
Juneau

US $ 59.99

Shelve in
Programming Languages/Java

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Java 8 Recipes
Java 8 Recipes offers solutions to common programming problems encountered
while developing Java-based applications. Fully updated with the newest features
and techniques available, Java 8 Recipes provides code examples involving
Lambdas, embedded scripting with Nashorn, the new date-time API, stream
support, functional interfaces, and much more. Special emphasis is given to
features such as lambdas that are newly introduced in Java 8. Content is presented
in the popular problem-solution format: Look up the programming problem that
you want to solve. Read the solution. Apply the solution directly in your own code.
Problem solved!

The problem-solution approach sets Java 8 Recipes apart. Java 8 Recipes
is focused less on the language itself and more on what you can do with it that is
useful. The book respects your time by always focusing on a task that you might want
to perform using the language. Solutions come first. Explanations come later. You are
free to crib from the book and apply the code examples directly to your own projects.

SECOND
EDITION

RELATED

9 781430 268277

55999
ISBN 978-1-4302-6827-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author���xli

About the Technical Reviewers���xliii

Acknowledgments�� xlv

Introduction�� xlvii

Chapter 1: Getting Started with Java 8■■ ��1

Chapter 2: New Features of Java 8■■ ���29

Chapter 3: Strings■■ ��49

Chapter 4: Numbers and Dates■■ ���65

Chapter 5: Object-Oriented Java■■ ��97

Chapter 6: Lambda Expressions■■ ���133

Chapter 7: Data Structures and Collections■■ ���153

Chapter 8: Input and Output■■ ���187

Chapter 9: Exceptions and Logging■■ ��207

Chapter 10: Concurrency■■ ��223

Chapter 11: Debugging and Unit Testing■■ ��249

Chapter 12: Unicode, Internationalization, and Currency Codes■■ ������������������������������������263

Chapter 13: Working with Databases■■ ���283

Chapter 14: JavaFX Fundamentals■■ ���331

Chapter 15: Graphics with JavaFX■■ ���405

Chapter 16: Media with JavaFX■■ ��445

■ Contents at a Glance

vi

Chapter 17: JavaFX on the Web■■ ��473

Chapter 18: Nashorn and Scripting■■ ��505

Chapter 19: E-mail■■ ��527

Chapter 20: XML Processing■■ ��537

Chapter 21: Networking ■■ ��553

Chapter 22: Security■■ ���571

Index��579

xlvii

Introduction

The Java programming language was introduced in 1995 by Sun Microsystems. Derived from languages such as
C and C++, Java was designed to be more intuitive and easier to use than older languages, specifically due to its
simplistic object model and automated facilities such as memory management. At the time, Java drew the interest
of developers because of its object oriented, concurrent architecture; its excellent security and scalability; and
because applications developed in the Java language could run on any operating system that contained a Java Virtual
Machine (JVM). Since its inception, Java has been described as a language that allows developers to “write once, run
everywhere” as code is compiled into class files that contain bytecode, and the resulting class files can run on any
compliant JVM. This concept made Java an immediate success for desktop development, which later branched off into
different technological solutions over the years, including development of web-based applications and rich Internet
applications (RIAs). Today, Java is deployed on a broad range of devices, including mobile phones, printers, medical
devices, Blu-ray players, and so on.

The Java platform consists of a hierarchy of components, starting with the Java Development Kit (JDK), which
is composed of the Java Runtime Environment (JRE), the Java programming language, and platform tools that are
necessary to develop and run Java applications. The JRE contains the Java Virtual Machine (JVM), plus the Java
application programming interfaces (APIs) and libraries that assist in the development of Java applications. The JVM
is the base upon which compiled Java class files run and is responsible for interpreting compiled Java classes and
executing the code. Every operating system that is capable of running Java code has its own version of the JVM. To that
end, the JRE must be installed on any system that will be running local Java desktop or stand-alone Java applications.
Oracle provides JRE implementations for most of the major operating systems. Each operating system can have its
own flavor of the JRE. For instance, mobile devices can run a scaled down version of the full JRE that is optimized
to run Java Mobile Edition (ME) and Java SE embedded applications. The Java platform APIs and libraries are a
collection of predefined classes that are used by all Java applications. Any application that runs on the JVM makes
uses the Java platform APIs and libraries. This allows applications to use the functionality that has been predefined
and loaded into the JVM and leaves developers with more time to worry about the details of their specific application.
The classes that comprise the Java platform APIs and libraries allow Java applications to use one set of classes in order
to communicate with the underlying operating system. As such, the Java platform takes care of interpreting the set
of instructions provided by a Java application into operating system commands that are required for the machine on
which the application is being executed. This creates a facade for Java developers to write code against so that they can
develop applications that can be written once and ran on every machine that contains a relevant JVM.

The JVM and the Java platform APIs and libraries play key roles in the lifecycle of every Java application. Entire
books have been written that explore the platform and JVM. This book focuses on the Java language itself, which is
used to develop Java applications, although the JVM and Java platform APIs and libraries are referenced as needed.
The Java language is a robust, secure, and modern object oriented language that can be used to develop applications
to run on the JVM. The Java programming language has been refined over several iterations and it becomes more
powerful, secure, and modern with each new release. This book covers many features of the Java programming
language from those that were introduced in Java 1.0 through those that made their way to the language in Java 8.
In 2014, Oracle Corporation released Java 8, which was another milestone release for the Java ecosystem. Not only was
Java already the most modern, statically typed, object oriented language available for development, but Java 8 adds
important new enhancements to the language, such as lambda expressions, streams processing, and default methods.
JavaFX 8 was also released at the same time, advancing desktop Java applications more than ever. JavaFX 8 can be
used for developing rich desktop and Internet applications using the Java language, or any other language that runs

■ Introduction

xlviii

on the JVM. It provides a rich set of graphical and media user interfaces to develop extraordinary visual applications.
This release is another nice update to the JavaFX platform, adding in features such as the Swing node and the
Print API.

This book covers the fundamentals of Java development, such as installing the JDK, writing classes, and running
applications. It delves into essential topics such as the development of object oriented constructs, exception handling,
unit testing, and localization. The book also provides solutions for desktop application development using the JavaFX,
and some web-based and database solutions. It covers JavaFX 8 in depth and is an essential guide for developers
beginning to use JavaFX 8. This book can be used as a guide for solving problems that ordinary Java developers may
encounter at some point. A broad range of topics is discussed, and the solutions to the problems that are covered
in this book are concise and to the point. If you are a novice Java developer, we hope that this book will help you get
started on your journey to working with one of the most advanced and widely used programming languages available
today. For those of you who have used the Java language for some time, we hope that this book will provide you with
updated material that is new to Java 8 and JavaFX 2.0 so that you can further refine your Java development skills.
We ensure that advanced Java application developers will also learn a thing or two regarding the new features of the
language and perhaps even stumble upon some techniques that were not used in the past. Whatever your skill level,
this book is good to have close at hand as a reference for solutions to those problems that you encounter in your daily
programming.

Who This Book Is For
This book is intended for all those who are interested in learning the Java programming language and/or already know
the language but would like some information regarding the new features included in Java SE 8 and JavaFX 8. Those
who have not yet programmed in the Java language can read this book, and it will allow them to start from scratch
to get up and running quickly. Intermediate and advanced Java developers who are looking to update their arsenal
with the latest features that Java SE 8 and JavaFX 8 make available to them can also read the book to quickly update
and refresh their skill set. Java desktop programmers will find this book useful for its content on developing desktop
applications using the JavaFX API. There are, of course, a myriad of other essential topics that will be useful to Java
developers of any type.

How This Book Is Structured
This book is structured so that it does not have to be read from cover to cover. In fact, it is structured so that developers
can chose which topics they want to read about and jump right to them. Each recipe contains a problem to solve,
one or more solutions to solve that problem, and a detailed explanation of how the solution works. Although some
recipes may build upon concepts that have been discussed in other recipes, they contain the appropriate references
so that the developer can find other related recipes that are beneficial to the solution. The book is designed to allow
developers to get up and running quickly with a solution so that they can be home in time for dinner.

1

Chapter 1

Getting Started with Java 8

In this chapter we present a handful of recipes to help programmers who are new to the Java language, as well as
those having experience in other languages, become accustomed to Java 8. You will learn to install Java 8, and also
install an Interactive Development Environment (IDE) from which you’ll develop applications and experiment with
the solutions provided in this book. You will learn basics of Java such as how to create a class and how to accept
keyboard input. Documentation is often overlooked, but in this chapter you will quickly learn how to create great
documentation for your Java code.

Note■■   Java 8 Recipes is not intended as a complete tutorial. Rather, it covers key concepts of the Java language.
If you are truly new to Java, we recommend buying and reading one of the many Beginning Java books that are also
published by Apress.

1-1. Creating a Development Environment
Problem
You want to install Java and experiment with the language. You’d also like a reasonable IDE to use with it.

Solution
Install Java Development Kit 8 (JDK). That gives you the language and a compiler. Then install the NetBeans IDE to
provide a more productive working environment.

Java Standard Edition (Java SE) is sufficient for most recipes in this book. To download the release, visit the
following page on the Oracle Technology Network (OTN):
 
http://www.oracle.com/technetwork/java/javase/overview/index.html
 

Figure 1-1 shows the Downloads tab, and you can see the Java Platform download link and image prominently
on the page. Next to that link is an image for the NetBeans IDE, which provides the option of downloading the JDK
and NetBeans together. Choose the option that you prefer, download the release for your platform, and run the setup
wizard to install.

http://www.oracle.com/technetwork/java/javase/overview/index.html

Chapter 1 ■ Getting Started with Java 8

2

Note■■   If you chose to only install the Java Platform (JDK) and not NetBeans, you can download NetBeans at a later
time by visiting netbeans.org.

How It Works
The name Java™ is a trademark owned by Oracle Corporation. The language itself is open source, and its evolution is
controlled by a process known as the Java Community Process SM (JCP SM). You can read more about that process at
www.jcp.org.

There are many editions of Java, such as the Mobile Edition (ME) and the Enterprise Edition (EE). Java SE
is the Standard Edition and represents the heart of the language. We’ve built the recipes in this book for Java SE
programmers. Those interested in the development of mobile or embedded applications may be interested in
learning more about Java ME. Similarly, those interested in developing web applications and working with enterprise
solutions may be interested in learning more about Java EE.

Note■■  E nterprise Edition programmers may want to buy and read a copy of Java EE 7 Recipes (Apress, 2013).

There are several good websites that you can visit to learn more about Java and keep up-to-date with the latest on
the platform. A good place to begin for all things Java is the following page on the Oracle Technology Network:
 
http://www.oracle.com/technetwork/java/index.html 

The wealth of resources available from this page can be overwhelming at first, but it’s worth your time to look
around and get passingly familiar with the many links that are available.

One of the links will be to Java SE, which takes you to the page shown earlier in Figure 1-1. It is from there that
you can download Java SE and the NetBeans IDE. Also from there you have access to the official documentation,
to community resources such as forums and newsletters, and to training resources designed to help you build
knowledge in Java and become certified in the language.

Figure 1-1.  Java SE Downloads page on the Oracle Technology Network

http://www.jcp.org/
http://www.oracle.com/technetwork/java/index.html

Chapter 1 ■ Getting Started with Java 8

3

1-2. Getting to “Hello, World”
Problem
You’ve installed Java SE 8 and the NetBeans IDE. Now you want to run a simple Java program to verify that your
installation is working properly.

Solution
Begin by opening the NetBeans IDE. You should see a workspace resembling the one in Figure 1-2. You may see some
projects in the left-hand pane if you’ve already been working on projects within the IDE.

Figure 1-2.  Opening the NetBeans IDE

Chapter 1 ■ Getting Started with Java 8

4

Go to the File menu and select New Project. You’ll see the dialog in Figure 1-3. Choose the Java category, and
then Java Application. Click Next to advance to the dialog shown in Figure 1-4.

Figure 1-3.  Creating a new Java SE project

Chapter 1 ■ Getting Started with Java 8

5

Give your project a name. For the project related to this book, use the name Java8Recipes. Enter that name into
the Project Name text box at the top of the dialog in Figure 1-4.

Then specify the name of your main class in the Create Main Class text box. Give the following name:
 
org.java8recipes.chapter01.recipe1_02.HelloWorld
 

Be sure to that you’ve entered the project name and class name just as we provide them here, because the code
to follow depends upon your doing so. Make sure the Project Name text box specifies Java8Recipes. Make sure the
Create Main Class text box specifies org.java8recipes.chapter01.recipe1_02.HelloWorld.

Tip■■  P ay attention to case, Java is case-sensitive.

Press Finish to complete the wizard and create a skeleton project. You should now be looking at a Java source file.
Skeleton code is generated for you, and your NetBeans IDE window should resemble the one in Figure 1-5.

Figure 1-4.  Naming the project

Chapter 1 ■ Getting Started with Java 8

6

Place your cursor anywhere in the source code pane. Press CTRL-A to select all the skeleton code. Then press
Delete to get rid of it. Replace the deleted code with that from Listing 1-1.

Listing 1-1.  A “Hello, World” Example

package org.java8recipes.chapter01.recipe1_02;
 
/* An object of this class will hold the message. */
class HelloMessage {
 private String message = "";
  
 public HelloMessage() {
 this.message = "Default Message";
 }
  

Figure 1-5.  Viewing the skeleton code generated by NetBeans

Chapter 1 ■ Getting Started with Java 8

7

 public void setMessage (String m) {
 this.message = m;
 }
  
 public String getMessage () {
 return this.message.toUpperCase();
 }
  
}
 
/* The main program begins in this class */
public class HelloWorld {
 
 public static void main(String[] args) {
  
 HelloMessage hm;
 hm = new HelloMessage();
  
 System.out.println(hm.getMessage());
  
 hm.setMessage("Hello, World");
  
 System.out.println(hm.getMessage());
 }
  
}
 

You can find the code in Listing 1-1 as part of our example download for the book. It’s in the file HelloWorld.java,
and you’ll find that file within the NetBeans source package named org.java8recipes.chapter01.recipe1_02.
All recipe solutions of substance throughout this book are in that example download.

Make sure you have pasted (or typed) the code from Listing 1-1. Compile and run the program, and you should
see the following output:
 
run:
DEFAULT MESSAGE
HELLO, WORLD
BUILD SUCCESSFUL (total time: 1 second)
 

This output will appear in a new pane named “Output” that is opened by NetBeans at the bottom of the
IDE window.

How It Works
You can run almost all the solutions in this chapter using the same general technique shown in this recipe. We’ve
been painstakingly detailed for that reason, showing the step-by-step screenshots just this one time.

Chapter 1 ■ Getting Started with Java 8

8

Packages
The solution example begins by creating a Java package:
 
package org.java8recipes.chapter01.recipe1_02;
 

Packages are a way of grouping related classes together into a shared namespace. The idea is to achieve universal
uniqueness by working your way down your organization’s domain name in reverse order. It is also customary to
write package names in all lowercase.

NetBeans will create a directory structure to mimic your package path. In this case, NetBeans created the
following directory path:
 
C:\Users\JonathanGennick\Documents\NetBeansProjects\
Java8Recipes\src\org\java8recipes\chapter01\recipe1_02
 

Following are some things to notice about this path:

The front part is •	 C:\Users\...\NetBeansProjects. NetBeans creates all projects under a
NetbeansProject directory unless you specify otherwise, which you can do from the dialog in
Figure 1-4. Many developers specify shorter paths.

Next is the first occurrence of •	 Java8Recipes. This occurrence corresponds to the project name
you gave when you filled in the Project Name text box from Figure 1-4.

Any source files you create go into the •	 src directory. NetBeans creates other directories at this
level. For example, NetBeans creates a build directory, and then underneath it is a classes
subdirectory to hold your compiled class files.

Last are the directories mirroring the package path that you specify, in this case •	
org\java8recipes\chapter01\recipe1_02. When you compile your code, an identical
structure is created under the build\classes directory. Note that if using another IDE,
you may see differences in the directories that are created.

You do not need to explicitly create a package. If you do not create one, the Java compiler will create one for you,
and give it a name that is hidden from you. We prefer to be explicit, and you should too. Being thoughtful and explicit
about Java package names is de rigueur in the professional setting. Organization, as well as judiciously chosen naming
conventions, is important when developing any significant application.

JavaBeans-Style Classes
Next in the solution example you see a class definition following the JavaBeans pattern. The definition of
HelloMessage follows a pattern that you’ll encounter often in Java programming, and we include it for that reason.
The class is a simple one, capable of holding a single, string value named greeting.

Three methods are defined on the class:

HelloMessage(). This method, also known as the constructor, is named the same as the
class. In this case, it takes no arguments. It’s automatically invoked whenever you create a
new object of the class. Note that this is known as a “no-arg” constructor because it is typed
out within the class, and it takes no arguments. If you do not supply a constructor, the JVM
will supply a default constructor (also takes no arguments) automatically.

setMessage(String). This accessor method begins with the word set. It takes one
parameter. It specifies the message to be returned by the corresponding get method.

getMessage(). This accessor method returns the currently-defined message. In our
example, we choose to uppercase the message.

Chapter 1 ■ Getting Started with Java 8

9

Note■■   Accessor methods are used in JavaBeans classes to access any privately declared class members. In this case,
the private variable identified as message can be accessed using these methods. Accessor methods are more commonly
referred to as “getters” and “setters.”

Methods beginning with set and get are termed as setter and getter methods. The variable message is private to
the class, which means you have no direct access to message from outside of the class.

You’ll see the keyword this used in the class. It is a special keyword in Java used to reference the current object.
Its use is redundant in Listing 1-1, but would be needed if any of the methods happened to create variables of their
own that were also named message.

It is common in Java to mediate access to class variables through setter and getter methods like those in our
example. Those methods represent a contract of sorts with other classes and your main program. Their benefit is
that you can change the storage implementation of HelloMessage however you like. Other code that depends upon
HelloMessage will continue to work properly so long as you maintain the external behavior of setMessage() and
getMessage().

The Main Program
The incantation public static void main(...) is used from within a public class to denote the beginning point of a
Java program. That declaration begins an executable method named main. You must specify one parameter that is an
array of strings, and typically that parameter is defined as String[] args.

When you execute the currently selected class, NetBeans compiles the code to a set of binary files, and then
transfers control to the main() method. That method, in turn, does the following:

	 1.	 Executes HelloMessage hm to create a variable named hm that is capable of holding an
instance of the class HelloMessage. The variable hm is empty at this point.

	 2.	 Invokes new HelloMessage() to create an object of the class by that name. The no-arg
constructor will be executed, and "Default Message" is now the greeting text. The new
object is now stored in the variable hm.

	 3.	 Makes a call to System.out.println() to show that the object’s no-arg constructor
has indeed executed as expected. The greeting "DEFAULT MESSAGE" is displayed in the
“Output” pane.

	 4.	 Sets the message to be the traditional text "Hello, World".

	 5.	 Makes another call to System.out.println() to output the new message that has just
been set. Now you see the greeting "hello, world" added to the “Output” pane.

The pattern in the solution is common in Java programming. The main() method is where execution begins.
Variables are defined, and objects are created using the new operator. Object variables are often set and retrieved using
setter and getter methods.

Tip■■   Command-line apps are passé. System administrators and programmers sometimes write them as utilities, or
to batch-process large amounts of data. But in the main, today’s applications are GUI applications. JavaFX is the way
forward in writing those applications, and you can learn about it in Chapters 14 through 17. Recipe 14-1 provides what is
essentially a “Hello, World” application in GUI form.

Chapter 1 ■ Getting Started with Java 8

10

1-3. Compiling and Executing from the Command-line Interpreter
Problem
You aren’t able to install an IDE, or you don’t want to do so. You want to compile and execute your Java programs from
the command-line.

Solution
Compile your programs using the javac command. Then execute them via the java command.

Begin by making sure you have your JDK’s bin directory in your execution path. You might need to execute a
command such as one of the following.

Windows:
 
path %path%C:\Program Files\Java\jdk1.8.0\bin
 

OS X:
 
export PATH=/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk/Contents/Home/bin
 

Then make sure your CLASSPATH environment variable includes the directory containing your Java code. The
following is an example of setting the environment variable under Windows:
 
set CLASSPATH=<<path-to-my-Java>>
 

Now change your current working directory to be the one corresponding to your project. Recipe 1-2 had you
create a project named Java8Recipes. Change to that project’s directory on a Windows system as follows:
 
cd <path-to-project>\Java8Recipes
 

Descend one level into the src subdirectory:
 
cd src
 

From here, you can issue javac commands to compile any classes in your project. Prepend the appropriate
package name as part of your path leading to each source file to be compiled. Be sure to include the .java extension
after your file name. For example, issue the following command to compile the HelloWorld class from Recipe 1-2.

Windows:
 
javac org\java8recipes\chapter01\recipe1_02\HelloWorld.java
 

OS X:
 
javac org/java8recipes/chapter01/recipe1_02/HelloWorld.java
 

You should now have a .class file in the same directory as your .java file. For example:
 
dir org\java8recipes\chapter01\recipe1_02 /B
 
HelloMessage.class
HelloWorld.class
HelloWorld.java
 

Chapter 1 ■ Getting Started with Java 8

11

Compilation produces two files. One is for HelloMessage, and the other is for the class named HelloWorld
implementing the main() method.

Execute the main() method by issuing the java command to invoke the Java Virtual Machine (JVM). Pass the
fully-qualified class name as a parameter to the command. Qualify the class name by prepending the package name,
but this time use the same dot-notation as used in your source file. For example:
 
java org.java8recipes.chapter1.recipe1_02.HelloWorld
 

Do not specify .class at the end of the command. You are referencing HelloWorld now as a class name, and not
as a file name. You should see the same output as from Recipe 1-2.

Tip■■   One compiles source code. Source code is kept in files, so your operating-system’s file and directory-path
notation is appropriate. One executes a class. A class is an abstract concept in the language, so the language’s
dot-notation becomes appropriate. Keep this distinction in mind to help yourself remember when to use which notation.

How It Works
The first two solution steps are housekeeping steps. You must have the Java compiler and the virtual machine in your
execution path. It’s also necessary for any classes used by your program to be found somewhere along what is termed
the class path. One way to specify the class path is through the CLASSPATH environment variable.

The command java with no c at the end is for executing compiled code. Pass as a parameter the qualified
name of the class containing your main method. The JVM will interpret and execute the byte-code within that class,
beginning from the main method. The JVM will search along the class path for any additionally required classes such
as HelloMessage.

The compiler’s default behavior is to place each generated class file into the same directory as holds the
corresponding source file. You can override that behavior through the -d option. For example:
 
javac -d "<specify-different-location>" "<path-to-project>
\Java8Recipes\src\org\java8recipes\chapter1\recipe1_02\HelloWorld.java"
 

The -d option in this command specifies the same directory as NetBeans is using in our own environment as the
target for holding generated class files. The command also specifies the full path and file name of the source file. Thus,
the command can be executed with the same result regardless of the current working directory.

Tip■■   Configure your system so that your command-line environment has the execution path and class path set
correctly by default. The typical approach in Linux is to put appropriate commands into your .profile or .bash_profile
files. Under Windows you can specify environment variable defaults from the Control Panel applet named System, by
clicking on the Advanced system settings link, and then on the Environment Variables button.

There may be times when you need to specify a custom class path for a specific execution of the JVM. You can do
that through the -cp parameter, as follows:
 
java -cp ".;<path-to-project>\Java8Recipes\build\classes\org\java8recipes\chapter1\recipe1_02"
org.java8recipes.chapter1.recipe1_02.HelloWorld
 

Chapter 1 ■ Getting Started with Java 8

12

This execution will search first in the current working directory (the leading dot in the class path), and then under
the specified package directory corresponding to where NetBeans would place the compiled classes.

Note■■   See Recipe 1-10 for more on configuring your class path.

1-4. Declaring Simple Variables
Problem
You want to create some variables and manipulate data within your program.

Solution
Java implements eight primitive data types. There is also special support for the String class type. Listing 1-2 shows
an example declaration of each. Draw from the example to declare the variables needed in your own application.

Listing 1-2.  Declarations for Primitive and String Types

package org.java8recipes.chapter01.recipe1_04;
 
public class DeclarationsExample {
 public static void main (String[] args) {
 boolean BooleanVal = true; /* Default is false */
  
 char charval = 'G'; /* Unicode UTF-16 */
 charval = '\u0490'; /* Ukrainian letter Ghe(Ґ) */
 
 byte byteval; /* 8 bits, -127 to 127 */
 short shortval; /* 16 bits, -32,768 to 32,768 */
 int intval; /* 32 bits, -2147483648 to 2147483647 */
 long longval; /* 64 bits, -(2^64) to 2^64 - 1 */
 
 float floatval = 10.123456F; /* 32-bit IEEE 754 */
 double doubleval = 10.12345678987654; /* 64-bit IEEE 754 */
 
 String message = "Darken the corner where you are!";
 message = message.replace("Darken", "Brighten");
 }
}
 

Variables are subject to the concept of visibility. Those created in Listing 1-2 are visible from the main() method
after they have been created, and they are deallocated when the main() method ends. They have no “life” beyond the
main() method, and are not accessible from outside of main().

Variables created at the class level are a different story. Such variables can be termed as fields, as in fields of
the class. Use of a field can be restricted to objects of the class in which it is declared, to the package in which it is
declared, or it can be accessible from any class in any package. Listing 1-3 shows some of how to control visibility via
the private and public keywords.

Chapter 1 ■ Getting Started with Java 8

13

Listing 1-3.  Visibility and the Concept of Fields

package org.java8recipes.chapter01.recipe1_04;
 
class TestClass {
 private long visibleOnlyInThisClass;
 double visibleFromEntirePackage;
  
 void setLong (long val) {
 visibleOnlyInThisClass = val;
 }
  
 long getLong () {
 return visibleOnlyInThisClass;
 }
}
 
public class VisibilityExample {
 public static void main(String[] args) {
 TestClass tc = new TestClass();
 tc.setLong(32768);
 tc.visibleFromEntirePackage = 3.1415926535;
 System.out.println(tc.getLong());
 System.out.println(tc.visibleFromEntirePackage);
 }
}
 

Output:
 
32768
3.1415926535
 

Fields are typically tied to an object of a class. Each object of a class holds an instance of each field in the class.
However, you can define so-called static fields that occur just once, and with a single value shared by all objects of the
given class. Listing 1-4 illustrates the difference.

Listing 1-4.  Static Fields

package org.java8recipes.chapter01.recipe1_04;
 
class StaticDemo {
 public static boolean oneValueForAllObjects = false;
}
 
public class StaticFieldsExample {
 public static void main (String[] args) {
 StaticDemo sd1 = new StaticDemo();
 StaticDemo sd2 = new StaticDemo();
 System.out.println(sd1.oneValueForAllObjects);
 System.out.println(sd2.oneValueForAllObjects);
 sd1.oneValueForAllObjects = true;

Chapter 1 ■ Getting Started with Java 8

14

 System.out.println(sd1.oneValueForAllObjects);
 System.out.println(sd2.oneValueForAllObjects);
 }
  
}
 

Listing 1-4 produces the following output:
 
false
false
true
true
 

The field oneValueForAllObjects was set to true only for the class instance named sd1. Yet it is true for instance
sd2 also. This is because of the keyword static used in declaring that field. Static fields occur one time for all objects
of their class.

How It Works
Listing 1-2 illustrates the basic format of a variable declaration:
 
type variable;
 

It’s common to initialize variables when declaring them, so you’ll often see:
 
type variable = initialValue;
 

Field declarations can be preceded by modifiers. For example:
 
public static variable = initialValue;
private variable;
 

It’s common to put the visibility modifier — public or private — first, but you are free to list the modifiers in any
order you like. Be aware that there are additional modifiers that you will encounter and need to learn about as you get
deeper into the language.

The String type is special in Java. It’s really a class type, but syntactically you can treat it as a primitive type.
Java automatically creates a String object whenever you enclose a string of characters within double-quotes ("...").
You aren’t required to invoke a constructor, nor to specify the new keyword. Yet String is a class, and there are methods
in that class that are available to you. One such method is the replace() method shown at the end of Listing 1-2.

Strings are composed of characters. Java’s char type is a two-byte construct for storing a single character in
Unicode-s UTF-16 encoding. You can generate literals of the char type in two ways:

If a character is easy to type, then enclose it within single quotes (e.g.: •	 'G').

Otherwise, specify the four-digit UTF-16 •	 code point value prefaced by \u (e.g.: '\u0490').

Some Unicode code points require five digits. These cannot be represented in a single char value. See Chapter 10
if you need more information on Unicode and internationalization.

Avoid using any of the primitive types for monetary values. Especially avoid either of the floating-point types for
that purpose. Refer instead to Chapter 4 and its recipe on using BigDecimal to calculate monetary amounts (Recipe 4-7).
BigDecimal is also useful anytime you need accurate, fixed-decimal arithmetic.

Chapter 1 ■ Getting Started with Java 8

15

If you are new to Java, you may be unfamiliar with the String[] array notation, as demonstrated in the examples.
Please see Chapter 7 for more information on arrays. It covers enumerations, arrays, and also generic data types. Also
in that chapter are examples showing how to write iterative code to work with collections of values such as an array.

Note■■   If you’re curious about the Ukrainian letter in Listing 1-2, it is the Cyrillic letter Ghe with upturn. You can read
about its history at: http://en.wikipedia.org/wiki/Ghe_with_upturn. You can find its code point value in the chart at
http://www.unicode.org/charts/PDF/U0400.pdf. And the URL http://www.unicode.org/charts/ is a good place to
start whenever you need to find the code point corresponding to a given character.

1-5. Converting to and from a String
Problem
You have a value in a primitive data type, and you want to represent that value as a human-readable string. Or, you
want to go in the other direction by converting a human-readable string into a primitive data type.

Solution
Follow one of the patterns from Listing 1-5. The listing shows conversion from a string to a double-precision
floating-point value, and shows two methods for getting back to a string again.

Listing 1-5.  General Pattern for String Conversions

package org.java8recipes.chapter01.recipe1_05;
 
public class StringConversion {
  
 public static void main (String[] args) {
 double pi;
 String strval;
 
 pi = Double.parseDouble("3.14");
 System.out.println(strval = String.valueOf(pi));
 System.out.println(Double.toString(pi));
 }
  
}

How It Works
The solution illustrates some conversion patterns that work for all the primitive types. First, there is the conversion of
a floating-point number from its human-readable representation into the IEEE 754 format used by the Java language
for floating-point arithmetic:
 
pi = Double.parseDouble("3.14");
 

http://en.wikipedia.org/wiki/Ghe_with_upturn
http://www.unicode.org/charts/PDF/U0400.pdf
http://www.unicode.org/charts/

Chapter 1 ■ Getting Started with Java 8

16

Notice the pattern. You can replace Double with Float, or by Long, or by whatever other type is your target data
type. Each primitive type has a corresponding wrapper class by the same name but with the initial letter uppercase.
The primitive type here is double, and the corresponding wrapper is Double. The wrapper classes implement helper
methods such as Double.parseDouble(), Long.parseLong(), Boolean.parseBoolean(), and so forth. These parse
methods convert human-readable representations into values of the respective types.

Going the other way, it is often easiest to invoke String.valueOf(). The String class implements this method,
and it is overloaded for each of the primitive data types. Alternatively, the wrapper classes also implement toString()
methods that you can invoke to convert values of the underlying type into their human-readable forms. It’s your own
preference as to which approach to take.

Conversions targeting the numeric types require some exception handling to be practical. You generally need to
gracefully accommodate a case in which a character-string value is expected to be a valid numeric representation, but
it’s not. Chapter 9 covers exception-handling in detail, and the upcoming Recipe 1-7 provides a simple example to get
you started.

Caution■■   Literals for the Boolean type are "true" and "false". They are case-sensitive. Any value other than
these two is silently interpreted as false when converting from a String using the Boolean parseBoolean()
conversion method.

1-6. Passing Arguments via Command-Line Execution
Problem
You want to pass values into a Java application via the command-line.

Solution
Run the application using the java command, and specify the arguments that you want to pass into it after the
application name. If you’re passing more than one argument, each should be separated by a space. For example,
suppose you want to pass the arguments to the class created in Listing 1-6.

Listing 1-6.  Example of Accessing Command-Line Arguments

package org.java8recipes.chapter01.recipe1_06;
 
public class PassingArguments {
 public static void main(String[] args){
 if(args.length > 0){
 System.out.println("Arguments that were passed to the program: ");
 for (String arg:args){
 System.out.println(arg);
 }
 } else {
 System.out.println("No arguments passed to the program.");
 }
 }
}
 

Chapter 1 ■ Getting Started with Java 8

17

First, make sure to compile the program so that you have a .class file to execute. You can do that from within
NetBeans by right-clicking the file and choosing the “Compile File” option from the context menu.

Next, open a Command Prompt or terminal window and traverse into the build\classes directory for your project.
(See Recipe 1-3 for an extensive discussion of executing from the command-line). For example:
 
cd <path-to-project>\Java8Recipes\build\classes
 

Now issue a java command to execute the class, and type some arguments on the command-line following the
class name. The following example passes two arguments:
 
java org.java8recipes.chapter01.recipe1_06.PassingArguments Upper Peninsula
 

You should see the following output:
 
Arguments that were passed to the program:
Upper
Penninsula
 

Spaces separate arguments. Enclose strings in double quotes when you want to pass an argument containing
spaces or other special characters. For example:
 
java org.java8recipes.chapter01.recipe1_06.PassingArguments "Upper Peninsula"
 

The output now shows just one argument:
 
Arguments that were passed to the program:
Upper Penninsula
 

The double quotes translate the string "Upper Peninsula" into a single argument.

How It Works
All Java classes that are executable from the command-line or terminal contain a main() method. If you look at the
signature for the main() method, you can see that it accepts a String[] argument. In other words, you can pass an
array of String objects into the main() method. Command-line interpreters such as the Windows Command Prompt
and the various Linux and Unix shells build an array of strings out of your command-line arguments, and pass that
array to the main() method on your behalf.

The main() method in the example displays each argument that is passed. First, the length of the array named
args is tested to see whether it is greater than zero. If it is, the method will loop through each of the arguments in the
array by executing a for loop, displaying each argument along the way. If there are no arguments passed, the length
of the args array will be zero, and a message indicating such will be printed. Otherwise, you see a different message
followed by a list of arguments.

Command-line interpreters recognize spaces and sometimes other characters as delimiters. It’s generally safe
to pass numeric values as arguments delimited by spaces without bothering to enclose each value within quotes.
However, you should get into the habit of enclosing character-string arguments in double quotes, as shown in the final
solution example. Do that to eliminate any ambiguity over where each argument begins and ends.

Note■■   All arguments are seen by Java as character strings. If you pass numeric values as parameters, they enter
Java as character strings in human-readable form. You can convert them into their appropriate numeric types using the
conversion methods shown in Recipe 1-5.

Chapter 1 ■ Getting Started with Java 8

18

1-7. Accepting Input from the Keyboard
Problem
You are interested in writing a command-line or terminal application that will accept user input from the keyboard.

Solution
Make use of the java.io.BufferedReader and java.io.InputStreamReader classes to read keyboard entry and store
it into local variables. Listing 1-7 shows a program that will keep prompting for input until you enter some characters
that represent a valid value of type long.

Listing 1-7.  Keyboard Input and Exception Handling

package org.java8recipes.chapter01.recipe1_07;
 
import java.io.*;
 
public class AcceptingInput {
 public static void main(String[] args){
 BufferedReader readIn = new BufferedReader(
 new InputStreamReader(System.in)
);
 String numberAsString = "";
 long numberAsLong = 0;
  
 boolean numberIsValid = false;
 do {
 /* Ask the user for a number. */
 System.out.println("Please enter a number: ");
 try {
 numberAsString = readIn.readLine();
 System.out.println("You entered " + numberAsString);
 } catch (IOException ex){
 System.out.println(ex);
 }
 
 /* Convert the number into binary form. */
 try {
 numberAsLong = Long.parseLong(numberAsString);
 numberIsValid = true;
 } catch (NumberFormatException nfe) {
 System.out.println ("Not a number!");
 }
 } while (numberIsValid == false);
 }
}
 

Chapter 1 ■ Getting Started with Java 8

19

Following is an example run of this program:
 
Please enter a number:
No
You entered No
Not a number!
Please enter a number:
Yes
You entered Yes
Not a number!
Please enter a number:
42
You entered 42
BUILD SUCCESSFUL (total time: 11 seconds)
 

The first two inputs did not represent valid values in the long data type. The third value was valid, and the
run ended.

How It Works
Quite often our applications need to accept user input of some kind. Granted, most applications are not used from
the command-line or terminal nowadays, but having the ability to create an application that reads input from the
command-line or terminal helps to lay a good foundation, and may be useful in some applications. Terminal input
can also be useful in developing administrative applications that you or a system administrator may use.

Two helper classes were used in the solution to this recipe. They are java.io.BufferedReader and
java.io.InputStreamReader. The early portion of the code that’s using those classes is especially important to
understand:
 
BufferedReader readIn = new BufferedReader(
 new InputStreamReader(System.in)
);
 

The innermost object in this statement is System.in. It represents the keyboard. You do not need to declare
System.in. Java’s runtime environment creates the object for you. It is simply “there” to be used.

System.in provides access to raw bytes of data from the input device, which is the keyboard in our example. It is
the job of the InputStreamReader class to take those bytes and convert them into characters in your current character
set. System.in is passed to the InputStreamReader() constructor to create an InputStreamReader object.

InputStreamReader knows about characters, but not about lines. It is the BufferedReader class’s job to detect
line breaks in the input stream, and to enable you to conveniently read a line at a time. BufferedReader also aids
efficiency by allowing physical reads from the input device to be done in different-size chunks than by which your
application consumes the data. This aspect can make a difference when the input stream is a large file rather than the
keyboard.

Following is how the program in Listing 1-7 makes use of an instance (named readIn) of the BufferedReader
class to read a line of input from the keyboard:
 
numberAsString = readIn.readLine();
 

Executing this statement triggers the following sequence:

	 1.	 System.in returns a sequence of bytes.

	 2.	 InputStreamReader converts those bytes into characters.

Chapter 1 ■ Getting Started with Java 8

20

	 3.	 BufferedReader breaks the character stream into lines of input.

	 4.	 readLine() returns one line of input to the application.

I/O calls must be wrapped in try...catch blocks. These blocks catch any exceptions that may occur. The try part
in the example will fail in the event a conversion is unsuccessful. A failure prevents the numberIsValid flag from being
set to true, which causes the do loop to make another iteration so that the user can try again at entering a valid value.

The following statement at the top of Listing 1-7 deserves some mention:
 
import java.io.*;
 

This statement makes available the classes and methods defined in the java.io package. These include
InputStreamReader and BufferedReader. Also included is the IOException class used in the first try...catch block.

1-8. Documenting Your Code
Problem
You want to document some of your Java classes to assist in future maintenance.

Solution
Use Javadoc to place comments before any class, method, or field that you want to document. To begin such a
comment, write the characters /**. Then begin each subsequent line with an asterisk (*). Lastly, close the comment
with the characters */ on a line by themselves at the end. Listing 1-8 shows a method commented with Javadoc.

Listing 1-8.  Comments Made in Javadoc Form

package org.java8recipes.chapter01.recipe1_08;
 
import java.math.BigInteger;
 
public class JavadocExample {
 /**
 * Accepts an unlimited number of values and
 * returns the sum.
 *
 * @param nums Must be an array of BigInteger values.
 * @return Sum of all numbers in the array.
 */
 public static BigInteger addNumbers(BigInteger[] nums) {
 BigInteger result = new BigInteger("0");
 for (BigInteger num:nums){
 result = result.add(num);
 }
 
 return result;
 }
 /**
 Test the addNumbers method.
 * @param args not used
 */

Chapter 1 ■ Getting Started with Java 8

21

 public static void main (String[] args) {
 BigInteger[] someValues = {BigInteger.TEN, BigInteger.ONE};
 System.out.println(addNumbers(someValues));
 }
}
 

Comments can be added to the beginning of classes and fields in the same way. The comments are helpful to
you and other programmers maintaining the code, and their specific format enables easy generation of an HTML
reference to your code.

Generate the HTML reference by invoking the tool named Javadoc. This is a command-line tool that parses a
named Java source file and formulates HTML documentation based upon the defined class elements and Javadoc
comments. For example:
 
javadoc JavadocExample.java
 

This command will produce several HTML files containing the documentation for the class, methods, and fields.
If no Javadoc comments exist within the source, some default documentation will still be produced. To view the
documentation, load the following file into your browser:
 
index.html
 

The file will be in the same directory as the class or package that you are documenting. There will also be an
index-all.html file giving a strict alphabetical listing of documented entities.

Keep in mind that the same rules apply when using the Javadoc tool as when using javac. You must reside within
the same directory as the source file, or prepend the name of the file with the path to where the file is located.

How It Works
Generating documentation for applications from scratch can be quite tedious. Maintaining documentation can be even
more troublesome. The JDK comes packaged with an extensive system for documentation known as Javadoc. Placing
some special comments throughout your code source and running a simple command-line tool makes it easy to generate
useful documentation and keep it current. Moreover, even if some of the classes, methods, or fields in an application are
not commented specifically for the Javadoc utility, default documentation will still be produced for such elements.

Formatting the Documentation
To create a Javadoc comment, begin with the characters /**. Although optional since Java 1.4, a common practice is to
include an asterisk as the first character of every subsequent line within the comment. Another good practice is to indent
the comment so that it aligns with the code that is being documented. Lastly, close the comment with the characters */.

Javadoc comments should begin with a short description of the class or method. Fields are rarely commented
using Javadoc, unless they are declared public static final (constants), in which case it is a good idea to supply a
comment. A comment can be several lines in length, and can even contain more than one paragraph. If you want to
break comments into paragraphs, then separate those paragraphs using the <p> tag. Comments can include several
tags that indicate various details regarding the method or class that is being commented. Javadoc tags begin with an
ampersand (@), and some of the common tags are as follows:
 
@param: Name and description of a parameter
@return: What is returned from the method
@see: Reference to another piece of code
 

Chapter 1 ■ Getting Started with Java 8

22

You may also include inline links within Javadoc to reference URLs. To include an inline link, use the tag
{@link My Link}, where link is the actual URL that you want to point at and My Link is the text that you want to have
appear. There are also many other tags that can be used within Javadoc comments, including {@literal}, {@code},
{@value org}, and many others. For a complete listing, see the Javadoc reference on the Oracle Technology
Network website.

Executing the Tool
The Javadoc tool can also be run against entire packages or source. Simply pass a package name to the Javadoc tool
rather than individual source file names. For instance, if an application includes a package named org.juneau.beans,
all source files within that package can be documented by running the tool as follows:
 
javadoc org.juneau.beans
 

To generate Javadoc for more than one package at a time, separate the package names with spaces as follows:
 
javadoc org.juneau.beans org.juneau.entity
 

Another option is to specify the path to the source files using the –sourcepath flag. For example:
 
javadoc –sourcepath /java/src
 

By default, the Javadoc tool will generate HTML and place it into the same package as the code being documented.
That result can become a cluttered nightmare if you like to have source files separate from documentation. You can
instead set up a destination for the generated documentation by passing the –d flag to the Javadoc tool.

1-9. Organizing Code with Packages
Problem
Your application consists of a set of Java classes, interfaces, and other types. You want to organize these source files to
make them easier to maintain and avoid potential class-naming conflicts.

Solution
Create Java packages and place source files within them much like a filing system. Java packages can be used to
organize logical groups of source files within an application. Packages can help to organize code, reduce naming
conflicts among different classes and other Java type files, and provide access control. To create a package, simply
create a directory within the root of your application source folder and name it. Packages are usually nested
within each other and conform to a standard naming convention. For the purposes of this recipe, assume that the
organization is named Juneau and that the organization makes widgets. To organize all the code for the widget
application, create a group of nested packages conforming to the following directory structure:
 
/org/juneau
 

Any source files that are placed within a package must contain the package statement as the first line in the
source. The package statement lists the name of the package in which the source file is contained. For instance,
suppose that the main class for the widget application is named JuneauWidgets.java. To place this class into a

Chapter 1 ■ Getting Started with Java 8

23

package named org.juneau, physically move the source file into a directory named juneau, which resides within
the org directory, which in turn resides within the root of the source folder for the application. The directory structure
should look like the following:
 
/org/juneau/JuneauWidgets.java
 

The source for JuneauWidgets.java is as follows:
 
package org.juneau;
 
/**
 * The main class for the Juneau Widgets application.
 * @author juneau
 */
public class JuneauWidgets {
 public static void main(String[] args){
 System.out println("Welcome to my app!");
 }
}
 

The first line in the source contains the package statement, which lists the name of the package that the source file
is located within. The entire package path is listed in the statement, and the names in the path are separated by dots.

Note■■   A package statement must be the first statement listed within the Java source. However, there may be a
comment or Javadoc comment written before the package statement.

An application can consist of any number of packages. If the widget application contains a few classes that
represent widget objects, they could be placed within the org.juneau.widget package. The application may have
interfaces that can be used to interact with the widget objects. In this case, a package named org.juneau.interfaces
may also exist to contain any such interfaces.

How It Works
Java packages are useful for organizing source files, controlling access to different classes, and ensuring that there are
no naming conflicts. Packages are represented by a series of physical directories on a file system, and they can contain
any number of Java source files. Each source file must contain a package statement before any other statements in the
file. This package statement lists the name of the package in which the source file resides. In the solution to this recipe,
the source included the following package statement:
 
package org.juneau;
 

This package statement indicates that the source file resides within a directory named juneau, and that directory
resides within another directory named org. Package-naming conventions can vary by company or organization.
However, it is important that words are in lowercase so they do not conflict with any Java class file names. Many
companies or organizations will use the reverse of their domain name for package naming. However, if a domain
name includes hyphens, underscores should be used instead.

Chapter 1 ■ Getting Started with Java 8

24

Note■■  W hen a class resides within a Java package, it is no longer referenced by only the class name, but instead the
package name is prepended to the class name, which is known as the fully qualified name. For instance, because the
class that resides within the file JuneauWidgets.java is contained within the org.juneau package, the class is
referenced using org.juneau.JuneauWidgets, not simply JuneauWidgets. An identically named class can reside within
a different package (for instance, org.java8recipes.JuneauWidgets).

Packages are very useful for establishing levels of security as well as organization. By default, different classes
that reside within the same package have access to each other. If a source file resides within a different package than
another file that it needs to use, an import statement must be declared at the top of the source file (underneath the
package statement) to import that other file for use; otherwise, the fully qualified package.class name must be used
within the code. Classes may be imported separately, as demonstrated in the following import statement:
 
import org.juneau.JuneauWidgets;
 

However, it is often likely that all classes and type files that reside within a package need to be used. A single
import statement utilizing a wildcard character (*) can import all files within a named package as follows:
 
import org.juneau.*;
 

Although it is possible to import all files, it is not recommended unless absolutely necessary. As a matter of fact,
it is considered a poor programming practice to include many import statements that use the wildcard. Instead,
classes and type files should be imported individually.

Organizing classes within packages can prove to be very helpful. Suppose that the widget application that was
described in the solution to this recipe includes different Java classes for each different widget object. Each of the
widget classes could be grouped into a single package named org.juneau.widgets. Similarly, each of the widgets
could extend some Java type or interface. All such interfaces could be organized into a package named
org.juneau.interfaces.

Any substantial Java application will include packages. Any Java library or Application Programming Interface
(API) that you use includes packages. When you import classes or types from those libraries and APIs, you are really
importing packages.

1-10. Configuring the CLASSPATH
Problem
You want to execute a Java program, or include an external Java library in the application you are executing.

Solution
Set the CLASSPATH variable equal to the directory location of the user-defined Java classes or Java Archive (JAR) files
that you need to have access to for executing your application. Let’s say that you have a directory named JAVA_DEV
located at the root of your OS drive, and all the files your applications needs to access are located in this directory.
If this is the case, then you would execute a command such as the following:
 
set CLASSPATH=C:\JAVA_DEV\some-jar.jar
 

Chapter 1 ■ Getting Started with Java 8

25

Or on Unix and Linux systems:
 
export CLASSPATH=/JAVA_DEV/some-jar.jar
 

Alternately, the javac command provides an option for specifying the location of resources that need to be loaded
for an application. On all platforms, setting the CLASSPATH using this technique can be done via the -classpath option
as follows:
 
javac –classpath /JAVA_DEV/some-jar.jar
 

Of course, on Microsoft Windows machines the file path will use the backslash (\) instead.

Note■■  T he javac –cp option may be used, rather than specifying the –classpath option.

How It Works
Java implements the concept of a class path. This is a directory search path that you can specify system-wide using the
CLASSPATH environment variable. You can also specify the class path for a specific invocation of the JVM via the java
command’s -classpath option. (See Recipe 1-3 for an example.)

