structure. The measure of belief is a mapping
Bel : 2X → [0, 1] such that for any subset B of X

Bel(B) =
∑

≥◦=A∈B

m(A). (32)

The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework 641

It is shown in [14] that m can be uniquely recovered from Bel. A second measure
introduced by Shafer [14] is a measure of plausibility. The measure of plausibility
associated with m is a mapping Pl : 2X → [0, 1] such that for any subset B of X

Pl(B) =
∑

A≤B ◦=≥
m(A). (33)

It is easy to see that Bel(B) ≤ Pl(B). DST provides an explicit measure of
ignorance about an event B and its complementary B as a length of an interval
[Bel(B),Pl(B)] called the belief interval (BI). It can also be interpreted as an
interval enclosing the “true probability” of B [14].

The above information of DST is quite enough for the presentation of A-
IFS in terms of DST . Firstly, we show that in the framework of DST the
triplet μA(x), νA(x), πA(x) represents the basic assignment function. Really,
when analysing any situation in context of A-IFS, we implicitly deal with the
following three hypotheses: x ∞ A, x /∞ A and the situation when both the
hypotheses x ∞ A, x /∞ A can not be rejected (the case of hesitation). In the
spirit of DST , we can denote these hypotheses as Y es (x ∞ A), No (x /∞ A) and
(Y es,No) (the case of hesitation when both the hypotheses x ∞ A and x /∞ A
can not be rejected).

In this context, μA(x) may be treated as the probability or evidence of x ∞ A,
i.e., as the focal element of the basic assignment function: m(Y es) = μA(x).
Similarly, we can assume that m(No) = νA(x). Since πA(x) is usually treated as
a hesitation degree, a natural assumption is m(Y es,No) = πA(x). Taking into
account that μA(x)+νA(x)+πA(x) = 1 we come to the conclusion that the triplet
μA(x), νA(x), πA(x) represents a correct basic assignment function. According to
the DST formalism we get BelA(x) = m(Y es) = μA(x) and PlA(x) = m(Y es)+
m(Y es,No) = μA(x) + πA(x) = 1 − νA(x).

Therefore IFV A(x) = ≥μA(x), νA(x)∈ may be represented as follows: A(x) =
BIA(x) = [BelA(x), P lA(x)] = [μA(x), 1 − νA(x)] (see [11,12] for more detailed
and formal definitions).

At first glance, this definition seems to be a simple redefinition of A-IFS in
terms of Interval Valued Fuzzy Sets, but in [11,12] we showed that using DST
semantics it is possible to enhance the performance of A-IFS when dealing with
the operations on IFV s and MCDM problems. Based on the described above
link between A-IFS and DST , the Definition 2 can be rewritten as follows:

Definition 4. Let X be a finite universal set. Then an interval-valued intuition-
istic fuzzy set Ã in X is an object having the form

Ã = {≥x, [BIÃ(x)]∈ |x ∞ X } , (34)

where
[BIÃ(x)] =

[
BIL

Ã
(x), BIU

Ã
(x)

]
(35)

is the belief interval with bounds presented by the belief intervals:

BIL
Ã(x) = [inf MÃ(x), 1 − sup NÃ(x)] , BIU

Ã (x) = [sup MÃ(x), 1 − inf NÃ(x)] , (36)

642 L. Dymova and P. Sevastjanov

where MÃ(x) ≈ [0, 1] and NÃ(x) ≈ [0, 1] are intervals such that for all x ∞ X

supMÃ(x) + inf NÃ(x) ≤ 1, inf MÃ(x) + supNÃ(x) ≤ 1. (37)

The definition for IV IFV is obtained from Definition 4 as follows.

Definition 5. An interval-valued intuitionistic fuzzy value A is an object having
the form

A = [BIA] =
[
BIL

A, BIU
A

]
, (38)

where

BIL
A =

[
BelLA, P lLA

]
=
[
μL
A, 1 − νU

A

]
, BIU

A =
[
BelUA , P lUA

]
=
[
μU
A, 1 − νL

A

]
, (39)

μL
A, μU

A, νL
A, νL

A ∞ [0, 1] and

μL
A + νU

A ≤ 1, μU
A + νL

A ≤ 1. (40)

It is important that according to the last definition all intervals
[BI] =

[
BIL, BIU

]
with bounds presented by correct belief intervals such that

BIU ≥ BIL may be treated as IV IFV s. Since in the above definitions we have
introduced belief intervals bounded by belief intervals (BIBBI), we can say that
in our case, we are dealing with the someway interval-extended version of DST .
We do not intend to develop here the whole interval-extended DST and restrict
ourselves only by consideration of BIBBI.

Since in [12] we obtained the complete set of operations on IFV s in the
framework of DST , which are free of the drawbacks of classical operation laws
of A-IFS, our future work will be focused on the obtaining the set of operations
on IV IFV s in the framework of interval-extended DST which is free of the
described above drawbacks of the classical approach.

4 Conclusion

This report is devoted to the critical analysis of the commonly used definition
of interval-valued intuitionistic fuzzy sets (A-IV IFS) and the operations on the
interval-valued intuitionistic fuzzy values (IV IFV s). It is shown that this defi-
nition leads to the controversial results and the classical operations on IV IFV
have some undesirable properties.

Therefore, a new more constructive definition of A-IV IFS is proposed. It
is shown that this new definition makes it possible to present IV IFV s in the
framework of interval-extended Dempster-Shafer theory of evidence (DST) as
belief intervals with bounds presented by belief intervals. In [12], we obtained
the complete set of operations on IFV s in the framework of DST , which are
free of the drawbacks of classical operation laws of A-IFS. Therefore, our future
work will be focused on the obtaining the set of operations on IV IFV s in the
framework of interval-extended DST which is free of the drawbacks of classical
approach.

The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework 643

References

1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
2. Atanassov, K.: Review and new results on intuitionistic fuzzy sets. Preprint IM-

MFAIS-1-88, Sofia (1988)
3. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets

Syst. 31, 343–349 (1989)
4. Atanassov, K.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets

Syst. 61, 137–142 (1994)
5. Atanassov, K.: Operators over interval-valued intuitionistic fuzzy sets. Fuzzy Sets

Syst. 64, 159–174 (1994)
6. Beliakov, G., Bustince, H., Goswami, D.P., Mukherjee, U.K., Pal, N.R.: On aver-

aging operators for atanassov’s intuitionistic fuzzy sets. Inf. Sci. 182, 1116–1124
(2011)

7. Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems
based on vague set theory. Fuzzy Sets Syst. 67, 163–172 (1994)

8. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping.
Ann. Math. Stat. 38, 325–339 (1967)

9. Dempster, A.P.: A generalization of bayesian inference (with discussion). J. Royal
Stat. Soc. Ser. B 30(2), 208–247 (1968)

10. Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological diffi-
culties in fuzzy set theory-the case of “intuitionistic fuzzy sets”. Fuzzy Sets Syst.
156, 485–491 (2005)

11. Dymova, L., Sevastjanov, P.: An interpretation of intuitionistic fuzzy sets in terms
of evidence theory. decision making aspect. Knowl.-Based Syst. 23, 772–782 (2010)

12. Dymova, L., Sevastjanov, P.: The operations on intuitionistic fuzzy values in the
framework of dempster-shafer theory. Knowl.-Based Syst. 35, 132–143 (2012)

13. Hong, D.H., Choi, C.-H.: Multicriteria fuzzy decision-making problems based on
vague set theory. Fuzzy Sets Syst. 114, 103–113 (2000)

14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

15. Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in decision making. Notes IFS
2, 15–32 (1996)

16. Szmidt, E., Kacprzyk, J.: Remarks on some applications on intuitionistic fuzzy sets
in decision making. Notes IFS 2, 22–31 (1996)

17. Vasseur, P., Pegard, C., Mouad, E., Delahoche, L.: Perceptual organization app-
roach based on dempster-shafer theory. Pattern Recogn. 32, 1449–1462 (1999)

18. Wang, Z., Li, K.W., Xu, J.: A mathematical programming approach to multi-
attribute decision making with interval-valued intuitionistic fuzzy assessment infor-
mation. Expert Syst. Appl. 38, 12462–12469 (2011)

19. Xu, Z.: Intuitionistic preference relations and their application in group decision
making. Inf. Sci. 177, 2363–2379 (2007)

20. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15,
1179–1187 (2007)

21. Xu, Z.: Methods for aggregating interval-valued intuitionistic fuzzy information
and their application to decision making. Control and Decision 22, 215–219 (2007)

22. Xu, Z., Chen, J.: Approach to group decision making based on interval-valued
intuitionistic judgement matrices. Syst. Eng. Theory Pract. 27, 126–133 (2007)

23. Yue, Z.: An approach to aggregating interval numbers into interval-valued intu-
itionistic fuzzy information for group decision making. Expert Syst. Appl. 38,
6333–6338 (2011)

Interval Finite Difference Method for Solving
the Problem of Bioheat Transfer Between Blood

Vessel and Tissue

Malgorzata A. Jankowska(B)

Institute of Applied Mechanics, Poznan University of Technology,
Jana Pawla II 24, 60-965 Poznan, Poland
malgorzata.jankowska@put.poznan.pl

Abstract. The paper concerns a problem of bioheat transfer between
a single large blood vessel and a surrounding tissue. On the basis of
the conventional finite difference scheme with the appropriate trunca-
tion error terms included, the interval finite difference method is pro-
posed. The interval values that contain the local truncation error of the
conventional scheme can be approximated in the way described.

Keywords: Interval finite difference method · Interval arithmetic ·
Vessel model of bioheat transfer · Uncertain values of parameters

1 Introduction

Studies of heat transfer in biological systems are still intensively carried out.
Unquestionably, the most significant system for distribution of heat throughout
the body is the cardiovascular system with blood that transport heat. One of
many problems discussed in this research area is the one that concerns the heat
transfer in the perfused tissue surrounding a single blood vessel of a large diam-
eter (see, e.g. Chato 1980; Huang et al. 1994; Majchrzak and Mochnacki 1999;
2001; Majchrzak 2011). For such an issue the mathematical models can be pro-
posed and then the problems solved with some computational method. As we
know, conventional numerical methods usually used for solving initial-boundary
value problems with governing equations given by ordinary or partial differential
equations (ODE, PDE), do not allow for taking into account the uncertain val-
ues of parameters present in a problem formulation. Moreover, the errors of the
conventional methods are also neglected. The objective of the paper is to propose
an interval finite difference scheme for solving the bioheat transfer problem con-
sidered. Such interval method provides interval solutions that include the exact
solution of the problem. Its computer implementation in the floating-point inter-
val arithmetic (see, e.g. Jankowska 2010), together with the representation of the
initial data in the form of machine intervals, allows to obtain interval solutions
that contain all possible numerical errors. Note that such interval approaches for
solving some initial-boundary value problems were also used in e.g. (Jankowska
and Sypniewska-Kaminska 2012, 2013) and (Marciniak and Szyszka 2013).

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 644–655, 2014.
DOI: 10.1007/978-3-642-55195-6 61, © Springer-Verlag Berlin Heidelberg 2014

Interval Finite Difference Method for Solving the Problem 645

2 The Bioheat Transfer Problem

Now we provide a mathematical formulation of the model that concerns the
bioheat transfer in the perfused tissue in the presence of a single large blood
vessel (see, e.g. Chato 1980; Huang et al. 1994; Majchrzak and Mochnacki 1999;
2001; Majchrzak 2011). The initial value problem that describes the change of
the blood temperature along the vessel axis is coupled with the boundary value
problem that concerns the temperature distribution in the tissue. Both problems
are given in an original dimensional form, as in e.g. (Majchrzak 2011) and then
in the non-dimensional one. Finally, we submit some general form for which the
conventional and interval finite difference schemes are presented in Sect. 3.

Following, e.g. (Huang et al. 1994; Majchrzak 2011), we first consider the ordi-
nary differential equation that describes the temperature distribution of blood
flowing with a given velocity vB in a vessel of length L (see Fig. 1). The cross-
section of the blood vessel is assumed to be a circle of a radius equal to R1. The
temperature of blood at entrance is wB0 and it serves as an initial condition for
the governing equation. We have

dwB

dx
(x) =

2α

cBρBvBR1
(ww (x) − wB (x)) +

Q̇Bmet

cBρBvB
, 0 < x < L,

wB (0) = wB0,
(1)

where wB = wB (x) denotes the average temperature of blood in the vessel, x
is a spatial coordinate that describes the position in the vessel, ww = ww (x) is
the temperature of the vessel wall, α [W/(m2·K)] is the coefficient of convection
heat transfer between blood and tissue, cB [J/(kg·K)] is the specific heat of
blood, ρB [kg/m3] is the mass density of blood, vB [m/s] is the velocity of blood,
Q̇Bmet [W/m3] is the metabolic volumetric heat generation rate in the vessel.
Note that a unit of measurement for the temperature is Kelvin [K] and for the
length is meter [m]. Furthermore, the unknown values of the temperature in (1)
are wB = wB (x) and ww = ww (x), respectively.

On the other hand, the temperature distribution in the tissue surrounding a
single blood vessel can be described by the boundary value problem of the form

λ
d2w

dr2
(r) +

λ

r

dw

dr
(r) + cBρBGB (wa − w (r)) + Q̇met = 0, R1 < r < R2,

λ
dw

dr
(R1) = α (w (R1) |x − wB (x)) , w (R2) = wt,

(2)

where w = w (r) denotes the temperature in the tissue, r is a radial coordi-
nate that describes the distance from a vessel axis, λ [W/(m·K)] is the thermal
conductivity of the tissue, GB [1/s] is the blood perfusion coefficient, wa is the
temperature of blood in aorta, wt is the temperature of the tissue at the posi-
tion r = R2, Q̇met [W/m3] is the metabolic volumetric heat generation rate in
the tissue. Note that λ = κcρ, where κ [m2/s] denotes the thermal diffusivity
of the tissue and c, ρ – the specific heat and the mass density of the tissue,
respectively. Moreover, GB = WB/ρB, where WB [kg/(m3·s)] denotes the blood

646 M.A. Jankowska

Fig. 1. A diagram of a single blood vessel surrounded by the tissue.

perfusion rate per unit volume of the tissue. The unknown value of the tem-
perature in (2) is w = w(r). The governing equations in (1), (2) are coupled
and we have ww(x) = w(R1)|x. Moreover, we use the notation w = w(r)|x to
underline that we consider the temperature of the tissue in the position x along
the vessel axis.

Subsequently, we make use of two kinds of vessel models as proposed in e.g.
(Huang et al. 1994). In the first case (a traversing vessel model), a large blood
vessel merely traverses through the perfused tissue. Hence, the temperature wa

of the blood in aorta is assumed to remain constant. We take wa = wB0. Then,
we analyze a supplying vessel model. It assumes that the temperature wa of the
blood in aorta is equal to the bulk temperature of the blood flowing in the vessel
(also called a supplying vessel). Hence, we have wa = wB(x). Now we transform
the Eqs. (1), (2) to the non-dimensional form. We define new coordinates in the
following way

uB(ξ) = (wB(x) − wref)/wref , u(ρ) = (w(r) − wref)/wref ,
ξ = x/L, ρ = r/R2,

(3)

where wref denotes some reference value of the temperature. Hence, for the initial
value problem (1) we obtain

duB

dξ
(ξ) = g1B (uw (ξ) − uB (ξ)) + g2B, 0 < ξ < 1,

uB (0) = uB0,
(4)

where

uB0 =
wB0 − wref

wref
, g1B =

2αL

cBρBvBR1
, g2B =

Q̇BmetL

cBρBvBwref
. (5)

Then, for the boundary value problem (2) we get

d2u

dρ2
(ρ) +

1
ρ

du

dρ
(ρ) + g1 (ua − u (ρ)) + g2 = 0, ρmin < ρ < 1,

du

dρ
(ρmin) = g3 (u (ρmin) |ξ − uB (ξ)) , u (1) = ut,

(6)

Interval Finite Difference Method for Solving the Problem 647

where

g1 =
R2

2cBρBGB

λ
, g2 =

R2
2Q̇met

λwref
= ⎧̇Qmet = Os, g3 =

αR2

λ
= Bi,

ut =
wt − wref

wref
, ρmin =

R1

R2
,

(7)

and Os denotes the Ostrogradsky number and Bi – the Biot number. Finally, if
values of the material parameters of the tissue, i.e. κ, c, ρ, are known, then the
non-dimensional parameter g1 can be determined with another formula

g1 = ⎧cB⎧ρB ⎧GB, ⎧cB = cB/c, ⎧ρB = ρB/ρ, ⎧GB =
⎨
R2

2GB

⎩
/κ. (8)

Note that for the governing equations in (4) and (6) we have uw(ξ) = u(ρmin)|ξ.
Subsequently, we use a general form of (1), (2), (4) and (6) given as follows

⎜
⎫

⎬

duB

dx
(x) = α1B (uw (x) − uB (x)) + α2B, 0 < x < xmax,

uB (0) = uB0,
(9)

⎜
⎭⎭⎫

⎭⎭⎬

d2u

dr2
(r) +

1
r

du

dr
(r) + α1 (ua − u (r)) + α2 = 0, b < r < c,

du

dr
(b) = A (u(b)|x − uB (x)) , u (c) = ut,

(10)

where uw(x) = u(b)|x. Note that values of the parameters α1B, α2B, xmax, uB0,
as well as α1, α2, ua, b, c, A, ut can be calculated on the basis of the formulas
describing a given problem in the dimensional or non-dimensional form.

3 Interval Finite Difference Scheme for Solving the
Bioheat Transfer Problem

Now we present some conventional finite difference method for solving the bio-
heat problem considered. It is partly based on the scheme proposed in
Majchrzak (2011). Finally, its interval counterpart is introduced.

3.1 Conventional Finite Difference Method

The approach based on finite differences requires generation of mesh points.
Hence, we choose positive integers m, n. Then, we find the stepsizes k = xmax/m,
h = (c − b) /n and the grid points such that

xj = jk, j = 0, 1, . . . ,m, ri = b + ih, i = 0, 1, . . . , n.

Now we express the terms of the governing equation in (10) at the grid points ri

d2u (ri)
dr2

+
1
ri

du (ri)
dr

+ α1 (ua − u (ri)) + α2 = 0, (11)

648 M.A. Jankowska

where ua depends on the vessel model used. We take ua = uB0 for a traversing
vessel and ua = uB(xj) for a supplying vessel, respectively.

Then, we use the central finite difference formulas of the second order,
together with the appropriate local truncation errors, for d2u/dr2(ri) and du/dr
(ri) in (11). Hence, for j = 0, 1, . . . ,m, we have

d2u (ri)
dr2

=
u (ri−1) − 2u (ri) + u (ri+1)

h2
− h2

12

d4u
⎞
ξ
(1)
ji

⎠

dr4
, (12)

du (ri)
dr

=
u (ri+1) − u (ri−1)

2h
− h2

6

d3u
⎞
ξ
(2)
ji

⎠

dr3
, (13)

where ξ
(1)
ji , ξ

(2)
ji ∈ (ri−1, ri+1) |xj

and u = u(ri)|xj
. If we insert (12), (13) to (11),

then we obtain

λiu (ri−1) + βu (ri) + ⎧λiu (ri+1) = −γ1ua + γ2 + R̂ji, (14)
i = 1, 2, . . . , n − 1,

where λi = 1 − h/ (2ri), ⎧λi = 1 + h/ (2ri), β = −2 − α1h
2, γ1 = α1h

2, γ2 =
−α2h

2,

R̂ji =
h4

12

d4u
⎞
ξ
(1)
ji

⎠

dr4
+

1
ri

h4

6

d3u
⎞
ξ
(2)
ji

⎠

dr3
. (15)

For the boundary conditions in (10), we have

du (r0)
dr

= A
⎨
u (r0) |xj

− uB (xj)
⎩
, u (rn) = ut. (16)

We use the forward finite difference formula of the second order, together with
the appropriate local truncation error, for du/dr(r0) in (16)1. We get

(3 + 2Ah) u (r0) − 4u (r1) + u(r2) = 2AhuB(xj) +
2h3

3

d3u
⎞
ξ
(3)
j

⎠

dr3
, u (rn) = ut,

(17)
where ξ

(3)
j ∈ (r0, r1) |xj

, j = 0, 1, ...,m.
Secondly, we consider the initial value problem (9). We express the terms of

the governing equation at the grid points xj . Hence, we get

duB

dx
(xj) = α1B (uw (xj) − uB (xj)) + α2B. (18)

First, we use the forward finite difference formula of the first order, together
with the appropriate local truncation error, for duB/dx (x0) in (18). We obtain

uB (x1) + (α1Bk − 1) uB (x0) − α1Bkuw (x0) = α2Bk +
k2

2
d2uB (η0)

dx2
, (19)

Interval Finite Difference Method for Solving the Problem 649

where η0 ∈ (x0, x1) and uw(x0) = u(b)|x0 . Then, we use the central finite differ-
ence formula of the second order, together with the appropriate local truncation
error, for duB/dx(xj), j = 1, 2, . . . , m − 1, in (18). We have

uB (xj+1) + 2α1BkuB (xj) − uB (xj−1) = 2k(α1Buw (xj) + α2B)

+
k3

3
d3uB (ηj)

dx3
, j = 1, 2, . . . ,m − 1,

(20)

where ηj ∈ (xj−1, xj+1), uw(xj) = u(b)|xj
. Finally, from the initial condition in

(9) we have uB(x0) = uB0 for j = 0.
Consider the formulas (14), (15), (17) and (19), (20). The unknown values

of the temperature are u(ri)|xj
, i = 0, 1, . . . , n, j = 0, 1, . . . ,m and uB(xj), j =

1, 2, . . . ,m. They can be easily calculated, if we solve the system of (m+1)(n+2)
linear equations with the same number of unknowns (where the initial condition
uB(x0) = uB0 is also included in the system), given by the matrix representation
of the form

Cu = ÊC + ÊL, (21)

where

C =

⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

D 0 0 0 . . . 0 0 0 0

G D 0 0 . . . 0 0 0 0

V H D 0 . . . 0 0 0 0

0 V H D . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . D 0 0 0

0 0 0 0 . . . H D 0 0

0 0 0 0 . . . V H D 0

0 0 0 0 . . . 0 V H D

, u =

⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

u0

u1

u2

u3

...
um−3

um−2

um−1

um

, (22)

uj =
[
uB(xj), u(r0)|xj

, u(r1)|xj
, . . . , u(rn)|xj

]T
, j = 0, 1, . . . ,m, (23)

ÊC = [eC0, eC1, eC2, . . . , eCm]T , ÊL = [eL0, eL1, eL2, . . . , eLm]T , (24)

and
dim D = dim G = dim H = dim V = (n + 2) × (n + 2).

The matrices of coefficients G, H and V are all the sparse matrices. The only
nonzero values of elements are g00 = α1Bk − 1, g01 = −α1Bk, h00 = 2α1Bk,
h01 = −2α1Bk and v00 = −1.

Now let us consider the vectors eLj , j = 0, 1, . . . ,m. Their components
include the local truncation error terms of the conventional finite difference
schemes at each mesh point. They depend on the stepsizes h and k, values

650 M.A. Jankowska

of some derivatives of u and uB at the midpoints and also the distances ri|xj

from the vessel axis. We have

eL0 =

⎢

0,
2
3
h3

d3u
⎞
ξ
(3)
0

⎠

dr3
, R̂01, R̂02, . . . , R̂0 n−1, 0

T

,

eL1 =

⎢

k2

2
d2uB (η0)

dx2
,

2
3
h3

d3u
⎞
ξ
(3)
1

⎠

dr3
, R̂11, R̂12, . . . , R̂1 n−1, 0

T

, (25)

eLj =

⎢

k3

3
d3uB (ηj−1)

dx3
,

2
3
h3

d3u
⎞
ξ
(3)
j

⎠

dr3
, R̂j1, R̂j2, . . . , R̂j n−1, 0

T

,

j = 2, 3, . . . ,m.

Finally, we focus on the coefficients of the matrix D and the vectors eCj ,
j = 0, 1, . . . , m. As we can see in (14), their values depend on the vessel model
considered. In the case of a traversing vessel we have

D =

⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 . . . 0 0 0 0
−2Ah 3 + 2Ah −4 1 . . . 0 0 0 0

0 λ1 β ⎧λ1 . . . 0 0 0 0
0 0 λ2 β . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . β ⎧λn−3 0 0
0 0 0 0 . . . λn−2 β ⎧λn−2 0
0 0 0 0 . . . 0 λn−1 β ⎧λn−1

0 0 0 0 . . . 0 0 0 1

, (26)

eC0 = [uB0, 0, γ, γ, . . . , γ, ut]
T

, eC1 = [α2Bk, 0, γ, γ, . . . , γ, ut]
T

,

eCj = [2α2Bk, 0, γ, γ, . . . , γ, ut]
T

, j = 2, 3, . . . ,m,
(27)

where γ = −(α1uB0 + α2)h2. On the other hand, in the case of a supplying
vessel, we obtain

D =

⎢

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1 0 0 0 . . . 0 0 0 0
−2Ah 3 + 2Ah −4 1 . . . 0 0 0 0

γ1 λ1 β ⎧λ1 . . . 0 0 0 0
0 γ1 λ2 β . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . β ⎧λn−3 0 0
0 0 0 0 . . . λn−2 β ⎧λn−2 0
0 0 0 0 . . . γ1 λn−1 β ⎧λn−1

0 0 0 0 . . . 0 0 0 1

, (28)

Interval Finite Difference Method for Solving the Problem 651

eC0 = [uB0, 0, γ2, γ2, . . . , γ2, ut]
T

, eC1 = [α2Bk, 0, γ2, γ2, . . . , γ2, ut]
T

,

eCj = [2α2Bk, 0, γ2, γ2, . . . , γ2, ut]
T

, j = 2, 3, . . . ,m.
(29)

Remark 1. Let uji and uBj approximate u(ri)|xj
and uB(xj), respectively. If we

also omit the local truncation error terms given in (14), (15), (17) and (19), (20)
(which entails neglecting all the components of the vectors eLj , j = 0, 1, . . . ,m),
then we get the conventional finite difference method for solving the bioheat
transfer problem considered.

3.2 Interval Finite Difference Method

Now we propose the interval finite difference method for solving a given bioheat
transfer problem. It is based on the finite difference schemes together with the
appropriate local truncation error terms.

The main assumption that has to be made concerns values of the derivatives
(at some unknown midpoints) that appear in the terms of the local truncation
error. Hence, for the interval approach we assume that there exist the intervals
S
(1)
ji , S

(2)
ji , S

(3)
j , Q(1) and Q

(2)
j , such that the following relations hold

d4u

dr4

⎞
ξ
(1)
ji

⎠
∈ S

(1)
ji =

[
S
(1)
ji , S

(1)

ji

]
,

d3u

dr3

⎞
ξ
(2)
ji

⎠
∈ S

(2)
ji =

[
S
(2)
ji , S

(2)

ji

]
, (30)

ξ
(1)
ji , ξ

(2)
ji ∈ (ri−1, ri+1) |xj

, i = 1, 2, . . . , n − 1, j = 0, 1, . . . ,m,

d3u

dr3

⎞
ξ
(3)
j

⎠
∈ S

(3)
j =

[
S
(3)
j , S

(3)

j

]
, (31)

ξ
(3)
j ∈ (r0, r1) |xj

, j = 0, 1, . . . ,m,

d2uB

dx2
(η0) ∈ Q(1) =

[
Q(1), Q

(1)
]
, η0 ∈ (x0, x1) , (32)

d3uB

dx3
(ηj) ∈ Q

(2)
j =

[
Q(2)

j
, Q

(2)

j

]
, (33)

ηj ∈ (xj−1, xj+1) , j = 1, 2, . . . ,m − 1.

Taking into account the relations (30)–(33) in the formulas (14), (15), (17)
and (19), (20), respectively, we obtain the appropriate interval finite difference
schemes. The system of (m+1)(n+2) interval linear equations obtained, can be
given in the similar matrix form as for the conventional approach. We have

CU = EC + EL, (34)

where

U = [U0, U1, U2, . . . , Um]T , Uj = [UBj , Uj0, Uj1, . . . , Ujn]T , j = 0, 1, . . . ,m,
(35)

652 M.A. Jankowska

EC = [EC0, EC1, EC2, . . . , ECm]T , EL = [EL0, EL1, EL2, . . . , ELm]T , (36)

EL0 =
[

0,
2
3
h3S

(3)
0 , ⎧R01, ⎧R02, . . . , ⎧R0 n−1, 0

]T

,

EL1 =
[
k2

2
Q(1),

2
3
h3S

(3)
1 , ⎧R11, ⎧R12, . . . , ⎧R1 n−1, 0

]T

, (37)

ELj =
[
k3

3
Q

(2)
j−1,

2
3
h3S

(3)
j , ⎧Rj1, ⎧Rj2, . . . , ⎧Rj n−1, 0

]T

, j = 2, 3, . . . ,m,

and
⎧Rji =

h4

12
S
(1)
ji +

1
Ri

h4

6
S
(2)
ji . (38)

The components of the vectors ECj , j = 0, 1, . . . ,m, depend on the vessel model
considered. In the case of a traversing vessel we have

EC0 = [UB0, 0, γ, γ, . . . , γ, Ut]
T

, EC1 = [α2Bk, 0, γ, γ, . . . , γ, Ut]
T

,

ECj = [2α2Bk, 0, γ, γ, . . . , γ, Ut]
T

, j = 2, 3, . . . , m,
(39)

and in the case of a supplying vessel, we obtain

EC0 = [UB0, 0, γ2, γ2, . . . , γ2, Ut]
T

, EC1 = [α2Bk, 0, γ2, γ2, . . . , γ2, Ut]
T

,

ECj = [2α2Bk, 0, γ2, γ2, . . . , γ2, Ut]
T

, j = 2, 3, . . . ,m.
(40)

Note that Xj , j = 0, 1, . . . ,m, Ri, i = 0, 1, . . . , n and Ut are intervals such
that xj ∈ Xj , ri ∈ Ri, ut ∈ Ut. Furthermore, we assume that for the temperature
of the blood at entrance uB(0) and the temperature of the wesel wall uw(xj), we
have uB(0) = uB0 ∈ UB0 and uw(xj) = u(b)|xj

∈ Uwj = Uj0, respectively.

Remark 2. We assume that the local truncation error of the conventional finite
difference schemes concerning both the tissue and the blood vessel, can be
bounded by the appropriate intervals (i.e. the relations (30)–(33) hold). If uB(x0)
∈ UB0, ut ∈ Ut, xj ∈ Xj , j = 0, 1, . . . ,m, ri ∈ Ri, i = 0, 1, . . . , n and the system
of interval linear equations (34) can be solved with some direct method, then
we can prove that for the interval solutions obtained, we have uB(xj) ∈ UBj ,
j = 1, 2, . . . ,m and u(ri)|xj

∈ Uji, j = 0, 1, . . . ,m, i = 0, 1, . . . , n.

3.3 Approximation of the Error Term

Note that it is still an open problem how to compute the endpoints of the inter-
vals S

(1)
ji , S

(2)
ji , S

(3)
j , Q(1) and Q

(2)
j . In general, we deal with the similar question

in the case of any initial-boundary value problem based on finite differences.
In this Section, we propose the same method of the endpoints approximation
as in e.g. (Jankowska and Sypniewska-Kaminska 2012; 2013). Such an approach
does not guarantee that the exact solution belongs to the interval solution com-
puted. Nevertheless, the numerical experiments, performed in e.g. (Jankowska

Interval Finite Difference Method for Solving the Problem 653

and Sypniewska-Kaminska 2012; 2013) for the problems with known analytical
solutions, confirmed that the interval solutions obtained include the exact ones.

First, we consider the relations (30) with ξ
(1)
ji , ξ

(2)
ji ∈ (ri−1, ri+1)|xj

. We can

choose the endpoints S
(1)
ji , S

(1)

ji and S
(2)
ji , S

(2)

ji as

S
(1)
ji ≈ min

⎞
S
(1)∗
j i−1, S

(1)∗
ji , S

(1)∗
j i+1

⎠
, S

(1)

ji ≈ max
⎞
S
(1)∗
j i−1, S

(1)∗
ji , S

(1)∗
j i+1

⎠
,(41)

S
(2)
ji ≈ min

⎞
S
(2)∗
j i−1, S

(2)∗
ji , S

(2)∗
j i+1

⎠
, S

(2)

ji ≈ max
⎞
S
(2)∗
j i−1, S

(2)∗
ji , S

(2)∗
j i+1

⎠
,(42)

where

S
(1)∗
ji =

d4u

dr4
(ri) |xj

, S
(2)∗
ji =

d3u

dr3
(ri) |xj

. (43)

For the relation (31) with ξ
(3)
j ∈ (r0, r1)|xj

, we choose the endpoints S
(3)
j , S

(3)

j

as
S
(3)
j ≈ min

⎞
S
(3)∗
j 0 , S

(3)∗
j 1

⎠
, S

(3)

j ≈ max
⎞
S
(3)∗
j 0 , S

(3)∗
j 1

⎠
(44)

where

S
(3)∗
ji =

d2u

dr2
(ri) |xj

, i = 0, 1. (45)

Finally, we consider the relation (32) with η0 ∈ (x0, x1) and the relation (33)
with ηj ∈ (xj−1, xj+1). We choose the endpoints Q(1), Q

(1)
and Q(2)

j
, Q

(2)

j , as

Q(1) ≈ min
⎞
Q

(1)∗
0 , Q

(1)∗
1

⎠
, Q

(1) ≈ max
⎞
Q

(1)∗
0 , Q

(1)∗
1

⎠
, (46)

Q(2)

j
≈ min

⎞
Q

(2)∗
j−1 , Q

(2)∗
j , Q

(2)∗
j+1

⎠
, Q

(2)

j ≈ max
⎞
Q

(2)∗
j−1 , Q

(2)∗
j , Q

(2)∗
j+1

⎠
, (47)

where

Q
(1)∗
j =

d2uB

dx2
(xj) , j = 0, 1, Q

(2)∗
j =

d3uB

dx3
(xj) . (48)

Remark 3. Before we use the interval method for solving the bioheat transfer
problem considered with the approximation of the endpoints of the error term
intervals, the preliminary stage of computing approximate values of the temper-
ature with the conventional methods described in Sect. 3.1 is required. We obtain
uji that approximate u(ri)|xj

for the tissue and uBj that approximate uB(xj)
for the blood, where uB0 is known. After that we can approximate values of
d4u(ri)/dr4|xj

and d3u(ri)/dr3|xj
given in (43)1 and (43)2 with the appropriate

finite differences (FD) of the second order in the following way: the forward FD
formula for i = 1, 2; the central FD formula for i = 3, 4, . . . , n − 3; the backward
FD formula for i = n − 2, n − 1. Then, we can apply the forward FD formula of
the second order for the approximation of d2u(ri)/dr2|xj

given in (45). In the
case of the derivative d2uB(xj)/dx2 in (48)1 we can use the forward FD formula
of the second order. Finally, we approximate d3uB(xj)/dx3 given in (48)3 with
the FD formulas of the second order as follows: the forward FD formula for
j = 1, 2; the central FD for j = 3, 4, . . . ,m − 3; the backward FD formula for
j = m − 2,m − 1.

654 M.A. Jankowska

4 Numerical Experiment

For the present numerical experiment we choose values of the parameters as
in e.g. (Huang et al. 1994). We have λ = λB = 0.5 [W/(m·K)], c = cB =
3900 [J/(kg·K)], ρ = ρB = 1060 [kg/m3], Q̇met = 1000 [W/m3], Q̇Bmet = 500
[W/m3], WB = 10 [kg/(m3·s)], vB = 3.023E-3 [m/s], α = 500 [W/(m2·K)]. We
also take wB0 = wt = wref = 37 [◦C] and R1 = 0.002 [m], R2 = 0.02 [m],
L = 0.1 [m]. Furthermore, the traversing vessel model is chosen. Subsequently,
we use the interval finite difference method given in the matrix representations
(34). Note that computations are performed for the problem formulated in the
dimensionless coordinates. Then, the results are calculated back to the dimen-
sional coordinates and presented in the paper. In Figs. 2, 3, we can see the
temperature distribution and the widths of the interval results in the case of the
tissue, respectively.

(a) (b)

Fig. 2. Temperature distribution: (a) u = u(ρ); (b) w = w(r) in the tissue for the
selected positions along the blood vessel axis.

(a) (b)

Fig. 3. Widths of the interval solutions: (a) u = u(ρ)|ξ=1; (b) w = w(r)|x=10[cm]

obtained with the interval method for different values of the constants n and m.

Interval Finite Difference Method for Solving the Problem 655

5 Conclusions

The objective of the paper is to propose the interval method for solving the
problem of bioheat transfer. An interval approach seems to be of special interest
in the area of biomechanics considered. It is due to the fact that such problems
often take into account values of biomaterial parameters which are dependent on
some environmental factors that influence an individual human or an animal, e.g.
age, state of health, lifestyle. Hence, we usually know a range of values instead
of some precise value of a given parameter. The main advantage of an interval
approach is the ability to represent the uncertain values in form of intervals.
Then, interval solutions obtained with the interval methods include all values
that can be taken by physical parameters occurring in the problem formulation.

