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Summary

The ongoing global financial crisis has demonstrated the importance of a
systemwide, or macroprudential, approach to safeguarding financial stability. An
essential part of macroprudential oversight concerns the tasks of early
identification and assessment of risks and vulnerabilities that eventually may lead
to a systemic financial crisis. Thriving tools are crucial as they allow early policy
actions to decrease or prevent further build-up of risks or to otherwise enhance the
shock absorption capacity of the financial system. In the literature, three types
of systemic risk can be identified: (i) build-up of widespread imbalances,
(ii) exogenous aggregate shocks, and (iii) contagion. Accordingly, the systemic
risks are matched by three categories of analytical methods for decision support:
(i) early warning, (ii) macro stress-testing, and (iii) contagion models. Stimulated
by the prolonged global financial crisis, today’s toolbox of analytical methods
includes a wide range of innovative solutions to the two tasks of risk identification
and risk assessment. Yet, the literature lacks focus on the task of risk
communication.

This book concerns macroprudential oversight from the viewpoint of all three
tasks: Within analytical tools for risk identification and risk assessment, the focus
concerns a tight integration of means for risk communication. Data and dimension
reduction methods, and their combinations, hold promise for representing
multivariate data structures in easily understandable formats. The overall task of
the work in this book is to represent high-dimensional data concerning financial
entities on low-dimensional displays. The low-dimensional representations have
two subtasks: (i) to function as a display for individual data concerning entities and
their time series, and (ii) to use the display as a basis to which additional
information can be linked. The final nuance of the task is, however, set by the
needs of the domain, data, and methods. The following five questions comprise
subsequent steps addressed in this book:

1. What are the needs for macroprudential oversight?
2. What form do macroprudential data take?
3. Which data and dimension reduction methods hold most promise for the task?
4. How should the methods be extended and enhanced for the task?
5. How should the methods and their extensions be applied to the task?

xv



Based upon the Self-Organizing Map (SOM), the work in this book not only
creates the Self-Organizing Financial Stability Map (SOFSM), but also lays out a
general framework for mapping the state of financial stability. The work in this
book also introduces three extensions to the standard SOM for enhancing the
visualization and extraction of information: (i) fuzzification, (ii) transition
probabilities, and (iii) network analysis. Thus, the SOFSM functions as a display
for risk identification, on top of which risk assessments can be illustrated. In
addition, this book puts forward the Self-Organizing Time Map (SOTM) to
provide means for visual dynamic clustering, which in the context of
macroprudential oversight concerns the identification of cross-sectional changes
in risks and vulnerabilities over time. Rather than automated analysis, the aim of
visual means for identifying and assessing risks is to support disciplined and
structured judgmental analysis based upon policymakers’ experience and domain
intelligence, as well as external risk communication.

xvi Summary



Chapter 1
Introduction

When the crisis came, the serious limitations of existing
economic and financial models immediately became apparent.
[...] As a policy-maker during the crisis, I found the available
models of limited help. In fact, I would go further: in the face of
the crisis, we felt abandoned by conventional tools.

– Jean-Claude Trichet, President of the ECB,
Frankfurt am Main, 18 November 2010

The narrative of the still ongoing global financial crisis—which undeniably has
become an economic crisis, not to say a crisis of economics—has no unambigu-
ous description. While the many factors directly and indirectly linked to the causes
of the crisis are divisive, the effects of the crisis are less so. The period since the
outbreak of the financial crisis in mid-2007 has been characterized by a number of
multifaceted problems in financial systems and society in general: liquidity issues
in large financial institutions, sovereign debt problems, government interventions
in banks, the collapse of housing and stock markets, overall losses in welfare and
growth, etc. While being divisive, today’s hindsight discussions illustrate a wide
range of so-called systemic risks, vulnerabilities and imbalances that depicted finan-
cial systems prior to the collapse of Lehman Brothers, and the subsequent worldwide
financialmeltdown.Yet, aswisely put byBezemer (2011),“no one saw this coming”.
The aim herein is to provide tools to better see it coming.

So, what is financial instability and systemic risk? Paraphrasing Justice Potter
Stewart’s definition of explicit content, as noted by Bisias et al. (2012), describes
how vaguely financial instability and systemic risk is commonly viewed: we struggle
in defining it, but we think we know it when we see it. Yet, this is no basis for mea-
surement and analysis of threats to financial stability, however that is defined. There
is obviously no undisputed definition. Herein, from the viewpoint of the antonym,
financial instability is defined as an event that has adverse effects on a number of
important financial institutions or markets (ECB 2009). Systemic risk, as defined
by the same source, is a risk of widespread financial instability that impairs the

P. Sarlin, Mapping Financial Stability, Computational Risk Management, 1
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2 1 Introduction

functioning of the financial system, with severe implications on economic growth
and welfare.

Then, how costly is financial instability? Even though few foresaw financial insta-
bilities, the above definition indicates them being of high impact. Patterns of the past
and today are alike, in that financial crises have recurred throughout monetary his-
tory. Research, not to only rely on perceived occurrences, has revealed a doubling of
the frequency of financial stress episodes since the end of the Bretton Woods system
in 1973 (Bordo et al. 2001). Numerous sources of evidence suggest that historical
financial costs of crises have been enormous. Cardarelli et al. (2011) show that out
of 113 episodes of financial crisis for key advanced economies, 29 were followed
by an economic slowdown and an equal number by recessions. Eichengreen (2004)
reveals that the average output loss from a financial crisis is around 9% of gross
domestic product (GDP), whereas the most severe crises caused a GDP loss of over
20%. Likewise, Hoggarth et al. (2002) find cumulative output losses from a crisis
to be up to 30% of GDP. Dell’ariccia et al. (2008) and Laeven and Valencia (2008)
highlight the importance of banking crises by revealing that their median losses have
been at around 20–25% of GDP. Hence, it is a trivial fact that early identification of
financial instability would be useful, in particular as it would enable policymakers
to make corrective actions prior to the event.

A key concept is, however, an early enough identification of financial instabilities.
The events of last years have illustrated that policy actions introduced at a late stage
may be highly costly for tax payers. The global financial crisis has brought a large
number of European banks to the brink of collapse, leading to bailout costs beyond
anything previously experienced. Data from the European Commission shows that
government assistance to stabilize theEuropeanUnion (EU) banking sector exceeded
e1.6 trillion at the end of 2010. Though accounting only for a moderate share of the
total cost of a systemic banking crisis, this amounts to more than 13% of EU-level
GDP, not to mention the fact that the sovereign-bank nexus in Europe still remains
to be resolved. Yet, defining financial instability, and its costs, provide no good
means for measuring it. This accentuates a need for tools for early identification
and assessment of systemic risks that might possibly lead to financial instability.
These tools would allow policymakers to introduce policy actions to decrease or
prevent further build-up of risks and vulnerabilities and otherwise enhance the shock
absorption capacity of the financial system.

How should threats to financial stability be measured and analyzed? The current
financial crisis has highlighted the importance of a system-wide, or macropruden-
tial, approach to safeguarding financial stability, rather than one being only con-
cerned with the stability of individual financial institutions (i.e., microprudential).
This accentuates the need for a thorough understanding of not only financial entities,
be they economies, markets or institutions, but also their interconnections, interlink-
ages and system-wide importance. Analytical tools and models provide means for
two types of tasks: (i) early identification of vulnerabilities and risks, as well as their
triggers, across financial instruments, markets and institutions, and (ii) early assess-
ment of transmission channels of and a system’s resilience to shocks, and potential
severity of the risk materialization. As above noted by Mr. Trichet, the toolbox of
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models for macroprudential oversight is, however, still in its infancy [see also, e.g.,
Hartmann (2009) and Schou-Zibell et al. (2010)]. In addition, Schou-Zibell et al.
(2010) note that the global financial crisis hit advanced economies that lie in the
very forefront of financial stability reporting. Yet, such reporting to a large extent
takes the form of overall qualitative assessments and policy discussions. To this end,
a systematic and data-driven approach to monitoring financial stability is as likely
to support the use of the rich information provided by policymakers’ judgment and
experience as the latter is to support the former.

How does this book serve the task? While quantitative methods have been applied
for these purposes, they seldom focus on providing policymakers with representa-
tions of data in easily understandable formats. This points to the two tasks of risk
identification and risk assessment lacking the component of risk communication.
A visualization or abstraction of high-dimensional data can be seen as an artifact
supporting the knowledge crystallization process. The work in this book puts for-
ward a set of tools for visual identification and assessment of systemic risks, in order
to support the task of risk communication. The tools, while providing means for a
wide range of analytics, should rather be treated as a starting point than an ending
point for the overall aims of macroprudential oversight, to which a central supporting
ingredient is policymakers’ judgment and experience.

The sequel of the introduction is structured as follows. First, Sect. 1.1 presents the
background of macroprudential oversight and briefly positions the topic of this book.
Then, Sect. 1.2 discusses the two key objectives of this book and untangles them into
five research questions, whereas Sect. 1.3 provides a chapter-specific overview of
the book.

1.1 Background

A comprehensive macroprudential approach to safeguarding financial stability obvi-
ously starts from a thorough understanding of the inner (dys)functioning of the finan-
cial system. In addition to the literature on financial systems, fragilities, risks and
instabilities being broad, the tidal wave of research that the global financial crisis
stimulated is also transforming it at a fast pace. Thus, a wide range of topics in the
literature remain to be disputed. Yet, one notion that few oppose is that a key aim
is to have a resilient and well-functioning financial system. One characterization
of such a financial system is through the following three pillars (Fell and Schinasi
2005): well-managed financial institutions, efficiently functioning financial markets
and a strong and robust financial infrastructure. That said, the frequent incidences of
costly financial crises do, however, indicate that the three pillars of well-functioning
financial systems have defects. While each recurrence of financial instability may
have sources of its own kind, market imperfections like asymmetric and incomplete
information, externalities and public-good characteristics and incomplete markets
are a central group of defects. These imperfections, when being related to a financial
sector, may lead to significant fragility of not only individual entities or firms, but
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also the entire system [see, e.g., Carletti (2008)]. de Bandt and Hartmann (2002)
relate fragilities in financial systems to three causes: (i) the structure of banks, (ii)
the interconnection of financial intermediaries, and (iii) the information intensity of
financial contracts. The material risks of these fragilities support the role of gov-
ernments and other supervisory authorities in addressing and monitoring financial
instability.

To concretize the notion of systemic risk, we herein follow the definition of three
forms of systemic risk by deBandt et al. (2009): (i) endogenous build-up and unravel-
ing of widespread imbalances; (ii) exogenous aggregate shocks; and (iii) contagion
and spillover. The first form of systemic risk focuses on the unraveling of wide-
spread imbalances and is illustrated by a thorough literature on the presence of risks,
vulnerabilities and imbalances in banking systems and the overall macro-financial
environment prior to historical financial crises. Early and later literature alike have
identified common patterns in underlying vulnerabilities preceding financial crises
[see, e.g., Minsky (1982) and Reinhart and Rogoff (2008)]. The second type of sys-
temic risk, exogenous aggregate shocks, have been shown to co-occur with financial
instabilities [see, e.g., Gorton (1988) and Demirgüç-Kunt and Detragiache (1998)].
Here, an example is the collapse of banks during recessions due to the vulnerability
to economic downturns. The contagion literature provides evidence on the final, third
form of systemic risk, that is, the cross-sectional transmission of financial instability
[see, e.g., Upper and Worms (2004) and van Lelyveld and Liedorp (2006)]. Here,
episodes of financial instabilities have been shown to relate to the failure of one
financial intermediary causing the failure of another.

For macroprudential oversight, policymakers and supervisors need to have access
to a broad toolbox of models to measure and analyze system-wide threats to financial
stability. Broadly speaking, tools andmodels can be divided into those for early iden-
tification and assessment of systemic risks. ECB (2010) provides a mapping of tools
to the above listed three forms of systemic risk: (i) early-warning models, (ii) macro
stress-testing models, and (iii) contagion models. First, by focusing on the presence
of vulnerabilities and imbalances in an economy, early-warning models can be used
to derive probabilities of the occurrence of systemic financial crises in the future [see,
e.g., Alessi and Detken (2011) and Lo Duca and Peltonen (2013)]. Second, macro
stress-testing models provide means to assess the resilience of the financial system to
a wide variety of aggregate shocks, such as economic downturns [see, e.g., Castrén
et al. (2009) and Hirtle et al. (2009)]. Third, contagion and spillover models can be
employed to assess how resilient the financial system is to cross-sectional transmis-
sion of financial instability [see, e.g., IMF (2009)]. In addition, the literature has also
provided a large set of coincident indicators to measure the contemporaneous level
of systemic risk [see, e.g., Holló et al. (2012)]. While coincident measures may be
used to identify, signal and report on heightened stress, they are not designed for
early identification and assessment of risk.

This brief review of tools for safeguarding financial stability illustrates the
approaches for identification and assessment of potential risks, vulnerabilities and
imbalances. Yet, the improvement of ex ante prediction results has at the very least
been modest, as we have clearly not been able to avert major financial crises. To the
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defense of such models, their results have been neglected in the past, such as the
signals of the current crisis by Borio and Lowe (2002, 2004). Supported by the fact
that build-up phases prior to crises share common characteristics [see, e.g., Reinhart
and Rogoff (2009)], early-warning models still have merit for early risk identifica-
tion. However, one key challenge for risk identification in general and early-warning
models in particular is the changing nature of crises, not the least due to financial
innovation. Thus, there remains two questions: (i) How do we better communicate
results to policymakers and persuade them to take actions? and (ii) How should
models be adapted to the changing nature of events that potentially even surpass his-
torical experience? Stand-alone numerical predictions are unlikely to be the answer
to these questions.

In this vein, another conclusion from reviewing tools for safeguarding financial
stability is the lack of visual means for identifying and assessing risks and vulnera-
bilities, particularly in the case of early-warning models. The literature on macropru-
dential oversight clearly illustrates the lack of integration of a third component, risk
communication,with risk identification and assessment tools, an approach thatwould
particularly support external communication. The soar in the availability and preci-
sion of data—both in terms of the number of reporting economies and the reporting
frequency of the economies—further motivates the development of tools that pro-
vide easily interpretable views of complex, high-volume and high-dimensional data,
not the least for internal use. In the case of contagion models, as well as macro
stress-testing to some extent, visualizations based upon network and graph theory
have been and are still gaining further interest within the policymaking commu-
nity. Yet, the task of representing high-dimensional early-warning indicators on a
low-dimensional display has not been addressed in an advanced manner. As a com-
plement to numerical predictions, these visualization tools are a starting point for
assessing threats to financial stability. The tools move from artificial inteligence (AI)
to intelligence amplification (IA) through the effective use of information technol-
ogy (IT) in augmenting human intelligence rather than only relying on computational
human-like intelligence. IA refers to the notion introduced by Ashby (1957), where
he stresses the abilities of human intelligence and the pattern recognition capabilities
of the human brain, in particular when augmentedwith the effective use of visual rep-
resentations. In this context, Flood and Mendelowitz (2013) note that visualization
tools canmake amajor contribution in assessing systemic risks by pointing to the fact
that certain tasks of classification and monitoring can be automated, whereas many
require a human analyst, such as the difficulty to train a well-performing machine to
analyze anomalous financial market activity.

We are obviously fortunate in that rapid advances in IT have enabled access to
massive databases for macroprudential oversight. Alas, analyzing these data is not
completely unproblematic. Except for incompleteness of data due to missing values
and comparability issues due to cross-country differences in national [e.g., Hartwig
(2007)] and firm-level [e.g., Nobes (2006)] accounting practices, as well as outliers
and skewed distributions [e.g., Deakin (1976)], the dimensionality of the problem
is a central challenge for comprehension. In the case of country-level financial sta-
bility, the large variety of sources of financial stress can be measured along several
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subdimensions. Generally, the data for macroprudential oversight can be said to be
of three types: macroeconomic data, banking system data and market-based data.
For instance, the state of a country may be described by data that proxy asset price
developments andvaluations, credit developments and leverage, aswell asmore tradi-
tional macroeconomic and banking systemmeasures, defined both on a domestic and
a global level. Factors that further complicate the assessment of these high-volume
and high-dimensional data are temporal and cross-sectional dependencies and rela-
tions, invoking also assessments of how risk is distributed in the cross section, e.g.,
through linkages and exposures among entities.

This particular complexity of the data may be one reason why the interpretability
of the monitoring systems has not previously been adequately addressed. As with
raw statistical tables, standard two- and three-dimensional plots have, of course,
their limitations for high dimensions, not to mention the challenge of including a
temporal or cross-sectional dimensionor assessing cross sections over time.Although
composite indices of leading indicators and predicted probabilities of early-warning
models enable comparison across countries and over time, these indices fall short
in disentangling the individual sources of vulnerability. More importantly, they lack
the ability of preserving similarity relations in data. The recent work by International
Monetary Found (IMF) staff on the Global Financial Stability Map (GFSM) (Dattels
et al. 2010) has sought to overcome the challenge of disentangling the sources of
distress. The GFSM is a radar chart visualization of six composite indices and has
appeared quarterly in the Global Financial Stability Report since April 2007, as well
as in a number of other financial stability reports of national central banks. Even here,
however, by plotting these types of raw indices, rather than individual indicators, the
GFSM leaves a large share of the task of similarity assessment and pattern recognition
for the human to solve, where even overall comparability may be questioned (e.g.,
areas of radar charts scale non-linearly with increases in dimensions and depend on
their order).

Methods from the fields of data mining and Knowledge discovery in data-
bases (KDD) may help in overcoming these shortcomings, not the least those for
exploratory data analysis (EDA). The notion of EDA was coined by Tukey (1977)
and aims at representing data in easily understandable formats through numerical,
counting and graphical detective work. Data and dimension reduction methods, and
their combination, are common EDA approaches that hold promise for illustrating
multivariate data structures in formats easy to comprehend. Data reductions provide
overviews of data by compressing information into fewer mean profiles, whereas
dimension reductions provide low-dimensional overviews (or mappings) of similar-
ity relations in data. Along these lines, a key focus of this book is to show how data
and dimension reduction methods can be applied and extended to support macropru-
dential oversight. A particular focus of the extensions is related to two tasks in need
of future research. First, Chen (2005) and Wong et al. (2012) highlight a paradigm
shift from only visualizing structures to visualizing dynamics, not to say dynamics of
structures. Second, to be aware of the quality and potential distortions of dimension
reductions, Wismüller et al. (2010) and Wong et al. (2012) stress that they are not an
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end, but provide only a means to display useful information on top of them, such as
evidence, uncertainty and individual data. This leads us to the objectives of the work
in this book.

1.2 Research Objectives and Questions

The background of macroprudential oversight illustrates challenges with predictive
methods and a lack of visual means for the tasks. This motivates building visual tools
for identifying and assessing vulnerabilities and risks. Rather than only relying on
conventional early-warning models, a visual approach enables the use of judgment
and domain intelligence in combination with the abstractions of data. For data to lend
for analysis through summarizations and visualizations, one appealing, yet obvious,
approach is the use of data and dimension reduction methods. This section sum-
marizes the two key research objectives (ROs) of this book, from which concrete
research questions (RQs) can be derived.

Yet, before turning to the concrete RQs, the commonly used term the task at hand
needs to be defined. The overall task is to represent high-dimensional data concern-
ing financial entities, be they countries, markets or institutions, on low-dimensional
displays to facilitate the identification, assessment and communication of vulner-
abilities and risks. The low-dimensional representations have two subtasks: (i) to
function as a display for individual data and their time series (i.e., observation-level
data concerning financial entities), and (ii) to use the display as a basis for a wide
range of additional visualizations, such as qualities of models and structural proper-
ties of data. The final nuance of the task is, however, set by the needs of the domain,
data and methods.

In this vein, the work in this book touches upon data and dimension reduction in
macroprudential oversight and can hence be divided into two non-mutually exclusive
ROs:

(i) RO1: to choose and extend data and dimension reduction methods such that they
meet the needs set by macroprudential oversight and data, and

(ii) RO2: to apply data and dimension reduction methods in macroprudential over-
sight to be used by and introduced to the policymaking community.

To deliver on RO1, a large number of steps have to be explored, involving an under-
standing of the domain, data and methods, in order to compare and extend methods
according to the demands set by macroprudential oversight. The applications of
methods in RO2 can also be supported by a comprehensive understanding of the
needs set by macroprudential oversight, the underlying data and used methods. An
indirect implication of RO2, while being a somewhat hazy concept to be measured,
is to increase awareness and acceptance of the methods in policy use and to introduce
them to the policymaking community, in particular macroprudential oversight.

The two ROs are broad and may hence be refined to more precise RQs that resem-
ble the main steps needed for successful fulfillment of the above stated objectives.
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Fig. 1.1 Relations between the RQs. Notes The figure shows in the upper part the RQs as a
process. The interdependence between the RQs is illustrated by separately relating each question to
the previous ones. The coloring of the blocks divides the RQs into RTs. The red blocks relate to an
understanding of the macroprudential domain and data, the blue blocks relate to deriving optimal
methods and their extensions, and the green block relates to applications of the methods to the
task at hand. The color coding of an RQ in the lower part of the figure refers to where its core
contribution lies

In particular, whereas the ROs focus on methods and subsequent applicability in
policymaking, one key ingredient of successful applied research is that it lies on a
strong basis with respect to the domain and the underlying data. This provides three
research themes (RTs), where two RTs derived from the above objectives (RT2 and
RT3) are preceded by a thorough discussion of the general needs for macroprudential
oversight (RT1).

The following five RQs comprise subsequent steps to be addressed in this book:

(i) RQ1: What are the needs for macroprudential oversight?
(ii) RQ2: What form do macroprudential data take?
(iii) RQ3: Which data and dimension reduction methods hold most promise for the

task?
(iv) RQ4: How should the methods be extended and enhanced for the task?
(v) RQ5: How should the methods and their extensions be applied to the task?

The RQs are interdependent in the sense that they define the process of this book.
The process is illustrated as blocks in the upper part of Fig. 1.1, where the color
coding shows in which RT each block is a member of. The red blocks relate to an
understanding of the macroprudential domain and data, the blue blocks relate to
optimal methods and their extensions, and the green block relates to applications of
the methods to the task at hand. The lower part of the figure illustrates the interde-
pendence between the RQs by separately relating each question to all other RQs. In
the following, this section provides a more detailed discussion of the RQs.

RQ1: What are the needs for macroprudential oversight? The first RQ sets
the basis for this book. It focuses on untangling the key tasks of a macroprudential
supervisory body that aims at safeguarding financial stability. The aim is to shed
light on the functioning of the financial system, and its inherent instabilities and
fragilities, as well as the empirical and theoretical literature describing the concepts.
Further, a central theme is also a review of related works on tools and models for
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macroprudential oversight, and the entire process, to identify shortcomings and needs
in the literature.

RQ2: What form do macroprudential data take? An issue of all types of data
analysis is the form of the underlying data. The second RQ takes a broad view on
macroprudential data and attempts to map them to the needs of macroprudential
oversight. In addition to viewing data through the lens of a policymaker, a particular
focus is obviously on stylized facts about the data. The key aim of the question, in
combination with RQ1, is to provide a solid basis for the rest of the questions and
the main objectives of the work in this book.

RQ3: Which data and dimension reduction methods hold most promise for
the task? The main aim of the third RQ is to capture the most suitable methods for
macroprudential oversight in general and the task at hand in particular. Hence, the
basis for the answer to this question lies also in the answers to RQ1 and RQ2, i.e.,
what are the needs and demands of the domain and data. While an important task for
a comparison of data and dimension reduction methods is to review and categorize
existing methods, the most central problem is still to identify the methods that hold
most promise for the current task.

RQ4: How should the methods be extended and enhanced for the task? With
the aim of extending previous methods, the fourth RQ draws upon not only the
identified methods, but also the needs and data for the task, involving the answers to
RQ1, RQ2 and RQ3. In particular, the identified needs for macroprudential oversight
set the needs in terms of data, which both on the other hand impact the chosenmethod.
When then deciding to what direction the methods are to be extended, one needs to
consider the limitations of the used methods, in addition to the needs for the task.
While not having a substantial focus on human-computer interaction, perception and
cognition, a central question is still to bridge the approaches of the so-called machine
learning and information visualization communities. The former addresses mainly
mathematical and algorithmic aspects of data and dimension reductions, whereas
the latter focuses on visual representations of abstract data, and the interaction of
humans, to reinforce cognition.

RQ5: How should the methods and their extensions be applied to the task?
In the fifth RQ, the focus is on applications of the provided methods as tools for
macroprudential oversight in general and the task at hand in particular. Again, the
answer to this question relies upon the answers to all the previous questions: RQ1,
RQ2, RQ3 and RQ4. The key use of the applications derive from the needs for
macroprudential oversight and data, as discussed in the first two questions. The
approach, on the other hand, comprises the methods provided in RQ3 and RQ4.

1.3 Overview of the Book

This work in this book aims at indirectly meeting the ROs by following the process
set by the RQs. Figure1.2 uses the same representation as in Fig. 1.1, but relates the
chapters to the process of RQs. In the following, this section discusses chapter by
chapter the structure of this book.
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Fig. 1.2 The RQs and the chapters. Notes The figure shows in the upper part the RQs as a process.
These are related to the chapters of the book. The red blocks relate to an understanding of the
macroprudential domain and data, the blue blocks relate to deriving optimal methods and their
extensions, and the green block relates to applications of the methods to the task at hand. The color
coding of a chapter refers to where its core contribution lies. The introduction in this chapter and
conclusions in Chap. 10 are intentionally left blank

Chapter 2 focuses first on the definition of financial systems, financial instability
and systemic risks, as well as on the reasons for financial systems being fragile. Next,
it briefly summarizes some theoretical and empirical underpinnings of system-wide
risks, whereafter the chapter focuses on giving an overview of the state of the art of
risk assessment and identification tools used bymacroprudential policymakers, espe-
cially the use of visualization tools. The chapter concludes by relating the fragilities,
risks and tools to an overall macroprudential oversight process. The process clearly
illustrates the lack of integration of a third component, risk communication, with risk
identification and assessment tools. A key notion for this book is the three forms of
systemic risk and the respective risk identification and assessment tools, whereas a
key implication is the illustrated scarcity of visualization tools, in particular for the
task of identifying the build-up of widespread imbalances.

Chapter 3, while heavily relying on the previous chapter, discusses data needs
and demands for macroprudential oversight, with a particular focus on early-
warning models. The broad notion of macroprudential data is untangled into a four-
dimensional cube representation. Finally, this chapter discusses stylized challenges
related to macroprudential data. A key implication of the chapter is that the shown
characteristics of macroprudential data need to be acknowledged when attempting
their use to support macroprudential oversight. More importantly, rather than aggre-
gating data into composite indices, the chapter further motivates visualizing these
complex data in easily understandable formats to support disciplined and structured
judgmental analysis based upon policymakers’ experience.

http://dx.doi.org/10.1007/978-3-642-54956-4_10
http://dx.doi.org/10.1007/978-3-642-54956-4_2
http://dx.doi.org/10.1007/978-3-642-54956-4_3
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Chapter 4 provides an overview of data and dimension reduction methods. First, it
discusses the relation of data and dimension reduction to knowledge discovery, data
mining, information visualization and visual analytics. Then, the chapter sets a basis
for a comparison of data and dimension reduction methods by reviewing the basics
of classical methods and relating a comprehensive set of methods in a taxonomy.

Chapter 5 relates the needs formacroprudential oversight and properties ofmacro-
prudential data to the characteristics of data and dimension reductions, and their com-
binations. The suitability of three classical, or so-called first-generation, dimension
reduction methods for the task at hand is illustrated with qualitative comparisons and
illustrative experiments. A key implication of the chapter is that the Self-Organizing
Map (SOM)s holds most promise for the task at hand.

Chapter 6 presents a number of extensions of the SOM to meet the needs and
demands for bothmacroprudential oversight andmacroprudential data. The enhance-
ments not only aid in analyzing and visualizing individual cross-sectional and/or
time-series data on the SOM, but also contribute to the assessment of overall proper-
ties and qualities of the SOM. Extensions to be used with a standard SOM comprise
approaches for fuzzification, transition probabilities and assessing shock propaga-
tion. The chapter also presents the stand-alone Self-Organizing Time Map (SOTM)
for assessing how cluster structures evolve over time (i.e., visual dynamic clustering).

Chapter 7 describes the construction of the Self-Organizing Financial Stability
Map (SOFSM). First, he chapter presents the used data, including macro-financial
indicators and a database of financial crises, a model evaluation framework and a
model training framework. Then, the training and evaluation frameworks are applied
for constructing the SOFSM based upon the standard SOM. Finally, the chapter
presents a number of robustness tests on the final SOFSM. The SOFSM can be
used to monitor macro-financial vulnerabilities by locating a country in the financial
stability cycle on a two-dimensional display. Besides of its visualization capabilities,
the SOFSM is evaluated as an early-warning model and calibrated according to
policymakers’ preferences between missing a crisis and issuing a false alarm (i.e.,
type I and II errors). The SOFSMperforms on par with a statistical benchmarkmodel
and correctly calls the crises that started in 2007 in the United States (US) and the
euro area.

Chapter 8 applies the SOFSM for risk identification, assessment and communi-
cation by a mapping of financial stability. Thus, the extensions in Chap. 6, except
for the SOTM, are applied to macroprudential oversight in this chapter, including
a fuzzification, transition probabilities and shock-propagation analysis. The chapter
also shows how the SOFSM can be used for illustrating results of stress tests and
detecting outliers (i.e., imbalances in macro-financial conditions). The SOFSM is
also paired with a stand-alone predictive model to illustrate the complementary role
of such approaches. Hence, the SOFSM not only provides means for visual early-
warning exercises, but also enable superimposed visualizations of stress tests and
shock-propagation assessments.

Chapter 9 applies the SOTM to macroprudential oversight in general and risk
identification in particular byproviding twodecompositions of global financial crises.
The SOTM performs temporal data and dimension reduction for visual dynamic

http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_5
http://dx.doi.org/10.1007/978-3-642-54956-4_6
http://dx.doi.org/10.1007/978-3-642-54956-4_7
http://dx.doi.org/10.1007/978-3-642-54956-4_8
http://dx.doi.org/10.1007/978-3-642-54956-4_6
http://dx.doi.org/10.1007/978-3-642-54956-4_9
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clustering. The first decomposition applies a standard SOTM to describe the global
financial crisis that started in 2007. The second section uses a SOTMon time-to-event
data to generalize patterns before, during and after financial crises.

Chapter 10 concludes with a discussion of the key contributions of this book, its
limitations and suggestions for future research. The contributions are discussed both
from the viewpoint of dimension reduction and policy (i.e., the research objectives),
whereas limitations set a basis for future research, in addition to the numerous other
questions that remain to be explored.

1.4 Original Publications and Their Contributions

As this book is based upon a number of publications, interested readers are kindly
referred to the original publications for further information. A large share of the
material is based upon the contribution, text, figures and tables found in the following
11 papers:

Paper 1 Sarlin P. Data and Dimension Reduction for Visual Financial Performance
Analysis. Information Visualization, forthcoming, Sage pub.

Paper 2 Sarlin P, Eklund T, 2011. Fuzzy Clustering of the Self-Organizing Map:
Some Applications on Financial Time Series. Proceedings of the 8th
International Workshop on Self-Organizing Maps (WSOM’11), Helsinki,
Finland, June 13–15, pp. 40–50, Springer.

Paper 3 Sarlin P, Yao Z, Eklund T, 2012. Probabilistic Modeling of State Tran-
sitions on the Self-Organizing Map: Some Temporal Financial Applica-
tions. Intelligent Systems in Accounting, Finance and Management 19(1),
pp. 189–203, Wiley-Blackwell.

Paper 4 Sarlin P, 2013. Self-Organizing Time Map: An Abstraction of Temporal
Multivariate Patterns. Neurocomputing 99(1), pp. 496–508, Elsevier.

Paper 5 Sarlin P, Yao Z, 2013. Clustering of the Self-Organizing Time Map. Neu-
rocomputing 121, pp. 317–327, Elsevier.

Paper 6 Sarlin P, 2013. On policymakers’ loss functions and the evaluation of early
warning systems. Economics Letters 119(1), pp. 1–7, Elsevier.

Paper 7 Sarlin P, Peltonen TA, 2013. Mapping the State of Financial Stability.
Journal of International Financial Markets, Institutions & Money 26, pp.
46–76, Elsevier.

Paper 8 Sarlin P, 2013. Exploiting the Self-Organizing Financial Stability Map.
Engineering Applications of Artificial Intelligence 26(5–6), pp. 1532–
1539, Elsevier.

Paper 9 Sarlin P, 2013. Decomposing the Global Financial Crisis: A Self-
Organizing Time Map. Pattern Recognition Letters 34, pp. 1701–1709,
Elsevier.

http://dx.doi.org/10.1007/978-3-642-54956-4_10
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Paper 10 Sarlin P, 2013. A Self-Organizing Time Map for Time-to-Event Data.
Proceedings of the IEEE Symposium on Computational Intelligence and
Data Mining (CIDM’13), Singapore, April 16–19, 2013, IEEE .

Paper 11 Sarlin P. On biologically inspired predictions of the global financial crisis.
Neural Computing & Applications, forthcoming, Springer.
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Chapter 2
Macroprudential Oversight

In the absence of clear guidance from existing analytical
frameworks, policy-makers had to place particular reliance on
our experience. Judgement and experience inevitably played a
key role. [...] But relying on judgement inevitably involves risks.
We need macroeconomic and financial models to discipline and
structure our judgemental analysis. How should such models
evolve?
–Jean-Claude Trichet, President of the ECB, Frankfurt am Main,

18 November 2010

Paraphrasing Milton Friedman’s statement about Keynesians, Borio (2011) stated
“We are all macroprudentialists now”. Since the date when the still ongoing global
financial crisis broke out, the notion of a macroprudential approach to safeguard-
ing financial stability has grown consensus among the academic and policymaking
communities alike. Yet, it is by no means a new concept. The central bank of central
banks, the Bank for International Settlements (BIS), applied the term to describe a
system-wide orientation of regulatory frameworks already in the 1970s, and the term
appeared in publicly available material in the mid-1980s [see, e.g., BIS (1986) and
Borio (2011)], but the use of the concept remains somewhat ambiguous.

So, what is a macroprudential vis-à-vis a microprudential approach? With the
help of a comparison to the microprudential approach, Borio (2011) summarizes the
macroprudential orientation as follows. First, while the aim of the macroprudential
approach is to limit system-wide stress and possible costs for the macroeconomy,
a microprudential orientation attempts to limit an individual institution’s risk of
failure with the aim of minimizing costs for depositors and investors. Second, the
macroprudential approach explicitly accounts for the fact that risk is dependent on
the collective behavior of financial institutions (i.e., endogenous), rather than being
something outside their influence (i.e., exogenous) as is in the microprudential case.

This chapter is partly based upon previous research. Please see the following work for further
information: Sarlin (2014a).

P. Sarlin, Mapping Financial Stability, Computational Risk Management, 15
DOI: 10.1007/978-3-642-54956-4_2, © Springer-Verlag Berlin Heidelberg 2014
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Third, the macroprudential approach has a system-wide perspective, where a top-
down approach works out a desirable safety standard for the system as a whole,
rather than the stand-alone soundness of individual institutions approached from the
bottom-up. Thus, a macroprudential approach takes a holistic view on the financial
system with the aim and mandate to ensure system-wide stability, rather than only
being concerned with the failure of individual entities. Yet, the two approaches are
difficult to compartmentalize because they most often co-exist.

The comprehensive macroprudential approach thus obviously also involves an
understanding of a large number of other concepts. It is crucial for regulatory
decision-makers to have a broad and deep understanding of financial systems, fragili-
ties and instabilities, as well as risks and vulnerabilities, in the economy. Hence, to
carry outmacroprudential oversight aiming at ensuring system-wide stability, policy-
makers need a thorough information basis and a large variety of risk identification and
assessment models and tools for data to become actionable information. Macropru-
dential oversight, while also requiring a large share of domain intelligence and plain
analysis of statistical data, has its core in analytical models and tools for analyzing,
summarizing and interpreting the widely available masses of data.

This chapter focuses first in Sect. 2.1 on the definition of financial systems and
financial stability—or rather its antithesis, financial instability—as well as fragilities
in financial systems and the concept of systemic risk. Section2.2 briefly summarizes
some theoretical and empirical underpinnings of three identified forms of systemic
risk. Then, Sect. 2.3, and the main focus of this chapter, attempts to give an overview
of the state of the art of risk assessment and identification tools used bymacropruden-
tial policymakers, especially the use of visualization tools. Finally, Sect. 2.4 relates
the fragilities, risks and tools to themacroprudential oversight process, to be followed
by a summary of key implications of this chapter for the rest of the book in Sect. 2.5.

2.1 Financial Systems, Fragilities and Instabilities

Understanding the key concepts related to financial systems, and their (in)stability
and fragility, is essential for a broader understanding of macroprudential oversight.
This section presents some key principles of financial systems and defines the notions
of stability and instability, as well as discusses why they are so fragile and what are
the main risks to stability. Hence, this section provides a basis for the rest of the
chapter, not the least by untangling systemic risks into three forms, to which we
oftentimes refer in the sequel.

2.1.1 Key Components of Financial Systems

The basis for any discussion of financial fragilities, instabilities or risks ought to be
an understanding of the notion of a financial system. Hence, the main questions are:
What is a financial system, which components does it comprise and how do they
interact?
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Fig. 2.1 The financial system
and its components.Notes The
figure shows interrelations of
the three components of the
financial system: financial
markets, intermediaries and
market infrastructures. The
figure is an adapted version
of that in ECB (2012a) and
follows the description in Fell
and Schinasi (2005)

Broadly speaking, financial markets may be thought of as a mechanism for peo-
ple to trade various financial securities, commodities and other fungible items at
prices that reflect the markets. In a larger context, Schinasi (2004) summarizes the
key functions of a financial system in fostering and supporting the real economy by
matching investors with savers, allocating and pricing financial risks and resources
and supporting various intertemporal economic processes like wealth accumulation,
economic growth, and social prosperity. However, the functioning of financial sys-
tems is a multifaceted concept with multiple inter and intra relationships. Key com-
ponents of financial systems, as well as their relationships, are illustrated in Fig. 2.1.
As is pointed out in the figure, the financial system comprises three interrelated, yet
separable, components [see, e.g., ECB (2005) and Fell and Schinasi (2005)]:

(i) financial intermediaries (green layer);
(ii) financial markets (blue layer); and
(iii) financial market infrastructures (white layer).

Following the description in Fell and Schinasi (2005), entities of the household, cor-
porate, foreign and government sectors (red layer) invest their savings and obtain
funding for their activities through these three components. First, financial interme-
diaries comprise mainly financial institutions and have as their main task to pool
risks and funds of one counterparty and allocate them to another. Financial institu-
tions provide a wide range of services, in addition to those traditionally provided by
banks. Depending on their profile, e.g., insurers, banks, pension funds, hedge funds
and hybrids of financial and non-financial companies (e.g., General Electric) pro-
vide multiple different types of financial services. Second, financial markets mainly
aim at matching those who need capital with those who have it (i.e., spenders with
savers). The trading of financial securities (e.g., stocks and bonds), commodities
(e.g., precious metals and agricultural goods) and fungible items in general occurs
between people and firms, be they financial or not. For financial markets to support
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the provision of credit, transfer of risk and risk management in general, it is crucial
that they function smoothly and are resilient under various circumstances. Third,
the financial infrastructure of the financial system is comprised of privately and
publicly owned and operated institutions through which financial market operations
are concretely carried out. The infrastructure may be provided by institutions like
payment, clearing and settlement systems for financial transactions and other types
of monetary, legal, accounting, regulatory, supervisory and surveillance infrastruc-
tures. Payment systems commonly transfer funds electronically from one institution
to another, clearing systems commonly transfer credit risk in the derivatives market
to a clearinghouse from each counterparty of a trade, and settlement systems com-
plete transactions like securities trades. Thus, we herein follow Schinasi (2004) by
defining the financial system as a term that encompasses “both the monetary system
with its official understandings, agreements, conventions, and institutions as well as
the processes, institutions, and conventions of private financial activities”.

While financial intermediaries connect to the financial architecture, the household,
corporate, government and foreign sectors are connected both directly and indirectly
to financial intermediaries, where financial markets may function as a middleman.
Like private market participants, governments may borrow in markets and hedge
risks. The working principles of the financial system, and the general performance
of its key tasks, is based upon these components and their interrelations. Further, the
externalmacro-financial environmentwill not only have adirect impact onprivate and
public participants, but will also indirectly affect the functioning of financial markets
and intermediaries, and in some cases even affect the design of infrastructures.

It is hence obvious to conclude that a resilient and well-functioning financial
system is characterized by well-managed financial institutions and efficiently func-
tioning financial markets, as well as by a strong and robust financial infrastructure.
This might also be associated with less frequent and costly incidences of financial
crisis. The fact that we have experienced frequent incidences of financial crisis does,
however, indicate that financial institutions are not always well-managed, the func-
tioning of financial markets may be inefficient, and the financial infrastructures may
have cracks andweaknesses. Before discussing the reasons to this, we need aworking
definition of financial stability, particularly its antithesis.

2.1.2 Financial (in)stability

The term financial stability, not to paraphrase Justice Potter Stewart once again,
belongs to the group of concepts that are broad and vague, yet implicitly understood.
Still, we need to agree upon the definition of stable and unstable financial systems
before delving into the causes of fragilities and risks. Coining financial stability with
a commonly accepted and used definition has indeed been an elusive goal ever since
it has shifted towards a common policy objective. In spite of numerous proposals,
there is, as yet, no single, widely accepted definition for the concept.
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Some define financial stability broadly, such as “a condition where the financial
system is able to withstand shocks” (Padoa-Schioppa 2003), while others focus on
situations when the financial system supports, rather than impedes, the functioning
of the real economy [e.g., Schinasi (2004)]. However, guided by macroprudential
thinking, with an aim to ensure system-wide stability, the definition of financial
stability ought to be narrowed down along those lines. ECB (2009) provides a some-
what long, but descriptive definition of system-wide stability: “a condition in which
the financial system—comprising of financial intermediaries, markets and market
infrastructures—is capable of withstanding shocks and the unravelling of financial
imbalances, thereby mitigating the likelihood of disruptions in the financial inter-
mediation process which are severe enough to significantly impair the allocation of
savings to profitable investment opportunities”.

Via its antithesis,Allen andWood (2006) favor to define afinancially stable system
as simply one: “which is not prone to episodes of financial instability”. This leads to
the question: What is financial instability? While being somewhat easier to define,
also a broad variety of definitions of financial instability exist. We may want to call
it “a situation in which normal-sized shocks to the financial system are sufficient to
produce financial distress” (Borio and Drehmann 2009b) or “any deviation from the
optimal saving—investment plan of the economy that is due to imperfections in the
financial sector” (Haldane et al. 2004). From the sample definitions, it is easy to see
the lack of unanimity with regards to these concepts.

Again, to meet the demands of a macroprudential approach, we narrow down
from the broad concept of financial instability to systemic financial crises or strong
systemic events. Such a crisis may be defined as an event that “adversely affects a
number of systemically important intermediaries or markets” (ECB 2009). Rather
than only being interested in the systemic events per se, an obvious central theme
is to have an understanding of the underlying risk of experiencing a systemic finan-
cial crisis, i.e., systemic risks. In broad terms, systemic risk is defined as “the risk
that financial instability becomes so widespread that it impairs the functioning of a
financial system to the point where economic growth and welfare suffer materially”
(ECB 2009).

Now, whenwe have defined the concepts of a stable and unstable financial system,
we can move forward in discussing what makes financial systems particularly fragile
and what are the underlying risks to stability.

2.1.3 Fragility of Financial Systems

Any form of systemic risk, while having sources of its own kind, is most often
preceded at an early stage by various market imperfections. Imperfections in mar-
kets may take the form of asymmetric and incomplete information, externalities
and public-good characteristics, incomplete markets, etc., and are to some extent
present in most economic sectors. However, the imperfections, when being related
to a financial sector, may lead to significant fragility of not only individual entities,
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but also the entire system (Carletti 2008; ECB 2009). Carletti (2008) illustrates the
need for regulation of the banking sector with a large sample of examples of market
imperfections, such as banks being exposed to deposit runs due to the maturity trans-
formation by investing short-term deposits in long-term assets and informational
asymmetries between depositors and borrowers, as well as debtholders and firm
managers having so-called misaligned principal-agency problems, leading to agents
not acting in the best interest of the principal. Another example is the parallel of finan-
cial stability to a public good and its absence to externalities like pollution, as each
entity manages its own risks with no need to consider its impact on the system-wide
risk as a whole. Bandt and Hartmann (2002) relate fragilities in financial systems to
three causes:

(i) the strong information intensity and intertemporal nature of financial contracts
and transactions;

(ii) the balance-sheet structures of financial intermediaries with a high reliance on
debts or leverage, and maturity mismatches between assets and liabilities; and

(iii) the high degree of interconnectedness between financial intermediaries and
markets.

In the following, this subsection focuses on the above mentioned three main features
behind the fragility of financial systems as identified by Bandt and Hartmann (2002).

First, the information intensity and control intensity relates to the fact that financial
decisions concern intertemporal allocation of purchasing power [see, e.g., Stiglitz
(1993)]. This relates to the issue of asymmetric information, in which lenders do not
have full information about the intentions of the borrower, such as whether or not
they are capable and/or willing to repay their debt. Likewise, the intertemporal nature
leads to an inherent need for a lender to trust either the borrower to repay her debt
or a third party to enforce the contract, not the least as the intertemporality leaves
room for renegotiations of contracts. Thus, the decisions have their basis in whether
the outcome of future asset values and future cash flows promised in contracts will
meet expectations, such as is the case with deposit contracts. Another obstacle is
changes in uncertainty affecting investment and disinvestment decisions [see, e.g.,
Shiller (1989)]. This leads, for instance, to substantial changes in asset prices not
being explained by their fundamentals (e.g., companies’ earnings and inflation rates
are fundamentals to shares and exchange rates, respectively).

Second, the maturity-mismatch structure of banks is described by taking fixed-
value deposits and enabling them to be withdrawn at a short notice, as well as by
lending long term to the industry [see, e.g., Bryant (1980)]. When exceptionally
high withdrawals occur and long term loans cannot be liquidated, the small fraction
of held reserves may lead to insolvency. Hence, the strength of a bank depends on
both the capability of lending to profitable investment projects and the confidence of
depositors on the bank’s loan book, as well as the confidence that other depositors
will not run the bank. Yet, the better the deposit insurance scheme the less likely are
confidence crises.While many fragilities relate to financial intermediaries in general,
Goodhart et al. (1998) note that these types of confidence problems do most often
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only apply to banks, except for cases when the non-bank intermediary is a part of
the same entity as a bank.

Third, the complex interconnectedness and network structure of banks in
particular and financial intermediaries in general implies that the failure of one bank
may affect others [see, e.g., Humphrey (1986) and Folkerts-Landau (1991)]. Bandt
and Hartmann (2002) relate the networks of real exposures among banks to consist
partly of interbank lending and partly of those in wholesale and retail payment and
settlement systems. While the aim of the interbank lending market is to provide a
channel for short-term lending and borrowing to banks, a sudden low transaction
volume in this market due to various reasons may lead to liquidity problems, such
as during the financial crisis of 2007. Likewise, the exposures in payment and set-
tlement systems may be large enough for a failure to meet payment obligations of
one bank to impact the capability of other banks fulfilling their payment obligations.
This could subsequently lead to failures spreading through amplified domino effects.
However, the better the risk management measures, margin requirements and port-
folio insurance, the more robust are payment and settlement systems (Bandt and
Hartmann 2002).

These particularities support the role of governments andother supervisory author-
ities in addressing and monitoring systemic risks.

2.1.4 A Systemic Risk Cube

Above, we discussed systemic risk in broad terms, whereas the inherently complex
issue can reasonably not be covered by such a simple definition. Hence, there is
a need for a more precise and structured definition. To give some structure to the
concept, the definition used herein is untangled with the help of the systemic risk
cube (henceforth the risk cube) shown in Fig. 2.2. The risk cube presented here is
an adapted version of that in ECB (2010). It represents the European Central Bank
(ECB)’s conceptual framework for systemic risk and has its origin in the works by
Bandt et al. (2009), ECB (2009), Trichet (2009) and ECB (2010). The sequel of
this chapter is to a large extent guided by, and often paired with, the systemic risks
identified through the risk cube.

Due to the great complexity of systemic risk, a virtue of the risk cube is that it
not only helps untangling the forms of systemic risks, but also enables a subsequent
mapping of them to the theoretical and empirical literature, as well as to analytical
tools for identification and assessment of risks. The three dimensions of the risk
cube are the triggers, origins and impacts. The nature of triggers unleashing the
crisis could take the form of an exogenous shock, which stems from the outside of
the financial system (e.g., a macro-economic shock and events like natural disas-
ters or political turmoil), or could emerge endogenously from within the financial
system or some other part of the economy (e.g., from financial intermediaries, mar-
kets and infrastructures). The origins of the events may be distinguished to limited
idiosyncratic shocks and widespread systematic shocks. While idiosyncratic shocks
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Fig. 2.2 Systemic risk cube with three forms of risks. Notes The figure represents the systemic risk
cube with three dimensions and systemic risks, as well as possible market imperfections underlying
systemic risk. It is an adapted version of that in ECB (2010)

are those that initially affect only the health of a single financial market, financial
intermediary or asset, systematic shocks are those that, in the extreme, affect the
financial system as a whole, such as the entire banking sector. Here, it is important
to pay regard to the differentiation of the terms systemic and systematic. Bandt and
Hartmann (2002) note that a systematic shock may cause a systemic event, but a
systemic event does not need to have its origin in a wide systematic shock. Further,
the impact of the events may be divided into those causing problems for a range of
financial intermediaries and markets in a sequential and simultaneous fashion.

To reduce the complexity of the risk cube, combinations of its elements (the
triggers, origins and impacts) may be limited to the materialization of three broad
and interrelated forms of systemic risk (see Fig. 2.2):

(i) endogenous build-up and unraveling of widespread imbalances (red boxes);
(ii) exogenous aggregate shocks (blue boxes); and
(iii) contagion and spillover (green boxes).

The first form of systemic risk refers to the risk that widespread imbalances, that
have built up over time, unravel abruptly. The underlying problems are caused by an
endogenous build-up of imbalances in one or several parts of a financial system, such
as high concentrations of lending in certain parts of the economy or credit booms
in general. While these imbalances, some may even say bubbles, may in the short
term last with mainly profitable implications, a shock leading to a repricing of risk
may be triggered by even a small event or change in expectations. This resembles
Kindleberger’s (1978) and Minsky’s (1982) financial fragility view of a boom-bust
credit or asset cycle. Hence, the subsequent abrupt unraveling of the imbalances may
be endogenously or exogenously caused by idiosyncratic or systematic shocks, and
may have adverse effects on a wide range of financial intermediaries and markets
in a simultaneous fashion. Second, systemic risk may also refer to a widespread
exogenous aggregate shock that has negative systematic effects on one or many
financial intermediaries and markets at the same time. For instance, if banks go bad
during recessions, they can be said to be vulnerable to economic downturns. The
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third form of systemic risk is contagion and spillover, which usually refers to an
idiosyncratic problem, be it endogenous or exogenous, that spreads in a sequential
fashion in the cross section. For instance, a failure of one financial intermediary
causing the failure of another financial intermediary, which initially seemed solvent,
was not vulnerable to the same risks and was not subject to the same original shock
as the former. It is worth noting that contagion refers to a situation when the initial
failure is entirely responsible for subsequent ones, whereas the term spillover is
commonly used when the causal relationship is not found or cannot be tested [see,
e.g., ECB (2010)].

A categorization of systemic risks into the three forms providesmeans for a further
discussion on the empirical and theoretical literature.

2.2 Theoretical and Empirical Underpinnings

This section draws upon the above defined terms and concepts. In light of the above
discussion, the section reviews and discusses theoretical and empirical works on
systemic risk. In both subsections, three parts match the identified forms of systemic
risk. This chapter draws upon literature reviews in Bandt and Hartmann (2002),
Bandt et al. (2009) and ECB (2009), in addition to a wide range of other sources to
which in-text references are provided.

2.2.1 Theoretical Models

This subsection discusses the theoretical literature related to the three forms of sys-
temic risk. While the literature is currently developing at a tremendous pace, many
important older works continue to be relevant.We start by discussing the literature on
lending booms and build-ups of imbalances that goes half a century back in time, then
we focus on theoretical works on macroeconomic aggregate shocks to the economy,
and finally on the literature on interbank contagion.

Endogenous Build-up of Widespread Imbalances

The notion of financial fragility and lending booms relates back to early work by
Minsky (1977, 1982) and Kindleberger (1978), who pinpointed common historical
reasons for financial crises to be the endogenous build-up and abrupt unraveling of
widespread imbalances. The early authors explain the boomandbust cycle as follows.
The imbalances oftentimes derive from the pro-cyclicality of financial behavior; in
good times consumption and investment increases, which generates income, and
further fuels consumption and investment. During this time of “euphoria” and “gre-
garious behavior”, the financial activities becomemore speculative, or even so-called
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Ponzi finance, in which a lack of expected income flows causes a reliance on the rise
of market value of assets or income to pay off interest or principal. In this “virtuous”
circle, risks are often neglected with mainly profitable implications in the short term.
Then, even a small trigger, shock, change in expectations, or other type of event, be
it exogenous or endogenous, may lead to a repricing of risk, an end of the boom,
unraveling of imbalances and possibly simultaneous adverse effects to intermediaries
and markets. This event may even be called aMinsky moment—a term coined by the
managing director of PIMCO, Paul McCulley, in 1998 when describing the Asian
financial crisis. The early literature has its core in uncertainty rather than only risk,
such as the discussion on the relation between Knightian uncertainty and investment
returns and risk premiums in Guttentag and Herring (1984). The same authors also
explain disaster myopia by subjective probabilities of disastrous events diminishing
when time elapses after the previous realization of such an event. The here described
characteristics of a financial stability cycle emerges, according to the early authors,
endogenously in economies with particularly unregulated financial markets.