When executing Java programs, the JVM finds and loads classes as needed using the following search order:

	 1.	 The classes that are fundamental to the Java platform and are contained in the Java
installation directory.

	 2.	 Any packages or JAR files that are located within the extension directory of the JDK.

	 3.	 Packages, classes, JAR files, and libraries that are loaded somewhere on the specified
class path.

You may need to access more than one directory or JAR file for an application. This could be the case if your
dependencies are located in more than one location. To do so, simply use the delimiter for your operating system
(; or :) as a separator between the locations specified by the CLASSPATH variable. Following is an example of
specifying multiple JAR files in the CLASSPATH environment variable on Unix and Linux systems:
 
export CLASSPATH=/JAVA_DEV/some-jar.jar:/JAVA_LIB/myjar.jar
 

Alternatively, you can specify the class path via a command-line option:
 
javac –classpath /JAVA_DEV/some-jar.jar:/JAVA_LIB/myjar.jar
 

When loading the resources for a Java application, the JVM loads all the classes and packages that are specified
in the first location, followed by the second, and so on. This is important because the order of loading may make a
difference in some instances.

Note■■   JAR files are used to package applications and Java libraries into a distributable format. If you have not
packaged your application in that manner, you may simply specify the directory or directories in which your .class
files reside.

Chapter 1 ■ Getting Started with Java 8

26

Sometimes you’ll want to include all JAR files within a specified directory. Do that by specifying the wildcard
character (*) after the directory containing the files. For example:
 
javac –classpath /JAVA_DEV/*:/JAVA_LIB/myjar.jar
 

Specifying a wildcard will tell the JVM that it should be loading JAR files only. It will not load class files that are
located in a directory specified with the wildcard character. You’ll need to specify a separate path entry for the same
directory if you also want the class files. For example:
 
javac –classpath /JAVA_DEV/*:/JAVA_DEV
 

Subdirectories within the class path will not be searched. In order to load files that are contained within
subdirectories, those subdirectories and/or files must be explicitly listed in the class path. However, Java packages
that are equivalent to the subdirectory structure will be loaded. Therefore, any Java classes that reside within a Java
package that is equivalent to the subdirectory structure will be loaded.

Note■■   It is a good idea to organize your code; it is also good to organize where you place your code on the computer.
A good practice is to place all your Java projects within the same directory; it can become your workspace. Place all the
Java libraries that are contained in JAR files into the same directory for easier management.

1-11. Reading Environment Variables
Problem
The application you are developing needs to make use of some environment variables. You want to read the values
that have been set from the operating-system level.

Solution
Make use of the Java System class to retrieve any environment variable values. The System class has a method called
getenv(), which accepts a String argument corresponding to the name of a system environment variable. The
method will then return the value of the given variable. If no matching environment variable exists, a NULL value will
be returned. Listing 1-9 provides an example. The class ReadOneEnvVariable accepts an environment variable name
as a parameter, and displays the variable’s value that has been set at the operating-system level.

Listing 1-9.  Reading an Environment Variable’s Value

package org.java8recipes.chapter1.recipe1_11;
 
public class ReadOneEnvVariable {
 public static void main(String[] args) {
 if (args.length > 0) {
 String value = System.getenv(args[0]);
 if (value != null) {
 System.out.println(args[0].toUpperCase() + " = " + value);
 } else {
 System.out.println("No such environment variable exists");
 }

Chapter 1 ■ Getting Started with Java 8

27

 } else {
 System.out.println("No arguments passed");
 }
 }
}
 

If you are interested in retrieving the entire list of environment variables that is defined on a system, do not pass
any arguments to the System.getenv() method. You’ll receive back an object of type Map having all the values.
You can iterate through them as shown in Listing 1-10.

Listing 1-10.  Iterating Through a Map of Environment Variables

package org.java8recipes.chapter1.recipe1_11;
 
import java.util.Map;
 
public class ReadAllEnvVariables {
 public static void main(String[] args){
 if(args.length > 0){
 String value = System.getenv(args[0]);
 if (value != null) {
 System.out.println(args[0].toUpperCase() + " = " + value);
 } else {
 System.out.println("No such environment variable exists");
 }
 } else {
 Map<String, String> vars = System.getenv();
 for(String var : vars.keySet()){
 System.out.println(var + " = " + vars.get(var));
 }
 }
 }
}

How It Works
The System class contains many different utilities that can aid in application development. One of those is the
getenv() method, which will return a value for a given system environment variable.

You can also return the values from all variables, in which case those values are stored in a map. A map is a
collection of name/value pairs. Chapter 7 provides additional information about maps, including a recipe showing in
detail how to iterate over them.

The method invoked to obtain environment variable values in Listings 1-9 and 1-10 is the same. It’s been overloaded
to handle both cases shown in the solution. Pass the name of a variable as a string if you want to obtain just that variable’s
value. Pass no argument at all to get back the names and values of all variables that are currently set.

Chapter 1 ■ Getting Started with Java 8

28

Summary
This chapter included recipes that allow you to get started working with Java quickly. It covered installation of the JDK,
to installation and use of the NetBeans IDE. The chapter also covered basics such as declaring variables, compiling
code, and documentation. The rest of this book dives deeper into each of the different areas of the Java language,
covering a variety of topics from beginner to expert. Refer to this chapter for configuration specifics as you work
through the examples in the rest of the book.

29

Chapter 2

New Features of Java 8

Java 8 has introduced a magnitude of new features, making it one of the most significant releases of Java in years. This
chapter covers a handful of the new features of Java 8 and includes short examples of each. These recipes are meant to
provide a brief overview of the some new features in Java 8 and to get you up and running quickly using them. This is
by no means a comprehensive list of the new features that were introduced in Java 8, but more of a precursor of what
to expect throughout this book. At the end of each recipe, you’re directed to the chapter in this book, or to an another
resource, that covers the topic in more detail.

Java Language Enhancements
The release of Java 8 introduced a number of new features to the language, making it more productive, easier to
manage, and more efficient. This section covers some of these new features via a variety of recipes.

2-1. Passing Functionality as a Method Argument
Problem
You want to write an action for a JavaFX button without generating an anonymous inner class.

Solution
Utilize a lambda expression to incorporate the action functionality using compact, inline syntax. The following JavaFX
application contains a button that utilizes a lambda expression to encapsulate the functionality of the button, rather
than an anonymous inner class.
 
public class Recipe_02_01 extends Application {
 
 final Group root = new Group();
 /**
 * @param args the command-line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 

Chapter 2 ■ New Features of Java 8

30

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello Lambda");
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 Label message = new Label();
 btn.setLayoutX(60);
 btn.setLayoutY(80);
 btn.setText("Invoke Lambda Expression");
 btn.setOnAction((event) -> {
 message.setText("Lambda expression invoked!");
 });
 root.getChildren().add(btn);
 message.setLayoutX(300/2 - 90);
 message.setLayoutY(30);
 root.getChildren().add(message);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}
 

This JavaFX application produces a simple application that looks like Figure 2-1. When you press the button, the
ActionListener, which is a lambda expression, is invoked.

Figure 2-1.  Lambda expression as a button action listener

Chapter 2 ■ New Features of Java 8

31

How It Works
Lambda expressions are one of the new features of Java 8 that will have a tremendous impact on productivity and
business logic. Lambda expressions are anonymous blocks of code that accept zero or more parameters, encapsulate
a series of statements or an expression, and return a result. They are analogous to closures from other languages,
being anonymous functions that can be passed into other code as needed.

The syntax of a lambda expression includes an argument list, a new character to the language known as the
“arrow token” (->), and a body. The following model represents the structure of a lambda expression:
 
(argument list) -> { body }
 

The argument list for a lambda expression can include zero or more arguments. If there are no arguments, then
an empty set of parentheses can be used. If there is only one argument, then no parentheses are required. Each
argument in the list can include an optional type specification. If the type of the argument is not specified, then the
type is derived from the current context.

Lambda expressions are built on functional interfaces, which are simply Java interfaces containing a single
abstract method. Simply put, the lambda expression itself is an anonymous inner class that implements a functional
interface, which can then be assigned to a variable and invoked. This recipe is merely a primer for lambda
expressions; to learn more about them, refer to Chapter 6.

2-2. Calling On an Existing Method from a Lambda Expression
Problem
You are using a lambda expression to call on a single existing method that implements a functional interface, and
you’d like to shorten the length of the code required to perform this method call. Moreover, you want to be able to
pass the method functionality as an argument.

Solution
Utilize a method reference to call on a single existing method that implements a functional interface. In the following
example, a pool calculation class implements a functional interface in order to obtain the calculated volume of a pool.
The functional interface Volume is as follows:
 
public interface Volume {
 double calculateVolume();
}
 

The PoolCalculator class implements Volume, as it contains an implementation for the calculateVolume()
method. Therefore, that method can be called on via a method reference and assigned to a variable, which can then
be passed as an argument as needed. The following code shows the PoolCalculator class.
 
public class PoolCalculator implements Volume {
 private double width;
 private double length;
 private double minDepth;
 private double maxDepth;
  
 public PoolCalculator(){}
  

Chapter 2 ■ New Features of Java 8

32

 public PoolCalculator(double width,
 double length,
 double minDepth,
 double maxDepth){
 this.width = width;
 this.length = length;
 this.minDepth = minDepth;
 this.maxDepth = maxDepth;
 }
 
 /**
 * @return the width
 */
 public double getWidth() {
 return width;
 }
 
 /**
 * @param width the width to set
 */
 public void setWidth(double width) {
 this.width = width;
 }
 
 /**
 * @return the length
 */
 public double getLength() {
 return length;
 }
 
 /**
 * @param length the length to set
 */
 public void setLength(double length) {
 this.length = length;
 }
  
 /**
 * Calculate the volume
 * @return
 */
 public double calculateVolume(){
 double avgDepth = (minDepth+maxDepth)/2;
 return avgDepth * length * width;
 }
  
 /**
 * Returns the number of gallons for a given Volume
 * @param vol

Chapter 2 ■ New Features of Java 8

33

 * @return
 */
 public double calculateGallons(Volume vol){
 return 7.48 * vol.calculateVolume();
 }
 
 /**
 * @return the minDepth
 */
 public double getMinDepth() {
 return minDepth;
 }
 
 /**
 * @param minDepth the minDepth to set
 */
 public void setMinDepth(double minDepth) {
 this.minDepth = minDepth;
 }
 
 /**
 * @return the maxDepth
 */
 public double getMaxDepth() {
 return maxDepth;
 }
 
 /**
 * @param maxDepth the maxDepth to set
 */
 public void setMaxDepth(double maxDepth) {
 this.maxDepth = maxDepth;
 }
  
}
 

A method reference can now be used to assign the functionality of the calculateVolume() method to a variable.
In the following code, the method reference is assigned to a variable identified as volume, and then the volume
variable is passed to the calculateGallons() method.
 
PoolCalculator calculator = new PoolCalculator();
calculator.setLength(32);
calculator.setWidth(16);
calculator.setMinDepth(4);
calculator.setMaxDepth(8);
Volume volume = calculator::calculateVolume;
double poolVolume = volume.calculateVolume();
System.out.println("Volume of the pool is: " + poolVolume + " cubic feet");
System.out.println("Gallons in the pool: " + calculator.calculateGallons(volume));
 

Chapter 2 ■ New Features of Java 8

34

Here is the result of running this code:
 
Volume of the pool is: 3072.0 cubic feet
Gallons in the pool: 22978.56

How It Works
Lambda expressions allow you to encapsulate functionality and assign to a variable for later use, if desired. Believe
it or not, there is a simplified variation of a lambda expression referred to as a method reference. If a class contains
a method that is derived from the implementation of a functional interface, then that method can be obtained or
“captured” and assigned to a variable for later use. The concept being that the method contains functionality that can
be assigned to a variable of the same type as the functional interface.

In the example for this recipe, a functional interface identified as Volume contains a single abstract method,
calculateVolume(). The PoolCalculator class implements the Volume interface, as it contains an implementation of
the calculateVolume() method. To capture this method via a method reference, you can use the following syntax on
an instance of the PoolCalculator class:
 
poolCalculator::calculateVolume
 

The double colon operator is used to indicate a method reference. In this example, a reference to an instance
method of a specific object is used. However there are various types of method references; to learn more about them
refer to Chapter 6.

2-3. Providing a Default Method Implementation in an Interface
Problem
You want to add a new method to an existing interface without breaking backward compatibility with other code.

Solution
Develop a default method (a.k.a. defender method) within the interface so that any classes implementing the interface
are not required to provide an implementation of the new method. To do so, add the new default keyword to the
interface declaration and provide a method implementation. The following interface Volume includes a default
method implementation for the calculateVolume method:
 
public interface Volume {
/**
 * Calculate pool volume given depth values and measurement values. For
 * a pool with variable depth, the minDepth should be depthValues[0], and
 * the maxDepth should be passed as depthValues[1].
 *
 * This interface can accept multiple measurement values, but it expects
 * measurementValues[0] == length, or measurementValues[0] == radius
 * measurementValues[1] == width
 * @param depthValues
 * @param measurementValues
 * @return
 */

Chapter 2 ■ New Features of Java 8

35

 default double calculateVolume(Double[] depthValues, Double[] measurementValues) {
 double length, width, radius, minDepth, maxDepth, avgDepth = 0;
  
 if(depthValues.length > 1){
 minDepth = depthValues[0];
 maxDepth = depthValues[1];
 avgDepth = (minDepth + maxDepth)/2;
 } else if (depthValues.length == 1){
 avgDepth = depthValues[0];
 }
  
 if(measurementValues.length > 1){
 length = measurementValues[0];
 width = measurementValues[1];
 radius = 0;
 } else {
 length = 0;
 width = 0;
 radius = measurementValues[0];
 }
 if (radius == 0){
 return length * width * avgDepth;
 } else {
 return (radius * radius) * 3.14 * avgDepth;
 }
 };
}
 

Any class implementing this interface can now use this default method implementation or provide its own
implementation, much like an abstract class.

How It Works
A standard Java interface consists of method declarations that do not contain a body. Classes implement Java
interfaces, and in doing so they provide implementations for the method declarations of the interface. Java interfaces
are an important part of object orientation, as they abstract implementation details and provide a facade to extend
functionality. In Java 8, interfaces have been changed to allow default method implementations. A default method is
a method declaration and implementation, and it is denoted with the default keyword preceding the declaration.
Any class that extends an interface containing a default method can choose to implement and override the default
implementation or simply use the default implementation.

You may wonder why this functionality was provided in Java 8. Why not simply use abstract classes, rather than
default methods? Default methods were added in order to provide a way to change interfaces without breaking
backward compatibility. Many interfaces needed to be changed to accommodate Java 8 API updates, and in doing
so, these interfaces would possibly break functionality of code that was written for prior releases of Java. By adding
default methods to interfaces, engineers were able to add new functionality to existing interfaces without breaking the
code that relied on those interfaces. To learn more about default methods, refer to Recipe 5-7.

Chapter 2 ■ New Features of Java 8

36

2-4. Applying the Same Annotation Multiple Times in a
Declaration or Type Use
Problem
You want to apply the same annotation more than once to a specified declaration or type.

Solution
The same annotation can be applied to a declaration or type more than once, given that each annotation is marked
as @Repeatable. In the following code, the @Repeatable annotation is used to develop an annotation that can be
repeated, rather than grouped together as in previous releases of Java. In this situation, an annotation named Role is
being created, and it will be used to signify a role for an annotated class or method.
 
@Repeatable(value=Roles.class)
public @interface Role {
 String name() default "AUTHOR";
}
 

The Role annotation uses the Roles annotation when used more than one time on a specification. The Roles
annotation simply generates an array of Role annotations. The code for Roles is as follows:
 
public @interface Roles {
 Role[] value();
}
 

Now, if you want to assign two different roles to a particular method, you can use the following syntax:
 
@Role(name="AUTHOR")
@Role(name="REVIEWER")
public void assignWork(){
 ...
}

How It Works
Repeating annotations are a handy new feature of Java 8, as they allow you to assign multiple versions of an
annotation to a single field, method, or class. To perform the same assignment in previous releases, you had to
enclose the two @Role annotations within a @Roles group, as follows:
 
@Roles({
 @Role(name="AUTHOR"),
 @Role(name="REVIEWER")
)}
 

To develop a repeatable annotation, an enclosing container annotation must be created with a field that is used
to hold multiple instances of the annotation. In the recipe example, the Roles annotation is used for holding multiple
Role annotations in a repeatable situation. Each of the Role annotations is added to the Role[] array that is declared
within the Roles annotation.

Chapter 2 ■ New Features of Java 8

37

Date-Time API
A new Date-Time API has been introduced in Java 8 and it was developed under JSR 310. The Date-Time API uses
the calendar defined in ISO-8601 as the default calendar. Therefore, the calendar is based on the Gregorian calendar
system, and in this chapter, you learn how to work with date, time, and time zone data. The Date-Time API adheres
to several design principles in an effort to be clear, fluent, immutable, and extensible. The API uses a clear language
that is concise and very well defined. It is also very fluent, so code dealing with date-time data is easy to read and
understand.

This introduction provides a few brief examples of the new API to get your feet wet. To learn about the API in
more detail, refer to Chapter 4.

2-5. Incorporating the Current Date and Time
Problem
You want to obtain the current date and time for use in your application.

Solution
Utilize the new Date-Time API to retrieve the current date and time. The following code demonstrates how to do so.
 
LocalDate localDate = LocalDate.now();
LocalTime localTime = LocalTime.now();

How It Works
The Date-Time API makes it easy to obtain the current date and time, each as separate entities. To do so, you
import the java.time.LocalDate and java.time.LocalTime classes and call upon their static now() methods to
retrieve instances of the local date and time, respectively. Both the LocalDate and the LocalTime classes cannot be
instantiated, as they are immutable and thread-safe. To learn more, refer to Recipe 4-7.

2-6. Obtaining a Date from a Specified String
Problem
You want to obtain a LocalDate object, given a specified string of text that contains a date.

Solution
Utilize a DateTimeFormatter to set the format of the specified string of text and then call on the LocalDate.parse()
method, passing the string of text as the first argument and the formatter as the second. The following lines of code
demonstrate this process.
 
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");
LocalDate yearStart = LocalDate.parse("01/01/2014", formatter);

Chapter 2 ■ New Features of Java 8

38

How It Works
The LocalDate object contains several utility methods that can be used to manipulate a date. One such method
is parse(), which accepts two arguments, a string-based date and a DateTimeFormatter object that specifies the
format of the first argument. This method obtains an instance of LocalDate from the text string, and it returns a
DateTimeParseException if the text cannot be parsed due to incorrect formatting.

The ability to obtain a date from a specified string is only one of the nice features of the new Date-Time API.
To learn about more new features, refer to Chapter 4.

2-7. Performing Date-Time Calculations
Problem
You want to add a number of days or subtract a number of weeks from a given date or time.

Solution
Utilize the built-in utility methods in the LocalDate and LocalTime objects to perform the required calculation.
The following code obtains the current date and time and performs some basic calculations on them.
 
LocalDate myDate = LocalDate.now();
LocalTime myTime = LocalTime.now();
 
LocalDate datePlusDays = myDate.plusDays(15);
System.out.println("Today Plus 15 Days: " + datePlusDays);
LocalDate datePlusWeeks = myDate.plusWeeks(8);
System.out.println("Today Plus 8 weeks: " + datePlusWeeks);
 
LocalTime timePlusHours = myTime.plusHours(5);
LocalTime timeMinusMin = myTime.minusMinutes(30);
 
System.out.println("Time Plus 5 Hours: " + timePlusHours);
System.out.println("Time Minus 30 Minutes: " + timeMinusMin);

How It Works
The Date-Time API makes it easy to perform calculations on dates and times. The LocalDate and LocalTime objects
have calculation methods built right in, so there is no more worrying about converting to different types of objects in
order to perform calculations. The Date-Time API also allows easy access to the current date or time by enabling you
to invoke the now() method on either of those objects.

Streams API
Collections play an integral role in many Java applications. The release of Java 8 introduced the Streams API, which
changes the way that collections of data can be used, making solutions more productive and maintainable. The
Streams API allows you to traverse over a collection of elements and perform aggregate operations, pipeline two or
more operations, perform parallel execution, and more. This section provides a glimpse of the Streams API. To learn
more, refer to Recipe 7-8.

Chapter 2 ■ New Features of Java 8

39

2-8. Iterating Over a Collection of Data
Problem
Your application contains a list of objects and you want to iterate over that list and print out a field for each object.

Solution
Utilize the new Java Streams API to iterate over the list of data and perform a task for each element. In the following
lines of code, a list is populated with sample data. It is then iterated by generating a stream, and then each element is
printed to the command-line using a lambda expression.
 
List<String> myList = new ArrayList();
 
// Populate the list
for(int x = 0; x <= 10; x++){
 myList.add("Test " + x);
}
 
// Print each element within the list
myList.stream().forEach((value)->{
 System.out.println(value);
});
 

Results:
 
Test 0
Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
Test 8
Test 9
Test 10

How It Works
The new Streams API enhances the usability of Java Collection types, making it easy to iterate and perform tasks
against each element in the collection. In the solution to this recipe, an array of strings is generated, and then a
stream is created from the array. Using the stream, each element of the array is printed to the command-line via
the forEach() terminal operation. The Streams API allows the compiler to determine the best way to iterate over a
collection (internal iteration). A stream is a sequence of object references that can be generated on all collection types.
The Streams API makes it possible to perform a sequence of aggregate operations on those object references and
return a result or apply the changes to the objects inline. This is otherwise known as a pipeline. The pseudocode for
generating and using a stream is as follows:
 
Collection -> (Stream) -> (Zero or More Intermediate Operations) -> (Terminal Operation)
 

For more information on this outstanding new feature of Java 8, refer to Recipe 7-8.

Chapter 2 ■ New Features of Java 8

40

JavaFX
JavaFX has undergone a massive overhaul with the release of Java 8. For starters, it is now included with Java 8 SE,
so there is no longer a need to download it separately. Multiple new components have been added to the platform,
including a DatePicker and new SwingNode for embedding Swing inside of JavaFX. There is also better embedded
support for deployment on platforms such as the Raspberry Pi. Other new features include WebView enhancements,
printing support, rich text support, and the list goes on.

This section covers just a few of the new features for JavaFX 8. To learn more, refer to Chapters 14–17, which are
dedicated to JavaFX.

2-9. Embedding Swing in JavaFX
Problem
You want to embed some standard Java Swing code into a JavaFX application.

Solution
Use a SwingNode to embed the Swing content into the application. In the following simple JavaFX application,
a front-end is created with JavaFX, and a Swing JLabel component is embedded in it.
 
public class Recipe02_09 extends Application {
 
 @Override
 public void start(Stage primaryStage) throws Exception {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 
 StackPane pane = new StackPane();
 pane.getChildren().add(swingNode);
 
 primaryStage.setScene(new Scene(pane, 100, 50));
 primaryStage.show();
 }
 
 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new JLabel("Hello Swing"));
 });
 }
 
 /**
 * @param args the command-line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
 
}
 

Chapter 2 ■ New Features of Java 8

41

How It Works
Swing was once the preferred means for developing graphical user interfaces and desktop applications for the Java
platform. Swing is part of the Java Foundation Classes (JFC), a grouping of features for developing graphical user
interfaces. The Swing API consists of a multitude of components (JComponent classes), event handling classes, look
and feel classes, and so forth. The API is quite capable of developing highly sophisticated applications. However, the
API is so immense that it can be difficult to learn, and technology has evolved in a way such that many of the Swing
classes and features have become outdated. That being said, JavaFX has become the preferred API for developing
modern graphical user interfaces and desktop applications for the Java platform. As such, many developers need
a way to meld the two APIs together in order to transition. Even applications written entirely in JavaFX can benefit
from the use of some Swing components. The javafx.embed.swing.SwingNode class makes it possible to embed
a JComponent instance into a JavaFX application with little effort, by passing the JComponent to the SwingNode
setContent() method. The content is repainted automatically and all events are forwarded to the JComponent
instance without user intervention.

In the example to this recipe, a Swing JLabel component is embedded into a JavaFX application by passing
the Swing component to the SwingNode setContent() method. The Swing content should run on the Event
Dispatch Thread (EDT), so any Swing access should be made on the EDT. That said, a new thread is created using
SwingUtilities.invokeLater, and a lambda expression encapsulates the Runnable that is used to set the Swing
content.

To learn more about using SwingNode in your applications, and to see a more substantial example, refer to
Recipe 14-18.

Figure 2-2.  Using SwingNode to embed a JLabel

The resulting application looks like Figure 2-2.

Chapter 2 ■ New Features of Java 8

42

2-10. Adding a DatePicker
Problem
You want to add a component to your JavaFX application that will allow you to select a calendar date.

Solution
Utilize the new JavaFX DatePicker component. In the following example, a DatePicker component is used to select a
date and display it in a label.
 
public class Recipe02_10 extends Application {
 
 private Label dateLabel;
 private DatePicker datePicker;
 
 @Override
 public void start(Stage primaryStage) throws Exception {
 dateLabel = new Label("Select a date using the widget");
 datePicker = new DatePicker(LocalDate.now());
 datePicker.setOnAction(event -> {
 dateLabel.setText("The selected date is: " + datePicker.getValue());
 });
 
 FlowPane flow = new FlowPane();
 flow.setPadding(new Insets(5, 5, 5, 5));
 flow.getChildren().add(dateLabel);
 flow.getChildren().add(datePicker);
 
 primaryStage.setScene(new Scene(flow, 300, 100));
 primaryStage.show();
 }
 
 /**
 * @param args the command-line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
 
}
 

The resulting application looks like that in Figure 2-3.

Chapter 2 ■ New Features of Java 8

43

How It Works
For a number of years, the JavaFX platform did not have a standard DatePicker component. The DatePicker component,
new to JavaFX 8, fills that void by providing developers with a way to select a date from a given calendar. The DatePicker
component goes hand-in-hand with the Date-Time API, which enables easy date selection and date calculations.

The DatePicker includes a Month selector, Year selector, and Day selector. To add the component to your
application, import javafx.scene.control.DatePicker and create a new instance of the component. By default, if
no date is passed into the component it will display a blank text box. The constructor for the component allows you to
pass in a LocalDate object upon initialization, as shown in the example.

The DatePicker is very extensible, as it provides the ability for customization. For instance, the weeks of the
year can be set using the setShowWeekNumbers() method, and the chronology can be set using the setChronology()
method. The following code shows the same example from the solution, but this time the DatePicker has been
customized to show the week numbers and use Japanese chronology.
 
public void start(Stage primaryStage) throws Exception {
 dateLabel = new Label("Select a date using the widget");
 datePicker = new DatePicker(LocalDate.now());
 datePicker.setOnAction(event -> {
 dateLabel.setText("The selected date is: " + datePicker.getValue());
 });

Figure 2-3.  The JavaFX DatePicker component in action

Chapter 2 ■ New Features of Java 8

44

 datePicker.setShowWeekNumbers(true);
 datePicker.setChronology(JapaneseChronology.INSTANCE);
 FlowPane flow = new FlowPane();
 flow.setPadding(new Insets(5, 5, 5, 5));
 flow.getChildren().add(dateLabel);
 flow.getChildren().add(datePicker);
 
 primaryStage.setScene(new Scene(flow, 300, 100));
 primaryStage.show();
}
 

The result looks like Figure 2-4.

Figure 2-4.  Customized DatePicker

For more information about the new DatePicker, refer to the online documentation at
http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/date-picker.htm.

http://docs.oracle.com/javase/8/javafx/user-interface-tutorial/date-picker.htm

Chapter 2 ■ New Features of Java 8

45

2-11. Printing from JavaFX
Problem
You want to provide the ability to print from within your JavaFX application.

Solution
Utilize the JavaFX Print API, new to JavaFX 8, to print designated nodes and to construct sophisticated print dialogs.
The following class uses the new Print API to print the TextArea component when a print button is selected.
 
public class Recipe02_11 extends Application {
  
 @Override
 public void start(Stage primaryStage) throws Exception {
 TextArea ta = new TextArea();
 ta.setWrapText(true);
  
 final Printer selectedPrinter = Printer.getDefaultPrinter();
 Button printButton = new Button("Print");
 printButton.setOnAction((ActionEvent event) -> {
 print(ta, selectedPrinter);
 });
 
 FlowPane pane = new FlowPane();
 pane.getChildren().add(ta);
 pane.getChildren().add(printButton);
  
 primaryStage.setScene(new Scene(pane, 500, 300));
 primaryStage.show();
 }
  
 public void print(final Node node, Printer printer) {
  
 PrinterJob job = PrinterJob.createPrinterJob();
 job.setPrinter(printer);
 if (job != null) {
 boolean success = job.printPage(node);
 if (success) {
 job.endJob();
 }
 }
 }
 
 public static void main(String[] args){
 launch(args);
 }
  
}
 

Chapter 2 ■ New Features of Java 8

46

In this application, the TextArea component is sent to the operating system’s default printer when you press the
Print button.

How It Works
In releases of JavaFX prior to JavaFX 8, there was no standard API for printing portions of an application stage.
In JavaFX 8, a Print API has been added to standardize the way in which printing features are handled. The API also
makes it easy to enable applications with printing functionality using very little code. The API is quite large, as it
contains a number of classes, but it is very straightforward and easy to use.

In this example, a TextArea node is constructed, and then it is sent to a printer when the button is clicked.
The button in the application is bound to a method, which is identified as print(). The print() method accepts a
JavaFX node as the first argument and a Printer as the second argument. The Printer argument is the printer that
represents the destination. To obtain the default operating system printer, issue the following command, as shown in
the example:
 
Printer.getDefaultPrinter();
 

A PrinterJob must be constructed before the JavaFX node can be sent to it, and to do so, you call upon the
PrinterJob.createPrinterJob() method. Once the PrinterJob instance is created, you set the destination printer
by passing the Printer argument to the job.setPrinter() method. Finally, call the job.printPage() method,
passing the node to be printed.

To learn more about using the Print API, and to see a more detailed example, refer to Recipe 14-17.

Figure 2-5.  A simple application using the Print API

The constructed application looks like Figure 2-5.

Chapter 2 ■ New Features of Java 8

47

Scripting
The Java platform has had support for embedding and/or executing JavaScript files since the release of Java 1.6, and
the JavaScript engine was Rhino. The Rhino engine served us well for years, but now an updated JavaScript engine
named Nashorn has entered the scene. The Nashorn engine brings with it many updates, including support for the
ECMAScript-262 Edition 5.1 language specification, a new command-line utility for interactive interpretation or
JavaScript file execution, and full access to the JavaFX 8 API.

This chapter provides a couple of examples to get started using Nashorn. For more information, see Chapter 18,
which is dedicated to the new JavaScript engine.

2-12. Embedding JavaScript in Your Java Application
Problem
You want to utilize JavaScript to implement a portion of your Java application.

Solution
Utilize the Nashorn engine to embed JavaScript in a Java application. The following example executes inline JavaScript
by executing a Nashorn ScriptEngine.
 
public class Recipe02_12 {
 
 public static void loadInlineJs() {
 ScriptEngineManager sem = new ScriptEngineManager();
 ScriptEngine nashorn = sem.getEngineByName("nashorn");
 try {
 nashorn.eval("print('This is being printed with JavaScript');");
 } catch (ScriptException ex) {
 Logger.getLogger(Recipe02_12.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 
 public static void main(String[] main) {
 loadInlineJs();
 }
 
}

How It Works
Nashorn is a new JavaScript engine that has been included in Java 8. To execute JavaScript within a Java application,
you invoke an instance of the Nashorn engine, passing it to the engine inline or external JavaScript. In this recipe, the
Nashorn engine is obtained by calling on the ScriptEngineManager and passing "nashorn" as the argument. After
obtaining the Nashorn engine, you are ready to invoke a JavaScript file or evaluate inline JavaScript code by calling on
the engine’s eval() method. In this example, a JavaScript print() statement is passed to the engine.

For more information on using the new Nashorn engine, refer to Chapter 18.

Chapter 2 ■ New Features of Java 8

48

2-13. Executing JavaScript from the Command-Line
Problem
You want to execute JavaScript via the command-line.

Solution
Invoke the jjs tool, which comes as part of Java 8. To execute a JavaScript file, invoke the jjs tool from the command-
line, and then pass the fully qualified name (path included if not in CLASSPATH) of a JavaScript file to execute. For
example, to execute helloNashorn.js, you use the following command:
 
jjs /src/org/java8recipes/chapter18/js/helloNashorn.js
Hello Nashorn!

How It Works
The jjs command-line tool is new in Java 8. The tool is used to execute JavaScript inline or from a JavaScript file.
When using the tool inline, you can execute JavaScript interactively and receive immediate feedback. The tool can
execute one or more .js files with arguments or without.

To learn more about the jjs tool and see a more in-depth example, refer to Recipe 18-2.

Summary
This chapter provided a brief overview of some Java 8 new features, although it barely scratched the surface of what
Java 8 has to offer. The remainder of this book covers recipes that include solutions utilizing pre-existing Java features,
as well as new features introduced in this latest release. As mentioned throughout this chapter, some of the features
covered here are covered in more detail in later recipes. There are also many new features that were not covered in
this chapter, so get ready to delve into the world of Java.

49

Chapter 3

Strings

Strings are one of the most commonly used data types in any programming language. They can be used for obtaining
text from a keyboard, printing messages to a command-line, and much more. Given the fact that strings are used so
often, there have been many features added to the String object over time in order to make them easier to work with.
After all, a string is an object in Java, so it contains methods that can be used to manipulate the contents of the string.
Strings are also immutable in Java, which means that their state cannot be changed or altered. This makes them a
bit different to work with than some of the mutable, or changeable, data types. It is important to understand how to
properly make use of immutable objects, especially when attempting to change or assign different values to them.

This chapter focuses on some of the most commonly used String methods and techniques for working with
String objects. We also cover some useful techniques that are not inherent of String objects.

3-1. Obtaining a Subsection of a String
Problem
You would like to retrieve a portion of a string.

Solution
Use the substring() method to obtain a portion of the string between two different positions. In the solution that
follows, a string is created and then various portions of the string are printed out using the substring() method.
 
public static void substringExample(){
 String originalString = "This is the original String";
 System.out.println(originalString.substring(0, originalString.length()));
 System.out.println(originalString.substring(5, 20));
 System.out.println(originalString.substring(12));
}
 

Running this method would yield the following results:
 
This is the original String
is the original
original String

Chapter 3 ■ Strings

50

How It Works
The String object contains many helper methods. One such method is substring(), which can be used to obtain
portions of the string. There are two variations of the substring() method. One of them accepts a single argument,
that being the starting index; and the other accepts two arguments: startingindex and endingindex. Having two
variations of the substring() method makes it seem as though the second argument is optional; if it is not specified,
the length of the calling string is used in its place. It should be noted that indices begin with zero, so the first position
in a string has the index of 0, and so on.

As you can see from the solution to this recipe, the first use of substring() prints out the entire contents of the
string. This is because the first argument passed to the substring() method is 0, and the second argument passed
is the length of the original string. In the second example of substring(), an index of 5 is used as the first argument,
and an index of 20 is used as the second argument. This effectively causes only a portion of the string to be printed,
beginning with the character in the string that is located in the sixth position, or index 5 because the first position
has an index of 0; and ending with the character in the string that is located in the 20th position, the index of 19. The
third example specifies only one argument; therefore, the result will be the original string beginning with the position
specified by that argument.

Note■■  T he substring() method only accepts positive integer values. If you attempt to pass a negative value,
an exception will be thrown.

3-2. Comparing Strings
Problem
An application that you are writing needs to have the ability to compare two or more string values.

Solution
Use the built-in equals(), equalsIgnoreCase(), compareTo(), and compareToIgnoreCase() methods to compare the
values contained within the strings. The following is a series of tests using different string-comparison operations.

As you can see, various if statements are used to print out messages if the comparisons are equal:
 
String one = "one";
String two = "two";
 
String var1 = "one";
String var2 = "Two";
 
String pieceone = "o";
String piecetwo = "ne";
 
// Comparison is equal
if (one.equals(var1)){
 System.out.println ("String one equals var1 using equals");
}
 

Chapter 3 ■ Strings

51

// Comparison is NOT equal
if (one.equals(two)){
 System.out.println ("String one equals two using equals");
}
 
// Comparison is NOT equal
if (two.equals(var2)){
 System.out.println ("String two equals var2 using equals");
}
 
// Comparison is equal, but is not directly comparing string values using ==
if (one == var1){
 System.out.println ("String one equals var1 using ==");
}
 
// Comparison is equal
if (two.equalsIgnoreCase(var2)){
 System.out.println ("String two equals var2 using equalsIgnoreCase");
}
 
System.out.println("Trying to use == on Strings that are pieced together");
 
String piecedTogether = pieceone + piecetwo;
 
// Comparison is equal
if (one.equals(piecedTogether)){
 System.out.println("The strings contain the same value using equals");
}
 
// Comparison is NOT equal using ==
if (one == piecedTogether) {
 System.out.println("The string contain the same value using == ");
}
 
// Comparison is equal
if (one.compareTo(var1) == 0){
 System.out.println("One is equal to var1 using compareTo()");
}
 

Results in the following output:
 
String one equals var1 using equals
String one equals var1 using ==
String two equals var2 using equalsIgnoreCase
Trying to use == on Strings that are pieced together
The strings contain the same value using equals
One is equal to var1 using compareTo()

Chapter 3 ■ Strings

52

How It Works
One of the trickier parts of using a programming language can come when attempting to compare two or more values.
In the Java language, comparing strings can be fairly straightforward, keeping in mind that you should not use the
== for string comparison. This is because the comparison operator (==) is used to compare references, not values
of strings. One of the most tempting things to do when programming with strings in Java is to use the comparison
operator, but you must not because the results can vary.

Note■■   Java uses interning of strings to speed up performance. This means that the JVM contains a table of interned
strings, and each time the intern() method is called on a string, a lookup is performed on that table to find a match.
If no matching string resides within the table, the string is added to the table and a reference is returned. If the string
already resides within the table, the reference is returned. Java will automatically intern string literals, and this can cause
variation when using the == comparison operator.

In the solution to this recipe, you can see various different techniques for comparing string values. The equals()
method is a part of every Java object. The Java string equals() method has been overridden so that it will compare the
values contained within the string rather than the object itself. As you can see from the following examples that have
been extracted from the solution to this recipe, the equals() method is a safe way to compare strings.
 
// Comparison is equal
if (one.equals(var1)){
 System.out.println ("String one equals var1 using equals");
}
// Comparison is NOT equal
if (one.equals(two)){
 System.out.println ("String one equals two using equals");
}
 

The equals() method will first check to see whether the strings reference the same object using the == operator;
it will return true if they do. If they do not reference the same object, equals() will compare each string character-
by-character to determine whether the strings being compared to each other contain exactly the same values.
What if one of the strings has a different case setting than another? Do they still compare equal to each other using
equals()? The answer is no, and that is why the equalsIgnoreCase() method was created. Comparing two values
using equalsIgnoreCase() will cause each of the characters to be compared without paying attention to the case.
The following examples have been extracted from the solution to this recipe:
 
// Comparison is NOT equal
if (two.equals(var2)){
 System.out.println ("String two equals var2 using equals");
}
// Comparison is equal
if (two.equalsIgnoreCase(var2)){
 System.out.println ("String two equals var2 using equalsIgnoreCase");
}
 

The compareTo()and compareToIgnoreCase() methods perform a lexicographical comparison of the strings.
This comparison is based upon the Unicode value of each character contained within the strings. The result will be a
negative integer if the string lexicographically precedes the argument string. The result will be a positive integer if the

Chapter 3 ■ Strings

53

string lexicographically follows the argument string. The result will be zero if both strings are lexicographically equal
to each other. The following excerpt from the solution to this recipe demonstrates the compareTo() method:
 
// Comparison is equal
if (one.compareTo(var1) == 0){
 System.out.println("One is equal to var1 using compareTo()");
}
 

Inevitably, many applications contain code that must compare strings at some level. The next time you have an
application that requires string comparison, consider the information discussed in this recipe before you write the
code.

3-3. Trimming Whitespace
Problem
One of the strings you are working with contains some whitespace on either end. You would like to get rid of that
whitespace.

Solution
Use the string trim() method to eliminate the whitespace. In the following example, a sentence is printed including
whitespace on either side. The same sentence is then printed again using the trim() method to remove the
whitespace so that the changes can be seen.
 
String myString = " This is a String that contains whitespace. ";
System.out.println(myString);
System.out.println(myString.trim());
 

The output will print as follows:
 
 This is a String that contains whitespace.
This is a String that contains whitespace.

How It Works
Regardless of how careful we are, whitespace is always an issue when working with strings of text. This is especially the
case when comparing strings against matching values. If a string contains an unexpected whitespace character then
that could be disastrous for a pattern-searching program. Luckily, the Java String object contains the trim() method
that can be used to automatically remove whitespace from each end of any given string.

The trim() method is very easy to use. In fact, as you can see from the solution to this recipe, all that is required
to use the trim() method is a call against any given string. Because strings are objects, they contain many helper
methods, which can make them very easy to work with. After all, strings are one of the most commonly used data
types in any programming language . . . so they’d better be easy to use! The trim() method returns a copy of the
original string with all leading and trailing whitespace removed. If, however, there is no whitespace to be removed,
the trim() method returns the original string instance. It does not get much easier than that!

Chapter 3 ■ Strings

54

3-4. Changing the Case of a String
Problem
A portion of your application contains case-sensitive string values. You want to change all the strings to uppercase
before they are processed in order to avoid any case-sensitivity issues down the road.

Solution
Make use of the toUpperCase() and toLowerCase() methods. The String object provides these two helper methods
to assist in performing a case change for all of the characters in a given string.

For example, given the string in the following code, each of the two methods will be called:
 
String str = "This String will change case.";
System.out.println(str.toUpperCase());
System.out.println(str.toLowerCase());
 

The following output will be produced:
 
THIS STRING WILL CHANGE CASE.
this string will change case.

How It Works
To ensure that the case of every character within a given string is either upper- or lowercase, use the toUpperCase()
and toLowerCase() methods, respectively. There are a couple of items to note when using these methods. First, if a
given string contains an uppercase letter, and the toUpperCase() method is called against it, the uppercase letter is
ignored. The same concept holds true for calling the toLowerCase() method. Any punctuation or numbers contained
within the given string are also ignored.

There are two variations for each of these methods. One of the variations does not accept any arguments, while
the other accepts an argument pertaining to the locale you want to use. Calling these methods without any arguments
will result in a case conversion using the default locale. If you want to use a different locale, you can pass the desired
locale as an argument, using the variation of the method that accepts an argument. For instance, if you want to use an
Italian or French locale, you would use the following code:
 
System.out.println(str.toUpperCase(Locale.ITALIAN));
System.out.println(str.toUpperCase(new Locale("it","US")));
System.out.println(str.toLowerCase(new Locale("fr", "CA")));
 

Converting strings to upper- or lowercase using these methods can make life easy. They are also very useful
for comparing strings that are taken as input from an application. Consider the case in which a user is prompted to
enter a username, and the result is saved into a string. Now consider that later in the program that string is compared
against all the usernames stored within a database to ensure that the username is valid. What happens if the person
who entered the username types it with an uppercase first character? What happens if the username is stored
within the database in all uppercase? The comparison will never be equal. In such a case, a developer can use the
toUpperCase() method to alleviate the problem. Calling this method against the strings that are being compared will
result in a comparison in which the case is the same in both strings.

Chapter 3 ■ Strings

55

3-5. Concatenating Strings
Problem
There are various strings that you want to combine into one.

Solution #1
If you want to concatenate strings onto the end of each other, use the concat() method. The following example
demonstrates the use of the concat() method:
 
String one = "Hello";
String two = "Java8";
String result = one.concat(" ".concat(two));
 

The result is this:

Hello Java8

Solution #2
Use the concatenation operator to combine the strings in a shorthand manner. In the following example, a space
character has been placed in between the two strings:
 
String one = "Hello";
String two = "Java8";
String result = one + " " + two;
 

The result is this:
 
Hello Java8

Solution #3
Use StringBuilder or StringBuffer to combine the strings. The following example demonstrates the use of
StringBuffer to concatenate two strings:
 
String one = "Hello";
String two = "Java8";
StringBuffer buffer = new StringBuffer();
buffer.append(one).append(" ").append(two);
String result = buffer.toString();
System.out.println(result);
 

The result is this:
 
Hello Java8

Chapter 3 ■ Strings

56

How It Works
The Java language provides a couple of different options for concatenating strings of text. Although none is better
than the others, you may find one or the other to work better in different situations. The concat() method is a built-in
string helper method. It has the ability to append one string onto the end of another, as demonstrated by solution #1
to this recipe. The concat() method will accept any string value; therefore, you can explicitly type a string value to
pass as an argument if you want. As demonstrated in solution #1, simply passing one string as an argument to this
method will append it to the end of the string, which the method is called upon. However, if you wanted to add a
space character in between the two strings, you could do so by passing a space character as well as the string you want
to append as follows:
 
String result = one.concat(" ".concat(two));
 

As you can see, having the ability to pass any string or combination of strings to the concat() method makes
it very useful. Because all of the string helper methods actually return copies of the original string with the helper
method functionality applied, you can pass strings calling other helper methods to concat() (or any other string
helper method) as well. Consider that you want to display the text "Hello Java" rather than "Hello Java8". The
following combination of string helper methods would allow you to do just that:
 
String one = "Hello";
String two = "Java8";
String result = one.concat(" ".concat(two.substring(0, two.length()-1)));
 

The concatenation operator (+) can be used to combine any two strings. It is almost thought of as a shorthand
form of the concat() method. The last technique that is demonstrated in solution #3 to this example is the use of
StringBuffer, which is a mutable sequence of characters, much like a string, except that it can be modified through
method calls. The StringBuffer class contains a number of helper methods for building and manipulating character
sequences. In the solution, the append() method is used to append two string values. The append() method places
the string that is passed as an argument at the end of the StringBuffer. For more information regarding the use of
StringBuffer, refer to the online documentation at http://docs.oracle.com/javase/8/docs/api/java/lang/
StringBuffer.html.

3-6. Converting Strings to Numeric Values
Problem
You want to have the ability to convert any numeric values that are stored as strings into integers.

Solution #1
Use the Integer.valueOf() helper method to convert strings to int data types. For example:
 
String one = "1";
String two = "2";
int result = Integer.valueOf(one) + Integer.valueOf(two);
 

As you can see, both of the string variables are converted into integer values. After that, they are used to perform
an addition calculation and then stored into an int.

http://docs.oracle.com/javase/8/docs/api/java/lang/StringBuffer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/StringBuffer.html

Chapter 3 ■ Strings

57

Note■■  A technique known as autoboxing is used in this example. Autoboxing is a feature of the Java language that
automates the process of converting primitive values to their appropriate wrapper classes. For instance, this occurs when
you assign an int value to an Integer. Similarly, unboxing automatically occurs when you try to convert in the opposite
direction, from a wrapper class to a primitive. For more information on autoboxing, refer to the online documentation at
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html.

Solution #2
Use the Integer.parseInt() helper method to convert strings to int data types. For example:
 
String one = "1";
String two = "2";
int result = Integer.parseInt(one) + Integer.parseInt(two);
System.out.println(result);

How It Works
The Integer class contains the valueOf() and parseInt() methods, which are used to convert strings or int types
into integers. There are two different forms of the Integer class’s valueOf() type that can be used to convert strings
into integer values. Each of them differs by the number of arguments that they accept. The first valueOf() method
accepts only a string argument. This string is then parsed as an integer value if possible, and then an integer holding
the value of that string is returned. If the string does not convert into an integer correctly, then the method will throw a
NumberFormatException.

The second version of Integer’s valueOf() method accepts two arguments: a string argument that will be parsed
as an integer and an int that represents the radix that is to be used for the conversion.

Note■■   Many of the Java type classes contain valueOf() methods that can be used for converting different types into
that class’s type. Such is the case with the String class because it contains many different valueOf() methods that can
be used for conversion. For more information on the different valueOf() methods that the String class or any other type
class contains, see the online Java documentation at http://docs.oracle.com/javase/8/docs.

There are also two different forms of the Integer class’s parseInt() method. One of them accepts one
argument: the string you want to convert into an integer. The other form accepts two arguments: the string that
you want to convert to an integer and the radix. The first format is the most widely used, and it parses the string
argument as a signed decimal integer. A NumberFormatException will be thrown if a parsable unsigned integer is
not contained within the string. The second format, which is less widely used, returns an Integer object holding the
value that is represented by the string argument in the given radix, given a parsable unsigned integer is contained
within that string.

http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/8/docs

Chapter 3 ■ Strings

58

3-7. Iterating Over the Characters of a String
Problem
You want to iterate over the characters in a string of text so that you can manipulate them at the character level.

Solution
Use a combination of string helper methods to gain access to the string at a character level. If you use a String helper
method within the context of a loop, you can easily traverse a string by character. In the following example, the string
named str is broken down using the toCharArray() method.
 