References

Chato, J.: Heat transfer to blood vessels. J. Biomech. Eng. 5(102), 110–118 (1980)
Huang, H.W., Chan, C.L., Roemer, R.B.: Analytical solutions of Pennes bio-heat trans-

fer equation with a blood vessel. J. Biomech. Eng. 116, 208–212 (1994)
Jankowska, M.A.: Remarks on algorithms implemented in some C++ libraries for

floating-point conversions and interval arithmetic. In: Wyrzykowski, R., Dongarra,
J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp.
436–445. Springer, Heidelberg (2010)

Jankowska, M.A., Sypniewska-Kaminska, G.: An interval finite difference method for
the bioheat transfer problem described by the Pennes equation with uncertain para-
meters. Mech. Control 31(2), 77–84 (2012)

Jankowska, M.A., Sypniewska-Kamiska, G.: Interval finite-difference method for solving
the one-dimensional heat conduction problem with heat sources. In: Manninen, P.,
Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 473–488. Springer, Heidelberg
(2013)

Majchrzak, E., Mochnacki, B.: Numerical model of heat transfer between blood vessel
and biological tissue. Comput. Assist. Mech. Eng. Sci. 6, 439–447 (1999)

Majchrzak, E., Mochnacki, B.: Analysis of Bio-Heat Transfer in the System of Blood
Vessel-Biological Tissue, pp. 201–211. Kluwer, Boston (2001)

Majchrzak, E.: Modelling and analysis of thermal phenomena. In: Bedzinski, R. (ed.)
“Biomechanics”, Section 4 [in polish], pp. 223–361. Institute of Fundamental Tech-
nological Research, Polish Academy of Sciences, Warsaw (2011)

Marciniak, A., Szyszka, B.: A central-backward difference interval method for solving
the wave equation. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782,
pp. 518–527. Springer, Heidelberg (2013)

Workshop on Complex Collective
Systems

Bridging the Gap: From Cellular Automata
to Differential Equation Models

for Pedestrian Dynamics

Felix Dietrich1, Gerta Köster2, Michael Seitz2, and Isabella von Sivers2(B)

1 Technical University of Munich, Boltzmannstr. 3, 85747 Garching, Germany
felix.dietrich@tum.de

2 Munich University of Applied Sciences, Lothstr. 64, 80335 Münich, Germany
{koester,m.seitz,isabella.von sivers}@hm.edu

Abstract. Cellular automata (CA) and ordinary differential equation
(ODE) based models compete for dominance in microscopic pedestrian
dynamics. Both are inspired by the idea that pedestrians are subject to
forces. However, there are two major differences: In a CA, movement is
restricted to a coarse grid and navigation is achieved directly by point-
ing the movement in the direction of the forces. Force based ODE mod-
els operate in continuous space and navigation is computed indirectly
through the acceleration vector. We present two models emanating from
the CA and ODE approaches that remove these two differences: the Opti-
mal Steps Model and the Gradient Navigation Model. Both models are
very robust and produce trajectories similar to each other, bridging the
gap between the older models. Both approaches are grid-free and free of
oscillations, giving cause to the hypothesis that the two major differences
are also the two major weaknesses of the older models.

Keywords: Cellular automata · Ordinary differential equation · Pedes-
trian dynamics · Optimal step model · Gradient Navigation Model

1 Introduction

Several approaches for modeling pedestrian dynamics have been developed in the
last decades [1–4]. Among these, two compete for supremacy: cellular automata
(CA) and models based on ordinary differential equations (ODE). In typical for-
mulations, both model types use the idea that pedestrians are driven by repul-
sive and attractive forces. Other pedestrians and obstacles repel, targets attract.
However, the mathematical formulations differ fundamentally, especially as far
as treatment of space and navigation is concerned.

In CA, the given area is divided into cells of equal shape and area that are
either empty or occupied by a pedestrian, a target or an obstacle. This status
is updated at each time step, that is, virtual pedestrians move from cell to cell
according to certain rules. Typically, the pedestrians navigate along a floor field

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 659–668, 2014.
DOI: 10.1007/978-3-642-55195-6 62, c© Springer-Verlag Berlin Heidelberg 2014

660 F. Dietrich et al.

that expresses attractive and repulsive forces acting on the pedestrians [5,6].
Acceleration to each pedestrian’s free-flow velocity is achieved instantaneously
if there is space to move. The coarse discretization of space limits the choice
of direction and influences space requirements and the handling of speed [6].
Advantages are high computational speed, simplicity, as well as easy and intuitive
integration of rules governing pedestrian behavior [7–10].

ODE-models for pedestrian motion are usually inspired by Newtonian
mechanics. They also consider attractive and repulsive forces but operate in
continuous space and time. Navigation is realized indirectly by computing an
acceleration vector from a superposition of forces. Acceleration is delayed by
a friction term. The best known ODE-model is the Social Force Model (SFM)
introduced by Dirk Helbing and Péter Molnár in 1995 [11]. Problems of this
ansatz include inertia and oscillations [12] as well as numerical pitfalls [13]. Fur-
thermore, typical or specific behavior of pedestrians, even prevention of overlap-
ping, can only be achieved by introducing extra complexity [14,15].

In this paper, we present and compare two new models that remove the major
differences between the CA and ODE models: First, the Optimal Steps Model [4,
16], which remains rule based as a CA but allows movement in continuous space.
Second, the Gradient Navigation Model [17], which uses ordinary differential
equations like the SFM but computes velocity, and hence direction of movement,
directly from the forces. See Fig. 1 for a schematic representation of how to
bridge the gap between CA and ODE models. Both approaches maintain the
advantages of the models they were inspired by, but do not suffer from the
main disadvantages. They are robust and successfully validated according to the
guidelines given in [18]. Both can be calibrated to a given fundamental diagram
[16,17]. Numerical experiments yield very similar trajectories showing that they
are indeed more alike than the original CA and ODE models. See Sect. 4.

The paper is structured as follows: in Sects. 2 and 3 we briefly introduce
the two new models stating their main ideas and underline where they deviate
from the CA and social force approaches. For detailed descriptions we refer
to the original publications [4,16,17]. Then we show the results of numerical
experiments for all four model types for all four model types to support our
hypothesis that the two new models do not only perform better but produce
similar results (Sect. 4). In Sect. 5 we discuss which differences remain. In the
conclusion section (Sect. 6) we propose desirable next steps.

2 Optimal Steps Model

In this section we give an outline of the Optimal Steps Model (OSM) as it
is described in [4] and enhanced in [16]. The model is inspired by the idea that
pedestrians try to optimize their position in space according to a balance of goals:
reaching the target and avoiding obstacles and other pedestrians. This approach
is also used for cellular automata models of pedestrian movement [3]. Virtual
pedestrians move by locally minimizing a scalar field P : R2 ≤ R that maps each
position to a value that is computed as a superposition of potentials: attraction

From CA- to DE- Models for Pedestrian Dynamics 661

Fig. 1. Bridging the gap between CA- and DE-models

by targets and repulsion by other pedestrians and obstacles. The aggregated
potential for each pedestrian serves as an objective function to find the optimal
position on a disc. The radius of the disc is the stride length that corresponds to
each pedestrian’s individual free-flow velocity (Fig. 3). Thus, stepping forward
has become a non-linear optimization problem in continuous space. As a result,
pedestrians can make adjusting steps that are shorter than the free-flow stride
length, thus naturally slowing down in dense situations when navigation becomes
difficult (see Fig. 2). Calibration to a given density-velocity profile is achieved
by adjusting the repulsive potentials of pedestrians and obstacles [16]. Single
steps can still be distinguished in the trajectories (see Fig. 2). That is why we
call the model quasi-continuous. In contrast to a CA, the pedestrians are not
fixed to cells, but can reach every location in the observed area. Discretization
has become a dynamic process governed by natural stepping behavior, which
represents a natural discretization of pedestrian movement.

If we restrict the optimization to positions on the circle, instead of on the
whole disc, and allow only six equidistant positions on the circle, a hexagonal
CA grid is reproduced. With four or eight positions we get rectangular CA grids
with von-Neumann or Moore neighborhoods [4].

Fig. 2. Pedestrians simulated by the OSM move simultaneously from left to right along
a corridor with a column placed in the middle. They make small, sometimes evasive,
steps as highlighted by the (red) rectangles. Once the obstacle has been passed, the
stride length increases and the pedestrians resume their free-flow velocity (Color figure
online).

662 F. Dietrich et al.

Fig. 3. The two step types in the OSM: the gray region shows a pedestrian torso with
its center. The individual stride length is given by the solid (blue) circular line. The
square displays the minimum of the aggregated potential for the pedestrian and hence
the next position. On the left, it is on the circular line, that is, the pedestrian strides
freely. On the right, the next position is within the circle (Color figure online).

2.1 Potential

A very successful way to compute a target potential is to compute the arrival
time of a wave front propagating from the target and thereby skirting obstacles.
As a result, pedestrians navigate along geodesics [5,19]. Let Ω ≥ R

2 be the area
of the scenario and Γ ≥ ∂Ω the boundary of the target region. Then the Eikonal
equation defines the arrival time σ : Ω ≤ R of a wave front propagating with
speed F (x):

F (x)∈∞σ(x)∈ = 1 for x ≈ Ω
σ(x) = 0 for x ≈ Γ

(1)

We compute its numerical solution σN by Sethian’s Fast Marching algorithm
on a two-dimensional grid [20,21]. Between the distinct values of the grid, σN

is interpolated bilinearly [4,5] to σ̃N in the OSM. Thus the target potential
Pt(x) = σ̃N (x) is given for each point x ≈ Ω.

In addition to the target potential, the aggregated potential Pi(x) at a given
point x ≈ Ω is composed of pedestrian potentials and obstacle potentials [4].
The pedestrian potential P j

p (x) is generated by pedestrian j. It only depends on
the Euclidean distance between the center of pedestrian j and the considered
position x in the scenario. The obstacle potential is very similar to the pedes-
trian potential. Here, the obstacle potential P k

o (x) for obstacle k depends on the
Euclidean distance between the considered position x and the nearest point of
the obstacle to x.

For each pedestrian i in a scenario with n pedestrians and m obstacles

Pi(x) = Pt(x) +
n∑

j=1,j ∈=i

P j
p (x) +

m∑

k=1

P k
o (x), (2)

assigns the aggregated potential Pi(x) to an arbitrary point x ≈ Ω [4].

From CA- to DE- Models for Pedestrian Dynamics 663

3 Gradient Navigation Model

The Gradient Navigation Model (GNM) [17] introduces a new set of ordinary
differential equations to determine the position of each pedestrian xi in two
dimensional space as well as the scalar speed and navigational direction [17].
The idea is to compute the velocity vector as the gradient of several distance
dependent, scalar functions similar to Pi in the OSM (see Eq. 2). This constitutes
a strong deviation from Newtonian dynamics and hence from the Social Force
Model [11], where the acceleration vector is computed from the forces.

The change in position of pedestrians is not instantaneous. We follow [22] and
assume a certain time delay. We model the resulting relaxed speed adaptation by
a multiplicative, time dependent, scalar variable w, which we call relaxed speed.
Its derivative with respect to time, ẇ, is similar to acceleration.

With initial conditions x0 = x(0) and w0 = w(0) the Gradient Navigation
Model is given by

ẋ(t) = w(t)N(x, t)
ẇ(t) = 1

τ (v(ρ(x))∈N(x, t)∈ − w(t)) (3)

with navigation function N

N(x, t) = −g (g(∞σ(x)) + g(∞δ(x, t))) (4)

Function g : R2 ≤ R
2 scales the length of a given vector to lie in the interval

[0, 1]. For the exact formula see [17]. The position x : R ≤ R
2 and the one-

dimensional relaxed speed w : R ≤ R are functions of time t.
The individuals’ desired speed is represented by v(ρ(x)), which can be chosen

to enforce additional deceleration in a dense crowd as observed by [23]. Note that
this does not lead to an exact match of the simulated speed-density relation with
the fundamental diagram. Even with a constant v(ρ(x)) as chosen in this paper,
pedestrians in the GNM slow down when they approach others.

Both σ and δ are closely related to the potential functions of the OSM
described in Eq. 2. The first arrival time to the closest target region around
static obstacles is again given by σ : Ω ≤ R from Eq. 1. The gradients of all
distance functions of all other pedestrians and walls are combined and form ∞δ:

∞δi(x) =
n∑

j=1,j ∈=i

∞P j
p (x) +

m∑

k=1

∞P k
o (x) (5)

With these equations, the direction of pedestrian i changes independently of
physical constraints, similar to the idea of a heuristic by [24] and the Optimal
Steps Model [4,16]. The norm of the navigation function N and the relaxed
speed w determines the speed ẋ in the desired direction.

The norm of the gradient ∞P j
p resembles the monotonically decreasing func-

tion used for the potential values in the OSM. To ensure smoothness of the
derivatives, we choose a smooth exponential function with compact support:

∈∞P j
p ∈ =

{
pmaxexp

(
1

(r/R)2−1

)
|r/R| < 1

0 otherwise
(6)

664 F. Dietrich et al.

with constants pmax > 0 and R > 0 and r = ∈xi − xj∈ (see Fig. 4). The
gradients of the potentials of obstacles use the same formula, only the values of
the constants R and pmax differ.

Fig. 4. The norm of ∇P j
p , which is determined by its height pmax and width R.

4 Results

Grid restrictions in CA models and indirect navigation through acceleration in
the ODE models constitute the major differences in the model formulations.
In two computer experiments described below, we demonstrate how pedestrian
trajectories become more similar when these differences are removed with the
OSM and the GNM. In the first scenario, a single pedestrian leans against a
wall from where he or she moves to a target located to the right (see Fig. 5).
The CA and SFM produce unnatural behavior: in the CA model, the hexagonal
grid is evident. In the SFM the pedestrian moves in a wide arc and then circles
around the target. In fact, depending on the numerical method, the pedestrian
may never reach the goal or slow down [13]. The relaxation constant τ = 0.5
(seconds) is chosen similar to values reported in [11,22]. The unnatural circling
can be somewhat mitigated, at the cost of extra complexity, by attenuating the
speed in a close vicinity of the target. In the OSM, the pedestrian steps away
from the wall and at the same time towards the goal. The second and third
steps are straight towards the goal, where the pedestrian stops. In the GNM,
the pedestrian first moves a little away from the wall and then towards the
target in a smooth curve parallel to the wall. There are no oscillations present.
The pedestrian comes to a halt at the target. The two trajectories look very
similar.

The second scenario is inspired by a laboratory experiment by Moussäıd [22]:
Trajectories of pedestrians are observed who move around a stationary person
acting as pillar in the middle of a corridor. In our computer experiment we use
a pillar, that is, an obstacle and not a virtual person (Fig. 6). Pedestrians walk
from left to right in a sequential order, so that they do not impede each other.
Their start and target positions are chosen randomly at the ends of the corridor
but not too close to the wall. The opening between the wall and a pillar in the
center corresponds exactly to the torso diameter of a virtual pedestrian. Once
again the hexagonal grid of the CA looks unnatural. On a larger scale this may
become unimportant, but it makes fine resolution of bottlenecks impossible.

From CA- to DE- Models for Pedestrian Dynamics 665

(a) CA (b) OSM

(c) SFM (d) GNM

Fig. 5. Trajectories of a single pedestrian initially positioned close to a wall (2 × 1m)
who moves towards a target 2 m to the right. Stride length for CA: 0.39 m (correspond-
ing to the cell diameter), maximum stride length for OSM: 0.70 m (average for speed
1.34 m/s [4]), relaxation constant τ in SFM / GNM: 0.5 s.

The trajectories in the SFM are smooth. An artifact can be observed shortly
after the pedestrians have passed the pillar: They bounce back from the walls.
This oscillation is typical for Newtonian systems where the velocity vector is
computed by integrating the acceleration vector that depends on the directional
force (here along geodesics) and, in our scenario, the forces from the pillar and
the wall. The OSM and GNM show similar smooth trajectories that roughly
form an eye around the pillar. If a magnifying lens was used, individual steps
would be visible in the OSM.

5 Remaining Differences

The OSM with its quasi-continuous dynamic discretization of space has drawn
nearer to continuous models, while the GNM has adopted the navigational ideas
of successful CA-models and the OSM and integrated them in an ODE con-
text. Nevertheless, some differences remain. In the OSM, there is no acceler-
ation phase. Pedestrians reach their desired free flow velocity instantaneously
if they are not hampered by preceding pedestrians or obstacles. In the GNM,
acceleration is relaxed. A specific density-velocity relation can be set through
direct adjustment of v(ρ) in the relaxed speed equation. The density-velocity
dependency in the OSM results from proper numerical calibration of the repul-
sive pedestrian potential, which reflects an individual’s personal need for private
space. The trajectories of the OSM capture individual steps (Fig. 5(b)) whereas
the GNM focuses on the position of the center of mass (Fig. 5(d)).

666 F. Dietrich et al.

(a) CA

(b) SFM

(c) OSM

(d) GNM

Fig. 6. Trajectories for pedestrians passing from left to right. Pedestrians walk around
a pillar; the opening between the wall and the pillar is exactly the torso diameter.

6 Conclusion and Future Work

Two new models for pedestrian motion were presented, one emanating from
rule based CA models, but with continuous treatment of space and one based on
ODEs using navigation on geodesics as in CA models. The trajectories of the new
models are quite similar, thus bridging the gap between the traditional modeling
approaches. Closing the gap entirely may well be possible, but entails more
stringent mathematical formulations and studies of the OSM to complement the
present algorithmic formulation and to allow rigorous proofs.

Comparing simulation models of pedestrian movement is important in order
to classify them and finally select the appropriate model for a given task. Appli-
cations vary from few pedestrians to huge crowds, from real time requirements
on personal computers to massive parallel computations on mainframes. There-

From CA- to DE- Models for Pedestrian Dynamics 667

fore, choosing the right model with its advantages and disadvantages contributes
significantly to practical applications.

We will continue to explore the model similarities and differences trying to
pin down the mathematical causes and to clearly identify effects. A long-term
goal could be to express the GNM as the limiting case of the OSM when the
discretization in time, Δt, goes to zero.

Acknowledgments. This work was funded by the German Federal Ministry of Edu-
cation and Research through the project MEPKA on mathematical characteristics of
pedestrian stream models (17PNT028).

References

1. Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on
seven methodological approaches. Build. Environ. 44(3), 437–445 (2009)

2. Smith, A., James, Ch., Jones, R., Langston, P., Lester, E., Drury, J.: Modelling
contra-flow in crowd dynamics dem simulation. Saf. Sci. 47(3), 395–404 (2009)

3. Köster, G., Seitz, M., Treml, F., Hartmann, D., Klein, W.: On modelling the influ-
ence of group formations in a crowd. Contem. Soc. Sci. 6(3), 397–414 (2011)

4. Seitz, M.J., Köster, G.: Natural discretization of pedestrian movement in continu-
ous space. Phys. Rev. E 86, 046108 (2012)

5. Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New J. Phys.
12, 043032 (2010)

6. Köster, G., Hartmann, D., Klein, W.: Microscopic pedestrian simulations: from
passenger exchange times to regional evacuation. In: Hu, B., Morasch, K., Pickl,
S., Siegle, M. (eds.) Operations Research Proceedings 2010: Selected Papers of the
Annual International Conference of the German Operations Research Society, pp.
571–576. Springer (2011)

7. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech.
App. 295, 507–525 (2001)

8. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.:
Simulation of competitive egress behavior: comparison with aircraft evacuation
data. Physica A 324(3–4), 689–697 (2003)

9. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents
in crowd models. Physica A 373, 694–712 (2007)

10. Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisi-
tion process of pedestrians using proxemic floor field model. Physica A 391(1–2),
291–299 (2012)

11. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51(5), 4282–4286 (1995)

12. Chraibi, M.: Validated force-based modeling of pedestrian dynamics. Ph.D. thesis,
Universität zu Köln (2012)

13. Köster, G., Treml, F., Gödel, M.: Avoiding numerical pitfalls in social force models.
Phys. Rev. E 87(6), 063305 (2013)

14. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model
for pedestrian dynamics. Phys. Rev. E 82(4), 046111 (2010)

668 F. Dietrich et al.

15. Chraibi, M., Kemloh, U., Schadschneider, A., Seyfried, A.: Force-based models of
pedestrian dynamics. Netw. Heterogen. Media 6(3), 425–442 (2011)

16. von Sivers, I.: Numerische Methoden zur Optimierung der Schrittrichtung und
-weite in einem Modell der Personenstromsimulation. Master’s thesis, Fernuniver-
sität in Hagen (2013)

17. Dietrich, F.: An ode-based model for pedestrian motion and navigation. Bachelor’s
thesis, Technische Universität München (2013)

18. RiMEA. Richtlinie für Mikroskopische Entfluchtungsanalysen - RiMEA. RiMEA
e.V., 2.2.1 edn. (2009)

19. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph.
25(3), 1160–1168 (2006). (SIGGRAPH 2006)

20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)

21. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science. Cambridge University Press, Cambridge (1999)

22. Moussäıd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.:
Experimental study of the behavioural mechanisms underlying self-organization in
human crowds. Pap. Proc. R. Soc. B: Biol. Sci. 276, 2755–2762 (2009)

23. Weidmann, U.: Transporttechnik der Fussgänger, Schriftenreihe des IVT, vol.
90. Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau
(IVT) ETH, Zürich, 2 edn. (1992)

24. Moussäıd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian
behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011)

Cellular Model of Pedestrian Dynamics
with Adaptive Time Span

Marek Bukáček, Pavel Hrabák(B), and Milan Krbálek

Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

{bukacma2,pavel.hrabak,milan.krbalek}@fjfi.cvut.cz

Abstract. A cellular model of pedestrian dynamics based on the Floor
Field model is presented. Contrary to the parallel update in Floor Field,
the concept of adaptive time span is introduced. This concept, together
with the concept of bounds, supports the spontaneous line formation and
chaotic queue in front of the bottleneck. Model simulations are compared
to the experiment “passing through”, from which a phase transition from
low to high density is observed.

Keywords: Pedestrian dynamics · Experimental study of phase transi-
tion · Adaptive time span

1 Introduction

This article presents a concept of adaptive time span for the class of cellular
models of pedestrian dynamics. Adaptive time span is supported by the prin-
ciple of bounds, which enables the agent to choose an unoccupied cell. Such
modification is motivated by the spontaneous line formation in front of the exit
during non-panic egress situation partially discussed in [1].

Constructed model is used to simulate phase transition from low to high
density in an open room with one entrance and one exit inspired by [2]. This
study is supported by the experimental data, which were analyzed from the
qualitative point of view. Qualitative analysis of experimental data and model
simulations is based on [3] and [4].

Introduced model comes out of the idea of the Floor Field model ([5,6]) and
its implementation in F.A.S.T ([7,8]). Mainly, the concept of static potential
field generated by the exit is adopted. The Floor Field platform has been sup-
plemented by non-trivial updating scheme which will be presented within the
scope of next section. To handle the symmetry problem (discussed e.g. in [7,9],
or [10]) time and probability penalization of diagonal movement is implemented.
Inspired by [11,12], and [13], simple movement prediction is taken into account.

Principles of adaptive time span and bounds presented in this article were
introduced to support the microscopic experimental study of pedestrian motion
in lines in front of the bottleneck. As it is shown in Fig. 1, the spontaneous

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 669–678, 2014.
DOI: 10.1007/978-3-642-55195-6 63, c© Springer-Verlag Berlin Heidelberg 2014

670 M. Bukáček et al.

Fig. 1. Spontaneous line formation in front of the exit observed during experiments.

development of lines was observed. Pedestrians preferred the motion in lines
to running around the crowd and fighting at the door. The motion in lines is
synchronous for short period of time. After certain period without motion, the
line disolves and another substituent lines are formed.

2 Definition of Model Dynamics

As usual, the space is divided into square cells by rectangular lattice L with
lattice constant equal to 0.5 m. Let us denote the cell x by the position of the
cell center x = (x1, x2), where the scale unit of x1 and x2 axis corresponds to the
lattice constant, i.e, x1 and x2 are integer numbers, denoting the position of the
cell in relation to the origin (0,0) in number of cells. Every cell may be occupied
by one agent or empty. The actual state of the lattice L at time t is given by
the occupation identifier η(t) = (ηx(t))x∈L, where ηx(t) = 1 for an occupied cell
and ηx(t) = 0 for an empty cell.

Consider N ≤ N agents moving along L by hopping from one cell to another.
Let us denote ξi(t) ≤ L the position of the agent i ≤ N̂ at time t, where N̂ =
{1, 2, . . . , N} is the set of all agents. At first, we consider parallel dynamics, i.e.,
agents are moving simultaneously in time steps of the length Δt. The adaptive
time span will be introduced below. The movement consists of two parts, the
decision process during which the agent chooses his desired target cell ξ≥

i (t+Δt),
and the conflict solution that may disable the agent to enter the desired cell
(≥ ξi(t + Δt) = ξi(t)) or not (≥ ξi(t + Δt) = ξ≥

i (t + Δt)).
In the general concept, the decision process of agent i is driven by the hopping

probability from x to y

pi(x, y; t) = Pr [ξ≥
i (t + Δt) = y | ξi(t) = x , η (t;Si(x))] , (1)

where the target cell y is chosen from the neighborhood Si(x), i.e., pi(x, y; t) = 0
for y /≤ Si(x); η (t;Si(x)) stands for the state of the neighborhood. In this article,

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 671

the translation and agent invariant Moore’s neighborhood is used, i.e., ∈i ≤ N̂
and ∈x ≤ L, Si(x) = (x + SM) ∞ L, where the Moore’s neighborhood of (0,0) is
denoted SM = {(−1, 1); (0, 1); (1, 1); (−1, 0); (1, 0); (−1,−1); (0,−1); (1, −1)}.

To describe the conflict solution process, let us denote

η≥
x(t) =

{
j ≤ N̂ | ξ≥

j (t) = x
}

(2)

the set of agents “wishing” to enter x at time t. In the following the process
is explained from the point of view of the agent i, therefore the notation y≥ =
ξ≥
i (t + Δt) is used for convenience. If the target cell y≥ is empty at time t,
i.e.,ηy∗(t) = 0, two situations are distinguished according to the cardinality of
M := η≥

y∗(t + Δt) ≈ N̂ .
If M = {i}, the cell y≥ is conflictless and ξi(t+Δt) := ξ≥

i (t+Δt). Otherwise,
another agents than i wishes to enter the cell y≥ and conflict appears. With
probability μ ≤ ∧0, 1∃ this conflict remains unresolved, i.e., ∈j ≤ M, ξj(t+Δt) :=
ξj(t). With probability 1−μ results the conflict to the motion of one agent from
M ; this agent is chosen randomly. The parameter μ plays the role of the friction
parameter [5].

According to the presented concept of decision process (1) it is not excluded
to chose an occupied cell as the target, i.e., if ηy∗(t) = 1, agent i creates the so
called bound (i → y≥) to the cell y≥. The bound comes to life when the agent
sitting in y≥ moves at time t+Δt. This enables the motion of all agents bounded
to y≥ with conflict solution according to the situation of unoccupied target cell
explained above. This rule is applied recursively to all bounds existing at t+Δt.
This principle enables the motion in lines within one algorithm step, which is
desired phenomenon of pedestrian flow.

So far, parallel updating scheme was considered. In the following a general
concept will be presented, which we call the adaptive time span. There is a specific
time sequence (ti,n)n∈N0

unique for every agent. This sequence determines the
moments when agent i is activated to actualize his position according to above
mentioned rules. Looking at the system as a whole, the system state is actualized
at times (tm)m∈N0

, where

tm+1 := min
j∈N̂

{tj,n | tj,n > tm , n ≤ N0} . (3)

This equations means that the time of next actualization is chosen as the nearest
event defined by the updating sequences of all agents.

A common example of such concept is that the sequence ti,n is driven by the
Poisson process, i.e., the increments ti,n+1 − ti,n are exponentially distributed.
The principle used in our model comes out of the idea that each agent has its own
desired frequency of actualization fi characterized by the desired time increment
τi = f−1

i . This leads, in an ideal case without correlations between agents, to
the sequence tj,n = nτj . As will be shown below, the presented conflict solution
changes this sequence slightly due to the adaptation to the movement of agents
in the neighborhood. Similar idea is considered in [14] to simulate heterogenous
system with two kinds of agents.

672 M. Bukáček et al.

The concept of asynchronous updating scheme reduces the number of con-
flicts as well as the ability of holding in lines. To avoid the latter, following
concept is introduced. Let us denote A(t) = {j ≤ N̂ | ∃n ≤ N0, tj,n = t} the
set of active agents at time t. Let us consider the situation that agent i creates
a bound (i → x) at ti,n, because x is occupied by agent j, i.e., ξj(ti,n) = x.
As times evolves, two possibilities may occur. Firstly, agent j stays in x until
ti,n + τi, i.e., ξj(t) = x,∈t ≤ (ti,n, ti,n + τi). In this case, the bound (i → x) is
canceled, the actualization time of i is set to ti,n+1 := ti,n + τi and the decision
process of i at ti,n+1 goes according to above mentioned rules. Secondly, agent
j moves from x within the time interval (ti,n, ti,n + τi). In that case we set

ti,n+1 := min{t ≤ (ti,n, ti,n + τi) | ξj(t) �= x} and ξ≥
i (ti,n+1) := x. (4)

To complete the idea of adaptive time span the time penalization of diag-
onal movement should be mentioned. Because the distance between diagonally
attached cells is

∅
2 longer then the distance between vertically or horizontally

attached cells, the transition to the diagonal cell should take adequately long
time. To incorporate this feature to the model we propose the diagonal penal-
ization in the sense, that after an agent moves diagonally at ti,n his next actual-
ization time is set to ti,n+τi ·3/2, where 3/2 is the rational approximation of

∅
2.

The rational approximation is used to keep the agents partially synchronous in
their updates to maintain conflicts. The requirement of partial synchronization
leads to the idea, that agents are divided into small number of groups according
to their updating frequency. We propose to divide the agents into two groups
with desired time increments τ1 = 1 and τ2 = 3/2 which together with diagonal
movement penalization leads to the time sequence of the whole system to be
considered as tm = m · 1/4, see Fig. 2 for illustration.

0 2 4 6 8 10
−0.1

0

0.1

0.2

Fig. 2. Illustration of adaptive time span with the rational approximation of
√

2 (top)
and without it (bottom).

The overall principle is illustrated by the example in Fig. 3.

3 Specification of the Decision Process pi(x, y; t)

In this section the decision process pi(x, y; t) will be specified. For purposes of
this article, slightly modified concept incorporating occupancy and movement
prediction introduced in [1] is used.

Analogically to the Floor Field model, we define the potential field U : L → R

that assigns value U(x) to every cell x in the sense that the agent is attracted

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 673

Fig. 3. Example illustrating the timeline with bounds. Agent 1 is faster (f1 = 0.8−1),
agents 2 and 3 are two times slower, f2,3 = 1.6−1. Bounds are indicated with squares,
movement with arrows. This agent shows two situations: at t = 2.4 TU agent 1 cancels
the bound, at t = 3.0 agent 3 uses the bound to synchronous movement with agent 2.

to the cell with lower potential. Commonly, the potential field is generated by
the exit and is static over time. The probability of hopping from x to y ful-
fils pi(x, y; t) ∝ exp{−kUU(y)}, where kU ≤ ∧0, 1∃ stands for the parameter of
sensitivity to the potential.

In the scope of this article, the decision process is influenced by the predicted
state of the neighborhood Si(x). To describe this influence, let us first define the
term movement prediction. In the essence, agent is predicted to move in the same
direction as he did in his previous step, i.e, we define the predicted position of
agent i for all t ≤ (ti,n, ti,n+1∃ as

ξPi (t) :=
{
2ξi(ti,n) − ξi(ti,n−1) if 2ξi(ti,n) − ξi(ti,n−1) ≤ L ,
ξi(ti,n) otherwise .

(5)

This allows us to define the dynamical field ηP
x,i(t) of the occupancy prediction

of the cell x from the point of view of agent i as

ηP
x,i(t) :=

{
0 if {j �= i | ξPj (t) = x} = ∅ ,
1 otherwise .

(6)

Now we can write the unnormalized weights p̃i(x, y; t) as

p̃i(x, y; t) = d(x − y) exp {−kUU(y)} (
1 − kO · ηy(t)

)(
1 − kM · ηP

y,i(t)
)
, (7)

where kO, kM ≤ ∧0, 1∃ are sensitivity parameters to the occupation and
movement prediction. The symbol d(x) represents the diagonal probability penal-
ization that has to be incorporated because of the symmetry problems and is
defined for x ≤ SM as d(x) = c for x1 ·x2 �= 0 (diagonal movement) and d(x) = 1
for x1 · x2 = 0 (horizontal and vertical). The influence of above mentioned
parameters is discussed in [1].

Contrarily to the basic Floor Field model we support the deterministic motion
in free flow, i.e., in non congested regime. The agents decide stochastically

674 M. Bukáček et al.

according to (7) only if the cell with minimal potential ymin := argmin{U(y) | y ≤
Si(x)} is occupied or predicted to be occupied by another agent. This leads to
the final form of decision process

pi(x, y; t) =
{

p̃i(x, y; t)/N ηymin(t) · ηP
ymin,i

(t) = 1 ,
δymin,y otherwise ,

(8)

where N is the normalization constant and δi,j is the Kroneker delta (δaa = 1
and δab = 0 for a �= b).

In simulations described below we have used the potential U in the form
U(x) = F · ‖x−e‖2, where ‖.‖2 is the euclidian norm and e is the position of the
exit cell mostly set to e = (0, 0). The constant F represents the strength of the
potential and was set to F = 3 through the agreement of the simulations with
experiments.

In the scope of this article, we will use the set of parameters determined
through the egress experimental study mentioned in [1]. Specific values of the
parameters are given in Table 1.

Table 1. Parameter values used for the simulation

Potential Occupation Movement Friction Diag. pen. Time unit

kU kO kM μ c TU
1 0.2 0.7 0.9 0.2 0.31 s

Here we note that the friction parameter seems to be extremely high, but his
influence is weakened by the adaptive time span and the concept of bounds and
serves mostly as the means that enables the switches between lines in the chaotic
queue in front of the exit. In the simulation we have considered the frequency
to be measured in time units TU associated with the own frequency f = 1, i.e.,
The agent with own frequency fi = 1 in free flow regime (without obstacles)
moves one cell ahead during one time unit. Therefore one unit corresponds to
0.31 seconds to obtain realistic motion.

4 Experimental Study of the Phase Transition

The above mentioned model has been used to simulate the phase transition
analogically to [2], where a situation of a rectangular room with one entrance
and one exit has been introduced. The phase transition occurs due to the change
of the inflow parameter α. In [2], the situation was studied by means of simple
Floor Field model with agresivity parameter ζ. In this section, we present the
experiment “passing through”, which was inspired by the setting mentioned
above.

The experiment was organized with help of 80 second year students of the
Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 675

Fig. 4. The setting of considered experiment. The inflow was controlled by green signal
A, pedestrians gathered at B. The situation was recorded by the camera placed above
the room.

University. The room of 10m × 6m was arranged as depicted in Fig. 4 within
the study hall of the faculty (Trojanova 13, Prague 2).

The inflow rate was controlled by the green signal on which a group of pedes-
trians (two or three) entered the room and were instructed to leave it through
the exit placed at the opposite wall. Time intervals Δs between two successive
signals were generated from trimmed Gaussian distribution with mean value μs

which was varied from 1.43 s to 1.85 s. Because pedestrians were not able to react
precisely on the signal while the mean value μs was set below 1.4 s, we have let
more pedestrians to enter the room at the signal, what served us to increase the
inflow rate.

Eight inflow settings have been considered. The setting is characterized by
the number of entering pedestrians ns and the mean value of time delay μs.
From these the average inflow current Jin can be calculated as Jin = ns/μs

pedestrians per second. As we have used the time unit corresponding to 0.31 s
as the algorithm step, we define αexp = Jin · 0.31 pedestrians per model time
unit (TU). This value gives the average inflow rate per time step, which is used
for simulations. Therefore, αexp corresponds to the probability of the injection of
new pedestrian to the system within one TU . Experimentally measured values
of αexp are given in Table 2.

As seen from Table 2, the settings were classified according to macroscopic
observations: free flow regime, congested regime, and meta-stable regime. In the
free flow regime (settings 1, 2, and 3) pedestrians walked freely through the room
and did not block each other in front of the bottleneck. In meta-stable regime,
occasional conflict in front of the exit resulted to a small cluster formation, which
melted after short time period (setting 4) or stabilized, but fluctuated around 5
pedestrians in the cluster (setting 5). By increasing the inflow rate, the competi-
tion at the door significantly blocks the motion and rapidly increases size of the
stable cluster which fills in significant part of the room (settings 6, 7, and 8).

676 M. Bukáček et al.

Table 2. Experimental setting: inflow rates

Setting μs ns Jin αexp Observed state

1 1.78 2 1.12 0.35 free flow
2 1.68 2 1.19 0.37 free flow
3 1.59 2 1.26 0.39 free flow
4 1.43 2 1.40 0.43 temporary cluster
5 1.85 3 1.62 0.50 stable cluster
6 1.72 3 1.74 0.54 congestion
7 1.66 3 1.81 0.56 congestion
8 1.57 3 1.91 0.59 congestion

Analogical observation was made by the simulations using the model
described in previous section. The transition from free regime to the stable con-
gestion was observed at the inflow rate αsim ≤ ∧0.42, 0.46∃ pedestrians per second,
which corresponds to the experimental observation. At the critical values of αsim,
the creation and melting of the temporary cluster was highly supported by the
asynchronous update and bounds principle.

Snapshots form the experiment together with the simulation realization are
given in Fig. 5.

Fig. 5. Snapshots from the experiment (left) and model simulation (right) for low
(upper) and high (lower) density.

Cellular Model of Pedestrian Dynamics with Adaptive Time Span 677

5 Conclusion

A general concept of adaptive time span in cellular automata for pedestrian
dynamics was introduced. Within this concept, the agents own actualization
frequency fi was presented together with the principle of bounds. This com-
bination leads to the creation of chaotic queue near the bottleneck which is
accompanied by the line formation and occasional switches between these lines.
This improvement was inspired by the real behavior of pedestrians under exper-
imental conditions.

Furthermore, the phase transition from low to high density was studied exper-
imentally. As seen from the experiment and Table 2, the saturation of pedestri-
ans at the bottleneck is closely related to the inflow rate in the critical area.
Qualitative comparison of the model behavior and the experiment shows that
the concept od bounds together with the movement and occupation prediction
supports highly this wanted feature. Furthermore, due to this concept, the het-
erogenous system with more types of pedestrians can be implemented keeping
the motion in lines intact.

Presented model has been qualitatively compared to the observed behavior
and we believe that the modifications of the time span improves the agreement
of the underlying Floor Field model with observed non panic behavior of pedes-
trians near the bottleneck.

Acknowledgements. This work was supported by the grant SGS12/197/OHK4/3T/
14 and by the MSMT research program under the contract MSM 6840770039.