There are a number of reasons to the build-up of imbalances, of which four key
notions are summarized, as is categorized in ECB (2009). First, financial markets
are inherently featured by herd behavior, leading to entities sharing similar risks.
Banerjee (1992) and Bikhchandani et al. (1992) describe these as rational herding
waves, if relative returns of investments are highly uncertain. Likewise, the herding by
Scharfstein and Stein (1990) involves investment or fund managers and loan officers
that mimic each other when they are evaluated, which steers pay or reputation, in
relation to the rest of the market. Second, the so-called curse of low interest rates
may diminish incentives to screen borrowers when interest rates are low [see, e.g.,
Dell’ariccia and Marquez (2006)]. Low interest rates over a wide maturity spectrum
have more often than not been quoted as an element of the imbalances prior to the
current crisis. Another obvious channel is an increase in collateral values, such as real
estate prices, when interest rates are low. For further discussions on the effect of low
rates on crises, see Allen and Gale (2007). Third, positive shocks to collateral, while
enhancing the borrowing capacity in an economy, may also contribute to leverage
cycles (Kiyotaki andMoore 2002).When an industry, or another industrywith similar
collateral, benefits from an increase in collateral value, it also allowsmore borrowing
and investment, and thus further amplifies leverage. Likewise, Geanakoplos (2010)
asserts that variation in leverage impacts volatility in asset prices and thus contributes
to financial booms and busts. He explains it by there being high-leverage buyers for
whom an asset is more valuable than it is for others, for instance, due to them being
more sophisticated investors, better in hedging exposures to the assets or less risk
averse. This drives prices up, whereas losses in wealth will, due to leverage, move
the assets into more pessimistic hands, which again amplifies the decrease in value.
Fourth, risk-taking and moral hazard may also be amplified by better safety net
provisions. One example is a decrease in depositors’ incentives to screen bank risks
through deposit insurance [see, e.g., Boot and Greenbaum (1993)]. Similar effects
can be derived from public bailouts or lenders of last resort, that is, an institution
providing credit in the lack of other sources and with the aim of preventing failures
of important institutions.
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Exogenous Aggregate Shocks

It is no new notion that macroeconomic shocks or economic downturns have been a
trigger of many historical financial crises [see, e.g., Gorton (1988)]. Yet, the theoret-
ical literature directly addressing the topic is somewhat scarce. Even though direct
interbank connections and contagion is missing, banking crises have still occurred
simultaneously with aggregated shocks. Banks may be seen as vulnerable to aggre-
gated shocks as credit risks occur on the asset side while liabilities are most often
unaffected. A key point byHellwig (1994) is that the effect ofmacroeconomic shocks
wouldbedecreasedby letting liabilities bedependent on themacroeconomic state and
depositors share the burden of asset losses. Still, banks expand credit, relating to the
above discussed lending booms, while knowing that the risks may lead to problems
as banks cannot pass on the risk to depositors. In individual bank models, any infor-
mation on the the macroeconomic state provides a signal about the quality of banks’
loans to depositors. Accordingly, Allen and Gale (1998) show that macroeconomic
shocks may lead to a banking crisis if depositors make their withdrawal decisions
based upon leading indicators of business cycle fluctuations. Likewise, Chen (1999)
illustrates in his model that adverse macroeconomic events also increase the proba-
bility of bank contagion. One may also assert the reverse when the business cycle is
affected by restrictions in bank lending caused by financial fragility (Mishkin 1991).

Contagion, Spillover and Shock Propagation

A common feature of financial instabilities, in particular banking crises, is the notion
of contagion. There is a rich and broad literature on the phenomenon. The theoreti-
cal literature may be distinguished into three types of contagion: (i) bank runs, and
(ii) contagion through interbank lending and (iii) payment systems.This relates to two
types of transmission channels. The first type of contagion can be defined to occur
through the information channel, such as deposit withdrawals of creditors to whom
the health and exposures of banks are imperfect, whereas the two latter types occur
through real channels, such as domino effects through common exposures in inter-
bank markets and payment systems.

The first type of contagion is related to bank runs. These events are mostly char-
acterized by two features. First, the most prone banks and banking systems to runs
to retail depositors are those not covered by deposit insurance schemes. Second,
imperfectly informed investors judge the health of their own bank based upon the
health of other banks. There is a wealth of literature on single banks’ health based
upon the balance-sheet structure and the intertemporal nature of financial contracts
(as previously noted in Sect. 2.1.3), such as Bryant (1980), Diamond and Dybvig
(1983) and Jagannathan (1988). The classical Diamond-Dybvig model illustrates
how depositors’ expectations of a bank run increase their incentives to withdraw
their deposits, as late withdrawers lose all or some of their deposits. However, today’s
thorough deposit insurance schemes function as safety nets for this type of contagion,
which might be one of the main reasons why recent waves of crisis have not, as yet,
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experienced this transmission channel. Hence, it is important to distinguish between
the notions of a bank run affecting one entity and a banking panic affecting multiple
entities, i.e., the systemic nature of runs.

Bank runmodels have, accordingly, been extended tomultiple banks. Chen (1999)
presents an extension of the Diamond-Dybvig model, where the difference is that
Chen includes two kinds of depositors: thosewho are informed and uninformed about
the value of a bank’s assets. As informed depositors are able to withdraw earlier when
they comprehend that the bank cannot repay all depositors, the uninformed depositors
may have an incentive to disregard their own information and respond to other sources
of more noisy information (e.g., the failure of other banks). These misinterpretations
may cause bank runs to become contagious. One might also reason that bank runs
based upon noisier information incur higher societal costs as it might lead to defaults
of healthier banks than those caused by expectations based upon correct information.

The second type of contagion focuses on the interbank market. This has also
been a key focus of many contagion studies since the 1990s. While differences in
liquidity shocks may be solved through interbank lending, the physical exposures
among banks provide a channel for contagion. For instance, Rochet and Tirole (1996)
show that peer monitoring, while resolving problems with moral hazard among bank
shareholder managers and bank debt holders, also causes contagion risk. Along the
same lines, Allen and Gale’s (2000) model of interbank market exposures shows that
even a small aggregate liquidity shock in a particular region can lead to systemic risk.
A bankruptcy of one bankmay cause other banks, which have deposits in it, to also go
bankrupt. The key implication of many studies, yet not all, is that the more complete,
or diversified, the markets in terms of lending relationships, the more resilient to
contagion is the system.

More recent research has applied network theory to model connections between
banks in the asset and liability side of the balance sheet. For instance, the findings
of Babus (2006) corroborate those of Allen and Gale (2000) by considering optimal
interbank network formations to reduce the risk of contagion. Leitner (2005), on the
other hand, finds that the more interbank linkages a network exhibits, the better the
risk sharing among banks, while the higher the potential for contagious multiple-
bank failures. Conversely, emergency liquidity assistance by central banks may be
motivated by surplus banks in the interbank market under-providing banks with a
cash shortage, as suggested in Acharya et al. (2012). Further, already early literature
has pointed out potential effects of information problems on interbank contagion.
For instance, Flannery (1996) relates asymmetric information to interbank contagion
through imperfect information on the quality of rivals’ borrowers. A shock to the
financial system may hence lead to a stop in interbank lending and hoarding of
liquidity, something related to the recent crisis by Cassola et al. (2008).

The third type of contagion relates to payment systems. The interbank lending
between financial intermediaries is determined by large-value payment systems. The
lending through payment systems, while not being as explicit as interbank lending,
is a more detailed view of interbank exposures that may influence the propagation
of shocks. From the larger family of payment systems, the main source of systemic
risk derives from pure net settlement systems as netting of payments and infrequent
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settlements may continue for a longer time, such that they accumulate to significant
exposures [see, e.g., Freixas and Parigi (1998)]. Kahn et al. (2003) relate vulnerabil-
ities of gross settlement systems to gridlocks and payment delays. The problems in
pay-ins may be driven by high opportunity costs in foregone interest rate and doubts
about other banks’ solvency.

2.2.2 Empirical Findings

Next, we survey empirical works with a focus on explaining the three forms of
systemic risks. The main focus lies on comparing the scope of the theoretical studies
to the evidence provided by empirical studies.

Endogenous Build-up of Widespread Imbalances

The build-up phase of widespread imbalances and the relation between a financial
system’s pro-cyclicality and fragility is, due to numerous reasons, not an entirely
straightforward question. This is illustrated by a multifaceted literature. Gourinchas
et al. (2001) point to the importance of lending by showing in a large cross-country
study that the likelihood of a banking crisis is higher directly after a lending boom
than during tranquil periods. Likewise, findings byDell’ariccia et al. (2012) andMian
and Sufi (2009) suggest that lending standards related to the mortgage market in the
US declined prior to the ongoing financial crisis, in particular in areas with larger
mortgage credit booms, house price booms and mortgage securitization rates. How-
ever, a key monetary policy tool that obviously plays a vital role in pro-cyclicality
is the interest rate. Jiménez et al. (2007) and Ioannidou et al. (2009) find that reduc-
tions in interest rates often first affect positively the net present value of loans, but
then with low loan rates banks attempt to re-establish profitability by moving into
riskier loans. These risks, while often having somewhat long build-up episodes, may
materialize suddenly and strongly either to rises in interest rates or some other unex-
pected trigger. Another factor leading to pro-cyclical effects is financial regulation.
Repullo et al. (2010) illustrate the pro-cyclicality through capital requirements that
are increasing functions of various regulatory measures of default likelihood, which
often affect the the supply of credit by decreasing in good times and rising in bad
times.

Another line of research has focused on the determinants of banking crises through
the analysis of univariate indicators (i.e., the so-called signaling approach) and mul-
tivariate regression. In general, periods prior to systemic banking crises have been
shown to be explained by traditional vulnerabilities and risks that represent imbal-
ances like lending booms. By an analysis of univariate indicators, Alessi and Detken
(2011) show that best-performing indications of boom/bust cycles are given by liq-
uidity in general and the global private credit gap in particular. Borio and Drehmann
(2009a) show that banking crises tend to be preceded by strong deviations of credit
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and asset prices from their trend. Likewise, in a multivariate regression setting,
vulnerabilities and risks have, overall, been shown to precede country-level crises
on a large sample of developed and developing countries in Demirgüç-Kunt and
Detragiache (1998) and for the US, Colombia and Mexico in Gonzalez-Hermosillo
(1999), as well as on a bank level in Eastern European transition economies in
Männasoo and Mayes (2009). Borio and Lowe (2002) and Borio and Lowe (2004)
show that already several years prior to the current financial crisis a lending boom
was awaiting behind the corner if not already visible. Lo Duca and Peltonen (2013)
show that modern financial crises have been preceded by a range of macro-financial
vulnerabilities and risks, particularly credit growth, equity valuations and global
measures like GDP growth, real credit growth and leverage. This only provides a
snapshot of the broad literature, but clearly illustrates the unanimity of imbalances
preceding modern financial crises.

Exogenous Aggregate Shocks

Aggregate shocks in terms of economic downturns have commonly been shown to
precede systemic banking crises. Gorton (1988) shows that a large share of bank-
ing crises in the US in the latter part of the 19th and the early part of the 20th
century occurred as reactions of depositors to cyclical downturns and could hence
have been correctly called with a standard model for forecasting the business cycle.
While partly being related to the literature on the build-up of imbalances, systemic
crises may be explained with traditional macroeconomic fundamentals (e.g., current
account imbalances, gross domestic product (GDP) growth, real interest rates and
inflation). Macroeconomic fundamentals have been shown to be statistically signif-
icant explanatory variables on a sample of the United States (US), Colombia and
Mexico (Gonzalez-Hermosillo 1999), the Eastern European transition economies
(Männasoo and Mayes 2009) and European banks during the ongoing crisis (Betz
et al. 2014). These studies have, however, long forecast horizons, which relates
them to imbalances and vulnerabilities prior to the crises. Yet, a number of authors
show that also the timing of banking crises is related to macroeconomic fluctuations,
rather than other competing factors, such as contagion. Gorton (1988) illustrates evi-
dence for the US, Gonzalez-Hermosillo et al. (1997) for the Mexican crisis of the
mid-1990s and Demirgüç-Kunt and Detragiache (1998) for a sample of developed
and developing countries. Further, whereas Alfaro and Drehmann (2009) show that
a large number of banking crises were preceded by decreases in GDP growth, the
share that do not experience weakened GDP points at other driving factors, e.g.,
macroeconomic feedback effects due to the fact that GDP generally drops during
post-crisis episodes.

While extreme value theory is mostly used to understand the third category of sys-
temic risk, the study of interbank contagion, it may also be used to compute so-called
tail-betas for banks. Given an extreme crash in the market, the tail-betas illustrate
how the probability of crashes in individual bank stocks would be influenced. The
significance of aggregate shocks in stock markets in the US (Straetmans et al. 2008)
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and Europe (de Jonghe 2010) relates this to the concept of systemic risk. In European
context, de Jonghe (2010) finds that banks with a large share of non-interest generat-
ing activities are more vulnerable to these aggregate shocks. Further, a comparative
analysis of the shocks in the two continents is put forward by Hartmann et al. (2005).
They find the effects of macro shocks on banking systems to be relevant, but similar,
in the euro area and the US. Interestingly, they also show that the introduction of the
euro had close to no effect on banking system risk, and relate it to the possibility that
the better risk sharing and ability to absorb shocks would be offset by increases of
cross-border crisis transmission channels.

Contagion, Spillover and Shock Propagation

In the early contagion literature, the main attempts were related to measuring con-
tagious effects of bank failures on stock prices of other entities. In addition to those
studies, the empirical literature on measuring interbank contagion can be matched
to the three types of theoretical works: bank runs, interbank lending and payment
systems.

Early studies have attempted to capture contagion through variation in stock
prices, e.g., by measuring effects of bank failures on stock prices of other enti-
ties using event studies. Aharony and Swary (1983) and Peavy and Hempel (1988)
focused on (US) banks, and their resilience to a number of failures. However, many
pieces of work along this line [see, e.g., Slovin et al. (1993) and Dockinga et al.
(1997)] foundmixed results on contagion effects depending on the considered banks.
The concept of contagion in terms of adverse stock market reactions also has been
asserted as being intertwined with flight-to-quality effects, where losses of someone
are benefits of others [see, e.g., Caballero and Kurlat (2008)], and to similar expo-
sures rather than pure interbank contagion [see, e.g., Smirlock and Kaufold (1987)
and Wall and Peterson (1990)]. One explanation to the mixed results might be typi-
cally observed differences in patterns during tranquil and crisis periods, where crises
include non-linear and extreme stock-price movements. Hence, the more recent lit-
erature has turned the focus from regular stock price reactions to substantial ones.
One potential line of research is the use of extreme value theory to estimate the
spillover risk among large and complex banks [see, e.g., Hartmann et al. (2005)].
The findings of Gropp et al. (2009) illustrate that cross-border contagion risk among
key European countries was significant and increased between the early 1990s and
early 2000s. Yet, the focus herein is on matching the empirical works to the three
groups of theoretical studies.

The first group of models based upon theoretical research aiming at capturing
contagion through bank runs focuses on analyzing deposit flows. When there is no
deposit insurance, such as during the Great Depression in the US, Saunders and
Wilson (1996) have identified episodes when “bad news” about one bank caused on
some occasions withdrawals from other banks (i.e., herding behavior), and on other
occasions depositions in other banks (i.e., flight-to-quality effects). The results of
Calomiris and Mason (1997, 2003) show equally divisive results, as they observe



30 2 Macroprudential Oversight

contagious behavior of uninformed investors on some occasions and not on other.
Allen andGale’s (2000) assertion of interbank lending explaining contagious deposit
withdrawals is corroborated in a case study on an Indian bank failure in 2001 by Iyer
and Peydró (2011). They show that interbank exposures to a failing bank drive retail
deposit withdrawals from the exposed banks. Likewise, Van Rijckeghem and Weder
(2003) test in an international context the directions of bank flows during three major
financial crises. After the Mexican crisis in the mid-1990s and the Asian crisis in the
end of the 1990s, the authors show that spillovers from one country to another was
caused by creditor banks’ exposures, whereas not during the Russian crisis in 1998.

The second group of contagion models focuses on using counterfactual simula-
tions on balance-sheet data to assess contagion risk through the channel of interbank
lending. The network exposures are most commonly balance-sheet linkages and the
simulations often test the effects of a failure of one or several banks on the rest of the
network. The simulations are, however, somewhat sensitive to underlying assump-
tions like the share of recovered assets from failed banks. Accordingly. the literature
has presented far from unanimous results, as simulated contagion risk is negligi-
ble in Austria, Belgium, Italy and US (Elsinger et al. 2006; Furfine 2003; Mistrulli
2011), whereas the risks are larger in Germany and the Netherlands (van Lelyveld
and Liedorp 2006; Upper and Worms 2004).

The third group of contagion models focuses on using simulations in large-value
payment systems to assess interbank contagion risk. Contagion in payment systems
has been explored through similar simulations. Using payment data andMonte Carlo
simulations, the early literature has identified significant contagion risks in net set-
tlement systems [see, e.g., Humphrey (1986)]. However, given appropriate risk man-
agement in payment systems (e.g., legal certainty for multilateral netting, limits
on exposures, collateralization and loss sharing), some later studies have shown
that interbank contagion risk may be contained. Soramäki et al. (2007) explore the
network topology of the interbank payments over the Fedwire Funds Service, the
payment system operated by the 12 Federal Reserve Banks of the US. Whereas
they show a low average path length and connectivity for the network, as well as a
tightly connected core of banks and a close to scale free degree distribution, they
still point out that it is not clear how the degree distribution and other topologi-
cal measures relate to contagion. Wetherilt et al. (2010) make use of a dataset of
individual trades in the United Kingdom (UK) Clearing House Automated Payment
System (CHAPS) to construct a network of overnight market lending. They illustrate
a diversification of lending relationships that decreases their dependence on the core
during the crisis, in order to attempt reducing funding liquidity risk, but make no
direct conclusions about overall resilience of money market liquidity. Further, using
data from the pan-European large-value payment system (i.e., the Trans-European
Automated Real-timeGross Settlement Express Transfer System (TARGET)), Galos
and Soramäki (2005) illustrate low systemic consequences of one bank’s failure on
the solvency of other banks. This indicates that today’s payment systems exhibit a
low risk of having systemic consequences.
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2.3 Tools for Safeguarding Financial Stability

The literature, while in many aspects being in its infancy, has provided a variety of
tools for safeguarding financial stability. This section focuses particularly on tools for
early identification and assessment of risks. Following ECB (2010), models can be
distinguished into three broad analytical approaches that match the identified forms
of systemic risks:

(i) early-warning models,
(ii) macro stress-testing models and
(iii) contagion and spillover models.

While the first approach aids in risk identification, the second and third approaches
provide means for risk assessment. From the viewpoint of the risk cube (see Fig. 2.2),
each of these aim to detect at an early stage one of the three forms of systemic risk:
(i) imbalances, (ii) aggregate shocks and (iii) contagion. First, early-warning models
can be used to derive probabilities of impending systemic financial crises. Second,
macro stress-testing models provide a means to assess the resilience of the financial
system to a wide variety of aggregate shocks. Third, contagion and spillover models
can be employed to assess how resilient the financial system is to cross-sectional
transmission of financial instability. In addition to models for early identification
and assessment, the literature has provided a large set of coincident indicators that
measure the current state of instability in the financial system. While these serve as
means to measure the contemporaneous level of systemic risk, and thus may be used
to identify and signal heightened stress, they are not designed to have predictive
capabilities. This is not the focus of this book, but it is worth noting that ex post
measures may serve a function in communicating the occurrence of unusual events
to resolve fear and uncertainty, e.g., after the so-called flash crash of May 6, 2010
in the US (Bisias et al. 2012). In the sequel of this section, we focus on the three
analytical approaches to derive tools for early identification and assessment of risks.
In line with the focus of this book, the final subsection summarizes advances in
visualization approaches in both risk identification and risk assessment.

2.3.1 Early-Warning Indicators and Models

Early-warning exercises may be performed with a wide range of methods and indi-
cators, which are also known in the literature as Early Warning Systems. The main
aim of these tools is to predict vulnerable states prior to financial instabilities and
crises. Hence, they oftentimes first define an index of financial instability or stress in
an entity, e.g., country, bank or market. The contemporaneous level of systemic risk
may, for instance, be derived from coincident stress indices, such as the Composite
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Indicator of Systemic Stress (CISS) by Holló et al. (2012).1 A threshold, or some
combination with other rules, on the index value defines binary crisis/tranquil events
for the entities. For the models to focus on imbalances, risks and vulnerabilities, a
binary pre-crisis variable is then set to 1 during some specific horizon prior to the
crisis events, and to 0 in all other periods. The other part of data used is a set of vul-
nerability and risk indicators. These are chosen and transformed according to their
performance in explaining and predicting the binary pre-crisis variable. The outputs
of such models mostly take the form of a probability of a crisis within a specific time
horizon and are monitored with respect to threshold values (or cut-off values).

The early univariate signaling literature used country-specific percentile transfor-
mations of single indicators and turned them into signals by choosing an optimal
threshold. The optimal threshold is commonly chosen based upon specified weights
on the loss of type I and II errors (see Sect. 7.2 for an overview of evaluation frame-
works and the one used in this book). Kaminsky and Reinhart (1996) and Kaminsky
et al. (1998) introduced the signaling approach for predicting currency crises. Lately,
it has been applied to boom/bust cycles (Alessi and Detken 2011), banking system
crises (Borio and Drehmann 2009a), and to sovereign debt default (Knedlik and
Schweinitz 2012). However, the key limitation of this approach is that it does not
enable any interaction between or weighting of indicators, while an advantage is that
it demonstrates a more direct measure of the importance and provides a ranking of
each indicator.

Much of the early-warning literature deals, however, withmodels that rely on con-
ventional statistical methods, such as logit/probit models. Logit or probit regressions
use on the left-hand side the binary pre-crisis variable and on the right-hand side
the early-warning indicators. The linear regression models make use of a cumulative
probability function to force the value of the predicted variable within the interval
[0, 1]. This estimation provides a direct aggregate measure of the intensity of the sig-
nal, i.e., the probability of an impending crisis. The two models are similar, except
that the probit model uses the cumulative normal distribution and the logit the cumu-
lative logistic function to transform variables into the [0, 1] interval. Logit and probit
models have frequently been applied to predicting financial crises. Eichengreen and
Rose (1998), Frankel and Rose (1996) and Sachs et al. (1996) provide some early
applications of probit/logit analysis to currency crisis prediction. Later, Berg and
Pattillo (1999) apply a probit model to predicting currency crises; Schmidt (1984)
and Fuertes and Kalotychou (2006) to predicting debt crises; Barrell et al. (2010) to
predicting banking crises; and Lo Duca and Peltonen (2013) to predicting systemic
crises. For an early, yet comprehensive, review, see Berg et al. (2005).

In comparison to the signals approach, binary-choice methods allow for a mul-
tivariate approach to estimating crisis probabilities, while providing means to rank

1 There are many coincident stress indices. For instance, Illing and Liu (2006) focus on measuring
financial stress in Canada and Hakkio and Keeton (2009) discuss more broadly what financial stress
is, how it can be measured and why it matters. Cardarelli et al. (2011) and Balakrishnan et al. (2009)
construct financial stability indices for a broad set of advanced and emerging economies, whereas
the CISS aims at measuring stress in the euro area.

http://dx.doi.org/10.1007/978-3-642-54956-4_7


2.3 Tools for Safeguarding Financial Stability 33

risks and assess most significant indicators, but still depend largely on a number of
restrictive assumptions. While being non-linear in nature, the relationship between
indicators and the events is still assumed to consistently follow some specific func-
tion (e.g., logistic or normal). Further, the lack of interactions between indicators
may also limit performance as indicators of debt, currency, and systemic crises have
been shown to be non-linearly related (Fioramanti 2008; LoDuca and Peltonen 2013;
Arciniegas Rueda and Arciniegas 2009). While interaction terms can be included in
logit/probit specifications, manually specifying the complex relations between and
interactions among various economic and financial factors is a demanding task. This
should be accounted for when choosing a predictive method.

A new approach to early-warning modeling has been the introduction of meth-
ods commonly used in subfields of computer science, such as data mining, machine
learning and pattern recognition. Since the turn of last century, the use of such
intelligent, oftentimes also distribution-free and non-parametric, techniques in cri-
sis monitoring have increased. Indeed, the flexible non-parametric techniques have
slightly improved results in ex post crisis prediction [see Demyanyk and Hasan
(2010) for a review]. The key methods in non-parametric early-warning models have
so far been based upon biologically inspired computing in general and articial neural
networks (ANNs) in particular (Nag and Mitra 1999; Franck and Schmied 2003;
Peltonen 2006; Fioramanti 2008). The first to publicly try predicting financial crises
with the help of an ANN were Nag and Mitra (1999). Their findings on predict-
ing the Malaysian, the Thai and the Indonesian currency crises suggested that their
ANN approach performed better than the signaling approach. Similarly, Franck and
Schmied (2003) also concluded that their application of an ANN for predicting the
speculative attacks in Russia in 1998 and Brazil in 1999 outperformed a logit model.
Peltonen (2006) used an ANN to predict the Asian currency crisis and showed that
it outperforms a probit model. Fioramanti (2008) shows in his study that a non-
parametric ANN-based early-warning model outperforms analyses using the signals
approach and probit or logit models. Yet, when the focus is on the introduction of
one specific method, it is important to note that mostly “successful” experiments are
reported.

A task that remains to be unexplored is the choice of indicators in the models. A
large number of studies use univariate predictive performance in terms of the signal-
ing approach to assess the extent of discriminatory power of individual indicators
[e.g., Kaminsky et al. (1998), Alessi and Detken (2011) and Lo Duca and Peltonen
(2013)], of which Lo Duca and Peltonen (2013) use the best predictors as an input
to a logit regression. Still, due to the possibly complex interactions, the choice of
indicators should be performed in a multivariate setting.

2.3.2 Macro Stress-Testing Models

The key family of tools for assessing risks of exogenous aggregate shocks is that
of macro stress-testing models. Hence, while the above discussed tools aim at
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risk identification, the tools for risk assessment are literally of different nature.
Stress-testing models allow policymakers to assess the consequences of assumed
extreme, but plausible, shocks for different entities. As stress-testing is no new con-
cept, there is a broad literature not only on micro stress-testing, but also on the macro
level. While being macro stress-tests, they commonly follow many principles used
in micro stress-testing and risk management to assess the loss potential of specific
portfolios given extreme market conditions [see, e.g., McNeil et al. (2005)]. Kida
(2008) pinpoints the differences between micro and macro stress-testing to three key
factors. First, macro models commonly include multiple banks with different portfo-
lios, where differences affect how resilient one bank is to shocks and how shocks to
one bank affects the system. Second, macro models oftentimes include multiple time
points by enabling shocks to propagate for several periods. Third, a macro stress-test
focuses on how risk is propagated between banks or between sectors. The recent
handbook edited by Quagliariello (2009) provides a comprehensive overview of the
macro versions of such models.

The key question of macro stress-testing, or stress-testing in general, is finding
the balance between plausibility and severity of the stress scenarios such that they
are plausible enough to be taken seriously and severe enough to be meaningful [see,
e.g., Alfaro and Drehmann (2009) and Quagliariello (2009)]. Then, the assessment
of shocks most often includes also the propagation of the shock among entities. Kida
(2008) pinpoints the feedback (or risk transmission and propagation) mechanisms
into four key types: (i) interbank contagion (e.g., when exposures to risk spread
through the interbank loans market), (ii) correlation between credit and market risks
(e.g., when increases in interest rates raise the probability of default of borrowers of a
bank, and causes thus also increases in interest rates), (iii) correlation between asset
prices and the portfolio adjustment mechanisms of a bank (e.g., when increases in
asset prices damage banks’ balance sheets, leading to large-scale sales of assets, and
thus further decreasing asset prices), (iv) propagation of shocks between the financial
system and the real economy (e.g., when banking system shocks affect economic
activity, and thus further weaken banks’ credit environment). Contrary to the early-
warning model literature, stress-testing does not attempt to derive the likelihood and
severity of shocks, but rather takes that as given. This information could, obviously,
come from an early-warning indicator or model. In a macro setting, a policymaker is
more interested in the resilience of the financial system more broadly, or the banking
system in particular. Policymakers may hence test various adverse scenarios and
design policy actions related to individual institutions or the general architecture if
the resilience of the system is judged not to be strong enough.

A macro stress-testing approach to assessing a banking system uses multiple
inputs and consists of a number of different steps. First, most often a basis for the
test is a scenario of an adverse aggregate macroeconomic or macro-financial shock.
This shock may be defined on hypothetical grounds or estimated from data, such as
a tail density forecast of a macroeconometric model. The second step uses a set of
exposures and other mechanisms to link banks to the impact of the adverse scenario.
The links may be banks’ loan books or other credit risk exposures of a bank or a
country-level banking system. Thus, the effects of the scenario are shown as changes
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in the probabilities of default and losses given default, and also lead to indications
of whether and how many banks fail [see, e.g., Castrén et al. (2009)]. Likewise,
Castrén et al. (2010) estimate a so-called global vector autoregressive model and
link it to firms’ default probabilities for a model that may be used for analyzing a
financial sector’s probability of default given a range of macro shocks. Alfaro and
Drehmann (2009) use country-specific univariate autoregressive models to forecast
GDP growth, but focus more on showing that stress scenarios derived from historical
data are not severe enough in comparison to actual events. Hirtle et al. (2009) describe
the stress-testing model of the Supervisory Capital Assessment Program, which tests
a range of macroeconomic scenarios, e.g., variation in GDP growth, housing prices
and unemployment. For comprehensive reviews of the stress-testing literature, see
Sorge (2004) and Drehmann (2009).

2.3.3 Contagion and Spillover Models

The main aim of contagion models is to assess the transmission of financial insta-
bilities in the cross section. Hence, they attempt to answer the question: With what
likelihood, and to what extent, could the failure of one or multiple financial inter-
mediaries cause the failure of other intermediaries? Further, they may also focus on
the failure of one or several financial markets and their likelihood to cause failures
of other markets. Thus, contagion and spillover models attempt to grasp, show and
quantify the transmission channels of instability across financial intermediaries and
markets, as well as market infrastructures [(for comprehensive reviews, see Bandt
et al. (2009) and Upper (2007)]. Herein, we discuss the use of three data sources to
answer these questions: (i) market-based data, (ii) interbank balance-sheet data, and
(iii) interbank payments data.

First, one can use market-based estimates to measure the extreme dependence of
negative asset returns, the so-called tail dependence. The first approach measures
the extent of losses, after controlling for common factors, caused by a large loss of
market value or a large increase in default probability. These approaches commonly
identify tail-risk drivers in a tail-dependence network and enable assessing which
entities are particularly vulnerable to large losses in the market. For instance, IMF
(2009) presents a co-risk model for assessing interdependence among banks under
extreme events and a distress dependencematrix for assessing pairs of banks’ distress
probabilities, both using market data. Likewise, Hautsch et al. (2011) propose the
systemic risk beta as ameasure for financial companies’ contribution to systemic risk
given network interdependence between firms’ tail risk exposures measured using
equity prices. While being widely available and capturing other contagion channels
than those in direct linkages between banks (Acharya et al. 2010), market price data
assume that asset prices correctly reflect all publicly available information on bank
exposures. Yet, it has repeatedly been shown that securities markets are not always
efficient in reflecting information about stocks and are thus vulnerable to mispricing
distortions [see, e.g., Malkiel (2003)]. In addition, market prices are most often
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contemporaneous, rather than leading indicators, and it might be difficult to separate
the factors driving market prices in order to observe bilateral interdependence (Borio
and Drehmann 2009b).

The second approach, on the other hand, uses counterfactual simulations on
balance-sheet data, or some proxy of them. These studies simply simulate to what
extent and whether the failure of one financial intermediary would lead to losses
of other intermediaries. For instance, Castrén and Kavonius (2009) provide a tool
for assessing contagion and the transmission of risk in the euro area financial sys-
tem. They construct a sector-level network of bilateral balance sheet exposures of
the euro area financial accounts data, as well as include sensitivity of the balance
sheets to changes in leverage and asset volatility, to illustrate the propagation of
local shocks in the network. Likewise, Chan-Lau (2010) evaluates, under extreme
adverse scenarios, interconnectedness risk in banking systems among mature and
emerging market economies, and between individual financial institutions in Chile,
using balance sheet-based network analysis. Along these lines, Battiston et al. (2012)
developed a networkmeasure of centrality, the DebtRank, as one approach to capture
the impact of distress in a financial institution to the cross section across the entire
network. Moreover, the IMF (2009) presents a default-intensity model that uses both
direct and indirect linkages in the financial sector, as well as combines them with
failure probabilities of banks, to achieve a measure of the probability of failure of
a large fraction of financial institutions. Yet, balance-sheet data, while measuring
direct linkages between banks, are mostly not publicly disclosed. In many cases,
even supervisors and other market oversight authorities have access to only partial
information.

The literature on the third group ofmodels focusing on payments data is somewhat
scarce. A concern once again is that interbank payment data, likewise interbank lend-
ing data, are locked behind the doors of confidentiality. Yet, while not always making
use of real data, there exist some tools based upon payments data. In particular, the
three compilations edited by Leinonen (2005, 2007, 2009) provide a broad overview
of policy-oriented research on tools for payment systems simulation. Recently, along
the lines of DebtRank for balance-sheet data, Soramäki and Cook (2010) developed a
network metric for payments data, the SinkRank, for identifying systemically impor-
tant banks and most affected banks in the case of distress.

2.3.4 Tools With Visual Capabilities

Data visualization can serve multiple purposes in macroprudential oversight. First,
visual representations can generally be classified to be used to enhance communica-
tion with two audiences: (i) internal and (ii) external. The purpose of use in internal
communication relates to enhancing the understanding of policymakers on various
levels. One task is obviously to support the analysts themselves, and within other
groups of active participants in the process of deriving analytical models. Further,
one may also want to communicate to the outside of the involved counterparties,
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which involves making use of visuals when presenting to the management, entire
divisions and even on the level of the institution or organization as such. The key
task, at the lower level, is to provide means for interaction with visuals in order to
amplify cognition, that is, to better understand and model the task at hand (for fur-
ther discussion see Sect. 4.1), whereas the higher level focuses more on reporting and
presentation of information by the means of oftentimes static visuals. While the case
of low-level analysts can easily be imagined, an example at a higher level could be
the dissemination of identified risks by the risk identification division for assessment
at the risk assessment division. External communication, on the other hand, refers to
conveying information to other authorities with responsibility for financial stability
and overall financial-market participants, such as laymen, professional investors and
financial intermediaries. Whereas this mainly relates to communication of readily
processed and finalized data products, such as on the high level of internal com-
munication, it obviously is a more challenging task due to the large heterogeneity
in the audience. A direct example of such communication is quarterly or biannual
Financial Stability Reports, a recent phenomenon that has quickly spread to a large
number of central banks.

In the context of low-level internal communication of systemic risk modeling,
Flood and Mendelowitz (2013) note that data exploration is an area where visualiza-
tion tools can make a major contribution. They point to the fact that certain tasks of
classification, analysis and triage can be automated, whereas many require a human
analyst, such as the difficulty to train a well-performing machine to analyze anom-
alous financial market activity. This follows the very definition of visual analytics
(see Sect. 4.1.3). Ekholm (2012)—the Deputy Governor of Sveriges Riksbank, the
first central bank to publish a stability report in 1997—notes that there is a strive
for not only openness and transparency, but also clear external communication, in
particular during times of crisis when “a “negative” but reliable announcement can
[...] be better for confidence than a “positive” but uncertain announcement”.

Herein, we discuss a brief overview of used visualization tools for the above
categories of models: (i) early-warning models, (ii) macro stress-testing models,
and (iii) contagion and spillover models.

First, the standard predictive early-warning models may be complemented by the
use of tools amplifying cognition. Due to the complexity of financial systems, a large
number of indicators are often required to accurately assess the sources of financial
instability. As with statistical tables, standard two- and three-dimensional visual-
izations have, of course, their limitations for high dimensions, not to mention the
challenge of including a temporal or cross-sectional dimension or assessing multiple
countries over time. Although composite indices of leading indicators and predicted
probabilities of early-warning models enable comparison across countries and over
time, these indices fall short in describing the numerous sources of distress.

Some recent approaches make use of techniques for multidimensional visualiza-
tion to assess sources of risk and vulnerability.Work by InternationalMonetary Fund
(IMF) staff on the Global Financial Stability Map (GFSM) (Dattels et al. 2010) has
sought to disentangle the sources of risks by a mapping of six composite indices
with a standard radar-chart visualization. Even here, however, the GFSM falls short

http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_4
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in disentangling individual sources, for which separate visualizations are needed. In
addition, familiar limitations of radar charts are, for example, the facts that area does
not scale one-to-one with increases in variables and that the area itself depends on the
order of dimensions. This is illustrated in Fig. 2.3, where Country A and Country B
have an area of significantly (i.e., infinitely) different size but the same aggregate
risks (i.e., mean value). In addition, the use of adjustment based on market and
domain intelligence, especially during crisis episodes, and the absence of a system-
atic evaluation gives neither a transparent data-driven measure of financial stress nor
an objective anticipation of the GFSM’s future precision. Indeed, the GFSM comes
with the following caveat: “given the degree of ambiguity and arbitrariness of this
exercise the results should be viewed merely illustrative”.2

Data anddimension reductionmethods have alsobeenused to represent these com-
plex data. In terms of Fuzzy c-means (FCM) clustering, a combination of clustering
models and the reasoning of fuzzy logic have been introduced to the early-warning
literature by finding risky clusters and treating relationships in data structures as
true or false to a certain degree (Marghescu et al. 2010). This type of analysis has
the benefit of not only signaling a crisis in a timely manner, but also signaling the
type and degree of various sorts of financial imbalances. In an exploratory study,
Arciniegas Rueda and Arciniegas (2009) found, with the help of the Self-Organizing
Map (SOM), strong associations between speculative attacks’ real effects and 28
indicators, yet did neither focus on visualizing individual data nor on early-warning
performance. Resta (2009) also has applied the SOM to a large set of indicators, but
with a focus on rather general economic and financial performance of countries and
with limited evaluations of classification performance.

Second, macro stress-testing models, to the best of my knowledge, make no use of
advanced visualization techniques for representing the results of the tests, including
the processing of data at the input, interim and output stage. The visualizations
seldom go beyond a framework or schematic structure for the designed transmission
mechanisms in themodel andplots of loss distributions in various formats.Obviously,
standard visualizations from graph theory may be used in representing networks, if
such are used in the models. For instance, the macro stress-testing model by Boss
et al. (2006), which integrates satellite models of credit and market risk with a
network model for evaluating default probabilities of banks, enable one to make
use of concepts from graph theory in visualizing the network structure. Network
visualizations are, however, more common in contagion models.

As said, the third group of contagion and spillover models commonly make use
of concepts from graph or network theory to visualize the structure of linkages in

2 The authors state that the definitions of starting and ending dates of the assessed crisis episodes
are somewhat arbitrary. Similarly, the assessed crisis episodes are arbitrary, as some episodes in
between the assessed ones are disregarded, such as Russia’s default in 1999 and the collapse of
Long-Term Capital Management. Introduction of judgment based upon market intelligence and
technical adjustments are motivated when the GFSM is “unable to fully account for extreme events
surpassing historical experience”, which is indeed an obstacle for empirical models, but also a
factor of uncertainty in terms of future performance since nothing assures manual detection of
vulnerabilities, risks and triggers.
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Fig. 2.3 Radar charts of two countries. Notes The figure provides an example of a radar chart, such
as the one in Dattels et al. (2010)

the models [see, e.g., Estrada (2011)]. This provides means to represent entities as
nodes (or vertices) and their links as edges (or arcs). The combination of nodes and
edges provide all constituents for a network, where the edges may be directed versus
undirected and weighted versus unweighted. However, rather than a visualization,
a network is a data structure. The interpretability of networks has been enhanced
by the means of various methods. For instance, positioning algorithms, such us
force-directed layout methods, are commonly used for locating nodes with similar
edges close to each other, as well as ring and chord layouts for more standardized
positioning. Yet, the so-called hairball visualization, where nodes and edges are
so large in number that they challenge the resolution of computer displays, not to
mention interpretation, is not a rare representation of complex financial networks
[see, e.g., Bech and Atalay (2010)]. Still, it is worth noting that recent advances
in software for visualizing financial networks, such as Financial Network Analytics
(www.fna.fi), hold promise in bringing aesthetics and the ease of use to visualizations
in the financial domain. An additional essential feature, not the least to deal with
hairballs, is the use of interaction techniques with visualizations.

2.4 A Framework for Macroprudential Oversight

To connect the concepts defined in this chapter, we discuss them in how they relate
to safeguarding financial stability. One might thus also say that this section attempts
to provide a holistic view of the macroprudential oversight process. The ECB’s con-
ceptual framework not only includes a systematic way of structuring risks through
the risk cube, but also includes a process of the steps that a macroprudential super-
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visory body would follow.3 The process in Fig. 2.4 is an adapted version of that in
ECB (2010), where red components represent risks and vulnerabilities, the green
components represent the need for risk identification and assessment, and the blue
components represent the need for risk communication. Thus, the black framesmark
the use of tools for safeguarding financial stability, where the solid lines represent the
current approach and the dashed lines proposes an integration ofmeans for risk com-
munication into the tools. A discussion of policy assessments and implementations
represented by gray components is beyond the scope of this book.

The macroprudential oversight process begins with underlying market imperfec-
tions that at a later stage propagate as possible risks. In the first step of the supervi-
sory process (risk identification), the key focus is on identifying risks to stability and
potential sources of vulnerability. The vulnerabilities and risks could exist in any of
the three components of the financial system: financial intermediaries, financial mar-
kets and the financial infrastructure. The necessary tools to identify possible risks,
vulnerabilities and triggers come from the set of early-warning models and indica-
tors, as well as the use of market intelligence, and expert judgment and experience.
This provides means for ranking risks and vulnerabilities as per intensity, as well as
for assigning probabilities to specific shocks or future systemic events.

In the second step of the process (risk assessment), the rankings and probabilities
may be used to assess the identified risks. The used tools come mainly from the
set of macro stress-testing models and contagion models. In macro stress-testing,
simulations of most plausible risk scenarios show the degree of impact severity on
the general financial system, as well as its components. The contagionmodels, on the
other hand, might be used through counterfactual simulations to assess the impact of
specific failures on the entire financial system and individual institutions. The first
and the second step of the process should not only provide a list of risks ordered
according to possible severity, but also contain their materialization probabilities,
losses given their materialization, and losses in macroeconomic output and welfare,
as well as their possible systemic impact. Hence, these two initial steps in the process
aim at early risk identification and assessment and provide means for safeguarding
financial stability.

The third step (policy assessment) involves the assessment of policy actions as
early preventive measures. Based upon the identified and assessed risks, a macro-
prudential supervisory body can consider giving a wide variety of risk warnings and
recommendations for other parties to use policy instruments, as well as an implemen-
tation of policies given the instruments at hand. To steer their decisions, the policy
assessment step can make use of the same analytical tools used for risk identification
and assessment. While policy tools and their effectiveness is slightly outside macro-
prudential oversight and the general scope of this book, it is worth noting that actions
tailored to the needs of a system-wide orientation are a key part of macroprudential

3 A macroprudential supervisory body is an institution tasked with macroprudential oversight of
the financial system and the mandate of safeguarding financial stability. Examples are the European
Systemic Risk Board in Europe, the Financial Policy Committee in the UK, and the Financial
Stability Oversight Council in the US.
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Fig. 2.4 The macroprudential oversight process. Notes The figure represents the role of analytical
models and tools for identification and assessment of systemic risk in the macroprudential oversight
process. The red components represent risks and vulnerabilities, the green components represent
the need for risk identification and assessment, and the blue components represent the need for
visual means facilitating risk communication. Thus, the black frames mark the need for tools for
safeguarding financial stability, where the solid lines represent the current approach and the dashed
lines represent means for risk communication integrated in the tools. The gray components are
beyond the scope of this book. The figure is an adapted version of that in ECB (2010)

regulation and supervision. As interest rate policy may be a too blunt and powerful
tool with material damage to other parts of the economy, the policies could take
the form of tighter standards—e.g., requirements on capital adequacy, provision-
ing, leverage ratios, and liquidity management—for individual financial institutions
with larger contributions to systemic risk and calibrated to address common expo-
sures and joint failures. Macroprudential regulation and tools may also be used for
accumulating buffers or reserves in good economic times to be used during worse
times.

Performing risk identification and assessment is generally seen as the key task of
tools for safeguarding financial stability (solid black frame in Fig. 2.4). This points
to a lack of integration between the tools for safeguarding financial stability and the
communication that occurs after the policy assessment step, in particular the tasks
of issuing risk warnings, giving policy recommendations and publishing Financial
Stability Reports, as represented by the blue components in Fig. 2.4. To answer the
question,what is the overall purpose of communication through a Financial Stability
Report?, a survey among central bankers by Oosterloo and Haan (2004) pinpoints
three main reasons for publishing these reports:

(i) to contribute to overall financial stability,
(ii) to increase the transparency and accountability, and
(iii) to strengthen co-operation between authorities with financial stability tasks.
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Thus, following the discussion in the previous section, a major concern is how the
results of these risk identification and assessment tools are communicated to a wide
range of stakeholders in easily understandable formats, with the ultimate aim of
achieving transparency and accountability. The broader perspective proposed by the
dashed black frame in Fig. 2.4 argues for relating the third step to risk communi-
cation, which would be supported by visual representations of the tools used in the
prior steps. Although not being illustrated in the figure, internal and external risk
communication would obviously have separate feedback loops: the former to risk
identification and assessment (green components), and the latter to potential sources
of systemic risk, vulnerabilities, and material risks (red components). This would
translate to a threefold focus of tools: risk identification, risk assessment and risk
communication.

2.5 Concluding Discussion

This chapter has provided an overview of macroprudential oversight. Not only have
we discussed how financial systems work and what makes them fragile, but also
the specific systemic risks and tools for safeguarding financial stability. Finally, the
chapter ends by summarizing all the above ingredients within a larger framework of
the macroprudential oversight process.

Macroprudential oversight as such is not a new concept. Yet, supervisory bodies
with the mandate of safeguarding system-wide financial stability have only recently
been created, all in the aftermath of the financial instabilities of 2007–2008. The
European SystemicRiskBoard in Europe, the Financial PolicyCommittee in theUK,
and the Financial Stability Oversight Council in the US were all either established
or announced in 2010. While we have discussed the complexity of factors affecting
financial systems, how fragilities may build up and what form systemic risks may
take, as well as empirical and theoretical underpinnings, an obvious focus of this
chapter is on tools and models for macroprudential oversight. Given the mandate
of multiple macroprudential supervisory bodies, the central task ought to be timely
and accurate measurement of systemic risks. In this chapter, we have discussed the
following three categories of systemic risks (and tools):

(i) endogenous build-up of widespread imbalances (early-warning models);
(ii) exogenous aggregate shocks (macro stress-testing models); and
(iii) contagion and spillover (contagion and spillover models).

This sets an inherent need for a broad basis of tools for the identification and assess-
ment of potential risks, vulnerabilities and imbalances. One key conclusion of the
review of tools and models is the lack of visual means for identifying and assessing
risks and vulnerabilities, particularly macro stress-test and early-warning models. In
the case of contagion models, visualizations based upon network models and graph
theory have been applied and are still gaining further interest within the policymaking
community. Yet, the task of representing high-dimensional early-warning indicators
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on a low-dimensional display has not been addressed in a sufficient manner. Visual
aids to the representation of macro stress-test models may also hold promise due to
their complex nature, but to provide a sufficient abstraction of the problem seems
like an inherently different, yet highly interesting, task to address. However, this is
generally beyond of the scope of this book.

Another line of research is to purely focus on the forecasting capabilities of mod-
els. The early-warning literature has indicated that ANNs are suitable for the complex
task. They are effective data-driven non-linear function approximators, but are alas no
panacea for binary-choice classification. To fully benefit from capabilities of ANNs,
they need to be provided with their computational demands (i.e., large samples and
computing power) and specific training schemes for generalization. In addition, the
literature showed that the choice of the optimal set of indicators is either performed
according to economic significance or univariate predictive performance, whereas
the choice has not been performed in a multivariate framework.

Yet, in all above tasks, it is worth remembering that the quality of a model is
highly dependent on the quality of the underlying data. The early-warning models
are generally dependent upon country-level macroeconomic, banking system and
market-based indicators of risks, vulnerabilities and imbalances. This takes us to the
topic of data in macroprudential oversight.
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Chapter 3
Macroprudential Data

I didn’t have time to write a short letter, so here’s a long one
– Mark Twain

An understanding of all elements in the macroprudential oversight process is
obviously crucial for safeguarding financial stability. While providing a basis, such
a framework is still highly dependent on the underlying data. Access to complete,
accurate, and timely data is central not only for policymakers tomake good economic
policy, but also for businesses and investors alike to make good financial decisions.
However, data for macroprudential purposes are, not surprisingly, as complex as
the system they describe. Alas, complexity oftentimes implies challenges. Gather-
ing, synthesizing, understanding and analyzing these data is hence not an entirely
unproblematic task. With the aim of having a holistic view of the financial system
to ensure system-wide stability, rather than only being concerned about individual
financial institutions, a macroprudential approach to oversight has a wide range of
data demands and needs. As early-warning models were at the core of the previous
chapter’s ending note, the key focus herein is also on input data for early-warning
exercises. Yet, as macro stress-testing and contagion models will throughout this
book be touched upon, this chapter will still provide a brief discussion on data needs
for risk assessment tools as well.
The focus of this chapter is on attempting to clarify what macroprudential data

consist of, from where they are derived, how complex they are and how their prop-
erties may or may not hinder analysis. Hence, after defining the concept of data
considered herein, this chapter provides a brief overview of data for macropruden-
tial oversight and untangles the data into a four-dimensional cube representation.
Finally, this section discusses stylized challenges related to macroprudential data
and summarizes the key implications for this book.
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3.1 Data: What are They?

The tools and models for risk identification and assessment described in Sect. 2.3
(and summarized in Fig. 2.4) made use of four broad sources of information:

(i) open financial and macroeconomic data and statistics,
(ii) supervisory data and statistics,
(iii) domain intelligence, and
(iv) experience and judgment.

To enable a discussion of data in macroprudential oversight, we need to start by
defining the notion of data. In a broad sense, everything that can be encoded may
be seen as data. However, the early definitions differ significantly from the today’s
notion of data. Fry and Sibley (1976) follow its Latin origin by defining data as
a collection of facts. As a fact by definition cannot be false, the imprecision and
inaccuracies often found in data today suggest this definition to be unsound. Hence,
later attempts have softened the definition of the notion, such as “data are facts or
are believed to be facts which result from the observation of physical phenomena”
(Yovits 1981). Lately, the definition has significantly broadened. Along the lines of
one definition in a recent Delphi study of more than 50 leading scholars (Zins 2007),
data can be defined as everything that can be encoded and stored in a computer.

The implication of this definition is that it includes two of the above presented
sources, publicly available and supervisory statistics, while leaving out the “softer”
notions of implicit domain intelligence and judgment. The former may, for instance,
consist of numerical and textual data and oftentimes function as an input to tools
and models for risk identification and assessment (see Sect. 2.3), or as stand-alone
measures for monitoring various risks, vulnerabilities and imbalances. The latter
sources are, on the other hand, used for interpreting the results of tools and models
in particular, and during the overall process of macroprudential oversight in general.
Domain intelligence comprises various dimensions, such as market, policy and insti-
tutional intelligence (e.g., understanding the role and risks of financial innovations),
whereas experience and judgment may, likewise, relate to a wide variety of topics,
ranging from the functioning of the financial system to statistical methods. These
types of qualitative information are an important complement to quantitative data in
assessing the soundness of financial systems. Schou-Zibell et al. (2010) divide the
qualitative dimensions to the following elements:

(i) institutional processes;
(ii) legal infrastructures and regulatory frameworks governing financial operations;
(iii) practices and standards with respect to disclosure and accounting;
(iv) surveillance and supervision of banks and other financial institutions;
(v) incentive structures; and
(vi) safety nets to cover overexposure to international financial markets.

The authors exemplify the above six qualitative tasks with, for instance, com-
pliance with the core principles of the Bank for International Settlements (BIS),

http://dx.doi.org/10.1007/978-3-642-54956-4_2
http://dx.doi.org/10.1007/978-3-642-54956-4_2
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International Organization of Securities Commissions, and the International
Association of Insurance Supervisors. Such qualitative informationmay aid in under-
standing the inner reasons for the behavior of banks and markets. It is not, however,
straightforward to combine these types of qualitative information with current theory
and historical experiences of financial crises, not to mention the multitude of quan-
titative models. Schou-Zibell et al. (2010) also stress the importance of structural
information in assessing how a financial system works. While structures in banks
may often be covered by data, this relates more to market intelligence and country
surveillance than to automated approaches for identifying vulnerabilities and risks.
Structural assessment may, for instance, be a combined analysis of the structure of
banks and their relative size, business strategy, ownership, concentration, and com-
petitive situation. However important qualitative information is, the key focus herein
is on numerical data.

3.2 Data for Macroprudential Oversight

Data needs and demands for macroprudential oversight are set by a broad range
of issues. First, the availability of data obviously restricts the types of inputs to
tools and models used by policymakers. Second, the understanding of the financial
system, its fragilities and instabilities and the general oversight process defines what
a policymaker understands to demand. Third, the design of the tools andmodels used
for the task at hand set their final nuance to the data needs.
Early-warning exercises commonly make use of a wide range of indicators, mea-

suring various dimensions of risks, vulnerabilities and imbalances. In this book,
macroprudential data are related to three different categories:

(i) macroeconomic data,
(ii) banking system data, and
(iii) market-based data.

Generally, the key three sources of macroprudential data measure the behavior
of three low-level entities: households, firms and assets. By grouping data for the
entities, we may produce data on various levels of aggregation. While firm-level data
may also be of interest in the case of systemically important financial institutionss
(SIFIs), the data for macroprudential analysis most commonly refer to high-levels or
aggregations of three kinds [see, e.g., Woolford (2001)]: macroeconomic, banking
system, and financial market behavior. Hence, for macroprudential purposes, low-
level entities may be aggregated as follows: from data on individual households’
actions to the macroeconomic, from data on banks to the banking system, and from
data on individual assets to the financial market. For instance, an entity could be a
country, which would be described by country-level aggregates of macroeconomic,
banking system, and financial market behavior. It is still worth to note that a system-
wide approach does not always necessitate aggregation, as an entire system may, for
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instance, be viewed from the perspective of a network of entities. Further, the category
aggregating banks to the banking system may likewise be defined in broader terms
(e.g. financial intermediaries in general) or someother typeoffinancial intermediaries
(e.g., insurers).
Yet, these three categories do not perfectly cover all types of data relevant for

macroprudential oversight, especially not novel unexplored sources. These data
relate, for instance, to texts and discussions (e.g., news articles, blogs or discus-
sion forums) and tracking human behavior (e.g., search-terms used in Google and
buying behavior). Whereas text has, for instance, been utilized for mapping bank
interrelations [see, e.g., Rönnqvist and Sarlin (2013)], trends in Google searches
have been used for nowcasting macroeconomic data with long publication lags [see,
e.g., Carrière-Swallow and Labbé (2013)]. The focus herein is, however, on the above
mentioned three categories of numerical data, and on an overview of their use as indi-
cators. The below discussion is supported by a long, yet incomplete, list of indicators
along all three categories in Table 3.1.