String str = "Break down into chars";
System.out.println(str);
for (char chr:str.toCharArray()){
 System.out.println(chr);
}
 

The same strategy could be used with the traditional version of the for loop. An index could be created that
would allow access to each character of the string using the charAt() method.
 
for (int x = 0; x <= str.length()-1; x++){
System.out.println(str.charAt(x));
}
 

Both of these solutions will yield the following result:
 
B
r
e
a
k
 
d
o
w
n
 
i
n
t
o
 
c
h
a
r
s

Note■■  T he first example using toCharArray() generates a new character array. Therefore, the second example,
using the traditional for loop, might perform faster.

Chapter 3 ■ Strings

59

How It Works
String objects contain methods that can be used for performing various tasks. The solution to this recipe demonstrates
a number of different String methods. The toCharArray() method can be called against a string in order to break
the string into characters and then store those characters in an array. This method is very powerful and it can save a
bit of time when performing this task is required. The result of calling the toCharArray() method is a char[], which
can then be traversed using an index. Such is the case in the solution to this recipe. An enhanced for loop is used to
iterate through the contents of the char[] and print out each of its elements.

The string length() method is used to find the number of characters contained within a string. The result is
an int value that can be very useful in the context of a for loop, as demonstrated in the solution to this recipe. In
the second example, the length() method is used to find the number of characters in the string so that they can
be iterated over using the charAt() method. The charAt() method accepts an int index value as an argument and
returns the character that resides at the given index in the string.

Often the combination of two or more string methods can be used to obtain various results. In this case, using the
length() and charAt() methods within the same code block provided the ability to break down a string into characters.

3-8. Finding Text Matches
Problem
You want to search a body of text for a particular sequence of characters.

Solution #1
Make use of regular expressions and the string matches() helper method to determine how many matches exist. To do
this, simply pass a string representing a regular expression to the matches() method against any string you are trying
to match. In doing so, the string will be compared with the string that matches() is being called upon. Once evaluated,
matches() will yield a boolean result, indicating whether it is a match. The following code excerpt contains a series of
examples using this technique. The comments contained within the code explain each of the matching tests.
 
String str = "Here is a long String...let's find a match!";
// This will result in a "true" since it is an exact match
boolean result = str.matches("Here is a long String...let's find a match!");
System.out.println(result);
// This will result iin "false" since the entire String does not match
result = str.matches("Here is a long String...");
 
System.out.println(result);
 
str = "true";
 
// This will test against both upper & lower case "T"...this will be TRUE
result = str.matches("[Tt]rue");
System.out.println(result);
 
// This will test for one or the other
result = str.matches("[Tt]rue|[Ff]alse]");
System.out.println(result);
 

Chapter 3 ■ Strings

60

// This will test to see if any numbers are present, in this case the
// person writing this String would be able to like any Java release!
str = "I love Java 8!";
result = str.matches("I love Java [0-9]!");
System.out.println(result);
 
// This will test TRUE as well...
str = "I love Java 7!";
result = str.matches("I love Java [0-9]!");
System.out.println(result);
 
// The following will test TRUE for any language that contains
// only one word for a name. This is because it tests for
// any alphanumeric combination. Notice the space character
// between the numeric sequence...
result = str.matches("I love .*[0-9]!");
System.out.println(result);
 
// The following String also matches.
str = "I love Jython 2.5.4!";
result = str.matches("I love .*[0-9]!");
 
System.out.println(result);
 

Each of the results printed out in the example will be true, with the exception of the second example because it
does not match.

Solution #2
Use the regular expression Pattern and Matcher classes for a better-performing and more versatile matching solution
than the string matches() method. Although the matches() method will get the job done most of the time, there are
some occasions in which you will require a more flexible way of matching. Using this solution is a three-step process:

	 1.	 Compile a pattern into a Pattern object.

	 2.	 Construct a Matcher object using the matcher() method on the Pattern.

	 3.	 Call the matches() method on the Matcher.

In the following example code, the Pattern and Matcher technique is demonstrated:
 
String str = "I love Java 8!";
boolean result = false;
 
Pattern pattern = Pattern.compile("I love .*[0-9]!");
Matcher matcher = pattern.matcher(str);
result = matcher.matches();
 
System.out.println(result);
 

The previous example will yield a TRUE value just like its variant that was demonstrated in solution #1.

Chapter 3 ■ Strings

61

How It Works
Regular expressions are a great way to find matches because they allow patterns to be defined so that an application
does not have to explicitly find an exact string match. They can be very useful when you want to find matches against
some text that a user may be typing into your program. However, they could be overkill if you are trying to match
strings against a string constant you have defined in your program because the String class provides many methods
that could be used for such tasks. Nevertheless, there will certainly come a time in almost every developer’s life when
regular expressions can come in handy. They can be found in just about every programming language used today.
Java makes them easy to use and understand.

Note■■  A lthough regular expressions are used in many different languages today, the expression syntax for each
language varies. For complete information regarding regular expression syntax, see the documentation online at
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html.

The easiest way to make use of regular expressions is to call the matches() method on the String object. Passing a
regular expression to the matches() method will yield a boolean result that indicates whether the String matches the
given regular expression pattern or not. At this point, it is useful to know what a regular expression is and how it works.

A regular expression is a string pattern that is used to match against other strings in order to determine its
contents. Regular expressions can contain a number of different patterns that enable them to be dynamic in that they
can have the ability to match many different strings that contain the same format. For instance, in the solution to this
recipe, the following code can match several different strings:
 
result = str.matches("I love Java [0-9]!");
 

The regular expression string in this example is "I love Java [0-9]!", and it contains the pattern [0-9], which
represents any number between 0 and 9. Therefore, any string that reads "I love Java" followed by the numbers 0
through 9 and then an exclamation point will match the regular expression string. To see a listing of all the different
patterns that can be used in a regular expression, see the online documentation available at the URL in the previous
note.

A combination of Pattern and Matcher objects can also be used to achieve similar results as the string matcher()
method. The Pattern object can be used to compile a string into a regular expression pattern. A compiled pattern can
provide performance gains to an application if the pattern is used multiple times. You can pass the same string–based
regular expressions to the Pattern.compile() method as you would pass to the string matches() method. The result
is a compiled Pattern object that can be matched against a string for comparison. A Matcher object can be obtained
by calling the Pattern object’s matcher() method against a given string. Once a Matcher object is obtained, it can be
used to match a given string against a Pattern using any of the following three methods, which each return a boolean
value indicating a match. The following three lines of solution #2 could be used as an alternate solution to using the
Pattern.matches() method, minus the reusability of the compile pattern:
 
Pattern pattern = Pattern.compile("I love .*[0-9]!");
Matcher matcher = pattern.matcher(str);
result = matcher.matches();
 

The •	 Matcher matches() method attempts to match the entire input string with the pattern.

The •	 Matcher lookingAt() method attempts to match the input string to the pattern starting
at the beginning.

The •	 Matcher find() method scans the input sequence looking for the next matching
sequence in the string.

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

Chapter 3 ■ Strings

62

In the solution to this recipe, the matches() method is called against the Matcher object in order to attempt to
match the entire string. In any event, regular expressions can be very useful for matching strings against patterns.
The technique used for working with the regular expressions can vary in different situations, using whichever method
works best for the situation.

3-9. Replacing All Text Matches
Problem
You have searched a body of text for a particular sequence of characters, and you are interested in replacing all
matches with another string value.

Solution
Use a regular expression pattern to obtain a Matcher object; then use the Matcher object’s replaceAll() method to
replace all matches with another string value. The example that follows demonstrates this technique:
 
String str = "I love Java 8! It is my favorite language. Java 8 is the "
 + "8th version of this great programming language.";
Pattern pattern = Pattern.compile("[0-9]");
Matcher matcher = pattern.matcher(str);
System.out.println("Original: " + str);
System.out.println(matcher.matches());
System.out.println("Replacement: " + matcher.replaceAll("7"));
 

This example will yield the following results:
 
Original: I love Java 8! It is my favorite language. Java 8 is the 8th version of this great
programming language.
Replacement: I love version of this great programming language.

How It Works
The replaceAll() method of the Matcher object makes it easy to find and replace a string or a portion of string that
is contained within a body of text. In order to use the replaceAll() method of the Matcher object, you must first
compile a Pattern object by passing a regular expression string pattern to the Pattern.compile() method. Use the
resulting Pattern object to obtain a Matcher object by calling its matcher() method. The following lines of code show
how this is done:
 
Pattern pattern = Pattern.compile("[0-7]");
Matcher matcher = pattern.matcher(str);
 

Once you have obtained a Matcher object, call its replaceAll() method by passing a string that you want to use
to replace all the text that is matched by the compiled pattern. In the solution to this recipe, the string "7" is passed to
the replaceAll() method, so it will replace all the areas in the string that match the "[0-7]" pattern.

Chapter 3 ■ Strings

63

3-10. Determining Whether a File Name Ends with a Given String
Problem
You are reading a file from the server and you need to determine what type of file it is in order to read it properly.

Solution
Determine the suffix of the file by using the endsWith() method on a given file name. In the following example,
assume that the variable filename contains the name of a given file, and the code is using the endsWith() method to
determine whether filename ends with a particular string.:
 
if(filename.endsWith(".txt")){
 System.out.println("Text file");
} else if (filename.endsWith(".doc")){
 System.out.println("Document file");
} else if (filename.endsWith(".xls")){
 System.out.println("Excel file");
} else if (filename.endsWith(".java")){
System.out.println("Java source file");
} else {
 System.out.println("Other type of file");
}
 

Given that a file name and its suffix are included in the filename variable, this block of code will read its suffix
and determine what type of file the given variable represents.

How It Works
As mentioned previously, the String object contains many helper methods that can be used to perform tasks.
The String object’s endsWith() method accepts a character sequence and then returns a boolean value representing
whether the original string ends with the given sequence. In the case of the solution to this recipe, the endsWith()
method is used in an if block. A series of file suffixes is passed to the endsWith() method to determine what type of
file is represented by the filename variable. If any of the file name suffixes matches, a line is printed, stating what type
of file it is.

Summary
This chapter covered the basics of working with strings. Although a string may look like a simple string of characters,
it is an object that contains many methods that can be useful for obtaining the required results. Although strings are
immutable objects, many methods within the String class contain a copy of the string, modified to suit the request.
This chapter covered a handful of these methods, demonstrating features such as concatenation, how to obtain
portions of strings, trimming whitespace, and replacing portions of a string.

65

Chapter 4

Numbers and Dates

Numbers play a significant role in many applications. As such, it is helpful to know how to use them correctly within the
context of the work that you are trying to perform. This chapter helps you understand how to perform some of the most
basic operations with numbers, and it also provides insight on performing advanced tasks such as working with currency.

Dates are also important as they can be used for many purposes within an application. In Java 8, the new
Date-Time package called java.time was introduced. The Date-Time API uses the calendar defined in ISO-8601 as
the default. Therefore, the calendar is based on the Gregorian calendar system, and in this chapter, you will learn how
to work with date, time, and time zone data. The Date-Time API adheres to several design principles, in that it’s clear,
fluent, immutable, and extensible. The API uses a clear language that is concise and very well defined. It is also very
fluent, so code dealing with date-time data is easy to read and understand. Most of the classes within the Date-Time
API are immutable, so in order to alter a date-time object you must create a modified copy of the original. As such,
many of the methods in the date-time classes are named accordingly, such as of() and with(), so that you know you
are creating a copy rather than altering the original. Lastly, the new Date-Time API can be extended in many cases,
allowing it to be useful in many contexts.

The Date-Time API is made up of a rich set of classes, providing solutions that were very difficult to achieve in
previous APIs. Even though there are many different classes, most of them contain a similar set of methods, so the
same principles can be utilized throughout all of the date and time units. Table 4-1 lists the common set of methods
that you will find in most of the date-time classes.

Table 4-1.  Date-Time API’s Common Methods

Method Description

at Combines one object with another.

format Applies the specified format to a temporal object, producing a string.

from Converts input parameters to an instance of the target class.

get Returns a part of the state of the target object.

is Queries the target object.

minus Returns a modified copy of the target object with the specified amount of time subtracted.

of Creates an instance, using specified input parameters for validation.

parse Parses an input string to produce an instance of the target class.

plus Returns a modified copy of the target object with the specified amount of time added.

to Converts an object to a different type.

with Returns a modified copy of the target object with the specified element changed (equivalent to a setter).

Chapter 4 ■ Numbers and Dates

66

As mentioned previously, the Date-Time API is fluent; therefore, each of its classes is located in a clearly marked
package. Table 4-2 lists the packages that make up the Date-Time API, along with brief descriptions of the classes that
can be found in each.

Table 4-2.  Date-Time API Packages

Package Description

java.time The core classes of the API. These classes are used for working with date-time data based
on the ISO-8601 standard. These classes are immutable and thread-safe.

java.time.chrono The API for using calendar systems other than ISO-8601.

java.time.format Classes for formatting date-time data.

java.time.temporal Extended API that allows interpolations between date-time classes.

java.time.zone Classes supporting time zone data.

This chapter presents a brief overview of some commonly used date-time features. If you will be performing
significant work with dates and times, you should read the Date-Time API documentation that is available online.

4-1. Rounding Float and Double Values to Integers
Problem
You need to be able to round floating-point numbers or doubles in your application to Integer values.

Solution
Use one of the java.lang.Math round() methods to round the number into the format you require. The Math
class has two methods that can be used for rounding floating-point numbers or Double values. The following code
demonstrates how to use each of these methods:
 
public static int roundFloatToInt(float myFloat){
 return Math.round(myFloat);
}
 
public static long roundDoubleToLong(double myDouble){
 return Math.round(myDouble);
}
 

The first method, roundFloatToInt(), accepts a floating-point number and uses the java.lang.Math class to
round that number to an Integer. The second method, roundDoubleToLong(), accepts a Double value and uses the
java.lang.Math class to round that Double to a Long.

Chapter 4 ■ Numbers and Dates

67

How It Works
The java.lang.Math class contains plenty of helper methods to make our lives easier when working with numbers.
The round() methods are no exception as they can be used to easily round floating-point or double values. One
version of the java.lang.Math round() method accepts a float as an argument. It will round the float to the closest
int value, with ties rounding up. If the argument is NaN, then a zero will be returned. When arguments that are
positive or negative infinity are passed into round(), a result equal to the value of Integer.MAX_VALUE or Integer.
MIN_VALUE, respectively, will be returned. The second version of the java.lang.Math round() method accepts a
double value. The double value is rounded to the closest long value, with ties rounding up. Just like the other round(),
if the argument is Not a Number (NaN), a zero will be returned. Similarly, when arguments that are positive or negative
infinity are passed into round(), a result equal to the value of Long.MAX_VALUE or Long.MIN_VALUE, respectively, will
be returned.

Note■■   NaN, POSITIVE_INFINITY, and NEGATIVE_INFINITY are constant values defined within the Float and Double
classes. NaN (Not a Number) is an undefined or unrepresentable value. For example, a NaN value can be produced by
dividing 0.0f by 0.0f. The values represented by POSITIVE_INFINITY and NEGATIVE_INFINITY refer to values that
are produced by operations that generate such extremely large or negative values of a particular type (floating-point or
double) that they cannot be represented normally. For instance, 1.0/0.0 or -1.0/0.0 would produce such values.

4-2. Formatting Double and Long Decimal Values
Problem
You need to be able to format double and long numbers in your application.

Solution
Use the DecimalFormat class to format and round the value to the precision your application requires. In the following
method, a double value is accepted and a formatted string value is printed:
 
public static void formatDouble(double myDouble){
 NumberFormat numberFormatter = new DecimalFormat("##.000");
 String result = numberFormatter.format(myDouble);
 System.out.println(result);
}
 

For instance, if the double value passed into the formatDouble() method is 345.9372, the following will be the result:
 
345.937
 

Similarly, if the value .7697 is passed to the method, the following will be the result:
 
.770
 

Each of the results is formatted using the specified pattern and then rounded accordingly.

Chapter 4 ■ Numbers and Dates

68

How It Works
The DecimalFormat class can be used along with the NumberFormat class to round and/or format double or long
values. NumberFormat is an abstract class that provides the interface for formatting and parsing numbers. This class
provides the ability to format and parse numbers for each locale, and obtain formats for currency, percentage,
integers, and numbers. By itself, the NumberFormat class can be very useful as it contains factory methods that can
be used to obtain formatted numbers. In fact, little work needs to be done in order to obtain a formatted string. For
example, the following code demonstrates calling some factory methods on the NumberFormat class:
 
// Obtains an instance of NumberFormat class
NumberFormat format = NumberFormat.getInstance();
 
// Format a double value for the current locale
String result = format.format(83.404);
System.out.println(result);
 
// Format a double value for an Italian locale
result = format.getInstance(Locale.ITALIAN).format(83.404);
System.out.println(result);
 
// Parse a String into a Number
try {
 Number num = format.parse("75.736");
 System.out.println(num);
} catch (java.text.ParseException ex){
 System.out.println(ex);
}
 

To format using a pattern, the DecimalFormat class can be used along with NumberFormat. In the solution to this
recipe, you saw that creating a new DecimalFormat instance by passing a pattern to its constructor would return a
NumberFormat type. This is because DecimalFormat extends the NumberFormat class. Because the NumberFormat class
is abstract, DecimalFormat contains all the functionality that NumberFormat contains, plus added functionality for
working with patterns. Therefore, it can be used to work with different formats from the locales just as you have seen
in the previous demonstration. This provides the ultimate flexibility when working with double or long formatting.

As mentioned previously, the DecimalFormat class can take a string-based pattern in its constructor. You can also
use the applyPattern() method to apply a pattern after the fact. Each pattern contains a prefix, numeric part, and
suffix, which allow you to format a particular decimal value to the required precision and include leading digits and
commas as needed. The symbols used to build patterns are displayed in Table 4-3. Each of the patterns also contains a
positive and negative subpattern. These two subpatterns are separated by a semicolon (;) and the negative subpattern
is optional. If there is no negative subpattern present, the localized minus sign is used. For instance, a complete
pattern example would be ###,##0.00;(###,##0.00).

Chapter 4 ■ Numbers and Dates

69

The DecimalFormat class provides enough flexibility to format double and long values for just about every situation.

4-3. Comparing int Values
Problem
You need to compare two or more int values.

Solution #1
Use the comparison operators to compare integer values against one another. In the following example, three int
values are compared against each other, demonstrating various comparison operators:

int int1 = 1;
int int2 = 10;
int int3 = -5;
 
System.out.println(int1 == int2); // Result: false
System.out.println(int3 == int1); // Result: false
System.out.println(int1 == int1); // Result: true
System.out.println(int1 > int3); // Result: true
System.out.println(int2 < int3); // Result: false
 

As you can see, comparison operators will generate a Boolean result.

Solution #2
Use the Integer.compare(int,int) method to compare two int values numerically. The following lines could
compare the same int values that were declared in the first solution:
 
System.out.println("Compare method -> int3 and int1: " + Integer.compare(int3, int1));
// Result -1
System.out.println("Compare method -> int2 and int1: " + Integer.compare(int2, int1));
// Result 1

Table 4-3.  DecimalFormat Pattern Characters

Character Description

Digit; blank if no digit is present

0 Digit; zero if no digit is present

. Decimal

- Minus or negative sign

, Comma or grouping separator

E Scientific notation separator

; Positive and negative subpattern separator

Chapter 4 ■ Numbers and Dates

70

How It Works
Perhaps the most commonly used numeric comparisons are against two or more int values. The Java language makes
it very easy to compare an int using the comparison operators (see Table 4-4).

Table 4-4.  Comparison Operators

Operator Function

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The second solution to this recipe demonstrates the integer compare() method that was added to the language in
Java 7. This static method accepts two int values and compares them, returning a 1 if the first int is greater than the
second, a 0 if the two int values are equal, and a -1 if the first int value is less than the second. To use the Integer.
compare() method, pass two int values as demonstrated in the following code:
 
Integer.compare(int3, int1));
Integer.compare(int2, int1));
 

Just like in your math lessons at school, these comparison operators will determine whether the first integer is
equal to, greater than, or less than the second integer. Straightforward and easy to use, these comparison operators
are most often seen within the context of an if statement.

4-4. Comparing Floating-Point Numbers
Problem
You need to compare two or more floating-point values in an application.

Solution #1
Use the Float object’s compareTo() method to perform a comparison of one float against another. The following
example shows the compareTo() method in action:
 
Float float1 = new Float("9.675");
Float float2 = new Float("7.3826");
Float float3 = new Float("23467.373");
 
System.out.println(float1.compareTo(float3)); // Result: -1
System.out.println(float2.compareTo(float3)); // Result: -1
System.out.println(float1.compareTo(float1)); // Result: 0
System.out.println(float3.compareTo(float2)); // Result: 1
 

Chapter 4 ■ Numbers and Dates

71

The result of calling the compareTo() method is an integer value. A negative result indicates that the first float
is less than the float that it is being compared against. A zero indicates that the two float values are equal. Lastly, a
positive result indicates that the first float is greater than the float that it is being compared against.

Solution #2
Use the Float class compare() method to perform the comparison. The following example demonstrates the use of
the Float.compare(float, float) method.
 
System.out.println(Float.compare(float1, float3)); // Result: -1
System.out.println(Float.compare(float2, float3)); // Result: -1
System.out.println(Float.compare(float1, float1)); // Result: 0
System.out.println(Float.compare(float3, float2)); // Result: 1

How It Works
The most useful way to compare two float objects is to use the compareTo() method. This method will perform a
numeric comparison against the given float objects. The result will be an integer value indicating whether the first
float is numerically greater than, equal to, or less than the float that it is compared against. If a float value is NaN, it is
considered to be equal to other NaN values or greater than all other float values. Also, a float value of 0.0f is greater
than a float value of -0.0f.

An alternative to using compareTo() is the compare() method, which is also native to the Float class. The
compare() method was introduced in Java 1.4, and it is a static method that compares two float values in the same
manner as compareTo(). It only makes the code read a bit differently. The format for the compare() method is as
follows:
 
Float.compare(primitiveFloat1, primitiveFloat2)
 

The compare() method shown will actually make the following call using compareTo():
 
new Float(float1).compareTo(new Float(float2)
 

In the end, the same results will be returned using either compareTo() or compare().

4-5. Calculating Monetary Values
Problem
You are developing an application that requires the use of monetary values and you are not sure which data type to
use for storing and calculating currency values.

Chapter 4 ■ Numbers and Dates

72

Solution
Use the BigDecimal data type to perform calculation on all monetary values. Format the resulting calculations using the
NumberFormat.getCurrencyInstance() helper method. In the following code, three monetary values are calculated
using a handful of the methods that are part of the BigDecimal class. The resulting calculations are then converted into
double values and formatted using the NumberFormat class. First, take a look at how these values are calculated:
 
BigDecimal currencyOne = new BigDecimal("25.65");
BigDecimal currencyTwo = new BigDecimal("187.32");
BigDecimal currencyThree = new BigDecimal("4.86");
BigDecimal result = null;
String printFormat = null;
 
// Add all three values
result = currencyOne.add(currencyTwo).add(currencyThree);
// Convert to double and send to formatDollars(), returning a String
printFormat = formatDollars(result.doubleValue());
System.out.println(printFormat);
 
// Subtract the first currency value from the second
result = currencyTwo.subtract(currencyOne);
printFormat = formatDollars(result.doubleValue());
System.out.println(printFormat);
 

Next, let’s take a look at the formatDollars() method that is used in the code. This method accepts a double
value and performs formatting on it using the NumberFormat class based on the U.S. locale. It then returns a string
value representing currency:
 
public static String formatDollars(double value){
 NumberFormat dollarFormat = NumberFormat.getCurrencyInstance(Locale.US);
 return dollarFormat.format(value);
}
 

As you can see, the NumberFormat class allows for currency to be formatted per the specified locale. This can be
very handy if you are working with an application that deals with currency and has an international scope.
 
$217.83
$161.67 

Note■■   JSR 354, the Money and Currency API, was under development at the time of this writing, and it is due to
become part of Java 9. See the JSR for more information at https://jcp.org/en/jsr/detail?id=354.

How It Works
Many people attempt to use different number formats when working with currency. While it might be possible to use
any type of numeric object to work with currency, the BigDecimal class was added to the language to help satisfy the
requirements of working with currency values, among other things. Perhaps the most useful feature of the BigDecimal

https://jcp.org/en/jsr/detail?id=354

Chapter 4 ■ Numbers and Dates

73

class is that it provides control over rounding. This is essentially why such a class is so useful for working with
currency values. The BigDecimal class provides an easy API for rounding values, and also makes it easy to convert to
double values, as the solution to this recipe demonstrates.

Note■■  T he use of BigDecimal for working with monetary values is a good practice. However, it can come at some
performance expense. Depending on the application and performance requirements, it might be worth using Math.
round() to achieve basic rounding if performance becomes an issue.

To provide specific rounding with the BigDecimal class, you should use a MathContext object or the
RoundingMode enumeration values. In either case, such precision can be omitted by using a currency-formatting
solution such as the one demonstrated in the solution example. BigDecimal objects have mathematical
implementations built into them, so performing such operations is an easy task. The arithmetic operations that you
can use are described in Table 4-5.

Table 4-5.  BigDecimal Arithmetic Methods

Method Description

add() Adds one BigDecimal object value to another.

subtract() Subtracts one BigDecimal object value from another.

multiply() Multiplies the value of one BigDecimal object by another.

abs() Returns the absolute value of the given BigDecimal object value.

pow(n) Returns the BigDecimal to the power of n; the power is computed
to unlimited precision.

After performing the calculations you require, call the doubleValue() method on the BigInteger object to
convert and obtain a double. You can then format the double using the NumberFormat class for currency results.

4-6. Randomly Generating Values
Problem
An application that you are developing requires the use of randomly generated numbers.

Solution #1
Use the java.util.Random class to help generate the random numbers. The Random class was developed for the
purpose of generating random numbers for a handful of the Java numeric data types. This code demonstrates the use
of Random to generate such numbers:
 
// Create a new instance of the Random class
Random random = new Random();
 

Chapter 4 ■ Numbers and Dates

74

// Generates a random Integer
int myInt = random.nextInt();
 
// Generates a random Double value
double myDouble = random.nextDouble();
 
// Generates a random float
float myFloat = random.nextFloat();
 
// Generates a random Gaussian double
// mean 0.0 and standard deviation 1.0
// from this random number generator's sequence.
double gausDouble = random.nextGaussian();
 
// Generates a random Long
long myLong = random.nextLong();
 
// Generates a random boolean
boolean myBoolean = random.nextBoolean();

Solution #2
Make use of the Math.random() method. This will produce a double value that is greater than 0.0, but less than 1.0.
The following code demonstrates the use of this method:
 
double rand = Math.random();

How It Works
The java.util.Random class uses a 48-bit seed to generate a series of pseudo-random values. As you can see from
the example in the solution to this recipe, the Random class can generate many different types of random number
values based on the given seed. By default, the seed is generated based on a calculation derived from the number of
milliseconds that the machine has been active. However, the seed can be set manually using the Random setSeed()
method. If two Random objects have the same seed, they will produce the same results.

It should be noted that there are cases in which the Random class might not be the best choice for generating
random values. For instance, if you are attempting to use a thread-safe instance of java.util.Random, you might
run into performance issues if you’re working with many threads. In such a case, you might consider using the
ThreadLocalRandom class instead. To see more information regarding ThreadLocalRandom, see the documentation at
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadLocalRandom.html.

Similarly, if you require the use of a cryptographically secure Random object, consider the use of SecureRandom.
Documentation regarding this class can be found at http://docs.oracle.com/javase/8/docs/api/java/security/
SecureRandom.html.

The java.util.Random class comes in very handy when you need to generate a type-specified random value.
Not only is it easy to use but it also provides a wide range of options for return type. Another easy technique is to use
the Math.random() method, which produces a double value that is within the range of 0.0 to 1.0, as demonstrated in
solution #2. Both techniques provide a good means of generating random values. However, if you need to generate
random numbers of a specific type, java.util.Random is the best choice.

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ThreadLocalRandom.html
http://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
http://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

Chapter 4 ■ Numbers and Dates

75

4-7. Obtaining the Current Date Without Time
Problem
You are developing an application for which you would like to obtain the current date, not including the time, to
display on a form.

Solution
Make use of the Date-Time API to obtain the current date. The LocalDate class represents an ISO calendar in the
year-month-day format. The following lines of code capture the current date and display it:
 
LocalDate date = LocalDate.now();
System.out.println("Current Date:" + date);

How It Works
The Date-Time API makes it easy to obtain the current date, without including other information such as time. To do
so, import the java.time.LocalTime class and call on its now() method. The LocalTime class cannot be instantiated,
as it is immutable and thread-safe. A call to the now() method returns another LocalDate object, containing the
current date in the year-month-day format.

Another version of the now() method accepts a java.time.Clock object as a parameter and returns the date
based on that clock. For instance, the following lines of code demonstrate how to obtain a Clock that represents the
system time:
 
Clock clock = Clock.systemUTC();
LocalDate date = LocalDate.now(clock);
 

In previous releases, there were other ways to obtain the current date, but usually the time came with the date
and then formatting had to be done to remove the unneeded time digits. The new java.time.LocalDate class makes
it possible to work with dates separate from times.

4-8. Obtaining a Date Object Given Date Criteria
Problem
You want to obtain a date object, given a year-month-day specification.

Solution
Invoke the LocalDate.of() method for the year, month, and day for which you want to obtain the object. For
example, suppose that you want to obtain a date object for a specified date in November of 2000. You could pass that
date criteria to the LocalDate.of() method, as demonstrated in the following lines of code:
 
LocalDate date = LocalDate.of(2000, Month.NOVEMBER, 11);
System.out.println("Date from specified date: " + date);
 

Chapter 4 ■ Numbers and Dates

76

Here’s the result:
 
Date from specified date: 2000-11-11

How It Works
The LocalDate.of() method accepts three values as parameters. Those parameters represent the year, month, and
day. The year parameter is always treated as an int value. The month parameter can be presented as an int value,
which uses an enum that represents the month. The Month enum will return an int value for each month, with
JANUARY returning a 1 and DECEMBER returning a 12. Therefore, Month.NOVEMBER returns an 11. A Month object could
also be passed as the second parameter instead of as an int value. Lastly, the day of the month is specified by passing
an int value as the third parameter to the of() method.

Note■■   For more information regarding the Month enum, see the online documentation at
http://docs.oracle.com/javase/8/docs/api/java/time/Month.html.

4-9. Obtaining a Year-Month-Day Date Combination
Problem
You would like to obtain the year, year-month, or month of a specified date.

Solution #1
To obtain the year-month of a specified date, use the java.time.YearMonth class. This class is used to represent the
month of a specific year. In the following lines of code, the YearMonth object is used to obtain the year and month of
the current date and another specified date.
 
YearMonth yearMo = YearMonth.now();
System.out.println("Current Year and month:" + yearMo);
YearMonth specifiedDate = YearMonth.of(2000, Month.NOVEMBER);
System.out.println("Specified Year-Month: " + specifiedDate);
 

Here’s the result:
 
Current Year and month: 2014-12
Specified Year-Month: 2000-11

Solution #2
To obtain the month-day for the current date or a specified date, simply make use of the java.time.MonthDay class.
The following lines of code demonstrate how to obtain a month-day combination.
 
MonthDay monthDay = MonthDay.now();
System.out.println("Current month and day: " + monthDay);
MonthDay specifiedDate = MonthDay.of(Month.NOVEMBER, 11);
System.out.println("Specified Month-Day: " + specifiedDate);
 

http://docs.oracle.com/javase/8/docs/api/java/time/Month.html

Chapter 4 ■ Numbers and Dates

77

Here’s the result:
 
Current month and day: --12-14
Specified Month-Day: --11-11
 

Note that by default, MonthDay does not return a very useful format. For more help with formatting, see Recipe 4-17.

How It Works
The Date-Time API includes classes that make it easy to obtain the information that your application requires for a
date. Two of those are the YearMonth and MonthDay classes. The YearMonth class is used to obtain the date in year-
month format. It contains a few methods that can be used to obtain the year-month combination. As demonstrated in
the solution, you can call the now() method to obtain the current year-month combination. Similar to the LocalDate
class, YearMonth also contains an of() method that accepts a year in int format, and an number that represents the
month of the year. In the solution, the Month enum is used to obtain the month value.

Similar to the YearMonth class, MonthDay obtains the date in a month-day format. It also contains a few different
methods for obtaining the month-day combination. Solution #2 demonstrates two such techniques. Obtaining
the current month-day combination by calling the now() method and using the of() method to obtain a month-
day combination for a specified date. The of() method accepts an int value for the month of the year as its first
parameter, and for the second parameter it accepts an int value indicating the day of the month.

4-10. Obtaining and Calculating Based on the Current Time
Problem
You would like to obtain the current time so that it can be used to stamp a given record. You would also like to perform
calculations on that time.

Solution
Use the LocalTime class, which is part of the new Date-Time API, to obtain and display the current time. In the
following lines of code, the LocalTime class is demonstrated.
 
LocalTime time = LocalTime.now();
System.out.println("Current Time: " + time);
  

Once the time has been obtained, methods can be called against the LocalTime instance to achieve the desired
result. In the following lines of code, there are some examples of using the LocalTime methods:
 
// atDate(LocalDate): obtain the local date and time
LocalDateTime ldt = time.atDate(LocalDate.of(2011,Month.NOVEMBER,11));
System.out.println("Local Date Time object: " + ldt);
  
// of(int hours, int min): obtain a specific time
LocalTime pastTime = LocalTime.of(1, 10);
  
// compareTo(LocalTime): compare two times. Positive
// return value returned if greater
System.out.println("Comparing times: " + time.compareTo(pastTime));
  

Chapter 4 ■ Numbers and Dates

78

// getHour(): return hour in int value (24-hour format)
int hour = time.getHour();
System.out.println("Hour: " + hour);
  
// isAfter(LocalTime): return Boolean comparison
System.out.println("Is local time after pastTime? " + time.isAfter(pastTime));
  
// minusHours(int): Subtract Hours from LocalTime
LocalTime minusHrs = time.minusHours(5);
System.out.println("Time minus 5 hours: " + minusHrs);
  
// plusMinutes(int): Add minutes to LocalTime
LocalTime plusMins = time.plusMinutes(30);
System.out.println("Time plus 30 mins: " + plusMins);
 

Here are the results:
 
Current Time: 22:21:08.419
Local Date Time object: 2011-11-11T22:21:08.419
Comparing times: 1
Hour: 22
Is local time after pastTime? true
Time minus 5 hours: 17:21:08.419
Time plus 30 mins: 22:51:08.419

How It Works
Sometimes it is necessary to obtain the current system time. The LocalTime class can be used to obtain the current
time by calling its now() method. Similarly to the LocalDate class, the LocalTime.now() method can be called to
return a LocalTime object that is equal to the current time. The LocalTime class also contains several methods
that can be utilized to manipulate the time. The examples contained in the solution provide a brief overview of the
available methods.

Let’s take a look at a handful of examples to provide some context for how the LocalTime methods are invoked.
To obtain a LocalTime object set to a specific time, invoke the LocalTime.of(int, int) method, passing int
parameters representing the hour and minute.
 
// of(int hours, int min): obtain a specific time
LocalTime pastTime = LocalTime.of(1, 10);
 

The atDate(LocalDate) instance method is used to apply a LocalDate object to a LocalTime instance, returning
a LocalDateTime object (for more information, see Recipe 4-11).
 
LocalDateTime ldt = time.atDate(LocalDate.of(2011,Month.NOVEMBER,11));
 

There are several methods that can be used for obtaining portions of the time. For instance, the getHour(),
getMinute(), getNano(), and getSecond() methods can be used to return those specified portions of the LocalTime object.
 
int hour = time.getHour();
int min = time.getMinute();
int nano = time.getNano();
int sec = time.getSecond();
 

Chapter 4 ■ Numbers and Dates

79

Several comparison methods are also available for use. For example, the compareTo(LocalTime) method can be
used to compare one LocalTime object to another. isAfter(LocalTime) can be used to determine if the time is after
another, and isBefore(LocalTime) is used to specify the opposite. If calculations are needed, several methods are
available, including:

•	 minus(long amountToSubtract, TemporalUnit unit)

•	 minus(TemporalAmount amount)

•	 minusHours(long)

•	 minusMinutes(long)

•	 minusNanos(long)

•	 minusSeconds(long)

•	 plus(long amountToAdd, TemporalUnit unit)

•	 plus(TemporalAmount amount)

•	 plusHours(long)

•	 plusMinutes(long)

•	 plusNanos(long)

•	 plusSeconds(long)

To see all of the methods contained in the LocalTime class, see the online documentation at
http://docs.oracle.com/javase/8/docs/api/java/time/LocalTime.html.

4-11. Obtaining and Using the Date and Time Together
Problem
In your application, you want to display not only the current date, but also the current time.

Solution #1
Make use of the LocalDateTime class, which is part of the new Date-Time API, to capture and display the current date
and time. The LocalDateTime class contains a method named now(), which can be used to obtain the current date
and time together. The following lines of code demonstrate how to do so:
 
LocalDateTime ldt = LocalDateTime.now();
System.out.println("Local Date and Time: " + ldt);
 

The resulting LocalDateTime object contains both the date and time, but no time zone information. The
LocalDateTime class also contains additional methods that provide options for working with date-time data. For
instance, to return a LocalDateTime object with a specified date and time, pass parameters of int type to the
LocalDateTime.of() method, as follows:
 
// Obtain the LocalDateTime object of the date 11/11/2000 at 12:00
LocalDateTime ldt2 = LocalDateTime.of(2000, Month.NOVEMBER, 11, 12, 00);
 

Chapter 4 ■ Numbers and Dates

80

The following examples demonstrate a handful of the methods that are available in a LocalDateTime object:
 
// Obtain the month from LocalDateTime object
Month month = ldt.getMonth();
int monthValue = ldt.getMonthValue();
System.out.println("Month: " + month);
System.out.println("Month Value: " + monthValue);
  
// Obtain day of Month, Week, and Year
int day = ldt.getDayOfMonth();
DayOfWeek dayWeek = ldt.getDayOfWeek();
int dayOfYr = ldt.getDayOfYear();
System.out.println("Day: " + day);
System.out.println("Day Of Week: " + dayWeek);
System.out.println("Day of Year: " + dayOfYr);
  
// Obtain year
int year = ldt.getYear();
System.out.println("Date: " + monthValue + "/" + day + "/" + year);
  
int hour = ldt.getHour();
int minute = ldt.getMinute();
int second = ldt.getSecond();
System.out.println("Current Time: " + hour + ":" + minute + ":" + second);
 
// Calculation of Months, etc.
LocalDateTime currMinusMonths = ldt.minusMonths(12);
LocalDateTime currMinusHours = ldt.minusHours(10);
LocalDateTime currPlusDays = ldt.plusDays(30);
System.out.println("Current Date and Time Minus 12 Months: " + currMinusMonths);
System.out.println("Current Date and Time MInus 10 Hours: " + currMinusHours);
System.out.println("Current Date and Time Plus 30 Days:" + currPlusDays);
 

Here’s the result:
 
Day: 18
Day Of Week: WEDNESDAY
Day of Year: 352
Date: 12/18/2013
Current Time: 23:8:41
Current Date and Time Minus 12 Months: 2012-12-18T23:41:34.084
Current Date and Time MInus 10 Hours: 2014-12-18T13:41:34.084
Current Date and Time Plus 30 Days:2014-01-17T23:41:34.084

Chapter 4 ■ Numbers and Dates

81

Solution #2
If you only need to obtain the current date without going into calendar details, use the java.util.Date class to
generate a new Date object. Doing so will cause the new Date object to be equal to the current system date. In the
following code, you can see how easy it is to create a new Date object and obtain the current date:
 
Date date = new Date();
 
System.out.println(date);
System.out.println(date.getTime());
 

The result will be a Date object that contains the current date and time taken from the system that the code is
run on, including the time zone information, as shown following listing. The time is the number of milliseconds since
January 1, 1970, 00:00:00 GMT.
 
Sat Sep 10 14:45:57 CDT 2011
1315683957625

Solution #3
If you need to be more precise regarding the calendar, use the java.util.Calendar class. Although working with the
Calendar class will make your code longer, the results are much more precise. The following code demonstrates just a
handful of the capabilities of using this class to obtain the current date:
 
Calendar gCal = Calendar.getInstance();
 
// Month is based upon a zero index, January is equal to 0,
// so we need to add one to the month for it to be in
// a standard format
int month = gCal.get(Calendar.MONTH) + 1;int day = gCal.get(Calendar.DATE);
int yr = gCal.get(Calendar.YEAR);
 
String dateStr = month + "/" + day + "/" + yr;
System.out.println(dateStr);
 
int dayOfWeek = gCal.get(Calendar.DAY_OF_WEEK);
 
// Print out the integer value for the day of the week
System.out.println(dayOfWeek);
 
int hour = gCal.get(Calendar.HOUR);
int min = gCal.get(Calendar.MINUTE);
int sec = gCal.get(Calendar.SECOND);
  
// Print out the time
System.out.println(hour + ":" + min + ":" + sec);
 

Chapter 4 ■ Numbers and Dates

82

// Create new DateFormatSymbols instance to obtain the String
// value for dates
DateFormatSymbols symbols = new DateFormatSymbols();
String[] days = symbols.getWeekdays();
System.out.println(days[dayOfWeek]);
 
// Get crazy with the date!
int dayOfYear = gCal.get(Calendar.DAY_OF_YEAR);
System.out.println(dayOfYear);
 
// Print the number of days left in the year
System.out.println("Days left in " + yr + ": " + (365-dayOfYear));
 
int week = gCal.get(Calendar.WEEK_OF_YEAR);
// Print the week of the year
System.out.println(week);
 

As demonstrated by this code, it is possible to obtain more detailed information regarding the current date when
using the Calendar class. The results of running the code will look like the following:
 
9/10/2011
7
2:45:57
Saturday
253
Days left in 2011: 112
37

How It Works
Many applications require the use of the current calendar date. It is often also necessary to obtain the current time.
There are different ways to do that, and the solution to this recipe demonstrates three of them. The Date-Time API
includes a LocalDateTime class that enables you to capture the current date and time by invoking its now() method.
A specified date and time can be obtained by specifying the corresponding int and Month type parameters when
calling LocalDateTime.of(). There are also a multitude of methods available for use via a LocalDateTime instance,
such as getHours(), getMinutes(), getNanos() and getSeconds(), which allow for finer-grained control of the
date and time. An instance of LocalDateTime also contains methods for performing calculations, conversions,
comparisons, and more. For brevity, all of the methods are not listed here, but for more information, refer to the
online documentation at http://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html. Solution
#1 to this recipe demonstrates the use of the LocalDateTime, showcasing how to perform calculations and obtain
portions of the date and time for further use.

By default, the java.util.Date class can be instantiated with no arguments to return the current date and time.
The Date class can also be used to return the current time of day via the getTime() method. As mentioned in the
solution, the getTime() method returns the number of milliseconds since January 1, 1970, 00:00:00 GMT, represented
by the Date object that is in use. There are several other methods that can be called against a Date object with regard
to breaking down the current date and time into more granular intervals. For instance, the Date class has the methods
getHours(), getMinutes(), getSeconds(), getMonth(), getDay(), getTimezoneOffset(), and getYear().
However, it is not advisable to use any of these methods, with the exception of getTime(), because each has been
deprecated by the use of the java.time.LocalDateTime and the java.util.Calendar get() method. When some
method or class is deprecated, that means it should no longer be used because it might be removed in some future
release of the Java language. However, a few of the methods contained within the Date class have not been tagged as

http://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.html

Chapter 4 ■ Numbers and Dates

83

deprecated, so the Date class will most likely be included in future releases of Java. The methods that were left intact
include the comparison methods after(), before(), compareTo(), setTime(), and equals(). Solution #2 to this
recipe demonstrates how to instantiate a Date object and print out the current date and time.

As mentioned previously, the Date class has many methods that have become deprecated and should no longer
be used. In solution #3 of this recipe, the java.util.Calendar class is demonstrated as one successor for obtaining
much of this information. The Calendar class was introduced in JDK 1.1, at which time many of the Date methods
were deprecated. As you can see from solution #3, the Calendar class contains all the same functionality that is
included in the Date class, except the Calendar class is much more flexible. The Calendar class is actually an abstract
class that contains methods that are used for converting between a specific time and date, and manipulating the
calendar in various ways. The Calendar, as demonstrated in solution #3, is one such class that extends the Calendar
class and therefore provides this functionality. The Calendar class has gained a few new methods in Java 8. The new
methods in java.util.Calendar are listed in Table 4-6.

Table 4-6.  New Methods for java.util.Calendar in Java 8

Method Name Description

getAvailableCalendarTypes() Returns un-modifiable set containing all supported calendar types.

getCalendarType() Returns the calendar type of this calendar.

toInstant() Converts to an instant.

For some applications, the Date class will work fine. For instance, the Date class can be useful when working with
timestamps. However, if the application requires detailed manipulation of dates and times then it is advisable to use a
LocalDateTime or the Calendar class, which both include all the functionality of the Date class and more features as
well. All solutions to this recipe are technically sound; choose the one that best suits the needs of your application.

4-12. Obtaining a Machine Timestamp
Problem
You need to obtain a machine-based timestamp from the system.

Solution
Utilize an Instant class, which represents the start of a nanosecond on the timeline based on machine time. In the
following example, an Instant is used to obtain the system timestamp. The Instant is also utilized in other scenarios,
such as when calculating different dates based on the Instant.
 
public static void instants(){
 Instant timestamp = Instant.now();
 System.out.println("The current timestamp: " + timestamp);
    
 //Now minus three days
 Instant minusThree = timestamp.minus(3, ChronoUnit.DAYS);
 System.out.println("Now minus three days:" + minusThree);
  

Chapter 4 ■ Numbers and Dates

84

 ZonedDateTime atZone = timestamp.atZone(ZoneId.of("GMT"));
 System.out.println(atZone);
  
 Instant yesterday = Instant.now().minus(24, ChronoUnit.HOURS);
 System.out.println("Yesterday: " + yesterday);
}
 

Here is the result:
 
The current timestamp: 2014-12-27T05:36:42.199Z
Now minus three days:2014-12-24T05:36:42.199Z
2014-12-27T05:36:42.199Z[GMT]
Yesterday: 2014-12-26T05:36:42.253Z

How It Works
The Date-Time API introduces a new class named Instant, which represents the start of a nanosecond on the
timeline in machine-based time. Being based on machine time, the value for an Instant counts from the EPOCH
(January 1, 1970 00:00:00Z). Any values prior to the EPOCH are negative, and after the EPOCH the values are positive. The
Instant class is perfect for obtaining a machine timestamp, as it includes all pertinent date and time information to
the nanosecond.

An Instant class is static and immutable, so to obtain the current timestamp, the now() method can be called.
Doing so returns a copy of the current Instant. The Instant also includes conversion and calculation methods, each
returning copies of the Instant or other types. In the solution, the now() method returns the current timestamp, and
then a couple of examples follow, showing how to perform calculations and obtain information on the Instant.

The Instant is an important new feature in JDK 8, as it makes it easy to work with current time and date data.
The other date and time classes, such as LocalDateTime, are useful as well. However, the Instant is the most accurate
timestamp as it’s based on nanosecond accuracy.

4-13. Converting Dates and Times Based on the Time Zone
Problem
The application you are developing has the potential to be utilized throughout the world. In some areas of the
application, static dates and times need to be displayed, rather than the system date and time. In such cases,
those static dates and times need to be converted to suit the particular time zone in which the application user is
currently residing.

Solution
The Date-Time API provides the proper utilities for working with time zone data via the Time Zone and Offset classes.
In the following scenario, suppose that the application is working with reservations for rental vehicles. You could
rent a vehicle in one time zone and return it in another. The following lines of code demonstrate how to print out an
individual’s reservation in such a scenario. The following method, named scheduleReport, accepts LocalDateTime
objects representing check-in and check-out date/time, along with ZoneIds for each. This method could be used by an
airline to print time-zone information for a particular flight.
 
public static void scheduleReport(LocalDateTime checkOut, ZoneId checkOutZone,
 LocalDateTime checkIn, ZoneId checkInZone){
 

Chapter 4 ■ Numbers and Dates

85

 ZonedDateTime beginTrip = ZonedDateTime.of(checkOut, checkOutZone);
 System.out.println("Trip Begins: " + beginTrip);
 
 // Get the rules of the check out time zone
 ZoneRules checkOutZoneRules = checkOutZone.getRules();
 System.out.println("Checkout Time Zone Rules: " + checkOutZoneRules);
 
 //If the trip took 4 days
 ZonedDateTime beginPlus = beginTrip.plusDays(4);
 System.out.println("Four Days Later: " + beginPlus);
 
 // End of trip in starting time zone
 ZonedDateTime endTripOriginalZone = ZonedDateTime.of(checkIn, checkOutZone);
 ZonedDateTime endTrip = ZonedDateTime.of(checkIn, checkInZone);
 int diff = endTripOriginalZone.compareTo(endTrip);
 String diffStr = (diff >=0) ? "NO":"YES";
 System.out.println("End trip date/time in original zone: " + endTripOriginalZone);
 System.out.println("End trip date/time in check-in zone: " + endTrip);
 System.out.println("Original Zone Time is less than new zone time? " +
 diffStr);
 ZoneId checkOutZoneId = beginTrip.getZone();
 ZoneOffset checkOutOffset = beginTrip.getOffset();
 ZoneId checkInZoneId = endTrip.getZone();
 ZoneOffset checkInOffset = endTrip.getOffset();
 
 System.out.println("Check out zone and offset: " + checkOutZoneId + checkOutOffset);
 System.out.println("Check in zone and offset: " + checkInZoneId + checkInOffset);
 
}
 

Here is the result:
 
Trip Begins: 2014-12-13T13:00-05:00[US/Eastern]
Four Days Later: 2014-12-17T13:00-05:00[US/Eastern]
End trip date/time in original zone: 2014-12-18T10:00-05:00[US/Eastern]
End trip date/time in check-in zone: 2014-12-18T10:00-07:00[US/Mountain]
Original Zone Time is less than new zone time? YES
Check out zone and offset: US/Eastern-05:00
Check in zone and offset: US/Mountain-07:00

How It Works
Time zones add yet another challenge for developers, and the Java Date-Time API provides an easy facet for working
with them. The Date-Time API includes a java.time.zone package, which contains a number of classes that can
assist in working with time zone data. These classes provide support for time zone rules, data, and resulting gaps and
overlaps in the local timeline that are typically the result of daylight savings conversions. The classes that make up the
zone package are outlined in Table 4-7.