References

1. Hrabák, P., Bukáček, M., Krbálek, M.: Cellular model of room evacuation based
on occupancy and movement prediction. J. Cell. Autom. 8(5–6), 383–393 (2013)

2. Ezaki, T., Yanagisawa, D., Nishinari, K.: Analysis on a single segment of evacuation
network. J. Cell. Atom. 8(5–6), 347–359 (2013)

3. Klüpfel, H., Schreckenberg, M., Meyer-König, T.: Models for crowd movement and
egress simulation. In: Hoogendoorn, S., Luding, S., Bovy, P., Schreckenberg, M.,
Wolf, D. (eds.) Traffic and Granular Flow 03, pp. 357–372. Springer, Berlin (2005)

4. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Com-
plex Systems: From Molecules to Vehicles. Elsevier Science B. V, Amsterdam
(2010)

5. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a
bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat.
Mech. App. 312(12), 260–276 (2002)

6. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field
CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E–87D, 726–732
(2004)

7. Kretz, T., Schreckenberg, M.: The F.A.S.T.-Model. In: El Yacoubi, S., Chopard, B.,
Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 712–715. Springer, Heidelberg
(2006)

678 M. Bukáček et al.

8. Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and
their implications for cellular automata models. In: Timmermans, H. (ed.) Pedes-
trian Behavior - Models, Data Collection and Applications, pp. 27–43. Emerald
Group, Bingley (2009)

9. Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian
dynamics to manage emergency situations in airport terminals. In: Waldau, N.,
Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds.) Pedestrian and Evacua-
tion Dynamics 2005, pp. 369–375. Springer, Berlin (2007)

10. Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by
real-coded cellular automata (rca). Phys. A Stat. Mech. App. 379(2), 654–660
(2007)

11. Kretz, T., Kaufman, M., Schreckenberg, M.: Counterflow Extension for the
F.A.S.T.-Model. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Ban-
dini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 555–558. Springer, Heidelberg
(2008)

12. Steffen, B.: A modification of the social force model by foresight. In: Klingsch,
W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and
Evacuation Dynamics 2008, pp. 677–682. Springer, Berlin (2010)

13. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynam-
ics: modeling and experiments. Phys. A Stat. Mech. App. 391(12), 248–263 (2012)

14. Weng, W.G., Chen, T., Yuan, H.Y., Fan, W.C.: Cellular automaton simulation of
pedestrian counter flow with different walk velocities. Phys. Rev. E 74, 036102
(2006)

The Use of GPGPU in Continuous and Discrete
Models of Crowd Dynamics

Hubert Mróz, Jarosfflaw W ↪as(B), and Paweffl Topa

AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Kraków, Poland

{jarek,topa}@agh.edu.pl

Abstract. The aim of the study is twofold: firstly to compare the pos-
sibilities of using GPGPU (General-Purpose Computing on Graphics
Processing Units) in continuous and discrete crowd dynamics simulation,
secondly to draw conclusions on the applicability of GPUs in engines
of professional crowd simulations. For this purpose the authors have
implemented two models of pedestrian dynamics: continuous - Social
Forces model and discrete, Cellular Automata based - Social Distances
model. The presented simulations refer to outdoor, large area pedestrian
movement.

Keywords: Crowd simulations · Crowd models · GPU · GPGPU

1 Introduction

The development of Information and Communication Technologies requires more
and more often, reliable simulation of the crowd, operating in real time to sup-
port decision making process by managers responsible for the safety. On the other
hand, an application of crowd simulation for entertainment purposes requires pri-
marily high performance, although in recent years the emphasis is simultaneously
located on realism of the simulation.

Using of graphic processing units GPU brings potential opportunity of devel-
opment of reliable and efficient simulation. An idea of efflective massive Agent
Based modelling on the GPU was presented in [16] and it was suplemented by
Navigation Vector Fields in [10]. A concept of real-time multi scaled simulation
was presented in [21], while issues of real time crowd rendering was discussed
in [14]. The use of GPUs for simulation of Social Force model combined with
idea of toxic gases difflusion was described in [4]. Hybrid path planning during
GPU based crowd simulations was recently proposed in [5], whilst [9] proposes
using 3D data structure to improve performance of 3D rendering using GPU.

Based on bibliography and previous experience with crowd modeling, the
authors decided to implement and test two popular models of crowd dynamics:
continuous and discrete. The aim of the research is to assess the GPU technology

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 679–688, 2014.
DOI: 10.1007/978-3-642-55195-6 64, c© Springer-Verlag Berlin Heidelberg 2014

680 H. Mróz et al.

for implementing continuous and discrete models of the crowd, with its focus on
the simulation engine (not rendering). The article is a continuation of work by
the authors [11].

Dedicated application was created using NVidia CUDA (Compute Unified
Device Architecture) technology, and 3D Object-oriented Graphics Rendering
Engine (OGRE 3D) environment was used for the visualization.

The document is organized as follows: GPU context of simulations is
presented in Sect. 2, whilst two applied models: continuous and discrete are
presented in Sect. 3. Next, results of simulations are described in Sect. 4 and
concluding remarks are placed in Sect. 5.

2 Graphics Processing Units in Simulations

The computing power of Graphic Processing Units rapidly grown in recent years,
significantly exceeding the performance achieved by top CPUs. This fact results
in growing interest in using GPU for solving more general class of problems.
Graphic processor shows its power only if the problem fits or it is adapted for
this specific architecture. GPU programming uses the stream processing concept,
where a set of instructions (called a kernel) is executed concurrently over all of the
items of a dataset. Each instance of a kernel is called a thread. A set of threads are
arranged into one-, two- or three-dimensional grid and such the group is called
block. Threads from a single block are queued to execution automatically by
processor’s scheduler. Group of threads that are together scheduled to concurrent
execution is called a warp. In order to achieve fully parallel execution, all threads
in the warp need to do exactly the same operations. Otherwise, the threads will
be scheduled to execution one by one. To prevent this situation, the programmer
should avoid the conditional instructions that difflerentiate paths of execution.

GPU uses various types of memory. The fastest are registers but they have
very small capacity (i.e. 32 kB per one streaming processor in Nvidia Fermi
architecture). Shared memory is located on-chip and also provide high bandwith
and low latency (about 1600 GB/s and 10–20 cycles in Fermi processors). Shared
memory is accessible by all threads within a single block. Global memory has
lowest bandwith and highest latency (about 400–800 cycles) and it is accessible
by all threads. Proper use of difflerent types of memory also is key to the efficient
use of GPU computing power.

Graphic processors develop very fast. Subsequent hardware generations
(marked as the Compute Capabilities of the device) usually have a larger amount
of computational resources, but also their programming capabilities become more
flexible and efficient.

The possibility of using GPU for solving more general problems appeared
with introducing programmable shader units and shader programming languages
as Nvidia Cg or GLSL [17]. Later, Nvidia introduces programming platform
CUDA (Common Unified Device Architecture) with C for CUDA programming
language. In 2008, the Khronos Group presented an open programming environ-
ment OpenCL (Open Computing Language) [13] dedicated to the same purposes.

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics 681

In comparison to CUDA which is a proprietary solution and works only with
Nvidia GPU, OpenCL is supported also by other manufacturers like AMD/ATI
and Intel.

Models based on Cellular Automata paradigm can be efficiently implemented
on GPU. Cells are usually organized into regular lattices and they can be sim-
ple mapped on grid of GPU threads. According to the definition of Cellular
Automata, all cells must be updated in parallel by using the same set of rules.
Thus, in natural way the CA rules can be encoded as kernels and each cell will
be processed by a single thread. Amount of data that have to be exchanged
between threads is limited due to locality of neighborhood.

Practical demonstration of usefulness of GPU for Cellular Automata mod-
eling has been presented in many papers. Rybacki et al. [18] investigated seven
difflerent simulation strategies (two of them used GPUs) for Cellular Automata
and compared them for a few well-known CA rules (e.g. Game of Life, Par-
ity). He concludes their article with statement that the usefulness of GPU-based
Cellular Automata algorithms strongly depends on the models that we want to
simulate. Bilotta et al. [1] has ported MAGFLOW model [19] (lava flow simu-
lation) to CUDA environment [1]. The algorithms were carefully optimized for
GPU architecture as well as they took benefits from usage of shared memory.
The authors evaluated performance for various graphic processors with diffler-
ent Compute Capabilities. The conclusions acknowledge that Cellular Automata
models gives opportunity to be implemented on GPU with high efficiency, how-
ever the straightforward conversion from CPU to GPU can be disappointing.
Also Topa et al. [20] investigated the possibilities of efficient implementation
of the Cellular Automata model for water flow. Although they used only a
global memory, the modification introduced in the algorithm provided high occu-
pancy ratio. Due to regular structure of data the coalescing for transactions in
global memory is achieved automatically and almost optimal. As the result, the
GPU implementation appeared to be up to 100 faster than CPU version. Blecic
et al. [2] used latest GPU with Nvidia Kepler architecture to implement model
of urban dynamics. The original algorithm presented in this work also had to
be modified to satisfy the requirements of GPU architecture. The authors also
implemented additional version that uses shared memory and compared both
approaches. The tests show that efficiency of GPU algorithms are 150 times bet-
ter, then sequential CPU algorithm. The usage of shared memory gives only a
little increase of performance due to hardware managed cache.

3 Implemented Models

3.1 Continuous Model - Social Force

The most popular model of pedestrian dynamics is the model proposed by Hel-
bing and Molnar [8]. In Social Force Model pedestrians are represented as par-
ticles moving in a given direction and the particles are influenced by a set of
forces: repulsion forces from walls and obstacles, repulsion or attraction forces
from other pedestrians etc.

682 H. Mróz et al.

Thus, each of the agents/pedestrians is an independent object, that changes
its state, based on the forces acting on him/her. These forces can be divided into
three types: attractive force from target, forces from other pedestrians, repulsive
force from obstacles. Agents react only to those agents who are located in their
neighborhood. The neighborhood is determined by a distance and angle of view,
and its allocated according to agent’s movement direction.

In summary, Social Force model is a microscopic, force-based model, contin-
uous in time and space.

In presented simulation world simulation is divided into so-called containers
(sized 15m × 15m). Agents moving in space are assigned to a container. In the
calculation of “state agent” only forces associated with the current container and
neighbour containers are taken into account. Parallelization on GPUs is based
on the simultaneous calculation of parameters of agents in difflerent containers.
Single thread performs calculations for agents located in a single container.

3.2 Discrete Model - Social Distances Model Based on Cellular
Automata

Cellular Automata (CA) become more and more popular in many areas ranging
from sociophysics [7] to granular flow modeling [15]. Such kind of discrete app-
roach can be used in scheduling [6]. In area of crowd dynamics the framework
of Cellular Automata is often combined with a concept of potential fields [3]. In
these models a set of static and dynamic fields is applied, and the fields modify
transition function of applied cellular automaton. The authors have applied such
CA based floor field model with more precise representation of space, namely
generalized Social Distances Model [22]1.

Pedestrians represented by ellipses, are allocated in a square lattice, where
cells have a size 25 cm × 25 cm. The center of an ellipse coincides with the cen-
ter of current cell [22]. Each cell can be occupied at the time by one agent in
particular time step. The size of each ellipse equals a = 22.5 cm - semimajor
axis and b = 13.5 cm - semiminor axis - which is assumed the average size of
a person according to WHO data. Agent is allowed to move to the next cell in
Moore neighborhood with radius 1 or to rotate by, at minimum, 45 ∈. According
to the chosen compressibility parameter τ ∈ {0; 0.331} - the maximum area of
intersection of neighboring ellipses is assumed. If the move of a pedestrian on
the specified field, does not cause overgrowth of value of compressibility para-
meter, then it is executed (the configuration of agents is specified as allowed).
Pedestrians/agents move along the gradient of the potential to difflerent, defined
targets.

Fundamental diagram for Social Distances model was presented in [24]. The
presented model is discrete in time and space, it is microscopic and rule-based.
1 This model was originally designed as a hybrid: cellular automaton with a component

of force, however in the study it is implemented exclusively as floor field, cellular
automaton based model [23]

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics 683

Table 1. Performance of rendering of 500 agents, environment size is 100m × 100m

Model Full rendering Level of details Simplified rendering

Social Force 29 FPS 78 FPS 98 FPS
Social Distances 35 FPS 100 FPS 122 FPS

The basic structures for storing data in a model of Social Distances are two
types of grids: grid of occupancy and static potential field [3]. Grid of occupancy
is always only one, and stores information whether a cell is free, occupied by
an obstacle or occupied by an agent. On the other hand, we can apply from
one to several potential fields, depending on the complexity of the environment
(number of agents’ targets). An agent can change the potential fields, but at
a particular time slice he/she can be associated with only one potential field.
Parallelism of calculations in this model is based on the simultaneous processing
of multiple agents (one thread is associated with a single agent). The thread
retrieves information from the neighbourhood, it decides on the action and, if
necessary, updates the information of the grid occupancy.

3.3 Technical Aspects of Implementation

The project has been implemented using Nvidia CUDA programming platforms.
Applied technology enables the creation of executable code both on CPU and
GPU, making it possible to compare the difflerences in performance. Contrary to
many works on crowd modeling using the GPU, the main objective of the study
is to investigate the efflectiveness of mechanisms of the simulation.

Object-oriented Graphics Rendering Engine was used for rendering the graph-
ical part of the simulation and it belonged to the additional tasks. Three scenarios
were used for handling graphics: a full rendering, simplified rendering (Level of
Details) and no rendering. Table 1 contains rendering performance for difflerent
methods. Unfortunately the rendering system appears to be insufficient in large
population of agents. The authors are going to implement in future a dedicated
rendering system that retrieves necessary information directly from the existing
data blocks in the device memory.

Transferring data during simulation causes a performance bottleneck of the
program, thus it is important to minimize the transfer as possible. For this pur-
pose all data related to the simulation are sent only once to the device memory
(after initialization). Since then, the system performs all computation calcula-
tions on a copy of the data. However, it is necessary to share information in the
other side to enable actualization of graphical representation of the simulation.
For this purpose, at every step of the simulation, minimal amount of data is
transferred (for instance a vector with a current direction and a sense of pedes-
trians). These transfers will be unnecessary in dedicated rendering system. The
structures of these data should satisfy the following assumptions: data must be

684 H. Mróz et al.

easy to read both by the program running on CPU and GPU, data must be well
packed, because they should occupy a minimal space. For these reasons, a simple
data structures are proposed.

The simulation is carried out in three stages:

Initialization - the creation of objects - agents and representation of the envi-
ronment, initializing data specific to the model (like potential fields), the
creation of an appropriate calculation module and sending all necessary data
to the device memory.

Updating - update calculation module, receive data from the device and update
of the graphical representation.

Closuring - shutting down the simulation and remove all the initialized data.

One of the most important elements realized in GPU implementation is the
use of containers for agents and for objects (for instance buildings) in their
environment.

Decision-making algorithm for Social Distances model are strictly connected
with potential fields implemented using GPU.

All the related data are stored in global memory. At this moment the original
CPU algorithms were straightforward converted to CUDA platform. We inten-
tionally decided not to introduce any optimizations in order to have a reference
version and a starting point for further modifications.

4 Results

As a result of the implementation a flexible application was obtained. The appli-
cation allows comparison of selected characteristics of continuous and discrete
models of crowd dynamics based on both: CPU and GPU computing. Figure 1
shows the graphical user interface of the application. In the bottom left corner
the current view on results of performance are visible - number of processed
frames per second.

Fig. 1. Graphic user interface of the application

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics 685

4.1 Performance Tests

In order to verify the efficiency of presented models, a series of tests were carried
out. A criterion used for comparison purposes was the speed of the simulation,
expressed in frames per second related to a number of agents. Computational
efflort and time required to perform the calculations in the simulation of crowd
dynamics is closely related to the density of the population of agents. Therefore,
tests were carried out in a similar population density for continuous and discrete
models using CPU and GPU technologies.

Tests were carried out on the hardware platform equipped with: Dual-Core
AMD Athlon II 250 (3.00 GHz), 4 GB of RAM and a graphics card GeForce
GTS 250 with 512 MB RAM and Compute Capability 1.1. The tests described
in the current section were performed with disabled rendering (because of the
inefficient rendering module).

The chart (Fig. 2) shows the results of performance tests for models: Social
Force and Social Distances carried out respectively on CPU and GPU. Per-
formance in this case is expressed by the relationship: number of supported
pedestrians to FPS (frame per second). As we can see on the chart for both
models, simulations executed on GPU are characterized by a higher performance,
than the corresponding CPU simulations. It is worthwhile emphasized that this
increase is achieved for non-optimized algorithms.

As the discrete model, Social Distances in tests showed much greater effi-
ciency then continuous Social Force: on CPU results are better by 160–300 %.
By using GPU we are able to improve results by additional 60–70 %. As we
mentioned before, we still have space for improvements by optimization of GPU

Fig. 2. Results of performance tests for Social Force and Social Distances model imple-
mented respectively on CPU and GPU

686 H. Mróz et al.

algorithms. The increase of performance for discrete model was lower for GPU,
because it requires a large amount of memory references. This is due to the
fact that threads related to the agents must (during operation) access infor-
mation about their neighbourhood, and then update the data in an occupancy
field. This results in a memory overhead, because operations related to access to
memory are very expensive (in a sense of calculation) and they may lead to bot-
tlenecks in GPU applications. However, further optimizations can be achieved
in this field. CUDA allows users to take advantage of difflerent types of memory,
such as global, shared or texture memory. All of them have pros and cons and
appropriate usage can be crucial in application’s performance [12].

5 Concluding Remarks

The authors present a comparison of two completely difflerent models of crowd
dynamics: continuous Social Force model and discrete, Cellular Automata based
Social Distances model. Both models have been implemented using GPGPU and,
for comparative purposes, using the CPU. It should be noted, that the use of the
GPU requires a completely difflerent approach to development of applications and
in this case many limitations will appear (Sect. 2). Hence, popularity of using
GPU in professional applications dedicated to the dynamics of the crowd, in
particular in the simulation engines, is still limited.

Based on the analysis of many variants of the size and complexity of the
environment and the available number of agents, authors proposed ranges of
applicability of the two models created using the GPU technology (Sect. 4).
Social Force model works well in large, sparsely populated areas, where the den-
sity of agents is relatively small. This continuous model works perfectly for free
pedestrian traffic, where agents head for a large number of defined targets. Dis-
crete Social Distances model gives good results for the simulation of objects with
large number of obstacles and large population of agents. Due to the necessity
of application of many potential fields, the GPU implementation of Social Dis-
tances model is suitable for simulation in which number of pedestrian targets
is not high: it can be applied in evacuation scenarios or in relatively simple,
freeway traffic scenarios. Social Force method is continuous, thus it allows for
more accurate mapping of pedestrians movement. The trajectories of motion are
much more accurate then in a discrete model. On the other hand, Social Dis-
tances method gives the possibilities of generation an environment with more
complex topology (building, obstacle), whilst in Social Force model it is more
problematic.

It should be emphasized that the development of GPU technology is rapid
and it is expected that GPGPU will be more and more competitive, in relation to
traditional CPU programming. During the implementation of the models pre-
sented in this work, the specification of CUDA technology has been changed
several times and new features have been included (for example Thrust library
of templated primitives). Currently, most of the professional applications dedi-
cated to the dynamics of the crowd (especially those with engineering character)

The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics 687

implement simulation engine using traditional CPU, but the immediate future
may bring a change in this area.

Future works will concentrate on tuning the algorithms for efficient execution
on GPU device. The profiler need to be used in order to identify the bottlenecks.
The algorithm must be redesigned in order to increase the occupancy ratio. It
is necessary to consider whether explicit usage of shared memory is profitable.
Processors with Compute Capability 2.0 and higher (processors with Nvidia
Fermi and Keppler architecture) have cache L2 for global memory transaction
which may surpass the efficiency of manually managed shared memory.

Acknowledgment. This research is partially supported by FP7 project SOCIONI-
CAL, No 231288.

References

1. Bilotta, G., Rustico, E., Hérault, A.: Porting and optimizing magflow on cuda.
Ann. Geophys. 54(5), 580–591 (2011)

2. Blecic, I., Cecchini, A., Trunfio, G.A.: Cellular automata simulation of urban
dynamics through gpgpu. J. Supercomputing 65, 614–629 (2013)

3. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech.
App. 295(3–4), 507–525 (2001)

4. Courty, N., Musse, S.R.: Simulation of large crowds in emergency situations includ-
ing gaseous phenomena. In: Proceedings of the Computer Graphics International
2005, CGI ’05, pp. 206–212. IEEE Computer Society, Washington, DC (2005)

5. Demeulemeester, A., Hollemeersch, C.-F., Mees, P., Pieters, B., Lambert, P., Van
de Walle, R.: Hybrid path planning for massive crowd simulation on the GPU.
In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 304–315.
Springer, Heidelberg (2011)

6. Dudek-Dyduch, E., Kucharska, E.: Learning method for co-operation. In:
J ↪edrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS,
vol. 6923, pp. 290–300. Springer, Heidelberg (2011)

7. Gwizdafflffla, T.M.: The dynamics of disproportionality index for cellular automata
based sociophysical models. In: Sirakoulis, C.G., Bandini, S. (eds.) ACRI 2012.
LNCS, vol. 7495, pp. 91–100. Springer, Heidelberg (2012)

8. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

9. Joselli, M., Passos, E.B., Zamith, M., Clua, E., Montenegro, A., Feijo, B.: A neigh-
borhood grid data structure for massive 3D crowd simulation on GPU. In: Brazilian
Symposium on Games and Digital Entertainment, pp. 121–131 (2009)

10. Karmakham, T., Richmond, P., Romano, D.M.: Agent-based large scale simulation
of pedestrians with adaptive realistic navigation vector fields. In: TPCG’10, pp.
67–74 (2010)

11. Mróz, H., W ↪as, J.: Discrete vs continuous approach in crowd dynamics modelling
using GPU computing. J. Cybern. Syst. 45, 25–38 (2014)

12. NVIDIA. NVIDIA CUDA C Best Practices Guide (2010)
13. OpenCL. OpenCL - the open standard for parallel programming of heterogeneous

systems

688 H. Mróz et al.

14. Peng, Ch., Park, S.I., Cao, Y., Tian, J.: A real-time system for crowd rendering:
parallel LOD and texture-preserving approach on GPU. In: Allbeck, J.M., Falout-
sos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 27–38. Springer, Heidelberg (2011)

15. Pfflaczek, B.: A trafflc model based on fuzzy cellular automata. J. Cell. Automata
8, 261–282 (2013). (ISSN: 1557–5969)

16. Richmond, P., Romano, D.M.: Agent based GPU, a real-time 3D simulation and
interactive visualisation framework for massive agent based modelling on the GPU.
In: Proceedings of International Workshop on Supervisualisation 2008 (IWSV08),
June 2008

17. Rumpf, M., Strzodka, R.: Graphics processor units: new prospects for parallel
computing. Numer. Solut. Partial. Differ. Equ. Parallel Comput. 51, 89–132 (2006)

18. Rybacki, S., Himmelspach, J., Uhrmacher, A.M.: Experiments with single core,
multi-core, and GPU based computation of cellular automata. In: Conference on
Advances in System Simulation, pp. 62–67 (2009)

19. Spataro, W., Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Trunfio, G.A.:
High detailed lava flows hazard maps by a cellular automata approach. In: Pina, N.,
Kacprzyk, J., Filipe, J. (eds.) Simulation & Modeling Methodologies, Technologies
& Appli. AISC, vol. 197, pp. 85–100. Springer, Heidelberg (2013)

20. Topa, P., Mfflocek, P.: GPGPU implementation of cellular automata model of water
flow. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 630–639. Springer, Heidelberg (2012)

21. Vigueras, G., Orduña, J.M., Lozano, M.: A gpu-based multi-agent system for real-
time simulations. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.)
Advances in PAAMS. AISC, vol. 70, pp. 15–24. Springer, Heidelberg (2010)

22. W ↪as, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian
dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS,
vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

23. W ↪as, J., Lubaś, R., Myśliwiec, W.: Proxemics in discrete simulation of evacuation.
In: Sirakoulis, ChG, Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 768–775.
Springer, Heidelberg (2012)

24. W ↪as, J., Myśliwiec, W., Lubaś, R.: Towards realistic modeling of crowd compress-
ibility. In: Peacock, R.D., Kuligowski, E.D., Averill, J.D. (eds.) Pedestrian and
Evacuation Dynamics, pp. 527–534. Springer, US (2011)

Modeling Behavioral Traits of Employees
in a Workplace with Cellular Automata

Petros Saravakos and Georgios Ch. Sirakoulis(B)

Department of Electrical and Computer Engineering,
Democritus University of Thrace, 67100 Xanthi, Greece

{psaravak,gsirak}@ee.duth.gr
http://gsirak.ee.duth.gr

Abstract. The aim of this paper is to examine a parameterized working
environment on the basis of behavioral traits of employees in an organiza-
tion. Firstly we define several behavioral traits of the employees, includ-
ing the employee’s attitude in the workplace, the influence radius and
her/his reluctance to adapt to organizational norms, stated as insistence.
The combination of these traits allows us to model employee interactions
to a satisfactory extent for a realistic model of the working environment.
Secondly, we define two metrics illustrating the policies adopted by the
organization either to restrain unwanted or impose desirable behavioral
patterns. Finally, the corresponding Cellular Automaton (CA) model
enables us to utilize the aforementioned parameters and to simulate the
under study workplace. The presented simulation results can be used
as a complementary tool for managerial decisions illustrating workplace
dynamics and forecast future trends.

Keywords: Behavioral Traits · Cellular Automata · Working Environ-
ment · Simulation

1 Introduction

The contemporary workplace is an ever-changing environment of high diversity
stemming both from the management organization as well as the employees
themselves. The workplace is a forum where a variety of different behaviors are
expressed, each with a different consequence to the individuals within the orga-
nization as well as the entire organization [1]. While in the past decades there
have been numerous studies on enhancing the efficiency of the managerial deci-
sions with the intention of maximizing productivity, the main focus in past few
years is been shifted to studying the impact of behavioral features of individuals
or groups of individuals. Hence, terms such as work spirituality and employee
behavior are regarded as key factors in promoting a company’s goals i.e. pro-
ductivity, customer service, minimization of costs, environmental consciousness.
Changing the attitude of employees in the workplace is a twofold cause; encour-
aging positive behavior and alleviating negative behavior patterns, with main
focus on the latter.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 689–698, 2014.
DOI: 10.1007/978-3-642-55195-6 65, c© Springer-Verlag Berlin Heidelberg 2014

690 P. Saravakos and G.C. Sirakoulis

Positive behavior patterns consist of practices that might have a positive
effect in relation to the company’s goals, i.e. productivity, customer service,
minimization of costs, environmental consciousness. Although positive behavior
is considered to fall within the company lines, in some cases, positive behavior
might diverge from the company guidelines. In this occasion, the employee behav-
ior is asserted as positive deviance. According to Spreitzer and Sonenshein [11],
positive deviance entails organizational citizenship behaviors, whistle-blowing,
corporate social responsibility and creativity/innovation.
On the other hand, negative behavior patterns have more severe ramifications

to a company. To a certain extent negative behavior is expected to occur and
can be tolerated, given that the cost this practice entails is negligible. Neverthe-
less, negative deviant workplace behaviors should be abolished. Such behaviors
include absenteeism, withdrawal, withholding effort and behaviors that lead to
corporate inequality [9]. Negative deviance can be further distinguished based
on its severity (minor – serious), and to its target (company – co-workers).
Consequently, organizations tend to restrict employee behavior by instigating

policies that limit negative deviance. Such policies form organizational norms,
a grouping of “expected behaviors, languages, principles and postulations that
allow the workplace to perform at a suitable pace” [2]. In general, positive behav-
ior is been acknowledged by the management and as thus is usually promoted by
providing benefits, such as wage raise, promotion and fringe benefits. However
organizational norms have not been as successful in restraining negative behav-
ior and might rebound in setting restrictions to positive behaviors as well. A
conventional précis of company policies leans toward a balance view of battling
negative deviance, tolerating negative behavior, encouraging positive behavior
and finally hesitant to positive deviance. Employee behavior has been a key
issue in the fields of business management nonetheless, where most approaches
focus on business processes modeling and simulation than on the employees
themselves, and work psychology which is refrained to assessing and classifying
employee behavior. We use the following example to illustrate our point; Let an
employee A, who is very productive and is regarded an asset to the company,
but at the same time has a negative deviance towards other employees. From a
business management point of view, A has a remarkable performance while his
co-employees negatively influenced by his behavior perform poorly. As a result
they ought to be encouraged or disciplined to improve their productivity, regard-
less of the fact that the root of their bad performance is the behavior of A. From
a work psychology point of view, it can be easily derived that A is the root of
the problem and should be disciplined for his negative influence, but there are
no modeling or simulation techniques to assess the business performance. From
an engineering perspective, limited research is been conducted on simulations of
employee behavior in the workplace. First, Hu and Zhang [5] proposed a model
based simulation where the dynamics of employee incentive were modeled using
Cellular Automata (CAs) [8]. The influence of employee behavior in the work-
place has been modeled by Jiao et al. [6] who proposed a distance based behavior
influence model using CAs.

Modeling Behavioral Traits of Employees with CA 691

In our study, we propose a CA model and examine the simulation results to
study the influence of employee behavior in the workplace under the effect of
company policies. Our model provides a comprehensive approach that illustrates
the way a workplace evolves as the interactions of employees shape an ever-
changing working environment as well as the impact of company policies to
negotiate employee behavior. In contrast with the aforementioned models, our
approach does not depend on distance-modeled influence but on the notion of
several neighborhoods derived from a set of employee information. Even though
the proposed model is not an end to itself in terms of employee management, it
can be used to determine the robustness of the workplace and in tandem with
applied marketing techniques to facilitate managerial decisions.

2 The Proposed CA Model

Cellular Automata (CAs) [8] are models of physical systems, where space and
time are discrete and interactions are local. They have been extensively used
as models for complex systems and have also been applied to several physical
problems, where local interactions are involved [3,4,7,10,12,13]. A CA consists
of a regular uniform n-dimensional lattice (or array), usually of infinite extent.
At each site of the lattice (cell), a physical quantity takes on values. The value
of this physical quantity over all the cells is the global state of the CA, whereas
the value of this quantity at each site is its local state. A CA is characterized by
five properties:

1. the number of spatial dimensions (n);
2. the width of each side of the array (w). wj is the width of the jth side of the
array, where j = 1, 2, 3, . . . , n;

3. the width of the neighborhood of the cell (r);
4. the states of the CA cells;
5. the CA rule, which is an arbitrary function F .

The state of a cell, at time step (t + 1), is computed according to F , a
function of the state of this cell at time step (t) and the states of the cells
in its neighborhood at time step (t). For a 2-d CA, two neighborhoods are
often considered: Von Neumann, which consists of a central cell and its four
geographical neighbors north, west, south and east; and the Moore neighborhood
contains, in addition, second nearest neighbors northeast, northwest, southeast
and southwest, i.e. nine cells. In most practical applications, when simulating a
CA rule, it is impossible to deal with an infinite lattice. The system must be
finite and have boundaries, resulting to various types of boundary conditions
such as periodic (or cyclic), fixed, adiabatic or reflection.
In our approach, we model the employee behavior in the workplace using

a m × n CA array, where m × n is equal to the total number of employees.
Furthermore, we assume that each employee has several features, reflected by
the state of each cell. These features include persistent traits, that do not change

692 P. Saravakos and G.C. Sirakoulis

Fig. 1. Neighborhoods defined by different influence radii. (a) Von Neumann neighbor-
hood of 5 cells, (b) Moore neighborhood of 9 cells, (c) diamond-shaped neighborhood
of 13 cells, (d) Moore neighborhood of 25 cells, (e) basic Moore neighborhood enriched
with a random number of random non-adjacent cells.

through time and adaptable, non-persistent, traits, which are affected as the
employee adapts to the workplace.
Employee behavior is assessed on a seven point scale, hence each cell can

take seven different values -can be in seven separate states- with regards to
employee behavior ranging from −3 to +3. The negative (positive) states denote
negative (positive) behavior and specifically, −3(+3) denotes strong negative
(positive) deviance, −2(+2) negative (positive) deviance, and −1(+1) negative
(positive) behavior. The zero value state corresponds to the neutral behavior,
thus a behavior following the company’s organizational norms. Employee behav-
ior can be assessed based on purely work-related criteria, such as performance
evaluations, in tandem with personality traits that affect the employee’s work
behavior, such as organizational, leadership or motivational skills, derived by
personnel evaluations. It is evident that the employee behavior adjusts as he is
been influenced by his co-workers.
Secondly, each cell has an influence radius depicting the ability of the employee

to influence his coworkers. The influence radius illustrates the locality of employee
interactions and as such shapes the CA neighborhood. The influence radius can be
given five values, ranging from 1 to 5, responding to each neighborhood shown in
Fig. 1. In case the influence radius is equal to five, then the neighborhood expands
to non-adjacent cells with the intention to illustrate of the employee to influence
employees not in his vicinity, i.e. employees in different departments of a company.
The influence radius is considered to be a persistent trait of the employee, portray-
ing his ability to interact with his coworkers and does not change as the CA rule
is been applied.
Each cell has another state, depicting each employee’s insistence, his ability

to remain uninfluenced by his coworkers. Insistence takes values from 1 to 5,
where:

– 1 denotes that an employee is highly influenced by his neighborhood and thus
his behavior is determined by his coworkers. As a result, the impact of the
state of the central cell can reduced by a factor α1 or ignored altogether.
– 2 denotes that an employee is mildly influenced by his neighborhood and thus
his behavior is determined by his coworkers. As a result, the impact of the
state of the central cell can reduced by a factor α2 or ignored altogether.

Modeling Behavioral Traits of Employees with CA 693

Fig. 2. Symbolic representation of the rules applied to the CA at each iteration.

– 3 denotes that an employee is influenced to a reasonable extendbyhis coworkers.
– 4 denotes that an employee is mildly reluctant to his coworkers’ influence. As
a result the impact of the states of the neighboring cells can be reduced by a
factor α3.
– 5 denotes that an employee is reluctant to his coworkers’ influence. As a result
the impact of the states of the neighboring cells can be reduced by a factor
α4.

Unlike influence radius, insistence is an adaptable trait and depends on the
extent the employee is conformed to the organizational norms. Organizational
norms are determined by the company policy. As mentioned before, the man-
agerial decisions (limit positive deviance, tolerate mild negative deviance and
eradicate strong negative deviance) cannot influence the employee’s behavior,
but only offer motives and deterrents to persuade the employee to renegotiate
his stance and adapt to the workplace, hence to the dominant behavior of his
coworkers.
Lastly, a set of rules has to be determined to estimate the change of employee

behavior as well as of the adaptable features at each time step. The rules are uni-
formly applied to the entire CA and are summarized in the Fig. 2. These graph-
ical rules are simple cases taking into account the aforementioned behavioral
traits and their interaction as explained before. For example the first graphical
rule declares that if (spd+wpd+peb)>(npd+wnd+neb) AND (spd+wpd+peb)
>zeb then if peb>spd+wpd it means that out=peb, else if spd>wpd then
out=spd, or else out=wpd. The same notation applies for the rest five rules
trying to cover the examined behaviours.
After having described the CA model for our problem, we proceed with

the corresponding simulation results, taking into account the following model
parameters: the dimensions m and n of the m × n CA array; the number of

694 P. Saravakos and G.C. Sirakoulis

iterations, i.e. the number of times the CA update rule is applied; the Company
Reward Policy (CRP) which represents the company’s intervention in order to
keep employees within the organizational norms (in our case, the CRP is indi-
cated as a number between 0 and 1, though it is usually restrained in the range
[0, 0.5]); the Company Penalty Policy (CPP) which represents the company’s
intervention in order to force employees to conform to the organizational norms
(as before, the CPP is indicated as a number between 0 and 1, though it is
usually restrained in the [0, 0.5]); finally, the maximum number of extended
neighbors, which denotes the maximum number of non-adjacent cells taken into
consideration when the central cells has influence radius equal to five.
The selection of an appropriate company policy, reward or penalty, is crucial

to reassess the insistence of each employee and thus must be chosen carefully.
Apparently, the values of the aforementioned parameters depend greatly on the
managerial decisions of the company and specifically whether a company is more
interested in offering motives for conformation to the company policies or in
discouraging deviance. A motivating technique will increase the percentage of
conformed employees but will not have any particular impact on deviant behav-
ior. On the contrary, a discouraging technique will reduce deviant behaviors but
will not offer incentives to positive and most importantly negatively inclined
employees to fully conform to the company policy. In our approach we assume
only two metrics summarizing the company policies, the company reward policy
and the company penalty policy. The company reward policy is applied only
to employees with conformed and tolerable, negative or positive, behavior. In
contrast, the company penalty policy is applied to the rest of the employees
with different factors depending both on their behavior and their insistence. For
instance, the company penalty policy is enhanced by an additional factor for
strong negative deviant behaviors and by a smaller factor for strong positive
ones, since the former have a more detrimental effect on the workplace. In both
cases the above metrics are regarded and applied as weights in conjunction to
the insistence of the examined CA cell. Moreover, regarding the initialization of
the values of employee behavior, influence and insistence, all three variables are
supposed to follow a Gaussian distribution in the appropriate range of values.
In our approach we introduce a new combined statistical metric, used to

estimate the conformation rate of the employee to the company’s organizational
norm. This metric is referenced as employee loyalty or simply loyalty. Loyalty
is a combined statistic of the employee behavior and his insistence. Employees
with behavior closer to the employee norm and high insistence are considered
very highly loyal, whereas employees with strong deviance -positive or negative-
are considered very highly disloyal, since it is most unlikely that they might
conform to the organizational norms. The direct consequences of the application
of company policies on employee behavior are depicted on the loyalty graph than
in any other graph.
We will examine three typical cases of workplaces to illustrate the simulation

of employee behavior with CAs. Namely, the cases we will examine include: (1)
A small-medium enterprise (SME), (2) a large company with minor company

Modeling Behavioral Traits of Employees with CA 695

Table 1. 1st, 2nd and 3rd case model parameters

Model parameters (Case 1) (Case 2) (Case 3)

Number of employees 100 (10× 10) 2500 (50× 50) 2500 (50× 50)
Number of iterations 6 15 15
Company Reward Policy 0% 20% 40%
Company Penalty Policy 10% 30% 50%
Number of extended neighbors 10 10 10

intervention and (3) a large company with significant company intervention. In
the first study case, we will examine the model of a SME, a company model com-
mon in most developed countries of the Eurozone. SMEs have a limited number
of employees, yet are renown of promoting innovation with reduced interest in
applying strict company policies. Hence we can determine the model parameters
as shown in Table 1. The results of the simulation ranging from hotter colors for
positive to cooler colors for negative behavior, are depicted in Fig. 3, respectively.
Given that the company it is not within the company’s interest to conform its
employees to a strict organizational norm, deviances are dominant compared to
normal or conformed behaviors. Moreover the conservative penalty policy leads
to lower insistences and as seen in Fig. 3, results in the slight descent of the
strong negative deviance and at the same time in faster ascent of the strong pos-
itive deviance. Nevertheless, the loyalty statistics do present high conformation
and discourage disloyalty.
In the second case, the model of a larger company will be taken into consider-

ation. The increased size of the company usually imposes the need of managerial
decisions to restrain deviant behaviors up to a certain extent, shifting the focus
from creativity and innovation to a more efficient and smoothly operating work-
ing environment. This case can be further divided into two separate studies of
company intervention, the stringency of the company policies. The model para-
meters are also presented in the Table 1 and have been selected in such a way to
depict more clearly the resulting differences on company intervention. The results
of the simulation for both cases can be illustrated in Figs. 4 and 5, respectively. In
both cases, we note that the conformity of the employees is guaranteed, but most
importantly in the latter case, where the company intervention was more intense,
the employees are slightly less loyal but the neutral behavior in the employee
behavior graph is increased more rapidly and reaches a higher value, exceeding
the strong negative deviance. The insistence, a parameter directly affected by the
company policy, also changes in a different manner than before. Despite the fact
that low insistence is still dominant, employees attain much higher levels of very
high insistence. Specifically, in first case, the mild company intervention results
in the existence of strongly deviant behaviors in the workplace. Due to the local
effect of the influence of each and every employee in our case, strong deviances
create clusters, groups of people behaving in a similar fashion. The formation
of such clusters is not condoned by the company policies but the mild company

696 P. Saravakos and G.C. Sirakoulis

Fig. 3. Evolution of the employee behavior in the CA array of a SME (1st case) for
different iterations, i.e. (a) i = 1, (b) i = 3 and (c) i = 6. Graphical representation of
simulation statistics of the first case for (d) Employee behavior, (e) Insistence and (f)
Loyalty, respectively.