3.2.1 Macroeconomic Data

Macroeconomic data can be transformed to measure risks and vulnerabilities of eco-
nomic activity on a country level, and may hence function as leading indicators.
Rather than being narrow in definitions, many macroeconomic measures provide a
broad picture of overall economic and financial activity, as well as general circum-
stances, in the entire economy or a particular area of it, such as economic and pro-
duction growth, current account balance and inflation. Trends, and deviations from
them, indicate not only broad economic development in general, but also whether
quantities and prices are consistent with prospects, such as in credit markets. For
instance, vulnerabilities and risks to financial stability may be represented through
above-normal and sustained rates of growth or valuation of credit and investment.
The production ofmacroeconomic data involves a laborious and costly aggregation

process to derive figures that represent all households in an economy. The data
are obviously not only of interest for domestic analysis, but also for various cross-
country comparisons. This has stimulated a wide range of attempts to harmonize
macroeconomic measures. Explicitly aiming at standardizing macroeconomic data
across countries, the United Nations have issued their System of National Accountss
(SNAs) in 1953 and its revised versions in 1968, 1993 and 2008 (see United Nations
(2008) for the latest version). Likewise, the International Monetary Fund (IMF)
has issued a Balance of Payments Manual to provide an accounting standard for
reporting of balance of payments statistics (see IMF (2008) for the latest version).
The title of the version in 2008, in contrast to the versions in 1948, 1950, 1961, 1977
and 1993, has been amended to Balance of Payments and International Investment
Position Manual to reflect that it now covers both transactions and stocks of the
related financial assets and liabilities alike.
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Table 3.1 Examples of macroprudential indicators

Macroeconomic data Banking system data Market-based data

Macroeconomic indicators Banking system indicators Market-based indicators
Internal indicators Capital adequacy Asset valuation
GDP growth Equity to assets Equity prices
Unemployment Tier 1 and 2 ratio Bond spreads
Inflation Asset quality Derivative valuation
Debt imbalances Impaired assets CDS prices
Credit imbalances Non-performing loans Option-adjusted spread
House prices Loan loss provisions Credit ratings

External indicators Debt to equity Sovereign ratings
Current account balance Return on assets Firm ratings
External investment position Management Credit spreads
Unit labor costs Cost to income Sovereign yield spread
Real exchange rate Earnings Default probabilities
Export market share Return on equity Distance-to-default

Net interest margin Bond default probabilities
Liquidity
Liquid assets to liquid
liabilities

Interest expenses to liabilities
Deposits to funding
Loans to deposits

Sensitivity to market risk
Share of trading income
Loans to assets
Net open position in foreign
exchange to capital

Net open position in equities to
capital

Macroeconomic linkages Banking sector linkages Market-based
co-movements

Equity and debt exposures Equity and debt exposures Asset and derivative
interdependence

Notes The table draws upon compilations in Betz et al. (2014), Cihák (2006), IMF (2006),Woolford
(2001). The table presents three types of indicators: macroeconomic, banking system and market-
based. Macroeconomic indicators may be defined to describe different sectors, such as private and
government sector. Banking system indicators are defined on the country level, but may also be
measured per firm if needed, as oftentimes is for SIFIs. Likewise, market-based indicators may be
used on an entity or aggregated market level, as needed. Following IMF (2006), credit ratings are
classified as market-based indicators as they are produced mainly for use by market participants.
The table does not discuss how the data may be transformed. Hence, each mentioned indicator may
address different imbalances depending upon its transformation

Lately, multiple initiatives mainly run by the IMF have attempted and also
prompted progress in data provision. In 1996, the IMF established the Special
Data Dissemination Standard (SDDS) (see (IMF 2007c) for the latest version) to
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guide member countries in providing national economic and financial statistics to
the public. The SDDS is the first of a two-tier data standards initiative with the gen-
eral aim of improving access to comprehensive, timely and accurate data to facilitate
macroeconomic policies and the functioning of financial markets. To function as a
development tool to prepare for SDDS subscription, the IMF established the sec-
ond tier in 1997, called the General Data Dissemination System (GDDS) (see IMF
(2007b) for the latest version). Likewise, the Data Quality Reference Site (DQRS)
was established by the IMF in 2000 to foster a common understanding and impor-
tance of data quality.
The national accounts may further be complemented with balance-sheet expo-

sures between aggregated entities, such as economies. These types of cross-border
exposures represent crucial links in the global economy. Since 2001, the IMF has
published data on bilateral portfolio investment positions among economies on an
annual basis. The data have been collected through the annual Coordinated Portfo-
lio Investment Survey. Likewise, the Coordinated Direct Investment Survey collects
bilateral position data on direct investments among economies.

3.2.2 Banking System Data

Banking system data utilize, usually in the form of ratios, aggregated country-level
information collected from balance sheets and income statements of individual finan-
cial institutions. The need for macroprudential assessment of financial conditions on
the level of banking systems, rather than only a microprudential, or institution-level,
approach, has been accentuated not only by the ongoing financial crisis, but also by
the Asian financial crisis in the late 1990s. San Jose and Georgiou (2008) describe
that vulnerabilities in Asia were related to international capital flow reversals, also
involving shocks to the corporate and household sectors, whereas the recent wave of
distress stemming from the sub-prime mortgage markets highlights the importance
of balance-sheet exposures of financial institutions and vulnerabilities to credit and
liquidity squeezes. Likewise, from a European viewpoint, the increasing integration
of national financial systems has stimulated efforts to develop a common framework
for financial stability analysis (Agresti et al. 2008).

The need for data to assess strengths and weaknesses in financial systems
led to attempts to derive a commonly accepted list of financial stability indica-
tors, not the least the financial soundness indicators (FSIs) developed at the IMF.
Sundararajan et al. (2002) were the first to propose sets of so-called “core” and “en-
couraged” FSIs. The FSIs are measures of the current aggregated financial health and
soundness of the financial institutions in an economy. A final list, with more precise
definitions of the FSIs, was laid down in a set of indicators compiled by the IMF
(2006) in the Compilation Guide on Financial Soundness Indicators (henceforth the
Guide). IMF (2006) puts forward a handbook on concepts and definitions, as well as
sources and techniques, for compiling and disseminating FSIs. For macroprudential
surveillance, the key indicators are based upon aggregated information contained in
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the balance sheets and income statements of individual financial institutions. The
literature on individual bank failures draws heavily on the Uniform Financial Rating
System, informally known as the CAMEL ratings system, introduced by U.S. regula-
tors in 1979,where the letters refer to Capital adequacy (e.g., risk-based capital ratio),
Asset quality (e.g., nonperforming loans to capital), Management quality (e.g., cost
to income), Earnings (e.g., return on equity) and Liquidity (e.g., deposits to funding).
Since 1996 the rating system also includes Sensitivity to Market Risk (e.g., net open
position in equities to capital, which derives CAMELS). To implement the FSIs in
the Guide, the IMF invited its members to participate in a Coordinated Compila-
tion Exercise (CCE), which eventually led to 62 participating countries and regions
(IMF 2007a).
In the European context, the European Central Bank (ECB), jointly with the Bank-

ing Supervision Committee (BSC) of the European System of Central Banks, have
put efforts into developing their own financial stability indicators, called macro-
prudential indicators (MPIs) (see Mörttinen et al. (2005) for an overview of the
methodology). The aim of the MPIs is defined to be to gauge conditions in the finan-
cial system and its resilience to stress situations. While differing in terms of the aim,
the scope of FSIs and MPIs is analogous. The MPIs were reported and analyzed in
the European Union (EU) Banking Sector Stability report prepared by the BSC until
2010, whereafter the data have only been reported in the Consolidated Banking Data,
a dataset published in the ECB Statistical Data Warehouse.
Cross-border linkages among banking sectors is obviously a potential contagion

channel (as also noted in Sect. 2.2), when assessing interdependence of the global
economy. The BIS has been collecting international banking statistics with bilateral
partner-country information on both a locational basis and on a consolidated group
basis. Likewise, to assess the system-wide risk within countries, balance-sheet expo-
sures between individual banks are of central interest.

3.2.3 Market-Based Data

Market-based data exploits aggregated information dispersed among financial mar-
ket participants. The rationale for using market data is that prices of financial instru-
ments, such as equities, bonds and options, capture forward-looking perceptions of
financial market participants, not least related to vulnerabilities and risks in the finan-
cial system. Rather than being a substitute for the previous sources of information,
market-based data complements analysis by conveying the view of financial market
participants. Lately, joint efforts by the IMF, ECB and BIS have been put forward
to assist the reporting and production of coherent, relevant and comparable securi-
ties statistics for use in financial stability analysis and monetary policy formulation.
In a three-part series, the Handbook of Securities Statistics was published in 2009,
2010 and 2012 (BIS-ECB-IMF 2009, 2010, 2012).

Market-based data capture the perceptions of markets about vulnerabilities and
risks in the financial system. The degree of system-wide risk may be measured by,

http://dx.doi.org/10.1007/978-3-642-54956-4_2
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for instance, yields and spreads of financial instruments, asset prices, externally
measured creditworthiness and sovereign ratings, interest rates, exchange rates and
stock market volatility. Depending then on how these data are transformed, they
function as forward-looking measures of the health of the financial system. They
may be, for instance, changes in government or corporate bond spreads, relative
stock-market prices, and indicators of volatility in share prices [e.g., Cihák (2006)].

Moreover,market-based data are oftentimes transformed into somemore advanced
stand-alonemeasures of default probability. One indicator that has gained large atten-
tion is Merton’s (1974) distance-to-default, which uses a structural valuation model
to compute the ratio of a firm’s assets to debt. To be forward-looking, asset value
and volatility is, however, estimated from equity data. Since supervisors commonly
intervene before capital is depleted, Chan-Lau and Sy (2006), Nationalbank (2004)
present two alternative, but similar, measures: distance-to-capital and distance-to-
insolvency. Likewise, bond prices may be turned into a default probability by Fons’
(1987) function of the additional required rate of return over default-free bonds.
A more direct measure of default probability may be obtained from credit default
swaps (CDSs). CDSs provide an insurance against default, where the seller guaran-
tees protection by compensating the buyer in the event of a default of the reference
obligor during the life of the contract and the buyer pays a quarterly fee (i.e., the
CDS spread). The default probability is then calculated from the CDS spread, interest
rate of default-free bonds and recovery rate (i.e., the amount recovered in event of
a default). While being defined on the firm level, these measures can obviously be
aggregated through simple or weighted averages or measures for entire portfolios.
However, due to the existence of large co-movements in market-based data, aggre-
gating these indicators from the entity level to the systemic level poses a number of
challenges that still remain to be solved. One suggestion is the indicator by Cihák
(2007) that attempts to account for correlation of defaults across institutions in an
aggregate measure of financial stability.
These data may also be used to compute interdependence among economies. For

this task, one can compute co-movements in country-specific market data, such as
stockmarket indices,CDS spreads andbond spreads.Yet, themost commonapproach
is to make use of firm-level data, in order to assess co-movements in their asset prices
[see, e.g., Hautsch et al. (2011)].

3.3 A Four-Dimensional Data Cube

The previous section related macroprudential data to three key sources: macroeco-
nomic data, banking system data and market-based data. Yet, the discussion pro-
vided little structure on the form and complexity of the data. Based upon the above
discussion, macroprudential oversight can be said to utilize data that come from
a so-called macroprudential data cube (henceforth data cube). The characteristics
and challenges associated with macroprudential data can subsequently be paired
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Fig. 3.1 A macroprudential data cube. Notes The figure represents the macroprudential data cube.
It represents four spaces: entities (e.g., country), time (e.g., year), variables (e.g., GDP), and links
(e.g., debt and equity exposures). Likewise, it illustrates four data slices: a multivariate cross section
(red side), a cross section of time series (blue side), a multivariate time series (green side), and a
cross section of interlinkage matrices (black edges)

with this data cube representation. Rather than three, the data cube in Fig. 3.1 is
described by four dimensions:

(i) entities (e.g., countries);
(ii) time (e.g., years);
(iii) variables [e.g., gross domestic product (GDP)];
(iv) links (e.g., debt and equity exposures).

Each cell is hence defined by a specific cross-sectional entity, a specific time unit,
a specific variable (or in computer science so-called input or feature vector), and
a specific network of interlinkages. The value for each cell is the value for that
particular variable and the related vector of links.
Following the four dimensions, the data cube can be described according to four

types of slices. First, a multivariate cross section (red side) provides a view of mul-
tiple entities described by multiple variables at one point in time. Second, a cross
section of time series (blue side) is a univariate view of multiple entities over time.
Third, a multivariate time series (green side) provides a view of multiple variables
over time for one entity. Finally, the fourth view is a cross section of interlinkage
matrices (black edges) that represent links between multivariate entities at one point
in time. As noted in the previous section, while links may be estimated from inter-
dependence in the variable dimension (e.g., equity prices), a more common and
less noisy measure is direct linkages and exposures between entities. To exemplify
a macroprudential dataset in the data cube representation, the four dimensions could
be defined as follows: countries as entities, quarterly frequency as time, indicators of
various sources of risk and vulnerability as variables, and equity and debt exposures
between economies as links.
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3.4 Stylized Challenges in Macroprudential Data

The more commonly used term ‘stylized fact’ refers to a broad generalization of a
complex occurrence—whichmay be imprecise in the detail, but essentially true. This
section presents stylized challenges related to the use of macroprudential data by not
delving into atomic detail, but rather focusing on more general concerns and relative
prominence of different data sources. The data discussed in Sect. 3.2 are problematic
due to numerous reasons. Not only is it difficult to identify relevant data from the vast
amounts available, but there are also challenges of their own in compiling the com-
ponents needed for the macroprudential approach both within individual economies
and across economies, not to mention challenges related to time. Schou-Zibell et al.
(2010) pinpoint that the key concerns related to macroprudential data are excessive
and frequently reoccurring delays, inaccuracies, inadequacies and incompleteness of
data. The authors relate it to five major reasons:

(i) spread of data in various databases and institutions;
(ii) non-availability or non-applicability of some indicators;
(iii) incomparability of indicators over time owing to the absence of or changes in

accounting and prudential standards;
(iv) lack of transparency and problems in the disclosure of data; and
(v) late, incomplete, and inaccurate replies from participating institutions and

agencies.

These five reasons can, however, be complemented. In that vein, we untangle the
challenges according to two dimensions of the data cube: (i) temporal and (ii) cross
sectional. The former relates to major challenges related to temporality and nonsta-
tionarity, whereas the latter relates to heterogeneity of countries in the cross section.
With regards to temporality, the indicators on the watchlist are prone to change

over time, not least in the wake of the ongoing global financial crisis. A large number
of papers and projects, often led by supervisory authorities, have viewed possible data
gaps [see, e.g., Burgi-Schmelz (2009)]. Gaps seem to exist on individual, sectoral and
market levels, where most frequently mentioned gaps are related to the real estate,
corporate, and household sectors, as well as to nonbank financial institutions. This
not only accentuates the importance of access to the data of latest relevance, but also
imposes challenges in the application of analytical tools as the time dimension is
commonly short for new types of data. In addition, with the aim to use historical
data to infer about the future, nonstationarity may also easily become a problem.
Bisias et al. (2012) note that the field of econometrics has provided a large number
of techniques to address specific types of nonstationarities, such as deterministic and
stochastic trends and cointegration relationships, whereas the type of nonstationarity
that complicates risk assessment and identification, such as political institutional and
cultural changes, is less easily dealtwith through transformations or parametrizations.
For instance, complex financial instruments, such as CDSS and collateralized debt
obligations, as well as high-frequency trading in general, were not part of the risk
assessment and identification agenda in the beginning of the 1990s, whereas they are
in the core of today’s analysis.
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Yet, an even more important and recurring challenge appears to be the deliberate
migration of activities to areas which are not on the current watchlist. These included
special purpose entities (e.g., in the context of loan securitization) and off-balance-
sheet operations (e.g., in the context of hiding risky assets) during this crisis, but
are likely to evolve into another form in the future. Another problem is the pace
with which activities have moved to nonbank financial intermediaries not under the
watchlist of regulatory and supervisory bodies. For instance, Feldman and Lueck
(2007) show that the market share of “other financial intermediaries” has increased
from less than 10% in the 1980s to about 45% in 2005, which does not yet include
activities in hedge funds. The implications of the changing nature of risks and vul-
nerabilities relates obviously not only to data provision, but also in broad terms to
macroprudential oversight and supervision in general. Likewise, due to advances
in telecommunications, computer technology and financial innovation, Bisias et al.
(2012) note that the intensity of activity in the financial sector has experienced a
tremendous growth. More precisely, they pinpoint the challenges to the leisurely
pace of quarterly financial reporting and annual examinations, as well as the fail-
ure of accounting standards in conveying all risk exposures due to light reporting
requirements in unregulated markets.
The latter of the two challenges relates to heterogeneity in the cross section. The

common problem of comparability is often cited as a cause of the lack of regular
and uniform reporting of indicators for various types of financial institutions, such as
nonbank financial institutions. For instance, Burgi-Schmelz (2009) provides a recent
review of what has been achieved in the international collection, distribution and
availability of statistical data, and highlights that a large number of gaps should be
filled to further improve the coverage of statistical information, not the least dimen-
sions accentuated by the ongoing global financial crisis. Another challenge is the
identification of relevant indicators to signal risks and vulnerabilities in a particular
financial system. Due to differences in financial and economic development, indica-
tors useful in one country may not necessarily be useful for another. For instance,
Schou-Zibell et al. (2010) relate cross-country differences in development to dispar-
ities in institutional and legal frameworks, the size and liquidity of financial markets
and the versatility of financial instruments.
These remarks highlight challenges in overall use of these types of data for macro-

prudential oversight. The sequel of this section focuses on a comparative discussion
of the identified three types of macroprudential data. The problematic nature of
macroprudential data relates to a wide range of issues that hinder identification and
assessment of risks and vulnerabilities. Hence, we look into challenges particular for
each category of data.

3.4.1 Macroeconomic Data

Macroeconomic data have been harmonized through theSNAand are hence estimates
of aggregates.Yet, statistical offices have hadmultiple reasons not to either participate
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at all or to only fulfill partial requirements. Examples of reasons are, for instance, not
being able to devote enough resources to implement the suggested harmonizations
or preferring to stick to their own national income accounting rules [see, e.g., the
case of the United States (US) in Mead et al. (2004)]. Hence, national accounting
practices still have substantial differences. Further, Hartwig (2006) shows differences
in the used deflators of Switzerland and the SNA. In a larger context, Hartwig (2007)
illustrates that partial differences in economic growth in the SNA and Europe may
be explained by different deflators, in particular a deflation method introduced in the
SNA in 1997. Whilst National Income and Product Accounts, and the GDP, tend to
be computed from the demand side in the US, the SNA uses the supply side, i.e.,
differences between gross output and intermediate inputs, to compute GDP. Most
literature on accounting differences describe problems when comparing firm-level
data in different countries using various reporting standards. The above mentioned
issues illustrate, however, the existence of similar problems with the country-level
aggregates.
Moreover, uncertainty in data are often caused through survey-based collection.

For instance, an economy’s value added and employment may be collected through
household surveys. These, however, comprise only a small percentage of the popu-
lation, may not always have reliable answers and are difficult to extrapolate to the
macro level. Bruyère and Chagny (2002) exemplify the uncertainty in surveys by
showing that in most of 8 Organisation for Economic Co-operation and Develop-
ment (OECD) countries labor input growth according to household surveys exceed
counterparts retrieved through establishment surveys.
An issue of crucial importance in early-warning exercises is to take into account

publication lags for data. For instance, GDP, money and credit related indicators
have an approximate lag from 1 to 2 quarters depending on the country. One seldom
discussed, yet important, issue is to account for revisions of macroeconomic data.
When evaluating early-warning models, the data that would have been available in
real time (i.e., preliminary first-releases) should be used. Likewise, while relating to
all categories of data, it is also important to only use the available information set
when performing transformations of variables that are dependent on the historical
data distribution (e.g., detrending or percentiles). Missing values, as well as outliers,
are obviously an issue on their own.

3.4.2 Banking System Data

The aggregation procedure of banking system data does not involve equally
comprehensive procedures as macro data. Still, the constraints faced by empirical
analyses have illustrated challenges in availability andquality of banking systemdata.
Cihák and Schaeck (2010) collected banking system indicators with the aim of test-
ing the early-warning capabilities of the FSIs listed in the Guide by the IMF (2006).
However, to collect a sufficiently large dataset, they had to narrow down the focus to
three FSIs from the core set (i.e., regulatory capital, asset quality and profitability of
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deposit taking institutions) and two proxies for FSIs from the encouraged set (i.e.,
profitability and leverage). The low number of indicators was driven by the limited
availability of data. Likewise, availability leads to time series of annual frequency
that only date back to 1994. Still, many economies deviate from definitions in the
Guide (IMF2006),which is likely to increase cross-country differences. For instance,
minor errors in the reporting of one element of an indicator, such as non-performing
loans, is likely to impact a large number of other indicators.
Between 2004 and 2007, the IMF conducted the Coordinated Compilation Exer-

cise (CCE) for FSIs, after which they report that a total of 57 out of the 62 par-
ticipating countries submitted their data and metadata (IMF 2007a). Yet, the final
report of the CCE revealed in FSIs cross-country diversity on account of four issues
(IMF 2007a): (i) accounting and supervisory practices; ( ii) data availability; (iii)
additional data collection costs for fully implementing the FSIs; and (iv) views on
how to compile the FSIs. This indicates that cross-country standardization is still a
goal to be achieved. However, the metadata compiled by the CCE facilitate more
informed cross-country comparisons and unifications. While the 2008 update of the
Guide improved the FSIs, Agresti et al. (2008) point out that the MPIs better fol-
low international accounting and supervisory standards and thus requires only few
adjustments to original national banking sector data.
Schou-Zibell et al. (2010) also note that the commonly used weighted averages

of indicators may lower their accuracy. Likewise, relating indicators to asset size, or
other data measuring size of banks, implies an implicit assumption that small banks
are not contributing to systemic risk. Even though Schou-Zibell et al. (2010) suggest
the use of qualitative information to complement the quantitative assessments, there
are obvious measurement problems. Qualitative information, such as poor banking
supervision, is challenging to quantify, whereas a qualitative assessment across coun-
tries may vary significantly. Other factors that are important in predicting a crisis, but
are difficult to measure, include the quality of corporate governance, independence
of the national central bank, reliability of the legal system, political stability, and
other institutional qualities.
The aggregation procedure to derive data on the banking system is rather easy.

However, while balance sheets and income statements of individual financial inter-
mediaries are simple to add up, comparisons of them have limitations not only due
to differences in individual firms’ business models, but also due to cross-country
variance in businessmodels and accounting standards [see, e.g., Nobes (2006)]. They
and their analysis can, however, be treated in close to similar manners as financial
ratios for individual firms. Likewise, they oftentimes also exhibit outliers and skewed
distributions [see, e.g., Deakin (1976)]. An issue of even more crucial importance
than with macroeconomic data is to lag variables such that they take into account
publication delays. Although some economies report quarterly banking system data,
others report only on an annual basis, which means that data for a reference period
are in most cases available only in the second quarter of the following year. That
is, at the time of writing, in February 2013, the available data would refer to 2011.
Pointing at the fact that in today’s quick paced financial world, the frequency of
financial reporting falls short in granularity.



64 3 Macroprudential Data

3.4.3 Market-Based Data

Relying on prices of assets and other financial instruments, one can create a battery
of financial stability indicators. These have been shown to have merits for some
tasks, whereas they still exhibit a range of weaknesses [see, e.g., IMF (2007a), Cihák
(2006)]. Advantageous features of market-based indicators is availability at high
frequency and short publication lags, as well as the rarity of missing values and the
lack of differences in accounting standards. They function as a measure of market
participants’ forward-looking assessment of risks and vulnerabilities, in contrast to
some more backward-looking accounting measures (e.g., nonperforming loans and
loan loss reserves). It is also worth noting that these data are publicly available
and widely accessible, unlike supervisory data. Yet, market-based data also have
their limitations. Availability is not only restricted to publicly traded institutions,
but also to those with non-limited trading, where examples of unsuitable entities are
government- or family-owned companies. Moreover, the quality of market-based
data is directly linked to how efficient the financial markets are. If markets are not
liquid, robust and transparent, price changes may reflect other factors than the health
of the issuer. Likewise, if public information related to an institution is limited (e.g.,
loan classification data in some economies), prudential information collected by
supervisors through other sources may be of higher value. Moreover, the forward-
looking assessment of financial market participants only accounts for potential losses
to their holdings (e.g., equities and bonds), rather than losses to depositors or systemic
effects in general. It is also worth noting that some more advanced market-based
indicators are based on distributional assumptions. For instance, measures based
upon the distance-to-default methodology assume that asset values are drawn from
a lognormal process, which implies the absence of extreme tail events relevant for
systemic risk assessments.
With regards to market-based data, the aggregation procedure is simple and easily

automated. Yet, it is obvious that market-based data exhibit cross-country differ-
ences. The financial market architecture and infrastructure, as well as many trading
activities, differ depending on the state of financial development in the country,
such as differences between advanced and emerging economies. When transforming
market-based indicators, one should consider that they are oftentimes contempora-
neous measures of financial stress, and hence lagged transformations (e.g., moving
averages) or deviations from trends (e.g., Hodrick-Prescott filtering) may improve
the early-warning capacity of the indicators. Due to the effortless aggregation and
data collection procedure, problems related to missingness and non-complete data
ought to be relatively rare.

3.5 Concluding Discussion

Today’s world has already for some time experienced access to ever-increasing
amounts of data. Yet, this chapter has highlighted that big data does not neces-
sarily imply good data. Crises have more often than not exposed weaknesses in
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data. The crises of the 1990s (e.g., Mexican and Asian crises) prompted progress in
data provision along multiple fronts. Examples of standards and efforts to improve
data provision are the establishment of SDDS, GDDS and DQRS, as well as updates
of previous establishments. Likewise, this crisis has revealed weaknesses in data pro-
vision. Burgi-Schmelz (2009) pinpoints issues highlighted by the current crisis to be
lack of data on who holds what, the balance-sheets on nonbanks and contingent risks
and derivative positions, in addition to the longstanding need formore accurate, com-
plete, frequent and timely data. The IMF is working on these issues in two projects
that hold promise for improving macroprudential data. The Data Link Project is an
internal project and aims at developing a set of timely and higher-frequency indi-
cators, initially for a number of systemically important economies. Externally, the
IMF is chairing an interagency group on national statistics with the aim of a global
website of economic and financial indicators. In the US, the Dodd-Frank Wall Street
Reform and Consumer Protection Act created, among many other things, the Office
of Financial Research to support the Financial Stability Oversight Council and its
member agencies by providing financial research and data. The improvements with
respect to data concern collecting and providing financial data of higher quality and
with better accessibility and transparency. The creation of the European Systemic
Risk Board points to similar efforts in Europe. Hence, turning these current large-
volume data also into high-quality data remains to be a critical objective for the
available tools for safeguarding financial stability to bear fruit.
Another key challenge for creating tools formonitoring threats to financial stability

has been the limited access to data. While mostly being available, some data are
restricted to only specific supervisory authorities. This has not only an effect on
monitoring, but also on research. One example is that the limited access to bilateral
interbank exposures has stimulated research onmethods for circumventing the use of
such data. For instance, so-called maximum entropy (Mistrulli 2011) and stochastic
blockmodeling (Halaj andKok 2013) have been used to estimate interbank exposures
from larger aggregates. Whereas research along these lines obviously improves the
current state of monitoring, it still wastes resources that could be spent on advancing
the state of the art, rather than on circumventing data accessibility.
In addition to a number of challenges that remain to be solved, this chapter has

illustrated multiple characteristics of data that need to be acknowledged. The chapter
described that the complexity and dimensionality exhibited by macroprudential data
is large, and new plans on improving data provision have been established. Yet, the
key question remains: What should we do with these data? Obviously, the data not
only enable, but also motivate designing tools for risk identification and assessment
with the ultimate aim of risk communication. Aggregating multidimensional infor-
mation into crisis probabilities, systemic risk indicators and other quantitative mea-
sures capturing the functioning and interconnectedness of financial systems provide
means for supporting decisionmaking in general and policymaking in particular. Yet,
visualizing these complex data in easily understandable formats not only provides
means for binary decisions, but also enables disciplined and structured judgmental
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analysis based upon policymakers’ experience, as noted by Mr. Trichet in the quote
prior to Chap.2. As this is also the key focus of this book, the next chapter digs
deeper into possible approaches for such exploratory means to analysis.
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Chapter 4
Data and Dimension Reduction

The eye, which is called the window of the soul, is the principal
means by which the central sense can most completely and
abundantly appreciate the infinite works of nature

– Leonardo da Vinci

Data and dimension reduction techniques hold promise for representing data in easily
understandable formats, as has been shown by their wide scope of applications.
Data reductions provide summarizations of data by compressing information into
fewer partitions, whereas dimension reductions provide low-dimensional overviews
of similarity relations in data. Thus, these techniques provide means for exploratory
data analysis (EDA). From a broader perspective, EDA is only one approach out
of many in data mining, and knowledge discovery includes data mining as only
one of its steps. To provide a holistic view in a top-down manner, we start by the
broader concepts, and endwith discussions of data anddimension reductions and their
combination. As the aim of Chap.5 is to provide a comparison of early dimension
reduction methods, the focus of this chapter is also on more detailed presentations
of so-called first-generation methods, including Multidimensional Scaling (MDS),
Sammon’s mapping and the Self-Organizing Map (SOM).

Along these lines, this chapter first presents an overview of EDA, knowledge
discovery in databases (KDD), information visualization and visual analytics, and
then focuses on reviewing methods for both data and dimension reduction. As the
focus of this book lies on dimension reductions, and data reductions are mainly used
for enhancing the interpretation of the dimension reductions, this chapter also has a
greater focus on dimension reductions.

This chapter is partly based upon previous research. Please see the following work for further
information: Sarlin (2014a)

P. Sarlin, Mapping Financial Stability, Computational Risk Management, 69
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4.1 Some Key Concepts and Definitions

To better position data and dimension reduction, this section takes a broad perspec-
tive on EDA. EDA, as vaguely defined by Tukey (1977), is numerical, counting and
graphical detectivework. However, none of Tukey’sworks seems to provide a precise
and concise definition of EDA. In a later work with two collaborators, he provided
yet another broad definition, but still one with somewhat more precision (Hoaglin
et al. 1983): “Exploratory data analysis isolates patterns and features of the data
and reveals these forcefully to the analyst”. The focus of the field may thus be related
to representing data in easily understandable formats, which might involve summa-
rizing characteristics of interest with descriptive statistics or visual examinations.
Rather than being an approach to test hypotheses, EDA concerns tasks supporting
the formulation of hypotheses, which may be tested with other methods, and the
assessment of assumptions in data, on which statistical inference may rely. Hence,
Tukey (1977) defines EDA to be exploratory or descriptive in nature, whereas it is
not concerned with confirmatory or inferential tasks, in which the focus is on using
data to confirm a number of assumptions or the validity of a hypothesis or model.

In the following, this section proceeds by first viewing EDA from above, i.e.,
knowledge discovery and data mining, and then zooming in on the most central parts
of its core, i.e., information visualization and visual analytics. That is, EDA can be
seen as a part of the broader concept of datamining. From amore narrow perspective,
the increased importance of visual examinations strengthens the link between EDA
and information visualization, which has lately burgeoned into a broad field on its
own. Finally, the third topic of discussion is visual analytics, the combination of
information visualization and data mining.

4.1.1 Knowledge Discovery and Data Mining

Datamining is an interdisciplinary subfield of computer science, ofwhichEDA is one
out of many approaches. While being a topic that has lately attracted broad attention
in academia, industry and media alike, the original definition of data mining is only a
step of the broader concepts of knowledge discovery (KD) and knowledge discovery
in databases (KDD). The definitions of these three terms, and their variations, are
not seldom confused. This motivates a further look into them.

KD, and later called KDD, concerns the broad knowledge discovery process
applied to large databases. More precisely, KD was first defined as “the nontrivial
extraction of implicit, previously unknown, and potentially useful information from
data” (Frawley et al. 1992). Later, Fayyad et al. (1996a) revised the definition of KD
to the following definition ofKDD:“the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data”. Hence, KDD
concerns the entire knowledge extraction process, including how to store and access
data, how to develop efficient and scalable algorithms for analyzing large datasets,
how to visualize and interpret results, and how to model and support human-machine
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interaction (Fayyad et al. 1996b). Data mining, on the other hand, is most often only
one of the steps in the KDD process. When untangling the concepts of KDD and data
mining, Fayyad et al. (1996a) define the latter as follows:“applying data analysis and
discovery algorithms that, under acceptable computational efficiency limitations,
produce a particular enumeration of patterns over the data”. They further note that
as the enumeration involves a search in the space of patterns, which oftentimes is
infinite, computational constraints may restrict the subspace that is feasible to be
explored through data mining. Although some define data mining as the process of
automatically finding interesting facts in data [see, e.g., Fekete et al. (2008)], the
notion of data mining is not in this work restricted to automated pattern recognition,
but includes also various types of interactive exploratory approaches as a support to
the KDD process in general and data mining in particular.

Data Mining in a KDD Process

So far, we have discussed and untangled the concepts of data mining and KDD, while
the general process of KDD and the precise role of data mining is yet to be discussed.
Alas, there is no one process of KDD. Table4.1 provides four versions of the KDD
process, as well as one generic example. Following a blend of all KDD processes
in the table, especially the especially the Cross Industry Standard Process for Data
Mining (CRISP-DM) process (Shearer 2000) and the generic example (Kurgan and
Musilek 2006), we will focus on a simplified KDD process that corresponds to that
applied in this book. The upper part of Fig. 4.1 summarizes the herein used KDD
process into the following six steps:

(i) Domain understanding
(ii) Data understanding
(iii) Data preparation
(iv) Data mining
(v) Performance evaluation
(vi) Knowledge consolidation and deployment.

The key objective of Step 1 is to have the necessary knowledge about the application
domain for proceeding with further analysis. Only after that, it also involves for-
mulating the key objectives of the project from the perspective of all stakeholders,
translating these general objectives into a KDD problem, and then drafting a broad
and preliminary plan for achieving the objectives. As in the CRISP-DM process
(Shearer 2000), this type of a plan is the basis of the entire KDD process. Data
exploration in Step 2 involves achieving an understanding of the underlying data,
whereas data preparation in Step 3 addresses the observed deficiencies and proper-
ties. The understanding may involve exploring the existence of outliers and missing
values, as well as distributions of data. To address these concerns, data preparation
may comprise transforming, cleaning, imputing and preprocessing data. An initial
task is to select and collect data as per relevance, availability, quality, and other
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Fig. 4.1 KDD process and data mining techniques. Notes The figure represents the KDD process
applied in this book, as well as a mapping of techniques for data mining, data preparation and
performance evaluation to the process steps

domain-specific constraints and objectives. Another key task is to clean the selected
data by identifying and correcting, replacing or removing data that are erroneous,
irrelevant, incomplete or inaccurate. Further, it is also important to transform col-
lected data and construct entirely new data, both as per the needs for the task at hand.
Finally, one should not forget the oftentimes time consuming tasks of integrating and
formatting data. There is some controversy concerning the order of Steps 2 and 3,
as preparation is often needed before one can explore the data, whereas exploration
affects preparation. Yet, it can mostly be assumed that the task of understanding has
to logically precede that of preparation. Still, this is largely a detail of presentation
as these two steps are most often iterated multiple times.

In Step 4, data mining techniques are applied to the selected data and parame-
trized for optimal performance. While data mining is only one step in the process,
and the quality of work in Steps 1–3 also significantly impact the results, data mining
is the one step that has the largest influence on what the output or outcome is of the
KDD process. Generally, multiple techniques are applied to the same problem for
testing their suitability for the task at hand, including the stages of selecting a model-
ing technique, generating a test design, creating models and assessing the output of
models [see, e.g., Shearer (2000)]. While also involving a ranking of models accord-
ing to evaluation measures, as well as performance in fulfilling the objectives from
the viewpoint of the domain in general and project in particular, the more thorough
performance evaluation of the models is done in Step 5. This step involves a range of
evaluation methods for determining the performance and robustness of the created
models. The evaluation may not only relate to quantitative measures of performance,
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such as accuracies (errors) and profits (costs) of classification tasks, but also to softer
notions of achievement of the project objectives and domain requirements. Finally,
Step 6 involves a knowledge consolidation of the entire exercise and a deployment
of the model for future use.

The lower part of Fig. 4.1 shows the methods that the KDD process makes use of
and that support the overall process, such as in data preparation, understanding and
mining, and performance evaluation. This is the following topic.

Methods in the KDD Process

The lower part of Fig. 4.1 points out the need for a variety of methods in the KDD
process. The figure shows that data preparation in Step 2 needs an own set of methods
for preparing data into a format that lends to analysis. Likewise, performance evalu-
ation in Step 5 needs a wide range of methods for judging the quality of data mining
models. In between these steps, themost important groups of methods are utilized for
data understanding in Step 2 and data mining in Step 4. These four separate groups
of methods are discussed below.

First, in Step 2, methods for unsupervised exploration function as an aid in under-
standing data. Whereas methods in this category provide means for EDA in general,
a focus at this stage is on methods that aid in exploring the existence of outliers
and missing values, as well as distributions of data. Univariate and bivariate sum-
mary statistics (e.g., ranges, standard deviations and normality tests) and visual plots
(e.g., box plots, histograms and time series) provide simple means for a range of
descriptive assessments. Yet, having a multivariate viewpoint may be beneficial in
the case of understanding structures in the high-dimensional space, such as exploring
multivariate cluster structures and similarities in multivariate data. The former mul-
tivariate exploration may obviously be conducted with data reduction (or clustering)
approaches and the latter with dimension reduction (or projection) approaches.

Second, data preparation involves the tasks of refining initial raw data such that
they can be fed into the data mining methods. After selecting and collecting data
needed, key tasks of preparation relate to cleaning, transforming and constructing
data. A principal task is to clean the collected data by identifying, correcting, replac-
ing or removing data that are erroneous, irrelevant, incomplete or inaccurate. For
instance, missing values may be replaced with a wide range of imputation methods
[e.g., the SOM (Cottrell and Letrémy 2005) and multiple imputation (Rubin 1987)]
and identified outliers may be replaced or removed (e.g., modified boxplots, Win-
sorizing and other model-based methods like Chauvenet’s criterion), both as per the
needs for the task. Further, new data may be created by, for instance, translating
symbolic fields to numerical data or deriving new variables based upon already col-
lected data. Deriving new variables from already collected data may hence involve a
wide variety of transformation methods, where some are simpler (e.g., levels, ratios,
annual changes, logs and differencing) and others are more advanced (e.g., the
X-12-ARIMA seasonal adjustment procedure and Hodrick-Prescott detrending). For
some data mining methods, it is also of high importance to standardize or normalize
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data with an appropriate pre-processing method (e.g., min-max, z-score, percentiles
and sigmoids).

Third, the key group is the one that comprises data mining methods, where
exploratory unsupervised and predictive supervised methods are split into various
categories. While exploratory methods are divided as per the data (univariate, bivari-
ate and multivariate), the predictive methods are divided as per the output and aim
of methods (classification, regression and clustering/projection). It is hence obvi-
ous that there is an overlap between the two broad groups, in particular multivariate
exploratorymethods like data and dimension reduction and clustering and projection,
which in essence can be seen as the same methods. The categories overlap in that
not only can projection and clustering methods be used for prediction of unlabeled
data, but also as they can be semi-supervised. Projection methods, such as MDS and
its variants [see, e.g., Cox and Cox (2001)], map multidimensional data into a lower
dimension. TheMDSmethods do not, however, reduce the amount of presented data.
Clustering techniques attempt to find clusters in the data, and thus reduce the amount
of data by enabling analysis of a smaller number of profiles or partitions.

Fourth, the evaluation of the modeling mainly relates to quantitative measures
of performance, but also includes softer notions of achievement. The quantitative
goodness-of-fit measures are most often chosen based upon the applied data mining
methods. If the key aim is classification, then measures of classification performance
are used, where one might want to account for imbalanced class size and misclassifi-
cation costs, both on the level of classes and entities. That is, cost-sensitive evaluations
focus on estimated profits or costs of a model. Likewise, if the aim is regression or
time-series forecasting, one should choose the evaluation methods that best mea-
sure conducted errors (e.g., mean square and mean absolute error, mean absolute
deviation or root mean squared error). Unsupervised multivariate methods, such as
data and dimension reduction, focus on how well they can preserve the structures in
original data. In data reduction, a common quality measure is the quantization error,
whereas dimension reduction oftentimes uses pairwise distances between data as a
measure of preservation of similarity relations. As Shearer (2000) points out, one
should also qualitatively evaluate the adequacy of the overall process and whether
there are any important factors or tasks missing. The quality assurance also includes
controlling whether the model was correctly built and whether only attributes avail-
able for future use were utilized in the models. Likewise, a more general-level check
covers the extent to which project objectives and domain requirements have been
achieved.

4.1.2 Information Visualization

Information visualization has lately emerged as one of the key fields to support EDA.
Mainly, it has its origin in the fields of human-computer interaction, computer sci-
ence, graphics and visual design (Bederson and Shneiderman 2003). A more precise
definition of information visualization is “the use of computer-supported, interac-
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tive, visual representations of abstract data to amplify cognition” (Card et al. 1999),
where the aim is to improve human understanding of the data with graphical presen-
tations or graphics. Thereby, the aim resembles what we discussed as intelligence
amplification (IA) in the introduction. Generally, tools for information visualization
are mainly and best applied for EDA tasks, which oftentimes includes browsing a
large space of information. The identification of situations where browsing is use-
ful aids in determining when information visualization is of value. Lin (1997) lists
browsing to be useful when:

(i) there is a good underlying structure and when related items are located close to
one another;

(ii) users are unfamiliar with the contents of the collection;
(iii) users have little understanding of the organization of a system and prefer to use

a method of exploration with a low cognitive load;
(iv) users have difficulty in articulating or verbalizing the specific information need;

and
(v) users search for information that is easier to recognize than describe.

Above, we see five situations when browsing information visualizations is useful, yet
we still need to discuss the elements of information visualization in depth. The rest
of this subsection focuses on three subtopics of information visualization: human
perception and cognition, data graphics and visualization techniques.

Human Perception and Cognition

An essential part of visual communication relates to the attempt to match the design
according to the capabilities and limits of the human information and visual sys-
tem. The visual system comprises the human eye and brain and can be seen as an
efficient parallel processor with advanced pattern recognition capabilities [see, e.g.,
Ware (2004)]. The focus of human perception is the understanding of sensory infor-
mation, where the most important form is the visual perception. The final IA of
information visualization can be viewed as a type of cognitive support. The mecha-
nisms of cognitive support are, however, multiple. Hence, visualization tools should
be targeted to exploit advantages of human perception.

Mostly, arguments about the properties and perception capabilities of the human
visual system rely on two grounds: (i) information theory (Shannon and Weaver
1963), and (ii) psychological findings. Information theory states that the visual canal
is best suited to carry information to the brain as it is the sense that has the largest
bandwidth. Ware (2004) asserts that there are two main psychological theories for
explaining how to use vision to perceive various features and shapes: preattentive
processing theory (Triesman 1985) and gestalt theory (Koffa 1935). Prior to focused
attention, preattentive processing theory relates to simple visual features that can be
perceived rapidly and accurately and processed effectively at the low level of the
visual system. Whereas more complex visual features require a much longer process
of sequential scanning, preattentive processing is useful in information visualization
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as it enables rapid dissemination of the most relevant visual queries through the use
of suitable visual features, such as line orientation, line length or width, closure,
curvature and color (Fekete et al. 2008). At a higher cognitive level, gestalt theory
asserts that our brain and visual system follow a number of principles when attempt-
ing to interpret and comprehend visuals. Ware (2004) summarizes the principles as
follows:

Proximity: Items close together are perceptually grouped together.
Similarity: Elements of similar form tend to be grouped together.
Continuity: Connected or continuous visual elements tend to be grouped.
Symmetry: Symmetrical elements are perceived as belonging together.
Closure: Closed contours tend to be seen as objects.
Relative size: Smaller components of a pattern tend to be perceived as objects.

The principles of gestalt theory can easily be related to some more practical con-
cepts. For instance, most dimension reduction methods, when aiming at visualizing
data, may be seen to relate to the proximity principle, as they locate data with high
proximity close to each other, whereas others are pushed far away. Likewise, a time
trajectory may be paired with continuity. More related to the cognition of visualiza-
tions, Fekete et al. (2008) explain that the core benefit of visuals is their functioning
as a frame of reference or temporary storage for human cognitive processes. The
authors assert that visuals are external cognition aids in that they augment human
memory, and thus enable allocating a larger working set for thinking and analysis.
In the above stated definition of information visualization by Card et al. (1999),
visuals are presented as a means to “amplify cognition”. Following that definition,
the authors also list a number of ways how well-perceived visuals could amplify
cognition:

(i) by increasing available memory and processing resources;
(ii) by reducing the search for information;
(iii) by enhancing the detection of patterns and enabling perceptual inference oper-

ations;
(iv) by enabling and aiding the use of perceptual attention mechanisms for moni-

toring; and
(v) by encoding the information in an interactive medium.

Examples of the first way to amplify cognition, the increase in available resources,
are parallel perceptual or visual processing and offloading work from the cognitive
system to the perceptual system (Larkin and Simon 1987). Second, visuals facilitate
the search procedure by the provision of a large amount of data in a small space
(i.e., high data density) (Tufte 1983) and by grouping information used together in
general and information about one object in particular (Larkin and Simon 1987).
Third, abstraction and aggregation aid in the detection of patterns and operations for
perceptual inference (Card et al. 1991). Fourth, perceptual monitoring is enhanced,
for instance, through the use of pop-out effects created by appearance or motion
(Card et al. 1999). Likewise, Card et al. (1999) exemplify the fifth way to amplify
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cognition, the use of a manipulable medium, by allowing the user to explore a wide
range of parameter values to interactively explore properties of data.

Yet, matters concerning human perception and cognition also constitute a large set
of issues that may hinder, disturb or generally negatively affect how visualizations
are read. A key starting point is to take into account the deficiencies and limitations
of human perception. Preattentive processing, for instance, becomes a deficiency if
visuals are not designed properly. Patterns a user is supposed to identify quickly—or
give visual but not conscious attention to—should hence be made distinct from the
rest by using features that can be preattentively processed. Likewise, visual attention
functions as afilter in that only one pattern is brought intoworkingmemory (Baddeley
and Logie 1999). Hence, if provided with multiple patterns, we only see what we
need or desire to see by tuning out other patterns. Ware (2005) also mentions the fact
that humans process simple visual patterns serially at a rate of one every 40–50 ms.
and a fixation lasts for about 100–300 ms, meaning that our visual system processes
2–6 objects within each fixation, before we move our eyes to visually attend to some
other region. In addition, one important factor to account for is how perception of
visuals is affectedbyproperties of the humaneye, such as acuities, contrast sensitivity,
color vision, perception of shape or motion with colors, etc. Another aspect of crucial
importance is obviously to pay regard to human perceptions of shapes in visuals, such
as distances, sizes and forms. Cognitive deficiencies should also be accounted for
when designing visuals, such as the limited amount ofworkingmemory. For instance,
Haroz and Whitney (2012) show that the effectiveness of information visualizations
is severely affected by the capacity limits of attention, not the least for detecting
unexpected information. Hence, an understanding of the functioning of the human
visual system aids in producing effective displays of information, where data are
presented such that the patterns are likely to be correctly perceived.

Data Graphics

The literature ondata graphics has its focus on the principles for visual representations
of data. Herein, the focus is on the early, yet brilliant, work by Tufte (1983) andBertin
(1983). Their works, while being principles for graphics design, are to some extent
also valid to overall computer-based visualizations. Tufte’s set of principles are called
a theory of data graphics, whereas Bertin’s work is most often denoted a framework
of the planar and retinal variables. However, rather than an exact theory, Tufte and
Bertin provide a set of rules of thumb to follow.

The following overview is included to provide concrete guidelines, in addition
to the above discussion of human perception and cognition. Herein, we will discuss
only the key components of frameworks and theories by Bertin and Tufte. We start
from Bertin’s (1983) framework called the Properties of the Graphic System, which
consists of two planar and six retinal variables. The two planar variables are the x
and y dimensions of a visual, whereas the six retinal variables describe the following
visual marks on the plane: size, value, texture, color, orientation and shape. The
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eight variables can be categorized according to the following levels of organization,
or so-called perceptual properties:

(i) Associative (≡): If elements can be isolated as belonging to the same category,
but still do not affect visibility of other variables and can be ignored with no
effort.

(ii) Selective ( ≤=): If elements can immediately and effortlessly be grouped into a
category, and formed into families, differentiated by this variable, whereas the
grouping cannot be ignored.

(iii) Ordered (O): If elements can perceptually be ordinally ranked based upon one
visually varying characteristic.

(iv) Quantitative (Q): If the degree of variation between elements can perceptually
be quantified based upon one visually varying characteristic.

When having an understanding of the four levels of organization, we can return to
discussing Bertin’s (1983) eight visual variables. Bertin describes the plane, and its
two dimensions (x, y), as the richest variables. They fulfill the criteria for all levels
of organization by being selective, associative, ordered and quantitative. The retinal
variables, on the other hand, are always positioned on the plane, and can make use of
three types of implantation: a point, line, or area. First, size is ordered, selective but
not associative, and the only quantitative retinal variable. Second, value is the ratio
of black to white on a surface, according to the perceived ratio of the observer, and is
also sometimes called brightness. The usage of value in this case is close to the one in
the HSV (hue, saturation and value), cylindrical-coordinate representation of points
in an RGB (red, green and blue) color space. It is an ordered and selective retinal
variable. Third, texture represents the scale of the constituent parts of a pattern, where
variation in texture may occur through photographic reductions of a pattern of marks.
That is, it may range from null texture with numerous but tiny elements that are not
identifiable to large textures with only fewmarks. Texture as a retinal variable can be
ordered and is both selective and associative. Fourth, variation may occur in color.
The variation of two marks with the same value or brightness is thus more related to
changes in hue of HSV. Color as a retinal variable is selective and associative, but
not ordered. Fifth, the orientation variable enables variation in the angle between
marks. In theory, this opens up an infinite set of alternatives of the available 360◦,
whereas Bertin suggests the use of four steps of orientation. The orientation variable
is associative and selective only in the cases of points and lines, but has no direct
interpretation of order. Finally, the sixth variable of shape, while being a retinal
variable on its own, also partly incorporates aspects of size and orientation. It is
associative, but neither selective nor ordered.

A complement to Bertin’s framework is the Theory of Data Graphics by Tufte
(1983), which consists of a large number of guidelines for designing data graphics.
The two key, broad principles are graphical excellence and graphical integrity. In
addition to these, Tufte provides twomore focused principles: data-ink maximization
and data density maximization.

Tufte (1983) defines graphical excellence as something that “gives to the viewer
the greatest number of ideas in the shortest time with the least ink in the smallest
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space”. The principle of graphical excellence summarizes a number of his guidelines
that encourage graphical clarity, precision, and efficiency: (i) avoid distortions of
what the data have to say; (ii) aid in thinking about the information rather than the
design; (iii) encourage the eye to compare the data; (iv)make large data sets coherent;
(v) present a large number of data in a small space; (vi) reveal data at multiple levels
of detail ranging from a broad overview to fine detail; (vii) and closely integrate
statistical and verbal descriptions of the data.

The second of Tufte’s (1983) principles, graphical integrity, relates to telling the
truth about data. To follow this principle, Tufte provides six key guidelines: (i) visual
representations of numbers should be directly proportional to the quantitieswhich the
visuals represent; (ii) clear and detailed labeling should be used to avoid ambiguity;
(iii) show data variation, not design variation; (iv) deflate and standardize units when
dealing with monetary values; (v) the number of dimensions depicted should not
exceed the number of dimensions in data; and (vi) data should not be showed out of
context. The aim of these principles is to avoid deception and misinterpretation.

Third, the principle of data-ink maximization proposes that data graphics should
focus on the data, and nothing else.Hence, a good graphical representation focuses on
data-ink maximization with minimum non-data-ink. The data-ink ratio is calculated
by 1 minus the proportion of the graph that can be erased without loss of data
information. Tufte (1983) puts forward the following five guidelines related to data
ink: (i) above all else, show data; (ii) maximize the data-ink ratio; (iii) erase non-
data-ink; (iv) erase redundant data-ink; and (v) revise and edit.

The fourth of Tufte’s (1983) principles, data density maximization, relates to the
share of the area of the graphic dedicated to showing the data. For too low densities,
Tufte suggests to either reduce the size of the graphic (shrink principle) or the use of
a table. In particular, he claims that graphs can oftentimes be shrunk in size without
losing legibility or information. In terms of concrete design, he proposes the small
multiples, a design for showing varying data onto a series of the same small graph
repeated in one visual.

Bertin’s and Tufte’s principles provide a guiding set of rules of thumb to follow
when spanning the space of two-dimensional visualizations. Yet, visualizations, not
the least interactive visualizations, go beyond a static two-dimensional space by
including additional visual variables, such as depth and time. The next part discusses
a range of visualization techniques and tools, where interaction becomes essential.

Visualization Techniques

The literature has provided a long list of techniques for creating visual represen-
tations. Herein, we will mainly focus on a rough overview, as well as a brief and
simple taxonomy, of methods, rather than a detailed survey of methods. Obviously, a
key issue of information visualization is what formats and features the methods will
help to organize and visualize, as well as how that relates to the use of human visual
capabilities. Following Zhang et al. (2012), the techniques supporting information
visualization can be divided into two groups: graphical representations of data and
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interaction techniques. The former group refers to the visual form in which the data
or model is displayed, such as standard visualization techniques like bar and line
charts. Yet, visualizations may often refer to manipulable graphical displays of data.
The latter group of interaction techniques refers to how the user can interact with
or manipulate the graphical displays, such as zooming or panning. These oftentimes
have their basis in one ormore graphical displays such that they enablemore freedom
and flexibility to explore the data.

From the viewpoint of the underlying data, rather than the formats of visual
displays, Zhang et al. (2012) categorize visualization techniques into four groups:
numerical data, textual data, geo-related data and network data. First, numerical
data can be visualized by a vast number of approaches, such as standard visualiza-
tion techniques like bar and pie charts and scatter plots. These focus most often on
the visualization of low-dimensional numerical data. On the other hand, visualiza-
tion techniques like parallel coordinates, heatmaps and scatter plot matrices provide
means to display data with higher dimensionality. Second, visualization of textual
data is a new, growingfield. Recent techniques includeword cloud (Kaser andLemire
2007) and theme river (Havre et al. 2000), for instance. Likewise, the availability
of the third type of data, geo-tagged data, has caused a soar in the demand for geo-
spatial visualizations. Geo-related univariate or multivariate information is often-
times projected into conventional two-dimensional and three-dimensional spaces.
Fourth, graph visualizations provide means for displaying patterns in network data
with relationships (i.e., edges) between entities (i.e., nodes). They most often consist
of a technique for positioning, such as force-based algorithms, as well as coloring or
thickness of edges to display the size of a relationship. Graph or network visualiza-
tions have been increasingly applied in a wide range of emerging fields like social
and biological network analysis, not to mention financial network analysis.

A categorization of visualization techniques as per the types of data does not,
however, differentiate all possibilities of techniques. While being some years old,
Keim and Kriegel (1996) groups visualization techniques into five categories: geo-
metric, icon-based, pixel-oriented, hierarchical, and graph-based techniques. First,
geometric techniques provide means for visualization of geometric transformations
and projections of data. Examples of the methods are scatterplot-matrices, parallel-
coordinate plots and projection methods. Second, icon-based techniques, as already
the name states, visualize data as features of icons. Themethods include, for instance,
Chernoff-faces and stick figures, ofwhich the former visualizemultidimensional data
using the properties of a face icon and the latter use stick figures. Third, pixel-oriented
techniques map each attribute value to a colored pixel and present attribute values
belonging to each attribute in separate subwindows. For instance, query-independent
techniques arrange data from top-down in a column-by-column fashion or left to right
in a line-by-line fashion, while query-dependent techniques visualize data in the con-
text of a specific user query. Four, hierarchical techniques provide means to illustrate
hierarchical structures in data. Most often, hierarchical methods focus on dividing
an n-dimensional attribute space by “stacking” two-dimensional subspaces into each
other. Finally, the fifth category, graph-based techniques, focus on the visualization
of large graphs, or networks, to illustrate the properties of the network, as was above
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discussed. In addition, Keim and Kriegel also illustrate the existence of a wide range
of hybrids that make use of multiple categories.