Chapter 4 ■ Numbers and Dates

86

Starting with the most fundamental time zone class, ZoneId, each time zone contains a particular time zone
identifier. This identifier can be useful for assigning a particular time zone to a date-time. In the solution, the ZoneId
is used to calculate any differences between two time zones. ZoneId identifies the rules that should be used for
converting, based on a particular offset, either fixed or geographical region-based. For more details on ZoneId, see the
documentation at http://docs.oracle.com/javase/8/docs/api/java/time/ZoneId.html.

ZonedDateTime is an immutable class that is utilized for working with date-time and time zone data together.
This class represents an object, much like LocalDateTime, that includes the ZoneId. It can be used to express all
facets of a date, including year, month, day, hours, minutes, seconds, nanos, and time zone. The class contains a bevy
of methods that are useful for performing calculations, conversions, and so on.. For brevity, the methods that are
contained in ZonedDateTime are not listed here, but you can read about each of them in the documentation at
http://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html.

ZoneOffset specifies a time zone offset from Greenwich/UTC time. You can find the offset for a particular time
zone by invoking the ZonedDateTime.getOffset() method. The ZoneOffset class includes methods that make it easy
to break down an offset into different time units. For instance, the getTotalSeconds() method returns the total of
hours, minutes, and seconds fields as a single offset that can be added to a time. Refer to the online documentation for
more information at http://docs.oracle.com/javase/8/docs/api/java/time/ZoneOffset.html.

There are many rules that can be defined for determining how zone offset varies for a single time zone. The
ZoneRules class is used to define these rules for a zone. For instance, ZoneRules can be called on to specify or determine
if daylight savings time is a factor. An Instant or LocalDateTime can also be passed to ZoneRules methods such as
getOffset() and getTransition() to return ZoneOffset or ZoneOffsetTransition. For more information on ZoneRules,
refer to the online documentation at http://docs.oracle.com/javase/8/docs/api/java/time/zone/ZoneRules.html.

Another time zone class that is used often is ZoneOffsetTransition. This class models the transition between the
spring and autumn offsets as a result of daylight savings time changes. It is used to determine if there is a gap between
transitions, obtaining the duration of a transition, and so on. For more information on ZoneOffsetTransition, see the
online documentation at http://docs.oracle.com/javase/8/docs/api/java/time/zone/ZoneOffsetTransition.html.

ZoneRulesProvider, ZoneOffsetTransitionRule, and other classes are typically not utilized as often as
others for working with dates and time zones. These classes are useful for managing configuration of time zone
rules and transitions.

Note■■  T he classes within the java.time.zone package are significant, in that there is a multitude of methods that
can be invoked on each class. This recipe provides a primer for getting started, with only the basics of time zone usage.
For more detailed information, see the online documentation.

Table 4-7.  Time Zone Classes

Class Name Description

ZoneId Specifies zone identifier and is used for conversions.

ZoneOffset Specifies a time zone offset from Greenwich/UTC time.

ZonedDateTime A date-time object that also handles the time zone data with time zone offset from
Greenwich/UTC time.

ZoneRules Rules defining how a zone offset varies for a specified time zone.

ZoneRulesProvider Provider of time zone rules to a particular system.

ZoneOffsetTransition Transition between two offsets by a discontinuity in the local timeline.

ZoneOffsetTransitionRule Rules expressing how to create a transition.

http://docs.oracle.com/javase/8/docs/api/java/time/ZoneId.html
http://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html
http://docs.oracle.com/javase/8/docs/api/java/time/ZoneOffset.html
http://docs.oracle.com/javase/8/docs/api/java/time/zone/ZoneRules.html
http://docs.oracle.com/javase/8/docs/api/java/time/zone/ZoneOffsetTransition.html

Chapter 4 ■ Numbers and Dates

87

4-14. Comparing Two Dates
Problem
You want to determine if one date is greater than another.

Solution
Utilize one of the compareTo() methods that are part of the Date-Time API classes. In the following solution, two
LocalDate objects are compared and an appropriate message is displayed.
 
public static void compareDates(LocalDate ldt1,
 LocalDate ldt2) {
 int comparison = ldt1.compareTo(ldt2);
 if (comparison > 0) {
 System.out.println(ldt1 + " is larger than " + ldt2);
 } else if (comparison < 0) {
 System.out.println(ldt1 + " is smaller than " + ldt2);
 } else {
 System.out.println(ldt1 + " is equal to " + ldt2);
 }
 
}

How It Works
Many of the Date-Time API classes contain a method that is used to compare two different date-time objects. In the
solution to this example, the LocalDate.compareTo() method is used to determine if one LocalDate object is greater
than another. The compareTo() method returns a negative int value if the first LocalDate is greater than the second, a
zero if they are equal, and a positive number if the second LocalDate is greater than the first.

Each of the date-time classes that contain a compareTo() has the same outcome. That is, an int value is returned
indicating if the first object is greater than, less than, or equal to the second. Each of the classes that contains the
compareTo() method is listed here:

•	 Duration

•	 LocalDate

•	 LocalDateTime

•	 LocalTime

•	 Instant

•	 MonthDay

•	 OffsetDateTime

•	 OffsetTime

•	 Year

•	 YearMonth

•	 ZoneOffset

Chapter 4 ■ Numbers and Dates

88

4-15. Finding the Interval Between Dates and Times
Problem
You need to determine how many hours, days, weeks, months, or years have elapsed between two dates or times.

Solution #1
Utilize the Date-Time API to determine the difference between two dates. Specifically, make use of the Period class
to determine the period of time, in days, between two dates. The following example demonstrates how to obtain the
interval of days, months, and years between two dates.

Note■■  T his example shows the difference in days, months, and years, but not the cumulative days or months between
two dates. To determine the total cumulative days, months, and years between two dates, read on for solutions #2 and #3. 

LocalDate anniversary = LocalDate.of(2000, Month.NOVEMBER, 11);
LocalDate today = LocalDate.now();
Period period = Period.between(anniversary, today);
System.out.println("Number of Days Difference: " + period.getDays());
System.out.println("Number of Months Difference: " + period.getMonths());
System.out.println("Number of Years Difference: " + period.getYears());
 

Here is the result:
 
Number of Days Difference: 16
Number of Months Difference: 1
Number of Years Difference: 13

Solution #2
Use the java.util.concurrent.TimeUnit enum to perform calculations between given dates. Using this enum, you
can obtain the integer values for days, hours, microseconds, milliseconds, minutes, nanoseconds, and seconds. Doing
so will allow you to perform the necessary calculations.
 
// Obtain two instances of the Calendar class
Calendar cal1 = Calendar.getInstance();
Calendar cal2 = Calendar.getInstance();
 
// Set the date to 01/01/2010:12:00
cal2.set(2010,0,1,12,0);
Date date1 = cal2.getTime();
System.out.println(date1);
 
long mill = Math.abs(cal1.getTimeInMillis() - date1.getTime());
// Convert to hours
long hours = TimeUnit.MILLISECONDS.toHours(mill);
// Convert to days

Chapter 4 ■ Numbers and Dates

89

Long days = TimeUnit.HOURS.toDays(hours);
String diff = String.format("%d hour(s) %d min(s)", hours,
TimeUnit.MILLISECONDS.toMinutes(mill) - TimeUnit.HOURS.toMinutes(hours));
System.out.println(diff);
 
diff = String.format("%d days", days);
System.out.println(diff);
 
// Divide the number of days by seven for the weeks
int weeks = days.intValue()/7;
diff = String.format("%d weeks", weeks);
System.out.println(diff);
 

The output of this code will be formatted to display strings of text that indicate the differences between the
current date and the Date object that is created.

Solution #3
To determine the total cumulative difference in days, months, years, or other time unit, use the ChronoUnit class. The
following code demonstrates how to utilize the ChronoUnit class to determine the number of days and years between
two dates.
 
LocalDate anniversary = LocalDate.of(2000, Month.NOVEMBER, 11);
LocalDate today = LocalDate.now();
long yearsBetween = ChronoUnit.YEARS.between(anniversary, today);
System.out.println("Years between dates: " + yearsBetween);
 
long daysBetween = ChronoUnit.DAYS.between(anniversary, today);
System.out.println("Days between dates:" + daysBetween);
 

Here are the results:
 
Years between dates: 13
Days between dates: 4794

How It Works
As with most programmatic techniques, there is more than one way to perform date calculations with Java. The Date-
Time API includes a few new techniques for determining time intervals. The new Period class is used to determine
the period of difference between two units for specified objects. To obtain a Period between two date-time objects,
call the Period.between() method, passing the two date-time objects for which you’d like to obtain the Period.
The Period has a number of methods that can be used to break down the intervals into different units. For instance,
the number days in the period of the two date-time objects can be obtained using the getDays() method. Similarly, the
getMonths() and getYears() methods can be called to return the number of months or years in the period.

The Date-Time API also includes a ChronoUnit Enum that can be used to work with calendar systems other than
ISO, providing unit-based access to manipulate date and time. Each of the unit values within the Enum contains a
number of methods for performing manipulations. One such method is between(), which returns a single unit of time
only in the specified unit between the two given date-time objects. In the solution, it is used to return years and days
using ChronoUnit.YEARS.between() and ChronoUnit.DAYS.between(), respectively.

Chapter 4 ■ Numbers and Dates

90

One of the most useful techniques is to perform calculations based on the given date’s time in milliseconds. This
provides the most accurate calculation because it works on the time at a very small interval: milliseconds. The current
time in milliseconds can be obtained from a Calendar object by calling the getTimeInMillis() method against it.
Likewise, a Date object will return its value represented in milliseconds by calling the getTime() method. As you
can see from the solution to this recipe, the first math that is performed is the difference between the given dates in
milliseconds. Obtaining that value and then taking its absolute value will provide the base that is needed to perform
the date calculations. In order to obtain the absolute value of a number, use the abs() method that is contained in the
java.lang.Math class, shown in the following line of code:
 
long mill = Math.abs(cal1. getTimeInMillis() - date1.getTime());
 

The absolute value will be returned in long format. The TimeUnit enum can be used in order to obtain different
conversions of the date. It contains a number of static enum constant values that represent different time intervals,
similar to those of a Calendar object. Those values are displayed here.

Note■■  A n enum type is a type whose fields consist of a fixed set of constant values. Enum types were welcomed to
the Java language in release 1.5. 

•	 DAYS

•	 HOURS

•	 MICROSECONDS

•	 MILLISECONDS

•	 MINUTES

•	 NANOSECONDS

•	 SECONDS

The values speak for themselves with regard to the conversion interval they represent. By calling conversion
methods against these enums, long values representing the duration between two dates can be converted. As you can
see in the solution to this recipe, first the time unit is established using the enum and then a conversion call is made
against that time unit. Take, for instance, the following conversion. First, the time unit of TimeUnit.MILLISECONDS is
established. Second, the toHours() method is called against it and a long value that is represented by the mill field is
passed as an argument:
 
TimeUnit.MILLISECONDS.toHours(mill)
 

This code can be translated in English as follows: “The contents of the field mill are represented in milliseconds;
convert those contents into hours.” The result of this call will be the conversion of the value within the mill field into
hours. By stacking the calls to TimeUnit, more precise conversions can be made. For instance, the following code
converts the contents of the mill field into hours and then into days:
 
TimeUnit.HOURS.toDays(TimeUnit.MILLISECONDS.toHours(mill))
 

Again, the English translation can be read as, “The contents of the field mill are represented in milliseconds.
Convert those contents into hours. Next, convert those hours into days.”

TimeUnit can make time interval conversion very precise. Combining the precision of the TimeUnit conversions
along with mathematics will allow you to convert the difference of two dates into just about any time interval.

Chapter 4 ■ Numbers and Dates

91

4-16. Obtaining Date-Time from a Specified String
Problem
You want to parse a string into a date-time object.

Solution
Utilize the parse() method of a temporal date-time class to parse a string using a predefined or custom format.
The following lines of code demonstrate how to parse a string into a date or date-time object using variations of the
parse() method.
 
// Parse a string to form a Date-Time object
LocalDate ld = LocalDate.parse("2014-12-28");
LocalDateTime ldt = LocalDateTime.parse("2014-12-28T08:44:00");
System.out.println("Parsed Date: " + ld);
System.out.println("Parsed Date-Time: " + ldt);
 
// Using a different Parser
LocalDate ld2 = LocalDate.parse("2014-12-28", DateTimeFormatter.ISO_DATE);
System.out.println("Different Parser: " + ld2);
 
// Custom Parser
String input = "12/28/2013";
try {
 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("MM/dd/yyyy");
 LocalDate ld3 = LocalDate.parse(input, formatter);
 System.out.println("Custom Parsed Date: " + ld3);
} catch (DateTimeParseException ex){
 System.out.println("Not parsable: " + ex);
}
 

Here is the result:
 
Parsed Date: 2014-12-28
Parsed Date-Time: 2014-12-28T08:44
Different Parser: 2014-12-28
Custom Parsed Date: 2014-12-28

How It Works
The temporal classes of the Date-Time API include a parse() method, which can be used to parse a given input string using
a specified format. By default, the parse() method will format based on the target object’s default DateTimeFormatter. For
example, to parse the string "2014-01-01", the default LocalDate.parse() method can be called.
 
LocalDate date = LocalDate.parse("2014-01-01");
 

Chapter 4 ■ Numbers and Dates

92

However, another DateTimeFormatter can be specified as a second argument to the parse() method.
DateTimeFormatter is a final class used for formatting and printing dates and times. It contains a number of built-in
formatters that can be specified to coerce strings into date-time objects. For example, to parse based on the standard
ISO_DATE format without offset, call DateTimeFormatter.ISO_DATE, as demonstrated in the solution to this recipe.
For more information regarding DateTimeFormatter, see the online documentation at http://docs.oracle.com/
javase/8/docs/api/java/time/format/DateTimeFormatter.html.

Oftentimes, it is necessary to parse strings of text into date-time objects. Such tasks are made easy with the
parse() method being built into many of the core date-time classes.

4-17. Formatting Dates for Display
Problem
Dates need to be displayed by your application using a specific format. You want to define that format once and apply
it to all dates that need to be displayed.

Solution #1
Utilize the DateTimeFormatter class, part of the new Date-Time API, to format dates and times according to the
pattern you want to use. The DateTimeFormatter class includes an ofPattern() method, which accepts a string
pattern argument to designate the desired pattern. Each of the temporal date-time classes includes a format()
method, which accepts a DateTimeFormatter and returns the string-based format of the target date-time object. In
the following lines of code, the DateTimeFormatter is demonstrated:
 
DateTimeFormatter dateFormatter = DateTimeFormatter.ofPattern("MMMM dd yyyy");
 
LocalDateTime now = LocalDateTime.now();
String output = now.format(dateFormatter);
System.out.println(output);
 
DateTimeFormatter dateFormatter2 = DateTimeFormatter.ofPattern("MM/dd/YY HH:mm:ss");
String output2 = now.format(dateFormatter2);
System.out.println(output2);
 
DateTimeFormatter dateFormatter3 = DateTimeFormatter.ofPattern("hh 'o''clock' a, zzzz");
ZonedDateTime zdt = ZonedDateTime.now();
String output3 = zdt.format(dateFormatter3);
System.out.println(output3);
 

Here is the result:
 
December 28 2013
12/28/13 10:44:06
10 o'clock AM, Central Standard Time

Solution #2
Use the java.util.Calendar class to obtain the date that you require and then format that date using the java.text.
SimpleDateFormat class. The following example demonstrates the use of the SimpleDateFormat class:
 

http://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
http://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Chapter 4 ■ Numbers and Dates

93

// Create new calendar
Calendar cal = Calendar.getInstance();
 
// Create instance of SimpleDateFormat class using pattern
SimpleDateFormat dateFormatter1 = new SimpleDateFormat("MMMMM dd yyyy");
String result = null;
 
result = dateFormatter1.format(cal.getTime());
System.out.println(result);
 
dateFormatter1.applyPattern("MM/dd/YY hh:mm:ss");
result = dateFormatter1.format(cal.getTime());
System.out.println(result);
 
dateFormatter1.applyPattern("hh 'o''clock' a, zzzz");
result = dateFormatter1.format(cal.getTime());
System.out.println(result);
 

Running this example would yield the following result:
 
June 22 2011
06/22/11 06:24:41
06 o'clock AM, Central Daylight Time
 

As you can see from the results, the DateTimeFormatter and SimpleDateFormat classes make it easy to convert a
date into just about any format.

How It Works
Date formatting is a common concern when it comes to any program. People like to see their dates in a certain format
for different situations. The Java language contains a couple of handy utilities for proper formatting of date-time
data. Specifically, the newer API includes the DateTimeFormatter class, and previous editions of Java SE include the
SimpleDateFormat class, each of which can come in handy for performing formatting processes.

The DateTimeFormatter class is a final class that has the primary purpose of printing and formatting date-time
objects. To obtain a DateTimeFormatter that can be applied to objects, call the DateTimeFormatter.ofPattern()
method, passing the string-based pattern that represents the desired output. Table 4-8 lists the different pattern
characters that can be used within a string-based pattern. The resulting DateTimeFormatter can then be applied to
any temporal date-time object by calling the object’s format() method and passing the DateTimeFormatter as an
argument. The result will be the date-time object formatted according to the specified template pattern.

Table 4-8.  Pattern Characters

Character Description

G Era

y Year

Y Week year

M Month in year

(continued)

Chapter 4 ■ Numbers and Dates

94

The SimpleDateFormat class was created in previous editions of Java, so you don’t have to perform manual
translations for a given date.

Note■■  D ifferent date formats are used within different locales, and the SimpleDateFormat class facilitates
locale-specific formatting.

To use the class, an instance must be instantiated either by passing a string-based pattern as an argument to the
constructor or by passing no argument to the constructor at all. The string-based pattern provides a template that
should be applied to the given date and then a string representing the date in the given pattern style is returned. A
pattern consists of a number of different characters strung together. Table 4-8 shows the different characters that can
be used within a pattern.

Character Description

w Week in year

W Week in month

D Day in year

d Day in month

F Day of week in month

E Name of day in week

u Number of day in week

a AM/PM

H Hour in day (0–23)

k Hour in day (1–24)

K Hour in AM/PM (0–11)

h Hour in AM/PM (1–12)

m Minute in hour

s Second in minute

S Millisecond

z General time zone

Z RFC 822 time zone

X ISO 8601 time zone

Table 4-8.  (continued)

Chapter 4 ■ Numbers and Dates

95

Any of the pattern characters can be placed together in a string and then passed to the SimpleDateFormat class.
If the class is instantiated without passing a pattern, the pattern can be applied later using the class’s applyPattern()
method. The applyPattern() method also comes in handy when you want to change the pattern of an instantiated
SimpleDateFormat object, as seen in the solution to this recipe. The following excerpts of code demonstrate the
application of a pattern:
 
SimpleDateFormat dateFormatter1 = new SimpleDateFormat("MMMMM dd yyyy");
dateFormatter1.applyPattern("MM/dd/YY hh:mm:ss");
 

Once a pattern has been applied to a SimpleDateFormat object, a long value representing time can be passed to
the SimpleDateFormat object’s format() method. The format() method will return the given date\time formatted
using the pattern that was applied. The string-based result can then be used however your application requires.

4-18. Writing Readable Numeric Literals
Problem
Some of the numeric literals in your application are rather long and you want to make it easier to tell how large a
number is at a glance.

Solution
Use underscores in place of commas or decimals in larger numbers in order to make them more readable. The
following code shows some examples of making your numeric literals more readable by using underscores in place of
commas:
 
int million = 1_000_000;
int billion = 1_000_000_000;
float ten_pct = 1_0f;
double exp = 1_234_56.78_9e2;

How It Works
Sometimes working with large numbers can become cumbersome and difficult to read. Because of the release of Java
SE7, underscores can now be used with numeric literals in order to make code a bit easier to read. The underscores
can appear anywhere between digits in a numeric literal. This allows for the use of underscores in place of commas or
spaces to separate the digits and make them easier to read.

Note■■  U nderscores cannot be placed at the beginning or end of a number, adjacent to a decimal point or
floating-point literal, prior to an F or L suffix, or in positions where a string of digits is expected.

Chapter 4 ■ Numbers and Dates

96

4-19. Declaring Binary Literals
Problem
You are working on an application that requires the declaration of binary numbers.

Solution
Make use of binary literals to make your code readable. The following code segment demonstrates the use of binary
literals:
 
int bin1 = 0b1100;
short bin2 = 0B010101;
short bin3 = (short) 0b1001100110011001;
System.out.println(bin1);
System.out.println(bin2);
System.out.println(bin3);
 

This will result in the following output:
 
12
21
-26215

How It Works
Binary literals became part of the Java language with the release of JDK 7. The types byte, short, int, and long can be
expressed using the binary number system. This feature can help to make binary numbers easier to recognize in code.
In order to use the binary format, simply prefix the number with 0b or 0B.

Summary
Numbers and dates play an integral role in most applications. The Java language provides a bevy of classes that can
be used to work with different kinds of numbers, and format them to fit most situations. This chapter reviewed some
techinques that can be used for rounding and formatting numbers, as well as generating random values. A new Date
and Time package has been included with the release of Java 8, bringing a refreshing, easy to use API for obtaining
and working with dates. This chapter covered the basics of the new Date and Time package, and much more is
covered online: http://docs.oracle.com/javase/tutorial/datetime/.

http://docs.oracle.com/javase/tutorial/datetime/

97

Chapter 5

Object-Oriented Java

Programming languages have changed a great deal since the first days of application development. Back in the day,
procedural languages were state-of-the-art; as a matter of fact, there are still thousands of COBOL applications in
use today. As time went on, coding became more efficient, and reuse, encapsulation, abstraction, and other object-
oriented characteristics became fundamental keys to application development. As languages evolved, they began
to incorporate the idea of using objects within programs. The Lisp language introduced some object-oriented
techniques as early as the 1970s, but true object-oriented programming did not take off in full blast until the 1990s.

Object-oriented programs consist of many different pieces of code that all work together in unison. Rather than
write a program that contains a long list of statements and commands, an object-oriented philosophy is to break
functionality up into separate organized objects. Programming techniques such as using methods to encapsulate
functionality and reusing the functionality of another class began to catch on as people noticed that object orientation
equated to productivity.

In this chapter, we touch upon some of the key object-oriented features of the Java language. From the basic
recipes covering access modifiers, to the advanced recipes that deal with inner classes, this chapter contains recipes
that will help you understand Java’s object-oriented methodologies.

5-1. Controlling Access to Members of a Class
Problem
You want to create members of a class that are not accessible from any other class.

Solution
Create private instance members rather than making them available to other classes (public or protected). For
instance, suppose you are creating an application that will be used to manage a team of players for a sport. You create
a class named Player that will be used to represent a player on the team. You do not want the fields for that class to be
accessible from any other class. The following code demonstrates the declaration of some instance members, making
them accessible only from within the class in which they were defined.
 
private String firstName = null;
private String lastName = null;
private String position = null;
private int status = -1;

Chapter 5 ■ Object-Oriented Java

98

How It Works
To designate a class member as private, prefix its declaration or signature using the private keyword. The private
access modifier is used to hide members of a class so that outside classes cannot access them. Any members of a class
that are marked as private will be available only to other members of the same class. Any outside class will not be able
to access fields or methods designated as private, and an IDE that uses code completion will not be able to see them.

As mentioned in the solution to this recipe, there are three different access modifiers that can be used when
declaring members of a class. Those modifiers are public, protected, and private. Members that are declared as
public are available for any other class. Those that are declared as protected are available for any other class within the
same package. It is best to declare public or protected only those class members that need to be directly accessed from
another class. Hiding members of a class using the private access modifier helps to enforce better object orientation.

5-2. Making Private Fields Accessible To Other Classes
Problem
You would like to create private instance members so that outside classes cannot access them directly. However, you
would also like to make those private members accessible via a controlled method.

Solution
Encapsulate the private fields by making getters and setters to access them. The following code demonstrates the
declaration of a private field, followed by accessor (getter) and mutator (setter) methods that can be used to obtain
or set the value of that field from an outside class:
 
private String firstName = null;
 
 
/**
 * @return the firstName
 */
public String getFirstName() {
 return firstName;
}
 
/**
 * @param firstName the firstName to set
 */
public void setFirstName(String firstName) {
 this.firstName = firstName;
}
 

The getFirstName() method can be used by an outside class to obtain the value of the firstName field. Likewise,
the setFirstName(String firstName) method can be used by an outside class to set the value of the firstName field.

How It Works
Oftentimes when fields are marked as private within a class, they still need to be made accessible to outside classes
for the purpose of setting or retrieving their value. Why not just work with the fields directly and make them public
then? It is not good programming practice to work directly with fields of other classes because by using accessors

Chapter 5 ■ Object-Oriented Java

99

(getters) and mutators (setters), access can be granted in a controlled fashion. By not coding directly against members
of another class, you also decouple the code, which helps to ensure that if one object changes, others that depend
upon it are not adversely affected. As you can see from the example in the solution to this recipe, hiding fields and
working with public methods to access those fields is fairly easy. Simply create two methods; one is used to obtain
the value of the private field, the “getter” or accessor method. And the other is used to set the value of the private
field, the “setter” or mutator method. In the solution to this recipe, the getter is used to return the unaltered value that
is contained within the private field. Similarly, the setter is used to set the value of the private field by accepting an
argument that is of the same data type as the private field and then setting the value of the private field to the value
of the argument.

The class that is using the getters or setters for access to the fields does not know any details behind the methods.
Furthermore, the details of these methods can be changed without altering any code that accesses them.

Note■■   Using getters and setters does not completely decouple code. In fact, many people argue that using getters
and setters is not a good programming practice because of this reason. Objects that use the accessor methods still
need to know the type of the instance field they are working against. That being said, getters and setters are a standard
technique for providing external access to private instance fields of an object. To make the use of accessor methods in
a more object-oriented manner, declare them within interfaces and code against the interface rather than the object itself.
For more information regarding interfaces, refer to recipe 5-6.

5-3. Creating a Class with a Single Instance
Problem
You would like to create a class for which only one instance can exist in the entire application, so that all application
users interact with the same instance of that class.

Solution 1
Create the class using the Singleton pattern. A class implementing the Singleton pattern allows for only one instance of
the class and provides a single point of access to the instance. Suppose that you wanted to create a Statistics class that
would be used for calculating the statistics for each team and player within an organized sport. It does not make sense to
have multiple instances of this class within the application, so you want to create the Statistics class as a Singleton in
order to prevent multiple instances from being generated. The following class represents the Singleton pattern:
 
package org.java8recipes.chapter5.recipe5_03;
 
import java.util.ArrayList;
import java.util.List;
import java.io.Serializable;
 
public class Statistics implements Serializable {
 
// Definition for the class instance
private static volatile Statistics instance = new Statistics();
 
private List teams = new ArrayList();
 

Chapter 5 ■ Object-Oriented Java

100

/**
 * Constructor has been made private so that outside classes do not have
 * access to instantiate more instances of Statistics.
 */
private Statistics(){
}
 
/**
 * Accessor for the statistics class. Only allows for one instance of the
 * class to be created.
 * @return
 */
public static Statistics getInstance(){
 
 return instance;
}
 
/**
 * @return the teams
 */
public List getTeams() {
 return teams;
}
 
/**
 * @param teams the teams to set
 */
public void setTeams(List teams) {
 this.teams = teams;
}
protected Object readResolve(){
 return instance;
 }
}
 

If another class attempts to create an instance of this class, it will use the getInstance() accessor method to
obtain the Singleton instance. It is important to note that the solution code demonstrates eager instantiation, which
means that the instance will be instantiated when the Singleton is loaded. For lazy instantiation, which will be
instantiated upon the first request, you must take care to synchronize the getInstance() method to make it
thread-safe. The following code demonstrates an example of lazy instantiation:
 
public static Statistics getInstance(){
 synchronized(Statistics.class){
 if (instance == null){
 instance = new Statistics();
 }
 }
 return instance;
}

Chapter 5 ■ Object-Oriented Java

101

Solution 2
First, create an enum and declare a single element named INSTANCE within it. Next, declare other fields within the
enum that you can use to store the values that are required for use by your application. The following enum represents a
Singleton that will provide the same abilities as solution 1:
 
import java.util.ArrayList;
import java.util.List;
 
public enum StatisticsSingleton {
 INSTANCE;
 
 private List teams = new ArrayList();
 
 /**
 * @return the teams
 */
 public List getTeams() {
 return teams;
 }
 
 /**
 * @param teams the teams to set
 */
 public void setTeams(List teams) {
 this.teams = teams;
 }
} 

Note■■  T here is a test class within the recipe5_03 package that you can use to work with the enum Singleton solution.

How It Works
The Singleton pattern is used to create classes that cannot be instantiated by any other class. This can be useful when
you only want one instance of a class to be used for the entire application. The Singleton pattern can be applied to a
class by following three steps. First, make the constructor of the class private so that no outside class can instantiate
it. Next, define a private static volatile field that will represent an instance of the class. The volatile keyword
guarantees each thread uses the same instance. Create an instance of the class and assign it to the field. In the solution
to this recipe, the class name is Statistics, and the field definition is as follows:
 
private static volatile Statistics instance = new Statistics();
 

Last, implement an accessor method called getInstance() that simply returns the instance field. The following
code demonstrates such an accessor method:
 
public static Statistics getInstance(){
 return instance;
}
 

Chapter 5 ■ Object-Oriented Java

102

To use the Singleton from another class, call the Singleton’s getInstance() method. This will return an instance
of the class. The following code shows an example of another class obtaining an instance to the Statistics Singleton
that was defined in solution 1 to this recipe.
 
Statistics statistics = Statistics.getInstance();
List teams = statistics.getTeams();
 

Any class that calls the getInstance() method of the class will obtain the same instance. Therefore, the fields
contained within the Singleton have the same value for every call to getInstance() within the entire application.

What happens if the Singleton is serialized and then de-serialized? This situation may cause another instance
of the object to be returned upon deserialization. To prevent this issue from occurring, be sure to implement the
readResolve() method, as demonstrated in solution 1. This method is called when the object is deserialized, and
simply returning the instance ensures that another instance is not generated.

Solution 2 demonstrates a different way to create a Singleton, which is to use a Java enum rather than a class.
Using this approach can be beneficial because an enum provides serialization, prohibits multiple instantiation, and
allows you to work with code more concisely. In order to implement the enum Singleton, create an enum and declare an
INSTANCE element. This is a static constant that will return an instance of the enum to classes that reference it. You can
then add elements to the enum that can be used by other classes within the application to store values.

As with any programming solution, there is more than one way to do things. Some believe that the standard
Singleton pattern demonstrated in solution 1 is not the most desirable solution. Others do not like the enum
solution for different reasons. Both of them will work, although you may find that one works better than the other
in certain circumstances.

5-4. Generating Instances of a Class
Problem
In one of your applications, you would like to provide the ability to generate instances of an object on the fly. Each
instance of the object should be ready to use, and the object creator should not need to know about the details of the
object creation.

Solution
Make use of the factory method pattern to instantiate instances of the class while abstracting the creation process
from the object creator. Creating a factory will enable new instances of a class to be returned upon invocation.
The following class represents a simple factory that returns a new instance of a Player subclass each time its
createPlayer(String) method is called. The subclass of Player that is returned depends upon what String value is
passed to the createPlayer method.
 
public class PlayerFactory {
 
 public static Player createPlayer(String playerType){
 Player returnType;
 switch(playerType){
 case "GOALIE":
 returnType = new Goalie();
 break;
 case "LEFT":
 returnType = new LeftWing();
 break;

Chapter 5 ■ Object-Oriented Java

103

 case "RIGHT":
 returnType = new RightWing();
 break;
 case "CENTER":
 returnType = new Center();
 break;
 case "DEFENSE":
 returnType = new Defense();
 break;
 default:
 returnType = new AllPlayer();
 }
 return returnType;
 }
}
 

If a class wants to use the factory, it simply calls the static createPlayer method, passing a string value
representing a new instance of Player. The following code represents one of the Player subclasses; the others could
be very similar:
 
public class Goalie extends Player implements PlayerType {
 
 private int totalSaves;
 
 public Goalie(){
 this.setPosition("GOALIE");
 }
  
 
 /**
 * @return the totalSaves
 */
 public int getTotalSaves() {
 return totalSaves;
 }
 
 /**
 * @param totalSaves the totalSaves to set
 */
 public void setTotalSaves(int totalSaves) {
 this.totalSaves = totalSaves;
 }
}
 

Each of the other Player subclasses is very similar to the Goalie class. The most important code to note is the
factory method, createPlayer, which can be used to create new instances of the Player class.

Note■■  T o take this example one step further, you can limit the methods that can be accessed. You do this by returning
objects of type PlayerType, and only declaring the accessible methods within that interface.

Chapter 5 ■ Object-Oriented Java

104

How It Works
Factories are used to generate objects. Usually they are used to abstract the actual creation of an object from its
creators. This can come in very handy when the creator does not need to know about the actual implementation
details of generating the new object. The factory pattern can also be useful when controlled access to the creation of
an object is required. In order to implement a factory, create a class that contains at least one method that is used for
returning a newly created object.

In the solution to this recipe, the PlayerFactory class contains a method named createPlayer(String)
that returns a newly created Player object. This method doesn’t do anything special behind the scenes; it simply
instantiates a new Player instance depending upon the String value that is passed to the method. Another object
that has access to the PlayerFactory class can use createPlayer to return new Player objects without knowing how
the object is created. While this does not hide much in the case of the createPlayer method, the PlayerFactory
abstracts the details of which class is being instantiated so that the developer only has to worry about obtaining a new
Player object.

The factory pattern is an effective way to control how objects are created and makes it easier to create objects of
a certain type. Imagine if a constructor for an object took more than just a handful of arguments; creating new objects
that require more than just a couple of arguments can become a hassle. Generating a factory to create those objects so
that you do not have to hard-code all the arguments with each instantiation can make you much more productive!

5-5. Creating Reusable Objects
Problem
You would like to generate an object that could be used to represent something within your application. For instance,
suppose that you are creating an application that will be used for generating statistics and league information for
different sports teams.

Solution
Create a JavaBean that can be used to represent the object that you want to create. JavaBean objects provide the
capability for object fields to be declared as private, and they also allow the attributes to be read and updated so that
an object can be passed around and used within an application. This recipe demonstrates the creation of a JavaBean
named Team. The Team object contains a few different fields that can be used to contain information:
 
public class Team implements TeamType {
 
 private List<Player> players;
 private String name = null;
 private String city = null;
 
 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }
 
 /**
 * @param players the players to set
 */

Chapter 5 ■ Object-Oriented Java

105

 public void setPlayers(List<Player> players) {
 this.players = players;
 }
 
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 
 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 
}
 

As you can see, the object in this solution contains three fields, and each of those fields is declared as private.
However, each field has two accessor methods—getters and setters—that allow the fields to be indirectly accessible.

How It Works
The JavaBean is an object that is used to hold information so that it can be passed around and used within an
application. One of the most important aspects of a JavaBean is that its fields are declared as private. This prohibits
other classes from accessing the fields directly. Instead, each field should be encapsulated by methods defined in
order to make them accessible to other classes. These methods must adhere to the following naming conventions:

Methods used for accessing the field data should be named using a prefix of •	 get, followed by
the field name.

Methods used for setting the field data should be named using a prefix of •	 set, followed by the
field name.

Chapter 5 ■ Object-Oriented Java

106

For instance, in the solution to this recipe, the Team object contains a field with the name of players. In order to
access that field, a method should be declared that is named getPlayers. That method should return the data that
is contained within the players field. Likewise, to populate the players field, a method should be declared that is
named setPlayers. That method should accept an argument that is of the same type as the players field, and it
should set the value of the players field equal to the argument. This can be seen in the following code:
 
public List<Player> getPlayers() {
 return players;
}
 
void setPlayers(List<Player> players) {
 this.players = players;
}
 

JavaBeans can be used to populate lists of data, written to a database record, or for a myriad of other functions.
Using JavaBeans makes code easier to read and maintain. It also helps to increase the likelihood of future code
enhancements because very little code implementation is required. Lastly, another benefit of using JavaBeans is that
most major IDEs will auto-complete the encapsulation of the fields for you.

5-6. Defining an Interface for a Class
Problem
You would like to create a set of empty method bodies and constants that can be used as a common template to
expose the methods and constants that a class implements.

Solution
Generate a Java interface to declare each of the constant fields and methods that a class must implement. Such an
interface can then be implemented by a class, and used to represent an object type. The following code is an interface
that is used to declare the methods that must be implemented by the Team object:
 
public interface TeamType {
 
 void setPlayers(List<Player> players);
 void setName(String name);
 void setCity(String city);
 String getFullName();
}
 

All the methods in the interface are implicitly abstract. That is, only a method signature is provided. It is also
possible to include static final variable declarations in an interface.

How It Works
A Java interface is a construct that is used to define the structures, be it variables or methods that a class must
implement. In most cases, interfaces do not include any method implementations; rather, they only include method
signatures. Interfaces can include variables that are implicitly static and final.

Chapter 5 ■ Object-Oriented Java

107

Note■■  A s of Java SE 8, it is possible for interfaces to contain method implementations. Such methods are known as
default methods. See Recipe 5-7 for more details.

In the solution to this recipe, the interface does not include any constant variable declarations. However, it
includes four method signatures. All the method signatures have no access modifier specified because all declarations
within an interface are implicitly public. Interfaces are used to expose a set of functionality; therefore, all methods
exposed within an interface must be implicitly public. Any class that implements an interface must provide the
implementation for any method signatures declared in the interface, with the exception of default methods and abstract
classes (see Recipes 5-7 and 5-13 for more details), in which case an interface may leave the implementation for one
of its subclasses.

While the Java language does not allow multiple inheritance, a Java class can implement multiple interfaces,
allowing for a controlled form of multiple inheritance. Abstract classes can also implement interfaces. The following
code demonstrates a class implementing an interface: the Team object declaration implements the TeamType interface.
 
public class Team implements TeamType {
 
 private List<Player> players;
 private String name;
 private String city;
 
 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }
 
 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }
 
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 
 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 

Chapter 5 ■ Object-Oriented Java

108

 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 
 public String getFullName() {
 return this.name + " - " + this.city;
 }
 
}
 

Interfaces can be used to declare a type for an object. Any object that is declared to have an interface type must
adhere to all the implementations declared in the interface, unless a default implementation exists. For instance, the
following variable declaration defines an object that contains all the properties that are declared within the TeamType
interface:
 
TeamType team;
 

Interfaces can also implement other interfaces (thus the same type of theory that is provided by multiple
inheritance). However, because no method implementation is present in an interface, it is much safer to implement
multiple interfaces in a Java class than it is to extend multiple classes in C++.

Interfaces are some of the single most important constructs of the Java language. They provide the interfaces
between the user and the class implementations. Although it is possible to create entire applications without using
interfaces, they help to promote object orientation and hide method implementations from other classes.

5-7. Modifying Interfaces without Breaking Existing Code
Problem
You’ve got a utility class that implements an interface, and many different classes within the utility library
implement that interface. Suppose that you want to add a new method to the utility class and make it available for
use for other classes via its interface. However, if you change the interface, it will break existing classes that already
implement that interface.

Solution
Add the new method, along with its implementation, to the utility class interface as a default method. By doing so,
each class that implements the interface will automatically gain use of the new method, and will not be forced to
implement it since a default implementation exists. The following class interface contains a default method, which
can be used by any class that implements the interface.
 

Chapter 5 ■ Object-Oriented Java

109

public interface TeamType {
 
 List<Player> getPlayers();
 
 void setPlayers(List<Player> players);
 
 void setName(String name);
 
 void setCity(String city);
 
 String getFullName();
 
 default void listPlayers() {
 getPlayers().stream().forEach((player) -> {
 System.out.println(player.getFirstName() + " " + player.getLastName());
 });
 }
 
}
 

The interface TeamType contains a default method named listPlayers(). This method does not need to be
implemented by any classes that implement TeamType since there is a default implementation contained within the interface.

How It Works
In previous releases of Java, interfaces could only contain method signatures and constant variables. It was not
possible to define a method implementation within an interface. This works well in most cases, as interfaces are a
construct that is meant to enforce type safety and abstract implementation details. However, in some circumstances,
it is beneficial to allow interfaces to contain a default method implementation. For instance, if there are many classes
that implement an existing interface, then lots of code can be broken if that interface were to be changed. This would
create a situation where backward compatibility would not be possible. In such a case, it would make sense to place
a default method implementation into an interface, rather than forcing all classes to implement a new method that
is placed within the interface. This is the reason why default methods became a necessity, and were included in the
Java 8 release.

To create a default method (a.k.a. “defender method”) within an interface, use the keyword default within the
method signature, and include a method implementation. An interface can contain zero or more default methods.
In the solution to this recipe, the listPlayers() method is a default method within the TeamType interface, and any
class implementing TeamType will automatically inherit the default implementation. Theoretically, any classes that
implement TeamType would be completely unaffected by the addition of the listPlayers() default method. This
enables one to alter an interface without breaking backward compatibility, which can be of great value.

5-8. Constructing Instances of the Same Class with
Different Values
Problem
Your application requires the ability to construct instances of the same object, but each object instance needs to
contain different values, thereby creating different types of the same object.

Chapter 5 ■ Object-Oriented Java

110

Solution
Make use of the builder pattern in order to build different types of the same object using a step-by-step procedure. For
instance, suppose that you are interested in creating the different teams for a sports league. Each of the teams must
contain the same attributes, but the values for those attributes vary by team. So you create many objects of the same
type, but each of the objects is unique. The following code demonstrates the builder pattern, which can be used to
create the required teams.

First, you need to define a set of attributes that each team needs to contain. To do this, a Java interface should be
created, containing the different attributes that need to be applied to each team object. The following is an example
of such an interface:
 
public interface TeamType {
 
 public void setPlayers(List<Player> players);
 public void setName(String name);
 public void setCity(String city);
 public String getFullName();
 
}
 

Next, define a class to represent a team. This class needs to implement the TeamType interface that was just
created so that it will adhere to the format that is required to build a team:
 
public class Team implements TeamType {
 
 private List<Player> players;
 private String name = null;
 private String city = null;
 private int wins = 0;
 private int losses = 0;
 private int ties = 0;
 
 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }
 
 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }
 
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 

Chapter 5 ■ Object-Oriented Java

111

 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 
 public String getFullName(){
 return this.name + " – " + this.city;
 }
  
}
 

Now that the Team class has been defined, a builder needs to be created. The purpose of the builder object is to
allow for a step-by-step creation of a team object. To abstract the details of building an object, a builder class interface
should be created. The interface should define any of the methods that would be used to build the object as well as
a method that will return a fully built object. In this case, the interface will define each of the methods needed to build
a new Team object, and then the builder implementation will implement this interface.
 
public interface TeamBuilder {
 public void buildPlayerList();
 public void buildNewTeam(String teamName);
 public void designateTeamCity(String city);
 public Team getTeam();
 
}
 

The following code demonstrates a builder class implementation. Although the following code would not create a
custom player list, it contains all the features required to implement the builder pattern. The details of creating a more
customized player list can be worked out later, probably by allowing the user to create players via a keyboard entry.
Furthermore, the TeamBuilder interface could be used to implement teams for different sports. The following class is
named HockeyTeamBuilder, but a similar class implementing TeamBuilder could be named FootballTeamBuilder,
and so forth.
 

Chapter 5 ■ Object-Oriented Java

112

public class HockeyTeamBuilder implements TeamBuilder {
 
 private Team team;
 
 public TeamBuilder(){
 this.team = new Team();
 }
 
 @Override
 public void buildPlayerList() {
 List players = new ArrayList();
 for(int x = 0; x <= 10; x++){
 players.add(PlayerFactory.getPlayer());
 }
 team.setPlayers(players);
 }
 
 @Override
 public void buildNewTeam() {
 team.setName("The Java 8 Team");
 }
 
 @Override
 public void designateTeamCity(){
 team.setCity("Somewhere in the world");
 }
 
 public Team getTeam(){
 return this.team;
 }
 
}
 

Last, use the builder by calling upon the methods defined in its interface to create teams. The following code
demonstrates how this builder could be used to create one team. You can use the Roster class within the sources for
this recipe to test this code:
 
public Team createTeam(String teamName, String city){
 TeamBuilder builder = new HockeyTeamBuilder();
 builder.buildNewTeam(teamName);
 builder.designateTeamCity(city);
 builder.buildPlayerList();
 return builder.getTeam();
}
 

Although this demonstration of the builder pattern is relatively short, it demonstrates how to hide
implementation details of an object, thereby making objects easier to build. You do not need to know what the
methods within the builder actually do; you only need to call upon them.

Chapter 5 ■ Object-Oriented Java

113

How It Works
The builder pattern provides a way to generate new instances of an object in a procedural fashion. It abstracts away
the details of object creation, so the creator does not need to do any specific work in order to generate new instances.
By breaking the work down into a series of steps, the builder pattern allows objects to implement its builder methods
in different ways. Because the object creator only has access to the builder methods, it makes creation of different
object types much easier.

There are a few classes and interfaces that are necessary for using the builder pattern. First, you need to define
a class and its different attributes. As the solution to this recipe demonstrates, the class may follow the JavaBean
pattern (see Recipe 5-5 for more details). By creating a JavaBean, you will be able to populate the object by using its
setters and getters. Next, you should create an interface that can be used for accessing the setters of the object that you
created. Each of the setter methods should be defined in the interface, and then the object itself should implement
that interface. As seen in the solution, the Team object contains the following setters, and each of them is defined in
the TeamType interface:
 
public void setPlayers(List<Player> players);
public void setName(String name);
public void setCity(String city);
 

In real life, a team will probably contain more attributes. For instance, you’d probably want to set up a mascot
and a home stadium name and address. The code in this example can be thought of as abbreviated because it
demonstrates the creation of a generic “team object” rather than show you all the code for creating a team that is true
to life. Because the Team class implements these setters that are defined within the TeamType interface, the interface
methods can be called upon to interact with the actual methods of the Team class.

After the object and its interface have been coded, the actual builder needs to be created. The builder consists of
an interface and its implementation class. To start, you must define the methods that you want to have other classes
call upon when building your object. For instance, in the solution to this recipe, the methods buildNewTeam(),
designateTeamCity(), and buildPlayerList() are defined within the builder interface named TeamBuilder. When
a class wants to build one of these objects later, it will only need to call upon these defined methods in order to do it.
Next, define a builder class implementation. The implementation class will implement the methods defined within
the builder interface, hiding all the details of those implementations from the object creator. In the solution to this
recipe, the builder class, HockeyTeamBuilder, implements the TeamBuilder interface. When a class wants to create a
new Team object then it simply instantiates a new builder class.
 
TeamBuilder builder = new HockeyTeamBuilder();
 

To populate the newly created class object, the builder methods are called upon it.
 
builder.buildNewTeam(teamName);
builder.designateTeamCity(city);
builder.buildPlayerList();
 

Using this technique provides a step-by-step creation for an object. The implementation details for building
that object are hidden from the object creator. It would be easy enough for a different builder implementation to use
the same TeamBuilder interface for building team objects for different types. For instance, a builder implementation
could be written for generating team objects for soccer, and another one could be defined for generating team
objects for baseball. Each of the team object implementations would be different. However, both of them could
implement the same interface—TeamBuilder—and the creator could simply call on the builder methods without
caring about the details.

Chapter 5 ■ Object-Oriented Java

114

5-9. Interacting with a Class via Interfaces
Problem
You have created a class that implements an interface or class type. You would like to interact with the methods of that
class by working with the interface rather than working directly with the class.