Fig. 4. Evolution of the employee behavior in the CA array of a large company (2nd

case) for 15 different iterations. Snapshots of (a) i = 1, (b) i = 7 and (c) i = 15 are
provided in correspondence. Moreover simulation statistics of (d) Employee behavior,
(e) Insistence and (f) Loyalty for model’s parameters in 2nd case are also shown.

Modeling Behavioral Traits of Employees with CA 697

Fig. 5. Evolution of the employee behavior in the CA array of a large company (3rd

case) for 15 different iterations. Snapshots of (a) i = 1, (b) i = 7 and (c) i = 15 are
provided in correspondence. Moreover simulation statistics of (d) Employee behavior,
(e) Insistence and (f) Loyalty for model’s parameters in 3rd case are also shown.

intervention on altering the employee behavior cannot allow them to be dispar-
aged or even isolated, in the time interval specified in this study case. Lastly in
second case, the more intervening company guidelines are effectively reducing
deviances and most importantly clusters of deviant behavior are of a signifi-
cantly smaller size, since employees with neutral (conformed) behavior traits are
scattered across the behavioral map. Therefore, it is safe to conclude that the
effect of company polices is not actually focused on eliminating deviances but to
discourage the formation of clusters of deviant behaviors.

3 Conclusions

In this paper we propose a CA model to simulate a workplace with regards
to employee behavioral traits and in accordance with a variable company pol-
icy. The impact of the influence of inter-employee interactions as well as the
importance of an appropriate company policy have been demonstrated in sev-
eral study cases and depicted by statistical measures as the employee behavior,
influence radius, insistence and the conformity measure, stated as employee loy-
alty. Conclusively, the CA model facilitates the presentation and simulation of
a workplace with a variety of employee behavioral characteristics and under
adaptable company policies. The proposed model can be practically used on two
levels, firstly to estimate the workplace robustness and secondly to illustrate
workspace dynamics. As a result it can be employed in conjunction with applied

698 P. Saravakos and G.C. Sirakoulis

employee management techniques to facilitate managerial decisions and forecast
the impact of employee behavioral changes and company decisions. As future
work concerns, we are going to utilize our model to simulate behavioral patterns
at a small enterprise, existent organization with mild company intervention, in
Greece.

References

1. Appelbaum, S., Iaconi, G., Matousek, A.: Positive and negative deviant workplace
behaviors: causes, impacts, and solutions. Corp. Gov. 7, 586–598 (2007)

2. Coccia, C.: Avoiding a “toxic” organization. Nurs. Manage. 29(5), 32–33 (1998)
3. D’Ambrosio, D., Spataro, W.: Parallel evolutionary modelling of geological
processes. Parallel Comput. 33, 186–212 (2007)

4. Georgoudas, I., Sirakoulis, G.C., Scordilis, E., Andreadis, I.: A cellular automaton
simulation tool for modelling seismicity in the region of Xanthi. Environ. Model.
Softw. 22(10), 1455–1464 (2007)

5. Hu, B., Zhang, D.: Distance based cellular automata simulation for employee
behaviors. Syst. Eng. Theory Prac. 2, 83–96 (2006)

6. Jiao, Y., Sun, S., Sun, X.: Simulation of employee behavior based on cellular
automata model. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2007, Part IV. LNCS, vol. 4490, pp. 134–137. Springer, Heidelberg (2007)

7. Maerivoet, S., Moor, B.D.: Cellular automata models of road traffic. Phys. Rep.
419(1), 1–64 (2005)

8. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illnois
Press, Urbana (1966)

9. Robinson, S., Bennett, R.: A typology of deviant workplace behaviors: a multidi-
mensional scaling study. Acad. Manag. J. 38(5), 555–572 (1995)

10. Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Hei-
delberg (2012)

11. Spreitzer, G.M., Sonenshein, S.: Toward the construct definition of positive
deviance. Am. Behav. Sci. 47(6), 828–847 (2004)

12. Topa, P.: Dynamically reorganising vascular networks modelled using cellular
automata approach. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T.,
Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 494–499. Springer, Heidelberg
(2008)

13. Wąs, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian
dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS,
vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

Probabilistic Pharmaceutical Modelling: A
Comparison Between Synchronous and

Asynchronous Cellular Automata

Marija Bezbradica(B), Heather J. Ruskin, and Martin Crane

School of Computing, Centre for Scientific Research and Complex Systems
Modelling (Sci-Sym), Dublin City University, Dublin, Ireland

{mbezbradica,hruskin,mcrane}@computing.dcu.ie

Abstract. The field of pharmaceutical modelling has, in recent years,
benefited from using probabilistic methods based on cellular automata,
which seek to overcome some of the limitations of differential equa-
tion based models. By modelling discrete structural element interactions
instead, these are able to provide data quality adequate for the early
design phases in drug modelling. In relevant literature, both synchro-
nous (CA) and asynchronous (ACA) types of automata have been used,
without analysing their comparative impact on the model outputs. In
this paper, we compare several variations of probabilistic CA and ACA
update algorithms for building models of complex systems used in con-
trolled drug delivery, analysing the advantages and disadvantages related
to different modelling scenarios. Choosing the appropriate update mech-
anism, besides having an impact on the perceived realism of the simu-
lation, also has practical benefits on the applicability of different model
parallelisation algorithms and their performance when used in large-scale
simulation contexts.

Keywords: Discrete systems · Controlled drug delivery systems ·
Complex modelling · Parallel algorithms

1 Introduction

Probabilistic models based on Monte Carlo and CA frameworks have emerged
in recent years as a viable response to the modelling needs imposed by design
requirements of novel, more complex, drug delivery systems (DDS) [1].

Unlike traditional, differential equation based models, [2,3], CA attempt to
recreate system-level behaviour by in silico simulations of individual interactions
within the modelled device. This fits naturally with the early stages of the design
process, in which global physico-chemical behaviours of DDS are investigated.
By providing a low-cost alternative to lengthy, and potentially expensive, in vitro
experiments, probabilistic computational modelling becomes an integral part of
the drug design process. Nevertheless, uncertainties are inherent in this approach
to modelling physical phenomena and parameters can multiply rapidly, due to

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 699–710, 2014.
DOI: 10.1007/978-3-642-55195-6 66, c© Springer-Verlag Berlin Heidelberg 2014

700 M. Bezbradica et al.

the many different physical interactions within the model, so good understanding
of model design choices is crucial.

In research papers covering the application of CA to the field, both synchro-
nous and asynchronous update methods have been used [3–6], without going into
deeper analysis of pros and cons of each. Choosing the algorithm for iterating
through the cellular matrix and the order of application of the local rules affects
how temporal realism of the physical process is represented. As DDS is biologi-
cal in nature, chaotic or random updates might represent the system dynamics
better than synchronous, “all-at-once”, changes. On the other hand, as size and
complexity of the models grows, the need for efficient parallelisation of model
space restricts the application of the asynchronous methods due to performance
reasons [7]. Therefore, it is of importance to understand the effects of synchronic-
ity and asynchronicity to the model outputs, in order to be able to make optimal
choices during model development. The transition of CA to ACA in general has
been investigated in literature in a number of modelling contexts [7–9].

In this paper we compare behavioural characteristics, model outputs and
performance for different synchronous and asynchronous CA update mecha-
nisms in the context of probabilistic models used in controlled drug delivery
and their parallel implementation, where differential equations are not applica-
ble due to inherent unknowns in the parameter space. Finally, we analyse the
results obtained by running the resulting models for a specific case of coated drug
bead formulations [10].

In what follows, Sect. 2 presents the design methodology used for developing
the CA rule sets, along with comparison of different CA and ACA update mech-
anisms when used in the context of the model and gives a theoretical analysis
of their properties and variations in parallel and sequential implementations.
Section 3 describes the developed model, with analysis of obtained results in
Sect. 4, followed by the final discussion (Sect. 5).

2 CA and ACA Modelling

2.1 Design Methodology

As for any model build, the first stage involves transfer of domain knowledge of
structural and behavioural characteristics of the DDS to the CA model. There
are several distinct DDS characteristic categories to be considered:

• The shape and geometry of the system (slab, cylindrical or spherical) - cap-
tured in the shape and size of the model cellular matrix;

• Polymer composition of the device defined by states of the matrix cells;
• Polymer physico-chemical interaction mechanisms (laws) - described by char-

acteristic behaviours that occur inside the DDS;
• Drug loading and initial dispersion within the device;
• Influence of the dissolution environment on polymer behaviour.

Probabilistic Pharmaceutical Modelling 701

The models thus obtained, with the above characteristics, are classified as
kinetic CA or ACA models [11]. Based on the way we choose to represent the
physical phenomena modelled, we can adopt rules, either deterministic or prob-
abilistic, (or a combination of both) affecting individual cell behaviour and the
surrounding neighbourhood.

Although it is common for various families of CA update mechanisms to oper-
ate under periodic boundary conditions [12,13], pharmaceutical models benefit
from using the fixed equivalent, as drug movement across the matrix boundaries
is used as a direct method for calculating release rates. To satisfy the condi-
tion that the models need to mimic the non-homogeneousness of the physical
device, with exact distributions of polymer and drug properties not available
from experimental data, the model establishes the initial cell states using sto-
chastic distributions within the known device geometry. Therefore, various direct
Monte Carlo algorithms provide a natural solution to the initial condition prob-
lem, by establishing a random starting state for each simulation run.

2.2 Update Methods

Crucially, a good description of the model dynamics, i.e. the closest qualita-
tive match to the behaviour of the pharmaceutical system modelled, relies on
choosing the appropriate update method of the cellular automaton itself. This
is addressed here, with particular emphasis on the correctness of the update
rules as we consider several standard synchronous and asynchronous CA update
methods [11,14,15].

Mathematically, the principal features of the 3-dimensional DDS models can
be represented as a cellular automaton by a tuple representation, as given by:

ACA = {G,A,U,Θ, F} (1)

where G denotes a set of cell coordinates (the model matrix in our meta model).
In the case of a 3D system:

G = Z3 = {(i, j, k) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} (2)

A is the model alphabet - a finite set of possible cell states, (aggregate poly-
mer states in the conceptual model), and U denotes the cell neighbourhood
(including cell itself). Then A(U(x), t) denotes the state of a neighbourhood of
cells U around a given cell x at a moment in time t. The behaviour of the system
is described by a set of elementary transition rules for the conceptual model, F,
where these are applied to the states of a neighbourhood of cells U. For the
sequential case of synchronous updates, the general form of the rules (Fs) can
be written as following:

Fs = {f(x) : A(U(x), t) → A(U(x), t + 1) | x ∈ G} (3)

Finally, Θ denotes the CA/ACA update order function, applied to G and A
in order to advance the global model state. As a basis for Θ we investigated the

702 M. Bezbradica et al.

application of several random and ordered asynchronous update methods, (see
e.g. [16]) and compared these to the well-used synchronous method.

We implement the different update forms as modifications of the basic syn-
chronous CA two-phase update algorithm of the main matrix G. The
first ACA update method investigated is the random order algorithm which
involves updating cells of G in a random order which is changed every time a
full cell sweep is finished. All cells are updated in each time step of the sim-
ulation. The random cyclic algorithm is a variation of the random order
algorithm, with the difference that a single random permutation of G is always
used. Random permutation of G is chosen at the beginning of the simulation. In
the random independent method one cell is chosen at random for updating
at each time step. In the overall simulation, each cell should thus be updated
approximately the same amount of times. However, over shorter time periods a
given cell may be updated significantly more often. To achieve uniform selection,
the algorithm thus depends heavily on the size of the sequence of the random
number generator implementation. The Mersenne Twister algorithm has been
used in this case, to reduce bias [17]. Finally, the fixed cyclic sequential algo-
rithm was used in two forms: in the first one, cells of G are visited in sequential
order of their coordinates (first width, then depth, then height in 3D). In the
second form, cells are sorted based on their state (A), so that polymers of certain
type are given simulation priority over polymers of other types (outer coating,
then the inner coating, then the core). The order of cell simulation within the
same polymer type is sorted by its coordinates.

2.3 Equivalence of Sequential and Parallel Implementations

In a concrete, model execution context, the mechanisms presented above only
apply as long as the simulation is sequential. Once the algorithm has to scale
up to be applicable to large data sets, the inclusion of parallelisation will have
fundamental impact on the update logic.

It can be shown that in our case synchronous matrix updates are more suit-
able to parallelisation, as the effect of parallel updates on the resulting state
should be equivalent. Consider a parallel version (Fp) of the fundamental rule
set given in Eq. 3:

Fp = {f(x1, . . . , xn) :
n⋃

i=1

A(U(xi), t) →
n⋃

i=1

A(U(xi), t+1) |x1, . . . , xn ∈ G} (4)

Essentially, parallelising the update mechanism by splitting the CA space into
disjoint domains, each having a set of boundary cells, introduces a simultaneous
update of n cells at a time, where n represents the degree of parallelisation. The
exact selection of cells x1, . . . , xn depends on the particular parallel algorithm
being used. In the synchronous case, the state of a neighbourhood of cells U(x)
at moment t only depends on the same state for the previous moment t − 1,
and not on any currently updated state of any of the other neighbourhoods.

Probabilistic Pharmaceutical Modelling 703

Therefore, for synchronous updates, it holds that FS ⇔ FP , which is in line
with [18].

For asynchronous updates, the equivalence of sequential and parallel imple-
mentation breaks down. As the parallel version of the rule set presents a com-
position of functions applied simultaneously, the order of their application can
result in a different overall state of the matrix. This is always true if any of the
chosen neighbourhoods U(xi) overlap.

Therefore, in the case of random order and random cyclic updates, we expect
the parallelisation to always result in slightly different model output. The same
holds for different variations of fixed cyclic rules, where the idea of the underlying
algorithm essentially breaks down. The only exception to this rule is the random
independent order of updates, which might produce equivalent results, but only
if, in each individual iteration, cells xi are chosen in each parallel domain so that
their neighbourhoods U(xi) are non-overlapping.

From an implementation point of view, when implementing parallelisation of
pharmaceutical models using some of the industry standard parallel APIs, such
as Message Passing Interface (MPI), synchronous updates are preferable from
the execution speed point of view, as simulations have a practical wall-time limit
of 24 h, the amount of time it would take to run a single in vitro experiment.
Synchronous updates are extremely efficient in terms of execution speed espe-
cially as they can utilise two-sided communication using MPI to send and receive
primitives. Asynchronous parallelisation schemes have to utilise one-sided com-
munication primitives such as MPI “put” and “get”, utilising the remote mem-
ory access mechanism, which, although slower, allows for the cell state to be
asked for or provided on demand, without the need to wait on some eventual
update [19].

Finally, it is important to note here that according to [20], for relatively
slow changing stochastic CA models, the expected variance in outputs between
synchronous and asynchronous update methods would be small. This results
from the fact that large-scale, low-probability models do not have too many cell
state updates in each iteration, which in turn limits the number of cases where
overlapping neighbourhoods are updated.

3 CA Model for Coated Drug Formulations

Table 1 outlines the main CA rules used in the resulting model for each of the
simulated processes. Following the notation from Sect. 2.2, each of the transition
functions is applied to an alphabet of CA states:

A = {PCOAT , PCORE , PWCOAT , PWCORE , B,D} (5)

where PCOAT , PWCOAT , PCORE and PWCORE denote the coating layers and
core polymers, and their wetted state, respectively. B represents buffer cells and
D drug molecules. The rules affecting each cell type can be described using a
formal notation:

704 M. Bezbradica et al.

Table 1. Cell types and rules of behaviour for the examined model

Cell type Behaviour description

Buffer (B) Acts as a perfect sink for drug dissolution; Rules:
diffusion; dissolution.

Coating polymer (PCOAT) Protective coating layer. Upon water penetration
erodes into (PWCOAT); Rules: erosion; Initial state:
assigned random lifetime using Erlang distribution.

Core polymer (PCORE) Binds drug in the solid phase. Upon water penetra-
tion erodes into (PWCORE); Rules: erosion.

Wet coating polymer (PWCOAT) Coating layer with some water penetration through
the polymeric chains, allowing drug to diffuse.
Applicable rules: diffusion.

Wet core polymer (PWCORE) Result of core erosion allowing drug diffusion
through relaxed chains; Rules: erosion; diffusion;
swelling.

Drug packet (D) Agent, initially dispersed in core polymer cells.
Each cell can hold a maximum (saturation) amount
of drug “packets”. Initial distribution of packets
throughout the sphere is determined using MC
methods.

• Erosion: Polymer lifetime of a given cell x (l(x)) decreases linearly with
time according to the following function: fe(x) : {l(x) → l(x) − t | ∀x ∈
{PCOAT , PWCOAT , PCORE , PWCORE}}

• Diffusion: The amount of drug present in cell xa (d(xa)) partially
transitions to a neighbouring cell xb with probability pdiff : fdiff (xa, xb) :
{d(xa, xb)

pdiff−−−→ d(xa) − Δd, d(xb) + Δd | ∀xa ∈ {D}, xb ∈ U(xa)}
• Swelling: The amount of polymer present in cell is distributed in a similar

fashion, using probability ps: fs(xa, xb) : {l(xa, xb)
ps−→ l(xa) − Δl, l(xb) +

Δl | ∀xa ∈ {PWCORE}, xb ∈ U(xa), xb ∈ {PCOAT , PCORE , B}}
• Dissolution: Finally, the process of partial or total drug dissolution is

described as the reduction in drug molecule count of a given cell once it
transitions to solvent state: fdiss(x) : {d(x)

pd−→ d(x)−n | ∀x ∈ {B}, n ≤ d(x)}
Multiple rule combinations can be superimposed (e.g. f(x) = fe(fdiff

(fs(x)))) to fully define a cell behaviour during a single iteration if the given
cell state satisfies all the alphabet preconditions of the rules given in Eq. 5.

4 Experimental Results

For each of the described update mechanisms, simulations investigated the
following:

• The shape of the release curve during a 24 h period (a characteristic of GI
tract transition time for the drug);

Probabilistic Pharmaceutical Modelling 705

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a1) Synchronous

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b1) Random Order

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c1) Random Cyclic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d1) Random Independent

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e1) Fixed Cyclic Sequential

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a2) Synchronous

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b2) Random Order
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(c2) Random Cyclic

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d2) Random Independent

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e2) Fixed Cyclic Sequential

Time [min]

(le
ft)

 R
el

ea
se

 [f
ra

ct
io

n]
 −

 (r
ig

ht
) D

ia
m

et
er

 [m
m

]

Fig. 1. 24 h simulation period for different update methods. Left - Drug release curves
(blue - release fraction for appropriate update mechanism, gray - synchronous refer-
ence); Right - dissolution fronts changes over time (green swelling front, blue - erosion
front, black gel layer thickness) (Color figure online)

706 M. Bezbradica et al.

• The radii of two main reaction fronts: the swelling front, (where the polymer
moves from being in a static to dynamic state), and the erosion front (where
polymer starts dissolving). These are the best indicators of the spatial scope
of the underlying phenomena, which cannot be observed directly from release
data alone;

• The device composite structure changes during characteristic stages of the
dissolution, through visualisation of details.

Fig. 2. Left- modelled device schematics; Right - An example experimental vs. sim-
ulated results for the case of synchronous updates (experimental data provided by
Sigmoid Pharma Ltd) (Color figure online)

In Fig. 1 we show the results for synchronous updates (used as a basis for rel-
ative comparison with all subsequent ACA methods). The presented data is
considered stable, as variations between different runs of the same parameter
set were negligible. Comparing with random order updates, (Fig. 1b), we find a
good match, with negligible release curve difference (indicating that the methods
are effectively interchangeable e.g. where synchronous update is deemed more
appropriate (for specified structure for example [21])). By comparing the curves
analytically using the f2 similarity factor [22], we obtain the results ranging from
50.93 (10 % fit) for random independent to 77.83 (3 % fit) for random order type
of updates. However, random order, random cyclic and fixed cyclic independent
have very similar f2 values (3 %–4 %) fit so looking at the release curves alone
is not enough to establish a clear advantage of one over another.

Figure 1 shows possible alternatives to the asynchronous random order
method. It can be seen that random independent selection (Fig. 1d) produces
release curves, which are significantly shifted with respect to those expected,
although the radii behaviour is similar, in the sense that polymer transitions
occur at the same rate. The features which give rise to this discrepancy can
be observed in the model visualisations, where large drug clusters (black dia-
monds) occur as a consequence of some cells being updated more often than
others (Fig. 3d). Random cyclic updating, on the other hand, produces release
curves which are qualitatively similar to those expected, (Figs. 1(c1), (c2) and

Probabilistic Pharmaceutical Modelling 707

3(c)), although the radii decrease dynamics are much slower. Finally, Figs. 1(e1),
(e2) and 3(e), show results obtained using sequential matrix sweeps. This app-
roach is not recommended due to the significant bias, which can be observed in
the visualisation, leading to highly unrealistic radii dynamics. As expected, since
the stochastic model is both slowly changing, with usual probability values used
are much smaller than 1, and highly symmetrical, due to the spherical device
geometry, the results obtained do not show highly anomalous results as would
be expected in general CA to ACA transition [23], in line with theorems pre-
sented in [20] relating to equivalences between slow changing synchronous and
asynchronous update processes in CA models.

Fig. 3. Model visualisation during 10, 30, 150, 400 and 700min interval, respectively:
(a) synchronous; (b) random order; (c) random cyclic; (d) random independent; (e)
fixed cyclic sequential. (Color figure online)

The validity of the synchronous updates when compared against experimental
data is shown in Fig. 2, with obtained similarity factor showing a match within
the standard variability range (<6%).

At the end, we examine the overall performance in terms of simulation
length using different ACA mechanisms in thread-level parallelisation context.

708 M. Bezbradica et al.

Fig. 4. Comparison of parallel and total simulation times for different synchronous and
asynchronous update mechanisms. Left - comparison of different ACA update methods
using thread-level parallelism. Right - comparison of synchronous update mechanism
for thread-level (blue) vs. process-level (red) (Color figure online)

As expected, sequential algorithms were the fastest, as these could utilise the
CPU memory cache better. The performance is closely followed by random cyclic
variants, which might make an optimal choice for the scenario where the best
simulation performance is needed, as opposed to state update realism, consider-
ing the accuracy of model outputs presented earlier. The worst performing are
the random order algorithms which are not able to leverage the processor cache
due to constantly changing order of memory access. However, these offer the
best simulation realism and precision when compared to the synchronous vari-
ant, so the pros and cons of each should be weighed when making the decision.
Figure 4 shows the performance profile for synchronous updates when switching
from thread-level to process-level parallelisation model [21]. Although synchro-
nous updates do not perform on the same level as asynchrounous ones, they
do not have a parallelisation limit, and thus, ultimately, can be scaled to any
number of nodes allowed by the model size.

5 Conclusions and Future Work

We have presented an overview of methodological considerations, important to
modelling drug delivery systems using CA and ACA, and have analysed advan-
tages and disadvantages of each update method. While some flexibility is possi-
ble in choosing between asynchronous and synchronous methods for approximate
solutions in this context, this is governed by structural requirements. Our find-
ings show that one of the most adequate solutions is random order asynchronous.
In this regard, model visualisation provides valuable additional insight on struc-
tural behaviour and dissolution mechanisms, which is not readily apparent from

Probabilistic Pharmaceutical Modelling 709

working with standard release curve data alone, or which are intractable to sup-
plementary experiment. The findings are useful for future modelling scenarios
where it may be necessary to switch from one update mechanism to the other,
both in terms of large-scale optimisation, but also in response to the need for
describing component interactions in tailored solutions for individualised treat-
ment. The CA pharmaceutical models presented here are a step in that direction.
Conclusions drawn in this paper can also be applied in general to any slow chain-
ing CA system, such as those used in social behaviour modelling for example
(especially the performance part).

Acknowledgments. Financial support from the ERA-Net Complexity Project,
P07217, is warmly acknowledged. The parallel simulations discussed in this paper were
performed on computational resources provided by Sci-Sym, DCU, and by the Irish
Centre for High-End Computing.

References

1. Haddish-Berhane, N., Jeong, S.H., Haghighi, K., Park, K.: Modeling film-coat non-
uniformity in polymer coated pellets: a stochastic approach. Int. J. Pharm. 323(1–
2), 64–71 (2006)

2. Kaunisto, E., Marucci, M., Borgquist, P., Axelsson, A.: Mechanistic modelling
of drug release from polymer-coated and swelling and dissolving polymer matrix
systems. Int. J. Pharm. 418(1), 54–77 (2011)

3. Siepmann, J., Siepmann, F.: Mathematical modeling of drug delivery. Int. J.
Pharm. 364(2), 328–343 (2008)

4. Barat, A., Crane, M., Ruskin, H.J.: Quantitative multi-agent models for simulating
protein release from PLGA bioerodible nano- and microspheres. J. Pharm. Biomed.
Anal. 48(2), 361–368 (2008)

5. Göpferich, A.: Bioerodible implants with programmable drug release. J. Controlled
Release 44(2–3), 271–281 (1997)

6. Laaksonen, H., Hirvonen, J., Laaksonen, T.: Cellular automata model for swelling-
controlled drug release. Int. J. Pharm. 380(1–2), 25–32 (2009)

7. Bandman, O.: Synchronous versus asynchronous cellular automata for simulating
nano-systems kinetics. Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 25, 1–12
(2006)

8. Alba, E., Giacobini, M., Tomassini, M., Romero, S.: Comparing synchronous and
asynchronous cellular genetic algorithms. In: Merelo Guervós, J.J., Adamidis, P.A.,
Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.L. (eds.) PPSN VII. LNCS,
vol. 2439, pp. 601–610. Springer, Heidelberg (2002)

9. Kalgin, K.V.: Parallel simulation of asynchronous cellular automata evolution.
Bull. Novosib. Comput. Cent. Ser. Comput. Sci. 27, 55–62 (2008)

10. Bezbradica, M., Ruskin, H.J., Crane, M.: Modelling drug coatings: a parallel cel-
lular automata model of ethylcellulose-coated microspheres. In: Proceedings of the
International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB
2011), vol. 5, pp. 419–424 (2011)

11. Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA?
A reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S.,
Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer,
Heidelberg (2010)

710 M. Bezbradica et al.

12. Burstedde, C., Klauck, K., Schadschneider, S., Zittartz, J.: Simulation of pedestrian
dynamics using a two-dimensional cellular automaton. Physica A 295(3–4), 507–
525 (2001)

13. Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C.: Using cellular
automata to generate image representation for biological sequences. Amino Acids
28, 29–35 (2005)

14. Baetens, J.M., der Weeën, P.V., Baets, B.D.: Effect of asynchronous updating on
the stability of cellular automata. Chaos, Soliton. Fract. 45(4), 383–394 (2012)

15. Schoenfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. Biosystems 51(3), 123–143 (1999)

16. Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-
agent systems. Physica D 204(1–2), 70–82 (2005)

17. Matsumoto, M., Nishimura, T.: Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8, 3–30 (1998)

18. Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In:
El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp.
41–47. Springer, Heidelberg (2006)

19. Thakur, R., Gropp, W.D., Toonen, B.: Minimizing synchronization overhead in the
implementation of MPI one-sided communication. In: Kranzlmüller, D., Kacsuk,
P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 57–67. Springer,
Heidelberg (2004)

20. Toffoli, T., Margolus, N.: Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge (1987)

21. Bezbradica, M., Crane, M., Ruskin, H.J.: Parallelisation strategies for large scale
cellular automata frameworks in pharmaceutical modelling. In: 2012 International
Conference on High Performance Computing and Simulation (HPCS), pp. 223–230
(2012)

22. Moore, J.W., Flanner, H.H.: Mathematical comparison of curves with an emphasis
on in-vitro dissolution profiles. Pharm. Technol. 20(6), 64–74 (1996)

23. Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of
double-quiescent elementary cellular automata. Theoret. Comput. Sci. 362(1–3),
1–16 (2006)

The Graph of Cellular Automata Applied
for Modelling Tumour Induced Angiogenesis

Paweffl Topa(B)

Department of Computer Science, AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Kraków, Poland

topa@agh.edu.pl

Abstract. Angiogenesis is the process of formation of vascular network.
Blocking tumour induced angiogenesis is one of the treatments applied
in oncology. Research involving computer simulations looking for the
rules influencing the structure of vascular network and its functionality.
This paper summarizes the applications of Graph of Cellular Automata
modelling tool, developed by the Author, for modelling Tumour Induced
Angiogenesis. Vascular network which is modelled by the graph interacts
with surrounding tissue represented by the lattice of automata. The net-
work is developed and reorganized accordingly to locally acting factors
(stimulators and inhibitors). The model includes blood flow calculations
in a modelled vascular network.

Keywords: Cellular automata · Tumour-induced angiogenesis · Com-
plex systems

1 Introduction

Vascular network is formed during embryogenesis and later in adulthood this
process is quiescent and rigorously controlled by mutual interactions of various
stimulators and inhibitors. Abnormal angiogenesis is triggered by development
of solid tumours [1]. Therapies targeted against Tumour Induced Angiogenesis
are subjects of wide scientific interdisciplinary investigations [2,3].

Without blood vessels, tumour cannot grow beyond a critical size and/or
invade other regions of a body. The tumour induced angiogenesis starts when
the production of pro-angiogenic factors overcomes other forces that kept the
angiogenesis quiescent so far. Oxygen and nutrients penetrate the tissue only at a
certain distance from the blood vessel. More distant cells subjected to metabolic
stress synthesize many angiogenic stimulators (Tumour Angiogenic Factors —
TAFs) among which the most famous is VEGF (Vascular Endothelial Growth
Factor) [1]. Stimulators migrate towards the nearest blood vessels. When they
reach the blood vessels, endothelial cells lining the vessel wall are activated.
They start to proliferate and migrate towards the tumour cell attracted by the
stimulators. The wall of the parent blood vessel becomes degraded, and it opens

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 711–720, 2014.
DOI: 10.1007/978-3-642-55195-6 67, c© Springer-Verlag Berlin Heidelberg 2014

712 P. Topa

to form a new capillary. Migrating and proliferating cells form a hollow tube-
like cavity (the lumen), which are stabilised later by smooth muscle cells and
pericytes [4].

In this paper, a computer model developed for modelling tumour induced
angiogenesis is presented. The model exploits computational paradigm of Cel-
lular Automata. However, modifications we introduced in order to reflect phe-
nomena that make up the process of forming vascular network, make that the
data structures and the algorithm are far more complex than classical Cellular
Automata models. Our tool called “Graph of Cellular Automata” was previously
applied for modelling evolution of river systems [5]. After minor modification, it
can be applied for simulation angiogenesis [6,7].

The paper is organized as follows. Section 2 briefly discusses several existing
cellular automata models of tumour induced angiogenesis. In Sect. 3, the model,
its design and implementation is discussed. Sample simulation results are pre-
sented in the following section. The article ends with a summary.

2 Existing Models of Tumour Induced Angiogenesis

Tumour Induced Angiogenesis is modelled by using the continuous approach:
Partial Diffierential Equations – PDE, i.e., [8,9] and the discrete approach: Cel-
lular Automata, Cellular Pots model, etc. [10,11]. Also hybrid models which mix
continuum and discreet simulations were proposed many times [12,13].

Continuous models usually employ Partial Diffierential Equations in order to
reflect distributions of various angiogenic factors and endothelial cells. Modelling
of this nature can predict the behaviour of certain averaged quantities such as
vessel and tip densities per volume tissue, but is unable to provide the details of
microscopic features such as vessel length or structure of network.

Discrete approach assumes that the modelled particles (cells or molecules
of chemical substances) are tracked individually. Their behaviour is controlled
by a specific set of biophysical rules. This approach is particularly useful for
studying the dynamics of individual cells, as well as various types of cell-cell
interactions and cell-factor. Rule-based approach allows for easy translation of
specific biological processes into a set of algorithmic instructions for each cell.
On the other hand, the computational cost of simulation depends on the number
of particles used and the number of steps of the simulation. Although the rule-
based approach is a convenient way of describing complex biophysical processes,
the verification and calibration of such the models can be non-trivial.

Stokes and Lauffienburger [14] put the hypothesis that the shape of the blood
vessel is determined by the trajectory of the moving active cell located at the tip
of the vessel. This tip migrates with velocity v in a continuous two-dimensional
domain, attracted by source of angiogenic factors. Anderson and Chaplain [11]
also assumed that the growth of the single vessel is governed by the move of
the endothelial cell located at the sprout tip. This cell moves across the regular
rectangular lattice according to defined rules. At each step of the simulation cell
moves in one of the four directions or remains in place with a certain probability.

Cellular Automata Applied for Modelling Tumour Induced Angiogenesis 713

The probabilities are calculated by using the continuous approach, i.e. the diffiu-
sion equation supplied with terms reflecting the influence of angiogenic factors.
Thus their models can be treated as hybrid [15].

Cancer growth and tumour induced angiogenesis are the phenomena involv-
ing many inter-related processes across a wide range of spatial and temporal
scales. Multi-scale models evolved from hybrid models that, in fact, possessed at
least two levels, i.e. tissue and vascular. Macklin et al. [13] introduced a multi-
scale model that directly based on Anderson and Chaplain works. The model
included blood flow module and capillary adaptation and remodelling module.
Owen et al. [16] developed a model of tumour angiogenesis, which involves several
processes: the growth of blood and blood flow, oxygen diffiusion, the development
of normal and neoplastic cells. Multi-scale model is implemented through the
introducing several layers, which directly correspond to the biological processes
that occurs in diffierent spatio-temporal scales.

3 The Model of Tumour-Induced Angiogenesis

The approach used in the model presented in this paper separates computational
models of the vascular network and the surrounding tissue. Figure 1 presents
spatio-temporal dependencies between the physical processes simulated by these
components. Blood flow calculation refers to process that is relatively fast and
covers whole modelled network. Production of angiogenic factors and their dif-
fusion occurs within a few seconds and take place in the scale of intra-and inter-
cellular. Developing a network of blood vessels is slower and lasts for hours and
days, and the spatial scale ranges from intra- to extra-cellular.

Figure 1 also demonstrates dependencies between computational components
within the model. Arrows present how the components communicate and influ-
ence each other. Connection means that state(or states) calculated by module
are treated as an input for the module indicated by the arrow.

The foundations of the model presented here are as follows:

– Tumour cells do not migrate nor proliferate.
– “Hungry” tumour cells produce TAFs.
– Vascular sprouts grow toward the increasing concentrations of TAF.
– The rate of maturation depends on local concentration of pericytes.
– Nutrients and oxygen are supplied only by vessels that transport blood.
– Vessels that do not transport blood undergo gradual disintegration.
– Antiangiogenic Factors (AAFs) prevent vessels from forming or maturing.
– We use reflective boundary conditions – a sprout that reaches edge of the

mesh changes the direction of its movement to the opposite.

The model can be defined in a formal way as:

CAANG =< Z2, GCA,XK , S, δ >, where :

– Z2 — a collection of cells ordered as a square or hexagonal grid,

714 P. Topa

Fig. 1. Components of the model and dependencies between them. Figure also demon-
strates the multiscale structure of the model

– GCA — a planar, directed and acyclic graph defined as (VG, EG), where VG ≤
Z2 and EG ≤ Z2 × Z2 are finite sets of vertices and edges, respectively,

– XK(i, j) — Moore neighbourhood for the (i, j) cell in the regular mesh of
automata,

– S — is the set of state vectors corresponding to each cell: S = Sm × Sg,

Sm — states of CA cells Sg — states of GCA cells

tij — indicates tumour cell ageij — maturation level
tafij — TAFs concentration tipij — indicates “tip” cell
nij — nutrient and O2 concent presij — pressure value
perij — mural cells concent flowij — flow value
aafij — AAF concentration

Figure 2 illustrates how the vascular network is created by this model. Pri-
mary vessel represent predefined initial part of vascular network. TAFs distrib-
uted over the lattice activate cells that belong to the primary vessels and new
sprouts are initiated. They grow attracted by TAFs gradient. The “tip” cell,
located at the end of active sprout, governs its development. Active sprouts can
also branch and create anastomosis.

The CA rules implement processes connected with distribution various sub-
stances in tissue surrounding vascular network:

– Each cell (normal and tumour) every time-step consumes a certain amount of
oxygen/nutrients.

– Tumour cells requires a certain level of oxygen and nutrients. Otherwise they
start to produce TAFs. TAFs are distributed in the neighbourhood.

Cellular Automata Applied for Modelling Tumour Induced Angiogenesis 715

Fig. 2. Development of vascular network modelled with Graph of Cellular Automata

– Sources of AAFs are arbitrary defined, depending on a simulation scenario.
They are also distributed to establish a certain gradient.

– Nutrients/oxygen are produced by cells that belong to graph, are mature and
transport blood.

– It is assumed that pericytes are uniformly scattered in the tissue and during
the maturation of blood are used.

The distribution of various substances (TAFs, AAFs, nutrient/oxygen etc.) are
modelled with CA rule implementing Laplace equation.

The following rules are applied to drive the development of the vessel network:

1. Cells in existing vessel are activated by a certain concentration of TAFs.
2. Sprouts start at activated cells and grow attracted by TAFs gradient.

– the growth of sprout is governed by “move” of their active end called
“tip” — at each step of simulation, for each “tip” cell a successor cell is
calculated.

– the reinforced random walk model [11] is used to find a new “tip” cell.
3. Anastomosis is created when one sprout meet another.
4. Initially, a new cell included to the graph has state immature. Then, in the

consecutive steps of simulation, maturity level increases until it reaches a
mature state. The rate of maturation depends on local pericytes concentration
as well as TAFs and AAFs concentration.