The above discussion obviously illustrates the importance of choosing a suitable
type of display format, given the data and the task at hand. Yet, it not only illustrates,
but also guides in the choice. Following the above paragraphs, we can use the data
and display categories. The first factor to define the nature of the chosen visualization
technique is the properties of the data, such as the form of data, dimensionality of
data, data structures and size of data. The second factor to determine is the expected
output and purpose of use, where the variation of purposes is large, such as pre-
dictive versus exploratory, temporal versus cross-sectional, and univariate versus
multivariate analysis and similarity versus dissimilarity matching, as well as other
purposes related to a focus on geo-spatial visualizations and network relationships,
for instance. While there is no one way to choose the correct technique, considering
the two dimensions of data and display, as well as other restrictions, demands and
needs for the task, provides an adequate basis.

Given a technique, a critical factor of information visualization is, however, the
possibility to interact with the visuals. Like the KDD process in the entire knowl-
edge extraction process, a common guideline for interactions with visualizations is
the visual information seeking mantra (Shneiderman 1996): “Overview first, zoom
and filter, then details-on-demand”. Whereas Shneiderman (1996) characterizes the
mantra with seven abstract tasks, we focus only on the following four explicitly men-
tioned ones: First, a user should gain an overview of the entire collection through a
high-level representation. Second, users should have the possibility to zoom in on a
portion of items that are of particular interest. Third, there should exist the possibility
to filter out or to eliminate uninteresting and unwanted items, such as allowing users
to specify which items to display. Fourth, the user should have the option to select
an item or group of items to get further details-on-demand, such as clicking a group
or individual items.

This provides a starting point to data visualization and user interaction, but does
still not address the role of analytical or data mining techniques in visualization. The
next step is to combine graphical representations of data and interaction techniques
with analytical methods.

4.1.3 Visual Analytics

By adding data mining to the ingredients of information visualization, we end up
with the original definition of visual analytics (Thomas andCook 2005): “the science
of analytical reasoning facilitated by interactive visual interfaces”. Hence, the field
of visual analytics has strong roots in information visualization. Likewise, visual
analytics is also strongly related to the KDD process. The term visual data mining
descends from the integration of the user in the KDD process through visualization
techniques and interaction capabilities [see, e.g., Keim (2001)]. This has taken visual
analytics to be applied in areas with challenging problems that were unsolvable using
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standalone automatic or visual analysis [see, e.g., Keim et al. (2009)]. In particular,
automated analysis enables scaling to larger and more challenging tasks, whereas
visualizations may be used to effectively communicate the outcome to the user in
particular or a broad audience in general.

Since we derive visual analytics from three above presented concepts—graphical
representations of data, interaction techniques and data mining techniques—there
is no need to repeat the discussion of each component. Yet, the above presented
information seeking mantra only mentions visualizations in the KDD process, while
not integrating the two concepts. Keim et al. (2006) propose combining the KDD
process and information seeking mantra for a visual analytics mantra: “Analyze first,
show the important, zoom, filter and analyze further, details on demand”. The authors
exemplify the visual analyticsmantra with analysis of large network security data. As
graphical representations of raw data is infeasible and seldom reveals deep insights,
the data need to first be analyzed, such as computing changes and intrusion detec-
tion analysis. Then, the outcome of the automated analysis is visualized. Out of the
displayed results, the user filters out and zooms in to choose a suspicious subset of
all recorded intrusion incidents for further, more careful analysis. Thus, the mantra
involves automated analysis before and after the use of interactive visual represen-
tations. Following the mantra, an adapted version of the visual analytics process in
Keim et al. (2010) is presented in Fig. 4.2. The key steps in the process are data
preparation, visual and automatic analysis, and knowledge consolidation. Whereas
the step of data preprocessing and transformations is similar to that discussed in the
previous section, the user selects in the following step between visual or automatic
analysis methods. The user might prefer to start from whichever of the two tasks, but
it is likely that several iterations of data visualization and interaction, and automatic
analysis is needed. Finally, after alternating between visual and automatic methods,
the thus far gained knowledge is not only gathered, but also transferred through a
feedback loop to support future analysis.

Visual analytics in general and the visual analytics mantra in particular link to the
core of this book, the use of data and dimension reduction methods to support human
cognition. While clustering and data reduction methods provide overviews or sum-
marizations of data by compressing information into fewer profiles, projection and
dimension reduction methods lend to the visualization of high-dimensional spaces in
a low-dimensional mapping by preserving similarity structures. Following the above
four categories of data, they lend to analysis of numerical, textual and network data,
given adequate preprocessing. Likewise, they may also be paired with geo-spatial
visualizations. The sequel of this chapter focuses on aims of and methods for data
and dimension reduction, where the underlying data are assumed to be numerical.

4.2 Dimension Reduction

Before defining the concept of dimension reduction, it is worth to note that it goes by
multiple other names. Some call it a projection, vector projection or projection pur-
suit, and others call it a mapping. Whereas the key aim of dimension reduction is to
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Fig. 4.2 Visual analytics process. Notes The figure represents the visual analytics process. The
figure is adapted from Keim et al. (2010)

provide a low-dimensional overview of similarity relations in data, slight variation in
purposes of use lead to different preferences of preserved structures. In this section,
we will first broadly discuss variations in aims and purposes of use with respect to
dimension reduction and then review first-generation and second-generation meth-
ods, as well as position them in a taxonomy.

4.2.1 Aims of Dimension Reduction

Reducing dimensionality may be motivated by a large number of reasons. For
instance, Zhang and Liu (2005) relate the desire of dimension reduction to enhancing
the understanding of data, reducing the complexity of the system, and avoiding the
curse of dimensionality. Yet, different purposes of use and applications have different
aims and preferences of the preserved properties. Without going into the details of
how to preserve structures, and what are the similarity relations of crucial interest in
various tasks, we can categorize dimension reductions by relating them to three broad
aims [see, e.g., Lee and Verleysen (2007), Zhang and Liu (2005)]: (i) visualization
and exploration, (ii) regression, and (iii) classification. The first aim of visualization
relates to embedding high-dimensional data into a low-dimensional space by pre-
serving their intrinsic dimensions. The second aim is regression, in which the focus
is on reducing the dimensionality of the predictor vector (i.e., explanatory variables),
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but at the same time minimizing the loss in inferences about the predicted variable
(i.e., explained variable). Third, the aim may also relate to classification, in which
case the goal is to find a low-dimensional space with the minimum classification
error.

Another approach to categorization is to view the problem of dimension reduc-
tion as supervised and unsupervised [see, e.g., Zhang and Liu (2005), Gisbrecht
et al. (2012)]. Whereas the standard approach to dimension reduction is an unsu-
pervised search for a low-dimensional representation of similarity relations in high-
dimensional data, one may also opt to supervise the mapping by integrating class
information. The supervised version, also called a discriminative dimension reduc-
tion, may be thought of as having two parts in its cost function, where one consists of
the preserved structures in the observed variables and the other of the preserved struc-
tures (e.g., distances) of the labels. The use of labels to steer the dimension reduction
can oftentimes be a useful addition when interpreting the low-dimensional output, as
users oftentimes have a direct understanding of the classes. In addition to amplify-
ing the understanding of the underlying class structure, a central task of supervised
dimension reductions is also to aid in visually classifying data and communicating
the results of a classification.

This boils into the following question:What are the tasks that the methods perform
and the functionalities that are needed? Lee and Verleysen (2007) describe that the
key functionalities of dimension reductions are to be able to: (i) estimate the number
of latent variables, (ii) reduce dimensionality by embedding data, and/or (iii) recover
latent variables by embedding data. First, to judge the number of latent variables,
one needs to perform an estimation of the intrinsic dimensionality. Yet, only few
methods provide means for such an estimation. For instance, with the two latter
of the above aims (i.e., regression and classification), one might be interested in
reducing dimensionality only up to a point that captures variations of the latent
variables, whereas the ones capturing noise and other imperfections are disregarded.
Second, a natural next step is to re-embed the high-dimensional data into a better
filled lower dimension. The aims may be to achieve a compact representation and/or
to facilitate subsequent processing of data, where the former aids in visualizing the
data and the latter supports a further data compression (or data reduction). Third, the
task of latent variable separation also involves means for recovering the variables,
in order to fulfill an aim beyond only a reduction of the dimensionality. One intuitive
approach to recovering latent variables is to model the observed variables as linear
combinations of the latent ones. However, it is worth noting that the same method
seldomperforms the second and third tasks of reducing dimensionality and separating
latent variables. In the following, while presenting a broad palette of methods, the
focus herein is on embedding data into a lower dimension to support data compression
and visualization.
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4.2.2 An Overview of Methods

The first dimension reduction methods date back to the early 20th century. However,
only since the 1990s has there been a significant soar in the number of developed
methods. This can be used as a cutting point for dividing the methods into first-
generation and second-generation methods, are then described in a tree-structured
taxonomy.

First-Generation Methods

The first generation consists of thewell-known classicalmethods that are still broadly
used and accepted in a wide range of domains. Drawing upon the first introduced,
but still commonly used, variance-preserving Principal Component Analysis (PCA)
(Pearson 1901), an entire family of distance-preserving MDS-based methods have
been developed. TheMDScounterpart to PCA, classicalmetricMDS,which attempts
to preserve pairwise distances, was proposed by Young and Householder (1938),
Torgerson (1952). Non-linear versions are the first introduced non-metric MDS by
Shepard (1962), Kruskal (1964) and the later developed Sammon’s (1969) mapping.
As said, the key aim of these methods is to project high-dimensional data x j (i.e., the
input space) to a two-dimensional data vector y j (i.e., the output space) by preserving
distances. To start with, we look at the functioning of the distance-preserving coun-
terpart of PCA, classical metric MDS. Let the distance in the input space between
x j and xh be denoted dx ( j, h) and the distance in the output space between y j and
yh be denoted dy( j, h). This gives us the objective function of metric MDS:

EMDS =
∑

j ≤=h

(
dx ( j, h) − dy( j, h)

)2
. (4.1)

Due to the simple linear form of metric MDS, we also explore the functioning of a
non-linear MDS-based method, Sammon’s (1969) mapping. It is an MDS method
in that it also attempts to preserve pairwise distances between data but differs by
focusing on local distances relative to larger ones. The square-error objective function
for Sammon’s mapping is

ESAM = 1∑
j ≤=h

dx ( j, h)

∑

j ≤=h

(
dx ( j, h) − dy( j, h)

)2

dx ( j, h)
, (4.2)

and shows that it considers all pairs ( j, h) normalized by the input space distance
dx ( j, h) and weighted with 1/dx ( j, h). The objective functions ofMDS-basedmeth-
ods are most often optimized with an iterative steepest-descent process.

The topology-preserving family of methods was launched through the introduc-
tion of the SOM (Kohonen 1982). The SOMdiffers by reducing both dimensions and
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data through a neighborhood-preserving vector quantification. A further discussion
is given separately in Sect. 4.4, as it falls into both data and dimension reduction
methods.

Second-Generation Methods

The second generation is a less homogeneous group of methods ranging from so-
called spectral techniques to graph embedding. Due to the large number of methods,
we will discuss only broadly some of the most recent methods, in order to later
present their location in a taxonomy. A soar in developed methods at the turn of
the century lead to several innovative approaches, such as Curvilinear Component
Analysis (CCA) and Curvilinear Distance Analysis (CDA) (Demartines and Hérault
1997), Local MDS (LMDS) (Venna and Kaski 2006; Chen and Buja 2009), Genera-
tive Topographic Mapping (GTM) (Bishop et al. 1998), Locally Linear Embedding
(LLE) (Roweis and Saul 2000), Isomap (Tenenbaum et al. 2000), Laplacian Eigen-
maps (LE) (Belkin and Niyogi 2001) and Maximum Variance Unfolding (MVU)
(Weinberger and Saul 2005). Some more recent methods are, for instance,
t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hin-
ton 2008) and Exploration Observation Machine (XOM) (Wismüller 2009). These
methods, while differing along multiple properties, generally aim at the above three
tasks of non-linear dimension reduction. A detailed mathematical treatment of them
is, however, outside the scope of this book.

A Taxonomy

In addition to two generations, dimension reduction methods can also be illustrated
in a tree-structured taxonomy. The tree-structure in Fig. 4.3 is a non-exhaustive
taxonomy of dimension reduction methods based upon that in Lee and Verleysen
(2007, p. 234). While the focus herein is on methods based upon geometrical con-
cepts, there exists also other methods, such as the Auto Associative Neural Net-
works (AANNs). The tree structure ends with some exemplifying methods, where
first-generation methods are differentiated from second-generation methods through
a gray background. Methods can roughly be divided into those aiming at distance
and topology preservation. The distance-preserving methods can still be divided into
different distances, such as spatial (e.g., PCA, MDS, Sammon’s mapping and CCA),
graph (e.g., Isomap and CDA) and other (e.g., MVU). Topology-preserving methods
can be divided into those with a predefined grid shape (e.g., SOM, GTM and XOM)
and those without (e.g., LLE, LE and t-SNE). It is worth considering that the exam-
ple methods in the taxonomy are only a subset consisting of the most commonly
used ones.
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Fig. 4.3 Ataxonomyof dimension reductionmethods.NotesThefigure represents a non-exhaustive
taxonomy of dimension reduction methods adapted from Lee and Verleysen (2007, p. 234). The
lowest level associatesmethods to their families, where a gray background indicates first-generation
methods and white second generation. Acronyms Auto Associative Neural Network (AANN),
Principal Component Analysis (PCA), Local MDS (LMDS), Multidimensional Scaling (MDS),
Curvilinear Component Analysis (CCA), Curvilinear Distance Analysis (CDA), Maximum Vari-
ance Unfolding (MVU), Self-Organizing Map (SOM), Generative Topographic Mapping (GTM),
ExplorationObservationMachine (XOM), Locally Linear Embedding (LLE), Laplacian Eigenmaps
(LE) and t-distributed Stochastic Neighbor Embedding (t-SNE)

4.3 Data Reduction

Data reduction, as also dimension reduction, goes by multiple names, such as data
compression, data clustering and cluster analysis. In today’s information rich world
with vast amounts of available unlabeled data it is not enough to decrease dimension-
ality, oftentimes one also needs to focus on reducing the number of data. Moreover,
unsupervised approaches are frequently the only feasible approach to form an under-
standing of the data, not the least when they are unlabeled. Clustering methods
provide means for exploring tendencies and structures in data by reducing data to
fewer partitions, mostly with the aim of having small intra-cluster distances and/or
large inter-cluster distances. In this section, we first discuss how overall aims of
data reduction may differ and then provide a brief classification of methods and
introduction to the ones essential for this book.

4.3.1 Aims of Data Reduction

A key aim of data reduction is the exploratory task of organizing data into sensible
groupings to find structure in them. Whereas data reduction methods can be used
for dividing data into homogeneous groups, however those are defined, aims and
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objectives of these methods may be inherently different. Jain (2010) presents three
overall aims of data reduction: (i) to explore the underlying structure, (ii) to find
a natural classification, and (iii) to perform a compression of data. The first aim
of exploration concerns gaining insight into data, generating hypotheses, detecting
anomalies, and identifying salient features in data. The second type of aim involves
the attempt to derive a natural classification that identifies the degree of similarity
among objects. Finally, the third aim is to compress data such that they can easily
be organized and summarized, as well as utilized as an input for additional analysis,
through the use of a smaller set of representative cluster prototypes.

It is also worth noting that data reduction, while most often being unsupervised in
that it does not use class information, has lately also been used in a semi-supervised
manner [see, e.g., Chapelle et al. (2006)]. There are three key arguments for having
a semi-supervised approach to data reduction (Chapelle et al. 2006; Jain 2010):
(i) sometimes only a small portion of class information is available to the user,
in which case one can let it partly guide the process through limited supervision;
(ii) the available class information may also be too far from an ideal target variable
for pure supervised learning to be feasible; and (iii) the user might possess pair-wise
must-link and cannot-link constraints that can be used to guide two objects to be or
not to be assigned into the same cluster.

While having three overall aims, Jain (2010) notes that data reduction is prevalent
in any type of discipline involving the analysis of high-dimensional data. As there
is no exhaustive list of all scientific fields and application areas utilizing some form
of data reduction, Jain et al. (1999), Jain (2010) provide a number of examples:
(i) image segmentation to facilitate computer vision, (ii) clustering views of two-
dimensional and three-dimensional objects to aid in object and character recognition,
(iii) clustering of text documents to automatically provide segments and hierarchies
and improve efficiency, (iv) customer segmentation to aid in marketing campaigns,
(v) to group genome-wide expression data to arrange genes according to similarity of
gene expression patterns in biology and (vi) overall datamining to facilitate predictive
modeling, exploratory segmentation, and visualization of large databases. To support
the tasks in this book, the focus is on compressing data to support their organization,
summarization and visualization, and the final category of applications.

4.3.2 An Overview of Methods

Although there is no common taxonomy of data reduction methods, several prop-
erties can be used for differentiating between methods: soft versus hard clustering,
hierarchical versus non-hierarchicalmethods andmonothetic versus polythetic goals,
for instance. While soft clustering reduces data by assigning them to each cluster
to a certain degree, hard clustering either assigns data to a cluster or not. Fuzzy
c-means (FCM) clustering exemplifies the difference by being a soft counterpart
of the classical k-means (or c-means to be consistent) clustering algorithm. Hierar-
chical methods [e.g., Ward’s (1963) method] produce a taxonomy of cluster struc-
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tures, in which small child clusters are also nested within larger parent clusters, and
may be divided into agglomerative (bottom-up) and divisive (top-down) approaches.
Non-hierarchical methods approach data reduction from numerous different view-
points, and may roughly be divided into centroid-based [e.g., k-means clustering
(MacQueen 1967) and Vector Quantization (VQ) (Linde et al. 1980)], distribution-
based [e.g., Expectation-maximization algorithm (Dempster et al. 1977)] anddensity-
based clustering [e.g., DBSCAN (Ester et al. 1996)]. The SOM may also be seen as
a spatially constrained form of centroid-based clustering. The differences between
monothetic versus polythetic methods relate mainly to hierarchical clustering, where
the former uses the inputs one by one and the latter all the inputs at once. To illustrate
the above described differences, the below discussion will focus on the functioning
of a number of classical methods in more detail.

Centroid-Based Clustering

This part introduces two centroid-based clustering methods: VQ (Linde et al. 1980)
and k-means clustering (MacQueen 1967). They can be seen as counterparts of the
SOM,where the former relates to the sequential and the latter to the batch SOMs. VQ
attempts to model the probability density functions in data x j by reference vectors
mi (where i = 1, 2, . . . , M). It uses min(

∥∥x j − mb
∥∥) for finding the best-matching

unit (BMU) mb for x j , and then updates sequentially only the BMU towards the
data vector. Hence, it attempts to minimize the standard squared error function, or
quantization error:

JVQ =
N∑

j=1

dx ( j, b( j))2, (4.3)

where dx ( j, b) is the input space distance between the data x j and reference vector
mb( j) and b( j) denotes that b is the BMU of data j .

K-means is a similar least-square partitioning algorithm that pairs each data x j

to a cluster k (where k = 1, 2, . . . , C) and then updates the centroids ck to averages
of all attracted data. Thus, the aim is again to minimize the squared error function:

Jkm =
N∑

j=1

C∑

k=1

dx ( j, k)2, (4.4)

where dx ( j, k) is the input space distance between the data x j and cluster
centroid ck .
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Fuzzy Clustering

We illustrate the functioning of the FCM algorithm, developed by Dunn (1973) and
improved by Bezdek (1981), that assigns a degree of membership of each data in
each of the clusters. The FCM algorithm implements an objective function-based
fuzzy clustering method. The objective function Jθ is defined as the weighted sum of
the Euclidean distances between each data and each cluster center, where the weights
are the degree of memberships of each data in each cluster, and constrained by the
probabilistic requirement that the sum of memberships of each point equals 1:

Jθ =
N∑

j=1

C∑
k=1

uθ
jk

∥∥x j − ck
∥∥2 ,

C∑
k=1

u jk = 1, (4.5)

where θ ∈ (1,∞) is the fuzzy exponent, u jk is the degree of membership of data
x j (where j = 1, 2, . . ., N ) in the cluster center ck (where k = 1, 2, . . ., C , and

1< C < N ), and
∥∥x j − ck

∥∥2 is the squared Euclidean distance between x j and ck . It
operates through an iterative optimization of Jθ by updating the membership degree
u jk :

u jk = 1

/
⎛

⎜⎝
C∑

s=1

[∥∥x j − ck
∥∥

∥∥x j − cs
∥∥

] 2
θ−1

⎞

⎟⎠ , (4.6)

where s are the iteration steps, and by updating the cluster centers ck :

ck =
⎡

⎣
N∑

j=1

uθ
jk x j

⎤

⎦
/ ⎡

⎣
N∑

j=1

uθ
jk

⎤

⎦ , (4.7)

The algorithm proceeds as follows. First, the cluster centers are initialized randomly.
Thereafter, each data x j is assigned a membership grade u jk in each cluster k. Then
the so-called Picard iteration through Eqs. (4.6) and (4.7) is run to adjust the cluster
centers ck and the membership values u jk . The algorithm stops when the minimum
amount of improvement between two consecutive iterations is less than a small
positive number ε or after a specified number of iterations.

Hierarchical Clustering

The third type of data reduction is hierarchical clustering. The following Ward’s
(1963) criterion is used as a basis for agglomerating clusters with the shortest dis-
tance:
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dkl = nknl

nk + nl
dc(k, l)2, (4.8)

where k and l represent clusters, nk and nl the cardinality of clusters k and l, and
dc(k, l)2 the squared Euclidean distance between the cluster centers of clusters k
and l. When clusters k and l are merged to cluster h, the cardinality nh is the sum of
nk and nl and the centroid ch the mean of ck and cl weighted by nk and nl . Hence,
this specification accounts for cluster size. A particularly advantageous feature of
hierarchical methods is that agglomeration can be restricted to some specific property
of the underlying relations between clusters. For instance, the distance between non-
adjacent clusters can be set to infinite, where adjacency needs to be defined (e.g.,
neighborhoods of data or clusters). Again, clusters can be said to agglomerate as to
minimize the Euclidean distance to the centroids, or the squared error function. The
algorithm starts with each data as its own cluster and merges units for all possible
numbers of clusters using the minimum Ward distance (1, 2, . . ., N ).

4.4 The Self-Organizing Map (SOM)

The SOM (Kohonen 1982, 2001) is an inherently different, yet not unique, method
in that it performs a simultaneous data and dimension reduction. It differs from non-
linear projection techniques like multidimensional scaling by attempting to preserve
the neighborhood relations in a data space α on a k-dimensional array of units
(represented by reference vectors mi ) instead of attempting to preserve absolute
distances in a continuous space. On the other hand, it differs from standard VQ by
also attempting neighborhood preservation of the mi . The VQ capability of the SOM
performs this data reduction into mean profiles (i.e., units mi ). It models from the
continuous space α, with a probability density function p(x), to the grid of units,
whose location depend on the neighborhood structure of the data α.

There exists two commonly used versions of the basic SOMalgorithm: the sequen-
tial and the batch SOM. In this book, the batch training algorithm is employed, and
thus data are processed simultaneously instead of in sequences. Important advan-
tages of the batch algorithm are the reduction of computational cost and reproducible
results. Reproducibility is, given the same initialization, independent of the order of
data. Before training, initial values are assigned to the reference vectors (e.g., ran-
dom, sample or linear initializations). Following the initialization, the batch training
algorithm operates a specified number of iterations t (where t = 1, 2, . . ., T ) in two
steps. In the first step, each input data vector x j is assigned to the BMUs mb:

dx ( j, b) = min
i

dx ( j, i), (4.9)

where dx ( j, b) is the input space distance between data x j and reference vector mb

(i.e.,BMU)anddx ( j, i) is the input spacedistancebetweendata x j and each reference
vector mi . Hence, data are projected to an equidimensional reference vector mb, not
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a two-dimensional vector as in MDS. In the second step, each reference vector mi

(where i = 1, 2, . . ., M) is adjusted using the batch update formula:

mi (t + 1) =

N∑
j=1

hib( j)(t)x j

N∑
j=1

hib( j)(t)

(4.10)

where index j indicates the input data vectors that belong to unit b, N is the number of
the data vectors, and hib( j) is some specified neighborhood function. In comparison
to the update formula of the k-means algorithm in Eq. (4.4), the batch update of the
SOM can be seen as a spatially

(
hib( j)

)
constrained version.

Mathematical treatment of theSOMhas, however, shown tobedifficult.Despite an
extensive discussion of the form and existence of an objective function, the literature
has still not provided one for the general case [see, e.g., Yin (2008)]. It has, however,
been noted that a decomposed distortion measure illustrates the learning of the SOM
[a discrete form with a fixed neighborhood of that suggested in Lampinen and Oja
(1992)]:

ESOM =
N∑

j=1

M∑

i=1

dx ( j, i)2hibdx (i, b), (4.11)

where dx ( j, i) is the input space distance between data x j and reference vector mi

and dx (i, b) is the input space distance between reference vectors mi and mb.

4.4.1 Parametrizing the SOM

Setting the parameters, or parametrizing, a SOM involves a number of choices by
the user.1 While Kohonen (2001) has noted that the selection of all parameters is not

1 There are several software implementations of the SOM. The seminal packages—SOM_PAK,
SOM Toolbox for Matlab, Nenet, etc—are not regularly updated or adapted to their environment.
Out of the newer implementations, Viscovery SOMine provides the needed means for interactive
exploratory analysis. The most recent addition to the list of implementations is the interactive, web-
based implementation provided by infolytika (http://risklab.fi/demo/macropru/). For a description,
see Sarlin (2014a). For a practical discussion of SOM software and an early version of the imple-
mentation in Viscovery SOMine, see Deboeck (1998a, b). See also Moehrmann et al. (2011), for a
comparison of SOM implementations. The first analyses of this book were performed in the Viscov-
ery SOMine 5.1 package due to its easily interpretable visual representation and interaction features,
not the least when introducing it to practitioners in general and policymakers in particular. Recently,
the packages available in the statistical computing environment R have significantly improved, in
particular regarding the visualization of SOM outputs. Thus, the final parts of the research in this
book, including the figures, have been produced in R. Moreover, the above mentioned interface by
infolytika provides an interactive implementation of the R-based models.

http://risklab.fi/demo/macropru/
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crucial if map size is small, it is needless to say that Kohonen does not generally
overlook the importance of finding an adequate specification, as it indeed impacts the
final result. The choices are defined to be on three different levels: (i) architecture, and
(ii) internal and (iii) external specifications. The framework put forward herein draws
upon the discussion in Kohonen (2001), Vesanto et al. (2000). First, one needs to
make decisions related to the architecture of the SOM, that is, the form of the array of
units created before training. In practice, the array may have one to three dimensions,
of which the most common choice is the two-dimensional array. Moreover, the array
is associated with a lattice, where hexagonal and rectangular forms are the most
often used. In a rectangular lattice, a unit has four neighbors and in the hexagonal
six. While most often being two-dimensional, the lattice shape may also vary from
the standard sheet to toroids and cylinders, for instance.

Second, one has to decide upon internal specifications of the SOM algorithm.
Over the years, a large number of variations to the specifications of the standard
SOM have been provided. To start with, one needs to chose the initial values for
the reference vectors using, for instance, random, sample or linear initialization. One
commonlymodified parameter is the neighborhood function hib( j) that could take the
form of a bubble, Gaussian, cut Gaussian and Epanechicov, for instance. Whichever
function is chosen to be used, it is also common to implement the neighborhood
function to be decreasing over training iterations as per a specified scheme.

Third, the external parameters, which most often are specified outside the SOM
machinery, are defined as the true free parameters. The neighborhood function,
whichever form it takes, commonly has a radius of the neighborhood parameter
to be specified. The user also has to decide the number of training iterations. Finally,
one also has to decide upon the number of units and the map shape (ratio of X and
Y dimensions).

At this point of the book, we only discuss the choices regarding architecture and
internal specifications,whereas external parameters outside theSOMmachinery have
to be specified during each training phase. Kohonen (2001), Vesanto et al. (2000)
provide a range of solutions, hints and tips, not to say rules of thumbs, related to
the specifications when designing and training a SOM. First, specifications relating
to the architecture are set as follows. The use of a hexagonal lattice is not only
common practice for its visual appeal, but also advisable for six neighbors of a
unit being at the same distance, rather than only four in the case of a rectangular
lattice. For the purpose of this book, the output of the SOM is chosen to be a two-
dimensional sheet. The rationale for not using a one-dimensional array is to better
represent general detail, particularly differences within clusters, whereas a three-
dimensional map, while adding a further dimension, impairs the interpretability of
data visualizations, not the least visualizations displayed on static paper. Kohonen’s
(2001) general suggestion is to set the shape of the lattice to correspond to the shape
of the data manifold. Given a two-dimensional SOM, a common recommendation is
thus to set the side length along each dimension to equal the PCA eigenvalues of the
training data.

Second, the internal specifications are as follows. The training process starts
with a linear initialization of the reference vectors set to the direction of the two
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principal components of the input data. The principal component initialization not
only further reduces computational cost and enables reproducible results, but has
also been shown to be important for convergence when using the batch SOM (Forte
et al. 2002). Following Kohonen (2001), this is done in three steps:

(i) Determine two eigenvectors, v1 and v2, with the largest eigenvalues from the
covariance matrix of all data α.

(ii) Let v1 and v2 span a two-dimensional linear subspace and fit a rectangular
array along it, where the two dimensions are the eigenvectors and the center
coincides with the mean of α. Hence, the direction of the long side is parallel
to the longest eigenvector v1 with a length of 80% of the length of v1. The short
side is parallel to v2 with a length of 80% of the length of v2.

(iii) Identify the initial value of the reference vectors mi (0) with the array points,
where the corners of the rectangle are ±0.4v1 ± 0.4v2 .

The implementations in this book make use of the commonly utilized Gaussian
neighborhood function. Its properties are desired as it gives a non-linearly increasing
weight to data the closer they are to the updated unit, highlighting the importance
of close-by neighbors. The neighborhood function hib( j) ∈ (0, 1] is defined as the
following Gaussian function:

hib( j) = exp

(
−dr (b, i)2

2σ 2(t)

)
(4.12)

where dr (b, i) is the distance between the coordinates rb and ri of the reference vec-
tors mb and mi on the two-dimensional grid. Moreover, the radius of the neighbor-
hood σ(t) is a monotonically decreasing function of time t . Here, Kohonen stresses
that special caution is required in the choice of the starting radius to achieve global
ordering, as otherwise one risks ending up with mosaic-like patterns. The radius of
the neighborhood begins as half the diagonal of the grid size ((X2 + Y 2)/2), and
decreases towards a user-specified radius σ . As above mentioned, external parame-
ters outside the SOM machinery need to be specified and discussed during each
training phase.

4.4.2 Supervision of the SOM

The standard SOM may be used in a semi-supervised manner [see, e.g., Kohonen’s
(1991) Hypermap]. It is most common to use the SOM for unsupervised learning,
where input data are used for learning previously unknown patterns in data. How-
ever, if one possesses class information (e.g., labels), they can be used to supervise
learning for a classification task. The main rationale for using the SOM over more
traditional methods for classification is its inherent local modeling property and
topology preservation of units that enhances the understanding of the problem, as
well as the availability of, for instance, growing SOMs that facilitate the choice of
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parsimony [for a thorough review see Barreto (2007)]. While unsupervised versions
use only the explanatory variables in matching (Eq. 4.9), the supervision of the semi-
supervised versions is introduced by the use of both the explanatory and the class
variables in matching. Both unsupervised and supervised versions may or may not
include the classes in the batch update (Eq.4.10) without affecting the general learn-
ing procedure.2 An additional possibility with the semi-supervised SOM is the use
of multiple classes, rather than only binary. Multi-class supervision may be thought
of as a way to separate all, say four, classes in data, which involves an even better
understanding of the dimension reduction as the classes might be associated with
separately interpretable properties.

4.4.3 Qualities of the SOM

When using the SOM for a classification task where class labels are known, a direct
and obvious measure of quality is the classification performance (see Chap. 7 for a
further discussion ofmeasuring classification performance). However, rather than the
quality of a classification, the SOM is most often measured in terms of the quality of
the unsupervised data and dimension reduction. The literature has provided a large
number of metrics for measuring different qualities of the SOM [see Pölzlbauer
(2004) for a review]: quantization error, topographic product, topographic error,
trustworthiness, neighborhood preservation and the distortion measure. Herein, the
three most common goodness measures are illustrated: quantization error, distortion
measure and topographic error.

The fit of the SOM to the data distribution can be measured with the standard
quantization error and distortion measure. The quantization error εqe computes the
average distance between x j and mb:

εqe = 1

N

N∑

j=1

∥∥x j − mb( j)
∥∥ , (4.13)

The distortion measure εdm indicates, similarly, the fit of the map to the shape of the
data distribution, but also accounts for the radius of the neighborhood:

εdm = 1

N

1

M

N∑

j=1

M∑

i=1

hib( j)
∥∥x j − mb( j)

∥∥ , (4.14)

2 In the literature, learning of the SOM has been defined through the entire spectrum of supervision.
For instance, van Heerden and Engelbrecht (2008) define semi-supervised SOMs as similar to
the supervised ones, except for them not being included in the matching phase (Eq.4.9), whereas
the semi-supervised version herein is their supervised SOM. However, as the SOM is never fully
supervised, we stick to the definition of an unsupervised and a semi-supervised version.

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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The topology preservation of the SOM can be measured using the standard
topographic error εte:

εte = 1

N

N∑

j=1

u(x j ), (4.15)

where u(x j ) measures the average proportion of x j ∈ α for which first and second
BMUs are non-adjacent units.

4.5 Concluding Summary

This chapter has provided a necessary overview of not only data and dimension
reduction methods, but also their relation to the KDD process, information visual-
ization and visual analytics. Thereby, the emphasis is clearly on dimension reduction
methods and their relation to the above mentioned topics. Likewise, a greater focus
has been on first-generation dimension reduction methods to support a subsequent
comparison of methods. To this end, this chapter has provided a basis for a more
thorough comparison of data and dimension reduction methods, as well as their
combination for data-dimension reduction, for financial performance analysis and
macroprudential oversight. This is a crucial task as the choice ofmethod is not always
a straightforward, quantitative decision to make.
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Chapter 5
Data-Dimension Reductions: A Comparison

Data and dimension reduction techniques, and particularly their combination for
DDR, have in many fields and tasks held promise for representing data in an easily
understandable format. However, comparing methods and finding the most suitable
one is a challenging task. Above, we discussed the aim of dimension reduction in
terms of three tasks. For the third task of visualization, the most popular method
has been the SOM, which is oftentimes asserted as an artifact of its simplicity and
intuitive formulation [e.g., Lee and Verleysen (2007), Trosset (2008)]. Yet, being
well-known or simple, while being an asset, is not a proper validation of relative
goodness. The focus of this chapter is to challenge the superiority of the SOM by
comparing it to alternative methods.

To capture the most suitable methods for visual financial performance analysis
according to the needs for the task, this chapter assesses the suitability of three
classical, or so-called first-generation, dimension reduction methods: metric MDS
(Torgerson 1952), Sammon’s mapping (Sammon 1969) and the SOM (Kohonen
1982). Rather than being the most recent methods, the rationale for comparing these
is to capture the suitability of well-known dimension reduction methods with inher-
ently different aims: global and local distance preservation and topologypreservation,
respectively. For DDR, and due to access to overabundant amounts of data, we look
into test serial and parallel combinations of the projections with three data reduction
or compression methods: VQ (Linde et al. 1980), k-means clustering (MacQueen
1967), Ward’s (1963) hierarchical clustering. While conceptually being similar, the
functioning of the SOM differs from the other DDR combinations as the two tasks of
data and dimension reduction are treated as concurrent subtasks. In serial combina-
tions, the dimension reduction is always subordinate to the data reduction, whereas
parallel combinations deal separately with the initial dataset.

This chapter compares DDR combinations to financial performance analysis as
follows.After a general reviewof the literature on comparisons of data and dimension

This chapter is partly based upon previous research. Please see the following work for further
information: Sarlin (2014)
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reduction methods, we discuss the aims and needs of DDR combinations in general
and for the task at hand in particular. That is, building low-dimensional mappings
from high-volume and high-dimensional data that function as displays for additional
information, be it individual data (e.g., time series of entities) or general structural
properties of data (e.g., qualities, distance structures and densities). The relative
goodness of methods for financial performance analysis will then be discussed from
a qualitative perspective. Further, experiments on a dataset of annual financial ratios
for European banks is used to illustrate the general applicability of the DDR com-
binations for the task. After illustrating some approaches to link information to the
visualization displays, results of these comparisons are then projected to the second
generation of dimension reduction methods for a final discussion on the superior-
ity of methods for overall visual financial performance analysis, including tasks for
macroprudential oversight, as well as the general applicability of this comparison.
These discussions also include an information visualization perspective to dimension
reductions.

5.1 The Optimal Method: A Literature Review

When reviewing the literature on method comparisons, we first focus on dimension
reduction methods and then on data reduction methods. The focus is on neutral
evaluations of methods rather than evaluations in papers presenting novel methods.
While papers presenting new methods generally include an evaluation and conclude
at least partial superiority of it, such as some of those found in Sect. 4.3, they may
be biased to a lesser or greater extent towards data and evaluation measures suitable
for that particular approach.

5.1.1 A Comparison of Dimension Reductions

The large number of methods has obviously also stimulated a large number of per-
formance comparisons between them. The comparisons mainly vary in terms of used
data and evaluationmeasures, whereas theremay still be some variation in the precise
utilization of methods. For instance, Flexer (1997, 2001) used Pearson correlation,
Duch and Naud (1996) hypercubes in 3–5 dimensions and Bezdek and Pal (1995) the
metric topology preserving index to show that MDS outperforms the SOM. Trosset
(2008) argues that a serial combination of clustering andMDS is superior to the SOM.
Venna and Kaski (2001) and Nikkilä et al. (2002) show superiority of the SOM and
GTM in terms of trustworthiness of neighborhood relationships, while later Himberg
(2004) and Venna and Kaski (2007) show superiority of CCA in terms of the same
measure. Not surprisingly, de Vel et al. (1996) show, using Procruses analysis and
Spearman rank correlation coefficients on various datasets, that the superiority of

http://dx.doi.org/10.1007/978-3-642-54956-4_4
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a method depends on the used evaluation measures and data. Hence, despite many
attempts, inconsistent comparisons do not indicate the superiority of one method.

Lately, Lee and Verleysen (2009) proposed a unified measure based upon a
co-ranking matrix for evaluating dimension reductions, an adequate ground for
generic evaluations. Lueks et al. (2011) further developed the measure by letting
the user specify the properties that are more important to be preserved. While being
useful aids in comparing methods, they neither show nor propose existence of one
superior method for every type of data and preferences of similarity preservation.

5.1.2 A Comparison of Data Reductions

When reviewing the literature on methods for data reduction, one can easily observe
that neither is there a unanimity on the best available method. Herein, the focus is on
comparisons between the SOM and stand-alone data reduction methods. Bação et al.
(2005) show that the SOM outperforms k-means clustering with 3 evaluation mea-
sures and 4 datasets. Flexer (1997, 2001) show that k-means clustering outperforms
the SOM using a Rand index and 36 datasets. Waller et al. (1998) show on 2,580
datasets that the SOM performs equally well as k-means clustering and better than
other methods. Balakrishnan et al. (1994) show that k-means outperforms the SOM
on 108 datasets, but do not decrease the SOM neighborhood to zero at the end of
learning [as, e.g., Kohonen (2001) proposes]. Vesanto and Alhoniemi (2000) showed
on 3 datasets that two-level clustering of the SOM is equally accurate as agglomera-
tive and partitive methods, while being computationally cheaper and having merits
in visualizing relations in data. Ultsch and Vetter (1994) compare the SOM with
hierarchical and k-means clustering and conclude that the SOM not only provides
an equally accurate result, but also an easily interpretable output. Despite no una-
nimity on superiority, the literature still indicates that the SOM, and its adaptations,
are equally considerable alternatives for data reduction as other methods, such as
centroid-based and hierarchical clustering.

5.1.3 Why is the Literature so Divided?

While the quality of data reductions can be quantified by common evaluation mea-
sures like quantization error, assessing the superiority of one dimension reduction
method over others with a quantitative measure is more difficult. And there is still no
unanimity on the superiority of one data reduction method over others. What varies
in the above discussed studies is mainly the underlying data, which indicates that
methods show different performance on different types of data. One reason might be
that clusters in the SOM topology learn from and are provided guidance by neigh-
boring data as well, which aids the analysis of noisy data, whereas accuracy suffers
on well-behaving toy data. This is supported by the findings of de Bodt et al. (1999)
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and Bação et al. (2005), where they propose that the SOM better spans the search
space as neighborhood relations force units to follow each other. This is, however,
only speculative reasoning about the above lack of unanimity.

Since the mid-20th century, the overload of available data has stimulated a soar
in the development of dimension reduction methods with inherent differences (as
reviewed in Chap. 4). However, most differences in the quality of dimension reduc-
tions, as all structural information can impossibly be preserved in a lower dimension,
derive from variations in preserved similarity relations, such as pairwise distances or
topological relationships. The performance, and choice ofmodel specification, of one
method can generally bemotivated by its own quantitative qualitymeasure. However,
the relative goodness of different methods depend strongly on the correspondence
between the particular quality measure and the objective function.

Despite the fact that the large number of dimension reduction methods has stimu-
lated quality comparisons along differentmeasures, inconsistency of the comparisons
has lead to no unanimity on the superiority of one method [see, e.g., Flexer (1997,
2001) and Venna and Kaski (2001)]. This also indicates that the goodness of meth-
ods depends to a large extent on the correspondence between the measure and the
objective function, and confirms that the quality measure is a user-specified para-
meter depending on the task at hand. While recent advances in unified measures for
evaluating dimension reductions have included a parameter for the user to specify
properties that are more important to be preserved (Lee and Verleysen 2009; Lueks
et al. 2011), quantitative measures still have difficulties in including qualitative dif-
ferences in properties of methods, such as differences in flexibility for difficult data
and the shape of the low-dimensional output. This motivates assessing the suitabil-
ity of data and dimension reduction methods for a specific task from a qualitative
perspective.

5.2 DDR Combinations for the Task at Hand

This section discusses specific aims, needs and restrictions of DDR combinations
for visual financial performance analysis. Based upon this discussion, we look into
dimensions of DDR combinations relevant for measuring the suitability of methods
for the task herein.

5.2.1 Aims and Needs for the Task

So, what is the so-called task at hand? The aim of models for visual financial perfor-
mance analysis, including tasks for macroprudential oversight, is to represent high-
volume and high-dimensional data of financial entities on low-dimensional displays.
The data for such a task are derived from a data cube, as the one represented in Fig. 3.1
(see Sect. 3.3). Data and dimension reductions hold promise for the task, but the form
of the models still set some specific needs and restrictions. While recent advances

http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_3
http://dx.doi.org/10.1007/978-3-642-54956-4_3
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in information technology have enabled access to databases with nearly endless
amounts of macroeconomic and financial information (e.g., Bankscope, Bloomberg,
Standard & Poor’s and Capital IQ), as well as provision and integration of multiple
sources (e.g., Haver Analytics), data are oftentimes problematic in being incom-
plete and non-normal (e.g., Deakin 1976). For instance, in the case of representing
a financial entity with its balance-sheet information, it is more common than not
that some items of the balance sheet are missing. Due to changes in reporting rules
and financial innovation, data might be missing or start in the latter part of a time
series. An example of skewed distributions is the commonly appearing power-law
distribution and Benford’s law, as well as the particularly fat tails of market-based
data. While there exist a multitude of preprocessing methods for transforming, nor-
malizing and trimming data, the tails of financial ratio distributions are oftentimes
of high interest. This derives two necessities: the computational cost of the method
needs to be considerably low and scalable and the method needs to be flexible for
problematic data.

The main aim of the low-dimensional mappings is to use them as displays for
additional information, in particular for: (i) individual data, (ii) structural properties
of data, and (iii) qualities of the models. This is due to three respective reasons:

(i) the two-dimensional plane should function as a basis or display for visual perfor-
mance comparisons of financial entities (i.e., observation-level data) and their
time series;

(ii) for the human visual system to recognize patterns in data, we need to provide
guidance for interpreting general data structures, and oftentimes also possess
this types of linkable information; and

(iii) qualities of a dimension reduction may vary across mappings and locations in
mappings as all information cannot be correctly preserved in a lower dimension.

The main aim of these mappings is hence not to be an ending point, but rather to
function as a basis for a wide range of additional visualizations.

5.2.2 Aims and Needs of DDR Combinations

When evaluating or comparing performance of data and dimension reduction meth-
ods, particularly DDR combinations, quantitative measures have difficulties in
accounting for qualitative differences in properties of methods. Hence, as the per-
formed comparison is qualitative, the needs for visual financial performance analysis
are suppressed into four qualitative criteria for evaluating DDR combinations: form
of structure preservation, computational cost, flexibility for problematic data and
shape of the output. Next, we discuss these criteria in more detail.
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Form of Structure Preservation

As all relations in a high dimensional space can obviously not be preserved in a lower
dimension, there are differences in what locations are stressed when preserving the
structure. Given these differences, the main characteristics of structure preservation
should obviously match important desires of the particular task at hand. The key
question is thus: Which relations are of central importance for visual financial per-
formance analysis? With a main focus on visualizing individual financial entities on
a low-dimensional display, correctly locating neighboring data becomes essential.
This leads to trustworthiness of neighborhood relationships being more important
than precision on the exact distance to those far away. Noise and erroneous data as
well as comparability issues related to reporting differences, for instance, also moti-
vate attempting this type of a local order-preserving mapping rather than focusing
on global detail.

Computational Cost

We oftentimes have access to vast amounts of macro-financial data in today’s data-
bases, including high-dimensional data for a large number of entities with a high
frequency over long periods (i.e., a large data cube along all three dimensions), not
the least if the used data are based upon market sources. This obviously sets some
restrictions on computational cost and scalability of methods. While computation
time is not entirely a qualitative property, it has still not been incorporated in quan-
tified evaluation measures. As also noted by van der Maaten and Hinton (2008),
the practical applicability of a dimension reduction method relies upon its computa-
tional complexity, as application becomes infeasible if the computational resources
needed are too large. In addition to the properties of data, computational cost of a
method is set by the dimensionality of the output, the definition of a neighborhood
in the case of neighborhood preservation and for iterative techniques the number
of iterations, not to mention the form of input data (e.g., pairwise distance matri-
ces or high-dimensional data points). It is also worth to consider that computational
expense is not only a one-off cost when creating a dimension reduction, but also
when updating it. Combinations with data reduction methods may also affect the
computational cost of a dimension reduction. Still, it is important to acknowledge
that a cut-off between computationally costly and non-costly methods is difficult.
Yet, the differences between methods oftentimes tend to be significant.

Flexibility for Problematic Data

Methods differ in flexibility for non-normal and incomplete data, something more
common than not in real-world macro-financial settings. Hence, desired properties
of dimension reduction methods are flexibility for incomplete and non-normal data.
While the former can be defined in terms of treatment of missing values, the latter
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depends largely on the task at hand.Most often data are preprocessed for ideal results,
including treatment of skewed distributions. Yet, preprocessing seldom does, and
is most often not desired to, compress the data into uniform density. Oftentimes,
the most extreme values of data are among the most interesting states of financial
performance. Hence, one type of tolerance towards outliers can be derived from the
output of methods. A method is judged to be tolerant towards outliers and skewed
distributions if problematic data do not significantly impair the intelligibility of an
output or display (e.g., stretch towards outliers).

Shape of the Output

One of the main aims is to use a dimension reduction as a display to which addi-
tional information is linked. In particular, the low-dimensional mappings are used as
displays for individual data, structural properties and qualities. This turns the focus
to the shape of the outputs of dimension reduction mappings. They can take a wide
range of forms. The interrelated properties of the shape can be considered to be
the following: continuous versus discrete mappings, optional versus mandatory data
reductions and predefined versus data-driven grid shapes. While a mandatory data
reduction is generally not desirable, it is not considered a significant disadvantage.
Rather the opposite, due to the large amounts of available data. This leads also to
restricting mappings to discrete rather than continuous, whereas continuous map-
pings would obviously be desirable from the perspective of detail and accuracy. The
largest difference for interpretation, especially in terms of linking visualizations, is
between predefined and data-driven grid shapes. While methods with data-driven
grid shapes may better adapt to data, the methods with predefined regular shapes are
superior in functioning as a regularly formed display for additional information. This
is a key property as the mappings are starting points rather than ending points of the
analysis, where additional information may be individual data, structural properties
of data and qualities of the models.

5.3 A Qualitative Comparison

This section presents a qualitative discussion of DDR combinations for visual perfor-
mance analysis and relates it to the four identified criteria: form of structure preser-
vation, computational cost, flexibility for problematic data and shape of the output.
Below, we discuss MDS, Sammon’s mapping and the SOM from the viewpoint of
the task at hand and the four criteria.

Form of Structure Preservation

The main difference between DDR combinations is how the dimension reduction
methods differ in the properties of data they attempt to preserve. For the task of
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visual financial performance analysis, the focus is on one question: Which methods
better assure trustworthy neighbors? MDS-based methods with objective functions
attempting distance preservation, while potentially being better at approximating
distance structures, may end up with skewed errors across the projection. To this
end, Venna and Kaski (2001) and Nikkilä et al. (2002) have shown that the SOM,
which stresses neighborhood relations, better assures trustworthy neighbors. That
is, data found close-by each other on a SOM display are more likely to be similar
in terms of the original data space as well. The conceptual difference in structure
preservation between distance- and topology-preserving methods is illustratively
described by Kaski (1997) with an experiment on a curved two-dimensional surface
in a three-dimensional space: the former methods may follow the surface in data with
two dimensions, whereas the latter require three dimensions to describe the structure.

Computational Cost

Expensive computations is obviously an issuewhen dealingwith large-volume finan-
cial data. Generally, computing pairwise distances between data is costly with an
order of magnitude of N 2. The topology preservation of the SOM relates instead to
the grid size M with an order of magnitude of M2 (Kaski 1997). This implies that
the complexity of the methods are similar if the grid size M equals the number of
data N , but more importantly that the SOM allows for adjusting M for cheaper com-
plexity. Further, parallel DDR combinations suffer from an additional computational
cost as the clustering is performed on the initial dataset rather than on a reduced
number of units. The computational cost of MDS-based methods motivates serial
DDR combinations. Another issue related to computational cost is the lack of an
explicit mapping function for the MDS-based methods. Hence, when including new
samples, the projection needs to be recomputed. While new samples can be visu-
alized via projection to their best-matching data, each update requires recomputing
the projection.1 In contrast, the SOM can cheaply be updated with individual data
using the sequential algorithm (i.e., an online version of the batch SOM).

Flexibility for Problematic Data

The methods significantly differ in flexibility for problematic data. Methods dealing
with distance preservation have obvious difficulties with incomplete data. However,
the SOM, and its self-organization, can be seen as tolerant to missing values by only
considering the available ones in matching (Samad and Harp 1992). In practice, the
SOM has been shown to be robust when up to approximately 1/3 of the variables in
a row (i.e., data vector x j ) are missing (Kaski and Kohonen 1996; Kohonen 2001;
Denny Squire 2005; Sarlin 2012b). Indeed, the SOM has even been shown to be

1 While Relative MDS (Naud and Duch 2000) allows to add new data to the basis of an old MDS,
it does still not update all distances within the mapping.
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effective for imputing missing values (e.g., Cottrell and Letrémy 2005). Tolerance
towards outliers is measured in terms of representation of skewed distributions. An
MDS-basedmapping becomes difficult to interpret if it is stretched towards directions
of outliers and extreme tails. While the processing of the SOM does not per se treat
outliers, its regularly shapedgrid of units facilitates visualizingdatawith non-uniform
density functions. This provides a hint of the final criterion.

Shape of the Output

A key to using a dimension reduction as a display, and linking information to it,
is the shape of its output. Whereas the SOM has a discrete mapping, mandatory
data reduction and predefined grid shape, MDS-based methods are its contrasts by
having continuous mappings, optional data reduction and data-driven lattice (if com-
bined with data reduction). The predefined SOM grid, while also having drawbacks
for representing structural properties of data, facilitates the interpretation of linked
information. Today, it is standard that the SOM comes with a wide set of linked
extensions for visual analytics, such as the so-called feature planes, U-matrix and
frequency plots (Vesanto 1999). Even though visual aids for showing distance struc-
ture and density compensate for constraints set by the grid shape, there is a large
group of other aids that enhance the representation of available information in data.
The visual aids, while not always being even applicable, have generally not been
explored in the context of MDS-based projections. Feature planes (see Sect. 5.4),
for instance, are difficult to visualize due to the lack of a reduced number of units.
Even DDR combinations with serial VQ, i.e., processing similar to that of the SOM,
would still lack the concept of neighborhood relations of a regularly shaped grid.

5.4 Illustrative Experiments

The qualitative discussion of properties of DDR combinations for financial perfor-
mance analysis still lacks illustrations of the above discussed properties of methods.
This section presents experiments with these methods. Dimension reduction is per-
formed with the SOM, metric MDS and Sammon’s mapping and data reduction with
Ward’s hierarchical clustering, k-means clustering andVQ.We explore various com-
binations for DDR with the aim of achieving easily interpretable models for visual
financial performance analysis. The methods are chosen and combined as to their
suitability for data reduction of dimension reductions, and vice versa.

Data

The dataset used in these examples consists of annual financial ratios for banks
from the EU, including all provided financial ratios in the Bankscope database from
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Bureau vanDijk. Initially, the dataset consisted of 38 annual financial ratios for 1,236
banks spanning from 1992:12–2008:12. A large concern in the dataset is the share of
missing values, due to which 24 ratios were chosen by dropping those withmore than
25% missing data. Observations with missing values for more than 1/3 of the ratios
were removed. Finally, we are left with a resulting 9,655 rows of data, and a total of
855 banks.Yet, the dataset still includesmissing values.Although the SOMis tolerant
to missing data, we need to impute them in this work as distance-preserving methods
require complete data. For simplicity, the SOM is used for imputingmissing values.A
SOM allows mapping incomplete data to their best-matching units (BMUs) by only
considering the available variables. Hence, complete data were used for training
a SOM, incomplete data were mapped to their BMUs and the missing values were
imputed from their BMUs.Moreover, although outliers are not a problem per se, they
may still affect the interpretability of the models, in particular MDS-based models.
Not to lose significant amounts of data, modified boxplots are used for trimming
with replacement. The modified boxplot is preferred over Winsorizing, for instance,
as it accounts for variable-specific distributions, resulting in replacement of a total
of 7.39 % of the data, distributed as needed per variable and tail. In the following
experiments, we use the entire dataset, in particular when creating displays with
data and dimension reduction methods. Further, a sample of trajectories are used to
illustrate the visualization of individual data on the created displays. The trajectories
consist of all input variables spanning from 2002 to 2008 for Deutsche Bank, ABN
Amro and Société Général.