Solution
Declare a variable of the same type as an interface. You can then assign classes that implement the interface to that
variable and call upon the methods declared in the interface to perform work. In the following example, a variable is
declared to be of type TeamType. Using the same classes from Recipe 5-8, you can see that the class Team implements
the TeamType interface. The variable that is created in the following example holds a reference to a new Team object.

Because the Team class implements the TeamType interface, the methods that are exposed in the interface can be used:
 
TeamType team = new Team();
team.setName("Juneau Royals");
team.setCity("Chicago");
System.out.println(team.getFullName());
 

The resulting output:
 
Juneau Royals – Chicago

How It Works
Interfaces are useful for many reasons. Two of the most important use cases for interfaces are conformity and
abstraction. Interfaces define a model, and any class that implements the interface must conform to that model.
Therefore, if there is a constant defined within the interface, it will automatically be available for use in the class. If there
is a method defined within the interface, then the class must implement that method, unless a default implementation
has been defined (see Recipe 5-7). Interfaces provide a nice way to allow classes to conform to a standard.

Interfaces hide unnecessary information from any class that does not need to see it. Any method that is defined
within the interface is made public and accessible to any class. As demonstrated in the solution to this recipe, an
object was created and declared to be the type of an interface. The interface in the example, TeamType, only includes
a small subset of methods that are available within the Team object. Therefore, the only methods that are accessible
to any class working against an object that has been declared to be of TeamType are the ones that are defined within
the interface. The class using this interface type cannot see any of the other methods or constants, nor does it need
to. Interfaces are a great way for hiding logic that does not need to be used by other classes. Another great side effect:
A class that implements an interface can be changed and recompiled without affecting code that works against the
interface. However, if an interface is changed, there could be an effect on any classes that implement it. Therefore, if
the getFullName() method implementation changes, any class that is coded against the TeamType interface will not
be affected because the interface is unchanged. The implementation will change behind the scenes, and any class
working against the interface will just begin to use the new implementation without needing to know.

Note■■  I n some cases, alterations of existing classes can cause code to break. This is more often the case when
working with libraries. For instance, suppose a class implements an interface that is updated with a new method signature.
All classes that implement that interface must now be updated to include an implementation of the new method, which is
sometimes impossible within library classes in order to maintain backward compatibility. This is the main reason for the
inclusion of default methods in Java 8; see Recipe 5-7 for more details.

Chapter 5 ■ Object-Oriented Java

115

Finally, interfaces help to promote security. They hide implementation details of methods that are declared in
an interface from any class that may call that method using the interface. As mentioned in the previous paragraph,
if a class is calling the getFullName() method against the TeamType interface, it does not need to know the
implementation details of that method as long as the result is returned as expected.

The Enterprise JavaBean (EJB) 3.0 model used interfaces for interacting with methods that performed database
work. This model worked very well for hiding the details and logic that were not essential for use from other classes.
Other frameworks use similar models, exposing functionality through Java interfaces. Interface use has proven to be a
smart way to code software because it promotes reusability, flexibility, and security.

5-10. Making a Class Cloneable
Problem
You would like to enable a class to be cloned by another class.

Solution
Implement the Cloneable interface within the class that you want to clone; then call that object’s clone method to
make a copy of it. The following code demonstrates how to make the Team class cloneable:
 
public class Team implements TeamType, Cloneable, Serializable {
 
 private String name;
 private String city;
  
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }
 
 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 
 /**
 * @param city the city to set
 */

Chapter 5 ■ Object-Oriented Java

116

 public void setCity(String city) {
 this.city = city;
 }
 
 public String getFullName() {
 return this.name + " - " + this.city;
 }
 
 /**
 * Overrides Object's clone method to create a deep copy
 *
 * @return
 */
 public Object clone() {
 
 Object obj = null;
 try {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(baos);
 oos.writeObject(this);
 oos.close();
 
 ByteArrayInputStream bais = new ByteArrayInputStream(baos.toByteArray());
 ObjectInputStream ois = new ObjectInputStream(bais);
 obj = ois.readObject();
 ois.close();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException cnfe) {
 cnfe.printStackTrace();
 }
 return obj;
 }
 
 /**
 * Overrides Object's clone method to create a shallow copy
 *
 * @return
 */
 public Object shallowCopyClone() {
 
 try {
 return super.clone();
 } catch (CloneNotSupportedException ex) {
 return null;
 }
 }
 

Chapter 5 ■ Object-Oriented Java

117

 @Override
 public boolean equals(Object obj) {
 
 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {
 Team other = (Team) obj;
 return other.getName().equals(this.getName())
&& other.getCity().equals(this.getCity());
 } else {
 return false;
 }
 }
}
 

Next, to make a deep copy of a Team object, the clone() method needs to be called against that object. To make
a shallow copy of the object, the shallowCopyClone() method must be called. The following code demonstrates
this technique:
 
Team team1 = new Team();
Team team2 = new Team();
 
team1.setCity("Boston");
team1.setName("Bandits");
 
team2.setCity("Chicago");
team2.setName("Wildcats");
  
Team team3 = team1;
Team team4 = (Team) team2.clone();
 
Team team5 = team1.shallowCopyClone();
 
System.out.println("Team 3:");
System.out.println(team3.getCity());
System.out.println(team3.getName());
 
System.out.println("Team 4:");
System.out.println(team4.getCity());
System.out.println(team4.getName());
 
// Teams move to different cities
team1.setCity("St. Louis");
team2.setCity("Orlando");
 
System.out.println("Team 3:");
System.out.println(team3.getCity());
System.out.println(team3.getName());
 

Chapter 5 ■ Object-Oriented Java

118

System.out.println("Team 4:");
System.out.println(team4.getCity());
System.out.println(team4.getName());
 
System.out.println("Team 5:");
System.out.println(team5.getCity());
System.out.println(team5.getName());
  
if (team1 == team3){
 System.out.println("team1 and team3 are equal");
} else {
 System.out.println("team1 and team3 are NOT equal");
}
 
if (team1 == team5){
System.out.println("team1 and team5 are equal");
 } else {
System.out.println("team1 and team5 are NOT equal");
}
 

This code demonstrates how to make a clone of an object. The resulting output would be as follows.
 
Team 3:
Boston
Bandits
Team 4:
Chicago
Wildcats
Team 3:
St. Louis
Bandits
Team 4:
Chicago
Wildcats
Team 5:
Boston
Bandits
team1 and team3 are equal
team1 and team5 are NOT equal

How It Works
There are two different strategies that can be used to copy an object: shallow and deep copies. A shallow copy can be
made that would copy the object without any of its contents or data. Rather, all the variables are passed by reference
into the copied object. After a shallow copy of an object has been created, the objects within both the original object
and its copy refer to the same data and memory. Thus, modifying the original object’s contents will also modify
the copied object. By default, calling the super.clone() method against an object performs a shallow copy. The
shallowCopyClone() method in the solution to this recipe demonstrates this technique.

The second type of copy that can be made is known as a deep copy, which copies the object including all the
contents. Therefore, each object refers to a different space in memory, and modifying one object will not affect the
other. In the solution to this recipe, the difference between a deep and a shallow copy is demonstrated.

Chapter 5 ■ Object-Oriented Java

119

First, team1 and team2 are created. Next, they are populated with some values. The team3 object is then set equal to
the team1 object, and the team4 object is made a clone of the team2 object. When the values are changed within the
team1 object, they are also changed in the team3 object because both object’s contents refer to the same space in
memory. This is an example of a shallow copy of an object. When the values are changed within the team2 object,
they remain unchanged in the team4 object because each object has its own variables that refer to different spaces
in memory. This is an example of a deep copy.

In order to make an exact copy of an object (deep copy), you must serialize the object. The base Object class
implements the clone() method. By default, the Object class’s clone() method is protected. In order to make an
object cloneable, it must implement the Cloneable interface and override the default clone() method. You can make
a deep copy of an object by serializing it through a series of steps, such as writing the object to an output stream and
then reading it back via an input stream. The steps shown in the clone() method of the solution to this recipe do just
that. The object is written to a ByteArrayOutputStream and then read using a ByteArrayInputStream. Once that has
occurred, the object has been serialized, which creates the deep copy. The clone() method in the solution to this
recipe has been overridden so that it creates a deep copy.

Once these steps have been followed and an object implements Cloneable as well as overrides the default object
clone() method, it is possible to clone the object. In order to make a deep copy of an object, simply call that object’s
overridden clone() method.
 
Team team4 = (Team) team2.clone();
 

Cloning objects is not very difficult, but a good understanding of the differences that can vary with object copies
is important.

5-11. Comparing Objects
Problem
Your application requires the capability to compare two or more objects to see whether they are the same.

Solution 1
To determine whether the two object references point to the same object, make use of the == and != operators.
The following solution demonstrates the comparison of two object references to determine whether they refer to the
same object.
 
// Compare if two objects contain the same values
Team team1 = new Team();
Team team2 = new Team();
 
team1.setName("Jokers");
team1.setCity("Crazyville");
 
team2.setName("Jokers");
team2.setCity("Crazyville");
 
if (team1 == team2){
 System.out.println("These object references refer to the same object.");
} else {
 System.out.println("These object references do NOT refer to the same object.");
}
 

Chapter 5 ■ Object-Oriented Java

120

// Compare two objects to see if they refer to the same object
Team team3 = team1;
Team team4 = team1;
 
if (team3 == team4){
 System.out.println("These object references refer to the same object.");
} else {
 System.out.println("These object references do NOT refer to the same object.");
}
 

The results of running the code:

These object references do NOT refer to the same object.
These object references refer to the same object.

Solution 2
To determine whether the two objects contain the same values, use the equals() method. The object being compared
must implement equals() and hashCode() in order for this solution to work properly. Following is the code for the
Team class that overrides these two methods:
 
public class Team implements TeamType, Cloneable {
 
 private List<Player> players;
 private String name;
 private String city;
 // Used by the hashCode method for performance reasons
 private volatile int cachedHashCode = 0;
 
 /**
 * @return the players
 */
 public List<Player> getPlayers() {
 return players;
 }
 
 /**
 * @param players the players to set
 */
 public void setPlayers(List<Player> players) {
 this.players = players;
 }
 
 /**
 * @return the name
 */
 public String getName() {
 return name;
 }

Chapter 5 ■ Object-Oriented Java

121

 
 /**
 * @param name the name to set
 */
 public void setName(String name) {
 this.name = name;
 }
 
 /**
 * @return the city
 */
 public String getCity() {
 return city;
 }
 
 /**
 * @param city the city to set
 */
 public void setCity(String city) {
 this.city = city;
 }
 
 public String getFullName() {
 return this.name + " - " + this.city;
 }
 
 /**
 * Overrides Object's clone method
 *
 * @return
 */
 public Object clone() {
 
 try {
 return super.clone();
 } catch (CloneNotSupportedException ex) {
 return null;
 }
 }
 
 @Override
 public boolean equals(Object obj) {
 
 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {
 Team other = (Team) obj;
 return other.getName().equals(this.getName())
&& other.getCity().equals(this.getCity())
&& other.getPlayers().equals(this.getPlayers());

Chapter 5 ■ Object-Oriented Java

122

 } else {
 return false;
 }
 
 }
 
@Override
 public int hashCode() {
 int hashCode = cachedHashCode;
 if (hashCode == 0) {
 String concatStrings = name + city;
 if (players.size() > 0) {
 for (Player player : players) {
 concatStrings = concatStrings
 + player.getFirstName()
 + player.getLastName()
 + player.getPosition()
 + String.valueOf(player.getStatus());
 
 }
 }
 hashCode = concatStrings.hashCode();
 }
 return hashCode;
 }
}
 

The following solution demonstrates the comparison of two objects that contain the same values.
 
// Compare if two objects contain the same values
Team team1 = new Team();
Team team2 = new Team();
 
// Build Player List
Player newPlayer = new Player("Josh", "Juneau");
playerList.add(0, newPlayer);
newPlayer = new Player("Jonathan", "Gennick");
playerList.add(1, newPlayer);
newPlayer = new Player("Joe", "Blow");
playerList.add(1, newPlayer);
newPlayer = new Player("John", "Smith");
playerList.add(1, newPlayer);
newPlayer = new Player("Paul", "Bunyan");
playerList.add(1, newPlayer);
 
team1.setName("Jokers");
team1.setCity("Crazyville");
team1.setPlayers(playerList);
 
team2.setName("Jokers");
team2.setCity("Crazyville");
team2.setPlayers(playerList);

Chapter 5 ■ Object-Oriented Java

123

 
if (team1.equals(team2)){
 System.out.println("These object references contain the same values.");
} else {
 System.out.println("These object references do NOT contain the same values.");
}
 

The results of running this code:
 
These object references contain the same values.

How It Works
The comparison operator (==) can be used to determine the equality of two objects. This equality does not pertain
to the object values, but rather to the object references. Often an application is more concerned with the values of
objects; in such cases, the equals() method is the preferred choice because it compares the values contained within
the objects rather than the object references.

The comparison operator takes a look at the object reference and determines whether it points to the same object
as the object reference that it is being compared against. If the two objects are equal, a Boolean true result will be
returned; otherwise, a Boolean false result will be returned. In solution 1, the first comparison between the team1
object reference and the team2 object reference returns a false value because those two objects are separate in memory,
even though they contain the same values. The second comparison in solution 1 between the team3 object reference
and the team4 object reference returns a true value because both of those references refer to the team1 object.

The equals() method can be used to test whether two objects contain the same values. In order to use the
equals() method for comparison, the object that is being compared should override the Object class equals()and
hashCode() methods. The equals() method should implement a comparison against the values contained within the
object that would yield a true comparison result. The following code is an example of an overridden equals() method
that has been placed into the Team object:
 
@Override
public boolean equals(Object obj) {
 
 if (this == obj) {
 return true;
 }
 if (obj instanceof Team) {
 Team other = (Team) obj;
 return other.getName().equals(this.getName())
&& other.getCity().equals(this.getCity())
&& other.getPlayers().equals(this.getPlayers());
 } else {
 return false;
 }
 
}
 

As you can see, the overridden equals() method first checks to see whether the object that is passed as an
argument is referencing the same object as the one that it is being compared against. If so, a true result is returned.
If both objects are not referencing the same object in memory, the equals() method checks to see whether the fields
are equal. In this case, any two Team objects that contain the same values within the name and city fields would

Chapter 5 ■ Object-Oriented Java

124

be considered equal. Once the equals() method has been overridden, the comparison of the two objects can be
performed, as demonstrated in solution 2 to this recipe.

The hashCode() method returns an int value that must consistently return the same integer. There are many
ways in which to calculate the hashCode of an object. Perform a web search on the topic and you will find various
techniques. One of the most basic ways to implement the hashCode() method is to concatenate all the object’s
variables into string format and then return the resulting string’s hashCode(). It is a good idea to cache the value of
the hashCode for later use because the initial calculation may take some time. The hashCode() method in solution 2
demonstrates this tactic.

Comparing Java objects can become confusing, considering that there are multiple ways to do it. If the
comparison that you want to perform is against the object identity, use the comparison (==) operator. However, if you
want to compare the values within the objects, or the state of the objects, then the equals() method is the way to go.

5-12. Extending the Functionality of a Class
Problem
One of your applications contains a class that you would like to use as a base for another class. You want your new
class to contain the same functionality of this base class, but also include additional functionality.

Solution
Extend the functionality of the base class by using the extends keyword followed by the name of the class that you
would like to extend. The following example shows two classes. The first class, named HockeyStick, represents a
hockey stick object. It will be extended by the second class named WoodenStick. By doing so, the WoodenStick class
will inherit all the properties and functionality contained within HockeyStick, with the exception of private variables
and those that have the default access level. The WoodenStick class becomes a subclass of HockeyStick. First, let’s
take a look at the HockeyStick class , which contains the basic properties of a standard hockey stick:
 
public class HockeyStick {
 
 public int length;
 public boolean isCurved;
 public String material;
 
 public HockeyStick(int length, boolean isCurved, String material){
 this.length = length;
 this.isCurved = isCurved;
 this.material = material;
 }
 
 public int getlength() {
 return length;
 }
 
 public void setlength(int length) {
 this.length = length;
 }
 
 public boolean isIsCurved() {
 return isCurved;

Chapter 5 ■ Object-Oriented Java

125

 }
 
 public void setIsCurved(boolean isCurved) {
 this.isCurved = isCurved;
 }
 
 public String getmaterial() {
 return material;
 }
 
 public void setmaterial(String material) {
 this.material = material;
 }
 
}
 

Next, look at the subclass of HockeyStick: a class named WoodenStick.
 
public class WoodenStick extends HockeyStick {
 
 public static final String material = "WOOD";
 public int lie;
 public int flex;
 
 public WoodenStick(int length, boolean isCurved){
 super(length, isCurved, material);
 }
 
 public WoodenStick(int length, boolean isCurved, int lie, int flex){
 super(length, isCurved, material);
 this.lie = lie;
 this.flex = flex;
 }
}

How It Works
Object inheritance is a fundamental technique in any object-oriented language. Inheriting from a base class adds
value because it allows code to become reusable in multiple places. This helps to make code management much
easier. If a change is made in the base class, it will automatically be inherited in the child. On the other hand, if you
had duplicate functionality scattered throughout your application, one minor change could mean that you would
have to change code in many places. Object inheritance also makes it easy to designate a base class to one or more
subclasses so that each class can contain similar fields and functionality.

The Java language allows a class to extend only one other class. This differs in concept from other languages such
as C++; which contain multiple inheritance. Although some look at single class inheritance as a hindrance to the
language, it was designed that way to add safety and ease of use to the language. When a subclass contains multiple
superclasses, confusion can ensue.

Chapter 5 ■ Object-Oriented Java

126

5-13. Defining a Template for Classes to Extend
Problem
You would like to define a template that can be used to generate objects containing similar functionality.

Solution
Define an abstract class that contains fields and functionality that can be used in other classes. The abstract class
can also include unimplemented methods, called abstract methods, which will need to be implemented by a subclass
of the abstract class. The following example demonstrates the concept of an abstract class. The abstract class in
the example represents a team schedule, and it includes some basic field declarations and functionality that every
team’s schedule will need to use. The Schedule class is then extended by the TeamSchedule class, which will be used
to implement specific functionality for each team. First, let’s take a look at the abstract Schedule class:
 
public abstract class Schedule {
 
 public String scheduleYear;
 public String teamName;
 
 public List<Team> teams;
 
 public List homeGames;
 public List awayGames;
 
 Map gameMap;
 
 public Schedule(){}
 
 public Schedule(String teamName){
 this.teamName = teamName;
 }
 
 public Map obtainSchedule(){
 if (gameMap == null){
 gameMap = new HashMap();
 }
 return gameMap;
 }
 
 public void setGameDate(Team team, Date date){
 
 obtainSchedule().put(team, date);
 }
 
 abstract void calculateDaysPlayed(int month);
 
}
 

Chapter 5 ■ Object-Oriented Java

127

Next, the TeamSchedule extends the functionality of the abstract class.
 
public class TeamSchedule extends Schedule {
 
 public TeamSchedule(String teamName){
 super(teamName);
 }
 
 @Override
 void calculateDaysPlayed(int month) {
 
 // Perform implementation here
 
 throw new UnsupportedOperationException("Not supported yet.");
 }
 
}
 

As you can see, the TeamSchedule class can use all the fields and methods that are contained within the
abstract Schedule class. It also implements the abstract method that is contained within the Schedule class.

How It Works
Abstract classes are labeled as such, and they contain field declarations and methods that can be used within
subclasses. What makes them different from a regular class? Abstract classes can contain abstract methods, which
are method declarations with no implementation. The solution to this recipe contains an abstract method named
calculateDaysPlayed(). Abstract classes may or may not contain abstract methods. They can contain fields and
fully implemented methods as well. Abstract classes cannot be instantiated; other classes can only extend them.
When a class extends an abstract class, it gains all the fields and functionality of the abstract class. However, any
abstract methods that are declared within the abstract class must be implemented by the subclass.

You may wonder why the abstract class wouldn’t just contain the implementation of the method so that it was
available for all its subclasses to use. If you think about the concept, it makes perfect sense. One type of object may
perform a task differently from another. Using an abstract method forces the class that is extending the abstract
class to implement it, but it allows the ability to customize how it is implemented.

5-14. Increasing Class Encapsulation
Problem
One of your classes requires the use of another class’s functionality. However, no other class requires the use of that
same functionality. Rather than creating a separate class that includes this additional functionality, you’d like to
generate an implementation that can only be used by the class that needs it, while placing the code in a logical location.

Solution
Create an inner class within the class that requires its functionality.
 
import java.util.ArrayList;
import java.util.List;
 

Chapter 5 ■ Object-Oriented Java

128

/**
 * Inner class example. This example demonstrates how a team object could be
 * built using an inner class object.
 *
 * @author juneau
 */
public class TeamInner {
 
 private Player player;
 private List<Player> playerList;
 private int size = 4;
 
 /**
 * Inner class representing a Player object
 */
 class Player {
 
 private String firstName = null;
 private String lastName = null;
 private String position = null;
 private int status = -1;
 
 public Player() {
 }
 
 public Player(String position, int status) {
 this.position = position;
 this.status = status;
 }
 
 protected String playerStatus() {
 String returnValue = null;
 
 switch (getStatus()) {
 case 0:
 returnValue = "ACTIVE";
 break;
 case 1:
 returnValue = "INACTIVE";
 break;
 case 2:
 returnValue = "INJURY";
 break;
 default:
 returnValue = "ON_BENCH";
 break;
 }
 
 return returnValue;
 }
 

Chapter 5 ■ Object-Oriented Java

129

 public String playerString() {
 return getFirstName() + " " + getLastName() + " - " + getPosition();
 }
 
 /**
 * @return the firstName
 */
 public String getFirstName() {
 return firstName;
 }
 
 /**
 * @param firstName the firstName to set
 */
 public void setFirstName(String firstName) {
 if (firstName.length() > 30) {
 this.firstName = firstName.substring(0, 29);
 } else {
 this.firstName = firstName;
 }
 }
 
 /**
 * @return the lastName
 */
 public String getLastName() {
 return lastName;
 }
 
 /**
 * @param lastName the lastName to set
 */
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 
 /**
 * @return the position
 */
 public String getPosition() {
 return position;
 }
 
 /**
 * @param position the position to set
 */
 public void setPosition(String position) {
 this.position = position;
 }
 

Chapter 5 ■ Object-Oriented Java

130

 /**
 * @return the status
 */
 public int getStatus() {
 return status;
 }
 
 /**
 * @param status the status to set
 */
 public void setStatus(int status) {
 this.status = status;
 }
 
 @Override
 public String toString(){
 return this.firstName + " " + this.lastName + " - "+
 this.position + ": " + this.playerStatus();
 }
 }
 
 /**
 * Inner class that constructs the Player objects and adds them to an array
 * that was declared in the outer class;
 */
 public TeamInner() {
 
 final int ACTIVE = 0;
 
 // In reality, this would probably read records from a database using
 // a loop...but for this example we will manually enter the player data.
 playerList = new ArrayList();
 playerList.add(constructPlayer("Josh", "Juneau", "Right Wing", ACTIVE));
 playerList.add(constructPlayer("Joe", "Blow", "Left Wing", ACTIVE));
 playerList.add(constructPlayer("John", "Smith", "Center", ACTIVE));
 playerList.add(constructPlayer("Bob","Coder", "Defense", ACTIVE));
 playerList.add(constructPlayer("Jonathan", "Gennick", "Goalie", ACTIVE));
 }
 
 public Player constructPlayer(String first, String last, String position, int status){
 Player player = new Player();
 player.firstName = first;
 player.lastName = last;
 player.position = position;
 player.status = status;
 return player;
 }
 
 public List<Player> getPlayerList() {
 return this.playerList;
 }
 

Chapter 5 ■ Object-Oriented Java

131

 public static void main(String[] args) {
TeamInner inner = new TeamInner();
 System.out.println("Team Roster");
 System.out.println("===========");
for(Player player:inner.getPlayerList()){
 System.out.println(player.playerString());
 }
 }
}
 

The result of running this code is a listing of the players on the team.
 
Team Roster
===========
Josh Juneau - Right Wing
Joe Blow - Left Wing
John Smith - Center
Bob Coder - Defense
Jonathan Gennick - Goalie

How It Works
Sometimes it is important to encapsulate functionality within a single class. Other times it does not make sense to
include a separate class for functionality that is only used within one other class. Imagine that you are developing a
GUI and you need to use a class to support functionality for one button. If there is no reusable code within that button
class, it does not make sense to create a separate class and expose that functionality for other classes to use. Instead,
it makes sense to encapsulate that class inside of the class that requires the functionality. This philosophy is one use
case for inner classes (also known as nested classes).

An inner class is a class that is contained within another class. The inner class can be made public, private,
or protected just like any other class. It can contain the same functionality as a normal class; the only difference is
that the inner class is contained within an enclosing class, otherwise referred to as an outer class. The solution to this
recipe demonstrates this technique. The class TeamInner contains one inner class named Player. The Player class
is a JavaBean class that represents a Player object. As you can see, the Player object has the capability to inherit
functionality from its containing class, including its private fields. This is because inner classes contain an implicit
reference to the outer class. It can also be accessed by the containing TeamInner class, as demonstrated within the
constructPlayer() method:
 
public Player constructPlayer(String first, String last, String position, int status){
 Player player = new Player();
 player.firstName = first;
 player.lastName = last;
 player.position = position;
 player.status = status;
 return player;
}
 

Outer classes can instantiate an inner class as many times as needed. In the example, the constructPlayer()
method could be called any number of times, instantiating a new instance of the inner class. However, when the outer
class is instantiated, no instances of the inner class are instantiated.

Chapter 5 ■ Object-Oriented Java

132

Inner classes can reference outer class methods by referring to the outer class and then referring to the method
that it wants to call. The following line of code demonstrates such a reference using the same objects that are
represented in the solution to this recipe. Suppose that the Player class needed to obtain the player list from the outer
class; you would write something similar to the following:
 
TeamInner.this.getPlayerList();
 

Although not very often used, classes other than the outside class can obtain access to a public inner class by
using the following syntax:
 
TeamInner outerClass = new TeamInner();
outerClass.player = outerClass.new Player();
 

Static inner classes are a bit different, in that they cannot directly reference any instance variables or methods of
its enclosing class. The following is an example of a static inner class.
 
public class StaticInnerExample {
  
 static String hello = "Hello";
    
 public static void sayHello(){
 System.out.println(hello);
 }
  
 static class InnerExample {
 String goodBye = "Good Bye";
  
 public void sayGoodBye(){
 System.out.println(this.goodBye);
 }
 }
  
 public static void main (String[] args){
 StaticInnerExample.sayHello();
 StaticInnerExample.InnerExample inner =
 new StaticInnerExample.InnerExample();
 inner.sayGoodBye();
 }
}
  

Inner classes help to provide encapsulation of logic. Furthermore, they allow inheritance of private fields, which
is not possible using a standard class.

Summary
Java is an object-oriented language. To harness the capabilities of the language, one must learn how to become
proficient with object-orientation. This chapter covered basics such as class creation and access modifiers. It also
covered encapsulation, interfaces, and recipes to help developers take advantage of the power of object orientation.
Lastly, this chapter included information on a new feature of Java 8 known as default methods.

133

Chapter 6

Lambda Expressions

There are very few means by which a new feature in an existing language can have a significant impact on the
ecosystem. Lambda expressions for the Java language are one such significant new feature that will have an effect
on many facets of the ecosystem. Simply defined, lambda expressions are a convenient way to create anonymous
functions. They provide an easy way to create a single method interface using an expression or series of statements.
Lambda expressions are built upon functional interfaces, which are interfaces that contain a single abstract method.
They can be applied in many different contexts, ranging from simple anonymous functions to sorting and filtering
Collections. Moreover, lambda expressions can be assigned to variables and then passed into other objects.

In this chapter, you will learn how to create lambda expressions, and you’ll see many examples of how they can
be applied in common scenarios. You’ll also learn how to generate the building blocks for lambda expressions, so
that you can construct applications to facilitate them. The chapter will delve into the java.util.function package,
which contains a bevy of useful functional interfaces that lambdas can implement. Lastly, you will see how to simplify
certain types of lambda expressions into method references for a more concise approach.

After reading this chapter, you to will be able to see the impact that lambda expressions have on the Java
language. They modernize the language by making developers more productive, and opening new possibilities
in many areas. Lambda expressions turn the page on Java, bringing the language into a new light, with the likes of
other languages that have had similar constructs for some time. Those languages helped to pave the way for lambda
expressions in the Java language, and there is no doubt that lambda expressions will pave the way for many elegant
solutions.

6-1. Writing a Simple Lambda Expression
Problem
You want to encapsulate a piece of functionality that prints out a simple message.

Solution
Write a lambda expression that accepts a single parameter that contains the message you want to print, and
implement the printing functionality within the lambda. In the following example, a functional interface, HelloType,
is implemented via a lambda expression and assigned to the variable helloLambda. Lastly, the lambda is invoked,
printing the message.
 

Chapter 6 ■ Lambda Expressions

134

public class HelloLambda {
  
 /**
 * Functional Interface
 */
 public interface HelloType {
 /**
 * Function that will be implemented within the lambda
 * @param text
 */
 void hello(String text);
 }
  
 public static void main(String[] args){
 // Create the lambda, passing a parameter named "text" to the
 // hello() method, returning the string. The lambda is assigned
 // to the helloLambda variable.
 HelloType helloLambda =
 (String text) -> {System.out.println("Hello " + text);};
  
 // Invoke the method call
 helloLambda.hello("Lambda");
 }
}
 

Results:
 
Hello Lambda

How It Works
A lambda expression is an anonymous block of code that encapsulates an expression or a series of statements and
returns a result. Lambda expressions are also known as closures in some other languages. They can accept zero or
more parameters, any of which can be passed with or without type specification since the type can be automatically
derived from the context. While it is possible for code written in the Java language to move forward without the use
of lambda expressions, they are an important addition that greatly improves overall maintainability, readability, and
developer productivity. Lambda expressions are an evolutionary change to the Java language, as they are another step
toward modernization of the language, and help keep it in sync with other languages.

The syntax of a lambda expression includes an argument list, a new character to the language known as the
“arrow token” (->), and a body. The following model represents the structure of a lambda expression:
 
(argument list) -> { body }
 

The argument list for a lambda expression can include zero or more arguments. If there are no arguments, then
an empty set of parentheses can be used. If there is only one argument, then no parentheses are required. Each
argument on the list can include an optional type specification. If the type of the argument is left off, then the type is
derived from the current context.

In the solution for this recipe, curly braces surround the body of a block, which contains more than a single
expression. The curly braces are not necessary if the body consists of a single expression. The curly braces in
the solution could have been left off, but they’ve been included for ease of readability. The body is simply evaluated

Chapter 6 ■ Lambda Expressions

135

and then returned. If the body of the lambda is an expression and not a statement, a return is implicit. On the
contrary, if the body includes more than one statement, a return must be specified, and it marks return of control
back to the caller.

The following code demonstrates a lambda expression that does not contain any arguments:
 
StringReturn msg = () -> "This is a test";
 

Let’s take a look at how this lambda expression works. In the previous listing, an object of type StringReturn
is returned from the lambda expression. The empty set of parentheses denotes that there are no arguments being
passed to the expression. The return is implicit, and the string "This is a test" is returned from the lambda
expression to the invoker. The expression in the example is assigned to a variable identified by msg. Assume that the
functional interface, StringReturn, contains an abstract method identified as returnMessage(). In this case, the
msg.returnMessage() method can be invoked to return the string.

The body of a lambda expression can contain any Java construct that an ordinary method may contain. For
instance, suppose a string were passed as an argument to a lambda expression, and you wanted to return some value
that is dependent upon the string argument. The following lambda expression body contains a block of code, which
returns an int, based upon the string value of the argument passed into the expression.
 
ActionCode code = (codestr) -> {
 switch(codestr){
 case "ACTIVE": return 0;
 case "INACTIVE": return 1;
 default:
 return -1;
 }
};
 

In this example, the ActionCode functional interface is used to infer the return type of the lambda expression.
For clarification, let’s see what the interface looks like.
 
interface ActionCode{
 int returnCode(String codestr);
}
 

The code implies that the lambda expression implements the returnCode method, which is defined within the
ActionCode interface. This method accepts a string argument (codestr), which is passed to the lambda expression,
returning an int. Therefore, from this example you can see that a lambda can encapsulate the functionality of a
method body.

Note■■  A lambda expression can contain any statement that an ordinary Java method contains. However, the continue
and break keywords are illegal at the top level.

6-2. Enabling the Use of Lambda Expressions
Problem
You are interested in authoring code that enables the use of lambda expressions.

Chapter 6 ■ Lambda Expressions

136

Solution 1
Write custom functional interfaces that can be implemented via lambda expressions. All lambda expressions
implement a functional interface, a.k.a. an interface with one abstract method definition. The following lines of code
demonstrate a functional interface that contains one method definition.
 
interface ReverseType {
 String reverse(String text);
}
 

The functional interface contains a single abstract method definition, identified as String reverse(String text).
The following code, which contains a lambda expression, demonstrates how to implement ReverseType.
 
ReverseType newText = (testText) -> {
 String tempStr = "";
 for (String part : testText.split(" ")) {
 tempStr = new StringBuilder(part).reverse().toString();
 }
 return tempStr;
};
 

The following code could be used to invoke the lambda expression:
 
System.out.println(newText.reverse("HELLO"));
 

Result:
 
OLLEH

Solution 2
Use a functional interface that is contained within the java.util.function package to implement a lambda
expression to suit the needs of the application. The following example uses the Function<T,R> interface to perform
the same task as the one contained in solution 1. This example accepts a string argument and returns a string result.
 
Function<String,String> newText2 = (testText) -> {
 String tempStr = "";
 for (String part : testText.split(" ")) {
 tempStr = new StringBuilder(part).reverse().toString();
 }
 return tempStr;
};
 

This lambda expression is assigned to the variable newText2, which is of type Function<String,String>.
Therefore, a string is passed as an argument, and a string is to be returned from the lambda expression. The functional
interface of Function<T,R> contains an abstract method declaration of apply(). To invoke this lambda expression,
use the following syntax:
 
System.out.println(newText2.apply("WORLD"));
 

Result:
 
DLROW

Chapter 6 ■ Lambda Expressions

137

How It Works
A basic building block of a lambda expression is the functional interface. A functional interface is a standard Java
interface that contains only one abstract method declaration and provides a target type for lambda expressions and
method references. A functional interface may contain default method implementations as well, but only one abstract
declaration. The abstract method is then implicitly implemented by the lambda expression. As a result, the lambda
expression can be assigned to a variable of the same type as the functional interface. The method can be called
upon from the assigned variable at a later time, thus invoking the lambda expression. Following this pattern, lambda
expressions are method implementations that can be invoked by name. They can also be passed as arguments to
other methods (see Recipe 6-8).

Note■■  T he functional interface in solution 1 contains the @FunctionalInterface annotation. This can be placed on a
functional interface to catch compiler-level errors, but it has no effect on the interface itself.

At this point you may be wondering if you will be required to develop a functional interface for each situation
that may be suitable for use with a lambda expression. This is not the case, as there are many functional interfaces
already in existence. Some examples include java.lang.Runnable, javafx.event.EventHandler, and java.util.
Comparator. See some of the other recipes in this chapter for examples using lambda expressions that implement
these interfaces. However, there are also many more functional interfaces that are less specific, enabling them to
be tailored to suit the needs of a particular requirement. The java.util.function package contains a number of
functional interfaces that can be useful when implementing lambda expressions. The functional interfaces contained
within the package are utilized throughout the JDK, and they can also be utilized in developer applications. Table 6-1
lists the functional interfaces that are contained within the java.util.function package, along with a description of
each. Note that a Predicate test that returns a Boolean value.

Table 6-1.  Functional Interfaces Contained in java.util.function

Interface Implementation Description

BiConsumer<T,U> Function operation that accepts two input arguments and returns no result.

BiFunction<T,U,R> Function that accepts two arguments and produces a result.

BinaryOperator<T> Function operation upon two operands of the same type, producing a result of the
same type as the operands.

BiPredicate<T,U> Predicate of two arguments. Returns a Boolean value.

BooleanSupplier Supplier of Boolean-valued results.

Consumer<T> Function operation that accepts a single input argument and returns no result.

DoubleBinaryOperator Function operation upon two double-valued operands and producing
a double-valued result.

DoubleConsumer Function operation that accepts a single double-valued argument and returns no result.

DoubleFunction<R> Function that accepts a double-valued argument and produces a result.

DoublePredicate Predicate of one double-valued argument.

DoubleSupplier Supplier of double-valued results.

DoubleToIntFunction Function that accepts a double-valued argument and produces an int-valued result.

(continued)

Chapter 6 ■ Lambda Expressions

138

Table 6-1.  (continued)

Interface Implementation Description

DoubleToLongFunction Function that accepts a double-valued argument and produces a long-valued result.

DoubleUnaryOperator Function operation on a single double-valued operand that produces
a double-valued result.

Function<T,R> Function that accepts one argument and produces a result.

IntBinaryOperator Function operation upon two int-valued operands and producing an int-valued result.

IntConsumer Function operation that accepts a single int-valued argument and returns no result.

IntFunction<R> Function that accepts an int-valued argument and produces a result.

IntPredicate Predicate of one int-valued argument.

IntSupplier Supplier of int-valued results.

IntToDoubleFunction Function that accepts an int-valued argument and produces a double-valued result.

IntToLongFunction Function that accepts an int-valued argument and produces a long-valued result.

IntUnaryOperator Function operation on a single int-valued operand that produces an int-valued result.

LongBinaryOperator Function operation upon two long-valued operands and producing a long-valued result.

LongConsumer Function operation that accepts a single long-valued argument and returns no result.

LongFunction<R> Function that accepts a long-valued argument and produces a result.

LongPredicate Predicate of one long-valued argument.

LongSupplier Supplier of long-valued results.

LongToDoubleFunction Function that accepts a long-valued argument and produces a double-valued result.

LongToIntFunction Function that accepts a long-valued argument and produces an int-valued result.

LongUnaryOperator Function operation on a single long-valued operand that produces a long-valued result.

ObjDoubleConsumer<T> Function operation that accepts an object-valued and a double-valued argument and
returns no result.

ObjIntConsumer<T> Function operation that accepts an object-valued and an int-valued argument and
returns no result.

ObjLongConsumer<T> Function operation that accepts an object-valued and a long-valued argument and
returns no result.

Predicate<T> Predicate of one argument.

Supplier<T> Supplier of results.

ToDoubleBiFunction<T,U> Function that accepts two arguments and produces a double-valued result.

ToDoubleFunction<T> Function that produces a double-valued result.

ToIntBiFunction<T,U> Function that accepts two arguments and produces an int-valued result.

ToIntFunction<T> Function that produces an int-valued result.

ToLongBiFunction<T,U> Function that accepts two arguments and produces a long-valued result.

ToLongFunction<T> Function that produces a long-valued result.

UnaryOperator<T> Function operation on a single operand that produces a result of the same type
as its operand.

Chapter 6 ■ Lambda Expressions

139

Utilizing functional interfaces contained within the java.util.function package can greatly reduce the
amount of code you need to write. Not only are the functional interfaces geared toward tasks that are performed a
high percentage of the time, but they are also written using generics, allowing them to be applied in many different
contexts. Solution 2 demonstrates such an example, whereby the Function<T,R> interface is used to implement a
lambda expression that accepts a string argument and returns a string result.

6-3. Sorting with Fewer Lines of Code
Problem
Your application contains a list of Player objects for a hockey team. You would like to sort that list of Players by those
who scored the most goals, and you would like to do so using terse, yet easy-to-follow code.

Note■■  T he solutions in this recipe utilize Collections and sorting. To learn more about Collections, refer to Chapter 7.

Solution 1
Create a Comparator using an accessor method contained within the Player object for the field by which you want
to sort. In this case, you want to sort by number of goals, so the Comparator should be based upon the value returned
from getGoals(). The following line of code shows how to create such a Comparator using the Comparator interface
and a method reference.
 
Comparator<Player> byGoals = Comparator.comparing(Player::getGoals);
 

Next, utilize a mixture of lambda expressions and streams (See Chapter 7 for full details on streams), along with
the forEach() method, to apply the specified sort on the list of Player objects. In the following line of code, a stream
is obtained from the list, which allows you to apply functional-style operations on the elements.
 
team.stream().sorted(byGoals)
 .map(p -> p.getFirstName() + " " + p.getLastName() + " - "
 + p.getGoals())
 .forEach(element -> System.out.println(element));
 

Assuming that the List referenced by team is loaded with Player objects, the previous line of code will first sort
that list by the Player goals, and then print out information on each object.

Results from the sort:
 
== Sort by Number of Goals ==
Jonathan Gennick - 1
Josh Juneau - 5
Steve Adams - 7
Duke Java - 15
Bob Smith - 18

Solution 2
Utilize the Collections.sort() method, passing the list to sort along with a lambda expression that performs
the comparisons on the list elements. The following code demonstrates how to accomplish this task using the
Collections.sort() technique.

Chapter 6 ■ Lambda Expressions

140

 
Collections.sort(team, (p1, p2)
 -> p1.getLastName().compareTo(p2.getLastName()));
team.stream().forEach((p) -> {
 System.out.println(p.getLastName());
});
 

Result:
 
== Sort by Last Name ==
Adams
Gennick
Java
Juneau
Smith 

Note■■  T his solution could be further simplified if the Player class included a comparison method. If this were the
case, a method reference could be used, rather than implementing a lambda expression. For more information regarding
method references, see Recipe 6-9.

How It Works
Java 8 introduces some new features that greatly increase developer productivity for sorting collections. Three new
features are demonstrated in the solution to this recipe: lambda expressions, method references, and streams. We will
look into streams and method references in more detail within other recipes in this book, but we also briefly describe
them here to enable the understanding of this recipe. Streams can be applied to collections of data, and they allow
enhanced functional-style operations to be applied to the elements within the collections. Streams do not store any
data; rather, they enable more functionality on the collections from which they are obtained.

In solution 1, a Comparator is generated, by which the Player objects will be evaluated for the number of goals
scored (getGoals). A stream is then generated from a List<Player> that is referenced as team. The stream provides
the sorted() function, which accepts a Comparator by which to perform a sort on a stream of data. The Comparator
that was initially generated is passed to the sorted() function, and then the map() function is called upon the result.
The map() function provides the ability to map expressions to each element within the stream. Therefore, within
the map, this solution utilizes a lambda expression to create a string that contains each Player object’s firstName,
lastName, and goals fields. Lastly, since the List<Player> is an iterable, it contains the forEach() method. The
forEach() method enables an expression or group of statements to be applied to each element within the list. In this
case, each element in the list is printed to the command line. As such, since the map() function was applied to the
stream, each element in the list is subsequently printed per the algorithm applied within the map(). Therefore,
the result is that the players first and last names along with the number of goals each has scored will be printed at the
command line.

Solution 2 uses a different technique to accomplish a similar task. In the second solution, the Collections.sort()
method is invoked on the list. The first argument to Collections.sort() is the list itself, and the second
argument is the comparison implementation in the form of a lambda expression. The lambda expression in this case
has two parameters passed to it, both Player objects, and it compares the lastName of the first player to the lastName
of the second player. Therefore, the sort will be performed on the lastName field of the Player object, in ascending
order. To finish off solution 2, the sorted list is printed out. To do this a stream is generated from the sorted list, and the
forEach() method is then invoked on the stream of data, printing out each player’s lastName.

Chapter 6 ■ Lambda Expressions

141

No doubt, the lambda expression greatly reduces the amount of code required to sort collections of data. It also
makes it easy to understand the logic behind the sort, as readability is much easier than trying to follow looping
implementations of the past. For more examples on using lambdas with collections of data, see Chapter 7.

6-4. Specifying Filter Criteria on a Collection of Data
Problem
You have a list of data to which you’d like to apply some filtering so that you can extract objects meeting the specified
filter criteria.

Solution
Create a stream from the list of data and apply a filter, passing the desired predicate. Finally, add each of the objects
matching the specified filter criteria to a new list. In the following example, a list of Player objects is being filtered to
capture only those players who have scored ten or more goals.
 
team.stream().filter(
 p -> p.getGoals() >= 10
 && p.getStatus() == 0)
 .forEach(element -> gteTenGoals.add(element));
System.out.println("Number of Players Matching Criteria: " + gteTenGoals.size());

How It Works
The solution to this recipe makes use of a data stream since it contains an easy-to-use filter function. The collection of
data, team, generates a stream, and then the filter function is called upon it, accepting a predicate by which to filter the
data within the collection. The predicate is written in the form of a lambda expression that contains two such filtering
criteria. The lambda expression passes a Player object as an argument, and then filters the data based upon the
number of goals being greater than or equal to ten and an active status.

Once the data has been filtered, the forEach() method is used to add each of the elements that meet the filtering
criteria to a list. This is also done using a lambda expression. The element to be added to the list is passed to the
lambda expression as an argument, and it is subsequently added to the list within the body of the expression.

Lambda expressions are very well suited for working within stream functions. Not only do they enable easier
development of business logic, but they also make collections filtering easier to read and maintain.

6-5. Implementing Runnable
Problem
You would like to create a runnable piece of code in a terse manner.

Solution
Utilize a lambda expression to implement the java.util.Runnable interface. The java.util.Runnable interface is a
perfect match for lambda expressions since it contains only a single abstract method, run(). In this solution, we will
compare the legacy technique, creating a new Runnable, and the new technique using a lambda expression.

Chapter 6 ■ Lambda Expressions

142

The following lines of code demonstrate how to implement a new Runnable piece of code using the legacy
technique.
 
Runnable oldRunnable = new Runnable() {
 @Override
 public void run() {
 int x = 5 * 3;
 System.out.println("The variable using the old way equals: " + x);
 }
};
 

Now take a look at how this can be written using a lambda expression instead.
 
Runnable lambdaRunnable = () -> {
 int x = 5 * 3;
 System.out.println("The variable using the lambda equals: " + x);
};
 
oldRunnable.run();
lambdaRunnable.run();
 

As you can see, the legacy procedure for implementing a Runnable takes a few more lines of code than
implementing Runnable with a lambda expression. The lambda expression also makes the Runnable implementation
easier to read and maintain.

How It Works
Since java.util.Runnable is a functional interface, the boilerplate of implementing the run() method can be
abstracted away using a lambda expression. The general format for implementing a Runnable with a lambda
expression is as follows:
 
Runnable assignment = () -> {expression or statements};
 

A Runnable can be implemented by using a zero-argument lambda expression containing an expression or a
series of statements within the lambda body. The key is that the implementation takes no arguments and returns
nothing.

6-6. Replacing Anonymous Inner Classes
Problem
Portions of your code contain anonymous inner classes, which are sometimes difficult to follow. You would like to
replace anonymous inner classes with code that is easier to read and maintain.

Solution
Replace the anonymous inner classes with lambda expressions. By doing so, development time will be much faster as
there will be fewer lines of boilerplate code required. A typical JavaFX application utilizes anonymous inner classes
to add functionality to application constructs. For instance, anonymous classes are a great way to add an action to a
button. The problem is that inner classes can be difficult to follow, and they contain lots of boilerplate code.

Chapter 6 ■ Lambda Expressions

143

The following lines of code demonstrate a typical anonymous inner class implementation for a button action
implementation. Let’s look at these lines of code before taking a look at how you can achieve the same solution using
a lambda expression.
 
Button btn = new Button();
btn.setOnAction(new EventHandler<ActionEvent>() {
@Override public void handle(ActionEvent e) {
createPlayer(firstName.getText(),
 lastName.getText(),
 Integer.valueOf(goals.getText()),
 listView.getSelectionModel().getSelectedItem().toString(),
 0);
 message.setText("Player Successfully Added");
 System.out.println("Player added.");
 System.out.println("== Current Player List==");
 for (Player p : team) {
 System.out.println(p.getFirstName() + " " + p.getLastName());
 }
}
});
 

The same event handler can be implemented using a lambda expression, resulting in an easier-to-read
implementation that can be achieved in fewer lines of code.
 
Button btn = new Button();
btn.setText("Enter Player");
btn.setOnAction(e -> {
 createPlayer(firstName.getText(),
 lastName.getText(),
 Integer.valueOf(goals.getText()),
 listView.getSelectionModel().getSelectedItem().toString(),
 0);
 message.setText("Player Successfully Added");
 System.out.println("Player added.");
 System.out.println("== Current Player List==");
 for (Player p : team) {
 System.out.println(p.getFirstName() + " " + p.getLastName());
 }
});

How It Works
A great use-case for lambda expressions is that they are very well suited for taking the place of many anonymous
class implementations. Most anonymous inner classes implement a functional interface, which makes them perfect
candidates for replacement via lambda expressions. In the solution, the anonymous inner class for supporting
a JavaFX button action has been redesigned to work within the context of a lambda expression. Since the an
EventHandler must implement one abstract method, handle(), it becomes a good fit for a lambda implementation.