5. Vessels (or part of vessels) that cannot mature and transport blood are
removed after a certain period of time.

6. AAFs prevent sprout growing/branching/maturing if a certain concentration
threshold is exceeded.

3.1 Blood Flow Calculations in Modelled Vasculature

Blood flow is calculated in the separated module that takes the graph of vessels
as input. Flow calculations are proceeded whenever any changes in the graph
structure occurs. In each time-step after updating graph structure new loops are
calculated by using the following algorithm:

716 P. Topa

Fig. 3. Calculating closed loops in vascular network. Green dots represent “tip” cells.
“Closing” nodes are marked in blue (Color figure online).

1. searching for closed loops in the graph,
2. setting and solving the system of equations for new pressures distribution in

graph nodes,
3. calculating flows in the graph according to the pressure’s distribution.

Initially, closed loops are detected in graph structure generated by the model
(see Fig. 3). “Blind” loops that start and ends in the same node, are eliminated
from the calculation.

Following the approach proposed by Mcdougall, Sherratt, Anderson i Chap-
lain [17], the Poiseuille law is applied for modeling flow in a single segment
connecting nodes i and j.

Qij =
πR4

ijΔPij

8μLij
(1)

– Rij — segment diameter,
– Lij — segment length,
– μ — viscosity,
– ΔPij = Pi − Pj — pressure diffierence between nodes i and j.

Arbitrary values of pressure for the “root” nodes are set at the beginning of
simulation. These nodes do not change their pressure values during the simula-
tion and force the flow. In order to calculate pressures in all nodes participating
in flow the system of equations is constructed:

⎧
⎨⎨⎩

⎨⎨⎜

a11P1 + a12P2 + ... + a1nPn = b1
a21P1 + a22P2 + + a2nPn = b2
...
amnP1 + am2P2 + + amnPn = bm

(2)

Cellular Automata Applied for Modelling Tumour Induced Angiogenesis 717

where the coefflcients of the system are defined as follows:

aij =

⎧
⎨⎨⎨⎩

⎨⎨⎨⎜

0 if i and j are not neighbouring nodes,(i ≥= j)

−R4
ij

Lij
if i i j are neighbouring nodes,

k=s⎫

k=1

R4
ik

Lik
if i = j and s is a number of neighbours

and the constant terms are:

bi =

⎧
⎩

⎜

0 if there is no roots in neighbourhood of node i,
k=s⎫

k=1

R4
ik

Lik
otherwise and s is a number of root neighbours

The solution of the system of equations is the pressure distribution. Flows in
the segments of network are calculated by using Poiseuille equation (1).

3.2 The Implementation

Models based on CA paradigm are conceptually simple but require a large
amount of data to represent a modelled system. In order to achieve satisfactory
performance it is necessary to parallelize the code. The GCA model operates on
variety of data structure regular (2D or 3D meshes) as well as irregular (graphs,
linked trees, etc.). Thus, it is difflcult to write parallel code that achieves high
efflciency. The OpenMP library was chosen to implement the algorithms. As the
processing of Cellular Automata is naturally parallel, parallelization is achieved
automatically. Procedures that operate on Graph of Cellular Automata have
been parallelized too. The network is partitioned into subtree and assigned to
diffierent threads.

The quality of parallelization has been tested on two machines with shared
memory: 4 Intel Pentium processor and 8 AMD/Opterons processors. Figure 5
present speed-ups achieved on both the machines. As the significant parts of
computation are concerned with irregular structure of the graph, the perfor-
mance is far from almost linear speed-up typical for pure Cellular Automata
computations.

Fig. 4. Outline of the parallel implementation of the tumour angiogenesis model

718 P. Topa

Fig. 5. Speed-ups measured on 4-processor and 8-processor Opteron machines for dif-
ferent model size.

Fig. 6. Simulation results demonstrates influence of inhibitors (A, B) and maturation
factors (C, D)

The algorithms that operate on CA lattice scale almost linearly. Overall effl-
ciency is greatly reduced due to the very poor scalability of algorithms operating
on the graph. The main factor is irregular schema of communication between
computational nodes when the graph is updated.

4 Results

Our implementation is able to handle various configurations and simulation sce-
narios in two and three dimensions. Below we present sample results.

Cellular Automata Applied for Modelling Tumour Induced Angiogenesis 719

Figure 6 presents how defined rules of inhibitors influence the results.
Inhibitors in configuration A prevent vessels from maturation. According to
other defined rules, the capillaries that penetrate a region with inhibitors can-
not mature and their development is completely inhibited. Figure 6B presents
the case when inhibiting factor blocks the migration of endothelial cells. As the
result, the network develops in that way that omits the region with inhibitors.

Figure 6C, D demonstrates the influence of pericytes on maturation of vas-
cular network. The pericytes are initially uniformly distributed on the mesh.
Newly formed capillaries collects pericytes which are used to cover and stabilize
them. In Fig. 6A we observe simulation results for configuration with a lower
initial amount of pericytes. The network is relatively small, sparse and mostly
immature. Figure 6B presents how the increasing of the initial amount of peri-
cytes influences the results (other parameters are the same as in B). The network
grow faster and reach the other edge of mesh, where tumour cells are located.

5 Conclusions

This paper summarizes model of Tumour Induced Angiogenesis based on Graph
of Cellular Automata paradigm. The unique feature of the model is the explicit
use of a graph as a representation of the network of blood vessels. In this app-
roach, a Cellular Automata model is extended with graph structure. Such the
construction gives us the ability to apply the diffierent computational approaches
to these components in order to achieve highest efflciency.

The structure of the graph, which represents the vascular network also sup-
ports the modeling of blood flow. This component allows to more precisely pre-
dict how newly formed vascular network is able to supply nutrients/oxygen.
Additionally, such the results can be useful for investigations on cancer thera-
pies that are targeted on normalization of vasculature. The efflcient network of
vessels can also carry drugs that destroy cancer cells.

The application of graphs also facilitate quantitative verification of simulation
results [18]. The vascular network encoded in graphs can be easily described by
using various network descriptors.

Acknowledgements. This research is partially supported by AGH-University of Sci-
ence and Technology grant No. 11.11.230.015.

References

1. Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438, 932–936
(2005)

2. Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical modeling of tumour-induced
angiogenesis. J. Math. Biol. 49(2), 111–187 (2004)

3. Rew, D.A.: Modelling in tumour biology part 1: modelling concepts and structures.
Eur. J. Surg. Oncol. 26(1), 87–94 (2000)

720 P. Topa

4. Bergers, G., Song, S.: The role of pericytes in blood-vessel formation and mainte-
nance. Neuro-oncology 7(4), 452–464 (2005)

5. Topa, P., Dzwinel, W., Yuen, D.: A multiscale cellular automata model for simu-
lating complex transport systems. Int. J. Mod. Phys. C 17(10), 1–23 (2006)

6. Topa, P.: Towards a two-scale cellular automata model of tumour-induced angio-
genesis. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol.
4173, pp. 337–346. Springer, Heidelberg (2006)

7. Topa, P.: Dynamically reorganising vascular networks modelled using cellular
automata approach. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T.,
Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 494–499. Springer, Heidelberg
(2008)

8. Byrne, H., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis:
numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461–
486 (1995)

9. Anderson, A.R., Chaplain, M.A.: A mathematical model for capillary network
formation in the absence of endothelial cell proliferation. Appl. Math. Lett. 11(3),
109–114 (1998)

10. Plank, M.J., Sleeman, B.D., Jones, P.F.: A mathematical model of tumour growth,
regulated by vascular endothelial growth factor and the angiopoietins. J. Theor.
Biol. 229, 435–454 (2004)

11. Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of
tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

12. Lowengrub, J.S., et al.: Nonlinear modelling of cancer bridging the gap between
cells and tumours. Nonlinearity 23(1), R1–R96 (2010)

13. Macklin, P., et al.: Multiscale modelling and nonlinear simulation of vascular
tumour growth. J. Math. Biol. 58, 765–798 (2009)

14. Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial
cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403
(1991)

15. Anderson, A.R.A., Pitcairn, A.: Application of the hybrid discrete-continuum tech-
nique. In: Alt, W., et al. (eds.) Polymer and Cell Dynamics-Multiscale Modeling
and Numerical Simulations, pp. 261–279. Birkhauser, Basel (2003)

16. Owen, M.R., Alarcón, T., Byrne, H.M., Maini, P.K.: Angiogenesis and vascular
remodelling in normal and cancerous tissues. J. Math. Biol. 58(4), 689–721 (2009)

17. McDougall, S.R., et al.: Mathematical modelling of flow through vascular networks:
implications for tumour-induced angiogenesis and chemotherapy strategies. Bull.
Math. Biol. 64(4), 673–702 (2002)

18. Topa, P., Dzwinel, W.: Using network descriptors for comparison of vascular sys-
tems created by tumour-induced angiogenesis. Theor. Appl. Inf. 21(2), 83–94
(2009)

Neighborhood Selection and Rules Identification
for Cellular Automata: A Rough Sets Approach

Bartłomiej Płaczek(B)

Institute of Computer Science, University of Silesia, Będzińska 39,
41-200 Sosnowiec, Poland

Placzek.Bartlomiej@gmail.com

Abstract. In this paper a method is proposed which uses data mining
techniques based on rough sets theory to select neighborhood and deter-
mine update rule for cellular automata (CA). According to the proposed
approach, neighborhood is detected by reducts calculations and a rule-
learning algorithm is applied to induce a set of decision rules that define
the evolution of CA. Experiments were performed with use of synthetic
as well as real-world data sets. The results show that the introduced
method allows identification of both deterministic and probabilistic CA-
based models of real-world phenomena.

Keywords: Rough sets · Cellular automata · Model identification

1 Introduction

Cellular automata (CA) have found many applications in the field of complex
systems modeling. There is a number of works devoted to CA models for sim-
ulation of real-world phenomena like pedestrian dynamics [16], traffic flow [10],
urban growth [6], etc. In most cases, the update rule and neighborhood for CA
are determined by human experts that have knowledge of the modeled phenom-
enon. Automatic identification of CA-based models remains an open research
issue.

Several attempts have been made in the literature to develop algorithms for
CA identification. However, most of the previous research did not investigate the
use of real-world data sets as an input. The available algorithms were designed
and tested mainly against synthetic data obtained from CA evolution. The use
of real-world data for identification of CA models poses additional challenges due
to inherent complexity of modeled phenomena and errors that are made during
data acquisition.

This paper discusses the possibility of using data mining techniques based on
the rough sets theory [2] to select neighborhood and determine rules for CA mod-
els. According to the proposed approach, input data describing observed states
of cells are represented in form of a decision table. Neighborhood is detected by
using algorithms for reducts calculation. Cells that do not belong to the neigh-
borhood are removed from the decision table. After that, a rule-learning method

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 721–730, 2014.
DOI: 10.1007/978-3-642-55195-6_68, c© Springer-Verlag Berlin Heidelberg 2014

722 B. Płaczek

is applied to induce a set of decision rules that define the evolution of CA. This
approach was tested in identification of both deterministic and probabilistic CA
models for synthetic as well as real-world data sets.

2 Related Works

Most of the works related to the CA identification problem use genetic algorithms
as a tool to extract update rule and neighborhood from spatio-temporal patterns
produced in CA evolution [3,8,17]. In [12] a genetic algorithm was employed to
learn probabilistic rules directly from experimental data for two-dimensional
binary-state CA. Several methods were proposed that use genetic algorithms to
learn CA rules and neighborhood size for image processing tasks [4,5].

Although application of genetic algorithms was a dominant approach to CA
identification, some non-genetic techniques are also available. Adamatzky [1] pro-
posed several approaches to extracting rules for different classes of CA. Straat-
man et al. [14] developed a form of hill climbing and backtracking to identify
CA rules. In [13] a deterministic sequential floating forward search method was
used to select rules of CA. Another approach is based on parameter estimation
methods from the field of system identification [18]. A framework for solving
the identification problems for both deterministic and probabilistic CA was pre-
sented in [15].

Main drawbacks of the existing CA identification methods are related to the
fact that they were either designed for a particular class of CA, or their exper-
imental evaluation was limited to the case of synthetic data. The introductory
research results presented in this paper shows that the rough sets approach may
be effectively used to develop a universal method for identification of CA models
that mimic real-world phenomena.

3 Basic Concepts

Formally, a cellular automaton can be defined as a triple (V,N, δ), where V is a
non-empty set of cell states, N is the neighbourhood, and δ is the update rule.
Arguments of δ are the current states of cells in the neighbourhood, while the
value of δ indicates the state of a central cell at the next time step.

The problem of CA identification involves finding both the cells neighbor-
hood and the update rule on the basis of a training data set, which includes
observed states of the cells. In order to use the rough sets approach for solving
this problem, the training set of data has to be represented in the form of a
decision table I = (U,C), where U is a non-empty set of observations and C is
a set of cell states: C = {cα(t), . . . , ci(t), . . . , cω(t), ci(t + 1)}.

State of j-th cell at time step t is denoted by cj(t). Index i indicates the
central cell, for which neighborhood and update rule have to be found. Thus,
the cell state ci(t + 1) is used as the decision attribute. The remaining cell
states cα(t), . . . , cω(t) are condition attributes. The candidate neighbors α, . . . , ω
are the cells for which distance to the central cell i is lower than a threshold

Neighborhood Selection and Rules Identification for Cellular Automata 723

value. The threshold is determined experimentally. Above definition can be easily
extended to multidimensional CA by adding the necessary indexes.

Neighborhood for the i-th cell can be selected by calculating reducts of the
above-defined decision table. A reduct is a subset of the condition attributes,
which is sufficient to determine the decision attributes [2]. Taking into account
the decision table discussed above, reduct should be defined as a subset of cell
states R ≤ cα(t), . . . , cω(t), which preserves discernibility of the observations
with regard to the decision ci(t+1), and none of its proper subsets has this ability.
Observations are discernible if they differ in at least one condition attribute (cell
state). Each two observations that have different decisions ci(t + 1) and are
discernible by the full set of cell states cα(t), . . . , cω(t) are also discernible by the
reduct R.

The neighborhood N of a cell is determined as a set of cells, whose states
belongs to the reduct R : N = {j : cj(t) ≥ R}, where j is a cell index. There
may exist multiple reducts for one decision table. Selection of the neighborhood
is made with regard to the shortest reduct, because size of the neighborhood has
to be minimized. If there are several minimal reducts then the one is selected
which has the lowest average distance between neighbors and the central cell.
When the reduct R is found, the condition attributes that do not belong to this
reduct are excluded from the decision table. Thus, the modified decision table
I ∈ = (U,C ∈) has the following set of attributes: C ∈ = R ∈ {ci(t + 1)}, where
ci(t + 1) remains the decision attribute.

Update rule of a cellular automaton is identified as a set of decision rules
by taking into account the information from the modified decision table I ∈. A
particular decision rule r has the following form:

(cx(t) = vx) ∞ . . . ∞ (cy(t) = vy) ≈ ci(t + 1) = vi (1)

where: {cx(t), . . . , cy(t)} ≤ R, vj ≥ V , and V denotes the set of allowable cell
states.

Two characteristics of decision rules are useful for the proposed method:
support and match [2]. Support of rule r, denoted by SUPPI′(r), is equal to the
number of observations from I ∈ for which rule r applies correctly, i.e., premise of
the rule is satisfied and the decision given by rule is consistent with the one in
decision table. MATCHI′(r) is the number of observations in I ∈ for which the rule
r applies, i.e., premise of the rule is satisfied. Based on these two characteristics,
a certainty factor is defined for the decision rule r:

CERI′(r) = SUPPI′(r)/MATCHI′(r). (2)

The certainty factor may be interpreted as a conditional probability that
decision of rule r is consistent with an observation in the decision table I ∈, given
that premise of the rule is satisfied.

Figure 1 summarizes the main operations that are necessary to identify a
cellular automaton by using the rough sets approach. In this study, reducts and
decision rules are calculated using algorithms implemented in the RSES software
[2]. Three algorithms of reducts calculation were examined: exhaustive, genetic,

724 B. Płaczek

Fig. 1. Rough sets based procedure of CA identification

and dynamic reduct algorithm. Moreover, the experiments involved application
of three algorithms that enable induction of decision rules: exhaustive, genetic,
and LEM2.

4 Identification of Deterministic Cellular Automata

In this section, the proposed approach is applied for identification of three
deterministic CA [9]: elementary cellular automaton with Wolfram’s rule 184
(ECA-184), deterministic version of Nagel-Schreckenberg cellular automaton
(NaSch-D), and the Conway’s game of life cellular automaton (Life).

ECA-184 is a one-dimensional cellular automaton with binary cell states and
neighborhood of three cells wide. Original definition of the ECA-184 update rule
is presented in Fig. 2. The upper row in this figure illustrates all possible states
of a central cell and its neighborhood. Lower row shows states of the central cell
after update – in the next time step of the CA evolution.

Fig. 2. Update rule of ECA-184

Identification of ECA-184 was performed using a training data set of 500
observations. Each observation in the decision table I has covered a group of 21
cells (candidate neighbors) and the 11-th cell was considered as the central one.
The neighborhood of ECA-184 was correctly recognized by each of the reducts
calculation algorithms (exhaustive, genetic, and dynamic). The shortest reduct
was determined as R = {ci−1(t), ci(t), ci+1(t)}, thus the modified decision table
I ∈ had four attributes: C ∈ = {ci−1(t), ci(t), ci+1(t), ci(t+1)}. Table 1 presents the
decision rules that were calculated from table I ∈ by using the LEM2 algorithm.
Symbol ∧ indicates that a given cell state does not occur in a particular decision
rule, e.g., the rule no. 3 from Table 1 should be interpreted as: (ci−1(t) = 1) ∞
(ci(t) = 0) ≈ ci(t + 1) = 1. The set of decision rules in Table 1 is consistent
with the original update rule of ECA-184 (Fig. 2). The remaining algorithms of
rule induction (exhaustive and genetic) have also generated valid sets of decision
rules; however their size was larger (6 rules).

Neighborhood Selection and Rules Identification for Cellular Automata 725

Table 1. Decision rules generated for ECA-184

Rule no. 1 2 3 4 5
ci−1(t) 0 0 1 ∅ 1
ci(t) ∅ 0 0 1 1
ci+1(t) 0 ∅ ∅ 1 0
ci(t+ 1) 0 0 1 1 0

The second CA identification example concerns a deterministic version of the
Nagel-Schreckenberg model for road traffic simulation (NaSch-D) [9]. Update
rule of NaSch-D consists of two steps: (I) acceleration and braking of vehicle,
(II) vehicle movement. In step I velocity vk(t) for each vehicle (k) is calculated
in cells per time step: vk(t) ∃ min{vk(t − 1) + 1, gk(t − 1), vmax}, where gk is
the number of empty cells in front of vehicle k, vmax denotes maximal velocity
of vehicles. Step II simulates movement of the vehicles – index of a cell occupied
by vehicle k at time step t, denoted by xk(t), is determined using the formula
xk(t) ∃ xk(t − 1) + vk(t).

In this study, the parameter vmax was set to 2 cells per time step. Thus, the
set of cell states includes 4 values: ci(t) = −1 denotes empty cell, and ci(t) =
0, . . . , 2 indicates velocity of the vehicle that occupies the i-th cell. The training
data set was prepared in the same way as for the previous example. Decision table
I contained 2000 observations. The shortest reduct R = {ci−2(t), . . . , ci+2(t)}
was uniquely determined by all the examined algorithms. Table 2 shows the set
of 16 decision rules generated for NaSch-D by using LEM2 algorithm. In case
of exhaustive as well as genetic algorithm the number of obtained decision rules
was 37.

Table 2. Decision rules generated for NaSch-D

Rule no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ci−2(t) −1 −1 ∅ ∅ 0 ∅ 2 1 ∅ 2 ∅ 2 2 2 2 2
ci−1(t) ∅ −1 ∅ ∅ ∅ 1 −1 −1 1 −1 1 −1 −1 −1 −1 −1
ci(t) ∅ −1 0 0 ∅ −1 −1 ∅ −1 −1 −1 −1 −1 −1 −1 −1
ci+1(t) −1 ∅ 0 ∅ −1 0 −1 −1 2 0 1 2 −1 −1 1 −1
ci+2(t) ∅ ∅ ∅ −1 ∅ ∅ −1 ∅ −1 ∅ −1 ∅ 2 0 ∅ 1
ci(t+ 1) −1 −1 0 1 −1 0 2 −1 2 0 1 2 2 1 1 2

The set of decision rules in Table 2 has the smallest size. However, its applica-
tion requires additional assumptions to resolve conflicts when various rules that
match the observed state of the neighborhood suggest different states of the
central cell. This issue was addressed by using priorities of the decision rules.
In case of conflict, the rule with the highest priority is selected. The priority is
determined taking into account support of the rule. A rule with a larger support
has higher priority. In Table 2, the decision rules are sorted in descending order,
according to their priorities. It was verified that for each possible state of the

726 B. Płaczek

neighborhood, the above defined decision algorithm enables correct update of
the central cell.

Next, the proposed method was applied to identify the two dimensional CA
called Life [9]. In this example, the binary cell states ci,j(t) = 0 or ci,j(t) = 0
indicates that the cell (i, j) is dead or alive respectively. Every cell interacts
with its eight neighbors (Moore neighborhood). At each time step, the following
updates occur: (1) Any live cell with fewer than two live neighbors dies. (2) Any
live cell with two or three live neighbors lives on to the next generation. (3) Any
live cell with more than three live neighbors dies. (4) Any dead cell with exactly
three live neighbors becomes a live cell.

Observations collected in a decision table for identification of the Life CA
have included states of 25 cells from the Moore neighborhood of radius 2. The
actual neighborhood that includes 9 cells was correctly recognized by the reducts
calculation algorithms. However, taking into account the states of all 9 cells
from the neighborhood, a large set of decision rules was obtained (154–242
rules, depending on the algorithm). In order to decrease the number of decision
rules, the amount of live neighbors L was added as an attribute of the decision
table. After this modification, the reducts calculation algorithms were executed
again, and the resulting shortest reduct has included only two attributes: R =
{ci,j(t), L}. Thus, a decision table I ∈ with attributes C ∈ = {ci,j(t), L, ci,j(t+1)}
was used to generate decision rules. The set of rules in Table 3 was generated by
the exhaustive rule induction algorithm. These decision rules are consistent with
the update rule of Life, which was described above. In case of LEM2 algorithm,
the rule set had 17 elements. The genetic algorithm has provided an incomplete
set of decision rules that fail to describe the evolution of Life.

Table 3. Decision rules generated for Life

Rule no. 1 2 3 4 5 6 7 8 9 10
ci,j(t) ∅ ∅ 0 1 ∅ ∅ ∅ ∅ ∅ ∅
L 0 1 2 2 3 4 5 6 7 8
ci,j(t+ 1) 0 0 0 1 1 0 0 0 0 0

5 Identification of Probabilistic Cellular Automata

In case of probabilistic CA, the identification task is more complicated because
the state of neighborhood does not uniquely determine the state of central cell.
Therefore, some of the decision rules that describe evolution of a probabilistic
CA are uncertain. It means that there exist decision rules that have identical
premises and give different decisions. According to the proposed approach, such
rules are merged into one rule whose decision is defined using a set of pairs of
vales vz and certainty factors CERI′(rz):

Neighborhood Selection and Rules Identification for Cellular Automata 727

(cx(t) = vx) ∞ . . . ∞ (cy(t) = vy) ≈ ci(t + 1) = {vz/CERI′(rz)}, (3)

where rz indicates the decision rule (cx(t) = vx) ∞ . . . ∞ (cy(t) = vy) ≈
ci(t + 1) = vz.

During update operation of a CA, if the premise (cx(t) = vx)∞ . . . ∞ (cy(t) =
vy) is satisfied then the state of a central cell ci(t+1) takes value vz with prob-
ability CERI′(rz). This method utilizes the fact that certainty factor CERI′(rz)
may be interpreted as a conditional probability (see Sect. 3). It should be also
noted that for the rule defined by (3) the condition ΣzCERI′(rz) = 1 is always
satisfied.

The rough sets approach was applied to identification of the Nagel-Schrecken-
berg probabilistic cellular automaton (NaSch) [9]. Deterministic version of NaSch
was described in Sect. 4. For probabilistic NaSch, the first step of update rule
is extended by step I-a, which includes randomization of the velocity according
to formula ξ(t) < p ≈ vk(t) ∃ max{0, vk(t) − 1}, where: ξ ≥ [0, 1) is a random
number drawn from a uniform distribution, and p ≥ [0, 1] is a parameter called
braking probability.

Traffic simulation was performed by using the NaSch model with parame-
ters vmax = 1 and p = 0.2. The binary cell states were used in this example to
distinguish empty and occupied cells. A decision table was prepared based on
observations that were collected during the simulation. Reducts of the decision
table were calculated to select the neighborhood. Due to the existence of con-
flicting observations, the genetic algorithm did not find any reducts and reducts
calculated by both the exhaustive and the dynamic algorithm have included a
number of cell states that in fact are not taken into account by the update rule
of the analyzed CA. It was necessary to use a reduct shortening algorithm [2]
for correct determination of the neighborhood. After shortening operation, the
reduct R = {ci−1(t), ci(t), ci+1(t)} was found, which is consistent with the actual
neighborhood of cells in NaSch. The set of decision rules generated by LEM2
algorithm (Table 4) is equivalent to the update rule of NaSch. For remaining
algorithms incomplete sets of the decision rules were obtained.

Table 4. Decision rules generated for NaSch (vmax = 1)

Rule no. 1 2 3 4 5 6 7
ci−1(t) 0 0 0 1 1 1 1
ci(t) 0 1 1 0 0 1 1
ci+1(t) ∅ 0 1 0 1 0 1
ci(t+ 1) 0/1 0/0.8, 1/0.2 1/1 0/0.2, 1/0.8 0/0.2, 1/0.8 0/0.8, 1/0.2 1/1

The proposed approach was also verified in identification of NaSch model
with parameter vmax = 2, however the results are not presented here due to
space limitations.

728 B. Płaczek

6 Identification of Cellular Automata Using Real-World
Data

In this section the rough sets approach is used to identify a CA on the basis
of real-world observations regarding shock waves that emerge in highway traffic.
The analyzed traffic data, describing vehicles trajectories in time space diagrams,
were taken from [19]. Training data set includes cell states that correspond to the
positions of vehicles determined from the time space diagrams. It was assumed
that one cell represents a 7m segment of traffic lane. State of a cell is defined as
a binary value: 0 denotes empty cell and 1 refers to an occupied cell. An example
of the training data is presented in Fig. 3(a).

Neighborhood and update rule were determined using the method devised for
probabilistic CA in previous section. The algorithm for finding dynamic reducts
was applied and followed by the reduct shortening operation. The resulting
reduct includes states of four cells: R = {ci−2(t), ci−1(t), ci(t), ci+1(t)}. Decision
rules were generated by using the LEM2 algorithm. The obtained rules (Table 5)
do not guarantee that the number of occupied cells (vehicles) will be constant
during the CA evolution. This fact leads to unrealistic traffic simulation.

Table 5. Decision rules generated from real-world traffic data

Rule no. 1 2 3 4 5 6 7 8
ci−2(t) 0 0 0 0 0 0 0 0
ci−1(t) 0 0 0 0 1 1 1 1
ci(t) 0 0 1 1 0 0 1 1
ci+1(t) 0 1 0 1 0 1 0 1
ci(t+ 1) 0/1 0/1 0/1 1/1 0/0.35,

1/0.65
0/0.2,
1/0.8

0/0.5,
1/0.5

1/1

Rule no. 9 10 11 12 13 14 15 16
ci−2(t) 1 1 1 1 1 1 1 1
ci−1(t) 0 0 0 0 1 1 1 1
ci(t) 0 0 1 1 0 0 1 1
ci+1(t) 0 1 0 1 0 1 0 1
ci(t+ 1) 0/0.75,

1/0.25
0/0.75,
1/0.25

0/0.8,
1/0.2

1/1 0/0.5,
1/0.5

0/0.5,
1/0.5

0/0.3,
1/0.7

1/1

The unrealistic model behavior may occur because the decisions for uncertain
rules are made randomly, without any coordination. E.g., the rules 7 and 13 in
Table 5 apply to the same configuration of cells (0, 1, 1, 0, 0). If for both rules
the random decision is 1 then the resulting configuration (0, 1, 1, 1, 0) includes
three instead of two occupied cells. This problem was resolved by adding error
detection rules to the CA update algorithm. If error is detected by rules (4) then
the update of cells (i − 2, i − 1, i) is repeated.

Neighborhood Selection and Rules Identification for Cellular Automata 729

(ci−2(t) = 1) ∞ (ci−1(t) = 0) ∞ (ci(t) = 0)∞
∞(ci−2(t + 1) + ci−1(t + 1) + ci(t + 1) 	= 1) ≈ error = true
(ci−2(t) = 1) ∞ (ci−1(t) = 0) ∞ (ci(t) = 1)∞
∞(ci−2(t + 1) + ci−1(t + 1) 	= 1) ≈ error = true

(4)

Above modifications allow the CA to perform realistic simulation of traffic
flow. Figure 3 presents time space diagrams for two shock waves. The shock wave
(a) was observed in real highway traffic and the shock wave (b) was obtained
from evolution of the identified CA. This example illustrates the possibility of
using the rough sets approach for identification of CA-based models of real-world
phenomena.

Fig. 3. Shock waves: (a) real-world data, (b) results of CA evolution

7 Conclusions

Results of the introductory research show that the data exploration techniques
based on rough sets theory enable proper selection of neighborhood and update
rule induction for different classes of CA. It was also demonstrated that the rough
sets approach is suitable for CA models identification from real-world data sets.
The best results were obtained for the proposed CA identification procedure
when implemented by using the dynamic reducts algorithm for neighborhood
selection and the LEM2 algorithm for decision rules induction. Nevertheless,
in case of stochastic CA identification, some additional actions were necessary
(reduct shortening, adding error detection rules). Verification of the usability
of the proposed approach for a wider set of data as well as comparison with
state-of-art methods based on genetic algorithms remain open issues for further
research. Another interesting topic for future studies is to apply the proposed
method in a data exploration system for CA-based image processing [7,11].

730 B. Płaczek

References

1. Adamatzky, A.: Identification of Cellular Automata. T&F, London (1994)
2. Bazan, J., Szczuka, M.S.: The rough set exploration system. In: Peters, J.F.,

Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56.
Springer, Heidelberg (2005)

3. Billings, S., Yang, Y.: Identification of probabilistic cellular automata. IEEE Trans.
Syst. Man Cybern. B Cybern. 33(2), 225–236 (2003)

4. Chavoya, A., Duthen, Y.: Using a genetic algorithm to evolve cellular automata
for 2D/3D computational development. In: Genetic and Evolutionary Computation
Conference, pp. 231–232 (2006)

5. Craiu, R.V., Lee, T.C.M.: Pattern generation using likelihood inference for cellular
automata. IEEE Trans. Image Process. 15(7), 1718–1727 (2006)

6. Feng, Y., Liu, Y., Tong, X., Liu, M., Deng, S.: Modeling dynamic urban growth
using cellular automata and particle swarm optimization rules. Landscape Urban
Plan. 102(3), 188–196 (2011)

7. Ładniak, M., Piórkowski, A., Młynarczuk, M.: The data exploration system for
image processing based on server-side operations. In: Saeed, K., Chaki, R., Cortesi,
A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 168–176. Springer,
Heidelberg (2013)

8. Maeda, K.-I., Sakama, C.: Identifying cellular automata rules. J. Cell. Autom. 2(1),
1–20 (2007)

9. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep.
419, 1–64 (2005)

10. Płaczek, B.: Fuzzy cellular model for on-line traffic simulation. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II. LNCS,
vol. 6068, pp. 553–560. Springer, Heidelberg (2010)

11. Płaczek, B.: Rough sets in identification of cellular automata for medical image
processing. J. Med. Inf. Technol. 22, 161–168 (2013)

12. Richards, F.C., Meyer, T.P., Packard, N.H.: Extracting cellular automaton rules
directly from experimental data. Phys. D 45(1–3), 189–202 (1990)

13. Rosin, P.: Training cellular automata for image processing. IEEE Trans. Image
Process. 15(7), 2076–2087 (2006)

14. Straatman, B., White, R., Engelen, G.: Towards an automatic calibration proce-
dure for constrained cellular automata. Comput. Environ. Urban Syst. 28(1–2),
149–170 (2004)

15. Sun, X., Rosin, P.L., Martin, R.R.: Fast rule identification and neighborhood selec-
tion for cellular automata. IEEE Trans. Syst. Man Cybern. B Cybern. 41(3), 749–
760 (2011)

16. Was, J.: Cellular automata model of pedestrian dynamics for normal and evacu-
ation conditions. In: 5th International Conference on Intelligent Systems Design
and Applications, ISDA’05, pp. 154–159. IEEE Press (2005)

17. Yang, Y., Billings, S.: Extracting Boolean rules from CA patterns. IEEE Trans.
Syst. Man Cybern. B Cybern. 30(4), 573–580 (2000)

18. Zhao, Y., Billings, S.: The identification of cellular automata. J. Cell. Autom. 2(1),
47–65 (2007)

19. Coifman, B.: Time space diagrams for thirteen shock waves. Working Papers, Cal-
ifornia Partners for Advanced Transit and Highways (1997)

Coupling Lattice Boltzmann Gas and Level Set
Method for Simulating Free Surface Flow

in GPU/CUDA Environment

Tomir Kryza(B) and Witold Dzwinel

Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland

{tomir,dzwinel}@agh.edu.pl

Abstract. We present here a proof-of-concept of a novel, efficient
method for modeling of liquid/gas interface dynamics. Our approach
consists in coupling the lattice Boltzmann gas (LBG) and the level set
(LS) methods. The inherent parallel character of LBG accelerated by
level sets is the principal advantage of our approach over similar par-
ticle based solvers. Consequently, this property allows for efficient use
of our solver in GPU/CUDA environment. We demonstrate preliminary
results and GPU/CPU speedups simulating two standard free surface
fluid scenarios: the falling droplet and the breaking dam problems.

Keywords: Free surface flow · Lattice Boltzmann gas · Level sets ·
CUDA · GPGPU

1 Introduction

Computational fluid dynamics (CFD) often involves solving free surface prob-
lems such as river flows, floods and breaking waves. Important industrial prob-
lems include processes such as foaming and casting, inkjet droplet formation
and various types of fluid-solid structure interactions. These free surface scenar-
ios become always tough problems in terms of computational complexity. Thus,
real-time simulation of two-phase (liquid/gas) flows is still a challenging goal.
Meanwhile, the possibility of interactive visualization and simulation of approx-
imate dynamics of the liquid/gas interface is in scope of great interest of game
and simulator designers. Using GPU boards and CUDA technology for model-
ing free surface dynamics is the straightforward way for both speeding up the
computations and increasing their precision.

When constructing approximate models of free surface fluid flow, the follow-
ing basic aspects should be taken into account:

• dynamics of the liquid volume, i.e., calculation of velocity and pressure fields
inside the liquid volume;

• interaction of liquid with container walls;
• representation of the free surface interface;

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 731–740, 2014.
DOI: 10.1007/978-3-642-55195-6 69, c© Springer-Verlag Berlin Heidelberg 2014

732 T. Kryza and W. Dzwinel

• dynamics of the liquid on the interface;
• liquid volume separation and merging, e.g., a droplet pinch-off or coalescence.

For the sake of efficiency, our model does not take into account internal
dynamics of the gaseous phase (i.e., we handle the free surface conditions only
at the interface).

The dynamics of fluid flow can be simulated classically by solving the Navier-
Stokes equation numerically or by means of discrete particles methods. However,
additional constrains that have to be imposed make these approaches computa-
tionally very demanding for simulating free surface flows. The CFD problems can
also be attacked by solving discrete Boltzmann equation by using, so called, lat-
tice Boltzmann gas (LBG) method [15]. In many cases, especially, for simulating
complex fluids, LBG can be competitive in terms of efficiency for classical meth-
ods [2,18] mainly due to its inherent parallelism. On the other hand, the LBG
approach fails to resolve thin layers of liquid efficiently [16]. Nevertheless, the
Level Set Method [12] is a perfect modeling tool for tracking interface dynamics
in the course of a simulation. It enables realistic and smooth representation of
the liquid/gas interface diminishing computational load.

The main purpose of this paper is to present a novel concept which con-
sists in coupling of LBG and level set methods. We expect that such a coupling
can increase the overall efficiency of the free surface simulation. In Sect. 2 we
show that this hybrid approach can be efficiently implemented on GPU architec-
ture. In Sect. 3 we demonstrate preliminary results of modeling and GPU/CPU
speedups employing two standard free surface fluid tests: the falling droplet and
the breaking dam problems. We discuss the advantages of our approach in the
Conclusions.

2 Algorithms and Implementation

The coupling of the lattice Boltzmann gas and Marker Level Set [11] methods
and implementation of this integrated approach in GPU/CUDA environment for
approximate and fast simulation of the free surface fluid dynamics, is the main
idea of this paper.

The process of modeling consists of steps that are depicted in Fig. 1(a). We
model the free surface flow of incompressible fluid in a rectangular container. We
assume that the friction between the fluid and the container walls is modeled
with no-slip boundary conditions. For simplification reasons and to reduce the
computational load we assume, without loss of generality, a fixed cell size Δx = 1
for LBG lattice and time step Δt = 1 for LBG and LS advection steps.

As shown in Fig. 1(a), the Marker Level Set mode consists of several steps
processing the level set distance function, cell types matrix and marker parti-
cles set. The GPU kernels used for these computations can be divided into two
groups: particle kernels and level set kernels. The level set kernels operate on a
geometry of discrete lattice nodes while the particle kernels perform computa-
tions on the array of particle positions. The geometry of the level set kernels is
structured as follows.

Coupling Lattice Boltzmann Gas and Level Set Method 733

(a) (b)

Fig. 1. (a) The block diagram of LBG and LS coupling strategy; (b) Mapping of the
domain cells to GPU memory layout for LBG and LS kernels.

Each CUDA block contains a complete row of cells in x -axis. Domain dimen-
sions y and z are mapped to the CUDA grid x and y indices respectively
Fig. 1(b). Such layout enables efficient value acquiring from neighboring cells
thanks to the L1/L2 cache on the Fermi architecture while keeping kernel imple-
mentation simple and easy to maintain.

The particle kernels layout is based on a mapping of grid/block hierarchy
on one-dimensional array of structures. Each block contains a fixed number
of threads (K = 512) in one row of the block. The grid contains one row of
blocks. Number of blocks is defined by total number of particles: blockCount =
particleCount

512 . It is assumed that the number of particles is a multiple of the block
size K. Separation of particles into blocks is dictated by the CUDA constraint
on a maximum block size. The algorithms implemented in particle kernels do
not use information from other particle than the processed one.

