
Dea
Heckler

Grunwald
Pereda
Phillips

Shelve in
Programming Languages /Java

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

JavaFX 8
Introduction by Example
JavaFX 8: Introduction by Example shows you how to use your existing Java skills to create
graphically exciting client applications with the JavaFX 8 platform. The book is a new and much
improved edition of JavaFX 2.0: Introduction by Example, taking you through a series of engaging,
fun-to-work examples that bring you up to speed on the major facets of the platform. It will help
you to create applications that look good, are fun to use, and that take advantage of the medium
to present data of all types in ways that engage the user and lead to increased productivity.

Entirely example-based, JavaFX 8: Introduction by Example begins with the fundamentals of
installing the software and creating a simple interface. From there, you’ll move in progressive steps
through the process of developing applications using JavaFX’s standard drawing primitives. You’ll
then explore images, animations, media, and web. This new edition incorporates the changes
resulting from the switch to Java 8 SDK. It covers advanced topics such as FXML, charting,
 custom controls, JavaFX 3D, gesture devices, and embedded systems. Best of all, the book is full
of working code that you can adapt and extend to all your future projects.

• Entirely example-based
• Filled with fun and practical code examples
• Covers all that’s new in Java 8 relating to JavaFX, such as Lambda and the Stream API
• Covers gesture devices, 3D display, embedded systems, and other advanced topics

What you’ll learn:

• Install JavaFX 8 and configure your environment
• Work with touch-based interfaces such as in Windows 8
• Interpret gesture-based events the Leap Motion Controller and similar hardware
• Integrate JavaFX with embedded systems such as Arduino and Raspberry Pi
• Develop modern GUI business forms type applications
• Work with shapes, color, text, and animation
• Add audio and video to your projects
• Create custom controls using SVG, CSS, and the animation timer
• Learn to style a user-interface via CSS
• Communicate bidirectionally using Java and Javascript with HTML5

SECOND
EDITION

RELATED

9 781430 264606

53999
ISBN 978-1-4302-6460-6

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ��� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Getting Started ■ ���1

Chapter 2: JavaFX Fundamentals ■ ��31

Chapter 3: Lambdas and Properties ■ ��61

Chapter 4: Layouts and UI Controls ■ ���91

Chapter 5: Graphics with JavaFX ■ ��123

Chapter 6: Custom UIs ■ ���151

Chapter 7: Media with JavaFX ■ ���183

Chapter 8: JavaFX on the Web ■ ���215

Chapter 9: JavaFX 3D ■ ��241

Chapter 10: JavaFX and Arduino ■ ���269

vi Contents at a Glance

Chapter 11: JavaFX on the Raspberry Pi ■ ���305

Chapter 12: JavaFX and Gestures ■ ��339

Chapter 13: References ■ ���365

Index ���383

xxiii

Introduction

Welcome to JavaFX 8: Introduction by Example.

What is JavaFX?

JavaFX is Java’s next-generation graphical user interface (GUI) toolkit that allows developers to
rapidly build rich cross-platform applications. Built from the ground up, JavaFX takes advantage of
modern GPUs through hardware-accelerated graphics while providing well-designed programming
interfaces enabling developers to combine graphics, animation, and UI controls. The new JavaFX 8
is a pure Java language application programming interface (API). The goal of JavaFX is to be used
across many types of devices, such as embedded devices, smartphones, TVs, tablet computers,
and desktops.

Nandini Ramani of Oracle plainly states the intended direction of JavaFX as a platform in the
following excerpt from the screencast Introducing JavaFX:

The industry is moving toward multi-core/multi-threading platforms with GPUs.
JavaFX leverages these attributes to improve execution efficiency and UI design
flexibility. Our initial goal is to give architects and developers of enterprise applications
a set of tools and APIs to help them build better data-driven business applications.

—Nandini Ramani
Oracle Corp.

VP of Development, Java Client Platform

Before the creation of JavaFX, the development of rich client-side applications involved the
gathering of many separate libraries and APIs to achieve highly functional applications. These
separate libraries include media, UI controls, Web, 3D, and 2D APIs. Because integrating these APIs
together can be rather difficult, the talented engineers at Oracle created a new set of JavaFX libraries
that roll up all the same capabilities under one roof. JavaFX is the Swiss Army Knife of GUI toolkits.
JavaFX 8 is a pure Java (language) API that allows developers to leverage existing Java libraries
and tools.

xxiv Introduction

Depending on who you talk to, you are likely to encounter different definitions of “user experience”
(or in the UI world, UX). But one fact remains; the users will always demand better content and
increased usability from GUI applications. In light of this fact, developers and designers often work
together to craft applications to fulfill this demand. JavaFX provides a toolkit that helps both the
developer and designer (in some cases, the same person) to create functional yet aesthetically
pleasing applications. Another thing to acknowledge is that if you are developing a game, media
player, or the usual enterprise application, JavaFX will not only assist in developing richer UIs, but
you’ll also find that the APIs are extremely well designed to greatly improve developer productivity
(we’re all about the user of the API’s perspective).

Although this book doesn’t go through an exhaustive study of all of JavaFX 8’s capabilities, you will
find common use cases that can help you build richer applications. Hopefully, this book will lead you
in the right direction by providing practical, real-world examples.

Some History
In 2005 Sun Microsystems acquired the company SeeBeyond, where a software engineer named
Chris Oliver created a graphics-rich scripting language known as F3 (Form Follows Function).
F3 was later unveiled by Sun Microsystems at the 2007 JavaOne conference as JavaFX. On April 20,
2009, Oracle Corporation announced the acquisition of Sun Microsystems, making Oracle the new
steward of JavaFX.

At JavaOne 2010, Oracle announced the JavaFX roadmap, which included its plans to phase
out the JavaFX scripting language and re-create the JavaFX platform for the Java platform as
Java-based APIs. As promised based on the 2010 roadmap, JavaFX 2.0 SDK was released
at JavaOne, in October 2011. In addition to the release of JavaFX 2.0, Oracle announced its
commitment to take steps to open-source JavaFX, thus allowing the community to help move the
platform forward. Open sourcing JavaFX will increase its adoption, enable a quicker turnaround time
on bug fixes, and generate new enhancements.

Between JavaFX 2.1 and 2.2 the number of new features grew rapidly. Please refer to Table FM-1 for
the numerous features included between versions 2.1 and 2.2. JavaFX 2.1 was the official release of
the Java SDK on a MacOS. JavaFX 2.2 was the official release of the Java SDK on a Linux operating
system.

Figure FM-1. JavaFX

xxvIntroduction

The new Java 8 release was announced March 18, 2014. Java 8 has many new APIs and language
enhancements, which includes lambdas, Stream API, Nashorn JavaScript engine, and JavaFX APIs.
Relating to JavaFX 8, the following are such as: 3D graphics, Rich text support, and Printing APIs.
To see all of the new features in Java 8 visit http://www.oracle.com/technetwork/java/javase/8-
whats-new-2157071.html.

What You Will Learn in This Book
The title of the book says it all: JavaFX 8: Introduction by Example. In this book you will be learning
the new JavaFX 8 capabilities by following practical examples. These examples will, in turn, provide
you with the knowledge needed to create your own rich client applications. Following Java’s mantra
“Write once, run anywhere,” JavaFX also preserves this same sentiment. Because JavaFX 8 is
written entirely in Java the language, you will feel right at home.

Most of the examples can be compiled and run under Java 7. However, most of them are designed
to take advantage of Java 8’s language enhancements, and therefore Java 8 will be required. An
example of a new Java 8 language feature used throughout is called lambda expressions and is

Table FM-1. Historical Timeline of Major JavaFX Releases

Release Date Version Platform Description

December 4th 2008 1.0 Windows and MacOS JavaFX Script Language, Production
Suite, Media Playback

February 12th 2009 1.1 Windows and MacOS New mobile development

June 2nd 2009 1.2 Windows, MacOS, Linux, Solaris Skinnable UI controls, Charting API, and
Performance improvements

April 22nd 2010 1.3 Windows, MacOS, Linux, Solaris JavaFX Composer, TV Emulator, Mobile
Emulator

October 3rd 2011 2.0 Windows Rewritten for the Java Language

April 27, 2012 2.1 Windows, MacOS The official version for the MacOS
platform was released. Media supports
H.264/MPEG-4 AVC. Supports a
JavaScript bridge for web engine.

August 14, 2012 2.2 Windows, MacOS and Linux The official version for the Linux
platform was released. The following are
the new APIs and tools:
Canvas, HTTP Live Streaming, Touch
events, Gestures, Image manipulation
APIs and native application packaging.

March 18, 2014 8.0 Windows, MacOS and Linux JavaFX 8 supports the following APIs:
3D graphics, Rich text support, Printing
APIs and a JVM/JDK for embedded
systems.

http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

xxvi Introduction

discussed in Chapter 3. While working through this book with JavaFX 8 and Java 8, you will see that
the new APIs and language enhancements will help you to become a more productive developer.
Having said this, we encourage you to explore all of the new Java 8 capabilities.

This book covers JavaFX 8’s fundamentals, lambdas, properties, layouts, UI controls, Graphics,
Animation, Custom UIs, Charts, Media, Web, 3D, Arduino, RaspberryPi, Touch events, and gestures.

Who This Book Is For
If you are a Java developer looking to take your client-side applications to the next level, you will find
this book your guide to help you begin creating usable and aesthetically pleasing user interfaces.
Also, if you are an experienced Java Swing, Flash/Flex, SWT or web developer who wants to learn
how to create high-performant rich client-side applications, this is the book for you.

How This Book Is Structured
This book is arranged in a natural progression from beginner to intermediate and advanced level
concepts. For the Java developer, none of the concepts mentioned in this book should be extremely
difficult to figure out. This book is purely example-based and discusses major concepts before
demonstrating applications. For each project, after showing the output from executing the code,
we’ll provide a detailed explanation walking through the code. Each example can be easily adapted
to meet your own needs when developing a game, media player, or your usual enterprise application.
The more experienced a Java UI developer you are, the more freedom you’ll have to jump around to
different chapters and examples throughout the book. However, any Java developer can progress
through the book and learn the skills needed to enhance their everyday GUI applications.

1

Chapter 1
Getting Started

To get started using this book to learn JavaFX 8, you will want to set up your development
environment to compile and run many of its examples. In this chapter you will learn how to install the
required software, such as the Java development kit (JDK) and the NetBeans integrated development
environment (IDE). After installing the required software, you will begin by creating a traditional JavaFX
“Hello World” example. Once you are comfortable with the development environment, we will walk
through the JavaFX Hello World source code. Finally, you will get a glimpse of how to package your
application as a standalone application to be launched and distributed.

I realize many developers are partial to their IDEs and editors, so I’ve provided two methods to compile
and run the Hello World example. In the first method you will be using the Netbeans IDE and in the
second method you will learn how to use the command line (terminal window) to compile and launch
JavaFX applications. The second method is an approach for those who are not fond of fancy IDEs.

If you are already familiar with the installation of the Java Development Kit (JDK) and the NetBeans
IDE, you can skip to Chapter 2, which covers the fundamentals (JavaFX 2D). Let’s get started!

Installing Required Software
When using this book you’ll need to download and install Java 8 Java Development Kit (JDK) or a
later version. Get it from the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Also install NetBeans 8 or greater:

https://netbeans.org/downloads

Currently JavaFX 8 runs on the following operating systems:

Windows OS (XP, Vista, 7, 8) 32- and 64-bit	

Mac OS X (64-bit)	

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://netbeans.org/downloads/

2 CHAPTER 1: Getting Started

Linux (32- and- 64-bit)	

Linux ARMv6/7 VFP, HardFP ABI (32-bit)	

Solaris (32- and 64-bit)	

After downloading the appropriate software versions for your operating system, you will install the
Java 8 JDK and the NetBeans 8 IDE.

Installing the Java 8 Development Kit
The first thing to do is install the correct version of Java. You want the development kit, not the
runtime. Follow the steps outlined in this section to download and install Java 8. Download the
Java 8 JDK from the following location:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

In the following steps I will be using the Java 8 JDK 32-bit version for the Windows 7 operating
system as an example. The steps are similar on other operating systems and JDK versions; however,
if your environment is different, please refer to http://www.oracle.com/technetwork/java/javase/
overview/index.html for additional details. The following are steps to install the Java 8 JDK:

1. Install the Java 8 JDK. Launch the binary executable. The screen in Figure 1-1
will appear once you’ve launched the JavaFX SDK setup executable. That’s a
security warning you’ll commonly receive on the Windows platform to inform
you about installing software. Typically other operating systems will pop up a
similar warning dialog box to alert you of risks of installing or running binary
files. Click the Run button to proceed. Typically you will need administrator
rights on the machine to install software. On Windows you can right-click the
executable and run as Administrator.

Figure 1-1. The Windows Security Warning dialog window

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html

3CHAPTER 1: Getting Started

2. Begin the setup of the Java 8 JDK. The screen in Figure 1-2 will appear, to
begin the installation process. Click the Next button to begin installation.

Figure 1-2. Java SE Development Kit 8 setup

3. Select optional features such as additional development tools, source code,
and the Java runtime environment. Accept the default selections and click
the Next button to install software components. Figure 1-3 shows the screen
for optional features to install.

4 CHAPTER 1: Getting Started

4. The installation process will display a progress bar, as shown in Figure 1-4.

Figure 1-3. Java SE Development Kit 8 optional features

Figure 1-4. Java SE Development Kit 8 installation in progress

5CHAPTER 1: Getting Started

5. Change the installation directory of the Java runtime. Accept the defaults and
click Next to proceed. Figure 1-5 shows the Destination Folder dialog, where
you can change the Java runtime installation directory.

Figure 1-5. The Java 8 runtime destination directory

6. Complete the installation of the Java 8 SE Development Kit. Click the Close
button to exit. Shown in Figure 1-6 is the prompt that you have successfully
installed the Java 8 SE Development Kit.

6 CHAPTER 1: Getting Started

Setting Environment Variables
Now you need to set a couple of key environment variables. How you set them and the values they
should be set to vary depending on your choice of operating system. The two variables to set are:

JAVA_HOME: Tells your operating system where the Java installation directory lives.

PATH: Specifies where the Java executable directory resides. This environment
variable lets the system search paths or directories containing executable files. Java
executables reside in the bin directory under the JAVA_HOME home directory.

Following are the variables to set in 32-bit Windows:

set JAVA_HOME="C:\Program Files (x86)\Java\jdk1.8.0"
set PATH=%JAVA_HOME%\bin;%PATH%

Set the same variables in 64-bit Windows, but the values are different:

set JAVA_HOME="C:\Program Files\Java\jdk1.8.0"
set PATH=%JAVA_HOME%\bin;%PATH%

On Unix-based platforms such as Mac OS X and Linux, your settings and how you make them
depend somewhat upon which shell you are using. The following examples show how to set the
needed variables for the Bash and Bourne, and the CSH shells:

bash, bourne shell environments
export JAVA_HOME=/usr/java/jdk1.8.0
export PATH=$PATH:$JAVA_HOME/bin

Figure 1-6. Java 8 runtime destination directory

7CHAPTER 1: Getting Started

#csh environments
setenv JAVA_HOME /usr/java/jdk1.8.0
setenv PATH ${JAVA_HOME}/bin:${PATH}

These statements will set environment variables temporarily for the current terminal window session.
To make JAVA_HOME and PATH more permanent you will want to add them to your system upon logon
such that they are always made available whenever you boot or login. Depending on your operating
system you will need to be able to edit environment variable names and values. In the Windows
environment you can use the keyboard shortcut Windows logo key + Pause/Break key, and then
click the Advanced system settings to display the Systems Property dialog.

Next, click Environment Variables. This is where you can add, edit, and delete environment variables.
You will add or edit the JAVA_HOME environment variable by using the installed home directory as the
value. Shown in Figure 1-7 is the Environment Variables dialog on the Windows operating system.

Figure 1-7. Windows Environment Variables

To set your 	 JAVA_HOME for the Mac OS X platform, you will need to launch a
terminal window to edit your home directory’s .bash_profile file (for example,
named ~/.bash_profile) by adding the export commands shown earlier.

On Linux and other Unix operating systems that use Bash shell environments 	
launch a terminal window and edit either the ~/.bashrc or ~/.profile file to
contain the export commands.

On Linux and other Unix operating systems that use C shell (csh) environments, 	
launch a terminal window and edit either the ~/.cshrc or ~/.login file to contain
the setenv commands.

8 CHAPTER 1: Getting Started

Once you’ve set up your path and JAVA_HOME environment variables, you will want to verify by
launching a terminal window and executing the following two commands from the command prompt:

java -version
javac –version

The output in each case should display a message indicating the Java 8 version of the language and
runtime.

Installing the NetBeans IDE
When developing JavaFX applications you will be using the NetBeans IDE. Be sure to download the
correct NetBeans version containing JavaFX. To install the NetBeans IDE, follow these steps:

1. Download the NetBeans IDE from the following location:

https://netbeans.org/downloads/index.html

2. Install NetBeans 8 or later. Launch the binary executable. The screen in
Figure 1-8 will appear once you’ve launched the NetBeans installation
executable. On the Windows platform you will receive a security warning to
inform the user about installing software.

Figure 1-8. Windows security warning

3. Click on the Run button to proceed. Figure 1-8 shows a Windows security
warning prompt that appears before launching binary files.

4. Begin the NetBeans IDE installation process. Click the Next button. Figure 1-9
prompts the user to begin the installation process.

https://netbeans.org/downloads/index.html

9CHAPTER 1: Getting Started

5. Read and accept the NetBeans license agreement. After reading and
agreeing to the terms, click the “I accept the terms in the license agreement”
check box and then click Next to proceed. Figure 1-10 shows the NetBeans
License Agreement.

Figure 1-9. NetBeans IDE installer

10 CHAPTER 1: Getting Started

6. Read and accept the JUnit license agreement. After reading and agreeing to
the terms, click “I accept the terms in the license agreement. Install JUnit”
and then click the Next button to proceed.

7. Shown in Figure 1-11 is the JUnit License Agreement. JUnit is a Java unit
testing library.

Figure 1-10. NetBeans license agreement

11CHAPTER 1: Getting Started

8. Choose the destination directory to install NetBeans and select the Java 8
SE Development Kit previously installed. As usual, keep the defaults for the
destination to install the NetBeans IDE. However, you will need to select the
correct JDK.

9. Figure 1-12 shows a drop-down where you can specify the JDK for the
NetBeans IDE. You will select the Java 8 JDK.

Figure 1-11. JUnit license agreement

12 CHAPTER 1: Getting Started

Figure 1-12. NetBeans IDE installation

10. The next stage is choosing the installation directory folders for NetBeans
and the JDK; accept the defaults and click Next to proceed with installation.
Figure 1-13 depicts the installation destination directories for NetBeans IDE
and JDK.

13CHAPTER 1: Getting Started

11. On the Summary screen the Check for Updates option allows the installer to
retrieve any updates or patches to the current NetBeans version and any other
plug-in dependencies. Accept the defaults and click the Install button. As shown
in Figure 1-14, the installer defaults to having Check for Updates selected.

Figure 1-13. NetBeans IDE installation selecting JDK 8

14 CHAPTER 1: Getting Started

Shown in Figure 1-15 is the installation progress bar.

Figure 1-14. Check for Updates

15CHAPTER 1: Getting Started

12. To complete the setup, in Figure 1-16 you will be prompted for an optional
check box to contribute to the NetBeans team anonymous data usage to
help diagnose issues and enhance the product. Once you have decided
whether to contribute, click the Finish button to complete the installation.

Figure 1-15. Installation progress

16 CHAPTER 1: Getting Started

13. Launch the NetBeans IDE. You should see the opening page shown in
Figure 1-17.

Figure 1-16. Setup complete

17CHAPTER 1: Getting Started

Now you are ready to go forward and create JavaFX applications.

Creating a JavaFX Hello World Application
You’ll be learning two methods in this section to develop, compile, and run a JavaFX-based
HelloWorld application. In the first method you will be using the NetBeans IDE we just installed and
in the second method you will develop a JavaFX application without using an IDE.

Using the Netbeans IDE
To quickly get started with creating, coding, compiling, and running a simple JavaFX HelloWorld
application using the NetBeans IDE, follow the steps outline in this section. You’ll want to go deeper
in the next section, to get an understanding of what the IDE is doing behind the scenes on your
behalf. For now, though, let’s just get some code written and running.

1. Launch NetBeans IDE.

2. On the File menu, select New Project.

3. Under Choose Project and Categories, select the JavaFX folder.

4. Under Projects, select Java FX Application, and click Next.

Figure 1-17. NetBeans start page

18 CHAPTER 1: Getting Started

5. Specify HelloWorld for your project name.

6. Change or accept the defaults for the Project Location and Project Folder
fields. Figure 1-18 shows the New JavaFX Application dialog wizard to create
a simple HelloWorld application.

Figure 1-18. New JavaFX Application wizard

7. On this screen click the Manage Platforms button. Make sure the field
Platform Name contains JDK 1.8. Figure 1-19 depicts the JDK Home,
Classes, Sources, and Javadoc directory locations. Once you have verified
them, click the Close button.

19CHAPTER 1: Getting Started

Figure 1-19. The Java Platform Manager window containing JDK 1.8 as a managed platform

8. In Figure 1-18 make sure the Create Application Class option is selected. Then
click Finish. In a few seconds NetBeans will generate all the necessary files for
the HelloWorld project. After NetBeans finishes, the project will show up on the
left Projects tab. Figure 1-20 shows a newly created HelloWorld project.

20 CHAPTER 1: Getting Started

Figure 1-20. A newly created HelloWorld project

Note In the NetBeans IDE, which may have other projects, you may encounter a particular project set as
the main project. It is advised to set the main project as None by choosing Run ➤ Set Main Project ➤ select
None (as shown in Figure 1-22). By doing this it allows a project to run just by clicking on the green arrowed
button. Assuming the project is selected on the left in the Projects tab. NetBeans will automatically search a
project’s JavaFX main application class to launch the application. See step 10, following.

9. In the NetBeans IDE on the Projects tab (left), select the newly created
project. Open the Project Properties dialog box from the File menu option
Project Properties. Here you will verify that the Source/Binary format setting
is using JDK 8, as shown in Figure 1-21. Click Sources under Categories.

21CHAPTER 1: Getting Started

Figure 1-21. Project Properties

10. To run and test your JavaFX Hello World application, ensure the project folder
is selected (left Projects tab), then click on the green Run button to execute
the HelloWorld project. Notice in Figure 1-22 showing the Set Main Project
menu selection set to None. This will ensure the HelloWorld or any other
project can run without having to be so explicit. This frees the developer to
switch projects quickly.

22 CHAPTER 1: Getting Started

11. Select the Run menu and Run Main Project or hit the F6 key. You can also
click the green arrow icon on the tool bar. After you hit the Run option, the
output should look like Figure 1-23.

Figure 1-23. JavaFX Hello World launched from the NetBeans IDE

Figure 1-22. Setting the HelloWorld project as the Main Project

23CHAPTER 1: Getting Started

You shouldn’t encounter any difficulty when following steps 1 through 8. However, steps 9 ensures
that your project’s source/binary format is using JDK 8. Because of the new additions to the Java
language in Java 8, such as lambdas, most of the source code in this book will rely on the new
syntax and therefore will not be backward-compatible with prior versions of Java 8. Typically,
developers have prior versions of the Java development kit such as JDK 7. NetBeans allows you
to switch between different JDKs when projects require older versions. An important thing to note
is that in early releases of JavaFX 2.0, the software was packaged separately from the Java SDK,
which caused some software versioning confusion. Thank goodness it is now just one download
(JDK 8)! If you are still using Java 7 SDK, the latest download will also contain JavaFX in one bundle
since JavaFX 2.1.

Using the Command-Line Prompt
The second method of developing JavaFX 8 applications is to use a common text editor and the
command line prompt (terminal). By learning how to compile and execute applications on the
command-line prompt you will learn about the classpath and where the executable files reside. This
exposure should sharpen your skills when you are in environments where fancy IDEs and/or editors
aren’t easily available.

Working from the command line you will basically use popular text editors such as vi, Emacs, or
Notepad to code your JavaFX Hello World application. An example is shown in Listing 1-1.

Listing 1-1. A JavaFX Hello World application from HelloWorldMain.java

package helloworldmain;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

/**
 * A JavaFX Hello World
 * @author carldea
 */
public class HelloWorldMain extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World");

24 CHAPTER 1: Getting Started

 Group root = new Group();
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
 });
 root.getChildren().add(btn);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Once the Java file is created you will use the command-line prompt or terminal window to compile
and run your JavaFX application. Following are the steps to create a JavaFX Hello World application
to be compiled and run on the command-line prompt.

1. Copy and paste the code from Listing 1-1 into a text editor, and save the file
as HelloWorldMain.java.

2. After saving the file named HelloWorldMain.java, on the command-line
prompt you will navigate to the directory location of the file. The examples
to follow assume you have saved the file to a directory named myprojects/
helloworld. Change directory as follows on Mac OS X, Linux, and Unix-based
operating systems:

cd ~/myprojects/helloworld

3. Change directory on Windows operating systems using the following
command:

C:\Users\myusername>cd myprojects\helloworld
C:\Users\myusername\myprojects\helloworld>

4. Compile the source code file HelloWorldMain.java using the Java compiler
javac with the -d switch with the current path. Type the following command:

C:\Users\myusername\myprojects\helloworld>javac -d . HelloWorldMain.java

Notice the -d . before the filename. The dot denotes the current directory. The –d option
(destination directory) lets the Java compiler know where to put compiled class files based on
their package namespace. In this scenario, the HelloWorldMain package statement (namespace) is
helloworldmain, which will create a subdirectory under the current directory assuming we are in the
myprojects/helloworld directory.

25CHAPTER 1: Getting Started

When finished compiling, your directory structure should resemble the following:

|myprojects
 |helloworld
 |HelloWorldMain.java
 |helloworldmain
 |HelloWorldMain.class

5. Run and test your JavaFX Hello World application. Assuming you are located in
the same directory as the HelloWorldMain.java file, type the following command
to run your JavaFX Hello World application from the command-line prompt:

C:\Users\myusername\myprojects\helloworld>java helloworldmain.HelloWorldMain

Shown in Figure 1-24 is the output of a simple JavaFX Hello World application launched from the
command-line prompt.

Figure 1-24. JavaFX Hello World launched from the command-line prompt

Walking Through the Code
You’ll notice in the source code that JavaFX-based applications extend (inherit) from the
javafx.application.Application class. The Application class provides application life cycle
functions such as initializing, launching, starting, and stopping during runtime. This provides a
mechanism for Java applications to launch JavaFX GUI components separate from the main thread.
The code in Listing 1-2 is a skeleton of the JavaFX Hello World application, having a main() method
and an overridden start() method.

26 CHAPTER 1: Getting Started

Listing 1-2. A skeleton version of the file HelloWorldMain.java

public class HelloWorldMain extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 // Main thread
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 // JavaFX application thread

 // JavaFX code here...
 }
}

Here, in our main() method’s entry point we launch the JavaFX application by simply passing in
the command-line arguments to the Application.launch() method. To access any arguments
passed into the launch() method you can invoke the getParameters() method of the Application
class. Please see the Javadoc documentation for details on various ways to access named and
raw arguments. After the Application.launch() method has executed, the application will enter a
ready state, and the framework internals will invoke the start() method to begin. At this point, the
program execution occurs on the JavaFX application thread and not on the main thread. When the
start() method is invoked, a JavaFX javafx.stage.Stage object is available for the developer to
use and manipulate. Following is the overridden Application start() method:

@Override
public void start(Stage primaryStage) {...}

When the program begins in the start() method, a separate thread of execution occurs, called
the JavaFX application thread. Keep in mind that running on the JavaFX application thread is
synonymous with running on Java Swing’s event dispatch thread. Later in this book, you will learn
how to create background processes to avoid blocking the JavaFX application thread. When you
know how to build applications to avoid blocking the GUI, the user will notice that your application is
much more responsive (snappy) under heavy usage. Mastering responsiveness in GUI applications is
an important concept in enhancing usability and the overall user experience.

JavaFX Scene Graph
You’ll notice that some objects are oddly named, such as Stage and Scene. The designers of the API
have modeled things on the idea of a theater or a play in which actors perform in front of an audience.
In this analogy, a play consists of one-to-many scenes that actors perform in. And, of course, all
scenes are performed on a stage. In JavaFX the Stage is equivalent to an application window similar
to Java Swing API JFrame or JDialog on the desktop. Depending on the device, such as a Raspberry
Pi (Raspbian), there may be only one stage. You can think of a Scene object as a content pane, similar
to Java Swing’s JPanel, capable of holding zero-to-many Node objects (children).

27CHAPTER 1: Getting Started

Proceeding with our example, in the start() method we see that for a JavaFX desktop window
(stage) you can set the title bar using the setTitle() method. Next, you create a root node (Group),
which is added to the Scene object as the top-level surface for the application window. The following
code snippet shows how to set the title and create the scene:

primaryStage.setTitle("Hello World");
Group root = new Group();
Scene scene = new Scene(root, 300, 250);

JavaFX Node
A JavaFX Node is a fundamental base class for all scene graph nodes to be rendered. The following
graphics capabilities can be applied to Nodes: scaling, transforms, translations, and effects.

Some of the most commonly used nodes are UI controls and Shape objects. Similar to a tree data
structure, a scene graph will contain children nodes by using a container class such as the Group or
Pane class. We’ll learn more about the Group class later when we look at the ObservableList class,
but for now you can think of them as Java List or Collection classes that are capable of holding
child Node objects. In the following code a button (Button) node is created to be positioned on the
scene and set with an event handler (EventHandler<ActionEvent>) that responds when the user
presses the button. The handler code will output the word “Hello World” on the console.

Button btn = new Button();
btn.setLayoutX(100);
btn.setLayoutY(80);
btn.setText("Hello World");
btn.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
});
root.getChildren().add(btn);

Once the child nodes have been added to our root Group via the getChildren().add() method, we
set the primaryStage’s scene and call the show() method on the Stage object to display a JavaFX
application window. By default the window will allow a user to minimize, maximize, and close (exit)
the application. Following is the code to set the scene and display (show) the JavaFX application
window (Stage):

primaryStage.setScene(scene);
primaryStage.show();

Packaging a JavaFX Application
At some point you will want to distribute or deploy your JavaFX application. To handle the numerous
application packaging and deployment strategies Oracle’s JavaFX team has created a JavaFX
Packager tool to assist developers to build, package, and deploy their applications. To learn more
about how to use JavaFX Packager tool, please see Oracle’s “Deploying JavaFX Applications” at
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm.

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

28 CHAPTER 1: Getting Started

To give you a taste of the JavaFX Packager tool’s capabilities, I will show you how to package the
HelloWorldMain classes into a single executable jar file that a user can double-click or launch from
a command prompt (terminal).

cd myprojects/helloworld

javac -d . HelloWorldMain.java

javafxpackager -createjar -appclass helloworldmain.HelloWorldMain -srcdir . -outdir out
-outfile helloworld.jar -v

Table 1-1 describes the common options and switches that are used in building a JavaFX jar
executable application.

Table 1-1. Common javafxpackager Options to Build an Executable jar

Option/Switch Example Description

-createjar -- Creates a JavaFX JAR executable application.

-appclass helloworldmain.HelloWorldMain Specifies the fully qualified name of the class containing
the main() method.

-srcdir . The top-level location of the parent directory holding the
compiled classes (current directory).

-outdir out The destination where the packaged jar file will be
created.

-outfile helloworld.jar Specifies the name of the executable jar file.

-v -- Allows verbose displays logging information when
executing javafxpackager.

To run the jar executable on the command line, you simply type the following and press Enter:

javaw -jar out/helloworld.jar

There are many ways to package and deploy JavaFX applications. To learn more, please see
Oracle’s “Deploying JavaFX Applications” at the following URL:

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

Also see the following, related articles:

“Packaging JavaFX Applications as Native Installers” at 	 http://fxexperience
.com/2012/03/packaging-javafx-applications-as-native

“JavaFX And Maven” at 	 http://www.zenjava.com/2012/02/17/javafx-and-maven

“JavaFX Gradle Plugin 0.3.0 Released” at 	 https://bitbucket.org/shemnon/
javafx-gradle

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native/
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native/
http://www.zenjava.com/2012/02/17/javafx-and-maven/
https://bitbucket.org/shemnon/javafx-gradle
https://bitbucket.org/shemnon/javafx-gradle

29CHAPTER 1: Getting Started

Summary
So far you have managed to download and install both Java 8 JDK and NetBeans IDE. After
successfully installing prerequisite software, you created a JavaFX Hello World GUI application
through the NetBeans IDE and used a text editor to compile and run the binary class via a
command-line prompt (terminal window). After learning two methods of compiling and running a
JavaFX application, you did a quick code walkthrough of the source file HelloWorldMain.java. You
also learned to package a JavaFX application as a standalone jar executable. Next, in Chapter 2
you will learn the fundamentals of JavaFX 8 such as drawing and coloring shapes as well as drawing
text and changing text fonts.

31

Chapter 2
JavaFX Fundamentals

There is nothing more frustrating than receiving complicated advice as a solution to a problem.
Because of this, I have always made it a point to focus on the fundamentals. In order to render
graphics on the JavaFX scene, you will need basic shapes and colors. Expanding upon your
knowledge of the JavaFX scene graph, which you visited toward the end of Chapter 1, you will learn
in this chapter how to draw and manipulate 2D shapes on the JavaFX scene graph.

Even more fundamental than a shape object is JavaFX’s javafx.scene.Node class. The Node class is
a fundamental base class for all JavaFX scene graph nodes. The Node class provides the ability to
transform, translate, and apply effects to any node. Many examples in this chapter involve the
javafx.scene.shape.Shape class, which is a descendant of the Node class. Therefore, the Shape class
will inherit all of the Node class’ capabilities. In this chapter you will explore many derived classes that
inherit from Shape. You will begin this chapter by examining JavaFX’s most basic shape, the Line node.

JavaFX Lines
Rendering lines in JavaFX is conceptually similar to Euclidean geometry in that two (x, y) coordinate
points connect to draw a segment into space. When drawn on the JavaFX scene graph, lines are
rendered using the screen coordinate space (system). In geometry, a line is defined as a segment
connected by two points in space, although it lacks a width (thickness) and color value. Does this
mean that the line is invisible? In the computer world, physical devices plot pixels and shapes that
occupy real surfaces. Monitors and printers are examples of such surfaces. Because of this method
of production, modern graphics programming has adopted the standard screen coordinate system.
In this system, lines that are drawn are visible and have attributes of width and color.

In a nutshell, the standard screen coordinate system places (0, 0) at the upper-left corner; this differs
from the Cartesian coordinate system, where (0, 0) is placed at the center of the graphing area or
the point at which the x and y axes converge. In both coordinate systems, the x coordinate has
the same effect when moving a point along the x axis. However, when using the screen coordinate
system to move along the y axis, the effect is opposite that of the Cartesian system. In other words,
the y coordinate’s value increases when moving a point in a downward direction (top to bottom).
Figure 2-1 illustrates shapes drawn using the screen coordinate system. Also note that using
negative values will plot objects off the screen.

32 CHAPTER 2: JavaFX Fundamentals

As you learn more about JavaFX, you will discover many scene graph objects, such as lines, circles,
and rectangles. These objects are derived classes of the Shape class. All shape objects can perform
geometric operations between two shaped areas, such as subtract, intersect and union. By mastering
the Shape API, you will begin to see endless possibilities. Now let’s discuss how to create lines.

To draw lines in JavaFX, you will use the javafx.scene.shape.Line class. When creating a Line
instance you need to specify a start (x, y) coordinate and an end coordinate to draw a line. There are
two ways to specify the start and end points when creating Line nodes. The first method is to use a
constructor with the parameters startX, startY, endX, and endY. The data types of all the parameters
are double values, which provide floating-point decimal precision. The following line has a start point
(100, 10) and end point (10, 110) created using a constructor.

Line line = new Line(100, 10, 10, 110);

The second method to create a line node is to instantiate a Line class by using the empty default
constructor and subsequently setting each attribute using associated setter methods. The following
code snippet shows how to specify a line’s start and end points using setter methods.

Line line = new Line();
line.setStartX(100);
line.setStartY(10);
line.setEndX(10);
line.setEndY(110);

Line nodes drawn on the scene graph default to a stroke width of 1.0 (double) and a stroke color
of black (Color.BLACK). According to the Javadoc, all shapes have a stroke color of null (no color)
except Line, Polyline, and Path nodes.

(0, 0) x

y

Figure 2-1. The screen coordinate system

33CHAPTER 2: JavaFX Fundamentals

Now that you know how to draw lines on the scene graph, you are probably wondering how to
be more creative with lines. Creating different kinds of lines is simple; you basically set properties
inherited from the parent class (javafx.scene.shape.Shape). Table 2-1 shows the properties you can
set on a line (Shape). To retrieve or modify each property, you will use its appropriate getter and setter
methods. The table lists each property name and its data type, with a description. Please refer to the
Javadoc documentation for more details.

Table 2-1. The javafx.scene.shape.Shape Class Properties

Property Data Type Description

fill javafx.scene.paint.Paint A color to fill inside a shape.

smooth Boolean True turns on anti-aliasing, otherwise false.

strokeDashOffset Double The offset (distance) into the dashed pattern.

strokeLineCap javafx.scene.shape.StrokeLineCap The cap style on the end of a line or path.
There are three styles: StrokeLineCap.BUTT,
StrokeLineCap.ROUND, and StrokeLineCap.SQUARE.

strokeLineJoin javafx.scene.shape.StrokeLineJoin Decoration when lines meet. There are three types:
StrokeLineJoin.MITER, StrokeLineJoin.BEVEL,
and StrokeLineJoin.ROUND.

strokeMiterLimit Double The limit of a miter joint. Used along with the
miter join decoration (StrokeLineJoin.MITER).

stroke javafx.scene.paint.Paint A color for the shape’s line stroke.

strokeType javafx.scene.shape.StrokeType Where to draw the stroke around the boundary
of a Shape node. There are three types:
StrokeType.CENTERED, StrokeType.INSIDE, and
StrokeType.OUTSIDE.

strokeWidth Double A stroke line’s width.

Drawing Lines
To get a better idea of how you would use a shape’s properties based on Table 2-1, let’s look at an
example. Figure 2-2 is the output of Listing 2-1, the DrawingLines.java source code, demonstrating
the drawing of JavaFX lines. The JavaFX application in the listing draws three lines with various
properties modified. Some common properties used in this example are stroke dash offset, stroke
line cap, stroke width, and stroke color.

34 CHAPTER 2: JavaFX Fundamentals

In Figure 2-2 you can see that the first line (top) is a thick red line with a dashed stroke pattern.
The second line is a thick white line having rounded end caps (line cap). Last is an ordinary blue
line having the same thickness as the others. You will also notice in Figure 2-2 underneath the
blue line are a label and slider control; these allow the user to change the red (top) line’s stroke
dash offset property dynamically. The label control displays the dash offset value as the slider
control moves.

Figure 2-2. Drawing lines

Listing 2-1shows the source code for DrawingLines.java.

Listing 2-1. DrawingLines.java

package jfx8ibe;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Slider;
import javafx.scene.paint.Color;
import javafx.scene.shape.Line;
import javafx.scene.shape.StrokeLineCap;
import javafx.scene.text.Text;
import javafx.stage.Stage;

/**
 * Drawing Lines
 * Listing 2-1 DrawingLines.java
 * @author carldea
 */
public class DrawingLines extends Application {

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 2 Drawing Lines");

 Group root = new Group();
 Scene scene = new Scene(root, 300, 150, Color.GRAY);

35CHAPTER 2: JavaFX Fundamentals

 // Red line
 Line redLine = new Line(10, 10, 200, 10);

 // setting common properties
 redLine.setStroke(Color.RED);
 redLine.setStrokeWidth(10);
 redLine.setStrokeLineCap(StrokeLineCap.BUTT);

 // creating a dashed pattern
 redLine.getStrokeDashArray().addAll(10d, 5d, 15d, 5d, 20d);
 redLine.setStrokeDashOffset(0);

 root.getChildren().add(redLine);

 // White line
 Line whiteLine = new Line(10, 30, 200, 30);
 whiteLine.setStroke(Color.WHITE);
 whiteLine.setStrokeWidth(10);
 whiteLine.setStrokeLineCap(StrokeLineCap.ROUND);

 root.getChildren().add(whiteLine);

 // Blue line
 Line blueLine = new Line(10, 50, 200, 50);
 blueLine.setStroke(Color.BLUE);
 blueLine.setStrokeWidth(10);

 root.getChildren().add(blueLine);

 // slider min, max, and current value
 Slider slider = new Slider(0, 100, 0);
 slider.setLayoutX(10);
 slider.setLayoutY(95);

 // bind the stroke dash offset property
 redLine.strokeDashOffsetProperty()
 .bind(slider.valueProperty());
 root.getChildren()
 .add(slider);

 Text offsetText = new Text("Stroke Dash Offset: 0.0");
 offsetText.setX(10);
 offsetText.setY(80);
 offsetText.setStroke(Color.WHITE);

 // display stroke dash offset value
 slider.valueProperty()
 .addListener((ov, curVal, newVal) ->
 offsetText.setText("Stroke Dash Offset: " + slider.getValue()));
 root.getChildren().add(offsetText);

36 CHAPTER 2: JavaFX Fundamentals

 primaryStage.setScene(scene);
 primaryStage.show();
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
}

DrawingLines.java begins by setting the title of the Stage window using the setTitle() method.
Then it creates a root node (javafx.scene.Group) for the Scene object. All root nodes (those
extending javafx.scene.Parent) have a method getChildren().add() to allow any JavaFX node
to be added to the scene graph. By default the Scene object will be filled with a white background;
however, because one of our lines is white, the code will set the scene to have a color of gray
(Color.GRAY). This will allow some contrast in order to see the white line. Next is the code that
creates the three lines (red, white and blue).

In the first line, the code sets the common properties of a Line node. The common properties are
stroke color, stroke width, and stroke line cap. As noted earlier, lines do not have a shape internally,
so a line’s fill color property is set to null (no color) and stroke color defaults to black. To set the
stroke color you can use built-in JavaFX colors by using the javafx.scene.paint.Color class.
For instance, for the color red you will use Color.RED. There are many ways to specify color, such
as using RGB, HSB, or Web hex values. All three methods also have the ability to specify alpha
value (transparency). Later, you will see additional methods for coloring shapes. Please refer to the
Javadoc to learn more about color (javafx.scene.paint.Color). After setting the stroke’s outline
color you can set the line’s stroke width (thickness) by using the setStrokeWidth() method. Shapes
also have a stroke line cap property. This property specifies the style of the ends of the line. For
instance, specifying the stroke line cap as butt (StrokeLineCap.BUTT) will make a flat square end,
while a round (StrokeLineCap.ROUND) style will appear with a rounded end. The following code
snippet sets a line node’s common shape properties:

// setting common properties
redLine.setStroke(Color.RED);
redLine.setStrokeWidth(10);
redLine.setStrokeLineCap(StrokeLineCap.BUTT);

After setting the common properties on the red Line node, the example code creates a dashed pattern.
To form a dashed pattern you would simply add double values to the getStrokeDashArray().add()
method. Each value represents the number of pixels for a dash segment. To set the dash segment array,
the first value (10d) is a visible dash segment 10 pixels wide. Next is a five-pixel empty segment (not
visible). Following that is a visible dash segment 15 pixels wide, and so on. Because the array has an
odd number of values, you can see that as the pattern repeats itself, the first value (10d) becomes a
10-pixel empty segment (not visible). Following is the code to create a dashed pattern for a Line node:

// creating a dashed pattern
redLine.getStrokeDashArray().addAll(10d, 5d, 15d, 5d, 20d);
redLine.setStrokeDashOffset(0);

37CHAPTER 2: JavaFX Fundamentals

By default the dash offset property value is zero. To see what happens when the offset property
changes, the user can drag the slider thumb to the right to increase the offset. The stroke dash offset
is the distance into the current pattern to begin the line drawing.

Because the other two lines are pretty much the same in the way they modify common properties,
I will not explain them any further. I trust you now understand the fundamentals of creating lines.
One last thing to mention about this example is the Slider control and the way it is wired up using
binding. We will discuss binding further in Chapter 3.

Notice in Listing 2-1 also that after the three lines just discussed, the slider control has handler code
that updates a Text node dynamically to display the dash offset value. Also notice the invocation
to the addListener() method, containing concise code added as a change listener. This may look
odd to you; however, it reflects a new Java 8 feature called lambda expressions, which you will
learn more about in Chapter 3. The following code snippet creates a change listener using lambdas
instead of an anonymous inner class (ChangeListener).

// display stroke dash offset value
slider.valueProperty()
 .addListener((ov, oldVal, newVal) ->
 offsetText.setText("Stroke Dash Offset: " + slider.getValue()));

Learning about how to draw lines will help you apply the same knowledge to any Shape node in
JavaFX. These important concepts will allow you to create any kind of shape styled the way you see
fit. Speaking of shapes, that’s what we’ll discuss next.

Drawing Shapes
If you are familiar with drawing programs that allows a user to draw shapes on the canvas, you’ll
notice a lot of similarities when using the JavaFX’s Shape API. The JavaFX Shape API allows
you to create many common shapes such as lines, rectangles, and circles. Some of the more
complex shapes are Arc, CubicCurve, Ellipse, and QuadCurve. JavaFX also lets you create custom
shapes for situations where the predefined stock shapes don’t fit the bill. In this section you will
be exploring basic shapes, complex shapes, and custom shapes. I will not demonstrate all of the
shapes available to JavaFX, because of space limitations. To see all the available shapes, refer to the
Javadoc documentation for details.

As stated earlier, JavaFX has common shapes such as lines, rectangles and circles. In the section
“Drawing Lines,” you learned the basic method of changing any shape’s stroke color, stroke width,
and many other attributes. Knowing these skills will be useful throughout this chapter. Let’s begin by
getting familiar with the rectangle shape.

Drawing rectangles on the scene graph is quite easy. Just as you learned in a geometry classroom,
you specify a width, height, and an (x, y) location (upper-left corner) to position the rectangle on the
scene graph. To draw a rectangle in JavaFX you use the javafx.scene.shape.Rectangle class. In
addition to common attributes, the Rectangle class also implements an arc width and arc height.
This feature will draw rounded corners on a rectangle. Figure 2-3 shows a rounded rectangle, which
has both an arc width and an arc height.

38 CHAPTER 2: JavaFX Fundamentals

Following is a code snippet that draws a rectangle positioned at (50, 50) with a width of 100, a height
of 130, an arc width of 10, and an arc height of 40.

Rectangle roundRect = new Rectangle();
roundRect.setX(50);
roundRect.setY(50);
roundRect.setWidth(100);
roundRect.setHeight(130);
roundRect.setArcWidth(10);
roundRect.setArcHeight(40);

Having the basic knowledge of simple shapes such as lines and rectangles you will inevitably come
across other simple shapes having equivalent properties that we can manipulate in the same way.
Armed with this knowledge of simple shapes let’s look at creating more complex shapes.

Drawing Complex Shapes
Learning about simple shapes is great, but to create more complex shapes you need to see
what other built-in shapes that the JavaFX API has to offer. Exploring the Java documentation
(javafx.scene.shape.*), you will discover many derived shape classes to choose from. The following
are all the currently supported shapes:

Arc	

Circle	

CubicCurve	

Ellipse	

Line	

Path	

Arc width

Arc height

Figure 2-3. A rounded rectangle’s arc width and arc height

39CHAPTER 2: JavaFX Fundamentals

Polygon	

Polyline	

QuadCurve	

Rectangle	

SVGPath	

Text (which is considered to be a type of shape)	

A Complex Shape Example
To demonstrate the drawing of complex shapes, the next code example draws four fun cartoon-like
shapes. Normally cartoon drawings have a thick stroke width, similar to a penciled-in outline. The
first shape in the example is a sine wave; the second an ice cream cone, the third a smile, and the
last a donut. Before studying the code you may want to see the shapes drawn onto the scene, so
you can visualize each shape as you look at the code listing. Figure 2-4 is the output of Listing 2-2,
depicting four complex shapes.

Figure 2-4. Drawing complex shapes

40 CHAPTER 2: JavaFX Fundamentals

The DrawingShape.java code shown in Listing 2-2 demonstrates the drawing of the shapes you
see in Figure 2-4. The first complex shape involves a cubic curve (CubicCurve) that is drawn in the
shape of a sine wave. The next shape is an ice cream cone; it uses the Path class, which contains
path elements (javafx.scene.shape.PathElement). The third shape is a Quadratic Bézier curve
(QuadCurve) forming a smile. Our final shape is a delectable donut; to create this donut shape you will
create two (Ellipse) shapes (one smaller and one larger) and subtract one. For brevity, Listing 2-2
shows just the start() method, containing the main JavaFX elements. To get the full code listing,
download the example code from the book’s web site.

Listing 2-2. DrawingShape.java

 @Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 2 Drawing Shapes");
 Group root = new Group();
 Scene scene = new Scene(root, 306, 550, Color.WHITE);

 // Sine wave
 CubicCurve cubicCurve = new CubicCurve(
 50, // start x point
 75, // start y point
 80, // control x1 point
 -25, // control y1 point
 110, // control x2 point
 175, // control y2 point
 140, // end x point
 75); // end y point
 cubicCurve.setStrokeType(StrokeType.CENTERED);
 cubicCurve.setStroke(Color.BLACK);
 cubicCurve.setStrokeWidth(3);
 cubicCurve.setFill(Color.WHITE);

 root.getChildren().add(cubicCurve);

 // Ice cream cone
 Path path = new Path();
 path.setStrokeWidth(3);

 // create top part beginning on the left
 MoveTo moveTo = new MoveTo();
 moveTo.setX(50);
 moveTo.setY(150);

 // curve ice cream (dome)
 QuadCurveTo quadCurveTo = new QuadCurveTo();
 quadCurveTo.setX(150);
 quadCurveTo.setY(150);
 quadCurveTo.setControlX(100);
 quadCurveTo.setControlY(50);

41CHAPTER 2: JavaFX Fundamentals

 // cone rim
 LineTo lineTo1 = new LineTo();
 lineTo1.setX(50);
 lineTo1.setY(150);

 // left side of cone
 LineTo lineTo2 = new LineTo();
 lineTo2.setX(100);
 lineTo2.setY(275);

 // right side of cone
 LineTo lineTo3 = new LineTo();
 lineTo3.setX(150);
 lineTo3.setY(150);

 path.getElements().addAll(moveTo, quadCurveTo, lineTo1, lineTo2 , lineTo3);

 path.setTranslateY(30);

 root.getChildren().add(path);

 // A smile
 QuadCurve quad = new QuadCurve(
 50, // start x point
 50, // start y point
 125,// control x point
 150,// control y point
 150,// end x point
 50);// end y point
 quad.setTranslateY(path.getBoundsInParent().getMaxY());
 quad.setStrokeWidth(3);
 quad.setStroke(Color.BLACK);
 quad.setFill(Color.WHITE);

 root.getChildren().add(quad);

 // outer donut
 Ellipse bigCircle = new Ellipse(
 100, // center x
 100, // center y
 50, // radius x
 75/2); // radius y
 bigCircle.setStrokeWidth(3);
 bigCircle.setStroke(Color.BLACK);
 bigCircle.setFill(Color.WHITE);

42 CHAPTER 2: JavaFX Fundamentals

 // donut hole
 Ellipse smallCircle = new Ellipse(
 100, // center x
 100, // center y
 35/2, // radius x
 25/2); // radius y

 // make a donut
 Shape donut = Path.subtract(bigCircle, smallCircle);
 donut.setStrokeWidth(1.8);
 donut.setStroke(Color.BLACK);

 // orange glaze
 donut.setFill(Color.rgb(255, 200, 0));

 // add drop shadow
 DropShadow dropShadow = new DropShadow(
 5, // radius
 2.0f, // offset X
 2.0f, // offset Y
 Color.rgb(50, 50, 50, .588));

 donut.setEffect(dropShadow);

 // move slightly down
 donut.setTranslateY(quad.getBoundsInParent().getMinY() + 30);

 root.getChildren().add(donut);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Four shapes are drawn in Figure 2-4. Each shape will be detailed further in the following sections,
which describe the code and the reasoning behind the creation of each of the four shapes.

The Cubic Curve
In Listing 2-2 the first shape, drawn as a sine wave, is really a javafx.scene.shape.CubicCurve class.
To create a cubic curve, you simply look for the appropriate constructor to be instantiated. A cubic
curve’s main parameters to set are startX, startY, controlX1 (control point1 X), controlY1 (control
point1 Y), controlX2 (control point2 X), and controlY2 (control point2 Y), endX, endY. Figure 2-5
shows a cubic curve with control points influencing the curve.

43CHAPTER 2: JavaFX Fundamentals

Figure 2-5. Cubic curve

The startX, startY, endX, and endY parameters are the starting and ending points of a curved
line, and controlX1, controlY1, controlX2, and controlY2 are control points. The control point
(controlX1, controlY1) is a point in screen space that will influence the line segment between the
start point (startX, startY) and the midpoint of the line. The point (controlX2, controlY2) is another
control point that will influence the line segment between the midpoint of the line and its end point
(endX, endY). A control point is a point that pulls the curve toward the direction of itself. A definition
of a control point is a line perpendicular to a tangent line on the curve. In our example, we simply
have a control point 1 above the line to pull the curve upward to form a hill and control point 2 below
the line to pull the curve downward to form a valley.

Note All older JavaFX 2.x Builder classes are deprecated in JavaFX 8. Be advised that the previous edition
of this book used Builder classes. Shape classes using deprecated builder classes should be converted in
favor of constructors and setter methods when specifying properties.

At this point I want to mention that beginning with JavaFX 8, Oracle’s JavaFX team has decided to
deprecate the many Builder classes in JavaFX. The decision to deprecate builder classes was mainly
due to two bugs found in Java 6 & 7 that were fixed in Java 8. The bug fixes would later cause
binary compatibility issues that would break the builder classes. To get the full story please see
chapter 13 in the section under JavaFX 8’s Features which references links to the discussions about
the issue of builder classes. Knowing this will allow you to recognize older JavaFX 2.x code so that
refactoring should be painless. The first edition of this book used Builder classes quite frequently,
and they are an elegant way to create JavaFX objects. Although the Builder classes are deprecated,
it doesn’t prevent us from creating APIs with the builder pattern in mind. To create objects without
an associated builder class, just find the appropriate constructor to be instantiated or use setter
methods to set the object’s properties.

44 CHAPTER 2: JavaFX Fundamentals

The Ice Cream Cone
The ice cream cone shape is created using the javafx.scene.shape.Path class. Each path
element is created and added to the Path object. Also, each element is not considered a graph
node (javafx.scene.Node). This means that path elements do not extend from the javafx.scene.
shape.Shape class and they cannot be child nodes in a scene graph to be displayed. Figure 2-6
shows an ice cream cone shape.

Figure 2-6. The ice cream cone is drawn using JavaFX’s Path node

Path elements actually extend from the javafx.scene.shape.PathElement class, which is used only
in the context of a Path object. So you won’t be able to instantiate a LineTo class to be put in the
scene graph. Just remember that the classes with To as a suffix are path elements, not Shape nodes.

For example, the MoveTo and LineTo object instances are Path elements added to a Path object, not
shapes that can be added to the scene. Following are Path elements added to a Path object to draw
an ice cream cone:

// Ice cream
Path path = new Path();

MoveTo moveTo = new MoveTo();
moveTo.setX(50);
moveTo.setY(150);

...// Additional Path Elements created.
LineTo lineTo1 = new LineTo();
lineTo1.setX(50);
lineTo1.setY(150);

...// Additional Path Elements created.

path.getElements().addAll(moveTo, quadCurveTo, lineTo1, lineTo2 , lineTo3);

45CHAPTER 2: JavaFX Fundamentals

The Smile
To render the smile shape, the code uses the javafx.scene.shape.QuadCurve class. This is similar
to the cubic curve example described earlier in the first shape. Instead of two control points you
only have one control point. Again, a control point influences a line by pulling the midpoint toward it.
Shown in Figure 2-7 is a QuadCurve shape with a control point below its starting and ending points to
form a smile.

Figure 2-7. Quadratic curve

The following code draws a quadratic curve with a stroke thickness of three pixels filled with the
color white:

// A smile
QuadCurve quad = new QuadCurve(
 50, // start x point
 50, // start y point
 125,// control x point
 150,// control y point
 150,// end x point
 50);// end y point

quad.setStrokeWidth(3);
quad.setStroke(Color.BLACK);
quad.setFill(Color.WHITE);

The Donut
Last is our tasty donut shape with an interesting drop shadow effect shown in Figure 2-8. This
custom shape was created using geometric operations such as subtract, union, intersection, and
so on. With any two shapes you can perform geometric operations to form an entirely new shape
object. All of the operations can be found in the javafx.scene.shape.Path class.

46 CHAPTER 2: JavaFX Fundamentals

To create the donut shape, you begin by creating two circular ellipse (javafx.scene.shape.Ellipse)
instances. Subtracting the smaller ellipse (donut hole) from the larger ellipse area creates a newly
derived Shape object, which is returned using the static Path.subtract() method. The following code
snippet creates the donut shape using the Path.subtract() method:

// outer donut
Ellipse bigCircle = ...//Outer shape area

// donut hole
Ellipse smallCircle = ...// Inner shape area

// make a donut
Shape donut = Path.subtract(bigCircle, smallCircle);

Next is applying a drop shadow effect to the donut shape. A common technique is to draw the
shape filled black while the original shape is laid on top slightly offset to appear as a shadow.
However, in JavaFX the code will be drawing the donut shape once and use the setEffect()
method to apply a DropShadow object instance. To cast the shadow offset, call the setOffsetX() and
setOffsetY() methods. Typically if the light source is from the upper left, the shadow is shown from
the lower right of the shape.

One last thing to point out is that all shapes in the example are initially drawn to be positioned
underneath one another. Looking back at Listing 2-2, you’ll notice that as each shape was created,
its translateY property was set to reposition or shift each shape from its original position. For
example, if a shape’s upper-left bounding box point is created at (100, 100) and you want it to be
moved to (101, 101), the translateX and translateY properties would be set to 1.

As each shape is rendered beneath another in this example, you may invoke the
getBoundsInParent() method to return the information about the bounding region of a node, such
as its width and height. The getBoundsInParent() calculation for the height and width includes the
node’s actual dimensions (width and height) plus any effects, translations, and transformations. For
example, a shape that has a drop shadow effect increases its width by including the shadow.

Figure 2-9 is a dashed red rectangle surrounding a Rectangle node inside a parent node better
known as the bounding rectangle in parent (Bounds in Parent). You will notice that the width and
height calculations include transforms, translates, and effects applied to the shape. In the figure, the
transform operation is a rotation and the effect is a drop shadow.

Figure 2-8. A donut shape created by using shape subtraction

47CHAPTER 2: JavaFX Fundamentals

Painting Colors
I’ve mentioned that various drawing programs have their own tools to draw shapes. Drawing
programs also provide the ability to paint shapes, using a color palette. Typically, paint programs
have a paint bucket tool to fill areas on the canvas. Often, photo editing software packages have
the ability to fill using a gradient color or change the lighting of colors. In JavaFX you can also apply
colors (Paint) to objects using similar techniques. In this section you will see an example of a JavaFX
application that will showcase three shapes filled with colors (Paint).

An Example of Color
To demonstrate common color fills, Figure 2-10 illustrates an application that displays three shapes,
with different color fills. It depicts the following three shapes: ellipse, rectangle, and rounded
rectangle. Each shape has a gradient fill. The first shape, the ellipse, is filled with a red radial
gradient. The second is a rectangle filled with a yellow linear gradient. Finally, the rounded rectangle
has a green cycle reflect gradient fill. You’ll also notice a thick black line behind the yellow rectangle
to illustrate the alpha level (transparency) of colors.

width

translation

transform
(rotate)

he
ig

ht

effects

Bounding Rectangle
in Parent

Parent Node

Figure 2-9. Bounding rectangle in parent

48 CHAPTER 2: JavaFX Fundamentals

Note The example to follow touches on basic techniques for creating solid colors, gradient colors, and
translucent colors. There are also advanced strategies, such as the ImagePattern API and Blend API. You
can read about those, if you are interested, in the API documentation viewable through Javadoc.

Figure 2-10. Colored shapes

In JavaFX, all shapes can be filled with simple colors and gradient colors. As a reminder, according
to the Javadoc all shape nodes are filled with the color black by default except for Line, Polyline,
and Path class (descendents of java.scene.shape.Shape). Listing 2-3 uses the following main
classes that will be used to fill the shape nodes shown in Figure 2-10:

	javafx.scene.paint.Color

	javafx.scene.paint.Stop

	javafx.scene.paint.RadialGradient

	javafx.scene.paint.LinearGradient

Note In figure 2-10, the blackLine, rectangle, and roundRectangle shapes are all positioned by the
setTranslateY() method relative to the ellipse shape and to one another.

49CHAPTER 2: JavaFX Fundamentals

Listing 2-3. PaintingColors.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 2 Painting Colors");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 300, Color.WHITE);

 // Red ellipse with radial gradient color
 Ellipse ellipse = new Ellipse(100, // center X
 50 + 70/2, // center Y
 50, // radius X
 70/2); // radius Y
 RadialGradient gradient1 = new RadialGradient(
 0, // focusAngle
 .1, // focusDistance
 80, // centerX
 45, // centerY
 120, // radius
 false, // proportional
 CycleMethod.NO_CYCLE, // cycleMethod
 new Stop(0, Color.RED), // stops
 new Stop(1, Color.BLACK)
);

 ellipse.setFill(gradient1);
 root.getChildren().add(ellipse);
 double ellipseHeight = ellipse.getBoundsInParent()
 .getHeight();

 // thick black line behind second shape
 Line blackLine = new Line();
 blackLine.setStartX(170);
 blackLine.setStartY(30);
 blackLine.setEndX(20);
 blackLine.setEndY(140);
 blackLine.setFill(Color.BLACK);
 blackLine.setStrokeWidth(10.0f);
 blackLine.setTranslateY(ellipseHeight + 10);

 root.getChildren().add(blackLine);

 // A rectangle filled with a linear gradient with a translucent color.
 Rectangle rectangle = new Rectangle();
 rectangle.setX(50);
 rectangle.setY(50);
 rectangle.setWidth(100);
 rectangle.setHeight(70);
 rectangle.setTranslateY(ellipseHeight + 10);

 LinearGradient linearGrad = new LinearGradient(
 0, // start X
 0, // start Y
 0, // end X

50 CHAPTER 2: JavaFX Fundamentals

 1, // end Y
 true, // proportional
 CycleMethod.NO_CYCLE, // cycle colors
 // stops
 new Stop(0.1f, Color.rgb(255, 200, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

 rectangle.setFill(linearGrad);
 root.getChildren().add(rectangle);

 // A rectangle filled with a linear gradient with a reflective cycle.
 Rectangle roundRect = new Rectangle();
 roundRect.setX(50);
 roundRect.setY(50);
 roundRect.setWidth(100);
 roundRect.setHeight(70);
 roundRect.setArcWidth(20);
 roundRect.setArcHeight(20);
 roundRect.setTranslateY(ellipseHeight + 10 +
 rectangle.getHeight() + 10);

 LinearGradient cycleGrad = new LinearGradient(
 50, // start X
 50, // start Y
 70, // end X
 70, // end Y
 false, // proportional
 CycleMethod.REFLECT, // cycleMethod
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784))
);

 roundRect.setFill(cycleGrad);
 root.getChildren().add(roundRect);

 primaryStage.setScene(scene);
 primaryStage.show();
}

When specifying color values, the PaintingColors.java code uses the colors in the default RGB
color space. To create a color, the code uses the Color.rgb() method. This method takes three
integer values, representing red, green, and blue components. Another overloaded method takes
three integer values and a fourth parameter with a data type of double. This fourth parameter is the
alpha channel, which sets the opacity of the color. This value is between zero (0) and one (1).

Note Keep in mind that there are other ways to create color, such as by specifying hue, saturation, and
brightness (HSB). To create a color using HSB, you would invoke the Color.hsb() method. Another way to
specify color values that is common to web development in HTML and CSS is the use of RGB hexadecimal
values. Developers who are familiar with this convention can use the Color.web() method.

51CHAPTER 2: JavaFX Fundamentals

After drawing the ellipse shape, the code invokes the setFill() method using a radial gradient
to give the appearance of a 3D spherical object. Next, it creates a rectangle filled with a yellow
semitransparent linear gradient. Added behind the yellow rectangle is a thick black line to
demonstrate the semitransparent color. Finally, the code implements a rounded rectangle filled with
a green-and-black reflective linear gradient resembling 3D tubes in a diagonal direction. Each shape
and its associated color fill will be discussed in more detail in the following sections.

Gradient Color
Creating a gradient color in JavaFX involves five things:

1. A starting point to begin the first stop color.

2. The end point, representing the end stop color.

3. The proportional property to specify whether to use standard screen
coordinates or unit square coordinates.

4. The Cycle method to specify one of the three enums: NO_CYCLE, REFLECT,
or REPEAT.

5. An array of stop (Stop) colors. Each stop containing a color will begin by
painting the first stop color, then interpolating to the second stop color,
and so on.

When dealing with either linear or radial gradient color, pay special attention to the proportional
attribute. By setting this attribute to false, you can draw a line (the gradient axis) having a beginning
point (start X, start Y) and an end point (end X, end Y) based on standard screen (x, y) coordinates.

However, if the proportional attribute is set to a value of true, the gradient axis line beginning and
ending points will be represented as unit square coordinates. This means that x, y coordinates for
begin and end points must be between 0.0 and 1.0 (double). This strategy is more compact and
easier to define than screen coordinates on the scene graph.

Radial Gradient
The amazing thing about colors with gradients is that they can often make shapes appear three-
dimensional. Gradient paint allows you to interpolate between two or more colors, which gives
depth to the shape. JavaFX provides two types of gradients: a radial (RadialGradient) and a linear
(LinearGradient) gradient. For our ellipse shape you will be using a radial gradient (RadialGradient).

Table 2-2 presents the JavaFX 8 Javadoc definitions found for the RadialGradient class. You can
find this documentation at the following URL:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html

http://download.java.net/jdk8/jfxdocs/javafx/scene/paint/RadialGradient.html

52 CHAPTER 2: JavaFX Fundamentals

In our example the focus angle is set to zero, the distance is set to .1, center X and Y are set to (80, 45),
the radius is set to 120 pixels, proportional is set to false, the cycle method is set to the no cycle
(CycleMethod.NO_CYCLE), and two color stop values set to red (Color.RED) and black (Color.BLACK).
These settings give a radial gradient to our ellipse by starting with the color red with a center position of
(80, 45) (upper left of the ellipse) that interpolates to the color black with a distance of 120 pixels (radius).

Semitransparent Gradients
Next, you will see how to create the rectangle, which has a yellow semitransparent linear gradient.
For our yellow rectangle you will use a linear gradient (LinearGradient) paint.

Table 2-3 presents the JavaFX 8 Javadoc definitions found for the LinearGradient class. You can
find the definitions also at the following URL:

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html

Table 2-3. LinearGradient Properties

Property Data Type Description

startX Double X coordinate of the gradient axis start point.

startY Double Y coordinate of the gradient axis start point.

endX Double X coordinate of the gradient axis end point.

endY Double Y coordinate of the gradient axis end point.

proportional Boolean Whether the coordinates are proportional to the shape which this
gradient fills. When set to true use unit square coordinates, otherwise
use scene/screen coordinate system.

cycleMethod CycleMethod Cycle method applied to the gradient.

stops List<Stop> Gradient’s color specification.

Table 2-2. RadialGradient Properties

Property Data Type Description

focusAngle Double Angle in degrees from the center of the gradient to the focus point to
which the first color is mapped.

focusDistance Double Distance from the center of the gradient to the focus point to which
the first color is mapped.

centerX Double X coordinate of the center point of the gradient’s circle.

centerY Double Y coordinate of the center point of the gradient’s circle.

radius Double Radius of the circle defining the extents of the color gradient.

proportional boolean Coordinates and sizes are proportional to the shape this gradient fills.

cycleMethod CycleMethod Cycle method applied to the gradient.

Stops List<Stop> Gradient’s color specification.

http://download.java.net/jdk8/jfxdocs/index.html?javafx/scene/paint/LinearGradient.html

53CHAPTER 2: JavaFX Fundamentals

To create a linear gradient paint, you specify startX, startY, endX, and endY for the start and end
points. The start and end point coordinates denote where the gradient pattern begins and stops.

To create the second shape in Figure 2-10, the yellow rectangle, you set the start X and Y to
(0.0, 0.0), end X and Y to (0.0, 1.0), proportional to true, the cycle method to no cycle
(CycleMethod.NO_CYCLE), and two color stop values to yellow (Color.YELLOW) and black (Color.BLACK)
with an alpha transparency of .784.These settings give a linear gradient to our rectangle from top to
bottom with a starting point of (0.0, 0.0) (the top left of a unit square) that interpolates to the color
black to an end point of (0.0, 1.0) (the bottom left of a unit square).

Reflective Cycle Gradients
Finally, at the bottom of Figure 2-10 you’ll notice a rounded rectangle with a repeating pattern of a
gradient using green and black in a diagonal direction. This is a simple linear gradient paint that is
the same as the linear gradient paint (LinearGradient) except that the start X, Y and end X, Y values
are set in a diagonal position, and the cycle method is set to reflect (CycleMethod.REFLECT). When
specifying the cycle method to reflect (CycleMethod.REFLECT), the gradient pattern will repeat or
cycle between the stop colors. The following code snippet implements the rounded rectangle having
a cycle method of reflect (CycleMethod.REFLECT):

LinearGradient cycleGrad = new LinearGradient(
 50, // start X
 50, // start Y
 70, // end X
 70, // end Y
 false, // proportional
 CycleMethod.REFLECT, // cycleMethod
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784))
);

Drawing Text
Another basic JavaFX node is the Text node. Text nodes allow you to display a string of characters
onto the scene graph. To create Text nodes on the JavaFX scene graph you will use the javafx.
scene.text.Text class. Because all JavaFX scene nodes extend from javafx.scene.Node they will
inherit many capabilities such as the ability to be scaled, translated, or rotated.

Based on the Java inheritance hierarchy, the Text node’s direct parent is a javafx.scene.shape.Shape
class which provides even more capabilities than the Node class. Because a Text node is both a Node and
a Shape object it is able to perform geometric operation between two shape areas such as subtract,
intersect, or union. You can also clip viewport areas with a shape similar to stenciled letters.

To demonstrate drawing text, in this section you will look at a basic example of how to draw text
nodes on the scene graph. This example will touch on the following three capabilities:

Positioning 	 Text nodes using (x, y) coordinates

Setting a 	 Text node’s stroke color

Rotating a 	 Text node about its pivot point

54 CHAPTER 2: JavaFX Fundamentals

To make things a little interesting, we will create 100 Text nodes and produce random values for the
three capabilities just mentioned. Figure 2-11shows our drawing text example in action.

Figure 2-11. Drawing text

The DrawingText.java code shown in Listing 2-4 creates 100 Text nodes with randomly generated
values for the following attributes:

x, y coordinates	

RGB fill color	

Angle of rotation (degrees).	

The code first creates a loop to generate random (x, y) coordinates to position Text nodes. In the
loop, it creates random RGB color components between 0 and 255 to be applied to the Text nodes.
Setting all components to zero produces black. Setting all three RGB values to 255 produces the
color white.

Listing 2-4. DrawingText.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 2 Drawing Text");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);
 Random rand = new Random(System.currentTimeMillis());
 for (int i = 0; i < 100; i++) {
 int x = rand.nextInt((int) scene.getWidth());
 int y = rand.nextInt((int) scene.getHeight());
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);

55CHAPTER 2: JavaFX Fundamentals

 Text text = new Text(x, y, "JavaFX 8");

 int rot = rand.nextInt(360);
 text.setFill(Color.rgb(red, green, blue, .99));
 text.setRotate(rot);
 root.getChildren().add(text);
 }

 primaryStage.setScene(scene);
 primaryStage.show();
}

The rotation angle (in degrees) is a randomly generated value from 0–360 degrees, which causes the
baseline of the text to be tilted. According to the API documentation the setRotate() method will
rotate about the pivot point, which is the center of the untransformed layout bounds (layoutBounds)
property. Basically, the pivot point is the center of a node that has no transforms (scaling, translating,
shearing, rotating, and so on) applied.

Figure 2-12. Text node’s baseline (x, y) coordinate position

Note If you need to use a combination of transforms, such as rotate, scale, and translate, take a look at the
getTransforms().add(...) method. For more details on the difference between bounds in local, bounds
in parent, and layout bounds, please see the Javadoc documentation.

The following code is used in DrawingText.java to create random values for a Text node’s x and y
position (baseline), color, and rotation:

int x = rand.nextInt((int) scene.getWidth());
int y = rand.nextInt((int) scene.getHeight());
int red = rand.nextInt(255);
int green = rand.nextInt(255);
int blue = rand.nextInt(255);
int rot = rand.nextInt(360);

Once the random values are generated, they are applied to the Text nodes, which will be drawn onto
the scene graph. Each Text node maintains a text origin property that contains the starting point of
its baseline. In Latin-based alphabets, the baseline is an imaginary line underneath letters, similar to
books on a bookshelf. However, some letters, such as the lowercase j, extend below the baseline.
When specifying the x and y coordinate of the Text node you will be positioning the start of the
baseline. In Figure 2-12, the x and y coordinate is located left of the lowercase j on the baseline in
the text node “javafx 8.”

56 CHAPTER 2: JavaFX Fundamentals

The following code snippet applies (x, y) coordinates, color (RGB) with an opacity .99 and a rotation
(angle in degrees) to the Text node:

Text text = new Text(x, y, "JavaFX 8");
text.setFill(Color.rgb(red, green, blue, .99));
text.setRotate(rot);

root.getChildren().add(text);

You should be starting to see the power of the scene graph API in its ease of use, especially when
working with Text nodes. Here you were able to position, colorize, and rotate text. To spruce things
up a bit more, you will next see how to change a text’s font and apply effects.

Changing Text Fonts
JavaFX’s Font API enables you to change font styles and font sizes in the same way as word
processing applications. To demonstrate it, I created a JavaFX application that displays four text nodes
with the string value of “JavaFX 8 Intro by Example,” each having a different font style. In addition to
the font styles I also added effects such as a drop shadow (DropShadow) and reflection (Reflection).

Figure 2-13 shows the example’s output, and Listing 2-5 shows the ChangingTextFonts.java
source code.

Figure 2-13. Changing text fonts

Listing 2-5. ChangingTextFonts.java

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 2 Changing Text Fonts");

 System.out.println("Font families: ");
 Font.getFamilies()
 .stream()
 .forEach(i -> System.out.println(i));
 System.out.println("Font names: ");
 Font.getFontNames()
 .stream()
 .forEach(i -> System.out.println(i));

57CHAPTER 2: JavaFX Fundamentals

 Group root = new Group();
 Scene scene = new Scene(root, 580, 250, Color.WHITE);

 // Serif with drop shadow
 Text text2 = new Text(50, 50, "JavaFX 8: Intro. by Example");
 Font serif = Font.font("Serif", 30);
 text2.setFont(serif);
 text2.setFill(Color.RED);
 DropShadow dropShadow = new DropShadow();
 dropShadow.setOffsetX(2.0f);
 dropShadow.setOffsetY(2.0f);
 dropShadow.setColor(Color.rgb(50, 50, 50, .588));
 text2.setEffect(dropShadow);
 root.getChildren().add(text2);

 // SanSerif
 Text text3 = new Text(50, 100, "JavaFX 8: Intro. by Example");
 Font sanSerif = Font.font("SanSerif", 30);
 text3.setFont(sanSerif);
 text3.setFill(Color.BLUE);
 root.getChildren().add(text3);

 // Dialog
 Text text4 = new Text(50, 150, "JavaFX 8: Intro. by Example");
 Font dialogFont = Font.font("Dialog", 30);
 text4.setFont(dialogFont);
 text4.setFill(Color.rgb(0, 255, 0));
 root.getChildren().add(text4);

 // Monospaced
 Text text5 = new Text(50, 200, "JavaFX 8: Intro. by Example");
 Font monoFont = Font.font("Monospaced", 30);
 text5.setFont(monoFont);
 text5.setFill(Color.BLACK);
 root.getChildren().add(text5);

 // Reflection
 Reflection refl = new Reflection();
 refl.setFraction(0.8f);
 refl.setTopOffset(5);
 text5.setEffect(refl);

 primaryStage.setScene(scene);
 primaryStage.show();
}

Note Listing 2-5, ChangingTextFonts.java, presents only the start() method, which is the heart
of the example application. To see the full code listing please download the book’s full example code from
Apress.com.

http://Apress.com

58 CHAPTER 2: JavaFX Fundamentals

With Text nodes JavaFX takes a retained-mode approach, in which nodes are using vector-based
graphics rendering instead of an immediate mode rendering. The immediate mode uses bitmap
graphic rendering strategies. By using vector-based graphics you will have nifty advantages over
bitmap graphics. The major advantage is that it allows you to scale shapes and apply different
effects without pixilation (the jaggies). For example, in an immediate mode rendering the image
becomes grainy when scaled larger; however, in retained mode you will have smooth (anti-aliased)
shapes. It’s nice to be able to see beautiful type fonts (typography) that are smooth at all sizes.

ChangingTextFonts.java focuses on the following JavaFX classes to be applied to the Text node.
The code uses the Serif, SanSerif, Dialog, and Monospaced fonts along with the drop shadow and
reflection effects.

	javafx.scene.text.Font

	javafx.scene.effect.DropShadow

	javafx.scene.effect.Reflection

The code begins by setting the title on the stage. Next, you will notice the new Java 8 language
lambdas feature at work, where the code lists the current system’s available font families and font
names. If you are new to lambdas, in Chapter 3 you will take a closer look at the concept, but for
right now you can think of it as an elegant way to iterate over collections. The font family and font
name list will be printed on the console output. This is very convenient for you to later experiment
with different font styles. The following lines list the available fonts on the current system using
Java 8’s lambda syntax (as we’ll discuss in Chapter 3):

System.out.println("Font families: ");
Font.getFamilies()
 .stream()
 .forEach(i -> System.out.println(i));
System.out.println("Font names: ");
Font.getFontNames()
 .stream()
 .forEach(i -> System.out.println(i));

Note In case the selected font is not installed on your system, Text will use a default font. If you can find
this font, download and install it, to get the proper rendering.

A fter listing the available fonts, the code creates a root node with a background color for its scene.
Before drawing the first Text node, let’s quickly discuss how to obtain a font. To obtain a font the
code invokes the static method font() from the Font class. When calling the font() method, you
can specify the font name and the point size to return a suitable font to the caller. A font name is a
string value that represents a system’s supported font types. Secondly, is the point size or standard
sizing value for fonts. Please refer to the Javadoc documentation to see the other ways to obtain
system fonts. The following lines show the creation of a Text node instance and obtaining a 30 point
Serif font. Once the font is obtained the Text node setFont() method is used to apply the font.

59CHAPTER 2: JavaFX Fundamentals

Text text = new Text(50, 50, "JavaFX 8: Intro. by Example");
Font serif = Font.font("Serif", 30);
text.setFont(serif);

Note Although, the example listing 2-5 uses absolute positioning of text nodes at some point you may want to
display text nodes with the ability to wrap several text nodes while keeping their own font formatting in the
same layout. To achieve this behavior refer to JavaFX 8’s new TextFlow API. Refer to the Javadoc documentation
at: http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html.