In the solution, the EventHandler lambda expression accepts an argument, whose type is derived from the
context of the expression. In this case, since the expression is implementing an EventHandler, the derived type for the
argument is ActionEvent. The body of the lambda expression contains several lines of code and returns nothing to
the caller, as the handle() method contains a void return type.

Chapter 6 ■ Lambda Expressions

144

Although the lambda expression solution does not save more than a few lines of code, it does help increase
readability and maintainability. Although anonymous inner classes are an acceptable solution, code that is riddled
with such constructs can be cumbersome to work with. Replacing anonymous inner classes with lambda expressions
helps to maintain succinct code that is easy to follow.

6-7. Accessing Class Variables from a Lambda Expression
Problem
The class you are writing contains instance variables, and you would like to make them available for use via a lambda
expression within the class.

Solution
Make use of instance variables that are contained in enclosing classes, as needed, from within lambda expressions.
In the following class, the lambda expression contained within the VariableAccessInner.InnerClass.
lambdaInMethod() method can access all enclosing class instance variables. Thus, it is able to print out the
VariableAccessInner CLASSA variable, if needed.
 
public class VariableAccessInner {
 
 public String CLASSA = "Class-level A";
 
 class InnerClass {
  
 public String CLASSA = "Class-level B";
  
 void lambdaInMethod(String passedIn) {
 String METHODA = "Method-level A";
  
 Consumer<String> l1 = x -> {
 System.out.println(x);
 System.out.println("CLASSA Value: " + CLASSA);
 System.out.println("METHODA Value: " + METHODA);
 };
  
 l1.accept(CLASSA);
 l1.accept(passedIn);
 
 }
 }
}
 

Now, let’s execute lambdaInMethod using the following code:
 
VariableAccessInner vai = new VariableAccessInner();
VariableAccessInner.InnerClass inner = vai.new InnerClass();
inner.lambdaInMethod("Hello");
 

Chapter 6 ■ Lambda Expressions

145

Result:
 
Class-level B
CLASSA Value: Class-level B
METHODA Value: Method-level A
Hello
CLASSA Value: Class-level B
METHODA Value: Method-level A
 

Note■■  T he CLASSA variable is overridden by a variable using the same identifier within the InnerClass class.
Therefore, the CLASSA instance variable that belongs to VariableAccessInner is not printed from within the lambda
expression.

How It Works
Lambda expressions have access to the variables located within the enclosing class. Thus, a lambda expression
contained within a method of a class can access any instance variables of the enclosing class. There is no additional
scope added to a lambda expression, so it can access fields, methods, and local variables of the enclosing scope. In
the solution, the lambda expression contained within the lambdaInMethod() method can access all of the fields that
are declared within either class. This is because both the inner class and its outer class enclose the lambda. One thing
to note is that if an inner class contains an instance variable of the same name as a variable that has been declared in
the outer class, then the lambda will use the variable of its enclosing class. Therefore, in the solution, the InnerClass
CLASSA field is accessed from within the lambda expression, rather than the outer class reference.

Local variables that are referenced from within a lambda expression must be either final or effectively final.
Therefore, if a lambda expression attempts to access a variable that has been changed within the context of an enclosing
method, an error will occur. For instance, suppose that the method in the solution were changed to the following:
 
void lambdaInMethod(String passedIn) {
 String METHODA = "Method-level A";
 passedIn = "test";
 Consumer<String> l1 = x -> {
 System.out.println(x);
 System.out.println("CLASSA Value: " + CLASSA);
 System.out.println("METHODA Value: " + METHODA);
 System.out.println(passedIn);
 };
 
 l1.accept(CLASSA);
 l1.accept(passedIn);
 
}
 

Note that the string that is passed into lambdaInMethod() is assigned a new value just before the lambda
expression is invoked. Therefore, the passedIn variable is no longer effectively final, and lambda expressions cannot
introduce a new level of scope. Consequently, the lambda expression does not have access to the passedIn variable
from within the context of the expression.

Chapter 6 ■ Lambda Expressions

146

6-8. Passing Lambda Expressions to Methods
Problem
A lambda expression has been created to encapsulate some functionality. You would like to take that functionality and
pass it into a method as an argument, so that the method implementation can take advantage of the expression.

Solution
Create portable functions using lambda expressions by implementing a functional interface and then assigning the
lambda expression to a variable of the same type as the interface. The variable can be passed to other objects as an
argument.

The following class, PassingLambdaFunctions, contains a calculate() method, which will be used
to perform calculations of any type given an array of values. Note that the calculate() method accepts a
Function<List<Double>,Double> and an array of Double values as arguments.
 
public class PassingLambdaFunctions {
 /**
 * Calculates a value based upon the calculation function that is passed
 * in.
 * @param f1
 * @param args
 * @param x
 * @param y
 * @param z
 * @return
 */
 public Double calculate(Function<List<Double>, Double> f1,
 Double [] args){
 Double returnVal;
 List<Double> varList = new ArrayList();
 int idx = 0;
 while (idx < args.length){
 varList.add(args[idx]);
 idx++;
 }
 returnVal=f1.apply(varList);
  
 return returnVal;
 }
}
 

To make use of the calculate method, a lambda expression that implements Function<List<Double>,Double>
must be passed as the first argument to the calculate() method, along with an array of Double arguments
that contains the value to be used within the calculation. In the following class, a function for calculating
volume is generated using a lambda expression, and it is assigned to variable identified as volumeCalc of type
Function<List<Double>,Double>. Another lambda expression is used to create a function for calculating area, and it
is assigned to a variable of the same type, identified as areaCalc. In separate calls, these variables are then passed to
the PassingLambdaFunctions.calculate() method, along with an array of values, resulting in the calculated answer.
 

Chapter 6 ■ Lambda Expressions

147

public class MainClass {
 public static void main(String[] args){
  
 double x = 16.0;
 double y = 30.0;
 double z = 4.0;
  
 // Create volume calculation function using a lambda. The calculator
 // checks to ensure that the array contains the three necessary elements
 // for the calculation.
 Function<List<Double>, Double> volumeCalc = list -> {
 if(list.size() == 3){
 return list.get(0) * list.get(1) * list.get(2);
 } else {
 return Double.valueOf("-1");
 }
 };
 Double[] argList = new Double[3];
 argList[0] = x;
 argList[1] = y;
 argList[2] = z;
  
 // Create area calculation function using a lambda. This particular
 // calculator checks to ensure that the array only contains two elements.
 Function<List<Double>, Double> areaCalc = list -> {
 if(list.size() == 2){
 return list.get(0) * list.get(1);
 } else {
 return Double.valueOf("-1");
 }
 };
 Double[] argList2 = new Double[2];
 argList2[0] = x;
 argList2[1] = y;
  
 PassingLambdaFunctions p1 = new PassingLambdaFunctions();
 
 // Pass the lambda expressions to the calculate() method, along with the
 // argument lists.
 System.out.println("The volume is: " + p1.calculate(volumeCalc, argList));
 System.out.println("The area is: " + p1.calculate(areaCalc, argList2));
 }
}
 

Result:
 
The volume is: 1920.0
The area is: 480.0

Chapter 6 ■ Lambda Expressions

148

How It Works
Lambda expressions can be assigned to variables of the same type as the functional interface being implemented.
Such expressions can contain a single-line expression or a multi-statement body. Since the lambda expression can
accept arguments, there are use cases for assigning such expressions to variables and then passing those variables
into other objects to modify functionality. This pattern is useful for creating solutions that may contain more than one
implementation. The solution to this recipe demonstrates this concept.

In the solution, a class named PassingLambdaFunctions contains a single method identified as calculate(). The
calculate() method is to be used for performing calculations on Double values that are passed into it as arguments.
However, the calculate() method contains no calculation functionality at all. Rather, the calculation functionality is
passed into it as an argument of type Function<List<Double>,Double> via a lambda expression. This type is actually
one of the standard functional interfaces contained within the java.util.function package (see Recipe 6-2), and
the interface can be implemented by lambda expressions and then invoked at a later time by calling its solo apply()
method. Looking at the code in the calculate() method, the arguments contained within the Double[] are first
added to a list. Next, lambda expression’s apply() method is invoked, passing the new list of values, and returning a
result into returnVal. Finally, returnVal is returned to the method invoker.
 
returnVal=f1.apply(varList);
return returnVal;
 

To implement the calculation functionality within the solution, lambda expressions are created in a separate
class named MainClass. Each expression accepts a list of arguments and then performs a calculation on the values in
the list, returning a result. For instance, the first lambda generated in the MainClass calculates volume by multiplying
together all of the values contained in the argument list and returns the result. This functionality is then assigned
to a variable of type Function<List<Double>,Double>, and then it is passed into the PassingLambdaFunctions.
calculate() method later on.

Any type of functionality can be implemented within a lambda expression and then passed around to different
objects for use. This is an excellent way to promote code reuse and high maintainability.

6-9. Invoking Existing Methods by Name
Problem
You are developing a lambda expression that merely invokes a method that already exists in the object being passed to
the lambda.

Solution
Use a method reference, rather than writing a lambda expression, to call an existing method. In the following scenario,
the Player object contains a static method named compareByGoals(), which takes two Player objects and compares the
number of goals each contains. It then returns an integer representing the outcome. For all intents and purposes,
the compareByGoals() method is the same as a Comparator.
 
public class Player {
  
 private String firstName = null;
 private String lastName = null;
 private String position = null;
 private int status = -1;
 private int goals;
  

Chapter 6 ■ Lambda Expressions

149

 public Player(){
  
 }
  
 public Player(String position, int status){
 this.position = position;
 this.status = status;
 }
  
 protected String playerStatus(){
 String returnValue = null;
  
 switch(getStatus()){
 case 0:
 returnValue = "ACTIVE";
 case 1:
 returnValue = "INACTIVE";
 case 2:
 returnValue = "INJURY";
 default:
 returnValue = "ON_BENCH";
 }
  
 return returnValue;
 }
  
 public String playerString(){
 return getFirstName() + " " + getLastName() + " - " + getPosition();
 }
 
 // ** getters and setters removed for brevity **
  
 /**
 * Returns a positive integer if Player A has more goals than Player B
 * Returns a negative integer if Player A has fewer goals than Player B
 * Returns a zero if both Player A and Player B have the same number of goals
 * @param a
 * @param b
 * @return
 */
 public static int compareByGoal(Player a, Player b){
 int eval;
 if(a.getGoals() > b.getGoals()){
 eval = 1;
 } else if (a.getGoals() < b.getGoals()){
 eval = -1;
 } else {
 eval = 0;
 }
 return eval;
 }
 
}
 

Chapter 6 ■ Lambda Expressions

150

The Player.compareByGoal() method could be used to sort an array of Player objects. To do so, pass an array
of Player objects (Player[]) to the Arrays.sort() method as the first argument, and pass a method reference
Player::compareByGoal as the second argument. The result will be a sorted list (in ascending order) of Player objects
by number of goals. The following line of code shows how to accomplish this task.
 
Arrays.sort(teamArray, Player::compareByGoal);

How It Works
Consider that your lambda expression is going to invoke a single method by name, perhaps returning a result. If a
lambda expression fits this scenario, it is a prime candidate for use with a method reference. A method reference is a
simplified form of a lambda expression, which specifies the class name or instance name, followed by the method to
be called in the following format:
 
<class or instance name>::<methodName>
 

The double colon (::) operator specifies a method reference. Since a method reference is a simplified lambda
method, it must implement a functional interface, and the abstract method within the interface must have the same
argument list and return type as the method being referenced. Any arguments are subsequently derived from the
context of the method reference. For instance, consider the same scenario as the solution, whereby you wanted to sort
an array of Player objects by calling upon the Player.compareByGoal() method to perform goal comparisons.
The following code could be written to enable this functionality via a lambda expression:
 
Arrays.sort(teamArray, (p1, p2) -> Player.compareByGoal(p1,p2));
 

In this code, the array is passed as the first argument to Arrays.sort(), and the second argument is a lambda
expression that passes two Player objects to the Player.compareByGoal() method. The lambda expression uses
the functional interface Comparator<Player>.compare, which utilizes the (Player, Player) parameter list. The
compareByGoal() method contains that same parameter list. Likewise, the return type of compareByGoal() matches
the return type within the functional interface. Therefore, the parameter list does not need to be specified in the
listing; it can be inferred from the context of the method reference Player::compareByGoal instead.

There are four different types of method references, and Table 6-2 lists each of them.

Table 6-2.  Method Reference Types

Type Description

Static Reference Uses a static method of an object.

Instance Reference Uses an instance method of an object.

Arbitrary Object Method Used on an arbitrary object of a particular type, rather than a particular object.

Constructor Reference Used to generate a new object by invoking a constructor with the new keyword.

In the solution, the static method reference type is demonstrated since compareByGoal() is a static method
within a static class. It is possible to invoke a method of an object instance using an instance reference. Consider the
following class, which contains a non-static method for comparing goals within Player objects.
 

Chapter 6 ■ Lambda Expressions

151

public class PlayerUtility {
 
 public int compareByGoal(Player a, Player b){
 int eval;
 if(a.getGoals() > b.getGoals()){
 eval = 1;
 } else if (a.getGoals() < b.getGoals()){
 eval = -1;
 } else {
 eval = 0;
 }
 return eval;
 }
}
 

This class can be instantiated, and the new instance can be used to reference the compareByGoals() method,
similarly to the technique that was used in the solution to this recipe.
 
Player[] teamArray2 = team.toArray(new Player[team.size()]);
PlayerUtility utility = new PlayerUtility();
Arrays.sort(teamArray2, utility::compareByGoal);
 

Suppose that your application contained a list of an arbitrary type, and you wanted to apply a method to each
of the objects in that list. Method references can be used in this scenario, given the object contains methods that are
candidates for use via reference. In the following example, the Arrays.sort() method is applied to a list of int values,
and a method reference is used to apply the Integer compare() method to the elements within the list. Thus, the
resulting list will be sorted, and the method reference automatically passes the int arguments and returns the int
comparison.
 
Integer[] ints = {3,5,7,8,51,33,1};
Arrays.sort(ints, Integer::compare);
 

The last type of method reference can be utilized for referencing the constructor of an object. This type of method
reference can be especially useful when creating new objects via a factory. Let’s take a look at an example. Suppose
that the Player object contained the following constructor:
 
public Player(String position, int status, String first, String last){
 this.position = position;
 this.status = status;
 this.firstName = first;
 this.lastName = last;
}
 

You are interested in generating Player objects on-the-fly, using a factory pattern. The following code
demonstrates an example of a functional interface containing a single abstract method named createPlayer(),
which accepts the same argument list as the constructor for the Player object.
 

Chapter 6 ■ Lambda Expressions

152

public interface PlayerFactory {
 Player createPlayer(String position,
 int status,
 String firstName,
 String lastName);
}
 

The factory can now be created from a lambda expression, and then called upon to create new objects.
The following lines of code demonstrate:
 
PlayerFactory player1 = Player::new;
Player newPlayer = player1.createPlayer("CENTER", 0, "Constructor", "Referenceson");
 

Method references are perhaps one of the most significant new features of Java 8, although lambda expressions
have more use-cases. They provide an easy-to-read, simplified technique for generating lambda expressions, and
they’ll work in most cases where a lambda is merely invoking a single method by name.

Summary
It is not very often that a new construct added to a language can have as large of an impact as lambda expressions to
Java. For years, developers have been utilizing such constructs as anonymous inner classes to add subtle functionality
to applications. With the addition of lambda expressions, that subtle functionality can be developed with easy-to-read
code, rather than redundant and difficult-to-read boilerplate code. Moreover, many languages today make it possible
to pass functional pieces of code around, dynamically altering the functionality of existing code. Such solutions are
now available in the Java language, allowing developers to make use of more modern programming techniques.

Lambda expressions bring new life to the Java language, providing capabilities that Java developers have not
had in the past. Developers of desktop, mobile, and enterprise applications alike will be able to take advantage of the
lambda expression to create more robust and sophisticated solutions. Lambda expressions are a revolutionary change
to the language, and they have a significant impact on development across the platform.

153

Chapter 7

Data Structures and Collections

Almost all applications perform tasks against user data. Sometimes data is obtained from a user, tasks are performed
against the data, and the result is returned immediately. More often, data is obtained, and then it is stored within
the application for later use, and eventually tasks are performed against it. Applications make use of data structures
to store data that can be utilized thoroughout the lifetime of an application instance. The Java language contains a
number of data structures that are known as Collection types, and they can be utilized for this purpose. These data
structures implement the java.util.Collection interface, which provides a variety of methods that are useful for
adding, removing, and performing tasks against the data that is used with the collection.

Java 8 changed the game when it comes to data structures and Collection types. The concepts of pipelines and
streams were introduced, enabling easy iteration and operations against data contained within Collection types. In
prior releases of Java, the developer had to tell the compiler how to iterate over data within a Collection. Oftentimes
in the past, developers utilized a loop to perform iterative tasks on data structures. Java 8 enabled developers to
begin utilizing streams for iterative tasks on Collection types. When using streams and pipeline of operations
on collections, the developer specifies what type of operation to perform, and the JDK decides how to do it. This
reduces the burden on a developer by reducing boilerplate code, and providing an easy-to-use algorithm for working
with collections.

This chapter introduces some of the data structures that can be utilized within a Java application for the storage
of user data. It discusses some of the data structures in detail, and introduces operations that can be performed on the
data. The concepts of pipelines and streams are introduced in this chapter, and it provides recipes that demonstrate
their usage. Java 8 forces developers to think differently about the way that they write collection code, enabling
smarter and more productive solutions.

7-1. Defining a Fixed Set of Related Constants
Problem
You need a type that can represent a fixed set of related constants.

Solution
Use an enum type. The following example defines an enum type, called FieldType, to represent various form fields you
might find on the GUI of an application:
 
// See BasicFieldType.java
public enum FieldType { PASSWORD, EMAIL_ADDRESS, PHONE_NUMBER, SOCIAL_SECURITY_NUMBER }
 

Chapter 7 ■ Data Structures and Collections

154

This is the simplest form of an enum type, which will often suffice when all that is needed is a related set of named
constants. In the following code, a field variable of type FieldType is declared and initialized to the FieldType.EMAIL_
ADDRESS enum constant. Next, the code prints the results of calling various methods that are defined for all enum types:
 
FieldType field = FieldType.EMAIL_ADDRESS;
 
System.out.println("field.name(): " + field.name());
System.out.println("field.ordinal(): " + field.ordinal());
System.out.println("field.toString(): " + field.toString());
 
System.out.println("field.isEqual(EMAIL_ADDRESS): " +
 field.equals(FieldType.EMAIL_ADDRESS));
System.out.println("field.isEqual(\"EMAIL_ADDRESS\"'): " + field.equals("EMAIL_ADDRESS"));
 
System.out.println("field == EMAIL_ADDRESS: " + (field == FieldType.EMAIL_ADDRESS));
// Won't compile – illustrates type safety of enum
// System.out.println("field == \”EMAIL_ADDRESS\": " + (field == "EMAIL_ADDRESS"));
 
System.out.println("field.compareTo(EMAIL_ADDRESS): " +
 field.compareTo(FieldType.EMAIL_ADDRESS));
System.out.println("field.compareTo(PASSWORD): " + field.compareTo(FieldType.PASSWORD));
 
System.out.println("field.valueOf(\"EMAIL_ADDRESS\"): " + field.valueOf("EMAIL_ADDRESS"));
 
try {
 System.out.print("field.valueOf(\"email_address\"): ");
 System.out.println(FieldType.valueOf("email_address"));
} catch (IllegalArgumentException e) {
 System.out.println(e.toString());
}
 
System.out.println("FieldType.values(): " + Arrays.toString(FieldType.values()));
 

Running this code will result in the following output:
 
field.name(): EMAIL_ADDRESS
field.ordinal(): 1
field.toString(): EMAIL_ADDRESS
field.isEqual(EMAIL_ADDRESS): true
field.isEqual("EMAIL_ADDRESS"'): false
field == EMAIL_ADDRESS: true
field.compareTo(EMAIL_ADDRESS): 0
field.compareTo(PASSWORD): 1
field.valueOf("EMAIL_ADDRESS"): EMAIL_ADDRESS
field.valueOf("email_address"): java.lang.IllegalArgumentException: No enum constant
org.java7recipes.chapter4.BasicEnumExample.FieldType.email_address
FieldType.values(): [PASSWORD, EMAIL_ADDRESS, PHONE_NUMBER, SSN]

Chapter 7 ■ Data Structures and Collections

155

How It Works
A common pattern for representing a fixed set of related constants is to define each constant as an int, String,
or some other type. Often, these constants are defined in a class or interface whose sole purpose is to encapsulate
constants. In any case, constants are sometimes defined with the static and final modifiers, as follows:
 
// Input field constants
public static final int PASSWORD = 0;
public static final int EMAIL_ADDRESS = 1;
public static final int PHONE_NUMBER = 2;
public static final int SOCIAL_SECURITY_NUMBER = 3;
 

There are multiple problems with this pattern, the primary one being the lack of type safety. By defining these
constants as ints, it is possible to assign an invalid value to a variable that is supposed to be allowed to hold only one
of the constant values:
 
int inputField = PHONE_NUMBER; // OK
inputField = 4; // Bad - no input field constant with value 4; compiles without error
 

As you can see, there will be no compiler error or warning produced to inform you of this invalid value
assignment. Chances are, you will discover this at runtime, when your application tries to use inputField, and an
incorrect value is assigned to it. In contrast, Java enum types provide compile-time type safety. That is, if one attempts
to assign a value of the wrong type to an enum variable, it will result in a compiler error. In the solution this recipe, the
FieldType.EMAIL_ADDRESS enum constant was assigned to the field variable. Attempting to assign a value that isn’t of
type FieldType naturally results in a compiler error:
 
FieldType field = FieldType.EMAIL_ADDRESS; // OK
field = "EMAIL_ADDRESS"; // Wrong type - compiler error
 

An enum is simply a special type of class. Under the covers, Java implements an enum type as a subclass of the
abstract and final java.lang.Enum class. Thus, an enum type cannot be instantiated directly (outside of the enum
type) or extended. The constants defined by an enum type are actually instances of the enum type. The java.lang.Enum
class defines a number of final methods that all enum types inherit. In addition, all enum types have two implicitly
declared static methods: values() and valueOf(String). The solution code demonstrates these static methods
and some of the more often used instance methods.

Most of these methods are fairly self-explantory, but you should keep the following details in mind:

Each •	 enum constant has an ordinal value representing its relative position in the enum
declaration. The first constant in the declaration is assigned an ordinal value of zero. The
ordinal() method can be used to retrieve an enum constant’s ordinal value; however, it is not
recommended that applications be written to depend on this value for maintainability reasons.

The •	 name() method and the default implementation of the toString() method both return a
string representation of the enum constant (toString() actually calls name()). It is common for
toString() to be overridden to provide a more user-friendly string representation of the enum
constant. For this reason, and for maintainability reasons, it is recommended that toString()
be used in preference to name().

Chapter 7 ■ Data Structures and Collections

156

When testing for equality, note that both the •	 equals() method and == perform reference
comparison. They can be used interchangeably. However, it is recommended that == be
used to take advantage of compile-time type safety. This is illustrated in the solution code.
Performing equals() comparison with a String parameter, for example, may allow the error
to go unnoticed; it will compile, but it will always return false. Conversely, attempting to
compare an enum with a String using the == comparison would result in an error at compile
time. When you have the choice of catching errors sooner (at compile time) rather than later
(at runtime), choose the former.

The implicitly declared static methods •	 values() and valueOf(String) do not appear in
the Java documentation or the source code for the java.lang.Enum class. However, the
Java Language Specification does detail their required implementations. To summarize
these methods, values() returns an array containing the constants of the enum, in the
order they are declared. The valueOf(String) method returns the enum constant whose
name exactly matches (including case) the value of the String argument, or throws an
IllegalArgumentException if there is no enum constant with the specified name.

Refer to the online Java documentation for further details on java.lang.Enum and each of its methods
(http://download.java.net/jdk8/docs/api/java/lang/Enum.html). As the next recipe demonstrates, enum types,
as full-fledged Java classes, can be used to build more intelligent constants.

7-2. Designing Intelligent Constants
Problem
You need a type that can represent a fixed set of related constants, and you would like to build some state and
behavior (logic) around your constants in an object-oriented fashion.

Solution
Use an enum type and take advantage of the fact that enum types are full-fledged Java classes. An enum type can have
state and behavior just like any other class, and the enum constants, themselves being instances of the enum type,
inherit this state and behavior. This is best illustrated by an example. Let’s expand on the example from the previous
recipe. Imagine that you need to process and validate all the fields from an HTML form that has been submitted. Each
form field has a unique set of rules for validating its content, based on the field type. For each form field, you have the
field’s “name” and the value that was entered into that form field. The FieldType enum can be expanded to handle
this very easily:
 
// See FieldType.java
public enum FieldType {
 
 PASSWORD("password") {
 
 // A password must contain one or more digits, one or more lowercase letters, one or
 // more uppercase letters, and be a minimum of 6 characters in length.
 //
 @Override
 public boolean validate(String fieldValue) {

http://download.java.net/jdk8/docs/api/java/lang/Enum.html

Chapter 7 ■ Data Structures and Collections

157

 return Pattern.matches("((?=.*\\d)(?=.*[a-z])(?=.*[A-Z]).{6,})",
 fieldValue);
 }
 },
 
 EMAIL_ADDRESS("email") {
 
 // An email address begins with a combination of alphanumeric characters, periods,
 // and hyphens, followed by a mandatory ampersand (@) character, followed by
 // a combination of alphanumeric characters (hyphens allowed), followed by a
 // one or more periods (to separate domains and subdomains), and ending in 2-4
 // alphabetic characters representing the domain.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^[\\w\\.-]+@([\\w\\-]+\\.)+[A-Z|a-z]{2,4}$",
 fieldValue);
 }
 },
 
 PHONE_NUMBER("phone") {
 
 // A phone number must contain a minium of 7 digits. Three optional digits
 // representing the area code may appear in front of the main 7 digits. The area
 // code may, optionally, be surrounded by parentheses. If an area code is included,
 // the number may optionally be prefixed by a '1' for long distance numbers.
 // Optional hyphens my appear after the country code (1), the area code, and the
 // first 3 digits of the 7 digit number.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^1?[-]?\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
 fieldValue);
 }
 },
 
 SOCIAL_SECURITY_NUMBER("ssn") {
 
 // A social security number must contain 9 digits with optional hyphens after the
 // third and fifth digits.
 //
 @Override
 public boolean validate(String fieldValue) {
 return Pattern.matches("^\\d{3}[-]?\\d{2}[-]?\\d{4}$",
 fieldValue);
 }
 }; // End of enum constants definition
 
 // Instance members
 //
 private String fieldName;
 

Chapter 7 ■ Data Structures and Collections

158

 private FieldType(String fieldName) {
 this.fieldName = fieldName;
 }
 
 public String getFieldName() {
 return this.fieldName;
 }
 
 abstract boolean validate(String fieldValue);
 
 // Static class members
 //
 private static final Map<String, FieldType> nameToFieldTypeMap = new HashMap<>();
 
 static {
 for (FieldType field : FieldType.values()) {
 nameToFieldTypeMap.put(field.getFieldName(), field);
 }
 }
 
 public static FieldType lookup(String fieldName) {
 return nameToFieldTypeMap.get(fieldName.toLowerCase());
 }
 
 private static void printValid(FieldType field, String fieldValue, boolean valid) {
 System.out.println(field.getFieldName() +
 "(\"" + fieldValue + "\") valid: " + valid);
 }
 
 public static void main(String... args) {
 
 String fieldName = "password";
 String fieldValue = "1Cxy9"; // invalid - must be at least 6 characters
 FieldType field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));
 
 fieldName = "phone";
 fieldValue = "1-800-555-1234"; // valid
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));
 
 fieldName = "email";
 fieldValue = "john@doe"; // invalid - missing .<tld>
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));
 
 fieldName = "ssn";
 fieldValue = "111-11-1111"; // valid
 field = lookup(fieldName);
 printValid(field, fieldValue, field.validate(fieldValue));
 }
}
 

Chapter 7 ■ Data Structures and Collections

159

Running the above code results in the following output:
 
password("1Cxy9") valid: false
phone("1-800-555-1234") valid: true
email("john@doe") valid: false
ssn("111-11-1111") valid: true

How It Works
Notice that the enhanced FieldType enum now defines a fieldName instance variable and a constructor with
a fieldName String argument for initializing the instance variable. Each enum constant (again, each constant
being an instance of FieldType) must be instantiated with a fieldName. FieldType also defines an abstract
validate(String) method that each enum constant must implement to perform the field validation. Here, each
FieldType’s validate() method applies a regular expression match against the field value and returns the Boolean
result of the match. Imagine the following form input fields corresponding to our FieldType instances:
 
<input type="password" name="password" value=""/>
<input type="tel" name="phone" value=""/>
<input type="email" name="email" value=""/>
<input type="text" name="ssn" value=""/>
 

The value of the input field’s name attribute will be used to identify the FieldType; you used this same name when
you instantiated each FieldType enum constant. When a form is submitted, you have access to each input field’s name
and the value that was entered into the field. You need to be able to map the field’s name to a FieldType and call the
validate() method with the input value. The class variable, nameToFieldTypeMap, is declared and initialized for this
purpose. For each FieldType enum constant, nameToFieldTypeMap stores an entry with the field name as the key, and
the FieldType as the value. The lookup(String) class method uses this map to look up the FieldType from the field
name. The code to validate an email input field with an input value of john@doe.com is quite concise:
 
// <input type="email" name="email" value="john@doe.com"/>
String fieldName = "email";
String fieldValue = "john@doe.com";
boolean valid = FieldType.lookup(fieldName).validate(fieldValue);
 

The main() method shows an example validation for each of the FieldTypes. The printValid() method prints
the field name, field value, and the field’s validation result.

This recipe has demonstrated that there is a lot more potential in the enum type than just the ability to define a set
of named constants. Enum types have all the power of a normal class, plus additional features that allow you to create
well-encapsulated and intelligent constants.

7-3. Executing Code Based on a Specified Value
Problem
You want to execute different blocks of code based on the value of a singular expression.

http://john@doe.com

Chapter 7 ■ Data Structures and Collections

160

Solution
Consider using a switch statement if your variable or expression result is one of the allowed switch types and you
want to test for equality against a type-compatible constant. These examples show various ways to use the switch
statement, including a new feature that became available in Java 7: the ability to switch on Strings. First, let’s play
some Rock-Paper-Scissors! The RockPaperScissors class shows two different switch statements: one using an int as
the switch expression type, and the other using an enum type.
 
// See RockPaperScissors.java
public class RockPaperScissors {
 
 enum Hand { ROCK, PAPER, SCISSORS, INVALID };
 
 private static void getHand(int handVal) {
 Hand hand;
 try {
 hand = Hand.values()[handVal - 1];
 }
 catch (ArrayIndexOutOfBoundsException ex) {
 hand = Hand.INVALID;
 }
 switch (hand) {
 case ROCK:
 System.out.println("Rock");
 break;
 case PAPER:
 System.out.println("Paper");
 break;
 case SCISSORS:
 System.out.println("Scissors");
 break;
 default:
 System.out.println("Invalid");
 }
 }
 
 private static void playHands(int yourHand, int myHand) {
 
 // Rock = 1
 // Paper = 2
 // Scissors = 3
 
 // Hand combinations:
 // 1,1; 2,2; 3,3 => Draw
 // 1,2 => sum = 3 => Paper
 // 1,3 => sum = 4 => Rock
 // 2,3 => sum = 5 => Scissors
 //
 switch ((yourHand == myHand) ? 0 : (yourHand + myHand)) {
 case 0:
 System.out.println("Draw!");
 break;

Chapter 7 ■ Data Structures and Collections

161

 case 3:
 System.out.print("Paper beats Rock. ");
 printWinner(yourHand, 2);
 break;
 case 4:
 System.out.print("Rock beats Scissors. ");
 printWinner(yourHand, 1);
 break;
 case 5:
 System.out.print("Scissors beats Paper. ");
 printWinner(yourHand, 3);
 break;
 default:
 System.out.print("You cheated! ");
 printWinner(yourHand, myHand);
 }
 }
 
 private static void printWinner(int yourHand, int winningHand) {
 if (yourHand == winningHand) {
 System.out.println("You win!");
 }
 else {
 System.out.println("I win!");
 }
 }
 
 public static void main(String[] args) {
 
 Scanner input = new Scanner(System.in);
 System.out.println("Let's Play Rock, Paper, Scissors");
 System.out.println(" Enter 1 (Rock)");
 System.out.println(" Enter 2 (Paper)");
 System.out.println(" Enter 3 (Scissors)");
 System.out.print("> ");
 
 int playerHand = input.hasNextInt() ? input.nextInt() : -99;
 int computerHand = (int)(3*Math.random()) + 1;
 
 System.out.print("Your hand: (" + playerHand + ") ");
 getHand(playerHand);
 System.out.print("My hand: (" + computerHand + ") ");
 getHand(computerHand);
 playHands(playerHand, computerHand);
 }
}
 

When the RockPaperScissors class is executed, an interactive game begins, allowing users to type input at the
keyboard. The users can type the number corresponding to the entry they’d like to choose, and the computer utilizes
random number calculations to try to beat the users’ choices.

Chapter 7 ■ Data Structures and Collections

162

Java 7 added the capability to switch on Strings. The SwitchTypeChecker class demonstrates the use of a String
as the switch expression type. The isValidSwitchType() method takes a Class object and determines whether
the corresponding type is a valid type that can be used in a switch expression. So, SwitchTypeChecker is using a
switch statement to simultaneously demonstrate switching on strings and to show the valid types for use in a switch
expression:
 
// See SwitchTypeChecker.java
public class SwitchTypeChecker {
 
 public static Class varTypeClass(Object o) { return o.getClass(); };
 public static Class varTypeClass(Enum e) { return e.getClass().getSuperclass(); };
 public static Class varTypeClass(char c) { return char.class; };
 public static Class varTypeClass(byte b) { return byte.class; };
 public static Class varTypeClass(short s) { return short.class; };
 public static Class varTypeClass(int i) { return int.class; };
 public static Class varTypeClass(long l) { return long.class; };
 public static Class varTypeClass(float f) { return float.class; };
 public static Class varTypeClass(double d) { return double.class; };
 public static Class varTypeClass(boolean d) { return boolean.class; };
 
 public void isValidSwitchType(Class typeClass) {
 String switchType = typeClass.getSimpleName();
 boolean valid = true;
 switch (switchType) {
 case "char":
 case "byte":
 case "short":
 case "int":
 System.out.print("Primitive type " + switchType);
 break;
 case "Character":
 case "Byte":
 case "Short":
 case "Integer":
 System.out.print("Boxed primitive type " + switchType);
 break;
 case "String":
 case "Enum":
 System.out.print(switchType);
 break;
 default: // invalid switch type
 System.out.print(switchType);
 valid = false;
 }
 System.out.println(" is " + (valid ? "" : "not ") + "a valid switch type.");
 }
 
 public static void main(String[] args) {
 SwitchTypeChecker check = new SwitchTypeChecker();
 check.isValidSwitchType(varTypeClass('7'));
 check.isValidSwitchType(varTypeClass(7));
 check.isValidSwitchType(varTypeClass(777.7d));

Chapter 7 ■ Data Structures and Collections

163

 check.isValidSwitchType(varTypeClass((short)7));
 check.isValidSwitchType(varTypeClass(new Integer(7)));
 check.isValidSwitchType(varTypeClass("Java 8 Rocks!"));
 check.isValidSwitchType(varTypeClass(new Long(7)));
 check.isValidSwitchType(varTypeClass(true));
 check.isValidSwitchType(varTypeClass(java.nio.file.AccessMode.READ));
 }
}
 

Here is the result of executing SwitchTypeChecker:
 
Primitive type char is a valid switch type.
Primitive type int is a valid switch type.
double is not a valid switch type.
Primitive type short is a valid switch type.
Boxed primitive type Integer is a valid switch type.
String is a valid switch type.
Long is not a valid switch type.
boolean is not a valid switch type.
Enum is a valid switch type.

How It Works
The switch statement is a control-flow statement that allows you to execute different blocks of code based on the
value of a switch expression. It is similar to the if-then-else statement, except that the switch statement can
have only a single test expression, and the expression type is restricted to one of several different types. When a
switch statement executes, it evaluates the expression against constants contained in the switch statement’s case
labels. These case labels are branch points in the code. If the value of the expression equals the value of a case
label constant, control is transferred to the section of code that corresponds to the matching case label. All code
statements from that point on are then executed until either the end of the switch statement is reached or a break
statement is reached. The break statement causes the switch statement to terminate, with control being transferred
to the statement following the switch statement. Optionally, the switch statement can contain a default label, which
provides a branch point for the case when there is no case label constant that equates to the switch expression value.

The SwitchTypeChecker isValidSwitchType() method demonstrates the use of a String as the switch test
expression. If you study closely the isValidSwitchType() method, you will see that it is testing whether a Class object
represents a type that corresponds to one of the valid switch expression types. The method also demonstrates how
case labels can be grouped to implement a logical OR conditional test. If a case label does not have any associated
code to execute, and no break statement, the flow of execution falls through to the next closest case label containing
executable statements, thus allowing common code to be executed if the result of the switch expression matches any
one of the grouped case constants.

The RockPaperScissors class implements a command-line Rock-Paper-Scissors game, where you are playing
against the computer. There are two methods in this class that demonstrate the switch statement. The getHand()
method shows the use of an enum variable in the switch expression. The playHands() method simply intends to show
that the switch expression, although often just a variable, can be any expression whose result is of one of the allowed
switch types. In this case, the expression is using a ternary operator that returns an int value.

Chapter 7 ■ Data Structures and Collections

164

7-4. Working with Fix-Sized Arrays
Problem
You need a simple data structure that can store a fixed (and possibly large) amount of same-typed data and provide
for fast sequential access.

Solution
Consider using an array. While Java provides more sophisticated and flexible Collection types, the array type can
be useful data structure for many applications. The following example demonstrates the simplicity of working with
arrays. The GradeAnalyzer class provides a means for calculating various grade-related statistics, such as the mean
(average) grade, minimum grade, and maximum grade.
 
// See GradeAnalyzer.java
public class GradeAnalyzer {
 
 // The internal grades array
 private int[] _grades;
 
 public void setGrades(int[] grades) {
 this._grades = grades;
 }
 
 // Return cloned grades so the caller cannot modify our internal grades
 public int[] getGrades() {
 return _grades != null ? _grades.clone() : null;
 }
 
 public int meanGrade() {
 int mean = 0;
 if (_grades != null&& _grades.length > 0) {
 int sum = 0;
 for (int i = 0; i < _grades.length; i++) {
 sum += _grades[i];
 }
 mean = sum / _grades.length;
 }
 return mean;
 }
 
 public void sort() {
 Arrays.sort(_grades);
 }
 
 public int minGrade() {
 int min = 0;
 if (_grades != null && _grades.length > 0) {
 sort();
 min = _grades[0];
 }

Chapter 7 ■ Data Structures and Collections

165

 return min;
 }
 
 public int maxGrade() {
 int max = 0;
 if (_grades != null && _grades.length > 0) {
 sort();
 max = _grades[_grades.length - 1];
 }
 return max;
 }
 
 static int[] initGrades1() {
 int[] grades = new int[5];
 grades[0] = 77;
 grades[1] = 48;
 grades[2] = 69;
 grades[3] = 92;
 grades[4] = 87;
 return grades;
}
 
 static int[] initGrades2() {
 int[] grades = { 57, 88, 67, 95, 99, 74, 81 };
 return grades;
}
 
 static int[] initGrades3() {
 return new int[]{ 100, 70, 55, 89, 97, 98, 82 };
 }
 
 public static void main(String... args) {
 
 GradeAnalyzer ga = new GradeAnalyzer();
 ga.setGrades(initGrades1());
 System.out.println("Grades 1:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());
 System.out.println("Max grade is " + ga.maxGrade());
 ga.setGrades(initGrades2());
 System.out.println("Grades 2:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());
 System.out.println("Max grade is " + ga.maxGrade());
 ga.setGrades(initGrades3());
 System.out.println("Grades 3:");
 System.out.println("Mean of all grades is " + ga.meanGrade());
 System.out.println("Min grade is " + ga.minGrade());
 System.out.println("Max grade is " + ga.maxGrade());
 

Chapter 7 ■ Data Structures and Collections

166

 Object testArray = ga.getGrades();
 Class testClass = testArray.getClass();
 System.out.println("isArray: " + testClass.isArray());
 System.out.println("getClass: " + testClass.getName());
 System.out.println("getSuperclass: " + testClass.getSuperclass().getName());
 System.out.println("getComponentType: " + testClass.getComponentType());
 System.out.println("Arrays.toString: " + Arrays.toString((int[])testArray));
 
 }
}
 

Running this code will result in the following output:
 
Grades 1:
Mean of all grades is 74
Min grade is 48
Max grade is 92
Grades 2:
Mean of all grades is 80
Min grade is 57
Max grade is 99
Grades 3:
Mean of all grades is 84
Min grade is 55
Max grade is 100
isArray: true
getClass: [I
getSuperclass: class java.lang.Object
getComponentType: int
Arrays.toString: [55, 70, 82, 89, 97, 98, 100]

How It Works
The Java array type is often dismissed for its insuperiority to Java’s more sophisticated ArrayList (part of the Java
Collections Framework). Often this criticism comes from the inflexibility of the array type. Java arrays hold a fixed
amount of data. That is, when an array is created, you must specify how much data it can hold. Once an array has been
created, you cannot insert or remove array items or otherwise change the size of the array. However, if you have a fixed
amount (and especially a very large amount) of data that you just need to work on while iterating over it sequentially,
an array may be a good choice.

The first thing you need to know about the Java array type is that it is an Object type. All arrays, regardless of the
type of data they contain, have Object as their superclass. The elements of an array may be of any type, as long as all
elements are of the same type either primitive or object reference. Regardless of the array type, the memory for an
array is always allocated out of the heap space for the application. The heap is the area of memory used by the JVM for
dynamic memory allocation.

Note■■  I t is possible to create an array of Objects (Object[]) that can hold references to objects of different types;
however, this is not recommended as it requires you to check the type of elements and perform explicit type casting
when retrieving elements from the array.

Chapter 7 ■ Data Structures and Collections

167

There are two steps to completely defining an array object in Java: array variable declaration, which specifies
the array element type, and array creation, which allocates the memory for the array. Once an array is declared
and the memory is allocated, it can be initialized. There are multiple ways to initialize an array, which are shown in
the solution to this recipe. If you know in advance what data you need to store in the array, you can combine array
declaration, creation, and initialization in one step using a shortcut syntax you will see demonstrated in the solution.

Let’s walk through the GradeAnalyzer class and examine the various ways to declare, create, initialize, and access
arrays. First, notice that the class has one instance variable to hold the grades to be analyzed:
 
private int[] _grades;
 

Like all other uninitialized Object reference instance variables, the _grades array instance variable is
automatically initialized to null. Before you can start analyzing grades, you have to set the _grades instance
variable to reference the grades data you want to analyze. This is done using the setGrades(int[]) method. Once
GradeAnalyzer has a collection of grades to analyze, the meanGrade(), minGrade(), and maxGrade() methods can
be called to compute their respective statistics. Together, these three methods demonstrate how to iterate over the
elements of an array, how to access elements of an array, and how to determine the number of elements an array can
hold. To determine the number of elements an array can hold, simply access the implicitly defined, final instance
variable, length, which is defined for all arrays:
 
_grades.length
 

To iterate over the elements of an array, simply use a for loop, whose index variable goes through all possible
indices of the array. Array indices start at 0, so the last array index is always (_grades.length - 1). While iterating
over the array, you can access the array element at the current index by using the name of the array variable followed
by the current index enclosed in brackets (often called an array subscript):
 
// From the meanGrade() method:
for (int i = 0; i < _grades.length; i++) {
 sum += _grades[i];
}
 

Alternatively, the enhanced for loop, also known as the foreach loop, could be used to iterate over the array (see
Recipe 7-7 for more discussion of the foreach loop):
 
for (int grade : _grades) {
 sum += grade;
}
 

Notice that to determine the min and max grade, the grades are first sorted in their natural (ascending) order
using the utility sort method from the java.util.Arrays class. After sorting, the min grade is the simply the first
element (at index 0) of the array, and the max grade is the last element (at index length -1) of the array.

The three static class methods in the solution, initGrades1(), initGrades2(), and initGrades3(), demonstrate
three different ways of creating and initializing the array data you will use to “seed” the GradeAnalyzer. The
initGrades1() method declares and creates an array (using new) that can hold five grades, then manually sets the
value at each element index to an integer grade value. The initGrades2() method combines array creation and
initialization in one line using the special array initializer syntax:
 
int[] grades = { 57, 88, 67, 95, 99, 74, 81 };
 

Chapter 7 ■ Data Structures and Collections

168

This syntax creates an array with a length of 7 and initializes the elements from index 0 through index 6 with the
integer values shown. Note that this syntax can be used only in an array declaration, so the following is not allowed:
 
int[] grades;
grades = { 57, 88, 67, 95, 99, 74, 81 }; // won't compile
 

The initGrades3() method looks very similar to initGrades2(), but is slightly different. This code creates and
returns an anonymous (unnamed) array:
 
return new int[]{ 100, 70, 55, 89, 97, 98, 82 };
 

With this syntax, you use the new keyword with the array element type, but the size of the array is not explicitly
specified. Similar to the array initializer syntax shown in the initGrades2() method, the array size is implied by the number
of elements given within the initializer brackets. So, again, this code is creating and returning an array with a length of 7.

After computing the grade statistics for the three sets of grades data, the remainder of the GradeAnalyzer main()
method demonstrates various methods that can be used to determine array type information and to convert an array
to a printable string. You see that the code first assigns the array returned from a call to the getGrades() instance
method to an Object variable called testArray:
 
Object testArray = ga.getGrades();
 

You can make this assignment because, as stated previously, an array is an Object. You can also see this by the result
from the call to testArray.getSuperclass(). The call to testArray.getClass().getName() is also interesting; it returns
[I. The left bracket means “I am an array type”, and the “I” means “with a component type of integer”. This is also backed
up by the result from the call to testArray.getComponentType(). Finally, you call the Arrays.toString(int[]) method,
which returns a nicely formatted string representation of the array and its contents. Notice that because testArray is an
Object reference, it must be cast to an int array for the Arrays.toString(int[]) method. (See the Java documentation
for the java.util.Arrays class for other useful utility methods that can be used with arrays.)

As you have seen, arrays are simple and easy to work with. There will be times when this simplicity works to your
advantage. Recipe 7-6 shows an alternative to the array type that provides for easy insertion and removal of elements:
the ArrayList collection class.

7-5. Safely Enabling Types or Methods to Operate on Objects
of Various Types
Problem
Your application makes use of many different object types, and there are containers within your class that are
available for holding each of these different types. You are interested in ensuring your application remains bug-free,
yet you would like to dynamically change the type of object a particular container may hold.

Solution
Make use of generic types to decouple the type from the container. Generics are a way to abstract over object types,
not explicitly declaring what the type of an object or container should be. You’ll likely first encounter generic types
when using the interfaces and classes that are part of the Java Collections Framework (http://download.oracle.
com/javase/tutorial/collections/). The Collections Framework makes heavy use of Java generics. All collection
types are parameterized to allow you to specify, at the time of instantiation, the type of elements the collection can
hold. The following example code demonstrates how to use generics in a couple of different scenarios. The comments
in the code indicate where the generics are utilized.
 

http://download.oracle.com/javase/tutorial/collections/
http://download.oracle.com/javase/tutorial/collections/

Chapter 7 ■ Data Structures and Collections

169

public class MainClass {
 
 static List<Player> team;
 
 private static void loadTeam() {
 System.out.println("Loading team...");
 
 // Use of the diamond operator
 team = new ArrayList<>();
 Player player1 = new Player();
 player1.setFirstName("Josh");
 player1.setLastName("Juneau");
 player1.setGoals(5);
 Player player2 = new Player();
 player2.setFirstName("Duke");
 player2.setLastName("Java");
 player2.setGoals(15);
 Player player3 = new Player();
 player3.setFirstName("Jonathan");
 player3.setLastName("Gennick");
 player3.setGoals(1);
 Player player4 = new Player();
 player4.setFirstName("Bob");
 player4.setLastName("Smith");
 player4.setGoals(18);
 Player player5 = new Player();
 player5.setFirstName("Steve");
 player5.setLastName("Adams");
 player5.setGoals(7);
 
 team.add(player1);
 team.add(player2);
 team.add(player3);
 team.add(player4);
 team.add(player5);
 
 }
 
 public static void main(String[] args) {
 loadTeam();
 
 // Create a list without specifying a type
 List objectList = new ArrayList();
 Object obj1 = "none";
 objectList.add(obj1);
 
 // Create a List that can be of type that is any superclass of Player
 List<? super Player> myTeam = objectList;
 for (Object p : myTeam) {
 System.out.println("Printing the objects...");
 System.out.println(p.toString());
 }
 

Chapter 7 ■ Data Structures and Collections

170

 Map<String, String> strMap = new HashMap<>();
 strMap.put("first", "Josh");
 strMap.put("last", "Juneau");
 System.out.println(strMap.values());
 }
} 

Note■■   When we talk generally about a collection or a collection type, you can read this as those types that make up
the Java Collections Framework. This includes all the classes and interfaces that descend from the Collection and Map
interfaces. Collection types generally refer to types that descend from the Collection interface.