Parallel DDR

Figure5.1 shows parallel DDR combinations on the entire dataset. Sammon’s map-
ping is combined with k-means clustering, and MDS and the SOM are combined
with Ward’s clustering.2 Ward’s clustering of the SOM is, however, performed on its
units rather than on the dataset and restricted to agglomerate only adjacent clusters
in the SOM topology. This option is not, however, considered for MDS-based pro-
jections as there is no natural definition of adjacency. On top of all three mappings,
we can observe a superimposed cluster color coding and performance comparison of
trajectories from 2002–2008 for three large European banks. Cluster memberships
are visualized through a qualitative color scheme from ColorBrewer (Harrower and
Brewer 2003), where groups are differentiated in hue contrast with nearly constant
saturation and lightness. The projections of MDS and Sammon’s mapping on this
large dataset are very similar, whereas k-means clustering has less overlapping clus-
ter memberships in the mapping than Ward’s clustering. The trajectories as well as
the underlying variables confirm that, while the orientations of the two MDS-based

2 When training SOMs, one has to set a number of free parameters. A set of quality measures is
used to track the topographic and quantization accuracy as well as clustering of the map. Given the
purpose herein, details about the parametrization of the models in the experiments are not presented
in depth.
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Fig. 5.1 Parallel DDR combinations. Notes The figures show parallel DDR combinations on the
entire financial datasit; Sammon’s mapping is combined with k-means clustering, andMDS and the
SOM are combined with Ward’s clustering. Color codes on each mapping correspond to clusters
and the superimposed trajectories to a performance comparison of three large European banks from
2002–2008

projections are somewhat different from those of the SOM model, their structure is
still inherently similar. Yet, the computational cost differs significantly.While it takes
on an ordinary personal computer only a few seconds to train SOM-based models on
these data, the MDS-based projections require several hours on a dedicated server.

Serial DDR

For cheaper complexity, we further explore possibilities of MDS by testing serial
combinations. Figure5.2 shows a Sammon’s mapping of the k-means cluster cen-
troids as well of the second-level centroids of the SOM, where size represents the
number of data in each cluster. This type of usage ofMDS-basedmethodswas already
proposed by Sammon (1969) due to their high computational cost, and later applied
by Flexer (2001), for instance. It is, indeed, a cheapway to illustrate relations between
the cluster centroids, but lacks detail for structural as well as individual analysis.
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Fig. 5.2 Serial DDR combinations. Notes The figure shows serial DDR combinations on the entire
financial dataset; Sammon’s mapping is combined with k-means clustering, and the SOM with
second-level Ward’s clustering. Color codes on each mapping correspond to clusters. Not to clutter
the display, trajectories are not displayed in this figure

Serial and Parallel DDR

Costly, yet detailed, MDS-based projections in Fig. 5.1 and cheap, yet crude, projec-
tions in Fig. 5.2 motivate finding a compromise solution. For reducing computational
expense, it is still necessary to rely on a serial DDR combination. For more detail,
however, the initial dataset is reduced to a smaller but representative dataset. This type
of data compression can, for instance, be achieved with standard VQ that approxi-
mates probability density functions of data. The compressed reference vectors can
then be used as an input for a parallel DDR. Conceptually, while still lacking the
interaction between the tasks as well as the regular grid shape, we come close to
what is achieved using a SOM in Fig. 5.1 by relying on both serial and parallel DDR
combinations. The left plot in Fig. 5.3 shows a VQ of the initial dataset and then a
subsequent Sammon’s mapping and k-means clustering on the VQ reference vec-
tors. The right plot in Fig. 5.3 shows a corresponding Sammon’s mapping of SOM
units with a superimposed cluster color coding. However, the figure illustrates two
issues: the ordered SOM units have less overlap of cluster memberships and the
importance of naturally defined topological relations. The former issue is partly a
result of interaction between the tasks of data and dimension reduction and partly
of the inclusion of neighborhood relations when agglomerating clusters. The latter
issue of a regularly shaped grid is particularly useful when attempting to visualize
as much of the available information as possible through linked visualizations.

5.5 The SOM and Its Visualization Aids

This section first briefly reviews visualization aids for the SOM and then illustrates
the use of the regularly shapedSOMgrid, and its visualization aids. Figure5.1 showed
the two-dimensional SOM grid, and trajectories for three large European banks from
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Fig. 5.3 Serial and parallel DDR combinations. Notes The figures show serial and parallel com-
binations on the entire financial dataset; Sammon’s mapping is combined with VQ and k-means
clustering, and the SOM with Ward’s clustering and Sammon’s mapping. Color codes on each
mapping correspond to clusters and the net-like representation illustrates neighborhood relations

2002–08, but a central question remains: How should we interpret the map? The
possibility of linking additional information to the SOM grid has stimulated the
development of a wide scope of visualization aids [see Vesanto (1999) for an early
overview]. These can be classified into three groups:

(i) those compensating structural properties inherent in data that the regular grid
shape eliminates;

(ii) those extending the visualization of properties inherent in data but not normally
accessible in dimension reductions; and

(iii) those linking the SOM grid with other methods or data to further enhance the
understanding of the task.

The first group includes means to represent the distance structure and density on
a SOM, something missing due to the VQ and grid shape. Densities on the SOM
are generally assessed with frequency plots and the Pareto density estimation matrix
(P-matrix) (Ultsch 2003a). Examples of aids for assessing distance structures are
Sammon’s mapping, the Unified distance matrix (U-matrix) (Ultsch and Siemon
1990) and cluster connections (Merkl and Rauber 1997). Moreover, some methods
attempt to account for both structures and densities, such as the U*-matrix (Ultsch
2003b), the sky metaphor visualization (Latif and Mayer 2007), the neighborhood
graph (Pölzlbauer et al. 2005), smoothed data histograms (Pampalk et al. 2002), and
cluster coloring (Kaski et al. 2001; Sarlin and Rönnqvist 2013).

The second group consists of visualizations that enhance the representation of the
high-dimensional information. Feature planes are a standard method for visualizing
the spread of values of individual dimensions on the SOM, but they have been further
enhanced in several aspects. For instance, Vesanto and Ahola (1999) use a SOM for
reorganizing the feature planes according to correlations and Neumayer et al. (2007)
introduced the metro map discretization to summarize all feature planes onto one
plane. Kaski et al. (2001) have developed a visualization of the contribution of each
variable to distances between units, that is, the cluster structure. Another extension,
while partly also belonging to the other groups, is visualization of vector fields
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(a) (b)

(d)

(c)

(e) (f) (g)

Fig. 5.4 An exemplification of information linked to a SOM. a SOM and Ward’s clustering,
b U-matrix, c Frequency plot, d Quantization error, e Capital ratios, f Loan ratios, g Profitabil-
ity ratios. Notes The figures link additional information to the regularly shaped SOM grid. Charts
(a–c) illustrate structural properties of themodel: (a) shows clustermemberships of the second-level
clustering, (b) shows average distances between units, or the so-called U-matrix, and (c) shows the
frequency distribution on the SOM grid. Charts (d) shows qualities of the model, whereas charts
(e–g) show the spread of three subdimensions of financial performances on the SOM grid: capital,
loan and profitability ratios

(Pölzlbauer et al. 2006) for assessing contributions to the cluster structure and for
finding correlations and dependencies in the underlying data.

The third groupuses othermethods or data for further enhancing the understanding
of the task. One common way to represent cluster structures in a SOM is applying a
second-level clustering on the units, and visualizing it through color coding (Vesanto
and Alhoniemi 2000). The reference vectors have been used as an input for other
predictive methods, such as a neural network in Serrano-Cinca (1996), whereafter
the prediction may be visualized on the SOM grid.

Next, we look at some examples of how visualizations from the above three
groups can be linked to the SOM. The previously presented SOM in Fig. 5.1 already
showed a financial performance comparison over time of three large European banks
using labels and trajectories. Figure5.4 uses the regular shape of the SOM grid
as a basis for seven different representations of additional information. Whereas
cluster memberships are visualized through a qualitative color scheme, the rest of



5.5 The SOM and Its Visualization Aids 115

the visualizations are shown through variation in luminance (light to dark to represent
low to high values) in a blue hue. It is worth noting that a complicating factor in using
luminance is that perceived lightness is dependent on context (Purves et al. 2004),
namely the lightness of surrounding colors. For this reason, color scales ought to be
presented with a consistent reference color to be comparable in lightness. The units
of the SOM are in this book represented with circles rather than hexagons to leave
space for reference coloring.

First, Fig. 5.4a, b, c illustrate structural properties of the model: (a) shows crisp
cluster memberships of the second-level clustering, (b) shows distance structures
using a U-matrix visualization, and (c) shows the frequency distribution on the SOM
grid. While Fig. 5.4a, b show similar characteristics of cluster structures, Fig. 5.4c
shows no specific patterns in density, except for borders being comparatively less
dense. Second, Fig. 5.4d shows qualities of the model, where larger quantization
errors cluster around the lower right corner. Third, Fig. 5.4e, f, g enable assessing
correlations and distributions by showing the spread of three financial performance
measures on theSOMgrid: capital, loan andprofitability ratios.Here, one canobserve
that, generally, the right part represents well-performing and the left part poor banks,
which gives a direct interpretation to the trajectories in Fig. 5.1.

So, how does the SOM relate to information visualization? Following the dis-
cussion about data graphics in Sect. 4.1, the SOM can be related to Bertin’s (1983)
framework. The plane, and its two dimensions (x, y), are described as the richest
variables, which can be perceived at all levels of organization. On the SOM, they
represent discrete neighborhood relations. This corresponds also to the key aim of the
SOM, that is, to preserve neighborhood relations, whereas global distance structures
are of secondary importance. The retinal variables, and their three types of implan-
tation (point, line and area), are thus positioned on the grid. The six retinal variables
may be used to represent properties of the SOM grid, particularly properties of the
units. To refreshmemory, they are as follows (where the parenthesis refers to Bertin’s
levels of organization): size (ordered, selective and quantitative), value (ordered and
selective), texture (ordered, selective and associative), color (selective and associa-
tive), orientation (associative, and selective only in the cases of points and lines), and
shape (associative). The choice of retinal variable should be based upon the purpose
of the visualization and the type of data to be displayed. For instance, variation in
size has been used to represent frequency of data in units [see, e.g., Resta (2009)].
Value, or brightness, has been used to visualize the spread of univariate variable val-
ues (i.e., feature planes) on the SOM (see, e.g., Fig. 5.4). Likewise, texture has been
used for representing cluster memberships [see, e.g., Sarlin (2012a)]. Orientation
is commonly applied to represent high-dimensional reference vectors by the means
of arrows [see, e.g., Kohonen (2001, p. 117)]. Variation in color (or hue) has been
used for illustrating crisp cluster memberships (see, e.g., Fig. 5.4) and for a coloring
that reveals multivariate cluster structures [see, e.g., Kaski et al. (2001) and Sarlin
and Rönnqvist (2013)]. Variation in shape is commonly used on the SOM by the
means of labels, such as phoneme strings and phonemic symbols (Kohonen 2001,
pp. 208–210).

http://dx.doi.org/10.1007/978-3-642-54956-4_4
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5.6 Discussion

This chapter has considered data and dimension reduction methods, as well as their
combination, for visual financial performance analysis. The discussions and illustra-
tions in this chapter, while being at times somewhat trivial, aremotivated by inconsis-
tency of argumentation for and application of various methods. The main conclusion
of the comparison is that the SOM has several useful properties for financial perfor-
mance analysis. In particular, this chapter has noted the following advantages of the
SOM over alternative distance-preserving methods:

(i) trustworthy neighbors,
(ii) low computational cost,
(iii) flexibility for problematic data, and
(iv) a regularly shaped grid.

So, is the superiority of the SOM supported by information visualization theories?
Indeed, the SOM representation can be related to Tufte’s (1983) advise and princi-
ples on graphical clarity and precision. Due to a potential loss of information when
projecting from a high-dimensional space to one of a lower dimension, trustwor-
thy neighbors clearly relates to Tufte’s advise on avoiding distortions of data (given
some losses in detail). Furthermore, the regular, predefined grid shape of the SOM
enables and facilitates many types of information linking to the same grid structure.
This functions as an aid in thinking about the information rather than the design and
encourages the eye to compare data. The SOM’s property of approximating the prob-
ability density functions of data also facilitates presenting vast amounts of data in a
small space, as units will be located in dense areas of the data space, which could also
be thought of as an aid in making large data sets coherent. On the SOM, data may be
revealed at multiple levels of detail ranging from overview of multivariate structures
on the grid, to illustration of individual data on the grid (e.g., trajectories located in
their BMUs), which also integrates statistical and verbal descriptions. Along these
lines, Tufte’s six guidelines on telling the truth about data are also supported. For
instance, showing data variation, not design variation, and not showing data out of
context relates to, and is supported by, the use of a regular grid shape. Likewise,
an example of visuals being directly proportional to the quantities they represent is
the adjustment of color scales used for the linked visualizations, such as normaliza-
tions of feature plane scales in order for all variables to be comparable (see, e.g.,
Sect. 6.2.2), and the use of perceptually uniform color scales, such as CIELab (1986).

It is, however, worth noting that the relative goodness of a method depends always
on the task in question. That said, the SOM is obviously far from a panacea for all
sorts of data and dimension reduction. When only attempting stand-alone tasks, it
is indeed very likely that there exists better methods than the SOM. Similarly, when
attempting DDR, the superiority of one method over others depends entirely on the
aims of the task in question.

Even though the SOM has been assessed as advantageous for visual financial
performance analysis, it is worth to carefully consider its limitations:

http://dx.doi.org/10.1007/978-3-642-54956-4_6
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(i) The SOMperforms a crudemapping. Rather than data points, the SOMattempts
to embed the reference vectors, a significant constraint if detail is of central
importance and/or if only projecting a few data points.

(ii) The regular grid shape sets some restrictions on the SOM. For instance, it may
cause interpolating sparse locations with idle units, it may lead to an analyst
overinterpreting the regular-like y and x axes, and leads to the need for additional
visual aids to fully represent structures.

(iii) Mathematical treatment of the SOM has shown to be problematic. The lack
of an objective function, as well as a general training schedule for or proof of
convergence, complicates parametrizing a SOM.

The comparison in this section has covered classical first-generation dimension
reductionmethods. This leads to one key question:Can the results of this comparison
be generalized to all available methods? As reviewed in Sect. 5.1, CCA has been
shown to outperform the SOM in terms of trustworthiness of neighborhood relations
(Himberg 2004; Venna and Kaski 2007). Likewise, two more recent local versions of
MDS, denoted LMDS, by Venna and Kaski (2006) and Chen and Buja (2009) adapt
the functioning of standard MDS to preserve local relations. These methods, while
holding promise for one criterion, fall short in other, not the least in the shape of the
output. It is thus important to consider methods from the second generation with the
key properties of the SOM. There are two conceptually similar topology-preserving
methods that possess the capabilities of the SOM and a predefined grid shape: GTM
and XOM. GTMmainly differs from the SOM by relying on well-founded statistical
properties. It is based upon Bayesian learning with an objective function, namely
the log-likelihood, which is optimized by the Expectation-maximization algorithm.
The objective function directly facilitates assessing convergence of the GTM. Even
thoughBishop et al. (1998) originally stated that theGTM is computationally compa-
rable to the SOM, it has later been shown that the SOM is cheaper (e.g., Rauber et al.
2000). This may result from the number of developed algorithmic shortcuts for com-
puting SOMs, such as fast-winner search (Kaski 1999). Both methods are flexible for
problematic data, i.e., outliers and missing values, through a similar predefined grid
shape and an extension of the GTM for treating missing values (Carreira-Perpiñan
2000; Sun et al. 2001). However, while choosing parameters for the SOM may be
a tedious task, given adequate initializations and parametrization, convergence has
seldom appeared to be a problem in practice (see, e.g., Yin 2008). A decade after the
introduction of the GTM, neither it nor its variants, such as the S-Map (Kiviluoto
and Oja 1997), have displaced the standard SOM.

The XOM is a computational framework for data and dimension reduction. By
inverting the functioning of the SOM, the XOM systematically exchanges functional
and structural components of topology-preservingmappings by self-organizedmodel
adaptation to the input data. It has two main advantages compared to the SOM:
(i) reduced computational cost, and (ii) applicability to non-metric data as there is
no restriction on the distance measures. Even though the use of non-metric dissim-
ilarity measures is of little use on the data in these particular examples, while still
having potential for other pairwise financial data, the reduced computational cost is
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particularly beneficial for large financial datasets in general. The XOMhas, however,
been recently introduced and is thus still lacking thorough tests in relation to other
methods, such as comparisons to SOMs with algorithmic shortcuts. Yet, the XOM
should be considered as a valid alternative to the SOM paradigm.

The key message is thus that all four criteria are fulfilled by three methods that
perform a topology-preserving mapping to a regularly shaped grid: the SOM, GTM
and XOM. It is worth noting, as widely suggested (e.g., Lee and Verleysen 2007;
Trosset 2008), that one of the main reasons for the SOM being very popular for
a broad range of tasks, such as classification, clustering, visualization, prediction,
missing value imputation, etc, might be because it produces an intuitive output using
a simple and easily understandable principle. This simplicity, while being beneficial
for a method to be widely accepted, applied and understood, should still not be used
for assessing relative goodness. One should, nevertheless, note that when introducing
dimension reductions to the general public, such as policy- or decision-makers in
general, simplicity is definitely an asset. To this end, the most suitable method for
financial performance analysis is one from the family of methods that perform a
topology-preserving mapping to a regularly shaped and predefined grid. In the work
in this book, out of the above described family of methods, the choice of the SOM is
motivated by the simplicity of and large number of extensions provided to the SOM.

5.7 Concluding Summary

The literature shows a lackof unanimity on the superiority of one dimension reduction
method over others. Yet, every task has its own needs. Data and dimension reduction
for financial performance analysis should thus be performed with methods that have
the best overall suitability for the performed task, not the best processing capabilities
for some other objective. To this end, this chapter has addressed the choice of method
for visual financial performance analysis from a qualitative perspective.We have first
discussed the properties of three inherently different classical first-generation dimen-
sion reduction methods, and their combination with data reduction, and illustrated
their performance in a real-world financial application to benchmarking European
banks. The conclusions drawn from the comparison of classical methods was then
prolonged to second-generationmethods. The qualitative discussion and experiments
showed superiority of the SOM for financial performance analysis in terms of four
criteria: form of structure preservation, computational cost, flexibility for problem-
atic data and shape of the output. When considering second-generation methods,
the recently introduced GTM and XOM have clear potential for similar tasks. GTM
improves the SOM paradigm with its well-defined objective function, but is com-
putationally more costly, whereas XOM is a recently introduced promising method,
but lacks still thorough comparisons.

From the discussions in this chapter, an obvious conclusion is that the family
of methods that perform a topology-preserving mapping to a regularly shaped and
predefined grid provides means for visual financial performance analysis. The aims
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Fig. 5.5 An exemplification of linking information to a Sammon’s mapping. Notes The figures
link additional information to the coordinates of the Sammon’s mapping. All three plots show the
spread of three individual variables measuring financial performance (i.e., feature planes): capital,
loan and profitability ratios. They are comparable to the feature planes of the SOM grid shown in
Fig. 5.4d–f. The reader is referred to these scales for an interpretation of the color scale

and needs for the task at hand, where the main focus lies on using the output as a
display for additional information in general and individual data in particular, are
neither rare objectives in other fields. While not being generalizable to their full
extent, parts of the conclusions herein will also apply in other fields, domains and
tasks. The methods advocated in this book do obviously not provide a panacea for
visual financial performance analysis. They should be paired with other methods, not
least visualizations of different kinds, that compensate for missing properties when
having, for instance, a regularly shaped grid. To this end, the chapter also motivates
exploring the information commonly linked to theSOMinnot only the same family of
methods with predefined grid shapes, but also other dimension reduction paradigms
in general. Figure5.5 exemplifies how “feature planes” for a Sammon’s mapping
visualize the spread of individual variables for the Sammon’s mapping coordinates.

To sum up, the SOM was found to hold most promise for the task performed in
this book, which also sets the direction in the sequel of this book. Yet, the standard
SOM as such is not always enough for the task at hand. In the following chapter, we
will discuss how the SOM can be extended to better meet the aims and needs for the
tasks and data at hand.
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Chapter 6
Extending the SOM

As the present now
Will later be past […]
And the first one now

Will later be last
For the times they are a-changin’.

–Bob Dylan

The standard Self-Organizing Map (SOM), while having merit for the task at hand,
may be extended in multiple directions, not the least to better meet the demands
set by macroprudential oversight and data. Chapters2 and 3, spell out the needs
and demands for the task at hand, to be used as a basis for the applications and
extensions of methods. As discussed in Chaps. 4 and 5, the method of preference for
the purposes in this book is the SOM. A particular focus of the extensions is related
to two tasks that not only meet the demands of macroprudential oversight and data,
but have also been stated to be in need of future research in the fields of information
visualization and dimension reductions. First, Chen (2005) and Wong et al. (2012)
highlight a paradigm shift from only visualizing structures to visualizing dynamics.
An even further step is to assess dynamics of structures. Second, to be aware of the
quality and distortions of dimension reductions, Wismüller et al. (2010) and Wong
et al. (2012) stress that they are not an end, but provide only a means to display useful
information on top of them, such as evidence, uncertainty and individual data.

Along these lines, with a key focus on temporality, this chapter first discusses
the literature on time in SOMs. This is followed by extensions to the standard SOM
paradigm. In general, the chapter presents extensions to the SOM paradigm for
processing data from the cube representation, i.e., along multivariate, temporal and

This chapter is partly based upon previous research. Please see the following works for further
information: Sarlin et al. (2012),Sarlin and Eklund (2011),Sarlin (2013b,d,e), Sarlin and Yao
(2013)
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cross-sectional dimensions, where a focus of emphasis is on a better processing and
visualization of time. The motivation and functioning of the extensions is demon-
strated with a number of illustrative examples.

6.1 Time in SOMs: A Brief Review

There is a wide range of literature adapting and extending the standard SOM for tem-
poral processing.While the literature on time in SOMs has been thoroughly reviewed
in Barreto (2007), Barreto et al. (2003), Barreto and Araújo (2001), Guimarães et al.
(2003) and Hammer et al. (2005), a unanimous classification dividing it into dis-
tinct groups of studies is not clear-cut. Drawing upon the above reviews, the lit-
erature related to time in SOMs is reduced into four groups of works: (i) those
with an implicit consideration of time, (ii) those adapting the learning or activation
rule, (iii) those adapting the topology, and (iv) those combining SOMs with other
visualization techniques.

The first group implicitly considers time by applying the standard SOM algorithm
and illustrates the temporal dimension either as a pre- or post-processing step. The
pre-processing concerns embedding a time series into one input vector, such as so-
called tapped delay [e.g., Kangas (1990)]. A time-related visualization through post-
processing is, however, more common. A connected time series of best-matching
units (BMUs), i.e., a trajectory, has been used in the literature to illustrate temporal
transitions [e.g., Kohonen (1988) and Martín-del Brío and Serrano-Cinca (1993)].
By exploiting the topological ordering of the SOM, visualization of the current and
past states enables visual tracking of the dynamics in multivariate data (i.e., process
dynamics). However, while temporal patterns require large datasets for generaliza-
tion and significance, trajectories can only be visualized for a limited set of data.
Thus, strengths and actual directions of the patterns can be obtained by probabilistic
modeling of state transitions between SOM units [e.g., Sulkava and Hollmén (2003),
Luyssaert et al. (2004) and Fuertes et al. (2010)].

The second group of works adapts the standard SOM activation or learning rule.
Those decomposing the learning rule of the standard SOM into two parts, past and
future, for time-series prediction have their basis in the Hypermap (Kohonen 1991).
The past part is used for finding BMUs, while the entire input vector is used within
the updates of the reference vectors. For predicting out-of-sample data, the past part
is again used for finding BMUs while the future part of that unit is the predicted
value. This type of learning has been used for standard time-series prediction [e.g.,
Principe and Wang (1995) and Ultsch et al. (1996)] and predictions through non-
linear regression [e.g., Sarlin andMarghescu (2011)]. As noted in Sect. 4.4, the latter
type of decomposition can still be divided into semi-supervised and unsupervised
SOMs, where the difference depends on whether or not the present part is used for
matching in training. Instead of considering the context explicitly in SOM training,
it can be treated as the neighborhood of the previous BMU. Kangas (1992), for
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instance, constrains the choice of a BMU to the neighborhood of the previous BMU
and thus has a behavior that resembles the functioning of SOMs with feedback in
the next group.

The third group deals with adaptations of the standard SOM network topology
through feedback connections and hierarchical layers. The feedback SOMshave their
basis in the seminal Temporal SOM (TSOM) (Chappell and Taylor 1993), also called
the Temporal Kohonen Map, that performs leaky integration to the outputs of the
SOM.TheRecurrent SOM(RSOM) (Varsta et al. 1997;Koskela et al. 1998) differs by
moving the leaky integration from the output units to the input vectors.A recent recur-
rent model is theMerge SOM (MSOM) (Strickert and Hammer 2005) whose context
combines the current pattern with the past by a merged form of the properties of the
BMU. The Recursive SOM (RecSOM) (Voegtlin 2002) keeps information by con-
sidering the previous activation of the SOM as part of the input to the next time unit,
while the Feedback SOM(FSOM) (Horio andYamakawa 2001) differs by integrating
an additional leaky loop onto itself. The SOM for structured data (SOMSD), on the
other hand, labels directed acyclic graphs to regular (Hagenbuchner et al. 2003) and
arbitrary (Strickert et al. 2005) grid structures. Finally, Hammer et al. (2004) define a
general formal framework and show that a large number of SOMs with feedback can
be recovered as special cases of the framework. The hierarchical network architec-
tures, on the other hand, use at each layer one or more SOMs operating at different
time scales. The next level in the hierarchy can either use the lower level SOMas input
vectors without any processing, such as two-level clustering commonly does, or use
transformed input vectors by computing distances between units or concatenating
a time series to one input vector, for instance. Kangas (1990) introduced hierarchi-
cal network architectures to SOMs, and shows that a hierarchical SOM without any
additional processing outperforms SOMswith backwards averaged and concatenated
input vectors.

The fourth group of studies attempts to create SOM-based visualization tools
for exploratory analysis of data by combining the SOM with other methods and
interactive interfaces. The particular focus of these tools is to provide means for
dealing with spatiotemporal data. Standard SOMs using both cross-sectional and
temporal data have, in addition to trajectory and state-transition analysis, been paired
with stand-alone visualization aids for a spatial mapping [e.g., Kaski et al. (2001)].
Guo et al. (2006) introduces an integrated approach of computational, visual and
cartographic methods for visualizing multivariate spatiotemporal patterns, where
parallel coordinate plots and reorderable matrices enhance the information products
of the SOM. The visualization tool created byAndrienko et al. (2010) extends the one
in Guo et al. (2006) by not only grouping spatial situations as per time units, but also
spatial locations as per temporal variations. Further, a SOM-based visualization tool
for temporal knowledge discovery is introduced in Guimarães (2000) and Guimarães
and Ultsch (1999). The tool presents a hierarchical SOM to handle complexity, and
includes a U-matrix visualization, trajectory analysis and a transformation of data
into linguistic knowledge.
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These four groups of extensions, while covering a wide range of temporal
processing, leave room to provide better means for visualizing patterns in macropru-
dential data. This is the topic of the following sections.

6.2 Extensions for Exploiting the SOM

Directed by the task at hand, this section takes the standard SOM as a basis and
then aims at extending it, as well as combining it with other methods, to better
meet the needs and demands of macroprudential oversight and data. The section
proposes three extensions: a fuzzification; transition probabilities; and shock prop-
agation assessment. The functioning of all three extensions is demonstrated with
simple examples on the bank SOM used in Chap.5.

6.2.1 Fuzzification of the SOM

In the early days, information extraction on the SOMwasmainly facilitated by visual
analysis of some form of the U-matrix [e.g., Ultsch and Siemon (1990)], where a
color code between all neighboring units indicates their average distance. The SOM
units have also been used as input for a second stage (or hierarchy) of two-level
clustering. However, one source of ambiguity with the SOM clustering is that the
degree of membership in a particular cluster is not always easy to judge. Although
location on the SOM represents closeness, the distance structure on the SOM is most
often not uniform. In some cases, it might be beneficial to judge the degree to which a
particular area of a cluster (i.e., one or more units) differs from the rest of the cluster,
and what its closest match among the other clusters is. While the SOM is commonly
partitioned using a crisp clustering technique [e.g., Vesanto and Alhoniemi (2000)],
one solution to judging membership degrees is to fuzzify the SOM. The motivation
for using a fuzzification is threefold:

(i) For monitoring belongingness of individual data (e.g., over time),
(ii) For assessing distance structures of the SOM units with respect to clusters; and
(iii) For assessing topological ordering of the SOM.

The fuzzification can takevarious forms.Below,we look at three possible approaches:
Fuzzy c-means (FCM)clustering, distance-based fuzzification andclass anddistance-
based fuzzification.

Fuzzy c-Mean Clustering

The FCM algorithm, developed by Dunn (1973), Bezdek (1981), may be employed
for assigning a degree ofmembership of each unit in each of the clusters, as suggested

http://dx.doi.org/10.1007/978-3-642-54956-4_5
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in Sarlin and Eklund (2011). This provides a fuzzified representation of the SOM.
Following the presentation of FCM clustering in Sect. 4.3, the objective function Jθ

can also be applied to SOM units. The objective function Jθ is thus defined as the
weighted sum of the Euclidean distances between each unit and each cluster center,
where the weights are the degree of memberships of each unit in each cluster, and
again constrained by the probabilistic requirement:

Jθ =
M∑

i=1

C∑
k=1

uθ
ik ≡mi − ck≡2 ,

C∑
k=1

uik = 1, (6.1)

where θ ≤ (1,◦) is the fuzzy exponent, uik is the degree ofmembership of reference
vector mi (where i = 1, 2, . . . ,M) in the cluster center ck (where k = 1, 2, . . . ,C ,
and 1 < C < M), and ≡mi − ck≡2 is the squared Euclidean distance between mi

and ck . After a random initialization, it optimizes the cluster centers ck and the
membership values uik with the same Picard iteration through Eqs. (4.6) and (4.7)
as was shown in Chap.4. Thus, it applies the same procedure, but instead directly on
the reference vectors mi .

Distance-Based Fuzzification

Instead of using FCM clustering on the units, Sarlin and Eklund (2013) compute the
membership degrees directly using Euclidean distances between SOMunits (or data)
and the centroids of crisp clusters. For this, any crisp clustering method, as appropri-
ate, is applicable. The crisp clustering is fuzzified by computing the inverse distance
between reference vector mi (or each data point x j ) and each cluster center ck :

vik = 1

1 + ≡mi − ck≡ 2
θ−1

(6.2)

where θ ≤ (1,◦) is again the fuzzy exponent (i.e., the fuzzifier) which controls
the extent of overlap between the clusters. However, the similarity matrix vik is
normalized to the following cluster membership matrix for each unit:

uik = vik∑C
k=1 vik

(6.3)

to fulfill the probabilistic constraint
∑C

k=1 uik = 1. The extent of overlap between
the clusters is set by the fuzzy exponent θ . When θ ∈ 1, the fuzzy clustering
converges to a crisp clustering, while when θ ∈ ◦ the cluster centers tend towards
the center of the data set. θ = 2 and θ = 3 can be seen as benchmarks, since they
give squared and simple Euclidean distances. The fuzzy exponents in the above and
below approaches also follow these guidelines.

http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_4
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This approach resembles that in Cottrell and Letrémy (2005), but differs by being
implemented on a second-level clustering instead of directly on the units, by not
assuming inverse exponential distances, and by introducing a fuzzification parameter.
More importantly, Cottrell and Letrémy (2005) use the derived memberships for
imputing missing values. As the fuzzification is implemented on the units, it can be
used for assessing the topological ordering and distance structure of the grid. While
FCMclustering necessitates visualizingmemberships of individual data according to
those of their BMUs, this approach enables one to also compute them for individual
data. This is particularly important as one-unit movements may be switches between
clusters, but still changes in data may be minor. A plot of the memberships would
capture this.

Class and Distance-Based Fuzzification

In cases when one possesses class information in data, it is not necessary to estimate
clusters and their centroids. They can be derived from their distribution on the SOM.
Thus, one might not only have class information, but also utilize a semi-supervised
SOM with the classes in the ordering process. Following Sarlin (2013b), the above
fuzzification of the SOM is adapted for computing class memberships. Let the input
data consist of two parts: class vector x j (cl) and input vector x j (in). The SOM can be
classified and fuzzified based upon the class vectors x j (cl) by assuming the following:
the number of clusters C equals the number of classes K , i.e., C = K , and the
cluster center ck (where k = 1, 2, . . . ,C) for each class is a perfect representative
state vector, i.e.,

∞k ck =
{
1 if k equals the state of ck

0 otherwise
(6.4)

While there exist other methods for class visualization on the SOM, such as Voronoi
regions (Mayer et al. 2007), they fall short in dealing with imprecision in class mem-
berships. Following the approach in Eqs. (6.2) and (6.3), we can compute a member-
ship degree using Euclidean distances between units and state centers, but only use
x j (cl) and mi(cl) for measuring these distances. The rationale for this is the focus on
distances between mean profiles of classes x j (cl) rather than those between inputs
x j (in). The SOM is fuzzified by computing the inverse distance between reference
vectormi(cl) and each state center ck(cl), as in Eq. (6.2), and normalized as in Eq. (6.3)
to fulfill the probabilistic constraint. In addition to computing membership degrees,
one can also apply a defuzzification of the results using the maximum-membership
method. This enables deriving crisp clusters of reference vectors such as in two-level
clustering, which is also applicable for the FCM clustering.
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Visualizing a Fuzzification

Similarly as feature planes for individual variables, membership degrees can be
associated to each of the SOM units, and linked to the SOM grid, where one unique
point represents the same unit on a SOM. Thereby, the structure of the clusters of a
SOM model can be identified by studying so-called membership planes. They show
the degree of membership in cluster k for each unit mi on an own grid, such that
the color code of each unit mi represents its membership in cluster k. The temporal
dimension of an individual entity can also be represented by computing for each
data point an own membership degree in each cluster. This enables a line graph
representation of the state switch probabilities over time for individual data, where
cluster centers express representative states and variations of membership degrees
represent their fluctuation over time.

An Illustrative Example

To illustrate the functioning and usefulness of fuzzifications, we turn to illustrative
examples on simple real-world data. The SOM model created on data for European
banks, when comparing methods in Chap. 5, can be used for illustrating the fuzzi-
fication. As the SOM is entirely unsupervised and already uses Ward’s hierarchical
method for a second-level clustering, the distance-based fuzzification is applied.
Thus, the crisp clustering of the above SOM model is fuzzified using Euclidean dis-
tances. The fuzzifier θ ≤ (1,◦) was tested for values in (1, 10]. Based upon these
experiments, a benchmark θ -value of 2.0 provided an adequate fuzzification of the
map. It introduces a fuzziness degree large enough to show relationships between
clusters, but small enough not to completely eliminate cluster borders. The computa-
tion provides themembership of each unit in each cluster, as well as thememberships
of each data point in each cluster.

Figure6.1 shows membership planes, in each of which the membership degrees
of all units in one cluster are visualized, and finally a membership plane to illustrate
the crisp clusters and the trajectories of UniCredit Banca and ING Bank. The figure
illustrates the crispness of the clusters, and locations in general. For instance, while
the cluster center of cluster D is located in its lower part, where cluster memberships
are somewhat crisp, one can observe the opposite for units on the borders between
clusters A, D, E and G. In broad terms, as the memberships overall decrease over
distances from cluster centers on the grid, the membership planes indicate no major
concerns with topological ordering.

The line graphs in Fig. 6.2 illustrate an assessment of individual time-series points
that have a partial membership in all identified, but overlapping, clusters. UniCredit
Banca switches between clusters A, D, E and G, which is also illustrated by the low
membership degrees. This functions as a particular motivation for using member-
ships, as only tiny differences in the underlying data may lead to switches between
clusters. On the contrary, strong membership degrees can be observed in the case of
ING, where the final movement to a unit that borders cluster D actually increases

http://dx.doi.org/10.1007/978-3-642-54956-4_5
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Fig. 6.1 An exemplification of a fuzzification of the SOM. Notes The figure links membership
degrees to the SOM. The first seven grid representations are called membership planes, as each of
the planes visualizes the membership degrees of all units to one cluster. The final grid is a crisp
membership plane that shows the same cluster memberships as those displayed in Fig. 5.4. The
crisp membership plane also overlays trajectories for UniCredit Banca and ING Bank

the membership in cluster F. Hence, additional aids are needed to understand the
implications of movements on the SOM.

6.2.2 Transition Probabilities on the SOM

The SOM has been shown to be an ideal tool for building low-dimensional displays
for the visualization of individual data. However, manually identifying the temporal
patterns in a SOM model is not necessarily a simple process. As is already appar-

http://dx.doi.org/10.1007/978-3-642-54956-4_5
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Fig. 6.2 Line graphs of a fuzzified SOM. Notes The figure visualizes times series of membership
degrees for two banks, UniCredit Banca and ING Bank

ent from Chap.3, as well as the above example, data are commonly drawn from a
three-dimensional data cube, including themultivariate, cross-sectional and temporal
dimensions. These types of data are not unique. Also in other fields than accounting,
finance and economics, such as process monitoring [see Alhoniemi et al. (1999) and
Fuertes et al. (2010)], it is more common than not for multivariate data to include
both a temporal and cross-sectional dimension. For instance, when data are cyclical
(or scarce), one may want to build a standard SOM model with data on several enti-
ties over time to include both the temporal and cross-sectional differences. Given a
model with this type of data, an obvious interest would be the temporal properties
of the model.

The standard SOM paradigm does not, however, explicitly address the issue of
temporality. Variations of the SOM algorithm itself, as reviewed in Sect. 6.1, have
been proposed for dealingwith temporal data. Oftentimes, these extensions, however,
turn their focus from the entities to the sequences, or otherwise enhance time-series
prediction. The extensions, while holding promise for a wide range of other tasks,
do not provide means for visualizing the temporal structure on a standard SOM.
While trajectories have been a common means to illustrate temporal movements,
as has already been illustrated in this book, small samples give no indication of
overall patterns and large samples clutter the display. Thus, trajectories and the above
presented fuzzification provide no overall information about trends in the dataset.
For finding these patterns, be they cyclical or not, movements should be summarized
from transition probabilities, something that is not apparent from only studying the
elements of the SOM units. Transition probability matrices (TPMs) can be used to
produce a probabilistic model of the temporal variation in a SOM model. This has
been introduced through unit-to-unit transition probabilities (Sulkava and Hollmén
2003;Luyssaert et al. 2004;Fuertes et al. 2010).These types of transitionprobabilities
generalize the strengths and actual directions of the temporal patterns on the SOM.

Three Approaches to Transitions

This subsection presents the approach to transition probabilities put forward in
Sarlin et al. (2012) by focusing on unit-to-cluster switches on SOM with a
second-level clustering. Thus, the below presented framework provides better means

http://dx.doi.org/10.1007/978-3-642-54956-4_3
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to compute, summarize and visualize strengths and actual directions of transition
probability patterns.

Movements between units on the two-dimensional SOM are used to compute
probabilities of switching from a unit to a specified region in a specified time period,
where the location of data per time unit is their BMU (see Eq.4.9). First,we compute
for each unit mi the probability of transition to any other unit mu :

piu(t + s) = niu(t + s)
∑M

u=1 niu(t + s)
(6.5)

where niu is the cardinality of data switching frommi tomu , t is a time coordinate and
s is the time span for the switch. In other words, the transition probability piu(t + s)
equals the cardinality of transitions from unit mi to unit mu divided by the sum of
transition from unit mi to m1,2,...,M . On a SOM grid with four units, this could in
practice mean that for, say, unit m1 the probability of being in period t + 1 in m1,2...4
could be 0.5, 0.2, 0.2 and 0.1, respectively. More formally, a TPM corresponds
to a stationary first-order Markov model or maximum-likelihood estimates of the
switches (Anderson and Goodman 1957). It can, however, be computed for different
time spans, as appropriate, and summarized to switches between clusters or any
other region on the map. For example, unit-to-cluster switches are computed using
pil , where the transition refers to movements from reference vector i to cluster l
(where l = 1, 2, . . . ,C), thus:

pil(t + s) = nil(t + s)
∑C

l=1 nil(t + s)
(6.6)

For larger samples, and thus more robust results, the TPMs pil (as well as piu) can
be computed as an average of several s values (where s = 1, 2, . . . ,S):

pil(t + {1, 2, ..., S}) =
∑S

s=1 nil(t + s)
∑S

s=1
∑C

l=1 nil(t + s)
(6.7)

Thus, the following three computations are proposed:

(i) TPMs for unit-to-cluster switches (pil(t + s)) as in Eq. (6.6) for a specified set
of s values.

(ii) Summarize the TPMs from Step (i) by computing to which cluster l an obser-
vation in mi is most likely to switch and with what likelihood, i.e., showing
maximum transition probabilities (maxl(pil)) conditional on switching. This
combines the direction and strength of all probabilities into one vector.

(iii) For summarizing the computations in Steps (i) and (ii) over time, compute aver-
age transition probabilities over a chosen set of s values (pil(t + {1, 2, ...,S})
as in Eq.6.7).

http://dx.doi.org/10.1007/978-3-642-54956-4_4
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Visualizing the Transitions

Similarly asmembership planes, transition probabilities can be associated to theSOM
units, and linked to the SOM grid. Thereby, the structure of the transitions on the
SOM model can be directly identified by studying these so-called transition planes.
The above computations are represented using the following three visualizations:

(i) Transition planes show the probability to transit to cluster l for each unit mi on
an own grid, such that the color code of each unit mi represents its probability
of transition to cluster l.

(ii) Summarized transition planes aggregate the transition planes for all C clusters
to one grid by using a color code for mi to represent the probability of the most
likely switch and a label to represent that cluster.

(iii) Create the same feature planes as in Steps (i) and (ii), but as an average over a
chosen set of s values.

To normalize the color scales for different cluster sizes, but still show differences
over time spans, the color scales of the feature planes for all s values and sets of s
values can be specified as to that for the shortest time span min(s) (e.g., s = 1 and
t + 1). The temporal dimension of an individual entity can as well be represented by
associating each time-series pointwith the transition probability of its BMU(Eq.4.9).
This enables a line graph representation of the state switch probabilities over time for
individual data, where clusters are representative states and the variation in transition
probabilities represent changes in indications of future characteristics. The transition
probabilities can also be used for profiling by presenting characteristics of low- and
high-risk mean profiles based upon future transitions.

An Illustrative Example

The same model based upon European banks is also used to illustrate transition
probabilities on the SOM. Thus, we follow the above three-step framework when
computing the transition probabilities. First, TPMs are computed as switches from
units to clusters (pil(t + s) as in Eq.6.6). Second, the direction and strength of the
switches are summarized by computing maximum transition probabilities maxl(pil)

conditional on switching. Third, the above steps are computed for three different
transition time spans (t + 1, t + 2 and t + 3) and an average for S = 3. However, for
the sake of brevity, Fig. 6.3 only visualizes the average of all three time spans. The
illustrated transitions on the SOM may be utilized for exploring patterns of interest.
Clusters E, F and G can be seen as inherently stable, as there are few transitions from
the units in these clusters. Clusters A, B and C, on the other hand, are less stable.
Cluster D is an unstable transition cluster. Further, we can see that banks in clusters
A, F and G are quite stable, while clusters B, C and E exhibit more transitions.

The differences in stability between cluster A and clusters B and C might be due
to differing business activities, as an inspection of the feature planes (partially shown
in Fig. 5.4) illustrate that cluster A differs from B and C primarily in capital ratios,

http://dx.doi.org/10.1007/978-3-642-54956-4_4
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Fig. 6.3 An exemplification of transition probabilities on a SOM. Notes The figure links transition
probabilities information to the SOM. The first three grids are so-called transition planes, as each
plane visualizes the transition probability of all units to one cluster. The final grid is the same crisp
membership plane shown in Fig. 5.4. The membership plane also overlays trajectories for UniCredit
Banca and ING Bank

loan interest revenue and subordinated debt. This indicates that clusters B and C are
higher risk clusters than cluster A, and thus probably more sensitive to changes in the
business environment, such as interest rates and other macro-financial conditions.
For cluster B, an interesting strong cluster-to-cluster pattern is the high probabilities
of movements to cluster D. Another interesting pattern is the difference in stability
between cluster E and clusters F and G. While E, F and G are quite similar clusters
in terms of performance, a clear difference can be seen in the high ratio of non-
operating items of cluster E. Non-operating items are items not related to ongoing,
day-to-day operations, such as dividends, financial investments or significant write-
downs, which might partially explain the unstable nature of positions in cluster E.

The line graphs in Fig. 6.4 show a practical bank-specific application of the
transition-probability framework. The figure shows the state transition probabilities
forUniCredit Banca and INGBank for 2002–2008. If one is interested in likely future
switches, the addresses of the switches and the probability trend of the most likely
switch should be assessed, as the probability of staying in a cluster is mostly highest.
The patterns for the two case banks resembles that of the fuzzification application.
The transition probabilities for UniCredit, who also switches cluster frequently, are
spread out in all three cluster groups,whereas those of INGare shown to be dominated
by the only state it is a member of, cluster F.

http://dx.doi.org/10.1007/978-3-642-54956-4_5
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Fig. 6.4 Line graphs of transition probabilities for SOM trajectories. Notes The figure visualizes
times series of transition probabilities for two banks, UniCredit Banca and ING Bank

6.2.3 Shock Propagation on the SOM

The process of some event being transmitted to another entity goes by differ-
ent names, such as contagion, shock propagation or spread of an event. On a
SOM, this occurrence can be analyzed with two approaches: links between entities
and similarities in inputs. This subsection presents the approaches put forward in
Sarlin (2013b).

Networks on the SOM

While most thus far discussed tasks have utilized data from the cube representation,
they have disregarded the fourth dimension of linkages. The first approach super-
imposes a cross-sectional network of bilateral links on the SOM. Network analysis,
or link analysis, can be seen as the exploration of crucial relationships and associa-
tions between a large set of objects that may not be apparent from assessing isolated
data. Networks of relationships are mostly expressed in matrix form, where the link
between entities g and l in a matrix A is represented by element agl . The matrix
is of size n2, where n is the number of entities. Matrices of directed graphs can be
read in two directions: rows of A represent the relationship of g to l and columns
of A represent the relationship of l to g. To combine SOMs and network analysis,
network relations are superimposed on top of the standard SOM grid by visualizing
relationships between entities. Labels of entities under analysis, say g and l, are
projected to their BMUs on the SOM based upon their data xg and xl . After that,
relations between entities g and l are visualized by edges between the locations of
the BMUs of xg and xl on the SOM grid using elements agl and alg . This visualizes
simultaneously the data topology of the SOM and a network topology of pure data
relationships. While these two topologies have thus far been mainly assessed in iso-
lation, they are oftentimes highly interrelated as changes in one of the topologies may
have significant implications on the stability of the other or the combined topology.

Figure6.5 exemplifies the visualization of a standard directed network on a dataset
of bilateral financial exposures. As interbank exposures are not publicly available,
the network is illustrated with country-level exposures. More specifically, the data
represent banks’ outstanding loans and holdings of securities, i.e. “claims”, in other
countries and are collected from theBank for International Settlements (BIS) banking
statistics. Thefigure shows a graph of financial relationships between countrieswhere
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Fig. 6.5 A network of financial linkages. Notes The figure illustrates an example of a network of
financial linkages. Nodes of each economy are scaled as to the sum of exposures to other economies,
whereas the thickness of the edges represent the size of external exposure to total exposures per
economy and the color of the edge indicates the address of the exposure holder

objects are represented by nodes and bilateral relationships by edges. Number of
objects n equals 16, giving us a matrix A of the form 16 × 16, where each element
Akl represents the size of financial linkages between country k and l. Node size of
each country is scaled based upon the sum of exposures to other countries and other
countries’ exposures to the base country. The thickness of each edge represents the
size of exposure to total exposures of each country, where the color of the edge
indicates the address of the exposure holder. Figure6.5 illustrates, for instance, that
the share of Ireland’s exposure to UK is large, while UK only has a minor exposure
to Ireland. Moving to a SOM grid from the representation in Fig. 6.5 involves only
positioning the nodes as per their BMUs based upon the data x j .

Neighborhoods on the SOM

The second approach follows that in Sarlin (2013b) to measure neighborhood effects
on the SOM. First, we assign one of the classes C to be the event of interest. Then,
we assign the locations of the event of interest in period t to be signals of similar
events in that location (or some neighborhood) in period t + s, where s is the time
span for transmission. One can choose to define the time span and neighborhood as
suitable for a given task.

Contagion is exemplified on a SOM grid in Fig. 6.6, on which the labels of Uni-
Credit Banca, ING Bank and ABN Amro are shown. Given the hypothetical failure
of ABN Amro in 2002, it would also have been an indication of a failure of banks
similar to it, such as UniCredit Banca in this case. It is worth noting that it is not
conditional on location, such as the part of the grid that has experienced failures
in the past, which implies that there is no dependence on historical data. This is a
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Fig. 6.6 An exemplification of contagion on a SOM.NotesThe figure shows the labels of UniCredit
Banca, ING Bank and ABN Amro on the SOM. The final grid is the same crisp membership plane
shown in Fig. 5.4

particularly important feature when dealing with events of changing nature, where
data based upon history are from time to time of little use.

6.3 The Self-Organizing Time Map

Most often, the main concern of exploratory data analysis (EDA) is the analysis
of either time-series or static cross sections. Given that data are drawn from a cube
representation, a question of central importance is how to combine the tasks of cross-
sectional and time-series analysis. That is, how to identify the occurrence and explore
the properties of temporal structural changes in data, aswell as their specific locations
in the cross section. This can also be called exploratory temporal structure analysis.

For exploratory analysis on data from the data cube, it is critical to visualize, or
present an abstraction across, all dimensions (i.e., multivariate, temporal and cross-
sectional spaces). Using a standard two-dimensional SOM for exploratory temporal
structure analysis, processing of the time dimension has thus far been proposed along
two suboptimal directions: computing separate maps per time unit [e.g., Back et al.
(1998),Denny andSquire (2005) andDenny et al. (2010)] or onemap on pooled panel
data [e.g., Back et al. (2001), Sarlin and Marghescu (2011) and Sarlin and Peltonen
(2013)]. Owing to a possibly high number of time units and temporal differences in
correlations and distributions, comparing separate maps per time unit is a laborious
task while their structure may not in the least even be comparable. Denny and Squire
(2005) andDenny et al. (2010) enhance temporal interpretability by applying specific
initializations and visualizations. Nevertheless, the method has the drawback of an
unstable orientation over time and complex comparisons of two-dimensional grids.
SOMs trained with pooled data, for which time can be inferred as a type of latent

http://dx.doi.org/10.1007/978-3-642-54956-4_5
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dimension that is definable but unordered, fail in describing the structure in each
cross section.

While Sect. 6.1 presented several improvements to the SOM paradigm for tem-
poral processing, the problem of visualizing changes in data structures over time has
not been entirely addressed. The existing SOM literature can thus be said to have
shortcomings in disentangling the temporal dimensions and cross-sectional struc-
tures for exploratory temporal structure analysis, which is the main focus of the
SOTM. Thus, the SOTM can directly be related to the approach of evolutionary
clustering (Chakrabarti et al. 2006), which concerns processing temporal data by
producing a sequence of clustering solutions. An effective evolutionary clustering
aims to achieve a balance between clustering results being faithful to current data and
comparable with the previous clustering result. In this vein, Chakrabarti et al. (2006)
illustrate that the usefulness of such an approach is fourfold: (i) consistency (i.e.,
familiarity with previous clustering), (ii) noise removal (i.e., a historically consistent
clustering increases robustness), (iii) smoothing (i.e., a smooth view of transitions),
and (iv) cluster correspondence (i.e., relation to historical context). The SOTM is a
visual approach to evolutionary clustering by providing means to a low-dimensional
representation of all three dimensions of data: (i) cross-sectional, (ii) temporal, and
(iii) multivariate.

The SOTM, as proposed in Sarlin (2013d), uses the clustering and projection
capabilities of the standard SOM for visualization and abstraction of temporal struc-
tural changes in data. However, here t (where t = 1, 2, . . . ,T ) is a time-coordinate
in data, not in training iterations as is common for the standard SOM. To observe the
cross-sectional structures of the dataset for each time unit t , the SOTM performs a
mapping from the input data space ε(t), with a probability density function p(x, t),
onto a one-dimensional array A(t) of output units mi (t) (where i = 1, 2, . . . ,M).
After performing a mapping for all t , the timeline is created by arranging A(t) in an
ascending order of time t . The positions on the SOTM carry a different meaning than
those on the standard SOM; the horizontal direction has a parametric interpretation
of time t while the vertical direction represents positions in the data space ε(t).
Hence, the topology is rectangular rather than hexagonal and topology preservation
is twofold, where the horizontal direction preserves time topology and the vertical
preserves data topology.

The orientation preservation and gradual adjustment to temporal changes is per-
formed as follows. The first principal component of Principal Component Analysis
(PCA) is used for initializing A(t1) and setting the orientation of the SOTM. PCA
on ε(t1) provides the eigenvector of the first principal component, which is used
for initializing A(t1). For preserving the orientation between consecutive patterns
in a time series, the model uses short-term memory to retain information about past
patterns. Thus, the orientation of the map is preserved by initializing A(t2,3,...,T ) with
the reference vectors of A(t − 1). Adjustment to temporal changes is achieved by
performing a batch update per time t . For A(t1,2,...,T ), each data point x j (t) ≤ ε(t)
(where j = 1, 2, . . . ,N (t)) is compared to reference vectors mi (t) ≤ A(t) and
assigned to its BMU mb(t):
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Fig. 6.7 The functioning principles of the SOTM. Notes This figure shows the functioning of the
SOTM. The lower part of the figure represents the temporal data (where time increases from left to
right) and the upper part represents the SOTM grid and its training

∥∥x j (t) − mb(t)
∥∥ = min

i

∥∥x j (t) − mi (t)
∥∥ . (6.8)

Then each reference vector mi (t) is adjusted using the batch update formula:

mi (t) =
∑N (t)

j=1 hib( j)(t)x j (t)
∑N (t)

j=1 hib( j)(t)
, (6.9)

where index j indicates the input data that belong to unit b and the neighborhood
function hib( j)(t) ≤ (0, 1] is defined as a Gaussian function

hib( j)(t) = exp

(
−≡rb(t) − ri (t)≡2

2α 2

)
, (6.10)

where ≡rb(t) − ri (t)≡2 is the squared Euclidean distance between the coordinates of
the reference vectorsmb(t) andmi (t) on the one-dimensional array, and α is the user-
specified neighborhood parameter. From this follows obviously that neighborhood α

only includes vertical relationships. In contrast to what is common for the standard
batch SOM, the neighborhood α is constant over time for a comparable timeline, not
a decreasing function of time as is common when time represents iterations.

To sum up, Fig. 6.7 presents the functioning principles of the SOTM. Yet, even
though the figure illustrates the notion of a neighborhood function with a crisp hib( j)

above the BMU, it is worth noting that the function decreases gradually below the
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BMU. Further, the algorithmic principles of the SOTM can be distinguished as fol-
lows:

t = 1
initialize A(t) using PCA on ε(t)
apply the batch update to A(t) using ε(t)
while t < T

t = t + 1
initialize A(t) using the reference vectors of A(t − 1)
apply the batch update to A(t) using ε(t)

end
order A(t) in an ascending order of time t

6.3.1 SOTM Properties

The above presented SOTM specification, while being flexible in nature, disposes
some assumptions on distance metrics and grid shapes, as well as other computa-
tional details. Even though a SOTM mapping to one-dimensional arrays looses in
granularity and detail to the two-dimensional one, the sole case of successful com-
plete mathematical study of the SOM is in one dimension (though with one input
dimension aswell) [for a review seeCottrell et al. (1998)]. Further, a two-dimensional
representation of the SOTM, while describing less detail, facilitates interpretation
over the three-dimensional case. The SOTM is implemented using the Euclidean
metric for the sake of simplicity and purpose herein as well as sticks to the standard
batch SOM with exponential neighborhood functions. The batch SOM is preferred
over the sequential SOM for its well-known properties of efficiency and precision
[see, e.g., Kohonen (2001)]. Further, the disadvantage of all data points having to be
available in batches is not a concern given that the entire cross section is accessible
simultaneously at each time t . In this sense, the SOTM can be seen as a type of online
batch SOM.