Applying Text Effects
In the first Text node in the ChangingTextFonts.java example, the code adds a drop shadow effect.
In JavaFX a drop shadow is an actual effect (DropShadow) object and is applied to a single Text node
instance without the need of multiple images layered. The DropShadow object is set to be positioned
based on an x, y offset in relation to the Text node. You also have the ability to set the color of the
shadow; here the code will set the shadow color to gray with 0.588 opacity. Opacity is a range
between 0 and 1 (double) where 0 is transparent and 1 is fully opaque. The following is an example
of setting a Text node’s effect property with a drop shadow effect (DropShadow):

DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
text2.setEffect(dropShadow);

Although this example is about setting text fonts, it also demonstrates applying a drop shadow effect
to Text nodes. The ChangingTextFonts.java example includes yet another effect. While creating
the last Text node using the monospaced font, I’ve applied the popular reflection effect. Calling the
setFraction() method with 0.8f is essentially specifying that you want 80 percent of the reflection to
be shown. The reflection values range from zero (0%) to one (100%). In addition to the fraction to be
shown, the reflection’s gap or top offset can be set. In other words the space between the opaque
node portion and the reflection portion is adjusted by the setTopOffset() method. The top offset
defaults to zero. The following code snippet implements a reflection of 80% with a float value of 0.8f
and a top offset of five pixels:

Reflection refl = new Reflection();
refl.setFraction(0.8f);
refl.setTopOffset(5);
text5.setEffect(refl);

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html

60 CHAPTER 2: JavaFX Fundamentals

Summary
In this chapter you learned the fundamentals of drawing 2D shapes on the JavaFX scene graph.
You gained insight into the difference between the Cartesian and screen coordinate systems. This
furthered your knowledge of how to draw shape nodes onto the JavaFX scene graph. Our first
example was the basic shape of a line using the JavaFX Line class. Here, you delved deeper into
the common properties of the parent class (Shape). Some of the common properties discussed were
setting the shape’s stroke width, stroke color, and dash pattern. Next, you explored simple, complex,
and custom shapes by drawing fun cartoon-like images. After creating shapes, you learned how
to paint them using colors. You not only used standard RGB colors, you also used various built-in
techniques such as a linear (LinearGradient) and radial (RadialGradient) gradient paint. Finally, you
worked with JavaFX’s Text node. Using the Text node you were able to obtain the available system
fonts and also apply effects such as drop shadow (DropShadow) and reflection (Reflection).

In our last example which detailed changing text fonts, you learned how to iterate over a list of
system fonts using Java 8’s new stream API and lambda expressions. In chapter 3 you will be
introduced with Java 8’s lambdas and properties.

61

Chapter 3
Lambdas and Properties

In this chapter you will learn about the new language feature introduced in Java 8 called lambda
expressions, or lambdas, and I will also discuss JavaFX properties and binding APIs. The goal of this
chapter is to demonstrate how lambdas and properties will be used in the context of JavaFX GUI
applications. Having said this, I will mainly concentrate on the common features that will be used in
most of the examples in this book, and will not detail every lambda and properties feature.

To get a better idea of Java’s lambda roadmap, please visit the following article by Brian Goetz,
who is Oracle’s Java Language Architect:

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

The term lambda derives from what is known in mathematics as lambda calculus. The general
concepts from that field are used to derive the specific behaviors that have been added to Java,
which are described in this chapter. Figure 3-1 shows the Greek letter lambda, which you sometimes
see in connection with the topic.

Figure 3-1. The Greek Symbol for Lambda

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

62 CHAPTER 3: Lambdas and Properties

Lambda
Java Lambda is based on JSR (Java Specification Request) 335, “Lambda Expressions for the
Java™ Programming Language.” The feature was appropriately named after lambda calculus, the
formal system in mathematical logic and computer science to express computations. JSR 335,
better known as Project Lambda, comprised many features, such as expressing parallel calculations
on streams (the Stream API).

A primary goal of lambdas is to help address the lack in the Java language of a good way to express
functional programming concepts. Languages that support functional programming concepts have
the ability to create anonymous (unnamed) functions, similar to creating objects instead of methods
in Java. These function objects are commonly known as closures. Some common languages that
support closures or lambdas are Common Lisp, Clojure, Scheme, Scala, Groovy, Python, Ruby, and
JavaScript.

Some will argue about what a closure is and what it is not; however the main idea is that languages
that support functional programming with closure syntax are able to create anonymous functions as
first-class citizens. In other words, functions or closures can be treated like objects, so that they can
be assigned to variables and passed into other functions. In order to mimic closures in the previous
Java world (Java 1.1 to Java 7), you would typically use anonymous inner classes to encapsulate
functions (behavior) as objects. Listing 3-1 shows an example of an anonymous inner class that
defines handler code for a JavaFX button when pressed.

Listing 3-1. A Button’s OnAction Set with an Anonymous Inner Class

Button btn = new Button();
btn.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent event) {
 System.out.println("Hello World");
 }
});

You will notice that this code looks very verbose just to wire up a button. Buried deep in an anonymous
inner class is a single line to output text. Wouldn’t it be nice to be able to express a block of code
containing the behavior you want without the need of so much boilerplate code? Look no further.
Java 8 solves this issue with the use of lambda expressions (closures). To see how it looks with Java
8 lambda expressions, let’s rewrite the button handler code just shown. Listing 3-2 is our button’s
EventHandler code rewritten as a Java 8 lambda expression.

Listing 3-2. A Button’s OnAction Set with a Lambda Expression

btn.setOnAction(event -> System.out.println("Hello World"));

Using lambda expressions not only makes code concise and easy to read, but the code is also likely
to perform better. Actually, under the hood the compiler is capable of optimizing code and able to
reduce its footprint.

63CHAPTER 3: Lambdas and Properties

Lambda Expressions
As discussed before, lambda expressions are Java 8’s version of closures. In the same way other
languages create closures syntactically, you will also be able to reference them and pass them into
other methods. In order to achieve this ability you will later learn about functional interfaces. But for
now, let’s look at the basic syntax for lambda expressions.

Syntax
There are two ways to specify lambda expressions. The following simple examples illustrate the
general forms:

(param1, param2, ...) -> expression;

(param1, param2, ...) -> { /* code statements */ };

Lambda expressions begin with a list of parameters surrounded by parentheses, the arrow
symbol -> (a hyphen and a greater-than sign), and an expression body. Similar to Java methods, the
parentheses are for parameters that are passed into an expression. When the expression doesn’t
accept parameters (and is said to be empty), the parentheses still are required. Separating the
parameter list and the expression body is the arrow symbol. The expression body or code block may
or may not be surrounded by curly braces. When the expression body doesn’t have surrounding
curly braces, it must consist of only one statement. When an expression is a one-line statement, it
is evaluated and returned to the caller implicitly. Just remember that if the method requires a return
type and your code block has curly braces, you must have a return statement. Listing 3-3 shows
two equivalent lambda expressions, with and without curly braces.

Listing 3-3. One Statement with an Explicit Return, and the Other with an Implicit Return

x -> { return x * x; } // must explicitly return result
x -> x * x; // evaluates and implicitly returns result

Another thing to note is that parameters can be optionally typed. The compiler will infer the type
of the parameters depending on the context. For example, when you set a JavaFX button by
using the setOnAction() method, the compiler can figure out the lambda parameters by matching
the method’s argument types (its signature) and its return type. Sometimes for readability you
can optionally specify the type of each parameter. If you specify the type, you will be required to
surround the list of parameters in parentheses. The following line specifies the type (ActionEvent) of
the parameter for the lambda expression for a JavaFX button’s setOnAction() method.

btn.setOnAction((ActionEvent event) -> System.out.println("Hello World"));

You will also notice that it is okay to leave off the semicolon for a one line statement that is inside
methods, such as the setOnAction() method here. One last piece of syntactic sugar is that if you
have one parameter to be passed into your lambda, the parentheses can be omitted. Following is a
lambda expression that has one parameter (event) without parentheses.

btn.setOnAction(event -> System.out.println("Hello World"));

As a recap of the syntax variations just discussed, the statements in Listing 3-4 are all equivalent
lambda expressions.

64 CHAPTER 3: Lambdas and Properties

Listing 3-4. Three Syntactically Equivalent Lambda Expressions to Set Action Code on a JavaFX Button

btn.setOnAction((ActionEvent event) -> {System.out.println("Hello World"); });
btn.setOnAction((event) -> System.out.println("Hello World"));
btn.setOnAction(event -> System.out.println("Hello World"));

Variable Capture
Typically in functional programming languages, the use of closures (lambda expressions) allows
you to use variables outside the closure’s scope. These variables are often described as nonlocal
or capture variables because they aren’t locally scoped to the lambda expression or method. When
these nonlocal variables are used in lambda expressions, they need to be immutable. This is a key
principle in the functional programming world. New to the Java 8 compiler is the ability to reference
variables outside the scope of an anonymous inner class or lambda expression.

When using lambda expressions you can optionally reference variables scoped outside the closure
function. Typically, prior to Java 8 these nonlocal variables needed to be final (immutable). This
immutable state enables the compiler to better predict program behavior and thus capable of
optimizing code. In Java Swing development, this occurred often when variables of the enclosing
scope needed to be used inside the scope of an anonymous inner class method (local variable
scope). In order to abide by the compiler rules you had to declare a variable as final.

The Java 8 compiler has a new capability that will infer the intent of nonlocal variables passed into
anonymous inner class methods and lambda expressions to then be converted to final (immutable).
To see how we old-school Java Swing developers (prior to Java 8) used to receive compile-time
errors, please look at Listing 3-5. The scenario is a button that will modify the text of a Swing JLabel
component after the button is pressed. Prior to Java 8, the code would not compile correctly,
because the label variable needed to be declared final.

Listing 3-5. Code That Would Receive a Compiler Error Prior to JDK 8

// Prior to Java 8
JLabel label = new JLabel("Press Me"); // nonlocal variable to actionPerformed()
btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 label.setText("Pressed"); // !Compile Error! Variable label must be final.
 }
});

New to Java 8 is the ability to convert nonlocal variables to be final. In Listing 3-6 you’ll notice that
the code is identical except for the comments. Starting with Java 8, you can now make use of the
variable capture capability with anonymous inner classes and lambda expressions.

Listing 3-6. Code That Compiles Successfully in JDK 8

// New in Java 8
JLabel label = new JLabel("Press Me"); // nonlocal variable
// compiler implicitly converts label as a final (immutable) variable
btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 label.setText("Pressed"); // Legal. Variable label is converted to be final
 }
});

65CHAPTER 3: Lambdas and Properties

Both of the code examples shown in Listing 3-6 are identical. The difference comes when using a
JDK 8 compiler. When using the Java 8 compiler, the capture variable will implicitly become final
(immutable), and that will occur without triggering any compilation error.

Functional Interfaces
Now that you know how to create lambda expressions, you may be wondering what exactly a lambda
expression’s type is. Another way to think about this is to ask questions such as the following:

How can I assign a lambda expression to a variable?	

How can I create a method with parameters that accepts lambda expressions?	

To answer these questions you will be looking at examples of Java 8’s functional interfaces. Before
we get into the details, however, I’ll give you some context about functional programming languages
and how they differ from imperative languages.

Functional vs. Imperative Languages
The advent of cloud computing has helped to popularize many functional programming languages.
It became apparent there was a paradigm shift in problem-solving that involves extremely large
datasets. A typical use case when applying functional programming techniques is the ability to
iterate over datasets while performing computations in a distributed fashion so that load can be
shared among nodes or CPU cores. In contrast, imperative programming languages gather data to
then be passed into a tight for-loop to be processed. Because of how data and code are coupled,
this puts a lot of the burden on one thread (core) to process so much data. The problem needs
to be decomposed to allow other threads (cores) to participate in the computation, which then
becomes distributed.

One of the advantages of functional programming is the ability to express functionality in a
syntactically concise manner, but more important is the ability to pass functionality (lambda
expressions) to methods. Being able to pass lambda expressions to methods often fosters the
concept of lazy evaluation. This behavior is the same as function callback behavior (asynchronous
message passing), where invocations are deferred (and thus “lazy”) until a later time. The opposite
of lazy evaluation is eager evaluation. Using lazy evaluations will often increase performance by
avoiding unnecessary calculations.

Another important topic to discuss is how functional interfaces are used as closures in the Java
language. Instead of implementing functions as first-class types in Java, the designers/architects
of the Java Language cleverly defined the notion of functional interfaces as closures. Simply put,
a functional interface is basically a single abstract method (SAM). The idea of functional interfaces
has been around for a very long time. For instance, those who have worked with Java threads will
recall using the Runnable interface, where there is a single run() method with a void return type. The
single abstract method pattern is an integral part of Java 8’s lambda expressions. As an example
of a functional interface, I created an interface called MyEquation with a single abstract compute()
method. Once it is created, you can declare and assign variables with a lambda expression. Listing 3-7
is a functional interface that has a single abstract compute() method.

66 CHAPTER 3: Lambdas and Properties

Listing 3-7. A Declared Functional Interface with a Single Abstract Method, compute()

// functional interface
interface MyEquation {
 double compute(double val1, double val2);
}

After creating a functional interface, you can declare a variable to be assigned with a lambda
expression. Listing 3-8 demonstrates the assignment of lambda expressions to functional
interface variables.

Listing 3-8. Two Variables of a Functional Interface, Assigned with Lambda Expressions

MyEquation area = (height, width) -> height * width;
MyEquation perimeter = (height, width) -> 2*height + 2*width;

System.out.println("Area = " + area.compute(3, 4));
System.out.println("Perimeter = " + perimeter.compute(3, 4));

The following is the output of Listing 3-8:

Area = 12.0
Perimeter = 14.0

Aggregate Operations
Another powerful use of Java 8’s lambda expressions is working with collections. Java 8 introduces
the new Stream API (java.util.stream.*), which allows you to process elements from a given
source. A source can be a reference to data structures such as collections or IO channels. According
to Oracle’s Java 8 documentation (Javadoc) on the Stream API, “a stream is not a data structure
that stores elements; instead, they carry values from a source (which could be a data structure, a
generator, an IO channel, etc.) through a pipeline of computational operations.”

A pipeline is a sequence of operations (lambda expressions/functional interfaces) that can process
or interrogate each element in a stream. Such operations allow you to perform aggregate tasks.
Aggregate operations are similar to the way spreadsheets can execute some computation over
a series of cells, such as formatting, averaging, or summing up values. To begin using aggregate
operations on collections, you will first invoke the default stream() method on the java.util.
Collection interface. You’ll learn more about default methods shortly, but for now all collections
(Collection) have a method stream() that returns a java.util.stream.Stream instance. Listing 3-9
is a snippet of code that obtains a stream of elements from a source collection (List<Integer>).

Listing 3-9. A Stream Obtained by Invoking the stream() Method from a Collection

List<Integer> values = Arrays.asList(23, 84, 74, 85, 54, 60);
Stream<Integer> stream = values.stream();

67CHAPTER 3: Lambdas and Properties

The common built-in aggregate operations are filter, map, and forEach. A filter allows you to
pass in an expression to filter elements and returns a new Stream containing the selected items.
The map operation converts (or maps) each element to another type and returns a new Stream
containing items of the mapped type. For instance, you may want to map Integer values to
String values of a stream. A forEach operation allows you to pass in a lambda expression to
process each element in the stream.

A typical use case to exercise the three common aggregate operations would be this: given a
collection of integers, filter on values greater than a threshold value (a nonlocal variable), convert
filtered items to hex values, and print each hex value. Listing 3-10 implements the use case, which
exercises various aggregate operations.

Listing 3-10. The Use of Aggregate Operations Over a Collection of Integers

// create a list of values
List<Integer> values = Arrays.asList(23, 84, 74, 85, 54, 60);
System.out.println("values: " + values.toString());

// nonlocal variable to be used in lambda expression.
int threshold = 54;
System.out.println("Values greater than " + threshold + " converted to hex:");
// using aggregate functions filter() and forEach()
values.stream()
 .filter(val -> val > threshold) // Predicate functional interface
 .sorted()
 .map(dec -> Integer.toHexString(dec).toUpperCase()) // Consumer functional interface
 .forEach(val -> System.out.println(val)); // each output values.

Following is the output from Listing 3-10:

values: [23, 84, 74, 85, 54, 60]
Values greater than 54 converted to hex:
3C
4A
54
55

In Listing 3-10 the code begins by creating a list of integers as a collection. Next, it outputs the
original list of elements (unmodified). Then the code declares a nonlocal variable to the lambda
expression called threshold, to be used in a filter expression. Next, we obtain a stream from the
values collection (via stream() method) to perform aggregate operations.

The first operation is a filter that receives a lambda expression to filter elements (integers) greater
than 54 (val > threshold). The next operation is the sorted() method, which sorts elements that
were returned from the filter method stream. Continuing the method chaining, notice the map
operation. The map() method operation is able to map each element in the stream from one data
type to another.

68 CHAPTER 3: Lambdas and Properties

In this scenario the stream elements are Integer objects, which are mapped to String objects. The
map() method returns another stream, containing elements of type Stream<String>. In this example
the string elements are hexadecimal values. Finally, the forEach() operation iterates over each
element in the stream of string (hex) elements to be printed.

You’ll notice that as each aggregate function is called, the return type is a Stream object, which
allows you to method-chain operations in a way very similar to the builder pattern. To clarify, the idea
of method chaining actually comes from the fluent interface pattern for API design.

Default Methods
Default methods are a new way to add default implementation methods to Java interfaces. You’re
probably scratching your head and thinking out loud, “Java interfaces can have implementations?!”
Yes, Java 8 now has support for the concept, called virtual extension methods, better known as
defender methods. Default methods have the effect of adding (extending) new behavior to interfaces
without breaking compatibility. Default methods are not abstract methods but methods having
implementation (code).

For example, adding new methods to Java interfaces can affect all implementation classes. Because
of the strict contract of Java interfaces, the compiler forces the implementer to implement abstract
methods, but classes that implement interfaces with default methods do not force the developer to
implement those default methods. Rather, derived classes will acquire the behavior of the default
method implementation.

An Example Case: Cats Large and Small
It might not be obvious, but the method stream() on the Collection interface used earlier for
aggregate operations isn’t an abstract method, but actually a Java 8 default method. Listing 3-11
is the default method stream() in the java.util.Collection interface from the Java 8 source code.

Listing 3-11. The Default Method stream() of Java 8’s Collection Interface

default Stream<E> stream() {
 return StreamSupport.stream(spliterator, false);
}

For this example I created a domain model (consisting of classes and interfaces) about cats (grrr, meow).
The cat kind or species can easily demonstrate default behavior that is found in some cat kinds and
not others. For instance, the great cats such as lions, tigers, and jaguars are able to roar, and smaller
cats can purr. Also, a house (domestic) cat is able to meow. To further describe these behavioral
traits, let’s look at Figure 3-2, a class diagram depicting default behavior between cat kinds.

69CHAPTER 3: Lambdas and Properties

Looking at the Tiger and Lion classes, you’ll notice they each implement both Roarable and Cat
interfaces. Both tigers and lions have the same behavior (can roar) via the default roar() method from
the Roarable interface. Keep in mind that the Roarable interface doesn’t have any abstract methods,
but rather a default method roar(), which both Lion and Tiger acquire without implementing it.

In contrast, if the Roarable interface had roar() as an abstract method (a pure virtual function), you
would have to implement roar() in both Tiger and Lion’s concrete classes. With both having the same
functionality in two places, later down the road things could become a major maintenance nightmare.
That’s why default methods allow you to add behavior without having to modify derived classes.

Code for the Example
To see the class diagram in Figure 3-2 implemented as code, refer to Listings 3-12 through 3-19.
To implement the class diagram I will briefly outline the three parts of the code example. First is
the set of cat interfaces with default method behaviors. Second are the concrete cat classes such
as Lion, Cheetah and HouseCat. Last is the main example application, which demonstrates default
methods in action.

In Listings 3-12 through 3-15 are the UML interfaces Roarable, Purrable, Meowler and Cat, each
containing a default method.

Listing 3-12. The Roarable Interface with a Default Method roar()

public interface Roarable {
 default void roar() {
 System.out.println("Roar!!");
 }
}

Figure 3-2. Cat domain model represented in a UML class diagram

70 CHAPTER 3: Lambdas and Properties

Listing 3-13. The Purrable Interface with a Default Method purr()

public interface Purrable {
 default void purr() {
 System.out.println("Purrrrrrr...");
 }
}

Listing 3-14. The Meowler Interface with a Default Method meow()

public interface Meowler {
 default void meow() {
 System.out.println("MeeeeOww!");
 }
}

Listing 3-15. The Main Cat Interface with Both Abstract and Default Methods

/**
 * This represents an abstract Cat containing default methods common to all cats.
 * @author carldea
 */
public interface Cat {
 String getCatKind();
 String getFurDescription();

 default void growl() {
 System.out.println("Grrrrowl!!");
 }
 default void walk() {
 System.out.println(getCatKind() + " is walking.");
 }
 default void eat() {
 System.out.println(getCatKind() + " is eating.");
 }
 default void sleep() {
 System.out.println(getCatKind() + " is sleeping.");
 }
}

Shown in Listings 3-16 through 3-18 are the concrete implementation classes Lion, Cheetah,
and HouseCat, which utilize the interfaces just shown.

Listing 3-16. The Lion Class Implementing the Cat and Roarable Interfaces

public class Lion implements Cat, Roarable {
 @Override
 public String getCatKind() {
 return getClass().getSimpleName();
 }
 @Override
 public String getFurDescription() {
 return "gold-brown";
 }
}

71CHAPTER 3: Lambdas and Properties

Listing 3-17. The Cheetah Class Implementing the Cat and Purrable Interfaces

public class Cheetah implements Cat, Purrable {
 @Override
 public String getCatKind() {
 return getClass().getSimpleName();
 }
 @Override
 public String getFurDescription() {
 return "spotted";
 }
}

Listing 3-18. The HouseCat Class Implementing the Cat, Purrable, and Meowler Interfaces

public class HouseCat implements Cat, Purrable, Meowler {
 @Override
 public String getCatKind() {
 return "Domestic Cat";
 }
 @Override
 public String getFurDescription() {
 return "mixed brown and white";
 }
}

Listing 3-19 is the main application, which invokes all of the methods of cat instances,
demonstrating their behaviors.

Listing 3-19. The Main Application File (Mixins.java) That Executes the Code Example

/**Demonstrates default methods in Java 8.
 * Mixins.java
 *
 * @author carldea
 */
public class Mixins {
 public static void main(String[] args) {
 Tiger bigCat = new Tiger();
 Cheetah mediumCat = new Cheetah();
 HouseCat smallCat = new HouseCat();

 System.out.printf("%s with %s fur.\n", bigCat.getCatKind(),
 bigCat.getFurDescription());
 bigCat.eat();
 bigCat.sleep();
 bigCat.walk();
 bigCat.roar();
 bigCat.growl();
 System.out.println("------------------");
 System.out.printf("%s with %s fur.\n", mediumCat.getCatKind(),
 mediumCat.getFurDescription());

72 CHAPTER 3: Lambdas and Properties

 mediumCat.eat();
 mediumCat.sleep();
 mediumCat.walk();
 mediumCat.growl();
 mediumCat.purr();
 System.out.println("------------------");
 System.out.printf("%s with %s fur.\n", smallCat.getCatKind(),
 smallCat.getFurDescription());
 smallCat.eat();
 smallCat.sleep();
 smallCat.walk();
 smallCat.growl();
 smallCat.purr();
 smallCat.meow();
 System.out.println("------------------");

 }
}

Following is the output from Listing 3-19, which demonstrates default method invocations:

run:
Tiger with striped fur.
Tiger is eating.
Tiger is sleeping.
Tiger is walking.
Roar!!
Grrrrowl!!

Cheetah with spotted fur.
Cheetah is eating.
Cheetah is sleeping.
Cheetah is walking.
Grrrrowl!!
Purrrrrrr...

Domestic Cat with mixed brown and white fur.
Domestic Cat is eating.
Domestic Cat is sleeping.
Domestic Cat is walking.
Grrrrowl!!
Purrrrrrr...
MeeeeOww!

BUILD SUCCESSFUL (total time: 0 seconds)

73CHAPTER 3: Lambdas and Properties

Explanation of the Code
Figure 3-2, shown earlier, depicts a UML class diagram of a cat domain model. In the top layer, you’ll
notice the interfaces Roarable, Cat, Purrable, and Meowler. These interfaces provide behavior for any
derived class that wants to pick and choose (mixin) common behaviors.

The concrete implementation classes are Lion, Tiger, Cheetah, and HouseCat. You will notice that
the main interface Cat contains abstract methods getCatKind(), getFurDescription(), and default
methods walk(), eat(), and sleep(). As usual, the Java compiler will enforce classes implementing
the Cat interface to implement the abstract methods getCatKind() and getFurDescription().

The default methods on the Cat interface have implementation code that serves as functionality
for all cats. These default methods will provide behavior to the Cat interface while also centralizing
functionality (implementation) for all derived classes. I created empty (marker) interfaces Roarable,
Purrable, and Meowler, which contain respective default methods roar(), purr() and meow(). These
interfaces are similar to the idea of a mixin, which in object-oriented languages allows developers to
extend or add default behavior to any derived class or interface.

Listing 3-20 is the main class that begins by creating three cat objects: Tiger, Cheetah, and HouseCat.

Listing 3-20. Creating Three Types of Cat Instances

Tiger bigCat = new Tiger();
Cheetah mediumCat = new Cheetah();
HouseCat smallCat = new HouseCat();

After creating the cat objects, the code begins by exercising the default and abstract methods. It
invokes all of the methods on each cat object. Listing 3-21 shows a cat of type Tiger with all of its
methods being invoked.

Listing 3-21. All Methods Invoked on a Tiger Instance

System.out.printf("%s with %s fur.\n", bigCat.getCatKind(), bigCat.getFurDescription());
bigCat.eat();
bigCat.sleep();
bigCat.walk();
bigCat.roar();
bigCat.growl();
System.out.println("------------------");

Since the rest of the cat kinds have similar tasks, I won’t discuss them any further as I believe you
have a handle on things. If you’ve gotten this far, you’re a real trooper. Whenever I learn a new skill or
concept, I’m always reminded of the programming proverb, “If all you have is a hammer, everything
looks like a nail”. Getting to learn new language features can often be difficult, especially when
you’ve solved problems for so long without using these new and powerful concepts in Java.

I’ve only scratched the surface, so I encourage you to dig deeper into the features of Java 8. Now
that you’ve been able to equip yourself with new-found powers of lambdas, let’s get back on track
with JavaFX.

74 CHAPTER 3: Lambdas and Properties

Properties and Binding
Properties are basically wrapper objects for JavaFX-based object attributes such as String or
Integer. Properties allow developers to add listener code to respond when the wrapped value of an
object has changed or is flagged as invalid. Also, property objects can be bound to one another.
Binding behavior allows properties to update or synchronize their values based on a changed value
from another property.

UI Patterns
Before discussing JavaFX’s properties and bindings APIs, I would like to share with you a little bit
about UI patterns. When developing GUI applications you will inevitably encounter UI architectural
framework concepts such as model view controller (MVC), model view presenter (MVP), or model
view view-model (MVVM).

Depending on who you talk to, you might get different explanations; however, these concepts all
address the issue of how best to handle synchronization between the model and view. What this
means is that when a user interacts (input) with the UI (view) the underlying backend data store
(the model) is automatically updated, and vice-versa.

Without trying to oversimplify the concepts, I will refer you to the actual UI patterns that are involved.
The main UI patterns involved are the Supervising Controller, Presentation Model, and Mediator.
If you are interested in understanding more about UI patterns, please read “GUI Architectures” by
Martin Fowler at: http://martinfowler.com/eaaDev/uiArchs.html.

Because these patterns have been heavily discussed over the years, the JavaFX team has designed
and implemented APIs to overcome problems that arose with these UI scenarios. In this section you
will be learning how to use JavaFX properties and bindings to synchronize between your GUI and
your data objects. Of course, I can’t possibly cover all of the use-case scenarios involving the UI
patterns just mentioned, but hopefully I can give you the basics to get you on the right path.

Properties
Before the JavaFX properties API, Java Swing developers adhered to the JavaBean convention
(specification), which specifies that objects will contain privately scoped instance variables which
have associated getter (accessor) and setter (mutator) methods. For instance, a User class might
have a private instance variable password of type String. The associated getter and setter would be
the getPassword() and setPassword() methods, respectively. Listing 3-22 shows a User class that
follows the older JavaBean convention.

Listing 3-22. A Simple JavaBean Class with Getter and Setter Methods

public class User {
 private String password;
 public String getPassword() {
 return password;
 }

http://martinfowler.com/eaaDev/uiArchs.html

75CHAPTER 3: Lambdas and Properties

 public void setPassword(String password) {
 this.password = password;
 }
}

As a developer who follows the JavaBean convention, you will quickly see the naming convention
for the property, which is based on the getter and setter method names and not the private variable
name. In other words, if the getter method were named getPwd(), the property would be named pwd
and would have nothing to do with the attribute named password.

The JavaBeans specification also provided an API that has the concept of property change support
(java.beans.PropertyChangeSupport), which allowed the developer to add handler (listener) code
when the property changed. At the time, this solved only part of the issue of property change
support. The JavaBeans API started showing its age when it came to binding variables and working
with the Collections API. Although the JavaBeans API became a standard way to build domain
objects, it still lacked robust ways to synchronize the domain models and views within a GUI
application as described earlier.

Through the years the JavaBean specification and API gave rise to many third-party tools and
frameworks to ease the developer experience. However, wiring up GUI components to JavaBeans
using unidirectional or bidirectional binding still got pretty complicated. At times, developers would
have resources that were not properly released, which led to object leaks. Developers quickly
realized they needed a better way to bind and unbind GUI controls to be wired up to properties.

Types of JavaFX Properties
Let’s fast forward to JavaFX’s Properties API to see how it handles the common issues. We’ll first
discuss the different types of JavaFX-based properties. There are two types to be concerned about:

Read/Writable	

Read-Only	

In short, JavaFX’s properties are wrapper objects holding actual values while providing change
support, invalidation support, and binding capabilities. I will address binding later, but for now let’s
examine commonly used property classes.

Properties are wrapper objects that have the ability to make values accessible as read/writable
or read-only. All wrapper property classes are located in the javafx.beans.property.* package
namespace. Listed here are commonly used property classes. To see all of the property classes,
please refer to the documentation in Javadoc.

	javafx.beans.property.SimpleBooleanProperty

	javafx.beans.property.ReadOnlyBooleanWrapper

	javafx.beans.property.SimpleIntegerProperty

	javafx.beans.property.ReadOnlyIntegerWrapper

	javafx.beans.property.SimpleDoubleProperty

	javafx.beans.property.ReadOnlyDoubleWrapper

76 CHAPTER 3: Lambdas and Properties

	javafx.beans.property.SimpleStringProperty

	javafx.beans.property.ReadOnlyStringWrapper

The properties that have a prefix of Simple and a suffix of Property are the read/writable property
classes, and the classes with a prefix of ReadOnly and a suffix of Wrapper are the read-only
properties. Later, you will see how to create a JavaFX bean using these commonly used properties,
but for now let’s examine read/writable properties.

Read/Writable Properties
Read/writable properties are, as the name suggests, property values that can be both read and
modified. As an example, let’s look at JavaFX string properties. To create a string property that is
capable of both readable and writable access to the wrapped value, you will use the javafx.beans.
property.SimpleStringProperty class. Listing 3-23 is a code snippet that demonstrates an instance
of a SimpleStringProperty class and modifies the property via the set() method.

Listing 3-23. Creating a StringProperty Instance

StringProperty password = new SimpleStringProperty("password1");
password.set("1234");
System.out.println("Modified StringProperty " + password.get()); // 1234

Here a declared variable password of type StringProperty is assigned to an instance of a
SimpleStringProperty class. It’s always a good idea when declaring variables to be more
abstract in object-oriented languages. Thus, referencing a StringProperty exposes fewer
methods of the implementation class (SimpleStringProperty). Also notice that the actual value is
the string “password1”, which is passed into the constructor of the SimpleStringProperty class.
You will later discover other convenient constructor methods when working with JavaBeans and
Property objects.

In the case of reading the value back, you would invoke the get() method (or getValue()), which
returns the actual wrapped value(String) to the caller. To modify the value you simply call the set()
method (or setValue()) by passing in a string.

Read-Only Properties
To make a property read-only you would use the wrapper classes that are prefixed with ReadOnly
from the javafx.beans.property.* package. To create a property to be read-only you will
need to take two steps. First is to instantiate a read-only wrapper class and invoke the method
getReadOnlyProperty() to return a true read-only property object. Listing 3-24 creates a read-only
string property.

Listing 3-24. Creating a Read-Only String Property

ReadOnlyStringWrapper userName = new ReadOnlyStringWrapper("jamestkirk");
ReadOnlyStringProperty readOnlyUserName = userName.getReadOnlyProperty();

77CHAPTER 3: Lambdas and Properties

This code snippet actually takes two steps to obtain a read-only string property. You will notice
the call to getReadOnlyProperty(), which returns a read-only copy (synchronized) of the property.
According to the Javadoc API, the ReadOnlyStringWrapper class “creates two properties that are
synchronized. One property is read-only and can be passed to external users. The other property is
read- and writable and should be used internally only.” Knowing that the other property can be read
and written could allow a malicious developer to cast the object to type StringProperty, which then
could be modified at will. From a security perspective you should be aware of the proper steps to
create a true read-only property.

JavaFX JavaBean
Now that you’ve seen the JavaBean specification’s approach to creating domain objects, I will
rewrite the earlier JavaBean User class to use JavaFX properties instead. In the process of rewriting
the bean I also wanted to add an additional read-only property called userName to demonstrate the
read-only property behavior. Listing 3-25 shows the User class rewritten to use JavaFX properties.

Listing 3-25. The File User.java Rewritten as a JavaFX Bean

import javafx.beans.property.*;
public class User {
 private final static String USERNAME_PROP_NAME = "userName";
 private final ReadOnlyStringWrapper userName;
 private final static String PASSWORD_PROP_NAME = "password";
 private StringProperty password;
 public User() {
 userName = new ReadOnlyStringWrapper(this,
USERNAME_PROP_NAME, System.getProperty("user.name"));
 password = new SimpleStringProperty(this, PASSWORD_PROP_NAME, "");
 }

 public final String getUserName() {
 return userName.get();
 }
 public ReadOnlyStringProperty userNameProperty() {
 return userName.getReadOnlyProperty();
 }

 public final String getPassword() {
 return password.get();
 }
 public final void setPassword(String password) {
 this.password.set(password);
 }
 public StringProperty passwordProperty() {
 return password;
 }
}

78 CHAPTER 3: Lambdas and Properties

You may notice some obvious differences in the way I instantiated the ReadOnlyStringWrapper and
SimpleStringProperty classes. Similar to the JavaBean property change support, JavaFX properties
have constructors that will allow you to specify the bean itself, its property name, and its value. As
a simple example, Listing 3-26 shows the instantiations of a read-only and a read-writable property
using the JavaFX property change support-based constructors. The userName variable is assigned a
read-only property, and the password variable is assigned a read/writable property.

Listing 3-26. Instantiating a Read-Only and a Read-Writable Property

userName = new ReadOnlyStringWrapper(this, USERNAME_PROP_NAME, System.getProperty("user.name"));
password = new SimpleStringProperty(this, PASSWORD_PROP_NAME, "");

It is good practice to use the property change support-based constructors for many reasons, such
as third-party tooling and testing. But most of all, when dealing with property change support, you
will need access to the bean and its other properties.

One last thing to mention is that in Listing 3-25 you’ll also notice the getter and setter methods are
final. Making the getter and setter final prevents any derived classes from overriding and possibly
changing the underlying property.

Property Change Support
Property change support is the ability to add handler code that will respond when a property changes.
JavaFX property objects contain an addListener() method. This method will accept two types of
functional interfaces, ChangeListener and InvalidationListener. Recall that functional interfaces are
single abstract methods which are expressed using the Java lambda syntax. All JavaFX properties are
descendants of the ObservableValue and Observable interfaces (method overloading), which provide
the addListener() methods for ChangeListener and InvalidationListener, respectively. One last
thing to point out is that it is important to clean up listeners by removing them. To remove them you
will invoke the removeListener() method by passing into it a referenced (named) listener as opposed
to an anonymous inner class or anonymous lambda expression.

Listing 3-27 shows how to create a ChangeListener to be registered with a property. As the
property’s value changes, the change() method will be invoked. I’ve provided the implementations
for both the anonymous inner class and lambda expression-style syntax for you to compare.

Listing 3-27. Adding a ChangeListener Instance to Respond When the Property Value Changes

SimpleIntegerProperty xProperty = new SimpleIntegerProperty(0);

// Adding a change listener (anonymous inner class)
xProperty.addListener(new ChangeListener<Number>(){
 @Override
 public void changed(ObservableValue<? extends Number> ov, Number oldVal, Number newVal) {
 // code goes here
 }
});

// Adding a change listener (lambda expression)
xProperty.addListener((ObservableValue<? extends Number> ov, Number oldVal, Number newVal) -> {
 // code goes here
});

79CHAPTER 3: Lambdas and Properties

Listing 3-28 shows how to create an InvalidationListener to be registered with a property. As the
property’s value changes, the invalidated () method will be invoked. I’ve provided the implementations
for both the anonymous inner class and lambda expression-style syntax for you to compare.

Listing 3-28. Adding an InvalidationListener Instance to Respond When the Property Value Changes

// Adding a invalidation listener (anonymous inner class)
xProperty.addListener(new InvalidationListener() {
 @Override
 public void invalidated(Observable o) {
 // code goes here
 }
});

// Adding a invalidation listener (lambda expression)
xProperty.addListener((Observable o) -> {
 // code goes here
});

Often developers become confused about the difference between a ChangeListener and
an InvalidationListener. In Listing 3-28 you’ll notice that using a ChangeListener you will
get the Observable (ObservableValue), the old value, and the new value, while using the
InvalidationListener only gets the Observable object (property).

In the Javadoc documentation, the difference between a ChangeListener and InvalidationListener
is described as follows:

“A change event indicates that the value has changed. An invalidation event is generated, if the
current value is not valid anymore. This distinction becomes important, if the ObservableValue
supports lazy evaluation, because for a lazily evaluated value one does not know if an invalid value
really has changed until it is recomputed. For this reason, generating change events requires eager
evaluation while invalidation events can be generated for eager and lazy implementations.”

The InvalidationListener provides a way to mark values as invalid but does not recompute the
value until it is needed. This is often used in UI layouts or custom controls, where you can avoid
unnecessary computations when nodes don’t need to be redrawn/repositioned during a layout
request or draw cycle. When using the ChangeListener, you normally want eager evaluation
such as the validation of properties on a form-type application. That doesn’t mean you can’t
use InvalidationListeners for validation of properties; it just depends on your performance
requirements and exactly when you need the new value to be recomputed (evaluated). When you
access the observable value, it causes the InvalidationListener to be eager.

Binding
Simply put, binding has the idea of at least two values (properties) being synchronized. This means
that when a dependent variable changes, the other variable changes. JavaFX provides many binding
options that enable the developer to synchronize between properties in domain objects and GUI
controls. In this section you will learn about three binding strategies when binding property objects.

80 CHAPTER 3: Lambdas and Properties

In this section you will be focusing on the following JavaFX API packages:

	javafx.beans.binding.*

	javafx.beans.property.*

Binding of properties is quite easy to do. The only requirement is that the property invoking the bind
must be a read/writeable property. To bind a property to another property, you will invoke the bind()
method. This method will bind in one direction (unidirectional). For instance, when property A binds
to property B the change in property B will update property A, but not the other way. If A is bound to
B you can’t update A, as you’ll get a RuntimeException: A bound value cannot be set.

The following are three additional binding strategies to consider using in JavaFX’s Properties API:

Bidirectional binding on a Java Bean	

High-level binding using the Fluent API	

Low-level binding using 	 javafx.beans.binding.* binding objects

Bidirectional Binding
Bidirectional binding allows you to bind properties with the same type allowing changes on either
end while keeping a value synchronized. When binding bi-directionally, it’s required that both
properties must be read/writable. It’s pretty easy to bind two properties bidirectionally through the
use of the bindBidirectional() method. To demonstrate, I’ve created a simple example.
Listing 3-29 is a Contact bean having a property firstName that is bound bidirectionally to a local
variable fname of type StringProperty.

Listing 3-29. Bidirectional Binding between the firstName Property and a Regular String Property Variable

Contact contact = new Contact("John", "Doe");
StringProperty fname = new SimpleStringProperty();
fname.bindBidirectional(contact.firstNameProperty());

contact.firstNameProperty().set("Play");
fname.set("Jane");

System.out.println("contact.firstNameProperty = " + contact.firstNameProperty().get());
System.out.println("fname = " + fname.get());

The output of this code snippet is as follows:

contact.firstNameProperty = Jane
fname = Jane

High-level Binding
Introduced in JavaFX 2.0 is a fluent interface API to bind properties. The fluent APIs are methods
that allow you to perform operations on properties using English-like method names. For example,
if you have a numeric property, there would be methods like multiply(), divide(), subtract(),

81CHAPTER 3: Lambdas and Properties

and so on. Another example would be a string property having methods like isEqualTo(),
isNotEqualTo(), concat(), and similar. As an example, Listing 3-30 shows how to create a property
that represents the formula for the area of a rectangle.

Listing 3-30. Creating a Property (area) Using the High-Level Binding Strategy for Calculating the Area of a Rectangle

// Area = width * height
IntegerProperty width = new SimpleIntegerProperty(10);
IntegerProperty height = new SimpleIntegerProperty(10);

NumberBinding area = width.multiply(height);

This code demonstrates high-level binding by using the fluent API from the javafx.beans.binding.
IntegerExpression parent interface. This example binds by using the multiply() method, which
returns a NumberBinding containing the computed value. What’s nice is that the binding is lazy-
evaluated, which means the computation (multiplying) doesn’t occur unless you invoke the
property’s (area) value via the get() (or getValue())method. For all available fluent interfaces, please
see the Javadoc for javafx.beans.binding.* packages.

Low-Level Binding
When using low-level binding, you would use a derived NumberBinding class, such as a
DoubleBinding class for values of type Double. With a DoubleBinding class you will override its
computeValue() method so that you can use the familiar operators such as * and – to formulate
complex math equations. The difference between high-and low-level binding is that high-level uses
methods such as multiply(), subtract() instead of the operators * and –. Listing 3-31 shows how
to create a low-level binding for the formula for the volume of a sphere.

Listing 3-31. A Property Binding (volumnOfSphere) Using the Low-Level Binding Strategy

DoubleProperty radius = new SimpleDoubleProperty(2);
DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius); // initial bind
 }

 @Override
 protected double computeValue() {
 // Math.pow() (power) cubes the radius
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
};

If you’ve gotten this far, you are definitely ready to begin building GUIs. So far you’ve had a chance
to learn about lambda expressions, properties, and bindings. Next, I want to close out this chapter
with an example showing how to build a snazzy-looking logon dialog window that makes use of
shapes, lambda expressions, properties, and bindings (with a hint of UI controls).

82 CHAPTER 3: Lambdas and Properties

A Logon Dialog Example
Logon dialogs are typical of any application when authenticating users. In this example I created
a simple form application that will involve all of the skills you’ve learned from Chapter 2 and in this
chapter thus far. Before getting deep into the code, which you’ll see in Listing 3-32, let’s look at the
logon dialog. Shown in Figure 3-3 is the initial display of the logon dialog window the code will create.

Figure 3-4. The user is entering the password into the logon dialog window

Figure 3-5. The user has pressed Enter with an invalid password

Figure 3-3. Initial display of the logon dialog window

Following are the instructions for interacting with the application.

1. The user will have three attempts to enter the correct password. Figure 3-4
shows the user making the first attempt to log on. (Note: The password is
“password1.”)

2. As the user enters the password, they have an opportunity to hit the Enter
key. If the password is incorrect, a red X appears to the right of the password
text field. Figure 3-5 shows an invalid logon.

3. If the user types the correct password in real time a green check appears.
After the green check appears, the user may hit the Enter key to be granted
access. Figure 3-6 shows the user entering a valid password.

83CHAPTER 3: Lambdas and Properties

Login Dialog Source Code
Listing 3-32 is the source code for the JavaFX example logon dialog application.

Listing 3-32. The JavaFX Example Logon Dialog Application

package jfx8ibe;

import javafx.application.*;
import javafx.beans.property.*;
import javafx.geometry.Pos;
import javafx.scene.*;
import javafx.scene.control.PasswordField;
import javafx.scene.layout.*;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;
import javafx.scene.text.*;
import javafx.stage.*;

/**
 * A login form to demonstrate lambdas, properties, and bindings.
 * @author cdea
 */
public class FormValidation extends Application {

 private final static String MY_PASS = "password1";
 private final static BooleanProperty GRANTED_ACCESS = new SimpleBooleanProperty(false);
 private final static int MAX_ATTEMPTS = 3;
 private final IntegerProperty ATTEMPTS = new SimpleIntegerProperty(0);

 @Override
 public void start(Stage primaryStage) {
 // create a model representing a user
 User user = new User();

 // create a transparent stage
 primaryStage.initStyle(StageStyle.TRANSPARENT);

 Group root = new Group();
 Scene scene = new Scene(root, 320, 112, Color.rgb(0, 0, 0, 0));
 primaryStage.setScene(scene);

Figure 3-6. The user has entered a valid password

84 CHAPTER 3: Lambdas and Properties

 // all text, borders, svg paths will use white
 Color foregroundColor = Color.rgb(255, 255, 255, .9);

 // rounded rectangular background
 Rectangle background = new Rectangle(320, 112);
 background.setX(0);
 background.setY(0);
 background.setArcHeight(15);
 background.setArcWidth(15);
 background.setFill(Color.rgb(0, 0, 0, .55));
 background.setStrokeWidth(1.5);
 background.setStroke(foregroundColor);

 // a read only field holding the user name.
 Text userName = new Text();
 userName.setFont(Font.font("SanSerif", FontWeight.BOLD, 30));
 userName.setFill(foregroundColor);
 userName.setSmooth(true);
 userName.textProperty()
 .bind(user.userNameProperty());

 // wrap text node
 HBox userNameCell = new HBox();
 userNameCell.prefWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(45));
 userNameCell.getChildren().add(userName);

 // pad lock
 SVGPath padLock = new SVGPath();
 padLock.setFill(foregroundColor);
 padLock.setContent("M24.875,15.334v-4.876c0-4.894-3.981-8.875-8.875-8.875s-8.875,3.981-
8.875,8.875v4.876H5.042v15.083h21.916V15.334H24.875zM10.625,10.458c0-2.964,2.411-5.375,5.375-
5.375s5.375,2.411,5.375,5.375v4.876h-10.75V10.458zM18.272,26.956h-4.545l1.222-3.667c-0.782-0.389-
1.324-1.188-1.324-2.119c0-1.312,1.063-2.375,2.375-2.375s2.375,1.062,2.375,2.375c0,0.932-0.542,1.73-
1.324,2.119L18.272,26.956z");

 // first row
 HBox row1 = new HBox();
 row1.getChildren()
 .addAll(userNameCell, padLock);

 // password text field
 PasswordField passwordField = new PasswordField();
 passwordField.setFont(Font.font("SanSerif", 20));
 passwordField.setPromptText("Password");
 passwordField.setStyle("-fx-text-fill:black; "
 + "-fx-prompt-text-fill:gray; "
 + "-fx-highlight-text-fill:black; "
 + "-fx-highlight-fill: gray; "
 + "-fx-background-color: rgba(255, 255, 255, .80); ");

85CHAPTER 3: Lambdas and Properties

 passwordField.prefWidthProperty()
 .bind(primaryStage.widthProperty()
 .subtract(55));
 user.passwordProperty()
 .bind(passwordField.textProperty());

 // error icon
 SVGPath deniedIcon = new SVGPath();
 deniedIcon.setFill(Color.rgb(255, 0, 0, .9));
 deniedIcon.setStroke(Color.WHITE);//
 deniedIcon.setContent("M24.778,21.419 19.276,15.917 24.777,10.415 21.949,7.585 16.447,13.087
10.945,7.585 8.117,10.415 13.618,15.917 8.116,21.419 10.946,24.248 16.447,18.746 21.948,24.248z");
 deniedIcon.setVisible(false);

 SVGPath grantedIcon = new SVGPath();
 grantedIcon.setFill(Color.rgb(0, 255, 0, .9));
 grantedIcon.setStroke(Color.WHITE);//
 grantedIcon.setContent("M2.379,14.729 5.208,11.899 12.958,19.648 25.877,6.733 28.707,9.561
12.958,25.308z");
 grantedIcon.setVisible(false);

 StackPane accessIndicator = new StackPane();
 accessIndicator.getChildren()
 .addAll(deniedIcon, grantedIcon);
 accessIndicator.setAlignment(Pos.CENTER_RIGHT);

 grantedIcon.visibleProperty().bind(GRANTED_ACCESS);

 // second row
 HBox row2 = new HBox(3);
 row2.getChildren()
 .addAll(passwordField, accessIndicator);
 HBox.setHgrow(accessIndicator, Priority.ALWAYS);

 // user hits the enter key
 passwordField.setOnAction(actionEvent -> {
 if (GRANTED_ACCESS.get()) {
 System.out.printf("User %s is granted access.\n",
 user.getUserName());
 System.out.printf("User %s entered the password: %s\n",
 user.getUserName(), user.getPassword());
 Platform.exit();
 } else {
 deniedIcon.setVisible(true);
 }
 ATTEMPTS.set(ATTEMPTS.add(1).get());
 System.out.println("Attempts: " + ATTEMPTS.get());
 });

86 CHAPTER 3: Lambdas and Properties

 // listener when the user types into the password field
 passwordField.textProperty().addListener((obs, ov, nv) -> {
 boolean granted = passwordField.getText()
 .equals(MY_PASS);
 GRANTED_ACCESS.set(granted);
 if (granted) {
 deniedIcon.setVisible(false);
 }
 });

 // listener on number of attempts
 ATTEMPTS.addListener((obs, ov, nv) -> {
 if (MAX_ATTEMPTS == nv.intValue()) {
 // failed attemps
 System.out.printf("User %s is denied access.\n",
 user.getUserName());
 Platform.exit();
 }
 });

 VBox formLayout = new VBox(4);
 formLayout.getChildren().addAll(row1, row2);
 formLayout.setLayoutX(12);
 formLayout.setLayoutY(12);

 root.getChildren().addAll(background, formLayout);

 primaryStage.show();
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Explanation of the Code
The JavaFX application in Listing 3-32 simulates a logon dialog window. The code mainly
demonstrates binding JavaFX JavaBeans properties with UI controls by reusing the User class that
was shown earlier, in Listing 3-25.

Let’s begin by describing the class variables. The variable MY_PASS contains a hardcoded string of the
password of “password1”. Next declared is the GRANTED_ACCESS variable, of type SimpleBooleanProperty
class. This variable will be later bound from the green check (grantedIcon) node’s visible property.
Basically, as the user enters the correct keystrokes for the password, the GRANTED_ACCESS become true,
which will internally set the green check (SVGPath) node’s visible property to true, thus displaying the
icon in the scene graph. When the password is incorrect, the visible property becomes false, which
hides the green check node (SVGPath). The constant variable MAX_ATTEMPTS is the maximum number of
attempts the user can try to log in. Last, the ATTEMPTS variable of type IntegerProperty holds the current
number of attempts the user has tried to log into the dialog by hitting the Enter key.

87CHAPTER 3: Lambdas and Properties

In the start() method, a User object is created to be used as the domain object (model) to be
synchronized with the GUI form. Next, the stage is set to be transparent by invoking the Stage.
initStyle(StageStyle.TRANSPARENT); method. This will allow us to create translucent and irregularly
shaped windows without the decoration of the native OS title bar. After initializing the stage, I also
needed to create a Scene with a root node of type Group that will allow me to add child nodes. Even
though the root node is transparent, it will need to be the same size as our logon screen. The logon
screen is actually just a rounded rectangle having an arc height and width of 15 with a fill color of
black with an opacity level of 55%. To give things a consistent look I’ve created a foregroundColor
variable, containing a color of white with an opacity of 90 percent. The rectangle’s stroke color will
use the variable foregroundColor to give it a white outline.

After setting up the initial rectangular background, the code creates a Text node that will represent
the user’s user name as a read-only field (per the User class). To obtain the user’s real username,
you can call the System.getProperty("user.name") method. The text node is set up with a 30 point
SanSerif font having a fill color of the foregroundColor (white) variable. The text node’s text property
is bound to the User object’s read-only userName property. Next, I created an HBox layout that will
hold the Text node userName. The HBox (userNameCell) will be binding its preferred width property by
using the fluent API to ensure that it doesn’t hog up all the horizontal space and allow the padlock
icon to have room to be placed beside it. Shown in Figure 3-3 in the upper-right corner of the
logon dialog window is the padlock icon. The following code snippet shows an HBox containing the
TextNode (username) from Listing 3-32.

// wrap text node
HBox userNameCell = new HBox();
userNameCell.prefWidthProperty().bind(primaryStage.widthProperty().subtract(45));
userNameCell.getChildren().add(userName);

I have said very little about the HBox layout control here, because I will discuss it further in
Chapter 4, on Layout and UI Controls. Another new node I have not mentioned is JavaFX’s SVGPath
node to create the padlock icon. Recall that in Chapter 2 we discussed generating complex shapes
using path elements to create an ice cream cone, as depicted in Figure 2-4. Having said this, the
SVGPath class is very similar to the Path node, except that the child path elements are expressed
in W3C SVG path notation as a string. To render a path the string representing the path notation is
passed into the setContent() method on the SVGPath node. To see how to use SVG paths, visit
http://www.w3.org/Graphics/SVG. To create the padlock icon, I headed over to the famous website
of the JavaScript library Raphaël by Dmitry Baranovskiy. There I was able to obtain very nice SVG
icons, at http://raphaeljs.com/icons. Because an SVGPath node is also a JavaFX shape, I simply
filled it with the color white (foregroundColor) by using the setFill() method. Next, the code
creates an HBox as a container for the first row (row1) to hold the userNameCell and padLock nodes.

After creating the first row, the code proceeds by creating the PasswordField UI control. Like the
Text node, the PasswordField UI control’s font can be set. I added a 20 point SanSerif font to
the password field. Next, the code will set the prompt text to let the user know what to type into
the field. The prompt text is shown in Figure 3-3 of the initial logon dialog with the prompt text as
“Password.”

http://www.w3.org/Graphics/SVG/
http://raphaeljs.com/icons

88 CHAPTER 3: Lambdas and Properties

For some final decorating of the password field I used JavaFX CSS styling, which you will get
a chance to see in later chapters. The CSS style I applied to the password field was a white
background with opacity of 80 percent. Still working with the password field, I used the fluent
interface subtract() to bind the preferred width to subtract 55px to allow room for the stack pane
that contains the granted and denied icons. Last, the user object’s passwordProperty is bound to the
PasswordField’s textProperty. This is a unidirectional bind, which means that as the user enters text
into the password field the user object’s password property changes and not the other way around.

Next, I create two more icons using the SVGPath node that represents an X and a check mark,
denoting denied (deniedIcon) and granted (grantedIcon) access icons, respectively. These icons
will be placed in a StackPane layout node. The StackPane layout allows child nodes to be stacked,
hence the name. In this scenario the deniedIcon and grantedIcon nodes are stacked on top of each
other. This trick will allows us to flip between icons using the setVisible() method. As a whole
(stack pane) node, it will be positioned to the right of the password field. As the user types into the
password field the Boolean property GRANTED_ACCESS is updated, which updates the grantedIcon’s
visible property. The following code statement shows the visible property bound to the GRANTED_
ACCESS property.

grantedIcon.visibleProperty().bind(GRANTED_ACCESS);

Completing the second row, I create another HBox similar to our first row, this time holding the
password field and the stack pane containing the icons (denied and granted icons).

Next, the code continues by wiring up the UI controls and adding property change support
(ChangeListeners) to various properties. The code proceeds with the passwordField by adding an
action as a functional interface for the method setOnAction() when the user hits the Enter key. The
following handler code is set on the password field when the user hits the Enter key.

passwordField.setOnAction(actionEvent -> {
 if (GRANTED_ACCESS.get()) {
 System.out.printf("User %s is granted access.\n", user.getUserName());
 Platform.exit();
 } else {
 deniedIcon.setVisible(true);
 }
 ATTEMPTS.set(ATTEMPTS.add(1).get());
 System.out.println("Attempts: " + ATTEMPTS.get());
});

Essentially, if the password matches and the user hits Enter, the program exits and outputs the
following:

User cdea is granted access.

You’ll also notice that the code increments the ATTEMPTS property by invoking the fluent interface
method add().

89CHAPTER 3: Lambdas and Properties

Still working with the password field, I added a change listener to listen for keystrokes from the user.
As the user types into the password field the password is compared against the stored (hardcoded)
password. If the password is valid, the code sets the GRANTED_ACCESS property to true and hides the
deniedIcon icon via the setVisible(false) method.

Finally, I added the last bit of wiring for when a user has too many failed attempts. I basically added
a change listener onto the ATTEMPTS property. The change listener will compare MAX_ATTEMPTS against
ATTEMPTS to see if they equal. If so, it will invoke the JavaFX’s Platform.exit() method to gracefully
exit the application. The rest is assembling the rows into a VBox layout and adding it to the root node
for the scene to be shown.

Summary
In this chapter we’ve covered a lot of ground with properties and bindings, especially relating to
new Java 8 language features. You were introduced to the new features in Java 8 such as lambda
expressions, stream APIs, and default methods. Starting with Java lambdas, you were able to learn
the syntax and make use of functional interfaces. Next, you were able to use the stream API and
common aggregate functions. After an example of using the stream APIs to manipulate elements
in a collection, you then learned how to extend behavior on Java interfaces with default methods.
Then we explored UI patterns, the Properties API, and the idea of change support. With a solid
understanding of working with properties, you then learned about various binding strategies. To wrap
up the chapter, you saw an example of how to create a logon dialog window, which employed all the
concepts you’ve learned so far. Next, in Chapter 4 you’ll explore JavaFX UI layout and UI controls.

91

Chapter 4
Layouts and UI Controls

As more and more graphically rich applications find their way into our lives such as desktops, smart
phones and tablets devices, it is very important to design GUI applications that provide better usability
across the different form factors. With the increase of the number different screen sizes a UI
developer will need to learn how to create applications with UI layout management in mind.

In this chapter we will be discussing the most common JavaFX layouts used in GUI applications
of today. After layouts are discussed in the first half of this chapter an example will be presented
showing a form-based application. The form-based application demonstrates the resizing of child UI
controls as the parent window is being resized. The last half of the chapter will be about commonly
used JavaFX UI controls. JavaFX UI controls include menus, menu items, list views, table views and
progress indicators.

Layouts
One of the greatest challenges in building user interfaces is the laying out of UI controls onto the
display area. In GUI applications it is ideal to allow the user to resize a viewable area while UI
controls also resize in order to provide a pleasant user experience. Similar to Java’s Swing API, the
JavaFX API has stock layouts that provide the most common ways to display UI controls onto the
scene graph. Following are the JavaFX layouts discussed in this section:

	javafx.scene.layout.HBox

	javafx.scene.layout.VBox

	javafx.scene.layout.FlowPane

	javafx.scene.layout.BorderPane

	javafx.scene.layout.GridPane

92 CHAPTER 4: Layouts and UI Controls

HBox
The HBox layout’s job is to place JavaFX child nodes in a horizontal row. As child nodes are added
consecutively, each is appended to the end (right side). By default, the HBox layout honors the child’s
preferred width and height. When the parent node is not resizable (a Group node, for example), the
row height of the HBox takes on the height of the child node with the greatest preferred height. Also,
by default each child node aligns to the top-left (Pos.TOP_LEFT) position.

The HBox can be configured to have resizing ranges to allow the parent to manage and calculate
space available upon layout requests. There are many ways you can programmatically alter the
HBox’s layout constraints, such as border, padding, margin, spacing, and alignment. Although in
this chapter you will learn how to set constraints using a programmatic approach, there are also
alternative strategies. One well known and preferred strategy is to style or set constraints using
JavaFX CSS attributes; you will catch a glimpse of that approach later in this chapter, and more
details in Chapter 6, on custom UIs.

When dealing with nonresizable child nodes such as Shape nodes, the parent takes into account the
Shape’s rectangular bounds (ParentInBounds), its width and height. In contrast, when using resizable
nodes such as a TextField control, the parent has the ability to manage and compute the available
space for the TextField to grow horizontally. To grow UI controls horizontally within an HBox, use
the static HBox.setHgrow() method. The following code snippet sets a TextField control to grow
horizontally when the parent HBox’s width is resized:

TextField myTextField = new TextField()
HBox.setHgrow(myTextField, Priority.ALWAYS);

As an example of an HBox layout in action, the code shown in Listing 4-1 uses four rectangles as
child nodes with varying HBox constraints. Nonresizable nodes such as rectangle shapes are used
in the example to demonstrate the many spacing attributes for the HBox layout control. For brevity,
only the relevant code is listed here. To see the full listing, please visit the Source Code/Download
tab of the book’s page at www.apress.com to download the source code.

Listing 4-1. The HBoxExample.java file demonstrates an HBox layout with shapes as child nodes

HBox hbox = new HBox(5); // space between child nodes only
hbox.setPadding(new Insets(1)); // padding between hbox border and row.

Rectangle r1 = new Rectangle(10, 10); // Square
Rectangle r2 = new Rectangle(20, 20); // Big Square
Rectangle r3 = new Rectangle(5, 20); // Vertical rectangle
Rectangle r4 = new Rectangle(20, 5); // Horizontal rectangle

HBox.setMargin(r1, new Insets(2,2,2,2)); // space between border & child node
hbox.getChildren().addAll(r1, r2, r3, r4);

Figure 4-1 is the output of Listing 4-1.

http://www.apress.com/

93CHAPTER 4: Layouts and UI Controls

In Listing 4-1 the code begins by instantiating an HBox using the single-argument constructor. This
constructor takes a value of type double, which specifies the horizontal space (in pixels) between
child nodes. This is also the equivalent of invoking the setSpacing() method. Because spacing,
padding, margin, and border can often be confusing I’ve illustrated an HBox in Figure 4-2. The figure
displays three gray rectangular areas, each five pixels wide, that represent the spacing between child
nodes (r1 to r4). Setting the spacing uses an Insets object that allows you to create space between
the HBox’s child nodes. Notice that the inner part of the HBox border has yellow padding one pixel
wide surrounding the row.

Figure 4-1. The output of the file HBoxExample.java, demonstrating the HBox layout

Figure 4-2. An example of an HBox layout containing four rectangles

After creating all four rectangles, the code sets the margin on rectangle r1. To set the margin
you’ll notice the static method HBox.setMargin(Node, Insets). The code creates an Insets object
with a margin of two pixels for the top, right, bottom, and left. As shown in Figure 4-2, this is the
surrounding space around rectangle r1 (blue). To calculate the size of the HBox’s dimensions, you
basically add up the spacing, margin, padding, and the child nodes’ bounds (ParentInBounds). When
the parent of the HBox is a Group node (not resizable), the HBox width will total 76 pixels and the
height 22 pixels.

94 CHAPTER 4: Layouts and UI Controls

VBox
The VBox layout is similar to an HBox, except that it places child nodes stacked in a vertical column.
As children are added, each is placed beneath the previous child node. By default the VBox honors
the children’s preferred width and height. When the parent node is not resizable (for example, a
Group node), the maximum vertical column’s width is based on the node with the greatest preferred
width. Also, by default each child node aligns to the top-left (Pos.TOP_LEFT) position. VBox layouts
can also be configured to have resizing ranges to allow the parent node to manage and calculate
space available upon layout requests. To demonstrate the use of a VBox, the example in Listing 4-2
contains the same four rectangles from the previous example, with the same layout constraints.

Listing 4-2. The VBoxExample.java file, demonstrating VBox layout

VBox vbox = new VBox(5); // spacing between child nodes
vbox.setPadding(new Insets(1)); // padding between border and child nodes

Rectangle r1 = new Rectangle(10, 10); // little square
Rectangle r2 = new Rectangle(20, 20); // big square
Rectangle r3 = new Rectangle(5, 20); // vertical rectangle
Rectangle r4 = new Rectangle(20, 5); // horizontal rectangle
VBox.setMargin(r1, new Insets(2,2,2,2)); // margin around r1
vbox.getChildren().addAll(r1, r2, r3, r4);

Figure 4-3 shows the output of the VBoxExample.java application in Listing 4-2, demonstrating the
VBox layout with rectangle shapes as child nodes.

Figure 4-3. The output of VBoxExample.java

In Listing 4-2, the code begins by instantiating a VBox with a five-pixel space between child nodes.
Figure 4-4 depicts horizontal gray bars that represent the spacing between child nodes (r1 to r4).
After constructing the VBox, you set the padding via setPadding() method. Setting the padding by
using an Insets object allows you to create padding between the border and the row. Notice in
Figure 4-4 the VBox padding of one pixel surrounding the VBox shown surrounded by a yellow line.

95CHAPTER 4: Layouts and UI Controls

Once the four rectangles are created, the code sets the margin on the rectangle r1. To set the margin
we use the static method VBox.setMargin(Node, Insets). The code then creates an Insets object
with a margin of two pixels for the top, right, bottom, and left. Surrounding rectangle r1 is a two-pixel
margin shown in blue. To find the total size of a VBox instance, you simply add up the spacing,
margin, padding, and child nodes’ dimensions (bounds). Having a Group as a parent, the VBox node’s
calculated width would total 22 pixels, and the height would total 76 pixels.

Figure 4-4. VBox containing four rectangle child nodes

96 CHAPTER 4: Layouts and UI Controls

FlowPane
The FlowPane layout node allows child nodes in a row to flow based on the available horizontal spacing
and wraps nodes to the next line when horizontal space is less than the total of all the nodes’ widths.
Depicted in Figure 4-5 are four child nodes flowing from left to right and then wrapping.

Figure 4-5. A FlowPane layout with nodes flowing left to right with the ability to wrap nodes based on horizontal space. The Hello
text node is wrapped to the next line because the available horizontal space, denoted by the dashed line, is too small

By default a FlowPane layout flows child nodes from left to right (Pos.TOP_LEFT). To change the flow
alignment, you can simply invoke the setAlignment() method by passing in an enumerated value of
type Pos. Listing 4-3 creates a FlowPane layout to flow child nodes from right to left (Pos.TOP_RIGHT).

Listing 4-3. The creation of a FlowPane layout to flow from right to left

FlowPane flowPane = new FlowPane();
flowPane.setAlignment(Pos.TOP_RIGHT);
flowPane.getChildren().addAll(...); // child nodes to add.

BorderPane
The BorderPane layout node allows child nodes to be placed in a top, bottom, left, right, or center
region. Because each region can only have one node, developers typically nest layouts. An example
would be to create an HBox with children to then be set as the top region via the setTop() method.
Figure 4-6 shows the BorderPane’s regions.

97CHAPTER 4: Layouts and UI Controls

This layout is similar to many websites we see every day, where navigational links are placed in
either the top, bottom, left, or right regions of a page, while the main content is in the center area.
A BorderPane’s region of top and bottom borders allows a resizable node to take up all of the
available width. The left and right border regions take up the available vertical space between the
top and bottom borders. All of the bordering regions honor the children’s sizes (preferred width
and height) by default. According to the Javadocs, the default alignment of nodes when placed in
the top, bottom, left, right, and center regions is as follows:

Top: 	 Pos.TOP_LEFT

Bottom: 	 Pos.BOTTOM_LEFT

Left: 	 Pos.TOP_LEFT

Right: 	 Pos.TOP_RIGHT

Center: 	 Pos.CENTER

GridPane
So far you have learned about simple layouts; now let’s take a look at a more advanced layout: the
GridPane, commonly used in business applications. For instance, business applications typically
have data entry form screens. Forms usually have read-only labels on the first column and input
fields on the second column, resembling a grid pattern.

Figure 4-6. The BorderPane layout

98 CHAPTER 4: Layouts and UI Controls

When using the GridPane you can specify constraints at the row, column, or cell level. For example,
if the second column contains input text fields, you may want them to resize as the window is being
resized. To lay out components in a grid-like manner, the example in Listing 4-4 uses JavaFX’s
GridPane layout. The most interesting part of the example is the use of column constraints on the
GridPane. Column constraints apply a minimum and maximum horizontal width for the child nodes to
grow or shrink as the window is resized.

Listing 4-4. The GridPaneForm.java file demonstrates the GridPane layout

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("GridPaneForm ");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 380, 150, Color.WHITE);

 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);
 ColumnConstraints column1 = new ColumnConstraints(100);
 ColumnConstraints column2 = new ColumnConstraints(50, 150, 300);
 column2.setHgrow(Priority.ALWAYS);
 gridpane.getColumnConstraints().addAll(column1, column2);

 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();

 Button saveButton = new Button("Save");

 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 gridpane.add(fNameLbl, 0, 0);

 // Last name label
 GridPane.setHalignment(lNameLbl, HPos.RIGHT);
 gridpane.add(lNameLbl, 0, 1);

 // First name field
 GridPane.setHalignment(fNameFld, HPos.LEFT);
 gridpane.add(fNameFld, 1, 0);

 // Last name field
 GridPane.setHalignment(lNameFld, HPos.LEFT);
 gridpane.add(lNameFld, 1, 1);

 // Save button
 GridPane.setHalignment(saveButton, HPos.RIGHT);
 gridpane.add(saveButton, 1, 2);

99CHAPTER 4: Layouts and UI Controls

 FlowPane topBanner = new FlowPane();
 topBanner.setPrefHeight(40);
 String backgroundStyle =
 "-fx-background-color: lightblue;"
 + "-fx-background-radius: 30%;"
 + "-fx-background-inset: 5px;";
 topBanner.setStyle(backgroundStyle);
 SVGPath svgIcon = new SVGPath();
 // icon from http://raphaeljs.com/icons/#people
 svgIcon.setContent(/* svg path code as a string */);
 svgIcon.setStroke(Color.LIGHTGRAY);
 svgIcon.setFill(Color.WHITE);

 Text contactText = new Text("Contacts");
 contactText.setFill(Color.WHITE);

 Font serif = Font.font("Dialog", 30);
 contactText.setFont(serif);
 topBanner.getChildren().addAll(svgIcon, contactText);

 root.setTop(topBanner);
 root.setCenter(gridpane);

 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

After executing Listing 4-4 you will see the output in Figure 4-7, which displays a simple form
application allowing the user to enter a first and last name as contact information. When resizing the
window, notice that the input text field controls grow or shrink based on the column constraints. Also
notice that the Save button is horizontally aligned to the right (HPos.RIGHT), just beneath the Last
Name text field.

Figure 4-7. Output of the file GridPaneForm.java

100 CHAPTER 4: Layouts and UI Controls

Listing 4-4 begins by creating an instance of a BorderPane object as the root node for our scene.
By using a BorderPane as the root node and then placing the GridPane node object into the center
region, we enable the parent (BorderPane) to resize the GridPane by giving it all the available horizontal
and vertical space. After creating a BorderPane instance as our root node, the code instantiates a
GridPane layout with padding along with horizontal and vertical gaps. The code in Listing 4-5 then
creates a GridPane layout with padding, horizontal, and vertical gaps set to 5 (pixels).

Listing 4-5. Setting padding, horizontal, and vertical gap spacing between UI controls for each cell

GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5); gridpane.setVgap(5);

Back in Listing 4-4, the code implements column constraints for the first and second columns.
To set a column’s constraint, use the ColumnConstraints constructor, which allows the developer to
specify minimum, preferred, and maximum widths for a column on the GridPane node. This is very
nice; it means that when the parent container node (BorderPane) is being resized, the GridPane will
cause its child nodes to grow or shrink horizontally based on its row or column constraints. Listing 4-6
demonstrates the ability to constrain the first column to 100 pixels wide for the read-only labels and
the second column with a minimum width of 50, a preferred width of 150 and a maximum width of 300.

Listing 4-6. Setting up column contraints for a JavaFX application

ColumnConstraints column1 = new ColumnConstraints(100); // fixed for labels
ColumnConstraints column2 = new ColumnConstraints(50, 150, 300); // min,pref,max
column2.setHgrow(Priority.ALWAYS);
gridpane.getColumnConstraints().addAll(column1, column2);

After creating the column constraint for column 2, the code invokes the setHgrow() method by
passing in the enum value Priority.ALWAYS, which lets the UI controls take up the available
horizontal space within cells when the window is widened. I set the maximum width to 300 for the
second column so you can see that the child TextField does not grow beyond the maximum width
(300). In other words, when the window is resized wider than 300 pixels, the text fields within the grid
pane column stop stretching.

The next step is simply putting each UI control into its respective cell location. All cells are relative
to zero; to place a node in the cell in the first column and first row you would specify the cell as (0, 0).
Thus, the following code snippet adds the Save button into the second column, third row of the
GridPane layout at cell (1, 2):

gridpane.add(saveButton, 1, 2);

The layout also allows you to align controls horizontally or vertically within the cell. The following
statement right-aligns the Save button:

GridPane.setHalignment(saveButton, HPos.RIGHT);

101CHAPTER 4: Layouts and UI Controls

After completing the GridPane setup, the code implements the top banner area of the input form
shown in Figure 4-7. To create a title banner, we use a flow layout with a background color of light
blue, an SVG node icon (people) and a text node (contacts). The important code that relates to the
FlowPane layout displaying the banner contains the settings for the preferred height and JavaFX
CSS styles. Because the banner (FlowPane) is placed in the top region of the BorderPane layout, the
preferred height of 40 pixels will be honored and the width will take up the available horizontal space.

With this knowledge that the FlowPane takes up the available horizontal space, notice the area being filled
with the light blue background color. By using JavaFX CSS styling, the code sets a background color of
light blue along with corner radii and insets specified using a string. Listing 4-7 is the code section that
styles the banner (FlowPane) to be placed in the top region of the BorderPane layout. Don’t worry if JavaFX
CSS styling doesn’t make sense yet; a more detailed discussion of it will follow in Chapter 6.

Listing 4-7. Styling a FlowPane layout for the top banner

FlowPane topBanner = new FlowPane();
topBanner.setPrefHeight(40);
String backgroundStyle = "-fx-background-color: lightblue;"
 + "-fx-background-radius: 30%;"
 + "-fx-background-inset: 5px;";
topBanner.setStyle(backgroundStyle);

We’ve only scratched the surface of the GridPane layout. There are other ways to provide constraints
and alignment of child nodes, so I trust you will delve deeper into the GridPane layout. Please
see the Javadocs documentation for more details. Now that you’ve learned how to use the most
common layouts, you will be able to create well-behaved user interfaces. Next, you will explore
common JavaFX UI controls.

UI Controls
UI controls are essentially advanced JavaFX nodes that typically allow user input such as text fields,
sliders, list views, and table views. Unlike HTML5, JavaFX allows UI control nodes and shape nodes
to coexist on the scene graph. This means you can treat any UI control like any other JavaFX node;
for example you can scale, rotate, style, and add effects. The remainder of the chapter presents many
common JavaFX UI controls that are commonly used in data entry form applications. For starters, let’s
talk about application menus. Later sections will show how to work with table views and list views.

Menus
Menus are a standard way for windowed desktop applications to allow users to select options.
For example, applications typically have a File menu offering options (menu items) to save or open
a file. In a windowed environment the user will use their mouse to navigate and select menu items.
Menus and menu items typically also have the functionality of key combinations to select options,
also known as keyboard shortcuts. In other words, key combinations allow quick menu selections
without the need of a mouse.

102 CHAPTER 4: Layouts and UI Controls

Creating Menus and Menu Items
Before exploring how to invoke code triggered by selecting menu options, let’s look at how to create
menus. For starters, you must create a menu bar (javafx.scene.control.MenuBar) object to hold
many javafx.scene.control.Menu objects. Each Menu object is similar to a tree hierarchal structure
where Menu objects can contain Menu and javafx.scene.control.MenuItem objects. Thus, a menu may
contain other menus as submenus or menus within menus. MenuItems are child options within a Menu
object. You can think of MenuItems as leaf nodes (containing no children) in a tree structure. Listing 4-8
shows the creation of a menu bar with a File menu that has a Save option as a menu item.

Listing 4-8. The creation of MenuBar, Menu, and MenuItem instances

MenuBar menuBar = new MenuBar();
Menu fileMenu = new Menu("File");
fileMenu.getItems().add(new MenuItem("Save"));
menuBar.getMenus().add(fileMenu);

Figure 4-8 shows the output of Listing 4-8, a simple File menu containing a Save menu item.

Figure 4-8. A File menu containing a Save menu item

Although you can create simple menu items, you may want more advanced options such as checked
options or radio buttons. Based on the inheritance hierarchy, the following are subclasses of the
MenuItem class. The following listing shows the available MenuItem subclasses to use as menu options.
A brief description of each subclass will follow.

	javafx.scene.control.CheckMenuItem

	javafx.scene.control.RadioMenuItem

	javafx.scene.control.CustomMenuItem

	javafx.scene.control.SeparatorMenuItem

	javafx.scene.control.Menu

A CheckMenuItem menu item is similar to a check box UI control, allowing the user to select items
optionally. The RadioMenuItem menu item is similar to the radio button UI control, allowing the user
to select only one item from an item group. When you want to create a custom menu item you can
use the CustomMenuItem class. For instance, you may want to have a menu option that behaves like
a toggle button. Next is a SeparatorMenuItem, which is really a derived class of type CustomMenuItem.

103CHAPTER 4: Layouts and UI Controls

A SeparatorMenuItem is a menu item that displays as a visual line to separate menu items. Last in
the list is the Menu class. Because a Menu class is a subclass of MenuItem, it has a getItems().add()
method that’s capable of adding children such as other Menu and MenuItem instances.

Invoking a Selected MenuItem
Now, that you know how to construct a menus and menu items, let’s see how to invoke code that
is attached to a menu item. You’ll be happy to know that you wire-up handler code to a menu item
in exactly the same way that you would wire-up JavaFX buttons, which means that menu items
also have a setOnAction() method. The setOnAction() method receives a functional interface of
type EventHandler<ActionEvent>, which is the handler code that is invoked when the menu item
is selected. Listing 4-9 shows two equivalent implementations of action code to be invoked when
the Exit menu item is triggered. The first implementation uses an anonymous inner class, and the
second uses Java 8’s lambda expressions.

Listing 4-9. Adding handler code via the setOnAction() method

// Implementation that uses an anonymous inner class
exitMenuItem.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent t) {
 Platform.exit();
 }
});

// Implementation that uses lambda expressions
exitMenuItem.setOnAction(ae -> Platform.exit());

Example: Working with Menus
To demonstrate various menu selection scenarios, the next example mimics a security alarm application.
Listing 4-10 is from the file MenuExample.java and shows the relevant code that demonstrates menu
selections. Before executing the code you may want to know how to use this fictitious security alarm
application. As illustrated in Figure 4-9, the menu bar displays three main menus: File, Cameras,
and Alarm. When the File menu is selected, it displays three options—New, Save, and Exit—as child
menu items. Selecting the Cameras menu displays two CheckMenuItem menu items, for the optional
selection of Show Camera 1 or Show Camera 2. Lastly, the Alarm menu displays two RadioMenuItem
options and a submenu Contingent Plans. The submenu displays three child CheckMenuItem options.

104 CHAPTER 4: Layouts and UI Controls

Listing 4-10. The MenuExample.java file is a fictional alarm system application

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Menus Example");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);

 MenuBar menuBar = new MenuBar();
 root.setTop(menuBar);

 // File menu - new, save, exit
 Menu fileMenu = new Menu("File");
 MenuItem newMenuItem = new MenuItem("New");
 MenuItem saveMenuItem = new MenuItem("Save");
 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setOnAction(actionEvent -> Platform.exit());

 fileMenu.getItems().addAll(newMenuItem,
 saveMenuItem,
 new SeparatorMenuItem(),
 exitMenuItem
);
 menuBar.getMenus().add(fileMenu);

 // Cameras menu - camera 1, camera 2
 Menu cameraMenu = new Menu("Cameras");
 CheckMenuItem cam1MenuItem = new CheckMenuItem("Show Camera 1");
 cam1MenuItem.setSelected(true);
 cameraMenu.getItems().add(cam1MenuItem);

 CheckMenuItem cam2MenuItem = new CheckMenuItem("Show Camera 2");
 cam2MenuItem.setSelected(true);
 cameraMenu.getItems().add(cam2MenuItem);

 // Alarm menu
 Menu alarmMenu = new Menu("Alarm");

 // sound or turn alarm off
 ToggleGroup tGroup = new ToggleGroup();
 RadioMenuItem soundAlarmItem = new RadioMenuItem("Sound Alarm");
 soundAlarmItem.setToggleGroup(tGroup);

 RadioMenuItem stopAlarmItem = new RadioMenuItem("Alarm Off");
 stopAlarmItem.setToggleGroup(tGroup);
 stopAlarmItem.setSelected(true);

 alarmMenu.getItems().addAll(soundAlarmItem,
 stopAlarmItem,
 new SeparatorMenuItem());

 Menu contingencyPlans = new Menu("Contingent Plans");
 contingencyPlans.getItems().addAll(
 new CheckMenuItem("Self Destruct in T minus 50"),
 new CheckMenuItem("Turn off the coffee machine "),

105CHAPTER 4: Layouts and UI Controls

Figure 4-9. The output of Listing 4-10, which simulates an alarm system application

The code begins by creating a MenuBar control, which may contain one to many menu (MenuItem)
objects. After the MenuBar is created, it is set as the top region on the BorderPane layout. Since the
top region allows a resizable node to take up the available horizontal space, the MenuBar control
will stretch to the width of the BorderPane (the root scene). Listing 4-11 sets the top region of the
BorderPane to a menu bar.