How It Works
The solution code demonstrates some basic use-cases for generics. The examples in the GenericsDemo.java file,
contained within the recipe sources, go into more detail to demonstrate the use of generics with Java collections
versus showing you how to create generic types. Unless you are developing a library API, you probably won’t be
creating your own generic types. However, if you understand how generics are used with the Collection interfaces
and classes, you will have the knowledge you need to create your own generic types.

The first thing to understand and remember about Java generics is that they are strictly a compile-time
feature that aids the developer in creating more type-safe code. All the type information that you specify when you
parameterize a generic type gets “erased” by the compiler when the code is compiled down to byte code. You’ll see
this described as type erasure. Let’s look at an example of a generic Collection type: the List. List is an interface
defined as follows:
 
public interface List<E> extends Collection<E> { ... };
 

To specify the element type for a List (or any Collection type), simply include the type name in angle brackets
when declaring and instantiating objects. When you do this, you are specifying a “parameterized type.” The following
code declares List of Integers. A variable, aList, of the parameterized type List<Integer> is declared and then
initialized with the reference obtained from the instantiation of the parameterized type, LinkedList<Integer> (also
called a “concrete parameterized type”):
 
List<Integer> aList = new LinkedList<Integer>();
 

Now that you’ve parameterized these types to restrict the element type to Integers, the List add(E e) method
becomes:
 
boolean add(Integer e);
 

If you try to add anything other than an Integer to aList, the compiler will generate an error:
 
aList.add(new Integer(121));
aList.add(42); // 42 is the same as new Integer(42), due to autoboxing.
aList.add("Java"); // won’t compile, wrong type
 

Chapter 7 ■ Data Structures and Collections

171

It’s important to note that it’s the reference type that is checked at compile time, so the following will also result in
a compiler error:
 
Number aNum = new Integer("7");
aList.add(aNum); // won't compile, wrong type
 

This is a compile error because aNum could reference any Number object. If the compiler were to allow this,
you could end up with a set that contains Doubles, Floats, and so on, which would violate the Integer parameter
constraint you specified when you created aList. Of course, a simple type cast could get you around the compiler
error, but this would surely cause unintended consequences when casting between incompatible Number objects.
Generics were designed to reduce the amount of explicit type casting you have to do in your code, so if you find
yourself using explicit type casting when using methods of parameterized types, this is a clue of potentially dangerous
code.
 
aList.add((Integer)aNum); // compiles, but don't do this.
 

Another thing to watch out for when using generic types are compiler warnings. They may indicate that you’re
doing something that is not recommended and it usually indicates that your code has a potential runtime error
looming. An example can help to illustrate this. The following code will compile but produce two compiler warnings:
 
List rawList = new LinkedList();
aList = rawList;
 

First, you’re creating rawList, which is a raw type, a generic type that isn’t parameterized. When generics were
introduced into the language, the language designers decided that in order to maintain compatibility with pregenerics
code, they would need to allow the use of raw types. However, the use of raw types is strongly discouraged for newer
(post–Java 5) code, so compilers will generate a raw type warning if you use them. Next, rawList is assigned to aList,
which was created using parameterized types. Again, this is allowed by the compiler (due to generics type erasure
and backward compatibility), but an unchecked conversion warning is generated for the assignment to flag potential
runtime type incompatibility. Imagine if rawList contained Strings. Later, if you tried to retrieve Integer elements
from aList, you would get a runtime error.

Regarding type compatibility, it doesn’t apply to generic type parameters. For example, the following is not a
valid assignment:
 
List<Number> bList = new LinkedList<Integer>(); // won't compile; incompatible types
 

Although Integers are Numbers (Integer is a subtype of Number), and LinkedList is a subtype of List,
LinkedList<Integer> is not a subtype of List<Number>. Fortunately, this won’t slip by you if you accidentally write
code like this; the compiler will generate an “incompatible types” warning.

So you may be wondering whether there is a way to achieve a variant subtyping relationship similar to what we
tried to do in the previous line of code. The answer is yes, by using a feature of generics called the wildcard. A wildcard
is denoted by use of a question mark (?) within the type parameter angle brackets. Wildcards are used to declare
parameterized types that are either bounded or unbounded. The following is an example declaration of a bounded
parameterized type:
 
List<? extends Number> cList;
 

Chapter 7 ■ Data Structures and Collections

172

When a wildcard is used with the extends keyword, an upper bound is established for the type parameter. In this
example, ? extends Number means any type that is either a Number or a subtype of a Number. Therefore, the following
would be valid assignments because both Integer and Double are subtypes of Number:
 
cList = new LinkedList<Number>();
cList = new LinkedList<Integer>();
cList = new LinkedList<Double>();
 

So, cList can hold a reference to any List instance that has an element type that is compatible with Number. In
fact, cList could even reference a raw type. Obviously, this makes it a challenge for the compiler to enforce type safety
if it were to allow elements to be added to cList. Therefore, the compiler does not allow elements (other than a null)
to be added to a collection type that is parameterized with ? extends. The following would result in a compiler error:
 
cList.add(new Integer(5)); // add() not allowed; cList could be LinkedList<Double>
 

However, you are allowed to get an element from the list without any problem:
 
Number cNum = cList.get(0);
 

The only restriction here is that the reference you get from the list has to be treated like a Number. Remember,
cList could be pointing to a list of Integers, a list of Doubles, or list of any other subtype of Number.

A wildcard can also be used with the super keyword. In this case, a lower bound is established for the
type parameter:
 
List<? super Integer> dList;
 

In this example, ? super Integer means any type that is either an Integer or any supertype of Integer.
Therefore, the following would be valid assignments because Number and Object are the only supertypes of Integer:
 
dList = new LinkedList<Integer>();
dList = new LinkedList<Number>();
dList = new LinkedList<Object>();
 

So, you see that Integer is the lower bound. This lower bound now places a restriction on retrieving elements
from the list. Because dList can hold a reference to any one of the previous parameterized types, the compiler
would not be able to enforce type safety if an assumption were made about the type of the element being retrieved.
Therefore, the compiler must not allow calls to get() on a collection type that is parameterized with ? super, and the
following would result in a compiler error:
 
Integer n = dList.get(0); // get() not allowed; dList.get(0) could be a Number or Object
 

However, now you can add elements to the list, but the lower bound, Integer, still applies. Only Integers can be
added because Integer is compatible with Number and Object:
 
dList.add(new Integer(5)); // OK
Number dNum = new Double(7);
dList.add(dNum); // won't compile; dList could be LinkedList<Integer>
 

You will see the use of the wildcard with both extends and super throughout the collection types. Most
often, you will see them used in method parameter types, such as the addAll() method, which is defined for all
Collections. Sometimes you will see the collection types using the wildcard (?) alone as a type parameter, which is

Chapter 7 ■ Data Structures and Collections

173

called an unbounded wildcard. The Collection removeAll() method is such an example. In most cases, this usage
is self-explanatory. You probably won’t be (probably shouldn’t be) defining your own parameterized types using an
unbounded wildcard. If you try to do this, you will soon learn there isn’t much you can do with it. If you understand
concrete parameterized types, wildcard parameterized types, and the concept of bounded and unbouned types, as
described in this recipe, you have most of what you need to work with the generic collection types, and create your
own generic types if you so chose.

Now that we’ve talked a lot about parameterizing types, we’re going to tell you to forget about some of it. When
Java 7 was released, a new feature called the diamond (sometimes seen referred to as the diamond operator, although
it is not considered to be an operator in Java) was introduced. The diamond allows the compiler to infer the type
argument(s) from the context of the parameterized type usage. A simple example of the diamond usage follows:
 
List<Integer> eList = new ArrayList<>();
 

Notice there is no type argument specified between the angle brackets when instantiating the ArrayList. The
compiler can easily infer the type to be Integer, based on the context of the assignment or initializer. Integer is the
only type that would work in this context. In fact, the Java compiler (and most compliant IDEs) will actually warn you
if you do not use a diamond where it is possible to use it. Another more complex example shows the benefit even
better:
 
Map<Integer, List<String>> aMap = new HashMap<>(); // Nice!
 

The diamond can similarly be used in return statements, as well as in method arguments:
 
// diamond in method return
public static List<String> getEmptyList() {
 return new ArrayList<>();
}
 
// diamond in method argument
List<List<String>> gList = new ArrayList<>();
gList.set(0, new ArrayList<>(Arrays.asList("a", "b")));
 

Note that using the diamond as shown here is not the same as using a raw type. The following is not equivalent to
the declaration of aMap that uses the diamond; it will result in an “unchecked conversion” warning, and possibly a raw
type warning, from the compiler:
 
Map<Integer, List<String>> bMap = new HashMap(); // compiler warnings; avoid raw types
 

The discussion around why this is different than the diamond example is beyond the scope of this recipe. If you
remember to avoid the use of raw types, you shouldn’t need to worry about this. Use the diamond whenever possible
to save yourself some typing, as well as to make your code more robust, readable, and concise.

7-6. Working with Dynamic Arrays
Problem
You need a flexible data structure that can store a variable amount of data and that allows for easy insertion and
deletion of data.

Chapter 7 ■ Data Structures and Collections

174

Solution
Consider using an ArrayList. The following example code is the StockScreener class, which allows you to screen a
list of stocks or a single stock based on a specific screen parameter (P/E, Yield, and Beta) and screen value. The class
makes use of an ArrayList for containing stock strings. An example screen might be “Tell me which of the stocks in
this list has a P/E (price-to-earnings ratio) of 15 or less.” Don’t worry if you’re not familiar with these stock market
terms. Whatever you do, don’t use this class to make your stock investment decisions!
 
// See StockScreener.java
public class StockScreener {
 
 enum Screen { PE, YIELD, BETA };
 
 public static boolean screen(String stock, Screen screen, double threshold) {
 double screenVal = 0;
 boolean pass = false;
 switch (screen) {
 case PE:
 screenVal = Math.random() * 25;
 pass = screenVal <= threshold;
 break;
 case YIELD:
 screenVal = Math.random() * 10;
 pass = screenVal >= threshold;
 break;
 case BETA:
 screenVal = Math.random() * 2;
 pass = screenVal <= threshold;
 break;
 }
 System.out.println(stock + ": " + screen.toString() + " = " + screenVal);
 
 return pass;
 }
 
 public static void screen(List<String> stocks, Screen screen, double threshold) {
 Iterator<String> iter = stocks.iterator();
 while (iter.hasNext()) {
 String stock = iter.next();
 if (!screen(stock, screen, threshold)) {
 iter.remove();
 }
 }
 }
 
 public static void main(String[] args) {
 
 List<String> stocks = new ArrayList<>();
 stocks.add("ORCL");
 stocks.add("AAPL");
 stocks.add("GOOG");
 stocks.add("IBM");

Chapter 7 ■ Data Structures and Collections

175

 stocks.add("MCD");
 System.out.println("Screening stocks: " + stocks);
 
 if (stocks.contains("GOOG") &&
 !screen("GOOG", Screen.BETA, 1.1)) {
 stocks.remove("GOOG");
 }
 System.out.println("First screen: " + stocks);
 
 StockScreener.screen(stocks, Screen.YIELD, 3.5);
 System.out.println("Second screen: " + stocks);
 StockScreener.screen(stocks, Screen.PE, 22);
 System.out.println("Third screen: " + stocks);
 
 System.out.println("Buy List: " + stocks);
 }
}
 

The output from running this code will vary because it is randomly assigning a stock’s screen result value. Here is
one sample of output from running the class:
 
Screening stocks: [ORCL, AAPL, GOOG, IBM, MCD]
GOOG: BETA = 1.9545048754918146
First screen: [ORCL, AAPL, IBM, MCD]
ORCL: YIELD = 5.54002319921808
AAPL: YIELD = 5.282200818124754
IBM: YIELD = 3.189521157557543
MCD: YIELD = 3.978628208965815
Second screen: [ORCL, AAPL, MCD]
ORCL: PE = 3.5561302619951993
AAPL: PE = 13.578302484429233
MCD: PE = 23.504349376296886
Third screen: [ORCL, AAPL]
Buy List: [ORCL, AAPL]

How It Works
The ArrayList is one of the most often used classes in the Java Collections Framework. The ArrayList class
implements the List interface, which, in turn, implements the Collection interface. The Collection interface
defines the set of common operations for all Collection types, and the List interface defines the set of operations
that are specific to the list-oriented Collection types. The Collections Framework makes heavy use of Java generics.
If you are new to generics, it is recommended that you read Recipe 7-5, which gives a brief summary of generics and
their use with collections.

The StockScreener main() method starts by declaring a List of stocks, and specifying with the generic type
parameter, that the stocks list elements will be of type String. Notice that the actual list type is an ArrayList that is
created using the diamond, which is discussed in Recipe 7-5. The stocks list will hold a variable number of stocks,
represented by their stock market symbol (a String):
 
List<String> stocks = new ArrayList<>();
 

Chapter 7 ■ Data Structures and Collections

176

Now that you’ve specified that the stocks list can only hold strings, all the List methods, in turn, get
parameterized to only allow strings. So, next, the code makes several calls to the ArrayList’s add(String) method
to add the stocks to the list. After that, a screen is run on GOOG (Google) based on its Beta (a measure of stock risk);
if it does not pass the screen, the List remove(String) method is called to remove the stock from the stock list. Two
more screens are then run on the entire stock list to get a list of stocks that have a P/E of 22.0 or less, and a Yield of
3.5% or more. The screen() method used for these screens takes a parameter of type List<String>. It has to iterate
over the list, run the screen for each stock in the list, and remove those stocks that do not pass the screen. Note
that in order to safely remove an element from a Collection while iterating over it, you must use iterate using the
Collection’s Iterator, which can be obtained by calling its iterator() method. Here, we are showing the use of a
while loop to iterate over the stocks list (a for loop could similarly be used). As long as you’re not to the end of the
list (iter.hasNext()), you can get the next stock from the list (iter.next()), run the screen, and remove the element
from the list (iter.remove()) if the screen didn’t pass.

Note■■   You may find that calling the list’s remove() method while iterating the list seems to work. The problem is
that it’s not guaranteed to work and will produce unexpected results. At some point, the code will also throw a
ConcurrentModificationException, regardless of whether you have multiple threads accessing the same list.
Remember to always remove elements through the iterator when iterating over any Collection.

The ArrayList is a very useful data structure that should normally be used in place of the array type. It provides
much more flexibility than a simple array, in that elements can be added and removed dynamically with ease. While
it is true that ArrayList uses an array internally, you benefit from optimized add() and remove() operations that
are implemented for you. Also, ArrayList implements many other very useful methods. Refer to the online Java
documentation for further details (http://download.java.net/jdk8/docs/api/java/util/ArrayList.html).

7-7. Making Your Objects Iterable
Problem
You have created a custom collection–based class that wraps (instead of extends) the underlying collection type.
Without exposing the internal implementation details of your class, you would like objects of your class to be iterable,
especially with the use of a foreach statement.

Solution
Have your class extend the Interable<T> interface, where T is the element type of the collection to be iterated.
Implement the iterator() method to return the Iterator<T> object from this collection. The example for this
recipe is the StockPortfolio class. Internally, StockPortfolio manages a collection of Stock objects. We would
like users of our class to be able to treat StockPortfolio objects as iterable objects using a foreach statement. The
StockPortfolio class follows:
 
// See StockPortfolio.java and Stock.java
public class StockPortfolio implements Iterable<Stock> {
 
 Map<String, Stock> portfolio = new HashMap<>();
 

http://download.java.net/jdk8/docs/api/java/util/ArrayList.html

Chapter 7 ■ Data Structures and Collections

177

 public void add(Stock stock) {
 portfolio.put(stock.getSymbol(), stock);
 }
 
 public void add(List<Stock> stocks) {
 for (Stock s : stocks) {
 portfolio.put(s.getSymbol(), s);
 }
 }
 
 @Override
 public Iterator<Stock> iterator() {
 return portfolio.values().iterator();
 }
 
 public static void main(String[] args) {
 
 StockPortfolio myPortfolio = new StockPortfolio();
 myPortfolio.add(new Stock("ORCL", "Oracle", 500.0));
 myPortfolio.add(new Stock("AAPL", "Apple", 200.0));
 myPortfolio.add(new Stock("GOOG", "Google", 100.0));
 myPortfolio.add(new Stock("IBM", "IBM", 50.0));
 myPortfolio.add(new Stock("MCD", "McDonalds", 300.0));
  
 // foreach loop (uses Iterator returned from iterator() method)
 System.out.println("====Print using legacy for-each loop====");
 for (Stock stock : myPortfolio) {
 System.out.println(stock);
 }
  
 System.out.println("====Print using Java 8 foreach implementation====");
 myPortfolio.forEach(s->System.out.println(s));
 }
}
 

The following code is that of the Stock class:
 
public class Stock {
 private String symbol;
 private String name;
 private double shares;
 public Stock(String symbol, String name, double shares) {
 this.symbol = symbol;
 this.name = name;
 this.shares = shares;
 }
 public String getSymbol() {
 return symbol;
 }
 public String getName() {
 return name;
 }

Chapter 7 ■ Data Structures and Collections

178

 public double getShares() {
 return shares;
 }
 public String toString() {
 return shares + " shares of " + symbol + " (" + name + ")";
 }
}
 

The main() method creates a StockPortfolio and then calls the add() method to add a number of stocks to the
portfolio. Both variations of the foreach loop (legacy and new Java 8 forEach implementation) are then used to loop
over and print all the stocks in the portfolio. Running the StockPortfolio class results in the following output:
 
50.0 shares of IBM (IBM)
300.0 shares of MCD (McDonalds)
100.0 shares of GOOG (Google)
200.0 shares of AAPL (Apple)
500.0 shares of ORCL (Oracle) 

Note■■  T he order of the lines in the output may be different when you run the StockPortfolio class in your
environment because the underlying implementation uses a HashMap. A HashMap does not guarantee the order of the
elements stored in the map, and this extends to its iterators. If you wanted the iterator to return elements sorted by the
stock symbol, you could use one of the sorted collections, such as TreeMap or TreeSet, instead of HashMap. Another
option is to utilize a stream on the collection, which is a feature that was introduced in Java 8. See Recipe 7-8 for more
about streams.

How It Works
The Iterable interface was introduced in Java 5 to support the enhanced for loop (also known as the foreach loop)
which was introduced at the same time. Along with these enhancements to the language, all Collection classes were
retrofitted to implement the Iterable interface, thus allowing Collection classes to be iterable using the foreach
loop. The Iterable interface is a generic type defined as follows:
 
public interface Iterable<T> {
 Iterator<T> iterator();
}
 

Any class that implements Iterable<T> must implement the iterator() method to return an Iterator<T>
object. Typically, the Iterator returned is the default iterator of the underlying collection; however, it may also return
an instance of a custom Iterator. In the StockPortfolio class, a Map is used to represent thestock portfolio. The key
for each map entry is the stock symbol, and the value associated with each key is a Stock object. Maps in Java are not
iterable; that is, they are not Collection classes. Therefore, they do not implement Iterable. However, both the keys
and the values of a map are Collections, and therefore are Iterables. We want our implementation of the Iterable
iterator() method to return an Iterator over the values (Stock references) of the portfolio map; therefore, our
Iterable implementation is parameterized by the Stock type:
 
public class StockPortfolio implements Iterable<Stock>
 

Chapter 7 ■ Data Structures and Collections

179

The Map values() method returns the Collection of map values; in this case, a Collection of Stocks. The
iterator() method implementation can then simply return the Iterator for this Collection:
 
@Override
public Iterator<Stock> iterator() {
 return portfolio.values().iterator();
}
 

With this implementation of Iterable<Stock>, either the legacy a foreach loop, or the Java 8 forEach
implementation can be used to iterate a StockPortfolio instance and print each Stock:
 
myPortfolio.forEach(s->System.out.println(s));
 

The forEach method was new to the Iterable interface with the release of Java 8. The method performs the
specified action for each element within the Iterable until all elements have been processed, or the specified action
throws an exception. In this solution, the specified action is a lambda expression (see Chapter 6), which prints the
value of each element within the myPortfolio Iterable.

You will notice that StockPortfolio also contains the add(List<Stock>) method, which allows the portfolio to be
populated from a List. This method also uses a foreach loop to iterate through the input List. Again, this is possible
because Lists are Iterables. (Note that this method is never called in the code; it exists only for illustration purposes.)

Note■■  T here’s one issue with our implementation of StockPortfolio. We have gone to great lengths to not expose
the internal implementation details of our class (the portfolio map). This allows us to change the implementation
without affecting the StockPortfolio client code. However, when we implemented Iterable, we effectively exported
the underlying portfolio map through the iterator() method. As was demonstrated in Recipe 7-5, an Iterator allows
the underlying collection to be modified by calling its remove() method. Unfortunately, Java does not provide an
UnmodifiableIterator class that could be used to wrap an Iterator and prevent modification of the underlying
Collection. However, it would be simple to implement such a class that forwards the hasNext() and next() calls to the
wrapped Iterator, but leaves the remove() method unimplemented (per the Iterator Java documentation,
UnsupportedOperationException should be thrown). Alternatively, your iterator() method could return the Iterator from
an unmodifiable Collection obtained through a call to the Collections.unmodifiableCollection() class method. You
are encouraged to explore these two options. To give you a start, one possible implementation of UnmodifiableIterator
has been provided in the source code download (see UnmodifiableIterator.java).

As you have seen in this recipe, the Iterable interface allows you to create iterable objects that are compatible
with a for-each implementation. This is very useful when you want to design a custom collection-based class that
encapsulates implementation details. Just keep in mind that in order to enforce the encapsulation and prevent
modification of your underlying collection, you should implement one of the solutions mentioned in the preceding note.

7-8. Iterating Over Collections
Problem
Your application contains Collection types, and you want to iterate over the elements within them.

Chapter 7 ■ Data Structures and Collections

180

Solution
Generate a stream on any type that extends or implements java.util.Collection, and then perform the desired
task(s) on each element of the collection. In the following code, an ArrayList loaded with Stock objects is used to
demonstrate the concept of streams.
 
public class StreamExample {
 static List<Stock> myStocks = new ArrayList();
  
 private static void createStocks(){
 myStocks.add(new Stock("ORCL", "Oracle", 500.0));
 myStocks.add(new Stock("AAPL", "Apple", 200.0));
 myStocks.add(new Stock("GOOG", "Google", 100.0));
 myStocks.add(new Stock("IBM", "IBM", 50.0));
 myStocks.add(new Stock("MCD", "McDonalds", 300.0));
 }
  
 public static void main(String[] args){
 createStocks();
 // Iterate over each element and print the stock names
 myStocks.stream()
 .forEach(s->System.out.println(s.getName()));
  
 boolean allGt = myStocks.stream()
 .allMatch(s->s.getShares() > 100.0);
 System.out.println("All Stocks Greater Than 100.0 Shares? " + allGt);
  
 // Print out all stocks that have more than 100 shares
 System.out.println("== We have more than 100 shares of the following:");
 myStocks.stream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));
  
 System.out.println("== The following stocks are sorted by shares:");
 Comparator<Stock> byShares = Comparator.comparing(Stock::getShares);
 Stream<Stock> sortedByShares = myStocks.stream()
 .sorted(byShares);
 sortedByShares.forEach(s -> System.out.println("Stock: " + s.getName() + " - Shares: " +
s.getShares()));
  
 // May or may not return a value
 Optional<Stock> maybe = myStocks.stream()
 .findFirst();
 System.out.println("First Stock: " + maybe.get().getName());
  
 List newStocks = new ArrayList();
 Optional<Stock> maybeNot = newStocks.stream()
 .findFirst();
 Consumer<Stock> myConsumer = (s) ->
 {
 System.out.println("First Stock (Optional): " + s.getName());
 };

Chapter 7 ■ Data Structures and Collections

181

 maybeNot.ifPresent(myConsumer);
  
 if(maybeNot.isPresent()){
 System.out.println(maybeNot.get().getName());
 }
  
 newStocks.add(new Stock("MCD", "McDonalds", 300.0));
 Optional<Stock> maybeNow = newStocks.stream()
 .findFirst();
 maybeNow.ifPresent(myConsumer);
 }
 
}
 

The results of executing this code demonstrate the concept of using streams. External iteration (for loops) is no
longer a requirement for iterating over a collection of data.

How It Works
Prior to Java 8, iteraing over a Collection required some kind of looping block. This is known as external iteration,
a.k.a. programatic looping in sequential order. In most cases, a for loop was used to work through each element
within a Collection, processing each element according to an application’s requirements. While a for loop is a
reasonable solution for performing iteration, it is both a non-intuitive and verbose strategy. In Java 8, the boilerplate
of iterating over Collections has been removed, along with the requirement to spell out how the iteration is to be
completed. The compiler already knows how to iterate over a Collection, so why tell the compiler exactly how to
do it? Why not simply tell the compiler: “I would like to iterate over this Collection, and perform this task on each
element”? The concept of streams enables this hands-off approach to iteration.

Let the compiler take care of the non-intuitive looping, and simply hand the task off to the compiler and tell it
what action to perform on each element. This concept is known as internal iteration. With internal iteration, your
application determines what needs to be iterated, and the JDK decides how to perform the iteration. Internal iteration
not only alleviates the requirement to program the looping logic, but it also has other advantages. One such advantage
is that internal iteration is not limited to sequential iteration over elements. Therefore, the JDK decides how to iterate,
choosing the best algorithm for the task at hand. Internal iteration also can more easily take advantage of parallel
computing. This concept involves subdividing tasks into smaller problems, solving each in a simultaneous manner,
and then combining the results.

A stream is a sequence of object references that can be generated on all Collection types. The Stream API makes
it possible to perform a sequence of aggregate operations upon those object references and either return a result or
apply the changes to the objects inline. This is also known as a pipeline. The pseudocode for generation and use of a
stream is as follows:
 
Collection -> (Stream) -> (Zero or More Intermediate Operations) -> (Terminal Operation)
 

Let’s put this pseudocode into a real example. In the solution, a list of Stock objects is used for demonstrating
stream iteration. Let’s suppose you want to print out each stock that contains a number of shares that is over a
designated threshold (100 shares in this example). You can use the following code to perform this task:
 
myStocks.stream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));
 

Chapter 7 ■ Data Structures and Collections

182

In the previous example, an intermediate operation known as a filter() is used to apply a limitation on the
elements, thereby filtering out all of the elements that do not match the supplied predicate. The predicate is written
in the form of a lambda expression; it performs the test on each element and returns a Boolean result. The terminal
operation in the example uses forEach() to print each of the matching elements. A terminal operation is the last
operation in a pipeline, and it produces a non-stream result such as a primitive, collection, or no value at all. In the
example case, no result is returned.

To generate a stream on a Collection type, call the stream() method, which will return a Stream type. In
most cases, the Stream type is not the desired result, so the Stream API makes it possible to invoke zero or more
intermediate operations upon a stream, forming a pipeline of operations. For example, in the solution the list of Stock
objects is sorted by the number of shares using the following code. Note that Comparator byShares is applied to each
object in the stream and a Stream<Stock> is returned as a result:
 
Stream<Stock> sortedByShares = myStocks.stream()
 .sorted(byShares);
 

In the previous example, a single intermediate operation, sorted(), is performed on the stream. As mentioned
previously, there could be more than one intermediate operation chained to this pipeline, thereby performing
the next operation upon those objects that meet the criteria of the previous operation. Each of the intermediate
operations returns a Stream. Each pipeline can contain a terminal operation, thereby applying the terminal operation
to each of the resulting stream objects. As mentioned previously, a terminal operation may or may not return a result.
In the previous example, no terminal operation is applied.

Note■■  T he online documentation for Stream (http://download.java.net/jdk8/docs/api/java/util/stream/
Stream.html) lists all of the intermediate and terminal operations available upon a stream.

Streams are a revolutionary change for the Java programming language. They change the way in which a
developer thinks about a program, making the developer more productive and the code more efficient. While legacy
iteration techniques such as the for loop are still considered valid procedures, streams are the preferred technique for
iteration when you’re using Java 8 or beyond.

7-9. Iterating Over a Map
Problem
You are using one of the Map classes, such as HashMap or TreeMap, and you need to iterate over the keys, values, or both.
You also want to remove elements from the map while you are iterating over it.

Solution
There are multiple ways to iterate over a Map. The method you choose should depend on which portions of the map
you need to access and whether you need to remove elements from the map while iterating. The StockPortfolio1
class is a continuation of the StockPorfolio class shown in the previous recipe. It adds three methods, summary(),
alertList(), and remove(List<String>), that demonstrate alternative methods for iterating over the portfolio map:
 
// See StockPortfolio1.java
Map<String, Stock> portfolio = new HashMap<>();
...
public void summary() {

http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html
http://download.java.net/jdk8/docs/api/java/util/stream/Stream.html

Chapter 7 ■ Data Structures and Collections

183

 System.out.println("==Legacy technique for traversing Map.Entry==");
 for (Map.Entry<String, Stock> entry : portfolio.entrySet()) {
 System.out.println("Stock = " + entry.getKey() + ", Shares = " +
entry.getValue().getShares());
 }
 
 System.out.println("==Utilization of new foreach and lambda combination==");
 portfolio.forEach((k,v)->System.out.println("Stock = " + k + ", Shares = " + v.getShares()));
}
 
/**
 * Utilize for loop to traverse Map keys and apply filter to obtain desired
 * stocks
 * @return
 */
public List<Stock> alertListLegacy() {
 System.out.println("==Legacy technique for filtering and collecting==");
 List<Stock> alertList = new ArrayList<>();
 for (Stock stock : portfolio.values()) {
 if (!StockScreener.screen(stock.getSymbol(), StockScreener.Screen.PE, 20)) {
 alertList.add(stock);
 }
 }
 
 return alertList;
}
 
/**
 * Utilize stream and filters to obtain desired stocks
 * @return
 */
public List<Stock> alertList(){
 return
 portfolio.values().stream()
 .filter(s->!StockScreener.screen(s.getSymbol(), StockScreener.Screen.PE, 20))
 .collect(Collectors.toList());
 
}
 
public void remove(List<String> sellList) {
 Iterator<String> keyIter = portfolio.keySet().iterator();
 while (keyIter.hasNext()) {
 if (sellList.contains(keyIter.next())) {
 keyIter.remove();
 }
 }
}

Chapter 7 ■ Data Structures and Collections

184

How It Works
A Map is an object that contains a collection of key/value pairs. Maps can be beneficial when you need to store an index
(key) and associate it with a particular value. A Map must not contain any duplicate keys, and each key maps to exactly
one value. The source code for the solution (StockPortfolio1.java) demonstrates how to add and remove entries
from a Map. It also contains the source that is listed in the solution to this recipe, demonstrating how to iterate over Map
entries using pre-Java 8 techniques, as well as newer syntax that takes advantage of lambda expressions and streams.

The summary() method uses a foreach loop implementation to iterate over the portfolio map’s Entry set. To
iterate using the pre-Java 8 code, the Map entrySet() method returns a Set of Map.Entry objects. Within the loop, you
then have access to the key and value for the current Map.Entry by calling the respective methods, key() and value(),
on that entry. Use this method of iterating when you need to access both the map keys and values while iterating,
and you don’t need to remove elements from the map. Taking a look at the newer syntax, you can see that the same
iteration can be performed in a single line of code. The newer syntax utilizes the forEach() method, which was added
to the Map interface in Java 8. It applies a lambda expression to each entry within the list. The lambda expression takes
both the key and value as arguments, and then prints them out.

The alertListLegacy() method uses a foreach loop implementation to iterate over just the values of the
portfolio map. The Map values() method returns a Collection of the map values; in this case, a Collection of
Stocks. Use this method of iterating when you only need access to the map values and you don’t need to remove
elements from the list. Similarly, if you only need access to the map keys (again, without the need to remove
elements), you can iterate using the keySet() method:
 
for (String symbol : portfolio.keySet()) {
 ...
}
 

If you also need to also access the map value while iterating using the key set, avoid the following, as it is very
inefficient. Instead, use the method of iteration shown in the summary() method.
 
for (String symbol : portfolio.keySet()) {
 Stock stock = portfolio.get(symbol);
 ...
}
 

Taking a look at the alertList() method in the solution, you can see that the same iteration can be performed
with much less work using a combination of streams, filters, and collectors. See Recipe 7-8 for more details regarding
streams and the Stream API. In alertList(), a stream is generated, and then a filter, in the form of a lambda
expression, is applied to that stream. Finally, a collector is applied to the filter, creating a List<Stock> to return.

The remove(List<String>) method takes a list of stock symbols representing the stocks to be removed from the
portfolio. This method iterates over the portfolio map keys using the keySet() iterator, removing the current map
entry if it is one of the stocks specified for removal. Notice that the map element is removed through the iterator’s
remove() method. This is possible because the key set is backed by the map, so changes made through the key set’s
iterator are reflected in the map. You could also iterate over the portfolio map using its values() iterator:
 
Iterator<Stock> valueIter = portfolio.values().iterator();
while (valueIter.hasNext()) {
 if (sellList.contains(valueIter.next().getSymbol())) {
 valueIter.remove();
 }
}
 

As with the key set, the values collection is backed by the map, so calling remove() through the values iterator will
result in removal of the current entry from the portfolio map.

Chapter 7 ■ Data Structures and Collections

185

In summary, if you need to remove elements from a map while iterating over the map, iterate using one of the map’s
collection iterators and remove map elements through the iterator, as shown in the remove(List<String>) method. This
is the only safe way to remove map elements during iteration. Otherwise, if you don’t need to remove map elements,
prefer the use of a foreach loop and use one of the methods of iteration shown in the solution to this recipe.

7-10. Executing Streams in Parallel
Problem
You want to iterate over a Collection in parallel to distribute the work over multiple CPUs.

Solution
Utilize a stream construct on the Collection, and invoke parallelStream() as the first intermediate operation
in order to take advantage of multiple CPU processing. The following class demonstrates multiple uses of the
parallelStream() operation:
 
public class StockPortfolio2 {
 static List<Stock> myStocks = new ArrayList();
  
 private static void createStocks(){
 myStocks.add(new Stock("ORCL", "Oracle", 500.0));
 myStocks.add(new Stock("AAPL", "Apple", 200.0));
 myStocks.add(new Stock("GOOG", "Google", 100.0));
 myStocks.add(new Stock("IBM", "IBM", 50.0));
 myStocks.add(new Stock("MCD", "McDonalds", 300.0));
 }
  
 public static void main(String[] args){
 createStocks();
 // Iterate over each element and print the stock names
 myStocks.stream()
 .forEach(s->System.out.println(s.getName()));
  
 boolean allGt = myStocks.parallelStream()
 .allMatch(s->s.getShares() > 100.0);
 System.out.println("All Stocks Greater Than 100.0 Shares? " + allGt);
  
 // Print out all stocks that have more than 100 shares
 System.out.println("== We have more than 100 shares of the following:");
 myStocks.parallelStream()
 .filter(s -> s.getShares() > 100.0)
 .forEach(s->System.out.println(s.getName()));
  
 System.out.println("== The following stocks are sorted by shares:");
 Comparator<Stock> byShares = Comparator.comparing(Stock::getShares);
 Stream<Stock> sortedByShares = myStocks.parallelStream()
 .sorted(byShares);
 sortedByShares.forEach(s -> System.out.println("Stock: " + s.getName() + " - Shares: " +
s.getShares()));
  

Chapter 7 ■ Data Structures and Collections

186

 // May or may not return a value
 Optional<Stock> maybe = myStocks.parallelStream()
 .findFirst();
 System.out.println("First Stock: " + maybe.get().getName());
  
 List newStocks = new ArrayList();
 Optional<Stock> maybeNot = newStocks.parallelStream()
 .findFirst();
 Consumer<Stock> myConsumer = (s) ->
 {
 System.out.println("First Stock (Optional): " + s.getName());
 };
 maybeNot.ifPresent(myConsumer);
  
 if(maybeNot.isPresent()){
 System.out.println(maybeNot.get().getName());
 }
  
 newStocks.add(new Stock("MCD", "McDonalds", 300.0));
 Optional<Stock> maybeNow = newStocks.stream()
 .findFirst();
 maybeNow.ifPresent(myConsumer);
  
 }
  
}

How It Works
By default, operations are executed in serial stream. However, you can specify that the Java runtime split the
operations between multiple subtasks, thus taking advantage of multiple CPUs for performance. When operations are
executed in this manner, they are executed in “parallel.” Streams can be partitioned into multiple substreams by the
Java runtime by invoking the parallelStream() intermediate operation. When this operation is invoked, aggregate
operations can process the multiple substreams and then the results will be combined in the end. You can also
execute a stream in parallel by invoking the operation BaseStream.parallel.

Summary
This chapter looked at various data structures and how to work with them. First, you took a look at Enums and learned
how to utilize them effectively. Next, we covered the basics of Arrays and ArrayList, and learned how to iterate over
elements within these structures. The chapter also covered Java generics, which allow you to decouple object types
from container types, providing for more type-safe and efficient code. Lastly, this chapter covered the Streams API,
which is one of the most important updates in Java 8 for working with collections.

187

Chapter 8

Input and Output

Oftentimes in applications, there is a requirement to obtain and manipulate the I/O terminals. In today’s operating
systems, that usually means file access and network connectivity. In previous releases, Java was slow to adopt a good
file and network framework in order to maintain universal compatibility. Standing true to its roots of write once, read
everywhere, a lot of the original file I/O and network connectivity needed to be simple and universal. Since the release
of Java 7, developers have been taking advantage of much better I/O APIs.

The file and network I/O has evolved over the years into a much better framework for handling files, network
scalability, and ease of use,. As of the network input output version 2 API (NIO.2), Java has the capability of monitoring
folders, accessing OS-dependent methods, and create scalable asynchronous network sockets. This is in addition to the
already robust library for handling input and output streams, and serializing (and deserializing) object information.

In this chapter, we cover recipes that demonstrate different input and output processes. You learn about
serialization of files, sending files over the network, file manipulation, and much more. After reading the recipes
in this chapter, you will be armed with the capability to develop applications containing sophisticated input and
output tasks.

STREAMS AND THE DECORATOR PATTERN

I/O streams are the foundation of most of the Java I/O and include a plethora of ready-made streams for any
occasion, but they are very confusing to use if some context is not provided. A stream (like a river) represents
an inflow/outflow of data. Think about it this way. When you type, you create a stream of characters that the
system receives (input stream). When the system produces sounds, it sends them to the speaker (output stream).
The system could be receiving keystrokes and sending sound all day long, and thus the streams can be either
processing data or waiting for more data.

When a stream doesn’t receive any data, it waits (nothing else to do, right?). As soon as data comes in, the stream
starts processing this data. The stream then stops and waits for the next data item to come. This keeps going
until this proverbial river becomes dry (the stream is closed).

Like a river, streams can be connected to each other (this is the decorator pattern). For the content of this chapter,
there are mainly two input streams that you care about. One of them is the file input stream, and the other is the
network socket input stream. These two streams are a source of data for your I/O programs. There are also their
corresponding output streams: file output stream and the network socket output streams (how creative isn’t it?).
Like a plumber, you can hook them together and create something new. For example, you could weld together
a file input stream to a network output stream to send the contents of the file through a network socket. Or you
could do the opposite and connect a network input stream (data coming in) to a file output stream (data being
written to disk). In I/O parlance, the input streams are called sources, while the output streams are called sinks.

Chapter 8 ■ Input and Output

188

There are other input and output streams that can be glued together. For example, there is a
BufferedInputStream, which allows you to read the data in chunks (it’s more efficient than reading it byte by
byte), and DataOutputStream allows you to write Java primitives to an output stream (instead of just writing
bytes). One of the most useful streams is the ObjectInputStream and ObjectOutputStream pair, which will
allow you to serialize/deserialize object (there is a recipe for that here).

The decorator pattern allows you to keep plucking streams together to get many different effects. The beauty of
this design is that you can actually create a stream that will take any input and produce any output, and then can
be thrown together with every other stream.

8-1. Serializing Java Objects
Problem
You need to serialize a class (save the contents of the class) so that you can restore it at a later time.

Solution
Java implements a built-in serialization mechanism. You access that mechanism via the ObjectOutputStream class.
In the following example, the method saveSettings() uses an ObjectOutputStream to serialize the settings object in
preparation for writing the object to disk:
 
public class Ch_8_1_SerializeExample {
 public static void main(String[] args) {
 Ch_8_1_SerializeExample example = new Ch_8_1_SerializeExample();
 example.start();
 }
 
 private void start() {
 ProgramSettings settings = new ProgramSettings(new Point(10,10),
 new Dimension(300,200),
 Color.blue,
 "The title of the application");
 saveSettings(settings,"settings.bin");
 ProgramSettings loadedSettings = loadSettings("settings.bin");
 System.out.println("Are settings are equal? :"+loadedSettings.equals(settings));
 
 
 }
 
 private void saveSettings(ProgramSettings settings, String filename) {
 try {
 FileOutputStream fos = new FileOutputStream(filename);
 try (ObjectOutputStream oos = new ObjectOutputStream(fos)) {
 oos.writeObject(settings);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 

Chapter 8 ■ Input and Output

189

 private ProgramSettings loadSettings(String filename) {
 try {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream ois = new ObjectInputStream(fis);
 return (ProgramSettings) ois.readObject();
 } catch (IOException | ClassNotFoundException e) {
 e.printStackTrace();
 }
 return null;
 }
} 

How It Works
Java supports serialization, which is the capability of taking an object and creating a byte representation that can be
used to restore the object at a later time. By using an internal serialization mechanism, most of the setup to serialize
objects is taken care of. Java will transform the properties of an object into a byte stream, which can then be saved to a
file or transmitted over the wire.

Note■■   The original Java Serialization framework uses reflection to serialize the objects, so it might be an issue if
serializing/deserializing heavily. There are plenty of open source frameworks that offer different trade-offs depending on
your need (speed versus size versus ease of use). See https://github.com/eishay/jvm-serializers/wiki/.

For a class to be serializable, it needs to implement the Serializable interface, which is a Marker interface: it
doesn’t have any methods, but instead tells the serialization mechanism that you have allowed the ability of your
class to be serialized. While not evident from the onset, serialization exposes all the internal workings of your class
(including protected and private members), so if you want to keep secret the authorization code for a nuclear launch,
you might want to make any class that contains such information nonserializable.

It is also necessary that all properties (a.k.a. members, variables, or fields) of the class are serializable
(and/or transient, which we will get to in a minute). All primitives—int, long, double, and float (plus their wrapper
classes)—and the String class, are serializable by design. Other Java classes are serializable on a case-by-case basis.
For example, you can’t serialize any Swing components (like JButton or JSpinner), and you can’t serialize File
objects, but you can serialize the Color class (awt.color, to be more precise).

As a design principle you don’t want to serialize your main classes, but instead you want to create classes that
contain only the properties that you want to serialize. It will save a lot of headache in debugging because serialization
becomes very pervasive. If you mark a major class as serializable (implements Serializable), and this class contains
many other properties, you need to declare those classes as serializable as well. If your Java class inherits from another
class, the parent class must also be serializable. In that way, you will find marking classes serializable when they really
shouldn’t be.

If you want to mark a property as nonserializable, you may mark it as transient. Transient properties tell the Java
compiler that you are not interested in saving/loading the property value, so it will be ignored. Some properties are
good candidates for being transient, like cached calculations, or a date formatter that you always instantiate to the
same value.

By the virtue of the Serialization framework, static properties are not serializable; neither are static classes. The
reason is that a static class cannot be instantiated. Therefore, if you save and then load the static class at the same
time, you will have loaded another copy of the static class, throwing the JVM for a loop.

https://github.com/eishay/jvm-serializers/wiki/

Chapter 8 ■ Input and Output

190

The Java serialization mechanism works behind the scenes to convert and traverse every object within the class
that is marked as Serializable. If an application contains objects within objects, and even perhaps contains cross-
referenced objects, the Serialization framework will resolve those objects, and store only one copy of any object. Each
property then gets translated to a byte[] representation. The format of the byte array includes the actual class name
(for example: com.somewhere.over.the.rainbow.preferences.UserPreferences), followed by the encoding of the
properties (which in turn may encode another object class, with its properties, etc., etc., ad infinitum).

For the curious, if you look at the file generated (even in a text editor), you can see the class name as almost the
first part of the file.

Note  Serialization is very brittle. By default, the Serialization framework generates a Stream Unique Identifier (SUID)
that captures information about what fields are presented in the class, what kind they are (public/protected), and what is
transient, among other things. Even a perceived slight modification of the class (for example, changing an int to a long
property) will generate a new SUID. A class that has been saved with a prior SUID cannot be deserialized on the new
SUID. This is done to protect the serialization/deserialization mechanism, while also protecting the designers.

You can actually tell the Java class to use a specific SUID. This will allow you to serialize classes, modify them, and then
deserialize the original classes while implementing some backward compatibility. The danger you run into is that the
deserialization must be backward-compatible. Renaming or removing fields will generate an exception as the class is
being deserialized. If you are specifying your own serial Serializable on your Serializable class, be sure to have some unit
tests for backward-compatibility every time you change the class. In general, the changes that can be made on a class to
keep it backward-compatible are found here: http://docs.oracle.com/javase/7/docs/platform/serialization/
spec/serial-arch.html.

Due to the nature of serialization, don’t expect constructors to be called when an object is deserialized. If you have
initialization code in constructors that is required for your object to function properly, you may need to refactor the code
out of the constructor to allow proper execution after construction. The reason is that in the deserialization process, the
deserialized objects are “restored” internally (not created) and don’t invoke constructors.

8-2. Serializing Java Objects More Efficiently
Problem
You want to serialize a class, but want to make the output more efficient, or smaller in size, than the product generated
via the built-in serialization method.

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serial-arch.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serial-arch.html

Chapter 8 ■ Input and Output

191

Solution
By making the object implement the Externalizable interface, you instruct the Java Virtual Machine to use a
custom serialization/deserialization mechanism, as provided by the readExternal/writeExternal methods in the
following example.
 
public class ExternalizableProgramSettings implements Externalizable {
 private Point locationOnScreen;
 private Dimension frameSize;
 private Color defaultFontColor;
 private String title;
 
 // Empty constructor, required for Externalizable implementors
 public ExternalizableProgramSettings() {
 
 }
 
 @Override
 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(locationOnScreen.x);
 out.writeInt(locationOnScreen.y);
 out.writeInt(frameSize.width);
 out.writeInt(frameSize.height);
 out.writeInt(defaultFontColor.getRGB());
 out.writeUTF(title);
 }
 
 @Override
 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 locationOnScreen = new Point(in.readInt(), in.readInt());
 frameSize = new Dimension(in.readInt(), in.readInt());
 defaultFontColor = new Color(in.readInt());
 title = in.readUTF();
 }
// getters and setters omitted for brevity
} 

How It Works
The Java Serialization framework provides the ability for you to specify the implementation for serializing
an object. As such, it requires implementing the Externalizable interface in lieu of the Serializable
interface. The Externalizable interface contains two methods: writeExternal(ObjectOutput out) and
readExternal(ObjectInput in). By implementing these methods, you are telling the framework how to encode/
decode your object.

The writeExternal() method will pass in as a parameter an ObjectOutput object. This object will then let you
write your own encoding for the serialization. The ObjectOutput contains the methods listed in Table 8-1.

Chapter 8 ■ Input and Output

192

One reason you may choose to implement the Externalizable interface instead of the Serializable interface
is because Java’s default serialization is very inefficient. Because the Java Serialization framework needs to ensure that
every object (and dependent object) is serialized, it will write even objects that have default values or that might be
empty and/or null. Implementing the Externalizable interface also provides for finer-grained control on how your
class is being serialized. In our example, the Serializable version created a setting of 439 bytes, compared with the
Externalizable version of only 103 bytes!

Note■■   Classes that implement the Externalizable interface must contain an empty (no-arg) constructor.

8-3. Serializing Java Objects as XML
Problem
Although you love the Serialization framework, you want to create something that is at least cross-language-compatible
(or human readable). You would like to save and load your objects using XML.

Solution
In this example, the XMLEncoder object is used to encode the Settings object, which contains program settings
information and writes it to the settings.xml file. The XMLDecoder takes the settings.xml file and reads it
as a stream, decoding the Settings object. A FileSystem is used to gain access to the machine’s file system;
FileOutputStream is used to write a file to the system; and FileInputStream is used to obtain input bytes from a file
within the file system. In this example, these three file objects are used to create new XML files, as well as read them
for processing.
 