As shown in Fig. 1(a), the LBG mode is composed of steps responsible directly
for simulation of liquid dynamics. All of GPU kernels used by this modeling
mode operate on a similar setup as the level set kernels. Each block contains
one full row of cells in x -axis while a plane of blocks maps onto y-z plane. This
layout was inspired by implementation of a 3D lattice Boltzmann gas method
implemented on a GPU described in [17] and was chosen because it yields a
high memory throughput of LBG lattice processing. The components of the two
computational modes are discussed below.

Cells Reinitialization. The zero level set isosurface defines the liquid/gas
interface at the beginning of simulation. The following timesteps are based on
the assumption that none of the liquid cells have a neighboring gas cell. There-
fore, a reinitialization step is required that will define interface cell type. Such
separation setup is presented in Fig. 2(a). The algorithm for defining this layer
is as follows:

1. Initialize all boundary cells with B. For all other cells:
2. if Φ > 0 assign cell type: A,

734 T. Kryza and W. Dzwinel

3. if Φ ≤ 0 assign I type when there exists a neighboring cell with Φ > 0 or L
otherwise.

Here we assume that Φ is the level set implicit function [12].

(a) (b)

Fig. 2. (a) Cell types: A - air phase, L - liquid phase, I - interface cells, B - boundary;
(b) A cut-plane of a spherical velocity field initialized inside a sphere (left) and extended
in a narrow band outside of the interface (right).

The dependence of cell type on the value of Φ assures that the assigned cell
type will not rely upon the order in which cells are processed. This assumption
is very important especially for GPU algorithms as race conditions that could
appear in the simulation can be very hard to detect.

Defining interface cells at the beginning of simulation provides an additional
benefit. There is no need to check if neighbors of cells inside the volume exist
during Φ evaluation. Therefore, the number of if branches is minimal implying
high speed of the kernel execution.

Velocity Extension. The velocity field generated by the LBG stream-collide
process is valid only inside the bulk of liquid. For a proper numerical advection
of the level set and marker particles, velocity field needs to be defined on both
sides of the interface. That is why, an iterative velocity extrapolation method is
employed in the simulation. Calculation of the velocity field values takes place
only in cells that are located in the region external to the liquid. The reason
is that the velocity field is defined inside the liquid by the stream-collide step.
The length of the iteration process is fixed in the simulation because numerically
correct values are needed only inside a narrow band of the interface. An example
of velocity field extension inside a narrow band outside the interface is presented
in Fig. 2(b).

Coupling Lattice Boltzmann Gas and Level Set Method 735

Level Set Advection. Advection of the level set function Φ is implemented
using the first-order forward Euler method in time and an upwind differencing
of Φ values. Numerical errors induced by the first-order accuracy are reduced
by use of the marker particles that correct the level set function values at each
iteration.

Particle Advection. Particle Advection equation is solved using the second
order Runge-Kutta method - the midpoint method. The velocity field has to
be interpolated in particle positions because marker particles are not bound to
the discrete lattice nodes and can move freely inside the lattice boundaries. We
use linear interpolation in each dimension. After the first step of the midpoint
method a check is performed if the particle left the lattice boundaries. If so,
the particle is marked as to be excluded from all computations for the rest of
simulation.

Level Set Correction. After the level set advection, calculated by means of
the low-order numerical scheme, the zero level set isosurface will be distorted.
Therefore, information about the position of marker particles is used to correct
the values close to the interface. The correction is performed with the Gaussian
kernel base function [11]. The use of the weight function with the Gaussian kernel
leads to a simple correction equation. Choosing the kernel radius ensuring that
the weight function does not vanish only in a close proximity of x, allows for
bounding summations only to particles located in the close vicinity of x. For
each active particle, neighboring cells are selected and the particle impact on
every cell is stored.

In the Marker Level Set implementation on a GPU proposed in [10], the
correction of the level set values by marker particles was achieved by means of
a shader and volume rendering. In this paper a different approach is proposed.
The level set values correction is performed in two successive steps:

1. Every particle’s impact on the closest 27 cells (3 × 3× 3 cube) is computed
and stored in a temporary array. A problem can occur in a situation when two
or more particles affect one cell. If these particles are processed in parallel on
the GPU, a race condition may occur that would make computations invalid.
Therefore, an atomic addition CUDA function atomicAdd is used for storing
computed weight impact values.

2. For each cell of the level set grid, total weight is taken from the temporary
array and a correction value is subtracted from the original level set value.
Once again atomicAdd function is used to prevent possible race conditions.

Level Set Reinitialization. After the correction phase, level set values located
on the zero isosurface have proper values. The level set values that are far from
the interface are still distorted by low-order advection scheme. For that reason,
the level set reinitialization step is performed. The Fast Iterative Method [19] is
used. The number of iterations is fixed because for computations only level set
values from the narrow band of the zero level set are required.

736 T. Kryza and W. Dzwinel

Particle Adjustment. It must be guaranteed that before the next iteration
all active particles will be located on the zero level set. As this constraint may
have been violated during the level set reinitialization an adjustment process is
executed. The particles that are outlying are moved in the direction normal to the
interface by an arbitrary fraction of the distance to the interface. A natural choice
would be to set this fraction to 0, so that the particle advection always defines
the interface. Unfortunately, this leads to numerical artifacts caused by large
distances between the interface and particles for turbulent modes. Therefore,
the parameter defining this fraction has to be determined experimentally for a
specific simulation.

Cells Refilling. Every change of a type of cell may lead to a situation where
an air cell becomes partially filled with fluid or a fluid cell becomes empty. The
level set function automatically handles the case of an empty cell occurrence. On
the other hand, in case of a partially filled cell we need special handling. Change
from an empty cell to an interface cell leads to a problem where the stream-
collision process would operate on a cell for which the distribution function
has no values. For that reason, after such event, cell’s distribution function is
reinitialized. The new value is equal to the equilibrium distribution function
with arguments averaged on all non-empty neighbors. Density ρ and velocity v
are averaged and a distribution function is computed for each cell that changed
types from A to I (Fig. 2(a)). It is assumed that there is no possibility of a
change from A to L.

Streaming. The copy operation of distribution function values between cells
is the basic procedure of the streaming step. The distribution function is dou-
ble buffered and there is only one write operation for each of the distribution
function values. Therefore, there is no possibility of a race condition. The 18
assignments (we use the D3Q19 velocity set [13]) are executed in a straightfor-
ward way. However, a different approach needs to be taken for liquid streamed
from interface cells. Interface cell by definition has at least one empty neighbor-
ing cell. This means that the distribution function value for a direction opposite
to the direction of the neighboring empty cell will not be assigned during the
streaming process. To handle this case, the distribution function reconstruction
procedure [7] is employed. Streaming from fluid and interface cells is separated
from streaming from solid boundary cells to keep branching cost at minimum.
Streaming from solid cells implements the no-slip boundary conditions and han-
dles lattice boundary cases by means of if conditionals.

Collision. The collision step is an inherently local operation, i.e., it does not
use information from other neighboring cells. As a result, very efficient imple-
mentation on a GPU is possible. The collision is performed only in cells that
have non empty distribution functions. That is, only liquid and interface cells
are processed. To increase the stability of simulation, the Smagorinsky sub-grid

Coupling Lattice Boltzmann Gas and Level Set Method 737

model [14] is implemented. As was said before, collision process uses only infor-
mation from the current cell.

3 Results

We performed two test simulations for the common problems of a liquid drop
falling to a liquid surface and a breaking dam. The snapshots from the simula-
tion of a liquid droplet are shown in Fig. 3. One can clearly see the moment of
the topological change during merge of the drop with fluid surface. The initial
splash and the secondary droplet are not resolved in the simulation due to lack
of the surface tension in the model. This could however, be easily incorporated
by extending the model by introducing the force dependent on the curvature.
The comparison of performance for a GPU and simple CPU implementations is
presented in Table 1. All of the tests were performed on NVIDIA Fermi based
GeForce GTX 460 board and standard AMD Athlon II X4 635 processor. The
GPU-based engine outperforms the single core CPU-based implementation an
order of magnitude. The snapshots from simulation of the breaking dam problem
can be seen in Fig. 4. As shown in the figure, the container is partially filled with
liquid. The liquid section is separated from the rest of container volume by an
obstacle. Initially the liquid is stationary, then, at a given moment, the obstacle
is removed and the liquid is collapsing freely by means of the gravitational force.
The impact of the no-slip boundary conditions is apparent in the first few snap-
shots, where the fluid is slowed down by the walls. Despite a large number of

Fig. 3. The snapshots from simulation of a falling drop. Numbers represent the iteration
of the simulation.

738 T. Kryza and W. Dzwinel

Table 1. Performance comparison of CPU and GPU based implementations. Values
in the table present execution times of one iteration in milliseconds.

CPU GPU
Average Std. dev. Average Std. dev.

Falling drop 4322.14 1445.86 437.86 39.33
Breaking dam 3765.66 1387.11 651.01 101.78

Fig. 4. The snapshots from breaking dam simulation. Numbers represent the iteration
of the simulation.

iterations a loss of mass is negligible. On the last snapshots small liquid droplets
can be seen falling. This effect is resolved thanks to the marker particles that
can preserve fine fluid volume details.

4 Related Work

The application of the LBG approach for simulating free surface flow is dictated
by the straightforward mapping of the lattice streaming and collisions onto the
GPU computation model. Other discrete CFD methods, including molecular
dynamics (MD) [1,3], dissipative particle dynamics (DPD) [4,5] and smoothed
particle hydrodynamics (SPH) can also be used for modeling free surface flow.
However, all of these methods are rather computationally demanding and require
additional mechanisms to control the interface dynamics [1,3,5].

Coupling Lattice Boltzmann Gas and Level Set Method 739

The approach of coupling LBG with level sets for free surface dynamics
simulations similar to that presented above has been introduced in [16]. However,
unlike out method, it suffers from nonphysical loss of mass. No implementation
details about the hardware architecture are given in [16] but it seems that the
method targets serial CPU architecture without any parallelism. The LBG/LS
simulation engine presented in this paper conserves mass due to the utilization
of marker particles. Additionally, the GPU version of the engine performs far
better in terms of performance than its single-core CPU counterpart.

Another similar method coupling LBG with the Particle Level Set method
(PLSM), called Hybrid lattice Boltzmann/level sets method (HLBM) is also
described in [8]. It reports an improved performance compared to the origi-
nal PLSM [6]. However, it is still behind the performance of our method. The
Marker Level Set method used in our approach involves less particles to cap-
ture fine interface details and, therefore, performs better in comparison with
HLBM. The hybrid of the level set interface tracking and the Particle Level Set
method with the SPH is another successful approach used for simulating free
surface flow. In [9] visually appealing results are presented demonstrating free-
surface simulations capturing fine details of the flow such as sprays. However,
the integrated models of SPH and LS are very computationally demanding due
to particle motion changing constantly the nearest neighbors of SPH particles.
Their efficient implementation on GPU is very difficult and give unconvincing
benefits.

5 Conclusions

In this paper we propose a new concept, which can be applied for efficient sim-
ulation of a free surface evolution. It integrates the lattice Boltzmann gas and
the level set simulation methodologies. The inherent parallelism of LBG allowing
for optimal use of GPU architecture together with the possibility of control of
the liquid/gas interface by the level sets make the method competitive to other
known CFD approaches. Promising performance of its GPU/CUDA implemen-
tation demonstrates that the method could be successfully adopted in different
areas of physical simulations such as multiple-phase flows, flames spreading,
shock and detonation waves tracking and others. Due to its high efficiency, our
approach could be potentially used by game and simulator designers. However,
interactive visualization of free surface flows still needs faster GPU processors,
more work on LBG parallelization and more efficient coupling schemes with
level set methods. To be more physically correct, the model should be extended
e.g., by including surface tension. Summarizing, the concept presented is very
promising and deserves more attention in the future.

Acknowledgements. This research is supported by the AGH Faculty of Computer
Science, Electronics and Telecommunications, Dean’s Student Grant. We thank Mr.
Maciej Kluczny for his essential contribution to this paper.

740 T. Kryza and W. Dzwinel

References

1. Alda, W., Dzwinel, W., Kitowski, J., Moscinski, J., Pogoda, M., Yuen, D.A.: Com-
plex fluid-dynamical phenomena modeled by large-scale molecular-dynamics sim-
ulations. Comput. Phys. 12(6), 595–600 (1998)

2. Anderson, J.D.: Computational Fluid Dynamics: The Basics with Applications.
McGraw-Hill, Inc., New York (1995)

3. Dzwinel, W., Alda, W., Pogoda, M., Yuen, D.A.: Turbulent mixing in the
microscale. Physica D 137, 157–171 (2000)

4. Dzwinel, W., Yuen, D.A.: Dissipative particle dynamics of the thin-film evolution
in mesoscale. Mol. Simul. 22(6), 369–395 (1999)

5. Dzwinel, W., Yuen, D.A.: Rayleigh-Taylor instability in the mesoscale modeled by
dissipative particle dynamics. Int. J. Mod. Phys. C 12(1), 91–118 (2001)

6. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-Lagrangian particle
level set method. Comput. Struct. 83, 479–490 (2005)

7. Korner, C., Thies, M., Hofmann, T., Thurey, N., Rude, U.: Lattice Boltzmann
model for free surface flow for modeling foaming. J. Stat. Phys. 121, 179–196
(2005)

8. Kwak, Y., Nakano, A.: Hybrid Lattice-Boltzmann/level-set method for liquid sim-
ulation and visualization. Int. J. Comput. Sci. 3(579), 1–14 (2009)

9. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle
level set fluid simulation. IEEE Trans. Visual Comput. Graph. 14(4), 797–804
(2008)

10. Mei, X., Decaudin, P., Hu, B.G., Zhang, X.: Real-time marker level set on GPU. In:
International Conference on Cyberworlds, CW ’08, September 2008, pp. 209–216.
IEEE, Hangzhou (2008)

11. Mihalef, V., Sussman, M., Metaxas, D.: The marker level set method: a new app-
roach to computing accurate interfacial dynamics. J. Comput. Phys. (2007)

12. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied
Mathematical Sciences. Springer, New York (2003)

13. Rubinstein, R., Luo, L.S.: Theory of the lattice Boltzmann equation: symmetry
properties of discrete velocity sets. Phys. Rev. E 77(3), 036709 (2008)

14. Smagorinsky, J.: General circulation experiments with the primitive equations.
Mon. Weather Rev. 91(3), 594–595 (1963)

15. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.
Clarendon Press, Oxford (2001)

16. Thuerey, N., Ruede, U.: Free surface lattice-Boltzmann fluid simulations with and
without level sets. In: Proceedings of the Vision, Modelling, and Visualization,
VMV, pp. 199–207 (2004)

17. Tolke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D
CFD. Int. J. Comput. Fluid Dyn. 22(7), 443–456 (2008)

18. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in
Computational Mathematics. Springer, Berlin (2009)

19. Jeong, W.-K., Whitaker, R.T.: A fast iterative method for a class of Hamilton-
Jacobi equations on parallel systems. University of Utah Technical report
UUCS07010, pp. 1–25 (2007)

Creation of Agent’s Vision of Social Network
Through Episodic Memory

Michaffl Wrzeszcz1(B) and Jacek Kitowski1,2

1 Department of Computer Science, Faculty of Computer Science, Electronics and
Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30,

30-059 Krakow, Poland
2 ACC Cyfronet AGH, AGH University of Science and Technology, ul. Nawojki 11,

30-950 Krakow, Poland
{wrzeszcz,kito}@agh.edu.pl

Abstract. Human societies appear in many types of simulations. One of
the most important and the most difficult society elements to be mod-
elled is the social context. In this paper we show how social context
can be provided using agents that are equipped with internal visions
of social relations between others. Internal vision is a representation of
social relations from the agent’s point of view so, being subjective, it may
be inconsistent with the reality. We introduce the agent model and the
mechanism of rebuilding the agent’s internal vision that is similar to that
used by humans. An experimental proof of concepts is also presented.

Keywords: Social networks · Behaviour modelling · Simulation of
human societies · Multi-agent systems · Social context

1 Introduction

Simulations of human societies may be used to create virtual worlds that allow
to predict collective behaviour of a crowd. However, these simulations of human
societies are useful only if they are highly realistic - the behaviour of simulated
individuals must be as similar as possible to human behaviour. This article does
not focus at any particular behaviour so we define realism as a replication or
imitation of human decision-making process where each human is independent
but may be influenced by external factors including other people.

Classically, the simulation of individuals requires definition of 4 main ingre-
dients [5,18,20]: high-level behaviour, perception, animation and graphics. Not
all simulations require advanced visualization so the third and fourth aspects
will not be considered in this article. To model perception of individuals we can
adopt software agents interacting with the environment [15] thus, in this article,
we treat each individual as a software agent. A great challenge in all simulations is
high-level behaviour modelling. Research proved that the agents based on PECS
model (Physical conditions, Emotional state, Cognitive capabilities and Social
status [17]) and ontology can be configured to simulate specific scenarios [10].

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 741–750, 2014.
DOI: 10.1007/978-3-642-55195-6 70, c© Springer-Verlag Berlin Heidelberg 2014

742 M. Wrzeszcz and J. Kitowski

User reputation in social network is also a field of study (e.g. [6]). Furthermore,
Nazir, Prendinger and Seneviratne showed [14] that their pattern based mobility
model reproduces well day-to-day human activities of people. However, the diffi-
culty of modelling of high-level behaviour increases significantly when behaviour
of a simulated individual depends on social context. For this reason, we focus
our research on social context provision. Nevertheless it should be noticed that
issue of context in simulations is very wide and this article considers context
understood as influence of one individual on another.

In this article we present the model that provides social context by equipping
each agent with its internal, conceivably subjective, vision of social relations
between others. The internal vision is a representation of social relations from
the agent’s point of view so it may be inconsistent with the reality. We also show
that defining, in an appropriate way, functions that update agent’s internal vision
of social relations on the basis of observations of interactions of other agents
allows the agent to build its internal vision in similar to human way (the social
network built by the introduced algorithms is similar to the social network built
by human manually on the basis of observed people questioning).

The rest of the paper is organized as follows. In Sect. 2, we show various
methods of social context provision, indicating their shortcomings. An extension
of the classic agent model is proposed in Sect. 3. Next, in Sect. 4 we verify our
model experimentally. Afterwards, we conclude this paper in Sect. 5.

2 Provision of Social Context

Several social context models have been introduced. In [13] a model that describes
how agents influence each other within one organization is shown. The basis of the
model are beliefs and organizational code. The beliefs are elements of the agent’s
internal representation of the world while organizational code is a string of values
that represents the organization’s approximation of beliefs about that reality. In
each period, every agent alters any given belief to conform to that of the orga-
nizational code with some probability, reflecting the rate of socialization of indi-
viduals in the organization. The organizational code also alters any given belief
based on the dominant belief of the set of agents - the superior group, defined as
those agents whose individual beliefs correspond better with reality than does the
code’s. The model was later extended by Kane and Prietula [7]. They let indi-
viduals learn from (be influenced by) one another. The probability that a given
individual would learn from the other individuals rather than the code was repre-
sented by an additional parameter. However, it should be noticed that the agents
easily develop erroneous beliefs [3].

Another interesting approach is the tag-based computational model [2], which
uses tags to describe agents features. In this model, only similar agents can
influence each other. Similarity of agents is calculated by comparison of their
tags.

One of the latest approaches that use virtual world to show how people
behave in particular situations was developed by the EUSAS project (European

Creation of Agent’s Vision of Social Network 743

Urban Simulation for Asymmetric Scenarios) [9,11]. In this project, the social
influence of agents, that were divided into groups, was modelled according to
the Latane formula of strength, immediacy and number of other agents [12].
The agent’s internal state was changed on the basis of observation of actions of
other agents that belong to the same group, e.g., aggression of the agent was
growing when it observed aggressive actions of other agents that belonged to
the same group. The strength of this efflect depended on social position of the
observed agent.

The presented models are not able to reproduce some phenomena from the
real word where a group of people often contains pairs of close friends as well as
pairs of people who do not know each other personally. The influence of a good
friend is often higher than influence of other persons even with higher social
position, hence the social context model should contain a social network, which
describes relations between each pair of agents. Nevertheless, a single social
network may be not enough. In the real world, attitude to people depends on past
interactions and information received from others. When somebody is not known
personally, our attitude to them depends on their relations with people we know
and his behaviour that we can observe. Unfortunately, we cannot always evaluate
relations between other people correctly. If we observe argue of two friends, we
can assume subjectively that they do not like each other. Each human being
usually has his own interval vision of social relations that link people around so
each agent should have its own internal vision of the social network.

After equipping each agent with its internal vision of the social network we
can easily improve the social context models. For instance, similar model like in
the EUSAS project may be used, however, the strength of the influence could
depend on strength of the social relation (in internal social network) between
observer and observed agent, not obligatorily on the social position of observed
one. Therefore, the key issue is provision of mechanism that updates agent’s
internal vision of the social network.

3 Agent Model

The proposed agent model uses the classical approach. The classical approaches
introduce a deliberative agent [5,20] that contains a symbolic model of the world
and in which decisions are made via logical reasoning, based on pattern match-
ing and symbolic manipulation. The agent also gathers information about past
events. Storing this type of information is called the episodic memory. It was
introduced by Vere and Bickmore [19] in the agent called HOMER.

The agent model is shown in Fig. 1. The agent observes the environment
using sensors and stores information about important events in the memory.
In our case, the agent stores information about possible interactions of other
agents. On the basis of this information it builds its internal representation of
the world, which describes social relations of known individuals. The agent uses
this internal vision of environment, together with information about itself, to
plan its actions (it is done by logic engine) that are executed by efflectors.

744 M. Wrzeszcz and J. Kitowski

Fig. 1. Agent model

The internal social network may be multi-layered [8] to describe various types
of relations, e.g., professional relations, friendship etc. The Multi-layered Social
Network is defined as a tuple < V ;E;L > where: V is a non-empty set of nodes,
E is a set of edges and L is a set of layers [1]. The edge is a tuple < x, y, l >,
where x, y are difflerent nodes and l is a layer (x, y ≤ V, l ≤ L, x ≥= y). The layer is
a set of relations of the same type (e.g. trust layer, family ties layer). Maximum
two relations between particular nodes (x to y and y to x) belong to each layer:
< x, y, l >≤ E∈ < x′, y′, l′ >≤ E ∈ x = x′ ∈ y = y′ ∞ l ≥= l′.

The described agent uses many well-known techniques. The use of sensors,
efflectors, episodic memory and internal representation of the world is not new.
Translation of the social network to the form useful for the logic engine has also
been described, e.g., in [16] a mechanism of calculation of social reputation on
the basis of social relations was described. Reputation of the agent may be used
by the logic engine to verify reliability of messages sent by it. Thus, we propose a
novel method of building and updating of agent’s internal vision of social network
what is, in our opinion, a key to increasing realism of the simulations.

The update of the social network is done through the episodic memory. The
agent observes the environment and represents observed social events as a set
of communication channels. Representation of the environment as the set of
communication channels was described in [21]. The agent creates the communi-
cation channel in its memory when it observes the possibility of communication
between pair of other agents and destroys the channel when it observes that
this pair is not able to communicate any longer. The communication channel

Creation of Agent’s Vision of Social Network 745

contains information about the period of time in which described agents were
able to communicate. It may also contain some additional information if avail-
able, e.g., attitude of one observed agent to another evaluated on the basis of
its gestures. The communication channels are analysed by function F1 to pro-
vide interactions’ description. The F1 function decides if the channel describes
interactions or not. If the channel describes interactions, the function assigns a
type to them. Afterwards, on the basis of the interactions’ types, the relations in
the social network are updated using function F2. The interaction’s type is used
to choose which layer of network should be updated and decides how value of
the relation in chosen layer should be changed, e.g., observation of kind gestures
should increase the value of friendship relation while observation of argue should
decrease this value. More formal definitions of F1 and F2 are presented below:

– F1(C) ≈ {I1, I2} ∧ NULL where:
• C = {A1, A2,D,O} - communication channel between pair of agents where:

A1, A2 - agents connected by channel,
D - duration of the channel,
O - other information about observed event if available (e.g., attitude
of agents A1 and A2),

• {I1, I2} is a tuple that describes interactions - I1 represents actions of A1
while I2 actions of A2; function may return NULL when event described
by the communication channel is not an interaction (e.g., when one agent
walked by another and they did not see each other); the I1 and I2 interac-
tions may be difflerent when additional information is included in the com-
munication channel (e.g., if A1 attacks A2 and A2 only defends itself, I1
will represent aggressive interaction initialized by A1 while I2 not aggressive
response of A2); interaction is defined as a tuple I = {A1, A2, T} where:

A1, A2 - agents involved in interaction,
T - type of interaction,

• NULL - ignore this communication channel this time, no interactions are
produced (function F2 will not be used),

– F2(I) ≈ [U] where:
• I - interaction,
• [U] is a list that describes updates of the social network that should be

done on the basis of the interaction; function returns a list because updates
of more than one layer may be performed on the basis of one interaction.
Update is a tuple U = {A1, A2, L, V } where:

A1, A2 - agents between which relation should be updated,
L - layer of social network that should be updated,
V - the amount of change of relation (numerical value).

Sample functions F1 and F2 are shown in the next section.
The quality of each layer of the social network may be evaluated using the

following formulas:

746 M. Wrzeszcz and J. Kitowski

– calculate output value of each node:
• node out value =

∑
outgoing relations relation strength,

– normalize the relations’ strengths:
• normalized strength = relation strength

start node out value ,• start node out value is the node out value of node from which the relation
starts,

– calculate quality of node:
• node quality =

∑
outgoing relations included in control data normalized

strength,
• control data contains relations that indeed exist in the real world (the

social network created by the agent is subjective while the control data is
objective),

– calculate quality of layer:
• layer quality =

∑
all nodes node quality

number of nodes .

The quality of layer equal to 1.0 means that this layer describes only relations
included in the control data so the obtained results fit perfectly to the reality

Fig. 2. Evaluation of friendship layer in the exemplary social network

Creation of Agent’s Vision of Social Network 747

as evaluated independently by the individuals. Evaluation of friendship layer in
the exemplary social network is shown in Fig. 2. The input data and the control
data were artificially created to illustrate the algorithm.

4 Tests

The aim of creation of the introduced agent model was the increase of realism of
individuals’ behaviour in simulations with independent agents being influenced
by external factors including other agents. To verify it we compare the social
network built using the proposed approach with that constructed manually by
human on the basis of the data collected in the real world. Results conformity
would verify ability of the approach to mimic well some human processes during
decision making. Hence, the verification of functions (F1 and F2) usage for
creation of two separated layers of the social network - one showing friendship
and another professional relations of a group of observed people - were performed.

During experiments we used the Reality Mining Dataset [4] that included
data collected in the real world. The Reality Mining Dataset incorporates the
94 subjects that had completed the survey conducted in January 2005 . Of these
94 subjects, 68 were colleagues working in the same building on campus (90 %
graduate students, 10 % staffl) while the remaining 26 subjects were incoming
students at the university’s business school.

For our experiments, we have used three types of data included in the dataset.
The first type was Bluetooth data from subjects’ telephones. Using MAC
addresses of the Bluetooth devices discovered on each Bluetooth scan and times
of Bluetooth scans we could reproduce possible interactions of subjects. The
second type was a survey where each subject indicated his friends. This data
was used to verify if the constructed friendship layer was correct. The third type
was survey data that described which subjects see each other every day in office.
This data was used to identify coworkers of each subject.

4.1 Experiment 1

In our experiment, the social network was evolving over the time, from the
first time of Bluetooth scan to the last time of Bluetooth scan. Communication
channels were updated at each time of scan. Additionally, at each time of scan,
the interactions were identified (use of F1 functions) and the social network was
updated (use of F2 function). Simple F1 and F2 functions were used. Function
F1 was creating a pair of interactions when a communication channel between
agents existed at the time of scan. The type of each interaction was “general”.
For each interaction, function F2 was incrementing the value of relation from A1
to A2 (see definition of F2 in previous section) in both layers if relation existed. If
not, the relation was created with value one. After last Bluetooth scan, qualities
of layers have been calculated using instruction described in Sect. 3. The control
data for friendship layer contained relations between people that marked each
other in survey as a friend while the control data for coworkers layer contained

748 M. Wrzeszcz and J. Kitowski

relations between people identified as coworkers (on the basis of survey). The
quality of friendship layer equal to 1.0 means that this layer describes only
relations between friends, the quality of coworkers layer equal to 1.0 means that
this layer describes only relations between coworkers.

The quality of friendship layer was 0.18 while the quality of coworkers layer
was 0.5 (see Table 1 in Sect. 4.2). This is consistent with expectations because
people spend more time at work than with friends, and this method treated all
meetings equally.

4.2 Experiment 2

Experiment 2 was similar to experiment 1. We have only redefined F1 and F2
functions on the basis of our everyday experience. People meet friends mainly in
the evenings during weekends while coworkers are met during office hours from
Monday to Friday. Additionally, meeting duration should be taken into account.
Meeting with close friends is usually longer than meeting with people we know
but they are not our friends. Moreover, during office hours, time that we spend
near coworkers is usually very long - much longer than the time of visit of a
person that has only some business to us. Therefore we have defined F1 and F2
functions as follows:

– F1 - create a pair of interactions between subjects connected by communica-
tion channel when following requirements are fulfilled:
• If communication channel has existed last 10 scans, and the day of week is

Saturday or Sunday, and the time is between 9 and 12 pm., create friends’
interactions.

• If communication channel has existed last 60 scans, and the day of week is
not Saturday or Sunday, and the time is between 8 am. and 4 pm., create
coworkers’ interactions.

– F2 - update value of relation between pair of subjects participating in inter-
action when following requirements are fulfilled:
• If interaction type is friends’ interaction, increment value of relation from
A1 to A2 (see definition of F2 in previous section) in the friendship layer
if the relation exists. If not, create it with value one.

• If interaction type is coworkers’ interaction, increment value of relation from
A1 to A2 (see definition of F2 in previous section) in the coworkers layer
if the relation exists. If not, create it with value one.

Results of the experiment are shown in Table 1. The quality of friendship
layer was 0.80 while the quality of coworkers layer was 0.95. It means that the
quality of friendship layer is more than four times better than in the experiment
1 and the quality of coworkers layer is almost two times better.

However, it should be noticed that the functions F1 and F2 proposed by
us may not be optimal. The aim of the experiment was not to find the best
F1 and F2 functions but to show that the proposed solution works. Probably
more complicated functions would give better results but even such simple func-
tions showed that introduced technique works well and can be used to simulate
societies.

Creation of Agent’s Vision of Social Network 749

Table 1. Results of the experiment

Layer Layers’ qualities
Experiment 1 Experiment 2

Friendship 0.18 0.80
Coworkers 0.5 0.95

5 Conclusion

We have shown that we are able to a build reliable social network only on the
basis of observation of interactions of others. The experiment proved that defin-
ing, in an appropriate way, functions F1 and F2, results in successful identifi-
cation of various types of social relations. The proposed agent model increases
the realism of the social simulations because simulated individuals have their
internal vision of social relations exactly like humans (agents can have difflerent
opinion about relations that link other individuals in the system because diffler-
ent people may have difflerent opinions about social relations that link people
around). Moreover, introduced mechanism of the update of this internal vision
has been successfully verified using test data from the real world.

Presented model may be used in simulations of human societies where mod-
elling of influence of one individual on others is important issue e.g. it can be
used to create simulations for police that allow to check if a demonstration can
turn into a riot. Computer games, especially role-playing games (RPGs), are
other important application of the model. In RPGs artificial intelligence con-
trols non-player characters (NPCs). The presented algorithms can be used to
model NPCs and allow them to identify their friends and opponents. In the
near future we want to test behaviour of the introduced agents in environments
similar to role-playing game.

Acknowledgments. This research is partially supported by AGH-UST grants no.
11.11.230.015 and 15.11.230.097.

References

1. Bródka, P., Filipowski, T., Kazienko, P.: An introduction to community detec-
tion in multi-layered social network. In: Lytras, M.D., Ruan, D., Tennyson, R.D.,
Ordonez De Pablos, P., Garćıa Peñalvo, F.J., Rusu, L. (eds.) WSKS 2011. CCIS,
vol. 278, pp. 185–190. Springer, Heidelberg (2013)

2. Chen, Y., Prietula, M.: To deceive or not to deceive? Mimicry, deception and
regimes in tag-based models. In: Intra-Organizational Networks (ION) Conference
(2005)

3. Doran, J.: Social simulation, agents and artificial societies. In: Third International
Conference on Multi-Agent Systems, pp. 4–5 (1998)

4. Eagle, N., Pentland, A., Lazer, D.: From the cover: inferring friendship network
structure by using mobile phone data. Proc. Natl. Acad. Sci. U S A 106, 15274–
15278 (2009)

750 M. Wrzeszcz and J. Kitowski

5. Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, San Mateo (1987)

6. Han, Y.S., Kim, L., Cha, J.W.: Computing user reputation in a social network of
web 2.0. Comput. Inf. 31, 447–462 (2012)

7. Kane, G., Prietula, M.: Influence and structure: extending a model of organi-
zational learning. In: Twelfth Annual Organizational Winter Science Conference
(2006)

8. Kazienko, P., Brodka, P., Musial, K., Gaworecki, J.: Multi-layered social network
creation based on bibliographic data. In: SocialCom/PASSAT, pp. 407–412. IEEE
Computer Society (2010)

9. Kryza, B., Krol, D., Wrzeszcz, M., Dutka, L., Kitowski, J.: Interactive cloud data
farming environment for military mission planning support. Comput. Sci. 23(3),
89–100 (2012)

10. Kvassay, M., Hluchy, L., Kryza, B., Kitowski, J., Seleng, M., Dlugolinsky, S.,
Laclavk, M.: Combining object-oriented and ontology-based approaches in human
behaviour modelling. In: 2011 IEEE 9th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), pp. 177–182 (2011)

11. Laclav́ık, M., Dlugolinský, Š., Šeleng, M., Kvassay, M., Schneider, B., Bracker, H.,
Wrzeszcz, M., Kitowski, J., et al.: Agent-based simulation platform evaluation in
the context of human behavior modeling. In: Dechesne, F., Hattori, H., ter Mors,
A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS,
vol. 7068, pp. 396–410. Springer, Heidelberg (2012)

12. Latane, B.: Dynamic social impact. In: Hegselmann, R., Mueller, U., Troitzsch,
K.G. (eds.) Modelling and Simulation in the Social Sciences from the Philosophy
of Science Point of View, vol. 23, pp. 287–310. Springer, Berlin (1996)

13. March, J.G.: Exploration and exploitation in organizational learning. Organ. Sci.
2(1), 71–87 (1991)

14. Nazir, F., Prendinger, H., Seneviratne, A.: Participatory mobile social network
simulation environment. In: ICC, pp. 1–6. IEEE (2010)

15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (1995)

16. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: AAMAS ’02: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 475–482. ACM (2002)

17. Schmidt, B.: Modelling of human behaviour: the PECS reference model. In: 14th
European Simulation Symposium (2002)

18. Thalmann, D.: Simulating a human society: the challenges. In: Computer Graphics
International, CGI02, pp. 25–38 (2002)

19. Vere, S.A., Bickmore, T.W.: A basic agent. Comput. Intell. 6, 41–60 (1990)
20. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl.

Eng. Rev. 10(2), 115–152 (1995)
21. Wrzeszcz, M., Kitowski, J.: Mobile social networks for live meetings. Comput. Sci.

13(4), 87–100 (2012)

The Influence of Multi-agent Cooperation
on the Efficiency of Taxi Dispatching

Michaffl Maciejewski1,2(B) and Kai Nagel2

1 Institute of Machines and Motor Vehicles, Faculty of Machines and Transportation,
Poznan University of Technology, Ul. Piotrowo 3, 60-965 Poznan, Poland

michal.maciejewski@put.poznan.p
2 Transport Systems Planning (VSP), Institute for Land and Sea Transport Systems,

TU Berlin, Salzufer 17-19 Sekr. SG12, 10587 Berlin, Germany
{maciejewski,nagel}@vsp.tu-berlin.de

Abstract. The paper deals with the problem of the optimal collabo-
ration scheme in taxi dispatching between customers, taxi drivers and
the dispatcher. The authors propose three strategies that differ by the
amount of information exchanged between agents and the intensity of
cooperation between taxi drivers and the dispatcher. The strategies are
evaluated by means of a microscopic multi-agent transport simulator
(MATSim) coupled with a dynamic vehicle routing optimizer (DVRP
Optimizer), which allows to realistically simulate dynamic taxi services
as one of several different transport means, all embedded into a realistic
environment. The evaluation is carried out on a scenario of the Polish
city of Mielec. The results obtained prove that the cooperation between
the dispatcher and taxi drivers is of the utmost importance, while the
customer–dispatcher communication may be reduced to minimum and
compensated by the use of more sophisticated dispatching strategies,
thereby not affecting the quality of service.

Keywords: Dynamic taxi dispatching · Dynamic vehicle routing ·
On-line optimization · Multi-agent simulation · MATSim · Traffic flow
simulation · Simulation-based optimization

1 Introduction

Taxi dispatching is one of the most crucial components of operational taxi fleet
management, however the research in this area is limited. There are several
other problems in the realm of operational research that are similar to taxi
dispatching, such as the Dynamic Single Load Pickup and Delivery Problem [5],
also known as the Real-time Multivehicle Truckload Pickup and Delivery Problem
[13], the On-line Dial-a-Ride Problem [2], or the Demand-Responsive Transport-
oriented problems [6]. However, the (partial) independence of drivers, restricts
the adaptation of the existing optimization methods mainly to those cases when
a taxi fleet is managed centrally (e.g. [7,12]), which is not common.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 751–760, 2014.
DOI: 10.1007/978-3-642-55195-6 71, c© Springer-Verlag Berlin Heidelberg 2014

752 M. Maciejewski and K. Nagel

Sophisticated dynamic routing approaches are hard to analyse theoretically
(e.g. competitive analysis), and therefore simulation tools have to be used. In
transport-related problems, simulation has to incorporate realistically modelled
dynamism of customer demand, traffic flow phenomena and fleet management
operations. These aspects are even more crucial when considering urban areas
due to high dynamics of traffic flow resulting in continuously changing travel
times and often, depending on the type of services, in high volatility of demand
(e.g. taxi).

Particularly in the case of taxi dispatching, the use of microscopic traffic sim-
ulators allows to evaluate the performance of the service under difflerent, often
extreme, scenarios, such as sport/cultural events, bad weather conditions or
public transport strikes [7,11]. Furthermore, the (partial) independence of taxi
drivers can be addressed by multi-agent simulation [1,4,11]. These issues, how-
ever, remain almost unexplored. To the best knowledge of the authors, the only
application of both microscopic traffic simulation and multi-agent simulation to
a real-life scenario has been carried out by Seow et al. in Singapore [11].