Listing 4-11. A menu bar is set as the top region node of the root BorderPane

MenuBar menuBar = new MenuBar();
root.setTop(menuBar);

Next, the code instantiates Menu objects that contain one or more menu item (MenuItem) objects and
other Menu objects, making submenus.

After creating the File, menu the code creates the Cameras menu. This menu will contain
CheckMenuItem objects. These menu items allow the user to optionally select or unselect Show
Camera 1 and Show Camera 2 as menu items.

 new CheckMenuItem("Run for your lives! "));

 alarmMenu.getItems().add(contingencyPlans);

 menuBar.getMenus().addAll(fileMenu, cameraMenu, alarmMenu);

 primaryStage.setScene(scene);
 primaryStage.show();
}

106 CHAPTER 4: Layouts and UI Controls

Last is the implementation of our Alarm menu, which contains two radio menu items (RadioMenuItem),
a separator (SeparatorMenuItem), and a submenu (Menu). To create the radio menu items for the
Alarm menu, the code creates an instance of a ToggleGroup class. The ToggleGroup class is also
used on regular radio buttons (RadioButtons) to allow one selected option only. Listing 4-12 creates
radio menu items (RadioMenuItems) to be added to the alarmMenu Menu object.

Listing 4-12. The creation of menu items that contain radio and separator menu items

// Alarm menu
Menu alarmMenu = new Menu("Alarm");

// sound or turn alarm off
ToggleGroup tGroup = new ToggleGroup();
RadioMenuItem soundAlarmItem = new RadioMenuItem("Sound Alarm");
soundAlarmItem.setToggleGroup(tGroup);

RadioMenuItem stopAlarmItem = new RadioMenuItem("Alarm Off");
stopAlarmItem.setToggleGroup(tGroup);
stopAlarmItem.setSelected(true);

alarmMenu.getItems().addAll(soundAlarmItem,
 stopAlarmItem,
 new SeparatorMenuItem());

The code also adds a visual separator, by instantiating a SeparatorMenuItem class that is added to a menu
via the getItems().addAll() method. The method getItems() returns an observable list of MenuItem
objects (ObservableList<MenuItem>). You’ll learn about ObservableList collections later, but briefly, they are
collections that have the ability to notify and update UI controls as items are added or removed. For a full
description please see the section “The ObservableList Collection Class” later in this chapter.

The last child menu item added to the Alarm menu is a submenu, Contingent Plans. To add some
levity I’ve created some humorous menu options for contingency plans when an emergency occurs.

Additional Ways to Select Menus and Menu Items
In the previous example you learned how to create and invoke menu items using your mouse, but did
you know that there are other ways to invoke menu items? In this section you will learn three additional
ways to invoke menu items: by constructing key mnemonics, key combinations, and context menus.

Key Mnemonics
Standard menus generally have keyboard mnemonics to select menu items without using a mouse.
Typically, applications that use a menu allow the user to hit the Alt key, which puts an underscore (_)
beneath a letter of the menu text label. After the user hits the letter, the menu will drop down to
display its child menu items and the user will be allowed to navigate with arrow keys.

To perform this behavior in code, you instantiate a Menu by invoking the constructor that receives a
String value as before, but this time you place an underscore character preceding the chosen letter
in the menu or menu item’s text. Also, to let the system recognize the mnemonic you will simply pass
true to the setMnemonicParsing(true) method. Listing 4-13 creates a File menu that uses the letter
“F” as the mnemonic.

107CHAPTER 4: Layouts and UI Controls

Listing 4-13. The creation of a File menu with a mnemonic for the letter “F”

Menu fileMenu = new Menu("_File");
fileMenu.setMnemonicParsing(true);

Key Combinations
A key combination is a combination of keystrokes to select a menu option. For instance, most applications
on the Windows platform have the key combination of Ctrl + S to save a file. On the Mac OS platform,
the key combination would be Command + S. Keys such as Ctrl, Command, Alt, Shift, and Meta
are called modifier keys. Usually the modifiers are pressed in combination with a single letter.
Sometimes key combinations are referred as keyboard shortcuts. To create a key combination,
you need an instance of the KeyCodeCombination object that will contain the keystroke and the
modifiers. Listing 4-14 provides a key code combination of (Ctrl or Meta) + S. You will notice that
the code uses the KeyCombination.SHORTCUT_DOWN value as the key modifier instead of CONTROL_DOWN
or META_DOWN. The reason is simple; the value of SHORTCUT_DOWN will enable the application to be
cross-platform. The values CONTROL_DOWN and META_DOWN are system dependent on the Windows and
MacOS platforms respectively, but SHORTCUT_DOWN works on all platforms.

Listing 4-14. A menu item mapped to a keyboard shortcut of Ctrl + S (Windows) or Command + S (Mac)

MenuItem saveItem = new MenuItem("_Save");
saveItem.setMnemonicParsing(true);
saveItem.setAccelerator(new KeyCodeCombination(KeyCode.S, KeyCombination.SHORTCUT_DOWN));

Context Menus
Context menus are popup menus displayed when a user right-clicks the mouse button on a JavaFX
UI control or a stage surface. To create a context menu, you instantiate a ContextMenu class. Exactly
like a regular menu, the ContextMenu menu has a getItems().add() method to add menu items.
The following code snippet shows a context menu instantiated with a menu item (exitItem):

ContextMenu contextFileMenu = new ContextMenu(exitItem);

To respond to a right-click of the mouse on the scene in an application, you can basically add an
event handler to listen for a right-click event. Once that is detected, the context menu’s show()
method is invoked. The code in Listing 4-15 sets up an event handler to show and hide a context
menu based on a right or left mouse click, respectively. Notice the hide() method invoked by the
primary mouse click (left-click) to remove the context menu.

Listing 4-15. Attaching an event handler that displays a popup menu upon encountering a right-click mouse event on a
JavaFX stage

primaryStage.addEventHandler(MouseEvent.MOUSE_CLICKED, (MouseEvent me) -> {
 if (me.getButton() == MouseButton.SECONDARY || me.isControlDown()) {
 contextFileMenu.show(root, me.getScreenX(), me.getScreenY());
 } else {
 contextFileMenu.hide();
 }
});

To see the full code listing showing the use of these additional strategies to invoke menus, please
visit the book’s website to download the project KeyCombinationsAndContextMenus.

108 CHAPTER 4: Layouts and UI Controls

The ObservableList Collection Class
When using the Java Collections API you’ll notice the many useful container classes that represent
data structures such as sets, maps, and lists. One of the commonly used concrete list classes is
java.util.ArrayList, which implements the List interface. For a long time Java Swing developers
built applications using an ArrayList to represent a list of objects that will be displayed in a list-like
UI control. The issues that caused a lot of grief were the ability to synchronize list models and view
components. To solve this problem, you can use JavaFX’s ObservableList class. The ObservableList
is a collection that is capable of notifying UI controls when objects are added, updated, and removed.
JavaFX ObservableLists are typically used in list UI controls such as ListView and TableView. Let’s
look at two examples that will use the ObservableList collection class.

Working with ListViews
The Hero Picker example application was created to demonstrate the ObservableList’s capabilities;
it displays two JavaFX ListView UI controls and allows the user to transfer items between the two
ListView controls. One list contains candidates for hero status and the other contains those who
have already achieved it. As shown in Listing 4-16, this application allows you to choose a candidate
to be transferred to the other ListView control, which contains the chosen heroes.

Listing 4-16. The Hero Picker application, which demonstrates the ObservableList and ListView classes

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Hero Picker: Chapter 4 Creating and Working with ObservableLists");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 400, 250, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 ColumnConstraints column1 = new ColumnConstraints(150, 150, Double.MAX_VALUE);
 ColumnConstraints column2 = new ColumnConstraints(50);
 ColumnConstraints column3 = new ColumnConstraints(150, 150, Double.MAX_VALUE);
 column1.setHgrow(Priority.ALWAYS);
 column3.setHgrow(Priority.ALWAYS);
 gridpane.getColumnConstraints().addAll(column1, column2, column3);

 // Candidates label
 Label candidatesLbl = new Label("Candidates");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

109CHAPTER 4: Layouts and UI Controls

 // Heroes label
 Label heroesLbl = new Label("Heroes");
 gridpane.add(heroesLbl, 2, 0);
 GridPane.setHalignment(heroesLbl, HPos.CENTER);

 // Candidates
 final ObservableList<String> candidates = FXCollections.observableArrayList("Superman",
 "Spiderman",
 "Wolverine",
 "Police",
 "Fire Rescue",
 "Soldiers",
 "Dad & Mom",
 "Doctor",
 "Politician",
 "Pastor",
 "Teacher");
 final ListView<String> candidatesListView = new ListView<>(candidates);
 gridpane.add(candidatesListView, 0, 1);

 // heroes
 final ObservableList<String> heroes = FXCollections.observableArrayList();
 final ListView<String> heroListView = new ListView<>(heroes);

 gridpane.add(heroListView, 2, 1);

 // select heroes
 Button sendRightButton = new Button(" > ");
 sendRightButton.setOnAction((ActionEvent event) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
 });

 // deselect heroes
 Button sendLeftButton = new Button(" < ");
 sendLeftButton.setOnAction((ActionEvent event) -> {
 String notHero = heroListView.getSelectionModel().getSelectedItem();
 if (notHero != null) {
 heroListView.getSelectionModel().clearSelection();
 heroes.remove(notHero);
 candidates.add(notHero);
 }
 });

 VBox vbox = new VBox(5);
 vbox.getChildren().addAll(sendRightButton,sendLeftButton);

110 CHAPTER 4: Layouts and UI Controls

 gridpane.add(vbox, 1, 1);
 root.setCenter(gridpane);

 GridPane.setVgrow(root, Priority.ALWAYS);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Figure 4-10 shows the output from Listing 4-16, the Hero Picker application.

Figure 4-10. The output of the Hero Picker application, demonstrating the use of the ObservableList and ListView classes

Created in this example is a GUI application that allows a user to choose their favorite heroes. This is
quite similar to application screens that manage user roles by adding or removing items from list box
components. In JavaFX the code example uses two ListView controls to hold String objects. For
the sake of brevity we will not discuss the use of the layouts, but jump right into the code relating to
the button actions and ListView controls.

Before creating an instance of a ListView, the code creates an ObservableList containing our
candidates. Here you’ll notice the use of a factory class called FXCollections, into which you can
pass common collection types to be wrapped and returned to the caller as an ObservableList.
In the example an array of Strings is passed into the FXCollections.observableArrayList() method
instead of an ArrayList. Using the ObservableList allows us to update the list of items in the array
and in the display on the screen concurrently with a single method call.

Hopefully you get the idea about how to use the FXCollections class. I trust you will use it wisely;
as Peter Parker’s Uncle Ben says,“With great power, there must also come great responsibility.”
The following code line calls the FXCollections.observableArrayList() method class to return an
observable list (ObservableList):

ObservableList<String> candidates = FXCollections.observableArrayList(...);

111CHAPTER 4: Layouts and UI Controls

After the code creates an ObservableList, a ListView class is instantiated using a constructor that
receives the observable list. The following code creates and populates a ListView object:

ListView<String> candidatesListView = new ListView<String>(candidates);

The last item of business is where the code manipulates ObservableLists as if they were java.util
.ArrayLists. As they are manipulated, the ListView is notified and automatically updated to reflect
the changes to the ObservableList. Listing 4-17 implements the action event code when the user
presses the Send (>) button.

Listing 4-17. Action code to process selected items

// select heroes
Button sendRightButton = new Button(">");
sendRightButton.setOnAction(actionEvent -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
});

To set action code for the button, the code uses a lambda expression with an actionEvent (ActionEvent)
as a parameter, which is invoked when the button is clicked. When a button-press event arrives,
the code determines which item in the ListView was selected via the getSelectionModel()
.getSelectedItem() on the ListView. Once the item is determined, the code clears the selection
(clearSelection()), removes the item, and adds the item to the Heroes ObserverableList. What’s
great is that there is no need to refresh the ListView UI control when the collection changes.

Working with TableViews
We can also use ObservableLists in another list-like UI control, the TableView. JavaFX’s
javafx.scene.control.TableView control is analogous to Swing’s JTable component, which
contains rows, columns, and cells very similar to spreadsheet applications.

As an example of the TableView control I’ve created an application called Bosses and Employees
that demonstrates how to populate a TableView to contain a collection of employees (the Person
JavaFX bean) based on the selection of a boss from a ListView control.

Before delving into the GUI code, we will examine the use of a domain object to represent a person
(Person). Listing 4-18 shows a JavaFX bean of a Person class that represents a boss or an employee
that will be displayed in a ListView and/or TableView control. The GUI code to handle list view
selection and populating the table view appears in Listing 4-19.

112 CHAPTER 4: Layouts and UI Controls

Listing 4-18. The Person class as a JavaFX bean to be used in ObservableLists

public class Person {
 private StringProperty aliasName;
 private StringProperty firstName;
 private StringProperty lastName;
 private ObservableList<Person> employees = FXCollections.observableArrayList();

 public final void setAliasName(String value) {
 aliasNameProperty().set(value);
 }
 public final String getAliasName() {
 return aliasNameProperty().get();
 }
 public StringProperty aliasNameProperty() {
 if (aliasName == null) {
 aliasName = new SimpleStringProperty();
 }
 return aliasName;
 }
 public final void setFirstName(String value) {
 firstNameProperty().set(value);
 }
 public final String getFirstName() {
 return firstNameProperty().get();
 }
 public StringProperty firstNameProperty() {
 if (firstName == null) {
 firstName = new SimpleStringProperty();
 }
 return firstName;
 }
 public final void setLastName(String value) {
 lastNameProperty().set(value);
 }
 public final String getLastName() {
 return lastNameProperty().get();
 }
 public StringProperty lastNameProperty() {
 if (lastName == null) {
 lastName = new SimpleStringProperty();
 }
 return lastName;
 }
 public ObservableList<Person> employeesProperty() {
 return employees;
 }

 public Person(String alias, String firstName, String lastName) {
 setAliasName(alias);
 setFirstName(firstName);
 setLastName(lastName);
 }
}

113CHAPTER 4: Layouts and UI Controls

Listing 4-19. The main GUI code that creates a grid pane containing a ListView and a TableView control, for bosses and
employees, respectively

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Bosses and Employees: Chapter 4 Working with Tables");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 500, 250, Color.WHITE);

 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 root.setCenter(gridpane);

 // candidates label
 Label candidatesLbl = new Label("Boss");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);

 // List of leaders
 ObservableList<Person> leaders = getPeople();
 final ListView<Person> leaderListView = new ListView<>(leaders);
 leaderListView.setPrefWidth(150);
 leaderListView.setMaxWidth(Double.MAX_VALUE);
 leaderListView.setPrefHeight(150);

 // display first and last name with tooltip using alias
 leaderListView.setCellFactory(new Callback<ListView<Person>, ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> param) {
 Label leadLbl = new Label();
 Tooltip tooltip = new Tooltip();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
 }
 }); // setCellFactory

 gridpane.add(leaderListView, 0, 1);

114 CHAPTER 4: Layouts and UI Controls

 Label emplLbl = new Label("Employees");
 gridpane.add(emplLbl, 2, 0);
 GridPane.setHalignment(emplLbl, HPos.CENTER);

 final TableView<Person> employeeTableView = new TableView<>();
 employeeTableView.setPrefWidth(300);

 final ObservableList<Person> teamMembers = FXCollections.observableArrayList();
 employeeTableView.setItems(teamMembers);

 TableColumn<Person, String> aliasNameCol = new TableColumn<>("Alias");
 aliasNameCol.setEditable(true);
 aliasNameCol.setCellValueFactory(new PropertyValueFactory("aliasName"));

 aliasNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
 firstNameCol.setCellValueFactory(new PropertyValueFactory("firstName"));
 firstNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 TableColumn<Person, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new PropertyValueFactory("lastName"));
 lastNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);

 employeeTableView.getColumns().setAll(aliasNameCol, firstNameCol, lastNameCol);
 gridpane.add(employeeTableView, 2, 1);

 // selection listening
 leaderListView.getSelectionModel().selectedItemProperty().addListener((ObservableValue<? extends
 Person> observable, Person oldValue, Person newValue) -> {
 if (observable != null && observable.getValue() != null) {
 teamMembers.clear();
 teamMembers.addAll(observable.getValue().employeesProperty());
 }
 });

 primaryStage.setScene(scene);
 primaryStage.show();
}

Listing 4-20 shows the getPeople() method contained in the BossesAndEmployees main application
class to help populate the TableView control.

Listing 4-20. A private method getPeople() that returns an ObservableList containing Person instances. A boss may
contain zero to many employees

private ObservableList<Person> getPeople() {
 ObservableList<Person> people = FXCollections.<Person>observableArrayList();
 Person docX = new Person("Professor X", "Charles", "Xavier");
 docX.employeesProperty().add(new Person("Wolverine", "James", "Howlett"));
 docX.employeesProperty().add(new Person("Cyclops", "Scott", "Summers"));
 docX.employeesProperty().add(new Person("Storm", "Ororo", "Munroe"));

115CHAPTER 4: Layouts and UI Controls

 Person magneto = new Person("Magneto", "Max", "Eisenhardt");
 // ...code to add employees
 Person biker = new Person("Mountain Biker", "Jonathan", "Gennick");
 // ...code to add employees

 people.addAll(docX, magneto, biker);
 return people;
}

Figure 4-11 displays the output of the Bosses and Employees application, which demonstrates
a JavaFX TableView control.

Figure 4-11. The output of the Bosses and Employees application

For the fun of it, I’ve created a simple GUI application that displays bosses and their employees.
Notice on the left side of Figure 4-11 a list of important people (bosses). When you click to select a
boss, their employees will be shown in the TableView control to the right. You’ll also notice the tooltip
popup when the mouse cursor is hovered over the selected boss.

Before we discuss the TableView control, let’s detail the ListView control’s responsibility of updating
the TableView. In model view fashion, the code in Listing 4-20 first creates an ObservableList
containing all the bosses via the private getPeople() method to be passed to the ListView control’s
constructor. Listing 4-21 populates the ListView control with the list of bosses.

Listing 4-21. Creation of a ListView populated with an ObservableList containing Person objects

// List of leaders
ObservableList<Person> leaders = getPeople();
ListView<Person> leaderListView = new ListView<>(leaders);

116 CHAPTER 4: Layouts and UI Controls

Next, the code instantiates a cell factory via the setCellFactory() method in Listing 4-19 to properly
display the person’s name in the ListView control. Because each item isn’t a string but a Person object,
the ListView does not know how to render each row (cell) in the ListView control. To inform the ListView
which properties to use from the Person object, the code simply creates a javafx.util.Callback generic
object by specifying the ListView<Person> and a ListCell<Person> data type. With your trusty NetBeans
IDE, it can pregenerate or stub code for an empty implementation of the method call().

You just need to type:

leaderListView.setCellFactory(new);

As the cursor is positioned after the new keyword hit Ctrl + Space and when you see the Callback
interface at the top of the popup hit Enter or select it using your mouse pointer. The following code
block will be generated.

leaderListView.setCellFactory(new Callback<ListView<Person>, ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> p) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
});

After generating the code above using the NetBeans code completion feature the throws
UnsupportedOperationException statement will need to be replaced with a code implementation to
respond when a row item (ListCell) is selected. Next, are the details on the implementation of the
call() method.

Within the call() method shown in Listing 4-22 is the variable cell of type ListCell<Person>, in
which the code creates an anonymous inner class. The inner class must implement the updateItem()
method. The job of the updateItem() method is to obtain each person’s information, which then
updates a Label control (leadLbl). The label is what is displayed for each cell row in the ListView
control. The last thing the updateItem() method does is to add a tooltip popup (Tooltip) to each cell
row. The tooltip will pop up when the cursor hovers over the cell (boss) within the ListView. After
updating the cell the cell variable is returned.

Listing 4-22. The call method to display the boss's name in a ListView control along with a tooltip popup showing the
alias name

@Override
public ListCell<Person> call(ListView<Person> param) {
 Label leadLbl = new Label();
 Tooltip tooltip = new Tooltip();
 ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {

117CHAPTER 4: Layouts and UI Controls

 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
}

Finally, the code creates a TableView control to display the employees based on the selected boss
from the ListView control. When creating a TableView control the code first creates the column
headers as shown in Listing 4-23.

Listing 4-23. Creating the First Name table column by setting the property with the JavaFX bean property name convention

TableColumn<String> firstNameCol = new TableColumn<String>("First Name");
firstNameCol.setCellValueFactory(new PropertyValueFactory("firstName"));

Once you have created a column, you’ll notice the setCellValueFactory() method, which is responsible
for calling the Person bean’s property. So when the list of employees is put into the TableView, it will know
how to pull the properties to be placed in each cell column in the table. Based on the JavaBean convention
a new PropertyValueFactory instance is created with the name of the bean attribute (firstName).

Last is the implementation of the selection listener on the ListView. In the code you’ll notice the
getSelectionModel().selectedItemProperty() method (shown at the end of Listing 4-19) that allows
a listener to be added. The code simply creates and adds a ChangeListener for selection events.
When a user selects a boss, the TableView is cleared and populated with the employees of the
selected boss. Actually, it is the magic of the ObservableList that notifies the TableView of changes.
Listing 4-24 clears and populates the TableView via the teamMembers (ObservableList) variable.

Listing 4-24. Clearing the ObservableList owned by the TableView and repopulating it with employees

teamMembers.clear();
teamMembers.addAll(observable.getValue().employeesProperty());

Generating a Background Process
Typically in desktop applications that have long running processes, visual feedback should indicate that
something is happening or suggest that the user be patient. One of the main pitfalls of GUI development is
the difficulty of knowing when and how to delegate work to worker threads. Trying to avoid these pitfalls,
GUI developers are constantly reminded of thread safety, especially when it comes to blocking the UI
thread during heavy load. JavaFX provides UI controls that help solve this issue by off-loading work to
a different thread (Task) while providing feedback or progress indicators of the work that is being done.

To demonstrate a GUI application generating a background process while also providing feedback to
the user, I’ve created an example application that simulates a dialog window visualizing the progress
of many files being copied. Listing 4-25 is a code example of using JavaFX’s progress bar and
indicator UI controls to provide feedback to the user as files are being copied.

118 CHAPTER 4: Layouts and UI Controls

The following are the main classes used in this example:

	javafx.scene.control.ProgressBar

	javafx.scene.control.ProgressIndicator

	javafx.concurrent.Task

Listing 4-25. An example application that demonstrates background processes

@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("BackgroundProcesses: Chapter 4 Background Processes");

 // ... Layout and UI controls code here
 final Label label = new Label("Files Transfer:");
 final ProgressBar progressBar = new ProgressBar(0);
 final ProgressIndicator progressIndicator = new ProgressIndicator(0);

 // ... Layout and UI controls code here
 final Button startButton = new Button("Start");
 final Button cancelButton = new Button("Cancel");
 final TextArea textArea = new TextArea();
 // ... Layout and UI controls code here

 // wire up Start button
 startButton.setOnAction((ActionEvent event) -> {
 startButton.setDisable(true);
 progressBar.setProgress(0);
 progressIndicator.setProgress(0);
 textArea.setText("");
 cancelButton.setDisable(false);
 copyWorker = createWorker(numFiles);

 // wire up progress bar
 progressBar.progressProperty().unbind();
 progressBar.progressProperty()
 .bind(copyWorker.progressProperty());
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty()
 .bind(copyWorker.progressProperty());

 // append to text area box
 copyWorker.messageProperty().addListener(
 (ObservableValue<? extends String> observable,
 String oldValue, String newValue) -> {
 textArea.appendText(newValue + "\n");
 });

 new Thread(copyWorker).start();
 });

119CHAPTER 4: Layouts and UI Controls

 // Cancel button will kill worker and reset.
 cancelButton.setOnAction((ActionEvent event) -> {
 startButton.setDisable(false);
 cancelButton.setDisable(true);
 copyWorker.cancel(true);

 // reset
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 progressIndicator.progressProperty().unbind();
 progressIndicator.setProgress(0);
 textArea.appendText("File transfer was cancelled.");
 });

 primaryStage.setScene(scene);
 primaryStage.show();
}

private Task createWorker(final int numFiles) {
 return new Task() {
 @Override
 protected Object call() throws Exception {
 for (int i = 0; i < numFiles; i++) {
 long elapsedTime = System.currentTimeMillis();
 copyFile("some file", "some dest file");
 elapsedTime = System.currentTimeMillis() - elapsedTime;
 String status = elapsedTime + " milliseconds";

 // queue up status
 updateMessage(status);
 updateProgress(i + 1, numFiles);
 }
 return true;
 }
 };
}

private void copyFile(String src, String dest) throws InterruptedException {
 // simulate a long time
 Random rnd = new Random(System.currentTimeMillis());
 long millis = rnd.nextInt(1000);
 Thread.sleep(millis);
}

The code begins by creating not one but two progress controls to show the user the work being
done. The first control is a progress bar, and the second is a progress indicator. Figure 4-12 depicts
from left to right a progress bar and a progress indicator (pie chart). The progress indicator shows a
percentage below the indicator icon.

120 CHAPTER 4: Layouts and UI Controls

Listing 4-26 is the creation of a progress bar and a progress indicator using the constructor that
initializes the progress value to zero.

Listing 4-26. Instantiating the ProgressBar and ProgressIndicator UI controls

ProgressBar progressBar = new ProgressBar(0);
ProgressIndicator progressIndicator = new ProgressIndicator(0);

Next, the code creates a worker thread via the private createWorker() method. The createWorker()
convenience method instantiates and returns a javafx.concurrent.Task object, which is similar
to the Java Swing’s SwingWorker class. Unlike the SwingWorker class, the Task object is greatly
simplified and easier to use, thanks to its event-driven design. An example is a Task object’s ability
to update progress asynchronously.

When creating an instance of a Task object, the code implements the call() method to do work
in the background. As the work is being done, you will often want to queue up intermediate results
such as progress or text information to provide feedback to the user. To queue information, the
API allows you to call the updateProgress() or updateMessage() method. These methods update
information in a thread-safe way so that the observer of the progress properties can update the GUI
safely without blocking the GUI thread. Listing 4-27 is code that queues up messages and progress.

Listing 4-27. The text messages and progress to be updated without blocking the progress UI controls

// queue up status
updateMessage(status);
updateProgress(i + 1, numFiles); // (progress, max progress)

After creating a worker Task, the code unbinds any old tasks bound to the progress controls. Once
the progress controls are unbound, the code then binds the progress controls to a newly created
Task object named copyWorker. Listing 4-28 rebinds a new Task object to the progress UI controls.

Figure 4-12. The output of Listing 4-25, simulating files being copied

121CHAPTER 4: Layouts and UI Controls

Listing 4-28. After a task is used, the progress controls will need to rebind to a new task

// wire up progress bar
progressBar.progressProperty().unbind();
progressBar.progressProperty().bind(copyWorker.progressProperty());
progressIndicator.progressProperty().unbind();
progressIndicator.progressProperty().bind(copyWorker.progressProperty());

Moving on, notice the code implementing a ChangeListener to append the queued results into the
TextArea control. Another remarkable thing about JavaFX Properties is that you can attach many
listeners similar to Java Swing components. Finally, our worker and controls are all wired up to spawn
a thread to go off in the background. The following code line shows the launching of a Task worker.

new Thread(copyWorker).start();

We finish off our code by wiring up the Cancel button. This button simply calls the Task object’s
cancel() method to kill the process. Once the task is cancelled the progress controls are reset.
Once a worker Task is cancelled it cannot be reused. That is why the Start button re-creates a new
Task. If you want a more robust reusable solution, look at the javafx.concurrent.Service class.

Summary
You began this chapter by learning the simple layouts such as the HBox, VBox, FlowPane, and
BorderPane. You saw that the HBox layout facilitated a way to string along child nodes horizontally
in a row. Similar to the HBox is the VBox layout, which places child nodes vertically in a column.
Next, you learned about the FlowPane layout, which is very useful when laying out child nodes to
flow horizontally and wrapping nodes to the next line depending on the available horizontal space.
The fourth of the simple layouts is the BorderPane layout, which provides regions such as top,
bottom, right, left and center. By learning these simple layouts you were able to understand the
fundamentals of the many spacing-related attributes. Learning about these attributes helped you
differentiate between what spacing, padding, and margins each contribute to. The last layout you
were introduced was the advanced GridPane layout, which provides a way to manage child nodes
in a tabular grid containing columns and rows, where each cell can contain a JavaFX node. You also
ran an example to show off a form-based application using FlowPane, BorderPane, and GridPane. In
particular, the example demonstrated column constraints, which enabled child nodes to be resized.

After learning about common layouts you delved into UI controls. You began by learning how to
create standard menus and menu bars. By creating menus you were able to learn to create handler
code to respond to the selection of menu items. Next, you were able to map key combinations or
keyboard shortcuts to menu options. You learned how to create context menus invoked by right-
clicking the mouse on the scene graph. With the many ways to create menus and menu items, you
got a chance to run an example program that simulated a security alarm application.

Finally, you were exposed to ObservableList collections, which support the display of UI controls such as
the ListView and TableView nodes. By learning about the UI controls ListView and TableView, you saw
fun examples enabling a user to move items between lists. Lastly, you learned about the ProgressBar
and ProgressIndicator for background worker threads. With ProgressBars and ProgressIndicators you
were able to run an example that simulates background worker threads copying files.

123

Chapter 5
Graphics with JavaFX

Have you ever heard someone say, “When two worlds collide”? This expression is used when a
person from a different background or culture is put in a situation where they are at odds and must
face very hard decisions. When building GUI applications needing graphics or animations, we are
often on a collision course between business and gaming worlds.

In the ever-changing world of rich Internet applications (RIA), you probably have noticed an
increased use of animations such as pulsing buttons, transitions, moving backgrounds, and so on.
GUI applications can use animations to provide visual cues to let the user know what to do next.
With JavaFX, you will be able to have the best of both worlds, creating appealing graphics as well as
handling business transactions.

In this chapter you will learn about displaying images and playing animations. Fasten your seatbelts;
you’ll discover solutions to integrate cool game-like interfaces into everyday applications.

Working with Images
Yet another powerful capability in JavaFX is the ability to display standard image file formats on the
scene graph. In this section you will learn how to do the following:

Load images (javafx.scene.image.Image) from your local file system or a remote
webserver.

Display images using the 	 javafx.scene.image.ImageView node.

After learning about the Image and ImageView APIs, you will also see an example of a photo viewer
application that demonstrates the ability to load and display images.

124 CHAPTER 5: Graphics with JavaFX

Loading Images
You are probably aware of the many standard image file formats, such as .jpg, .png, .gif, and .bmp.
To load standard image file formats JavaFX provides the javafx.scene.image.Image API. The Image
class has many convenient constructors that facilitate different loading strategies, as shown in the
following list:

	Image(java.io.InputStream inputStream)

	Image(java.io.InputStream is, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth)

	Image(java.lang.String url)

	Image(java.lang.String url, boolean backgroundLoading)

	Image(java.lang.String url, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth)

	Image(java.lang.String url, double requestedWidth, double
requestedHeight, boolean preserveRatio, boolean smooth, boolean
backgroundLoading)

You can see that there are only a handful of parameters, common to all of the constructors that
are used in various combinations for different loading scenarios. Table 5-1 briefly describes each
parameter.

Table 5-1. The javafx.scene.image.Image constructor’s parameters

Parameter Data Type Description

inputStream java.io.InputStream An input stream such as a file or network.

url String An image’s URL location such as a file on the local file
system or a web server hosting an image file.

backgroundLoading boolean Loads the image in the background (off the JavaFX
application thread).

requestWidth double Specifies an image’s bounding box width.

requestedHeight double Specifies an image’s bounding box height.

preserveRatio boolean Used to keep an image’s aspect ratio within the
bounding box.

smooth boolean True indicates the use of a better algorithm to smooth the
image, which will be slower; otherwise it will use the lower
quality, which will render faster.

To demonstrate loading an image, Listing 5-1 shows code that loads an image first from a local file
system and then from a remote host on a web server. The constructor accepts a string representing
a URL and the backgroundLoading parameter (boolean).

125CHAPTER 5: Graphics with JavaFX

Listing 5-1. Two images are loaded based on the protocol file and HTTP for URLs

try {
 File file = new File("C:\\Users\\jdoe\\Pictures\\myphoto.jpg");
 String localUrl = file.toURI().toURL().toString();
 Image localImage = new Image(localUrl, false); // don't load in the background

 String remoteUrl = "http://mycompany.com/myphoto.jpg";
 Image remoteImage = new Image(remoteUrl, true); // load in the background

 System.out.println(localUrl); // file:/C:/Users/jdoe/Pictures/myphoto.jpg
 System.out.println(remoteUrl); // http://mycompany.com/myphoto.jpg

 // ... rest of the code

} catch (MalformedURLException ex) {
 // error
}

After running Listing 5-1, you’ll see the following output:

file:/C:/Users/jdoe/Pictures/myphoto.jpg
http://mycompany.com/myphoto.jpg

To load an image from the local file system, the code creates a File object based on a string with
the path location to the image. In this scenario I’ve specified a Microsoft Windows–based absolute
file path for the image, but don’t worry about system-dependent code; you will see that the toURL()
method converts the file path into a standard URL format. After creating the file object, the code
obtains a string formatted to the standard URL specification, via the toURI().toURL().toString()
method call. What’s nice is that the method call converts absolute paths into the standard Uniform
Resource Locator specification format. After the method call, the returned string will contain the
file: protocol prefixed to the file path information.

Also implemented in the example is the ability to load an image hosted on a remote web server. You
can see that the code also uses http: as a protocol prefixed to the URL path to demonstrate loading
images on a host web server.

Now that you know how to load images, you will learn how to display them using the JavaFX
ImageView node.

Viewing Images
A javafx.scene.image.ImageView node is a wrapper object that references an Image object, which
we discussed earlier. Because the ImageView object is a JavaFX Node object you will be able to apply
effects, perform transforms, and scale images.

When an ImageView node is used to apply special effects such as blurring, the image’s pixel data is
not actually manipulated, but copied, to be calculated and displayed onto the ImageView node. This
is quite a powerful technique when there are many ImageView objects that all point to a single Image
object. Listing 5-2 loads an image asynchronously (a technique known as background loading) to be
passed into an ImageView constructor. By default, the width and height will be the actual dimensions

http://mycompany.com/myphoto.jpg

126 CHAPTER 5: Graphics with JavaFX

in pixels of the image. In the next section you will see an example of a photo viewer application,
which will allow images to be displayed and scaled.

Listing 5-2. The creation of an ImageView node

Image image = new Image(url, true);
ImageView imageView = new ImageView(image);

A Photo Viewer Example
A practical way to display images in JavaFX is demonstrated by an example photo viewer
application. This application will allow you to drag and drop image files to be viewed on the scene
graph. Figure 5-1 illustrates the JavaFX photo viewer application displaying an image. In this section
I will first describe the photo viewer’s features, then summarize how to use it, and finally list and then
walk through the source code.

Figure 5-1. A JavaFX Photo Viewer application displaying an image file

127CHAPTER 5: Graphics with JavaFX

Before looking at the source code of our JavaFX photo viewer application, I will briefly explain the
features of the photo viewer application and how to use it.

Photo Viewer Features
The photo viewer application lets users do the following:

Load images with the following file formats: 	 .jpg, .gif, .png, .bmp.

Drag and drop a local image file to be viewed.	

Drag and drop a remote image file hosted on a web server to be viewed.	

Display a progress indicator showing the loading of an image.	

Resize the currently displayed image by resizing the window while maintaining 	
the aspect ratio.

Page through images using button controls to see the previous and next image.	

Photo Viewer User Instructions
Take the following steps to run the photo viewer application:

1. Locate an image on the file system:

/home/my_username/fun-pics.jpg

or webserver (browser’s address line):

http://www.mycompany.com/images/fun-pics.jpg

2. Use your mouse to drag and drop the file onto the window depicted in
Figure 5-2.

http://www.mycompany.com/images/fun-pics.jpg

128 CHAPTER 5: Graphics with JavaFX

3. Repeat steps 1 and 2 until you have more than one image.

4. Click the left-arrow button to view the previous image.

5. Click the right-arrow button to view the next image.

6. Resize the window to resize the image.

Photo Viewer Code Listing
Now that you know what the photo viewer is required to do and how it should operate, let’s look at
the source code, shown in Listing 5-3.

Figure 5-2. Dragging a file into the photo view application

129CHAPTER 5: Graphics with JavaFX

Listing 5-3. The code listing for a photo viewer application

package jfx8ibe;

// imports omitted...

/**
 * A photo viewer application to demonstrate the JavaFX ImageView node.
 * <p>

 * Instructions:
 * 1. Drag and drop an image file onto the application window.
 * 2. Repeat step 1 so more than 2 images are loaded.
 * 3. Click the left and right arrow controls to advance.
 * </p>
 * @author cdea
 */
public class PhotoViewer extends Application {
 // List of URL strings
 private final List<String> imageFiles = new ArrayList<>();
 // The current index into the imageFile
 private int currentIndex = -1;
 // Enumeration of next and previous button directions
 public enum ButtonMove {NEXT, PREV};
 // Current image view display
 private ImageView currentImageView;
 // Loading progress indicator
 private ProgressIndicator progressIndicator;
 // mutex */
 private AtomicBoolean loading = new AtomicBoolean();

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 5 Photo Viewer");
 Group root = new Group();
 Scene scene = new Scene(root, 551, 400, Color.BLACK);
 scene.getStylesheets()
 .add(getClass()
 .getResource("photo-viewer.css")
 .toExternalForm());

 primaryStage.setScene(scene);

 // set up the current image view area
 currentImageView = createImageView(scene.widthProperty());

 // set up drag & drop file abilities
 setupDragNDrop(scene);

 // create button panel controls (left & right arrows)
 Group buttonGroup = createButtonPanel(scene);

130 CHAPTER 5: Graphics with JavaFX

 // create a progress indicator
 progressIndicator = createProgressIndicator(scene);

 root.getChildren().addAll(currentImageView,
 buttonGroup,
 progressIndicator);

 primaryStage.show();
 }
 /*
 * A factory function returning an ImageView instance to
 * preserve the aspect ratio and bind the instance to the width
 * of the scene for resizing the image.
 *
 * @param widthProperty is the Scene's read only width property.
 * @return ImageView newly created image view for current display.
 */
 private ImageView createImageView(ReadOnlyDoubleProperty widthProperty) {
 // maintain aspect ratio
 ImageView imageView = new ImageView();
 // set aspect ratio
 imageView.setPreserveRatio(true);
 // resize based on the scene
 imageView.fitWidthProperty().bind(widthProperty);
 return imageView;
 }

 /*
 * Sets up the drag and drop capability for files and URLs to be
 * dragged and dropped onto the scene. This will load the image into
 * the current image view area.
 * @param scene The primary application scene.
 */
 private void setupDragNDrop(Scene scene) {
 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()
 || (db.hasUrl()
 && isValidImageFile(db.getUrl()))) {
 event.acceptTransferModes(TransferMode.LINK);
 } else {
 event.consume();
 }
 });

 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 // image from the local file system.

131CHAPTER 5: Graphics with JavaFX

 if (db.hasFiles() && !db.hasUrl()) {
 db.getFiles()
 .stream()
 .forEach(file -> {
 try {
 addImage(file.toURI().toURL().toString());
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 });
 } else {
 // image from some host
 addImage(db.getUrl());
 }
 if (currentIndex > -1) {
 loadImage(imageFiles.get(currentIndex));
 }

 event.setDropCompleted(true);
 event.consume();
 });
 }

 /*
 * Returns a custom created button panel
 * containing left and right buttons to
 * see previous and next images.
 * @param scene The main application scene
 * @return Group A custom button panel with
 * previous and next buttons
 */
 private Group createButtonPanel(Scene scene){
 // create button panel
 Group buttonGroup = new Group();

 Rectangle buttonArea = new Rectangle(0, 0, 60, 30);
 buttonArea.getStyleClass().add("button-panel");
 buttonGroup.getChildren().add(buttonArea);

 // left arrow button
 Arc leftButton = new Arc(12,16, 15, 15, -30, 60);
 leftButton.setType(ArcType.ROUND);
 leftButton.getStyleClass().add("left-arrow");

 // return to previous image
 leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED,
 (mouseEvent) -> {
 System.out.println("busy loading? " + loading.get());
 // if no previous image or currently loading.
 if (currentIndex == 0 || loading.get()) return;
 int indx = gotoImageIndex(ButtonMove.PREV);

132 CHAPTER 5: Graphics with JavaFX

 if (indx > -1) {
 loadImage(imageFiles.get(indx));
 }
 });

 // right arrow button
 Arc rightButton = new Arc(12,16, 15, 15, 180-30, 60);
 rightButton.setType(ArcType.ROUND);
 rightButton.getStyleClass().add("right-arrow");

 // advance to next image
 rightButton.addEventHandler(MouseEvent.MOUSE_PRESSED,
 (mouseEvent) -> {
 System.out.println("busy loading? " + loading.get());
 // if no next image or currently loading.
 if (currentIndex == imageFiles.size()-1
 || loading.get()) return;

 int indx = gotoImageIndex(ButtonMove.NEXT);
 if (indx > -1) {
 loadImage(imageFiles.get(indx));
 }
 });
 // add buttons to button group
 buttonGroup.getChildren().addAll(leftButton, rightButton);

 // move button group when scene is resized
 buttonGroup.translateXProperty()
 .bind(scene.widthProperty()
 .subtract(buttonArea.getWidth() + 6));
 buttonGroup.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(buttonArea.getHeight() + 6));
 return buttonGroup;
 }

 /*
 * Create a progress indicator control to be centered.
 * @param scene The primary application scene.
 * @return ProgressIndicator a new progress indicator centered.
 */
 private ProgressIndicator createProgressIndicator(Scene scene) {
 ProgressIndicator progress = new ProgressIndicator(0);
 progress.setVisible(false);
 progress.layoutXProperty()
 .bind(scene.widthProperty()
 .subtract(progress.widthProperty())
 .divide(2));

133CHAPTER 5: Graphics with JavaFX

 progress.layoutYProperty()
 .bind(scene.heightProperty()
 .subtract(progress.heightProperty())
 .divide(2));
 return progress;
 }

 /*
 * Returns true if URL's file extensions match jpg, jpeg, png and gif.
 * @param url standard URL path to image file.
 * @return boolean returns true if URL's extension matches jpg, jpeg,
 * png and gif.
 */
 private boolean isValidImageFile(String url) {
 List<String> imgTypes = Arrays.asList(".jpg", ".jpeg", ".png", ".gif", ".bmp");
 return imgTypes.stream()
 .anyMatch(t -> url.endsWith(t));
 }

 /**Adds the URL string representation of the path to the image file.
 * Based on a URL the method will check if it matches supported
 * image format.
 * @param url string representation of the path to the image file.
 */
 private void addImage(String url) {
 if (isValidImageFile(url)) {
 currentIndex +=1;
 imageFiles.add(currentIndex, url);
 }
 }

 /**
 * Returns the next index in the list of files to go to next.
 *
 * @param direction PREV and NEXT to move backward or forward
 * in the list of pictures.
 * @return int the index to the previous or next picture to be shown.
 */
 private int gotoImageIndex(ButtonMove direction) {
 int size = imageFiles.size();
 if (size == 0) {
 currentIndex = -1;
 } else if (direction == ButtonMove.NEXT
 && size > 1
 && currentIndex < size - 1) {
 currentIndex += 1;

134 CHAPTER 5: Graphics with JavaFX

 } else if (direction == ButtonMove.PREV
 && size > 1
 && currentIndex > 0) {
 currentIndex -= 1;
 }

 return currentIndex;

 }

 /*
 * Returns a worker task (Task) which will off-load the image
 * on a separate thread when finished; the current image will
 * be displayed on the JavaFX application thread.
 * @param url string representation of the path to the image file.
 * @return
 */
 private Task createWorker(final String url) {
 return new Task() {
 @Override
 protected Object call() throws Exception {
 // on the worker thread...
 Image image = new Image(url, false);
 Platform.runLater(() -> {
 // on the JavaFX Application Thread....
 System.out.println("done loading image " + url);
 currentImageView.setImage(image);
 progressIndicator.setVisible(false);
 loading.set(false); // free lock
 });
 return true;
 }
 };
 }

 /*
 * This method does the following loads an image,
 * updates a progress bar and spawns a new thread.
 * If another process is already loading
 * the method will return without loading.
 * @param url string representation of the path to the image file.
 */
 private void loadImage(String url) {
 if (!loading.getAndSet(true)) {
 Task loadImage = createWorker(url);
 progressIndicator.setVisible(true);
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty()
 .bind(loadImage.progressProperty());
 new Thread(loadImage).start();
 }
 }

135CHAPTER 5: Graphics with JavaFX

 public static void main(String[] args) {
 launch(args);
 }
}

Walking Through the Code
To begin our code walk-through, let’s discuss the application’s variables. Table 5-2 describes the
variables that maintain state information for our photo viewer application.

Table 5-2. The PhotoViewer Instance Variables

Variable Data Type Example Description

imageFiles List<String> /home/cdea/fun.jpg A list of Strings, each containing
an image’s URL file path.

currentIndex int 0 A zero-relative index into the
imageFiles list; –1 means no
images to view.

NEXT enum - The NEXT enum value when the
user clicks the right-arrow button.

PREV enum - The PREV enum value when the
user clicks the left-arrow button.

currentImageView ImageView - The current image will be displayed
onto the image view node.

progressIndicator ProgressIndicator - The progress indicator control
displayed during image loading.

loading AtomicBoolean - A flag to prevent loading of an
image until a prior image is finished
loading. True means it is currently
busy loading, otherwise the value
is False.

Now that you are familiar with the variables that provide bookkeeping for our photo viewer
application, I will explain the code, beginning with the usual start() method’s body in Listing 5-3.

The start() method first sets the title, creates the root node, and then creates the scene. After
instantiating a scene referencing the root node (Group), the code will style scene graph nodes via the
method getStyledSheets().add(). In this scenario I created a JavaFX CSS file (photo-viewer.css)
to style various nodes. This technique allows a developer to customize nodes by using an external
CSS file instead of the programmatic approach with setter methods on node attributes. For now you
can ignore the code statements relating to applying CSS styles; we’ll discuss them in more detail in
Chapter 6, on custom UIs.

The start() method next calls various private methods to create and assemble the parts that make
up our photo viewer application, such as the current photo view area and a custom button panel.

136 CHAPTER 5: Graphics with JavaFX

Current Photo View Area: ImageView
After setting up the scene, the start() method creates the current image display area by invoking a
private createImageView() method, which creates and returns a JavaFX ImageView object that has
its width property bound to the root (parent) node’s width. Binding the width means that resizing
the application window will also resize the ImageView. And by invoking the setPreserveRatio()
method set to true on the ImageView object, we enable the resizing ability to maintain the image’s
aspect ratio.

Drag and Drop: OnDragOver and OnDragDropped
Next the start() method invokes the private setupDragNDrop() method, which I created to attach
handler code to respond to the drag-and-drop capability of the native desktop for loading and
displaying images in our photo viewer application. A user can do any of the following: drag a file
from their host file explorer (finder), drag a URL pointing to a file from a browser’s address bar, or
drag the image from the browser, assuming the address or URL path is a valid image file hosted on a
web server. The icon to the left of the URL is dragged and the address line (filename) must have one
of the image file extensions mentioned earlier.

The OnDragOver Event
The setupDragNDrop() method starts by setting handler code (using a lambda expression) for the
OnDragOver event via the setOnDragOver() method. The OnDragOver event is triggered when the
mouse is dragged over the scene’s surface—in other words, holding down the mouse button over
selected files that are dragged over the surface triggers the OnDragOver event. The following code
snippet repeated from Listing 5-3 shows the OnDragOver event’s handler code:

// Dragging over surface
scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()
 || (db.hasUrl()
 && isValidImageFile(db.getUrl()))) {
 event.acceptTransferModes(TransferMode.LINK);
 } else {
 event.consume();
 }
});

Notice here that the lambda expression has an event (DragEvent) parameter. The lambda expression
code body obtains the Dragboard object from the DragEvent to determine if there are valid image files
being dragged over the scene’s surface. If so, the code sets the transfer mode (TransferMode.LINK);
otherwise, we ignore or consume the event using the consume() method. Figure 5-2 earlier in the
chapter shows the transfer mode (TransferMode.LINK) icon as the user is dragging the image onto
the scene, thus providing visual feedback to the user.

137CHAPTER 5: Graphics with JavaFX

The OnDragDropped Event
Next, we discuss the handler code to respond to an OnDragDropped event. The OnDragDropped event
occurs when the user has released the mouse button after dragging over the surface of the scene the
event handler code is shown in the following code snippet (see this code in context in Listing 5-3):

// Dropping over surface
scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 //String currentFile = null;
 // image from the local file system.
 if (db.hasFiles()) {
 db.getFiles()
 .stream()
 .forEach(file -> {
 try {
 addImage(file.toURI().toURL().toString());
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 }); // forEach
 } else {
 // image from some host
 addImage(db.getUrl());
 }
 if (currentIndex > -1) {
 loadImage(imageFiles.get(currentIndex));
 }

 event.setDropCompleted(true);
 event.consume();
}); // setOnDragDropped

Once again you see a lambda expression that has a parameter of type DragEvent. The code obtains
the Dragboard object to detect whether there are one or more files, via the hasFiles() method. If so,
the code iterates through each file to be added to the imageFiles (List<String>) variable. Before
adding a URL-formatted string into the imageFiles list, the private method addImage() in Listing 5-3
validates each file using the private isValidImageFile() method. I created the isValidImageFile()
method that uses the Stream API to determine whether the file extensions of the URL string
represents a standard image file format, such as .jpg, .gif, or .png. By using the anyMatch()
method with a functional interface of type java.util.function.Predicate you can easily evaluate
whether the URL string ends with any of the image file extensions. The following code snippet
iterates over the list of file formats to match the URL.

List<String> imgTypes = Arrays.asList(".jpg", ".jpeg", ".png", ".gif", ".bmp");
return imgTypes.stream()
 .anyMatch(t -> url.endsWith(t));

Next in the OnDragDropped event’s handler, notice the code to make sure the current index is greater
than –1, which indicates that a valid image can be loaded and displayed. Once an image is determined
to be valid, the private method loadImage() creates a worker task (Task) to begin loading an image file.

138 CHAPTER 5: Graphics with JavaFX

The loadImage() method is repeated here from Listing 5-3 in the following code snippet . It begins
by checking the loading (AtomicBoolean) variable before actually loading the image. This bit of code
prevents the user from rapidly clicking on the buttons and spawning many images, loading a task for
each one. Also, if the loading variable is not set to true, the code will set it to true before beginning
the image-loading process via the getAndSet(true) method.

private void loadImage(String url) {
 // do not begin task until current
 // task is finished loading (atomic)
 if (!loading.getAndSet(true)) {
 Task loadImage = createWorker(url);
 progressIndicator.setVisible(true);
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty()
 .bind(loadImage.progressProperty());
 new Thread(loadImage).start();
 }
}

This snippet shows the code related to creating a worker thread by invoking a private method. Here,
createWorker() is a convenience method to create worker tasks for asynchronous callbacks. After it
returns a worker (Task) instance, the load progress will be bound to the progress indicator, described
in Table 5-2 earlier. Essentially, the progress indicator will provide an animation as visual feedback
to the user that an image is in the process of loading. If there was a previously bound task, the code
will unbind the progress indicator and re-bind it to the newly created task. Finally, the worker thread
is simply started. Keep in mind that the image is loaded in a separate thread and not on the JavaFX
application GUI thread.

Finishing off the OnDragDropped event’s handler code, the event will complete the drop operation by
invoking the setDropCompleted(true) and consume() methods, respectively.

The Custom Button Panel
After setting up the drag-and-drop capabilities the start() method, Listing 5-3 invokes the private
method createButtonPanel() to create a custom button panel to contain the Previous and Next
buttons. These buttons allow the user to advance through images to load and display.

To create custom buttons, I’ve used ordinary JavaFX shapes, which are drawn onto a Group
node. To create the Previous and Next buttons I used JavaFX’s javafx.scene.shape.Arc shape to
build the left and right arrows on top of a small transparent rounded rectangle,
javafx.scene.shape.Rectangle.

Next in the createButtonPanel() method in Listing 5-3 you’ll find EventHandler code that listens
to mouse-pressed events to load and display the appropriate image based on the enums
ButtonMove.PREV and ButtonMove.NEXT. Attaching handler code for a mouse-press event for the
Previous and Next buttons is quite easy. The code simply invokes the addEventHandler() by passing
in the event that it is interested in (MouseEvent.MOUSE_PRESSED) and a closure that represents the
handler code that will respond when the button (the arc shape) is pressed. Shown in Listing 5-4, the
code determines whether the application is currently busy loading before proceeding by checking
the loading (AtomicBoolean) flag.

139CHAPTER 5: Graphics with JavaFX

Listing 5-4. The Attached mouse press event handler code for the custom Previous button (leftButton)

Arc leftButton = //... create an Arc
leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED,
 (mouseEvent) -> {
 System.out.println("busy loading? " + loading.get());
 // if no previous image or currently loading.
 if (currentIndex == 0 || loading.get()) return;
 int indx = gotoImageIndex(ButtonMove.PREV);
 if (indx > -1) {
 loadImage(imageFiles.get(indx));
 }
});

Assuming the loading flag is false, meaning not busy loading, the code will proceed by returning
the index into the imageFiles list of the next image to display.

The right button’s (rightButton) event handler is similar. The only thing different is determining
whether the Previous or Next button was pressed via the ButtonMove enum. This is passed to the
gotoImageIndex() method in Listing 5-3 to determine whether an image is available in that direction.

Finishing up the assembling of our button panel (buttonGroup), the code binds the button panel
to the scene’s width and height, which will dynamically reposition it relative to the bottom-right
corner of the scene as the user resizes the window. Here, we bind the translateXProperty()to the
scene’s width property by subtracting the buttonArea's width shown in Listing 5-5 and bind the
translateYProperty() based on the scene’s height property.

Listing 5-5. The bindings for the button panel to float relative to the lower right corner of the window(scene)

// move button group when the scene is resized
buttonGroup.translateXProperty()
 .bind(scene.widthProperty()
 .subtract(buttonArea.getWidth() + 6));
buttonGroup.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(buttonArea.getHeight() + 6));

Finally in Listing 5-3, the call to the private method createProgressIndicator() in the start()
method returns a progress indicator bound to the scene’s center area. You’ll notice the setVisible()
method (in loadImage() and in the Task created by createWorker()) to show or hide the progress
indicator before and after loading an image.

Animation
An animation is an illusion of motion when images change over time. Quite similar to a cartoon flip
book, each page represents a frame or picture that will be displayed on a timeline for a period of
time. In JavaFX you will be working with the animation API (javafx.animation.*). In this section
you will learn about key values, key frames, timelines, and transitions. Finally, to demonstrate
the animation APIs, we will explore a slightly modified photo viewer application with additional
enhancements.

140 CHAPTER 5: Graphics with JavaFX

What are Key Values?
The JavaFX animation API allows you to assemble timed events that can interpolate over
property-based values (Properties) in order to produce animated effects. For example, to produce a
fade-out effect, you would target a node’s opacity property to interpolate its value starting from 1
(fully opaque) to 0 (transparent) over a period of time. Listing 5-6 defines a KeyValue instance that
targets a rectangle node’s opacity property starting at 1 and ending with the value 0. By default,
a KeyValue object will have a linear interpolator.

Listing 5-6. A KeyValue object to fade out by interpolating the opacity property from 1 to 0

Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.opacityProperty(), 0);

The KeyValue object doesn’t actually interpolate the value, but simply defines the start and end
values of a property to interpolate between. Also, the KeyValue can be defined with different types
of interpolators such as linear, ease in, or ease out. For example, shown in Listing 5-7 is code
that defines a key value that will animate a rectangle from left to right by 100 pixels having an
Interpolator.EASE_OUT interpolator. Easing out will slow down the fade before the end key value.

Listing 5-7. A KeyValue object to move a rectangle from left to right 100 pixels with an interpolator that starts to slow down
when it reaches the end value

Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.xProperty(), 100, Interpolator.EASE_OUT);

Please visit the Javadocs documentation for available interpolators (javafx.animation.
Interpolator). By default, KeyValue constructors that don’t specify an interpolator will use a linear
interpolation (Interpolator.LINEAR), which evenly distributes the values.

What are Key Frames?
When an animation (Timeline) occurs, each timed event, called a keyframe (a KeyFrame object),
is responsible for interpolating key values (KeyValue objects) over a period of time
(javafx.util.Duration). When creating a KeyFrame object, the constructor requires a timed duration
(Duration) to interpolate over key values. KeyFrame constructors all accept one or more key values by
using a variable containing an argument list or a collection of KeyValue objects.

To demonstrate moving a rectangle in a diagonal direction from upper left to lower right, Listing 5-8
defines a keyframe that has a duration of 1000 milliseconds and two key values that represent the
rectangle’s x and y properties. The example defines a keyframe to move a rectangle’s upper-left
corner (0, 0) to point (100, 100) in one second or 1000 milliseconds.

Listing 5-8. Keyframe defined

Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue xValue = new KeyValue(rectangle.xProperty(), 100);
KeyValue yValue = new KeyValue(rectangle.yProperty(), 100);

KeyFrame keyFrame = new KeyFrame(Duration.millis(1000), xValue, yValue);

141CHAPTER 5: Graphics with JavaFX

A KeyFrame object is defined to interpolate over the x and y properties. In this example a keyframe is
defined that will animate the rectangle to move in a southeast direction for one second.

What is a Timeline?
A Timeline is one animation sequence consisting of many KeyFrame objects. Each KeyFrame object
is run sequentially. Because a Timeline is a subclass of the abstract javafx.animation.Animation
class, it has standard attributes such as its cycle count and auto-reverse that you can set. The cycle
count is the number of times you want the timeline to play the animation. If you want the cycle count
to play the animation indefinitely, use the value Timeline.INDEFINITE. The auto-reverse property is a
Boolean flag to indicate that the animation can play the timeline backward (the keyframes in reverse
order). By default, the cycle count is set to 1, and auto-reverse is set to false.

To add key frames to a Timeline object, use the getKeyFrames().addAll() method. Listing 5-9
demonstrates a timeline playing indefinitely (looping) with auto-reverse set to true to enable the
animation sequence to go backwards. A Timeline instance is created with a cycle count set to run
indefinitely and auto-reverse set to true to allow the animation sequence to go backwards.

Listing 5-9. A Timeline instance

Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
timeline.getKeyFrames().addAll(keyFrame1, keyFrame2);
timeline.play();

With this knowledge of timelines, you can now animate any scene graph node in JavaFX. Although
you have the ability to create timelines in a low-level way, this technique can become very
cumbersome for simple animations. You are probably wondering whether there are easier ways to
express common animation effects such as fading, scaling, and translating.

Good news! JavaFX has stock (built-in) transition animations (the Transition class), which are
convenience classes to perform common animated effects. Here are some of the most common
animation effects classes, followed by a brief description of each:

	javafx.animation.FadeTransition

	javafx.animation.PathTransition

	javafx.animation.ScaleTransition

	javafx.animation.TranslateTransition

The fade transition (FadeTransition) targets the node’s opacity property for a fading animation
effect. The path transition (PathTransition) enables a node to follow a generated path (Path). Scale
transition (ScaleTransition) targets a node’s scaleX, scaleY, and scaleZ properties to resize a node.
Translate transition (TranslateTransition) targets a node’s translateX, translateY, and translateZ
properties to move a node across the screen. I’ve only listed a few common transitions; however,
there are many more transitions I haven’t discussed, so I encourage you to look at the Javadocs
documentation for subclasses of the javafx.animation.Transition class.

142 CHAPTER 5: Graphics with JavaFX

Because Transition objects are also subclasses of the javafx.animation.Animation class, you will
have the opportunity to set the cycle count and auto-reverse attributes. To demonstrate these built-
in transitions let’s look at an example.

A News Ticker Example
To demonstrate some of the common transitions mentioned earlier, I decided to add some of them
to the prior photo viewer application, and also add a news ticker-like control. Because the new ticker
code is similar to the previous photo viewer example, I will describe only the relevant code that
performs the animation transitions. To see the full source code, visit the book’s website to download
the code for this chapter. The example project is called NewsTickerPhotoViewer.

Before discussing any code, let’s go over the suggested enhancements of our news-ticker-photo-
viewer application. Figure 5-3 is the News Ticker photo viewer application containing the suggested
enhancements.

Figure 5-3. The News Ticker Photo Viewer application

143CHAPTER 5: Graphics with JavaFX

Following are the enhancements and their descriptions:

	Fade in/out photo: Apply a fade effect to fade out the current image (ImageView)
and fade in the newly loaded image when using the Previous and Next buttons.
Use the FadeTransition and SequentialTransition classes.

	Fade in/out button panel: Apply a fade effect to fade-out the button panel
control when the mouse cursor is not hovering inside the application window
(Scene), otherwise fade-in (cursor is hovering inside application window). Use the
FadeTransition class.

	Add a news ticker-like control: Scroll text content from right to left in a
rectangular region positioned near the bottom and just left of the button panel
control. Use the TranslateTransition class.

Adding a Fade in/out Transition to Photos
To add a nice touch to the photo viewer application, I decided to add a fade transition effect
between image views. Assuming you have more than one image loaded, you can click the Next
or Previous buttons to see the transition effect in action. Because these are actually two separate
actions (fade-out and fade-in), they need to be performed in consecutive order (sequentially).

In JavaFX the animation API also provides two types of higher-level transition classes that
are capable of performing multiple animations (transitions). These two types are sequential
(SequentialTransition) and parallel (ParallelTransition). As the name implies, the sequential
transition contains one or more animations that run in sequence. An example would be to
animate a rectangle by scaling it first and then rotating it. Parallel transitions run child animations
simultaneously (in parallel). Using the same example, the rectangle would scale and rotate at the
same time.

In our news ticker photo viewer application, you will use the SequentialTransition class to contain
two FadeTransition animations. To augment the existing photo viewer application I added the
private method transitionByFading(), shown in Listing 5-10. This method creates and returns a
SequentialTransition instance that contains two FadeTransition child animation transitions.

Listing 5-10. The method transitionByFading() to fade-out the current image and fade-in the next image

private SequentialTransition transitionByFading(Image nextImage,
 ImageView imageView) {

 // fade out image view node
 FadeTransition fadeOut =
 new FadeTransition(Duration.millis(500), imageView);
 fadeOut.setFromValue(1.0);
 fadeOut.setToValue(0.0);
 fadeOut.setOnFinished(actionEvent -> imageView.setImage(nextImage));

 // fade in image view node
 FadeTransition fadeIn =
 new FadeTransition(Duration.millis(500), imageView);
 fadeIn.setFromValue(0.0);
 fadeIn.setToValue(1.0);

144 CHAPTER 5: Graphics with JavaFX

 // fade out image view, swap image and fade in image view
 SequentialTransition seqTransition =
 new SequentialTransition(fadeOut, fadeIn);

 return seqTransition;
}

The method begins by receiving the nextImage argument with the preloaded next image and the
argument imageView, which references the ImageView node pointing to the current image. The code
first creates a fade-out transition that targets the ImageView object’s opacity property by setting the
methods setFromValue(1.0) and setToValue(0.0) on the associated FadeTransition instance.
Once the start and end values are defined, handler code (lambda) is added to the OnFinished event
via the setOnFinished() method to switch out the image to be set as the new image. In other words,
when the image view node is finished fading out, set the image displayed to the next image. Because
the image view’s opacity is at zero, the user cannot see the image until the fade-in transition occurs.

After creating a fade-out transition, the code creates the fade-in. This transition is similar to the
fade-out except that the From and To values are reversed; the opacity property on the image view will
start fading with a value of zero (invisible) and end with a value of one (fully opaque). Finally, the code
completes the method by creating a SequentialTransition instance that will contain the two fade
transitions just mentioned.

After adding the transitionByFading() method to the main application class
(NewsTickerPhotoViewer.java), you will need to wire it up to the code that loads the next image
(within the createWorker() method). To perform the sequential fade transition effect, you can now
appropriately invoke the private transitionByFading() method. Shown in Listing 5-11, within the
call() method of our returned Task is the call to the transitionByFading() method. Also notice the
code that invokes the play() method on the SequentialTransition object to kick off the animation
sequence.

Listing 5-11. Updated createWorker() method to invoke the new transitionByFading() method instead of setting the next
image right away

private Task createWorker(final String url) {
 return new Task() {
 @Override
 protected Object call() throws Exception {
 Image image = new Image(url, false);
 Platform.runLater(() -> {
 // New code:
 SequentialTransition seqTransition =
 transitionByFading(image, currentImageView);
 seqTransition.play();

 // Old code: currentImageView.setImage(image);

 progressIndicator.setVisible(false);
 loading.set(false); // free lock
 });
 return true;
 }
 };
}

145CHAPTER 5: Graphics with JavaFX

Adding a Fade in/out Transition to the Button Panel
Another enhancement to our photo viewer application is a fade transition effect on the custom
button panel control. When the mouse cursor is hovering over the application area (Scene), the
button panel control will fade in to become fully opaque, and when it is not hovering, the button
panel control will fade out to become invisible.

Listing 5-12 adds this new behavior to the createButtonPanel() method of the original photo viewer
application. For brevity I’ve omitted most of the button panel creation code right before the code
for fading the button panel. The additional code is at the end of the method createButtonPanel();
it simply attaches handler code to the OnMouseEntered and OnMouseExited events on the main
application scene object. You will notice that each fade transition uses a half-second duration,
specified using the Duration.millis(500) method to perform the animation.

Listing 5-12. The fade in and out transition effect added to the button panel method createButtonPanel()

/**
 * Returns a custom created button panel containing left and right
 * buttons to see the previous and next image.
 * @param scene
 * @return Group node.
 */
 private Group createButtonPanel(Scene scene){

 // Code omitted...
 // ... The button panel code goes here.

 // Fade in button controls
 scene.setOnMouseEntered((MouseEvent me) -> {
 FadeTransition fadeButtons =
 new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(0.0);
 fadeButtons.setToValue(1.0);
 fadeButtons.play();
 });

 // Fade out button controls
 scene.setOnMouseExited((MouseEvent me) -> {
 FadeTransition fadeButtons =
 new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(1);
 fadeButtons.setToValue(0);
 fadeButtons.play();
 });

 return buttonGroup;
 }

146 CHAPTER 5: Graphics with JavaFX

Creating a News Ticker Control
The last core functionality of this example is to add a news ticker control to our photo viewer
application. Listing 5-13 shows a method called createTickerControl(), which returns a custom
news ticker control that is added to the scene graph. After you’ve had a chance to look over the
implementation in Listing 5-13, I will explain how the custom news ticker operates.

Listing 5-13. A method that returns a custom news ticker control to be added to the main scene graph

/**
 * Returns a news ticker control
 * @param scene
 * @param buttonGroup
 * @return
 */
private Group createTickerControl(Stage stage, double rightPadding) {
 Scene scene = stage.getScene();

 // create ticker area
 Group tickerArea = new Group();
 Rectangle tickerRect = new Rectangle(scene.getWidth(), 30);
 tickerRect.getStyleClass().add("ticker-border");

 Rectangle clipRegion = new Rectangle(scene.getWidth(), 30);
 clipRegion.getStyleClass().add("ticker-clip-region");
 tickerArea.setClip(clipRegion);

 // Resize the ticker area when the window is resized
 tickerArea.setTranslateX(6);
 tickerArea.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(tickerRect.getHeight() + 6));
 tickerRect.widthProperty()
 .bind(scene.widthProperty()
 .subtract(rightPadding));
 clipRegion.widthProperty()
 .bind(scene.widthProperty()
 .subtract(rightPadding));
 tickerArea.getChildren().add(tickerRect);

 // news feed container
 FlowPane tickerContent = new FlowPane();

 // add some news
 Text news = new Text();
 news.setText("JavaFX 8.0 News! | 85 and sunny | :)");
 news.setFill(Color.WHITE);
 tickerContent.getChildren().add(news);

 DoubleProperty centerContentY = new SimpleDoubleProperty();
 centerContentY.bind(
 clipRegion.heightProperty()

147CHAPTER 5: Graphics with JavaFX

 .divide(2)
 .subtract(tickerContent.heightProperty()
 .divide(2)));

 tickerContent.translateYProperty().bind(centerContentY);

 tickerArea.getChildren().add(tickerContent);

 // scroll news feed
 TranslateTransition tickerScroller = new TranslateTransition();
 tickerScroller.setNode(tickerContent);
 tickerScroller.setDuration(
 Duration.millis(scene.getWidth() * 40));
 tickerScroller.fromXProperty()
 .bind(scene.widthProperty());
 tickerScroller.toXProperty()
 .bind(tickerContent.widthProperty()
 .negate());

 // when ticker has finished, reset and replay ticker animation
 tickerScroller.setOnFinished((ActionEvent ae) -> {
 tickerScroller.stop();
 tickerScroller.setDuration(
 Duration.millis(scene.getWidth() * 40));
 tickerScroller.playFromStart();
 });
 // start ticker after nodes are shown
 stage.setOnShown(windowEvent -> {
 tickerScroller.play();
 });

 return tickerArea;
}

The news ticker control created here will resemble a stock ticker, as news headlines scroll from
right to left inside a rounded rectangular region. As the news content scrolls by, it will enter the
rectangular region from the right edge and exit the left edge. To have the news content appear only
in the rectangular area, you will want the news content to be clipped. Clipping the area creates a
viewport that shows only the pixels inside the rounded rectangular region.

The method createTickerControl() begins by accepting stage and rightPadding parameters.
These parameters are primarily used to help determine size and dimensions to position the news
ticker control dynamically when the window is resized. The stage parameter is the application’s main
Stage object, and the rightPadding is spacing to reduce the width of the ticker control to make room
for the button panel (Group) node.

The method body starts off by creating a Group node as the parent (tickerArea) to hold all the
components a ticker control comprises. Next, the code creates a stylized rectangle with rounded
corners and a thin white border. This rectangle’s styling is applied by adding the ticker-border style
class; this class is defined in the JavaFX CSS file news-ticker-photo-viewer.css, which is set earlier
in the application’s start() method. The CSS file shown in Listing 5-14 is a code snippet from the

148 CHAPTER 5: Graphics with JavaFX

start() method that initializes the scene’s nodes with the news-ticker-photo-viewer.css file. We
will discuss how to style nodes using CSS in detail in Chapter 6.

Listing 5-14. Initializing the scene’s nodes with the JavaFX CSS based file

scene.getStylesheets()
 .add(getClass().getResource("news-ticker-photo-viewer.css")
 .toExternalForm()
);

After creating the ticker’s styled (white) border, the code also creates an identical rectangle only
to be used as a clipped region. Having a clipped region creates a viewable area in the shape of a
rounded rectangle. This clipped rectangle represents a region that will be set on the parent Group
node (tickerArea) by using the setClip(someRectangle) method. Figure 5-4 shows a rounded
rectangular area as a clip region.

Figure 5-4. Setting the rounded rectangular clip region on the Group node object

With the ticker area (Group) created, the code will begin binding the ticker area’s translateX and
translateY properties, which are based on the scene’s dimensions (width and height). The code will
also bind the ticker area’s children nodes’ translateX and translateY properties.

By binding these properties, the ticker control’s nodes can change its size and position whenever a
user resizes the application window. This makes the ticker control appear to float at the bottom of
the window beside the button panel control. Listing 5-15 implements the property bindings for the
ticker control’s textArea, tickerRect, and clipRegion.

Listing 5-15. News Ticker bindings for repositioning control when the window is resized

// Resize the ticker area when the window is resized
tickerArea.setTranslateX(6);
tickerArea.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(tickerRect.getHeight() + 6));
tickerRect.widthProperty()
 .bind(scene.widthProperty()
 .subtract(rightPadding));
clipRegion.widthProperty()
 .bind(scene.widthProperty()
 .subtract(rightPadding));

Now that the main ticker control is finished, we need to create news to feed into it. Listing 5-16
begins by creating a FlowPane instance assigned to the variable tickerContent.

149CHAPTER 5: Graphics with JavaFX

Listing 5-16. Creating a news feed container

// news feed container
FlowPane tickerContent = new FlowPane();

// add some news
Text news = new Text();
news.setText("JavaFX 8.0 News! | 85 and sunny | :)");
news.setFill(Color.WHITE);

tickerContent.getChildren().add(news);

// center the ticker content vertically
DoubleProperty centerContentY = new SimpleDoubleProperty();
centerContentY.bind(clipRegion.heightProperty()
 .divide(2)
 .subtract(
 tickerContent.heightProperty()
 .divide(2)));
tickerContent.translateYProperty()
 .bind(centerContentY);

tickerArea.getChildren().add(tickerContent);

The tickerContent is a container node to hold news headlines (child nodes) to be scrolled in the
ticker control. The tickerContent node is nice because instead of animating each child node
(Text), the code will simply scroll the tickerContent (FlowPane). The idea of using a container node
(FlowPane) is analogous to moving a cargo train with box cars instead of moving each box car
individually.

For demonstration purposes I merely created one Text node with a hard-coded news headline.
As an exercise, you may want to refactor the code to expose the ticker content node to allow users
of the API to add real news headlines.

Finally, the last bit of code from our createTickerControl() method is the scrolling of the ticker
content. Listing 5-17 shows the code that scrolls the ticker content from right to left. To animate
a node to appear to scroll, I used the TranslateTransition class. You’ll notice I target the ticker
content (FlowPane) node via the setNode() method. Next, the code sets the duration using the
method Duration.millis(). It takes the scene’s width and multiplies it by 40 (milliseconds) to equal
the total time for the node to travel. Finally, the code will interpolate the node’s translateX property
from the right edge of the screen to the negative width of the ticker content node.

Listing 5-17. Scroll ticker content using the TranslateTransition class.

// scroll news feed
TranslateTransition tickerScroller = new TranslateTransition();
tickerScroller.setNode(tickerContent);
tickerScroller.setDuration(
 Duration.millis(scene.getWidth() * 40));
tickerScroller.fromXProperty()
 .bind(scene.widthProperty());

150 CHAPTER 5: Graphics with JavaFX

tickerScroller.toXProperty()
 .bind(tickerContent.widthProperty()
 .negate());

// when ticker has finished reset and replay ticker animation
tickerScroller.setOnFinished((ActionEvent ae) -> {
 tickerScroller.stop();
 tickerScroller.setDuration(
 Duration.millis(scene.getWidth() * 40));
 tickerScroller.playFromStart();
});

When the ticker’s news has scrolled completely off the ticker area to the far left of the Scene, you
will want to stop and replay the news feed from the start (the far right). Here, the method adds
handler code (a lambda expression) for the OnFinished event to respond when the tickerScroller
(TranslateTransition) transition has completed one cycle of the animation.

Once the animation is defined and the Stage is shown, the code will invoke the play()method ,
based on the OnShown window event (see Listing 5-18). To animate the ticker’s content, certain
widths and heights of nodes and their properties aren’t realized until nodes have been displayed on
the scene graph. That is why the tickerScroller’s play() method is invoked after the stage has
been shown.

Listing 5-18. Start the news ticker scroll animation

// start ticker after nodes are shown.
stage.setOnShown(windowEvent -> {
 tickerScroller.play();
});

Summary
In this chapter you learned how to load images using the javafx.scene.image.Image class’
constructor, which accepts the standard URL specification format of files located locally or on
a remote web server. Then you got a chance to implement a photo viewer application with
drag-and-drop capability to load and display images. Next, you looked at the fundamentals of
JavaFX’s animation API to create key values, key frames, and timelines. After learning about the
fundamental concepts of animating any node using timelines, you looked at convenient animation
classes called transitions. You learned that Transition classes have simplified the implementation
of common animation effects such as fading, scaling, and translating. Finally, you ended the chapter
by exploring an example that augmented the photo viewer application with animated enhancements,
including a custom news ticker control.

151

Chapter 6
Custom UIs

Wouldn’t it be nice if you could change the appearance of your application without altering its
functionality? Many companies spend lots of money and time to design user interfaces (UIs).
Often companies will mock up several designs before deciding how their UI should look and behave.
Depending on the scope, many companies also build UIs that support different screen dimensions.
Typically, tablets, smart phones, TVs, and desktops are among the main challenges UI designers face.

In this chapter you will learn about theming and how to customize applications by applying various
themes (look and feels). Next, you will learn about the fundamentals of JavaFX CSS styling, which
will enable you to change attributes of any Scene graph node, such as colors, backgrounds,
margins, and so on. After learning about CSS styling, you will apply these same techniques while
using the amazing Scene Builder application tool. Scene Builder is a free tool that enables you to
create and define UI screens graphically and save them as a JavaFX FXML-formatted file. Last, you
will learn about creating custom controls. Here you will learn how to build UI controls that aren’t part
of the JavaFX 8 built-in controls. Some custom controls that might come to mind are number pads,
gauges, clocks or futuristic context menus.

In this chapter you will be learning the following tools and concepts:

Theming	

JavaFX CSS styling	

Scene Builder	

Custom controls	

Theming
You have probably heard the terms skinning and look and feel in the context of designing user
interfaces. These terms are often used interchangeably, and both reflect the basic concept of
theming. Theming has the idea of transforming an entire application’s appearance without changing
its underlying functionality. An example of theming would be to change an application’s UI layout
and controls from a stylized business theme to a sports-like theme. Usually, companies will try to

152 CHAPTER 6: Custom UIs

skin an application to resemble their logo. They’ll also use beautiful typefaces (typography) selected
to personify their corporate culture or target audience.

In JavaFX you have the ability to create, modify, or use existing themes to skin your applications.
Later, we will discuss how to create themes, but for now I’ll show you how to apply existing themes
(skins) in JavaFX applications. To demonstrate applying themes to an application’s UI, I created the
JavaFX 8 application depicted in Figure 6-1, which allows a user to choose and apply various UI
look-and-feel themes.

Figure 6-1. Setting an application's look and feel using JavaFX CSS styling. Moving counterclockwise from the upper-left are the
Caspian, Modena, Sky and Flat Red look-and-feel themes

As you can see, there are four themes applied to the same application. At the upper left is the
familiar Caspian theme from Java FX 2.X. Caspian has served well over the years and still has quite
the professional look. At the lower left you see an accordion UI control expanded to show progress

153CHAPTER 6: Custom UIs

controls using JavaFX 8’s new default theme, Modena. The Modena theme seems brighter, cleaner,
and more modern.

At the lower right, our next theme, called the Sky look and feel, was created by yours truly (Carl Dea).
My intent was to create a theme for touch displays such that the controls would be slightly enlarged
for adult-sized fingers. I wanted a friendly feel and so the cool blue sky came to mind.

Last but not least at the upper right is the Flat Red look and feel, created by Gerrit Grunwald.
The Flat Red uses fonts to give text on controls a crisp and clean look. Another nice feature of the
Flat Red theme is that it uses CSS effects based on pseudo-class state changes of UI controls, such
as a mouse press on a slider control. Don’t worry if you don’t know yet what pseudo-classes are,
because later in this chapter we will discuss pseudo-class selectors in detail. Mr. Grunwald’s look
and feel is also an excellent candidate for touch displays.

Before jumping into code I want to give a shout-out to individuals in the JavaFX community who
have crafted beautiful skins and themes that you will find most inspiring. For those interested in the
OS X (Mac desktop) native look and feel, Claudine Zillmann (@etteClaudette) has created AquaFX
(with Elements). AquaFX has an API that allows developers to style applications easily with the native
OS X look, but also to theme the UI with colors other than the usual aqua blue.

If you prefer the Windows 8 Metro native look and feel, Pedro Duque Vieira (@P_Duke) has created
JMetro. The JMetro look and feel can style applications that resemble many applications you’ll find
on Microsoft Surface devices or Windows 8 desktops. JMetro also has the ability to switch from a
dark or light theme.