When compared in terms of computational cost, the SOTM is cheaper than a
standard SOM of the same size since matching and learning is restricted by time t .
Thus, the SOTM also has the asset of keeping the most important properties and the
interpretation of the SOM as it has its basis in the very standard SOM algorithm.
While the purpose of use of the SOTM is different, the functioning of it can also
be linked to several other pieces of literature extending the SOM. For instance,
the increase in number of units over time resembles the functioning of Growing
SOMs (Fritzke 1994) and the short-term memory initialization resembles SOMs
with feedback connections [e.g., Voegtlin (2002)].

While the SOTMherein uses specifications from the very standard SOMliterature,
such as batch training, Euclidean metric and exponential neighborhoods, its match-
ing, learning and neighborhoods could be implemented in various modified fashions,
such as those discussed in the related literature (Sect. 6.1). Parametrization of batch
training can also be performed in a number of ways depending on the task and data
at hand. For instance, the first array A(t1) may be trained until convergence if the
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initialization is far from converged and the number of training iterations of each array
A(t) may be increased if quantization accuracy is relatively important. Idle units,
i.e., units not attracting any data, while representing a discrepancy between array
A(t) and data ε(t), may also be dealt with through increases in training iterations.

Finally, by simply interchanging the time dimension of a SOTM to a time-to-event
dimension, Sarlin (2013e) shows that the SOTM provides means for illustrating pat-
terns in time-to-event data. Time-to-event data are, in their most frequent definition,
nothing more than the time that elapses until some specified event occurs. Yet, in
addition to the time before an event, time-to-event data may have an afterlife as well
as a life during the event. Hence, the time-to-event SOTM focuses on understanding
dynamics in multivariate data before, during and after events, such as in the case of
assessing the path to and afterlife of a failure of a financial institution or country
and diagnosis of a disease in patient data. Yet, the x-axis of the SOTM need not be
limited to the definitions of time and time to an event. It could, in fact, represent any
variable, such as age in customer segmentation and states in process monitoring.

6.3.2 Qualities and Properties of the SOTM

Common quality measures for evaluating the goodness of a SOM are quantization
error, distortion measure and topographic error. These, as well as other measures
of the SOM, could be adapted to apply for quantifying the qualities and properties
of SOTMs, where quality refers to the goodness of the mapping and property to
characteristics of the data. Computations of quality and property measures can be
distinguished as follows: quality measures of SOTMs are summed over T whereas
property measures of a SOTMs depict the characteristics of data at each t . However,
property measures obviously also illustrate time-specific qualities of SOTMs.

The fit of the SOTM to the data distribution can be measured with an adaptation
of the standard quantization error and distortion measure. The time-restricted quan-
tization errors σqe and σqe(t) compute the average distance between x j (t) ≤ ε(t)
and mb(t) ≤ A(t):

σqe = 1

T

T∑

t=1

1

N (t)

N (t)∑

j=1

∥∥x j (t) − mb( j)(t)
∥∥, (6.11)

σqe(t) = 1

N (t)

N (t)∑

j=1

∥∥x j (t) − mb( j)(t)
∥∥. (6.12)

The distortion measures σdm and σdm(t) indicate similarly the fit of the map to the
shape of the data distribution, but also account for the radius of the neighborhood:
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σdm = 1

T

T∑

t=1

1

N (t)

1

M(t)

N (t)∑

j=1

M(t)∑

i=1

hib( j)(t)
∥∥x j (t) − mb( j)(t)

∥∥, (6.13)

σdm(t) = 1

N (t)

1

M(t)

N (t)∑

j=1

M(t)∑

i=1

hib( j)(t)
∥∥x j (t) − mb( j)(t)

∥∥. (6.14)

The topology preservation of the SOTM can also be measured using an adaptation of
the standard topographic error. The time-restricted topographic errors σte and σte(t)
measure by u(x j (t)) the average proportion of x j (t) ≤ ε(t) for which first and
second BMUs (within A(t)) are non-adjacent units:

σte = 1

T

T∑

t=1

1

N (t)

N (t)∑

j=1

u(x j (t)), (6.15)

σte(t) = 1

N (t)

N (t)∑

j=1

u(x j (t)). (6.16)

While quantifying the degree of temporal changes in data is of central importance,
it is oftentimes a difficult task. The SOTM enables approximating the structural
change between time units t − 1 and t by an average Euclidean distance between
mi (t − 1) ≤ A(t) and mi (t) ≤ A(t) for all pairs i = 1, 2, . . . ,M . The distance is
meaningful given that the ending point of A(t − 1) is the starting point of A(t) in
training and given that the adjustment to temporal changes (i.e., α) is constant over
time. The structural changes σsc and σsc(t) are computed as follows:

σsc = 1

T

T∑

t=1

1

M(t)

M(t)∑

i=1

≡mi (t − 1) − mi (t)≡, (6.17)

σsc(t) = 1

M(t)

M(t)∑

i=1

≡mi (t − 1) − mi (t)≡. (6.18)

When the quantization error σqe(t), distortion measure σdm(t) and topographic
error σte(t) are computed for t = 1, 2, . . . ,T and structural change σsc(t) for
t = 2, 3, . . . ,T , they can be plotted over time. This is useful for identifying prop-
erties and qualities of data at each time unit, in particular the degree of temporal
changes in data. Similarly, the σqe, σdm , σte and σsc can also be plotted over different
free parameters, such as grid size and neighborhood radius.
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6.3.3 Visualizations of the SOTM

The output of the SOTM is a two-dimensional array of units, with time on the horizon-
tal direction and data structures on the vertical, which represents a multidimensional
space. While there exist numerous visualizations for the SOM that could be applied
to the SOTM framework, this subsection focuses on the standard ones that enhance
the objectives of the SOTM. For each individual input, a feature plane represents the
spread of its values. Thus, one can interpret vertical differences as cross-sectional
properties and horizontal differences as temporal changes. As for the standard SOM,
the feature planes are different views of the same map, where one unique point
represents the same unit on all planes. The coloring of the feature planes is again
performed using the ColorBrewer’s (Harrower and Brewer 2003) scale, in which
variation of a blue hue occurs in luminance and light to dark represent low to high
values. As the scale is common for the entire SOTM (i.e., A(t) for t = 1, 2, . . . ,T )
for each feature plane, the changes in the spread of values are shown by variations
in shade.

While plots of σqe(t), σdm(t), σte(t) and σsc(t) show the changes in the measures
over time, the assessment of structural differences on the horizontal and vertical
dimensions of the SOTM can be enhanced by a Multidimensional Scaling(MDS)
method, such as Sammon’s non-linear mapping (Sammon 1969). The reason for pre-
ferring Sammon’s mapping over other MDS methods is its focus on local distances.
Time is disentangled by mapping all multidimensional SOTM units mi (t) (where
t = 1, 2, . . . ,T ) to one dimension using Sammon’s mapping and then plotting that
dimension individually for each time t . Thus, this representation has Sammon’s
dimension on the y axis and time on the x axis. The detection of structural changes
and topographic errors is facilitated by connecting adjacent units with solid (data
topology) and dashed (time topology) lines for a net-like representation and show-
ing topographic errors u(x j (t)) through color coding. Moreover, a coloring method
based upon that in Kaski et al. (2001) for revealing changes in cluster structures can
be applied to the SOTM. The well-known uniform color space CIELab (1986) is
used, where perceptual differences of colors represent distances in the data space, as
approximated by the Sammon’s mapping. However, as the SOMs of the SOTMs are
one-dimensional, only one dimension (blue to yellow) of the color space is used.

As proposed in Sarlin and Yao (2013), the visualization of cluster structures on
the SOTM may still be enhanced by pairing it with classical cluster analysis. This
provides objective means for identification of changing, emerging and lost clusters
over time. Hence, the three types of dynamics in cluster structures can be defined as
follows: (i) a cluster is lost when one or more units are a member of it in time t and
none is in t + 1, (ii) a cluster emerges when no unit is a member of it in time t and
one or more are in t + 1, and (iii) a cluster changes when the (positive) number of
units being a member of it in time t and t + 1 differ. Again, cluster memberships
are visualized through a qualitative color scheme from ColorBrewer (Harrower and
Brewer 2003), where groups are differentiated in hue contrast with nearly constant
saturation and lightness.



144 6 Extending the SOM

6.3.4 Some Illustrative Examples

To illustrate the functioning, output and quality and property measures of the SOTM,
toy data are generated and drawn from the three-dimensional data cube. This sub-
section motivates the choice of a SOTM over a naïve SOM model and validates the
output of a SOTM by representing expected patterns, as well as provides a guide for
interpreting patterns on a SOTM. The illustrative examples also cover second-level
clustering of the SOTM and a time-to-event SOTM.

Toy Data

The data need to come from a three-dimensional cube, where one dimension repre-
sents time, one the cross-sectional entities and one the input variables, such as the
data cube in Fig. 3.1. The toy data are generated by setting five weights w1–5 that
adjust a mixture of randomized shocks on four different levels: group-specific (g),
time-specific (t), variable-specific (r ) and common ( j) properties. For each variable,
group-level differences are included to have artificial clusters, time-level properties
to introduce temporal trends, and group-specific and common shocks to introduce
general noise. Data x(r, g, j, t) are generated by combining group-specific trends E
with common shocks across data and over time,

x(r, g, j, t) = E (r, g, t) + w4 (r, g) e4 (r, t) + w5 (r, g) e5 (r, j, t), (6.19)

and
E (r, g, t) = w1 (r) e1 (g) + w2 (r) e2 (g) t + w3 (r) e3 (g, t), (6.20)

where e1,3–5 ∼ N (0, 1), e2 ∼ U (0, 1), r stands for variables, g for groups, t for time
and j for entities, and E computes group-specific trends. The rationale for drawing
e2 from a uniform rather than a normal distribution is to have larger variation in the
group-specific slopes. Finally, each variable x j is transformed into [0,1] through a
logistic sigmoidal function.

Weights specify the following properties of data: w1 sets the group-specific inter-
cepts, w2 the group-specific slopes over time, w3 the magnitude of group-specific
random shocks,w4 the magnitude of time-specific common shocks, andw5 the mag-
nitude of common shocks. Figure6.8 plots four variables and reports the usedweights
for generating 100 entities over 10 periods, where the color coding illustrates five
groups of entities. Particular characteristics of the below four variables are as follows:
x1 has small differences in intercepts and a positive slope; x2 has large differences
in intercepts, a negative slope and minor group-level and common shocks over time
and across entities; x3 has large differences in intercepts, and a constant trend with
minor common shocks across entities and over time; and x4 has large differences in
intercepts and large common shocks over time.

http://dx.doi.org/10.1007/978-3-642-54956-4_3
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Fig. 6.8 Four toy variables for the standard SOTM. Notes Data consist of 5 groups of 20 cross-
sectional entities over 10 periods, where the color coding illustrates the groups, the x axis represents
time and y axis the values

A Naïve SOM Model

Comparing the applicability ofmethods for EDA in general and exploratory temporal
structure analysis in particular is not an entirely straightforward task. The absence of
a quantitative evaluation, such as common prediction or classification comparisons,
is due to the lack of a comparable evaluation function. Instead, the focus herein is on
illustrating the advantages of the SOTM by comparing it to a naïve one-dimensional
SOM model on the entire dataset ε. Although a fair comparison would make use of
a two-dimensional SOM, the exercise is still feasible for illustrating how time, when
being embedded, cannot be fully represented on a standard SOM, not even when
utilizing post-processing techniques. In this SOM, the pooled toy dataset is used
as an input to a SOM with 5 units as per the number of groups in data. Figure6.9
shows the SOM, its feature planes and a post-processed trajectory for the toy dataset.
Figure6.9a shows the SOMwhere differences in units are represented by perceptual
differences in colors. Its feature planes in Fig. 6.9b depict characteristics of the data
in Fig. 6.8, but obviously disregard the time dimension. For instance, neither time
trends of x1 and x2 nor time shocks of x4 are depicted. Variable x3 is, however,
correctly depicted as it is close to constant over time. A trajectory of an entity can be
used for describing its evolution on the SOMover time. In Fig. 6.9c, a trajectory of an
arbitrary data point over the 10 periods exemplifies that, while temporal movements
of individual data exist, changes in cluster (or unit) structures are not represented.
In particular, this illustrates that the evolution of data structures in Fig. 6.8 is not
represented by a static SOM.

Illustrating a Standard SOTM

A natural next step is to apply the SOTM on the toy data. Although we make use
of the above presented standard SOTM specification, the free parameters still have
to be specified. The SOTM is chosen to have 5×10 units, where 5 units represent
data topology at time t on the vertical direction and 10 units the time topology on
the horizontal direction. The number of units on the horizontal axis is set by the



146 6 Extending the SOM

(c)(b)(a)

Fig. 6.9 A naïve one-dimensional SOM. Notes The figure shows a a naïve one-dimensional SOM,
b feature planes of the SOM, and c an exemplification of temporal movements of an arbitrary data
point on the SOM

Fig. 6.10 An example of quality measures of the SOTM. Notes For models with a 5×10 array of
units, the errors (σqe, σdm and σte) are computed as aggregates of all time units t = 1, 2, . . . ,T and
structural changes σsc of time units t = 2, 3, . . . ,T over neighborhood radii α = {0.4, 0.8, ..., 8}

number of time units T in data, while the number of units (or clusters) on the vertical
axis equals the number of groups in the data. The quality measures presented in
Sect. 6.3 are used for evaluating performance over different parameters. For all time
units t , the distortion measure σdm and quantization error σqe measure the fit to data
ε, while topographic error σte measures the aggregated topology preservation. The
structural change σsc, on the other hand, shows the distance between horizontal units.
Figure6.10 shows the quality measures over radius of the neighborhood α ranging
from 0.4 to 8. The figure illustrates aspects of not only these data in particular, but
also SOTM training in general. It shows the strength of the topology preservation in
the SOTM; a topology error σte is only found for experiments with α = 0.4. Though
the magnitude of quantization error σqe and distortion measure σdm differs due to
simple and squared distances, an obvious effect is the increase of themeasureswhenα

increases. The structural change starts to decrease when α = 0.6, and decreases until
it stabilizes for α ≥ 1.6. When aiming at data abstraction and exploratory analysis,
choosingoptimal parameter values for aSOTM, likewise for aSOM, is a difficult task;
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Fig. 6.11 An illustrative example of the SOTM. Notes The figure shows a a SOTM grid with
perceptual differences in color representing distances between units, b a plot of the SOTM units
according to Sammon’s topology on the vertical axis and time on the horizontal axis where neigh-
boring units are connected with lines, c feature planes and a frequency plot on the SOTM grid,
and d the data overlaid as time series, or trajectories, on top of the SOTM grid with coloring that
corresponds to that in Fig. 6.8

the choice can be said to depend on the relative preferences of the analyst between
topographic and quantization errors. However, as the interpretation of a SOTM relies
heavily on topology preservation, not the least the time dimension, topographic errors
ought to be of higher importance. As we here only have topographic errors for
α = 0.4, we can choose a SOTM with minimum quantization error and distortion.
The chosen SOTM has thus a radius of the neighborhood α = 1.6.

The final SOTM is found in Fig. 6.11a and a Sammon’s mapping of it in
Fig. 6.11b. The coloring of the SOTM uses the CIELab unified color space, where
perceptual differences in colors represent differences between units as approximated
by Sammon’s mapping. Feature planes in Fig. 6.11c represent layers of the SOTM,
while Fig. 6.11d reports trajectories of all data on the SOTM. Figure6.12 illustrates
a plot of property measures σqe(t), σdm(t), σte(t) and σsc(t) over time.
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Fig. 6.12 An example of property measures of the SOTM. Notes The errors (σqe(t), σdm(t) and
σte(t) ) are computed for time units t = 1, 2, . . . ,T and σsc(t) for time units t = 2, 3, . . . ,T for the
final SOTM with an 5×10 array of units and α = 1.6

A Guide for Interpreting the SOTM

This part gives a brief guide for interpreting the SOTM and its visualizations. A key
to interpreting the SOTM is to understand the grid structure and the following repre-
sentation of data along two directions. The vertical direction (or columns of units) has
a similar interpretation as a standard SOM (cf. Fig. 6.9), but each one refers to a spe-
cific time unit. Thus, it represents the cross-sectional data structure, or data topology,
at time t , where similar units are located close together. The horizontal direction (or
rows of units), while being conceptually different from a standard SOM, has a similar
interpretation. It represents the time structure, or time topology, where similar units
are again located close together, but refers instead to resembling units at different
points in time.Hence, differences alongboth directions represent differences between
respective topologies when interpreting properties of high-dimensional structures,
values of individual inputs or any other linked information. Below, we use the above
toy example for discussing the interpretation of the SOTM visualizations.

Figures6.11a andb give information on the distance structure of the SOTM. Per-
ceptual differences in colors (blue to yellow) in Fig. 6.11a represent differences
between units as per distances in the Sammon’s mapping in Fig. 6.11b. In Fig. 6.11b,
differences between units on both vertical and horizontal directions should, how-
ever, be interpreted by values of Sammon’s topology (color in Fig. 6.11a and y axis
in Fig. 6.11b). The differences in values of units on the vertical direction represent
distances in cross-sectional data structures at a specific time t and differences in
values of units on the horizontal direction represent distances over time. In the Sam-
mon’s mapping, solid connections between units represent data topology and dashed
connections time topology. The figures show that the data are clustered into two dis-
tinct groups: the three uppermost horizontal rows (yellow, green and blue, cf. Fig. 6.8)
and two lowest rows (red and purple, cf. Fig. 6.8). The structure of the SOTM illus-
trates two types of temporal changes: common trends of the entire structures and
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movements of individual units. The former type preserves distances between units
at each point in time, but moves the entire structure to some direction, while the
latter type illustrates changes in distances to neighboring units. Figures6.11a andb
show that the two distinct groups converge over time, in particular that the uppermost
groups of data move towards the rest of the data, as the raw data in Fig. 6.8 confirm.
Convergence is mostly a result of inputs x1 and x2 moving towards maximum and
minimum values over time, in particular the large changes of x2.

Figure6.11c illustrates the spread of values for each of the four inputs and should
similarly be interpreted along the two directions. One type of validation of the SOTM
is that the four feature planes correspond to the description of differences in group-
level intercepts and slopes, aswell as time-specific shocks, for the inputs (cf. Fig. 6.8).
That is, x1 has small differences in intercepts and a positive slope, x2 has large
differences in intercepts and a negative slope, x3 has large differences in intercepts
and a constant trend, and x4 has large differences in intercepts and large common
shocks over time. The frequency plane in Fig. 6.11c represents density of data on the
SOTM grid and is particularly useful for two purposes. Since the SOTM attempts to
update cluster structures in A(t − 1) to A(t) by a batch update, while structures in
dataε(t −1) andε(t)may be of different nature, one purpose of use is locating idle
units. While idle units represent a change in cluster structures, the reference vectors
are still transmitted to A(t) through the short-term memory.1 The frequency plots
also enable observing evolution of densities over time.While changes in the spread of
values indeed indicate changes in data, frequencies are an equally important property
of structures. In this toy example, the main interpretation is the absence of idle units.
Another validation of the SOTM is the plot of all individual data on the SOTM
in Fig. 6.11d. The coloring of the trajectories corresponds to that in Fig. 6.8 and
illustrates the evolution of the groups on the SOTM. While the groups are separated
during most of the periods, some overlap and interchange of positions occurs over
time. The one-period overlaps of red and purple groups accurately correspond to
the time-specific shocks of x4. The occurrence of position interchanges of blue and
green groups at periods 3–5 are likely due to change in input x1 and finally in period
7 due to substantial changes in input x2.

Plots of property measures over time in Fig. 6.12 illustrate the variation of
σqe(t), σdm(t), σte(t) and σsc(t) over time. When assessing properties for each time
unit t , the structural change σsc(t) measures divergence of mi (t) from the units
mi (t − 1), whereas the rest mainly visualize quantization and topographic qualities
across a SOTM. While increases in quantization error σqe(t) and distortion σdm(t)
represent the fit of data ε(t) to units mi (t), increases in topographic error σte(t)
represents the topology preservation for each array A(t). For the toy data, the large
variation in σsc(t) depicts the existence of large differences between data structures.
In particular, we can see that highest values of σsc(t) in periods 3–4 and 6–8 co-occur
with large common temporal shocks in x4. Small or none variation of σqe(t), σdm(t)
and σte(t) confirms that quantization and topographic errors are low over time, while

1 I suggest to illustratewith idle units through some color coding.While idle units have implemented
to be colored in gray, these specific cases are not encountered in the experiments performed here.
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Time t Time t Time tTime t

Fig. 6.13 Four toy variables for the clustering of the SOTM. Notes Data consist of 5 groups of 20
cross-sectional entities over 10 periods, where the color coding illustrates the groups, the x axis
represents time and the y axis the values. The figure reports the used weights w1–5 for generating
the x1–4

the difference in the magnitude of the quantization accuracies is a result of them
being measured with simple and squared distances, respectively.

Illustrating the Clustering of the SOTM

This part introduces the second-level clustering of SOTMs with experiments on
toy data. The experiments on data with expected patterns illustrate the usefulness
of combining clustering techniques with the SOTM. For the experiments, data are
created using the process for generating toy data in Eqs. (6.19) and (6.20). Figure6.13
reports the usedweights for generating the four variableswith five groups of 20 cross-
sectional entities over 10 periods, where the color coding illustrates the groups.
Particular characteristics of the below four variables are obviously that the time
series of x1–2 are quasi-stationary and those of x3–4 are non-stationary. While we
may not fulfill all conditions of stationarity, particularly not constant variance and
autocorrelation, the aim of these data is to have two variables with a somewhat
constant data structure and two with a time-varying and converging structure. That
is, the time-varying data are generated such that parts of the groups converge whereas
others diverge. Evident changes of x3–4 in Fig. 6.13 are, for instance, that the red
group diverges from the purple group and the blue converges to the green group.

This part presents two toy examples of the SOTM: one with quasi-stationary and
one with non-stationary data. The quasi-stationary data x1–2 and the non-stationary
data x3–4 are separately used as inputs for the SOTM. The SOTM is specified to
have 5×10 units, where 5 vertical units represent data topology and 10 horizontal
units time topology. Again, the number of units (or clusters) on the vertical axis
is set to equal the number of generated groups in data, while the number of units
on the horizontal axis is fixed by the number of time units T . When choosing the
final specification of the SOTM, the above presented quality measures are used, but
not shown, for the sake of brevity. As the main focus ought to be on topographic
accuracy, the neighborhood is chosen as to minimize quantization error given no
topographic errors.
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Fig. 6.14 A SOTM applied to data with and without temporal variation. Notes For both rows, the
two first grids are feature planes and represent the spread of values of x1–2 and x3–4. The final grid
shows cluster memberships using color coding. Vertical color scales on the left of feature planes
link a cluster number to each color

To the trained SOTM, a second-level clustering is applied using Ward’s method.
As the number of generated groups is predefined, the performance of different K
need not be compared using clustering validation measures. On the quasi-stationary
variables x1–2, K is set to equal to the number of created groups. In the non-stationary
case, the same K is used to better illustrate the difference to the quasi-stationary case.
However, exploring different K would be useful for illustrating properties of the data.
The first row of Fig. 6.14 shows feature planes and cluster memberships for a SOTM
on the quasi-stationary data x1–2. It is worth noting that the coloring of the clusters
follows the coloring of the groups in Fig. 6.13. Indeed, one can observe that both the
two feature planes and the clustermemberships are constant over time. This illustrates
that quasi-stationary data may be labeled by the rows of the SOTM. Likewise, the
second row of Fig. 6.14 shows feature planes for a SOTM on the non-stationary
data x3–4. The feature planes clearly depict the increasing and decreasing trends in
data. This is also reflected in the cluster memberships. The feature of approximating
the probability density functions of data p(x, t) lead to a direct interpretation of
memberships; the denser a part of the data space ε(t), the higher is the number of
units in that location. The convergence of the green, blue and orange groups and
divergence of the red from the purple group (as also shown in Fig. 6.13 ) are shown
as increases and decreases of vertical units in a second-level cluster. That is, in
Fig. 6.14, we can observe that cluster 2 (blue) disappears in period 7 and that cluster 1
(red) emerges from cluster 4 (purple) in period 3, as well as cluster 3 (green) and 4
(purple) change from one vertical unit to two and from two units to one, respectively.
This motivates the need for a second-level clustering to aid in interpreting changes
in cluster structures.
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Illustrating a Time-to-Event SOTM

This part aims at illustrating and validating the performance of the SOTMon time-to-
event data. The SOTM for time-to-event data has a different interpretation for time t .
Rather than representing the time span in data, it represents the time to a specific event.
Hence, it takes, for instance, the following form: t = −T,−T + 1, . . . ,T − 1, T ,
where T sets the range of time units before and after the event. For illustrative
purposes, the experiments use an equal number of periods before and after the events,
but the SOTM obviously sets no such restriction. The process is a modified version
of that in Eqs. (6.19) and (6.20) and is steered with similar parameters for setting
the properties of data. Whereas data need to come from a three-dimensional space,
where one dimension represents time, one the cross-sectional entities and one the
input variables, the time dimension needs to be transformed to represent the distance
of each data point to some event v, in order to represent time-to-event data. The
process starts by first drawing random events for a specified number of entities over
a number of periods. The number of periods is set to equal the number of time-to-
event states: 2T + 1. Hence, for each entity j , the events v are drawn from a discrete
uniform distribution as follows: v � U (1, 2T + 1) Then, the data are generated by
setting the five weights w1–5, where only w2 differs by representing time-to-event
specific properties.

After generating themultivariate time-series, as well as time-stamped events, they
are turned into time-to-event data. The used data consists of 5 groups with 20 entities
each over 19 periods (where T = 9). The time stamps for the events are drawn from
the above presented discrete uniform distribution, and are hence equally likely for
all 19 periods. Figure6.15a plots the four generated variables and reports the used
weights w1–5. The figure illustrates the group memberships through ColorBrewer’s
qualitative color scheme.While only showingminor randomized shocks over time, x4
better illustrates the five distinguished groups in data. Although the data are generated
with group-specific effects, one key message of Fig. 6.15a is that the groups cannot
clearly be distinguished. This is due to the patterns being related to the events and the
events being randomly distributed. Thus, the data are transformed to time-to-event
data by ordering them according to time to the events. Figure6.15b shows a plot of
the same above used data, but in time-to-event format, where the color coding again
illustrates 5 groups of 20 entities each. This figure better illustrates the generated
patterns in data. It shows increases towards the events for x1 and x3, decreases for
x2 and weak decreasing patterns related to the events for x4.

For illustrative purposes, two experiments are conducted on these data: a standard
SOTMand a time-to-event SOTM. In both experiments, the qualitymeasures are used
for finding an adequate SOTM, but are not reported for brevity. First, the standard
SOTM is applied on data ordered and grouped as per the periods (t = 1, 2, . . . ,19).
Figure6.16a shows for the standard SOTM the feature planes for variables x1–4 and
the events v, i.e., the spread of variable values on the SOTM grid. The event feature
plane shows averages of data located in each unit for the binary variable indicating
whether or not an event occurs, and illustrates that the events mostly occur in the
upper part of the SOTM. The information illustrated by the figure complements the
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(a)

(b)

Fig. 6.15 Four toy variables and their time-to-event counterparts.NotesThe figure represents a four
toy variables, and b their time-to-event counterparts. Data consist of 5 groups of 20 cross-sectional
entities over 19 periods, where the color coding illustrates the groups, the x axis represents (a) time
or (b) time to an event, and the y axis the values. The figure reports the used weights w1–5 for
generating the x1–4 above each plot

patterns in Fig. 6.15a (and confirms those in Fig. 6.15b): high values for x1 and x3
and low for x2 are positively related to the events, whereas x4 shows no clear patterns
related to the events. Yet, this says little about the dynamics before, during and after
the events, such as how early prior to events do the changes start. The time-to-event
SOTM in Fig. 6.16b addresses these patterns. The figure includes the feature planes
for the time-to-event SOTM, and thus illustrates the dynamics before, during and after
the events. The focus is on T = 9 (i.e., t − 9 to t + 9) to keep the time dimension
comprehensible. Again, the patterns in Fig. 6.16b follow those in Fig. 6.15b. The
events are obviously all in the column of units at t − 0. The values for x1 and x3
increase towards the events, values for x2 decrease towards the events and values for
x4 do not vary over time-to-event dates. Likewise, values for x1 and x3 decrease and
values for x2 increase after the events. While the patterns are symmetrical and quite
well-behaving, one can observe for x1 and x3 that towards the events positive slopes
increase and away from the events negative slopes decrease, and vice versa for x2.
Further, while Fig. 6.15b illustrates differences in x1 and x3, Fig. 6.16b shows that
the general time-to-event patterns are close to similar. A detailed look at Fig. 6.16b
does, however, illustrate that the reaction of x1 to the events is more peaked than that
of x3. The former starts increasing at a later stage with a peak at the event higher than
the rest, whereas the latter increases at an earlier stage and can be seen as having a
peak with broader shoulders.
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Fig. 6.16 A standard and a time-to-event SOTM on toy data. Notes The figure represents (a) a
standard SOTM and (b) a time-to-event SOTM on the four generated toy variables. For both figures
(a) and (b), the four first grids are feature planes and represent the spread of values of x1–4, whereas
the final grid shows the spread of events on the map

6.4 Concluding Summary

This chapter has discussed a number of extensions to the standard SOM paradigm.
After a broad, yet brief, literature review of time in SOMs, the chapter introduces
a number extensions mainly focusing on improving temporal processing. Besides a
focus on time, the general aim has been to enhance the SOMparadigm for processing
data from the data cube in Fig. 3.1, i.e., along multivariate, temporal and cross-
sectional dimensions. The suggested extensions are four. First, a fuzzification of the
SOM provides means for visualizing temporal belongingness of individual data to
second-level clusters and the cluster structures on the SOM. Second, transition proba-
bilities enable visualizing probabilities of transition of individual data to second-level
clusters and for assessing the overall cyclical and temporal structure on the SOM.
Third, neighborhoods on the SOM and superimposed portfolio network visualiza-
tions provide means for assessing links between entities and potential for the spread
of events. Finally, the fourth extension, the SOTM, enables visualizing and assessing
changes in cluster structures over time. Further, the proposed second-level clustering
of the SOTM enables objective identification of the temporal changes, whereas a
time-to-event SOTM enables assessing patterns in multivariate data before, during
and after user-specified events.

At this point, we have compared and chosen the most suitable method in Chap.5
and suggested a range of extensions for the task at hand. The sequel of this book
focuses on how these methods are applied in macroprudential oversight for the two
tasks of risk identification and assessment, not to forget the third task of risk com-
munication.

http://dx.doi.org/10.1007/978-3-642-54956-4_3
http://dx.doi.org/10.1007/978-3-642-54956-4_5
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Chapter 7
Self-Organizing Financial Stability Map

I would very much welcome inspiration from other disciplines:
physics, engineering, psychology, biology. Bringing experts from
these fields together with economists and central bankers is
potentially very creative and valuable. Scientists have developed
sophisticated tools for analysing complex dynamic systems in a
rigorous way. These models have proved helpful in
understanding many important but complex phenomena:
epidemics, weather patterns, crowd psychology, magnetic fields.
[...] I am hopeful that central banks can also benefit from these
insights in developing tools to analyse financial markets and
monetary policy transmission.
– Jean-Claude Trichet, President of the ECB, Frankfurt amMain,

18 November 2010

This chapter ties together most of the previous parts of this book. Macroprudential
oversight and data alike not only motivate, but also provide guidelines for build-
ing tools with visual capabilities. Data and dimension reductions, as well as their
combinations, provide means for creating visual displays for a wide range of tasks,
whereas a qualitative comparison shows that the Self-OrganizingMap (SOM) is suit-
able for the task we have at hand. This chapter unifies the above discussed topics by
creating a SOM-based financial stability map, coined the Self-Organizing Financial
Stability Map (SOFSM). The task involves five key building blocks: the SOM, crisis
dates, vulnerability indicators, a model training framework and a model evaluation
framework.

The aim of this chapter is to put forward a framework for creating, as well as to
build, a two-dimensional display that represents a high-dimensional financial stability
space. The map represents a financial stability cycle consisting of pre-crisis, crisis,
post-crisis and tranquil states. Whereas the key aim of the SOFSM is to function as a
display for visualizing the state of financial stability, the evaluation of it is performed

This chapter is partly based upon previous research. Please see the following works for further
information: Sarlin and Peltonen (2013) and Sarlin (2013c)
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with a focus on predictive performance. In particular, it is evaluated in terms of an
early-warning model and according to policymakers’ preferences between missing a
crisis (type I errors) and issuing a false alarm (type II errors). Yet, the creation of the
SOFSM in this chapter merely sets a starting point for visualizing threats to financial
stability, which is the focus of Chap. 8.

Most parts of this chapter is based upon material in Sarlin and Peltonen (2013).
The creation of the SOFSM follows the process of knowledge discovery in databases
(KDD) described in Sect. 4.1. The six steps are performed as follows.

(i) Domain understanding: This mainly relates to discussions in previous chap-
ters. Whereas Chap.2 discussed broadly the domain, Chap. 5 defined the task at
hand: to represent high-dimensional data concerning financial entities, be they
countries, markets or institutions, on low-dimensional displays to facilitate the
identification, assessment and communication of vulnerabilities and risks.

(ii) Data understanding: Whereas Chap.3 discussed macroprudential data from a
broad viewpoint, Sect. 7.1 in this chapter presents the process of collecting data
for the task.

(iii) Data preparation: Relating to the previous step, Sect. 7.1 in this chapter also
presents the process of transforming and preprocessing the collected data so
that they lend to analysis.

(iv) Data mining: The performed data mining makes use of data and dimension
reduction methods and follows the basis put forward in Chaps. 4 and 5, as
well as Chap.6. This chapter focuses on using the standard SOM to create the
SOFSM, whereas extensions are applied in Chap.8. In this chapter, Sect. 7.3
introduces a model training framework, which is to be applied in Sect. 7.4.

(v) Performance evaluation:Anessential part of theKDDprocess is to evaluate the
performance ofmodels. Themodel evaluation framework discussed in Sect. 7.2,
in addition to other internal quality measures discussed in Sect. 4.4, provides
directmeans for evaluating themodels. The evaluationof themodels is discussed
in Sects. 7.4 and 7.5.

(vi) Knowledge consolidation and deployment: Thefinal step involves tasks partly
outside the scope of this chapter. The SOFSM is exploited in Chap.8, which
also functions as knowledge consolidation and a type of deployment.

7.1 Data

The data used for creating the SOFSM have been chosen with the ultimate goal of
representing financial stability as broadly and globally as possible. This obviously
imposes challenges in the retrieval of data, as small emerging market economies
(EMEs) differ in data provision in comparison to larger advanced economies (AEs).
The necessary data for the task consist of vulnerability measures commonly used in
the macroprudential literature and binary class information representing pre-crisis,
crisis, post-crisis and tranquil periods. In thework in this book, large parts of themain
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dataset used follow that in Lo Duca and Peltonen (2013). Quarterly data are collected
for 28 countries, 10 AE and 18 EMEs, spanning from 1990Q1–2011Q2. The AEs are
Australia, Denmark, the euro area, Japan, New Zealand, Norway, Sweden, Switzer-
land, the United Kingdom (UK), and the United States (US), while the EMEs are
Argentina, Brazil, China, the Czech Republic, Hong Kong, Hungary, India, Indone-
sia, Malaysia, Mexico, the Philippines, Poland, Russia, Singapore, South Africa,
Taiwan, Thailand and Turkey. That is, a multivariate panel dataset, consisting of
both a cross-sectional and a temporal dimension, such as the macroprudential data
cube in Fig. 3.1. The rationale for using cross-sectional data, rather than creating
country-specific models, is threefold: the relatively small number of crisis events
in individual countries, the strive to capture a wide variety of crisis types, and the
requirement of a global policy approach. Further, results indicate that accounting
for country and time-specific effects in early-warning models lead to an improved
in-sample fit, while it decreases predictive performance on out-of-sample data (e.g.,
Fuertes and Kalotychou 2006). Hence, a data vector x j ∈ R

18 is formed of a class
vector x j (cl) ∈ R

4 and an indicator vector x j (in) ∈ R
14 for each quarter and country

in the sample. The data are retrieved from Haver Analytics, Bloomberg and Datas-
tream.

To assess linkages among economies, the events and indicators are complemented
with exposures between economies. The focus herein is on the real transmission
channel and balance-sheet exposures among economies. The network of financial
linkages is based upon external assets (equities and bonds), i.e., holdings of one
economy in another, as reported in the Coordinated Portfolio Investment Survey
by the International Monetary Fund (IMF). It is worth noting that exposures of
central banks are not included due to the different nature of their holdings. Following
Sect. 6.2.3, the relationships are expressed in matrix form. Hence, the link between
object k and l is represented as element Akl in an n × n sized matrix, where n is the
number of economies. However, the linkages are only used in Chap.8.

In the following, we focus on the two key types of data: crisis events and vulner-
ability indicators.

7.1.1 Identifying Systemic Financial Crises

This section explains how systemic financial crises are identified and how all four
class variables are defined for enabling assessment of the entire financial stability
cycle. The identification of systemic financial crises is done using the Financial Dis-
tress Index (FDI) (Lo Duca and Peltonen 2013). This approach provides an objective
criterion for the definition of the starting date of a systemic event. While there are
several composite indices for measuring financial stress, the FDI differs from most
indices by focusing on systemic events. More importantly, the general specification,
including the three key market segments, enables applying the FDI to economies
of different nature, such as advanced and emerging economies. Financial stress
indices for advanced economies, such as the Composite Indicator of Systemic Stress

http://dx.doi.org/10.1007/978-3-642-54956-4_3
http://dx.doi.org/10.1007/978-3-642-54956-4_6
http://dx.doi.org/10.1007/978-3-642-54956-4_8
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(CISS) for the euro area (Holló et al. 2012), include a substantially larger number of
indicators, and covers also other financial market segments, which may not always
be available for emerging markets.

The rationale behind the FDI is that the larger and broader the shock is (i.e., the
more systemic the shock), the higher the co-movement among variables reflecting
tensions in different market segments. By aggregating five variables to an index that
measures stress across market segments, the FDI captures the starting and ending
points of a systemic financial crisis. The FDI is a country-specific composite index
that covers the money market, equity market and foreign exchange market segments
of the domestic financial market:

(i) the spread of the 3-month interbank rate over the 3-month government bill rate
(Ind1);

(ii) negative quarterly equity returns (Ind2);
(iii) the realized volatility of the main equity index (Ind3);
(iv) the realized volatility of the nominal effective exchange rate (Ind4); and
(v) the realized volatility of the yield on the 3-month government bill (Ind5).1

Each indicator Ind j for country i at quarter t is transformed into an integer from
0 to 3 according to the quartile of the country-specific distribution, after which the
transformed variable is denoted q j,i,t (Ind j,i,t ). For example, a value for indicator
j falling into the third quartile of the distribution would be transformed to a “2”.
The FDI is computed for country i at time t as a simple average of the transformed
variables as follows:

FDIi,t =
∑5

j=1 q j,i,t (Ind j,i,t )

5
(7.1)

To define systemic financial crises, the FDI is first transformed into a binary
variable. While discretization leads to some loss of information, it provides a useful
means to define the starting and ending points of crises. Moreover, the fundamental
idea of predicting vulnerabilities prior to financial crisis, i.e., pre-crisis periods, does
not allow modeling a continuous, coinciding index of financial stress.

Hence, a systemic financial crisis is defined as a period of extreme financial stress
that has in the past on average been followed by negative consequences for the real
economy (i.e., output loss in relation to potential output). One motivation for cali-
brating the models by choosing average real consequences is to not have a selection
bias. If one would only select events with strictly negative real consequences, we
would have a selection bias for modeling only events which the policymaker had
either failed to predict or the potential policy action that she had taken had not been
successful in preventing the negative impact on the real economy. Given that control-
ling for policy actions are beyond the scope of this book, the level of financial stress

1 When the 3-month government bill rate is not available, the spread between interbank and T-bill
rates of the closest maturity is used. The equity returns are multiplied by minus one, so that negative
returns increase stress, while positive returns are set to 0. When computing realized volatilities for
components Ind3−5, average daily absolute changes over a quarter are used.
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is calibrated to average negative real consequences similar to Lo Duca and Peltonen
(2013).

In practice, a binary “crisis” variable, denoted C0, is created by assigning it a
value 1 in the quarter when the FDI is above the threshold of the 90th percentile of
its country-specific distribution θ90th

i (FDIi,t ) and 0 otherwise:

C0i,t =
{
1
0

if
otherwise

FDIi,t > θ90th
i (7.2)

This approach identifies a set of 94 systemic events over 1990–2011 for the 28
countries in the sample. To describe the financial stability cycle, the C0 variable is
turned into a set of other class variables. First, a “pre-crisis” class variable C18 is
created by setting the binary variable to 1 in the 18months preceding the systemic
financial crisis, and to 0 in all other periods. The pre-crisis variable mimics an ideal
leading indicator that perfectly signals a systemic financial crisis in the 18months
before the event. In order to evaluate robustness for different horizons, C18 is turned
into other pre-crisis class variables, by setting the binary variables C24, C12 and
C6 to 1 in the 24, 12 and 6months before the systemic event and zero otherwise.
Similarly, the creation of “post-crisis” class variables P6, P12, P18 and P24 take
the value 1 in the 6, 12, 18 and 24months after the systemic event. Finally, when
none of the benchmark horizons C18, C0 and P18 take the value 1, then a period is
called “tranquil”, denoted as T0. Thereby, the class vector x j (cl) ∈ R

4 consists of
the benchmark horizons C18, C0, P18 and T0.

7.1.2 Macro-financial Indicators of Vulnerabilities and Risks

The set of indicators consists of commonly used measures in the macroprudential
literature for capturing the build-up of vulnerabilities and imbalances in the domestic
and global economy (see, e.g., Alessi and Detken 2011; Borio and Lowe 2002,
2004). The key included variables measure asset price developments and valuations,
and proxy for credit developments and leverage. In addition, traditional variables
(e.g., government budget deficit and current account deficit) are used to control for
vulnerabilities stemming frommacroeconomic imbalances. Following the indicators
used in Lo Duca and Peltonen (2013), this work uses only two of the indicator groups
for macroprudential oversight identified in Sect. 3.2: macroeconomic and market-
based indicators. With the aim of a global dataset, banking system data are not used
due to poor availability for emerging markets.

Following the literature, several transformations of the indicators are constructed
to proxy for imbalances, misalignments and a build-up of vulnerabilities. The trans-
formations are levels, annual changes, deviations from short (8 quarters) and long
(20 quarters) moving averages, deviations from short (ε = 1600 in Hodrick-
Prescott detrending) and long (ε = 400000) trends, which results in total into more
than 200 indicators. Further, to proxy for global macro-financial imbalances and

http://dx.doi.org/10.1007/978-3-642-54956-4_3
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vulnerabilities, a set of global indicators are calculated by averaging the transformed
variables for the US, the euro area, Japan and the UK. The indicator vector
x j (in) ∈ R

14 consists of the best-performing transformation per indicator in terms
of their univariate performance in predicting systemic events. The performance is
tested with the univariate signaling approach (see Sect. 2.3). The indicators and their
summary statistics and transformations are shown in Table7.1.

Statistical properties of the chosen indicators (Table7.1) reveal that the data are
significantly skewed and non-mesokurtic, and thus do not exhibit normal distrib-
utions. To take into account cross-country differences and country-specific fixed
effects, this work follows Kaminsky et al. (1998) by measuring indicators in terms of
country-specific percentiles.While such outlier trimming is unnecessary for the clus-
tering of the SOM, the even distribution of percentile scales still facilitates judgment
and interpretation of the visualization.

Finally, the analysis is conducted in a real-time fashion to the extent possible.
Thus, publication lags are taken into account by using lagged variables. For gross
domestic product (GDP),money and credit related indicators, the lag ranges from1 to
2 quarters depending on the country. The variables are also detrended and measured
in terms of country-specific percentiles using the latest available information, such
that data at time t are only related to data prior to t . Hence, it is worth remembering
in the subsequent analyses and visualizations that data refer to the date they are
available, rather than the reference period. To test the predictability of the 2007–
2008 financial crisis, the sample is split into two sub-samples: the training set spans
1990Q4–2005Q1, while the test set spans 2005Q2–2009Q2.

7.2 Model Evaluation Framework

Crisis data require evaluation criteria that account for their complex nature. Crises
are oftentimes outlier events in three aspects:

(i) they differ significantly from tranquil times,
(ii) they are commonly more costly, and
(iii) they occur more rarely.

Given these properties, especially the two latter ones, the evaluation framework in
Sarlin (2013c) better resembles the decision problem faced by a policymaker. After
briefly reviewing the literature on evaluating early-warning models, we discuss a
general framework for deriving a policymaker’s loss function and the Usefulness of
a model.

While an own strand of literature has focused on the evaluation of early-warning
models, the utilized measures seldom cover the wide spectrum of factors that may
concern a policymaker. The seminal study by Kaminsky et al. (1998) utilized the

http://dx.doi.org/10.1007/978-3-642-54956-4_2
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simple noise-to-signal ratio to set an optimal threshold value.2 Based upon Receiver
Operating Characteristics (ROC) curves and the area below them, measures applied
by Sarlin and Marghescu (2011a) to early-warning model evaluations, Jordá and
Taylor (2011) formulated a Correct Classification Frontier (CCF) with advantages
like providing visual means and summarizations of results for all possible thresholds.
Yet, the measures do not properly pay regard to varying misclassification costs and
imbalanced data, and suffer from the fact that some thresholdsmay be far from policy
relevant (e.g., both ends of the CCF). Likewise, while the comprehensive toolbox
for evaluating early-warning models by Candelon et al. (2012) provides significant
contributions to statistical inference for testing the superiority of one early-warning
model over another, they lack an explicit focus on variations in misclassification
costs and imbalanced data. A crucial characteristic of measures attempting to grasp
a problem of this order of complexity is to explicitly tailor forecasting objectives
and validations to the preferences of a decision-maker and the properties of the
underlying data.

The literature on the derivation of a policymaker’s loss-function has attempted
to deal with these so-called low-probability, high-impact events. Demirgüç-Kunt
and Detragiache (2000) introduced the notion of a policymaker’s loss-function in a
banking crisis context, where the policymaker has a cost for preventive actions and
type I and II errors (i.e., probability of not receiving a warning conditional on a crisis
occurring and of receiving a warning conditional on no crisis occurring). Later,
adaptations of this type of loss functions have been introduced to early-warning
models for other types of crises, e.g., debt crises (Fuertes and Kalotychou 2007),
currency crises (Bussière and Fratzscher 2008), and asset price boom/bust cycles
(Alessi and Detken 2011). While Bussière and Fratzscher (2008) still focused on
costs of preventive actions, the later literature has mainly focused on the trade-off
between type I and II errors. There are two key motivations for focusing on relative
preferences between the errors:

(i) the costs of actions and no actions can be incorporated in preferences between
type I and II errors as unrealized benefits can be “rolled up” into error costs
(Elkan 2001; Fawcett 2006), and

(ii) the uncertainty of exact costs associated with preventive actions, false alarms
and missing crises.

In addition to a loss function, Alessi and Detken (2011) also propose a Usefulness
measure that indicates whether the loss of the prediction is smaller than the loss

2 The noise-to-signal ratio is a ratio of the probability of receiving a signal conditional on no crisis
occurring to the probability of receiving a signal conditional on a crisis occurring. Demirgüç-Kunt
and Detragiache (2000) and El-Shagi et al. (2012) showed that minimizing the noise-to-signal ratio
could lead to a relatively high share of missed crisis episodes (i.e., only noise minimization) if
crises are rare and the cost of missing a crisis is high. This type of a common corner solution to the
optimization problem is mainly due to the fact that the marginal rate of substitution between type
I and II errors is unrestricted. Lund-Jensen (2012) concludes the same, and chooses not to use the
measure, while Drehmann et al. (2011) choose to minimize the noise-to-signal-ratio subject to at
least two thirds of the crises being correctly called. Likewise, Sarlin (2013c) also illustrates such a
corner solution.
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Table 7.2 A contingency matrix

Actual class I j

Crisis No crisis

Signal A B
True positive (TP) False positive (FP)

Predicted class Pj No Signal C D
False negative (FN) True negative (TN)

of disregarding the model. However, while the above evaluation frameworks have
become state-of-the-art, they fail to account for characteristics of imbalanced data.3

In the following, we discuss the use of a loss function and Usefulness measure to
better account for the complex nature of crises.

A loss function and usefulness measure.The occurrence of crisis can be represented
with a binary state variable I j (0) ∈ {0, 1} (where observation j = 1, 2, . . ., N ).
Predicting the exact timing of distress does not, however, provide enough reaction
time for a policymaker. The wide variety of triggers may also complicate the task
of identifying exact timings. To enable policy actions for preventing or decreasing
further build-up of vulnerabilities and strengthening the financial system, the focus
should rather be on identifying pre-crisis periods I j (h) ∈ {0, 1} with a specified
forecast horizon h. Let I j (h) be a binary indicator that equals one during pre-crisis
periods and zero otherwise. Using univariate or multivariate data, various methods
can be used for turning indicators into estimated probabilities of an impending crisis
p j ∈ [0, 1] (i.e., probability forecasts). To mimic the ideal leading indicator I j (h),
the probability p j is transformed into a binary point forecast Pj that equals one if
p j exceeds a specified threshold ε and zero otherwise. The correspondence between
Pj and I j can be summarized into a so-called contingency matrix (i.e., frequencies
of prediction-realization combinations), as shown in Table7.2.

From the elements of the above matrix, one can then define various goodness-of-
fit measures. The problem is herein approached from the viewpoint of a policymaker,
and specific traits related to policymaking.4 In a two-class prediction problem, pol-
icymakers can be assumed to have relative preferences of conducting two types of
errors: issuing false alarms and missing crises. Type I errors represent the probability
of not receiving a warning conditional on a crisis occurring P(p ≤ ε | I j (h) = 1)
and type II errors the probability of receiving a warning conditional on no crisis
occurring P(p > ε | I j (h) = 0). The loss of a policymaker consists of T1 and T2

3 While the seminal loss function by Demirgüç-Kunt and Detragiache (2000) accounts for uncondi-
tional probabilities, they do not propose a Usefulness measure for the function. Given their complex
definition of loss, deriving the Usefulness would not be an entirely straightforward exercise. Further,
the version applied in Bussière and Fratzscher (2008) neither accounts for unconditional probabil-
ities nor distinguishes between losses from correct and wrong calls of crisis.
4 A further discussion on shaping decision-makers’ problems through loss functions, as well as on
the relation between statistical and economic value of predictions, can be found in Granger and
Pesaran (2000) and Abhyankar et al. (2005).
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weighted according to her relative preferences between missing crises (μ ∈ [0, 1])
and giving false alarms (1 − μ). However, when only using T1 and T2 weighted
according to relative preferences, we fail to account for imbalances in class size.5

Finally, given probabilities p j of a model, the policymaker should aim at choosing
a threshold ε such that her loss is minimized.

The preference parameters may also be derived from a benefit/cost matrix that
matches the contingency matrix. A standard 2× 2 benefit/cost matrix may easily be
manipulated to only include error costs by scaling and shifting entries of columns
without affecting the decisions (Elkan 2001; Fawcett 2006). A benefit may be treated
as a negative error cost and hence unrealized benefits can be “rolled up” into error
costs. For instance, the costs c for the elements of the matrix with two degrees of
freedom can be derived to a simpler matrix of class-specific costs c1 and c2 with
one degree of freedom: c1 = cC − cA and c2 = cB − cD (the subscripts refer to
Table 7.2). Most likely, cB and cC have a non-negative cost, while cA and cD have a
non-positive cost. From this, we can derive the relative preferencesμ = c1/(c1+c2)
and 1 − μ = c2/(c1 + c2).

By accounting for unconditional probabilities of crises P(I j (h) = 1) and tranquil
periods P(I j (h) = 0) = 1 − P1, a loss function is as follows:

L(μ) = μT1P1 + (1 − μ)T2P2 (7.3)

As the parameters are unknown ex ante, we can use in-sample frequencies to
estimate them. Given a threshold ε and forecast horizon h, P1 and P2 are estimated
with the frequency of the classes (P1 = (A + C) / (A + B + C + D) and P2 =
(B + D) / (A + B + C + D)) and T1 and T2 with the error rates (T1 = C/ (A + C)

and T2 = B/ (B + D)). Using the loss function L(μ), we can then define the Use-
fulness of a model. A policymaker could achieve a loss of min(P1, P2) by always
issuing a signal of a crisis if P1 > 0.5 or never issuing a signal if P2 > 0.5. However,
by weighting with policymakers’ preferences, as she may be more concerned of one
of the classes, we achieve the loss min(μP1, (1 − μ) P2) when ignoring the model.
First, we derive the absolute Usefulness Ua(μ) of a model by computing the loss
generated by the model subtracted from the loss of ignoring it:

Ua(μ) = min(μP1, (1 − μ) P2) − L(μ). (7.4)

This measure highlights the fact that achieving well-performing, useful models
on highly imbalanced data is a difficult task. Hence, already an attempt to build an

5 The loss function used by Alessi and Detken (2011) differs from the one introduced here as it
assumes equal class size. Their Usefulness measure does, similarly, not account for imbalanced
classes, as the loss of disregarding a model depends solely on the preferences. Usefulness measures
close to that in Alessi and Detken (2011) have been applied in a large number of works, such as
Lo Duca and Peltonen (2013), Sarlin and Marghescu (2011a), El-Shagi et al. (2012), Bisias et al.
(2012). Similar loss functions have been applied in Fuertes and Kalotychou (2007), Candelon et al.
(2012), Lund-Jensen (2012), Knedlik and Schweinitz (2012).



7.2 Model Evaluation Framework 169

early-warning model with imbalanced data implicitly necessitates a policymaker to
bemore concerned of the rare class.With a non-perfectly performingmodel, it would
otherwise easily pay-off for the policymaker to always signal the high-frequency
class. Second, we compute the share of Ua(μ) to the maximum possible Usefulness
of the model with a measure that is coined relative Usefulness:

Ur (μ) = Ua(μ)

min(μP1, (1 − μ) P2)
. (7.5)

That is, Ur (μ) reports Ua(μ) as a percentage of the Usefulness that a policy-
maker would gain with a perfectly performing model. This derives from the fact that
if L(μ) = 0 then Ua(μ) = min(μP1, (1 − μ) P2). The Ur (μ) provides means for
representing the Usefulness as a ratio rather than only reporting a number difficult to
judge. In particular, it facilitates comparisons of models for policymakers with dif-
ferent preferences. Within the above framework, we can deriveUa(μ) andUr (μ) for
policymakers of different kinds depending on their preferences, which is essentially
a parameter to be specified ad hoc.