To sum up, we think that the best approach is to use multi-agent traffic
simulation that allows for running large-scale scenarios at the microscopic level
of detail. Out of various simulation platforms considered, MATSim [3] is arguably
the one that is closest to meet all the requirements stated; see [8] and references
therein for additional justification. The base dynamic taxi dispatching problem
and its implementation has been described in [9]. This paper aims at providing
insight into possible ways of modelling and simulating multi-agent cooperation in
taxi dispatching in MATSim and assessing the efficiency of difflerent cooperation
schemes that have been modelled.

2 Cooperation in Taxi Dispatching

Providing efficient taxi services requires proper collaboration between the main
actors, that is customers, taxi drivers and the dispatcher. There are various
models of providing the services, each assuming a difflerent level of collaboration
between these actors. In the simplest one, customers order a taxi without inform-
ing about their destination, which is given only to taxi drivers after entering the
taxi. Moreover, taxi drivers do not notify the dispatcher about the status of the
current request until it is completed. On the opposite pole, one may consider
a taxi service where customers provide the dispatcher with their destinations,
taxi drivers are monitored on-line, and orders may be dynamically reassigned
between taxi drivers in reaction to the current situation. One may expect that
the more collaboration between the actors occurs, the more efficient the service
is. However, to investigate this issue thoroughly, one may use multi-agent simu-
lation that would mimic the interaction between actors, and between actors and
the environment, such as urban traffic.

Within the current research, the following options have been considered:

– destination knowledge – the destination is known a priori if a customer informs
the dispatcher about his/her destination.

The Influence of Multi-agent Cooperation 753

– request execution monitoring – the dispatcher may monitor taxis and con-
stantly update the timing of their schedules, which is necessary if a longer
scheduling horizon is considered. Otherwise, taxi drivers notify the dispatcher
only about switching between the busy and idle states.

– requests reassignment – already assigned requests can be dynamically reas-
signed between drivers. Request swapping is expected to be beneficial for both
customers and drivers, and is usually coordinated by the dispatcher.

Enabling any of these properties implies some extra collaboration between inter-
ested parties. The first one involves additional customer-to-dispatcher communi-
cation, the second one imposes extra driver-to-dispatcher communication, while
the last one requires real-time collaboration between drivers and the dispatcher.

3 Platform for Simulation of Taxi Services

In order to carry out the research, an integrated simulation platform has been
developed [9]. The system consists of two fundamental components, namely
MATSim [3] and the DVRP Optimizer [8]. The former is used for modelling
transport supply (including a taxicab fleet) and demand (including taxi demand)
and providing queue-based traffic flow simulation. The latter is responsible for
managing a fleet of taxis (or in general, any vehicle fleet) within the simulation.

Since both components are integrated tightly, one can simulate taxi ser-
vices dynamically (MATSim), where events, such as request submissions, vehi-
cle departures or arrivals, trigger optimization or update procedures (the DVRP
Optimizer). Taxi drivers are modelled as dynamic (reactive) agents that move
in a city network, together with other drivers, and communicate with the dis-
patcher and customers. Each taxi driver has a schedule made up of the following
task objects:

– DriveTask – driving along a given route (usually the shortest path between
two points in the network).

– ServeTask – picking-up a passenger at a given location (includes waiting for
the passenger).

– WaitTask – waiting at a given location for a new customer.

When a taxi customer wants to take a taxi, he/she calls the taxi service
(time T 0

i ; the order is registered as request i) and waits until the taxi arrives. In
response, the taxi dispatcher assigns the new request to one of taxis, according
to a given algorithm. At time T 1

i , the selected taxi sets offl for the customer.
The taxi arrives at the pick-up location at time T 2

i , and after the customer is
picked up, it departs (time T 3

i). Finally, the taxi drops offl the passenger at the
destination location at time T 4

i . At this moment, the taxi driver may start out
for the next request or wait. Because of the stochasticity of taxi demand and
traffic flow, times T 1

i , T 2
i , T 3

i and T 4
i are subject to change during simulation.

The correspondence between the taxi schedule and the respective customer’s
plan is presented in Fig. 1.

754 M. Maciejewski and K. Nagel

Fig. 1. A planned taxi leg and the corresponding sequence of taxi tasks

4 On-line Taxi Dispatching Algorithms

Taxi dispatching deals with dynamic and stochastic demand and supply. Typi-
cally, a dynamic optimization algorithm reacts to various changes, represented
as events, that occur over time. The simplest approach, commonly used by taxi
companies, consists in responding to submissions and completions of requests
(events E0

i and E4
i , respectively). To increase efficiency, the algorithm can be

triggered also when taxis set offl for, arrive at and depart from pickup locations
(events E1

i , E2
i and E3

i , respectively). On the opposite pole, all taxicabs can be
monitored on-line so that the algorithm can be executed in case any taxi is even
slightly ahead of/behind schedule. In this research, it has been assumed that
vehicles are not monitored and the algorithm responds only to events E0

i –E4
i .

Since on-line dispatching procedures must be time efficient, fast local opti-
mum search methods, or even just local update methods, have to be used instead
of global optimization. Provided that these procedures are fast enough (respond
almost instantly to events), we can assume that they operate on static data,
which are considered a kind of snapshot of the current system state.

Since customers perform immediate taxi calls and then wait for a taxi to
come, minimization of the total waiting time is the optimization objective. To
assure fairness of the dispatching process, all taxi requests are prioritized accord-
ing to their submission time and scheduled based on the first-come, first-served
policy.

Three difflerent strategies, namely no-scheduling, one-time scheduling and
re-scheduling, have been implemented. The first one assumes minimal commu-
nication between drivers and the dispatcher. The next one monitors request
execution, while the last one extends the second one by adding the functionality
of reassigning requests. All of them can be applied both with or without the a
priori destination knowledge.

The Influence of Multi-agent Cooperation 755

No-scheduling strategy (NOS). This strategy reacts to the following events:

– E0
i – the nearest1 vehicle among the idle ones is dispatched to this request; if

no vehicle is available at that time, the request is queued in a FIFO queue
– E4

i – the vehicle that has just completed request i is dispatched to the first
request in the FIFO queue; otherwise, the vehicle becomes idle

This strategy imitates the way orders are assigned to taxis in a typical taxi com-
pany. The main advantage is low demand for computational power. Moreover,
this strategy does not require travel times to be known since it does not build
schedules; one can even use straight-line distance to find the nearest idle taxi.
The drawback is that its performance deteriorates as the number of idle taxis
decreases — if all taxis are busy, the first idle one may appear on the opposite
side of a city. The a priori destination knowledge is not taken into account.

One-time-scheduling strategy (OTS). This strategy updates the existing taxi
schedules by appending a new request to the schedule of the nearest vehicle
among all vehicles (both idle or busy), where nearest again typically means
“nearest in time”. Therefore, the knowledge of travel times is mandatory. This
strategy monitors execution of requests and constantly updates the timelines of
schedules, but without request reassignment. The strategy acts in the follow-
ing way:

– E0
i – request i is appended to the schedule of the nearest taxi

– E1
i – E4

i – if the vehicle serving request i is ahead of/behind time, the timing
of its schedule is updated, while the assignments remain unchanged

This strategy considers all the available vehicles, not only the idle ones, which
broadens the choice of taxis and thus increases the chances of finding a better
assignment. However, when destinations are unknown, the planning horizon is
limited up to one pick-up ahead (event E3

i), and therefore, vehicles with already
one planned pick-up cannot be considered when scheduling a new request. The
weakest point of OST is the permanence of assignments, even if a vehicle is
seriously delayed.

Re-scheduling strategy (RES). This strategy is an enhanced version of the previ-
ous one. The difflerence is that requests may be re-assigned between taxis if the
other one appears to be nearer. The strategy is defined as follows:

– E0
i – request i is appended to the schedule of the nearest taxi

– E1
i – E4

i – if the vehicle serving request i is ahead of/behind time, full re-
scheduling is carried out; the assignments are subject to change

In consequence, the scheduling algorithm runs in two modes: on the arrival of a
new request (exactly as in case the OTS strategy), and when one of taxicabs is
reported to be ahead of/behind schedule (all planned request are re-scheduled).
RES overcomes the weaknesses of the previous ones, but at the cost of extra
computational time.
1 Depends on the distance measure chosen; usually means ‘nearest in time’.

756 M. Maciejewski and K. Nagel

5 Test Scenario

The computational analysis was carried out for Mielec, a city in south-eastern
Poland, with a population of over 60’000 inhabitants. The model was derived
from a macroscopic model of private transport in Mielec, used as a small-size
test instance in several studies, e.g. [10]. The network model consists of over
200 nodes and 600 links. The whole study area is divided into 13 zones; nine
of them represent city districts, while the rest – external areas. Based on the
original model that described afternoon 1-hour peak, the demand data have
been artificially generated to cover the period between 6:00 am and 8:00 pm,
resulting in over 42’000 private transport trips that represent a hypothetical
case of day traffic, including both morning and afternoon rush-hour traffic.

The performance of the proposed optimization strategies was tested against
difflerent variants of the scenario (each repeated 20 times). The taxi demand was
modelled as 3, 5 and 7 % of the intra-urban private transport demand (i.e. the
number of orders n equalled 917, 1528 or 2175, respectively), while the taxi fleet
size m was 50 and 100. Since the fleet size was constant over the entire simulation
and the taxi demand peak coincided with the private transport demand peak,
the rush hours were the most challenging for taxi dispatching.

6 Simulation Results

Difflerent performance measures were used during the simulation studies, all
described in [9]. They represented either the customers’ or taxi company’s point
of view, often mutually conflicting. The selected ones are:

– average passenger waiting time, TW =
∑

i∈N (T 2
i − T 0

i)/n
– maximum passenger waiting time, Tmax

W = maxi∈N (T 2
i − T 0

i)
– average pickup trip time, TP =

∑
i∈N (T 2

i − T 1
i)/n

Figures 2, 3, 4 show the results obtained for difflerent m and n. Separate curves
were plotted for the taxi fleet size of 50 (n/m between 18.34 and 43.5) and of
100 (n/m between 9.17 and 21.75). The following notation is used:

– NOS – NOS (destination knowledge n/a)
– OTS w/o D – OTS without the destination knowledge
– OTS w/D – OTS with the destination knowledge
– RES – RES both with and without the destination knowledge (aggregated

due to negligible difflerences)

Figure 2 shows, in terms of TW, that RES and OTS give comparable results
for low and medium load. However, as the system gets overloaded, OTS without
the destination knowledge behaves similarly to NOS, producing random assign-
ments as the search space gets reduced to only 1 taxi (explained below). These
relations are clearly visible in the experiments with 50 taxis and demand equal
to 5–7 %, where periods of high load alternate with ones of lower load. In these

The Influence of Multi-agent Cooperation 757

Fig. 2. Average passenger waiting time TW at different demand-supply ratios

Fig. 3. Maximum passenger waiting time Tmax
W at different demand-supply ratios

cases, OTS without the destination knowledge performs similarly either to NOS
or to RES, thereby giving in-between outcomes.

The behaviour of OTS without the destination knowledge at high loads is
caused by the fact that when a taxi with customer i aboard departs (event
E3

i) it notifies the dispatcher about the current destination, and therefore, the

758 M. Maciejewski and K. Nagel

Fig. 4. Average pickup trip time TP at different demand-supply ratios

dispatcher can schedule the next event, E4
i , and then append customer j (the first

from the queue) to this taxi’s schedule. This resembles the behaviour of NOS,
with the exception that in the latter, the assignment is done after E4

i , not E3
i .

Actually, making a random assignment following E3
i is even worse since it adds

more variability in terms of the waiting time (T 2
j −T 0

j depends on T 4
i −T 3

i now).
As a result, the behaviour gets less fair (some customers must wait considerably
longer than others), which is proved by larger Tmax

W (see Fig. 3).
Another interesting result is that the NOS series in Fig. 2 are not adjacent.

This is due to the fact that the average distance to the closest idle taxi is pro-
portional to 1/

√
midle, where midle is the number of idle taxis. Therefore, TW in

experiment 3%:50 (i.e. 3 % demand and 50 cabs) is about
√

2 times higher than
in 3%:100, and slightly higher compared to 7%:100.

A quite surprising outcome, in terms of TW, is the poorer performance of
RES and OST in experiments with 100 taxis, compared to NOS. This is caused
by a biased arrival time estimator for on-going trips that is used for scheduling.
This estimator ignores the fact that the longer the trip lasts the more probable
that it will end later than previously expected, and consequently, gives too opti-
mistic estimates (discussed in [9]). As a result, the OTS and RES strategies give
preference to non-idle vehicles, which results in shorter pickup trips (see Fig. 4),
but at the cost of longer taxi awaiting.

Figure 3 shows the maximum waiting times, Tmax
W , that may be interpreted as

the upper bound (or a first-guess estimate) of TW during morning and afternoon
peaks. In-depth analysis of Tmax

W reveals that in the low load regime, NOS is
the most fair strategy, while OTS and RES suffler from the biased estimation.
However, wrong decisions made by RES can be reversed to some extend by

The Influence of Multi-agent Cooperation 759

later reassignments of requests, thereby reducing the performance gap. On the
other hand, at high n/m ratios, the randomness of NOS and OTS without the
destination knowledge results in higher Tmax

W .
Figure 4 represents the taxi company’s perspective. Although the main moti-

vation of using OTS and RES is the reduction of passenger waiting times, they
have a beneficial side efflect of minimizing the operating costs. They both yield
lower TP since by considering also non-idle vehicles, they not only minimize
T 2
i (and thus TW) but also allow for T 1

i > τ , which reduces TP even further.
The discontinuity of the 50-taxi and 100-taxi series is caused by the fact that
TP ∼ 1/

√
midle, as explained earlier.

Similarly to the case of TW, RES and OTS give comparable TP for low and
medium load. However, in an overloaded system, OTS without the destination
knowledge operates similarly to NOS, while OTS with the destination knowledge
performs similarly to RES. Lower TP implies more idle taxis at the dispatcher’s
disposal, hence the dearth of taxis during the high peak is shorter and less acute.

7 Conclusions

The main goal of the paper was to propose and evaluate various schemes of
collaboration between agents. The platform integrating microscopic, behaviour-
based traffic simulation (MATSim) and dynamic vehicle routing optimization
(DVRP Optimizer) allowed to realistically model, simulate and evaluate dynamic
taxi services for the scenario of the Polish city of Mielec.

Out of three difflerent optimization strategies, each assuming a difflerent col-
laboration scheme between agents, that is customers, taxi drivers and the dis-
patcher, the best results have been obtained for the RES strategy. RES imposes
the highest level of cooperation between taxi drivers and the dispatcher. In par-
ticular, at high demand-to-supply ratios, it turns out to be very efflective, both
for customers (lowest TW and Tmax

W) and the company (lowest TP). On the other
hand, in the low load regime, all three strategies perform similarly well. Inter-
estingly, NOS shows more preference towards customers, while OTS and RES
offler more benefit to the company. This issue is related to the biased travel time
estimation, and will be addressed in future by adding on-line vehicle monitoring.
With this enhancement, the RES strategy is expected to outperform the other
ones regardless of the demand-supply relation.

Another interesting outcome is the limited use of the a priori destination
knowledge, which implies that the dispatcher may respect customers’ privacy
and not ask them about their destinations. This information is not used by
NOS, and has a negligible impact on RES. Only in the case of OTS, the not-
knowing the customer’s destination deteriorates taxi dispatching since contrary
to RES, wrong decisions cannot be reversed. However, the lack of this knowledge
may be compensated by the use of RES, which is superior, or at least equal, to
OTS in every respect.

To conclude, the cooperation between the dispatcher and taxi drivers is of the
utmost importance, while the customer–dispatcher communication, if necessary,

760 M. Maciejewski and K. Nagel

may be reduced to minimum. The lack of the knowledge of destination can be
balanced out by means of more sophisticated dispatching strategies so that the
quality of service remains unafflected. Among plans for the future is the extension
of the platform functionality with an on-line vehicle tracking module in order to
simulate the real-time driver–dispatcher cooperation. Another aim is to extend
taxi drivers’ independence by letting them to follow their own cruise-or-wait
strategies when idle.

References

1. Alshamsi, A., Abdallah, S., Rahwan, I.: Multiagent self-organization for a taxi
dispatch system. In: 8th International Conference on Autonomous Agents and
Multiagent Systems. pp. 21–28 (2009)

2. Ascheuer, N., Krumke, S.O., Jörg, R.: Online dial-a-ride problems: minimizing the
completion time. In: Horst, R., Sophie, T. (eds.) STACS 2000. LNCS, vol. 1770,
pp. 639–650. Springer, Heidelberg (2000)

3. Balmer, M., Meister, K., Rieser, M., Nagel, K., Axhausen, K.: Agent-based simu-
lation of travel demand: structure and computational performance of MATSim-T.
In: Innovations in Travel Modeling (ITM) ’08, Portland, Oregon, June 2008, also
VSP WP 08-07. www.vsp.tu-berlin.de/publications (2008)

4. Cheng, S., Nguyen, T.: Taxisim: a multiagent simulation platform for evaluating
taxi fleet operations. In: Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology-Volume 02, pp.
14–21. IEEE Computer Society (2011)

5. Fleischmann, B., Gnutzmann, S., Sandvoß, E.: Dynamic vehicle routing based on
online traffic information. Transp. Sci. 38(4), 420–433 (2004)

6. Horn, M.: Fleet scheduling and dispatching for demand-responsive passenger ser-
vices. Trans. Res. Part C Emerg. Technol. 10(1), 35–63 (2002)

7. Lee, D., Wang, H., Cheu, R., Teo, S.: Taxi dispatch system based on current
demands and real-time traffic conditions. Transp. Res. Rec. J. Transp. Res. Board
1882(–1), 193–200 (2004)

8. Maciejewski, M., Nagel, K.: Towards multi-agent simulation of the dynamic vehicle
routing problem in MATSim. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 551–560. Springer,
Heidelberg (2012)

9. Maciejewski, M., Nagel, K.: Simulation and dynamic optimization of taxi services
in MATSim. VSP Working Paper 13-05, TU Berlin, Transport Systems Planning
and Transport Telematics. www.vsp.tu-berlin.de/publications (2013)

10. Piatkowski, B., Maciejewski, M.: Comparison of traffic assignment in VISUM and
transport simulation in MATSim. Transport Problems (2013, in press)

11. Seow, K., Dang, N., Lee, D.: A collaborative multiagent taxi-dispatch system. IEEE
Trans. Autom. Sci. Eng. 7(3), 607–616 (2010)

12. Wang, H., Lee, D., Cheu, R.: PDPTW based taxi dispatch modeling for book-
ing service. In: Fifth International Conference on Natural Computation, 2009,
ICNC’09, vol. 1, pp. 242–247. IEEE (2009)

13. Yang, J., Jaillet, P., Mahmassani, H.: Real-time multivehicle truckload pickup and
delivery problems. Transp. Sci. 38(2), 135–148 (2004)

www.vsp.tu-berlin.de/publications
www.vsp.tu-berlin.de/publications

Basic Endogenous-Money Economy:
An Agent-Based Approach

Ivan Blecic(B), Arnaldo Cecchini, and Giuseppe A. Trunfio

Department of Architecture, Planning and Design, University of Sassari, Sassari, Italy
{ivan,cecchini,trunfio}@uniss.it

Abstract. We present an agent-based model of a simple endogenous-
money economy. The model simulates agents representing individual
persons who can work, consume, invent new products and related produc-
tion technologies, apply for a loan from the bank and start up a business.
Through the interaction of persons with the firms, we simulate the pro-
duction of goods, consumption and labour market. This setting allows
us to explore how an endogenous-money economy may build up from
scratch, as an emergent property of actions and interactions among het-
erogeneous agents, once the money is being injected into a non-monetary
self-production (or barter) economy. We provide and discuss the results
of several computational experiments under three scenarios: (1) with just
one firm, (2) with a limited number of firms and abundant workforce,
(3) and with unlimited number of firms.

Keywords: Agent-based computational economics · Endogenous-money
economy · Heterogeneous agents

1 Introduction

The endogenous-money approach to modelling an economic system assumes that
banks create money by making loans to firms, which simultaneously creates equiv-
alent deposits [1,2]. There may of course be constraints on how much money the
banks are allowed to create in this manner, for example by way of some reserve
constraints. But this approach, in the spirit of Moore [3] and Holmes [4], allows
for banks to look for the reserves later after they have extended the credit.

Such endogenously created credit money is the point of ignition of all the
economic activity as it allows firms to hire workers, start the production, pay
wages, dividends and interests, and subsequently have the workers, capitalists
and bankers consume the goods produced.

The idea of such a closed monetary economy has raised two puzzles: how
are profits possible if firms need to repay loans with interests? [5]; and more in
general, is an ever-increasing supply of money the only way to have profits in a
steady-state economy?

Keen [1,2] has proposed a model with a set of differential equations which
shows on the aggregate level that indeed no such increasing supply of money is
necessary.

R. Wyrzykowski et al. (Eds.): PPAM 2013, Part II, LNCS 8385, pp. 761–770, 2014.
DOI: 10.1007/978-3-642-55195-6 72, c© Springer-Verlag Berlin Heidelberg 2014

762 I. Blecic et al.

Based on this approach, we have developed an agent-based model of
endogenous-money economy to study its evolution on disaggregated level of indi-
vidual firms, banks, workers and consumers and to account for possible hetero-
geneities of products, production technologies, workers’ skills and consumption
preferences which are an inevitable feature of any real-world economy.

Agent-based computational economics (ACE) is a growing field of economic
modelling [6], for a review see [7], and several large scale models have been
developed addressing macroeconomic policy issues (see [8] for a review).

The purpose of our model is not so much to support policy design starting
from a initial scenario populated with persons, firms and banks calibrated on
a real-world economy. Rather, what we wanted to explore is if and how an
endogenous-money economy may build up from scratch, as an emergent property
of actions and interactions among heterogeneous agents, once the money is being
injected into a non-monetary α self-production (or barter) economy.

This is how the remainder of the paper is organised. In the following section
we specify the model. Then, in Sect. 3 we present and discuss the results of several
computational experiments under different scenarios. Finally, in the concluding
Sect. 4 we examine some advantages of the agent-based modelling approach and
present plans for future developments.

2 The Model

There are three types of agents in our model: persons, firms and a bank. At the
beginning of a simulation, the world is populated only by a set of persons. A
Person represents an individual who can consume, work for firms and start a
business by creating a new firm. A Firm employs workers, runs the production
and sells the produced goods. At each time step it then pays the wages to workers,
the dividends to the person who owns the firm, and the interests on the load to
the bank. The Bank ’s role in the model is to evaluate the business plans for new
firms proposed by the persons, and to provide loans to the most promising ones.

In what follows we describe the behaviour, the decision-making procedures
and the interactions among the three types of agents.

Production. For simplicity, we assume no physical capital is used in the produc-
tion, so the only production factor is labour. The workforce is differentiated since
each person is initialised with n skills whose values are randomly generated from
a normal distribution. Firms produce differentiated consumption goods using
technologies each represented by a Cobb-Douglas production function. In par-
ticular, given a set of workers each endowed with n skills sw,i (i = 1, . . . , n), the
quantity produced with a specific technology is given by:

Q = k
⎧

i∈{skills}

⎨

⎩
⎜

w∈{workers}
sw,i

⎫

⎬

αi

(1)

where k and α’s are specific parameters of the production technology.

Basic Endogenous-Money Economy: An Agent-Based Approach 763

Consumption. We assume a person’s utility from the consumption of xi quan-
tities of n goods is given by the following constant elasticity of substitution
(CES) utility function:

U (x1, . . . , xn) =

⎨

⎩
⎜

j∈{goods}
ajx

ρ
j

⎫

⎬

1
ρ

(2)

where the share parameters a for different products and the ρ are variable among
persons.

This specification of the consumption utility function is grounded on the
assumption that firms may produce differentiated products, which is an impor-
tant feature of our model.

We assume the consumers are rational utility-maximising agents. Therefore,
given a set of available goods, their prices pi and the available budget B the
person decides to spend on consumption during each time step, the utility-
maximising consumption bundle is determined by:

xi = B

⎭
pi

ai

⎞ 1
ρ−1

⎜

j∈{goods}
a

1
1−ρ

j p
ρ

ρ−1
j

(3)

Invention of New Products and Production Technologies. At each time
step, there is a probability each person invents a new product and the related
production technology. A newly invented product is defined by a randomly gen-
erated value which represents the average consumers’ utility parameter for that
good (i.e. the average value of the share parameter a for that good in the utility
function (2)). In other words, if the product is put into production, this value is
used as the mean of a probability density function through which we randomly
assign individual a for that product to each person. In a similar manner, the
invented technology is defined by the randomly generated parameters k and α’s
of the production function in expression (2). Once the product and its production
technology have been invented, the person applies for a loan from the bank.

Ranking of the Applications for Loan. We assume, unrealistically but for
the sake of simplicity, that there is just one bank in the system, creating credit
money through loans to persons and firms. The bank evaluates the applications
for loan by persons and decides which to finance. This evaluation is based on the
start-up business plan which provides the quantity produced by one adequately
(technology-wise) skilled worker and the product’s average utility parameter.
The bank finances the most promising business plan by providing the loan to
the person who then creates the firm.

764 I. Blecic et al.

Firm’s Production and Pricing Decision-Making. Given the general tur-
bulence in the system (new firms get created or go bankrupt, there is a com-
petition among firms for consumers’ money and for skilled labour, wages and
consumption rates may change, and so on), a price established in the past does
not necessarily clears the market, nor a production plan stays optimal for a long
time.

Therefore, firms gradually adjust their production plans and product pricing
based on past outcomes. To do so, they use an adaptive heuristics based on
the gradient method in which they shift the price and the production plan and
thus try to “learn” their demand function based on the observed past market
responses. We implemented this adaptive heuristics of firms as a two-phase pro-
cedure. First, each firm experiments price adjustments from step to step in order
to keep the inventory stock below a predefined level. Then, once the inventory
has stabilised, the firm attempts to increase its production if the current flows of
profits allows it to hire more workers, and vice versa, it reduces the production
by laying off workers if the profits run below a certain reserve threshold. A small
remark: it is fairly

Labour Market. Given that each production technology is defined in terms of
workers’ skills (see the expression (2) above), the firms express different demand
for workers with different skills. Each firm pays the same wage to all its workers,
so in order to decide which persons to hire and at what wage, the firm uses a
heuristics to select the most productive workers, technology-wise, with respect
to their reservation wages. For already employed persons, the reservation wage
is the wage they are currently working for, while for unemployed we establish a
baseline minimum wage for which the person is willing to accept a job instead
of staying unemployed.

This approach was devised to model the competition for workers among
firms. The competition grows as the number of unemployed drops, which is then
reflected in the upward wage pressures.

3 Computational Experiments

We present and discuss the results of three computational experiments each ran
under a different scenario in relation to the structure of competition among firms
and to the relative “abundance” of workforce. All scenarios were initialised with
200 persons and ran for 500 time steps.

The first scenario is a monopolistic setting with a single firm (i.e. we set the
limit of only one firm financed by the bank during the simulation).

The second scenario is a more competitive setting with five firms, each with its
product and production technology. As we shall see, this setting does not hit the
upper bound of absorbing all the available workforce, due to the interplay of the
demand and the structure of production costs related to production technologies.

Basic Endogenous-Money Economy: An Agent-Based Approach 765

Fig. 1. The evolution of macroeconomic variables of the system under three scenarios:
a. Nominal GDP, b. Unemployment rate, c. Nominal wage, d. Dividends as a share of
GDP

Finally, the third scenario allows unlimited number of firms. In this case,
we’ll see that all the available workforce gets absorbed, which in turn toughens
the competition among firms for the skilled labour.

Figure 1 shows the evolution of several macroeconomic aggregates. As it was
to be expected, the economy in the third scenario, with no limits on the num-
ber of firms, produced the greatest overall output (Fig. 1-a). It is important to
remember that firms in principle may be created and die at any time step of the
simulation. Multiple Monte Carlo runs of the simulation under the third scenario
yielded on average a maximum of around 50 firms operating simultaneously at
some point in time, but on average only about 30 ended up active at the end of
the simulation, while the others were outcompeted and went bankrupt. These
numbers are of course sensitive to the model parameters and the decision-making
heuristics followed by firms, but they in principle show that given the nature of
the production technology and a limited population there is an upper bound of
firms that may operate in a steady-state.

The differences among the three scenarios in the overall output are reflected
by the unemployment rates (Fig. 1-b). In the case of the monopoly, only a small

766 I. Blecic et al.

Table 1. Firms at the end of the simulation

Scenario 1 Scenario 2 Scenario 3

Number of firms 1 5 31
Median number of workers 22 28 9
Min. number of workers 22 5 1
Max. number of workers 22 39 19
Median wage 10 10 33

Fig. 2. Firm’s behaviour in the price-quantity phase space: prices set by the firm and
the quantity of product sold during the simulation (grey dots show the price-quantity
at the step of firm’s creation). The diagram to the left shows the case of the only firm
present in the Scenario 1, to the right the case of one of the five firms in the Scenario 2.

portion – around 10 % – of the available workforce was absorbed by the firm,
while in the second scenario 2/3 was employed at the end of the simulation.
The economy was able to employ all its production potential only in the third
scenario, running the unemployment down close to zero.

What is relevant here to see in combination with the unemployment rates
is the wages dynamics (Fig. 1-c). In the first and the second scenario the wages
paid to workers remained at the level of the unemployment reservation wage. In
the case of the second scenario, this of course is partly due to the fact that, given
the internal randomness, in this specific simulation run the five operating firms
happened to use sufficiently different production technologies (putting different
“weights” on worker skills) in relation to the available pool of skills so as not to
bring about competition among firms for “rare” skills. Had it been otherwise,
there would have been some upward wage pressure. In any case, nothing of the
magnitude observed in the third scenario where the final average wage was more
than threefold the unemployment reservation wage.

We don’t model rigidities and transaction costs for hiring, laying off and
job switching. So, during the simulation under the third scenario we frequently

Basic Endogenous-Money Economy: An Agent-Based Approach 767

Fig. 3. Prices set and quantity of products sold by four firms in the Scenario 3 during
the simulation (grey dots show the price-quantity at the step of firm’s creation).

observed highly turbulent intervals of time where workers change jobs from step
to step, often back-and-forth among firms trying to outbid the competitors by
offering higher wages.

Possibly the most interesting macroeconomic result is told by the Fig. 1-d.
It shows how the income is distributed among the firm owners and the workers
(and the banker). Here we represent the dividends paid to firm owners as a share
of all the incomes of the economy (which is the sum of dividends, wages paid
to workers, and interest payments to the banker). We see that in the case of
monopoly the firm owner manages to capture the greatest share of the overall
income, followed by the second and then the third scenario. Again, the numbers
themselves are not as important as the general story they tell.

Let us turn to some micro analysis. In Table 1. we summarise few descriptive
statistics of the firm population at the end of the simulation ran under the three
scenarios.

768 I. Blecic et al.

Fig. 4. The number of workers and wages through time steps for four firms in the
Scenario 3.

An interesting demonstration of a firm’s behaviour is the phase diagram of
the prices it sets and the corresponding quantities of the product it manages
to sell at those prices. In Fig. 2 we present such phase diagrams for the firm in
the Scenario 1 and for one of the five firms in the Scenario 2. They both start
from low production levels and settle for high prices. Then, as they expand the
production the trajectory gravitates towards lower price levels.

Richer interplays among firms occur when they enter into a stronger mutual
competition, as in the Scenario 3. In Fig. 3 we show the phase diagrams for
four different firms. Here the trajectories are different, and may depend on the
perturbations due to the entrance or bankruptcy of firms and in general their
mutual competition.

In Fig. 4 we show the evolution of the wages and the number of workers hired
by the same four firms under Scenario 3.

Basic Endogenous-Money Economy: An Agent-Based Approach 769

The firm represented in the Fig. 4-a is the first created in the simulation.
During an initial phase, it hires the workers at the unemployment reservation
wage of 10, and then increases its workforce up to a maximum of 25 workers.
Then, once the wages raise beyond the value of 20, it start laying off workers to
stabilise at 15 workers. This variations may be due to two distinct effects. One
is the rise of wages (due to the competition for workers from other firms) which
increases the production costs. The other effect is the product competition from
other firms which may negatively influence the demand for the firm’s products.

No such magnitude of change in workforce occurred in the firms represented
in Fig. 4-b and 4-d. An interesting thing though happened to the firm in Fig. 4-c.
As it can be observed in the chart, in two distinct time steps the firm lost all
its workforce and was consequently forced to bring its production to a halt. It
turns out this was due to the entrance in the market of two other firms with
similar production technologies (i.e. highly valuing workers with similar skills)
engaging in a fierce wage competition. In those two time steps these two firms
actually managed to “capture” all our original firm’s workers. Indeed, that there
is a differentiated demand for workers skills is proven by the fact that the firm
in Fig. 4-c stabilises at a notably higher level of nominal wage. Basically, we are
observing a form of labour market segmentation.

4 Conclusions

The results we obtained on the macroeconomic level confirm those of Keen’s
model [1,2], namely that a constant flow of profits are in principle possible in a
steady-state economy without an ever-increasing supply of money. But our agent-
based approach to modelling endogenous-money economy have, it seems to us,
a few advantages over the aggregate modelling with differential equations and
systems dynamics, as it allows several features to arise as emergent properties
of the interaction among agents. One notable example is the distribution of
the income (and thus of the production surplus) between workers and the firm
owners. While this is something that needs to be postulated in the modelling on
the aggregate level, it appears instead as an emergent property in our model.

An important distinctive feature of our model is the possibility of products
differentiation among firms. This, for instance, is not contemplated in one of
the most complete ACE models [9] where no differences in the quality of goods
is assumed. Besides the fact this is an notable characteristics of any real econ-
omy, some properties exhibited by our model relevant for the economic analysis,
emerge precisely because of the assumption of product differentiation among
firms.

The model we presented is still quite rudimentary and there are plenty of
things we plan to develop in the future. One limiting assumption we make in our
model is that the production takes place without physical capital. This greatly
simplified our task, for we didn’t need to model the production of capital and
intermediate goods, nor the procurement of natural resources. This though comes
at a cost, because we weren’t then able to simulate some features which, we hold,

770 I. Blecic et al.

are probably relevant in this context, such as the impact of fixed costs and the
related economies of scale.

The financial sector is another area which needs to be wholly developed.
Instead of a single bank, we plan to implement multiple banks competing among
each other. Finally, in order to make it potentially useful for policy analysis,
we’d need to model the government sector and to allow for a more realistic
representation of different institutional settings.