The last skin I want to mention is a really nice look and feel for touch displays that has a Roku-like or
Apple TV-like interface; it’s called Flatter, by Hendrick Ebbers (@hendrikEbbers). Flatter was designed
for the BoxFX project. BoxFX is another project Mr. Ebbers has created by using a Raspberry Pi
device running JavaFX 8 with the Flatter look and feel. The following are their respective websites:

AquaFX (with Elements): 	 http://aquafx-project.com/project.html

Jmetro: 	 http://pixelduke.wordpress.com/category/metro or
https://github.com/JFXtras/jfxtras-styles

Flatter: 	 http://www.guigarage.com/2013/09/flatter

BoxFX: 	 http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

Applying JavaFX CSS Themes
Now that you have seen a glimpse of some great-looking skins and themes, let’s see how to apply
JavaFX CSS-based themes. JavaFX has the capability to apply Cascading Style Sheets to the Scene
graph and its nodes in very much the way Web developers use CSS style sheets against HTML5
elements. These CSS style sheets are external files containing attributes and values to style JavaFX
nodes. An example JavaFX CSS file would look something like Listing 6-1.

http://aquafx-project.com/project.html
http://pixelduke.wordpress.com/category/metro/
https://github.com/JFXtras/jfxtras-styles
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

154 CHAPTER 6: Custom UIs

Listing 6-1. A JavaFX CSS File Containing Styling Attributes

/* sample.css */
.button {
 -fx-text-fill: brighter-sky-blue;
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
}
/* ...more styling */

This code contains a CSS class style definition for JavaFX button controls. Button UI controls by
default have a class style button, which maps to -fx- prefixed properties. You will learn about
JavaFX CSS styling later in this chapter, but for now let’s discuss how to swap between the CSS
style sheets that will dynamically skin an application.

In this section you will learn two ways to apply CSS style sheets as look-and-feel themes
onto JavaFX applications. The first way to apply CSS style sheets is by invoking the static
setUserAgentStylesheet() method on the JavaFX Application (javafx.application.Application)
class. This static method styles every scene and all child nodes in a JavaFX application.

The second way of applying a look and feel is by invoking a Scene object’s getStylesheets().add()
method. Unlike the first method of applying a look and feel, the getStylesheets().add() method is
used to style a single scene and its child nodes.

Using the setUserAgentStylesheet(String URL) Method
The setUserAgentStylesheet(String URL) method accepts a valid URL string representing the
JavaFX CSS file. Typically, CSS files are bundled inside a jar application; however. they can reside
on the local file system or a remote web server. When the CSS file is in the classpath, the call to the
getClass().getResource("path/some_file.css").toExternalForm() method will find the CSS file
and produce a URL String for accessing the file.

The following code snippet loads the sample.css file as the current look and feel. The sample.css file
in the code snippet is co-located where the current class is located. In other words, your Java class
and your CSS file are in the same directory, so there is no need for a path in front of the file name.

Application.setUserAgentStylesheet(getClass().getResource("sample.css")
 .toExternalForm());

The setUserAgentStylesheet() method applies styling globally to all scenes owned by an
application, such as context menus and child popup dialog windows. JavaFX 8 currently contains
two style sheets, Caspian and Modena, which serve as default cross-platform look and feel skins.
Because the two style sheets are predefined, you can easily switch between them using the
setUserAgentStylesheet() method. The following code shows how to switch between the Caspian
and Modena look and feel style sheets.

155CHAPTER 6: Custom UIs

// Switch to JavaFX 2.x's CASPIAN Look and Feel.
Application.setUserAgentStylesheet(STYLESHEET_CASPIAN);

// Switch to JavaFX 8's Modena Look and Feel.
Application.setUserAgentStylesheet(STYLESHEET_MODENA);

A great way to learn how the pros do it (creating skins) is to look at good examples. You can extract
the CSS files (caspian.css and modena.css) from the jfxrt.jar file or view the JavaFX source code,
located at http://openjdk.java.net.

Note When we invoke the setUserAgentStylesheet(null) method by passing in a null value, the
default style sheet (Modena) will be automatically loaded and set as the current look and feel. However, if you
are using JavaFX 2.x, the default style sheet will be Caspian.

Using Scene’s getStylesheets().add(String URL) Method
By calling the getStylesheets().add() method, you can style a single scene and its child nodes.
As in the previous call to setUserAgentStylesheet(), you would pass in a URL string that represents
a JavaFX CSS file. Later, you will see an example application that switches between different styles
by using either the setUserAgentStylesheet() or the getStylesheets().add() method. You are
probably wondering what the exact differences between the two methods are.

Because creating an entire look and feel would require hundreds if not thousands of lines of code in
order to style every UI control in JavaFX, I basically created very small look-and-feel style sheet files
to demonstrate the ability to swap themes. The simple example CSS files have just a handful of CSS
styles for a small amount of UI controls that would be styled. In other words, the example’s small
CSS files are loaded via the getStylesheets().add() method, which styles only some of the nodes
and not every node in the application.

Because the default style sheet (Modena.css) is loaded from the prior call via the
setUserAgentStylesheet(null) method, the smaller custom CSS styling file can then
“piggyback” onto the default style sheet. What’s nice is that you wouldn’t have to start from
scratch to create a brand new look and feel. The following snippet of code initially invokes the
setUserAgentStylesheet() method with a null value, which loads Modena as the default look and
feel and then sets the scene’s additional styling by invoking the getStylesheets().add() method.

Application.setUserAgentStylesheet(null); // defaults to Modena

// apply custom look and feel to the scene.
scene.getStylesheets()
 .add(getClass().getResource("my_cool_skin.css")
 .toExternalForm());

http://openjdk.java.net/

156 CHAPTER 6: Custom UIs

An Example of Switching Themes
To show how to switch between various CSS style sheets (aka skins or themes), I’ve created an
example application called the Look N Feel Chooser, which allows you to choose between different
predefined look-and-feel themes. Figure 6-2 shows the Look and Feel Chooser example application
initially displaying accordion UI control panes with common UI controls, beginning with the Modena
look and feel.

Figure 6-2. Predefined look-and-feel themes to choose from the Look ‘N’ Feel menu

In Figure 6-2 you’ll notice the menu options to select a look and feel (skin). Once a look and feel
has been selected, the application’s appearance will change dynamically. Figure 6-3 shows the
application switched to the FlatRed look and feel.

157CHAPTER 6: Custom UIs

Notice the accordion UI control’s title bar, reading “Scroll Bars & Sliders,” expanded with UI controls
sporting the selected look and feel. This ability would be a great way to show off different look-and-
feel themes to your users while their application continues to function as usual.

The next section shows the main source code of our Look N Feel Chooser application in Listing 6-2.
For the sake of space, you will see only the start() method and not the entire source code. To see
the entire source code listing of the Look N Feel Chooser application, please visit the book’s website
to download the project.

The Look N Feel Chooser Example Application Code
By loading the Look N Feel Chooser project into the NetBeans IDE, you can see that the
source code consists of five files: LookNFeelChooser.java, lnf_demo.fxml, controlStyle1.css,
controlStyle2.css, flatred.css, and sky.css. The files with an extension of .ttf are TrueType fonts
that are used in the FlatRed look and feel. Figure 6-4 shows what the project structure looks like in
the NetBeans IDE.

Figure 6-3. The Look N Feel Chooser application using the Flat Red look and feel

158 CHAPTER 6: Custom UIs

Looking at the project structure you’ll notice the LookNFeelChooser.java file as the main driver
application class. The lnf_demo.fxml file is an FXML-formatted file representing the center content,
which contains the accordion UI control with other UI control elements. The FXML file was created
by the Scene Builder tool, discussed later in this chapter. The rest of the files are JavaFX CSS
style sheets that represent different look-and-feel themes: controlStyle1.css, controlStyle2.css,
flatred.css, and sky.css.

Listing 6-2 shows the init() and start() methods of the LookNFeelChooser.java Application class.
Remember that all JavaFX applications are first initialized via the init() method and then begin with
the start() method. After you have examined Listing 6-2, we will discuss how it all works.

Listing 6-2. The LookNFeelChooser Project Source Code to Switch between Look and Feel (JavaFX CSS)
Style Sheets

 @Override public void init() {
 Font.loadFont(LookNFeelChooser.class
 .getResourceAsStream("Roboto-Thin.ttf"), 10)
 .getName();
 Font.loadFont(LookNFeelChooser.class
 .getResourceAsStream("Roboto-Light.ttf"), 10)
 .getName();
 }

 @Override public void start(Stage primaryStage) throws IOException {
 BorderPane root = new BorderPane();
 Parent content = FXMLLoader.load(getClass().getResource("lnf_demo.fxml"));
 Scene scene = new Scene(root, 650, 550, Color.WHITE);
 root.setCenter(content);

 // Menu bar
 MenuBar menuBar = new MenuBar();

Figure 6-4. The LookNFeelChooser project structure in the NetBeans IDE

159CHAPTER 6: Custom UIs

 // File menu
 Menu fileMenu = new Menu("_File");
 MenuItem exitItem = new MenuItem("Exit");
 exitItem.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.SHORTCUT_DOWN));
 exitItem.setOnAction(ae -> Platform.exit());

 fileMenu.getItems().add(exitItem);
 menuBar.getMenus().add(fileMenu);

 // Look and feel menu
 Menu lookNFeelMenu = new Menu("_Look 'N' Feel");
 lookNFeelMenu.setMnemonicParsing(true);
 menuBar.getMenus().add(lookNFeelMenu);
 root.setTop(menuBar);

 // Look and feel selection
 MenuItem caspianMenuItem = new MenuItem("Caspian");
 caspianMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 setUserAgentStylesheet(STYLESHEET_CASPIAN);
 });
 MenuItem modenaMenuItem = new MenuItem("Modena");
 modenaMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 setUserAgentStylesheet(STYLESHEET_MODENA);
 });
 MenuItem style1MenuItem = new MenuItem("Control Style 1");
 style1MenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass()
 .getResource("controlStyle1.css")
 .toExternalForm());
 });
 MenuItem style2MenuItem = new MenuItem("Control Style 2");
 style2MenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass()
 .getResource("controlStyle2.css")
 .toExternalForm());
 });

 MenuItem skyMenuItem = new MenuItem("Sky LnF");
 skyMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()

160 CHAPTER 6: Custom UIs

 .add(getClass()
 .getResource("sky.css")
 .toExternalForm());
 });

 MenuItem flatRedMenuItem = new MenuItem("FlatRed");
 flatRedMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass()
 .getResource("flatred.css")
 .toExternalForm());
 });

 lookNFeelMenu.getItems()
 .addAll(caspianMenuItem,
 modenaMenuItem,
 style1MenuItem,
 style2MenuItem,
 skyMenuItem,
 flatRedMenuItem);

 primaryStage.setTitle("Look N Feel Chooser");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

Note To run this example, make sure the CSS and TTF (true type font) files are located in the compiled
class’s area. Resource files can be loaded easily when placed in the same directory (package) as the
compiled class file that is loading them. The CSS files are initially co-located with this source code example
file. In NetBeans, you can select Clean and Build Project or you can copy files to your class’s build area.

How It Works
The Look N Feel Chooser application is first initialized with the overloaded method init(), which
loads the required fonts used for the FlatRed look-and-feel theme. After the init() method is
executed the JavaFX application life-cycle will invoke the start() method.

In the start() method the code begins by creating a border pane layout, which then loads an FXML
file to be placed as the center content region. FXML is an XML-based language to express JavaFX
UIs. This provides a way to separate the presentation layer from the application logic layer. Typically,
FXML is generated by a GUI builder tool that allows a designer to drag and drop controls and create
UIs graphically. The following line uses the FXMLLoader.load() method to unmarshall (deserialize)

161CHAPTER 6: Custom UIs

the center content. The center content pane is an AnchorPane layout containing an Accordion control
holding other UI controls.

Parent content = FXMLLoader.load(getClass().getResource("lnf_demo.fxml"));

Later in this chapter you will learn about the Scene Builder tool, which allows you to create UIs to be
saved as FXML-formatted files.

Continuing with our example code, you will notice the usual creation of a scene with a root
node. Next, the code builds a menu bar with menu items. The first menu will be the File menu, to
allow the user to exit the application. Notice that for a quick exit using a keyboard shortcut, the
KeyCodeCombination instance allows the user to hit the Ctrl-X key combo. To learn about menus and
keyboard shortcuts, please refer to Chapter 4.

The second menu is Look ‘N’ Feel, which allows the user to select predefined look-and-feel CSS
style sheet files. The menu items are set to invoke handler code (lambda expressions) that is
triggered based on the onAction event. The following code snippet is a menu item that is responsible
for switching the application to use the Caspian look and feel:

MenuItem caspianMenuItem = new MenuItem("Caspian");
caspianMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(STYLESHEET_CASPIAN);
});

Notice that the onAction handler code containing two statements. In the JavaFX API the STYLESHEET_
CASPIAN and STYLESHEET_MODENA variables are enums representing the CSS files based on their
location on the classpath.

Because the rest of the code is pretty similar, I’m going to fast-forward to the last look-and-feel
menu option, which switches to the Flat Red look and feel. The other menu items are essentially
identical and invoke the same methods to clear previously loaded CSS style sheet files. For the Flat
Red look and feel I used the getStylesheets().add() method to style only the current scene-level
nodes. The Flat Red look and feel styles a subset of UI controls that includes sliders, scroll bars,
buttons, and progress controls. The code snippet shown next sets up a menu item to be selected
that will skin the application with the Flat Red look and feel. After the style is loaded that clears
previously loaded style sheets, it loads the default look and feel (null) and then loads the flatred.css
file, which will style the given scene.

MenuItem flatRedMenuItem = new MenuItem("FlatRed");
flatRedMenuItem.setOnAction(ae -> {
 scene.getStylesheets().clear();
 setUserAgentStylesheet(null);
 scene.getStylesheets()
 .add(getClass()
 .getResource("flatred.css")
 .toExternalForm());
});

162 CHAPTER 6: Custom UIs

JavaFX CSS
Now that you know how to load CSS style sheet files, let’s discuss JavaFX CSS selectors and
styling properties (rules). Similar to the way HTML5 uses CSS style sheets, there are selectors or
style classes associated with Node objects on the Scene graph. All JavaFX Scene graph nodes
have a setId(), a getStyleClass().add(), and a setStyle()method, respectively, to apply styling
properties that could potentially change the node’s background color, border, stroke, and so on.

Before we discuss selectors, I would like to refer you to the JavaFX CSS Reference Guide at
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html. This
invaluable reference guide will be very handy throughout this book and beyond.

What Are Selectors?
Similar to the W3C CSS (World Wide Web Consortium) standards for styling HTML elements, JavaFX
CSS has the concept of selectors. Selectors are basically tags to help locate JavaFX nodes on the
Scene graph to be styled using CSS style definitions. The two kinds of selector types are id and
class. An id selector is a unique string name that is set on a scene node.

A class selector is also a string name that can be added as a tag to any JavaFX node. I should
also point out that a class selector has no relation to the concepts of C++ or Java classes. Class
selectors allow any number of nodes to contain the same class string name for the ability to style
nodes with one CSS style definition. In the next sections you will learn more about how to define
CSS selector types, and we will follow-up with an example.

CSS id Type Selectors
The id type selector is a unique string name assigned to a node. This means that no other node’s
id can be the same. When using id type selectors, you will invoke the setId(String ID) method on
a JavaFX node object. For example, to target a Button instance whose id is my-button, you would
invoke the setId("my-button") method. To style the button with an id of my-button, you would
create a CSS style definition block declared with an id selector #my-button, as shown here:

#my-button {
 -fx-text-fill: rgba(17, 145, 213);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
}

This CSS styling block will be applied to a button with the unique id of my-button. Thus no other
node will be allowed to contain an id of my-button. You will also notice that when we use id
selectors in styling blocks, the CSS selector name is prefixed with the # symbol, and when setting
the id in Java code the # symbol is not used.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

163CHAPTER 6: Custom UIs

CSS class Type Selectors
When using class type selectors you will invoke the getStyleClass().add(String styleClass)
method to add a selector to a node. The method allows you to have multiple style classes for styling
a node. Since the getStyleClass() method returns an ObservableList you can add and remove
style classes in an ad hoc fashion to update its appearance dynamically. For example, let’s
target two buttons whose style classes (ObservableList) contain a num-button via the
getStyleClass().add("num-button") method. The following is a CSS style definition block
declared with a class selector .num-button:

.num-button {
 -fx-background-color: white, rgb(189,218,230), white;
 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
 -fx-font-size: 20px;
}

This CSS styling block will be applied to buttons with a style class num-button. You will notice that
when using class selectors, the CSS selector name is prefixed with a dot (.), and when adding the
selector in Java code the (.) symbol is not present.

Selector Patterns
Up until now you’ve seen only simple selectors; however, selectors can have patterns for the ability
to traverse the Scene graph’s hierarchy of nodes from the root node to the child nodes. Of course,
a full discussion of selector patterns is beyond the scope of this book, but I will briefly mention
common selector patterns and introduce pseudo-classes.

Common Selector Patterns
Often you will want to style many nodes based on common selector patterns. A typical selector
pattern you would want to perform would be to style child nodes whose parent is of a certain
type. Another pattern would be to style two different kinds of nodes with a common property. The
following example shows selector patterns for both of these use cases:

/* style all buttons who's parent is an HBox */
.hbox > .button { -fx-text-fill: black; }

/* style all labels and text nodes */
.label, .text { -fx-font-size: 20px; }

As you can see, the selector pattern (.hbox > .button) styles Button nodes that are descendants
of an HBox and is pretty straightforward. The greater-than symbol between the two selectors lets
the system know which nodes to style. Also, as described in the JavaFX CSS Reference Guide, the
selectors for UI controls have a naming convention. In this convention, selectors for JavaFX nodes
are all lowercase letters, and if a control has more than one word they are separated by hyphens.

164 CHAPTER 6: Custom UIs

For instance, a GridPane’s class selector would be .grid-pane. Keep in mind that not all nodes have
named class selectors by default, so please refer to the JavaFX CSS Reference guide.

The second use case has to do with setting a common property that is shared by different types of
nodes. Our second example is a selector pattern that styles all Label nodes and Text nodes to have
the same text font size. The comma denotes a list of selectors to style. In this scenario the font size
will be styled to be 20 points.

Pseudo-Class Selectors
Pseudo-class selectors are used to style nodes that have different states. An example would be
a Button node. A button has the following states: hover, selected, focused, and so on. To specify
selectors with pseudo-classes you must append a colon and the state (type) to the main selector
name. The following code snippet shows two selector patterns for a button that has a class selector
num-button:

.num-button {
 -fx-background-color: white,
 bluish-gray,
 white;
 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
}
.num-button:hover {
 -fx-background-color: black,
 white,
 black;
 -fx-text-fill: white;
}

In this CSS code, the first (.num-button) selector merely styles a button in its normal state. However,
the second selector with the appended colon and state (hover) will change a subset of properties,
altering them slightly. In this scenario when a mouse cursor moves over (hovers) a button with
the style class num-button:hover, the color of the button and the text’s fill color will be reversed.
Figure 6-5 shows the pseudo-selector in action when the mouse is hovering over the number pad on
button 3.

165CHAPTER 6: Custom UIs

A Selector Styling Example
To demonstrate selectors using id and class type selectors, I’ve created an application resembling a
smart phone’s number pad, as shown in Figure 6-6.

Figure 6-5. A selector with a pseudo-class of hover is used when the mouse cursor is on top of any number pad button

Figure 6-6. An application to mimic a number pad from a smart phone

In Figure 6-6 you will notice a 4 × 3 grid of round buttons for a number pad and a green rectangular
button beneath it to make a phone call. Listing 6-3 is the main start() method containing the
source code. Listing 6-4 then shows the contents of the CSS file mobile_buttons.css.

166 CHAPTER 6: Custom UIs

Listing 6-3. The JavaFX Source Code for Our Number Pad Application

@Override
public void start(Stage primaryStage) {

 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 180, 250);
 scene.getStylesheets()
 .add(getClass().getResource("mobile_buttons.css")
 .toExternalForm());
 String[] keys = {"1", "2", "3",
 "4", "5", "6",
 "7", "8", "9",
 "*", "0", "#"};
 GridPane numPad = new GridPane();
 numPad.getStyleClass().add("num-pad");

 for (int i=0; i < 12; i++) {
 Button button = new Button(keys[i]);
 button.getStyleClass().add("num-button");
 numPad.add(button, i % 3, (int) Math.ceil(i/3));
 }
 // Call button
 Button call = new Button("Call");
 call.setId("call-button");
 call.setMaxSize(Double.MAX_VALUE, Double.MAX_VALUE);
 numPad.add(call, 0, 4);
 GridPane.setColumnSpan(call, 3);

 GridPane.setHgrow(call, Priority.ALWAYS);
 root.setCenter(numPad);
 primaryStage.setScene(scene);
 primaryStage.show();
}

Listing 6-4. The Contents of the CSS File mobile_bottons.css

.root {
 -fx-background-color: white;
 -fx-font-size: 20px;
 bright-green: rgb(59,223, 86);
 bluish-gray: rgb(189,218,230);
}
.num-pad {
 -fx-padding: 15px, 15px, 15px, 15px;
 -fx-hgap: 10px;
 -fx-vgap: 8px;
}
.num-button {
 -fx-background-color: white,
 bluish-gray,
 white;

167CHAPTER 6: Custom UIs

 -fx-background-radius: 50%;
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
}
.num-button:hover {
 -fx-background-color: black,
 white,
 black;
 -fx-text-fill: white;
}
#call-button {
 -fx-background-color: white, bright-green;
 -fx-background-radius: 2;
 -fx-background-insets: 0, 1;
 -fx-font-family: "Helvetica";
 -fx-text-fill: white;
}
#call-button:hover {
 -fx-background-color: bright-green, white;
 -fx-background-radius: 2;
 -fx-background-insets: 0, 1;
 -fx-font-family: "Helvetica";
 -fx-text-fill: bright-green;
}

How It Works
The code starts by creating a scene that has a BorderPane as a root node. After the scene is created,
the code loads the CSS style sheet file mobile_buttons.css to style the current scene’s nodes. Next,
the code simply creates a grid using the GridPane class and generates 12 buttons to be placed in
each cell. Notice in the for loop that each button is set with the style class named num-button via
the getStyleClass().add() method.

Last, the green call button will be added to the last row of the grid pane. Because the call button
is unique, its id selector is set with call-button, and it will be styled using the id selector, which
means the selector named inside the CSS file will be prefixed with the # symbol. To see some
amazing button styling, head over to the FXexperience.com’s blog entry on styling buttons
at http://fxexperience.com/2011/12/styling-fx-buttons-with-css by Jasper Potts (Developer
Experience Architect on Client Java at Oracle).

How to Define -fx- Based Styling Properties (Rules)
I’m sure by now you have noticed the many name-value pairs (properties) inside styling definition
blocks having the prefix -fx-. These properties, often called rules, can be defined to have values that
can set a region’s border width, background fill colors, and so on. In this section you will learn how to
style a node using selector styling blocks and the ability to override properties by using inline styling.

http://fxexperience.com/2011/12/styling-fx-buttons-with-css

168 CHAPTER 6: Custom UIs

Styling a Node with a Selector Style Definition Block
A selector style definition block always begins with a selector name prefixed with a . or # symbol.
The symbol determines the selector type as mentioned earlier. A selector will start a block with an
open curly brace, followed by property or rule definitions. Each JavaFX theme property or rule will be
prefixed with -fx- and its appropriate property name. A property name and value are separated by
a : symbol, and the pair ends with a semicolon. To finish the styling block, you simply end the block
with a closing curly brace. The syntax for a selector style definition block looks like this:

. or #<selector-name> <pattern>{
 -fx-<some-property> : <some-value>;
}

One last thing to mention is the ability to add comments to CSS styling definitions. To add
comments you would use an opening slash asterisk /* and a closing asterisk slash */, the same as
adding comments in C/C++ and Java. Shown next is an example of using comments in a selector
style block definition:

.num-button {
 -fx-background-color: white, rgb(189,218,230), white;
 /*
 This is a comment.
 -fx-background-radius: 50%;
 */
 -fx-background-insets: 0, 1, 2;
 -fx-font-family: "Helvetica";
 -fx-text-fill: black;
 -fx-font-size: 20px;
}

Styling a Node by Inlining JavaFX CSS Styling Properties
While CSS selector blocks are the recommended way to style your JavaFX nodes, there might be
situations where you will want to override styling properties. For example you may want to enlarge a
button and change its text color temporarily as a mouse cursor hovers (OnMouseEntered) over the
specified button. When the mouse cursor is not hovering (OnMouseExited) the button’s inline style is
removed which then reverts the styling to the parent class or id selector styling blocks. To override
a node’s styling property set from its ancestor (parent) id or class selector, you can invoke the
node’s method setStyle(). To implement the prior example just mentioned the code snippet below
implements a button with handler code that responds to OnMouseEntered and OnMouseExited
events which toggles the button’s text size and color.

Button button = new Button("Press Me");
button.getStyleClass().add("my-default-style");
button.setOnMouseEntered(actionEvent -> button.setStyle("-fx-font-size: 30px; -fx-text-fill: green;"));
button.setOnMouseExited(actionEvent -> button.setStyle(""));

169CHAPTER 6: Custom UIs

Styling Properties (rules) Limitations
Because all graph nodes extend from the Node class, derived classes will be able to inherit styling
properties from their ancestors. Knowing the inheritance hierarchy of node types is very important
because the type of node will help determine the types of styling properties you can control. For
instance, a Rectangle class extends from Shape, which extends from Node. Having said this, you will
later see that some properties that you assumed would be on a node don’t exist. So how do you
know what properties exist? The solution is to refer to the JavaFX CSS Reference Guide. Again,
based on the type of node there are limitations to the styles you are able to set.

Obeying the JavaFX CSS Rules
Did you know that styling properties (rules) can be overridden? To override properties you must learn
about the order of precedence when rules are defined. Figure 6-7 depicts a typical Scene graph with
a root (parent) node with child nodes. A root node such as a BorderPane layout node will contain
a class selector of root, which is meant for top-level properties. These are basically properties
common to many nodes, such as font size for text or background color. This is a great feature for
theming, because many nodes that share a property will inherit that change. As mentioned earlier,
some nodes will contain default selectors; for example,JavaFX Button instances will have a .button
class selector.

Figure 6-7. A scene with a root node which has buttons as child nodes

170 CHAPTER 6: Custom UIs

In Figure 6-7 the class selector root could have a property that is common across many nodes:

.root {
 -fx-font-size: 12px;
}

.button {
 -fx-font-size: 20px;
}

When you want to style a button’s text font size you have an opportunity to override the root’s styling
definition. In order to override the -fx-font-size property, the button style class definition block will
override the 12 point font from the parent with a 20 point font.

Believe it or not, there is an additional way to override the style definition block of the class selector
.button in addition to the method just shown. Similar to HTML5 CSS, each element has a style
attribute. JavaFX’s graph nodes also have a style attribute (property). Following is an example of how
to set the style property programmatically in Java code:

Button button = new Button("press it!");
button.setStyle("-fx-font-size: 30px;");

This code will override any root-, id-, or class-level selector style definition block. Basically, the
invocation to the setStyle() method allows you to add any number of property-value pairs as long
they are separated by the semicolon.

Scene Builder
Up to this point you’ve learned how to code and style UI elements programmatically. You are probably
wondering if there is a better way to build UIs. Well, I am happy to inform you that the JavaFX team has built
the free tool Scene Builder 2.0, which allows you to build UIs graphically. The Scene Builder tool has also
been open-sourced and will begin to show up in your favorite IDE. This section provides a quick glimpse
of the Scene Builder tool. To download and try Scene Builder, please visit Oracle’s JavaFX tools site, at
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html.

Launching Scene Builder
After downloading and installing it, you will launch the Scene Builder tool. Figure 6-8 shows the
Scene Builder tool.

http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html

171CHAPTER 6: Custom UIs

Here you can see the earlier Look N Feel Chooser project example with an AnchorPane layout node
and an Accordion UI control in the center canvas area. On the left you see a split divider with UI
elements that can be dragged onto the center canvas area.

Also on the left beneath the UI elements is the Document section. It has two sub-sections, Hierarchy
and Controller. The Hierarchy panel allows you to view the current node hierarchy (better known as
the document model). Finally, below the Hierarchy is the Controller panel. The Controller lets you
create action code or presentation logic in a Java class. This allows a developer to have separate
controller code bind to the UI elements.

On the right you see the Properties, Layout, and Code panels. The Properties panel allows you to
style UI elements using JavaFX CSS properties, the Layout panel allows you to specify dimensions,
transforms, and padding of a node’s properties, and the Code panel allows you to map event
methods to UI elements such as OnMousePressed.

FXML
The Scene Builder allows you to save UI projects as a single file in an XML format called FXML
(FX markup language). The FXML file is saved with an extension of .fxml. FXML is a language that
represents a JavaFX-based UI. The FXML language is beyond the scope of this book; however I will
briefly describe how to load the files to be displayed.

Figure 6-8. The Scene Builder tool

172 CHAPTER 6: Custom UIs

Loading FXML into a Scene
FXML provides interesting advantages over the programmatic approach. One of the main
advantages is the ability to decouple the GUI (view) layer from the code logic (controller) layer. As
you learned in our discussion of UI patterns in Chapter 4, it is a good idea to separate GUI code
from action code. Shown here is code to load an FXML file:

BorderPane root = new BorderPane();
Parent content = FXMLLoader.load(getClass().getResource("lnf_demo.fxml"));
root.setCenter(content);

As you can see, above the root pane is a BorderPane, and we use the static method load on the
javafx.fxml.FXMLLoader class The load() method will load (deserialize) the FXML file that was
created by the Scene Builder tool.

Custom Controls
“Use the force, Luke.”

—Obi wan Kenobi

With all of your new-found abilities, there is yet another powerful API you will want to harness.
Imagine a customer whose requirements call for specialized UI controls such as gauges, knobs, or
light indicators. Surely you could attempt to use the existing UI controls to be styled, but it is rather
difficult, if not impossible. So, what is a young padwan to do? (Now, say the quote). Welcome to the
world of custom controls (the Controls API)!

As an example of creating a custom control, in this section you will learn how to create a light-emitting
diode (LED) control. We’ll begin with a description of the LED control. Then you will see how the
code is structured as we look at the classes involved in the creation of custom controls. After that,
you will get a chance to look at the code before we walk through it to discuss the code details.

The LED Custom Control
The light-emitting diode (LED) is something that you will find in many electronic devices to indicate
status (such as on or off). So why not using an LED as a custom control in your code as a visual
indicator? Typically, an LED contains two wires and a body made from clear plastic, as shown in
Figure 6-9.

173CHAPTER 6: Custom UIs

Often the LED is mounted in a socket. To create a custom JavaFX control to emulate a physical
object you first have to decide what materials and components you will portray.

In the case of the LED custom JavaFX control, we will approximate this appearance:

Metal socket	

Plastic body	

Light effect on top of the plastic body due to the curved surface	

One thing that Java developers often don’t like, but which is really helpful for designing a custom
control, is a drawing program—to be precise, a vector drawing program. When the appearance of
your control is important, it makes sense to use a tool that is good for visualizing things; a drawing
program, as used to create Figure 6-10. So the first thing you should do is to create a vector drawing
of the control you plan to create.

Figure 6-10. A vector drawing of the LED control

Figure 6-9. A typical light-emitting diode

You can see the metal socket around the red plastic body and the white highlight. The red body
contains an inner- and outer-shadow to create a more realistic look. If we look at the parts of the
vector drawing, we will find three circles filled with gradients, as shown in Figure 6-11.

174 CHAPTER 6: Custom UIs

You start coding in the drawing program because here you define the size, colors, gradients and
positions of your control. The big advantage of using a drawing program is the direct visual feedback
that you get by changing parameters like color, size, and position.

In JavaFX there’s not only one way of creating a custom control but many. Here is a list of valid
approaches:

Customize the CSS of an existing control	

Extend an existing control	

Extend the Region node	

Create a control, a skin, and a CSS file	

Use the Canvas node	

In this book we will focus on the approach that extends a Region and uses CSS. To get an idea of
how to create the same LED control by using the Canvas node or by using a separate Control.
class, Skin. class, and a CSS file, look at the GitHub repository at http://github.com/HanSolo/
JFX8CustomControls.

Structure of the LED Custom Control Example Code
Usually I structure the code in my controls in the following way:

Constructor	

Initialization:	

An 	 init() method defines the initial size.

An 	 initGraphics() method sets up the Scene graph of the control.

A 	 registerListeners() method hooks up listeners to properties.

A Methods block contains the get-, set- and property-methods.	

A Resizing block contains methods to resize and redraw (if needed) the control.	

Figure 6-11. The three parts of the vector LED

http://github.com/HanSolo/JFX8CustomControls
http://github.com/HanSolo/JFX8CustomControls

175CHAPTER 6: Custom UIs

The Properties of the LED Control
The LED control will contain the logic of the control (its properties) and the visualization code.
Because the LED is a very simple control we do not need many properties. For this example we will
use five properties:

	On (Boolean property for current state)

	Blinking (Boolean property to switch on/off blinking)

	Interval (long property to define the blink interval)

	FrameVisible (Boolean property to switch on/off the metal socket)

	LedColor (object property of type Color to define the color of the LED)

We will write code for get-, set- and property methods for these properties as shown in Listing 6-5.

Listing 6-5. Property Manipulation Code

public final boolean isOn() {
 return null == on ? false : on.get();
}
public final void setOn(final boolean ON) {
 onProperty().set(ON);
}
public final BooleanProperty onProperty() {
 if (null == on) {
 on = new BooleanPropertyBase(false) {
 @Override protected void invalidated() {
 pseudoClassStateChanged(ON_PSEUDO_CLASS, get());
 }
 @Override public Object getBean() { return this; }
 @Override public String getName() { return "on"; }
 };
 }
 return on;
}

public final boolean isBlinking() {
 return null == blinking ? false : blinking.get();
}
public final void setBlinking(final boolean BLINKING) {
 blinkingProperty.set(BLINKING);
}
public final BooleanProperty blinkingProperty() {
 if (null == blinking) {
 blinking = new BooleanPropertyBase() {
 @Override public void set(final boolean BLINKING) {
 super.set(BLINKING);
 if (BLINKING) {
 timer.start();
 } else {

176 CHAPTER 6: Custom UIs

 timer.stop();
 setOn(false);
 }
 }
 @Override public Object getBean() {
 return Led.this;
 }
 @Override public String getName() {
 return "blinking";
 }
 };
 }
 return blinking;
}

public final long getInterval() {
 return null == interval ? 500_000_000l : interval.get();
}
public final void setInterval(final long INTERVAL) {
 intervalProperty().set(INTERVAL);
}
public final LongProperty intervalProperty() {
 if (null == interval) {
 interval = new LongPropertyBase() {
 @Override public void set(final long INTERVAL) {
 super.set(clamp(SHORTEST_INTERVAL, LONGEST_INTERVAL, INTERVAL));
 }
 @Override public Object getBean() {
 return Led.this;
 }
 @Override public String getName() {
 return "interval";
 }
 };
 }
 return interval;
}

public final boolean isFrameVisible() {
 return null == frameVisible ? true : frameVisible.get();
}
public final void setFrameVisible(final boolean FRAME_VISIBLE) {
 frameVisibleProperty().set(FRAME_VISIBLE);
}
public final BooleanProperty frameVisibleProperty() {
 if (null == frameVisible) {
 frameVisible = new SimpleBooleanProperty(this, "frameVisible", _frameVisible);
 }
 return frameVisible;
}

177CHAPTER 6: Custom UIs

public final Color getLedColor() {
 return null == ledColor ? Color.RED : ledColor.get();
}
public final void setLedColor(final Color LED_COLOR) {
 ledColorProperty().set(LED_COLOR);
}
public final ObjectProperty<Color> ledColorProperty() {
 if (null == ledColor) {
 ledColor = new SimpleObjectProperty<>(this, "ledColor", Color.RED);
 }
 return ledColor;
}

The Initialization Code of the LED Control
The first thing we have to do in the constructor of the LED control is load the corresponding CSS file
and add the main style class as follows:

public Led() {
 getStylesheets().add(getClass().getResource("led.css").toExternalForm());
 getStyleClass().add("led");

Then we simply initialize the AnimationTimer that we will use to make the LED control blink:

lastTimerCall = System.nanoTime();
timer = new AnimationTimer() {
 @Override public void handle(final long NOW) {
 if (NOW > lastTimerCall + getInterval()) {
 setOn(!isOn());
 lastTimerCall = NOW;
 }
 }
};

The last thing we have to do in the constructor is to call these methods to initialize the size of the
control, initialize the Scene graph, and register some listeners:

init();
initGraphics();
registerListeners();

To make sure that our LED control will be correctly sized during initialization we set the minimum,
preferred, and maximum sizes in the init() method, which looks as follows:

private void init() {
 if (Double.compare(getWidth(), 0) <= 0 || Double.compare(getHeight(), 0) <= 0 ||
 Double.compare(getPrefWidth(), 0) <= 0 || Double.compare(getPrefHeight(), 0) <= 0) {
 setPrefSize(PREFERRED_SIZE, PREFERRED_SIZE);
 }

178 CHAPTER 6: Custom UIs

 if (Double.compare(getMinWidth(), 0) <= 0 || Double.compare(getMinHeight(), 0) <= 0) {
 setMinSize(MINIMUM_SIZE, MINIMUM_SIZE);
 }
 if (Double.compare(getMaxWidth(), 0) <= 0 || Double.compare(getMaxHeight(), 0) <= 0) {
 setMaxSize(MAXIMUM_SIZE, MAXIMUM_SIZE);
 }
}

Visualization Code
The Region node is a lightweight JavaFX container that can contain other nodes and be styled by
CSS. By extending the Region node our custom control will contain the logic of the control and also
the visualization code. In the initGraphics() method shown in Listing 6-6, the code sets up the
Scene graph for the control by creating the nodes that are needed and applying the appropriate CSS
styles to them.

Listing 6-6. Setting Up the LED Control Scene Graph

private void initGraphics() {
 // Create the node for the metal socket
 frame = new Region();
 frame.getStyleClass().setAll("frame");
 frame.setOpacity(isFrameVisible() ? 1 : 0);

 // Create the node for the main LED plastic body
 led = new Region();
 led.getStyleClass().setAll("main");
 led.setStyle("-led-color: " + (getLedColor()).toString().replace("0x", "#") + ";");

 // Create the inner shadow effect for the main LED body
 innerShadow = new InnerShadow(BlurType.TWO_PASS_BOX,
 Color.rgb(0, 0, 0, 0.65),
 8, 0d, 0d, 0d);

 // Create the drop shadow effect for the main LED body (the glow effect)
 glow = new DropShadow(BlurType.TWO_PASS_BOX,
 getLedColor(),
 20, 0d, 0d, 0d);
 glow.setInput(innerShadow);

 // Create the node for the highlight effect on the main LED body
 highlight = new Region();
 highlight.getStyleClass().setAll("highlight");

 // Add all nodes to the Scene graph of this control
 getChildren().addAll(frame, led, highlight);
}

So we have created each node that we need for our LED control and applied the appropriate style
from the CSS file.

179CHAPTER 6: Custom UIs

The LED Control CSS File
Each node that is created in the initGraphics() method gets its own CSS style class, which can be
found in the led.css file. It looks like this:

/* The main led style class where the -led-color variable is defined */
.led {
 -led-color : red;
 -frame-color: linear-gradient(from 14% 14% to 84% 84%,
 rgba(20, 20, 20, 0.64706) 0%,
 rgba(20, 20, 20, 0.64706) 15%,
 rgba(41, 41, 41, 0.64706) 26%,
 rgba(200, 200, 200, 0.40631) 85%,
 rgba(200, 200, 200, 0.3451) 100%);
}

/* The .frame sub-class, which defines the fill for the metal socket */
.led .frame {
 -fx-background-color : -frame-color;
 -fx-background-radius: 1024;
}

/* The .main sub-class, which defines the fill for the LED plastic body when it's off */
.led .main {
 -fx-background-color : linear-gradient(from 15% 15% to 83% 83%,
 derive(-led-color, -80%) 0%,
 derive(-led-color, -87%) 49%,
 derive(-led-color, -80) 100%);
 -fx-background-radius: 1024;
}

/* The .main sub class with pseudo-class :on that defines the fill for the LED plastic
 body when it's on
 */
.led:on .main {
 -fx-background-color: linear-gradient(from 15% 15% to 83% 83%,
 derive(-led-color, -23%) 0%,
 derive(-led-color, -50%) 49%,
 -led-color 100%);
}

/* The .highlight sub-class that defines the fill of the highlight effect */
.led .highlight {
 -fx-background-color : radial-gradient(center 15% 15%, radius 50%,
 white 0%,
 transparent 100%);
 -fx-background-radius: 1024;
}

180 CHAPTER 6: Custom UIs

Because in CSS we can use percentage to define positions in gradients, we don’t have to take care
about the real size of the control to calculate the start and stop positions of the gradients. That is
a huge advantage compared to Java Swing, where we had to calculate all these values every time
the size of the control changed. So all these calculations will be done automatically by JavaFX. That
reduces our resizing code a lot as you will see.

Resizing the LED Control
In JavaFX the size of the layout container determines the size of its children, so we have to ensure
that our control is resized by its layout container. That means if we put our LED control in a
StackPane (which resizes its children relative to its own size), the LED will be sized the same as the
StackPane. Therefore we hook up listeners to the widthProperty() and heightProperty() of our
control in the registerListeners() method.

private void registerListeners() {
 widthProperty().addListener(observable -> resize());
 heightProperty().addListener(observable -> resize());
 frameVisibleProperty().addListener(observable ->
 frame.setOpacity(isFrameVisible() ? 1 : 0));
 onProperty().addListener(observable -> led.setEffect(isOn() ? glow : innerShadow));
 ledColorProperty().addListener(observable -> {
 led.setStyle("-led-color: " + (getLedColor()).toString().replace("0x", "#") + ";");
 resize();
 });
}

In this method we hooked up listeners to all properties that might have an effect on either
visualization or size of the LED control. When the listeners for the width and height are triggered,
they will call the resize() method, and that will take care of sizing all nodes in our control.

private void resize() {
 double width = getWidth();
 double height = getHeight();

 // Determine the smallest dimension of our control
 size = width < height ? width : height;

 // Resize only if the current width and height > 0
 if (width > 0 && height > 0) {

 // Center the control if the parents dimensions are not square
 if (width > height) {
 setTranslateX(0.5 * (getWidth() - size));
 } else if (getHeight() > getWidth()) {
 setTranslateY(0.5 * (getHeight() - size));
 }

 // Set the radius of the inner shadow to 7% of the current size
 innerShadow.setRadius(0.07 * size);

181CHAPTER 6: Custom UIs

 // Set the radius of the drop shadow to 36% of the current size and set the glow color
 glow.setRadius(0.36 * size);
 glow.setColor(getLedColor());

 // Make the metal frame as big as the current size
 frame.setPrefSize(size, size);

 // Set the size of the LED plastic body to 72% of the current size and center it
 led.setPrefSize(0.72 * size, 0.72 * size);
 led.relocate(0.14 * size, 0.14 * size);

 // Set the right effect dependent on the current state of the LED
 led.setEffect(isOn() ? glow : innerShadow);

 // Set the size of the highlight to 58% of the current size and center it
 highlight.setPrefSize(0.58 * size, 0.58 * size);
 highlight.relocate(0.21 * size, 0.21 * size);
 }
}

As you can see, in the resize() method the only thing we have to do for each node is the calculation
of its size and the relocation of the node. So first we calculate the minimum dimension of our LED
(because it’s square, we take the width if it’s less than the height or vice versa). In addition we make
sure that the resizing will be done only if the current size is larger than 0.

How It Works
Now that we have all things in place we can simply use our control like any other control, as
shown here:

@Override public void start(Stage stage) {
 Led control = new Led();

 StackPane pane = new StackPane();
 pane.getChildren().add(control);

 Scene scene = new Scene(pane);

 stage.setTitle("JavaFX Led Control");
 stage.setScene(scene);
 stage.show();

 control.setBlinking(true);
}

Figure 6-12 shows the result.

182 CHAPTER 6: Custom UIs

Figure 6-12. The Region-based custom LED Control

Other Ways to Create a Custom Control
As I mentioned earlier, there are different ways to create a custom control in JavaFX. The “extend
Region” approach that was shown here is the most common one. The drawback that comes with
this approach is that we mixed up the model/controller with the view, which is acceptable for small
controls like our LED, but it might be a bad solution for a bigger control that relies on a data model
or controls that are part of a controls library.

For those more complex controls, you should use a custom Control.class in combination with a
custom Skin.class and your CSS file. The main difference here is that the properties with their get,
set, and property methods will be placed in the Control.class and the visualization code will be
placed in the Skin.class. This approach provides a proper separation between the controller logic
and the view logic. The last approach to creating a custom control that I would like to mention is to
use the Canvas node. The Canvas node represents a single node that in principle behaves like an
image which you can draw on. The API that is used to draw on the Canvas node is taken from the
HTML5 Canvas, which means you won’t have JavaFX nodes but you will simply draw on the Canvas
node. (That is, you’ll be working in immediate mode rather than retained mode). You have to take care
of clearing and redrawing the Canvas node surface. This approach might be useful for controls that
contain very complex drawings to calculate and draw, as you would only need to do so once.

Summary
In this chapter you learned how to style your application with custom CSS files by using the
setUserAgentStylesheet(String URL) and getStylesheets().add(String URL) methods. Then
you saw how CSS is used in JavaFX by using the default CSS selectors or creating your own. You
learned about the id type selectors, class type selectors, and CSS pseudo-classes. In addition,
you learned how to use the selectors in different selector patterns. Next you took a short look at the
Scene Builder and how to load FXML into a scene. Finally, you learned about custom controls in
JavaFX and how create them by extending a Region node.

183

Chapter 7
Media with JavaFX

JavaFX provides a media-rich API capable of playing audio and video. The Media API allows
developers to incorporate audio and video into their rich Internet applications (RIAs). One of the main
benefits of the Media API is that it can distribute cross-platform media content via the Web. With a
range of devices (tablet, music player, TV, and so on) that need to play multimedia content, the need
for a cross-platform API is essential.

Imagine a not-so-distant future where your TV or wall is capable of interacting with you in ways
that you’ve never dreamed possible. For instance, while viewing a movie you could select items
of clothing used in the movie to be immediately purchased, all from the comfort of your home.
With this future in mind, developers seek to enhance the interactive qualities of their media-based
applications.

In this chapter you will learn how to play audio and video in an interactive way. Find your seats as
audio and video take center stage.

You will be learning the following JavaFX media APIs:

	javafx.scene.media.Media

	javafx.scene.media.MediaPlayer

	javafx.scene.media.MediaStatus

	javafx.scene.media.MediaView

Media Events
An event-driven architecture (EDA) is a prominent architectural pattern used to model loosely
coupled components and services that pass messages asynchronously. The JavaFX team has
designed the Media API to be event-driven. In this section you will learn how to interact with media
events.

184 CHAPTER 7: Media with JavaFX

With event-based programming in mind, you will discover nonblocking or callback behaviors when
invoking media functions. Instead of tying code directly to a button via an EventHandler, you will be
implementing code that will respond to the triggering of the media player’s OnXXXX events, where
XXXX is the event name.

When responding to media events, you will implement java.lang.Runnable functional interfaces
(lambda expressions). These functional interfaces are callbacks that are lazily evaluated or invoked
at a later time upon a triggered event. For instance, when playing media content you would create a
lambda expression (closure) to be set on the OnReady event. For an example of playing media based
on an event-driven approach, see the following code block:

Media media = new Media(url);
MediaPlayer mediaPlayer = new MediaPlayer(media);
Runnable playMusic = () -> mediaPlayer.play();
mediaPlayer.setOnReady(playMusic);

As you can see, the playMusic variable is assigned to a lambda expression (Runnable) to be passed
into the media player’s setOnReady() method. When the OnReady event has been encountered, the
playMusic Runnable closure code would be invoked. Although I have not yet discussed how to set
up the Media and MediaPlayer class instances, I wanted to first get you acquainted with these core
concepts before moving further, because these concepts are used throughout this chapter.

Shown in Table 7-1 are all the possible media events that are raised to allow the developer to attach
Runnables (or EventHandlers). All of the following are Runnable functional interfaces except for the
OnMarker event.

Table 7-1. Media and MediaPlayer Events

Class Set On Method On Method Property Method Description

Media setOnError() onErrorProperty() When an error occurs

MediaPlayer setOnEndOfMedia() onEndOfMediaProperty() When the end of the media play is
reached

MediaPlayer setOnError() onErrorProperty() When an error occurs

MediaPlayer setOnHalted() onHaltedProperty() When the media status changes to
HALTED

MediaPlayer setOnMarker() onMarkerProperty() When a Marker event is triggered

MediaPlayer setOnPaused() onPausedProperty() When a Paused event occurs

MediaPlayer setOnPlaying() onPlayingProperty() When the media is currently playing

MediaPlayer setOnReady() onReadyProperty() When the media player is in Ready state

MediaPlayer setOnRepeat() onRepeatProperty() When the Repeat property is set

MediaPlayer setOnStalled() onStalledProperty() When the media player is stalled

MediaPlayer setOnStopped() onStoppedProperty() When the media player has stopped

MediaView setOnError() onErrorProperty() When an error occurs in Media View

185CHAPTER 7: Media with JavaFX

You will notice in Table 7-1 that the MediaPlayer class has the most events that can be triggered,
while the Media and MediaView classes have only one event (OnError). You’ll also notice the third
column, showing onXXXXProperty() methods. These onXXXXProperty() methods are the same as
the setOnXXXX() methods except that they also support property bindings; this gives them the ability
to attach change and invalidation listeners. The following code snippet is an example of setting a
Runnable (lambda expression) instance using the onXXXXProperty() method instead of the usual
setOnXXXX() method:

Media media = new Media(url);
MediaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.onReadyProperty().set(() -> mediaPlayer.play());

Playing Audio
JavaFX’s media API supports loading audio files with extensions such as .mp3, .wav, and .aiff.
Also new in JavaFX 8 is the ability to play audio in HTTP live streaming format, also known as HLS
(file extension .m3u8). HLS is beyond the scope of this book and will not be covered in this chapter,
but with some further research, JavaFX could be used to build a live radio broadcast application.

Playing audio files is extremely straightforward in JavaFX. Given a valid URL location to a file, you
would instantiate a javafx.scene.media.Media class. The Media object is then passed to a new
instance of a javafx.scene.media.MediaPlayer object. The last step is to invoke the media player
object’s play() method when the OnReady event is triggered. The following code loads and plays an
MP3 audio file located on a web server:

Media media = new Media("http://some_host/eye_on_it.mp3");
MediaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.setAutoPlay(true);

Note When loading media files, make sure the file location is a formatted string that follows the standard
URL specification.

The media file can reside on a web server, in a jar file, or a local file system as long as the filename
string is formatted to follow the standard URL specification.

You will also notice the code’s last statement, which calls the method setAutoPlay(true). Calling the
setAutoPlay() is really a shortcut for setting the setOnReady() event handler method with a Runnable
functional interface. Both techniques will result in playing the audio file once the MediaPlayer
instance is in a ready state.

Note For low-latency playback of audio files, use the javafx.scene.media.AudioClip class. A typical
scenario is to play a given sound multiple times consecutively, as with sound effects used in games.

http://some_host/eye_on_it.mp3

186 CHAPTER 7: Media with JavaFX

An MP3 Player Example
Now that you know how to load and play audio media, let’s look at a fun example that involves
playing music and displaying a colorful visualization. In this section you will learn how to create an
MP3 audio player. Before we explore the example’s code in Listing 7-1, let’s look at Figure 7-1
for a preview of our audio player’s UI.

Figure 7-1. Our example JavaFX audio player

In this example we will again use the drag-and-drop metaphor, as we did in Chapter 5 with image
files. In the same manner as in the earlier example, the user navigates to the local file system or a
browser URL address to locate a media file to be dragged and dropped onto the application. In the
case of our MP3 player, you will locate an audio file with a file extension of .mp3, .wav or .aif to be
used in this example.

As you can see in Figure 7-1, our MP3 player displays randomly colored circles bouncing around
based on the media’s audio spectrum information (its phase array). The audio player has a custom
button panel control located in the bottom-right corner. The button panel control lets the user pause,
resume, and stop the playing of music. You’ll also notice the seek position slider (aka the progress
and seek position slider) on the bottom-left side, which allows the user to seek backward or forward
in the media (audio or video).

The Stop, Play, and Pause Buttons
The left image in Figure 7-2 shows Stop (square) and Play (triangle wedge) buttons. When the Stop
button is pressed, the media is repositioned to the beginning. When the Pause button is pressed, the
media will maintain its current position within the media playback. Also, as the media is paused, the
Play button will appear, so that the user can resume the music. The right image in Figure 7-2 shows
the button panel containing a Stop and a Pause button (circle with two vertical lines). While the
music is currently playing, the user can press the Pause button to pause the music.

187CHAPTER 7: Media with JavaFX

The Progress and Seek Position Slider Control
Next, you’ll notice the progress and seek position slider control in the lower-left corner of the
application window shown in Figure 7-3. Assuming the media is paused, the seek position slider
control allows you to move backward or forward into the media’s current time. Also, the slider’s
“thumb” will move from left to right as the media play is progressing.

Figure 7-2. Custom button panel control having Stop (rectangle), Play (triangle), and Pause (circle) buttons

Figure 7-3. The Seek Position slider control allows the user to seek backward or forward in the media

The Close Button
Finally, notice the Close button, shown in Figure 7-4, which simply allows the user to quit the
application.

Figure 7-4. The Close button, located in the upper-right corner, allows the user to quit the application

MP3 Audio Player Source Code
Listing 7-1 is the source code for a JavaFX-based MP3 audio player. The source code from a previous
edition of this book was refactored slightly to break things up into methods instead of one large
start() method. In addition to the refactoring, I pulled out the code that used the programmatic
approach to style JavaFX nodes. Instead of styling JavaFX nodes with setter() methods, I simply
created a CSS style sheet. Listing 7-2 shows the CSS style sheet’s selector definitions.

188 CHAPTER 7: Media with JavaFX

Listing 7-1. An MP3 Audio Player Application (PlayingAudio.java)

package jfx8ibe;

import java.net.MalformedURLException;
import java.util.Random;
import javafx.application.*;
import javafx.beans.value.ChangeListener;
import javafx.geometry.Point2D;
import javafx.scene.*;
import javafx.scene.control.Slider;
import javafx.scene.input.*;
import javafx.scene.media.*;
import javafx.scene.media.MediaPlayer.Status;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;
import javafx.scene.text.*;
import javafx.stage.*;
import javafx.util.Duration;

/**
 * Chapter 7 Playing Audio using JavaFX media API.
 *
 * @author cdea
 */
public class PlayingAudio extends Application {

private MediaPlayer mediaPlayer;
 private Point2D anchorPt;
 private Point2D previousLocation;
 private ChangeListener<Duration> progressListener;

 private static Stage PRIMARY_STAGE;
 private static final String STOP_BUTTON_ID = "stop-button";
 private static final String PLAY_BUTTON_ID = "play-button";
 private static final String PAUSE_BUTTON_ID = "pause-button";
 private static final String CLOSE_BUTTON_ID = "close-button";
 private static final String VIS_CONTAINER_ID = "viz-container";
 private static final String SEEK_POS_SLIDER_ID = "seek-position-slider";

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

189CHAPTER 7: Media with JavaFX

 @Override
 public void start(Stage primaryStage) {
 PRIMARY_STAGE = primaryStage;
 PRIMARY_STAGE.initStyle(StageStyle.TRANSPARENT);
 PRIMARY_STAGE.centerOnScreen();

 Group root = new Group();
 Scene scene = new Scene(root, 551, 270, Color.rgb(0, 0, 0, 0));

 // load JavaFX CSS style
 scene.getStylesheets()
 .add(getClass().getResource("playing-audio.css")
 .toExternalForm());
 PRIMARY_STAGE.setScene(scene);

 // Initialize stage to be movable via mouse
 initMovablePlayer();

 // application area
 Node applicationArea = createApplicationArea();

 // Container for random circles bouncing about
 Node vizContainer = new Group();
 vizContainer.setId(VIS_CONTAINER_ID);

 // Create the button panel
 Node buttonPanel = createButtonPanel();

 // Progress and seek position slider
 Slider progressSlider = createSlider();

 // Update slider as video is progressing
 progressListener = (observable, oldValue, newValue) ->
 progressSlider.setValue(newValue.toSeconds());

 // Initializing to accept files
 // dragged over surface to load media
 initFileDragNDrop();

 // Create the close button
 Node closeButton = createCloseButton();

 root.getChildren()
 .addAll(applicationArea,
 vizContainer,
 buttonPanel,
 progressSlider,
 closeButton);

 primaryStage.show();
 }

190 CHAPTER 7: Media with JavaFX

 /**
 * Initialize the stage to allow the mouse cursor to
 * move the application using dragging.
 *
 */
 private void initMovablePlayer() {
 Scene scene = PRIMARY_STAGE.getScene();
 // starting initial anchor point
 scene.setOnMousePressed(mouseEvent
 -> anchorPt = new Point2D(mouseEvent.getScreenX(),
 mouseEvent.getScreenY())
);

 // dragging the entire stage
 scene.setOnMouseDragged(mouseEvent -> {
 if (anchorPt != null && previousLocation != null) {
 PRIMARY_STAGE.setX(previousLocation.getX()
 + mouseEvent.getScreenX()
 - anchorPt.getX());
 PRIMARY_STAGE.setY(previousLocation.getY()
 + mouseEvent.getScreenY()
 - anchorPt.getY());
 }
 });

 // set the current location
 scene.setOnMouseReleased(mouseEvent
 -> previousLocation = new Point2D(PRIMARY_STAGE.getX(),
 PRIMARY_STAGE.getY())
);

// Initialize previousLocation after Stage is shown
 PRIMARY_STAGE.addEventHandler(WindowEvent.WINDOW_SHOWN,
 (WindowEvent t) -> {
 previousLocation = new Point2D(PRIMARY_STAGE.getX(),
 PRIMARY_STAGE.getY());
 });
 }

 /**
 * A simple rectangular area as the surface of the app.
 * @return Node a Rectangle node.
 */
 private Node createApplicationArea() {
 Scene scene = PRIMARY_STAGE.getScene();
 Rectangle applicationArea = new Rectangle();
 // add selector to style app-area
 applicationArea.setId("app-area");

191CHAPTER 7: Media with JavaFX

 // make the app area rectangle the size of the scene.
 applicationArea.widthProperty()
 .bind(scene.widthProperty());
 applicationArea.heightProperty()
 .bind(scene.heightProperty());
 return applicationArea;
 }

 /**
 * Initialize the Drag and Drop ability for media files.
 *
 */
 private void initFileDragNDrop() {

 Scene scene = PRIMARY_STAGE.getScene();
 scene.setOnDragOver(dragEvent -> {
 Dragboard db = dragEvent.getDragboard();
 if (db.hasFiles() || db.hasUrl()) {
 dragEvent.acceptTransferModes(TransferMode.LINK);
 } else {
 dragEvent.consume();
 }
 });
 // Dropping over surface
 scene.setOnDragDropped(dragEvent -> {
 Dragboard db = dragEvent.getDragboard();
 boolean success = false;
 String filePath = null;
 if (db.hasFiles()) {
 success = true;
 if (db.getFiles().size() > 0) {
 try {
 filePath = db.getFiles()
 .get(0)
 .toURI().toURL().toString();
 playMedia(filePath);
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 }
 } else {
 // audio file from some host or jar
 playMedia(db.getUrl());
 success = true;

 }

 dragEvent.setDropCompleted(success);
 dragEvent.consume();
 }); // end of setOnDragDropped
 }

192 CHAPTER 7: Media with JavaFX

 /**
 * Creates a node containing the audio player's
 * stop, pause and play buttons.
 *
 * @return Node A button panel having play,
 * pause and stop buttons.
 */
 private Node createButtonPanel() {
 Scene scene = PRIMARY_STAGE.getScene();
 // create button control panel
 Group buttonGroup = new Group();

 // Button area
 Rectangle buttonArea = new Rectangle(60, 30);
 buttonArea.setId("button-area");

 buttonGroup.getChildren()
 .add(buttonArea);

 // stop button control
 Node stopButton = new Rectangle(10, 10);
 stopButton.setId(STOP_BUTTON_ID);
 stopButton.setOnMousePressed(mouseEvent -> {
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(true);
 if (mediaPlayer.getStatus() == Status.PLAYING) {
 mediaPlayer.stop();
 }
 }
 }); // setOnMousePressed()

 // play button
 Arc playButton = new Arc(12, // center x

16, // center y
 15, // radius x
 15, // radius y
 150, // start angle
 60); // length
 playButton.setId(PLAY_BUTTON_ID);
 playButton.setType(ArcType.ROUND);
 playButton.setOnMousePressed(mouseEvent -> mediaPlayer.play());

 // pause control
 Group pauseButton = new Group();
 pauseButton.setId(PAUSE_BUTTON_ID);
 Node pauseBackground = new Circle(12, 16, 10);
 pauseBackground.getStyleClass().add("pause-circle");

193CHAPTER 7: Media with JavaFX

 Node firstLine = new Line(6, // start x
 6, // start y
 6, // end x
 14); // end y
 firstLine.getStyleClass()
 .add("pause-line");
 firstLine.setStyle("-fx-translate-x: 34;");

 Node secondLine = new Line(6, // start x
 6, // start y
 6, // end x
 14); // end y
 secondLine.getStyleClass().add("pause-line");
 secondLine.setStyle("-fx-translate-x: 38;");

 pauseButton.getChildren()
 .addAll(pauseBackground, firstLine, secondLine);

 pauseButton.setOnMousePressed(mouseEvent -> {
 if (mediaPlayer!=null) {
 updatePlayAndPauseButtons(true);
 if (mediaPlayer.getStatus() == Status.PLAYING) {
 mediaPlayer.pause();
 }
 }
 }); // setOnMousePressed()

 playButton.setOnMousePressed(mouseEvent -> {
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(false);
 mediaPlayer.play();
 }
 }); // setOnMousePressed()
 buttonGroup.getChildren()
 .addAll(stopButton,
 playButton,
 pauseButton);
 // move button group when scene is resized
 buttonGroup.translateXProperty()
 .bind(scene.widthProperty()
 .subtract(buttonArea.getWidth() + 6));
 buttonGroup.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(buttonArea.getHeight() + 6));
 return buttonGroup;
 }

194 CHAPTER 7: Media with JavaFX

 /**
 * The close button to exit application
 *
 * @return Node representing a close button.
 */
 private Node createCloseButton() {
 Scene scene = PRIMARY_STAGE.getScene();
 Group closeButton = new Group();
 closeButton.setId(CLOSE_BUTTON_ID);
 Node closeBackground = new Circle(5, 0, 7);
 closeBackground.setId("close-circle");
 Node closeXmark = new Text(2, 4, "X");
 closeButton.translateXProperty()
 .bind(scene.widthProperty()
 .subtract(15));
 closeButton.setTranslateY(10);
 closeButton.getChildren()
 .addAll(closeBackground, closeXmark);
 // exit app
 closeButton.setOnMouseClicked(mouseEvent -> Platform.exit());

 return closeButton;
 }

 /**
 * After a file is dragged onto the application a new MediaPlayer
 * instance is created with a media file.
 *
 * @param stage The stage window (primaryStage)
 * @param url The URL pointing to an audio file
 */
 private void playMedia(String url) {
 Scene scene = PRIMARY_STAGE.getScene();

 if (mediaPlayer != null) {
 mediaPlayer.pause();
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 mediaPlayer.currentTimeProperty()
 .removeListener(progressListener);
 mediaPlayer.setAudioSpectrumListener(null);
 }
 Media media = new Media(url);
 // display media's metadata
 for (String s : media.getMetadata().keySet()) {
 System.out.println(s);
 }
 mediaPlayer = new MediaPlayer(media);

 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty()
 .addListener(progressListener);

195CHAPTER 7: Media with JavaFX

 mediaPlayer.setOnReady(() -> {
 updatePlayAndPauseButtons(false);
 Slider progressSlider =
 (Slider) scene.lookup("#" + SEEK_POS_SLIDER_ID);
 progressSlider.setValue(0);
 progressSlider.setMax(mediaPlayer.getMedia()
 .getDuration()
 .toSeconds());
 mediaPlayer.play();
 }); // setOnReady()

 // back to the beginning
 mediaPlayer.setOnEndOfMedia(()-> {
 updatePlayAndPauseButtons(true);
 // change buttons to play and rewind
 mediaPlayer.stop();
 }); // setOnEndOfMedia()

 // setup visualization (circle container)
 Group vizContainer =
 (Group) PRIMARY_STAGE.getScene()
 .lookup("#" + VIS_CONTAINER_ID);
 mediaPlayer.setAudioSpectrumListener(
 (double timestamp,
 double duration,
 float[] magnitudes,
 float[] phases) -> {
 vizContainer.getChildren().clear();
 int i = 0;
 int x = 10;
 double y = PRIMARY_STAGE.getScene().getHeight() / 2;
 Random rand = new Random(System.currentTimeMillis());
 // Build random colored circles
 for (float phase : phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);
 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 vizContainer.getChildren().add(circle);
 i += 5;
 }
 }); // setAudioSpectrumListener()

 }

 /**
 * Sets play button visible and pause button not visible when
 * playVisible is true otherwise the opposite.
 *

196 CHAPTER 7: Media with JavaFX

 * @param playVisible - value of true the play becomes visible
 * and pause non visible, otherwise the opposite.
 */
 private void updatePlayAndPauseButtons(boolean playVisible) {
 Scene scene = PRIMARY_STAGE.getScene();
 Node playButton = scene.lookup("#" + PLAY_BUTTON_ID);
 Node pauseButton = scene.lookup("#" + PAUSE_BUTTON_ID);

 // hide or show buttons
 playButton.setVisible(playVisible);
 pauseButton.setVisible(!playVisible);
 if (playVisible) {
 // show play button
 playButton.toFront();
 pauseButton.toBack();
 } else {
 // show pause button
 pauseButton.toFront();
 playButton.toBack();

 }
 }
 /**
 * A position slider to seek backward and forward
 * that is bound to a media player control.
 *
 * @return Slider control bound to media player.
 */
 private Slider createSlider() {
 Slider slider = new Slider(0, 100, 1);
 slider.setId(SEEK_POS_SLIDER_ID);
 slider.valueProperty()
 .addListener((observable) -> {
 if (slider.isValueChanging()) {
 // must check if media is paused before seeking
 if (mediaPlayer != null &&
 mediaPlayer.getStatus() == MediaPlayer.Status.PAUSED) {

 // convert seconds to millis
 double dur = slider.getValue() * 1000;
 mediaPlayer.seek(Duration.millis(dur));
 }
 }
 }); //addListener()
 Scene scene = PRIMARY_STAGE.getScene();
 slider.setTranslateX(10);
 slider.translateYProperty()
 .bind(scene.heightProperty()
 .subtract(50));
 return slider;
 }
}

197CHAPTER 7: Media with JavaFX

Listing 7-2. MP3 Audio Player’s CSS style sheet (playing-audio.css)

.root {
 -white-ish: rgba(255, 255, 255, .90);
 -black-ish: rgba(0, 0, 0, .80);
}
#app-area {
 -fx-arc-width: 20;
 -fx-arc-height: 20;
 -fx-fill: -black-ish;
 -fx-stroke: green;
 -fx-stroke-width: 2;
 -fx-stroke: -white-ish;
}
#button-area {
 -fx-arc-width: 15;
 -fx-arc-height: 20;
 -fx-fill: -black-ish;
 -fx-stroke: -white-ish;
}
#stop-button {
 -fx-arc-width: 5;
 -fx-arc-height: 5;
 -fx-fill: -white-ish;
 -fx-translate-x: 15;
 -fx-translate-y: 10;
 -fx-stroke: -white-ish;
}
#play-button {
 -fx-fill: -white-ish;
 -fx-translate-x: 40;
}
.pause-circle {
 -fx-stroke: -white-ish;
 -fx-translate-x: 30;
}
.pause-line {
 -fx-stroke-width: 3;
 -fx-stroke: -white-ish;
 -fx-translate-y: 6;
}
#close-circle {
 -fx-fill: -white-ish;
}
.slider {
 -fx-show-tick-labels: false;
 -fx-show-tick-marks: true;
}
.slider .axis .axis-label {
 -fx-text-fill: white;
}

198 CHAPTER 7: Media with JavaFX

How It Works
Before we begin I want to describe some changes that I made in this book from the earlier edition.
I basically refactored the source code from the prior book’s edition relating to media. Because of this
refactoring, I will mention privately scoped methods quite often. These private methods are used to
break-up the code into more manageable pieces, so that you can better focus on each feature of the
media player application.

We will drag and drop audio files onto the example MP3 player, as we did in Chapter 5’s photo viewer
application, in which you learned how to use the drag-and-drop desktop metaphor to load files into
a JavaFX application. Instead of image files, however, the user will be loading audio files. To load
audio files, JavaFX currently supports the following file formats: mp3, wav, aiff, and m3u8. To see the
supported encoding types please refer to the Javadocs documentation of the package summary of
javafx.scene.media.

Looking back at Figure 7-2 you might notice that the button panel control has a look and feel similar
to the photo viewer application in Figure 5-1 of Chapter 5. In this example, I’ve modified the button
controls to resemble buttons, similar to many media player applications.

As an added bonus, the MP3 player will appear as an irregularly shaped, semitransparent window
without a title bar and borders. The application window can also be dragged around the desktop
using the mouse cursor. Now that you know how to operate the music player, let’s walk through
the code.

The Audio Player Application’s Instance Variables
First, the code contains instance variables at the top of the class that will maintain state information
for the lifetime of the application. Table 7-2 describes all instance variables used in our MP3 audio
player application.

Table 7-2. MP3 Player Application Instance Variables

Variable Data Type Example Description

mediaPlayer MediaPlayer - A media player object that plays audio
and video.

anchorPt Point2D 100,100 Screen coordinates where the user begins
to drag the stage window.

previousLocation Point2D 0,0 The upper-left corner of the stage’s
previous coordinate; assists in dragging
the stage window.

progressListener ChangeListener<Duration> 5 (sec.) Bound to the media player’s
currentTimeProperty() method. Updates
the UI slider control.

199CHAPTER 7: Media with JavaFX

In Table 7-2 the first variable is a reference to a media player (MediaPlayer) object that will be created
in conjunction with a Media object containing an audio file. Next, you can see two variables named
anchorPt and previousLocation. These variables are used to maintain the stage window’s positions
on the desktop when the user drags the application window across the screen.

The anchorPt variable is used to save the starting coordinates of a mouse press when the user
begins to drag the window. When calculating the upper-left bounds of the application window
during a mouse-drag operation, the previousLocation variable will contain the previous window’s
screen X and Y coordinates.

Not listed in Table 7-2 are static variables such as PRIMARY_STAGE, STOP_BUTTON_ID, PLAY_BUTTON_ID,
and so on. The static PRIMARY_STAGE variable is a global variable reference as a convenience for
all privately scoped methods for easy access to the main stage window. The many static final
String variables named XXXX_ID, having an _ID suffix, are node IDs that can be later retrieved via the
scene’s lookup() method. For example, if the scene graph contains a node with an id of
stop-button (node.setId("stop-button")), you could later invoke the scene.lookup("#stop-button")
method to retrieve the Stop button node from the scene graph.

Setting Up the Stage Window
Now that you know about the instance variables, let’s jump into the start() method code. In
previous chapters relating to GUIs, you saw that GUI applications normally contain a title bar and
windowed borders surrounding the Scene. Here, I want to demonstrate the ability to create irregularly
shaped semi-transparent windows. The code invokes the stage (primaryStage) object’s initStyle()
method with a StageStyle.TRANSPARENT value; as a result, the stage window has no title bar (is
undecorated) and is invisible.

Next, the code centers the stage window on the screen on application startup via the
centerOnScreen() method. After centering the stage you’ll notice the usual setup of a scene by
applying a JavaFX style sheet file (playing-audio.css). Listing 7-2 shows the contents of the file
playing-audio.css. There, you’ll notice that the root class selector has two global color attributes,
named -white-ish and -black-ish, created to be reused in other styling definition blocks. If you are
not familiar with JavaFX CSS styling, please refer to Chapter 6.

Back in our start() method in Listing 7-1, after applying the CSS style sheet the code invokes the
private initMovablePlayer() method, which is responsible for making the stage window draggable.
Because you don’t have a native title bar, you will find it convenient to be able to drag any part of
the application’s surface. The initMovablePlayer() method makes use of the instance variables
anchorPt and previousLocation mentioned earlier, to calculate points based on relative screen
coordinates when mouse events (press, drag, or release) are triggered.

Because our scene is invisible, the code will create the application background area by invoking the
private method createApplicationArea(). This method returns a simple rounded rectangle as the
background of our MP3 audio player application. The returned shape node will be added to the root
node of the scene first, and all other nodes added to the root node after that. This order enables all
other nodes to sit on top of the background application area.

200 CHAPTER 7: Media with JavaFX

The Setup Container Node for Visualizations (the Scene.lookup() Method)
After creating an application area background (the rounded rectangle), the code creates a container
node (Group) that will later hold randomly colored circle shapes. The container node is refreshed with
new circles that appear to dance around the application area. Following is the code to create the
container node (vizContainer) that provides our visualization area node as audio is being played:

// Container for random circles bouncing about
Node vizContainer = new Group();
vizContainer.setId(VIS_CONTAINER_ID); // vis-container

Did you notice that the id selector was set to viz-container? By setting the id selector, we enable
the code to retrieve the container node later via the scene’s lookup() method, as shown here:

Group vizContainer = (Group) stage.getScene().lookup("#viz-container");

This code snippet shows the invocation of the lookup() method of the scene object. You will notice
the ’#’ symbol prefixed with the id type selector name. According to the Javadocs documentation
"If more than one node matches the specified selector, this function returns the first of them. If no
nodes are found with this ID, then null is returned."

Using the scene’s lookup() method facility is a convenient way to retrieve nodes from the scene
graph in a random-access way without having to create globally defined instance variables.

Creating a Custom Button Panel
Continuing with our start() method, the code creates a custom button panel by invoking the
private method createButtonPanel(). This method creates custom buttons by using JavaFX shapes
(rectangles, arcs, circles, and lines) that represent the Stop, Play, and Pause buttons for our MP3
audio player.

When creating shapes or custom nodes, you can add event handlers to nodes in order to respond
to mouse events. Although there are advanced ways to build custom controls in JavaFX, I chose to
build my own button icons from simple rectangles, arcs, circles, and lines. To see more advanced
ways to create custom controls, refer to the Javadocs on the Skinnable API.

To attach event handlers for a mouse press, simply call the setOnMousePress() method by passing
in an EventHandler<MouseEvent> instance. The following code block adds a lambda expression that
responds to a mouse press for the stopButton node:

Node stopButton = new Rectangle(10, 10);
stopButton.setId(STOP_BUTTON_ID);
stopButton.setOnMousePressed(mouseEvent -> {
 if (mediaPlayer != null) {
 updatePlayAndPauseButtons(true);
 if (mediaPlayer.getStatus() == Status.PLAYING) {
 mediaPlayer.stop();
 }
 }
}); // setOnMousePressed()

201CHAPTER 7: Media with JavaFX

In this code, a square node is defined as our Stop button, set with an id of the static String
variable STOP_BUTTON_ID, which is really the string value stop-button. Next, the code sets an event
handler for the OnMousePressed event to stop the media player from playing. You’ll notice the method
call to updatePlayAndPauseButtons(true), which toggles the display of the Play button and hiding
of the Pause button. Otherwise, we pass in a boolean value of false, so the Pause button will be
displayed and the Play button will be hidden.

Simply put, the media player object is a state machine that transitions between states internally.
Some methods use other threads that aren’t on the JavaFX application thread. So it is typically good
practice to query the state of the media player before invoking methods such as the stop(). In the
case of the Stop button, you’ve seen that the code checks for the Status.PLAYING before invoking
the stop() method on the media player object.

Because all the buttons use code similar to the preceding code snippet (EventHandler), I will list only
the method calls that each button will ultimately perform on the media player. The following actions
are responsible for stopping, pausing, playing, and exiting the MP3 player application:

Stop - mediaPlayer.stop();

Pause - mediaPlayer.pause();
Play - mediaPlayer.play();
Close - Platform.exit();

Play Progress, Rewind, and Fast Forward
After creating the custom button panel in our start() method, the code invokes the private method
createSlider(), which returns a JavaFX Slider UI control. The slider control represents a progress
position slider that moves based on the position of the media as it is being played. When the media
is paused, the user may also drag the slider control’s “thumb” to seek backward and forward in time
through the audio or video media.

Seeking Backward or Forward in the Media
The following code implements a slider control representing a progress (seek) position slider control
for the MP3 audio player application:

Slider slider = new Slider(0, 100, 1);
slider.setId(SEEK_POS_SLIDER_ID);
slider.valueProperty()
 .addListener((observable) -> {
 if (slider.isValueChanging()) {
 // must check if media is paused before seeking
 if (mediaPlayer != null
 && mediaPlayer.getStatus() == MediaPlayer.Status.PAUSED) {
 //convert seconds to millis
 double dur = slider.getValue() * 1000;
 mediaPlayer.seek(Duration.millis(dur));
 }
 }
 }); //addListener()

202 CHAPTER 7: Media with JavaFX

Notice the slider control’s valueProperty() method and the call to the addListener() method, which
has an InvalidationListener (lambda expression) that detects whether the user has moved the
slider control, thus changing the value property. The lambda parameter for an InvalidationListener
(functional interface) is an object of type javafx.beans.Observable that refers to the slider’s value
property.

The code first checks whether the slider’s value has changed, by using the method isValueChanging().
It’s important to perform this check before the seek() method because of performance efficiencies.
Using the InvalidationListener, the slider’s value changes only when it’s needed (an example of
lazy evaluation). If you used a ChangeListener (eager evaluation), the value would change too often
and could overwhelm the media player.

Using a Slider Control to Show Play Progress
Still in our start() method, the code assigns the variable progressListener to a ChangeListener
(lambda) instance as shown in the following code snippet:

// update slider as media is progressing
progressListener = (observable, oldValue, newValue) ->
 progressSlider.setValue(newValue.toSeconds());

The progressListener is responsible for updating the slider’s “thumb” as the media player is playing
audio or video media. The listener is added onto the media player object’s currentTimeProperty()
in the playMedia() method. In this private method, the code cleans up by removing the singleton
progressListener instance, which was bound to an old media player object, and adds the
progressListener onto a newly created media player object. By removing old references to
the progress listener, we allow the Java runtime to perform its garbage collection process, thus
preventing memory leaks.

Setting Up Drag-and-Drop Support for Audio Files
Continuing within our start() method, notice the call to a private method initFileDragNDrop().
I created this method to support the drag-and-drop capability that is responsible for loading an
audio file from the local file system or browser URL address field. Because the implementation is
nearly identical to Chapter 5’s photo viewer example, I will not discuss the code details, except to
mention the invocation of the private method playMedia(). After the file is dropped the URL string
is passed into the method playMedia(). This method will conveniently clean up and create a new
media player and immediately play the media.

Cleaning Up
Inside the initFileDragNDrop() method is the OnDragDropped event handler code, which invokes
the private playMedia() method. This method begins by checking for the existence of a previously
created mediaPlayer object. If there was a previous media player instance, the code would stop the
media player and clean up any old references to events, listeners, and properties.

203CHAPTER 7: Media with JavaFX

Media Metadata
Next, the code creates a Media class instance with a valid URL string. After creating a Media instance,
the code loops through the media’s metadata via the getMetadata() method to display the keys onto
the console. Sometimes MP3 music files will contain information about the artist, tracks, or song
titles. By interrogating the media object’s metadata, you can display the information to the user.

After listing out metadata, the code creates a new MediaPlayer instance with a new Media object and
adds the progressListener onto the media player’s currentTimeProperty() method. As mentioned
earlier for the progress position slider control, the “thumb” will progress forward as the media is
being played.

Playing Media (the OnReady Event)
Continuing within the playMedia() method, the code creates a Runnable (lambda expression)
instance to respond to the OnReady event on the media player object. The code first resets the Play
and Pause buttons of the custom button control panel by invoking the updatePlayAndPauseButtons()
method. Passing in true displays the Play button and hides the Pause button; otherwise the Pause
button is shown and the Play button is hidden.

Next, the code initializes the slider control based on the media’s total duration. Finally, the code
invokes the media player object’s play() method to begin playing the music media.

Rewinding (the OnEndOfMedia Event)
After setting up the media player’s OnReady event, the code sets up the OnEndOfMedia event. This
event is triggered when the media player play position has reached the end. The code toggles the
Play and Pause buttons’ appearance and rewinds the media to the start, placing it in a Ready state.

Updating the Visualization Using the AudioSpectrumListener Interface
Do you remember the earlier discussion about the MP3 audio player’s visualization of randomly
colored circles dancing about as the music plays? Still within the playMedia() method, let’s look at
how to implement this mesmerizing effect.