This derives to a cost matrix with costs μ for type I errors and 1 − μ for type
II errors. While constants could be added to these entries and their scaling may be
modified, this approach favors simplicity. Hence, the rationale for preferring this
framework is that it enables setting relative preferences of the errors. Setting specific
costs for each entry of the cost matrix is a difficult task in a real-world setting not
only because the problem with two degrees of freedom may be difficult to untangle,
but also because most often exact values of cost matrix entries are unknown.

In addition to the above framework, the use of pooled panel data motivates includ-
ing observation-specific costs into the loss function, as the importance of a single
country in the evaluation phase may vary depending on the objectives of the pol-
icymaker. In an evaluation framework, this leads to a need for weighting entities
in terms of their importance, such as systemic relevance or size. The entity-level
importance is, however, also a time-varying parameter, and should thus more prefer-
ably be defined on the observation level. Although a policymaker’s loss function and
Usefulness measure that depend on observation-varying costs are shown in Sarlin
(2013c), the work in this book focuses only on class-specific costs (that is, does not
discriminate between the importance of countries).
Other goodness-of-fit measures. The literature has provided and applied a wide
range of goodness-of-fit measures. A large number of them can be defined from the
elements of the contingency matrix in Table7.2. Thus, the following goodness-of-fit
measures are used to support the evaluation of models: recall and precision rates,
False Positive (FP), True Positive (TP), False Negative (FN) and True Negative (TN)
rates, and overall accuracy.6 In addition, the global performance of models can be
measured using ROC curves and the area under the curve (AUC), i.e., under the ROC

6 Recall positives = T P/(T P + F N ), Recall negatives = T N/(T N + F P), Precision positives
= T P/(T P+F P), Precision negatives= T N/(T N+F N ),Accuracy= (T P+T N )/(T P+T N+
F P + F N ), TP rate= T P/(T P + F N ), FP rate= F P/(F P + T N ), FN rate= F N/(F N + T P)

and TN rate = T N/(F P + T N ).
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curve. The ROC curve shows the trade-off between the benefits and costs of choosing
a certain threshold. When two models are compared, the better model has a higher
benefit (expressed in terms of TP rate on the vertical axis) at the same cost (expressed
in terms of FP rate on the horizontal axis). In general, the ROC curve plots, for the
whole range of measures, the conditional probability of positives to the conditional
probability of negatives: ROC = P(P = 1 | C = 1)/ (1 − P(P = 0 | C = 0)). In
this sense, as each FP rate can be associated with a threshold for classifying crisis
and tranquil events, the measure shows performance over all thresholds. The size of
the AUC is estimated using trapezoidal approximations. It measures the probability
that a randomly chosen crisis observation is ranked higher than a randomly chosen
tranquil one. A random ranking has an expected AUC of 0.5, while a perfect ranking
has an AUC equal to 1.

7.3 Model Training Framework

Akey part inmodeling in general and dimension reduction in particular is how to train
and parametrize the models. In the analysis, a semi-supervised SOM is employed
by using data vector x j ∈ R

18, including class variables (C18, C0, P18 and T0), in
training. In contrast to Sarlin andMarghescu (2011a), where only the indicator vector
x j (in) ∈ R

14 is used in determining the best-matching units (BMUs), the class vector
x j (cl) ∈ R

4 also has an impact when determining the BMUs in training. By including
the class variables in the topology preservation, the projection better separates the
classes, which yields the benefit of easier interpretation of the stages of the financial
stability cycle. As discussed in Sect. 4.4, this follows the semi-supervised SOMs in
general and multi-class supervision of SOMs in particular.

The predictive feature of the model is obtained by assigning to each data point
x j (in) ∈ R

14 the C18 (as well as C6, C12 and C24 when testing robustness) value of
its BMU.7 The performance of a model is then evaluated using theUa(μ) andUr (μ)

for a policymaker. The performance is computed using static and pooled models, i.e.,
the coefficients or reference vectors mi are not re-estimated recursively over time
and across countries. Following Fuertes and Kalotychou (2006), it can be assumed
that by not deriving new models per time unit and country, the parsimonious pooled
models better generalize in-sample data and predict out-of-sample data. Although
static models have the drawback of ignoring the latest available information, they are
a necessity for visualizations of long time series (see Chap.8). Yet, it is worth noting
that recursive re-estimations would computation-wise be feasible when using the
model in real-time fashion. Moreover, to account for a possible adjustment process
that economic variables go through in between crisis and tranquil periods, i.e., a

7 The BMU is the unit that has the shortest Euclidean distance to a data point. When evaluating
an already trained SOM model, all data are projected onto the map using only the indicator vector
x j (in) ∈ R

14. For each data point, probabilities of a crisis in 6, 12, 18 and 24 months are obtained
by retrieving the values of C6, C12, C18 and C24 of its BMU (mb(cl)).

http://dx.doi.org/10.1007/978-3-642-54956-4_4
http://dx.doi.org/10.1007/978-3-642-54956-4_8
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crisis and post-crisis bias (Bussière and Fratzscher 2006), the crisis and post-crisis
class variables (C0 and P18) are included in SOM training.

The training framework and choice of the SOM specification is implemented with
respect to three aspects:

(i) the model does not overfit the in-sample data (parsimonious);
(ii) the framework does not include out-of-sample performance (objective); and
(iii) visualization is taken into account (interpretable).

For a parsimonious benchmarkmodel that avoids overfitting, a logit model similar
to the one in Lo Duca and Peltonen (2013) is estimated.8 The SOM is parametrized
as follows. Whereas the number of units M and radius α are varied, the map format
(75:100) and training length are kept constant. As is recommended by Kohonen
(2001) for a stable orientation, this particular map format approximates the ratio
of the two largest eigenvalues. Generally, the varied parameters, M and radius α ,
have the following effect on performance: an increase in the M value increases the
in-sample Usefulness, where Ur (μ) → max(Ur (μ)) = 1 when M → ∞, but
decreases out-of-sample Usefulness. In fact, if M equals the cardinality of x j , then
perfect in-sample performance may be obtained by each mi attracting one data point.
This would, however, be an overfitted model for out-of-sample prediction. Increases
in radius decrease quantization accuracy, and thus in-sample Usefulness, whereas
experiments do not show a direct effect on out-of-sample performance. The following
training framework assures a focus on a parsimonious, objective and interpretable
model:

(i) Train and evaluate in terms of in-sample Ua(μ) models for α = {∼ 0, 0.3, 0.5,
0.75, 1.0, 1.5, 2.0} and M = {50, 100, 150, 200, 250, 300, 400, 500, 600, 1000}
For eachmodel, set the thresholdon theprobability of a crisis such that theUa(μ)

is maximized. For each M-value, order the models in a descending order.
(ii) Find for each M-value the first model with in-sample Ua(μ) equal to or better

than that of the benchmark logit model. Choose none of the models if for an
M-value all or none of the models’ Ua(μ) exceed that of the logit model.

(iii) Evaluate the interpretability of the models chosen in Step (ii). Choose the one
that is easiest to interpret and has the best topological ordering.

Due to a lack of consensus on a single topology-preservation metric of the SOM
projection, it is evaluated following an approach discussed in Kaski et al. (2001).
The units mi are projected into two- and three-dimensional spaces using Sammon’s
mapping, a distance-preserving mapping from a high-dimensional input space to a

8 The logistic regression proceeds as follows. First, it forms a predictor variable which is a linear
combination of the explanatory variables. The values of this predictor variable are transformed into
probabilities by a logistic function. This logistic function operates through f (z) = 1

1+e−z , where
z = σ0 + σ1x1 + σ2x2 + σ3x3 + ... + σk xk , βo is the intercept and β1 + β2 + β3 +... βk are the
regression coefficients of x1 + x2 + x3 + ... + xk , respectively. The value of z measures the total
contribution of all the predictor variables used in the model. It is worth to note that f (z) → 0 when
z → −∞, and f (z) → 1 when z → ∞. Moreover, when z = 0, then f (z) = 0.5. Thereby, a
response curve for a logistic regression is S-shaped.
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lower dimension. Topology preservation is defined to be adequate if the map is not
twisted at any point and has only adjacent units as neighbors in the Euclidean space.
Interpretability is a subjective measure of the SOM visualization defined by the user.
The above evaluation framework results in a performance matrix with positions for
each M-α combination, highlights first models per M to outperform the logit model
and uses information on topological ordering and interpretability for choosing the
final model.

To partition themap into a reduced number of clusters, the units are grouped using
Ward’s clustering. By performing the clustering on the class variables (C18, C0, P18
and T0), the map is partitioned according to the four stages in the financial stability
cycle. This creates four crisp so-called class clusters or financial stability states. The
clustering given by lines on a map is, however, oftentimes overlapping, and should
thus only be interpreted as an aid in finding the four stages of the financial stability
cycle rather than four distinct clusters.

7.4 Training and Evaluation of the SOFSM

This section creates the SOFSM with the help of the five building blocks: the SOM,
crisis dates, vulnerability indicators, andmodel training andmodel evaluation frame-
works. Themodel training phase starts by estimating a pooled logit model as a bench-
mark. The logit model is estimated using the quarterly in-sample panel data for 28
countries from 1990Q4–2005Q1. The estimates are reported in Table7.3 and are
later used for predicting out-of-sample data from 2005Q2–2009Q2. In this work, a
policymaker is assumed to be more concerned of calling crises, and thus μ = 0.8. A
preference parameter of 0.8 belongs to a policymaker who is substantially more con-
cerned about missing a crisis than issuing a false alarm. The rationale for this is that
the model is targeted for use in risk identification, leading to further risk assessments,
rather than direct policy recommendations. This also follows the historically large
costs of financial crises (seeChap.1) relative to the costs of an internal in-depth inves-
tigation of risks and vulnerabilities. On the in-sample data, the pooled logit model
has Ua(μ) = 0.08. The training of the SOFSM is performed on the same panel data
and the evaluation results are shown in Table7.4. For M = 50, 400, 500, 600, 1000
no model is chosen for analysis, as they never or always exceed the Ua(μ) of the
logit model (Ua(μ) = 0.08). Finally, of the five highlighted models, the one with
M = 150 and α = 0.5 (shown in bold) is selected for its interpretability and topolog-
ical ordering. The Sammon’s mapping used as an aid in judging topological ordering
is shown in Fig. 7.1.

The chosen model has 132 units on an 11 × 12 grid. Figure7.2 presents the
two-dimensional SOFSM that represents the high-dimensional data. By performing
Ward’s clustering on the class variables, four class clusters are created according
to the stages of the financial stability cycle. The upper left cluster represents the
pre-crisis cluster (Pre-crisis), the lower left represents the crisis cluster (Crisis),
the center and lower-right cluster represents the post-crisis cluster (Post-crisis) and

http://dx.doi.org/10.1007/978-3-642-54956-4_1
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Table 7.3 The estimates of the logit model

Variable Estimate Error Z Sig.

Intercept −6.744 0.612 −11.024 0.000 a

Inflation −0.100 0.300 −0.334 0.738
Real GDP growth 0.076 0.334 0.229 0.819
Real credit growth −0.001 0.001 −0.613 0.540
Real equity growth 1.791 0.382 4.685 0.000 a

Leverage 0.003 0.001 3.204 0.001 a

Equity valuation 0.002 0.001 2.689 0.007 a

CA deficit 1.151 0.308 3.741 0.000 a

Government deficit 0.076 0.342 0.223 0.823
Global inflation 0.207 0.341 0.608 0.543
Global real GDP growth 1.156 0.419 2.761 0.006 a

Global real credit growth 0.685 0.381 1.799 0.072 c

Global real equity growth 0.832 0.419 1.985 0.047 b

Global leverage 0.712 0.427 1.668 0.095 c

Global equity valuation 0.959 0.472 2.029 0.042 b

Notes Significance levels: 1%, a ; 5 %, b; 10 %, c. The model has benchmark specifications of
μ = 0.8 and h = 18 months

Table 7.4 The evaluation of the SOFSM over M and α values

M (#Units) σ (Tension) 0.001 0.3 0.5 0.75 1 1.5 2

50 (52) 0.07 0.06 0.06 0.06 0.06 0.06 0.06
100 (85) 0.08 0.07 0.07 0.06 0.06 0.06 0.06
150 (132) 0.09 0.07 0.08 0.07 0.06 0.06 0.06
200 (188) 0.09 0.09 0.09 0.07 0.07 0.06 0.06
250 (247) 0.09 0.09 0.09 0.07 0.07 0.07 0.06
300 (331) 0.09 0.09 0.09 0.08 0.07 0.07 0.06
400 (408) 0.10 0.10 0.10 0.09 0.09 0.09 0.09
500 (493) 0.11 0.10 0.10 0.10 0.09 0.09 0.09
600 (609) 0.11 0.11 0.10 0.10 0.09 0.09 0.09
1000 (942) 0.11 0.11 0.11 0.10 0.10 0.10 0.10

Notes The table evaluates the SOFSM over M and α values for the benchmark specifications
μ = 0.8 and h = 18. Over the neighborhood radii α , first models to outperform the logit model
(Ua(μ) = 0.08) per M value are highlighted in gray and the chosen map is shown in bold. The real
number of units is shown in parenthesis since fulfilling the map ratio (75:100) affects the number
of units.

the upper right represents the tranquil cluster (Tranquil). Yet, as already noted, the
four clusters are overlapping and hence the lines should only be used as an aid in
interpreting the map. When maximizing the Ua(μ) for policymakers with different
preferences, Fig. 7.3 shows how themap is classified into two parts, where the shaded
area represents early-warning units and the rest tranquil units.
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Fig. 7.1 A Sammon’s mapping of the SOFSM. Notes The figure displays a Sammon’s mapping of
the SOFSM. The color coding corresponds to that in Fig. 7.2

7.5 Performance and Robustness of the SOFSM

Even though the aim of the SOFSM is a two-dimensional display for visualizing
threats to financial stability, the evaluation of it is performed with a focus on pre-
dictive performance. This section focuses on two types of performance evaluation:
comparisons to benchmark models and robustness tests of the SOFSM.

First, this section compares the performance of the semi-supervised SOFSMwith
an unsupervised counterpart and a logit model. An unsupervisedmodelwith the same
specifications as the SOFSM is trained to compare their performance. In Table7.5,
the in-sample and out-of-sample performance with the benchmark specifications
(μ = 0.8 andC18) are shown for the semi-supervisedSOFSM,unsupervisedSOFSM
(denoted only by the SOM) and the logit model. As anticipated, the unsupervised
SOFSM performs to some extent better than the SOFSM along all measures, but also
lacks the separation of classes, which is necessary for interpreting the stages of the
financial stability cycle. Hence, as this is a key feature of the SOFSM, henceforth
the focus is only on comparing the semi-supervised SOFSM and the logit model.

For the benchmarkmodels, the overall performance is similar between theSOFSM
and the logitmodel.On the train set, the SOFSMperforms slightly better than the logit
model in termsof recall positives, precisionnegatives and theAUCmeasure,while the



7.5 Performance and Robustness of the SOFSM 175

Post-crisis

Tranquil
Pre-crisis

Crisis

Fig. 7.2 The two-dimensional grid of the SOFSM. Notes The figure displays the two-dimensional
SOFSM that represents a high-dimensional financial stability space. The four clusters representing
financial stability states, distinguished by lines and colors, are derived using the values of the class
variables (C18, C0, P18, T0). Hence, the location on the SOFSM represents the state of financial
stability. Distributions of the individual indicators and class variables are shown in Figs. 8.2 and 8.3

Crisis 

Post-crisis

Tranquil

Crisis 

Post-crisis 

Tranquil
Pre-crisis

Crisis

Post-crisis

Tranquil

Fig. 7.3 Early-warning units for different policymakers’ preferences.Notes In thefigure, the shaded
areaon the SOFSM (same map as in Fig. 7.2) represents the part of the map that is classified as
early-warning units when maximizing the policymakers’ preferences with three different parameter
values (μ = 0.7, μ = 0.8 and μ = 0.9) and a horizon of 18months according to the evaluation
framework

logit model outperforms on the othermeasures, andUsefulness is by definition equal.
The classification of the models are of opposite nature, as the SOFSM issues a larger
share of false alarms (FP rate= 31%) than it misses crises (FN rate= 19%), whereas
the logitmodelmisses a larger share of crises (31%) than it issues false alarms (19%).

http://dx.doi.org/10.1007/978-3-642-54956-4_8
http://dx.doi.org/10.1007/978-3-642-54956-4_8
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Fig. 7.4 ROC curves for the SOFSM and the logit model. Notes The figure shows on in-sample and
out-of-sample data ROC curves given policymakers’ preferencesμ = 0.8 and forecast horizons h =
18months. The vertical and horizontal axes represent True Positives (TP) rate (T P/(T P + F N ))

andFalse Positives (FP) rate (F P/(F P+T N )). TheAUC, given inTables7.5, 7.6 and 7.7,measures
the area below these curves

That explains also the difference in the overall accuracy, since the class sizes are
imbalanced (around 20% pre-crisis and 80% tranquil periods). The performance of
the models on the test set differs, in general, similarly as the performance on the train
set, except for the SOFSM having slightly higher overall accuracy and Usefulness.
Thismay, in general, be due to the higher share of crisis episodes in the out-of-sample
dataset. In terms of out-of-sample Ur (μ), the SOFSM outperforms the logit model
by 10 percentage points and underperforms the unsupervised counterpart by 14%
points.

Second, the robustness of the SOFSM is tested with respect to policymakers’ pref-
erences (μ = 0.7 andμ = 0.9), forecast horizon (6, 12 and 24months before a crisis)
and thresholds (ε ∈ [0, 1] with the AUCmeasure). The results of the robustness tests
are shown in Tables7.6, 7.7 and Fig. 7.4. Table7.6 shows the performance over differ-
ent policymakers’ preferences, Table7.7 over different forecast horizons and Fig. 7.4
and the second last column of Tables7.6 and 7.7 over all possible thresholds.

For a policymaker, who is less concerned about issuing false alarms (μ = 0.9),
the performance of the models are similar, except for slightly higher Usefulness
of the SOFSM compared to the logit model. This confirms that the SOFSM better
detects the rare crisis occurrences. For a policymaker, who is less concerned about
missing crises (μ = 0.7), the Usefulness of the models is similar, but the nature of
the prediction is reversed; the SOFSM issues less false alarms than it misses crises,
whereas the logit model issues more false alarms than misses crises.
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Over different forecast horizons, the in-sample performance is generally similar.
However, the out-of-sample Usefulness, with the exception of forecast horizon of
12months (C12), is better for the SOFSM than for the logit model. Interestingly, the
logit model fails to yield any Usefulness (Ur (μ) = 0.03) at a forecast horizon of 6
months. Finally, the AUC measure, which summarizes the performance of a model
over all thresholds, can be computed for all models by calculating the areas under
the ROC curves, such as those shown in Fig. 7.4 for the benchmark models (μ = 0.8
and C18). It is the only measure to consistently show superior performance for the
SOFSM. A caution regarding the AUC measure is, however, that parts of the ROC
curve that are not policy relevant are included in the computed area.When comparing
Usefulness for each pair of models, the SOFSM shows consistently equal or superior
performance except for a single out-of-sample evaluation with a forecast horizon of
12months. To sum up, we can conclude that the SOM performs, in general, as well
as or better than a logit model in both classifying the in-sample data and in predicting
out-of-sample the global financial crisis that started in 2007.

7.6 Concluding Summary

The essence of this chapter was to describe how the SOFSM is created. The general
framework used for creating the SOFSM consists of five building blocks: the SOM,
crisis dates, vulnerability indicators, a model training framework and a model evalu-
ation framework. This chapter has discussed the identification of systemic financial
crises, the use of macro-financial vulnerabilities, risks and imbalances, and model
evaluation and training frameworks. However, the general framework should not be
restricted to precise definitions of the building blocks used herein. For an applica-
tion with another focus, the components should obviously be defined differently.
For instance, the choice of explanatory variables and the dating of financial crises
should be designed according the task at hand, such as the events being banking,
debt or currency crises and vulnerabilities being indicators measuring banking sys-
tems, solvency or exchange-rate pressure. Likewise, the framework could be applied
to firm-level data, where the events could be bank failures and indicators financial
ratios based upon balance-sheet and income-statement data. Ironically, the view of
a “financial stability cycle” could still apply, as banks tend not to disappear due to a
failure.

The outcome of this chapter is a two-dimensional display for visualizing the
high-dimensional state of financial stability. Hence, this chapter only provides a
basis for monitoring threats to financial stability, whereas this display can be used as
a groundwork for a wide range of tasks. The following chapter focuses on exploiting
the SOFSM for assessing and identifying the three key systemic risks of macropru-
dential oversight: (i) endogenous build-up of widespread imbalances (early-warning
models); (ii) exogenous aggregate shocks (macro stress-testing models); and (iii)
contagion and spillover (contagion and spillover models).
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Chapter 8
Exploiting the SOFSM

Lastly, novel methods such as self-organising financial stability
maps provide an alternative means of gauging systemic stress
through visual means—thereby providing a useful complement
to numerical signalling methodologies.

– Vítor Constâncio, Vice-President of the ECB,
Frankfurt am Main, 18 November 2010

This chapter exploits the Self-Organizing Financial StabilityMap (SOFSM) for tasks
in macroprudential oversight. The SOFSMwas created in Chap. 7, whereas the Self-
OrganizingMap (SOM) extensions used for exploiting it were introduced in Chap. 6.
The tasks performed with the SOFSM are two, risk identification and assessment,
of which the former is supported by early-warning models and the latter by macro
stress-testing and contagion or spillover models. The three models target the three
respective forms of systemic risk: widespread imbalances, aggregate shocks and
contagion and spillover risk. Drawing upon Sarlin and Peltonen (2013) and Sarlin
(2013), the SOFSM is exploited by the means of the following eight approaches
(where the numbering refers to sections and the parenthesis represents the addressed
systemic risk).1

9.1 Assessing distributions of the macro-financial indicators and all class variables
with the help of the feature planes of the SOFSM (imbalances).

9.2 Mapping the state of financial stability for individual data and aggregates by the
means of labels and trajectories on the SOFSM (imbalances).

This chapter is partly based upon previous research. Please see the following works for further
information: Sarlin and Peltonen (2013), Sarlin (2013, 2014a)

1 Beyond the static representations herein, the implementation developed by infolytika provides
an interactive, web-based interface to the SOFSM (http://risklab.fi/demo/macropru/fsm/). For a
description, see Sarlin (2014a).

P. Sarlin, Mapping Financial Stability, Computational Risk Management, 183
DOI: 10.1007/978-3-642-54956-4_8, © Springer-Verlag Berlin Heidelberg 2014

http://dx.doi.org/10.1007/978-3-642-54956-4_7
http://dx.doi.org/10.1007/978-3-642-54956-4_6
http://risklab.fi/demo/macropru/fsm/
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9.3 Fuzzification of the SOFSM for visualizing temporal belongingness to finan-
cial stability states of individual data and class distance structures on the map
(imbalances).

9.4 Probabilistic modeling of state transitions on the SOFSM for visualizing proba-
bilities of transition tofinancial stability states of individual data and for assessing
the cyclical and temporal structure of the financial stability cycle (imbalances).

9.5 Scenario analysis for economies on the SOFSM by assessing the effects of
positive and negative shocks, both domestically and globally (aggregate shocks).

9.6 Using superimposed portfolio network topologies and neighborhoods on the
SOFSM to assess the spread of financial distress and shock propagation (conta-
gion and spillover).

9.7 Computing distances between data and their mean profiles on the SOFSM to
find extreme events and imbalances in economies’ macro-financial conditions
(imbalances).

9.8 Complementing the SOFSMwith a solely predictive model that uses genetically
optimized neural networks for the identification of risks (imbalances).

Figure 8.1 relates the eight means for exploiting the SOFSM, as well as the Self-
Organizing Time Map (SOTM) in the subsequent chapter, to risk identification, risk
assessment and risk communication. The red components represent risks and vulner-
abilities, the green components represent the need for risk identification, assessment
or communication, and the blue framemarks the contributions of this book. The final
ingredient of the process highlights the need for visualization tools not only for inter-
nal communication, but also for external risk warnings, policy recommendations and
Financial Stability Reports in general. The figure illustrates separate feedback loops
of internal and external risk communication, where the solid black line shows that
internal communication interacts with risk identification and assessment (green com-
ponents), and the dashed black line shows that external communication has effects
on potential sources of systemic risk, vulnerabilities, and material risks (red com-
ponents). The lack of focus on aids for risk communication directly follows from
the literature review in Sect. 8.1 and the conventional macroprudential oversight
process presented in Sect. 2.4 (see Fig. 2.4). Hence, the figure highlights the impor-
tance of visual means for external communication of the results of risk identification
and assessment tools, in addition to the visuals’ inherent properties of amplifying
cognition and understanding of policymakers in the internal monitoring process.

The creation of the SOFSM in the previous chapter was related to the process of
knowledge discovery in databases (KDD), in which this chapter was mainly posi-
tioned as the final step of knowledge consolidation and deployment. Yet, this chapter
can also be related to the visual analytics process introduced in Chap. 4. There is a
direct link to the fields of information visualization (Card et al. 1999) and visual ana-
lytics (Thomas and Cook 2005) in that the tools illustrated herein provide means to
amplify cognition through visual representations, as well as a combination with ana-
lytical reasoning and methods. The connection can be illustrated by Keim’s (2006)
visual analytics mantra: “Analyze first, show the important, zoom, filter and analyze
further, details on demand”. The SOFSM created in the previous chapter provides

http://dx.doi.org/10.1007/978-3-642-54956-4_2
http://dx.doi.org/10.1007/978-3-642-54956-4_2
http://dx.doi.org/10.1007/978-3-642-54956-4_4
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Fig. 8.1 The SOFSM for risk identification, assessment and communication. Notes The figure
represents the role of the tools in this book in the process of risk identification, assessment and
communication. The red components represent risks and vulnerabilities, the green components
represent the need for risk identification, assessment or communication, and the blue frame marks
the location of contributions of the work in this book. The feedback loops of internal and external
risk communication are illustratedwith solid black lines and and the dashed black lines, respectively

an analytical solution for the first step of analyze first. In this chapter, many of the
visualizations on the SOFSM provide means for showing the important, zooming,
and filtering (e.g., mappings of individual data). Moreover, the analytical approaches
put forward in this chapter provide means for analyzing further, after which details
on demand can be viewed. Thus, the mantra involves automated analytical analysis
before and after the use of visual representations.
From the viewpoint of macroprudential oversight, each of the following sections
discusses how that particular approach aids in either risk identification or assessment,
given an ultimate aim of risk communication.

8.1 The SOFSM: Its Output and Interpretation

This sectionpresents the output of theSOFSMandan interpretationof it. In particular,
the SOFSM is used for describing the four states of the financial stability cycle.
For this purpose, we can make use of Figs. 7.2, 8.2 and 8.3, in which the SOFSM,
feature planes for the 14 macro-financial indicators and the main classes, and feature
planes for all the class variables are shown, respectively. Figure7.2 displays the two-
dimensional SOFSM that represents a high-dimensional financial stability space.
The feature planes in Figs. 8.2 and 8.3 are layers of the SOFSM. Figure 8.2 shows
the distribution of the indicators and the four main class variables (Pre-crisis, Crisis,

http://dx.doi.org/10.1007/978-3-642-54956-4_7
http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Fig. 8.3 Feature planes for all classes. Notes The figure shows the distributions of different pre-
and post-crisis horizons. As in Fig. 8.2, these are layers of the SOFSM in Fig. 7.2. The feature
planes C24, C18, C12, C6, P24, P18, P12 and P6 shows the map distribution of class variables that
represent 24, 18, 12 and 6 months before and after a crisis, respectively. While C0 and T0 shows the
distribution of crisis and tranquil periods, PPC0 represents the co-occurrence of pre- and post-crisis
periods

Post-crisis and Tranquil periods), whereas the feature planes in Fig. 8.3 shows the
distribution of the classes on the SOFSM. An assessment of these figures may aid in
understanding relations among the variables, including all macro-financial indicators
and all classes, which is a key ingredient of risk identification.

In contrast to early-warning models using binary classification methods, such
as discrete choice techniques, the SOFSM enables simultaneous assessment of the
associations with all four stages of the financial stability cycle, i.e., class clusters.
Thus, newmodels need not be derived for different forecast horizons or definitions of
the dependent variable. The feature planes in Figs. 8.2 and 8.3, which disentangle the
individual vulnerabilities and risks of the SOFSM in Fig. 7.2, enable one to directly
detect signals of a crisis (or any of the four states). For instance, the following strong
associations are found. First, we can differentiate between “early” and “late” signs of
a crisis by assessing differenceswithin the pre-crisis cluster. The strongest early signs
of a crisis (upper right part of the cluster) are high domestic and global real equity
growth and equity valuation,whilemost important late signs of a crisis (lower left part
of the cluster) are domestic and global real gross domestic product (GDP) growth, and
domestic real credit growth, leverage, budget surplus, and current account deficit.
Second, the highest values of global leverage and real credit growth in the crisis
cluster exemplify the fact that increases in some indicators may reflect a rise in
financial stress only up to a specific threshold. Increases beyond that level are, in these
cases, more concurrent than preceding signals of a crisis. Similarly, budget deficits
characterize the late post-crisis and early tranquil periods. The characteristics of the
financial stability states are summarized in Table 8.1 through summary statistics.

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Table 8.1 Summary statistics of the financial stability states

Variable Pre crisis Crisis Post crisis Tranquil
Centre Range Centre Range Centre Range Centre Range

Inflation 0.49 [0.22, 0.66] 0.55 [0.30, 0.69] 0.59 [0.26, 0.76] 0.37 [0.17, 0.68]
Real GDP

growth
0.67 [0.40, 0.80] 0.48 [0.14, 0.83] 0.34 [0.25, 0.50] 0.53 [0.30, 0.72]

Real credit
growth

0.66 [0.28, 0.85] 0.55 [0.35, 0.82] 0.39 [0.18, 0.68] 0.43 [0.21, 0.75]

Real equity
growth

0.68 [0.41, 0.85] 0.28 [0.16, 0.58] 0.39 [0.23, 0.80] 0.61 [0.40, 0.74]

Leverage 0.63 [0.31, 0.80] 0.59 [0.37, 0.81] 0.52 [0.23, 0.83] 0.29 [0.18, 0.51]
Equity valuation 0.73 [0.62, 0.80] 0.55 [0.27, 0.81] 0.33 [0.17, 0.66] 0.45 [0.30, 0.63]
CA deficit 0.58 [0.30, 0.78] 0.54 [0.26, 0.80] 0.48 [0.25, 0.77] 0.41 [0.19, 0.66]
Government

deficit
0.38 [0.19, 0.74] 0.45 [0.22, 0.62] 0.53 [0.32, 0.85] 0.61 [0.26, 0.85]

Global inflation 0.33 [0.08, 0.61] 0.61 [0.34, 0.76] 0.46 [0.20, 0.79] 0.63 [0.11, 0.90]
Global real GDP

growth
0.67 [0.54, 0.74] 0.67 [0.30, 0.86] 0.29 [0.13, 0.69] 0.45 [0.13, 0.71]

Global real credit
growth

0.55 [0.28, 0.77] 0.86 [0.61, 0.92] 0.37 [0.16, 0.67] 0.33 [0.15, 0.52]

Global real
equity growth

0.72 [0.47, 0.80] 0.4 [0.23, 0.63] 0.34 [0.11, 0.79] 0.54 [0.20, 0.73]

Global leverage 0.35 [0.18, 0.60] 0.79 [0.57, 0.91] 0.58 [0.17, 0.77] 0.33 [0.16, 0.73]
Global equity

valuation
0.67 [0.48, 0.82] 0.81 [0.54, 0.91] 0.36 [0.14, 0.76] 0.27 [0.19, 0.55]

Notes Columns represent characteristics (cluster center and range) of the financial stability states on
theSOFSMand rows represent indicators. Since data are transformed to country-specificpercentiles,
the summary statistics are comparable across indicators and clusters

In the remainder of this chapter, the SOFSM is mostly used for mapping the state of
financial stability by combining theSOFSMdisplaywith data concerning economies’
macro-financial conditions

8.2 Visualizing the State of Financial Stability on the SOFSM

In this section, cross-sectional and temporal samples of the panel dataset are mapped
on the two-dimensional SOFSM. Aggregates for groups of countries are also com-
puted in order to explore the state of financial stability globally, in advanced
economies and in emerging economies. Data points are mapped onto the grid by
projecting them to their best-matching units BMUs using only the indicator vector
x j (in) ∈ R

14. Trajectories of consecutive time-series data are shown with arrows.
These mappings provide means for visualizing the state of financial stability on the
SOFSM, which is clearly linked to not only the task of risk identification, but also
provides direct means for risk communication.



8.2 Visualizing the State of Financial Stability on the SOFSM 189

Post-crisis

Tranquil
Pre-crisis

Crisis

US 
2004-05 

US 
2006

US 
2007

US 
2008-09

US 
2002
2010

US 
2003

US 
2011

Euro 
2003

Euro 
2002

Euro 
2004-05

Euro 
2006

Euro 
2007

Euro 
2008

Euro 
2009

Euro 
2010

Euro 
2011

Fig. 8.4 A mapping of the US and the euro area. Notes The figure displays the two-dimensional
SOFSM that represents a high-dimensional financial stability space (same as in Fig. 7.2). The lines
that separate the map into four parts are based on the distribution of the four underlying financial
stability states. Data points are mapped onto the grid by projecting them to their BMUs using only
macro-financial indicators. Consecutive time-series data are linked with arrows. The data for both
the US and the euro area represent the first quarters of 2002–2011 as well as the second quarter of
2011

For a simultaneous temporal and comparative analysis, the state of financial stabil-
ity is mapped based upon the evolution of macro-financial conditions for the United
States (US) and the euro area in Fig. 8.4. The data for both economies represent the
first quarters of 2002–2010 and the final point of the sample, 2011Q2.Without a pre-
cise empirical treatment for accuracy, the map well recognizes for both economies
the pre-crisis, crisis and post-crisis stages of the financial stability cycle by circulat-
ing around the map during the analyzed period. The early-warning units in Fig. 7.3
confirm that even a policymaker with μ ≤ 0.7 would have correctly predicted crises
in both economies. Interestingly, the euro area is located in the tranquil cluster in
2010Q1. This indicates that the aggregated macro-financial measures for the euro
area as a whole did not reflect the elevated risks in the euro area periphery at that
point in time. However, it also coincides with a relatively low Financial Distress
Index (FDI) for the aggregate euro area. This can be explained by the weaknesses
and financial stress in smaller economies being averaged out by improved macro-
financial conditions in larger euro area economies, highlighting the importance of

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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country-level analysis. As the SOFSM is flexible with respect to input data, it is of
central importance that the included set of vulnerability indicators capture the par-
ticular events of interest. The macro-financial vulnerabilities currently used are best
suited for capturing the build-up of vulnerabilities in the form of boom-bust cycles.
However, they are less useful in identifying situations, where, for example, bank
funding constraints or counterparty risks in a post-crisis recovery phase cause ele-
vated financial stress that feeds back to the real economy, increasing the probability
of a financial crisis. Furthermore, by using the traditional macro-financial vulnera-
bilities, it is rather difficult to capture situations where, as in the ongoing debt crisis,
self-fulfilling expectations drive the equilibrium outcomes. Nevertheless, the euro
area has moved to the border of the pre-crisis cluster in 2010Q4, and to an adjacent
unit in 2011Q1 and Q2. This reflects the ongoing sovereign and banking crises as
withμ ≤ 0.7 this particular location is an early-warning unit (see Fig. 7.3). The (US)
is located in the post-crisis cluster in 2010Q1 and in the tranquil cluster in 2011Q2.
Figure 8.5 represents a cross-sectional mapping of the state of financial stability for
all countries in 2010Q3 and in 2011Q2, which is the latest data point in the analysis.
In 2010Q3, the countries are divided into three groups of financial stability states.
The map indicates elevated risks in several emerging market economies (Mexico,
Turkey, Argentina, Brazil, Taiwan, Malaysia and the Philippines), while most of
the advanced economies are in the lower right corner of the map (post-crisis and
tranquil cluster). Three countries (Singapore, South Africa and India) are located on
the border of the tranquil and pre-crisis clusters, which is an indication of a possible
future transition to the pre-crisis cluster. Interestingly, in 2011Q2, most economies
are located in the tranquil cluster, while the euro area has the highest financial stress
by being located close to the pre-crisis cluster.

Further, the state of financial stability is mapped for three aggregates: the world,
emerging market economies and advanced economies. The state of financial stability
for the aggregates is computed by weighting the indicators for the countries in our
sample using stock market capitalization to proxy their financial importance. Hence,
an aggregated data vector is computed as follows: xagg(i,t) = ∑I

i=1(wi,t/Wt )xi,t ),
where xi,t is a data vector for country i at time t , wi,t is stock market capitalization,
W is aggregated stock market capitalization and I represents all countries. These
aggregates can, like any data point, be projected onto the map to their BMU.

Theuppermap inFig. 8.6 shows the evolutionof globalmacro-financial conditions
in the first quarters of 2002–2011. The global state of financial stability enters the
pre-crisis cluster in 2006Q1 and the crisis cluster in 2007Q1. It moves via the post-
crisis and tranquil cluster back to the post-crisis cluster in 2011Q1. This coincides
with the global evolution of the FDI. More interestingly, the model signals out of
sample a global financial crisis as early as in 2006Q1. The separation of the global
aggregate into emerging market and advanced economies is shown in the lower map
in Fig. 8.6. The mapping of the advanced economy aggregate is very similar to
the one of the world aggregate, which is mainly a result of the high share of stock
market capitalization of the advanced economies. Notably, the movements of the
financial stability states of the emerging markets are also similar to those in the

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Fig. 8.5 A mapping of all countries in 2010Q3 and 2011Q2. Notes The figure presents a cross-
sectional mapping of financial stability states for all countries in the sample in 2010Q3 and 2011Q2.
The figure displays the two-dimensional SOFSM that represents a high-dimensional financial sta-
bility space (same as in Fig. 7.2). The lines that separate the map into four parts are based on the
distribution of the four underlying financial stability states. Data points are mapped onto the grid by
projecting them to their BMUs using only macro-financial indicators, but positions are approximate
to fit all labels. The data for all economies represent the third quarter of 2010 and the second quarter
of 2011
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Fig. 8.6 A mapping of aggregates. Notes The figures displays the two-dimensional SOFSM that
represents a high-dimensional financial stability space (same as in Fig. 7.2). The lines that separate
the map into four parts are based on the distribution of the four underlying financial stability states.
Data points are mapped onto the grid by projecting them to their BMU using only macro-financial
indicators. Consecutive time-series data are linked with arrows. On the first figure, the data for the
aggregated world economy represent the first quarters of 2002–2011. On the second figure, the data
for both advanced economies (AEs) and emerging market economies (EMEs) represent the first
quarters of 2002–2011
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advanced economies, illustrating the global dimension of the current crisis. While
the emerging market cycle moves around that of the advanced economies, it does
not indicate significant differences in the timeline or strength of financial stress.

8.3 Fuzzification of the SOFSM

Judging the degree of membership in a cluster on the SOFSM is not an entirely
straightforward task. This section interchanges the current clustering of the SOFSM
by fuzzifying and classifying it with a distance-based metric. As we not only have
class information, but also utilize a semi-supervised SOM with the classes in the
ordering process, there is no need to estimate clusters and their centroids. Follow-
ing Sarlin (2013) (and Sect. 6.2.1), membership degrees are computed using inverse
Euclidean distances by only using the class vector x j (cl) ∈ R

4. The rationale for this
is the focus on distances between mean profiles of classes rather than those between
indicators. The SOFSM is fuzzified by computing the inverse distance between ref-
erence vector mi(cl) and each perfect representative state center ck(cl) (as in Eq. 6.2),
and normalized to fulfill the probabilistic constraint (as in Eq. 6.3). Yet, a defuzzifica-
tion of the results using the maximum-membership method provides a crisp cluster-
ing. This enhances the visualization capability by enabling assessment of temporal
belongingness to the financial stability states, where the states are expressed by
representative cluster centers and fluctuations in macro-financial conditions are rep-
resented by the temporal variation of belongingness. In addition, visualizations of the
memberships of units on a SOM grid enable assessment of the class structures. In
the macroprudential oversight process, this supports risk identification, not the least
the communication of individual data on the SOFSM.

Thereby, class information is accounted for by setting the number of states equal
to the number of classes, i.e., four, and their centers as perfect states of the financial
stability cycle: pre-crisis, crisis, post-crisis and tranquil states. To test different spec-
ifications, the fuzzifier is varied over a wide range (θ = 1.0, 1.2, ..., 5.0). Finally,
squared Euclidean distances (θ = 2) are chosen since that allows for overlapping,
yet neither entirely crisp nor erased, state borders. While the differences between
the most extreme choices of θ are significant, the results are stable for values close
to θ = 2. In Fig. 8.7, memberships to each state are shown on membership planes,
where also the defuzzified crisp states are shown by contour lines (as well as on all
other following grids, e.g., Fig. 8.7). The crispest part is the upper right corner of
the tranquil state, whereas the rest have more overlap. The location of the cluster
center (i.e., units closest to the perfect representative state center ck(cl)), as shown
by white X-marks, also depict the location of largest memberships (Fig. 8.8). For
instance, in the pre-crisis cluster, units closest to the crisis cluster have the largest
memberships. Figure 8.9 shows how the fuzzification can be turned into line graphs
for the trajectories in Fig. 8.7, where membership in states and their variation over
time represent fluctuation in the current state of financial stability, and vertical lines
represent occurred crises. In addition to the crude trajectories on the SOFSM, this

http://dx.doi.org/10.1007/978-3-642-54956-4_6
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Fig. 8.7 The US and the euro area on a fuzzified SOFSM. Notes The figure displays the two-
dimensional SOFSM that represents a high-dimensional financial stability space (same as in
Fig. 7.2), but differs with respect to the partitioning of the map. A defuzzification of the finan-
cial stability states derives the lines that separate the map into four clusters. Data points are mapped
onto the grid by projecting them to their BMUs using only macro-financial indicators. Consecutive
time-series data are linked with arrows. The data for both US and the euro area represent the first
quarters of 2002–2011

enables one to assess how the degree of membership in the financial stability states
vary over time. The line graphs clearly depict increases in membership degrees in
the pre-crisis states prior to crises. The figures depict, for instance, that the pre-crisis
memberships in the US were of a larger magnitude than in the euro area.

8.4 Transitions on the SOFSM

Probabilities of transition provide means to support the judgment of the temporal
structure on the SOFSM in general and the cyclical nature of the financial stability
cycle in particular. The temporal patterns are approached by themeans of computing,
summarizing and visualizing probabilities of future state transitions. From the view-
point of macroprudential oversight, this enables not only (risk) identification of the

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Fig. 8.8 Membership planes for the SOFSM. Notes The figure represents memberships to the
financial stability states, where white X-marks show the location of perfect representative state
centers. The contour lines that separate the map into four clusters are derived using a defuzzification
of the memberships

most likely future state transitions for each unit, and thus also pairing to individual
data, but also country profiling of low- and high-risk financial stability states.

As shown in Fig. 8.10, the transition probabilities are computed for unit-to-state
switches and visualized on own transition planes, and summarized as maximum
transition probabilities conditional on switching, where labels show location and
color probability. In this work, a wide range of time spans were tested
(s = 6, 12, 18, 24, 48). Yet, for analysis was used a time span of 18 months (s = 18)
that corresponds to that of the benchmark forecast horizon. Hence, transition proba-
bilities represent the likelihood of switching to a statewithin 18months. The rationale
behind choosing s = 18 is that the SOFSM is also calibrated for optimal performance
in terms of predicting vulnerable states 18 months prior to a crisis. Moreover, the
transition patterns are considerably robust to changes in s. The length of movements
increase with increases in s, as expected, while the directions of movements are
stable. Most notably, while the transition patterns validate the assumed financial sta-
bility cycle, the cycle is shown not to be entirely well-behaving or continuous. For
instance, the SOFSM shows high probability of transition to the crisis state on the
border between the tranquil and pre-crisis states, as well as during extreme tranquil
times. One can perform a similar line graph representation as that for the fuzzifica-
tion, but instead with indications of future states, where vertical lines again represent
occurred crises. Figure 8.11, while depicting probabilities according to the financial
stability cycle, illustrates the crisis indications in the extreme part of the tranquil
state and a rise of new instabilities in 2010.
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Fig. 8.9 Line graphs of US and euro area membership degrees. Notes The figure represents mem-
berships of the US and the euro area trajectories in the financial stability states (see trajectory in
Fig. 8.7). The vertical lines represent occurred crises

8.5 Scenario Analysis on the SOFSM

This section applies the SOFSM to scenario analysis.While the approach herein is an
extremely simple version ofwhat-if or scenario analysis, as it excludes all ingredients
of more advanced macro stress-testing, the focus is on illustrating how the SOFSM
suits for visualizing potential scenarios. We have previously used the SOFSM as
a low-dimensional display onto which we have projected realized observations of
macro-financial conditions, i.e., history. Scenario analysis differs only in the sense
that the projected data are various scenarios of future conditions rather than historical
patterns. However, more advanced macro stress-testing approaches should be used
to derive effects of various scenarios. This relates to the task of risk assessment, in
addition to the simultaneous means for risk identification.
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Fig. 8.10 Transition planes for the SOFSM. Notes The figure represents transition planes and
summarizedmaximum-state transitions for the SOFSM.Each transition plane has its own color scale
and the labels on the final grid correspond to the location of maximum-state transitions conditional
on switching (where E represents empty units) and the color is the corresponding probability

Figure 8.12 presents transitions of the euro area given five different scenarios.
In order to facilitate the visual representation of the scenarios, cluster memberships
are illustrated with texture (i.e., a Bertin’s selective variable) and the scenarios in
hue (i.e., a Bertin’s associative variable). The three types of introduced shocks are
as follows.

(1) Univariate shocks: ±20 percentile variation in any variable.
(2) Internal shocks: (2a) a positive (+30 percentiles) and (2b) negative (−30 per-

centiles) shock to domestic variables.
(3) External shocks: (3a) a positive (+30 percentiles) and (3b) negative (−30 per-

centiles) shock to global variables.

The internal shocks represent changes in domestic macro-financial conditions
that involve changes in real GDP, credit and equity growth, as well as leverage and
equity valuation. Likewise, the external shocks involve the same changes in macro-
financial conditions, but on a global level. The aim of positive and negative shocks
is to represent increases and decreases in boom-like conditions.

The results of the scenario analysis in Fig. 8.12 are as follows. First, the intro-
duced univariate ±20 percentile variation in any variable shows that the euro area is
not substantially sensitive to minor changes. The black arrows illustrate only a one-
unit transition. Second, the introduction of positive and negative internal shocks in
Fig. 8.12 shows different behavior with solid green and red arrows. A positive shock,
involving booms in macro-financial conditions, would move the euro area to a sub-
stantially more vulnerable position. On the contrary, a negative internal shock would
only involve a one-unit transition towards a less vulnerable state. Third, Fig. 8.12 also
tests the resilience of the euro area conditions to external positive and negative shocks
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Fig. 8.11 Line graphs of US and euro area transition probabilities. Notes The figure represents
transition probabilities of the US and the euro area trajectories to the financial stability states (see
trajectory in Fig. 8.7). The vertical lines represent occurred crises

(shown with dashed green and red arrows), involving global increases and decreases
in macro-financial vulnerabilities. Opposite to internal shocks, the results show that
the euro area is more sensitive to negative external shocks than positive ones. That is,
a positive shock to macro-financial conditions only illustrates a two-unit transition
towards a more vulnerable state, whereas a negative shock, or decrease in boom-like
conditions, would involve a substantial transition towards a less vulnerable state. In a
policy context, this could be related to the extent that one should be concerned about
worsened macro-financial conditions globally, or some other specified shock.
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Fig. 8.12 Scenario analysis on the SOFSM. Notes The figure displays the two-dimensional
SOFSM that represents a high-dimensional financial stability space (same as in Fig. 7.2). The
lines that separate the map into four parts are based on the distribution of the four under-
lying financial stability states. The euro area is mapped onto the grid by projecting it to its
BMU using only the macro-financial indicators. The three types of introduced shocks are as
follows: (i) univariate shocks: ±20 percentile variation in any variable (black solid line); (ii)
internal shocks: (2a) a positive (+30 percentiles, green solid line) and (2b) negative (−30 per-
centiles, red solid line) shock to domestic variables; and (iii) external shocks: (3a) a positive
(+30 percentiles, green dashed line) and (3b) negative (−30 percentiles, red dashed line) shock to
global variables

8.6 Shock propagation on the SOFSM

Transmission of financial shocks is often defined by a wide variety of measures, such
as financial or trade linkages, proxies of financial shock propagation, equity market
co-movement or geographical relations [see, e.g., Dornbusch et al. (2000), Pericoli
and Sbracia (2003)]. Transmission of shocks on the SOFSM can be assessed with
two methods: a superimposed portfolio network topology and neighborhoods on the
SOFSM. This enables analyzing the spread of financial instabilities from two points
of views: the portfolio network topology indicates propagation of financial stress
through asset-based real linkages, while the financial stability topology indicates
propagation to similar macro-financial conditions. The latter type of spread of events
could propagate through both real (e.g., common exposures) and information (e.g.,
similar risks as judged by the markets) channels.

The SOFSMgrid in Fig. 8.13 superimposes a network of financial links in 2010Q1
with the US as its center and a network in 2011Q2 with the euro area as its center.
The networks are based upon external assets (equities and bonds) as reported in the

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Fig. 8.13 A financial network topology on the SOFSM. Notes The figures displays the two-
dimensional SOFSM that represents a high-dimensional financial stability space (same as in
Fig. 7.2). The financial stability states are differenced with texture, rather than color. The figure
superimposes a financial network on the SOFSM, of which the US and the euro area are in the
center, respectively. The network of financial linkages is based upon external assets (equities and
bonds). Nodes of each economy are located in their BMUs mb, but positions are approximate to fit
all nodes and edges. The size of the nodes is scaled as to the sum of exposures to other economies.
The width of the edges represents the size of external exposure to total exposures per economy,
where the color of the edge indicates the address of the exposure holder. The data for all economies
represent the first quarter of 2010 and the second quarter of 2011

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Coordinated Portfolio Investment Survey by the InternationalMonetary Fund (IMF).
Nodes of each economy are located in their BMUs and their size is scaled as to the
sum of exposures to other economies. The thickness of the edges represents the size
of external exposure to total exposures per economy, where the color of the edge
indicates the address of the exposure holder. Indeed, Fig. 8.13 combines the state
of financial stability, or probability of a crisis, with the system-wide exposures of
each economy. In 2010, the size of financial linkages to high-risk economies (e.g.,
Brazil and Mexico) enlighten about both past and present: high levels of previous
financial stress in the US may have impacted their current state and they still have a
high risk of current and future shock propagation from the US. Likewise, the strong
connections of economies to the euro area is an indication of transmission channels
in the case of distress in the euro area (e.g., Denmark, Poland, Turkey and United
Kingdom UK).

While crises are often transmitted through asset-based contagion channels, such
as financial linkages, they may also be propagated through similarities in macro-
financial conditions, something particularly important when dealing with data of
changing nature. When assessing the SOFSM, the concept of neighborhood of a
country represents the similarity of the current macro-financial conditions. Hence,
independent of location on the map, an economy adjacent to countries in crisis could
through shock propagation experience a similar wave of financial distress. This type
of representation may help in identifying events surpassing historical experience
and the changing nature of crises. Thus, an economy in the upper left part of the
network for 2010 in Fig. 8.13, say Mexico, could propagate financial instabilities
to countries with similar macro-financial vulnerabilities, e.g., Argentina and Brazil.
While this is particularly useful for visual real-time surveillance, we can also test
this by letting locations of crises in period t be signals of crises in that location in
period t + s. More precisely, this creates a leading indicator that signals a crisis in
unit mb in period t + s if a country that experienced a crisis in t was located in
mb, where s = 6, 12, 18, 24, 48. As the indicator is a point forecast Pj , it needs no
transformation through threshold values. Table 8.2 shows the predictive performance
of neighborhoods on the SOFSM with forecast horizons of 6–48 months, where a
horizon of 24 months outperforms the rest. A policymaker with μ = 0.8 derives the
largest Usefulness. While the table confirms the usefulness of detecting the spread
of crisis, the nature of the shock-propagation measures suggest that they are rather
complements than substitutes to standard early-warning models.

8.7 Outlier Analysis with the SOFSM

The SOM paradigm provides a simple measure of extremity. Relating to the general
task of risk identification, onemay assesswhether or not, and towhat extent, distances
between each datum and its mean profile on the SOFSM (i.e., BMU) is an indication
of financial imbalances. The computational rationale for this is that the units of the
SOM, while being topologically ordered, tend to approximate the probability density
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function of data, which relates the distance to a BMU to a fit of a single datum to
the multivariate data distribution, i.e. its degree of extremity. On the other hand, the
economic rationale, when monitoring financial stability, is that one could assume
that large distances represent financial imbalances in macro-financial conditions.
Our approach goes beyond applying a predefined threshold value on the distance to
assess whether or not a datum is an outlier [see, e.g., Vesanto et al. (1998), Saunders
and Gero (2001)], by setting the threshold to optimize predictive performance.
More formally, the units mi of the SOM, while being topologically ordered, tend
to approximate the probability density function of data p(x) (Kohonen 2001). The
standard quantization error (QE) can be seen as the correspondence between mi

and x j .However, amoremeaningful estimate of event rarity is computing the distance
of individual data points x j to their BMU mb. An outlier, and its degree of extremity,
can thus be estimated by the distance to the SOM in a multidimensional setting, i.e.,
d j = ∥∥x j − mb( j)

∥∥. To be precise, given that mi approximate the probability density
functions, then the individual QE represents in a temporal setting the fit of a single
data point to the historical multivariate data distribution. Finally, the distance d j is
turned into a probability forecast p j through a percentile transformation, on which
a threshold ε ∈ [0, 1] is chosen to optimize Usefulness Ua(μ).
I assess whether or not, and to what extent, distances between each data vector and
its BMUs is an indication of financial imbalances. Table 8.2 shows the predictive
performance of QEs on the SOFSM with forecast horizons of 6–48 months. The
table illustrates that, while the aim is conceptually different, outliers do not provide
equally goodmeans to predict financial instabilities as contagion does. The predictive
capability improves with shorter forecast horizons and yields the largest Usefulness
for a horizon of 6months. Themeasure ismost useful for a policymakerwithμ = 0.7.
The weak performance may reflect the fact that it provides only information of
possible impending instabilities rather than information on the exact timing of a
crisis, as the imbalance may be located in any state of the financial stability cycle.
This is, however, an important property as this does not restrict modeling to the
precise nature of crises in the past.

8.8 Combining the SOFSM with Predictive Methods

The aim of this section is to illustrate how the SOFSM can, and should, be comple-
mented by other tools for risk identification and assessment alike. In particular, this
section combines the SOFSM with a model for predicting systemic financial crises
with the aim of risk identification. The approach herein follows that in Sarlin (2014a)
by applying a standard Genetic Algorithm (GA) for finding the optimal configuration
of an aritficial natural network (ANN)—and coin it the neuro-genetic (NG) model.
The rationale for this is to test whether, and to what extent, ANN-based models are
better than the SOFSM and logit models and the effect of automated calibration of
the NG model.
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Even very simple ANNs have been shown to be universal approximators by fol-
lowing any continuous function to any desired accuracy (Hornik et al. 1989). This
said, the focus of data-driven ANN applications in real-world settings with noise and
uncertainty (e.g., financial markets) should rather be on parsimony and generaliza-
tion than on fitting models to all non-linearities and complexities in data. Another
common concern is the extent of data dredging when conducting data-driven analy-
sis. To this end, an ANN-based early-warning model is built using two objective
training, or early stopping, schemes:

(i) Scheme 1: Training is performed until in-sample performance of a conventional
benchmark model has been reached.