References

1. Keen, S.: The dynamics of the monetary circuit. In: Rossi, S., Ponsot, J.F. (eds.)
The Political Economy of Monetary Circuits: Tradition and Change, pp. 161–187.
Palgrave Macmillian, New York (2009)

2. Keen, S.: Solving the paradox of monetary profits. Economics: The Open-Access,
Open Assessment E-Journal, 4, 2010-2 (2010)

3. Moore, B.J.: The endogenous money supply. J. Post Keynesian Econ. 10, 372–385
(1988)

4. Holmes, A.R.: Operational contraints on the stabilization of money supply growth.
In: Morris, F. (ed.) Controlling Monetary Aggregates, pp. 65–77. The Federal
Reserve Bank of Boston, Boston (1969)

5. Rochon, L.P.: The existence of monetary profits within the monetary circuit. In:
Fontana, G., Realfonzo, R. (eds.) Monetary Theory of Production: Tradition and
Perspectives. Palgrave Macmillian, New York (2005)

6. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature 460,
685–686 (2009)

7. Tesfatsion, L., Judd, K. (eds.): Agent-Based Computational Economics. Handbook
of Computational Economics, vol. 2. North Holland, The Netherlands (2006)

8. Fagiolo, G., Roventini, A.: Macroeconomic policy in DSGE and agent-based models.
Working paper series (7), Department of Economics, University of Verona (2012)

9. Cincotti, S., Raberto, M., Teglio, A.: The EURACE macroeconomic model and sim-
ulator. In: Aoki, M., Binmore, K., Deakin, S., Gintis, H. (eds.) Complexity and Insti-
tutions: Markets, Norms and Corporations. Palgrave Maximillian, London (2012)

Author Index

AbouEisha, Hassan II-531
Affronte, Marco II-428
Albach, Carl H. II-237
Aliaga, José I. I-490, I-772
Alperovich, Alexander I-36
Andonov, Rumen II-278
Angel, Sebastian G. II-237
Antão, Diogo I-747
Antkowiak, Michał II-418, II-438
Anzt, Hartwig I-772
Araujo, Filipe I-96
Arbenz, Peter II-291
Artés, Tomàs II-151
Ashby, Thomas J. II-227
Atkinson, David I-469
Audenaert, Pieter II-268
Augonnet, Cédric I-593

Baboulin, Marc I-124
Bader, David A. I-783
Bała, Piotr I-237
Balis, Bartosz I-293
Barasiński, Artur II-448
Battoo, Gagan II-130
Beck, Philip-Daniel II-582
Bečka, Martin I-57
Běhálek, Marek II-95
Bellini, Valerio II-428
Benitez, Domingo II-163
Berljafa, Mario II-395
Bethune, Iain I-106
Bezbradica, Marija II-699
Blaheta, Radim I-114
Blecic, Ivan II-761
Blocho, Miroslaw I-191
Böhm, Stanislav II-95
Bolikowski, Łukasz II-510
Boltuc, Agnieszka II-322
Borcz, Marcelina I-237
Borkowski, Janusz I-302
Borysiewicz, Mieczyslaw II-407
Bouvry, Pascal I-361
Bo _zejko, Wojciech II-207
Breitbart, Jens II-75

Brzostowski, Bartosz II-428, II-448
Bubak, Marian I-251, I-272, I-293
Bugajev, Andrej II-301
Bukáček, Marek II-669
Burak, Dariusz II-364
Bylina, Beata I-663
Bylina, Jarosław I-663

Cao, Zhen I-523
Carpentieri, Bruno II-520
Carson, Erin I-15
Castillo, Maribel I-772
C�atalyürek, Ümit V. I-559, II-174
Cecchini, Arnaldo II-761
Cencerrado, Andrés II-151
Chapuis, Guillaume II-278
Chaves, Ricardo I-693
Chiarini, Alessandro I-447
Čiegis, Raimondas II-301, II-322
Ciznicki, Milosz I-155
Codreanu, Valeriu I-447
Coelho, Fabien I-793
Colaço, João I-693
Corbin, Tyler I-327
Cortés, Ana II-151
Costanza, Pascal II-227
Crane, Martin II-699
Cygert, Sebastian I-500
Czarnul, Paweł I-261
Czech, Zbigniew J. I-191
Czoków, Maja I-412
Czy _zewski, Andrzej I-237

Dallmann, Alexander II-582
Davidović, Davor I-490
De Meuter, Wolfgang II-227
De Vogeleer, Karel I-793
De Witte, Dieter II-268
Deelman, Ewa I-251
Demeester, Piet II-268
Demmel, James I-15
Dhoedt, Bart II-268
Di Napoli, Edoardo II-395
Dietrich, Felix II-659
Dimitrakopoulou, Katerina A. I-214

Djidjev, Hristo II-278
Dong, Feng I-447
Dongarra, Jack I-571
Dorronsoro, Bernabé I-361
Druinsky, Alex I-36
Dryja, Maksymilian II-461
Duda, Jerzy II-591
Dukhan, Marat I-86
Dutka, Łukasz I-237, I-724
Dymova, Ludmila II-634
Dytrych, Tomáš I-178
Dzwinel, Witold II-731

Eberl, Hermann J. I-134, II-311
Emeras, Joseph II-26
Engblom, Stefan I-480
Escobar, José M. II-163
Esposito, Filippo II-438

Fernández, Juan C. I-772
Figiela, Kamil I-251
Flasiński, Mariusz I-338
Florek, Wojciech II-438
Fohry, Claudia II-75
Fostier, Jan II-268
Franz, Wayne II-140
Fras, Mariusz I-283
Fujii, Akihiro I-622
Fukudome, Daiki I-67
Funika, Wlodzimierz I-371

Gabryel, Marcin I-423, I-433
Gates, Mark I-571
Gatteschi, Dante II-418, II-438
Gepner, Pawel I-155, I-582
Gepner, Stanislaw II-541
Goesele, Michael I-652
Goetz, Michael I-106
Gokieli, Maria II-510
Goll, Christian II-258
Götze, Jürgen I-534
Goudin, David I-593
Grabiec, Tomasz I-293
Gratton, Serge I-124
Grekioti, Anastasia II-3
Grotendorst, Johannes I-26
Grycuk, Rafał I-433
Gudenberg, Jürgen Wolff von II-582
Gurgul, Piotr II-531
Gustavson, Fred G. I-1, I-683, II-105
Gutheil, Inge I-26

Haglauer, Monika II-438
Haidar, Azzam I-571
Hargreaves, Felix Palludan II-118
Hasegawa, Hidehiko I-622, I-643
Hava, Michael I-317
Heintz, Alexei II-499
Herrero, José R. I-683
Herzeel, Charlotte II-227
Hetmaniok, Edyta I-402
Hill, Christopher M. II-237
Hishinuma, Toshiaki I-622
Hladík, Milan II-573, II-613
Horáček, Jaroslav II-573, II-613
Hori, Atsushi I-714
Hrabák, Pavel II-669
Hunold, Sascha II-13
Hupp, Daniel II-291

Ilic, Aleksandar I-693, I-747
Imamura, Toshiyuki I-673
Ishikawa, Yutaka I-714
Ishiwata, Emiko I-643

Jakl, Ondřej I-114
Jankowska, Malgorzata A. II-644
Jia, Yulu I-571
Jouvelot, Pierre I-793
Jurek, Janusz I-338

Kabir, Khairul I-571
Kågström, Bo I-76
Kancleris, Žilvinas II-301
Karbowski, Andrzej II-86
Karlsson, Lars I-76
Karpiński, Michał II-207
Karwacki, Marek I-663
Katou, Ken’ichi I-196
Kaya, Kamer I-559, II-174
Khan, Samee U. I-361
Kikkawa, Satoko I-643
Kikoła, Daniel I-500
Kino, Issei II-196
Kitowski, Jacek I-237, I-724, II-741
Kjelgaard Mikkelsen, Carl Christian I-76
Klawe, Filip Z. II-489
Kłos, Jarosław S. II-377
Kluszczyński, Rafał I-237
Knight, Nicholas I-15
Kopański, Damian I-302
Koperek, Pawel I-371
Kopka, Piotr II-407

772 Author Index

Kopta, Piotr I-155
Korytkowski, Marcin I-423, I-433
Köster, Gerta II-659
Kotus, Józef I-237
Kowalczyk, Piotr II-499
Kowalik, Grzegorz Tomasz I-469
Kozikowski, Grzegorz II-600
Kozłowski, Piotr II-418, II-438
Krbálek, Milan II-669
Król, Dariusz I-724
Krukowski, Stanislaw II-551
Kryza, Bartosz I-724
Kryza, Tomir II-731
Krzyzanowski, Piotr II-479
Kubica, Bartłomiej Jacek II-600, II-623
Kuchta, Jarosław I-261
Kuczynski, Lukasz I-613
Kuijper, Arjan I-652
Kulczewski, Michal I-155
Kurkowski, Mirosław I-224
Kurowski, Krzysztof I-155
Kustra, Piotr I-237
Kuzelewski, Andrzej II-322
Kuźnik, Krzysztof II-531
Kwiatkowski, Jan I-283, II-215
Kwolek, Bogdan I-458

Laccetti, Giuliano I-704, I-734
Lacroix, Rémi I-124
Lagaris, Issac E. II-343
Lančinskas, Algirdas II-354
Langr, Daniel I-178
Lapegna, Marco I-704
Laskowski, Eryk I-302
Latu, Guillaume II-185
Laub, Alan J. I-124
Lavenier, Dominique II-278
Le Boudic - Jamin, Mathilde II-278
León, Germán I-772
Leppänen, Ville I-513
Leutgeb, Alexander I-317
Liao, Jia II-520
Liljeberg, Pasi I-513
Liu, Baoquan I-447
Liu, Jing I-480
Liu, Yongchao II-247
Luszczek, Piotr I-571

Machida, Masahiko I-673
Maciejewski, Anthony A. I-761
Maciejewski, Michał II-751

Mahdian, Babak I-447
Majewski, Jersy II-541
Malawski, Maciej I-251, I-272
Manghi, Franca II-428
Mansour, Ahmad I-534
Mantovani, Filippo II-385
Marcinkowski, Leszek II-469, II-551
Margalef, Tomàs II-151
Marowka, Ami II-65
Maśko, Łukasz I-302, I-348
Matoga, Adrian I-693
Matuszek, Mariusz I-261
Matysiak, Ryszard II-448
Meca, Ondřej II-95
Meizner, Jan I-272
Mele, Valeria I-704
Memmi, Gerard I-793
Merkle, Daniel II-118
Meyer, Norbert I-237
Miękisz, Jacek I-412
Mijares Chan, Jose Juan II-130
Milenin, Andriy I-237
Millot, Daniel II-49
Missirlis, Nikolaos M. I-214
Miziołek, Jan Krzysztof I-327
Montella, Raffaele I-734
Montenegro, Rafael II-163
Morancho, Enric I-683
Moshkov, Mikhail II-531
Mosurska, Zofia I-237
Moszyński, Krzysztof II-561
Mróz, Hubert II-679
Mukunoki, Daichi I-632
Müldner, Tomasz I-327
Münchhalfen, Jan Felix I-26
Musiał Grzegorz II-418, II-438
Muthurangu, Vivek I-469

Nabrzyski, Jarek I-251
Nagel, Kai II-751
Nalepa, Jakub I-191
Namiki, Mitaro I-714
Neves, Samuel I-96
Niewiadomski, Artur I-392
Nikolow, Darin I-724
Nowak, Tomasz I-423
Nowakowski, Piotr I-272

Obrist, Dominik II-291
Okša, Gabriel I-57
Olas, Tomasz I-166

Author Index 773

Olszak, Artur II-86
Oxley, Mark A. I-761

Pacut, Maciej II-207
Pająk, Robert I-237
Palmieri, Carlo I-734
Papageorgiou, Dimitrios G. II-343
Parrot, Christian II-49
Pasricha, Sudeep I-761
Paszyńska, Anna II-531
Paszyńska, Maciek II-531
Pavlidis, Pavlos II-258
Pelliccia, Valentina I-734
Penczek, Wojciech I-392
Pérez, Joaquín I-772
Peszek, Tomasz I-338
Piech, Henryk I-224
Pinel, Frédéric I-361
Pinheiro, Vinicius II-26
Pissis, Solon P. II-258
Pivanti, Marcello II-385
Płaczek, Bartłomiej II-721
Plosila, Juha I-513
Pop, Mihai II-237
Porter-Sobieraj, Joanna I-500
Pratas, Frederico I-747
Pujols, Agnès I-593

Quintana-Ortí, Enrique S. I-490, I-772

Radziunas Mindaugas II-322
Rahman, Kazi I-134
Rahman, Talal II-469
Rauch, Łukasz I-237
Rodríguez, Eduardo II-163
Roerdink, Jos B.T.M. I-447
Rojek, Krzysztof I-145, I-582
Rokicki, Jacek II-541
Roma, Nuno I-693
Roman, Jean II-185
Romano, Diego I-704
Romanowski, Jakub I-433
Rozar, Fabien II-185
Ruskin, Heather J. II-699
Russek, Paweł I-545
Rymut, Boguslaw I-458
Rzadca, Krzysztof II-26, II-38

Saito, Tsubasa I-643
Sakowski, Konrad II-551
Saravakos, Petros II-689

Sato, Mikiko I-714
Saule, Erik I-559
Scherer, Rafał I-423, I-433
Schifano, Sebastiano Fabio II-385
Schmidt, Bertil II-247
Seitz, Michael II-659
Sesques, Muriel I-593
Sevastjanov, Pavel II-634
Shakhlevich, Natalia V. II-3
Siebert, Christian I-202
Siedlecka-Lamch, Olga I-224
Siegel, Howard Jay I-761
Sikorski, Jan I-500
Šimeček, Ivan I-178
Sirakoulis, Georgios Ch. II-689
Skalna, Iwona II-591
Skaruz, Jaroslaw I-392
Skowron, Piotr II-38
Šlekas, Gediminas II-301
Słodkowski, Marcin I-500
Słota, Damian I-402
Słota, Renata I-724
Smyk, Adam I-302, I-381
Sobczak, Paweł II-448
Sommer, Jens U. II-377
Sosonkina, Masha II-520
Sousa, Leonel I-747
Stamatakis, Alexandros II-258
Starý, Jiří I-114
Steeden, Jennifer Anne I-469
Sterzel, Mariusz I-237
Stokłosa, Dominik I-237
Stpiczynski, Przemysław I-603
Sudarsan, Rangarajan II-311
Šukys, Jonas I-47
Šurkovský, Martin II-95
Szałkowski, Dominik I-603
Szepieniec, Tomasz I-237
Szustak, Lukasz I-145, I-582
Szymoniak, Sabina I-224

Takahashi, Daisuke I-632
Takami, Toshiya I-67
Tanaka, Teruo I-622
Taniça, Luís I-747
Taylor, Andrew I-469
Tenhunen, Hannu I-513
Thuerck, Daniel I-652
Thulasiram, Ruppa K. II-130, II-140
Thulasiraman, Parimala II-130, II-140

774 Author Index

Toledo, Sivan I-36
Tomás, Pedro I-693, I-747
Tomecka, Daria M. II-428
Tomov, Stanimire I-571
Topa, Paweł II-679, II-711
Tripiccione, Raffaele II-385
Troiani, Filippo II-428
Trunfio, Giuseppe A. II-761
Trystram, Denis II-26
Tsujita, Yuichi I-714
Tudruj, Marek I-302, I-348, I-381
Tvrdík, Pavel I-178

Uçar, Bora II-174

Van Bel, Michiel II-268
Vandepoele, Klaas II-268
Verbrugge, Clark I-523
Voglis, Costas II-343
von Sivers, Isabella II-659
Vuduc, Richard I-86

Wada, Koichi II-196
Walker, David W. II-105
Wąs, Jarosław II-679
Wawrzynczak, Anna II-407

Welsch, Torsten I-317
Wiatr, Kazimierz I-237, I-545
Widmer, Sven I-652
Williams, David I-447
Wodecki, Mieczysław II-207
Wojciechowski, Michał II-428
Woźniak, Dariusz II-448
Wozniak, Marcin I-613
Wrzeszcz, Michał I-741, II-724
Wyrzykowski, Roman I-145, I-613

Xu, Thomas Canhao I-513

Yamada, Susumu I-673
Yang, Po I-447
Yasar, Burhan I-447
Yonezawa, Naoki II-196
Yoshinaga, Kazumi I-714

Zakrzewska, Anita I-783
Zenesini, Luca II-385
Zhao, Xia I-447
Zielonka, Adam I-402
Zieniuk, Eugeniusz II-322
Žilinskas, Julius II-354

Author Index 775

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Workshop on Scheduling for ParallelComputing (SPC 2013
	Scheduling Bag-of-Tasks Applications to Optimize Computation Time and Cost
	1 Introduction
	2 Heuristics
	3 Computational Experiments
	4 Conclusions
	References

	Scheduling Moldable Tasks with Precedence Constraints and Arbitrary Speedup Functions on Multiprocessors
	1 Introduction
	2 Definitions and Notation
	3 Related Work
	4 Scheduling Algorithm
	4.1 Pseudocode
	4.2 Asymptotic Run-Time Analysis

	5 Evaluation
	5.1 DAGs and Platforms
	5.2 Simulation Results

	6 Discussion and Conclusions
	References

	OStrich: Fair Scheduling for Multiple Submissions
	1 Introduction
	2 State-of-the-Art
	3 Model and Problem Definition
	4 Algorithm
	5 Theoretical Analysis
	5.1 Worst-Case Bound

	6 Simulations
	7 Concluding Remarks
	References

	Fair Share Is Not Enough: Measuring Fairness in Scheduling with Cooperative Game Theory
	1 Introduction
	2 The Scheduling Model
	3 Fairness by the Shapley Value
	3.1 Computing the Shapley Value
	3.2 Strategy-Resilient Utility Functions

	4 Algorithms
	5 Simulation Experiments
	5.1 Settings
	5.2 Results

	6 Conclusions
	References

	Setting up Clusters of Computing Units to Process Several Data Streams Efficiently
	1 Introduction and Related Works
	2 Presentation of the AS4DR Method
	3 Resource Selection for AS4DR in a Multiple Data Streams Context
	3.1 Method
	3.2 Experimental Assessment

	4 Conclusion
	References

	The 5th Workshop on Language-Based Parallel Programming Models (WLPP 2013)
	Towards Standardization of Measuring the Usability of Parallel Languages
	1 Introduction
	2 The Building Blocks of Empirical Experiments
	2.1 The Algorithms
	2.2 The Languages
	2.3 The Hardware Platforms
	2.4 The Parallel Debuggers
	2.5 The Human-Subjects
	2.6 The Metrics
	2.7 The Experiment Duration
	2.8 Usability vs. Scalability
	2.9 Human vs. Machine

	3 Related Work
	4 Conclusions
	References

	Experiences with Implementing Task Pools in Chapel and X10
	1 Introduction
	2 Background and Benchmark
	2.1 Chapel
	2.2 X10
	2.3 Task Pools
	2.4 UTS

	3 Language Assessment
	3.1 Overview of Implementations
	3.2 Object-Orientation and Parallelism
	3.3 References, Values, and Copying
	3.4 Worker Management and Initialization
	3.5 Reduction
	3.6 Diverse Language Issues

	4 Performance
	5 Related Work
	6 Conclusions
	References

	Parampl: A Simple Approach for Parallel Execution of AMPL Programs
	1 Introduction
	2 Related Work
	3 Design of Parampl
	4 Evaluation and Experiments
	5 Conclusion
	References

	Prototyping Framework for Parallel Numerical Computations
	1 Introduction
	2 Related Work
	3 Tool Kaira
	4 Libraries
	4.1 Octave Libraries

	5 Case Study
	5.1 Experiments and Results

	6 Conclusion
	References

	Algorithms for In-Place Matrix Transposition
	1 Introduction
	2 Notation and Terminology
	3 Matrix Transposition Based on Cycle Following
	4 Matrix Transposition Based on Swaps
	4.1 The Partition Phase
	4.2 The Transpose Phase
	4.3 The Exchange Operation
	4.4 The Shuffle and Unshuffle Operations

	5 Variations and Alternatives to the TT Algorithm
	5.1 A Divide-and-Conquer Version of the Shuffle and Unshuffle Operations
	5.2 The Use of Constant Additional Memory
	5.3 Exploiting Parallelism
	5.4 Novel Algorithms for Matrix Transposition

	6 Conclusions
	References

	FooPar: A Functional Object Oriented Parallel Framework in Scala
	1 Introduction
	2 Definitions, Notations, and Isoefficiency
	3 The FooPar Framework
	3.1 Technologies
	3.2 SPMD Operations on Distributed Sequences
	3.3 Data Structures

	4 Matrix-Matrix Multiplication in FooPar
	4.1 Serial Matrix-Matrix Multiplication
	4.2 Generic Algorithm for Parallel Matrix-Matrix Multiplication
	4.3 Grid Abstraction in FooPar for Parallel Matrix-Matrix Multiplication

	5 Test Results
	6 Conclusions
	References

	Effects of Segmented Finite Difference Time Domain on GPU
	1 Introduction
	2 The Finite Difference Time Domain Method
	3 Segmented FDTD and Its Implementation on GPU
	4 Results
	5 Conclusion
	References

	Optimization of an OpenCL-Based Multi-swarm PSO Algorithm on an APU
	1 Introduction
	2 Architecture and Runtime System
	3 Algorithm, Implementation and Optimization
	3.1 MPSO Algorithm
	3.2 Data Layout
	3.3 Random Number Generation
	3.4 Particle Initialization
	3.5 Update Fitness
	3.6 Update Bests
	3.7 Update Position/Velocity
	3.8 Find Best/Worst Particles
	3.9 Swap Particles

	4 Results
	5 Conclusion
	References

	Core Allocation Policies on Multicore Platforms to Accelerate Forest Fire Spread Predictions
	1 Introduction
	2 Hybrid MPI-OpenMP Master/Worker Prediction Scheme
	2.1 Evaluating the Hybrid Scheme

	3 FARSITE Characterization
	4 Experimental Study
	5 Conclusions and Future Work
	References

	The 4th Workshop on PerformanceEvaluation of Parallel Applicationson Large-Scale Systems
	The Effect of Parallelization on a Tetrahedral Mesh Optimization Method
	1 Introduction
	2 Our Approach to Tetrahedral Mesh Optimization
	3 Parallel Algorithm for Mesh Untangling and Smoothing
	4 Experimental Methodology
	5 Performance Evaluation
	5.1 Performance Scalability
	5.2 Load Balancing
	5.3 Parallelism Bottlenecks
	5.4 Influence of Graph Coloring Algorithms on Parallel Performance

	6 Conclusions and Future Work
	References

	Analysis of Partitioning Models and Metrics in Parallel Sparse Matrix-Vector Multiplication
	1 Introduction
	2 Parallel SpMxV Operation and Software
	2.1 Libraries
	2.2 Investigated Partitioning Metrics and Methods

	3 Experimental Investigations
	3.1 Regression Analysis
	3.2 Summary of Further Results

	4 Conclusion
	References

	Achieving Memory Scalability in the GYSELA Code to Fit Exascale Constraints
	1 Introduction
	2 Overview of GYSELA
	3 Memory Bottleneck
	3.1 Analysis
	3.2 Approach

	4 Customised Modeling and Tracing Memory Tools
	4.1 Trace File
	4.2 Visualization
	4.3 Prediction

	5 Results
	5.1 Memory Footprint Reduction
	5.2 Prediction over Large Meshes

	6 Conclusion
	References

	Probabilistic Analysis of Barrier Eliminating Method Applied to Load-Imbalanced Parallel Application
	1 Introduction
	2 A Probabilistic Analysis of a Barrier Eliminating Algorithm
	2.1 The Behavioral Model of Parallel Program
	2.2 The Definition of Dependency Matrix
	2.3 Probability Distribution of the Execution Time

	3 Evaluation
	3.1 Results
	3.2 Discussion

	4 Related Work
	5 Conclusion
	References

	Multi-GPU Parallel Memetic Algorithm for Capacitated Vehicle Routing Problem
	1 Introduction
	2 Capacitated Vehicle Routing Problem
	3 The GPU Algorithm
	3.1 Algorithm Analysis

	4 Computational Experiments
	5 Conclusions
	References

	Parallel Applications Performance Evaluation Using the Concept of Granularity
	1 Introduction
	2 Performance Metrics
	3 Using Granularity for Performance Analysis
	4 Case Studies
	4.1 Experimental Results

	5 Conclusions and Future Work
	References

	Workshop on Parallel ComputationalBiology (PBC 2013)
	Resolving Load Balancing Issues in BWA on NUMA Multicore Architectures
	1 Introduction
	2 BWA Implementation
	2.1 Burrows-Wheeler Alignment Algorithm
	2.2 Measuring Load Imbalance

	3 Removing Load Imbalance with Cilk
	3.1 Cilk-Based Parallelisation
	3.2 Improved Scaling Results

	4 Other Issues
	4.1 Memory Latency and Hyperthreading
	4.2 Parallel Versus Sequential Section

	5 Related Work
	6 Conclusions
	References

	K-mulus: Strategies for BLAST in the Cloud
	1 Introduction
	2 Methods
	2.1 MapReduce
	2.2 Parallelization Strategies
	2.3 K-mer Indexing

	3 Results
	3.1 Comparison of Parallelization Approaches on a Modest Size Cluster
	3.2 Analysis of Database K-Mer Index

	4 Discussion
	References

	Faster GPU-Accelerated Smith-Waterman Algorithm with Alignment Backtracking for Short DNA Sequences
	1 Introduction
	2 Methods
	2.1 The Smith-Waterman Algorithm
	2.2 GPU Architecture
	2.3 Parallelization Using CUDA

	3 Performance Evaluation
	4 Conclusions
	References

	Accelerating String Matching on MIC Architecture for Motif Extraction
	1 Introduction
	2 Definitions and Notation
	3 Algorithms
	4 Implementation
	4.1 MIC Implementation

	5 Experimental Results
	References

	A Parallel, Distributed-Memory Framework for Comparative Motif Discovery
	1 Introduction
	2 Comparative Motif Discovery Framework
	3 Distributed-Memory, Parallel Implementation
	4 Results and Current Limitations
	5 Conclusion and Future Research directions
	References

	Parallel Seed-Based Approach to Protein Structure Similarity Detection
	1 Introduction
	1.1 Alignment Graphs
	1.2 Relation to Protein Structure Comparison
	1.3 Measures for Protein Alignments

	2 Methods
	2.1 Our Approach
	2.2 Overview of the Algorithm
	2.3 Seed Enumeration
	2.4 Seed Extension
	2.5 Extension Filtering
	2.6 Guarantees on Resulting Alignments' RMSD Scores
	2.7 Result Ranking

	3 Parallelism
	3.1 Overview of the Implemented Parallelism
	3.2 Coarse-Grained Parallelism
	3.3 Fine-Grained Parallelism

	4 Results and Perspectives
	References

	Minisymposium on Applicationsof Parallel Computation in Industryand Engineering
	A Parallel Solver for the Time-Periodic Navier--Stokes Equations
	1 Introduction
	2 Statement of the Problem
	3 Discretization
	4 Numerical Solution Method
	5 Parallelization
	6 Experiments
	7 Conclusions
	References

	Parallel Numerical Algorithms for Simulation of Rectangular Waveguides by Using GPU
	1 Introduction
	2 CUDA
	3 The Template of Numerical Algorithms
	4 Theoretical Model for the Performance Evaluation
	References

	OpenACC Parallelisation for Diffusion Problems, Applied to Temperature Distribution on a Honeycomb Around the Bee Brood: A Worked Example Using BiCGSTAB
	1 Introduction
	2 Mathematical Model
	2.1 General Setting
	2.2 OpenACC Parallelization of the Linear Solver

	3 Example: Temperature on a Honey Bee Comb
	3.1 Problem Description
	3.2 Results

	4 Conclusion
	A OpenACC Fortran Code-stubs
	References

	Application of CUDA for Acceleration of Calculations in Boundary Value Problems Solving Using PIES
	1 Introduction
	2 PIES for 3D Navier-Lamé Equations
	3 General-Purpose GPU - CUDA Technology
	4 Testing Example
	4.1 Comparison of Accuracy of the Results
	4.2 Comparison of Applications Performance

	5 Conclusions
	References

	Modeling and Simulations of Beam Stabilization in Edge-Emitting Broad Area Semiconductor Devices
	1 Introduction
	2 Mathematical Model
	3 Numerical Scheme
	3.1 Splitting Scheme
	3.2 Parallelization

	4 Simulations of BAS Devices
	4.1 Stabilization of a BAS Laser by a Dual Off-Axis Optical Injection
	4.2 BAS Amplifiers with Periodically Modulated Electrical Contacts

	References

	Concurrent Nomadic and Bundle Search: A Class of Parallel Algorithms for Local Optimization
	1 Introduction
	2 Algorithmic Presentation
	2.1 Concurrent Nomadic Search
	2.2 Bundle Search Algorithm
	2.3 Nested Nomadic and Bundle Search

	3 Numerical Experiments
	4 Conclusions
	References

	Parallel Multi-objective Memetic Algorithm for Competitive Facility Location
	1 Introduction
	2 Multi-objective Optimization
	3 Memetic Algorithm Based on NSGA-II
	3.1 Non-dominated Sorting Genetic Algorithm
	3.2 Memetic Algorithm

	4 Parallel Memetic Algorithm
	5 Numerical Experiments
	6 Conclusions
	References

	Parallelization of Encryption Algorithm Based on Chaos System and Neural Networks
	1 Introduction
	2 Description of the LC Encryption Algorithm
	3 Parallelization Process of the LC Encryption Algorithm
	4 Experimental Results
	5 Conclusions
	References

	Minisymposium on HPC Applicationsin Physical Sciences
	Simulations of the Adsorption Behavior of Dendrimers
	1 Introduction
	2 Model and Simulation Details
	3 Results
	3.1 Adsorption Transition
	3.2 Shape and Size of Dendrimers

	4 Summary and Conclusions
	References

	An Optimized Lattice Boltzmann Code for BlueGene/Q
	1 Introduction
	2 The Lattice Boltzmann Methods
	3 The Blue Gene/Q System
	4 Implementation of the D2Q37 Model
	5 Performance Analysis
	6 Conclusions
	References

	A Parallel and Scalable Iterative Solver for Sequences of Dense Eigenproblems Arising in FLAPW
	1 Introduction
	2 FLAPW Simulations on Large Parallel Architectures
	3 The Parallel Chebyshev Subspace Iteration
	4 Numerical Results and Conclusions
	References

	Sequential Monte Carlo in Bayesian Assessment of Contaminant Source Localization Based on the Sensors Concentration Measurements
	1 Introduction
	2 Problem Setup
	2.1 Synthetic Data
	2.2 Forward Dispersion Model

	3 Theoretical Backgrounds
	3.1 Bayesian Inference
	3.2 Sequential Monte Carlo

	4 Results
	5 Conclusions
	References

	Effective Parallelization of Quantum Simulations: Nanomagnetic Molecular Rings
	1 Introduction
	2 Physical Setup
	3 Quantum Transfer Matrix Technique and Parallel Processing
	4 Exact Diagonalization Technique and Parallel Processing
	5 Quantum Transfer Matrix Results
	6 Exact Diagonalization Results
	7 Conclusions
	References

	DFT Study of the Cr8 Molecular Magnet Within Chain-Model Approximations
	1 Introduction
	2 Chain Models and Computational Details
	3 Results and Discussion
	3.1 ``linear'' Chain Model
	3.2 ``zigzag'' and ``snake'' Chain Models

	4 Summary and Outlook
	References

	Non-perturbative Methods in Phenomenological Simulations of Ring-Shape Molecular Nanomagnets
	1 Introduction
	2 Spin Models and Thermodynamic Quantities
	3 Numerical Methods
	4 Results
	5 Conclusions
	References

	Non-uniform Quantum Spin Chains: Simulations of Static and Dynamic Properties
	1 Introduction
	2 The Thermodynamic Properties
	2.1 The Extrapolation Method
	2.2 The DMRG Method

	3 Time Evolution
	4 Simulations Results
	4.1 Finite-Temperature Static Properties
	4.2 Zero-Temperature Dynamic Properties

	5 Conclusions
	References

	Minisymposium on AppliedHigh Performance NumericalAlgorithms in PDEs
	A Domain Decomposition Method for Discretization of Multiscale Elliptic Problems by Discontinuous Galerkin Method
	1 Introduction
	2 Differential and Discrete DG Problems
	3 ASM with a Multiscale Coarse Space
	3.1 Decomposition of Xh()
	3.2 Inexact Solver
	3.3 The Operator Equation

	4 Implementation
	References

	Parallel Preconditioner for the Finite Volume Element Discretization of Elliptic Problems
	1 Introduction
	2 Finite Volume Element Discretization
	3 GMRES Method
	4 Additive Schwarz Method (ASM) Preconditioner
	4.1 The Convergence of the Preconditioned GMRES Method

	5 Implementation
	References

	Preconditioning Iterative Substructuring Methods Using Inexact Local Solvers
	1 Introduction
	1.1 Substructuring Methods
	1.2 Preconditioning in Iterative Substructuring
	1.3 Iterative Substructuring with Inexact Local Solvers

	2 Preconditioning with Inexact Local Solvers
	2.1 Krylov Iterative Method Considerations

	3 Numerical Experiments
	4 Conclusions
	References

	Additive Schwarz Method for Nonsymmetric Local Discontinuous Galerkin Discretization of Elliptic Problem
	1 Introduction
	2 Construction of Discrete Problem
	3 Additive Schwarz Method
	4 Implementation
	5 Numerical Experiments
	References

	Fast Numerical Method for 2D Initial-Boundary Value Problems for the Boltzmann Equation
	1 Introduction
	2 Boltzmann Equation
	3 Numerical Algorithm
	3.1 Splitting Method
	3.2 Relaxation Equation
	3.3 Transport Equation

	4 Numerical Example
	5 Conclusions
	References

	Simulating Phase Transition Dynamics on Non-trivial Domains
	1 Introduction and Motivation
	2 Discrete Scheme
	2.1 The Scheme for Allen--Cahn
	2.2 The Scheme for Cahn--Hilliard

	3 Numerical Experiments
	3.1 Results for Allen--Cahn
	3.2 Results for Cahn--Hilliard

	References

	Variable Block Multilevel Iterative Solution of General Sparse Linear Systems
	1 Introduction
	2 The VBARMS Preconditioner
	3 Parallel Implementation
	4 Numerical Results
	5 Concluding Remarks
	References

	An Automatic Way of Finding Robust Elimination Trees for a Multi-frontal Sparse Solver for Radical 2D Hierarchical Meshes
	1 Introduction
	2 Optimisation Algorithm
	3 Heuristic Algorithm
	4 Numerical Results for Sequential Solver
	5 Graph Grammar Based Algorithm for Shared Memory Parallel Machine
	6 Numerical Results for Parallel Solver
	7 Conclusions and Future Work
	References

	Parallel Efficiency of an Adaptive, Dynamically Balanced Flow Solver
	1 Introduction
	2 Testing the Algorithmic Efficiency
	3 Sequential Algorithmic Efficiency
	4 Parallel Performance
	4.1 Parallel Performance for Undisturbed Partitioning
	4.2 Impact of Adaptivity on Parallel Performance
	4.3 Parallel Performance with Dynamic Load Balancing

	5 Conclusions
	References

	Modification of the Newton's Method for the Simulations of Gallium Nitride Semiconductor Devices
	1 Introduction
	2 Drift-Diffusion Model
	2.1 Differential Problem

	3 Algorithm
	3.1 Discrete Problem
	3.2 Problems with the Newton's Method
	3.3 Modification of Newton's Method

	4 Comparison
	5 Conclusions
	References

	Numerical Realization of the One-Dimensional Model of Burning Methanol
	1 Introduction
	2 Equations of the Model
	3 Numerical Realization on Cluster
	4 Splitting of Equation of the Model
	5 Algorithms for Subsystems
	6 Time Measuring on IBM Blue Gene/P ``Notos''
	7 Conclusion
	References

	Minisymposium on High PerformanceComputing Interval Methods
	A Shaving Method for Interval Linear Systems of Equations
	1 Introduction
	2 A Shaving Method
	3 Examples and Numerical Experiments
	4 Conclusion
	References

	Finding Enclosures for Linear Systems Using Interval Matrix Multiplication in CUDA
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Computing a Verified Enclosure of a Linear System

	4 Implementation
	4.1 Interval Matrix-Matrix Product
	4.2 Real Matrix-Matrix Product with Directed Rounding
	4.3 Matrix-Vector Product as in Two-Fold Working Precision

	5 Verification Algorithm
	6 Performance Measurements
	6.1 BLAS Routines
	6.2 Verification Algorithm

	7 Conclusion
	References

	GPU Acceleration of Metaheuristics Solving Large Scale Parametric Interval Algebraic Systems
	1 Introduction
	2 Parametric Interval Linear Systems
	3 Solving Systems of Linear Equations with GPU Acceleration
	3.1 GPU Acceleration Strategy
	3.2 GPU Acceleration of Stiffness Matrix Calculation
	3.3 GPU Acceleration of Linear Equations Solving

	4 Numerical Experiments
	5 Conclusions
	References

	Parallel Approach to Monte Carlo Simulation for Option Price Sensitivities Using the Adjoint and Interval Analysis
	1 Introduction
	2 Option Pricing
	2.1 General Approach to Pricing Options
	2.2 Discretization Schemes
	2.3 Monte Carlo Simulation
	2.4 Option Price Sensitivities

	3 CUDA Technology
	4 Architecture of the Library for Option Price Sensitivities
	4.1 Introduction
	4.2 Data Model
	4.3 Parallel Approach -- GPU

	5 Computational Experiments
	6 Performance Results
	6.1 Estimation Uncertainty Results

	7 Conclusion
	References

	Subsquares Approach -- A Simple Scheme for Solving Overdetermined Interval Linear Systems
	1 Introduction
	2 Basics of Interval Arithmetics
	3 Subsquares Approach
	3.1 Simple Algorithm
	3.2 Improved Algorithm
	3.3 Parallel Algorithm

	4 Conclusion
	References

	Using Quadratic Approximations in an Interval Method for Solving Underdetermined and Well-Determined Nonlinear Systems
	1 Introduction
	2 Generic Algorithm
	3 Quadratic Approximations
	3.1 Motivation
	3.2 Quadratic Approximation
	3.3 Interval Quadratic Equations
	3.4 When to Use the Quadratic Approximation?

	4 Computational Experiments
	5 Analysis of the Results
	6 Conclusions
	References

	The Definition of Interval-Valued Intuitionistic Fuzzy Sets in the Framework of Dempster-Shafer Theory
	1 Introduction
	2 The Basic Definitions of Interval-Valued Intuitionistic Fuzzy Set Theory
	3 The New Definitions of IVIFV
	3.1 A New Definition of IVIFV in the Framework of A-IFS
	3.2 A New Definition of IVIFV in the Framework of Interval-Extended DST

	4 Conclusion
	References

	Interval Finite Difference Method for Solving the Problem of Bioheat Transfer Between Blood Vessel and Tissue
	1 Introduction
	2 The Bioheat Transfer Problem
	3 Interval Finite Difference Scheme for Solving the Bioheat Transfer Problem
	3.1 Conventional Finite Difference Method
	3.2 Interval Finite Difference Method
	3.3 Approximation of the Error Term

	4 Numerical Experiment
	5 Conclusions
	References

	Workshop on Complex CollectiveSystems
	Bridging the Gap: From Cellular Automata to Differential Equation Models for Pedestrian Dynamics
	1 Introduction
	2 Optimal Steps Model
	2.1 Potential

	3 Gradient Navigation Model
	4 Results
	5 Remaining Differences
	6 Conclusion and Future Work
	References

	Cellular Model of Pedestrian Dynamics with Adaptive Time Span
	1 Introduction
	2 Definition of Model Dynamics
	3 Specification of the Decision Process pi(x,y;t)
	4 Experimental Study of the Phase Transition
	5 Conclusion
	References

	The Use of GPGPU in Continuous and Discrete Models of Crowd Dynamics
	1 Introduction
	2 Graphics Processing Units in Simulations
	3 Implemented Models
	3.1 Continuous Model - Social Force
	3.2 Discrete Model - Social Distances Model Based on Cellular Automata
	3.3 Technical Aspects of Implementation

	4 Results
	4.1 Performance Tests

	5 Concluding Remarks
	References

	Modeling Behavioral Traits of Employees in a Workplace with Cellular Automata
	1 Introduction
	2 The Proposed CA Model
	3 Conclusions
	References

	Probabilistic Pharmaceutical Modelling: A Comparison Between Synchronous and Asynchronous Cellular Automata
	1 Introduction
	2 CA and ACA Modelling
	2.1 Design Methodology
	2.2 Update Methods
	2.3 Equivalence of Sequential and Parallel Implementations

	3 CA Model for Coated Drug Formulations
	4 Experimental Results
	5 Conclusions and Future Work
	References

	The Graph of Cellular Automata Applied for Modelling Tumour Induced Angiogenesis
	1 Introduction
	2 Existing Models of Tumour Induced Angiogenesis
	3 The Model of Tumour-Induced Angiogenesis
	3.1 Blood Flow Calculations in Modelled Vasculature
	3.2 The Implementation

	4 Results
	5 Conclusions
	References

	Neighborhood Selection and Rules Identification for Cellular Automata: A Rough Sets Approach
	1 Introduction
	2 Related Works
	3 Basic Concepts
	4 Identification of Deterministic Cellular Automata
	5 Identification of Probabilistic Cellular Automata
	6 Identification of Cellular Automata Using Real-World Data
	7 Conclusions
	References

	Coupling Lattice Boltzmann Gas and Level Set Method for Simulating Free Surface Flow in GPU/CUDA Environment
	1 Introduction
	2 Algorithms and Implementation
	3 Results
	4 Related Work
	5 Conclusions
	References

	Creation of Agent's Vision of Social Network Through Episodic Memory
	1 Introduction
	2 Provision of Social Context
	3 Agent Model
	4 Tests
	4.1 Experiment 1
	4.2 Experiment 2

	5 Conclusion
	References

	The Influence of Multi-agent Cooperation on the Efficiency of Taxi Dispatching
	1 Introduction
	2 Cooperation in Taxi Dispatching
	3 Platform for Simulation of Taxi Services
	4 On-line Taxi Dispatching Algorithms
	5 Test Scenario
	6 Simulation Results
	7 Conclusions
	References

	Basic Endogenous-Money Economy: An Agent-Based Approach
	1 Introduction
	2 The Model
	3 Computational Experiments
	4 Conclusions
	References

	Author Index