Continuing with our playMedia() method, the code will obtain the container node viz-container
that was created earlier. The following lines retrieve the container node using the scene’s lookup()
method:

// setup visualization (circle container)
Group vizContainer = (Group) PRIMARY_STAGE.getScene()
 .lookup("#" + VIS_CONTAINER_ID);

204 CHAPTER 7: Media with JavaFX

Next, the code sets the media player’s audio spectrum listener with an AudioSpectrumListener
(lambda expression) instance. The listener is notified periodically with updates of the audio
spectrum. The following code updates the container node (vizContainer) with randomly colored
Circle shapes based on the phases array:

mediaPlayer.setAudioSpectrumListener(
 (double timestamp,
 double duration,
 float[] magnitudes,
 float[] phases) -> {
 vizContainer.getChildren().clear();
 int i = 0;
 int x = 10;
 double y = PRIMARY_STAGE.getScene().getHeight() / 2;
 Random rand = new Random(System.currentTimeMillis());
 // Build random colored circles
 for (float phase : phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);
 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 vizContainer.getChildren().add(circle);
 i += 5;
 }
}); // setAudioSpectrumListener()

This code creates randomly colored circle nodes to be positioned and placed on the scene based
on the phases array, an array of float values. To draw each colored circle, the code increments the
Circle’s center X by 5 pixels and adds the circle’s center Y with each phase value multiplied by 100.
Shown next is the code that plots each randomly colored circle:

circle.setCenterX(x + i);
circle.setCenterY(y + (phase * 100));
... // setting the circle
i+=5;

What exactly is this type of listener? According to the Javadocs, it is an observer receiving periodic
updates of the audio spectrum. In layman’s terms, it is the audio media’s sound data such as
volume, tempo, and so on. To create an instance of an AudioSpectrumListener you will create a
lambda expression with parameters of the interface’s method spectrumDataUpdate(). Table 7-3 lists
all the inbound parameters for the audio spectrum listener’s method. For more details refer to the
Javadocs documentation for javafx.scene.media.AudioSpectrumListener.

205CHAPTER 7: Media with JavaFX

Quitting (the Close Button)
The rest of the start() method in our MP3 audio player’s code creates a Close button by calling the
private method createCloseButton(), which returns a custom node that has handler code to exit the
application.

Playing Video
Playing videos in JavaFX is quite simple. You will use the same APIs as with audio to load media into
a JavaFX media player object. The only difference is that you will need a MediaView node to display
the video onto the scene. Because MediaView is a JavaFX node, you will be able to transform, scale,
translate, and apply effects. In this section you will learn about cross-platform video media file
formats, and later you will see an example of a JavaFX video player.

Table 7-3. The AudioSpectrumListener’s Method spectrumDataUpdate() Inbound Parameters

Variable Data Type Example Description

timestamp double 2.4261 When the event occurred, in seconds.

duration Double 0.1 The duration of time (in seconds) the spectrum was computed.

magnitudes float[] -50.474 An array of float values representing each band’s spectrum
magnitude in decibels (nonpositive float value).

phases float[] 1.22 An array of float values representing each band’s phase.
Each value range is between -Math.PI and +Math.PI.

Note As of the writing of this book, the JavaFX media player API supports the video formats MPEG-4 H.264/AVC
(.mp4) and VP6 using an .flv container format.

MPEG-4
MPEG-4 is a multimedia container format containing H.264/AVC video. Currently MPEG-4 is a
compressed video format that is widely used to view video on the Internet. You’ll find that some
high-definition video recorders can automatically convert raw video to MPEG-4 to produce files with
the extension .mp4. For the devices that do not produce mp4 files, you currently need to purchase
movie or video editing software capable of converting raw videos into MP4-formatted files.
The following software, among others, can convert raw video into the portable MPEG-4 format:

Adobe Premiere	

Apple Final Cut Pro	

Apples iMovie	

Apple Quick Time Pro	

206 CHAPTER 7: Media with JavaFX

Sony Vegas Movie Studio	

Sony Vegas Pro	

FFmpeg	

VP6 .flv
JavaFX 2.x and later supports a cross-platform video format called VP6 with a file extension of .flv
(which stands for the popular Adobe Flash Video format). The actual encoder and decoder (codec) to
create VP6 and .flv files are licensed through a company called On2. In 2010, On2 was acquired by
Google to build VP7 and VP8 to be open and free to advance HTML5.

Please refer to the Javadocs for more details on the formats to be used. A word to the wise: beware
of web sites claiming to be able to convert videos for free. As of this writing, the only encoders
capable of encoding video to VP6 legally are the commercial converters from Adobe and Wildform
(http://www.wildform.com).

You are probably wondering how to obtain such a file of the type FLV when you don’t have encoding
software. If you don’t have an .flv file lying around, you can obtain one from one of my favorite
sites, called the Media College (http://www.mediacollege.com). From photography to movies, Media
College provides forums, tutorials, and resources that help guide you into the world of media.

There you will obtain a particular media file to be used in one of the examples in this chapter
relating to closed captioning. To obtain the .flv file, navigate to the following URL:
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html.

Next, locate the link entitled Windy 50s Mobility Scooter Race, which points to our .flv media file
(20051210-w50s.flv). In order to download a link to the desired file, right-click to select Save Target
As or Save . Once you have saved the file locally on your file system, you can use it for examples in
this chapter.

It is not required that you have FLV files for this chapter. And you may use MPEG-4 (mp4) formatted
files for the examples.

A Video Player Example
Figure 7-5 shows an Mpeg-4 (.mp4) home video shot from my FlipCam. I simply dragged the mp4 file
right onto the surface of the application, and the video began playing. In this section you will learn
how to implement a basic JavaFX video player application.

http://www.wildform.com/
http://www.mediacollege.com/
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

207CHAPTER 7: Media with JavaFX

To create a video player, all you need to do is reuse the previous MP3 audio player example and
make very minor adjustments. Actually, the code is mostly identical to the MP3 audio player example,
except that the visualization container node (Group) is replaced with a javafx.scene.media.MediaView
node as shown in Figure 7-5.

Because the core functionality hasn’t changed, you will experience the same features such as seeking,
stopping, pausing, and playing media. Another bonus feature added to the video player is the ability
to put the video into full-screen mode by double-clicking the application window area. To restore the
stage window, repeat the double-click or press the Esc key.

Figure 7-5. A basic JavaFX video player

Note Because all video player examples in this chapter were built from the MP3 audio player project, you
will notice that features such as seeking, stopping, pausing, and playing media are identical. For the sake of
brevity in the remaining examples I will list only the relevant code parts, demonstrating new features, and
omit sections that existed in the core code from the MP3 Audio Player example.

Video Player Source Code
Listing 7-3 is the implementation of a JavaFX video player application. After you have examined the
code, I will discuss how it works.

208 CHAPTER 7: Media with JavaFX

Listing 7-3. Source code for a JavaFX Video Player Application

/**
 * Chapter 7: Playing Video
 *
 * @author cdea
 */
public class PlayingVideo extends Application {
 // ... the rest of the instance variables
 private static final String MEDIA_VIEW_ID = "media-view";

 // ... The rest of the static variables

 @Override
 public void start(final Stage primaryStage) {
 // ... Code omitted

 // Initialize stage to have fullscreen ability
 initFullScreenMode();

 // Create a media view to display video
 MediaView mediaView = createMediaView();

 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);

 // ... Code omitted
 }

 /**
 * Attaches event handler code (mouse event) to
 * toggle to Full screen mode. Double click the scene.
 */
 private void initFullScreenMode() {
 Scene scene = PRIMARY_STAGE.getScene();
 // Full screen toggle
 scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 PRIMARY_STAGE.setFullScreen(!PRIMARY_STAGE.isFullScreen());
 }
 });
 }

 /**
 * Initialize the stage to allow the mouse cursor to move the
 * application using dragging.
 * @param stage
 */
 private void initMovablePlayer() {

 // ... Code omitted
 }

209CHAPTER 7: Media with JavaFX

 /**
 * Initialize the Drag and Drop ability for audio/video files.
 * @param stage Primary Stage
 */
 private void initFileDragNDrop() {

 // ... Code omitted
 }

 /**
 * After a file is dragged into the application a new
 * MediaPlayer is created with a media file.
 * @param stage The stage window (primaryStage)
 * @param url The url pointing to an audio file
 */
 private void playMedia(String url) {

 // ... Code omitted
 // create a new media player
 // ... Code omitted

 // set the media player to display video
 MediaView mediaView = (MediaView) scene.lookup("#" + MEDIA_VIEW_ID);
 mediaView.setMediaPlayer(mediaPlayer);
 } // playMedia()

 /**
 * Create a MediaView node.
 *
 * @return MediaView
 */
 private MediaView createMediaView() {
 MediaView mediaView = new MediaView();
 mediaView.setId(MEDIA_VIEW_ID);

 mediaView.setPreserveRatio(true);
 mediaView.setSmooth(true);
 mediaView.fitWidthProperty()
 .bind(PRIMARY_STAGE.getScene()
 .widthProperty()
 .subtract(220));
 mediaView.fitHeightProperty()
 .bind(PRIMARY_STAGE.getScene()
 .heightProperty()
 .subtract(30));
 // sometimes loading errors occur
 mediaView.setOnError(mediaErrorEvent -> {
 mediaErrorEvent.getMediaError()
 .printStackTrace();
 });

 return mediaView;
 }

210 CHAPTER 7: Media with JavaFX

 /**
 * Creates a node containing the audio player's stop,
 * pause and play buttons.
 *
 * @param primaryStage
 * @return Node A button panel having play,
 * pause and stop buttons.
 */
 private Node createButtonPanel() {
 // ... Code omitted
 }

 /**
 * A simple rectangular area as the surface of the app.
 * @param stage the primary stage window.
 * @return Node a Rectangle node.
 */
 private Node createApplicationArea() {
 // ... Code omitted
 }

 /**
 * A slider to seek backward and forward that is bound to
 * a media player control.
 * @return Slider control bound to media player.
 */
 private Slider createSlider() {
 // ... Code omitted
 }

 /** The close button to exit application
 * @return Node representing a close button.
 */
 private Node createCloseButton() {
 // ... Code omitted
 }
 /**
 * Sets play button visible and pause button not visible
 * when playVisible is true otherwise the opposite.
 * @param playVisible - value of true the play becomes
 * visible and pause non visible.
 */
 private void updatePlayAndPauseButtons(boolean playVisible) {
 // ... Code omitted
 }
}

211CHAPTER 7: Media with JavaFX

How It Works
Let’s begin by discussing the instance and static variables defined in the class. Because this
example is mostly the same as the MP3 audio player example, I will only discuss the newer
variables. In Listing 7-3 the code creates a static final String MEDIA_VIEW_ID variable for the
MediaView object’s id for later retrieval using the scene’s lookup() method.

Setting Up the Stage Window
Beginning with the start() method, the code has already set up the capability to drag the stage
window, via the call to the initMovablePlayer() method (code omitted).

Next, the code invokes the initFullScreenMode() method, which attaches handler code to listen
for a mouse double-click event. When a user double-clicks the background surface (scene), the
application and media view will become full screen. The following code snippet is handler code set
on the OnMouseClicked event.

// Full screen toggle
scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 PRIMARY_STAGE.setFullScreen(!PRIMARY_STAGE.isFullScreen());
 }
});

The MediaView Node
After adding the full-screen capability, the code invokes the private method createMediaView(),
which returns a MediaView node that is responsible for displaying the video. The following code calls
the createMediaView() to be added as the second node, which places the media view node on top
of the application background (rounded rectangle):

// Create a media view to display video
MediaView mediaView = createMediaView();

// make media view as the second node on the scene.
root.getChildren().add(1, mediaView);

To see what the createMediaView() method actually returns, let’s look at how it was implemented.
The method begins by instantiating a new MediaView class and setting the id with MEDIA_VIEW_ID
(media-view). Next, it invokes the media view object’s setPreserveRatio() with a value of true.
The setPreserveRatio() method will preserve the aspect ratio of the video when being resized.
The resizing occurs when the application goes into full screen mode and back to normal size. The
remaining code binds properties relating to the width and height relative to the size of the scene’s
(stage window) dimensions.

212 CHAPTER 7: Media with JavaFX

Playing Video
Finally, consider the private method playMedia(), which is responsible for receiving a media file after
a drag-and-drop. Here, is where the code takes the existing media player object to be associated
with the MediaView node created earlier. The following code uses the scene’s lookup() method to
retrieve the media view and reference the newly created media player instance:

// set the media player to display video
MediaView mediaView = (MediaView) scene.lookup("#" + MEDIA_VIEW_ID);
mediaView.setMediaPlayer(mediaPlayer);

Simulating Closed Captioning: Marking a Position in a Video
Have you ever wanted to implement closed-captioned video? In the past there have been
discussions about JavaFX 8 possibly supporting the standard closed-captioning specification for
video media; however, the state of this feature is unclear as of this writing. Fortunately, there is hope;
JavaFX supports media event markers to achieve the same behavior as closed-captioned video.

Closed-Captioning Video Example
To demonstrate a closed-captioned video example, I created a NetBeans project called
ClosedCaptionVideo. For the sake of space I will show here only the code parts that are relevant to
media event markers (Listing 7-4). To see the full source code, please visit the book’s website to
download the code for this chapter.

When we discussed video media file formats earlier, I noted that an FLV file could be found at the
following URL: http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html.
Here, I used the file 20051210-w50s.flv for this closed caption video example. Figure 7-6 depicts
closed captions (Text) being displayed at certain points in the video.

Figure 7-6. Closed-captioned video

http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

213CHAPTER 7: Media with JavaFX

Listing 7-4. Media Marker Events

// obtain media
Media media = new Media(url);

// add media markers
media.getMarkers().put("Starting race", Duration.millis(1959));
media.getMarkers().put("He is begining \nto get ahead",
 Duration.millis(3395));
media.getMarkers().put("They are turning \nthe corner",
 Duration.millis(6060));
media.getMarkers().put("The crowds \ncheer",
 Duration.millis(9064));
media.getMarkers().put("He makes the \nfinish line",
 Duration.millis(11546));

MediaPlayer mediaPlayer = new MediaPlayer(media);

Text closedCaption = (Text) scene.lookup("#" + CLOSED_CAPTION_TEXT_ID);
mediaPlayer.setOnMarker((MediaMarkerEvent event) ->
 closedCaption.setText(event.getMarker().getKey())
); setOnMarker()

How It Works
Listing 7-4 shows a newly created Media object based on a valid URL string. Next, the code adds
key/value pairs as markers in media. Each marker pair consists of a key of type String and a value
of type Duration (in milliseconds). The duration is the marker in time into the media that will trigger
an OnMarker event. The media can be video or audio.

You’ll immediately notice that the setOnMarker() method is set with a lambda expression with a
parameter of type MediaMarkerEvent. The MediaMarkerEvent closure code is invoked when the
OnMarker event is raised. The closure code simply sets the closedCaption (javafx.scene.text.Text)
node with the key’s value as the closed-captioning text.

Summary
In this chapter you discovered the world of JavaFX media. You began by learning about media
events and event-based programming when dealing with the JavaFX Media APIs. Next, you saw
how easy it is to take a media file as a URL string to be loaded and played. After learning about
the MediaPlayer API, you got a chance to look at an MP3 audio player example that demonstrated
features such as seek, stop, pause and play. Also, you learned how to implement a cool visualization
using the AudioSpectrumListener interface.

After you learned about audio media, we discussed video. With video media you were able to learn
about currently supported media formats such as Mpeg-4 and FLV. Then you saw an example of
a basic JavaFX video player application. Here, you discovered that playing video is the same as
playing audio, except for the use of the MediaView node, which is capable of displaying the video.
Finally, you were exposed to a short example of media marker events (MediaMarkerEvent) to simulate
a closed-captioned video.

215

Chapter 8
JavaFX on the Web

JavaFX provides capabilities to interoperate with HTML5 content. The underlying web page–
rendering engine in JavaFX is the popular open-source API called WebKit. This API is used in Apple’s
Safari browsers, Amazon’s Kindle devices, and was used in Google’s Chrome browser prior to
version 27 (the WebKit fork called Blink). HTML5 is the newly accepted standard markup language
for rendering content in web browsers. HTML5 content consists of JavaScript, CSS, Scalable Vector
Graphics (SVG), Canvas API, Media, XML, and new HTML element tags.

The relationship between JavaFX and HTML5 is important because they complement one another
by drawing from each of their individual strengths. For instance, JavaFX’s rich client APIs coupled
with HTML5’s rich web content create a user experience resembling a web application with the
characteristics of native desktop software. This new breed of application is called the Rich Internet
Application (RIA).

In this chapter, you will examine example applications that do the following:

Display HTML5 Content (SVG-based Analog Clock)	

Communicate from Java to JavaScript (WeatherWidget)	

Communicate from JavaScript to Java (WeatherWidget)	

Before delving into the example applications, we will discuss the following core Web APIs:

	javafx.scene.web.WebEngine

	java.net.HttpURLConnection

	javafx.scene.web.WebView

WebEngine
JavaFX provides a non-GUI component capable of loading HTML5 content, called the WebEngine
API (javafx.scene.web.WebEngine). This API is basically an object instance of the WebEngine class to
be used to load a file containing HTML5 content. The HTML5 file to be loaded can be located on a

216 CHAPTER 8: JavaFX on the Web

local file system, a web server, or inside a JAR file. When you load a file using a web engine object,
a background thread is used to load web content so that it does not block the JavaFX application
thread. In this section you will learn the following two WebEngine methods for loading HTML5 content:

	load(String URL)

	loadContent(String HTML)

WebEngine’s load() Method
The WebEngine API, like many APIs that use background threads, adheres to an event-based
programming model. Being event-based usually means that method invocations are asynchronous
(callbacks); for example, a web engine can load web content asynchronously from a remote web
server and notify handler code when the content is finished loading. After being notified, the handler
code would then be running on the JavaFX application thread. The code in Listing 8-1 loads HTML
content from a remote web server in a background worker thread. To monitor or determine whether
the worker thread has finished a javafx.beans.value.ChangeListener (lambda expression) is added
to the state property. Please refer to chapter 3 on Lambda expression if you are not familiar with
functional interfaces.

Listing 8-1. WebEngine with a ChangeListener Functional Interface that determines whether the background loading is finished

WebEngine webEngine = new WebEngine();
webEngine.getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == SUCCEEDED) {
 // finished loading...
 // process content...
 }
}); // addListener()

// begin loading...
webEngine.load("http://www.oracle.com");

In Listing 8-1 you’ll notice a ChangeListener lambda expression being added onto the state property
via the addListener() method. The state property contains the current status or life cycle of the web
engine’s background worker thread. The states are based on the State enum, which is owned by
the javafx.concurrent.Worker interface. After setting up the listener, the code begins the loading
process by using the web engine’s load() method. Also notice that the string passed into the load()
method is a valid URL string representing the location of the web content file.

When a ChangeListener lambda expression is added to the state property, the parameters are as follows:

	obs is of type ObservableValue<? extends Worker.State>, which references the
state property on the web engine object.

	oldValue is of type Worker.State enum and contains the previous value before
the state property has changed.

	newValue is of type Worker.State enum also and contains the new state property
to be changed into.

http://www.oracle.com/

217CHAPTER 8: JavaFX on the Web

The type specifiers for each parameter of the lambda expression (ChangeListener) were left off to
allow the parameter signature to be more concise. After the state property changes, the newValue
parameter can be checked for various thread states. In Listing 8-1 the newValue is used to check the
state of the worker thread, an example of eager evaluation.

The following are all of the possible worker thread states:

READY, SCHEDULED, RUNNING, SUCCEEDED, CANCELLED, FAILED

To determine whether the worker thread is finished loading the web content, the code in Listing 8-1
shows the ChangeListener inside of the addListener() method simply checking the worker thread’s
state against the Worker.SUCCEEDED enum value.

WebEngine’s loadContent() Method
One additional way to load HTML5 content is by using the web engine’s loadContent(String
htmlText) method. What’s nice about the loadContent() method is that HTML content represented
as a string can be pregenerated dynamically without having to fetch content from a remote server.
The following code snippet loads pregenerated HTML content:

webEngine.loadContent("<html><body>JavaFX Rocks!</body></html>");

Now that you know two strategies to load HTML content, you will see how to obtain and manipulate
the raw content, along with see common types of data formats that may be obtained from the web
engine object after the web content is loaded.

HTML DOM Content
The web engine has the ability to load the current page’s document object model (DOM) as XML
content following the W3C standards-based APIs for Java. Typically, developers who are familiar
with an XML Document Object Model (DOM) can easily interrogate org.w3c.dom.Document objects.
This section shows how to obtain a W3C XML Document object and the raw XML as a String object.

Obtaining an org.w3c.dom.Document (DOM) Object
After a web engine instance successfully loads HTML content, an XML DOM can be easily
obtained by invoking the web engine’s getDocument() method. The following code snippet obtains
a Document (org.w3c.dom.Document) instance assuming the web engine is finished loading the
HTML or XML content.

webEngine.load("http://myserver.com/my_cool_xml_data.xml");
.
.
// after content is finished loading (Worker.SUCCEEDED)
org.w3c.dom.Document xmlDom = webEngine.getDocument();

http://myserver.com/my_cool_xml_data.xml

218 CHAPTER 8: JavaFX on the Web

Using Raw XML Content as a String
Depending on the situation, sometimes it is necessary to obtain the raw XML data as a string of
text. Developers often use libraries such as JDOM or dom4j to convert easily between the two data
format types. Listing 8-2 shows how to convert from an org.w3c.dom.Document object to a String
object without the need of using those libraries.

Listing 8-2. Converting an XML DOM into a String

TransformerFactory transformerFactory = TransformerFactory.newInstance();
Transformer transformer = transformerFactory.newTransformer();
StringWriter stringWriter = new StringWriter();
transformer.transform(new DOMSource(webEngine.getDocument()),
 new StreamResult(stringWriter));
String xml = stringWriter.getBuffer().toString();

Raw HTML5 Content via the JavaScript Bridge
Early in this chapter we discussed how the underlying web engine uses WebKit to load and interact
with HTML5 content. What does it mean to interact with HTML5 content? JavaFX’s WebEngine API has
a JavaScript bridge that allows Java code to invoke JavaScript functions or script code inside HTML5
content. So another question would be how then does one obtain the raw HTML5 content as a string?

Some common use cases out in the field are the following: obtaining raw HTML content for web
crawling (used in search engines), caching web pages, screen scraping, data mining, and data
analysis. To obtain the raw HTML5 you will need to interact with the JavaScript bridge to access the
web content’s DOM using the web engine’s executeScript() method. The following code statement
accesses the HTML document (DOM) to obtain the raw content from the documentElement.outerHTML
(the topmost element):

String html = (String) webEngine.executeScript("document.documentElement.outerHTML");

Communicating from Java to JavaScript
Another example of using the method executeScript() is shown in Listing 8-3, where the code calls
into a JavaScript function sayHello() to add text into an existing HTML DIV element with an id of
my_message. Listing 8-4 shows the HTML content.

Listing 8-3. Java Calling a JavaScript Function

// From Java Code
webEngine.executeScript("sayHello('Hi there');");
.
.
.

219CHAPTER 8: JavaFX on the Web

Listing 8-4. HTML Content Containing the JavaScript Function sayHello()

... Omitted HTML content
<script>
function sayHello(msg) {
 document.getElementById('my_message').innerHTML = msg;
}
</script>
.
.
<div id="my_message"></div>

Being able to call JavaScript is a powerful facility, allowing Java code to use the WebEngine object’s
JavaScript engine to manipulate the DOM. But what about JavaScript code talking to Java code?

Communicating from JavaScript to Java
Java 8 has the ability to allow JavaScript code to make calls into Java code. Allowing JavaScript
to call Java code means that web developers can now take advantage of many Java APIs. In this
section we will briefly discuss how to allow JavaScript code to communicate with Java code.

Enabling JavaScript to talk to Java is easy. The first step is obtaining the WebEngine object’s
JSObject object via a call to the method executeScript("window"). The JSObject is a wrapper object
to allow the bridge between the two languages.

After obtaining the JSObject, any object can be passed into the JavaScript engine’s context simply
by invoking the setMember() method. To invoke the setMember() method, you pass in a string name
and the corresponding object. Listing 8-5 shows how to set up the JSObject for the JavaScript
engine to talk to Java.

Listing 8-5. Allowing JavaScript Code to Make Upcalls to Java Code

// The web view's web engine
webView.getEngine()
 .getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == Worker.State.SUCCEEDED) {
 // Let JavaScript make upcalls to this (Java) class
 JSObject jsobj = (JSObject) webView.getEngine()
 .executeScript("window");
 jsobj.setMember("ABCD", new HelloWorld());
 }
 });

You can see in Listing 8-5 that the HelloWorld class instance is set as the member on the (JSObject)
object. Listing 8-6 shows the simple HelloWorld class.

220 CHAPTER 8: JavaFX on the Web

Listing 8-6. Java Class With the Public Method sayGoodbye()

public class HelloWorld () {
 public String sayGoodbye(String name) {
 return "Hasta la vista " + name;
 }
}

After you’ve set a HelloWorld instance as a JSObject member named ABCD, the JavaScript function
shown in Listing 8-7 can invoke the Java method sayGoodbye().

Listing 8-7. JavaScript Code Calling Java Code

.

.
<script>
function sayGoodbye(name) {
 var message = ABCD.sayGoodbye(name);
 document.getElementById('my_message').innerHTML = message;
}
</script>
.
.
<div id="my_message"></div>

As a warning, please be careful exposing methods that allow client code to gain access that can
potentially harm or view private data.

Caution Because JavaScript code has the capability to make calls into Java, it is very important to make
sure you aren’t exposing APIs that could potentially harm systems or view private data.

The URL and HttpURLConnection APIs
Trying to fit a square peg into a round hole

—Sydney Smith

As mentioned earlier in the chapter, the WebEngine object is a non-GUI component capable of
loading web content, so you might be wondering if it is possible to make web service calls capable
of retrieving serialized data that has different data formats such as the popular JSON format. To
answer this question, you will want to know the WebEngine API’s responsibilities and limitations.
In this section you will also briefly learn about how to use Java 8’s core java.net.URL and
java.net.HttpURLConnection APIs to make proper RESTful web requests.

221CHAPTER 8: JavaFX on the Web

WebEngine Limitations
When using JavaFX’s WebEngine API to retrieve web content such as JSON data, you will encounter
some limitations; some of these involve the ability to fetch (GET) data from or submit (POST) it to a
web server asynchronously (using AJAX), such as when retrieving JSON data.

Of course there are a handful of interesting ways (hacks) to get JSON data by using the WebEngine
object by calling into the HTML DOM to obtain text content. Following is an example of how to
obtain the JSON text content inside an HTML DOM.

webEngine.load("http://myserver.org/current-weather?format=json");
.
.
.
// handler code to obtain JSON data.
String json = (String) webEngine.getDocument()
 .getElementsByTagName("body")
 .item(0)
 .getTextContent();

The handler code traverses the HTML’s DOM to obtain text content retrieved from the web engine
object. Even though it looks fairly easy to implement in order to get JSON data as a String, I do not
recommend using this approach, because it is fragile and nonstandard. From a code maintenance
standpoint, the code could be taken out of context and a potential bug could surface in the future.
I’m sure you’ve heard the phrase “Just because you can do something doesn’t mean you should.”

You will quickly find that the WebEngine API’s responsibility is basically for loading HTML5 and
interacting with its content (HTML/JavaScript). The WebEngine API is not responsible for making web
service calls or serializing data with different transport protocols.

So, is there a better way? Of course there is. Originally, since versions 1.1 and 1.2, Java has had the
HttpURLConnection API. While there are many libraries you could choose from that simplify web service
calls the next section will show you how to do things purely in Java having no library dependencies.
Next, are examples on how to make RESTful requests using the HttpURLConnection API.

Making RESTful Call Requests
In the Enterprise Web development world you will inevitably encounter the concept of RESTful web
services. Based on the concept of representational state transfer (REST), RESTful web services
are lightweight HTTP requests that involve XML- or JSON-formatted data. To make RESTful calls
the web request will contain a request method that tells the web server the type of HTTP data flow
transaction. Similar to database transactions, RESTful conventions follow the concept of CRUD
(Create, Read, Update, and Delete), where the create stage is a POST request, read is a GET, update
is a PUT, and delete is a DELETE.

The HTTP GET Request
Because RESTful services are beyond the scope of this book, I will detail only the two common
RESTful call requests, GET and POST. Listing 8-8 is the familiar HTTP GET request that developers
typically perform when retrieving JSON data.

http://myserver.org/current-weather?format=json

222 CHAPTER 8: JavaFX on the Web

Listing 8-8. A RESTful GET Request to Retrieve Weather Data

// rest of the class code omitted
public static void main(String[] args){
 System.out.println(
jsonGetRequest("http://myserver.org/current-weather?q=Pasadena,MD&format=json"));
.
.
.
public static String jsonGetRequest(String urlQueryString) {
 String json = null;
 try {
 URL url = new URL(urlQueryString);
 HttpURLConnection connection = (HttpURLConnection) url.openConnection();
 connection.setDoOutput(true);
 connection.setInstanceFollowRedirects(false);
 connection.setRequestMethod("GET");
 connection.setRequestProperty("Content-Type", "application/json");
 connection.setRequestProperty("charset", "utf-8");
 connection.connect();
 InputStream inStream = connection.getInputStream();
 json = streamToString(inStream); // input stream to string
 } catch (IOException ex) {
 ex.printStackTrace();
 }

return json;
}

In Listing 8-8 the static method jsonRequest() is responsible for retrieving JSON data from a
RESTful web service. The jsonRequest() method receives a string URL that references a RESTful
web service endpoint that provides weather data. The code begins by instantiating a java.net.URL
class with a valid URL address with a query string containing a city and state.

Next, a valid URL object is created and a connection is opened by the openConnection() method
to begin a session. Here, the underlying connection is an instance of an HttpURLConnection. The
connection object is downcast to expose methods that allow the developer to specify connection
settings such as the request method, content type, and character set.

Once the connection object is finished with the proper connection settings, the code invokes the
connect() method to establish the connection to begin receiving data. Finally, the established
connection the JSON data is retrieved by obtaining an input stream object via the connection’s
getInputStream() method.

223CHAPTER 8: JavaFX on the Web

One-liner: Reading a File into a String
One last bonus trick is the private method streamToString(), which is responsible for reading the
connection’s input stream to be converted into a string for the caller. In the case of retrieving JSON
data from a Web response, an input stream will need to be converted to a string. The following code
snippet shows how to convert an input stream into a String object:

/**
* Quick one liner that delimits on the end of file character and
* returning the whole input stream as a String.
* @param inputStream byte input stream.
* @return String contents of the text file
*/
private String streamToString(InputStream inputStream) {
 String text = new Scanner(inputStream, "UTF-8")
 .useDelimiter("\\Z")
 .next();
 return text;
}

You will quickly notice the strange one-line statement that “magically” converts an input stream
into a String object. The streamToString() method uses the convenient Scanner API. This API is
excellent for reading text files that have delimited text lines, such as comma-separated values (CSV).
Scanner objects default their delimiter as an end-of-line character (\n).

By setting the end-of-file (EOF) marker (\\Z) as the delimiter, the next() method will return the text
stream before the end, creating entire text field. Of course, there are other ways to retrieve data, and
probably more efficient ways, too; however, you can see that the Scanner API is capable of handling
common situations with small to medium-sized data requests (up to ~3MB). The size limit occurs
because the data is converted to a String object and, depending on the number of requests, memory
resources can be easily consumed—possibly overwhelming the application.

HTTP POST Request
The code to make a RESTful POST request looks like the GET request in the previous example,
except that the data submitted will not be specified as query string parameters such as
“?param1=1¶m2=555”. Instead, to send a JSON object that is represented as a String, a
DataOutputStream object will need to be created to serialize the data as a string payload for delivery.
Listing 8-9 shows an example of a fictitious bank using an HTTP RESTful POST service that creates
a new customer bank account.

Listing 8-9. A RESTful POST Request

String jsonPayload = "{ name: 'john doe', amount: '5000', xtype: 'new_acct'}";
String urlHost = "https://mybank.org/transaction";

URL url = new URL(urlHost);
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setDoOutput(true);

224 CHAPTER 8: JavaFX on the Web

connection.setDoInput(true);
connection.setInstanceFollowRedirects(false);
connection.setRequestMethod("POST");
connection.setRequestProperty("Content-Type", " application/json");
connection.setRequestProperty("charset", "utf-8");
connection.setRequestProperty("Content-Length", "" + jsonPayload.getBytes().length);
connection.setUseCaches (false);
byte[] bytes = jsonPayload.getBytes(Charset.forName("UTF-8"));
DataOutputStream outStream = new DataOutputStream(connection.getOutputStream ());
outStream.writeBytes(bytes);
outStream.flush();
outStream.close();
InputStream inStream = connection.getInputStream();
String json = streamToString(inStream); // input stream to string
connection.disconnect();

In Listing 8-9 the code invokes both setDoOutput() and setDoInput() methods on the connection
object and sets them to true. The setDoOutput() method sets up the connection for receiving data
coming from the remote web server, and the setDoInput() method sets up the client to allow data to
be transmitted to the remote web server.

Continuing with the setting of the connection before posting the data, the code invokes the
setInstanceFollowRedirects() method to prevent the server from changing the URL location of the
client (a URL redirect). The rest of the code simply updates the header information before the web
request is submitted.

Fetching data is fun; however, let’s see how to display content. Now that you’ve seen various
strategies for fetching web-based content, you will finally get a chance to display HTML5 web
content using the JavaFX WebView node.

Viewing HTML5 Content (WebView)
JavaFX provides a GUI WebView (javafx.scene.web.WebView) node that can render HTML5 content
onto the Scene graph. A WebView node is basically a mini-browser that is capable of responding
to web events and allows a developer to interact with the HTML5 content. Because of the close
relationship between loading web content and the ability to display web content, the WebView node
object also contains a WebEngine instance.

In this section I’ve created an example that uses the WebView API to render HTML5 content. The
example is a JavaFX application that displays an SVG-based analog clock. To obtain the full source
code, visit the book’s website to download the DisplayingHtml5Content project.

Example: An HTML5 Analog Clock
As an example of using HTML5 content to be rendered onto a WebView node, let’s look at an analog
clock that was created using an SVG file, based on the W3C’s scalable vector graphics (SVG)
markup language. Figure 8-1 depicts an SVG-based analog clock that is rendered onto a JavaFX
WebView node.

225CHAPTER 8: JavaFX on the Web

You can see that the analog clock face has hour, minute, and second hands. The clock hands will be
initialized and positioned with the current time. Of course, as time goes by the hands will move in a
clockwise rotation.

Analog Clock Source Code
Listing 8-10 is the source code for the analog clock application shown in Figure 8-1. The analog
clock is based on an SVG file loaded into a JavaFX application’s scene graph. Listing 8-11 shows
the SVG file containing the majority of the functional code that displays the clock face and the
JavaScript code that animates the hour, minute, and second hands.

Listing 8-10. Analog Clock Source Code (DisplayingHtml5Content.java)

package jfx8ibe;

import java.net.MalformedURLException;
import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

/** An SVG analog clock rendered using the WebView node.
 * @author cdea
 */
public class DisplayingHtml5Content extends Application {

 @Override
 public void start(Stage primaryStage) throws MalformedURLException {
 primaryStage.setTitle("Chapter 8 Displaying Html5 Content");
 WebView browser = new WebView();
 Scene scene = new Scene(browser,320,250, Color.rgb(0, 0, 0, .80));
 primaryStage.setScene(scene);

Figure 8-1. SVG-based analog clock (WebView node)

226 CHAPTER 8: JavaFX on the Web

 // The following line is commented out because of
 // bug: RT-35757 unable to load svg files URL location inside a jar
 //URL url = getClass().getResource("clock.svg");

 URL url = getClass().getResource("clock.html");
 browser.getEngine().load(url.toExternalForm());
 primaryStage.show();
 }
 public static void main(String[] args) {
 launch(args);
 }
}

Listing 8-11. The clock.html (or clock.svg) File, Containing an SVG Representation of an Analog Clock

<svg
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 width="300"
 height="250"
 id="svg4171"
 version="1.1"
 inkscape:version="0.48.1 "
 sodipodi:docname="clock.svg" onload="updateTime()">

<script>

<![CDATA[
var xmlns="http://www.w3.org/2000/svg"

function updateTime()
{
 var date = new Date();

 var hr = parseInt(date.getHours());
 if (hr > 12) {
 hr = hr - 12;
 }
 var min = parseInt(date.getMinutes());
 var sec = parseInt(date.getSeconds());
 var pi=180;

 var secondAngle = sec * 6 + pi;
 var minuteAngle = (min + sec / 60) * 6 + pi;
 var hourAngle = (hr + min / 60 + sec /3600) * 30 + pi;

 moveHands(secondAngle, minuteAngle, hourAngle);
}

http://www.w3.org/2000/svg

227CHAPTER 8: JavaFX on the Web

function moveHands(secondAngle, minuteAngle, hourAngle) {

 var secondHand = document.getElementById("secondHand");
 var minuteHand = document.getElementById("minuteHand");
 var hourHand = document.getElementById("hourHand");

 secondHand.setAttribute("transform","rotate("+ secondAngle + ")");
 minuteHand.setAttribute("transform","rotate("+ minuteAngle +")");
 hourHand.setAttribute("transform","rotate("+ hourAngle + ")");
}

]]>

</script>
<defs id="defs4173">
... // beginning of SVG code
... // Main clock code

<g id="hands" transform="translate(108,100)">
<g id="minuteHand">
<line stroke-width="3.59497285" y2="50" stroke-linecap="round" stroke="#00fff6" opacity=".9" />
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60min"
by="360" />
</g>

<g id="hourHand">
 <line stroke-width="5" y2="30" stroke-linecap="round" stroke="#ffcb00" opacity=".9" />
 <animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="12h"
by="360" />
</g>
<g id="secondHand">
 <line stroke-width="2" y1="-20" y2="70" stroke-linecap="round" stroke="red"/>
 <animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60s"
by="360" />
</g>
</g>

 ... // The rest of the Clock code: shiney glare, black button cover (center)

</svg>

How It Works
HTML5 allows the use of scalable vector graphics (SVG) content to be shown in browsers. SVG is
similar to JavaFX’s Scene graph (retained mode), in which nodes can be scaled at different sizes
while preserving shape details without pixelation. In this example the code shown in Listing 8-10
represents the Java source code, and Listing 8-11 represents the SVG content code that is loaded
into a WebView node.

228 CHAPTER 8: JavaFX on the Web

Before running the example code, make sure the clock.html (or clock.svg) file is located in the
build path. In NetBeans you may need to perform a clean and build before running the application
that will copy the resource (clock.html or clock.svg) to the build path. You may also want to
copy the clock.html (or clock.svg) file manually to reside in the build path co-located where the
DisplayHtml5Content.class file is located if you are running the application on the command line.

Note In the previous edition of this book, the SVG code was in a file with a filename extension of .svg;
however, in this book the file has been renamed with an extension of .html. I did this because of a bug
(RT-35757) that was found, which prevents (or prevented) files with the extension of .svg from being loaded
and rendered onto a WebView node. The issue appears to occur when the specified .svg file URL points to a
file inside a jar file. The workaround to the issue is to rename the file with an extension of .html. By the time
you read this, the issue may already be resolved.

Let’s jump right into the code from Listing 8-10, beginning with the start() method. This method
begins by setting the Stage window’s title bar. Then the code instantiates a WebView node as the root
when creating the Scene object. After creation, the scene is set as the Stage window’s current scene.

Before loading the file, the code obtains a valid URL string of the location of the file based on the
method getClass().getResources().

When loading a URL you will notice the call to getEngine().load(), where the getEngine() method
will return an instance of a javafx.scene.web.WebEngine object. This basically means that all WebView
classes instantiated will implicitly create their own javafx.scene.web.WebEngine instances. The
following code snippet is an excerpt from Listing 8-10, showing the JavaFX’s WebEngine object
loading the clock.html (or clock.svg) file:

WebView browser = new WebView();
URL url = getClass().getResource("clock.html");
browser.getEngine().load(url.toExternalForm());

You are probably wondering why the Java source code is so small. The code is small because the
WebView (javafx.scene.web.WebView) node is tasked only to render HTML5 content. This means that
the majority of the code shown in Listing 8-11 is contained in the clock.html (or clock.svg) file. This
file contains SVG markup language and JavaScript code. Next, let’s look at how the SVG content
was created.

Inkscape and SVG
The analog clock was created using the popular open source SVG drawing program Inkscape.
Because Inkscape is beyond the scope of this book, I will not be discussing the details of the tool.
To learn more about Inkscape, please visit http://www.inkscape.org for tutorials and demos.
To learn more about SVG, visit http://www.w3schools.com/svg/default.asp.

http://www.inkscape.org/
http://www.w3schools.com/svg/default.asp

229CHAPTER 8: JavaFX on the Web

In brief, Inkscape allows designers to create shapes, text, and effects to generate illustrations.
Because SVG files are considered HTML5 content, these files can also be displayed in an
HTML5-capable browser such as the WebView node.

Running the example project called DisplayingHtml5Content, you have seen that the clock’s hands
move or animate by rotating clockwise. You are probably wondering how the clock’s hands are
rotated or positioned. Simply put, when manipulating SVG elements or any HTML5 elements, the
JavaScript language will be employed. In fact in this example the clock’s hour, minute, and second
hand node elements are rotated by using JavaScript code that exists in Listing 8-11 between the
<script> tag elements.

Between these <script> tags is the JavaScript code responsible for initializing and updating the
clock’s hands. The main code uses the updateTime() function to calculate the position of each
second, minute, and hour hand. Before the start of the animation of the clock hands, the code sets
the clock’s initial position by calling the JavaScript updateTime() function via the onload attribute on
the entire SVG document (located on the root svg element). Once the clock’s arms are set, the SVG
code begins to animate the clock arms by using the animateTransform element. The following is an
SVG code snippet to animate the second hand indefinitely:

<g id="secondHand">
 <line stroke-width="2" y1="-20" y2="70"
 stroke-linecap="round" stroke="red"/>

 <animateTransform attributeName="transform"
 type="rotate" repeatCount="indefinite" dur="60s" by="360" />
</g>

On a final note, if you want to create a clock like the one depicted in this example, visit
http://screencasters.heathenx.org/blog to learn about all things Inkscape.

Another impressive and beautiful display of custom controls that focuses on clocks, gauges, and
dials is the Steel Series and the Enzo library by Gerrit Grunwald. To be totally amazed, visit his blog
at http://harmoniccode.blogspot.com.

WebEvents
If you’ve read Chapter 7’s discussion of JavaFX Media and how the APIs are designed to be
event-driven, you’ll be happy to know that the JavaFX Web APIs also adhere to an event-driven
programming model. Web events mirror the way browsers raise client side events such as alerts,
errors, and statuses. In this section you will briefly learn about how to respond to Web-based events.

If you are familiar with JavaScript client-side web development, you most likely know how to pop
up an alert dialog box with a message. If you don’t know how to display an alert box, the following
JavaScript code snippet will pop up an alert dialog box (assuming you are using a browser):

<script>
 alert('JavaFX is Awesome');
</script>

http://screencasters.heathenx.org/blog
http://harmoniccode.blogspot.com/

230 CHAPTER 8: JavaFX on the Web

Typically, old-school web developers will use alerts to debug web pages. However, modern web
developers more likely use the JavaScript function console.log() to output information into a console
provided by Firebug or the Chrome browser’s developer tools. So, what do you think would happen if
an HTML web page that contained the alert() code just shown was loaded into a WebView node?

When the code is executed inside a JavaFX WebView node, a native dialog window will not pop up.
But the OnAlert event does get raised as a javafx.scene.web.WebEvent object. Setting up handler
code is easy. To set up the handler, use the setOnAlert() method with an inbound parameter of
type WebEvent.

The following code snippet will receive WebEvent<String> objects containing the string message to
be output onto the console:

webView.getEngine().setOnAlert((WebEvent<String> wEvent) -> {
 System.out.println("Alert Event - Message: " + wEvent.getData());
});

Developers who want to create their own dialog windows upon an alert-triggered message can simply
respond to WebEvents and use Stage instances. Table 8-1 shows all of the WebEngine’s web events.

Table 8-1. javafx.scene.web.WebEngine WebEvents and Properties

Set On Method On Method Property Description

setOnAlert() onAlertProperty() JavaScript alert handler

setOnError() onErrorProperty() WebEngine error handler

setOnResized() onResizedProperty() JavaScript resize handler

setOnStatusChanged() onStatusChanged() JavaScript status handler

setOnVisibilityChanged() onVisibilityChangedProperty() JavaScript window visibility handler

setConfirmHandler() confirmHandlerProperty() JavaScript Confirm window

Now that you know how to retrieve data, manipulate HTML, and respond to browser-based web
events, let’s look at an example that combines all of the techniques that you’ve learned so far. This
example is a weather widget that fetches JSON data from a RESTful endpoint. You will also see
bidirectional communication between Java and JavaScript.

Weather Widget Example
The example demonstrated in this section is a weather widget that combines all of the web-based
concepts mentioned so far. The example is a JavaFX application that loads JSON weather information
from the Open Weather Map API at http://openweathermap.org. Figure 8-2 depicts the Weather
Widget example with the current weather conditions of a city.

http://openweathermap.org/

231CHAPTER 8: JavaFX on the Web

Note The web service in this example is powered by the folks from Open Weather Map
(http://openweathermap.org). I encourage you to support them as they continue to provide a valuable
service with maps and weather data around the world for application and mobile developers.

Figure 8-2. A Weather Widget displaying the current condition

The Weather Widget allows the user to enter a city or region into the search field to determine
the weather. After searching the screen will display the following: city, country, day of week, time,
weather condition, Weather description, Icon, temperature, humidity, and wind speed. To obtain
the project source, please visit the book’s web site to download the code for the NetBeans project
WeatherWidget2.

Source Code
The WeatherWidget2 project has two source files. Listing 8-12 contains the JavaFX (Java)
application code, and Listing 8-13 contains the HTML and JavaScript code.

Listing 8-12. Source code of the Weather Widget (WeatherWidget2.java)

package jfx8ibe;

import java.io.*;

import java.net.*;
import java.util.*;
import javafx.application.*;
import javafx.concurrent.*;
import javafx.scene.Scene;
import javafx.scene.layout.BorderPane;

http://openweathermap.org/

232 CHAPTER 8: JavaFX on the Web

import javafx.scene.web.*;
import javafx.stage.Stage;
import netscape.javascript.JSObject;

/**
 * The WeatherWidget2 application demonstrates the
 * use of the following:
 * <pre>
 * 1) Communications from Java to JavaScript
 * 2) Communications from JavaScript to Java
 * 3) RESTful GET Web service endpoint
 * 4) JSON Objects
 * 5) Handling HTML/JavaScript WebEvents
 * 6) Debugging using Firebug lite
 * </pre>
 * Weather APIs are from Open Weather Map http://openweathermap.org
 *
 * @author cdea
 */
public class WeatherWidget2 extends Application {

 private WebView webView;
 public static final String WEATHER_URL =
 "http://api.openweathermap.org/data/2.5/weather";
 private String cachedUrl;

 @Override
 public void start(Stage stage) {
 // create the scene
 stage.setTitle("Chapter 8 Weather Widget 2");
 BorderPane root = new BorderPane();
 Scene scene = new Scene(root, 300, 300);
 stage.setScene(scene);

 // WebView node to display local html content
 webView = new WebView();
 root.setCenter(webView);

 // Turns on Firebug lite for debugging
 // html,css, javascript
 //enableFirebug(webView);

 // The web view's web engine
 webView.getEngine()
 .getLoadWorker()
 .stateProperty()
 .addListener((obs, oldValue, newValue) -> {
 if (newValue == Worker.State.SUCCEEDED) {
 // Let JavaScript make upcalls to this (Java) class
 JSObject jsobj = (JSObject)
 webView.getEngine()
 .executeScript("window");

233CHAPTER 8: JavaFX on the Web

 jsobj.setMember("WeatherWidget2", this);
 // default city's weather (a sunny place)
 queryWeatherByLocationAndUnit("Miami,FL", "c");
 }
 });

 webView.getEngine().setOnAlert((WebEvent<String> t) -> {
 System.out.println("Alert Event - Message: " + t.getData());
 });

 // load weather_template.html
 String htmlFile = streamToString(
 getClass().getResourceAsStream("weather_template.html"));
 webView.getEngine().loadContent(htmlFile);
 stage.show();
 }

 /**
 * Quick one-liner that delimits using the end of file character and
 * returns the whole input stream as a String. Use for small files.
 * @param inputStream byte input stream.
 * @return STring a file or JSON text
 */
 public String streamToString(InputStream inputStream) {
 String text = new Scanner(inputStream, "UTF-8")
 .useDelimiter("\\Z")
 .next();
 return text;
 }

 /** -- C --
 * Called from the JavaScript function findWeatherByLocation()
 * inside the weather_template.html file.
 * @param cityRegion
 * @param unitType
 */
 public void queryWeatherByLocationAndUnit(String cityRegion,
 String unitType) {

 String queryString = null;
 queryString = cityRegion;
 String units = "f".equalsIgnoreCase(unitType) ? "imperial": "metric";

 String weatherRequest = WEATHER_URL +
 "?q=" + queryString +
 "&" + "units=" + units +
 "&" + "mode=json";
 // JavaScript code periodically updates the forecast using the
 // setInterval() function by using the cached URL.
 if (null == cityRegion && cachedUrl != null) {

234 CHAPTER 8: JavaFX on the Web

 weatherRequest = cachedUrl;
 } else {
 cachedUrl = weatherRequest;
 }

 // Spawn background thread to fetch weather info.
 new Thread(createWeatherQueryWorker(weatherRequest,
 unitType)).start();
 }

 /** -- D --
 * Returns a Task responsible for fetching and populating
 * the html display area.
 * @param weatherRequest the json request
 * @param unitType f is for degrees in fahrenheit and
 * c for degrees celsius.
 * @return Task
 */
 private Task createWeatherQueryWorker(String weatherRequest,
 String unitType) {

 return new Task() {
 @Override
 protected Object call() throws Exception {
 // On worker thread... blocking call to jsonGetRequest()
 String json = jsonGetRequest(weatherRequest); //

 Platform.runLater(() ->
 // On the JavaFX Application Thread....
 webView.getEngine()
 .executeScript(
 "populateWeatherData('" + json + "', " +
 "'" + unitType +"');")
); // runLater()
 return true;
 } // call()
 }; // return
 }

 /**
 * JSON retrieval using a RESTful GET request.
 * @param urlQueryString
 * @return
 */
 public String jsonGetRequest(String urlQueryString) {
 String json = null;
 try {
 System.out.println("Request: " + urlQueryString);
 URL url = new URL(urlQueryString);
 HttpURLConnection connection =
 (HttpURLConnection) url.openConnection();
 connection.setDoOutput(true);

235CHAPTER 8: JavaFX on the Web

 connection.setInstanceFollowRedirects(false);
 connection.setRequestMethod("GET");
 connection.setRequestProperty("Content-Type", "application/json");
 connection.setRequestProperty("charset", "UTF-8");
 connection.connect();
 InputStream inStream = connection.getInputStream();
 json = streamToString(inStream);
 System.out.println("Response: " + json);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 return json;
 }

 /**
 * Enables Firebug Lite for debugging a webEngine.
 * @param engine the webEngine for which debugging is to be enabled.
 */
 private static void enableFirebug(WebView webView) {
 // Code omitted...
 }

 public static void main(String[] args){
 Application.launch(args);
 }
}

Listing 8-13. HTML Template File for the Weather Widget (weather_template.html)

<!DOCTYPE html>
<html>
 <head>
 <title>Weather Widget 2</title>
 <style type="text/css">
 body { background-color:#ffffff; }

 .tileTextDisplay {
 font-family: arial,sans-serif;
 font-weight: lighter !important;
 color: #878787 !important;
 }
 .largerFont {
 font-size: x-large !important;
 }
 .mediumFont {
 font-size: medium !important;
 }
 #weather-temp {
 font-family: 'Arial', sans-serif;
 font-size: 64px;
 color: #212121 !important;
 }

236 CHAPTER 8: JavaFX on the Web

 #unitType {
 font-family: 'Arial', sans-serif;
 font-size: 20px;
 color: #000000 !important;
 }
 </style>

 <script>

 // Every period query and populate the forecast using cached URL
 setInterval(function(){
 WeatherWidget2.queryWeatherByLocationAndUnit(null, "c");
 },
 (1000 * 60 * 60 * 3) // every 3 hours
); // set interval

 var weekday=new Array(7);
 weekday[0]="Sunday";
 weekday[1]="Monday";
 weekday[2]="Tuesday";
 weekday[3]="Wednesday";
 weekday[4]="Thursday";
 weekday[5]="Friday";
 weekday[6]="Saturday";

 /** -- B --
 * Makes an upcall to Java code
 * WeatherWidget2 clas method queryWeatherByLocationAndUnit()
 */
 function findWeatherByLocation() {
 var cityInfo = encodeURIComponent(document.getElementById('search-field').value);
 setInnerText("error-msg", "");
 WeatherWidget2.queryWeatherByLocationAndUnit(cityInfo, "c");
 }

 /** -- E --
 * Called from Java after data is fetched.
 */
 function populateWeatherData(weather, unitType) {
 var jsonWeather = eval("(" + weather + ")");
 if (jsonWeather.message) {
 if (jsonWeather.message.indexOf('Error') === 0) {
 document.getElementById('error-msg').innerHTML = jsonWeather.message;
 alert(jsonWeather.message);
 return;
 }
 }

 setInnerText('city', jsonWeather.name);
 setInnerText('country', jsonWeather.sys.country);
 var weatherTime = new Date(jsonWeather.dt);
 var timeStr = timeFormat(jsonWeather.dt);

237CHAPTER 8: JavaFX on the Web

 setInnerText('weather-day-time', weekday[weatherTime.getDay()] + " " + timeStr);
 setInnerText('weather-current', jsonWeather.weather[0].main);
 setInnerText('weather-current-desc', jsonWeather.weather[0].description);
 document.getElementById('weather-icon').src = "http://openweathermap.org/img/w/" +
jsonWeather.weather[0].icon + ".png";
 setInnerText('weather-temp', jsonWeather.main.temp);
 setInnerText('weather-humidity', "Humidity: " + jsonWeather.main.humidity + "%");
 var windSpeed = (unitType === 'f') ? 'mph' : 'km/h';
 setInnerText('weather-wind-speed', "Wind: " + jsonWeather.wind.speed + " " +windSpeed);

 }

 function setInnerText(id, text) {
 document.getElementById(id).innerText = text;
 }

 function timeFormat(millis) {
 var weatherTime = new Date(millis);
 var hours = weatherTime.getHours();
 var minutes = weatherTime.getMinutes();
 var meridian = hours >=12 ? 'PM' : 'AM';
 hours = hours % 12;
 hours = hours ? hours : 12; // hour '0' means '12'
 minutes = minutes < 10 ? '0' + minutes : minutes;
 var timeStr = hours + ':' + minutes + ' ' + meridian;
 return timeStr;
 }
 </script>
 </head>
 <body id="weather_background">
 <form>
 <input id="search-field" placeholder="Enter city, state/country" type="text" name="searchField"/>
 <!-- A -->
 <input id="search-button" type="button" onclick="findWeatherByLocation()" name="searchButton"
value="Search"/>
 </form>
 <div id="error-msg"></div>
 <div id="city" class="tileTextDisplay largerFont"></div>
 <div id="country" class="tileTextDisplay mediumFont"></div>
 <div id="weather-day-time" class="tileTextDisplay mediumFont"></div>
 <div id="weather-current" class="tileTextDisplay mediumFont"></div>
 <div id="weather-current-desc" class="tileTextDisplay mediumFont"></div>
 <div>

 <div id="weather-temp" style="padding-left:10px; float:left;"></div>
 <div style="float:left; font-size:20px; margin-top:6px">
 °C
 </div>
 </div>
 <div style="clear:both;"></div>
 <div id="weather-humidity" class="tileTextDisplay mediumFont"></div>
 <div id="weather-wind-speed" class="tileTextDisplay mediumFont"></div>
</html>

238 CHAPTER 8: JavaFX on the Web

How It Works
The code is divided into two parts, the Java code shown in Listing 8-12 and HTML/JavaScript code
shown in Listing 8-12. The purpose of this example is to demonstrate bidirectional communication
between Java and JavaScript while providing RESTful HTTP GET of JSON data. Because all of its
aspects, from retrieving data and manipulating HTML to using the JavaScript bridge, have already
been discussed, I will discuss only the high-level steps of the start() method of the JavaFX
WeatherWidget project from Listing 8-13.

The following are the steps taken in the start() method of Listing 8-12.

1. Set up the scene and stage window with a BorderPane as the root.

2. Create a WebView node to display html content.

3. Create handler code that responds when the WebView’s content is finished
loading.

a. Pass the application into the web engine to allow upcalls from JavaScript code.

// Let JavaScript make upcalls to this (Java) class
JSObject jsobj = (JSObject) webView.getEngine()
 .executeScript("window");
jsobj.setMember("WeatherWidget2", this);

b. Default to the weather forecast of Miami, Florida, by fetching JSON weather data to be
populated into the HTML page. The lowercase “c” is for the unit type, degrees Celsius.

queryWeatherByLocationAndUnit("Miami,FL", "c");

4. Create handler code for the OnAlert property on the WebView’s web
engine. The handler code responds to HTML’s JavaScript alert() function
(WebEvent).

webView.getEngine().setOnAlert((WebEvent<String> t) ->
 System.out.println("Alert Event - Message: " + t.getData()));

5. Load the local HTML file weather_template.html to be loaded and displayed
onto the WebView.

// load weather_template.html
String htmlFile = streamToString(
 getClass().getResourceAsStream("weather_template.html"));
webView.getEngine().loadContent(htmlFile);

239CHAPTER 8: JavaFX on the Web

In Listings 8-12 and 8-13, notice the letters A to E within the comments; these show the application
flow path from searching the weather for a city and region to finally displaying the data in HTML.
The following are the steps from A to E:

Step A: The button click invokes the JavaScript function findWeatherByLocation():

<input id="search-button" type="button" onclick="findWeatherByLocation()"
name="searchButton" value="Search"/>

Step B: The upcall to the actual Java code method
queryWeatherByLocationAndUnit():

function findWeatherByLocation()

Step C: The Java method that uses background thread (Task) to make a RESTful
GET to retrieve weather data.:

public void queryWeatherByLocationAndUnit(String cityRegion,
 String unitType)

Step D: After the JSON data is fetched, an executeScript() method calls into the
JavaScript function populateWeatherData():

String json = jsonGetRequest(weatherRequest);

Platform.runLater(() ->
 // On the JavaFX Application Thread....
 webView.getEngine()
 .executeScript(
 "populateWeatherData('" + json + "', " +
 "'" + unitType +"');")
); // runLater()

Step E: The HTML is populated with the JSON data representing the weather:

function populateWeatherData(weather, unitType)

One last feature of the Weather Widget example to highlight is its ability to update the weather
forecast periodically, every three hours. (According to Open Weather Map, their weather forecast
updates are typically every three hours.) In Listing 8-13, notice the JavaScript code function call
to setInterval() located at the beginning of the <script> element tag. By making the upcall to
the Java method queryWeatherByLocationAndUnit() and passing in a null value, the query will
actually use the previous (cached) URL. The following code snippet is the setInterval() function
implementation from Listing 8-13 that periodically queries and populates the weather forecast.

// Every period query and populate the forecast using cached URL
setInterval(function(){
 WeatherWidget2.queryWeatherByLocationAndUnit(null, "c");
 },
 (1000 * 60 * 60 * 3) // every 3 hours
); // set interval

240 CHAPTER 8: JavaFX on the Web

Summary
In this chapter you learned about the WebEngine API for retrieving Web HTML5 content. You began
by learning two ways to load web content using the WebEngine’s load() and loadContent()
methods. After learning about how to load web content, you saw how to obtain raw content such
as a DOM XML or XML as a String object. Next, you learned about the powerful JavaScript bridge
that allows bidirectional communication between Java and JavaScript. Getting familiar with web
development concepts, you also learned about some of the limitations to JavaFX’s WebEngine API.
Within these limitations on making RESTful web service calls, you got a chance to learn about how
to make RESTful GET and POST requests. After learning the many ways to retrieve data and
manipulate HTML, you were able to render HTML5 content by running a small example of an
SVG-based analog clock. Finally, you saw all the concepts combined into the last example of
a weather widget; this widget made calls to retrieve JSON-formatted weather data to be displayed
using HTML5.

241

Chapter 9
JavaFX 3D

JavaFX 2 supported transformation of 2D GUI components into a third visual dimension via a
rotation in the z-axis. However, only now with the advent of JavaFX 8 can you realize a true 3D scene
with adjustable lights, camera, and models as first-class citizens of the language. With JavaFX 8 it is
possible to combine these capabilities directly with the better-known 2D GUI components discussed
in this book, both visually and in source code. The advent of dedicated GPU hardware has lowered
the barrier to specific language support for 3D rendering so that the performance in JavaFX is on a
par with third-party implementations of previous versions of Java.

A small book could be dedicated to all the capabilities of the 3D graphics tools within JavaFX 8.
For the sake of introductory and intermediate learners, this chapter focuses on quickly establishing
scenes with true three-dimensional visualizations of simple objects. These concepts are then
extended by describing typical customizations that would be found in more complex scenes.

In this chapter you will learn the following concepts and techniques:

Geometry primitives	

Cameras and lights	

Custom 	 TriangleMesh models

Event handling and interacting with 3D scenes	

Basic 3D Scenes in JavaFX
For this half of the 3D chapter we will use a continuously developed example. The following sections
will take you through the steps from establishing a basic empty 3D scene to creating a scene with
objects that can be viewed from different distances and angles.

242 CHAPTER 9: JavaFX 3D

 A Very Basic 3D Scene Example
The best part about the new JavaFX 3D support is that 3D objects and rendering are now fully
integrated GUI features of the Java language. Care was taken in designing the 3D packages
such that there are very few changes in paradigm from their 2D counterparts. The difference in
establishing a basic 3D scene is merely in the camera. Listing 9-1 demonstrates this.

Listing 9-1. Initializing a 3D Scene with Camera

/* From SimpleScene3D.java */
package jfx8ibe;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.PerspectiveCamera;
import javafx.scene.Scene;
import javafx.scene.input.KeyCode;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.paint.PhongMaterial;
import javafx.scene.shape.Box;
import javafx.scene.shape.Cylinder;
import javafx.scene.shape.DrawMode;
import javafx.scene.shape.Sphere;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;

public class SimpleScene3D extends Application {

 private PerspectiveCamera camera;
 private final double cameraModifier = 50.0;
 private final double cameraQuantity = 10.0;
 private final double sceneWidth = 600;
 private final double sceneHeight = 600;
 private double mouseXold = 0;
 private double mouseYold = 0;
 private final double cameraYlimit = 15;
 private final double rotateModifier = 25;

 @Override
 public void start(Stage primaryStage) {

 //Step 1a: Build your Scene and Camera

 Group sceneRoot = new Group();
 Scene scene = new Scene(sceneRoot, sceneWidth, sceneHeight);
 scene.setFill(Color.BLACK);
 PerspectiveCamera camera = new PerspectiveCamera(true);
 camera.setNearClip(0.1);
 camera.setFarClip(10000.0);
 camera.setTranslateZ(-1000);
 scene.setCamera(camera);

243CHAPTER 9: JavaFX 3D

 primaryStage.setTitle("SimpleScene3D");
 primaryStage.setScene(scene);
 primaryStage.show(); }

 public static void main(String[] args) {
 launch(args);
 }
}

This code will give you a full 3D scene. Running the application, however, will show nothing but an
empty black screen. An empty scene is not very exciting, so we will add some objects soon. But this
example demonstrates that any 3D scene differs from a 2D layout by only two lines:

PerspectiveCamera camera = new PerspectiveCamera(true);
scene.setCamera(camera);

Creating a 3D camera node such as a PerspectiveCamera actually creates a separate scene
graph node, much in the same way you might create a BorderPane or Button. In that sense it
must be added to the scene like any other node. However, the camera node is special in that it
is added via the scene.setCamera() method. The Boolean parameter for the PerspectiveCamera
constructor determines where the 3D origin is. Setting this to true will establish all 3D layouts from
the origin of (0,0,0) so that all axes cross in the very center of the screen. This is typical for most
3D scenes you would expect to build using JavaFX. Setting this parameter to false establishes
the 3D origin at the upper-left corner, similar to that of a 2D component layout. For most scenes
PerspectiveCamera(true) is ideal; however, some scenes, especially scientific data displays, are
easier with an upper-left origin.

Note A good rule of thumb for selecting the camera class is that if you plan on translating and rotating the
camera around the scene much, you should use PerspectiveCamera(true).

Primitives
Like most 3D graphics libraries, JavaFX 8 comes with several out-of-the-box geometric shapes that
can be added to a scene. These shapes are commonly referred to as primitives and can be added to
a scene in the same way that any traditional Node type can be added.

 Adding a Primitive Example
Now let us extend the previous very simple scene example so that we actually see something. To do
this we will create a Cylinder object, give it a colored material, and add it to the scene. Listing 9-2 is
the code that demonstrates this.

244 CHAPTER 9: JavaFX 3D

Listing 9-2. Adding a Cylinder Primitive to a JavaFX 3D Scene

/* SimpleScene3D.java */

 //Step 1b: Add a primitive
 final Cylinder cylinder = new Cylinder(50, 100);
 final PhongMaterial blueMaterial = new PhongMaterial();
 blueMaterial.setDiffuseColor(Color.DARKBLUE);
 blueMaterial.setSpecularColor(Color.BLUE);
 cylinder.setMaterial(blueMaterial);
 sceneRoot.getChildren().add(cylinder);
 //End Step 1b

Adding this code to our previous example will add the cylinder and set its color. Recompile and run
the application, and you should see a view like Figure 9-1.

Figure 9-1. Cylinder with PhongMaterial and DrawMode.FILL

This is better than an empty screen. The Cylinder constructor used here:

final Cylinder cylinder = new Cylinder(50, 100);

245CHAPTER 9: JavaFX 3D

specifies the diameter and height of the shape. To achieve that deep color blue and fancy specular
highlight we used this statement:

final PhongMaterial blueMaterial = new PhongMaterial();

PhongMaterial is an extension of the javafx.paint hierarchy and allow for a rich, smooth
interpolation over 3D surfaces. A PhongMaterial object can be reused between primitives and other
3D nodes as described later. If you do not want to use a PhongMaterial, the default rendering for
a primitive or any Shape3D object is a wireframe view. This will be demonstrated in later examples.
Once your shape is constructed and colored you can add it to your scene with a statement like this:

sceneRoot.getChildren().add(cylinder);

Here the Cylinder primitive is treated like any other graphic node you might use or create.
The Cylinder primitive is added to the scene by default at the origin, or (0,0,0).

Simple Translate and Rotate Example
Now that we have something to look at, we can utilize the third dimension by transforming it. JavaFX
3D supports all the standard 3D transformations you would expect with easy-to-use classes. The
following transformations, subclassed from the Transform class, all support 3D nodes and groups:

Affine	

Rotate	

Scale	

Shear	

Translate	

Typically, in any 3D scene you would be most interested in rotation and translation, which are most
concerned with moving and changing the orientation of objects, lights, and the camera. JavaFX
Shape3D objects, such as the Cylinder class, provide setter methods that let you easily apply a
simple rotation or translation. Listing 9-3 demonstrates how to use these methods with the Cylinder
we have in our scene.

Listing 9-3. Translating and Rotating a Primitive into Position

/* SimpleScene3D.java */

 //Step 1c: Translate and Rotate primitive into position
 cylinder.setRotationAxis(Rotate.X_AXIS);
 cylinder.setRotate(45);
cylinder.setTranslateZ(-200);

 //End Step 1c

Adding the code from Listing 9-3 to our current 3D scene application will generate a view where the
cylinder has been rotated and translated toward the camera. It should be similar to Figure 9-2.

246 CHAPTER 9: JavaFX 3D

For the first time in our running example, we have demonstrated the third dimension using a rotation
in the x-axis and a translation in the z-axis. Rotations are set in degrees, with a range of 0 to 360
degrees. It is important to first set the current rotation axis using setRotationAxis(). If you need
multiple rotations in multiple axes, you will need to call the setRotationAxis() method each time the
axis changes. Each call to setRotationAxis() affects only the current Shape3D object. Translations
are set in pixels along the given axis of the set command and are handled in the same way that
traditional 2D components are translated.

Figure 9-2. A cylinder rotated 45 degrees on the x-axis

Note The coordinate system for a JavaFX 3D scene uses a “y pointing down” approach, which means that
the y-axis is positive down. As with most 3D systems, the z-axis is positive toward the viewer, and the x-axis
is positive to the right.

247CHAPTER 9: JavaFX 3D

Multiple Primitive Transformation Example
This example will expand on our current setup by adding and transforming Cube and Sphere
primitives in the same scene as our Cylinder. The code is provided in Listing 9-4.

Listing 9-4. Adding and Transforming Box and Sphere Primitives

/* SimpleScene3D.java */

 //Step 1d: Add and Transform more primitives
 final PhongMaterial greenMaterial = new PhongMaterial();
 greenMaterial.setDiffuseColor(Color.DARKGREEN);
 greenMaterial.setSpecularColor(Color.GREEN);
 final Box cube = new Box(50, 50, 50);
 cube.setMaterial(greenMaterial);
 final PhongMaterial redMaterial = new PhongMaterial();
 redMaterial.setDiffuseColor(Color.DARKRED);
 redMaterial.setSpecularColor(Color.RED);
 final Sphere sphere = new Sphere(50);
 sphere.setMaterial(redMaterial);

 cube.setRotationAxis(Rotate.Y_AXIS);
 cube.setRotate(45);
 cube.setTranslateX(-150);
 cube.setTranslateY(-150);
 cube.setTranslateZ(150);

 sphere.setTranslateX(150);
 sphere.setTranslateY(150);
 sphere.setTranslateZ(-150);
 sceneRoot.getChildren().addAll(cylinder,cube,sphere);
 //End Step 1d

This code snippet shows multiple materials and colors being applied to multiple primitives. Each
primitive is translated and rotated to different depths and axes of our 3D scene. Adding this code
snippet to our example should provide a view similar to Figure 9-3.

248 CHAPTER 9: JavaFX 3D

Having multiple Shape3D objects in the same scene demonstrates a great visual depth. However, as
you have added multiple Nodes or Groups to your 3D scene, you can change your method call from
add() to addAll() as in the following line from Listing 9-4:

sceneRoot.getChildren().addAll(cylinder,cube,sphere);

In that sense, there is no difference between adding 2D GUI components as Scene children and the
way you handle them here in 3D.

All Together Now: Grouped Primitives
As your scenes become more complicated, it will become cumbersome to add each 3D object
to your scene. Often primitives and other Shape3D nodes are used in conjunction to form more
complex objects. These composite objects are typically transformed as one, though each
component is often visualized independently. To do this, you simply use a Group as demonstrated
in Listing 9-5.

Figure 9-3. Cube, cylinder, and sphere primitives

249CHAPTER 9: JavaFX 3D

Listing 9-5. Grouping and Transforming Primitives

/* SimpleScene3D.java */

 //Step 1e: All Together Now: Grouped Primitives
 Group primitiveGroup = new Group(cylinder,cube,sphere);
 primitiveGroup.setRotationAxis(Rotate.Z_AXIS);
 primitiveGroup.setRotate(180); //Rotate the Group as a whole
 sceneRoot.getChildren().addAll(primitiveGroup);
 //End Step 1e

To add each primitive to the Group object, use the following constructor:

Group primitiveGroup = new Group(cylinder,cube,sphere)

Many bulk operations can be simplified. Listing 9-5 demonstrates a rotation about the z-axis of 180
degrees, which effectively rotates the entire scene as one homogenous unit. Adding the new code to
our running Primitives example should provide a view like Figure 9-4.

Figure 9-4. Grouped primitives rotated uniformly

250 CHAPTER 9: JavaFX 3D

Be sure to add the new Group object to your scene instead of your individual primitives, as noted in
Listing 9-5. Individual Primitive objects can still be accessed, rotated, and translated independently
via the Group object’s getChildren() method or by direct reference.

Note When adding primitives, groups, and other Shape3D Node objects to a 3D scene, remember that the
default is the origin. Most primitives are centered on the 0rigin by a calculated center of mass.

Interacting with Your Scene
Rendering objects into 3D scenes is really only useful if you can interact with that scene. At a
minimum the user should have the ability to move through the scene and do a little sight-seeing.
This section of the chapter will walk through an example of a simple First-person Perspective set of
controls. The Primitive example from the previous section will be used as a platform to build from.

 Primitive Picking for Primitives
To let the user interact directly with the individual objects of a 3D scene, typically with a mouse, your
code needs to detect mouse events and whether those events are related to something within your
scene. The good news is that event-handling within a 3D scene is established in the same pattern as
a traditional 2D GUI. Listing 9-6 demonstrates the code to add a MouseClicked event handler.

Listing 9-6. Translating a Primitive by Mouse Event

/* SimpleScene3D.java */

 //Step 2a: Primitive Picking for Primitives
 scene.setOnMouseClicked(event-> {
 Node picked = event.getPickResult().getIntersectedNode();
 if(null != picked) {
 double scalar = 2;
 if(picked.getScaleX() > 1)
 scalar = 1;
 picked.setScaleX(scalar);
 picked.setScaleY(scalar);
 picked.setScaleZ(scalar);
 }
 });
 //End Step 2a

Adding this event handler to the scene in our running example creates an interaction where clicking
a given 3D object will either double its size or reduce it back to normal. Clicking once on each
primitive should provide a view similar to Figure 9-5.

251CHAPTER 9: JavaFX 3D

The magic here is in determining whether the MouseEvent occurred in congruence with a 3D object in
the scene. The magic line of code is this:

Node picked = event.getPickResult().getIntersectedNode();

where the MouseEvent returns a PickResult. In 3D-speak, a PickResult is a test of intersection of x,y
screen coordinates onto x,y,Z 3D Scene coordinates. While PickResults were available in JavaFX 2
for 2D GUI components, JavaFX 8 makes them functional not only in the 3D space but as simple
accessible objects from various events. As with all MouseEvent types, the event can be queried for
a PickResult. If a PickResult occurred, then the getIntersectedNode() will return the Node object
representation of the scene object picked. If no object was picked, getIntersectedNode() returns null.

Figure 9-5. 3D objects scaled up in all three axes

Note Be sure to scale objects equally in all three axes, as shown in Listing 9-6. Otherwise, your object will
quickly become stretched in odd ways.

252 CHAPTER 9: JavaFX 3D

First-Person Movement Using the Keyboard
A convenient way to navigate through a 3D scene is through a first-person perspective where you
“fly through” the scene. Often this is done through a combination of mouse and keyboard, where the
keyboard navigates the x- and z-axes and the mouse directs the camera to rotate. This is a typical
arrangement for simulations and tactical displays as well as games.

To add keyboard navigation through a 3D scene you simply add the standard JavaFX key event
handlers. The code in Listing 9-7 is a simple example of an OnKeyPressed event handler that provides
the x- and z-axis navigation just described. The movement produced by this handler actually
translates the Camera node itself through the 3D scene.

Listing 9-7. A Simple First-Person Movement Keyboard Event Handler

/* SimpleScene3D.java */
 //Step 2b: Add a Movement Keyboard Handler
 scene.setOnKeyPressed(event -> {
 double change = cameraQuantity;
 //Add shift modifier to simulate "Running Speed"
 if(event.isShiftDown()) { change = cameraModifier; }
 //What key did the user press?
 KeyCode keycode = event.getCode();
 //Step 2c: Add Zoom controls
 if(keycode == KeyCode.W) { camera.setTranslateZ(camera.getTranslateZ() + change); }
 if(keycode == KeyCode.S) { camera.setTranslateZ(camera.getTranslateZ() - change); }
 //Step 2d: Add Strafe controls
 if(keycode == KeyCode.A) { camera.setTranslateX(camera.getTranslateX() - change); }
 if(keycode == KeyCode.D) { camera.setTranslateX(camera.getTranslateX() + change); }
 });
 //End Step 2b-d

Breaking down this code snippet, we see that JavaFX makes adding the event handler to your scene
very simple and straightforward. It is the same as adding an event handler to any traditional 2D GUI
component, as demonstrated with the statement

scene.setOnKeyPressed(event -> {

Adding composite event handling (holding the Shift key while pressing another key) is simple via
the event object itself. In Listing 9-7 we do this with event.isShiftDown(), which returns a simple
Boolean. These additional Meta keys (like the Shift key) are either true or false regardless of what
actual event occurred and can be utilized whether the event is keyboard, mouse or even touch.

To determine which way to move, the camera simply acquires the KeyCode from the event:

KeyCode keycode = event.getCode();

and branches logically on a simple equality check:

if(keycode == KeyCode.W) {
camera.setTranslateZ(camera.getTranslateZ() + change);
}

253CHAPTER 9: JavaFX 3D

KeyCode.W is part of the KeyCode enum, which provides every possible key with a Comparable
interface. Very convenient for building keyboard interfaces to any application. In this example, the
proximate keys {W}, {S}, {A}, and {D} move the camera perspective forward, backward, left and
right, respectively.

First-Person Camera Movement Using the Mouse
The previous Keyboard Handler example provided half of a first-person perspective, in which you
“fly through” your 3D scene. The keyboard is used to slide along the x- and z-axes. What is actually
happening is that the PerspectveCamera node is translating along those axes. However, the previous
example limits these translations to a single plane. In order to simulate looking around (the “Head on
a Swivel” effect), we need to use the mouse.

To add mouse control of the camera swivel for a 3D scene, you simply add a JavaFX MouseMoved
event handler. The code in Listing 9-8 is a rudimentary example of an OnMouseMoved event handler
and some basic trigonometry that swivels the camera node. The movement produced by this
handler actually rotates the Camera node itself on the x- and y-axes.

Listing 9-8. A Simple First-Person Camera Rotate Control MouseEvent Handler

/* SimpleScene3D.java */

 //Step 3: Add a Camera Control Mouse Event handler
 Rotate xRotate = new Rotate(0,0,0,0,Rotate.X_AXIS);
 Rotate yRotate = new Rotate(0,0,0,0,Rotate.Y_AXIS);
 camera.getTransforms().addAll(xRotate,yRotate);
 scene.addEventHandler(MouseEvent.ANY, event -> {
 if (event.getEventType() == MouseEvent.MOUSE_PRESSED ||
 event.getEventType() == MouseEvent.MOUSE_DRAGGED) {
 //acquire the new Mouse coordinates from the recent event
 double mouseXnew = event.getSceneX();
 double mouseYnew = event.getSceneY();
 if (event.getEventType() == MouseEvent.MOUSE_DRAGGED) {
 //calculate the rotational change of the camera pitch
 double pitchRotate =xRotate.getAngle()+(mouseYnew - mouseYold) / rotateModifier;
 //set min/max camera pitch to prevent camera flipping
 pitchRotate = pitchRotate > cameraYlimit ? cameraYlimit : pitchRotate;
 pitchRotate = pitchRotate < -cameraYlimit ? -cameraYlimit : pitchRotate;
 //replace the old camera pitch rotation with the new one.
 xRotate.setAngle(pitchRotate);
 //calculate the rotational change of the camera yaw
 double yawRotate=yRotate.getAngle()-(mouseXnew - mouseXold) / rotateModifier;
 yRotate.setAngle(yawRotate);
 }
 mouseXold = mouseXnew;
 mouseYold = mouseYnew;
 }
 });
 //End Step 3

254 CHAPTER 9: JavaFX 3D

This code snippet is by far the single largest addition made so far to our running example; however,
most of it is needed to facilitate a smooth swivel for the Camera node. Additionally, these rotations are
applied in a different way than we’ve done previously. Before covering the details of how to rotate
the camera, we will first examine the mouse event handling itself:

scene.addEventHandler(MouseEvent.ANY, event -> {

Again, JavaFX makes adding a MouseEvent handler to the scene very simple and straightforward. As
with all input events, we can acquire the x and y coordinates from the MouseEvent. Our goal here is
to capture any mouse event, whether pressing the buttons or moving the mouse. We have provided
code to handle either situation here in our handler. For a user to move the camera, they must first press
either of the mouse buttons. Doing so updates a private variable storing the latest x and y coordinates
of the mouse. The MouseEvent.MOUSE_DRAGGED event is special in that it requires an actively held mouse
button. If this logic is reached, a simple conversion of the coordinate deltas to an angular change is
implemented. Again this is a very rudimentary method for performing camera movement in a simple
first-person perspective. Most high-performance first-person games and interactive environments
use more exotic calculations and include the many corner cases that tend to occur in use. One of
these corner cases is vertical rotation beyond 180 degrees. Left alone, the camera would spin without
limit vertically, an effect sometimes referred to as “somersaults” or “camera whip.” In Listing 9-8 the
following lines effectively limit camera rotation on the x-axis, which visually appears to be the y-axis:

pitchRotate = pitchRotate > cameraYlimit ? cameraYlimit : pitchRotate;
pitchRotate = pitchRotate < -cameraYlimit ? -cameraYlimit : pitchRotate;

Note Remember that what a camera “sees” is opposite from the way the camera is positioned within the
scene. For example, “looking up” along the y-axis is actually a rotation on the x-axis.