(ii) Scheme 2: In-sample data are divided into two datasets: train and validation sets.
Models are trained on the train set and the one with optimal performance on the
validation set is chosen.

As in Sect. 7.4, the in-sample dataset is used for estimating a logit model. The
estimates of the model are then used to solicit the probability of a crisis and the
threshold chosen as to maximize Usefulness for policy action. In training scheme
1, the in-sample Usefulness of the logit model for policy action, Ur (μ) = 0.5,
is used as a stopping criterion when training the ANNs. The rationale behind this
is twofold: it attempts to prevent overfitting and enables testing whether an ANN
that is equally good on the in-sample performs better on out-of-sample data. The
performance ofANNconfigurations is tested over awide set of possibilities aswell as
of the automated NGmodel. In training scheme 2, the in-sample dataset is randomly
split as follows: 80 % train set and 20 % validation set. This gives us three datasets:
train (in-sample, 80 %), validation (in-sample, 20 %) and test (out-of-sample) sets.
Then, ANN and NG models are trained by optimizing Usefulness for policymakers
on the validation set. In practice, models are trained for 200 epochs, evaluate them
at each epoch and choose the one that maximizes Usefulness on the validation set.
This allows testing how much better, if at all, the ANN-based models perform when
attempting an optimal model. As ANNs are sensitive to initial conditions of the
weights, the training of ANN and NG models is repeated ten times with randomized
starting weights and biases, and then the one with the fastest convergence (least
epochs) is chosen.

As for the SOFSM, a benchmark policymaker is assumed to be substantially
more concerned about missing crises than issuing false alarms (μ = 0.8), whereas
model performance is also shown for a slight variation in preferences (μ = 0.7, 0.9).
For all models using training scheme 1 (in-sample Ur (μ = 0.8) = 0.5), the final
ANN elements and GA parameters, as well as their out-of-sample Usefulness for
policymakers, are shown in Table 8.3. While models ANN1–9 represent manual
configurations, the model A-ANN represents an average of all different manually
chosen ANN configurations. When manually parametrizing the ANNs, common
practices and rules of thumb in the literature have been followed, in addition to
testing variations to the most common choices. The results clearly depict differences
in model performance (best models per μ are bolded). The ANN-based models,
while having similar in-sample performance by definition, show consistently better

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Table 8.4 Predictive performance of the neuro-genetic model

Model Epochs In-sample Validation set Out-of-sample
μ = 0.7 μ = 0.8 μ = 0.9 μ = 0.7 μ = 0.8 μ = 0.9 μ = 0.7 μ = 0.8 μ = 0.9

Logit – 0.39 0.50 0.30 – – – 0.08 0.27 0.13
ANN1 36 0.38 0.58 0.38 0.18 0.38 0.20 0.18 0.38 0.18
NG 17 0.40 0.60 0.42 0.26 0.44 0.24 0.26 0.44 0.22

Notes Except for the epochs, which stand for the number of training iterations, the entries represent
Ur (μ) for different policymaker’s preferences μ

out-of-sample performance than the benchmark logit model. Table 8.3 shows that
ANNs outperform the logit model not only in specific cases, but also on average (A-
ANN). The best ANN model (ANN1) follows parametrization practices common in
the early-warning literature, in particular by having 2 hidden nodes and a learning
rate α = 0.9 [see, e.g., Peltonen (2006), Fioramanti (2008)]. However, best overall
performance is shown by the NGmodel. Most notably, the optimal GA configuration
for the ANN uses only 9 indicators, rather than all 14. From an economic point of
view, dropping credit growth and current account deficit, as well as global real GDP
growth, real credit growth and leverage (see Table 7.1), contradicts the results of a
recent study based upon the signaling approach (Alessi andDetken 2011). In contrast
to the present analysis, they do not, however, attempt to identify optimal indicators
in a multivariate framework, but rather conduct it in a univariate manner.

Further, key parameters describing the NG model are a learning rate α = 0.97
and 4 hidden nodes. When examining differences in performance for different pol-
icymakers’ preferences, one can observe that the logit model fails for those more
averse to giving false alarms (Ur (μ) = 0.08), the ANN results are somewhat mixed,
with ANN1 performing particularly well for a policymaker more concerned with
false alarms (Ur (μ) = 0.16), and the NGmodel yields Usefulness for all three types
of policymakers (Ur (μ) = 0.20, 0.38, 0.16 for μ = 0.7, 0.8, 0.9). For the bench-
mark preferences μ = 0.8, the NG model performs 11, 2 and 6 % points better
than the logit, ANN1 and A-ANN models, respectively. While ANNs are heuristic
in nature, the consistency in the slight superiority is likely to be a result of the highly
parsimonious training scheme.

Training scheme 2 attempts a better generalization by being less restrictive in
terms of parsimonity but still attempting to prevent overfitting. Table 8.4 summarizes
in-sample (includes both train and validation sets), validation and out-of-sample
performance of the logit model, the best-performing ANN model (ANN1) and the
NG model, all using training scheme 2. The table shows that, in principle, when
allowing for longer training and thus also a better fit to data, model performance
improves on all datasets (best performing model per μ and dataset is bolded). This
is obvious when it comes to in-sample data, but the validation as well as out-of-
sample data still need sufficient parsimonity for decent performance. Compared to
training scheme 1, while there is only a minor increase in out-of-sample Usefulness
of ANN1 (2 % points), the NG model experiences a performance increase of 6 %
points. Out-of-sample Usefulness of the NG model is 17 % points better than that of

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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Fig. 8.14 Probabilities of a financial crisis in the US. Notes The vertical lines represent the occur-
rence of crisis (black) and pre-crisis (red) periods. The area highlighted in gray represents periods
when the probability of a crisis has exceeded a threshold such that an early-warning signal is given

the logit model and 6 points better than that of the ANN1 model. This also depicts
superior performance of the NG model.
Generally, outputs of early-warning models are time-series of country-specific crisis
probabilities and can be visualized as line graphs. The line graphs in Figs. 8.14 and
8.15 shows the probability of a crisis in the US and the euro area within 18 months as
an output of the NG model. The vertical lines represent occurred events, where red
lines are pre-crisis periods and black crisis periods. Figure 8.14 illustrates that the
model correctly called at an early stage the dot-com bubble in 2001 and the recent
financial crisis in 2007–2008—both with a longer horizon than 18 months as was
the definition of the predicted variable. Thus, this model would already in 2006Q1
have signaled the global financial crisis that commenced in the US in 2007. The
prediction in Fig. 8.15 shows model performance for the euro area. The early crises
stemming from the Russian collapse in 1998 and the dot-com bubble in 2001 are both
correctly called. In fact, the recent financial crisis was already signaled in 2004Q2
(even when accounting for publication lags). Yet, it is worth noting that while model
performance in these two cases is appropriate, many of the early-warning signals are
actually given before the ideal leading indicator or during a crisis period, which both
in fact are false alarms. These types of errors, while not having large adverse effects
in terms of policy actions, lead to imperfect accuracies.

A partly valid limitation of these conclusions is, however, that the models were
built ex post, and hence the design of the early-warning model might have benefited
from hindsight bias. However, the inputs used in this study were commonly used
in the macroprudential literature already before the crisis [see for instance the work
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Fig. 8.15 Probabilities of a financial crisis in the euro area. Notes The vertical lines represent the
occurrence of crisis (black) and pre-crisis (red) periods. The area highlighted in gray represents
periods when the probability of a crisis has exceeded a threshold such that an early-warning signal
is given

by Borio and Lowe (2002, 2004)] and the definition of a crisis, while still being
somewhat subjective, is validated by being highly correlated with financial crises
over the entire sample period. Hence, a policymaker could, in principle, have used
similar specifications to derive a model for predicting crises at the turn of the century.
Interestingly, the real ex ante predictions, i.e., the final points in Figs. 8.14 and 8.15,
show that vulnerabilities in the US and the euro area have increased in 2011. In fact,
it signals for the second consecutive quarter a crisis in Europe within 18 months. As
this model was derived in the final quarter of 2011 for Sarlin (2014a), we may based
upon today’s experiences judge whether or not the prediction was correct.

8.9 Concluding summary

This chapter has utilized the SOFSM for tasks of interest in macroprudential over-
sight, particularly for risk identification and assessment, with the ultimate aim of
risk communication. Risk identification relates to early-warning models, whereas
risk assessment relates to macro stress-test models and contagion and spillover mod-
els. Yet, in relation to previous literature, the approaches herein stress risk commu-
nication by focusing on performing the tasks on a visual two-dimensional display
of a high-dimensional financial stability space. In particular, the SOFSM has been
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exploited by the means of the following eight approaches (where the parenthesis
represents the addressed systemic risk):

(i) Assessing distributions of themacro-financial indicators and all class variables
with the help of the feature planes of the SOFSM (imbalances).

(ii) Mapping the state of financial stability for individual data and aggregates by
the means of labels and trajectories on the SOFSM (imbalances).

(iii) Fuzzification of the SOFSM for visualizing temporal belongingness to finan-
cial stability states of individual data and class distance structures on the map
(imbalances).

(iv) Probabilistic modeling of state transitions on the SOFSM for visualizing prob-
abilities of transition to financial stability states of individual data and for
assessing the cyclical and temporal structure of the financial stability cycle
(imbalances).

(v) Scenario analysis for economies on the SOFSMby assessing the effects of pos-
itive and negative shocks, both domestically and globally (aggregate shocks).

(vi) Using superimposed portfolio network topologies and neighborhoods on the
SOFSM to assess the spread of financial distress and shock propagation (con-
tagion and spillover).

(vii) Computing distances between data and their mean profiles on the SOFSM to
find extreme events and imbalances in economies’ macro-financial conditions
(imbalances).

(viii) Complementing the SOFSM with a solely predictive model that uses geneti-
cally optimized neural networks for the identification of risks (imbalances).

One task, obviously among many other tasks of importance, that this chapter has
overlooked is the identification of the build-up of widespread imbalances in the
entire cross section. This is the focus of the SOTM in the following chapter.
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Chapter 9
Decomposing Financial Crises
with SOTMs

Theprovidedmodels formacroprudential oversight have thus far concerned assessing
the cross-sectional or temporal dimensions in close to isolation. In this chapter, we
turn the focus to exploring cross-sectional dynamics. The Self-Organizing TimeMap
(SOTM) provides means for visual dynamic clustering and thus also for illustrating
dynamics in cross sections of multivariate macro-financial indicators. This is one
of the very key tasks in risk identification, when the focus is on build-up phases of
imbalances in the entire cross section, such as the global dimension in country-level
risks and a system-wide focus on data concerning individual financial intermediaries.
With respect to the visual analytics mantra, the SOTM can be positioned similarly
as the previously discussed Self-Organizing Financial Stability Map (SOFSM).
The SOTM performs visual dynamic clustering through temporal data and dimen-

sion reduction. The approach differs from traditional static exploratory analyses in
that the SOTM dynamically adapts to structural changes in cross-sectional data over
time, as well as visualizes the temporal cluster structures. In short, the decomposi-
tion is enabled by data compression into clusters and twofold topology preservation,
where one direction preserves time and the other data topology. The first decompo-
sition applies the standard SOTM to describing the global financial crisis that started
in 2007 in a manner that would be applicable for real-time surveillance. The second
section uses a SOTM on time-to-event data to generalize patterns before, during
and after financial crises. The following two sections draw upon Sarlin (2013a, b),
respectively.

This chapter is partly based upon previous research. Please see the following work for further
information: Sarlin (2013a, b)

P. Sarlin, Mapping Financial Stability, Computational Risk Management, 211
DOI: 10.1007/978-3-642-54956-4_9, © Springer-Verlag Berlin Heidelberg 2014
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9.1 A Decomposition of the Global Financial Crisis

In this section, the SOTM is applied for decomposing the global financial crisis that
started in 2007 in order to identify temporal structural changes and their location
in the cross section. The use of the SOTM is illustrated with an abstraction of all
the data x j ∈ R

18 before, during and after the global financial crisis of 2007–2009.
We first discuss the parametrization of the SOTM, and then focus on univariate
and multivariate properties of the SOTM, including a second-level clustering of the
SOTM units.

9.1.1 Parametrizing the SOTM

Similarly as an unsupervised Self-Organizing Map(SOM), the SOTMmay use parts
of the data in training and only associate parts. The indicator vector x j (in) ∈ R

14

is used to train the SOTM and the spread of the class vectors x j (cl) ∈ R
4 is only

associated to themodel. The association is doneby computing for eachunit an average
of class variables for the data attracted by that unit. The model architecture is set to
8 × 22 units, where 22 units represent the time dimension and 8 units represent the
cross-sectional structures. The units on the time dimension are set as to span periods
before, during and after the crisis that started in 2007 (i.e., 2005Q2–2010Q3), while
the number of units at each point in time is determined based upon its descriptive
value. It is worth noting that the SOTM, likewise the SOM, is not restricted to treat
each unit as an individual cluster. Due to the property of approximating probability
density functions p(x, t), only the dense locations in the data tend to attract units. A
further motivation of the number of units on the vertical axis to exceed the number
of expected clusters is the second-level clustering of the SOTM.
When choosing the final specification of the SOTM, three quality measures intro-

duced in Sect. 6.3.2 (εqe, εte and εsc) are used. For a SOTM with 8 × 22 units, a
neighborhood radius σ = 2.4 is chosen, as it has the highest quantization accuracies
and no topographic errors (see dashed vertical line in Fig. 9.1). Topographic error is
stressed as the interpretation of a SOTM relies heavily on topology preservation, not
least the time dimension.1

9.1.2 A Univariate View of the Crisis

The output of the SOTM, while being a two-dimensional grid, is a set of multidi-
mensional reference vectors. For a better understanding of the above trained SOTM,
and its characteristics, we begin by an illustration of the feature planes for individual
inputs (Fig.9.2). Feature planes are layers of the two-dimensional SOTM in Fig. 9.3

1 Beyond the static representations herein, the implementation developed by infolytika provides
an interactive, web-based interface to the SOTM (http://risklab.fi/demo/macropru/fsmt/). For a
description, see Sarlin (2014a).

http://dx.doi.org/10.1007/978-3-642-54956-4_6
http://risklab.fi/demo/macropru/fsmt/


9.1 A Decomposition of the Global Financial Crisis 213

Fig. 9.1 Quality measures of the SOTM. Notes For models with a 8× 22 array of units, the errors
εqe and εte are computed as aggregates of all time units t = 1, 2, . . . , T and structural changes
εsc of time units t = 2, 3, . . . , T over neighborhood radii σ

and show the spread of individual inputs using a constant blue hue and variations
in luminance. Again, each feature plane has its individual scale on the left and a
timeline below. With a focus on univariate structures, feature planes are particularly
useful for monitoring the evolution of individual inputs on the SOTM, especially for
discovering the spread of values in the cross-section and their variation over time.
The last four feature planes represent the class variables x j (cl) ∈ R

4, while the rest
represent the macro-financial indicators x j (in) ∈ R

14, including both domestic and
global measures. The distribution of the class variables, in particular pre-crisis peri-
ods, illustrates that during the early pre-crisis periods vulnerable economies were
mainly located in the lower part of the SOTM, whereas the crises occur through-
out the cross-section in 2008–2009. The spread of the input variables also indicates
larger vulnerabilities in the lower part of the SOTM. For instance, real credit growth,
leverage and current account deficit generally take higher values in the lower part
and government deficit lower values, which all can be seen as build-ups of risks,
vulnerabilities and imbalances. Moreover, the feature planes of the input variables
also illustrate a number of temporal changes. For instance, one can observe a loss in
equity growth in 2008Q3 across the entire cross-section, an increase in 2010Q1–2
and somewhat decrease in 2010Q2–3. Losses in Losses in gross domestic prod-
uct (GDP), while also occurring throughout the entire cross-section, react only in
2009Q2. Credit growth may be seen as an imbalance that decreased during the crisis
period, and has not experienced any significant increases after the crisis. Government
deficits are shown to have widely increased in the latter part of the analyzed period,
as could be expected. This highlights the importance of the use of the SOTM for
assessing events of changing nature, as government deficits were clearly not a signal
of the first wave of distress. Yet, the deficits may obviously be related to increases in
government debt, and thus also to the current sovereign debt problems. Interestingly,
leverage is shown to increase during the sample period, but does not show significant
decreases during or after the financial crisis, rather the opposite. Globally, we can
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Fig. 9.2 Feature planes for the SOTM. Notes The figure shows feature planes for the 14 indicators
and the benchmark class variables. The feature planes are layers of the SOTM in Fig. 9.3. While the
indicators are defined in Table 7.1, the four main class variables are Pre-crisis (C18), Crisis (C0),
Post-crisis (P18) and Tranquil periods (T0). As each data vector consists of 14 indicators and 4
main class variables, these feature planes show the distribution of each data column on the SOTM
grid. In the case of binary class variables that take values 1 and 0, high values represent a high
proportion of data in that unit (pre-crisis, crisis, post-crisis or tranquil periods)

see similar patterns to the domestic ones, but with a surprisingly strong slowdown
in credit and equity growth, as well as an even higher level of leverage.

9.1.3 A Multivariate View of the Crisis

Now, as we have an understanding of the components of the SOTM, we can assess its
multivariate structures. This is done with three approaches. First, Fig. 9.3 illustrates
the two-dimensional SOTM, where the timeline below the figure represents the time

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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The Global Financial Crisis of 2007-2009

2005.5 2006 2006.5 2007 2007.5 2008 2008.5 2009 2009.5 2010 2010.5

Tranquil period Pre-crisis period Crisis period Post-crisis period

Time t

United States

Fig. 9.3 A SOTM of the global financial crisis. Notes The figure represents a SOTM of the global
financial crisis, where the cluster coloring shows changes in multivariate cluster structures. Labels
above the figure define the classes in data, i.e., the stages of the financial stability cycle, and the
trajectory on the SOTM represents the evolution of macro-financial conditions in the United States
(US)

dimension in data (as for the feature planes) and the labels above represent occur-
rences of the events in the cross section. The labels simply refer to averages of the
classes at each point in time. The coloring of the SOTM in Fig. 9.3 illustrates the
proximity of units as approximated by the Sammon’s mapping in Fig. 9.4. Thus,
in Figs. 9.3 and 9.4, differences between units along the vertical direction show
differences in cross-sections and differences along the horizontal direction show dif-
ferences over time, where the former figure illustrates differences with color coding
on the SOTM grid and the latter with a standard plot of the Sammon’s topology. The
trajectory on the SOTM represents the evolution of macro-financial conditions in
the US, which clearly illustrates that the US were characterized by relatively large
risks and vulnerabilities throughout the period. Figures9.3 and 9.4 illustrate one key
phenomenon. Shifts in the color scale towards yellow indicate a start of structural
changes during the early phases of the crisis in 2008, whereas the structural changes
reach their peak in 2009 and the structures move back in mid-2010. The interpre-
tation of the backward shift in 2010 is, however, somewhat ambiguous. The shift,
while being an indication of decreased financial stress, may also be an indication of
future risks, as the structures clearly resemble those during the pre-crisis peak.
To further assess the evolution of the multivariate structures, a second approach

applies a second-level clustering to the units of the trained SOTM [as proposed in
Sarlin and Yao (2013)]. With no predefined number of groups and with the aim
of examining the structures in these data, we can explore clustering solutions with
different K . This is a common exercise with hierarchical clustering methods as
the agglomeration process provides insights about the structures. Thus, the cluster
validation is not used for choosing one optimal clustering solution, but rather to
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Fig. 9.4 A Sammon’s mapping of the SOTM. Notes The figure illustrates the proximity of units as
approximated by the Sammon’s mapping. This is the input to the coloring of the SOTM in Fig. 9.3
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Fig. 9.5 Cluster validation of the clustering of the SOTM. Notes The figure shows the Silhouette
coefficient for K = 3, 4, . . . , 10, where large values indicate a good cluster compactness

identify which solutions have the largest explanatory power. Figure 9.5 shows the
Silhouette coefficient for K = 3, 4, . . . , 10.While it indicates that K = 3 is optimal,
the Silhouette coefficient shows only minor differences for larger K . The optimality
of the 3-cluster solution, as it splits data as per only the time dimension, is a clear
indication of significant inherent temporal differences.
To further assess structure informationwithin these three temporal clusters, Fig. 9.6

illustrates the agglomeration process for K = 3, 4, . . . , 8. Interpretation of the
agglomeration process when increasing K is facilitated, by defining the color cod-
ing from the ColorBrewer scheme to be constant for all clusters except for the split
one, for which a new color is introduced. The agglomeration process is summarized
from low to high K for illustrational purposes, although agglomeration proceeds in a
top-downmanner. While the 3-cluster solution mainly shows temporal differences in
data (cluster 1, red; cluster 2, blue; cluster 3, green), the 4-cluster solution introduces
a cluster (4, purple ) which broadly speaking coincides with the largest structural
changes identified in Figs. 9.3 and 9.4 and the vulnerabilities prior to crises in Fig. 9.2.
Second, whereas the 5-cluster solution only adds a small cluster (5, orange) repre-
senting temporal differences in the beginning of the analyzed period, the 6-cluster
solution derives from cluster 4 a cluster (6, yellow) that covers in broad terms the
entire cross section during the end of pre-crisis times. In addition to the 7-cluster solu-
tion introducing a separate cluster of the two last quarters (7, brown), the 8-cluster
solution derives from cluster 1, the less vulnerable pre-crisis cluster, one cluster in
between the most and least vulnerable economies (8, pink). The second-level clus-
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Fig. 9.6 Cluster memberships on the SOTM. Notes It illustrates the agglomeration process for
K = 3, 4, . . . , 10. Interpretation of the agglomeration process when increasing K is facilitated by
defining the color coding from the ColorBrewer scheme to be constant for all clusters except for
the split one, for which a new color is introduced

Fig. 9.7 Property measures
of the SOTM.NotesThe errors
εqe(t) and εte(t) are computed
for time units t = 1, 2, . . . , T
and εsc(t) for time units
t = 2, 3, . . . , T for the final
model with an 8 × 22 array of
units and σ = 2.4

tering of the SOTM illustrates two key messages: (i) temporal trends are strong in
these data, and (ii) the increases in univariate vulnerabilities and risks prior to the
crisis observed in the previous subsection are illustrated with a cluster (4, purple)
that increases in size from 2006Q1 to 2008Q4 in Fig. 9.6.

Propertymeasures for each A(t) provide a third view of themultivariate structures.
By exploiting properties of the SOTM, we can observe quantitative characteristics
of it. Figure 9.7 shows the temporal variation of the property measures (εqe(t), εte(t)
and εsc(t)). The quantization errors εqe(t) and topographic errors εte(t) relate more
to qualities across the SOTM, while the structural change εsc(t) shows properties
in terms of distances between A(t −1) and A(t). The qualities indicate, as expected,
no topographic errors and stable quantization errors over time. Interestingly, the
largest structural changes are found in the late-crisis and post-crisis periods, and even
more interestingly the largest single change occurs in 2010Q2, when the structures
move from the crisis structures towards those during pre-crisis periods. The location
of structural changes in Fig. 9.7, while to some extent being illustrated by the SOTM
in Figs. 9.3 and 9.4 through bilateral vertical and horizontal differences in colors
and Sammon’s topology, are not obvious without an objective quantification of the
column-wise distances.
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9.2 A Decomposition of Modern Financial Crises

In the previous section, the SOTMwas used for visual dynamic clustering over time.
In this section, the SOTM is applied to time-to-event data. The SOTM for time-
to-event data has a different interpretation for the time dimension t . Rather than
representing the time span in data, it represents the time to a specific event. Hence,
it takes, for instance, the following form: t = −T,−T + 1, . . . , T − 1, T , where T
sets the range of time units before and after the event. Whereas the experiments in
this chapter use symmetric pre- and post-event spans, the SOTM obviously sets no
such restriction. Given an interchanged time dimension, the rest of the functioning
of the SOTM follows the standard specifications.
In this section, the time-to-event SOTMis applied for decomposingpatterns before,

during and after global financial crises from 1990–2011. The standard SOTM in
Sect. 9.1 provided an abstraction of patterns in macro-financial indicators before,
during and after the global financial crisis of 2007–2008. The time-to-event SOTM
herein differs from, or goes beyond, the one above by generalizing the patterns prior,
during and after modern systemic financial crises.
Over the period 1990–2011 for the 28 countries in the sample, the approach based

upon the FinancialDistress Index (FDI) identifies a set of 94 systemic financial crises,
of which some crises may last for multiple quarters. These function as the events in
our dataset. The time dimension is transformed into time-to-event format by locating
all observations from t − 8 to t + 8, where t − 0 are the crisis dates defined using the
FDI. In contrast to firm-level failures, countries are bound to experience recurring
events. To decrease noise and increase reliability, only observations with one time-
to-event stamp are kept in the dataset. For instance, an observation is disregarded if
it is a post-crisis period to one event and at the same time a pre-crisis period to a
following event, and vice versa. It is still worth noting that crises may last for several
quarters.

9.2.1 Parametrizing the Time-to-Event SOTM

The architecture of the time-to-event SOTM is set to 6 × 17 units, where 6 units
represent the cross-sectional structures and 17 units represent quarters ranging from
t − 8 to t + 8. The units representing the time dimension is set as to span periods
before (8 quarters), during (1 quarter) and after (8 quarters) crises. The number of
units representing cross-sectional structures at one period is determined based upon
its descriptive value. Again, it is worth noting that the SOTM is not restricted to treat
each unit as an individual cluster. Yet, the number of units on the vertical dimension
is kept low, as no second-level clustering is applied here. The training phase uses
the macro-financial indicators as inputs, while the class variable is only needed for
creating the time-to-event data. The final specification of the SOTM is chosen based
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Fig. 9.8 Feature planes for the time-to-event SOTM. Notes The figure shows feature planes for
the 14 indicators, which are defined in Table7.1. Notes The feature planes are indicator layers of
the SOTM in Fig. 9.9. As each data vector consists of 14 indicators, these feature planes show the
distribution of each data column on the SOTM grid

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Fig. 9.9 A time-to-event SOTM of global financial crises. Notes where the cluster coloring shows
changes in multivariate clusters structures

upon the quality measures (εqe, εte and εsc). The neighborhood radius σ takes the
value 2.8, as it has the highest quantization accuracy, given no topographic errors
(Fig. 9.8).

9.2.2 A Univariate View of Crises

The output of the SOTM is a grid of 6 × 17 multidimensional reference vectors,
where the timeline below the figure represents the time-to-event dimension in data
(see Fig. 9.9). For an understanding of the univariate patterns behind the multivari-
ate structures, we start by assessing feature planes for individual inputs in Fig. 9.8.
The analysis of patterns is divided into three parts: pre-crisis, crisis and post-crisis
patterns.

http://dx.doi.org/10.1007/978-3-642-54956-4_7
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During the pre-crisis periods, the lower and the upper part of the grid show dif-
ferent paths to a crisis. The lower part shows high values in inflation, real credit
growth, leverage, equity valuation, global inflation, global real credit growth and
global leverage. The upper part, on the other hand, shows high values for real equity
growth, current account deficit, government deficit, global real GDP growth, global
real equity growth and global equity valuation. The crisis periods show a decrease in
all variables, except for leverage, government deficit and global leverage, as well as a
contraction ofmost variables towards similar values (i.e., a small range). The patterns
ofpost-crisis periods can inmost cases be divided into early and late patterns,whereas
some measures take low values for the entire period. Indicators that take low values
from t + 1 to t + 8 are domestic measures of inflation, real credit growth, equity val-
uation and current account deficit, as well as global measures of inflation, real credit
growth and equity valuation. The pattern of a decrease and a subsequent increase
in values illustrates the behavior of many indicators, such as real GDP growth and
equity growth, both domestically and globally. Leverage, on the other hand, shows a
slow gradual decrease during early periods and a more significant decrease only in
the latter part. In addition, government deficits increase significantly in early and late
periods, which points to sovereigns being fiscally strained after systemic financial
crises.

9.2.3 A Multivariate View of Crises

The two-dimensional SOTM representing the multivariate structures is shown in
Fig. 9.9. To assess the multivariate structures of the SOTM, we can again make use
of the coloring based upon a Sammon’s mapping for illustrating proximity of units.
Figure 9.9 illustrates a number of phenomena. Whereas changes from t − 8 to t − 1,
i.e., pre-crisis periods, are gradual, the crisis, i.e., t − 0, illustrates a structural break
in terms of a shift and contraction in structures. The post-crisis periods from t + 1 to
t + 3, likewise, illustrate the occurrence of large structural changes. Yet, t + 4 and
t + 8 show a contraction of the data and only minor cross-sectional variation and
changes over time-to-events. It is worth to note that the orientation of the SOTM is
interchanged after the crisis. This is due to the strong contraction that suppresses the
values into one, dense cluster. When the SOTM moves to t + 1, the initialization
based upon t does not guide it enough.
Finally, Fig. 9.10 illustrates changes in propertymeasures (εqe(t), εte(t) and εsc(t))

of the SOTM over time. The key message of the figure is that the largest structural
change occurs between the t − 1 and t − 0, i.e., the transition from a pre-crisis to
the crisis period. This indicates that the crisis periods are very different from the rest
of the data. Another interesting pattern of the structural changes occur in the final
period t + 8, to which there is no direct explanation. In general, structural changes
are larger after crises than before them. The zero level of topographic errors confirms
the quality of the topology preservation, as was also previously emphasized.
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Fig. 9.10 Property measures of the time-to-event SOTM. Notes The errors εqe(t) and εte(t) are
computed for time units t = −T,−T + 1, . . . , T and εsc(t) for time units t = −T + 1,−T +
2, . . . , T for the final model with an 6 × 17 array of units and σ = 2.8

9.3 Concluding Summary

This section has performed two types of visual dynamic clustering to assess
cross-sectional dynamics inmultivariatemacro-financial indicators. The first decom-
position applied the standard SOTM to describing the global financial crisis that
started in 2007, whereas the second section applied the SOTM to time-to-event data
in order to generalize patterns before, during and after financial crises.
From the viewpoint of macroprudential oversight, this aids in the very key task

of identifying build-up phases of risks, vulnerabilities and imbalances in the entire
cross section. Hence, out of the three types of systemic risks, this is an approach
that truly holds promise for addressing the identification of the endogenous build-up
of widespread imbalances. Whereas the application herein focused on the global
dimension in country-level macro-financial data, the SOTM also provides means for
assessing a wide scope of applications for similar purposes, not the least a system-
wide focus in data on individual financial intermediaries.
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Chapter 10
Conclusions, Limitations and the Future

All models are wrong.
Some models are useful.

–George E.P. Box

Early identification of financial instabilities is of interest for a wide spectrum of
decision-makers for a wide range of reasons: policymakers want to avoid economic
fluctuations, financial market participants want to earn returns, businesses want to
set production to optimize profits, and politicians want to be re-elected. However,
this boils down to the challenge that the Swedish Minister of Finance Kjell-Olof
Feldt hinted already in the 1980s: “Challenging decisions are politically too early
until they are financially too late”. As noted by Korkman (2012), the problem of
political populism motivates promoting knowledge and understanding among our
fellow citizens, who alas most often are laymen in the field.

It is needless to say that the recent occurrences of instability have stimulated efforts
in understanding and predicting financial stress. The work in this book has provided
a wide range of tools for macroprudential oversight, whose common denominator is
a visual representation. The tools focus on risk identification and assessment, with
an ultimate aim to aid in risk communication. It is worth noting that the relevance
of visual representations of tools for safeguarding financial stability lies not only in
external risk communication, but also in generating insights in internal use to support
risk identification and assessment.

This chapter summarizes the key findings of the work in this book, discusses the
limitations of the findings, and presents ideas for future research.

10.1 Conclusions, Findings and Implications

The work in this book has put forward visual means for risk identification and
assessment. Throughout, the overall task has been to represent high-dimensional
data concerning financial entities, be they countries, markets or institutions, on
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Fig. 10.1 The process of RQs. Notes The coloring of the blocks divides the RQs into RTs. The red
blocksrelate to an understanding of the macroprudential domain and data, the blue blocksrelate to deriving
optimal methods and their extensions, and the green blockrelates to applications of the methods to the
task at hand

low-dimensional displays to facilitate the identification, assessment and commu-
nication of vulnerabilities and risks. In the introduction to this book, the research
objectives (ROs) were said to be two:

(i) RO1: to choose and extend data and dimension reduction methods such that they
meet the needs set by macroprudential oversight and data, and

(ii) RO2: to apply data and dimension reduction methods in macroprudential over-
sight to be used by and introduced to the policymaking community.

In order to achieve these two ROs, three research themes (RTs) and five research
questions (RQs) were introduced. Thus, a discussion of how the RQs have been
answered precedes a discussion of how well the ROs have been met. To refresh
memory, Fig. 10.1 presents the RQs in a process format, where the RTs are shown by
red, blue and green blocks. Below,we first discuss answers to all five RQs, whereafter
we turn to the ROs in the two following subsections.

RQ1: What are the needs for macroprudential oversight? The key aim of
Chap.2 was to give a broad overview of financial systems, financial instability and
systemic risks, as well as the reasons for financial systems being fragile. While we
discussed the complexity of factors affecting financial systems, how fragilities may
build up and what form systemic risks may take, as well as empirical and theoretical
underpinnings, an obvious focus of this chapter was on tools and models for macro-
prudential oversight. Given the mandate of multiple macroprudential supervisory
bodies, the starting point ought to be timely and accurate measurement of systemic
risks. This resulted in three key systemic risks (and tools for addressing them):

(i) endogenous build-up of widespread imbalances (early-warning models);
(ii) exogenous aggregate shocks (macro stress-testing models); and
(iii) contagion and spillover (contagion and spillover models).

These set an inherent need for a broad basis of tools for the identification and assess-
ment of the potential risks, vulnerabilities and imbalances. The chapter concludes
by relating the fragilities, risks and tools to an overall macroprudential oversight
process. The process clearly illustrates the lack of integration of a third component,
risk communication, with risk identification and assessment tools, particularly in the
case of macro stress-tests and early-warning models. For contagion models, visual-
izations based upon network models and graph theory have been and are still gaining
further interest within the policymaking community. Yet, the task of representing
high-dimensional early-warning indicators on a low-dimensional display has not
been addressed in a sufficient manner.

http://dx.doi.org/10.1007/978-3-642-54956-4_2
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RQ2: What form do macroprudential data take? In all above discussed tasks,
the quality of a model is highly dependent on the quality of the underlying data.
Chapter3 discussed data needs and demands for macroprudential oversight, with a
particular focus on early-warning models. The chapter identified that country-level
data commonly used in early-warningmodels to represent indicators of risks, vulner-
abilities and imbalances are of three types: (i) macroeconomic, (ii) banking system,
and (iii) market-based. The broad notion of macroprudential data was untangled
into a four-dimensional cube representation, where the dimensions represent time,
countries, variables and linkages. The data, while being easy to identify, are not
unproblematic. In this vein, the chapter also discussed stylized challenges related to
macroprudential data. One obvious conclusion is that today large amounts of data
representing risks and vulnerabilities are widely available. A task of central impor-
tance is, however, to acknowledge and account for their challenging characteristics,
such as missing values, skewed distributions, revisions and publication lags and the
general issues of provision and integration of various sources. More importantly,
rather than aggregating data into composite indices, the chapter further motivates
visualizing these complex data in easily understandable formats to support disci-
plined and structured judgmental analysis based upon policymakers’ experience.

RQ3: Which data and dimension reduction methods hold most promise for
the task? The answers to the previous questions, in addition to the general task of
this book, set forth a definition of the task at hand: to provide low-dimensional rep-
resentations of high-dimensional indicators of risks, vulnerabilities and imbalances.
A starting point for judging the most suitable methods for the task was put forward
in Chap.4 by providing an overview of data and dimension reduction methods. First,
the methods were related to knowledge discovery, data mining, information visual-
ization and visual analytics. Then, the chapter reviewed the basics of classical data
and dimension reduction methods and related a comprehensive set of methods in a
taxonomy.

Chapter5 discussed the particular needs for and properties of macroprudential
oversight and data in relation to the characteristics of data and dimension reductions,
and their combinations. The suitability of three classical, or so-called first-generation,
dimension reduction methods for the task at hand was illustrated with qualitative
comparisons and illustrative experiments. A key implication of the chapter is that the
family of topology-preserving methods with a regular grid shape in general and the
Self-Organizing Map (SOM) in particular hold most promise for the task at hand.

RQ4: How should the methods be extended and enhanced for the task? The
discussion inChaps. 4 and 5 concluded that themethod of preference for the purposes
in this book is the SOM. However, the standard SOM, while holding promise for
the task at hand, may be extended in multiple directions. Chapters2 and 3 spell out
the needs and demands for the task at hand. A particular focus of the extensions is
related to two tasks that not only answer the demands of macroprudential oversight
and data, but have also been stated to be in need of future research in the fields of
information visualization and dimension reduction. First, Chen (2005), Wong et al.
(2012) highlight a paradigm shift from only visualizing structures to visualizing
dynamics. An even further step is to assess dynamics of structures. Second, to be

http://dx.doi.org/10.1007/978-3-642-54956-4_3
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aware of the quality and distortions of dimension reductions,Wismüller et al. (2010),
Wong et al. (2012) stress that they are not an end, but provide only a means to display
useful information on top of them, such as evidence, uncertainty and individual data.

To this end, with a key focus on temporality, Chap. 6 first discussed the literature
on time in SOMs. The discussion, and subsequent extensions to the SOM paradigm,
relate to processing data from the cube representation, i.e., along multivariate, tem-
poral and cross-sectional dimensions, where a key focus is on better processing and
visualizing time. The enhancements not only aid in analyzing and visualizing indi-
vidual cross-sectional and/or time-series data on the SOM, but also contribute to the
assessment of overall properties and qualities of the SOM. Extensions to be used
with a standard SOM comprise approaches for fuzzification, transition probabilities
and assessing shock propagation. The chapter also presented the stand-alone Self-
Organizing TimeMap (SOTM) for assessing how cluster structures evolve over time
(i.e., visual dynamic clustering). The motivation and functioning of the extensions
is demonstrated with a number of illustrative examples.

RQ5: How should the methods and their extensions be applied to the task?
The core of this book lies in rather technical applications. Still, an essential part is an
adequate understanding of the domain and underlying data, including highly practical
issues. Even more important is to make use of methods suitable for the aims of the
task at hand. A large share of this book focuses on practical applications of data and
dimension reduction methods to macroprudential oversight. First, a framework for
building the Self-Organizing Financial Stability Map (SOFSM) is put forward. The
second topic concerns a number of extensions to the standard SOM-based model.
Third, this book has shown applications of the SOTM and the time-to-event SOTM
to risk identification.

Chapter7 described the construction of the SOFSM. The framework consists of
five building blocks: (i) data and dimension reduction based upon the SOM, (ii) iden-
tification of systemic financial crises, (iii) choice of macro-financial indicators of
vulnerabilities and risks, (iv) a model evaluation framework for assessing perfor-
mance, and (v) a model training framework for creating parsimonious, objective
and interpretable models. Then, the chapter illustrated how the training and eval-
uation frameworks are applied for constructing the SOFSM, including a range of
performance and robustness tests. Finally, the SOFSM provides means to monitor
macro-financial vulnerabilities by locating a country in the financial stability cycle
on a two-dimensional display.

Turning from model construction to more practical applications, Chap. 8 used
the SOFSM for an approach that combines risk identification, assessment and com-
munication. Thus, extensions to the standard SOM are applied in macroprudential
oversight, including a fuzzification, transition probabilities and shock-propagation
analysis. The SOFSM was also used for illustrating results of stress tests and detect-
ing outliers. In addition, the SOFSM is paired with a stand-alone predictive model to
illustrate the complementary role of such approaches. Hence, the SOFSM not only
provides means for visual early-warning exercises, but also enable superimposed
visualizations of stress test results and potential for contagion.

http://dx.doi.org/10.1007/978-3-642-54956-4_6
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In Chap.9, the SOTM was applied in macroprudential oversight in general and
risk identification in particular. The SOTM performs visual dynamic clustering for
decomposing global financial crises from two viewpoints. The first decomposition
applied a standard SOTM to describe how risks and imbalances evolved before,
during and after the global financial crisis of 2007–2008. The second decomposition
used a time-to-event SOTM to generalize patterns before, during and after modern
financial crises from 1990–2011.

The answers to the RQs take us to a discussion of how well the ROs have been
met.

10.1.1 Implications for Dimension Reduction

The first objective relates to the choice and extensions of data and dimension reduc-
tion methods with respect to the needs for the task in this book. While this has
implications for both data and dimension reduction, the key conclusions relate to
visualizing data.

This book has shown that the family of topology-preserving methods with a
regular grid shape in general and the SOM in particular holds most promise for the
task at hand. This relates to four key properties: (i) trustworthy neighbors, (ii) low
computational cost, (iii) flexibility for problematic data, and (iv) a regularly shaped
grid. Obviously, independent of the topic and field, this conclusion is also applicable
to tasks with similar needs and properties. Yet, while the stand-alone SOM holds
promise for the task, it has also been extended along multiple directions.

The extensions have been approached from the viewpoint of the task and data
at hand. In addition to their high dimensionality, macroprudential data consist of
two central components: the cross-sectional and the temporal dimension. Whereas
a key focus herein has been on better processing and visualizing time in SOMs, the
cross-sectional dimension has throughout also been of importance. In addition, the
enhancements not only aid in analyzing and visualizing cross-sectional and/or time-
series data on the SOM, but also contribute to the assessment of overall properties
and qualities of the SOM. Themost central extensions to the standard SOM are three:

(i) Fuzzifications aid in visualizing temporal belongingness to clusters of individ-
ual data and cluster distance structures on the SOM.

(ii) Transition probabilities aid in visualizing probabilities of transition of indi-
vidual data and for assessing the cyclical and temporal structure on the SOM.

(iii) Network topologies aid in understanding links between data by illustrating a
network topology on the data topology of a SOM.

In addition, the SOM has been illustrated to enable contagion analysis through
neighborhood relations on the grid structure, scenario analysis by visualizing tran-
sitions in the case of changes in data, and outlier analysis in the form of distances
of data to the SOM grid.

http://dx.doi.org/10.1007/978-3-642-54956-4_9
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A concept of its own is the Self-Organizing Time Map (SOTM) that goes beyond
the standard SOM representation for visual dynamic clustering. It enables thus a
visualization of how multivariate cross-sectional cluster structures evolve over time.
The temporal changes can be assessed univariately and multivariately. The time-to-
event SOTM and the second-level clustering of the SOTM enhance it by enabling
assessment of patterns before, during and after specified events and by providing an
objective means for assessing temporal changes in cluster structures.

10.1.2 Implications for Policy Use

The second objective concerns applications of data and dimension reductionmethods
for policy use. This book has created the SOFSM, which uses data and dimension
reduction methods for mapping the state of financial stability, as well as the above
discussed extensions to the SOFSM. The SOFSM is a two-dimensional represen-
tation of a multidimensional financial stability space that allows disentangling the
individual sources of vulnerabilities impacting on systemic risks and can be used to
monitor macro-financial vulnerabilities by locating a country in the financial stability
cycle, being it either in the pre-crisis, crisis, post-crisis or tranquil state. The tech-
nical qualities and robustness of the SOFSM have been tested by varying the SOM
parameters, thresholds of the models, the policymakers’ preferences and the forecast
horizon. In addition, the model would not only have correctly called the financial
crisis of 2007–2008 in the United States (US) and the euro area in mid-2005 (even
when accounting for publication lags in data), but also communicated the results in
an easily interpretable format. Hence, the SOFSM provides a framework for future
works to follow in order to create financial stability maps. Moreover, the SOTM pro-
vided a means to observe how risks build up over time in the cross section. From the
viewpoint of systemic risk, this is a highly relevant concept as it enables a perspective
beyond individual data. Likewise, the time-to-event SOTM provides an overview of
alternative roads to and from a crisis.

The use and acceptance of the SOFSM in policy use has been indicated by prac-
tical implementations, as well as communication to academics and practitioners. In
addition to the academic communication in terms of published papers, the work in
this book has beenwidely communicated to practitioners. The SOFSMhas been pub-
lished as a working and discussion paper both at the European Central Bank (ECB)
and the Bank of Finland, has been included as a special feature in the Financial Sta-
bility Review of the ECB see ECB (2011), and has been highlighted by the ECB’s
vice president as a promising approach.1 In addition, the SOFSM is a project in the
Macro-prudential Research Network (MaRs) (ECB 2012). It is also currently being
implemented at multiple central banks and financial institutions for a map to be used
for external and internal communication, as well as being implemented in an interac-
tive browser-based application by infolytika (http://risklab.fi/demo/macropru/fsm/
and http://risklab.fi/demo/macropru/fsmt/).

1 The speech can be found here: http://www.bis.org/review/r120619a.pdf.

http://risklab.fi/demo/macropru/fsm/
http://risklab.fi/demo/macropru/fsmt/
http://www.bis.org/review/r120619a.pdf
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10.2 Limitations

It is needless to say that the work in this book has its limitations. On the one hand,
these may be related to simplifications due to various challenges in modeling, such
as data provision and availability, or other simplifications related to the context of
today’s world, such as available computing power. On the other hand, these provide
opportunities for further research, such as extensions to methods and evaluations of
models. Again, the discussion is separated according to the two ROs: methods and
applications.

10.2.1 Limitations of Methods

The method extensions presented in this book are obviously restricted to apply to
only specific application domains and data. In addition, the connection to information
visualization of the work in this book also needs to be limited, such as whether and
to what extent it provides means for interactive visualizations.

One major concern of the SOTM, and the SOM in general, is that instances are
most often treated as being of uniform importance. The significance of such an
approach can be easily shown with an example from the topic of this book. Think
about the SOFSM, which uses data from 28 economies. It is indeed important to have
a cross-sectional perspective, as the number of crises in individual countries is rather
small and capturing a wide variety of crises is often strived for. Yet, the importance
of, for instance, Sweden and the US for such a model is most likely not equal.
Likewise, one could assume that the importance of an economy varies over time due
to numerous reasons, such as size of the banking sector, structures of the banks and
other measures of interdependence. In the case of the standard SOM, this motivates
a weighted approach that learns from data based upon instance-specific importance
values. Likewise, this also applies to the SOTM, but from another perspective. A
key use of the SOTM is for the understanding of vulnerabilities and risks that are
building up in the cross section. Here, however, it is of central importance whether or
not the imbalances are growing in systemically important economies, which indeed
varies over time and across countries.

Another line of limitations relate to information visualization. An essential part
of information visualization is the use of a manipulable medium, which allows users
to vary parameter values to interactively explore properties of data. As the work in
this book provides models, or constructs, the inclusion of interaction techniques is
discussable in that they are planned to be included at the level of instantiations.While
all products of this book are not ready-to-use toolswith user interfaces and interaction
mediums, most of the applied and derived methods could still be easily combined
with a user interface and a range of parameters for interactively exploring properties
of data. In fact, this is an essential part of the above discussed implementations, not
the least in the case of Financial Network Analytics.
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10.2.2 Limitations of Applications

The applications presented in this book come with a number of limitations. First and
foremost, the usefulness of all models for policy use need to be related to the so-
called Lucas critique. The rest of the limitations are partly related to the underlying
data and the evaluations of the results.

The Lucas critique discusses how model accuracy is dependent upon potential
feedback effects of changes in expectations and human behavior. The reasoning
behind the Lucas critique has to be acknowledged (Lucas 1976): “any change in
policy will systematically alter the structure of econometric models”. Yet, as also
discussed by Bisias et al. (2012), the aim of more accurate early-warning signals
relates to few undesirable effects in terms of changes in behavior and expectations.
First, independent of the fact that changes in behavior might discount the impact of
policies, the more accurate the risk measures are the more accurate are the inputs
to policy. Second, the key intent of early-warning signals is encouraging individuals
and institutions to take actions on their own, rather than only relying on actions of
governments.Yet, it is also of importance to be cautious in the use and communication
of early-warning signals, such as the risk of self-fulfilling prophecies. In order to
have indications of gradual changes in the state of financial stability, and allow for
individuals to take own corrective actions, this further motivates the use of timely
and frequent data.

Measuring financial instability is indeed a challenging task, especially when the
aim is a global approach. Accordingly, the data are limited by multiple challenges.
First, the dataset is entirely missing indicators measuring aggregate risks in country-
level banking sectors. This is a result of having a global approach, as all emerging
market economies do not report these types of data. Second, the euro area is included
as an aggregate. While the focus in this book was to have a global approach, it is
obvious that it would be of interest to analyze individual euro-area countries as well.
Likewise, any other excluded country could be of interest. Third, the class variable
is discretized from the Financial Distress Index (FDI). While discretization leads to
some loss of information, the fundamental idea of predicting vulnerabilities prior to
financial crisis, i.e. pre-crisis periods, does not allow modeling a continuous index
measuring contemporaneous stress. Further, one could also claim that the results
are dependent on the time and country frame and thus not generalizable. Indeed,
the results are only restricted to the used data, yet the dataset covers a global set of
economies from 1990 onwards. Thus, the results may be said to apply to modern
financial crises.

The second set of limitations relate to the qualities and validity of the models.
As user satisfaction and perceived usefulness of the models has not been tested, this
book concerns no claims related to measuring how good the proposed models are
in terms of applicability for visualizing data. This relates to the question of internal
and external evaluations. While a wide range of internal measures have been used
to assess and calibrate qualities of the models, this book has not shown thorough
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evaluations of the models in terms of external measures. Yet, the communication to,
interaction with and acceptance by domain experts provides an indication of external
quality.

10.3 Future Research

Future research is to a large extent, yet obviously not entirely, directed by the above
discussed limitations. While this book already includes a large share of material on
the SOTM, there exists large potential in both extending it to many directions and
applying it to a wide range of tasks, particularly in macroprudential oversight.

10.3.1 Future Methods

One idea for future research is the above discussed weighting scheme for the SOM.
A starting point to this can be found in Sarlin (2013), which may be extended in a
number of directions. In particular, theweighting could be applied, as again discussed
above, to the SOTM. Additionally, while the x axis of the SOTM has represented
time and time-to-event dimensions, it should not be restricted to any specific variable.
Depending upon the task at hand, the SOTM can be performed over a wide variety
of dimensions, such as age of customers in customer segmentation and steps of a
process in industrial process monitoring. Moreover, whereas the standard SOTM
reduces both data and dimensionality by projecting data onto a two-dimensional
grid of units, the reduction of the dataset could still be enhanced by also reducing
the time dimension. This enables a focus on only temporally relevant parts of the
time dimension. Obviously, the SOTM could also be extended to a three-dimensional
case, but this would involve strong interaction techniques to be able to exploit the
details provided in a three-dimensional cube. Indeed, the simple, two-dimensional
representation of the SOTM is a merit.

Another line of research could be to combine the approaches presented in this
book. For instance, the SOTM representation shows currently only changes in cluster
structures, but neglects the transition patterns. Transition probabilities would be a
straightforward approach for understanding patterns of who is changing, in addition
to only knowing the occurrence of changes.

The two-dimensional SOFSM is mainly illustrated with four crisp clusters (i.e.,
the financial stability states), yet structures in real-world data are seldom crisp. One
promising approach is the projection-based coloring scheme for revealing cluster
structures provided by Kaski et al. (2001). The approach has, however, a number of
limitations: (i) the objective function takes a complex form and involves a number
of parameters to be specified, (ii) the coloring method is not flexible for different
types of projection methods, and (iii) most variation is restricted to occur in two
dimensions of hue, which implies a slight distortion to the mapping. In this vein, it is
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of interest to explore possibilities of finding a general, yet simple, solution to cluster
coloring. Along these lines, an interesting approach would also be to better integrate
the elements of information visualization with dimension reduction methods. In
practice, this not only relates to the tasks of accounting for perception and cognition
in data graphics, as has briefly been discussed herein, but also, and in particular, the
task of interaction techniques. As noted by Wismüller et al. (2010), and illustrated
in this book, dimension reductions should only be treated as a starting point for the
general visualization process and visual analytics in particular.

10.3.2 Future Applications

While the scope of future applications is qualitatively unlimited, and mainly depen-
dent upon the aims of the modeling task, there exists a range of interesting directions
in applications that are judged to be worth pursuing. To start with, when data provi-
sion and availability become better in the future, as they are expected to do, the above
discussed limitations related to challenges in macroprudential data can be improved.
In particular, banking sector data should be collected to also include imbalances in
country-level banking sectors. Another improvement is to include individual euro-
area countries. One direction related to early-warningmodels and indicators is related
to a comprehensive comparison of approaches. The literature is missing an objective
evaluation of the relative performance of different methods, given the same indica-
tors, split of in- and out-of-sample data, evaluation measures and model-building
schemes.

In general, the SOM can be seen as a promising approach to communicating any
types of multivariate panel data, where entities may be firms, countries, assets, indi-
viduals, etc. In particular, it provides means for building a low-dimensional display
on top of which individual data may be visualized. Hence, the SOM, as well as the
SOTM, could equally well be used by, for instance, the European Banking Author-
ity at the level of financial intermediaries and the European Securities and Markets
Authority at the level of financial markets and securities.

In this vein, an interesting application of the SOTM would be to assess how risks
andvulnerabilities have built up in the cross section over recent years, as is done in this
book, but from more granular perspectives. In contrast to macro-level applications,
which provide a global view in the cross section, micro-level data would enable more
detailed information related to accumulated risks and their changes over time. If one
wants to focus on even more granular data, one could move from firms to individual
securities or assets, whose structures might be of interest. One task could be to assess
how asset correlation structures have evolved over time, with a focus on illustrating
dynamics during recent shocks, such as market reactions to the flash crash and the
failure of Lehman Brothers, where significant contractions in correlation structures
are to be expected. Likewise, the SOTM could be applied to a wide range of other
tasks. Related to the visual models in this book, a common task missing is a user
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evaluation to measure the perceived usefulness of the models. This would obviously
be of interest in the context of policymakers involved in macroprudential oversight.

Still, given methods for identifying risks and vulnerabilities, the key question
for future research to answer is: how should policymakers be persuaded to take
correct(ive) actions? This boils down to the fact that behind policy lies a mishmash
of politics and economics, not the least in the recent European decisions. Some of
these challenges are exemplified by the below quotes.

“Often, public officials have two unfortunate incentives: to give undue attention to worst-
case scenarios and to pay no attention to them at all. Sometimes their electoral prospects,
or their overall popularity, depend on one or the other. Before the attacks of 9/11, almost all
American officials neglected the need for better security at airports, not least because the
public would have strongly resisted significant additional burdens on air travel.”
–Cass R. Sunstein, Worst-Case Scenarios

“We all know what to do, we just don’t know how to get re-elected after we’ve done it.”
–Jean-Claude Juncker, President of the Euro Group and Prime Minister of Luxembourg,
Le Soir, 2 July 2007

This being said, one could argue that means for better risk communication, such
as some of the visuals put forward in this book, promote the knowledge and under-
standing among our fellow citizens. This implies that a soar in research on external
risk communication could provide an improved basis for persuading policymakers
to early enough corrective actions.
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