Finally, when dealing with multiple repeated transformations, especially rotations, a better way to apply
these transformations to an object is using the object’s getTransforms().addAll() method as shown here:

camera.getTransforms().addAll(xRotate,yRotate);

This will guarantee that all your rotate, translate, and scale transformations are applied as a
composite transformation. If you were to call setRotate or setTranslate multiple times for each
rotation, each subsequent setRotate call would replace the previous. The end result would be a
rotation or translation that is equal only to the last transformation called in sequence.

Beyond the Basics
In this half of the 3D chapter we will develop a new example, focused on ways to provide custom
renderings and interactions. Some of the concepts discussed in the first half will be built upon. We will
explain TriangleMesh objects, including how to “wind” a 3D object using triangles and how to add a
TriangleMesh object to a 3D scene. You will then learn how to convert the scene to reusable code, which
can allow for many customizations that could be the start of your own library of 3D primitives. Finally,
we will explore an alternative camera arrangement that is suitable for examining centralized objects.

255CHAPTER 9: JavaFX 3D

 Custom 3D Objects using the TriangleMesh class
Sometimes the prepackaged 3D primitives provided by JavaFX 8 aren’t enough to build the scene
you want. It is true that many real-world objects could be represented by a composite of these
primitives using the Group type and some clever transformation. However, using only the base
primitives would be cartoonish and very cumbersome to maintain within a code base. Most practical
applications require custom shapes and models, and rendering must be fast. The good news is
that JavaFX 8 provides a means to do this using the TriangleMesh class. The TriangleMesh class
is a Shape3D class just like Box, Cylinder, and Sphere, which provides direct access to the points
(vertices), faces, and texture coordinate collections that make up the rendered geometry. Even
the Box, Cylinder, and Sphere are composed by a TriangleMesh where all points and faces are
computed based on relevant parameters. For the following custom TriangleMesh example we will
use the previous example as a starting point, as shown in Listing 9-9.

Listing 9-9. Initializing a 3D Scene with Camera

/* From TriangleMeshes.java */
package jfx8ibe;

import javafx.application.Application;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.scene.AmbientLight;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.paint.PhongMaterial;
import javafx.scene.shape.CullFace;
import javafx.scene.shape.DrawMode;
import javafx.scene.shape.MeshView;
import javafx.scene.shape.TriangleMesh;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;

public class TriangleMeshes extends Application {

 private PerspectiveCamera camera;
 private final double sceneWidth = 600;
 private final double sceneHeight = 600;
 private double scenex, sceney = 0;
 private double fixedXAngle, fixedYAngle = 0;
 private final DoubleProperty angleX = new SimpleDoubleProperty(0);
 private final DoubleProperty angleY = new SimpleDoubleProperty(0);

256 CHAPTER 9: JavaFX 3D

 @Override
 public void start(Stage primaryStage) {
 //Step 1: Build your Scene and Camera
 Group sceneRoot = new Group();
 Scene scene = new Scene(sceneRoot, sceneWidth, sceneHeight);
 scene.setFill(Color.BLACK);
 PerspectiveCamera camera = new PerspectiveCamera(true);
 camera.setNearClip(0.1);
 camera.setFarClip(10000.0);
 camera.setTranslateZ(-1000);
 scene.setCamera(camera);

 primaryStage.setTitle("TriangleMeshes");
 primaryStage.setScene(scene);
 primaryStage.show();
 //End Step 1
 public static void main(String[] args) {
 launch(args);
 }
}

“Winding” and Wuthering
For our custom object we will build and render something that is geometrically simple like a square
pyramid. This shape has five faces: four equilateral triangle faces and a square base. Its simplicity
will allow us to focus on the TriangleMesh interface rather than dealing with difficult calculations to
compose complex objects. The goal of a TriangleMesh is to define the process by which a series
of triangles are rendered so as to give the illusion of a continuous 3D surface. Each triangle is
connected and defined by a set of vertices in the 3D scene. The method is called “winding” because
when defining the vertices of each triangle, the order in which the vertices are declared indicates to
the camera when and how to render the face of that triangle. To explain the process of constructing
and viewing a TriangleMesh object, I will describe a method that uses parameters to construct a
square pyramid. The complete method is shown in Listing 9-10.

Listing 9-10. A Reusable Method for Building a Custom Pyramid TriangleMesh

/* From TriangleMeshes.java */

 //Step 2a: Create a general Pyramid TriangleMesh building method with height and hypotenuse
 private Group buildPyramid(float height, float hypotenuse,
 Color color,
 boolean ambient,
 boolean fill) {
 final TriangleMesh mesh = new TriangleMesh();
 //End Step 2a
 //Step 2b: Add 5 points, later we will build our faces from these
 mesh.getPoints().addAll(
 0,0,0, //Point 0: Top of Pyramid
 0,height,-hypotenuse/2, //Point 1: closest base point to camera
 -hypotenuse/2,height,0, //Point 2: leftmost base point to camera
 hypotenuse/2,height,0, //Point 3: farthest base point to camera
 0,height,hypotenuse/2 //Point 4: rightmost base point to camera

257CHAPTER 9: JavaFX 3D

);//End Step 2b
 //Step 2c:
 //for now we'll just make an empty texCoordinate group
 mesh.getTexCoords().addAll(0,0);
 //End Step 2c
 //Step 2d: Add the faces "winding" the points generally counter clock wise
 mesh.getFaces().addAll(//use dummy texCoords
 0,0,2,0,1,0, // Vertical Faces "wind" counter clockwise
 0,0,1,0,3,0, // Vertical Faces "wind" counter clockwise
 0,0,3,0,4,0, // Vertical Faces "wind" counter clockwise
 0,0,4,0,2,0, // Vertical Faces "wind" counter clockwise
 4,0,1,0,2,0, // Base Triangle 1 "wind" clockwise because camera has rotated
 4,0,3,0,1,0 // Base Triangle 2 "wind" clockwise because camera has rotated
); //End Step 2d
 //Step 2e: Create a viewable MeshView to be added to the scene
 //To add a TriangleMesh to a 3D scene you need a MeshView container object
 MeshView meshView = new MeshView(mesh);
 //The MeshView allows you to control how the TriangleMesh is rendered
 meshView.setDrawMode(DrawMode.LINE); //show lines only by default
 meshView.setCullFace(CullFace.BACK); //Removing culling to show back lines
 //End Step 2e
 //Step 2f: Add it to a group, this will be useful later
 Group pyramidGroup = new Group();
 pyramidGroup.getChildren().add(meshView);
 //End Step 2f
 //Step 2g: Customizing your Pyramid
 if(null != color) {
 PhongMaterial material = new PhongMaterial(color);
 meshView.setMaterial(material);
 }
 if(ambient) {
 AmbientLight light = new AmbientLight(Color.WHITE);
 light.getScope().add(meshView);
 pyramidGroup.getChildren().add(light);
 }
 if(fill) {
 meshView.setDrawMode(DrawMode.FILL);
 }
 //End Step 2g
 return pyramidGroup;
 }

The new method buildPyramid() converts a height, representing the distance from the base to
the pyramid apex, and a hypotenuse, the distance of the diagonal of the base, into vertices—that
is, wound triangle faces—and builds a TriangleMesh object. The remaining parameters allow for
customizing how the pyramid is rendered and will be explained later in the chapter. The first step is
to declare a new TriangleMesh object. If you already had your points, faces, and texture coordinates
defined from another process (or model file), you could pass this into an alternative TriangleMesh
constructor. For our example we define our points using this statement:

mesh.getPoints().addAll(float x, float y, float z)

258 CHAPTER 9: JavaFX 3D

The addAll() method adds float triplets, which represent a point in the scene coordinate system.
The order by which these points are added matters because their indices are used to “wind” the
triangle faces later. Before winding the triangles, you must first define the 2D texture coordinates that
will be associated with each triangle face. This can get complicated to explain. Fortunately the texture
coordinates are only needed if you intend to wrap your 3D TriangleMesh with an image texture file. For
this example we will create a single placeholder coordinate which will be used to fill out the faces using:

mesh.getTexCoords().addAll(float x, float y);

Finally we create our triangles by winding the points defined earlier. Here’s the code from Listing 9-10:

mesh.getFaces().addAll(//use dummy texCoords
 0,0,2,0,1,0, // Vertical Faces "wind" counter clockwise
 0,0,1,0,3,0, // Vertical Faces "wind" counter clockwise
 0,0,3,0,4,0, // Vertical Faces "wind" counter clockwise
 0,0,4,0,2,0, // Vertical Faces "wind" counter clockwise
 4,0,1,0,2,0, // Base Triangle 1 "wind" clockwise because camera has rotated
 4,0,3,0,1,0 // Base Triangle 2 "wind" clockwise because camera has rotated
); //End Step 2d

The getFaces().addAll() method accepts integers, which represent a composite of predefined points
and texture coordinates. Figure 9-6 breaks down the first face from our example, demonstrating the
winding of the points in a counterclockwise direction.

Figure 9-6. Triangle winding using predefined pyramid points

259CHAPTER 9: JavaFX 3D

 The counterclockwise winding order tells the camera system that the “front” of the face is facing up,
or in this case out from our pyramid object. To build the square base we again use triangles, using
two, but the winding is done clockwise. This is because the upward faces of these triangles are
actually facing inward toward our pyramid. By winding clockwise, we effectively tell the camera to
render the faces flipped. This will give the illusion of a solid geometric object.

A MeshView to a Fill
TriangleMesh objects cannot be added and rendered by themselves, because their geometry must
be added to a viewable Scenegraph Node object. JavaFX 8 provides this capability via the MeshView
class. In Listing 9-10 we use the following statement:

MeshView meshView = new MeshView(mesh);

The MeshView class not only displays the TriangleMesh added to it but allows you to customize lights,
fill, materials, and other features, as demonstrated in Listing 9-10. Let’s use our new buildPyramid()
method to exercise the flexibility of the MeshView class. Listing 9-11 uses buildPyramid() to create a
pyramid with a GoldenRod colored PhongMaterial and a DrawMode set to LINE. These additional visual
options were built into our buildPyramid() method in steps 2e and 2f from Listing 9-10.

Listing 9-11. Creating a Single Pyramid

/* From TriangleMeshes.java */

 //Step 3a: Create a Pyramid with a color and add to the Scene
 //Lets assume our height is 100 and our width (hypotenuse) at the base is 50.
 Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD,false,false);
 Group pyramidGroup = new Group(pyramid1);
 sceneRoot.getChildren().addAll(pyramidGroup);

This will render a pyramid similar to Figure 9-7. Most of the pyramid1 object is not viewable, because
the default scene lighting is positioned in a way that doesn’t reflect much of the geometry. To see the
entire geometry regardless of light system, turn on ambient lighting:

Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD,true,false);

Note We use two triangle sections to make up the square base (down) face of the pyramid.

260 CHAPTER 9: JavaFX 3D

Let’s also translate the entire geometry closer to the camera:

pyramid1.setTranslateX(-100);

You will get a view similar to Figure 9-8. The geometry you defined in your TriangleMesh is now
clearly visible.

Figure 9-7. TriangleMesh with default light

261CHAPTER 9: JavaFX 3D

Placing TriangleMesh objects within MeshView objects and Group containers makes basic transforms
simple. A rotation used for a primitive, like the following:

pyramid1.setRotationAxis(Rotate.Y_AXIS);
pyramid1.setRotate(45);

provides a view similar to Figure 9-9. To fill in the pyramid with colored sides, use the fill parameter
in the buildPyramid() method:

Group pyramid1 = buildPyramid(100,200,Color.GOLDENROD,true,true);

Figure 9-8. TriangleMesh translated with ambient light

262 CHAPTER 9: JavaFX 3D

This will provide a view similar to Figure 9-10.

Figure 9-10. TriangleMesh with DrawMode.FILL

Figure 9-9. TriangleMesh rotated

263CHAPTER 9: JavaFX 3D

Listing 9-12 exercises different combinations of transformations to show the utility of the new
buildPyramid() method.

Listing 9-12. Creating and Transforming a Pyramid using DrawMode.FILL

/* From TriangleMeshes.java */

 //Step 3b: Create and transform a Pyramid using DrawMode FILL
 Group pyramid2 = buildPyramid(100,200,Color.GOLDENROD,true,true);
 //Since the pyramid is a group it can be translated and rotated like a primitive
 pyramid2.setTranslateX(-100);
 pyramid2.setTranslateY(-100);
 pyramid2.setRotationAxis(Rotate.Z_AXIS);
 pyramid2.setRotate(180);
 Group pyramidGroup = new Group(pyramid1,pyramid2);
 sceneRoot.getChildren().addAll(pyramidGroup);

Listing 9-13 exercises the ability of the buildPyramid() method to alter the appearance of each
pyramid by adding pyramids of different material colors.

Listing 9-13. Creating and Transforming Pyramids of Different Colors

/* From TriangleMeshes.java */

 //Step 3c: Add some more pyramids of a different color
 Group pyramid3 = buildPyramid(100,200,Color.LAWNGREEN,true,true);
 pyramid3.setTranslateX(100);
 Group pyramid4 = buildPyramid(100,200,Color.LAWNGREEN,true,false);
 pyramid4.setTranslateX(100);
 pyramid4.setTranslateY(-100);
 pyramid4.setRotationAxis(Rotate.Z_AXIS);
 pyramid4.setRotate(180);
 Group pyramidGroup = new Group(pyramid1,pyramid2,pyramid3,pyramid4);
 sceneRoot.getChildren().addAll(pyramidGroup);

Listings 9-12 and 9-13 clearly demonstrate the flexibility of the TriangleMesh and MeshView classes
within a 3D scene. Adding this code to our example will provide a view similar to Figure 9-11.

264 CHAPTER 9: JavaFX 3D

Roll Camera!
Still, our new pyramids look a little flat. We need a way to roll the camera around the pyramids as
if it was a satellite orbiting a point of origin. Listing 9-14 treats the pyramidGroup as an origin of
sorts by adding a simple mouse handler and converting motion to a rotational transform of the
pyramidGroup itself.

Listing 9-14. Origin Fixed Camera Rotation Mouse Handler

/* From TriangleMeshes.java */

 //Step 4a: Add a Mouse Handler for Rotations
 Rotate xRotate = new Rotate(0, Rotate.X_AXIS);
 Rotate yRotate = new Rotate(0, Rotate.Y_AXIS);
 pyramidGroup.getTransforms().addAll(xRotate,yRotate);
 //Use Binding so your rotation doesn't have to be recreated
 xRotate.angleProperty().bind(angleX);
 yRotate.angleProperty().bind(angleY);
 //Start Tracking mouse movements only when a button is pressed
 scene.setOnMousePressed(event -> {
 scenex = event.getSceneX();
 sceney = event.getSceneY();
 anchorAngleX = angleX.get();
 anchorAngleY = angleY.get();
 });

Figure 9-11. Multiple pyramids customized and transformed

265CHAPTER 9: JavaFX 3D

 //Angle calculation will only change when the button has been pressed
 scene.setOnMouseDragged(event -> {
 angleX.set(anchorAngleX - (scenex - event.getSceneY()));
 angleY.set(anchorAngleY + sceney - event.getSceneX());
 });

This camera control is different from our earlier example in that it does not actually move or rotate
the camera node but instead moves the objects in the scene. This gives the illusion that the viewer
and camera are rotating around the scene and is an effective means for viewing scenes that are
focused on a centralized object or rendering. The trick is to use JavaFX binding to update an existing
set of Rotate objects. This saves the event handler from having to create and replace various
transformation objects repeatedly. Adding the handler to our example and giving it a spin we can
achieve viewing angles similar to Figure 9-12.

Figure 9-12. Rotating the Camera Around a Fixed Origin

The view captured in Figure 9-12 is particularly is useful because it shows the various pyramids in
their different forms. Of particular note is the bottom of the base of the pyramid, which is made up
of two triangles using clockwise winding so that their “down” faces are facing outward toward the
camera.

266 CHAPTER 9: JavaFX 3D

Hit the Lights
We have come so far with our custom Pyramid example, yet our 3D geometries still look a little
cartoonish. This is because of the lighting, specifically the scene lighting. To truly show off the 3D
surfaces, specular highlights, and the various shadings that come out of the box with the JavaFX 3D
support, you must add a PointLight light to your scene. Listing 9-15 adds a simple PointLight to
the scene in our example.

Listing 9-15. Adding a Point Light to a Scene

/* From TriangleMeshes.java */

 //Step 4b: Add a Point light to show specular highlights
 PointLight light = new PointLight(Color.WHITE);
 sceneRoot.getChildren().add(light);
 light.setTranslateZ(-sceneWidth/2);
 light.setTranslateY(-sceneHeight/2);

Listing 9-15 includes some basic translations to move the light to a position other than our default
camera position, thereby creating some nice specular highlights on the PhongMaterials of each
filled pyramid. Adding Listing 9-15 to our example and rotating the camera provides nice views
such as Figure 9-13.

Figure 9-13. PointLight effects on various Pyramid TriangleMesh objects

267CHAPTER 9: JavaFX 3D

Summary
As mentioned at the beginning of this chapter, a whole book could be dedicated to discussing
the new JavaFX 8 3D support. There are many features that were alluded to but not discussed, as
they would warrant whole chapters to explain. Whole texts are dedicated to the math and abstract
concepts of 3D software development, and so those topics were not discussed in detail.

Hopefully, this chapter has scratched the surface of what is possible and also scratched your
itch to learn about the new 3D support introduced in JavaFX 8. We used two separate running
examples to discuss the usage of primitives, camera nodes, lights, and custom geometries and
triangle meshes. Both examples featured event-driven interaction with different approaches to
manipulating either the camera or the scene objects with the keyboard and mouse. You were
introduced to a list of classes, some dedicated to 3D support, some versatile enough to be applied
to either 3D or 2D scenes. Very useful and practical 3D tools can be developed from the building
blocks provided in this chapter.

269

Chapter 10
JavaFX and Arduino

Arduino, an open-source electronics prototyping platform, is celebrating its tenth anniversary of
availability in 2014—its first ten years of life. That means it’s been here since the very beginning of
the Internet of things concept, as we understand it now. In fact, the advent of low-cost prototyping
platforms like Arduino is one of the cornerstones that have allowed this emerging revolution to
happen, supporting both the do-it-yourself concept and the maker movement.

This chapter will give you a quick glance at how you can use JavaFX along with an Arduino board
to develop desktop applications for monitoring data coming from the real world or controlling
real devices.

We’ll start by presenting briefly the available boards, followed by the software required to program
the microcontroller and the procedure to connect it to a computer (without any WiFi or Ethernet
shield solution); finally, we’ll examine the code to acquire the data stream and represent the data
and control the devices on the JavaFX thread.

The Arduino Board
Arduino is an open-source board with one microcontroller. The best-known version, the Arduino
Uno rev 3, is based on the ATmega328 8-bit Atmel AVR microcontroller, while the new Arduino Due,
based on the Atmel SAM3X8E ARM Cortex-M3 CPU, is the first Arduino board based on a 32-bit
ARM core.

Thanks to a preprogrammed boot loader, programs can be easily uploaded into the microcontroller
memory, directly from a connected computer.

The Uno provides 14 digital I/O pins and 6 analog inputs, as female headers, so plug-in shields
can be mounted on top of them, or simple jumpers can be plugged to required pins. 32 KB are
available as flash memory, and the clock operates at 16 MHz. Further details can be checked here:
http://arduino.cc/en/Main/ArduinoBoardUno. Figure 10-1 shows front and back views of the
Uno board.

http://arduino.cc/en/Main/ArduinoBoardUno

270 CHAPTER 10: JavaFX and Arduino

The Due, shown in Figure 10-2, increases the capacity to 54 digital I/O pins and 14 analog pins
(12 inputs, 2 outputs). Flash memory is now 512 KB, while clock speed is 84 MHz. Further details
can be checked at http://arduino.cc/en/Main/ArduinoBoardDue.

Figure 10-1. Arduino Uno (front and back)

Figure 10-2. Arduino Due (front)

There are other boards with different specifications or components. For any concrete application,
you should acquire the one that suits your needs, carefully reading the specifications at
http://arduino.cc/en/Main/Products.

For the examples in this chapter you can use any Arduino board. If you don’t have one, an Arduino
Uno is recommended. There are plenty of sources where you may buy one online, as you can see at
this link: http://arduino.cc/en/Main/Buy.

Once you’ve got the Arduino board, using a standard USB cable (type A plug to type B plug) you can
attach it to your computer, as shown in Figure 10-3. This connection will provide 5V to power the
board (check that the green power LED is illuminated) and a way to program the microcontroller from
your computer.

http://arduino.cc/en/Main/ArduinoBoardDue
http://arduino.cc/en/Main/Products
http://arduino.cc/en/Main/Buy

271CHAPTER 10: JavaFX and Arduino

Later, after you have programmed the microcontroller, you can use an external power supply, like a
9 V battery or a 9-to-12 V DC adapter, providing 250 mA up to 1000 mA depending on the devices
connected, by plugging a 2.1 mm plug center pin positive into the board’s power jack.

The Arduino IDE
To program the micro, first we need to install the drivers and the proper software. Go to the
Downloads section at http://arduino.cc/en/Main/Software, select your OS, and download the
latest release, 1.0.5 at the time of this writing; although, for Arduino Due or Yún you should use
1.5.5 beta.

The Arduino Software is distributed under the GNU Lesser General Public license. The open-
source environment makes it easy to write code and upload it to the board. The Arduino Integrated
Development Environment (IDE) runs on Windows, Mac OS X, or Linux. The environment is written in
Java and is based on Processing, avr-gcc, and other open source software.

Windows Setup
Download the Windows Installer http://arduino.googlecode.com/files/arduino-1.0.5-r2-windows.exe,
double click it, and proceed with the two steps shown in Figure 10-4.

Figure 10-3. Arduino connected to the computer

http://arduino.cc/en/Main/Software
http://arduino.googlecode.com/files/arduino-1.0.5-r2-windows.exe

272 CHAPTER 10: JavaFX and Arduino

At the end of the process you’ll be asked to install the driver. At this point connect the Arduino to
your computer USB port, and a COM connection will be established. Check the Windows Device
Manager to confirm that under Ports you see your Arduino board connected, as in Figure 10-5.

Figure 10-4. Steps during Arduino IDE installation

273CHAPTER 10: JavaFX and Arduino

If you find a yellow triangle over Arduino under Other Devices, you will need to install the driver
manually, following these steps (on a Windows 8 computer):

1. Disable driver signature enforcement:

 Save and close all your work. On Settings (Windows key+I), click Power and 	
then choose Shift+Restart. The computer will reboot immediately.

 Select the following options: Troubleshoot 	 ➤ Advanced Options ➤ Startup
Settings and finally click Restart.

 Once the Startup Settings shows up, select the 7 key, Disable Driver 	
Signature Enforcement. Windows will reboot. Sign in normally.

2. Install the Arduino driver.

 Open Device Manager, right-click under Arduino, and select Update Driver 	
Software. Select Browse My Computer For Driver Software, and find the
folder Drivers under the Arduino installation folder and click Next.

 You will be prompted with the security window shown in Figure 	 10-6; select
Install This Driver Software Anyway. After a few seconds, a success window
will inform you the driver has been installed. Confirm that you can see it in
the Device Manager, as in Figure 10-5.

Figure 10-5. Arduino serial port in Windows

274 CHAPTER 10: JavaFX and Arduino

Mac OS X Setup
Download the file http://arduino.googlecode.com/files/arduino-1.0.5-macosx.zip, unzip it, and
copy the folder to your Applications folder. No drivers are required.

When you connect the Arduino board, you should see it listed under /dev/tty.usbmodemXXXX or
/dev/tty.usbserialXXXX.

Linux Setup
On Debian distributions (for example, Raspberry Pi) you can simply install it on the terminal:

$ sudo apt-get install arduino

For others distributions, please check here: http://playground.arduino.cc/Learning/Linux

You can also download the TAR file, unpack it, and install the required dependencies. Choose
between 32 bit: http://arduino.googlecode.com/files/arduino-1.0.5-linux32.tgz, or 64-bit:
http://arduino.googlecode.com/files/arduino-1.0.5-linux64.tgz.

When you connect the Arduino board, you should see it listed under /dev/ttyACMX or /dev/ttyUSBX.

Running the IDE
Assuming your installation ends successfully, launch the application; you’ll see a screen like
Figure 10-7.

Figure 10-6. Windows security warning

http://arduino.googlecode.com/files/arduino-1.0.5-macosx.zip
http://playground.arduino.cc/Learning/Linux
http://arduino.googlecode.com/files/arduino-1.0.5-linux32.tgz
http://arduino.googlecode.com/files/arduino-1.0.5-linux64.tgz

275CHAPTER 10: JavaFX and Arduino

The first thing to do is choose Tools ➤ Board and select your own board from the list (Arduino Uno,
for instance). Under Serial Port, select the port where the board is connected. In case of several
options, an easy way to find out which port is the right one is to unplug the board, look for the
missing port, plug it in again, and select that serial port.

The quickest test we can do, even without sensors (instrumentation or analog / digital signaling
devices) is to open the Blink sample (Files ➤ Examples ➤ 01.Basics ➤ Blink), as shown in Figure 10-8.
The Arduino code files, called sketches, are saved with the extension .ino, under the Arduino/examples
folders, in several categories.

Figure 10-7. The Arduino IDE

276 CHAPTER 10: JavaFX and Arduino

Click the Upload button (second from the left on the toolbar) and wait for the “Done uploading”
message on the status bar. Then you should see the LED labeled with an L blinking on the board.

A really good source for example code to start playing with your Arduino board is at the Arduino
Playground http://playground.arduino.cc/.

To try most of the preliminary tutorials or your own experiments, you’ll need a basic set of sensors
and a small set of electronic components. It is a good idea to acquire your Arduino board bundled
with electronic components, as a Starter Kit. In addition to the board, you will want a USB cable, a
breadboard, jumper wires, LEDs of several colors, resistors, a temperature sensor, a potentiometer,
push buttons, and the like.

Figure 10-8. The Blink sketch

http://playground.arduino.cc/

277CHAPTER 10: JavaFX and Arduino

Light Tracking
For our first example we’ll use the components shown in Figure 10-9: an Arduino Uno,
a breadboard, a photoresistor (like this one: http://www.adafruit.com/products/161 or this one:
https://www.sparkfun.com/products/9088), a 10 kohm resistor, plus several jumpers (wires).

Figure 10-9. Bill of materials

Fritzing, an open source tool to document the Arduino-based prototype, can be very helpful in
drawing the layout of our connections before we build them. It can be downloaded from here:
http://www.fritzing.org/. Figure 10-10 shows our planned layout.

Figure 10-10. Circuit layout for the photocell example

http://www.adafruit.com/products/161
https://www.sparkfun.com/products/9088
http://www.fritzing.org/

278 CHAPTER 10: JavaFX and Arduino

Tinkering
The first thing we should do is convert our conceptual layout to a real one; so please grab your
Arduino, the breadboard, the sensor, the resistor and the jumpers and build it! Don’t be afraid, there’s
no risk at all!

The steps are really simple, assuming you use the same colors as shown in Figure 10-10:

1. Insert the wires from the ends of the components into the breadboard, as
shown, aligning one end of the resistor and one end of the photocell in the same
bank with the yellow jumper going to the Analog A0 pin of the Arduino board.

2. Run a black jumper from the remaining end of the resistor to Power ground
(GND) on the Arduino.

3. Finally, run a red jumper from the remaining end of the photocell to the Power
5V pin on the Arduino.

Figure 10-11 shows the result.

Figure 10-11. Arduino Uno with photocell

The Arduino Photocell Sketch
Now that we’ve got everything configured, we need to program the microcontroller. For that we’ll use
the code showed in Listing 10-1.

279CHAPTER 10: JavaFX and Arduino

Listing 10-1. Arduino Sketch Photocell.ino

/*
Sketch for the analog read of a photocell, Light Dependent Resistor (LDR) or Photoresistor
 *One end of the photocell is connected to 5V
 *The other end to Analog 0 and to one end of a 10K resistor.
 *The other end of the resistor connected to ground
 Available at:
 * http://www.adafruit.com/products/161
 * https://www.sparkfun.com/products/9088

 Note:
 * Vout=Vin*R/(R+Rldr), where Vin=5V, R=10 kohm
 * Lux= Ea*(Ra/Rldr)^(1/sens)
 for a typical LDR, Ea=10 lux, Ra=10 kOhm, sens=0.8
 with Rldr in kohm. Check the datasheet.
*/

int pinLDR = A0; //analog pin 0

void setup() {
 Serial.begin(9600);
}

void loop() {
 // 1. Get the analog reading. Arduino Uno, Mega, between 0 and 1023
 int analogLDR = analogRead(pinLDR);

 // 2. Get the output voltage, if Vdd=5V
 float VOut = 5.0*analogLDR/1023.0;

 // 3. Get the LDR resistence (kohm)
 float resisLDR=10.0*(5.0/VOut-1.0);

 // 4. Get the amount of light (lux) assuming a typical LDR
 float lux=16.0*pow(10.0/resisLDR,1.0/0.8);

 // 5. Print to serial results
 Serial.println(lux);

 // Adjust delay in ms
 delay(100);
}

How It Works
As you can see in Listing 10-1, the sketch has two primary methods: setup() and loop(). In the
former you initialize the required pins as input or output, or the serial port speed; in the latter you
encode all the tasks that will be repeatedly executed. The analog readings from the sensors are just
sent to the serial port, after they are converted to level of illumination, measured in lux.

280 CHAPTER 10: JavaFX and Arduino

Note Don’t be confused with the calculations involved. They are specific to this sensor. For other sensors
you’ll need to perform similar transformations to convert the analog readings to the proper magnitude. Check
the sensor datasheet for more details in each case.

The LDR is a light detector resistor, which means it changes its resistance with light: more light
implies lower resistance. We use a 10 kohm fixed resistor to compare values. So we’re splitting 5 V
between the LDR and the resistor.

With the Arduino Uno the resolution of the analog readings is 10 bits, so there are 1024 possible
values, between 0 and 5 V. An analog reading of 512 will indicate that the LDR has the same
resistance as the resistor, and the output voltage will be 2.5 V.

Note With an Arduino Due, the resolution increases to 12 bits, giving 4096 values. If you use this board, be
sure update the code accordingly.

Then, as indicated in the loop() method, the analog reading is first converted to volts:

Vout = Vin* analogLDR/1023

and then the resistance of the LDR is determined:

RLDR = R*(Vin / Vout – 1)

Finally, taking into account the specific values of the photocell (sensitivity in ohm/lux and its value
at 10 kohms), the level of illumination is determined. For 2.5 V, this level will be around 10 lux,
corresponding to a dimly lit room. Readings close to 1023 will mean nearly 5 V and 10000-25000 lux,
full daylight. By contrast, readings toward 0.1 V will equal 0.1 lux, like a moonless night. For further
explanation, please check this link: http://learn.adafruit.com/downloads/pdf/photocells.pdf.

Testing the Sketch
Before going any further, please copy the listing to your Arduino IDE, and connect the Arduino
(with the photocell connected as described) to the USB port of your computer. Check the name of
the board and the port, and download the program. Figure 10-12 shows the IDE with the sketch,
and on the bottom the name of the board and the port used. If you click Verify, the sketch will
be compiled. Then click Upload, and the binary sketch will be compiled again and uploaded to
the microcontroller. Click Save to store the sketch on your system, giving it a proper name, like
Photocell.ino.

http://learn.adafruit.com/downloads/pdf/photocells.pdf

281CHAPTER 10: JavaFX and Arduino

Figure 10-12. Arduino IDE with the photocell sketch

Without unplugging the USB cable, now open the Serial Monitor to check if the measures are
showing up on your screen, as in Figure 10-13. If not, go back again and repeat the previous steps.

282 CHAPTER 10: JavaFX and Arduino

If everything is working, it’s time to go back to your computer, leave the Arduino working (or not; you
can plug it in or unplug it whenever you want), and start thinking about how we are going to read the
serial port to get the measures from the sensors and how we are going to display those readings in
our JavaFX application.

Serial Reading
Although you can find third-party applications for serial reading, like the old HyperTerminal
for Windows, Minicom for Linux, and Terminal for Mac, we need to have these readings in our
application, and for that we need a Java API that performs that task.

Note here that serial reading is a highly hardware-specific task, and it breaks the Java multiplatform
approach as we need native support for accessing the ports. Besides the old JavaComm API from
Sun, there’s no official API for communications bundled with the Java SE distribution, so we’ll need
a third-party library.

Figure 10-13. Serial Monitor

Note Keep in mind that with an inexpensive LDR, and without proper calibration or real values for its
sensitivity, the light levels we’ll be reading are an approximation.

283CHAPTER 10: JavaFX and Arduino

For several years, the preferred Java library for serial communication was RXTX. Originally from Trent
Jarvi, and distributed under LGPL v 2.1+Linking Over Controlled Interface license, his last version
(2.2pre2 from 2010) was accessible at http://rxtx.qbang.org/. In fact, you will see this library still
distributed with the Arduino IDE 1.0.5, since it’s used for communications between the IDE and the
board.

But for a few months now, the site has been offline, and it seems there’s no further support for
this library.

So we need another alternative. So did the Arduino guys, who already are planning to migrate from
RXTX to a new one.

Java Simple Serial Connector
Java Simple Serial Connector (jSSC), from Alexey Sokolov, is licensed under GNU Lesser GPL. The
most recent version as of this writing (jSSC-2.8.0), released January 2014, is the library that was
chosen to replace RXTX in the next Arduino IDE versions. You can try the current Arduino IDE nightly
builds, beta versions (from 1.5.6), which have included this library.

jSSC is available for all platforms and operating systems. You’ll notice it is faster than RXTX, and
several bugs have been fixed. jSSC comes in a simple JAR file, with all the native required files
included, so we don’t need to deal with local installations, as it takes care of adding them to the
classpath at runtime.

Just grab the latest available version. Go to https://github.com/scream3r/java-simple-serial-
connector/releases, and download the JAR. If you add it as a library in NetBeans or open it,
you will see its classes (the jssc package) and the native content (the libs package), as shown in
Figure 10-14.

http://rxtx.qbang.org/
https://github.com/scream3r/java-simple-serial-connector/releases
https://github.com/scream3r/java-simple-serial-connector/releases

284 CHAPTER 10: JavaFX and Arduino

Figure 10-14. Contents of the jSSC library

JavaFX, the Charting API, and Sensor Readings
In the examples that follow, we will design a simple JavaFX application that takes the readings from
the sensor and displays them in a chart. For the sake of clarity, we’ll use two classes, one for the
serial readings in Listing 10-2, and one for the chart and the JavaFX stage in Listing 10-3 later.

285CHAPTER 10: JavaFX and Arduino

We’ll bind these classes (Serial and PhotocellFX) by using a StringProperty, containing the last line
read from the serial port. By listening to changes in this property in the JavaFX thread, we’ll know
when there’s a new reading to add to the chart.

Serial Communications
Let’s start with the Serial class, shown in Listing 10-2.

Listing 10-2. Source Code of the Serial Class

package jfx8ibe;

import java.util.Arrays;
import java.util.List;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import jssc.SerialPort;
import jssc.SerialPortException;
import jssc.SerialPortList;

/**
 * Chapter 10. JavaFX and Arduino
 * @author pereda
 */
public class Serial {
 /* List of usual serial ports. Add more or remove those you don't need */
 private static final List<String> USUAL_PORTS = Arrays.asList(
 "/dev/tty.usbmodem", "/dev/tty.usbserial", // Mac OS X
 "/dev/usbdev","/dev/ttyUSB","/dev/ttyACM", "/dev/serial", // Linux
 "COM3","COM4","COM5","COM6" // Windows
);
 private final String ardPort;
 private SerialPort serPort;

 public static final String SEPARATOR= ";";
 private StringBuilder sb=new StringBuilder();
 private final StringProperty line=new SimpleStringProperty("");

 public Serial(){
 ardPort="";
 }

 public Serial(String port){
 ardPort=port;
 }

 /*
 * connect() looks for a valid serial port with an Arduino board connected.
 * If it is found, it's opened and a listener is added, so every time
 * a line is returned, the stringProperty is set with that line.

286 CHAPTER 10: JavaFX and Arduino

 * For that, a StringBuilder is used to store the chars and extract the line
 * content whenever '\r\n' is found.
 */
 public boolean connect(){
 Arrays.asList(SerialPortList.getPortNames())
 .stream()
 .filter(name->
 ((!ardPort.isEmpty() && name.equals(ardPort)) ||
 (ardPort.isEmpty() &&
 USUAL_PORTS.stream()
 .anyMatch(p -> name.startsWith(p)))))
 .findFirst()
 .ifPresent(name -> {
 try {
 serPort = new SerialPort(name);
 System.out.println("Connecting to "+serPort.getPortName());
 if(serPort.openPort()){
 serPort.setParams(SerialPort.BAUDRATE_9600,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 serPort.setEventsMask(SerialPort.MASK_RXCHAR);
 serPort.addEventListener(event -> {
 if(event.isRXCHAR()){
 try {
 sb.append(serPort.readString(event.getEventValue()));
 String ch=sb.toString();
 if(ch.endsWith("\r\n")){
 // add timestamp
 line.set(Long.toString(System.currentTimeMillis())
 .concat(SEPARATOR)
 .concat(ch.substring(0,
 ch.indexOf("\r\n"))));
 sb=new StringBuilder();
 }
 } catch (SerialPortException e) {
 System.out.println("SerialEvent error:"+ e.toString());
 }
 }
 });
 }
 } catch (SerialPortException ex) {
 System.out.println("ERROR: Port '" + name + "': "+ex.toString());
 }
 });

 return serPort!=null;
 }

287CHAPTER 10: JavaFX and Arduino

 public void disconnect(){
 if (serPort != null) {
 try {
 serPort.removeEventListener();

 if(serPort.isOpened()){
 serPort.closePort();
 }
 } catch (SerialPortException ex) {
 System.out.println("ERROR closing port exception: "+ex.toString());
 }
 System.out.println("Disconnecting: comm port closed.");
 }
 }

 public StringProperty getLine(){
 return line;
 }

 public String getPortName(){
 return serPort!=null?serPort.getPortName():"";
 }
}

How It Works
First of all, notice the jSSC imports:

import jssc.SerialPort;
import jssc.SerialPortException;
import jssc.SerialPortList;

You must include jSSC.jar in your project. This can be done by adding it to <JAVA_HOME>/jre/lib/
ext on Linux or Windows (or /Library/Java/Extensions on Mac). Or you can just add it to the project
as a dependency, as shown in Figure 10-14. The latter option is recommended if you intend to
distribute your application.

Next, we set a list of suitable port names where the Arduino board may be connected. This list can
be extended to other ports in your system or you can delete the ones from other platforms. The
ardPort variable can be set with a port name through the constructor, and the list won’t be used.

private static final List<String> USUAL_PORTS = Arrays.asList(
 "/dev/tty.usbmodem", "/dev/tty.usbserial", // Mac OS X
 "/dev/usbdev","/dev/ttyUSB","/dev/ttyACM", "/dev/serial", // Linux
 "COM3","COM4","COM5","COM6" // Windows
);

 private final String ardPor;

 public Serial(String port){
 ardPor=port;
}

288 CHAPTER 10: JavaFX and Arduino

In the connect() method we go through the list of valid serial ports found in your system:

public boolean connect(){
 Arrays.asList(SerialPortList.getPortNames())
 .stream()

We use lambdas to filter this collection so we get an item matching the ardPort value, if it is set, or
one of the USUAL_PORTS list, otherwise:

.filter(name->
 ((!ardPort.isEmpty() && name.equals(ardPort)) ||
 (ardPort.isEmpty() &&
 USUAL_PORTS.stream()
 .anyMatch(p -> name.startsWith(p)))))
.findFirst()

If we find a valid serial port, we try to open it, and we set several common parameters for the serial
communication.

.ifPresent(name -> {
 try {
 serPort = new SerialPort(name);
 System.out.println("Connecting to "+serPort.getPortName());
 if(serPort.openPort()){
 serPort.setParams(SerialPort.BAUDRATE_9600,
 SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 serPort.setEventsMask(SerialPort.MASK_RXCHAR);

Because we’ll be listening to the serial port, we add a listener that reacts to every SerialPortEvent,
which it detects by the presence of bytes on the input buffer. The number of bytes is determined by
event.getEventValue(). The readString(int byteCount) method returns whenever there are bytes
on the buffer. We use a StringBuilder to store all the readings, and we evaluate the characters for
a carriage return and line feed ("\r\n") sequence, and if they’re found, to extract the line of text
and reset the builder. A StringProperty is used to store the line, so the JavaFX thread can listen to
changes in that observable object (exposed with the getLine() method; see Listing 10-3 later in the
chapter). We add a timestamp to the string, to keep track of the instant it was read. Tracking over
time also helps when the measures are the same, so they can be shown sequentially on the chart.

serPort.addEventListener(event -> {
 if(event.isRXCHAR()){
 try {
 sb.append(serPort.readString(event.getEventValue()));
 String ch=sb.toString();
 if(ch.endsWith("\r\n")){
 // add timestamp
 line.set(Long.toString(System.currentTimeMillis())

289CHAPTER 10: JavaFX and Arduino

 .concat(SEPARATOR)
 .concat(ch.substring(0,
 ch.indexOf("\r\n"))));
 sb=new StringBuilder();
 }
 } catch (SerialPortException e) {
 System.out.println("SerialEvent error:"+ e.toString());
 }
 }

Note that in cases where you have to read several measures at a time, you need to use the same
separator character in your Arduino sketch, to split them properly into individual readings.

Finally, the disconnect() method takes care of removing the listener and closing the port:

try {
 serPort.removeEventListener();
 if(serPort.isOpened()){
 serPort.closePort();
 }
} catch (SerialPortException ex) {
 System.out.println("ERROR closing port exception: "+ex.toString());
}

The JavaFX Charts API
Charts with two axes (bars, areas, lines, bubble or scatter) or pie charts without an axis have been
available in JavaFX since version 2.0. Each chart is a node, so it can be added to a scene like any
other node.

In the JavaFX scene of our example, Listing 10-3, we’ll add a LineChart to plot the light level from
the photocell. This requires a Series to plot the readings, with XYChart.Data as pair of values for
every point, one for each axis.

Two more Series will be added to our chart with the moving averages of every 50 values plotted
(5 seconds) and 100 values (10 seconds). We want to show only the last 30 seconds on the chart, so
taking into account the 100 ms delay from the board, whenever the size of the Series is greater than
300 points, the first values will be removed.

Listing 10-3. Source Code of the JavaFX Application Class

package jfx8ibe;

import java.text.SimpleDateFormat;
import java.util.Date;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.property.BooleanProperty;
import javafx.beans.property.SimpleBooleanProperty;
import javafx.beans.value.ChangeListener;
import javafx.geometry.Insets;

290 CHAPTER 10: JavaFX and Arduino

import javafx.scene.Scene;
import javafx.scene.chart.LineChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart.Data;
import javafx.scene.chart.XYChart.Series;
import javafx.scene.control.Label;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import javafx.util.StringConverter;

/**
 * Chapter 10. JavaFX and Arduino
 * @author pereda
 */
public class PhotocellFX extends Application {

 private LineChart<Number,Number> chart;
 private Series<Number, Number> luxSeries;
 private Series<Number, Number> aveLuxSeries5;
 private Series<Number, Number> aveLuxSeries10;
 private NumberAxis xAxis;
 private NumberAxis yAxis;
 private final int tamMax=300; // 30'' / 0.1''/reading = 300 readings
 private final int tamAve5=50; // 5''

 private final int tamAve10=100; // 10''

 /* Check in the Arduino IDE
 the port used by Arduino or leave it empty if you don't know it: */
 private final Serial serial=new Serial();
 private ChangeListener<String> listener;
 private final BooleanProperty connection=new SimpleBooleanProperty(false);

 @Override
 public void start(Stage primaryStage) {
 xAxis=new NumberAxis();
 xAxis.setLabel("Time");
 xAxis.setAutoRanging(true);
 xAxis.setForceZeroInRange(false);
 xAxis.setTickLabelFormatter(new StringConverter<Number>(){
 @Override
 public String toString(Number t) {
 return new SimpleDateFormat("HH:mm:ss").format(new Date(t.longValue()));
 }
 @Override
 public Number fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 yAxis=new NumberAxis();
 yAxis.setLabel("Light (lux)");

291CHAPTER 10: JavaFX and Arduino

 chart=new LineChart<>(xAxis,yAxis);
 chart.setCreateSymbols(false);
 chart.setAnimated(false);
 chart.setLegendVisible(true);
 chart.setTitle("Photocell Readings");
 luxSeries = new Series<>();
 luxSeries.setName("Light Level (lux)");
 aveLuxSeries5 = new Series<>();
 aveLuxSeries5.setName("Moving Average 5'' (lux)");
 aveLuxSeries10 = new Series<>();
 aveLuxSeries10.setName("Moving Average 10'' (lux)");
 chart.getData().addAll(luxSeries,aveLuxSeries5,aveLuxSeries10);
 listener=(ov, t, t1) -> {
 Platform.runLater(()->{
 try{
 String[] data=t1.split(Serial.SEPARATOR);
 if(data.length==2){
 long time=new Long(data[0]);
 luxSeries.getData().add(new Data(time,new Double(data[1])));
 if(luxSeries.getData().size()>tamMax){
 luxSeries.getData().remove(0);
 }
 if(luxSeries.getData().size()>=tamAve5){
 aveLuxSeries5.getData().add(new Data<>(time, average(tamAve5)));
 if(aveLuxSeries5.getData().size()>tamMax){
 aveLuxSeries5.getData().remove(0);
 }
 }
 if(luxSeries.getData().size()>=tamAve10){
 aveLuxSeries10.getData().add(new Data<>(time, average(tamAve10)));
 if(aveLuxSeries10.getData().size()>tamMax){
 aveLuxSeries10.getData().remove(0);
 }
 }
 }
 } catch(NumberFormatException nfe){
 System.out.println("NFE: "+t1+" "+nfe.toString());
 }
 });
 };
 serial.getLine().addListener(listener);

 BorderPane root = new BorderPane();
 StackPane stack =new StackPane();
 stack.setPadding(new Insets(10,0,10,0));
 stack.getChildren().add(chart);
 root.setCenter(stack);

292 CHAPTER 10: JavaFX and Arduino

 Label lbl=new Label("Not connected");
 connection.addListener((ov, b, b1)->lbl.setText(b1?
 "Connected to: "+serial.getPortName():"Not connected"));
 root.setBottom(lbl);
 root.setStyle("-fx-background-color: derive(goldenrod,60%); "
 + "-fx-font: 16 \"Courier New\";");

 Scene scene = new Scene(root, 800, 600);
 primaryStage.setTitle("Arduino Test. Photocell");
 primaryStage.setScene(scene);
 primaryStage.show();

 startSerial();
 }

 @Override
 public void stop(){
 System.out.println("Closing serial port");
 serial.getLine().removeListener(listener);
 stopSerial();
 }

 private void startSerial(){
 serial.connect();

 connection.set(!serial.getPortName().isEmpty());
 }

 private void stopSerial(){
 if(connection.get()){
 serial.disconnect();
 connection.set(false);
 }
 }

 private double average(int tam){
 return luxSeries.getData()
 .stream()
 .skip(luxSeries.getData().size()-tam)
 .mapToDouble(d->d.getYValue().doubleValue())
 .sum()/tam;
 }

 public static void main(String[] args) {
 launch(args);
 }
}

293CHAPTER 10: JavaFX and Arduino

How It Works
First of all, note the fields declared. We have a LineChart, with three Series that take pairs of numbers
to be plotted against each axis, which are NumberAxis instances. We also define several limits for these
Series: the maximum number of points in each of them will be 300, relative to the last 30 seconds. For
the moving averages, they will be calculated based on periods of 5 seconds and 10 seconds.

private LineChart<Number,Number> chart;
private XYChart.Series<Number, Number> luxSeries;
private XYChart.Series<Number, Number> aveLuxSeries5;
private XYChart.Series<Number, Number> aveLuxSeries10;
private NumberAxis xAxis;
private NumberAxis yAxis;
private final int tamMax =300; // 30'' / 0.1''/reading = 300 readings
private final int tamAve5 = 50; // 5''
private final int tamAve10=100; // 10''

Additionally, we have an instance of the Serial class from Listing 10-2, with the default constructor.
If you know the serial port where the Arduino board is connected, you can use the new Serial
("<port name>") constructor instead. A BooleanProperty will be used to keep track of the
connection status.

/* Check in the Arduino IDE the port used by Arduino or leave it empty
 if you don't know it: */
private final Serial serial=new Serial();
private ChangeListener<String> listener;
private final BooleanProperty connection=new SimpleBooleanProperty(false);

Next, we’ll create the chart. First, we’ll start by creating both axes. For the xAxis to show formatted
data, we’ll override the toString() method, so every long value in milliseconds will be written in
HH:mm:ss format:

@Override
public void start(Stage primaryStage) {
 xAxis=new NumberAxis();
 xAxis.setLabel("Time");
 xAxis.setAutoRanging(true);
 xAxis.setForceZeroInRange(false);
 xAxis.setTickLabelFormatter(new StringConverter<Number>(){
 @Override
 public String toString(Number t) {
 return new SimpleDateFormat("HH:mm:ss").format(new Date(t.longValue()));
 }
 @Override
 public Number fromString(String string) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
 });
 yAxis=new NumberAxis();
 yAxis.setLabel("Light (lux)");

294 CHAPTER 10: JavaFX and Arduino

Then we’ll create the chart by specifying its axes. We set a few properties: setCreateSymbols(true)
will plot a big white circle on every point of the series. For now we set it to false, so it won’t create a
node on the data. setAnimated(false) avoids the animation of the chart after adding any new point.
Because we are plotting points at high frequency, it’s better this way. For lower frequencies, on the
other hand, we will set it to true to create a smooth transition effect. setLegendVisible(true) shows
the legend with the series names.

chart=new LineChart<>(xAxis,yAxis);
chart.setCreateSymbols(false);
chart.setAnimated(false);
chart.setLegendVisible(true);
chart.setTitle("Photocell Readings");

Then, we’ll create the three series, set names for them (which will be displayed in the legend box),
and add them to the chart Data, which is an ObservableList of Series:

luxSeries = new XYChart.Series<>();
luxSeries.setName("Light Level (lux)");
aveLuxSeries5 = new XYChart.Series<>();
aveLuxSeries5.setName("Moving Average 5'' (lux)");
aveLuxSeries10 = new XYChart.Series<>();
aveLuxSeries10.setName("Moving Average 10'' (lux)");

chart.getData().addAll(luxSeries,aveLuxSeries5,aveLuxSeries10);

Next, a listener will be created to bind the presence of any new line on the serial port (corresponding
to a reading of the sensor coming from the Arduino) with the action of adding this value as a new
pair to the series. For that we set the x coordinate value as the time when we add the reading in
milliseconds (on the chart it will be formatted to HH:mm:ss) and the y coordinate value is a double
measurement of the level of light reported by the Arduino in the String t1. As the series data could
grow indefinitely, to avoid memory issues and to keep track only of the data of the last 30 seconds,
we set a tamMax value of 300 points and remove the first values of the series if we exceed that limit.

listener=(ov, t, t1) -> {
Platform.runLater(()->{
 try{
 String[] data=t1.split(Serial.SEPARATOR);
 if(data.length==2){
 long time=new Long(data[0]);
 luxSeries.getData().add(new Data(time,new Double(data[1])));
 if(luxSeries.getData().size()>tamMax){
 luxSeries.getData().remove(0);
 }

Note Observe that by using Platform.runlater(), not only do we place the task of filling the series
with the incoming data in the JavaFX thread, but also we give to the Scene graph the required time to
render the chart.

295CHAPTER 10: JavaFX and Arduino

Every time we add data to the series, we have to perform the calculations for the moving averages,
as we’ll see later. We also check to confirm that the size of each series is within the tamMax limit.

if(luxSeries.getData().size()>=tamAve5){
 aveLuxSeries5.getData().add(new Data<>(time, average(tamAve5)));
 if(aveLuxSeries5.getData().size()>tamMax){
 aveLuxSeries5.getData().remove(0);
 }
}
if(luxSeries.getData().size()>=tamAve10){
 aveLuxSeries10.getData().add(new Data<>(time, average(tamAve10)));
 if(aveLuxSeries10.getData().size()>tamMax){
 aveLuxSeries10.getData().remove(0);
 }
}

And the listener will be added to serial.getLine():

serial.getLine().addListener(listener);

Once we’ve got the chart ready, we’ll create the scene, add it to the stage, and finally display it. We
create a BorderPane, so in the center we add the chart, and on the bottom we add a Label to show
the connection status including the port name. Note the styling done to the root pane.

 BorderPane root = new BorderPane();
 StackPane stack =new StackPane();
 stack.setPadding(new Insets(10,0,10,0));
 stack.getChildren().add(chart);
 root.setCenter(stack);

 Label lbl=new Label(serial.getPortName().isEmpty()?"Not connected":
 "Connected to: "+serial.getPortName());
 root.setBottom(lbl);
 root.setStyle("-fx-background-color: derive(goldenrod,60%); "
 + "-fx-font: 16 \"Courier New\";");

 Scene scene = new Scene(root, 800, 600);
 primaryStage.setTitle("Arduino Test. Photocell");
 primaryStage.setScene(scene);
 primaryStage.show();

Finally, in the start method we try to open the serial port and start reading from it; connection will
be set to true in that case.

 startSerial();
 }

 private void startSerial(){
 serial.connect();

 connection.set(!serial.getPortName().isEmpty());
 }

296 CHAPTER 10: JavaFX and Arduino

Whenever the application is closed, we remove the listener and call the serial.disconnect()
method, to shut down the serial connection properly (see Listing 10-2).

 @Override
 public void stop(){
 System.out.println("Closing serial port");
 serial.getLine().removeListener(listener);
 stopSerial();
 }

 private void stopSerial(){
 if(connection.get()){
 serial.disconnect();
 connection.set(false);
 }
 }

To obtain the moving average we’ll benefit from the new features in Java 8, such as lambda expressions
and bulk data operations for collections. For any given data in the main series luxSeries, the moving
average is a list of the means of its elements taken in blocks of length tam. With skip() we go to the
last block of the list, with mapToDouble() we take from each data its y double value, and with sum()
we get the result of adding all the values in the subsequent collection.

 private double average(int tam){
 return luxSeries.getData()
 .stream()
 .skip(luxSeries.getData().size()-tam)
 .mapToDouble(d->d.getYValue().doubleValue())
 .sum()/tam;
 }

To put it simply, when the size of luxSeries is tamAve5, average returns the mean of all the y values
of the list, and this is the first data point added to aveLuxSeries5. When a new reading is added to
luxSeries, a second data point is added to aveLuxSeries5, with the mean of the last tamAve5 values,
and so on.

Running the Example
Now it’s time for you to create a new JavaFX project, add the two classes from Listings 10-2 and 10-3,
add the jSSC.jar file (in case it’s not already in the classpath), and build and run the project, with your
Arduino board connected with the photocell.

If everything is in place, you should see a moving red line showing up on the chart, and after a while
the yellow and green lines of the moving averages, as in Figure 10-15. You can move your hand over
the photocell to change the light conditions, and see the effect immediately reflected on the chart.

297CHAPTER 10: JavaFX and Arduino

Note You could adjust the 100 ms of delay between readings. If you increase it to 600 ms, for instance,
change the labels accordingly, as the first moving average will be from the last thirty seconds, and the second
moving average from the last minute.

Figure 10-15. Running the Photocell example

Adding More Functionality
If you have come this far, you will want to continue to upgrade the application with a few extra
features. For that, we’ll add at the top of the pane a toolbar with a few buttons to start and stop
reading the board, to create a snapshot of the chart, and to switch on or off a Light Emitting Diode
(LED) on the circuit board. And at the bottom, another toolbar acting as a status bar will indicate
the name of the port, the connection status, and the last value of the readings. This will replace the
actual label. We will style the chart and the scene with CSS.

The next listings show only the additional code for the new features. For the full code of this
example, please download it from http://www.apress.com.

http://www.apress.com

298 CHAPTER 10: JavaFX and Arduino

Let’s start by adding an LED and a resistor (220 ohm) to the board. We’ll use any digital pin on the
Arduino, like number 13, to connect one end of the resistor, the other end should be connected to
the anode of the LED (long lead), and we have to ground the cathode (short lead, flat side). Note
in Figure 10-16 that both photocell and LED are grounded through the blue line of the breadboard
(ground rail, shown at the bottom of the breadboard).

Figure 10-16. LED added to the circuit

Listing 10-4 shows the modifications we have to make to the sketch from Listing 10-1. On every
iteration, we listen for any byte on the serial port. If there is any, we read it and turn on or off the
LED if it’s H (high) or L (low), respectively. Modify your sketch accordingly and upload the changes
to the board.

Listing 10-4. Modification in Photocell.ino

int pinLED = 13;

void setup() {
 Serial.begin(9600);
 pinMode(pinLED, OUTPUT);
 digitalWrite(pinLED,LOW);
}

void loop() {
...
 // 6. listen for commands
 if(Serial.available()>0){
 int in=Serial.read();
 if(in=='H'){
 digitalWrite(pinLED,HIGH);

299CHAPTER 10: JavaFX and Arduino

 } else if(in=='L') {
 digitalWrite(pinLED,LOW);
 }
 }

 // Adjust delay in ms
 delay(100);
}

Now we have to allow writing to the serial port in Serial.java. The new public method shown in
Listing 10-5 will be called from the scene whenever the user clicks a button:

Listing 10-5. Modification in Serial.java

public void write(String text){
 try {
 serPort.writeBytes(text.getBytes());
 } catch (SerialPortException ex) {
 System.out.println("ERROR: writing '" + text + "': "+ex.toString());
 }
}

Next we will create a CSS file, named photocell.css, with the contents shown in Listing 10-6.
The style settings will create this appearance:

The main series 	 luxSeries is plotted as dots, while the moving averages series
are shown as lines without symbols. Each series has a custom symbol and
custom color, different from the default one. To hide the symbols, a small scale
is applied to the shape on the chart, but not on the legend.

The chart plot area and the legend box have custom background color. The grid 	
lines and the axis lines and ticks have also custom color.

Listing 10-6. Source Code of the CSS File photocell.css

.root {
 -fx-background-color: derive(goldenrod,60%);
 -fx-font: 16px "Tahoma";
}
.chart {
 -fx-padding: 0px;
}
.chart-plot-background {
 -fx-background-color: linear-gradient(to bottom,
 derive(goldenrod,40%),derive(goldenrod,20%));
}
.axis:bottom {
 -fx-border-color: derive(goldenrod,-20%) transparent transparent transparent;
}
.axis:left {
 -fx-border-color: transparent derive(goldenrod,-20%) transparent transparent;
}

300 CHAPTER 10: JavaFX and Arduino

.axis-tick-mark, .axis-minor-tick-mark,

.chart-vertical-grid-lines, .chart-horizontal-grid-lines,

.chart-vertical-zero-line, .chart-horizontal-zero-line {
 -fx-stroke: derive(goldenrod,-20%);
}
.chart-legend {
 -fx-background-color: linear-gradient(to bottom,
 derive(goldenrod,40%),derive(goldenrod,20%));
 -fx-padding: 10px;
}
.chart-series-line {
 -fx-stroke-width: 3px;
}
.default-color0.chart-series-line { -fx-stroke: transparent; }
.default-color1.chart-series-line { -fx-stroke: orangered; }
.default-color2.chart-series-line { -fx-stroke: firebrick; }
.default-color0.chart-line-symbol {
 -fx-background-color: transparent, olive;
 -fx-background-radius: 3px;
}
.default-color1.chart-line-symbol {
 -fx-background-color: orangered, orangered;
 -fx-background-radius: 2;
 -fx-scale-x: 0.2;
 -fx-scale-y: 0.2;
}
.default-color2.chart-line-symbol {
 -fx-background-color: firebrick, firebrick;
 -fx-background-radius: 2;
 -fx-scale-x: 0.2;
 -fx-scale-y: 0.2;
}
.default-color1.chart-legend-item-symbol, .default-color2.chart-legend-item-symbol{
 -fx-scale-x: 0.6;
 -fx-scale-y: 0.2;
}
.tool-bar:horizontal {
 -fx-background-color: linear-gradient(to bottom,
 derive(goldenrod,40%),derive(goldenrod,20%));
 -fx-font: 12px "Tahoma";
}

Finally, we have to modify PhotocellFX.java from Listing 10-3. These changes and additions are
required:

Add two global strings to write on the serial port, and three labels for the status bar:	

 private final static String LED_ON = "H";
 private final static String LED_OFF = "L";

301CHAPTER 10: JavaFX and Arduino

 private final Label lblLux=new Label();
 private final Label lblLuxAve5=new Label();
 private final Label lblLuxAve10=new Label();

Make 	 setCreateSymbols(true) to create the symbols on the chart:

 chart.setCreateSymbols(true);

Add the last value of each series to the labels in the status bar:	

 long time=new Long(data[0]);
 luxSeries.getData().add(new Data(time,new Double(data[1])));
 lblLux.setText("Light Level: "
 +String.format("%6.2f",new Double(data[1])));
 ...
 double av=average(tamAve5);
 aveLuxSeries5.getData().add(new Data<>(time, av));
 lblLuxAve5.setText("Light Level (Average 5''): "
 +String.format("%6.2f",av));
 ...
 double av=average(tamAve10);
 aveLuxSeries10.getData().add(new Data<>(time, av));
 lblLuxAve10.setText("Light Level (Average 10''): "
 +String.format("%6.2f",av));
 ...

Add a toolbar at the top of the scene, with buttons to start and stop the serial 	
communication, a button to take a snapshot of the chart and a toggle button to
switch on or off the LED.

 BorderPane root = new BorderPane();

 Button btnStart=new Button("Start");
 btnStart.setOnAction(t->startSerial());
 btnStart.disableProperty().bind(connection);

 Button btnStop=new Button("Stop");
 btnStop.setOnAction(t->stopSerial());
 btnStop.disableProperty().bind(connection.not());

 Button btnSnap=new Button("Snap");
 btnSnap.setOnAction(t-> saveSnapshot());

 ToggleButton tglLed=new ToggleButton("Led");
 tglLed.disableProperty().bind(connection.not());
 tglLed.selectedProperty().addListener((ov, t, t1) -> serial.write(t1?LED_ON:LED_OFF));

 ToolBar tUp=new ToolBar();
 tUp.getItems().addAll(btnStart,btnStop,new Separator(),btnSnap,new Separator(),tglLed);
 root.setTop(tUp);

302 CHAPTER 10: JavaFX and Arduino

Add a toolbar at the bottom with labels to show the status and the values of 	
the readings.

 Label lbl=new Label("Not connected");
 connection.addListener((ov, b, b1)->lbl.setText(b1?"Connected to: "
 +serial.getPortName():"Not connected"));
 lbl.setPrefWidth(250);

 lblLux.setPrefWidth(120);
 lblLuxAve5.setPrefWidth(180);
 lblLuxAve10.setPrefWidth(180);

 ToolBar tBottom=new ToolBar();
 tBottom.getItems().addAll(lbl,new Separator(),lblLux,new Separator(),
 lblLuxAve5,new Separator(),lblLuxAve10);

 root.setBottom(tBottom);

Remove the styling from 	 root and load the CSS file from Listing 10-6:

 Scene scene = new Scene(root, 800, 600);
 scene.getStylesheets().add(getClass().getResource("photocell.css").toExternalForm());

Modify the title, and remove the 	 startSerial() call:

 primaryStage.setTitle("Arduino Test 2. Photocell&LED);
 primaryStage.setScene(scene);
 primaryStage.show();
 }

Finally, add a method to capture a snapshot of the chart, and provide a way to 	
save it to a file in the same path of the application:

 private void saveSnapshot(){
 System.out.println("Saving snapshot... ");
 final WritableImage image = chart.snapshot(null, null);
 final BufferedImage fromFXImage = SwingFXUtils.fromFXImage(image,null);
 if(fromFXImage!=null){
 try {
 ImageIO.write(fromFXImage, "png", new File("image.png"));
 } catch (IOException ex) {
 System.out.println("error img: "+ex.toString());
 }
 }
 }

After you’ve applied all changes, build and run the project, and you will see the new features in the
application, as shown in Figure 10-17. Try to start and stop the serial communication, and observe
the status bar. Capture an image of the chart and try toggling the LED on and off.

303CHAPTER 10: JavaFX and Arduino

Figure 10-17. Upgraded example running

Now, What?
There are plenty of resources out there to demonstrate or utilize the Arduino, and you can
experiment whatever you have in mind! Arduino and the required equipment are inexpensive and
safe (in most cases), and they give you the chance to improve your do-it-yourself (DIY) skills.

So look for an affordable project, buy what you need, build it, test it first on the Arduino IDE, and
then design a JavaFX application to monitor and control your devices.

Share your developments and look for help when you need it; there are great communities of people
willing to help, in both Arduino development and JavaFX.

304 CHAPTER 10: JavaFX and Arduino

Summary
In this chapter you’ve discovered what can be done by combining Arduino and JavaFX. You began
by learning about Arduino, its different boards and main specifications. Next, you saw how to
communicate with it from the Arduino IDE. After learning about loading examples in the IDE, you
got the chance to try it for yourself building a simple circuit with an Arduino Uno and a photocell,
creating a sketch and reading the light levels in the Serial Monitor.

Then you learned about the different ways to read a serial port from your computer and found
about the Java Simple Serial Connector library. Installing this third-party component allowed you to
perform serial port operations such as locating, opening, reading, writing and closing.

To monitor and display the Arduino readings, you learned how to use the JavaFX Charts API. Then
you saw an example in which a JavaFX chart is plotted with a series of data coming from the serial
port, using an Arduino board to measure the level of light with a photocell. Lambdas and bulk data
operations for collections were employed to perform statistical analysis. Finally, you discovered
how to enhance the application by adding toolbars with buttons and labels, and styling the scene
with CSS.

305

Chapter 11
JavaFX on the Raspberry Pi

The Internet of things (IoT) has become a hot topic of late, and for good reason. Some estimates put
the number of connected small devices somewhere around 9 billion currently, jumping to 24 billion
devices by 2020. And while projections vary, the assessment really doesn’t: in terms of sheer
numbers, the Internet of things is going to dwarf any computing models ever seen.

The devices themselves are often quite small and much less powerful than recent examples of the
processing “arms race” to which many of us have grown accustomed (numb?) over the past several
years. Even when embedded within a larger appliance or piece of equipment, the tiny computer
that controls and communicates may be no larger than your hand. . . and perhaps as small as your
fingernail. These tiny devices are resource-constrained due largely to space, power, and/or connectivity
requirements and restrictions, necessitating a different approach to developing and deploying software
and often different tools and tool chains than are available for larger, more powerful platforms.
The power of the IoT isn’t in each device as much as it is in pervasiveness and connectedness.

Java was made for the Internet of things—literally. The vision of its creators was for Java to control
small devices like television set-top boxes, and with the explosion of the Internet of things, Java
returns to its roots. You may think that JavaFX, being a platform for rich-client development, would
miss the IoT party. . . but not so! According to the JavaFX Overview page on the Oracle Technology
Network, “It is designed to provide a lightweight, hardware-accelerated Java UI platform. . .”
(http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html).
That statement holds the key point for the graphically rich-and-powerful JavaFX: hardware
acceleration. How large would a computer have to be to accommodate JavaFX’s power and might?
As it turns out, about the size of a deck of playing cards!

The Raspberry Pi has been called the “Commodore 64 of our era.” Back in the 1980s and 1990s,
many aspiring developers cut their programming teeth on the C64 because it was widely available and
inexpensive. As a result, it had excellent software support—including programming tools/languages—
and a vibrant do-it-yourself community. Many industry leaders have lamented over the years that
the current generation of budding computer scientists have lacked inexpensive and widely available
platforms with which to play, experiment, and innovate. There are many answers to that complaint,
but the Raspberry Pi Foundation may have provided the best ones: the Raspberry Pi Model A sells
for around $25 (USD) and the Model B for approximately $35, and both are extremely capable Linux
computers. Figure 11-1 will give you an idea of what a Raspberry Pi in the wild looks like.

http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html

306 CHAPTER 11: JavaFX on the Raspberry Pi

Let’s take a look at the technical specifications and consider why such an unassuming device merits
a chapter in this book. Table 11-1 shows both models’ key features for comparison.

Figure 11-1. Raspberry Pi Models A (left) and B (right)

Table 11-1. Raspberry Pi Specifications

Raspberry Pi Model A Model B

Chip Broadcom BCM2835 SoC full HD multimedia applications processor

CPU 700 MHz Low Power ARM1176JZ-F Applications Processor

GPU Dual Core VideoCore IV® Multimedia Co-processor

Memory 256M SDRAM 512M SDRAM

Ethernet None Onboard 10/100 Ethernet RJ45 jack

USB 2.0 1 port 2 ports

Video Output HDMI, Composite RCA (PAL & NTSC)

Audio Output 3.5mm jack, HDMI

Onboard Storage SD, MMC, SDIO card slot

Operating System Linux (various)

Dimensions 8.6cm × 5.4cm × 1.5cm 8.6cm × 5.4cm × 1.7cm

Based upon the same foundation, both boards are very similar, with the key differences highlighted
in Table 11-1. For only $10 more, the Model B offers a great deal more than the Model A: accessory/
network connectivity out of the box and perhaps most importantly, twice the memory! From
here forward, we will focus upon the Model B, as setup is dramatically simplified by its onboard
Ethernet. . . and the extra memory is never a bad thing!

307CHAPTER 11: JavaFX on the Raspberry Pi

The deeper back story of the Raspberry Pi makes for interesting reading, but for now, let’s focus
upon what makes the Raspberry Pi such a perfect fit for Java and JavaFX:

It is faster than the specifications seem to indicate. As noted, the default clock 	
speed for the Pi is 700MHz, but the Raspberry Pi Foundation has released
guidance for safely overclocking to speeds up to 1GHz.

Very wisely, the Foundation chose a CPU with floating-point support, often 	
referred to as “hard float,” which offers greater performance than so-called “soft
float only” chips, and operating systems available for the Pi take advantage of
that extra power and speed.

Finally, the Pi has onboard a fairly beefy Graphics Processing Unit (GPU) with 	
a fast 3D core that is “capable of BluRay quality playback, using H.264 at
40MBits/s” (http://www.raspberrypi.org/faqs#generalSoCUsed).

Clearly, there is more to the Pi than meets the eye.

Preparing the Raspberry Pi for JavaFX
Before we can begin developing JavaFX applications for the Raspberry Pi and deploying them, we
must first configure the Pi. For the purposes of this exercise, you’ll need a Raspberry Pi, a suitable
power adapter (I recommend 1.2A, 5v), an 8+ Gigabyte SD card (used by the Pi for storage; use
a Class 10 SD card for best results), a USB keyboard and mouse, and an HDMI cable and HDMI-
capable TV/monitor. Optional: an RJ45 Ethernet cable, if you’d like to connect the Pi to your network
via a wired connection. Here are the steps to follow to get your Raspberry Pi “JavaFX-ready.”

Create a Bootable SD Card
The Pi uses the SD card as a hard drive, loading the operating system from it and reading and
writing files from/to it. This configuration is conceptually similar to a larger Linux computer with a
Solid State Drive (SSD), and it serves the Pi well. To create a bootable SD card, we must download
a Pi-compatible Linux distribution (distro) and install it to the card. The following steps detail the
easiest way to accomplish that.

1. Download to your development machine the SD Association Formatter tool at
https://www.sdcard.org/downloads/formatter_4/. We’ll use this to prepare
the SD card (Mac and Windows; if using a Linux machine for development,
use parted/gparted).

2. Install the SD Association Formatter tool to your development machine.

3. Format the SD card using the SD Association Formatter tool (Mac/Windows).
To do this, simply insert the SD card into a reader attached to your computer,
run the SD Association Formatter, select the SD card to format (be sure to
select the correct one!), and click the Format button. Figure 11-2 shows an
example of the SD Association Formatter tool ready to format the SD card
mapped to Drive F.

http://www.raspberrypi.org/faqs#generalSoCUsed
https://www.sdcard.org/downloads/formatter_4/

308 CHAPTER 11: JavaFX on the Raspberry Pi

4. Download the New Out Of Box Software, or NOOBS (offline and network
install), from http://www.raspberrypi.org/downloads as shown in Figure 11-3.
This will enable us to install our choice of operating system with the least fuss.

Figure 11-2. The SD Association Formatter tool

Figure 11-3. NOOBS download

5. Unzip the downloaded NOOBS file.

6. Copy the extracted NOOBS files to the SD card.

http://www.raspberrypi.org/downloads

309CHAPTER 11: JavaFX on the Raspberry Pi

7. Eject the SD card from your dev machine and place it in your Raspberry Pi’s
card slot.

8. With keyboard, mouse, and HDMI cable (to monitor or TV) attached (Ethernet
cable optional), connect the power cable to your Raspberry Pi to boot NOOBS.

9. When prompted for which operating system to install, choose Raspbian.

10. Go get some coffee and let NOOBS work its magic!

When finished, your Raspberry Pi will reboot into Raspbian Linux, a Debian-based Linux tailored
for the Pi. Next, we’ll want to make a few adjustments to the base configuration to tailor it for our
purposes.

Configuring the Raspberry Pi
When Raspbian first boots, it presents the raspi-config tool, allowing us to make changes to the
basic Raspbian installation. We’ll want to do a few things to optimize for JavaFX.

1. First, we make the Raspberry Pi feel at home in its new home. Select option
4, Internationalisation Options, then option I2, Change Timezone, and then
follow the prompts to choose your local timezone.

Note The Raspberry Pi Foundation is a UK-based organization, so those accustomed to the American
spelling of certain words— like “Internationalization”—may occasionally see the something that looks a bit
unusual in raspi-config. Feel free to “autocorrect” mentally whilst/while reading.

2. As noted earlier, it’s possible— and even encouraged—to overclock the Pi
for better performance. Experience indicates that there is a limit to the pro/
con balance, and that limit lies just short of 1000MHz (turbo). Even the best
SD cards seem prone to corruption at that setting. . . but at the 950 MHz
(high) setting, corruption is rare when using a quality SD card under normal
conditions. To overclock, select option 7, Overclock, choose OK to accept the
warning, and then 950 MHz (high). Choose OK to continue.

3. In order to access the Pi remotely—not absolutely necessary, but strongly
recommended—we need to select option 8, Advanced Options, then option
A4, SSH, and select the Enable button. Choose OK to continue.

4. The raspi-config tool also provides an easy way to adjust the memory split
between the CPU and the GPU—a good thing indeed, since the default
split is a bit miserly when allocating memory to the GPU! In order to run our
JavaFX applications well, simply select option 8, Advanced Options, and
then option A3, Memory Split. Minimum recommended GPU allocation is
128M, but since we’re focusing upon graphics, let’s make that 256M for an
even CPU/GPU split.

310 CHAPTER 11: JavaFX on the Raspberry Pi

5. (Optional) You can change the name your Raspberry Pi uses by selecting
option 8, Advanced Options, and then A2, Hostname. This is convenient
when you have only one Pi on the network, but it’s a near-necessity when
you add a second. . . and third. . .

6. Choose the Finish button to exit the raspi-config tool, and Yes when asked
if you would like to reboot now.

7. Once the Pi has rebooted, if you did connect an Ethernet cable earlier, make
a note of the number that shows on the line saying “My IP address is” just
before the login prompt; you’ll need this for subsequent sections. To log into
the Pi, just type “pi” (with the quotes) at the raspberrypi login prompt, and
then “raspberry” (again, with quotes) for the password. You’re in!

Configuring a Fixed IP Address
Giving your Raspberry Pi a fixed network address isn’t required, but it is strongly recommended.
Doing so means you always connect to your Pi using the same address (or name, if you create an
entry in your hosts file), and it thus removes one potential variable from your development process.

It’s also a good idea to update your network DHCP device/router with the Pi’s IP address so that it
doesn’t try to assign it to another device on your network. The steps required to do so will vary by
switch/router manufacturer.

For Wired Networking (Optional, but STRONGLY RECOMMENDED)
If you plan to continue using your wired Ethernet connection to connect your Pi to your network,
simply follow these steps to give it a permanent address:

1. From your Raspberry Pi’s command prompt, type ifconfig -a and netstat
-nr to gather the following information: current IP (if you want to keep it),
netmask, gateway, destination, and broadcast. Jot these down, you’ll need
them!

2. On the Pi, make a backup of /etc/network/interfaces by running

sudo cp /etc/network/interfaces /etc/network/interfaces.orig

This command will allow you to revert easily to the previous settings if needed.

Note The sudo command, or Super User “do,” executes the command immediately following it with Super
User (or “root”) privileges. In the preceding step, we ran the cp (copy) command as the Super User to make a
backup copy of our network interfaces configuration.

311CHAPTER 11: JavaFX on the Raspberry Pi

3. Using your favorite text editor, modify the interfaces file. For vi, the syntax
is sudo vi /etc/network/interfaces, but nano, pico, and so on are also
available options. Use whichever editor you’re comfortable with, and if you
aren’t (yet) comfortable with one, this is an excellent opportunity to learn!

4. Change the line that reads

iface eth0 inet dhcp

to

iface eth0 inet static

and add the following lines:

address 192.168.1.nnn (this is the IP address you want the Pi to have and keep)

netmask 255.255.255.0 (or whatever was shown by ifconfig -a in step 1)

network 192.168.1.0 (or whatever was in the Destination column in the second line
of output from netstat –nr in step 1)

broadcast 192.168.1.255 (as shown in ifconfig -a)

gateway 192.168.1.1 (or what was shown in either ifconfig or netstat)

5. Save the file.

6. Reboot the Pi by typing sudo reboot at the command prompt.

For Wireless Networking (Optional)
If you buy a WiFi USB adapter for your Raspberry Pi and want to configure it with a fixed IP address,
the steps are similar to those just shown for wired networking.

Note For best results, please refer to http://elinux.org/RPi_USB_Wi-Fi_Adapters for WiFi
adapters that have been tested and found to work best with the Raspberry Pi. Personal favorite: Edimax
EW-7811un. It’s detected automatically by current Raspbian builds and just works.

Once you’ve installed the WiFi adapter and confirmed that it works using DHCP, you can assign it
a fixed IP address by completing the steps in the “For Wired Networking” section earlier, with the
following modifications:

1. In step 4, either iface eth0 entry listed in the /etc/network/interfaces file is
fine; those affect only the Ethernet (eth0) port and not the WiFi adapter.

2. Change the line that reads

http://elinux.org/RPi_USB_Wi-Fi_Adapters

312 CHAPTER 11: JavaFX on the Raspberry Pi

allow-hotplug wlan0

to

auto wlan0

3. Change the line that reads

iface wlan0 inet manual

to

iface wlan0 inet static

4. Comment out the following entry by placing a pound sign/hash (#) at the
beginning of the line:

wpa-roam /etc/wpa-supplicant/wpa_supplicant.conf

5. Below the entries for address, network, netmask, broadcast, and gateway you
made already (as noted in step 4 in the “For Wired Networking” section), add
the following lines:

wpa-ssid “MyNetworkSSID”

wpa-psk “MySecretKey123”

Note VERY IMPORTANT: When specifying the SSID and password in step 5, be sure to include the quotation
marks (double quotes).

6. Save the file.

7. Reboot the Pi by typing sudo reboot at the command prompt.

Note If you have configured a WiFi adapter, you’ve already either decided to remove the mouse to free a
USB port or have added a USB hub to the mix. Either option is fine as long as your power adapter provides
1–1.2A of current. If your adapter supplies less than 1A, your WiFi connection will likely be intermittent, at
best. To fix (or avoid) this, simply upgrade the power adapter or add a powered USB hub.

At this point, you no longer require the keyboard, mouse, and display on a consistent basis. It’s always good
to be able to connect them if desired—and you may want (or need) to have them connected to support a
future JavaFX Pi program you create—but from this point forward, we’ll be doing most of our work remotely.
If you wish to unplug them and go “headless,” simply power down the Pi by typing sudo shutdown –h
now and, once shutdown is complete, unplug the HDMI, keyboard, and mouse cables; remove the Pi’s power
plug; and reconnect the power.

313CHAPTER 11: JavaFX on the Raspberry Pi

Connecting to the Pi Remotely
Earlier, we used raspi-config to enable an SSH server on the Pi so we could connect to it remotely.
Configuring your development machine to do so with an SSH client is fairly painless and will make
your life a lot easier, even allowing you to do some cool things that wouldn’t be possible otherwise.
So let’s dive in!

Setting up Secure Shell (SSH)
If you’re using a Mac or Linux machine for your dev box, there really is very little you must do to
connect to your Raspberry Pi via SSH; simply open a terminal window and you’re off and running.
Windows requires just a bit more effort. I’ll point out the differences as we go.

1. (Windows) Windows doesn’t include native SSH or SCP (Secure Copy)
utilities, but PuTTY—a free utility—fills that gap nicely. Just download the
“Windows installer for everything except PuTTYtel” from http://www.chiark.
greenend.org.uk/~sgtatham/putty/download.html and install it to your
system.

2. (Windows) Run PuTTY (putty.exe). In the PuTTY Configuration window (see
Figure 11-4), do the following to create and save a connection (for repeated
use) to your Pi:

a. Enter the Pi’s IP address (or hostname if you’ve entered that in your dev
machine’s hosts file) in the Host Name (or IP Address) textbox.

b. Enter Raspberry Pi (or whatever you like) in the Saved Sessions textbox.

c. Click the Save button so you can easily reload the connection information
and connect in the future.

d. Click the Open button to connect via SSH to your Pi!

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

314 CHAPTER 11: JavaFX on the Raspberry Pi

1. (Mac/Linux) Open a terminal window and type the following at a command
prompt:

ssh 192.168.1.nnn (using the IP address of your Pi if you don’t have an entry
for it in your dev machine’s hosts file) or

ssh raspberrypi (or however you referred to it in your local hosts file)

2. (All platforms) If presented with a warning about a new host key, choose Yes
to update your SSH keys with one for your Pi. An example of this warning is
shown in Figure 11-5.

Figure 11-4. PuTTY Configuration window

315CHAPTER 11: JavaFX on the Raspberry Pi

3. When prompted, provide your Pi user name (pi) and password (raspberry).
You should now be connected remotely, via SSH, to your Raspberry Pi and
see something similar to the terminal window shown in Figure 11-6.

Figure 11-5. Host key warning

Figure 11-6. Connected!

316 CHAPTER 11: JavaFX on the Raspberry Pi

Installing JDK8
By the time you read this, it’s very possible that JDK8 will ship preinstalled with Raspbian, and if
you’ve loaded a version of Raspbian in which that is the case, congratulations! You can skip this
section and get right into the code. To see if that is the case, simply type the following at your Pi
command prompt:

pi@raspberrypi ~ $ java –version

You will see something like this, depending upon the version that is currently installed and
accessible:

java version “1.8.0”
Java(TM) SE Runtime Environment (build 1.8.0-b129)
Java HotSpot(TM) Client VM (build 25.0-b69, mixed mode)

The important bit is the first line: if it doesn’t say “1.8.n,” you’ll need to install JDK8.

Installing JDK8 on Your Development Machine
It’s important to install the same JDK build on your development machine and your Raspberry Pi to
avoid library/versioning issues. We’ll start with your dev box and then move to the Pi.

To download JDK8, point your browser to https://jdk8.java.net/download.html, review the
linked license agreement, click the radio button to Accept License Agreement, and choose the JDK
download that matches the operating system on your dev box.

Once the download finishes, run the installer (Mac, Windows) to install JDK8 to your machine.
If you’re running Linux, you’ll need to follow a process very similar to the one described next for
installing JDK8 to your Raspberry Pi.

Installing JDK8 on the Raspberry Pi
There are a few different ways to install a new JDK to your Raspberry Pi, but this is perhaps the
fastest and simplest way to get to code. . .and even it requires several steps. So let’s begin!

1. On your development machine, again point your browser to https://jdk8.
java.net/download.html, click the radio button to Accept License Agreement
(you did read the license agreement earlier, right?), and choose the JDK
download labeled Linux ARMv6/7 VFP, HardFP ABI (translation: ARM chips
versions 6 or 7, Vector Floating Point, Hard Floating Point Application Binary
Interface). Download the file to a directory on your dev box.

https://jdk8.java.net/download.html
https://jdk8.java.net/download.html
https://jdk8.java.net/download.html

317CHAPTER 11: JavaFX on the Raspberry Pi

2. Open a terminal (Mac, Linux) or command/cmd (Windows) window and cd to
the directory containing the downloaded JDK8 file, as in the following:

(Mac, Linux)

Marks-MacBook-Pro:~ mark$ cd Downloads/
Marks-MacBook-Pro:Downloads mark$

(Windows)

C:\Users\Mark>cd Downloads
C:\Users\Mark\Downloads>

3. Confirm that the file is there, as expected; your display should be similar to
one of the following:

(Mac, Linux)

Marks-MacBook-Pro:Downloads mark$ ls jdk-8*
jdk-8-fcs-b129-linux-arm-vfp-hflt-06_feb_2014.tar.gz

(Windows)

C:\Users\Mark\Downloads>dir jdk-8*
 Volume in drive C is XXnnnnnnnnX
 Volume Serial Number is XXnn-nnXX

Directory of C:\Users\Mark\Downloads\

03/01/2014 12:01 AM 87,454,973 jdk-8-fcs-b129-linux-arm-vfp-hflt-06_
feb_2014.tar.gz

4. Transfer the file to the Pi using the Secure Copy (scp) utility:

(Mac, Linux)

Marks-MacBook-Pro:Downloads mark$ scp jdk-8-fcs-b129-linux-arm-vfp-hflt-06_
feb_2014.tar.gz pi@raspberrypi:.

(Windows, using PuTTY’s scp utility pscp)

C:\Users\Mark\Downloads>"C:\Program Files (x86)\PuTTY\pscp.exe"
jdk-8-fcs-linux-arm-vfp-hflt-06_feb_2014.tar.gz pi@raspberrypi:.

When prompted, enter raspberry for the password. This securely copies the file to the pi account’s
home directory on the Raspberry Pi, as represented by the “.” character.

5. Now that we’ve copied our new JDK8 to the Pi, we must install it. SSH to the
Pi from your dev box as before (from a terminal window on Mac/Linux or via
PuTTY on Windows) to complete the remaining steps.

318 CHAPTER 11: JavaFX on the Raspberry Pi

6. Extract the JDK to a directory of your choosing, using sudo to create a new
directory if necessary:

sudo tar -zxvf jdk-8-fcs* -C /opt

7. Using your favorite editor once more, you’ll need to edit your .bashrc file
to properly set the pi user’s environment for JDK8. If you are still in your pi
user’s home directory (and if not, simply type cd and press Enter to return
there), you can make the required changes by using a command similar to
vi .bashrc (using vi as an example), add the following lines to the bottom of
the file:

export JAVA_HOME=/opt/jdk1.8.0
export PATH=$JAVA_HOME/bin:$PATH

8. Save the file.

9. Reboot the Pi by typing sudo reboot at the command prompt.

10. Once you’ve reconnected to the Pi via SSH, verify the new environment by
typing the following command:

pi@raspberrypi ~ $ java –version

You will see something like this, depending upon the version that is currently installed and
accessible:

java version “1.8.0”

Java(TM) SE Runtime Environment (build 1.8.0-b129)

Java HotSpot(TM) Client VM (build 25.0-b69, mixed mode)

With JDK8 in place, we’re nearly ready! The last thing we must do to take full advantage of the
power of JavaFX 8 is install an Integrated Development Environment (IDE) that is JDK8-aware on our
development machine.

Installing and Configuring NetBeans 8 for Raspberry Pi
Development
As mentioned earlier in this book, an IDE is not, strictly speaking, required to write code. But an
IDE—and especially one that fully supports JDK8 and is as feature-rich as NetBeans 8—enables you
to do some things that are simply impossible from the command line, as you will soon see.

319CHAPTER 11: JavaFX on the Raspberry Pi

Installing NetBeans 8
If you’ve already installed NetBeans 8, please skip this section. If not, here are the steps you’ll need
to take:

1. Point your browser to https://netbeans.org/downloads/ and select version
8.0 in the top-right portion of the screen. Choose any NetBeans download
bundle that includes JavaFX (Java SE, Java EE, and All are valid options) and
click the Download button below it, saving it to the directory of choice on
your development machine.

2. Run the installer, providing the requested information when prompted.

3. NetBeans itself is a Java application, and NetBeans 8 should run on JDK 8
for best results. To verify, load NetBeans and choose the menu item titled
NetBeans, and then About NetBeans. The entries for Java and Runtime
should indicate version 1.8.0.

Configuring NetBeans 8 for the Pi
NetBeans 8 adds the capability to point to a remote JDK and use it to debug and execute programs
remotely that you write locally, on your development machine. It even deploys your applications
automatically and seamlessly. As documented by copresenter and coauthor José Pereda in his
article at http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end, you can enable this
capability by doing the following:

1. If it is not already running, start NetBeans on your development machine.

2. Choose Tools from the menu bar, and then Java Platforms.

3. Click the Add Platform button.

4. Select the Remote Java Standard Edition radio button and click Next.

5. Provide the following entries (see Figure 11-7 for an example):

Platform Name: Raspberry Pi JDK 8

Host: IP address or hostname (if listed in your dev box’s /etc/hosts file) of
your Raspberry Pi

Username: pi

Password: raspberry

Remote JRE Path: /opt/jdk1.8.0/jre

https://netbeans.org/downloads/
http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end

320 CHAPTER 11: JavaFX on the Raspberry Pi

6. Click the Finish button and wait for NetBeans to establish and configure the
remote JDK connection.

7. Click the Close button once the remote JDK is in place.

Now that we’ve completed the setup, you should have a development environment that is among
the best available to develop JavaFX 8 applications for the Raspberry Pi. So let’s get started!

RaspiCycle: The Code
To demonstrate the “ins and outs” of developing JavaFX 8 code for and deploying it to the
Raspberry Pi, I’ve created a fairly simple—but visually and programmatically interesting, I hope!—
example program. Listing 11-1 contains the entirety of a very basic Pi-focused game that pays
homage to the groundbreaking movie and videogame TRON, in particular the light cycles that
characters rode.

This game will allow you to control your yellow (as in the movie, not the video game) light cycle and
move it about the Pi’s display—the “Game Grid”—until you crash into one of your cycle’s lingering
light trails or an outer wall. The name TRON is actually an old BASIC command formed by combining
the words “TRace ON,” which prompted the program to display line numbers as it ran to aid in

Figure 11-7. Configuring the remote JDK platform in NetBeans

321CHAPTER 11: JavaFX on the Raspberry Pi

debugging. (Bonus tidbit: the command to disable the trace was TROFF.) Rather than line numbers,
I’ve placed a couple of console output statements to show current coordinates and the result of a
collision.

Ready to start with the code? Well. . .Greetings, Program, and welcome to the Game Grid!

Listing 11-1. Source code for RaspiCycle.java

package jfx8ibe;

import java.util.ArrayList;
import java.util.List;
import javafx.animation.AnimationTimer;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Point2D;
import javafx.geometry.Rectangle2D;
import javafx.scene.Cursor;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Line;
import javafx.stage.Screen;
import javafx.stage.Stage;

/**
 *
 * @author Mark Heckler, @MkHeck
 */
public class RaspiCycle extends Application {
 private int SPEED = 1;
 private double SCREENHEIGHT;
 private double SCREENWIDTH;
 private Canvas canvas;
 private GraphicsContext gc;
 private Point2D startPos;
 private Point2D curPos;
 private Point2D newPos;
 private final List<Line2D> walls = new ArrayList<>();

 public enum Direction {
 LEFT, RIGHT, UP, DOWN
 };
 private Direction curDir = Direction.UP;

 private AnimationTimer animTimer;

322 CHAPTER 11: JavaFX on the Raspberry Pi

 @Override
 public void start(Stage primaryStage) {
 StackPane root = new StackPane();

 Rectangle2D bounds = Screen.getPrimary().getVisualBounds();
 SCREENHEIGHT = bounds.getHeight();
 SCREENWIDTH = bounds.getWidth();

 // Add screen boundaries to list of walls (coordinates)
 // to check for collisions

 // Top wall
 walls.add(getLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMinY()));

 // Right wall
 walls.add(getLine(bounds.getMaxX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMaxY()));

 // Bottom wall
 walls.add(getLine(bounds.getMinX(), bounds.getMaxY(),
 bounds.getMaxX(), bounds.getMaxY()));

 // Left wall
 walls.add(getLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMinX(), bounds.getMaxY()));

 // Define starting point for our Light Cycle (bottom center)
 startPos = curPos = new Point2D(SCREENWIDTH / 2, SCREENHEIGHT - 10);

 // Prepare the Game Grid (screen)
 canvas = new Canvas(SCREENWIDTH, SCREENHEIGHT);
 gc = canvas.getGraphicsContext2D();

 gc.setFill(Color.rgb(2, 2, 47));
 gc.fillRect(0, 0, SCREENWIDTH, SCREENHEIGHT);
 drawGameGrid();
 drawWalls(bounds);
 root.getChildren().add(canvas);

 Scene scene = new Scene(root, SCREENWIDTH, SCREENHEIGHT);
 scene.setCursor(Cursor.NONE);

 scene.setOnKeyPressed((KeyEvent event) -> {
 handleKeyPress(event);
 });

 primaryStage.setTitle("RaspiCycle");
 primaryStage.setScene(scene);
 primaryStage.show();

323CHAPTER 11: JavaFX on the Raspberry Pi

 animTimer = new AnimationTimer() {
 @Override
 public void handle(long now) {
 runLightCycle();
 }
 };
 animTimer.start();
 }

 /**
 * The main() method is ignored in correctly deployed JavaFX application.
 * main() serves only as fallback in case the application can not be
 * launched through deployment artifacts, e.g., in IDEs with limited FX
 * support. NetBeans ignores main().
 *
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 private void drawWalls(Rectangle2D bounds) {
 gc.setStroke(Color.LIGHTBLUE);
 gc.setLineWidth(2);

 // Top wall
 gc.strokeLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMinY());

 // Right wall
 gc.strokeLine(bounds.getMaxX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMaxY());

 // Bottom wall
 gc.strokeLine(bounds.getMinX(), bounds.getMaxY(),
 bounds.getMaxX(), bounds.getMaxY());

 // Left wall
 gc.strokeLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMinX(), bounds.getMaxY());
 }

 private void drawGameGrid() {
 int boxSize = (int) (Math.min(SCREENWIDTH, SCREENHEIGHT) / 10);
 int i;
 gc.setStroke(Color.BLACK);
 gc.setLineWidth(5);

324 CHAPTER 11: JavaFX on the Raspberry Pi

 // Draw horizontal lines
 i = boxSize;
 while (i < SCREENHEIGHT) {
 gc.strokeLine(0, i, SCREENWIDTH, i);
 i += boxSize;
 }

 // Draw vertical lines
 i = boxSize;
 while (i < SCREENWIDTH) {
 gc.strokeLine(i, 0, i, SCREENHEIGHT);
 i += boxSize;
 }
 }

 private Line getLine(double x1, double y1, double x2, double y2) {
 return new Line(Math.min(x1, x2), Math.min(y1, y2),
 Math.max(x1, x2), Math.max(y1, y2));
 }

 public void handleKeyPress(KeyEvent event) {
 boolean isNewDir = false;

 if (event.getCode() == KeyCode.LEFT &&
 curDir != Direction.LEFT) {
 curDir = Direction.LEFT;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.RIGHT &&
 curDir != Direction.RIGHT) {
 curDir = Direction.RIGHT;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.UP &&
 curDir != Direction.UP) {
 curDir = Direction.UP;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.DOWN &&
 curDir != Direction.DOWN) {
 curDir = Direction.DOWN;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.DIGIT1) {
 SPEED = 1;
 }
 else if (event.getCode() == KeyCode.DIGIT2) {
 SPEED = 2;
 }
 else if (event.getCode() == KeyCode.DIGIT3) {
 SPEED = 3;
 }

325CHAPTER 11: JavaFX on the Raspberry Pi

 else if (event.getCode() == KeyCode.ESCAPE) {
 animTimer.stop();
 Platform.exit();
 }

 if (isNewDir) {
 // User sent Light Cycle in a new direction...
 // add the wall (light trail) to the list & start a new one
 walls.add(getLine(startPos.getX(), startPos.getY(),
 curPos.getX(), curPos.getY()));
 startPos = curPos;
 }
 }

 private void runLightCycle() {
 calculateDestination();
 gc.setStroke(Color.YELLOW);
 gc.setLineWidth(5);
 gc.strokeLine(curPos.getX(), curPos.getY(), newPos.getX(), newPos.getY());
 curPos = newPos;
 checkCollision();
 }

 private void calculateDestination() {
 double newX = 0;
 double newY = 0;

 switch (curDir) {
 case UP:
 // X doesn't change, only Y
 newX = curPos.getX();
 newY = curPos.getY() - SPEED;
 break;
 case DOWN:
 // X doesn't change, only Y
 newX = curPos.getX();
 newY = curPos.getY() + SPEED;
 break;
 case LEFT:
 // Y doesn't change, only X
 newY = curPos.getY();
 newX = curPos.getX() - SPEED;
 break;
 case RIGHT:
 // Y doesn't change, only X
 newY = curPos.getY();
 newX = curPos.getX() + SPEED;
 break;
 }
 newPos = new Point2D(newX, newY);
 }

326 CHAPTER 11: JavaFX on the Raspberry Pi

 private void checkCollision() {
 System.out.println("Current Position: (" + curPos.getX() + ", " + curPos.getY() + ")");

 walls.stream().filter((line) -> (
 (line.getStartX() <= curPos.getX() && curPos.getX() <= line.getEndX()) &&
 (line.getStartY() <= curPos.getY() && curPos.getY() <= line.getEndY())))
 .forEach((line) -> {
 animTimer.stop();
 System.out.println("COLLISION!");
 Platform.exit();
 });
 }
}

Explanation of the Code
Let’s break the code down into sections to take a closer look, starting with the member variables as
shown in Listing 11-2.

Listing 11-2. RaspiCycle Member Variables

private int SPEED = 1;
private double SCREENHEIGHT;
private double SCREENWIDTH;
private Canvas canvas;
private GraphicsContext gc;
private Point2D startPos;
private Point2D curPos;
private Point2D newPos;
private final List<Line> walls = new ArrayList<>();

public enum Direction {
 LEFT, RIGHT, UP, DOWN
};
private Direction curDir = Direction.UP;

private AnimationTimer animTimer;

The first variable in this code is an int named SPEED. We use this variable to enable the user to
change the pace of the game. We start at a speed of 1; if the person driving the light cycle is feeling
the “Power of the Users”, s/he can increase it! They can also decrease it, as we see later in the code.

The next two variables, SCREENHEIGHT and SCREENWIDTH, are pseudo-constants that we use to keep
track of the screen’s visual boundaries.

The next two, canvas and gc, provide the visual foundation of our game. The JavaFX documentation
about the Canvas class describes it this way: “Canvas is an image that can be drawn on using a set of
graphics commands provided by a GraphicsContext.”

Canvas extends Node, providing a backdrop—similar to an artist’s canvas in the physical world—upon
which you can (programmatically) write letters and numbers, draw points, lines, and geometric
shapes, change colors, and much more.

327CHAPTER 11: JavaFX on the Raspberry Pi

Each Canvas object has an associated GraphicsContext that is used to issue draw calls on the
canvas. In the physical world, the GraphicsContext corresponds to the artist’s supplies: brushes and
sponges, paints and more, anything used to create something visual on the canvas.

The next three variables are two-dimensional (2D) points. In this example, we use the points’ x and y
coordinates to track the current position (curPos) of the cycle, the new position (newPos) to which the
cycle is moving, and the starting position (startPos) of the current light trail. As you will soon see, all
three of these positions are important for managing the game rendering and player positioning.

The List of Line objects allows us to track every boundary wall and light trail that spells disaster for
our light cycle if we collide with it. Line objects serve our purposes well, as we need an easy way
to compare coordinates with our cycle’s projected position, and a List (in this case, an ArrayList)
provides an easy way to manage those walls.

Our game allows the user to move in one of four directions: UP, DOWN, LEFT, or RIGHT. We create an
enum variable and its members to facilitate our handling of the directional guidance provided by the
user and the cycle’s movements, assigning it a starting direction of UP, similar to the original TRON
Light Cycles game.

And finally, the AnimationTimer gives us a means to set and keep the game in motion and to stop it
when a collision occurs or the user requests to end the game.

Let’s skip ahead just a bit in the code. In Listings 11-3 through 11-5, we take a closer look at how
easy it is to set up the canvas background for our RaspiCycle program. Listing 11-3 contains a bit
of code from the start() method in which we first set the GraphicsContext’s fill color to a deep
blue using RGB values to get just the right hue, and then use fillRect() with the primary screen’s
dimensions to paint the entire canvas with it. We then call a method to draw a criss-cross of black
lines to form the background grid, and finally a method to draw some walls, establishing the game’s
visual boundaries.

Listing 11-3. Creating the Game Grid

gc.setFill(Color.rgb(2, 2, 47));
gc.fillRect(0, 0, SCREENWIDTH, SCREENHEIGHT);
drawGameGrid();
drawWalls(bounds);

The drawGameGrid() method shown in Listing 11-4 lays down the expected background of gridwork.
To do so, we determine an appropriately-sized box pattern based upon a quick calculation we perform
by dividing the the smaller screen dimension (width or height) by 10. We then loop horizontally and
vertically through the screen real estate to place black lines into a uniform grid pattern.

Listing 11-4. The drawGameGrid() Method

private void drawGameGrid() {
 int boxSize = (int) (Math.min(SCREENWIDTH, SCREENHEIGHT) / 10);
 int i;
 gc.setStroke(Color.BLACK);
 gc.setLineWidth(5);

328 CHAPTER 11: JavaFX on the Raspberry Pi

 // Draw horizontal lines
 i = boxSize;
 while (i < SCREENHEIGHT) {
 gc.strokeLine(0, i, SCREENWIDTH, i);
 i += boxSize;
 }

 // Draw vertical lines
 i = boxSize;
 while (i < SCREENWIDTH) {
 gc.strokeLine(i, 0, i, SCREENHEIGHT);
 i += boxSize;
 }
}

Note Although the screen of the Raspberry Pi (like most computers) is wider than it is tall, it is better to
allow the code to accommodate other screen configurations automatically. This makes it easier to adapt and
deploy applications on mobile platforms or component screens, for example, without significant—or perhaps
any—changes to the presentation code.

In Listing 11-5, the drawWalls() method adjusts the color and width of the virtual pen and draws the
outer boundaries, completing the Game Grid and readying it for play.

Listing 11-5. The drawWalls() Method

private void drawWalls(Rectangle2D bounds) {
 gc.setStroke(Color.LIGHTBLUE);
 gc.setLineWidth(2);

 // Top wall
 gc.strokeLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMinY());

 // Right wall
 gc.strokeLine(bounds.getMaxX(), bounds.getMinY(),
 bounds.getMaxX(), bounds.getMaxY());

 // Bottom wall
 gc.strokeLine(bounds.getMinX(), bounds.getMaxY(),
 bounds.getMaxX(), bounds.getMaxY());

 // Left wall
 gc.strokeLine(bounds.getMinX(), bounds.getMinY(),
 bounds.getMinX(), bounds.getMaxY());
}

329CHAPTER 11: JavaFX on the Raspberry Pi

Listing 11-6 concisely demonstrates the Lambda approach to handling key presses. Rather than
the anonymous inner class that would have been required prior to Java 8, we simply allow the
compiler to infer the method based upon the expected class/parameter and provide the method’s
functionality—in this case, by defining and calling RaspiCycle’s handleKeyPress() method with the
KeyEvent as a parameter, as shown in Listing 11-7.

Listing 11-6. Capturing User Input

scene.setOnKeyPressed((KeyEvent event) -> {
 handleKeyPress(event);
});

Listing 11-7. The handleKeyPress() Method

public void handleKeyPress(KeyEvent event) {
 boolean isNewDir = false;

 if (event.getCode() == KeyCode.LEFT &&
 curDir != Direction.LEFT) {
 curDir = Direction.LEFT;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.RIGHT &&
 curDir != Direction.RIGHT) {
 curDir = Direction.RIGHT;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.UP &&
 curDir != Direction.UP) {
 curDir = Direction.UP;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.DOWN &&
 curDir != Direction.DOWN) {
 curDir = Direction.DOWN;
 isNewDir = true;
 }
 else if (event.getCode() == KeyCode.DIGIT1) {
 SPEED = 1;
 }
 else if (event.getCode() == KeyCode.DIGIT2) {
 SPEED = 2;
 }
 else if (event.getCode() == KeyCode.DIGIT3) {
 SPEED = 3;
 }
 else if (event.getCode() == KeyCode.ESCAPE) {
 animTimer.stop();
 Platform.exit();
 }

330 CHAPTER 11: JavaFX on the Raspberry Pi

 if (isNewDir) {
 // User sent Light Cycle in a new direction...
 // add the wall (light trail) to the list & start a new one
 walls.add(getLine(startPos.getX(), startPos.getY(),
 curPos.getX(), curPos.getY()));
 startPos = curPos;
 }
}

Our game requires very few input options from the user to make it playable. If the user presses the
up, down, left, or right arrow keys—and if this guidance indicates a change of direction—we update
the current direction indicator (curDir) and a change-of-direction flag (isNewDir) so that the game
engine can respond. Likewise, if the user presses the 1, 2, or 3 keys, we assign the value input to the
SPEED variable to alter, if necessary, the pace of the game. If the user wants to end the game (without
the indignity of driving his light cycle into a wall!), s/he simply presses the Escape key; the program
stops the timer loop and exits.

If there is a change of direction, this means that the current light trail ends. . . and a new one begins
in a new direction. The position of the current trail is recorded in the list of “walls” to check for
collisions and the startPos variable is updated to indicate that it’s time to “lay down light” in a new
direction!

Taken together, Listings 11-8 through 11-11 demonstrate the heart of the game—the game’s
engine, if you will. Listing 11-8 establishes the control loop by defining an object extending the
abstract AnimationTimer class, overriding its abstract handle() method. The handle() method is
called in every frame, providing the mechanism needed to actively loop through the game’s code
until the game ends. In this example, we capture the central organization of the game engine in the
runLightCycle() method and place a call to it within the handle() method, then start the timer to
kick things off.

Listing 11-8. Draw and Play

animTimer = new AnimationTimer() {
 @Override
 public void handle(long now) {
 runLightCycle();
 }
};
animTimer.start();

Listing 11-9: The runLightCycle() Method

private void runLightCycle() {
 calculateDestination();
 gc.setStroke(Color.YELLOW);
 gc.setLineWidth(5);
 gc.strokeLine(curPos.getX(), curPos.getY(), newPos.getX(), newPos.getY());
 curPos = newPos;
 checkCollision();
}

331CHAPTER 11: JavaFX on the Raspberry Pi

The objective of our game is to avoid crashing your light cycle for as long as possible. The original
TRON Light Cycles game had other light cycles also trying to force you to crash, but we’ll leave that
for a follow-on exercise, as this short program both demonstrates the basic concepts and makes for
a challenging enough user experience. . .especially if run with SPEED set to 3.

Within the runLightCycle() method, we perform the following tasks:

1. Calculate the next position based upon user input and existing
direction/speed.

2. Set the graphics context to draw the correct line color and width.

Note As mentioned earlier, this is the correct color per the original TRON movie; in the video game,
the antagonists drove the yellow light cycles. However, as with most things, prior art prevails!

3. Move the cycle by drawing the light trail from the current position to the newly
calculated one.

4. Store the new position as current.

5. Check for a collision. Did the cycle hit a boundary wall or light trail?

Steps 1 and 5 are accomplished by calling the calculateDestination() and checkCollision()
methods, respectively. We’ll examine those next.

In Listing 11-10, which shows the calculateDestination() method, we examine the current
direction in which the cycle is going or the user wishes it to go next (curDir), factor in the SPEED
setting, and calculate the next set of coordinates. We then assign the point created from these
coordinates to the light cycle’s new position (newPos) and return control to the runLightCycle()
method.

Listing 11-10. The calculateDestination() Method

private void calculateDestination() {
 double newX = 0;
 double newY = 0;

 switch (curDir) {
 case UP:
 // X doesn't change, only Y
 newX = curPos.getX();
 newY = curPos.getY() - SPEED;
 break;
 case DOWN:
 // X doesn't change, only Y
 newX = curPos.getX();
 newY = curPos.getY() + SPEED;
 break;

332 CHAPTER 11: JavaFX on the Raspberry Pi

 case LEFT:
 // Y doesn't change, only X
 newY = curPos.getY();
 newX = curPos.getX() - SPEED;
 break;
 case RIGHT:
 // Y doesn't change, only X
 newY = curPos.getY();
 newX = curPos.getX() + SPEED;
 break;
 }
 newPos = new Point2D(newX, newY);
}

Listing 11-11 contains the checkCollision() method.

Listing 11-11. The checkCollision() Method

private void checkCollision() {
 System.out.println("Current Position: (" + curPos.getX() + ", " + curPos.getY() + ")");

 walls.stream().filter((line) -> (
 (line.getStartX() <= curPos.getX() && curPos.getX() <= line.getEndX()) &&
 (line.getStartY() <= curPos.getY() && curPos.getY() <= line.getEndY())))
 .forEach((line) -> {
 animTimer.stop();
 System.out.println("COLLISION!");
 Platform.exit();
 });
}

The first thing we do is to print the current position to standard output. This is entirely optional but is
included as both homage to the original TRON (remember TRace ON discussed earlier?) and for a
demonstration of remote execution, shown in the next section.

The heart of this method is the second statement in checkCollision(), and it provides a more
extensive example of “Lambdas in action” when used with the new Java 8 Stream API (http://
download.java.net/jdk8/docs/api/java/util/stream/package-summary.html). Let’s take it apart to
get a better idea of how this statement checks for a collision and if appropriate, stops the game.

The new Stream API enables us to create a stream from a collection—in this case, our list of
walls—and perform certain operations on it. We do so by creating a stream pipeline, passing the
manipulated stream from one operation to the next.

We start with filter(). In this example, we’ve provided a Lambda expression that can be used to
filter “in or out” a particular entry, and the Stream API does the work of applying the filter to each
element. Only entries that match will continue through the pipeline and be evaluated further.

There are cases where additional manipulation may be required or desired, and the map() and
reduce() methods (and variations) provide powerful capabilities in several contexts; please see
the official JDK8 documentation for Stream (http://docs.oracle.com/javase/8/docs/api/java/
util/stream/Stream.html) for more information. For this program, however, all we need to do is

http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html
http://download.java.net/jdk8/docs/api/java/util/stream/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

333CHAPTER 11: JavaFX on the Raspberry Pi

determine if our current position has placed us in the same coordinate space as one of our walls.
The forEach() method will take each item that is passed to it via the stream and execute the
supplied Lambda expression; and since that filter only passes a wall through the stream pipeline if
we’ve crashed our light cycle into it, it stops the timer, prints the sad outcome, and shuts down the
program.

Using NetBeans with the Raspberry Pi
If you’re reading this, you’ve made it through the discussion and code and are now ready for the
best part: building your Light Cycle game and running it on your Raspberry Pi! Here are the steps
you’ll need to take to do that:

1. Download the RaspiCycle project from the Apress media site for this book.

2. Start NetBeans 8.

3. From the NetBeans File menu, select Open Project and navigate to the
RaspiCycle project directory. Select the project and click the Open Project
button.

4. Once the project is loaded, right-click on it in NetBeans’ Projects tab and
select Properties.

5. From the Project Properties box, select Run from the Categories menu to the
left. You will see a window similar to that in Figure 11-8.

334 CHAPTER 11: JavaFX on the Raspberry Pi

6. Click the New button to the right of the selected Configuration. Provide a
name for the New Configuration (“remote config” or something similar) and
click the OK button (see Figure 11-9).

Figure 11-8. Selecting Run from the NetBeans Project Properties window

Figure 11-9. Create New Configuration

335CHAPTER 11: JavaFX on the Raspberry Pi

7. Now we must associate a remote JDK with our remote configuration. To
do so, click the combobox labeled Runtime Platform and select the remote
platform that you configured earlier (named Raspberry Pi JDK 8). The Project
Properties should look something like Figure 11-10 at this point. Click the OK
button to save and enable this configuration.

Figure 11-10. Run with Remote Configuration

8. The next and final step is to build and deploy the game! To do so, go to the
Run menu and select Run Project and watch NetBeans’ Output window/
tab. . .while keeping an eye on the Pi’s screen. Figures 11-11/11-12 and
Figures 11-13/14 show what you can expect to see in the NetBeans Output
window and on the Raspberry Pi, respectively.

336 CHAPTER 11: JavaFX on the Raspberry Pi

Figure 11-12. TRace ON!

Figure 11-11. Deploying to the Raspberry Pi directly from NetBeans

Figure 11-13. Light Cycle running!

337CHAPTER 11: JavaFX on the Raspberry Pi

Tip Once you get to this stage, you’ll want to again plug in the USB keyboard and HDMI TV/monitor for the
easiest—and easily most impressive—results!

Figures 11-13 and 11-14 are photos taken of the Raspberry Pi screen in action, and the clarity of
these images would certainly improve with a good screen-capture utility for the Pi! To further whet
your appetite—and to demonstrate that you can easily run the game on your dev machine as well by
simply changing the Configuration under Project Properties ➤ Run, we will close this chapter with
Figure 11-15, an example of the same program running on a MacBook Pro. Developing for the Pi
using JavaFX doesn’t mean it can only run on the Pi, after all!

Figure 11-14. And running...

338 CHAPTER 11: JavaFX on the Raspberry Pi

Figure 11-15. The picture may be clearer, but in reality, it looks the same. Careful with that Light Cycle!

Summary
In this chapter, we’ve taken a tiny computer no larger than a deck of playing cards and transformed
it into a JavaFX gaming machine. Along the way, you’ve gotten acquainted with the Raspberry Pi;
and you’ve learned how to create a bootable SD card and install an operating system to it, how to
configure it for best performance and remote connectivity and give it a fixed network (IP) address,
and how to connect to the Pi from your development machine. You’ve revisited how to install
JDK8/JavaFX8 to both the Raspberry Pi and your dev box and learned how to install and configure
NetBeans on your dev box so it can use the JDK on the Pi as a remote platform for debugging and
execution.

With both your development machine and Raspberry Pi ready for action, you were introduced to the
principles needed to develop a simple but compelling game for the Raspberry Pi using JavaFX and
a few select tools/APIs, including Canvas, GraphicsContext, AnimationTimer, lambdas, and the new
Stream API.

To end the chapter, you saw how to remotely deploy your application from NetBeans to your
Raspberry Pi, all with a click. Now it’s your turn. What will you do next?

339

Chapter 12
JavaFX and Gestures

User interfaces are becoming increasingly less mouse-centric, in favor of multi-touch and even
touchless input. Gestures are one of the ways humans can communicate with machines naturally,
as the latter begin to understand human body language, thanks to complex mathematical algorithms
for gesture recognition.

In this chapter you will learn about two new approaches to gesture recognition: In the first part of
the chapter you will learn about developing multi-touch JavaFX applications using a touch-enabled
device such as the Windows 8 Surface, while in the second part of this chapter you will discover an
awesome gadget, the Leap Motion device, that will allow a touchless approach to develop enhanced
JavaFX applications.

In this chapter the following examples will demonstrate JavaFX’s touch events API and the Leap
Motion Gestures API.

Animating a shape along a path using touch events (Windows 8)	

Touch, rotate and zoom in JavaFX 3D (Windows 8)	

A shooting star using hand and palm gestures (Leap Motion)	

Water ripple effect using fingers and swipe gestures (Leap Motion)	

Before getting into the examples, let’s look at JavaFX’s touch events.

Recognizing Gestures in Your Application
Touch-enabled devices are currently part of our culture. From smart phones to tablets, we find
ourselves immersed in software. In this section you will learn the JavaFX TouchEvent API for
touch-enabled devices. The examples in this section are executed on the Windows 8 surface.

If you are familiar with gestures and gesture programming in general, then you can skip to Table 12-1,
which lists all the gesture events currently supported by JavaFX 8. If you are new to gesture
programming, then first let’s discuss the differences between a MouseEvent and GestureEvent.

340 CHAPTER 12: JavaFX and Gestures

Traditional MouseEvent programming is based on a simple 2D coordinate system aligned with the
pixels of the screen. Typically mouse event handling is oriented toward wherever the mouse is at the
moment of the event. Gestures are slightly different in that they are oriented toward touch points and
their relative motion. A TouchPoint is the location on the screen or device that detects interaction
through physical contact. There can be multiple touch points simultaneously, and each TouchPoint
instance contains information such as X and Y coordinates, GUI component picking, and grouping of
related touch points. Generally touch points are treated in a similar fashion to mouse clicks.

The code for the first example of this chapter provided by Listing 12-1, shows both mouse and touch
point event handling side by side. The example explains what the gesture TouchPoint equivalents are
to various mouse events such as MousePressed, MouseDragged, and MouseReleased.

Touch points are the basis of the more useful gestures such as rotations, scrolls, swipes, and zooms.
These more complex gestures involve multiple touch points and movement or inertia associated with
the touch points. For instance, touching and dragging your finger across a touch screen will simply
register multiple TouchPoint events in a similar fashion to MouseEvent.MOUSE_DRAGGED. However, a
registered TouchPoint followed by a quick swipe to the edge of the device translates to a swipe
gesture. This expands the toolset of the developer by providing a multitude of additional interface
options that generally don’t exist within a standard mouse and keyboard GUI.

Gesture events are enabled for your application in the same manner as all event processing: via
event handlers. Table 12-1 provides a listing of the available Gesture events.

Table 12-1. Gesture Events

Gesture Event Description

ROTATION_STARTED Two touch points recognized, with one touch point initiating a circular movement.

ROTATE Two touch points recognized, with one or both touch points performing a circular
movement.

ROTATION_FINISHED Two touch points recognized, with both touch points halted after performing a circular
movement.

SCROLL_STARTED One or more touch points that have begun to move in a slow horizontal or vertical
sliding movement.

SCROLL One or more touch points that are moving in a slow horizontal or vertical sliding
movement.

SCROLL_FINISHED One or more touch points that have ceased moving in a slow horizontal or vertical
sliding movement.

SWIPE_LEFT One or more touch points that are moving in a quick sliding movement to the left
edge of the screen.

SWIPE_DOWN One or more touch points that are moving in a quick sliding movement to the bottom
edge of the screen.

SWIPE_RIGHT One or more touch points that are moving in a quick sliding movement to the right
edge of the screen.

(continued)

341CHAPTER 12: JavaFX and Gestures

Example: Animating Shapes along a Path using Touch Events
Let’s say you want to allow the user of your application to trace a path within your visual application.
Tracing through a visual presentation is a very natural interaction for humans. A simple example
might be to record the movement of a mouse on the screen and then “play back” the movement
through a smooth JavaFX animation. Listing 12-1 is a complete example of this.

Listing 12-1. Animating a Circle using Touch Events

package jfx8ibe;

import javafx.animation.PathTransition;
import javafx.application.Application;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.*;
import javafx.scene.shape.*;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 *
 * @author cdea
 */
public class TouchEventsWithPaths extends Application {

Gesture Event Description

SWIPE_UP One or more touch points that are moving in a quick sliding movement to the top
edge of the screen.

TOUCH_PRESSED A single touch point recognized.

TOUCH_STATIONARY A single touch point that has remained in the same relative screen location without
movement.

TOUCH_MOVED A single touch point that has moved from a previously recognized TOUCH_PRESSED or
TOUCH_STATIONARY location.

TOUCH_RELEASED A single touch point that has been lifted from the screen.

ZOOM_STARTED Two touch points recognized, initiating a pinch or stretch motion.

ZOOM Two touch points recognized, performing a pinch or stretch motion.

ZOOM_FINISHED Two touch points recognized, with both touch points halted after performing a pinch
or stretch motion.

Table 12-1. (continued)

342 CHAPTER 12: JavaFX and Gestures

 Path onePath = new Path();
 Point2D anchorPt;
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 12 Touch Events with Paths");

 Group root = new Group();
 root.getChildren().add(onePath); // add the path to record events
 Scene scene = new Scene(root, 600, 800, Color.WHITE);
 //Nice colorized gradient for the circle
 RadialGradient gradient1 = new RadialGradient(0,
 .1,
 100,
 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));

 // create a circle to be animated
 Circle circle = new Circle(100, 100, 20, gradient1);
 // add circle to the scene
 root.getChildren().add(circle);
 // animate circle by following the path
 PathTransition pathTransition =
 new PathTransition(Duration.millis(4000), onePath, circle);
 pathTransition.setCycleCount(1);
 pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);

 // once finished clear path
 pathTransition.setOnFinished(actionEvent -> onePath.getElements().clear());

 // starting initial path
 scene.setOnMousePressed((mouseEvent) ->
 startPath(mouseEvent.getX(), mouseEvent.getY())
);

 // dragging creates lineTo objects added to the path
 scene.setOnMouseDragged((mouseEvent) ->
 drawPath(mouseEvent.getX(), mouseEvent.getY()));

 // end the path when mouse released
 scene.setOnMouseReleased(mouseEvent -> endPath(pathTransition));

 primaryStage.setScene(scene);
 primaryStage.show();
 }

343CHAPTER 12: JavaFX and Gestures

 private void startPath(double x, double y) {
 onePath.getElements().clear();
 anchorPt = new Point2D(x, y); // start point in path
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements()
 .add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 }

 private void drawPath(double x, double y) {
 onePath.getElements().add(new LineTo(x, y));
 }

 private void endPath(PathTransition pathTransition) {
 onePath.setStrokeWidth(0);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
 }
} //End Listing 12-1

Running Listing 12-1 will draw and animate a Circle object based on the movement of the mouse.
This will provide a view similar to Figure 12-1.

Figure 12-1. Using mouse or touch gestures to animate a shape along a path

344 CHAPTER 12: JavaFX and Gestures

This circle object is animated along the onePath path using a PathTransition with a 4000
millisecond transition time. The onePath point element list is defined using LineTo objects, which
are built from the x and y coordinates captured from simple mouse event handlers. In this situation
the capture is initiated with the OnMousePressed event, collected by the OnMouseDragged event, and
completed using the OnMouseReleased event.

However, as we mentioned earlier, tracing is a very natural human interaction and is appropriately
done with the hands. If you are running this on a touch-compliant screen device, you can easily use
the JavaFX touch event support to enhance your tracing application. Touch events, like all Gesture
events, have first-class event handling in JavaFX 8. If a GUI component supports Mouse events, then
it will also support Gesture events. The best part is that Mouse and Gesture events coexist nicely
within a single application. Rather than replace the current Mouse event handlers, we will match each
Mouse event handler with its equivalent Touch event. The equivalent to MousePressed is TouchPressed,
so add the following code to Listing 12-1. Add it in the start() method just after the existing
scene.setOnMousePressed() handler.

scene.setOnTouchPressed((touchEvent) ->
 startPath(touchEvent.getTouchPoint().getX(),
 touchEvent.getTouchPoint().getY()));

This snippet demonstrates that the location information for all Gesture events is accessible through
the TouchPoint object.

The equivalent to MouseDragged is TouchMoved, so add the following code to Listing 12-1 in the
start() method just after the existing scene.setOnMouseDragged() handler:

scene.setOnTouchMoved((touchEvent) ->
 drawPath(touchEvent.getTouchPoint().getX(),
 touchEvent.getTouchPoint().getY()));

The equivalent to MouseReleased is TouchReleased, so add the following code to Listing 12-1.
Place it in the start() method just after the existing scene.setOnMouseReleased() handler.

scene.setOnTouchReleased(touchEvent -> endPath(pathTransition));

As you can see, great care was taken to ensure that usage of Gesture event handling would be as
seamless and natural as using traditional Mouse event handling.

Touch, Rotate, and Zoom in 3D
When we’re manipulating a 3D scene, the most important interactions are typically rotations and
zooming, which are most concerned with moving and changing the orientation of objects or the
camera. Integrating Gesture support into your 3D application is a natural enhancement over the
traditional mouse and keyboard. JavaFX Shape3D objects, whether primitives or custom triangle
meshes, support all Gesture events such as Rotate and Zoom by default.

To demonstrate using gesture events within a JavaFX 3D scene, we will take our TriangleMesh
example from Chapter 9 and extend it with the touchStationary, Rotate, and Zoom gesture events.

345CHAPTER 12: JavaFX and Gestures

Our base TriangleMesh example creates four different pyramid TriangleMesh objects, each added
to a MeshView container to be visible. Each MeshView container is added to a Group node, which is
then added to the 3D scene graph. So let’s say we want to enhance our scene by adding a Rotate
gesture event to each pyramid. A user should be able to touch a pyramid and then rotate it about
the z axis using a rotation gesture. If you read the previous example in this chapter you know that
we need to add an event handler for the Rotate gesture, in this case OnRotate. However, you must
first provide a means to notify your application which onscreen object is intended to rotate, or else
we will rotate the camera perspective. If we stay within the multi-touch paradigm, we will first need
to add an event handler for OnTouchStationary. The OnTouchStationary event indicates to the
application that a single touch has occurred and has remained in the same relative location. This
differentiates the event from OnTouchPressed and OnTouchMoved, which occur immediately when any
touch occurs on the device, whether it is part of a movement gesture or not. Add a private variable:

private Node activeNode = null;

Our strategy is to select an onscreen object as the active Node to be the focus of the subsequent
gestures. The OnTouchStationary event will occur before any OnRotate or OnZoom events, so the
activeNode will be available to those following gesture events. We can use this event to select the
active node by adding the following event handler:

scene.setOnTouchStationary(event -> {
 Node picked = event.getTouchPoint()
 .getPickResult()
 .getIntersectedNode();
 if (null != picked) {
 activeNode = picked;
 } else {
 activeNode = camera;
 }
 event.consume();
}); //End OnTouchStationary

As in our previous touch example, we access the location data via the TouchPoint object. The TouchPoint
object has picking support built, in which automatically gives us access to the intersected Node, which
is to say the on screen object picked. If no object is picked, that is, the touch was not over an onscreen
object, then the camera is set as the activeNode. Now we can add our OnRotate event handler:

scene.setOnRotate(event -> {
 if(null == activeNode)
 activeNode = camera;
 activeNode.setRotationAxis(Rotate.Z_AXIS);
 activeNode.setRotate(activeNode.getRotate() + event.getAngle());
 event.consume();
}); //End OnRotate

Access the rotation value provided by the Rotate gesture using event.getAngle() and add it to
whatever the previous rotation value was for the current Node. This will spin the object on screen.
If the user is touching nothing, then the camera itself is rotated, which will cause the entire scene
to appear to rotate. Figure 12-2 is an example of what your scene may look like when you apply a
rotation gesture to several of the scene objects.

346 CHAPTER 12: JavaFX and Gestures

Note All objects in any scene are technically nodes. However, when picking objects, JavaFX returns a
reference to the MeshView object. Any Group containers are ignored, as a Group container will present its
contained Node objects to the Picking API first, and the Grabbing API will only deliver the TouchPoint
event to the topmost Node (in terms of z-order) on screen.

Figure 12-2. Rotating 3D pyramids using gestures

Now let’s follow the same pattern and give the user the ability to scale the activeNode. This will provide
an effect of enlarging or shrinking the selected node. For this we will leverage the OnZoom event:

scene.setOnZoom(event -> {
 if(null == activeNode)
 activeNode = camera;
 double zoomFactor = event.getZoomFactor();
 zoomFactor *= zoomFactor < 1.0 ? -1 : 1;
 activeNode.setScaleX(activeNode.getScaleX() + zoomFactor/50);
 activeNode.setScaleY(activeNode.getScaleY() + zoomFactor/50);
 activeNode.setScaleZ(activeNode.getScaleZ() + zoomFactor/50);
 event.consume();
});

347CHAPTER 12: JavaFX and Gestures

The Zoom event provides a double ZoomFactor, which is a positive value from 0.0 and up. Values
returned between 0.0 and 1.0 indicate a “pinch” zoom gesture. Values returned higher than 1.0
indicate a “spread” zoom gesture. Here we can use the “pinch” values to negatively scale our object
while the “spread” values can positively scale our object. Figure 12-3 is an example of what your
scene may look like when you apply a zoom gesture to several of the scene objects.

Note Here we are “scaling” our zoom with a fixed integer of 50. This is needed to compensate for the
difference between onscreen coordinates and scaling coordinates. It is common practice when dealing with
3D scenes and can be thought of as a sensitivity variable.

Figure 12-3. Zooming 3D pyramids using gestures

These three event handlers OnTouchStationary, OnRotate and OnZoom have enabled multi-touch
Gesture support in your 3D scene. The effects stack upon each other, as users can rotate and zoom
simultaneously using a combination of “pinch” and “spin” movements with their fingers. Not only
is this type of interaction quite natural to a human but is typically easier than with a mouse and
keyboard solution.

348 CHAPTER 12: JavaFX and Gestures

The Leap software works in Windows, Mac OS X and Linux, and with an initial price of $79.99, was
launched in July 2013 with an initial batch of six hundred thousand units sold around the world.

The company has some introductory videos here: https://www.leapmotion.com/. After you watch
a few of them you will be surprised by the apparently magic performance of the device.

Basically, the Leap will scan your hands, at a very fast rate, and translate your movements and
gestures to the computer in a very precise way, so any Leap-enabled application can be interfaced
directly, without the need of using a mouse, keyboard, or any other physical device.

As a new era of interaction with machines is beginning, many challenges are appearing at the
same time. As users, we’ll need to learn how to interact in 3D environments, performing a whole
new repertoire of gestures, while as developers, we will face the challenge of providing the
software capable of translating accurately those gestures, so new applications will respond
as we expect.

Let’s start by describing the hardware and software provided by Leap Motion, and then we will talk
about the API for developing JavaFX programs with the device, and present two sample applications
to show what is possible to achieve once you have a Leap device in your hands.

The Leap Motion Controller
The Leap Motion Controller (Figure 12-4), also known as the “Leap”, is a small device, 80×30×12 mm,
that is simply connected to your computer through the USB port. It doesn’t require external power.

Figure 12-4. Leap Motion device and its box

https://www.leapmotion.com/

349CHAPTER 12: JavaFX and Gestures

How It Works
Basically, the main hardware of the device consists of three infrared LEDs combined with two
monochromatic infrared (IR) cameras. While the LEDs generate a 3D pattern of dots of IR light,
the cameras scan the reflected data at nearly 300 fps. Everything within a radius of 50 cm will be
scanned and processed. With a resolution of 0.01 mm, data will be analyzed in the host computer by
the Leap Motion software, using a proprietary motion detection algorithm.

Depending on your CPU capabilities and the data analyzed, the range of processing latency goes
from 2 ms to 33 ms.

The best way to find out about the Leap magic is just plugging it on the USB port and installing
the software from https://www.leapmotion.com/setup. A small Leap icon should appear on the
taskbar notification area (Windows) or menu bar (Mac), and it should be green, like the lateral LED
on the device (which should be facing you). Click on it and select the Visualizer for an incredible
visualization of your fingers and hands.

A less fancy application, but more useful for understanding how it works, can be seen by choosing
Settings ➤ Control Panel ➤ Troubleshooting ➤ Diagnostic Visualizer. Once you see a blue grid
over a black background, move your hands and click H to see the menu, N to visualize the hand,
T the fingers, O to draw the gestures, or L to see the latency, and you’ll see displayed something
like Figure 12-5.

Figure 12-5. Leap Motion Diagnostic Visualizer application

https://www.leapmotion.com/setup

350 CHAPTER 12: JavaFX and Gestures

As you can see, the device detects hands, fingers and sharp tools within a 60 cm range and a
120-150 view angle. For these objects, 3D vectors provide position, direction and velocity, all
referred to a right-handed Cartesian coordinate system, whose origin is at the center of the device,
as shown in Figure 12-6. Every time the device scans and processes the available data, a Frame
object is generated, containing lists with the tracked data in that instant (hands, fingers, tools) as
well as a set of basic motion gestures found in the analysis of the last frames (swipe, tap, circles).

Figure 12-6. Coordinate system centered in the device

As you may have noticed, the y-axis positive direction is the opposite of the downward orientation
in most computer graphics systems, including JavaFX. But the fact that the data is referred to the
device position, and not to the screen as we are accustomed to with mouse and touch events,
changes dramatically the way we need to think. Fortunately, the API provides several useful methods
to find where our hands and fingers are pointing at any time.

More complex tasks require an understanding of spatial geometry, including knowledge of terms like
vectors, vector-cross-product and matrix operations.

Getting Started with the Leap SDK
In order to integrate the Leap device events and interact with software applications, Leap Motion
provides an SDK for many programming languages, including Java, in their developer section:
https://developer.leapmotion.com/downloads. Download the SDK for your operating system, and
you’ll get the necessary libraries to get started. These consist of basically the LeapJava.jar and a
bunch of native libraries. The SDK also includes a HelloWorld.java example.

One easy way to integrate these files on your system is by adding the jar to <JAVA_HOME>/jre/lib/ext
on Linux or Windows (or /Library/Java/Extensions on Mac). Then copy the native libraries
(LeapJava.dll, Leap.dll and Leapd.dll for Windows, libLeapJava.dylib and libLeap.dylib for
Mac, libLeapJava.so and libLeap.so for Linux) to the <JAVA_HOME>/bin folder.

Or you can just add the jar to every project as a dependency, and load the native libraries as a VM
argument: -Djava.library.path=<native library path>.

https://developer.leapmotion.com/downloads

351CHAPTER 12: JavaFX and Gestures

Before going any further, please look at the documentation, at:
https://developer.leapmotion.com/documentation/java/index.html, and try for yourself the
HelloWorld.java example. You’ll notice the following:

We need a 	 Controller object, allowing the connection between the Leap device
and the application.

We need a 	 Listener subclass to handle events from the controller.

Gesture tracking is enabled in the 	 onConnect() method.

The main method in this class is 	 onFrame(), a callback method dispatched when
a new Frame with motion tracking data is available. Here we can get lists of
hands, fingers or tools, and several vectors with their position, orientation and
velocity.

If gestures are enabled, we’ll also get a list of the gestures found, based on the 	
analysis of the last frames. Also, you will know the status of the gesture: whether
it has just begun, is progressing, or has ended.

Creating a Shooting Star
One thing you may have discovered throughout this book is the care we must put in mixing the
so-called JavaFX thread with other non-JavaFX threads. At this point, it will be evident for you that
the Leap Listener subclass is a non-JavaFX thread, handling events at a very high rate.

In order to bring these events to a JavaFX thread, we will use ObjectProperty<T> objects in the
Listener subclass to store the desired values on every frame, and then we’ll implement their
ObservableValue<T> methods to expose the values. In the JavaFX class, we’ll implement a
ChangeListener<T> to listen to any change, and by using Platform.runLater() we will put the task of
rendering these changes on the JavaFX scene graph on a JavaFX thread.

Listing 12-2 shows a basic Leap Listener subclass, with an observable object (point) to track where
a hand is pointing on the screen. If the hands() list is not empty (there is one or more) and we have
a valid screen, with the first hand and the first screen, we get a vector from the intersect() method,
with the intersection between the screen and a ray projecting from the specified palm position along
the specified hand direction. Coordinates are scaled to screen resolution, in pixels.

Listing 12-2. Simple Listener Subclass

package jfx8ibe;

import com.leapmotion.leap.*;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.value.ObservableValue;
import javafx.geometry.Point2D;

https://developer.leapmotion.com/documentation/java/index.html

352 CHAPTER 12: JavaFX and Gestures

/**
 * Chapter 12. JavaFX and Leap Motion
 * @author jpereda
 */
public class SimpleLeapListener extends Listener {

 private final ObjectProperty<Point2D> point=new SimpleObjectProperty<>();
 public ObservableValue<Point2D> pointProperty(){ return point; }

 @Override
 public void onFrame(Controller controller) {
 Frame frame = controller.frame();
 if (!frame.hands().isEmpty()) {
 Screen screen = controller.locatedScreens().get(0);
 if (screen != null && screen.isValid()){

 Hand hand = frame.hands().get(0);
 if(hand.isValid()){
 Vector intersect = screen.intersect(hand.palmPosition(),
 hand.direction(), true);
 point.setValue(new Point2D(
 screen.widthPixels()*Math.min(1d,Math.max(0d,intersect.getX())),
 screen.heightPixels()*Math.min(1d,Math.max(0d,(1d-intersect.getY())))
));
 }
 }
 }
 }
}

In Listing 12-3 we have the JavaFX class, which uses an instance of our SimpleLeapListener shown
in Listing 12-2. We use a SVGPath node, with a star-like path, to represent a shooting star, helped by
the radial gradient. We listen to changes to the location of the screen where our hand is pointing,
moving the star there, and also rotating it so the black vertex is always pointing to the direction of
movement, as if it was flying.

Listing 12-3. Source Code of the JavaFX Class

package jfx8ibe;

import com.leapmotion.leap.Controller;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Point2D;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.AnchorPane;
import javafx.scene.shape.SVGPath;
import javafx.stage.Stage;

/**
 * Chapter 12. JavaFX and Leap Motion
 * @author jpereda
 */

353CHAPTER 12: JavaFX and Gestures

public class StarLeapFX extends Application {
 private final SimpleLeapListener listener = new SimpleLeapListener();
 private final Controller leapController = new Controller();

 @Override
 public void start(Stage primaryStage) {

 leapController.addListener(listener);
 SVGPath sv=new SVGPath();
 sv.setContent("M 0,44.9 H 123.5 L 23.6,117.5 61.8,0 100,117.5 z");
 sv.setEffect(new DropShadow());
 sv.setStyle("-fx-fill:radial-gradient(center 50% 20%, radius 90%, "
 + "black 0%, black 30%, red 70%, yellow 85%, red 93%, yellow 100%);");
 sv.setTranslateY(302.5);
 final AnchorPane root = new AnchorPane();
 root.setStyle("-fx-background-color:linear-gradient(from 0% 0% to 0% 100%, "
 + "#99fff3 0%, #00ccb4 70%, #10cc00 71%, #0c9900 100%);");
 root.getChildren().add(sv);
 Scene scene = new Scene(root, 800, 600);

 listener.pointProperty().addListener((ov, t, t1) -> {
 Platform.runLater(() -> {
 Point2D d=root.sceneToLocal(t1.getX()-scene.getX()-scene.getWindow().getX(),
 t1.getY()-scene.getY()-scene.getWindow().getY());
 double dx=d.getX(), dy=d.getY();
 if(dx>=0d && dx<=root.getWidth()-sv.getBoundsInParent().getWidth() &&
 dy>=0d && dy<=root.getHeight()-sv.getBoundsInParent().getHeight()){
 double ix=(dx-sv.getTranslateX());
 double iy=(dy-sv.getTranslateY());
 if(ix*ix+iy*iy>50){
 sv.setRotate(Math.toDegrees(Math.PI/2+Math.atan2(iy, ix)));
 }
 sv.setTranslateX(dx);
 sv.setTranslateY(dy);
 }
 });
 });
 primaryStage.setTitle("My flying Shooting Star!");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 @Override
 public void stop(){
 leapController.removeListener(listener);
 }

 public static void main(String[] args) {
 launch(args);
 }
}

Note the change of coordinates: on every frame we detect the screen coordinates, but our star is a
node on the scene, so we have to find its coordinates before any translation.

354 CHAPTER 12: JavaFX and Gestures

Running the Example
Now create a JavaFX project with these two classes, add the Leap dependencies properly, and build
it. Check that you have connected the Leap Motion device (green light status) and run it. Move your
hand, and the “shooting star” should follow the path you describe, rotating accordingly to point to
the direction of movement. Figure 12-7 shows an instant of this flight.

Figure 12-7. Running the shooting star example

Without going into much detail, just take a look at the way both threads work. From Listing 12-2,
point is set with the exact position where the hand is pointing at the screen on every frame. For that,
the screen.intersect() method provides a way to return a vector with these coordinates, based on
the hand position and direction, and the proper scaling to the screen size in pixels:

 private final ObjectProperty<Point2D> point=new SimpleObjectProperty<>();
 public ObservableValue<Point2D> pointProperty(){ return point; }

 @Override
 public void onFrame(Controller controller) {
...
 Vector intersect = screen.intersect(hand.palmPosition(),
 hand.direction(), true);
 point.setValue(new Point2D(
 screen.widthPixels()*Math.min(1d,Math.max(0d,intersect.getX())),
 screen.heightPixels()*Math.min(1d,Math.max(0d,(1d-intersect.getY())))
));
...
 }

355CHAPTER 12: JavaFX and Gestures

On the other side, as we can see in Listing 12-3, we listen to any change in point, so by converting
screen coordinates first to scene coordinates and then to local coordinates of the node, we can
translate it properly, on the JavaFX thread.

listener.pointProperty().addListener((ov, t, t1) -> {
 Platform.runLater(() -> {
 Point2D d=root.sceneToLocal(t1.getX()-scene.getX()-scene.getWindow().getX(),
 t1.getY()-scene.getY()-scene.getWindow().getY());
 double dx=d.getX(), dy=d.getY();
 ...
 sv.setTranslateX(dx);
 sv.setTranslateY(dy);
 }
 });
});

Note The transparent stars have been added to the image in Figure 12-7 to show the described trajectory
of the shooting star, but they are not generated by the ShootingStar example.

Creating a Water Ripple Effect
For the next example, we’ll add the ability to listen to the tip position of any number of fingers.
In Listing 12-4 we have the source code of one single file but two classes, the JavaFX class
WaterLeapFX and the Leap Listener subclass SimpleLeapListener, defined here as a private inner
class of WaterLeapFX.

Listing 12-4. Source Code of the WaterLeapFX Application Class

package jfx8ibe;

import com.leapmotion.leap.*;
import java.awt.AWTException;
import java.awt.GraphicsEnvironment;
import java.awt.Robot;
import java.awt.image.BufferedImage;
import javafx.animation.AnimationTimer;
import javafx.application.*;
import javafx.beans.property.BooleanProperty;
import javafx.beans.property.SimpleBooleanProperty;
import javafx.beans.value.ObservableValue;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.embed.swing.SwingFXUtils;

356 CHAPTER 12: JavaFX and Gestures

import javafx.geometry.Point2D;
import javafx.geometry.Point3D;
import javafx.scene.Scene;
import javafx.scene.image.*;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;
import javafx.stage.StageStyle;

/**
 * Chapter 12. JavaFX and Leap Motion
 * @author jpereda
 */
public class WaterLeapFX extends Application {

 private int original[], water[];
 private short waterMap[];
 private int width, height, halfWidth, halfHeight, size;
 private int oldInd, newInd, mapInd;

 private AnimationTimer timer;
 private long lastTimerCall;

 private final SimpleLeapListener listener = new SimpleLeapListener();
 private final Controller leapController = new Controller();

 @Override
 public void start(Stage primaryStage) {
 Image img=screenSnapshot();
 final ImageView imageView = new ImageView(img);
 width = (int)imageView.getImage().getWidth();
 height = (int)imageView.getImage().getHeight();
 halfWidth=width>>1;
 halfHeight=height>>1;
 size = width * (height+2)*2;
 waterMap = new short[size];
 water = new int[width*height];
 original = new int[width*height];
 oldInd = width;
 newInd = width * (height+3);
 PixelReader pixelReader = imageView.getImage().getPixelReader();
 pixelReader.getPixels(0,0,width,height,
 WritablePixelFormat.getIntArgbInstance(),original, 0,width);

 StackPane root = new StackPane();
 root.getChildren().add(imageView);
 Scene scene = new Scene(root, width, height);
 scene.addEventHandler(KeyEvent.KEY_PRESSED, t1 -> {
 if(t1.getCode() == KeyCode.ESCAPE){ Platform.exit(); }
 });

357CHAPTER 12: JavaFX and Gestures

 lastTimerCall = System.nanoTime();
 timer = new AnimationTimer() {
 @Override public void handle(long now) {
 if (now > lastTimerCall + 30_000_000l) {
 imageView.setImage(applyEffect());
 lastTimerCall = now;
 }
 }
 };

 leapController.addListener(listener);
 listener.isSwipe().addListener((ov, b, b1) -> {
 if(b1){ Platform.runLater(() -> waterMap = new short[size]); }
 });
 listener.isDrop().addListener((ov, b, b1) -> {
 if(b1){
 Platform.runLater(() -> {
 for(int i=0; i<listener.points.size(); i++){
 Point3D t1=listener.points.get(i);
 Point2D d=root.sceneToLocal(
 t1.getX()-scene.getX()-scene.getWindow().getX(),
 t1.getY()-scene.getY()-scene.getWindow().getY());
 double dx=d.getX(), dy=d.getY(), dz = Math.abs(t1.getZ());
 int rad=(dz<50)?5:((dz<150)?4:3);
 if(dx>=0d && dx<=root.getWidth() && dy>=0d && dy<=root.getHeight()){
 waterDrop((int)dx,(int)dy,rad);
 }
 }
 });
 }
 });

 primaryStage.initStyle(StageStyle.UNDECORATED);
 primaryStage.setScene(scene);
 primaryStage.show();
 timer.start();
 }

 @Override
 public void stop(){
 timer.stop();
 leapController.removeListener(listener);
 }

 public void waterDrop(int dx, int dy, int rad) {
 for (int j=dy-rad; j<dy+rad; j++) {
 for (int k=dx-rad; k<dx+rad; k++) {
 if (j>=0 && j<height && k>=0 && k<width) {
 waterMap[oldInd+(j*width)+k] += 128;
 }
 }
 }
 }

358 CHAPTER 12: JavaFX and Gestures

 private Image applyEffect() {
 int a,b, i=oldInd;
 oldInd=newInd;
 newInd=i;
 i=0;
 mapInd=oldInd;
 for (int y=0;y<height;y++) {
 for (int x=0;x<width;x++) {
 short data = (short)((waterMap[mapInd-width]+waterMap[mapInd+width]+
 waterMap[mapInd-1]+waterMap[mapInd+1])>>1);
 data -= waterMap[newInd+i];
 data -= data>>4;
 waterMap[newInd+i]=data;
 data = (short)(1024-data);
 a=((x-halfWidth)*data/1024)+halfWidth;
 if (a>=width){ a=width-1; }
 if (a<0){ a=0; }
 b=((y-halfHeight)*data/1024)+halfHeight;
 if (b>=height){ b=height-1; }
 if (b<0){ b=0; }
 water[i++]=original[a+(b*width)];
 mapInd++;
 }
 }
 WritableImage raster = new WritableImage(width, height);
 PixelWriter pixelWriter = raster.getPixelWriter();
 pixelWriter.setPixels(0,0,width,height,
 PixelFormat.getIntArgbInstance(),water, 0,width);
 return raster;
 }

 private Image screenSnapshot() {
 GraphicsEnvironment env = GraphicsEnvironment.getLocalGraphicsEnvironment();
 try {
 Robot robot = new Robot(env.getScreenDevices()[0]);
 final BufferedImage bi = robot.createScreenCapture(env.getMaximumWindowBounds());
 return SwingFXUtils.toFXImage(bi, null);
 } catch (AWTException e) {}
 return null;
 }

 // We define SimpleLeapListener class, the Leap Listener subclass,
 // as a private inner class of WaterLeapFX
 private class SimpleLeapListener extends Listener {

 private final BooleanProperty drop=new SimpleBooleanProperty(false);
 protected final ObservableList<Point3D> points= FXCollections.observableArrayList();
 private final BooleanProperty swipe=new SimpleBooleanProperty(false);

359CHAPTER 12: JavaFX and Gestures

 @Override
 public void onConnect(Controller controller){
 controller.enableGesture(Gesture.Type.TYPE_SWIPE);
 }
 @Override
 public void onFrame(Controller controller) {
 Frame frame = controller.frame();
 Screen screen = controller.locatedScreens().get(0);
 if (screen != null && screen.isValid()){
 drop.set(false);
 points.clear();
 for(Finger finger : frame.fingers()){
 if(finger.isValid()){
 Vector inter = screen.intersect(finger.tipPosition(),
 finger.direction(), true);
 Point3D p = new Point3D(
 screen.widthPixels()*Math.min(1d,Math.max(0d,inter.getX())),
 screen.heightPixels()*Math.min(1d,Math.max(0d,(1d-inter.getY()))),
 finger.tipPosition().getZ());
 points.add(p);
 }
 }

 drop.set(!points.isEmpty());
 swipe.set(false);
 for (Gesture gesture : frame.gestures()) {
 if(gesture.type()==Gesture.Type.TYPE_SWIPE &&
 gesture.state().equals(Gesture.State.STATE_STOP)){
 swipe.set(true);
 break;
 }
 }
 }
 }

 public ObservableValue<Boolean> isDrop() { return drop; }
 public ObservableValue<Boolean> isSwipe() { return swipe; }
 }

 public static void main(String[] args) {
 launch(args);
 }
}

360 CHAPTER 12: JavaFX and Gestures

How It Works
Starting from the private Listener subclass, instead of an ObjectProperty<Point2D> from Listing 12-2,
now we have an ObservableList<Point3D> collection of 3D points (shown in the following code
snippet), to hold all the 2D points coordinates on the screen coming from the fingers detected, plus
their z-distance to the device as a third coordinate. Notice there’s also a BooleanProperty, set to
true after the list has been completed.

private final BooleanProperty drop=new SimpleBooleanProperty(false);
protected final ObservableList<Point3D> points= FXCollections.observableArrayList();

Another BooleanProperty will be used to listen to swipe gestures. For that, we have to enable a
listener for this kind of gesture in the onConnect method.

private final BooleanProperty swipe=new SimpleBooleanProperty(false);

@Override
public void onConnect(Controller controller){
 controller.enableGesture(Gesture.Type.TYPE_SWIPE);
}

Next, in the onFrame method, we track the fingers actually pointing at the screen, filling the list
with the coordinates of the intersection point and the z-distance to the device, and updating the
BooleanProperty at the end. This will serve to trigger a single event, instead of listening to every
change event generated on the list for every finger added.

 @Override
 public void onFrame(Controller controller) {
...
 drop.set(false);
 points.clear();
 for(Finger finger : frame.fingers()){
 if(finger.isValid()){
 Vector inter = screen.intersect(finger.tipPosition(),
 finger.direction(), true);
 Point3D p = new Point3D(
 screen.widthPixels()*Math.min(1d,Math.max(0d,inter.getX())),
 screen.heightPixels()*Math.min(1d,Math.max(0d,(1d-inter.getY()))),
 finger.tipPosition().getZ());
 points.add(p);
 }
 }
 drop.set(!points.isEmpty());

Additionally, we listen for finished swipe gestures:

 swipe.set(false);
 for (Gesture gesture : frame.gestures()) {
 if(gesture.type()==Gesture.Type.TYPE_SWIPE &&
 gesture.state().equals(Gesture.State.STATE_STOP)){

361CHAPTER 12: JavaFX and Gestures

 swipe.set(true);
 break;
 }
 }
 }
}

At the beginning of the JavaFX class, we use the old java.awt.Robot API to take a snapshot of
the user desktop (see the screenSnapshot() method in Listing 12-4), before displaying the stage
over it. With the image generated, we call PixelReader to get an array of colors for every pixel.
We add the image to an ImageViewer. We define the scene with the dimensions of the image, and
create an undecorated stage, so when the application is shown, the user sees an exact copy of
the desktop. In order to allow him or her to quit the application with the Esc key, we enable a
listener to key events:

 Image img=screenSnapshot();
 final ImageView imageView = new ImageView(img);
 width = (int)imageView.getImage().getWidth();
 height = (int)imageView.getImage().getHeight();
...
 PixelReader pixelReader = imageView.getImage().getPixelReader();
 pixelReader.getPixels(0,0,width,height,
 WritablePixelFormat.getIntArgbInstance(),original, 0,width);
...
 StackPane root = new StackPane();
 root.getChildren().add(imageView);
 Scene scene = new Scene(root, width, height);
 scene.addEventHandler(KeyEvent.KEY_PRESSED, t1 -> {
 if(t1.getCode() == KeyCode.ESCAPE){ Platform.exit(); }
 });

Also, we define an AnimationTimer to call the applyEffect method every 30 ms. Note that the now
timestamp is in nanoseconds. The modified new image, returned from applyEffect(), will replace
the older one in the ImageViewer.

lastTimerCall = System.nanoTime();
timer = new AnimationTimer() {
 @Override public void handle(long now) {
 if (now > lastTimerCall + 30_000_000l) {
 imageView.setImage(applyEffect());
 lastTimerCall = now;
 }
 }
};

Now we add the Listener subclass to the controller, so we can start listening to the Leap Motion
device. We’ll track two kinds of events by means of changes in BooleanProperty objects. First we
add a listener to track the Swipe event, which will clear the water effect (resetting waterMap) from
the screen.

362 CHAPTER 12: JavaFX and Gestures

leapController.addListener(listener);
listener.isSwipe().addListener((ov, b, b1) -> {
 if(b1){ Platform.runLater(() -> waterMap = new short[size]); }
});

Second, we add a listener to the finger positions on the screen in order to generate the water effect
over the desktop image. For that we listen only to the BooleanProperty object changes, and when
the value is true (meaning the list of fingers is completed), we perform the waterDrop() call. As in the
previous example, we need to convert the screen coordinates to scene coordinates. We’ll use the
z-coordinate as a magnifying factor for the water drop effect.

listener.isDrop().addListener((ov, b, b1) -> {
 if(b1){
 Platform.runLater(() -> {
 for(int i=0; i<listener.points.size(); i++){
 Point3D t1=listener.points.get(i);
 Point2D d=root.sceneToLocal(
 t1.getX()-scene.getX()-scene.getWindow().getX(),
 t1.getY()-scene.getY()-scene.getWindow().getY());
 double dx=d.getX(), dy=d.getY(), dz = Math.abs(t1.getZ());
 int rad=(dz<50)?5:((dz<150)?4:3);
 if(dx>=0d && dx<=root.getWidth() && dy>=0d && dy<=root.getHeight()){
 waterDrop((int)dx,(int)dy,rad);
 }
 }
 });
 }
});

Note Observe that we use a for loop to iterate through the list. The reason for that is to avoid concurrent
modification exceptions that could occur using functional operations. The list may be changed by the Leap
while it is still being processed on the scene graph.

Finally, we set the style of the stage, show it and start the animation:

 primaryStage.initStyle(StageStyle.UNDECORATED);
 primaryStage.setScene(scene);
 primaryStage.show();

 timer.start();
}

363CHAPTER 12: JavaFX and Gestures

The water-drop effect consists of a distortion added to the pixels in the surroundings of every point
on the list of fingers. The distorted area will be wider if the finger is closer to the Leap device:

public void waterDrop(int dx, int dy, int rad) {
 for (int j=dy-rad; j<dy+rad; j++) {
 for (int k=dx-rad; k<dx+rad; k++) {
 if (j>=0 && j<height && k>=0 && k<width) {
 waterMap[oldInd+(j*width)+k] += 128;
 }
 }
 }
}

The water effect is achieved by creating a second image (water) with PixelWriter starting from
the original image and including the water drops (waterMap) in terms of distorted pixels. A damping
effect is included, so the drops seem to vanish after a certain time. Credit goes to Neil Wallis who
implemented this effect here: http://www.neilwallis.com/projects/java/water/index.php.

 private Image applyEffect() {
...
 for (int y=0;y<height;y++) {
 for (int x=0;x<width;x++) {
 short data = (short)((waterMap[mapInd-width]+waterMap[mapInd+width]+
 waterMap[mapInd-1]+waterMap[mapInd+1])>>1);
 data -= waterMap[newInd+i];
 data -= data>>4;
 waterMap[newInd+i]=data;
 data = (short)(1024-data);
 a=((x-halfWidth)*data/1024)+halfWidth;
 b=((y-halfHeight)*data/1024)+halfHeight;
...
 water[i++]=original[a+(b*width)];
 mapInd++;
 }
 }

When the array water, containing the pixels of the distorted image, is completely generated, we use
the PixelWriter class to transform it into an image (see the applyEffect() method in Listing 12-4).
This will replace the former image in the ImageView, as just described:

 WritableImage raster = new WritableImage(width, height);
 PixelWriter pixelWriter = raster.getPixelWriter();
 pixelWriter.setPixels(0,0,width,height,
 PixelFormat.getIntArgbInstance(),water, 0,width);
 return raster;
}

Running the Example
Copy the listing to a new JavaFX project, add the Leap dependencies, build it and run it with the
Leap connected. Play with your hands, and enjoy the cool effect over your screen like the one shown
in Figure 12-8.

http://www.neilwallis.com/projects/java/water/index.php

364 CHAPTER 12: JavaFX and Gestures

Figure 12-8. Running the water ripple effect example

Try swiping your hand from time to time to clear the screen and start all over again. Finally, press Esc
to quit the application.

More Examples
For more examples of using JavaFX with the Leap Motion device, please refer to online resources
such as http://www.parleys.com/share.html#play/525467d6e4b0a43ac12124ad or
http://jperedadnr.blogspot.com.es/2013/06/leap-motion-controller-and-javafx-new.html. For interaction
with other programming languages, please go to https://developer.leapmotion.com/libraries.

Summary
In the first part of this chapter you were introduced to various Gesture events and the subtle
differences between them. The events you learned included TouchPressed, TouchReleased,
TouchStationary, Rotate and Zoom. You learned how to add Gesture event handling to your JavaFX
application whether it was a traditional 2D or even a 3D scene.

In the second part of this chapter you’ve discovered the impressive Leap Motion device, and the
really nice combination effects that result from using it to enhance JavaFX applications. You began
by learning about the device and how it works; next, you saw briefly its SDK for Java, along with two
sample applications where you learned about listening and processing the data from the Leap device
in one thread, while triggering events in the JavaFX thread to deal with them in the scene graph.

http://www.parleys.com/share.html#play/525467d6e4b0a43ac12124ad
http://jperedadnr.blogspot.com.es/2013/06/leap-motion-controller-and-javafx-new.html
https://developer.leapmotion.com/libraries

365

Chapter 13
References

Does your JavaFX journey stop here? Of course not! In this chapter you will find many useful links
and references that will help you gain further knowledge about all things JavaFX. Toward the end
of this chapter, please be sure to check out the many frameworks, libraries, and projects that use
JavaFX in production today.

Java 8 SDK
As a reminder, JavaFX 8 is built into Java 8 SDK. This means that you only need to download the
Java 8 SDK. The Java 8 software development kit and related information can be downloaded from
the following locations.

Java 8 at Oracle Technology Network: 	
http://oracle.com/java8

Where to download the Java development kit: 	
http://www.oracle.com/technetwork/java/javase/downloads/index.html

What is new in Java 8? 	
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html

Java 8 API Documentation
The Java 8 documentation and guides are at the following links:

Java 8 Javadoc API documentation: 	
http://docs.oracle.com/javase/8

JavaFX 8 Javadoc API documentation: 	
http://docs.oracle.com/javase/8/javafx/api

Java 8 Overview Documentation: 	
http://docs.oracle.com/javase/8/docs/index.html

http://oracle.com/java8
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/8-whats-new-2157071.html
http://docs.oracle.com/javase/8
http://docs.oracle.com/javase/8/javafx/api
http://docs.oracle.com/javase/8/docs/index.html

366 CHAPTER 13: References

IDEs
Integrated development environments are used to enter source code and compile Java code.
The following are popular IDEs used in the industry.

NetBeans: 	
https://netbeans.org

IDEA IntelliJ: 	
http://www.jetbrains.com/idea

Eclipse: 	
https://www.eclipse.org

BlueJ: 	
http://www.bluej.org

Deploying Applications
When deploying JavaFX applications, you’ll want to use the following libraries and tools for
packaging your applications.

	Deploying JavaFX Applications:
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

	Packaging JavaFX Applications as Native Installers:
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native

JavaFX and Maven: 	
http://www.zenjava.com/2012/02/17/javafx-and-maven
http://www.zenjava.com/firstcontact/architecture/setup/install-javafx

JavaFX Gradle Plugin 0.3.0: 	
https://bitbucket.org/shemnon/javafx-gradle

Launch4J: 	
http://launch4j.sourceforge.net

JavaFX 2D Shapes
The Javadoc API documentation includes abundant information about drawing shape nodes onto
the JavaFX scene graph:

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/SVGPath.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/Text.html

https://netbeans.org/
http://www.jetbrains.com/idea
https://www.eclipse.org/
http://www.bluej.org/
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm
http://fxexperience.com/2012/03/packaging-javafx-applications-as-native/
http://www.zenjava.com/2012/02/17/javafx-and-maven/
http://www.zenjava.com/firstcontact/architecture/setup/install-javafx
https://bitbucket.org/shemnon/javafx-gradle
http://launch4j.sourceforge.net/
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Shape.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/SVGPath.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/Text.html

367CHAPTER 13: References

JavaFX Color
The Javadoc API documentation also includes the following information about gradient color fills:

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
LinearGradient.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
RadialGradient.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Blend.html

	http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/
ImagePattern.html

Java 8’s Language Features
New in the Java 8 language are lambda expressions, defender methods, and the stream API. The
following are links to forum discussions, tutorials, and videos covering many of the new language
changes to Java 8.

JavaFX 2.x Builder Classes
Prior to JavaFX 8, the use of builder classes was quite widespread for very good reasons. Certain
bugs, however, caused a conflict with the new Java 8, so the JavaFX teams decided to deprecate
the builder classes. The following links discuss the change:

A discussion on the Oracle JavaFX forum about the reason for deprecating 	
builder classes:
https://community.oracle.com/thread/2544323?tstart=0

An email thread from the Open JDK on the real reason why JavaFX Builder 	
classes were deprecated in Java 8:
http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html

JavaFX Printing
New to Java 8 is the JavaFX printing API. This book does not discuss how to use the printing API,
but the links shown below will help you get started. See the following links for information about
printing with JavaFX:

Javadoc API documentation: 	
http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html

	All the Nodes That Are Fit to Print (Part 1), Phil Race (Oracle):
https://www.youtube.com/watch?v=Ma506QBmj90

	All the Nodes That Are Fit to Print (Part 2), Phil Race (Oracle):
https://www.youtube.com/watch?v=-fEOt7L0v-8

	Introduction by Example: JavaFX 8 Printing, Carl Dea:
http://java.dzone.com/articles/introduction-example-javafx-8

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/effect/Blend.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/ImagePattern.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/ImagePattern.html
https://community.oracle.com/thread/2544323?tstart=0
http://mail.openjdk.java.net/pipermail/openjfx-dev/2013-March/006725.html
http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html
https://www.youtube.com/watch?v=Ma506QBmj90
https://www.youtube.com/watch?v=-fEOt7L0v-8
http://java.dzone.com/articles/introduction-example-javafx-8

368 CHAPTER 13: References

Project Lambda
The core Java 8 added language features are lambda expressions and the stream API. The following
references are road maps, blogs, and videos of topics surrounding project lambda.

	State of the Lambda, Brian Goetz (Oracle):
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html

Q & A with Brian Goetz and Stuart Marks (NightHacking tour hosted by Stephen 	
Chin from Oracle):
https://www.youtube.com/watch?v=vaSv3FjUIVI

	Java 8: Lambdas, Part 2, Ted Neward:
http://www.oracle.com/technetwork/articles/java/architect-lambdas-
part2-2081439.html

	Java 8 Revealed: Lambdas, Default Methods and Bulk Data Operations, Anton
Arhipov:
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-
methods-and-bulk-data-operations

	10 Examples of Lambda Expressions and Streams in Java 8, Javin Paul:
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-
expressions-in-java8.html

	Java SE 8: Lambda Quick Start, Oracle:
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/
Lambda-QuickStart/index.html

	Java 8: Lambda Expression Basics, Blue Sky Workshop:
http://blueskyworkshop.com/topics/Java-Pages/lambda-expression-basics/

	Java 8: Closures, Lambda Expressions Demystified, Frank Hinkel:
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-
expressions.html

Maurice Naftalin’s Lambda FAQ: 	
http://www.lambdafaq.org

Tutorials on Lambda expressions, Oracle: 	
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

	Functional Programming in Java: Harnessing the Power Of Java 8 Lambda
Expressions, Venkat Subramaniam (Pragmatic Bookshelf, 2014.
ISBN-13: 978-1937785468)

	Java 8 Streams, Sven Ruppert (@SvenRuppert) (German version by
EntWickler Press):
http://www.amazon.de/dp/B00HALCBMC/ref=rdr_kindle_ext_tmb
http://www.barnesandnoble.com/w/java-8-streams-sven-
ruppert/1117767060?ean=9783868024982

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
https://www.youtube.com/watch?v=vaSv3FjUIVI
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part2-2081439.html
http://www.oracle.com/technetwork/articles/java/architect-lambdas-part2-2081439.html
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations
http://zeroturnaround.com/rebellabs/java-8-revealed-lambdas-default-methods-and-bulk-data-operations
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-expressions-in-java8.html
http://javarevisited.blogspot.com/2014/02/10-example-of-lambda-expressions-in-java8.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html
http://blueskyworkshop.com/topics/Java-Pages/lambda-expression-basics/
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-expressions.html
http://frankhinkel.blogspot.com/2012/11/java-8-closures-lambda-expressions.html
http://www.lambdafaq.org/
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.amazon.de/dp/B00HALCBMC/ref=rdr_kindle_ext_tmb
http://www.barnesandnoble.com/w/java-8-streams-sven-ruppert/1117767060?ean=9783868024982
http://www.barnesandnoble.com/w/java-8-streams-sven-ruppert/1117767060?ean=9783868024982

369CHAPTER 13: References

Nashorn
Java 8 includes a new scripting engine called Nashorn, which is a new and improved JavaScript
engine for the Java runtime. The engine enables developers to use JavaScript the language to
program applications. The following links and references are articles and blogs describing Nashorn.

	Oracle’s Nashorn: A next Generation JavaScript Engine for the JVM,
Julien Ponge
http://www.oraclejavamagazine-digital.com/javamagazine_
twitter/20140102/?pg=60#pg60

Open JDK’s Nashorn site: 	
https://wiki.openjdk.java.net/display/Nashorn/Main

The Nashorn blog: 	
https://blogs.oracle.com/nashorn

Properties and Bindings
Properties and bindings are essential to JavaFX when synchronizing values between JavaFX nodes.
The following are great resources about read-only properties, listeners, and the role of JavaFX Beans.

	Creating Read-Only Properties in JavaFX, Michael Heinrichs:
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-in-
javafx

	When to Use a ChangeListener or an InvalidationListener, Michael Heinrichs:
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-
invalidationlistener

	The Unknown JavaBean, Richard Bair:
https://weblogs.java.net/blog/rbair/archive/2006/05/the_unknown_jav.html

	Using JavaFX Properties and Binding, Scott Hommel http://docs.oracle.com/
javafx/2/binding/jfxpub-binding.htm

	Creating JavaFX Properties, Michael Heinrichs:
http://blog.netopyr.com/2011/05/19/creating-javafx-properties

	Pro JavaFX 8, (Chapter 4, “Properties and Bindings”), Johan Vos, James Weaver,
Weiqi Gao, Stephen Chin, Dean Iverson, (Apress, 2014):
http://www.apress.com/9781430265740

Open Dolphin: A JavaFX MVC framework (founded, Dierk Koenig of Canoo 	
Engineering):
http://open-dolphin.org/dolphin_website/Home.html

JavaFX MVP framework based on Convention over Configuration and 	
Dependency Injection (founded, Adam Bien):
http://afterburner.adam-bien.com

http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102/?pg=60#pg60
http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102/?pg=60#pg60
https://wiki.openjdk.java.net/display/Nashorn/Main
https://blogs.oracle.com/nashorn
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-in-javafx
http://blog.netopyr.com/2012/02/02/creating-read-only-properties-in-javafx
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-invalidationlistener
http://blog.netopyr.com/2012/02/08/when-to-use-a-changelistener-or-an-invalidationlistener
https://weblogs.java.net/blog/rbair/archive/2006/05/the_unknown_jav.html
http://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm
http://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm
http://blog.netopyr.com/2011/05/19/creating-javafx-properties
http://www.apress.com/9781430265740
http://open-dolphin.org/dolphin_website/Home.html
http://afterburner.adam-bien.com/

370 CHAPTER 13: References

Layouts
Building UIs can be a challenge when it comes to layout. The following references are tutorials and
libraries on how to layout JavaFX nodes.

	Laying Out a User Interface with JavaFX 2.0, Jim Weaver (Oracle):
http://www.oracle.com/technetwork/articles/java/layoutfx-1536156.html

	Working With Layouts in JavaFX, Joni Gordon:
http://docs.oracle.com/javafx/2/layout/jfxpub-layout.htm

	Pro JavaFX 2, Chapter 4, “Building Dynamic UI Layouts in JavaFX”
(Apress, 2012):
http://www.apress.com/9781430268727

	In-Depth Layout and Styling with the JavaFX Scene Builder
http://www.youtube.com/watch?v=7Nu3_5doZK4

Miglayout, Mikael Grev: 	
http://www.miglayout.com

	JavaFX 2.0 EA and MigLayout, Tom Eugelink:
http://tbeernot.wordpress.com/2011/03/11/javafx-2-0-ea-and-miglayout

JavaFX Tools
Building JavaFX you’ll find helpful tools from building GUIs to debugging applications in the links
below:

SceneBuilder: A tool to build JavaFX-based UIs using the FMXL markup 	
language:
http://www.oracle.com/technetwork/java/javafx/tools/index.html

Scenic View tool: A tool to visually debug JavaFX UIs during runtime: 	
http://fxexperience.com/scenic-view

Caspian Styler, Animation Spline Editor, and Derived Color Calculator: 	
http://fxexperience.com/2012/03/announcing-fx-experience-tools

JavaFX Tooling and Runtime for Eclipse and OSGi (founder Tom Schindl): 	
http://www.eclipse.org/efxclipse/index.html
http://tomsondev.bestsolution.at

Firebug lite: A browser-based debugger tool for JavaFX WebView node: 	
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-
firebuglite-or-some-other-debugger

JavaFX 3D Viewer and Importer: 	
https://bitbucket.org/openjfxmirrors/openjfx-8-master-rt/src/
f89b7dc932af7e151387264bb13045650b42d17a/apps/experiments/
3DViewer/?at=default

http://www.oracle.com/technetwork/articles/java/layoutfx-1536156.html
http://docs.oracle.com/javafx/2/layout/jfxpub-layout.htm
http://www.apress.com/9781430268727
http://www.youtube.com/watch?v=7Nu3_5doZK4
http://www.miglayout.com/
http://tbeernot.wordpress.com/2011/03/11/javafx-2-0-ea-and-miglayout
http://www.oracle.com/technetwork/java/javafx/tools/index.html
http://fxexperience.com/scenic-view
http://fxexperience.com/2012/03/announcing-fx-experience-tools
http://www.eclipse.org/efxclipse/index.html
http://tomsondev.bestsolution.at/
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger
https://bitbucket.org/openjfxmirrors/openjfx-8-master-rt/src/f89b7dc932af7e151387264bb13045650b42d17a/apps/experiments/3DViewer/?at=default
https://bitbucket.org/openjfxmirrors/openjfx-8-master-rt/src/f89b7dc932af7e151387264bb13045650b42d17a/apps/experiments/3DViewer/?at=default
https://bitbucket.org/openjfxmirrors/openjfx-8-master-rt/src/f89b7dc932af7e151387264bb13045650b42d17a/apps/experiments/3DViewer/?at=default

371CHAPTER 13: References

IDR Solutions showcasing a PDF viewer for JavaFX: 	
http://blog.idrsolutions.com/2014/03/sneak-preview-new-javafx-pdf-viewer

TestFX: Easy-to-use library for testing JavaFX. TestFX provides: 	
https://github.com/SmartBear/TestFX

Introducing MarvinFx, Hendrik Ebbers: Easily tests JavaFX controls and scenes 	
with a special attention to properties:
http://www.guigarage.com/2013/03/introducing-marvinfx

JemmyFX: Provides an API for testing JavaFX user interface in your application: 	
https://jemmy.java.net/JemmyFXGuide/jemmy-guide.html

Enterprise GUI Frameworks
GUI Frameworks enable developers to develop enterprise applications rapidly. From binding to
MVC framework patterns, the following will help you become productive when developing JavaFX
applications.

Griffon (project lead Andres Almiray, 	 @aalmiray): Griffon is an application
framework for developing desktop applications in the JVM.
http://griffon.codehaus.org

Open Dolphin: A JavaFX MVC framework (founded by Dierk Koenig (@mittie) of
Canoo Engineering):
http://open-dolphin.org/dolphin_website/Home.html

JavaFX MVP framework based on convention over configuration and 	
dependency injection. Founded by Adam Bien of Oracle:
http://afterburner.adam-bien.com

FXForm2 is a library providing automatic JavaFX 2.0 form generation. 	
http://dooapp.github.io/FXForm2

Domain-Specific Languages
A domain-specific language for graphics can help eliminate a lot of boilerplate code, while keeping
code easier to read and manage. The following are DSLs for JavaFX in various computer languages
that run on top of the Java runtime environment.

GroovyFX: A Groovy based domain-specific language to create JavaFX 	
applications.
http://groovyfx.org

ScalaFX: A Scala based domain-specific language to create JavaFX applications. 	
https://code.google.com/p/scalafx

RubyFX: A Ruby based domain-specific language to create JavaFX applications. 	
https://github.com/jruby/jrubyfx

Visage: A JavaFX- based domain-specific language to create JavaFX applications. 	
https://code.google.com/p/visage

http://blog.idrsolutions.com/2014/03/sneak-preview-new-javafx-pdf-viewer
https://github.com/SmartBear/TestFX
http://www.guigarage.com/2013/03/introducing-marvinfx
https://jemmy.java.net/JemmyFXGuide/jemmy-guide.html
http://griffon.codehaus.org/
http://open-dolphin.org/dolphin_website/Home.html
http://afterburner.adam-bien.com/
http://dooapp.github.io/FXForm2
http://groovyfx.org/
https://code.google.com/p/scalafx
https://github.com/jruby/jrubyfx
https://code.google.com/p/visage

372 CHAPTER 13: References

Custom UIs
To customize a user interface such as styling using CSS or Custom controls the following links are
reference guides and blogs.

JavaFX 8 CSS reference: 	
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/
cssref.html

JavaFX FXML introduction: 	
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/
introduction_to_fxml.html

	Styling UI Controls with CSS:
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/
apply-css.htm

	Modena Theme for JavaFX 8, Jasper Potts:
http://fxexperience.com/2013/03/modena-theme-update

	Mastering JavaFX 8 Controls, Hendrik Ebbers (Oracle Press, 2014.
ISBN 9780071833776):
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book

A Mac OSX look and feel called AquaFX with Elements, by Claudine Zillmann 	
(@etteClaudette):
http://aquafx-project.com/project.html

A Windows 8 look and feel called JMetro by Pedro Duque Vieira 	 (@P_Duke):
http://pixelduke.wordpress.com/category/metro
https://github.com/JFXtras/jfxtras-styles

Roku-like or Apple TV-like interface called the Flatter look and feel by Hendrik 	
Ebbers (@hendrikEbbers):
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1

GuiGarage’s collection of JavaFX talks at JavaOne (provided by Parleys): 	
http://www.guigarage.com/2013/12/javafx-at-javaone

	Why Use FXML by Irina Fedortsova of Oracle:
http://docs.oracle.com/javafx/2/fxml_get_started/why_use_fxml.htm

Gerrit Grunwald’s JavaFX 8 examples using many different strategies for making 	
custom controls:
https://github.com/HanSolo/JFX8CustomControls

Enzo: JavaFX gauges, clocks, and many custom controls by Gerrit Grunwald: 	
https://bitbucket.org/hansolo/enzo/wiki/Home

JFXtras: A JavaFX custom controls community: 	
http://jfxtras.org

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javase/8/javafx/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/apply-css.htm
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/apply-css.htm
http://fxexperience.com/2013/03/modena-theme-update
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book
http://aquafx-project.com/project.html
http://pixelduke.wordpress.com/category/metro
https://github.com/JFXtras/jfxtras-styles
http://www.guigarage.com/2013/09/flatter
http://www.guigarage.com/2013/08/boxfx-javaone-preview-1
http://www.guigarage.com/2013/12/javafx-at-javaone
http://docs.oracle.com/javafx/2/fxml_get_started/why_use_fxml.htm
https://github.com/HanSolo/JFX8CustomControls
https://bitbucket.org/hansolo/enzo/wiki/Home
http://jfxtras.org/

373CHAPTER 13: References

ControlsFX: Another custom controls community started and lead by Jonathan 	
Giles of Oracle:
http://fxexperience.com/controlsfx

	JideFX Highlights of the JideFX Beta Release (1 of 3) by David Qiao:
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-
release-1-of-3
http://www.jidesoft.com

	Styling FX Buttons with CSS by Jasper Potts:
http://fxexperience.com/2011/12/styling-fx-buttons-with-css

	JavaFX Custom Control: Nest Thermostat Part 1-3 by Laurent Nicolas
(@MrLoNee):
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-
thermostat-part-1.html

	Do It Yourself: Custom JavaFX Controls by Gerrit Grunwald:
https://www.youtube.com/watch?v=ts_b2mBix3U

Operating System Style Guidelines
In JavaFX there are many ways to develop esthetically pleasing applications; however, there are
times you will need style guidance on the host operating system. The following links are many of the
mainstream operating system style guidelines.

iOS7 style guidelines: 	
https://developer.apple.com/library/ios/documentation/userexperience/
conceptual/MobileHIG/index.html

Android style guidelines: 	
http://developer.android.com/design/style/index.html

Windows 8 style guidelines: 	
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

Ubuntu design guidelines: 	
http://design.ubuntu.com/apps

BlackBerry design guidelines: 	
http://developer.blackberry.com/native/documentation/cascades/
best_practices/uiguidelines

	HTML Styles: CSS by w3schools.com:
http://www.w3schools.com/html/html_css.asp

JavaFX Media
JavaFX contains a powerful media API capable to process audio and video. Here you will find many
links that will assist you in taking advantage of the MediaView and MediaPlayer API. Also, you will be
seeing many links that help you create content.

http://fxexperience.com/controlsfx
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-release-1-of-3
http://www.jidesoft.com/blog/2013/06/10/highlights-of-the-jidefx-beta-release-1-of-3
http://www.jidesoft.com/
http://fxexperience.com/2011/12/styling-fx-buttons-with-css
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-thermostat-part-1.html
http://www.javacodegeeks.com/2014/01/javafx-custom-control-nest-thermostat-part-1.html
https://www.youtube.com/watch?v=ts_b2mBix3U
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/index.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/index.html
http://developer.android.com/design/style/index.html
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://design.ubuntu.com/apps
http://developer.blackberry.com/native/documentation/cascades/best_practices/uiguidelines
http://developer.blackberry.com/native/documentation/cascades/best_practices/uiguidelines
http://www.w3schools.com/html/html_css.asp

374 CHAPTER 13: References

Oracle’s tutorial to incorporating media using JavaFX: 	
http://docs.oracle.com/javase/8/javafx/media-tutorial/overview.htm

	Audio and Video Processing in JavaFX by Brian Burkhalter and David DeHaven
(principal members of the technical staff at Oracle):
https://www.youtube.com/watch?v=jaPUbzfJx2A

	Pro JavaFX 2, Chapter 8, “Media Classes” (Apress, 2014) http://www.apress.
com/9781430268727 Media College:
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html

VP6 encoder for FLV container formats: 	
http://www.wildform.com

Sony Vegas: 	
http://www.sonycreativesoftware.com/vegassoftware

Adobe Premier: 	
http://www.adobe.com/products/premiere.html

Apple’s Final Cut Pro: Movie making software: 	
http://www.apple.com/final-cut-pro

Apple’s iMovie: Movie making software: 	
https://www.apple.com/mac/imovie

Apple’s Quick Time Pro: A media player: 	
http://www.apple.com/quicktime

FFmpeg: a complete, cross-platform solution to record, convert and stream 	
audio and video
http://www.ffmpeg.org

On2 Technologies is acquired by Google: 	
http://en.wikipedia.org/wiki/On2_Technologies

JavaFX on the Web
Many of the following links relate to the powerful WebView node in JavaFX and how to interact with
web services. Also, you will see some new and interesting concepts such as JavaFX in the browsers
using JavaScript.

Overview of the JavaFX WebView component: 	
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/
overview.htm

A talk on HTML5 and JavaFX by Ryan Cuprak (At the Silicon Valley JavaFX 	
User Group):
https://www.youtube.com/watch?v=xdgD7EBX4fw

Other w3c document object model APIs: 	
JDOM: http://www.jdom.org
DOM4J: http://dom4j.sourceforge.net

http://docs.oracle.com/javase/8/javafx/media-tutorial/overview.htm
https://www.youtube.com/watch?v=jaPUbzfJx2A
http://www.apress.com/9781430268727
http://www.apress.com/9781430268727
http://www.mediacollege.com/adobe/flash/video/tutorial/example-flv.html
http://www.wildform.com/
http://www.sonycreativesoftware.com/vegassoftware
http://www.adobe.com/products/premiere.html
http://www.apple.com/final-cut-pro
https://www.apple.com/mac/imovie
http://www.apple.com/quicktime
http://www.ffmpeg.org/
http://en.wikipedia.org/wiki/On2_Technologies
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/overview.htm
http://docs.oracle.com/javase/8/javafx/embedded-browser-tutorial/overview.htm
https://www.youtube.com/watch?v=xdgD7EBX4fw
http://www.jdom.org/
http://dom4j.sourceforge.net/

375CHAPTER 13: References

Bug RT-35757 relating to loading files containing HTML5 with a file extension 	
other than .html:
https://javafx-jira.kenai.com/browse/RT-35757

Converting from w3c Document into a string: 	
http://stackoverflow.com/questions/2567416/document-to-string

Loading a single text file as a string, by Pat Niemeyer: 	
https://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner.html:

Single line read text file with Java by Fuad Saud: 	
https://coderwall.com/p/lyalwg

How to read data from InputStream into String in Java by Lokesh Gupta: 	
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-
into-string-in-java

Java 8 Streams API to read a file by Cay Horstmann: 	
https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-
really-impatient

Firebug Lite: 	
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-
firebuglite-or-some-other-debugger/18396900

Reading JSON using URL Connection: 	
http://docs.oracle.com/javase/tutorial/networking/urls/readingWriting.html

Making a POST request instead of a GET using URL Connection: 	
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-
via-post-method-easily

JavaScript 12 hour am and pm format dates: 	
http://stackoverflow.com/questions/8888491/how-do-you-display-
javascript-datetime-in-12-hour-am-pm-format

OpenWeatherMap: free weather data and forecast API: 	
http://openweathermap.org

Free Geo-location: 	
http://freegeoip.net/json

JSObject Live connect: 	
https://developer.mozilla.org/en-US/docs/LiveConnect/
LiveConnect_Reference/JSObject

DataFX by Johan Vos, Jonathan Giles and Hendrik Ebbers: 	
http://www.javafxdata.org

	Building Rich Client Applications with JSR 356: Java API for WebSocket,
Johan Vos:
http://www.oraclejavamagazine-digital.com/javamagazine_
twitter/20140102#pg67

https://javafx-jira.kenai.com/browse/RT-35757
http://stackoverflow.com/questions/2567416/document-to-string
https://weblogs.java.net/blog/pat/archive/2004/10/stupid_scanner.html
https://coderwall.com/p/lyalwg
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-into-string-in-java
http://howtodoinjava.com/2013/10/06/how-to-read-data-from-inputstream-into-string-in-java
https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-really-impatient
https://weblogs.java.net/blog/cayhorstmann/archive/2013/12/06/java-8-really-impatient
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger/18396900
http://stackoverflow.com/questions/17387981/javafx-webview-webengine-firebuglite-or-some-other-debugger/18396900
http://docs.oracle.com/javase/tutorial/networking/urls/readingWriting.html
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-via-post-method-easily
http://stackoverflow.com/questions/4205980/java-sending-http-parameters-via-post-method-easily
http://stackoverflow.com/questions/8888491/how-do-you-display-javascript-datetime-in-12-hour-am-pm-format
http://stackoverflow.com/questions/8888491/how-do-you-display-javascript-datetime-in-12-hour-am-pm-format
http://openweathermap.org/
http://freegeoip.net/json
https://developer.mozilla.org/en-US/docs/LiveConnect/LiveConnect_Reference/JSObject
https://developer.mozilla.org/en-US/docs/LiveConnect/LiveConnect_Reference/JSObject
http://www.javafxdata.org/
http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102%23pg67
http://www.oraclejavamagazine-digital.com/javamagazine_twitter/20140102%23pg67

376 CHAPTER 13: References

Bck2Brwsr: JavaFX in the browser: 	
http://wiki.apidesign.org/wiki/Bck2Brwsr

Canvas for Bck2Brwsr: 	
http://jayskills.com/blog/2013/01/22/canvas-for-bck2brwsr

JavaFX 3D
The highly anticipated JavaFX 3D API has finally arrived, and is part of the Java 8 release.
The following links are to videos and tutorials that will help enrich your JavaFX 3D skills:

JavaFX 3D Oracle tutorial: 	
http://docs.oracle.com/javafx/8/3d_graphics/jfxpub-3d_graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-
graphics.htm

	JavaFX for Business: Monitoring a Container Terminal at JavaOne 2012,
Dierk Konig and Andres Almiray:
https://www.youtube.com/watch?v=m5NcuWGKnDo

	Modeling, Texturing, and Lighting Mesh Geometry in JavaFX 3D, John
Yoon of Oracle:
http://www.parleys.com/share.html#play/5252e81de4b0c4f11ec576b0

JavaFX 3D: The Third Dimension [CON7810] at JavaOne 2013, Kevin Rushforth 	
and Chien Yang:
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?
SESSION_ID=7810

	Polaris, JavaFX, ControlsFX and F(X)yz supporting NASA Missions, Sean Phillips:
https://www.youtube.com/watch?v=aA5GfWc8ho4

JavaFX Gaming
And you thought JavaFX was only for business. Well, take a look at the following links to see some
fun and interesting games.

	Writing a Tile Engine in JavaFX, Toni Epple:
http://www.javacodegeeks.com/2013/01/writing-a-tile-engine-in-javafx.html

	Tower Defense type game Parts 1-5, Toni Epple:
http://jayskills.com/blog/2013/08/07/tower-defense-in-javafx-2

Angry Duke: Physics-Based Games in JavaFX, Toni Epple: 	
https://www.youtube.com/watch?v=jcSp2E0MTyE

JavaOne 2013 Chess Robot, Jasper Potts: In the JavaOne 2013 technical 	
keynote the Java team demonstrated a robot controlled by Java playing chess.
http://vimeo.com/75368008

http://wiki.apidesign.org/wiki/Bck2Brwsr
http://jayskills.com/blog/2013/01/22/canvas-for-bck2brwsr
http://docs.oracle.com/javafx/8/3d_graphics/jfxpub-3d_graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm
http://docs.oracle.com/javase/8/javafx/graphics-tutorial/javafx-3d-graphics.htm
https://www.youtube.com/watch?v=m5NcuWGKnDo
http://www.parleys.com/share.html#play/5252e81de4b0c4f11ec576b0
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_ID=7810
https://oracleus.activeevents.com/2013/connect/sessionDetail.ww?SESSION_ID=7810
https://www.youtube.com/watch?v=aA5GfWc8ho4
http://www.javacodegeeks.com/2013/01/writing-a-tile-engine-in-javafx.html
http://jayskills.com/blog/2013/08/07/tower-defense-in-javafx-2
https://www.youtube.com/watch?v=jcSp2E0MTyE
http://vimeo.com/75368008

377CHAPTER 13: References

A JavaFX based Game Authoring System, Mirko Sertic: 	
http://www.mirkosertic.de/doku.php/javastuff/javafxgameauthoring

A JavaFX game tutorial Parts 1-6, Carl Dea: 	
http://carlfx.wordpress.com/2012/03/29/javafx-2-gametutorial-part-1

Java & JavaFX Embedded
The following links and references are very cool DIY projects using the combination of Java
embedded and JavaFX. Many of the links below are videos that will help you see the glimpse in the
future of the Internet of Things.

Java 8 Embedded documentation: 	
http://docs.oracle.com/javase/8/javase-embedded.htm

JavaFX based tablet computer: 	
http://j.mp/DukePad
https://wiki.openjdk.java.net/display/OpenJFX/DukePad
http://vimeo.com/76486818

Nao Robot NightHacking: 	
http://nighthacking.com/nao-robot-nighthacking-part-1
http://nighthacking.com/nao-robot-nighthacking-part-2

Pre-interview with Mark Heckler (NightHacking tour hosted, Stephen 	
Chin of Oracle):
https://www.youtube.com/watch?v=LXRp57B58e8

NightHacking with Gerrit Grunwald on Pi, XBee, and Sensor Networks. 	
(NightHacking tour hosted, Stephen Chin of Oracle):
https://www.youtube.com/watch?v=GTr0CtrlNGY

NightHacking with Gerrit Grunwald and Michael Hoffer. (NightHacking tour 	
hosted by Stephen Chin of Oracle):
https://www.youtube.com/watch?v=cWFW4VT8auw

	Beyond Beauty: JavaFX, Parallax, Touch, Gyroscopes and Much More, Angela
Caicedo (Java Evangelist at Oracle) (NightHacking tour hosted by Stephen Chin
of Oracle):
https://www.youtube.com/watch?v=rYt45rs2Bjk

Raspberry Pi Java forum: 	
http://www.raspberrypi.org/phpBB3/viewforum.php?f=81

	How to safely overclock your Raspberry Pi, Eben Upton (Raspberry Pi Founder,
CEO of Raspberry Pi’s engineering team.):
http://www.raspberrypi.org/archives/2008

	End-to-End Raspberry Pi with NetBeans IDE 8, José Pereda (@JPeredaDnr):
http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end

http://www.mirkosertic.de/doku.php/javastuff/javafxgameauthoring
http://carlfx.wordpress.com/2012/03/29/javafx-2-gametutorial-part-1
http://docs.oracle.com/javase/8/javase-embedded.htm
http://j.mp/DukePad
https://wiki.openjdk.java.net/display/OpenJFX/DukePad
http://vimeo.com/76486818
http://nighthacking.com/nao-robot-nighthacking-part-1
http://nighthacking.com/nao-robot-nighthacking-part-2
https://www.youtube.com/watch?v=LXRp57B58e8
https://www.youtube.com/watch?v=GTr0CtrlNGY
https://www.youtube.com/watch?v=cWFW4VT8auw
https://www.youtube.com/watch?v=rYt45rs2Bjk
http://www.raspberrypi.org/phpBB3/viewforum.php?f=81
http://www.raspberrypi.org/archives/2008
http://netbeans.dzone.com/articles/nb-8-raspberry-pi-end2end

378 CHAPTER 13: References

Software and Device Manufacturers
In the last few chapters we discussed Java embedded devices and gesture-based input devices.
The following links reference various manufacturers.

Raspberry Pi: 	
http://www.raspberrypi.org

Arduino: 	
http://www.arduino.cc

BeagleBoard: 	
http://beagleboard.org/Products/BeagleBone

Leap Motion: 	
https://www.leapmotion.com

Microsoft Windows 8 Surface: 	
http://www.microsoft.com/surface/en-us

Oculus Rift: 	
http://www.oculusvr.com

Thalmic Labs: 	
https://www.thalmic.com/en/myo

JavaFX Communities
So you want to get involved with the JavaFX community? Please check out the following links.

Java.net JavaFX community site: 	
https://www.java.net/community/javafx

FXExperience: JavaFX News, Demos and Insight (@fxexperience):
http://fxexperience.com

Nighthacking (@_nighthacking): Hosted by Stephen Chin. A tour around the
world to see everything about Java, JavaFX, and IoT. Amazing live talks.
http://nighthacking.com

Oracle’s JavaFX Community portal to Real World Use Cases, Community 	
Support, Third Party tools and Open JFX:
http://www.oracle.com/technetwork/java/javase/community/index.html

JFXtras: A JavaFX custom controls community: 	
http://jfxtras.org

ControlsFX: Another custom controls community, started by Jonathan 	
Giles of Oracle:
http://fxexperience.com/controlsfx

Feed Cluster: Any and all JavaFX news: 	
http://javafx-blogs.feedcluster.com

http://www.raspberrypi.org/
http://www.arduino.cc/
http://beagleboard.org/Products/BeagleBone
https://www.leapmotion.com/
http://www.microsoft.com/surface/en-us
http://www.oculusvr.com/
https://www.thalmic.com/en/myo
https://www.java.net/community/javafx
http://fxexperience.com/
http://nighthacking.com/
http://www.oracle.com/technetwork/java/javase/community/index.html
http://jfxtras.org/
http://fxexperience.com/controlsfx
http://javafx-blogs.feedcluster.com/

379CHAPTER 13: References

Silicon valley JavaFX user’s group: 	
http://www.meetup.com/svjugfx

Silicon valley JavaFX user’s group Live stream: 	
http://www.ustream.tv/channel/silicon-valley-javafx-user-group

Oracle Forums on JavaFX: 	
https://community.oracle.com/community/developer/english/java/javafx/
javafx_2.0_and_later

Applications
Many of the following links are rich GUI applications written using the JavaFX platform.

Picmodo (founded by Jens Deter, 	 @Jerady): A JavaFX-based picture database
application:
http://www.jensd.de/wordpress/?page_id=22

VWorkflows by Michael Hoffer (@mihosoft): A Scientific Visualization Tool
https://github.com/miho/VWorkflows:
http://mihosoft.eu

eteoBoard: The interactive digital task board. A touch and gesture-based 	
application tool for team collaboration.
http://www.eteoboard.de
http://www.saxsys.de

PiDome client (by John Sirach): The PiDome client is the user interface for the 	
PiDome server. The web interface is primarily used for configuring the server:
https://www.youtube.com/watch?v=KOvmwH2EQqQ
http://pidome.wordpress.com/clients

Object Wheel (Founder and CEO Mike Tallent 	 @abigdreamer): A user-defined
social media platform and RAD framework.
https://en.wikipedia.org/wiki/Objectwheel

FlexGanttFX: Aircraft / Flight Scheduling Application (by Dirk Lemmermann 	
@dlemmermann):
http://www.dlsc.com
https://www.youtube.com/channel/UCFyRQ_euxxPDwlqyhff-x0Q

BaufiFX (by Thomas Bolz): A home finance calculator: 	
http://www.baufifx.de

SnapCode is an IDE and RAD tool for education, entertainment and the 	
enterprise. Report Mill Software.
http://www.reportmill.com/snap

FXMark: JavaFX benchmarking tool by Felix Bembrick (@Lucan1d):
http://justmy2bits.com/2014/02/07/fxmark-javafx-benchmarking-software-
to-be-released-soon

http://www.meetup.com/svjugfx
http://www.ustream.tv/channel/silicon-valley-javafx-user-group
https://community.oracle.com/community/developer/english/java/javafx/javafx_2.0_and_later
https://community.oracle.com/community/developer/english/java/javafx/javafx_2.0_and_later
http://www.jensd.de/wordpress/?page_id=22
https://github.com/miho/VWorkflows
http://mihosoft.eu/
http://www.eteoboard.de/
http://www.saxsys.de/
https://www.youtube.com/watch?v=KOvmwH2EQqQ
http://pidome.wordpress.com/clients
https://en.wikipedia.org/wiki/Objectwheel
http://www.dlsc.com/
https://www.youtube.com/channel/UCFyRQ_euxxPDwlqyhff-x0Q
http://www.baufifx.de/
http://www.reportmill.com/snap
http://justmy2bits.com/2014/02/07/fxmark-javafx-benchmarking-software-to-be-released-soon
http://justmy2bits.com/2014/02/07/fxmark-javafx-benchmarking-software-to-be-released-soon

380 CHAPTER 13: References

Modellus is a freely available application that enables students and teachers 	
(high school and university) to use mathematics to create or explore models
interactively. Modellus was developed by Vitor Duarte Teodoro, João Paulo
Duque Vieira and Pedro Duque Vieira:
http://modellus.co/index.php/en

MIME Browser by Christoph Nahr is a compact JavaFX desktop application for 	
browsing MIME messages that are locally stored in standard EML files.
http://kynosarges.org/MimeBrowser.html

Java/JavaFX Books and Magazines
The following links are newer book titles that relate to the new Java 8 and JavaFX 8 platform.

	Pro JavaFX 8, (Johan Vos, James Weaver, Weiqi Gao, Stephen Chin, Dean
Iverson (Apress, 2014. ISBN: 978-1-4302-6574-0)
http://www.apress.com/9781430265740

	Java 8 Recipes, Josh Juneau (Apress, 2014. ISBN: 978-1-4302-6827-7)
http://www.apress.com/9781430268277

	JavaFX Rich Client Programming on the NetBeans Platform , Paul Anderson and
Gail Anderson (Addison-Wesley Professional, 2014. ISBN: 978-0321927712):
https://blogs.oracle.com/geertjan/entry/new_book_javafx_rich_client
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/
dp/0321927710

	Mastering JavaFX 8 Controls, Hendrik Ebbers (Oracle Press, 2014.
ISBN: 9780071833776):
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book

	Quick Start Guide to JavaFX, J.F. DiMarzio (Oracle Press, 2014.
ISBN: 978-0071808965 by):
http://www.mhprofessional.com/product.php?isbn=0071808965

	Java SE 8 for the Really Impatient, Cay S. Horstmann (Addison-Wesley, 2014.
ISBN 978-0321927767)
http://www.addison-wesley.de/9780321927767.html

Mastering Lambdas, Maurice Naftalin (Oracle Press, 2014. ISBN: 007-1829628): 	
http://www.mhprofessional.com/product.php?isbn=0071829628

	Java Magazine from Oracle:
http://www.oracle.com/technetwork/java/javamagazine/index.html

http://modellus.co/index.php/en
http://kynosarges.org/MimeBrowser.html
http://www.apress.com/9781430265740
http://www.apress.com/9781430268277
https://blogs.oracle.com/geertjan/entry/new_book_javafx_rich_client
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/dp/0321927710
http://www.amazon.com/JavaFX-Client-Programming-NetBeans-Platform/dp/0321927710
http://mhprofessional.com/product.php?isbn=0071833773
http://www.guigarage.com/javafx-book
http://www.mhprofessional.com/product.php?isbn=0071808965
http://www.addison-wesley.de/9780321927767.html
http://www.mhprofessional.com/product.php?isbn=0071829628
http://www.oracle.com/technetwork/java/javamagazine/index.html

381CHAPTER 13: References

Author Blogs
If you are having trouble with this book’s content or code examples, please feel free to comment
or mention issues at the book’s catalog page at apress.com, in the errata tab. If you are totally
stumped, please feel free to contact the book authors via Twitter or their blogs.

Following are the book’s authors with their Twitter accounts and blog URLs:Carl 	
Dea (@carldea):
http://carlfx.wordpress.com

Gerrit Grunwald (@hansolo_):
http://harmoniccode.blogspot.com

Mark Heckler (@MkHeck):
https://blogs.oracle.com/javajungle

José Pereda (@JPeredaDnr):
http://jperedadnr.blogspot.com

Sean Phillips (@SeanMiPhillips):
http://birdasaur.tumblr.com

http://carlfx.wordpress.com/
http://harmoniccode.blogspot.com/
https://blogs.oracle.com/javajungle
http://jperedadnr.blogspot.com/
http://birdasaur.tumblr.com/

A ■
Animation

API, 139
key frames and values, 140–141
timeline, 141–142

AquaFX, 153
Arduino board

Due (front), 270
Uno (front and back), 269–270
USB cable, 270–271

Arduino IDE
bill of materials, 277
blink sketch, 276
code files, sketches, 275
Fritzing, 277
installation, 274
jSSC, 283–284
Linux Setup, 274
Mac OS X Setup, 274
photocell sketch, testing, 280–281
security warning, 274
Serial Monitor, 282
serial port, 273
serial reading, 282–283
Sketch Photocell.ino, 278–279
tinkering, 278
Windows installation, 271
working process, 279–280

B ■
Background process

classes, 118
createWorker() convenience method, 120
demonstration, 118–119
GUI developers, 117
messages and progress, 120

output, 120
rebinding task, 121

Blink, 215
Bootable SD Card

creation steps, 307
NOOBS download, 308
SD Association

Formatter tool, 307–308
BorderPane layout. See Layouts
BoxFX project, 153

C ■
Custom UIs, 372–373

custom controls
“extend Region” approach, 182
LED (see Light-emitting diode (LED))
Skin.class, 182

JavaFX CSS (see JavaFX CSS)
Scene Builder

FXML, 171
javafx.fxml.FXMLLoader class, 172
tool, 170–171

theming
AquaFX, 153
BoxFX project, 153
getStylesheets().add(String URL)

method, 155
JavaFX CSS themes, 153–154
JMetro, 153
look-and-feel

themes, 151–152, 157, 160–161
Modena theme, 153
pseudo-class selectors, 153
setUserAgentStylesheet(String URL)

method, 154–155
Sky look and feel, 153
switching themes, 156–157

Index

383

D ■
Deploying JavaFX applications, 366
3D, gestures

active node, 345
description, 344
OnTouchStationary, 345
OnZoom event, 346
rotation, 345–346
TriangleMesh, 345
zooming, 347

Domain-specific languages (DSLs), 371
Drawing lines

dash offset property value, 37
DrawingLines.java

source code, 33–34, 36
getStrokeDashArray().add() method, 36
lambda expressions, 37
stroke color, width and line cap, 36

Drawing shapes
complex shape, 39–42
cubic curve, 42–43
donut shape, 45–46
drawing rectangles, 37–38
ice cream cone, 44
JavaFX API, 38
JavaFX’s Shape API, 37
smile shape, 45

Drawing text
capabilities, 53
changing text fonts, 56–57
DrawingText.java, 54–55
the font() method, 58
drop shadow and

reflection effects, 58
Java 8’s lambda syntax, 58
JavaFX node, 53
Java inheritance hierarchy, 53
text node’s baseline (x, y)

coordinate position, 55

E ■
EDA. See Event-driven

architecture (EDA)
Event-driven architecture (EDA), 183

F ■
Fixed network (IP) address configuration

wired networking, 310–311
wireless networking, 311–312

G ■
Gestures

3D, 344–347
events, 339–341
MouseEvent, 340
touch events, 341–344
TouchPoint, 340

Graphics, JavaFX
animation, 139–141
loading images

constructor’s parameters, 124
description, 123
protocol file and HTTP, 125
strategies, 124

NewsTickerPhotoViewer
(see NewsTickerPhotoViewer)

photo viewer application
code listing, 128, 130, 132–133
custom button panel, 138–139
features, 126–127
ImageView, 136
instance variables, 135
OnDragDropped event, 137–138
OnDragOver event, 136
start() method, 135
user instructions, 127

viewing images
creation, 125
description, 123

GUI frameworks, 371

H ■
Hero Picker application, 108–110
HTTP live streaming format (HLS), 185

I ■
Integrated development

environments (IDEs), 271, 366

384 Index

J, K ■
Java 8 API documentation, 365
Java 8 Java Development Kit (JDK)

environment variables, 6–8
installation

complete, 5–6
Destination Folder, 5
Next button, 3
optional features, 3–4
progress bar, 4
security warning, 2

Java 8 language
JavaFX 2.x Builder Classes, 367
JavaFX printing, 367
Nashorn, 369
project lambda, 368

Java 8 SDK, 365
JavaBean class, getter and

setter methods, 74
JavaFX

3D, 376
and Java embedded, 377
books and magazines, 380
Charts API

axes, creation, 289, 293
luxSeries, 296
ObservableList of Series, 294
photocell example, 296–297
pie charts, 289
properties, 294
scene, creation, 295
Serial class, 293
serial.disconnect() method, 296
source code, 289–292
tamMax value, 294–295

communities, 378
do-it-yourself (DIY) skills, 303
functionality

Arduino Test 2.
Photocell&LED, 302–303

CSS File photocell.css, 299–301
LED, 297–298
Photocell.ino, modification, 298
Serial.java, modification, 299

gaming, 376
GUI applications, 379–380

HTML5 content (WebView)
analog clock source code, 225–227
HTML5 analog clock, 224–225
Inkscape and SVG, 228–229
working, 227–228

layout, 370
media, 373–374
operating system style guidelines, 373
properties and bindings, 369
serial communications

ardPort variable, 287–288
disconnect() method, 289
jSSC, 287
parameters, 288–289
Serial class, 285–287

tools, 370–371
Weather Widget

condition, 230–231
source code, 231–235
working, 238–239

WebEngine
HTML DOM content, 217
HTTP POST request, 223–224
JavaScript bridge, 218
JavaScript to Java

communication, 219–220
Java to JavaScript

communication, 218
limitations, 221
one-liner, file reading, 223
org.w3c.dom.Document

(DOM) object, 217
raw XML content, 218
RESTful call requests, 221–222
URL and HttpURLConnection APIs, 220
WebEngine API, 215
web engine’s load() method, 216

WebEvents, 229–230
web view node, 374–375

JavaFX 2D shapes, 366
JavaFX 3D

first-person perspective
keyboard Event Handler, 252
MouseEvent Handler, 253–254

interaction
3D objects, 251
primitives, Mouse Event, 250

385Index

objects, creation, 242
PerspectiveCamera, 243
primitives

cylinder, 243–245
grouped, 248–249
multiple transformation, 247–248
primitives, 249
rotations, 246
transformations, 245

TriangleMesh class
buildPyramid() method, 256–257, 259
custom 3D objects, 255–256
default light, 259–260
DrawMode.FILL, 262–263
fill parameter, 261
MeshView, 261
multiple pyramids, 264
Point Light, 266
pyramids of different colours, 263
Roll Camera!, 264–265
winding and wuthering, 256–259

JavaFX color, 367
JavaFX CSS

CSS class type selectors, 163
CSS File mobile_bottons.css, 166–167
CSS id type selectors, 162
-fx-based styling

properties (rules), 167
node’s styling property, 168
number pad application, 166
rules, 169–170
selector patterns

common selector patterns, 163
pseudo-class selectors, 164

selectors, 162
selector style definition block, 168
smart phone’s number pad, 165
styling properties (rules) limitations, 169

JavaFX fundamentals
drawing lines (see Drawing lines)
drawing shapes, 37
drawing text (see Drawing text)
JavaFX lines (see JavaFX lines)
JavaFX scene graph, 31
painting colors (see Painting colors)

JavaFX Hello World Application
command-line prompt, 23, 25
Netbeans IDE

HelloWorld project, 19–20
Java Platform Manager, 18–19
launch, 17
Main Project, 22
project and categories, 17
Project Location and Project

Folder fields, 18
Project Properties, 20–21

source code
JavaFX Node, 27
JavaFX Scene Graph, 26
main() method, 25–26
overridden start() method, 26
packaging, 27–28

JavaFX lines
geometry, 31
javafx.scene.shape.Shape

Class Properties, 33
monitors and printers, 31
objects, 32
setter methods, 32
standard screen coordinate system, 31–32
the javafx.scene.shape.Line class, 32

JavaFX’s
and gestures (see Gestures)
animation, 341
Shape3D object, 344
thread, 351, 355
touch-enabled device, 339

Java Simple Serial Connector (jSSC), 283–284
JDK8 installation

development machine, 316
Raspberry Pi, 316–318

jSSC. See Java Simple Serial Connector (jSSC)

L ■
Lambda expressions

anonymous inner classes, 62
binding

bidirectional, 80
high-level, 81
JavaFX API packages, 80
low-level, 81

386 Index

JavaFX 3D (cont.)

default methods
aggregate operations, 68
Cat domain model, 68–69
coding, cat interfaces, 73
Java interfaces, 68
tiger and lion classes, 69
virtual extension methods, 68

description, 61
functional interfaces

aggregate operations, 66, 68
vs. imperative languages, 66
Java 8’s functional interfaces, 65

Greek symbol, 61
JavaFX JavaBean, 78
Java™ Programming Language, 62
logon dialog window

description, 82
instructions, 83
source code, JavaFX, 89

properties
JavaFX, 75
read-only, 77
read/writable, 76
unidirectional/bidirectional

binding, 75
property change support

ChangeListener instance, 78–79
InvalidationListener instance, 79
JavaFX property objects, 78

syntax, 64
UI patterns, 74
variable capture, 65

Layouts
BorderPane, 96–97
FlowPane

creation, 96
flow alignment, 96
nodes, 96

GridPane
column constraints, 98, 100
file demonstration, 98
FlowPane layout, styling, 101
horizontal space, 101
in business applications, 97
output, 99
root node, 100
top banner area, 101
UI controls and, 100

GUI applications, 91
HBox

argument constructor, 93
code, 92
java file demonstration, 92
output, 93
rectangles, 93
Shape nodes, 92
working, 92

VBox
description, 94
java file demonstration, 94
output, 94
rectangle child nodes, 95
size, 95

Leap Motion controller
Cartesian coordinate system, 350
description, 348
diagnostic visualizer application, 349
hardware, 348
infrared LEDs, 349
SDK, 350–351
shooting star, 351, 353–355
software, 348
water ripple effect, 355–358, 360–363

LED. See Light-emitting diode (LED)
Light-emitting diode (LED), 297

code, structure, 174
CSS file, 179
initialization code, 177–178
properties, 175–177
region-based custom LED control, 182
resizing, 180
results, 181
structure, 172–173
vector drawing, 173
vector, parts, 174
visualization code, 178

M ■
Media, JavaFX

APIs, 183
audio player, 185 (see also MP3 Player)
event-driven architecture (EDA), 183
EventHandler, 184
media and mediaplayer events, 184–185
video player

387Index

closed-captioning video, 212
media marker events, 213
MediaView node, 211
MPEG-4, 205–206
playing video, 212
source code, 207–210
stage window, 211
VP6 .flv, 206
working process, 211, 213

Modena theme, 153
MP3 player

audio player’s UI, 186
AudioSpectrumListener interface

close button, 205
inbound parameters, 205
visualization, 203–204

cleaning up, 202
close button, 187
custom button panel, creation, 200–201
drag-and-drop support, 202
instance variables, 198–199
media metadata, 203
OnEndOfMedia event, 203
OnReady event, 203
play progress, rewind,

and fast forward, 201–202
progress and seek position slider control, 187
setup container node, visualizations, 200
source code, 187–192
stage window, 199
stop, play, and pause buttons, 186
working process, 198

MPEG-4, 205–206

N ■
Nashorn, 369
NetBeans 8

configuration, 319–320
installation, 319
Raspberry Pi

Create New Configuration, 334
Light Cycle game building steps, 333
Light Cycle running, 336
program running on

MacBook Pro, 337–338

Project Properties box, 333–334
remote configuration, 335
screen in action, 337
TRace ON, 336

Raspberry Pideployment, 336
NetBeans IDE

installation
Check for Updates option, 13
destination directory, 11
drop-down, 11
JDK 8, 12–13
JUnit license agreement, 10
license agreement, 9–10
Next button, 8
progress bar, 14
Run button, 8
setup complete, 15–16
start page, 16–17

JavaFX Hello World Application. JavaFX
Hello World Application

NewsTickerPhotoViewer
button panel, fade in/out transition, 145
createTickerControl()

custom news
ticker control, 146–147

news feed container, 149
repositioning control, 148
rounded rectangular

clip region, 148
scene’s nodes, 148
scroll animation, 150
scroll ticker content, 149–150

definition, 142
enhancements and descriptions, 142–143
photos, fade in/out transition

createWorker() method, 144
ParallelTransition, 143
SequentialTransition, 143

O ■
ObservableList collection class

action code, 111
definition, 108
FXCollections, factory class, 110
ListViews, 108–110

Operating system style guidelines, 373

388 Index

Media, JavaFX (cont.)

P, Q ■
Painting colors

applying text effects, 59
common color fills, 47
description, 47
gradient color, 51
JavaFX, 48
PaintingColors.java, 49–51
radial gradient, 51
reflective cycle gradients, 53
semitransparent gradients, 52–53

R ■
Raspberry Pi

code explanation
calculateDestination()

Method, 331–332
capturing user input, 329
checkCollision() Method, 332
Draw and Play, 330
drawGameGrid() Method, 327
drawWalls() method, 328
forEach() method, 333
Game Grid creation, 327
handleKeyPress() Method, 329
RaspiCycle member variables, 326
runLightCycle() Method, 330–331
TRON Light Cycles game, 331
two-dimensional (2D) points, 327

JDK8 installion, 316–318
models, 306
NetBeans 8 (see NetBeans 8)
preparation, JavaFX

bootable SD card, 307–309
configuration, 309–310
fixed IP address, 310–312
remote connection, 313

RaspiCycle, 320–325
specifications, 306
SSH (see Setting up

Secure Shell (SSH))
RESTful web services, 221
RIA. See Rich Internet applications (RIA)
Rich Internet applications (RIA), 123, 215

S ■
Scalable Vector Graphics (SVG), 215
SDK, 350–351
Setting up Secure Shell (SSH)

connected window, 315
host key warning, 315
PuTTY Configuration

window, 313–314
Shooting star

Listener subclass, 351–352
screen.intersect(), 354
source code,

JavaFX class, 352–353
SVGPath node, 352
trajectory, 354–355

Software and device
manufacturers, 378

Software installation
Java 8 JDK (see Java 8 Java

Development Kit (JDK))
NetBeans IDE (see NetBeans IDE)
operating systems, 1

SSH. See Setting up
Secure Shell (SSH)

SVG. See Scalable Vector Graphics (SVG)

T ■
TableViews

Bosses and Employees
code block, 116
column headers, 117
getPeople() method, 114–115
inner class, 116
ListView control, 111, 115
main GUI code, 113–114
ObservableList clearing, 117
output, 115
Person class, 112

uses, 111
Touch events

circle animation, 341–344
GUI component, 344
start(), 344
with paths, 343

389Index

U ■
UI controls

code, visula separator, 106
context menus, 107
handler code, 103
key combinations, 107
menu bar setup, 105
menus

and menu items, creation, 102
CheckMenuItem, 102
CustomMenuItem, 102
definition, 101
MenuItem class, 102
MenuItem subclasses, 102
RadioMenuItem, 102
save menu items, 102
SeparatorMenuItem, 102

mnemonics, 106–107
radio and separator menu items, 106
working with menus, 103–105

User interfaces (UIs). See Custom UIs

V ■
VP6 .flv, 206

W, X, Y, Z ■
WaterLeapFX

AnimationTimer, 361
BooleanProperty, 360
for loop, 362–363
ImageViewer, 361
onConnect method, 360
onFrame method, 360
PixelReader, 361
PixelWriter, 363
running, 364
source code, 355–359
z-coordinate, 362

WebKit, 215
Windows 8

3D, 344–347
touch events, 341–344

390 Index

 JavaFX 8

Introduction by Example
Second Edition

Carl Dea
Mark Heckler
Gerrit Grunwald
José Pereda
Sean M. Phillips

JavaFX 8: Introduction by Example

Copyright © 2014 by Carl Dea, Mark Heckler, Gerrit Grunwald, José Pereda, and Sean M. Phillips

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6460-6

ISBN-13 (electronic): 978-1-4302-6461-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that
may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Development Editor: James Markham
Technical Reviewer: David Coffin
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: James Compton
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To the Java and JavaFX community.

vii

Contents

About the Authors ��� xvii

About the Technical Reviewer ��� xix

Acknowledgments ��� xxi

Introduction ��� xxiii

Chapter 1: Getting Started ■ ���1

Installing Required Software ���1

Installing the Java 8 Development Kit ��� 2

Setting Environment Variables ��� 6

Installing the NetBeans IDE ��� 8

Creating a JavaFX Hello World Application ��17

Using the Netbeans IDE ��� 17

Using the Command-Line Prompt �� 23

Walking Through the Code ��25

JavaFX Scene Graph �� 26

JavaFX Node �� 27

Packaging a JavaFX Application �� 27

Summary ���29

viii Contents

Chapter 2: JavaFX Fundamentals ■ ��31

JavaFX Lines ���31

Drawing Lines ���33

Drawing Shapes ��37

Drawing Complex Shapes ���38

A Complex Shape Example �� 39

The Cubic Curve �� 42

The Ice Cream Cone ��� 44

The Smile ��� 45

The Donut �� 45

Painting Colors ��47

An Example of Color �� 47

Gradient Color �� 51

Radial Gradient �� 51

Semitransparent Gradients �� 52

Reflective Cycle Gradients ��� 53

Drawing Text ��53

Changing Text Fonts �� 56

Applying Text Effects ��� 59

Summary ���60

Chapter 3: Lambdas and Properties ■ ��61

Lambda ���62

Lambda Expressions ���63

Syntax �� 63

Variable Capture �� 64

Functional Interfaces ���65

Functional vs� Imperative Languages �� 65

Aggregate Operations �� 66

ixContents

Default Methods ��68

An Example Case: Cats Large and Small ��� 68

Code for the Example �� 69

Explanation of the Code ��� 73

Properties and Binding ��74

UI Patterns ��� 74

Properties �� 74

Types of JavaFX Properties �� 75

JavaFX JavaBean ��� 77

Property Change Support �� 78

Binding ��79

Bidirectional Binding ��� 80

High-level Binding ��� 80

Low-Level Binding ��� 81

A Logon Dialog Example ��82

Login Dialog Source Code �� 83

Explanation of the Code ��� 86

Summary ���89

Chapter 4: Layouts and UI Controls ■ ���91

Layouts ��91

HBox �� 92

VBox ��� 94

FlowPane ��� 96

BorderPane �� 96

GridPane �� 97

UI Controls ���101

Menus �� 101

Creating Menus and Menu Items ��� 102

Invoking a Selected MenuItem �� 103

Example: Working with Menus �� 103

Additional Ways to Select Menus and Menu Items �� 106

x Contents

The ObservableList Collection Class ���108

Working with ListViews ��� 108

Working with TableViews ��111

Generating a Background Process ��117

Summary ���121

Chapter 5: Graphics with JavaFX ■ ��123

Working with Images���123

Loading Images ��� 124

Viewing Images ��� 125

A Photo Viewer Example��126

Photo Viewer Features ��� 127

Photo Viewer User Instructions �� 127

Photo Viewer Code Listing ��� 128

Walking Through the Code ��� 135

Animation ��139

What are Key Values? ��� 140

What are Key Frames? ��� 140

What is a Timeline? �� 141

A News Ticker Example ���142

Adding a Fade in/out Transition to Photos ��� 143

Adding a Fade in/out Transition to the Button Panel�� 145

Creating a News Ticker Control ��� 146

Summary ���150

Chapter 6: Custom UIs ■ ���151

Theming ��151

Applying JavaFX CSS Themes ��� 153

An Example of Switching Themes ��� 156

JavaFX CSS ���162

What Are Selectors? �� 162

How to Define -fx- Based Styling Properties (Rules) ��� 167

Obeying the JavaFX CSS Rules �� 169

xiContents

Scene Builder ��170

Launching Scene Builder ��� 170

FXML �� 171

Loading FXML into a Scene ��� 172

Custom Controls ��172

The LED Custom Control �� 172

Structure of the LED Custom Control Example Code ��� 174

The Properties of the LED Control �� 175

The Initialization Code of the LED Control�� 177

Other Ways to Create a Custom Control��� 182

Summary ���182

Chapter 7: Media with JavaFX ■ ���183

Media Events ���183

Playing Audio ���185

An MP3 Player Example ��186

The Stop, Play, and Pause Buttons �� 186

The Progress and Seek Position Slider Control ��� 187

The Close Button ��� 187

MP3 Audio Player Source Code ��� 187

How It Works �� 198

Playing Video ���205

MPEG-4 �� 205

VP6 �flv ��� 206

A Video Player Example ���206

Video Player Source Code �� 207

How It Works �� 211

Simulating Closed Captioning: Marking a Position in a Video ���212

Closed-Captioning Video Example ��� 212

How It Works �� 213

Summary ���213

xii Contents

Chapter 8: JavaFX on the Web ■ ���215

WebEngine ��215

WebEngine’s load() Method ��� 216

WebEngine’s loadContent() Method �� 217

HTML DOM Content ��� 217

The URL and HttpURLConnection APIs ��� 220

Viewing HTML5 Content (WebView) ��224

Example: An HTML5 Analog Clock ��� 224

Analog Clock Source Code ��� 225

How It Works �� 227

WebEvents ���229

Weather Widget Example ��230

Source Code �� 231

How It Works �� 238

Summary ���240

Chapter 9: JavaFX 3D ■ ��241

Basic 3D Scenes in JavaFX ���241

Primitives ��243

Interacting with Your Scene ��250

Beyond the Basics ���254

Summary ���267

Chapter 10: JavaFX and Arduino ■ ���269

The Arduino Board ���269

The Arduino IDE ���271

Windows Setup �� 271

Mac OS X Setup ��� 274

Linux Setup �� 274

Running the IDE ��� 274

xiiiContents

Serial Reading ���282

Java Simple Serial Connector �� 283

JavaFX, the Charting API, and Sensor Readings ��284

Serial Communications �� 285

The JavaFX Charts API ��� 289

Adding More Functionality ��� 297

Now, What?��303

Summary ���304

Chapter 11: JavaFX on the Raspberry Pi ■ ���305

Preparing the Raspberry Pi for JavaFX ���307

Create a Bootable SD Card �� 307

Configuring the Raspberry Pi ��� 309

Connecting to the Pi Remotely �� 313

Installing JDK8 ��316

Installing JDK8 on Your Development Machine ��� 316

Installing JDK8 on the Raspberry Pi �� 316

Installing and Configuring NetBeans 8 for Raspberry Pi Development �������������������������������������318

Installing NetBeans 8 ��� 319

Configuring NetBeans 8 for the Pi ��� 319

RaspiCycle: The Code ��320

Explanation of the Code ��326

Using NetBeans with the Raspberry Pi ��333

Summary ���338

Chapter 12: JavaFX and Gestures ■ ��339

Recognizing Gestures in Your Application ���339

Example: Animating Shapes along a Path using Touch Events �� 341

The Leap Motion Controller ���348

How It Works �� 349

Getting Started with the Leap SDK �� 350

xiv Contents

Creating a Shooting Star ���351

Running the Example ��� 354

Creating a Water Ripple Effect ��355

How It Works �� 360

More Examples ��364

Summary ���364

Chapter 13: References ■ ���365

Java 8 SDK ��365

Java 8 API Documentation ���365

IDEs ���366

Deploying Applications ��366

JavaFX 2D Shapes ���366

JavaFX Color ��367

Java 8’s Language Features ��367

JavaFX 2�x Builder Classes �� 367

JavaFX Printing �� 367

Project Lambda �� 368

Nashorn ��� 369

Properties and Bindings ��369

Layouts ��370

JavaFX Tools ��370

Enterprise GUI Frameworks ���371

Domain-Specific Languages ���371

Custom UIs ��372

Operating System Style Guidelines ���373

JavaFX Media ��373

JavaFX on the Web ��374

JavaFX 3D ���376

JavaFX Gaming ��376

xvContents

Java & JavaFX Embedded ���377

Software and Device Manufacturers ���378

JavaFX Communities ���378

Applications ���379

Java/JavaFX Books and Magazines ��380

Author Blogs ��381

Index ���383

xvii

About the Authors

Carl P. Dea is currently a senior software engineer. He is a co-author of
Java 7 Recipes, the author of JavaFX 2 Introduction by Example, and
a technical reviewer of Pro JavaFX 2, all from Apress. Carl has been
developing software for over 20 years, for many clients from Fortune
500 companies to nonprofit organizations. He has written software
ranging from mission-critical applications to ecommerce-based Web
applications. His passion for software development started when his
middle school science teacher showed him a TRS-80 computer. Carl
has been using Java since the very beginning, and he has been a huge
JavaFX enthusiast since the early days when it was called F3. His
current software development interests are UI/UX, game programming,
data visualizations, embedded systems, smart phones, AI, and

robotics. When Carl is not working, he and his wife enjoy watching their younger daughter perform
gymnastics. Carl and his wife are also proud of their older daughter, who is currently pursuing her
English degree at the University of Maryland Baltimore County. Carl lives in Pasadena, Maryland,
United States. He blogs at http://carlfx.wordpress.com. Carl is also connected to LinkedIn at
http://www.linkedin.com/in/carldea, and his Twitter handle is @carldea.

Mark Heckler is a Java software architect/engineer with development
experience in numerous environments. He has worked for and with
key players in the manufacturing, emerging markets, retail, medical,
telecom, and financial industries to develop and deliver critical
capabilities on time and on budget. Currently, he works primarily with
large government and commercial customers using Java throughout
the stack and across the enterprise. He also participates in open
source development at every opportunity, being a JFXtras project
committer and developer of DialogFX, MonologFX, co-developer

of Autonomous4j, and more. When Mark isn’t working with Java, he enjoys writing about his
experiences at the Java Jungle website (https://blogs.oracle.com/javajungle), his personal
website (http://www.thehecklers.org), and on Twitter (@MkHeck).

Mark lives with his very understanding wife, three kids, and dog in St. Louis, Missouri, United States.

http://carlfx.wordpress.com
http://www.linkedin.com/in/carldea
https://blogs.oracle.com/javajungle
http://www.thehecklers.org

xviii About the Authors

Gerrit Grunwald is a software engineer with more than ten years
of experience in software development. He has been involved in
development of Java desktop applications and controls. His current
interests include JavaFX, HTML5, and Swing, especially development
of custom controls in these technologies. Gerrit is also interested
in Java-driven embedded technologies like JavaSE Embedded on
Raspberry Pi, i.MX6, BeagleBone Black, CubieBoard2, and similar
devices. He is a true believer in open source software and has
participated in popular projects like JFXtras.org as well as his own
projects (Enzo, SteelSeries Swing, SteelSeries Canvas). Gerrit is an
active member of the Java community, where he founded and leads
the Java User Group Münster (Germany), co-leads the JavaFX and IoT
community at Oracle, and is a JavaOne RockStar and Java Champion.
He is a speaker at conferences and user groups internationally.

Dr. José Pereda, PhD in Structural Engineering, works as an Assistant
Professor in the School of Engineers at the University of Valladolid in
Spain. His passion is related to applying programming to solve real
problems. Working with Java since 1999, he now divides his time
between JavaFX and the Embedded world, developing commercial
applications and open source projects (JFXtras, https://github.com/
jperedadnr), blogging (http://jperedadnr.blogspot.com.es/), tweeting
(@JPeredaDnr), and speaking at conferences (JavaOne, W-JAX, Jfokus).
José lives with his wife and four kids in Valladolid, Spain.

Sean M Phillips is a Java software architect currently working on
ground systems for Space Science missions at the NASA Goddard
Space Flight Center. He has developed embedded systems, along
with modeling and simulation and visualization software for projects
including commercial and military RADAR, heavy manufacturing,
Battlespace Awareness, and Orbital Flight Dynamics. Sean is the lead
developer of F(X)yz (http://birdasaur.github.io/FXyz/), a free
third-party library for JavaFX 3D components and data visualization
tools. Sean enjoys sharing his experiments through blog entries on
various sites including Java.net (https://weblogs.java.net/blogs/
sean.mi.phillips), The NetBeans DZone (http://netbeans.dzone.com/
users/seanmiphillips), and personal media (Twitter @SeanMiPhillips).

Sean lives in Bowie, Maryland, United States, with his very supportive wife Zulma and sons
Sebastian and Sean Alexander.

https://github.com/jperedadnr
https://github.com/jperedadnr
http://jperedadnr.blogspot.com.es/
http://birdasaur.github.io/FXyz/
https://weblogs.java.net/blogs/sean.mi.phillips
https://weblogs.java.net/blogs/sean.mi.phillips
http://netbeans.dzone.com/users/seanmiphillips
http://netbeans.dzone.com/users/seanmiphillips

xix

About the Technical
Reviewer

David Coffin is the author of Expert Oracle and Java Security
(Apress, 2011). Find his recent blogs at http://oraclejavasecure.
blogspot.com. He is an IT analyst working at the Savannah River Site,
a large U.S. Department of Energy facility. For more than 30 years, his
expertise has been in multiplatform network integration and systems
programming. Before coming to the Savannah River Site, he worked
for several defense contractors and served as the technical lead for
office and network computing at the National Aerospace Plane Joint
Program Office at Wright-Patterson Air Force Base in Ohio. As a
perpetual student, he has completed one master’s degree program and
has begun several others. As a family man, he has raised eight children.
Coffin is an athlete and distance swimmer who competes in the middle
of the pack. He is also a classical guitar player, but he’s not quitting
his day job.

http://oraclejavasecure.blogspot.com
http://oraclejavasecure.blogspot.com

xxi

Acknowledgments

I would like to thank my wife, Tracey, my daughters, Caitlin and Gillian, for their loving support and
sacrifices. A special thanks to my daughter Caitlin, who helped with illustrations and brainstorming
fun examples for the first edition. A big thanks to Jim Weaver for being a great mentor and friend.
I would also thank Josh Juneau for his advice and guidance throughout this journey. Thanks also
to David Coffin with his uncanny ability to know my intentions and provide great feedback. Hats off
to my co-authors Gerrit Grunwald, Mark Heckler, José Pereda, and Sean Phillips for their amazing
talents. My co-authors are truly superheroes who came to my rescue to make this book possible.
A huge shout-out to the wonderful people at Apress for their professionalism and support. A special
thanks to Jonathan Gennick for believing in me and whipping me into shape again. Thanks to Jill
Balzano for keeping us on track and getting us across the finish line. Thanks to James Compton for
stepping in for Jonathan G. while things began to heat up. Thanks to all who follow me on Twitter,
especially the topics (hash tags) related to JavaFX, UI/UX, and IoT. Also, thanks to the authors
(Jim Weaver, Weiqi Gao, Stephen Chin, Dean Iverson, and Johan Vos) of the Pro JavaFX book for
allowing me to tech review chapters in the first edition. Thanks also to Stephen Chin and Keith
Combs for heading up the awesome JavaFX User Group. I want to also thank Rajmahendra Hegde
for helping me with the eWidgetFX open source framework effort. Thanks to Hendrik Ebbers for
always wanting to team up with me on talks and fun projects. Most importantly, thanks to all the
past JavaFX 1.x book authors that helped inspire me. Thanks go out to my employer, TurretTech
LLC, and their customers, who make a lot of things possible. Lastly, I want to give a big kudos and
acknowledgment to the people at Oracle who helped me (directly or indirectly) as JavaFX 2.x and 8
were being released: Nandini Ramani, Jonathan Giles, Jasper Potts, Richard Bair, Angela Caicedo,
Stuart Marks, John Yoon, David Grieve, Michael Heinrichs, David DeHaven, Nicolas Lorain, Kevin
Rushforth, Sheila Cepero, Gail Chappell, Cindy Castillo, Scott Hommel, Joni Gordon, Alexander
Kouznetsov, Irina Fedortsova, Dmitry Kostovarov, Alla Redko, Nancy Hildebrandt, and all the Java,
JavaFX, and NetBeans teams involved.

Whether, then, you eat or drink or whatever you do, do all to the glory of God
(1 Corinthians 10:31)

—Carl Dea

xxii Acknowledgments

I would like to thank my wife Kathy and three daughters, Jennifer, Andrea, and Rebekah Heckler, for
their love and support. You inspire me to learn, grow, and reach ever higher; thank you for being your
amazing selves.

I would also like to thank Apress and its team of editors, tech reviewers, and all who had a hand in
making this book possible. You are all simply outstanding, and your dedication has made this book
far more than the “sum of its parts.” Thank you.

—Mark Heckler

First of all, I would like to thank the JavaFX community and especially the guys with whom I have the
pleasure to share the writing of this book, starting with Carl for his kind invitation.

I’d like to thank also the Arduino community, starting with its founders, and the Leap Motion
company for letting me in the developer program.

Finally, this couldn’t have been done with the great support of my (very understanding) family.

—José Pereda

I am very pleased to thank my family, especially my wife Zulma, for their patience and support
throughout this effort, along with so many others.

I’d like to thank Sean Henely for helping shake off my 3D mathematics rust and Jason Arcido for
helping flesh out my 3D example designs.

I also thank Geertjan Wielenga for plugging me into the greater Java community.

Finally, thank you, Carl for this awesome opportunity!

—Sean M. Phillips

	Contents at a Glance
	Contents
	About the Authors
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Installing Required Software
	Installing the Java 8 Development Kit
	Setting Environment Variables
	Installing the NetBeans IDE

	Creating a JavaFX Hello World Application
	Using the Netbeans IDE
	Using the Command-Line Prompt

	Walking Through the Code
	JavaFX Scene Graph
	JavaFX Node
	Packaging a JavaFX Application

	Summary

	Chapter 2: JavaFX Fundamentals
	JavaFX Lines
	Drawing Lines
	Drawing Shapes
	Drawing Complex Shapes
	A Complex Shape Example
	The Cubic Curve
	The Ice Cream Cone
	The Smile
	The Donut

	Painting Colors
	An Example of Color
	Gradient Color
	Radial Gradient
	Semitransparent Gradients
	Reflective Cycle Gradients

	Drawing Text
	Changing Text Fonts
	Applying Text Effects

	Summary

	Chapter 3: Lambdas and Properties
	Lambda
	Lambda Expressions
	Syntax
	Variable Capture

	Functional Interfaces
	Functional vs. Imperative Languages
	Aggregate Operations

	Default Methods
	An Example Case: Cats Large and Small
	Code for the Example
	Explanation of the Code

	Properties and Binding
	UI Patterns
	Properties
	Types of JavaFX Properties
	Read/Writable Properties
	Read-Only Properties

	JavaFX JavaBean
	Property Change Support

	Binding
	Bidirectional Binding
	High-level Binding
	Low-Level Binding

	A Logon Dialog Example
	Login Dialog Source Code
	Explanation of the Code

	Summary

	Chapter 4: Layouts and UI Controls
	Layouts
	HBox
	VBox
	FlowPane
	BorderPane
	GridPane

	UI Controls
	Menus
	Creating Menus and Menu Items
	Invoking a Selected MenuItem
	Example: Working with Menus
	Additional Ways to Select Menus and Menu Items
	Key Mnemonics
	Key Combinations
	Context Menus

	The ObservableList Collection Class
	Working with ListViews

	Working with TableViews
	Generating a Background Process
	Summary

	Chapter 5: Graphics with JavaFX
	Working with Images
	Loading Images
	Viewing Images

	A Photo Viewer Example
	Photo Viewer Features
	Photo Viewer User Instructions
	Photo Viewer Code Listing
	Walking Through the Code
	Current Photo View Area: ImageView
	Drag and Drop: OnDragOver and OnDragDropped
	The OnDragOver Event
	The OnDragDropped Event

	The Custom Button Panel

	Animation
	What are Key Values?
	What are Key Frames?
	What is a Timeline?

	A News Ticker Example
	Adding a Fade in/out Transition to Photos
	Adding a Fade in/out Transition to the Button Panel
	Creating a News Ticker Control

	Summary

	Chapter 6: Custom UIs
	Theming
	Applying JavaFX CSS Themes
	Using the setUserAgentStylesheet(String URL) Method
	Using Scene’s getStylesheets().add(String URL) Method

	An Example of Switching Themes
	The Look N Feel Chooser Example Application Code
	How It Works

	JavaFX CSS
	What Are Selectors ?
	CSS id Type Selectors
	CSS class Type Selectors
	Selector Patterns
	Common Selector Patterns
	Pseudo-Class Selectors

	A Selector Styling Example
	How It Works

	How to Define -fx- Based Styling Properties (Rules)
	Styling a Node with a Selector Style Definition Block
	Styling a Node by Inlining JavaFX CSS Styling Properties
	Styling Properties (rules) Limitations

	Obeying the JavaFX CSS Rules

	Scene Builder
	Launching Scene Builder
	FXML
	Loading FXML into a Scene

	Custom Controls
	The LED Custom Control
	Structure of the LED Custom Control Example Code
	The Properties of the LED Control
	The Initialization Code of the LED Control
	Visualization Code
	The LED Control CSS File
	Resizing the LED Control
	How It Works

	Other Ways to Create a Custom Control

	Summary

	Chapter 7: Media with JavaFX
	Media Events
	Playing Audio
	An MP3 Player Example
	The Stop, Play, and Pause Buttons
	The Progress and Seek Position Slider Control
	The Close Button
	MP3 Audio Player Source Code
	How It Works
	The Audio Player Application’s Instance Variables
	Setting Up the Stage Window
	The Setup Container Node for Visualizations (the Scene.lookup( ) Method)
	Creating a Custom Button Panel
	Play Progress, Rewind, and Fast Forward
	Seeking Backward or Forward in the Media
	Using a Slider Control to Show Play Progress

	Setting Up Drag-and-Drop Support for Audio Files
	Cleaning Up
	Media Metadata
	Playing Media (the OnReady Event)
	Rewinding (the OnEndOfMedia Event)
	Updating the Visualization Using the AudioSpectrumListener Interface
	Quitting (the Close Button)

	Playing Video
	MPEG-4
	VP6 .flv

	A Video Player Example
	Video Player Source Code
	How It Works
	Setting Up the Stage Window
	The MediaView Node
	Playing Video

	Simulating Closed Captioning: Marking a Position in a Video
	Closed-Captioning Video Example
	How It Works

	Summary

	Chapter 8: JavaFX on the Web
	WebEngine
	WebEngine’s load( ) Method
	WebEngine’s loadContent( ) Method
	HTML DOM Content
	Obtaining an org.w3c.dom.Document (DOM) Object
	Using Raw XML Content as a String
	Raw HTML5 Content via the JavaScript Bridge
	Communicating from Java to JavaScript
	Communicating from JavaScript to Java

	The URL and HttpURLConnection APIs
	WebEngine Limitations
	Making RESTful Call Requests
	The HTTP GET Request
	One-liner: Reading a File into a String

	HTTP POST Request

	Viewing HTML5 Content (WebView)
	Example: An HTML5 Analog Clock
	Analog Clock Source Code
	How It Works
	Inkscape and SVG

	WebEvents
	Weather Widget Example
	Source Code
	How It Works

	Summary

	Chapter 9: JavaFX 3D
	Basic 3D Scenes in JavaFX
	A Very Basic 3D Scene Example

	Primitives
	Adding a Primitive Example
	Simple Translate and Rotate Example
	Multiple Primitive Transformation Example
	All Together Now: Grouped Primitives

	Interacting with Your Scene
	Primitive Picking for Primitives
	First-Person Movement Using the Keyboard
	First-Person Camera Movement Using the Mouse

	Beyond the Basics
	Custom 3D Objects using the TriangleMesh class
	“Winding” and Wuthering
	A MeshView to a Fill
	Roll Camera!
	Hit the Lights

	Summary

	Chapter 10: JavaFX and Arduino
	The Arduino Board
	The Arduino IDE
	Windows Setup
	Mac OS X Setup
	Linux Setup
	Running the IDE
	Light Tracking
	Tinkering
	The Arduino Photocell Sketch
	How It Works
	Testing the Sketch

	Serial Reading
	Java Simple Serial Connector

	JavaFX, the Charting API, and Sensor Readings
	Serial Communications
	How It Works

	The JavaFX Charts API
	How It Works
	Running the Example

	Adding More Functionality

	Now, What?
	Summary

	Chapter 11: JavaFX on the Raspberry Pi
	Preparing the Raspberry Pi for JavaFX
	Create a Bootable SD Card
	Configuring the Raspberry Pi
	Configuring a Fixed IP Address
	For Wired Networking (Optional, but STRONGLY RECOMMENDED)
	For Wireless Networking (Optional)

	Connecting to the Pi Remotely
	Setting up Secure Shell (SSH)

	Installing JDK8
	Installing JDK8 on Your Development Machine
	Installing JDK8 on the Raspberry Pi

	Installing and Configuring NetBeans 8 for Raspberry Pi Development
	Installing NetBeans 8
	Configuring NetBeans 8 for the Pi

	RaspiCycle: The Code
	Explanation of the Code
	Using NetBeans with the Raspberry Pi
	Summary

	Chapter 12: JavaFX and Gestures
	Recognizing Gestures in Your Application
	Example: Animating Shapes along a Path using Touch Events
	Touch, Rotate, and Zoom in 3D

	The Leap Motion Controller
	How It Works
	Getting Started with the Leap SDK

	Creating a Shooting Star
	Running the Example

	Creating a Water Ripple Effect
	How It Works
	Running the Example

	More Examples
	Summary

	Chapter 13: References
	Java 8 SDK
	Java 8 API Documentation
	IDEs
	Deploying Applications
	JavaFX 2D Shapes
	JavaFX Color
	Java 8’s Language Features
	JavaFX 2.x Builder Classes
	JavaFX Printing
	Project Lambda
	Nashorn

	Properties and Bindings
	Layouts
	JavaFX Tools
	Enterprise GUI Frameworks
	Domain-Specific Languages
	Custom UIs
	Operating System Style Guidelines
	JavaFX Media
	JavaFX on the Web
	JavaFX 3D
	JavaFX Gaming
	Java & JavaFX Embedded
	Software and Device Manufacturers
	JavaFX Communities
	Applications
	Java/JavaFX Books and Magazines
	Author Blogs

	Index