Table 8-1.  ObjectOutput Methods

ObjectOutput ObjectInput Description

writeBoolean (boolean v) booleanreadBoolean () Read/writes the Boolean primitive.

writeByte(int v) intreadByte() Read/writes a byte.
Note: Java doesn’t have a byte primitive, so an int is used
as a parameter, but only the least-significant byte will be
written.

writeShort(int v) intreadShort() Read/writes two bytes.
Note: Only the two least-significant bytes will be written.

writeChar(int v) intreadChar() Read/writes two bytes as a char (reverse order than
writeShort).

writeInt (int v) intreadInt() Read/writes an integer.

writeLong (long v) intreadLong() Read/writes a long.

writeDouble (double v) double readDouble Read/writes a double.

Chapter 8 ■ Input and Output

193

//Encoding
FileSystem fileSystem = FileSystems.getDefault();
try (FileOutputStream fos = new FileOutputStream("settings.xml"); XMLEncoder encoder =
 new XMLEncoder(fos)) {
 encoder.setExceptionListener((Exception e) -> {
 System.out.println("Exception! :"+e.toString());
 });
 encoder.writeObject(settings);
}
 
// Decoding
try (FileInputStream fis = new FileInputStream("settings.xml"); XMLDecoder decoder =
 new XMLDecoder(fis)) {
 ProgramSettings decodedSettings = (ProgramSettings) decoder.readObject();
 System.out.println("Is same? "+settings.equals(decodedSettings));
}
 
Path file= fileSystem.getPath("settings.xml");
List<String> xmlLines = Files.readAllLines(file, Charset.defaultCharset());
xmlLines.stream().forEach((line) -> {
 System.out.println(line);
}); 

How It Works
XMLEncoder and XMLDecoder, like the Serialization framework, use reflection to determine which fields are to be
written, but instead of writing the fields as binary, they are written as XML. Objects that are to be encoded do not need
to be serializable, but they do need to follow the Java Beans specification.

Java Bean is the name of any object that conforms to the following contract:

The object contains a public empty (•	 no-arg) constructor.

The object contains public getters and setters for each protected/private property that takes •	
the name of get{Property}() and set{Property}().

The XMLEncoder and XMLDecoder will encode/decode only the properties of the Bean that have public
accessors (get{property}, set{property}), so any properties that are private and do not have accessors will not
be encoded/decoded.

Tip■■   It is a good idea to register an Exception Listener when encoding/decoding.

The XmlEncoder creates a new instance of the class that being serialized (remember that they need to be Java
Beans, so they must have an empty no-arg constructor), and then figures out which properties are accessible
(via get{property}, set{property}). And if a property of the newly instantiated class contains the same value as
the property of the original class (i.e., has the same default value), the XmlEncoder doesn’t write that property. In
other words, if the default value of a property hasn’t changed, the XmlEncoder will not write it out. This provides the
flexibility of changing what a “default” value is between versions. For example, if the default value of a property is 2
when an object is encoded, and later decoded after the default property changed from 2 to 4, the decoded object will
contain the new default property of 4 (which might not be correct).

Chapter 8 ■ Input and Output

194

The XMLEncoder also keeps track of references. If an object appears more than once when being persisted
in the object graph (for example, an object is inside a Map from the main class, but is also as the DefaultValue
property), then the XMLEncoder will only encode it once, and link up a reference by putting a link in the xml. The
XMLEncoder/XMLDecoder is much more forgiving than the Serialization framework. When decoding, if a property type
is changed, or if it was deleted/added/moved/renamed, the decoding will decode “as much as it can” while skipping
the properties that it couldn’t decode.

The recommendation is to not persist your main classes (even though the XMLEncoder is more forgiving), but to
create special objects that are simple, hold the basic information, and do not perform many tasks by themselves.

8-4. Creating a Socket Connection and Sending Serializable
Objects Across the Wire
Problem
You need to open a network connection, and send/receive objects from it.

Solution
Use Java’s New Input Output API version 2 (NIO.2) to send and receive objects. The following solution utilizes the
NIO.2 features of nonblocking sockets (by using Future tasks):
 
// Server Side
hostAddress = new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 2583);
 
Future<AsynchronousSocketChannel> serverFuture = null;
AsynchronousServerSocketChannel serverSocketChannel =
AsynchronousServerSocketChannel.open().bind(hostAddress);
serverFuture = serverSocketChannel.accept();
final AsynchronousSocketChannel clientSocket = serverFuture.get(2000, TimeUnit.MILLISECONDS);
System.out.println("Connected!");
if ((clientSocket != null) && (clientSocket.isOpen())) {
 InputStream connectionInputStream = Channels.newInputStream(clientSocket);
 ObjectInputStream ois = null;
 ois = new ObjectInputStream(connectionInputStream);
 while (true) {
 Object object = ois.readObject();
 if (object.equals("EOF")) {
 connectionCount.decrementAndGet();
 clientSocket.close();
 break;
 }
 System.out.println("Received :" + object);
 }
 ois.close();
 connectionInputStream.close();
}
  

Chapter 8 ■ Input and Output

195

// Client Side
try (AsynchronousSocketChannel clientSocketChannel = AsynchronousSocketChannel.open()) {
 Future<Void> connectFuture = clientSocketChannel.connect(hostAddress);
 connectFuture.get(); // Wait until connection is done.
 OutputStream os = Channels.newOutputStream(clientSocketChannel);
 try (ObjectOutputStream oos = new ObjectOutputStream(os)) {
 for (int i = 0; i < 5; i++) {
 oos.writeObject("Look at me " + i);
 Thread.sleep(1000);
 }
 oos.writeObject("EOF");
 }
} 

How It Works
At its basic level, sockets require a type, IP address, and port. While sockets literature has consumed whole books, the
main idea is pretty straightforward. Like the post office, socket communication relies on addresses. These addresses
are used to deliver data. In this example, we picked the loopback (the same computer where the program is running)
address (127.0.0.1), and chose a random port number (2583).

The advantage of the new NIO.2 is that it is asynchronous in nature. By using asynchronous calls, you can
scale your application without creating thousands of threads for each connection. In our example, we take the
asynchronous calls and wait for a connection, effectively making it single-threaded for the sake of the example,
but don’t let that stop you for enhancing this example with more asynchronous calls. (Check the recipes on the
multithreaded section of this book.)

For a client to connect, it requires a socket channel. The NIO.2 API allows creation of asynchronous socket
channels. Once a socket channel is created, it will need an address to connect to. The socketChannel.connect()
operation does not block; instead it returns a Future object (this is a different from traditional NIO, where calling
socketChannel.connect() will block until a connection is established). The Future object allows a Java program to
continue what it is doing and simply query the status of the submitted task. To take the analogy further, instead of
waiting at the front door for your mail to arrive, you go do other stuff, and “check” periodically to see whether the mail
has arrived. Future objects have methods like isDone() and isCancelled() that let you know if the task is done or
cancelled. It also has the get() method, which allows you to actually wait for the task to finish. In our example, we use
the Future.get() to wait for the client connection to be established.

Once the connection is established, we use Channels.newOutputStream() to create an output stream to send
information. Using the decorator pattern, we decorate the outputStream with our ObjectOutputStream to finally send
objects through the socket.

The server code is a little more elaborate. Server socket connections allow more than one connection to occur,
thus they are used to monitor or receive connections instead of initiating a connection. For this reason, the server is
usually waiting for a connection asynchronously.

The server begins by establishing the address it listens to (127.0.0.1:2583) and accepting connections. The call
to serverSocketChannel.accept() returns another Future object that will give you the flexibility of how to deal with
incoming connections. In our example, the server connection simply calls future.get(), which will block (stop the
execution of the program) until a connection is accepted.

After the server acquires a socket channel, it creates an inputStream by calling Channels.
newInputStream(socket) and then wrapping that input stream with an ObjectInputStream. The server then
proceeds to loop and read each object coming from the ObjectInputStream. If the object received’s toString()
method equals EOF, the server stops looping and the connection is closed.

Chapter 8 ■ Input and Output

196

Note■■  U sing an ObjectOutputStream and ObjectInputStream to send and receive a lot of objects can lead to
memory leaks. ObjectOutputStream keeps a copy of the sent object for efficiency. If you were to send the same object
again, ObjectOutputStream and ObjectInputStream will not send the same object again, but instead send a previously
sent Object ID. This behavior or just sending the Object ID instead of the whole object raises two issues.

The first issue is that objects that are changed in-place (mutable) will not get the change reflected in the receiving client
when sent through the wire. The reason is that because the object was sent once, the ObjectOutputStream believes
that the object is already transmitted and will only send the ID, negating any changes to the object that have happened
since it was sent. To avoid this, don’t make changes to objects that were sent down the wire. This rule also applies to
sub-objects from the object graph.

The second issue is that because ObjectOutputStream maintains a list of sent objects and their Object IDs, if you send a
lot of objects the dictionary of sent objects to keys grows indefinitely, causing memory starvation on a long-running program.
To alleviate this issue, you can call ObjectOutputStream.reset(), which will clear the dictionary of sent objects.
Alternatively, you can invoke ObjectOutputStream.writeUnshared() to not cache the object in the ObjectOutputStream
dictionary.

8-5. Obtaining the Java Execution Path
Problem
You want to get the path where the Java program is running.

Solution
Invoke the System class’s getProperty method. For example:
 
String path = System.getProperty("user.dir"); 

How It Works
When a Java program starts, the JRE updates the user.dir system property to record where the JRE was invoked. The
solution example passes the property name "user.dir" to the getProperty method, which returns the value.

8-6. Copying a File
Problem
You need to copy a file from one folder to another.

Chapter 8 ■ Input and Output

197

Solution
From the default FileSystem, you create the “to” and “from” paths where the files/folders exist and then use the
Files.copy static method to copy files between the created paths:
 
FileSystem fileSystem = FileSystems.getDefault();
Path sourcePath = fileSystem.getPath("file.log");
Path targetPath = fileSystem.getPath("file2.log");
System.out.println("Copy from "+sourcePath.toAbsolutePath().toString()+
 " to "+targetPath.toAbsolutePath().toString());
try {
 Files.copy(sourcePath, targetPath, StandardCopyOption.REPLACE_EXISTING);
} catch (IOException e) {
 e.printStackTrace();
} 

How It Works
In the new NIO.2 libraries, Java works with an abstraction level that allows for more direct manipulation of file
attributes belonging to the underlying operating system.

FileSystem.getDefaults() gets the usable abstract system that you can do file operations on. For example,
running this example in Windows will get you a WindowsFileSystem; if you were running this example in Linux, a
LinuxFileSystem object would be returned. AllFileSystems supports basic operations; in addition, each concrete
FileSystem provides access to the unique features offered for that operating system.

After getting the default FileSystem object, you can query for file objects. In the NIO.2 file, folders and links are
all called paths. Once you get a path, you can perform operations with it. In this example, Files.copy is called with
the source and destination paths. The last parameter refers to the different copy options. The different copy options
are file-system dependent so make sure that the one that you choose is compatible with the operating system you
intend to run the application in.

8-7. Moving a File
Problem
You need to move a file from one file system location to another.

Solution
As in Recipe 8-6, you use the default FileSystem to create the “to” and “from” paths, and invoke the Files.move()
static method:
 
FileSystem fileSystem = FileSystems.getDefault();
Path sourcePath = fileSystem.getPath("file.log");
Path targetPath = fileSystem.getPath("file2.log");
System.out.println("Copy from "+sourcePath.toAbsolutePath().toString()+
 " to "+targetPath.toAbsolutePath().toString());
try {
 Files.move(sourcePath, targetPath);
} catch (IOException e) {
 e.printStackTrace();
} 

Chapter 8 ■ Input and Output

198

How It Works
In the same manner as copying a file, create the path of source and destination. After having the source and
destination paths, Files.move will take care of moving the file from one location to another for you. Other methods
provided by the Files object are the following:

•	 Delete (path): Deletes a file (or a folder, if it’s empty).

•	 Exists (path): Checks whether a file/folder exists.

•	 isDirectory (path): Checks whether the path created points to a directory.

•	 isExecutable (path): Checks whether the file is an executable.

•	 isHidden (path): Checks whether the file is visible or hidden in the operating system.

8-8. Creating a Directory
Problem
You need to create a directory from your Java application.

Solution 1
By using the default FileSystem, you instantiate a path pointing to the new directory; then invoke the
Files.createDirectory() static method, which creates the directory specified in the path.
 
FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath("./newDirectory");
try {
 Files.createDirectory(directory);
} catch (IOException e) {
 e.printStackTrace();
} 

Solution 2
If using a *nix operating system, you can specify the folder attributes by invoking the PosixFilePermission() method,
which lets you set access at the owner, group, and world levels. For example:
 
FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath("./newDirectoryWPermissions");
try {
 Set<PosixFilePermission> perms = PosixFilePermissions.fromString("rwxr-x---");
 FileAttribute<Set<PosixFilePermission>> attr =
 PosixFilePermissions.asFileAttribute(perms);
 Files.createDirectory(directory, attr);
 
} catch (IOException e) {
 e.printStackTrace();
}
 

Chapter 8 ■ Input and Output

199

How It Works
The Files.createDirectory() method takes a path as a parameter and then creates the directory. By default, the
directory created will inherit the default permissions. If you wanted to specify specific permissions in Linux, you can
use the PosixAttributes as an extra parameter in the createDirectory() method.

8-9. Iterating Over Files in a Directory
Problem
You need to scan files from a directory. There are possibly subdirectories with more files. You want to include those in
your scan.

Solution
Using the NIO.2, create a FileVisitor object and perform a desired implementation within its visitFile method.
Next, obtain the default FileSystem object and grab a reference to the Path that you’d like to scan via the getPath()
method. Lastly, invoke the Files.walkFileTree() method, passing the Path and the FileVisitor that you created.
The following code demonstrates how to perform these tasks.
 
FileVisitor<Path> myFileVisitor = new SimpleFileVisitor<Path>() {
 @Override
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException {
 System.out.println("Visited File: "+file.toString());
 return FileVisitResult.CONTINUE;
 }
};
 
FileSystem fileSystem = FileSystems.getDefault();
Path directory= fileSystem.getPath(".");
try {
 Files.walkFileTree(directory, myFileVisitor);
} catch (IOException e) {
 e.printStackTrace();
} 

How It Works
Before NIO.2, trying to traverse a directory tree involved recursion, and depending on the implementation, it could be
very brittle. The calls to get files within a folder were synchronous and required the scanning of the whole directory
before returning; generating what would appear to be an unresponsive method call to an application user. With
the new NIO.2, one can specify which folder to start traversing on, and the NIO.2 calls will handle the recursion
details. The only item that you provide to the NIO.2 API is a class that tells it what to do when a file/folder is found
(SimpleFileVisitor implementation). NIO.2 uses a Visitor pattern, so it isn’t required to prescan the entire folder,
but instead processes files as they are being iterated over.

The implementation of the SimpleFileVisitor class as an anonymous inner class includes overriding the
visitFile(Path file, BasicFileAttributesattrs() method. When you override this method, you can specify the
tasks to perform when a file is encountered.

Chapter 8 ■ Input and Output

200

The visitFile method returns a FileVisitReturn enum. This enum then tells the FileVisitor which action
to take:

•	 CONTINUE: Continues with the traversing of the directory tree.

•	 TERMINATE: Stops the traversing.

•	 SKIP_SUBTREE: Stops going deeper from the current tree level (useful only if this enum is
returned on the preVisitDirectory() method).

•	 SKIP_SIBLINGS: Skips the other directories at the same tree level as the current.

The SimpleFileVisitor class, aside from the visitFile() method, also contains the following:

•	 preVisitDirectory: Called before entering a directory to be traversed.

•	 postVisitDirectory: Called after finished traversing a directory.

•	 visitFile: Called as it visits the file, as in the example code.

•	 visitFileFailed: Called if the file cannot be visited; for example, on an I/O error.

8-10. Querying (and Setting) File Metadata
Problem
You need to get information about a particular file, such as file size, whether it is a directory, and so on. Also, you
might want to mark a file as archived in the Windows operating system or grant specific POSIX file permissions in the
*nix operating system (refer to Recipe 8-8).

Solution
Using Java NIO.2 you can obtain any file information by simply invoking methods on the java.nio.file.Files utility
class, passing the path for which you’d like to obtain the metadata. You can obtain attribute information by calling the
Files.getFileAttributeView() method, passing the specific implementation for the attribute view that you would
like to use. The following code demonstrates these techniques for obtaining metadata.
 
Path path = FileSystems.getDefault().getPath("./file2.log");
try {
 // General file attributes, supported by all Java systems
 System.out.println("File Size:"+Files.size(path));
 System.out.println("Is Directory:"+Files.isDirectory(path));
 System.out.println("Is Regular File:"+Files.isRegularFile(path));
 System.out.println("Is Symbolic Link:"+Files.isSymbolicLink(path));
 System.out.println("Is Hidden:"+Files.isHidden(path));
 System.out.println("Last Modified Time:"+Files.getLastModifiedTime(path));
 System.out.println("Owner:"+Files.getOwner(path));
 
 // Specific attribute views.
 DosFileAttributeView view = Files.getFileAttributeView(path,
 DosFileAttributeView.class);
 System.out.println("DOS File Attributes\n”);
 System.out.println(“------------------------------------\n");

Chapter 8 ■ Input and Output

201

 System.out.println("Archive :"+view.readAttributes().isArchive());
 System.out.println("Hidden :"+view.readAttributes().isHidden());
 System.out.println("Read-only:"+view.readAttributes().isReadOnly());
 System.out.println("System :"+view.readAttributes().isSystem());
 
 view.setArchive(false);
 
} catch (IOException e) {
 e.printStackTrace();
} 

How It Works
Java NIO.2 allows much more flexibility in getting and setting file attributes than older I/O techniques. NIO.2 abstracts
the different operating system attributes into both a “Common” set of attributes and an “OS Specific” set of attributes.
The standard attributes are the following:

•	 isDirectory: True if it’s a directory.

•	 isRegularFile: Returns false if the file isn’t considered a regular file, the file doesn’t exist, or it
can’t be determined whether it’s a regular file.

•	 isSymbolicLink: True if the link is symbolic (most prevalent in Unix systems).

•	 isHidden: True if the file is considered to be hidden in the operating system.

•	 LastModifiedTime: The time the file was last updated.

•	 Owner: The file’s owner per the operating system.

Also, NIO.2 allows entering the specific attributes of the underlying operating system. To do so, you first need to
get a view that represents the operating system’s file attributes (in this example, it is a DosFileAttributeView). Once
you get the view, you can query and change the OS-specific attributes.

Note■■   The AttributeView will only work for the operating system that is intended (you cannot use the
DosFileAttributeView in a *nix machine).

8-11. Monitoring a Directory for Changes
Problem
You need to keep track when a directory’s content has changed (for example, a file was added, changed, or deleted)
and act upon those changes.

Chapter 8 ■ Input and Output

202

Solution
By using a WatchService, you can subscribe to be notified about events occurring within a folder. In the following
example, we subscribe for ENTRY_CREATE, ENTRY_MODIFY, and ENTRY_DELETE events:
 
try {
 System.out.println("Watch Event, press q<Enter> to exit");
 FileSystem fileSystem = FileSystems.getDefault();
 WatchService service = fileSystem.newWatchService();
 Path path = fileSystem.getPath(".");
 System.out.println("Watching :"+path.toAbsolutePath());
 path.register(service, StandardWatchEventKinds.ENTRY_CREATE,
 StandardWatchEventKinds.ENTRY_DELETE, StandardWatchEventKinds.ENTRY_MODIFY);
 boolean shouldContinue = true;
 while(shouldContinue) {
 WatchKey key = service.poll(250, TimeUnit.MILLISECONDS);
 
 // Code to stop the program
 while (System.in.available() > 0) {
 int readChar = System.in.read();
 if ((readChar == 'q') || (readChar == 'Q')) {
 shouldContinue = false;
 break;
 }
 }
 if (key == null) continue;
 key.pollEvents().stream()
 .filter((event) -> !(event.kind() == StandardWatchEventKinds.OVERFLOW))
 .map((event) -> (WatchEvent<Path>)event).forEach((ev) -> {
 Path filename = ev.context();
 System.out.println("Event detected :"+filename.toString()+" "+ev.kind());
 });
 boolean valid = key.reset();
 if (!valid) {
 break;
 }
 }
} catch (IOException | InterruptedException e) {
 e.printStackTrace();
}
 

How It Works
NIO.2 includes a built-in polling mechanism to monitor for changes in the FileSystem. Using a poll mechanism
allows you to wait for events and poll for updates at a specified interval. Once an event occurs, you can process and
consume it. A consumed event tells the NIO.2 framework that you are ready to handle a new event.

To start monitoring a folder, create a WatchService that you can use to poll for changes. After the WatchService
has been created, register the WatchService with a path. A path symbolizes a folder in the file system. When the
WatchService is registered with the path, you define the kinds of events you want to monitor (see Table 8-2).

Chapter 8 ■ Input and Output

203

After registering the WatchService with the path, you can then “poll” the WatchService for event occurrences.
By calling the watchService.poll() method, you will wait for a file/folder event to occur on that path. Using the
watchService.poll(int timeout, Timeunit timeUnit) will wait until the specified timeout is reached before
continuing. If the watchService receives an event, or if the allowed time has passed, then it will continue execution.
If there were no events and the timeout was reached, the WatchKey object returned by the watchService.poll
(int timeout) will be null; otherwise, the WatchKey object returned will contain the relevant information for the
event that has occurred.

Because many events can occur at the same time (say, for example, moving an entire folder or pasting a bunch of
files into a folder), the WatchKey might contain more than one event. You can use the watchKey to obtain all the events
that are associated with that key by calling the watchKey.pollEvents() method.

The watchKey.pollEvents() call will return a list of watchEvents that can be iterated over. Each watchEvent
contains information on the actual file or folder to which the event refers (for example, an entire subfolder could
have been moved or deleted), and the event type (add, edit, delete). Only those events that were registered on the
WatchService will be processed. The event types you can register are listed in Table 8-2.

Once an event has been processed, it is important to call the EventKey.reset(). The reset will return a Boolean
value determining whether the WatchKey is still valid. A WatchKey becomes invalid if it is cancelled or if its originating
WatchService is closed. If the eventKey returns false, you should break from the watch loop.

8-12. Reading Property Files
Problem
You want to establish some configurational settings for your application, and you want to have the ability to modify
the settings manually or programmatically.

Solution
Create a properties file to store the application configurations. Using the Properties object, load properties stored
within the properties file for application processing. Properties can also be updated and modified within the
properties file. The following example demonstrates how to read a properties file named properties.conf, load the
values for application use, and finally set a property and write it to the file.
 
File file = new File("properties.conf");
try {
 if (!file.exists()) file.createNewFile();
} catch (IOException e) {
 e.printStackTrace();
}
 

Table 8-2.  Types of watchEvents

WatchEvent Description

OVERFLOW An event that has overflown (ignore)

ENTRY_CREATE A directory or file was created

ENTRY_DELETE A directory or file has been deleted

ENTRY_MODIFY A directory or file has been modified

Chapter 8 ■ Input and Output

204

Properties properties = new Properties();
try {
 properties.load(new FileInputStream("properties.conf"));
} catch (IOException e) {
 e.printStackTrace();
}
 
boolean shouldWakeUp = false;
int startCounter = 100;
 
String shouldWakeUpProperty = properties.getProperty("ShouldWakeup");
shouldWakeUp = (shouldWakeUpProperty == null) ? false 
Boolean.parseBoolean(shouldWakeUpProperty.trim().toLowerCase());
 
String startCounterProperty = properties.getProperty("StartCounter");
try {
 startCounter = Integer.parseInt(startCounterProperty);
} catch (Exception e) {
 System.out.println("Couldn't read startCounter, defaulting to "+startCounter);
}
String dateFormatStringProperty = properties.getProperty("DateFormatString",
 "MMM dd yy");
 
System.out.println("Should Wake up? "+shouldWakeUp);
System.out.println("Start Counter: "+startCounter);
System.out.println("Date Format String:"+dateFormatStringProperty);
 
//setting property
properties.setProperty("StartCounter","250");
try {
 properties.store(new FileOutputStream("properties.conf"),"Properties Description");
} catch (IOException e) {
 e.printStackTrace();
}
properties.list(System.out); 

How It Works
The Java Properties class helps you manage program properties. It allows you to manage the properties either via
external modification (someone editing a property file) or internally by using the Properties.store() method.

The Properties object can be instantiated either without a file or with a preloaded file. The files that the
Properties object read are in the form of [name]=[value] and are textually represented. If you need to store values in
other formats, you need to write to and read from a string.

If you are expecting the files to be modified outside the program (the user directly opens a text editor and changes
the values), be sure to sanitize the inputs; like trimming the values for extra spaces and ignoring case if need be.

To query the different properties programmatically, you call the getProperty(String) method, passing the
string-based name of the property whose value you want to retrieve. The method will return null if the property is
not found. Alternatively, you can invoke the getProperty (String,String) method, on which if the property is not
found in the Properties object, it will return the second parameter as its value. It is a good practice to specify default
values in case the file doesn’t have an entry for a particular key.

Chapter 8 ■ Input and Output

205

Upon looking at a generated property file, you will notice that the first two lines indicate the description of the
file and the date when it was modified. These two lines start with #, which in Java property files is the equivalent of a
comment. The Properties object will skip any line starting with # when processing the file.

Note■■   If you allow users to modify your configuration files directly, it is important to have validation in place when
retrieving properties from the Properties object. One of the most common issues encountered in the value of properties
is leading and/or trailing spaces. If specifying a Boolean or integer property, be sure that they can be parsed from a string.
At a minimum, catch an exception when trying to parse to survive an unconventional value (and log the offending value).

8-13. Uncompressing Compressed Files
Problem
Your application has the requirement to decompress and extract files from a compressed .zip file.

Solution
Using the Java.util.zip package, you can open a .zip file and iterate through its entries. While traversing the
entries, directories can be created for directory entries. Similarly, when a file entry is encountered, write the
decompressed file to the file .unzipped. The following lines of code demonstrate how to perform the decompress and
file iteration technique, as described.
 
ZipFile file = null;
try {
 file = new ZipFile("file.zip");
 FileSystem fileSystem = FileSystems.getDefault();
 Enumeration<? extends ZipEntry> entries = file.entries();
 String uncompressedDirectory = "uncompressed/";
 Files.createDirectory(fileSystem.getPath(uncompressedDirectory));
 while (entries.hasMoreElements()) {
 ZipEntry entry = entries.nextElement();
 if (entry.isDirectory()) {
 System.out.println("Creating Directory:" + uncompressedDirectory + entry.getName());
 Files.createDirectories(fileSystem.getPath(uncompressedDirectory +
 entry.getName()));
 } else {
 InputStream is = file.getInputStream(entry);
 System.out.println("File :" + entry.getName());
 BufferedInputStream bis = new BufferedInputStream(is);
 
 String uncompressedFileName = uncompressedDirectory + entry.getName();
 Path uncompressedFilePath = fileSystem.getPath(uncompressedFileName);
 Files.createFile(uncompressedFilePath);
 try (FileOutputStream fileOutput = new FileOutputStream(uncompressedFileName)) {
 while (bis.available() > 0) {
 fileOutput.write(bis.read());

Chapter 8 ■ Input and Output

206

 }
 }
 System.out.println("Written :" + entry.getName());
 }
 }
} catch (IOException e) {
 e.printStackTrace();
} 

How It Works
To work with the contents of a .Zip archive, create a ZipFile object. A ZipFile object can be instantiated, passing
the name of a .zip archive to the constructor. After creating the object, you gain access to the specified.zip file
information. Each ZipFile object will contain a collection of entries that represent the directories and files contained
within the archive, and by iterating through the entries you can obtain information on each of the compressed files.
Each ZipEntry instance will have the compressed and uncompressed size, the name, and the input stream of the
uncompressed bytes.

The uncompressed bytes can be read into a byte buffer by generating an InputStream, and later (in our case)
written to a file. Using the FileStream, it is possible to determine how many bytes can be read without blocking
the process. Once the determined number bytes has been read, then those bytes are written to the output file. This
process continues until the total number of bytes has been read.

Note■■  R eading the entire file into memory may not be a good idea if the file is extremely large. If you need to work
with a large file, it’s best to first write it in an uncompressed format to disk (as in the example) and then open it and load
it in chunks. If the file that you are working on is not large (you can limit the size by checking the getSize() method), you
can probably load it in memory.

Summary
This chapter demonstrated several examples for working with file and network I/O in Java 8. You learned how to
serialize files so that they could be stored to disk, and also how to manipulate a host’s file system with the Java APIs.
The chapter also covered how to read and write property files, and perform file compression.

207

Chapter 9

Exceptions and Logging

Exceptions are a way of describing exceptional circumstances within a program. They are an indicator that something
unexpected (exceptional) has occurred. For that reason, exceptions are efficient at interrupting the current flow of
the program and signaling that there is something that requires attention. As such, programs that utilize exceptions
judiciously benefit from a better control flow and become more robust. Even so, using exceptions indiscriminately can
cause performance degradation.

Within Java, exceptions can be thrown or caught. Throwing an exception involves telling the code that you
have encountered an exception, using the throw keyword to signal the JVM to find any code capable of handling
this exceptional circumstance within the current stack. Catching an exception involves telling the compiler which
exceptions you can handle, and on which part of the code you want to monitor for these exceptions to occur. This is
denoted within the try/catch Java block (described in Recipe 9-1)

All exceptions inherit from Throwable, as shown in Figure 9-1. Classes that are inherited from Throwable can
be defined in the catch clause of a try/catch statement. The Error classes are primarily used by the JVM to denote
serious and/or fatal errors. According to the Java documentation, applications are not expected to catch Error
exceptions since they are considered fatal (think of a computer being on fire). The bulk of exceptions within a Java
program will be inherited from the Exception class.

Throwable

Error Exception

Runtime Exception

Arithmetic Exception FileNotFound Exception

IO Exception

Figure 9-1.  Part of the exception class hierarchy in Java

Chapter 9 ■ Exceptions and Logging

208

Within the JVM there are two types of exceptions: checked and unchecked. Checked exceptions are enforced by
methods. In the method signature, you can specify the kind of exceptions a method can throw. This requires any caller of
the method to create a try/catch block, which handles the exceptions that were declared within the method signature.
Unchecked exceptions do not require such a stringent convention, and are free to be thrown anywhere without
enforcing the implementation of a try/catch block. Even so, unchecked exceptions (as described in Recipe 9-6) are
usually discouraged because they can lead to threads unraveling (if nothing catches the exception) and poor visibility of
problems. Exception classes that inherit from RuntimeException are considered to be unchecked exceptions, whereas
exception classes that inherit directly from Exception are considered to be checked exceptions.

Be aware that the act of throwing exceptions is expensive (compared with other language construct
alternatives), and as such throwing exceptions makes a poor substitute for control flow. For example, you shouldn’t
throw an exception to indicate an expected result of a method call (say a method like isUsernameValid (String
username). It is a better practice to call the method and return a boolean with the result than try to throw an
InvalidUsernameException to indicate failure.

While exceptions play an essential role in solid software development, logging of exceptions can be just as
important. Logging within an application helps the developer understand what events are occurring without the
need for debugging the code. This is especially true in production environments where there isn’t the opportunity
for live debugging. In that sense, logging collects clues on what is occurring (most likely what went wrong) and helps
you troubleshoot production problems. Many developers choose to utilize a structured logging framework to provide
more robust logging for an application. A solid logging framework with a sound methodology will save many late
nights at work wondering, “what happened?”

Logging for Java is very mature. There are many open source projects that are widely accepted as the de facto
standard for logging. In the recipes in this chapter, you will use Java’s Logging framework and the Simple Logging Façade
for Java (SLF4). Both of these projects together create a good-enough solution for most logging needs. For the recipes
involving SLF4J and Log4j, download SLF4J (http://www.slf4j.org/) and put it in your project’s dependency path.

9-1. Catching Exceptions
Problem
You want to gracefully handle any exceptions generated from your code.

Solution
Use the built-in try/catch language construct to catch exceptions. Do so by wrapping any blocks of code that may
throw an exception within a try/catch block. In the following example, a method is used to generate a Boolean value
to indicate whether a specified string is greater than five characters long. If the string that’s passed as an argument is
null, a NullPointerException is thrown by the length() method and caught within the catch block.
 
private void start() {
 System.out.println("Is th string 1234 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("1234"));
 System.out.println("Is th string 12345 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("12345"));
 System.out.println("Is th string 123456 longer than 5 chars?:"+
 isStringShorterThanFiveCharacters("123456"));
 System.out.println("Is th string null longer than 5 chars?:"+
 isStringShorterThanFiveCharacters(null));
 
}
 

http://www.slf4j.org/

Chapter 9 ■ Exceptions and Logging

209

private boolean isStringShorterThanFiveCharacters(String aString) {
 try {
 return aString.length() > 5;
 } catch (NullPointerException e) {
 System.out.println("An Exception Occurred!");
 return false;
 }
} 

How It Works
The try keyword specifies that the enclosed code segment have the potential to raise an exception. The catch clause
is placed at the end of the try clause. Each catch clause specifies which exception is being caught. If a catch clause is
not provided for a checked exception, the compiler will generate an error. Two possible solutions are to add a catch
clause or to include the exception in the throws clause of the enclosing method. Any checked exceptions that are
thrown but not caught will propagate up the call stack. If this method doesn’t catch the exception, the thread that
executed the code terminates. If the thread terminating is the only thread in the program, it terminates the execution
of the program.

If a try clause needs to catch more than one exception, more than one catch clause can be specified.
For instance, the following try/catch block could be used for catching both a NumberFormatException and a
NullPointerException.
 
try {
 // code here
} catch (NumberFormatException|NullPointerException ex) {
 // logging
 
}
 

For more information regarding catching multiple exceptions, see Recipe 9-4.

Note■■   Be careful when throwing an exception. If the thrown exception is not caught, it will propagate up the
call stack; and if there isn’t any catch clause capable of handling the exception, it will cause the running thread to
terminate (also known as unraveling). If your program has only one main thread, an uncaught exception will terminate
your program.

9-2. Guaranteeing A Block Of Code is Executed
Problem
You want to write code that executes when control leaves a code segment, even if control leaves due to an error being
thrown or the segment ending abnormally. For example, you have acquired a lock and want to be sure that you are
releasing it correctly. You want to release the lock in the event of an error and also in the event of no error.

Chapter 9 ■ Exceptions and Logging

210

Solution
Use a try/catch/finally block to properly release locks and other resources that you acquire in a code segment.
Place the code that you want to have executed regardless of exceptions into the finally clause. In the example, the
finally keyword specifies a code block that will always execute, regardless of whether an exception was thrown in the
try block. Within the finally block, the lock is released by calling lock.unlock():
 
private void callFunctionThatHoldsLock() {
 myLock.lock();
 try {
 int number = random.nextInt(5);
 int result = 100 / number;
 System.out.println("A result is " + result);
 FileOutputStream file = new FileOutputStream("file.out");
 file.write(result);
 file.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 myLock.unlock();
 }
} 

How It Works
Code that is placed within the finally clause of a try/catch/finally block will always be executed. In this example,
by acquiring the lock at the beginning of the function and then releasing it in the finally block, you guarantee that
the lock will be released at the end of the function regardless of whether an exception (checked or unchecked) is
thrown. In all, acquired locks should always be released in a finally block. In the example, suppose that the
mylock.unlock() function call were not in the finally block (but at the end of the try block); if an exception were to
happen, the call to mylock.unlock() would not happen because code execution would be interrupted in the location
where the exception happened. In that case, the lock would be forever acquired and never released.

Caution■■  I f you need to return a value on a method, be very careful of returning values in the finally block.
 A return statement in the finally block will always execute, regardless of any other return statements that might
have happened within the try block.

9-3. Throwing Exceptions
Problem
You want to abort the execution of the current code path by throwing an exception if a certain situation occurs within
your application.

Chapter 9 ■ Exceptions and Logging

211

Solution
Use the throw keyword to throw a specified exception when the situation occurs. Using the throw keyword, you can
signal the current thread to look for try/catch blocks (at the current level and up the stack), which can process the
thrown exception. In the following example, the callSomeMethodThatMightThrow throws a NullPointerException if
the parameter passed in is null.
 
private void start() {
 try {
 callSomeMethodThatMightThrow(null);
 } catch (IllegalArgumentException e) {
 System.out.println("There was an illegal argument exception!");
 }
 
}
 
private void callSomeFunctionThatMightThrow(Object o) {
 if (o == null) throw new NullPointerException("The object is null");
 
}
 

In this code example, the method callSomeMethodThatMightThrow checks to ensure that a valid argument was
passed to it. If the argument is null, it then throws a NullPointerException, signaling that the caller of this method
did it with the wrong parameters.

How It Works
The throw keyword allows you to explicitly generate an exceptional condition. When the current thread throws an
exception, it doesn’t execute anything beyond the throw statement and instead transfers control to the catch clause
(if there are any) or terminates the thread.

Note■■   When throwing an exception, be sure that you really want to throw it. If an exception is not caught as it
propagates up the stack, it will terminate the thread that is executing (also known as unraveling). If your program has
only one main thread, an uncaught exception will terminate your program.

9-4. Catching Multiple Exceptions
Problem
A block of code in your application has the tendency to throw multiple exceptions. You want to catch each of the
exceptions that may occur within a try block.

Solution 1
More than one catch clause can be specified in situations where multiple exceptions occur within the same block.
Each catch clause can specify a different exception to handle, so that each exception can be handled in a different
manner. In the following code, two catch clauses are used to handle an IOException and a ClassNotFoundException.
 

Chapter 9 ■ Exceptions and Logging

212

try {
 Class<?> stringClass = Class.forName("java.lang.String");
 FileInputStream in = new FileInputStream("myFile.log") ; // Can throw IOException
 in.read();
 
} catch (IOException e) {
 System.out.println("There was an IOException "+e);
} catch (ClassNotFoundException e) {
 System.out.println("There was a ClassCastException "+e);
} 

Solution 2
If your application has the tendency to throw multiple exceptions within a single block, then a vertical bar operator
(|) can be utilized for handling each of the exceptions in the same manner. In the following example, the catch clause
specifies multiple exception types separated with a vertical bar (|) to handle each of the exceptions in the same manner.
 
try {
 Class<?> stringClass = Class.forName("java.lang.String");
 FileInputStream in = new FileInputStream("myFile.log") ; // Can throw IOException
 in.read();
  
} catch (IOException | ClassNotFoundException e) {
 System.out.println("An exception of type "+e.getClass()+" was thrown! "+e);
}
 

How It Works
There are a couple of different ways to handle situations where multiple exceptions may be thrown. You can specify
separate catch clauses to handle each of the exceptions in a different way. To handle each of the exceptions in the
same manner, you can utilize a single catch clause and specify each exception separated with a vertical bar operator.

Note■■  I f you’re catching an exception in multiple catch blocks (Solution 1), make sure that the catch blocks are
defined from the most specific to the most general. Failure to follow this convention will prevent an exception from being
handled by the more specific blocks. This is most important when there are catch (Exception e) blocks, which catch
almost all exceptions.

Having a catch (Exception e) block—called a catch-all or Pokémon® exception handler (gotta catch them
all)—is usually poor practice because such a block will catch every exception type and treat them all the same. This
becomes a problem because the block can catch other exceptions that may occur deeper within the call stack that you
may not have intended the block to catch (an OutOfMemoryException). It is a best practice to specify each possible
exception, rather than specifying a catch-all exception handler to catch all exceptions.

Chapter 9 ■ Exceptions and Logging

213

9-5. Catching the Uncaught Exceptions
Problem
You want to know when a thread is being terminated due to an uncaught exception such as a NullPointerException.

Solution 1
When creating a Java thread, sometimes you need to ensure that any exception is caught and handled properly to help
determine the reason for the thread termination. To that effect, Java allows you to register an ExceptionHandler()
either per thread or globally. The following code demonstrates an example of registering an exception handler on a
per-thread basis.
 
private void start() {
 Thread.setDefaultUncaughtExceptionHandler((Thread t, Throwable e) -> {
 System.out.println("Woa! there was an exception thrown somewhere! "+t.getName()+": "+e);
 });
 
 final Random random = new Random();
 for (int j = 0; j < 10; j++) {
 int divisor = random.nextInt(4);
 System.out.println("200 / " + divisor + " Is " + (200 / divisor));
 }
}
 

The for loop in this thread will execute properly until an exception is encountered, at which time the
DefaultUncaughtExceptionHandler will be invoked. UncaughtExceptionHandler is a functional interface, so it is
possible to utilize a lambda expression to implement the exception handler.

Solution 2
It is possible to register an UncaughtExceptionHandler on a specific thread. After doing so, any exception that
occurs within the thread and that has not been caught will be handled by the uncaughtException() method of the
UncaughtExceptionHandler(). For example:
 
private void startForCurrentThread() {
 Thread.currentThread().setUncaughtExceptionHandler((Thread t, Throwable e) -> {
 System.out.println("In this thread "+t.getName()+" an exception was thrown "+e);
 });
 
 Thread someThread = new Thread(() -> {
 System.out.println(200/0);
 });
 someThread.setName("Some Unlucky Thread");
 someThread.start();
 
 System.out.println("In the main thread "+ (200/0));
}
 

Chapter 9 ■ Exceptions and Logging

214

In the previous code, an UncaughtExceptionHandler is registered on the currentThread. Just like Solution 1,
UncaughtExceptionHandler is a functional interface, so it is possible to utilize a lambda expression to implement the
exception handler.

How It Works
The Thread.defaultUncaughtExceptionHandler() will be invoked for each unchecked exception that has not been
caught. When the UncaughtExceptionHandler() handles an exception, it means that there was no try/catch block
in place to catch the exception. As such, the exception bubbled all the way up the thread stack. This is the last code
executed on that thread before it terminates. When an exception is caught on either the thread’s or the default’s
UncaughtExceptionHandler(), the thread will terminate. The UncaughtExceptionHandler() can be used to log
information on the exception to help pinpoint the reason of the exception.

In the second solution, the UncaughtExceptionHandler() is set up specifically for the current thread. When the
thread throws an exception that is not caught, it will bubble up to the UncaughtExceptionHandler() of the thread.
If this is not present, it will bubble up to the defaultUncaughtExceptionHandler(). Again, in either situation, the
thread originating the exception will terminate.

Tip■■   When dealing with multiple threads, it is always good practice to explicitly name the threads. It makes life easier
to know exactly which thread caused the exception, rather than having to trace down an unknown thread named like
Thread-## (the default naming pattern of unnamed threads).

9-6. Managing Resources with try/catch Blocks
Problem
In the event of an exception, you need to ensure that any resources used within a try/catch block are released.

Solution
Make use of the Automatic Resource Management (ARM) feature, which can be specified with a try-with-resources
statement. When using a try-with-resources statement, any resources that are specified within the try clause are
automatically released when the block terminates. In the following code, the FileOutputStream, BufferedOutputStream,
and DataOutputStream resources are automatically handled by the try-with-resources block.
 
try (
 FileOutputStream fos = new FileOutputStream("out.log");
 BufferedOutputStream bos = new BufferedOutputStream(fos);
 DataOutputStream dos = new DataOutputStream(bos)
) {
 dos.writeUTF("This is being written");
} catch (Exception e) {
 System.out.println("Some bad exception happened ");
}
 

Chapter 9 ■ Exceptions and Logging

215

How It Works
In most cases, you want to cleanly close/dispose of resources that are acquired within a try/catch block after the
block execution is complete. If a program does not close/dispose of its resources or does so improperly, the resources
could be acquired indefinitely, causing issues such as memory leaks to occur. Most resources are limited (file handles
or database connections), and as such will cause performance degradation (and more exceptions to be thrown).
To avoid these situations, Java provides a way of automatically releasing resources when an exception occurs within a
try/catch block. By declaring a try-with-resources block, the resource on which the try block was checked will be
closed if there is an exception thrown within the block. Most of the resources that are built into Java will work properly
within a try-with-resources statement (for a full list, see implementers of the java.lang.AutoCloseable interface).
Also, third-party implementers can create resources that will work with the try-with-resources statements by
implementing the AutoCloseable interface.

The syntax for the try-with-resources statement involves the try keyword, followed by an opening parenthesis
and then followed by all the resource declarations that you want to have released in the event of an exception or when
the block completes, and ending with a closing parenthesis. Note that if you try to declare a resource/variable that
doesn’t implement the AutoCloseable interface, you will receive a compiler error. After the closing parenthesis, the
syntax of the try/catch block is the same as a normal block.

The main advantage of the try-with-resources feature is that it allows a cleaner release of resources. Usually
when acquiring a resource, there are a lot of interdependencies (creating file handlers, which are wrapped in output
streams, which are wrapped in buffered streams). Properly closing and disposing of these resources in exceptional
conditions requires checking the status of each dependent resource and carefully disposing of it, and doing so
requires that you write a lot of code. By contrast, the try-with-resources construct allows the JVM to take care of
proper disposal of resources, even in exceptional conditions.

Note■■  A try-with-resources block will always close the defined resources, even if no exceptions were thrown.

9-7. Creating an Exception Class
Problem
You want to create a new type of exception that can be used to indicate a particular event.

Solution 1
Create a class that extends java.lang.RuntimeException to create an exception class that can be thrown at any time.
In the following code, a class identified by IllegalChatServerException extends RuntimeException and accepts a
string as an argument to the constructor. The exception is then thrown when a specified event occurs within the code.
 
class IllegalChatServerException extends RuntimeException {
 IllegalChatServerException(String message) {
 super(message);
 }
}
 
private void disconnectChatServer(Object chatServer) {
 if (chatServer == null) throw new IllegalChatServerException("Chat server is empty");
}
 

Chapter 9 ■ Exceptions and Logging

216

Solution 2
Create a class that extends java.lang.Exception to generate a checked exception class. A checked
exception is required to be caught or re-thrown up the stack. In the following example, a class identified as
ConnectionUnavailableException extends java.lang.Exception and accepts a string as an argument to the
constructor. The checked exception is then thrown by a method in the code.
 
class ConnectionUnavailableException extends Exception {
 ConnectionUnavailableException(String message) {
 super(message);
 }
}
 
private void sendChat(String chatMessage) throws ConnectionUnavailableException {
 if (chatServer == null)
 throw new ConnectionUnavailableException("Can't find the chat server");
} 

How It Works
Sometimes there is a requirement to create custom exceptions, especially in situations when you’re creating an
API. The usual recommendation is to use one of the available Exception classes provided by the JDK. For example,
use IOException for IO-related issues or the IllegalArgumentException for illegal parameters. If there isn’t a JDK
exception that fits cleanly, you can always extend java.lang.Exception or java.lang.RuntimeException and
implement its own family of exceptions.

Depending on the base class, creating an Exception class is fairly straightforward. Extending RuntimeException
allows you to be able to throw the resulting exception any time without requiring it to be caught up the stack. This
is advantageous in that RuntimeException is a more lax contract to work with, but throwing such an exception can
lead to thread termination if the exception is not caught. Extending Exception instead allows you to clearly force any
code that throws the exception to be able to handle it within a catch clause. The checked exception is then forced by
contract to implement a catch handler, potentially avoiding a thread termination.

In practice, we discourage extending RuntimeException because it can lead to poor exception handling.
Our rule of thumb is that if it’s possible to recover from an exception, you should create the associated exception
class by extending Exception. If a developer cannot reasonably be expected to recover from the exception (say a
NullPointerException), then extend RuntimeException.

9-8. Rethrowing the Caught Exception
Problem
Your application contains a multi-catch exception, and you want to re-throw an exception that was previously caught.

Solution
Throw the exception from a catch block, and it will rethrow it on the same type as it was caught. In the following
example, exceptions are caught within a block of code and rethrown to the method’s caller.
 

Chapter 9 ■ Exceptions and Logging

217

private void doSomeWork() throws IOException, InterruptedException {
 LinkedBlockingQueue<String> queue = new LinkedBlockingQueue<>();
 
 try {
 FileOutputStream fos = new FileOutputStream("out.log");
 DataOutputStream dos = new DataOutputStream(fos);
 while (!queue.isEmpty()) {
 dos.writeUTF(queue.take());
 }
 } catch (InterruptedException | IOException e) {
 e.printStackTrace();
 throw e;
 }
 
}
 

How It Works
It is possible to simply throw the exception that has been previously caught, and the JVM will bubble the exception
to the appropriate type. Note that you’re if throwing a checked exception, it must also be defined in the method
declaration.

9-9. Logging Events Within Your Application
Problem
You want to log events, debug messages, error conditions, and other events within your application.

Solution
Utilize SLF4J within your application, along with the Java Logging API, to implement a logging solution. The
following example first creates a logger object with the name of recipeLogger. The example then proceeds to
log an informational message, a warning message, and an error message:
 
private void loadLoggingConfiguration() {
 FileInputStream ins = null;
 try {
 ins = new FileInputStream(new File("logging.properties"));
 LogManager.getLogManager().readConfiguration(ins);
 } catch (IOException e) {
 e.printStackTrace();
 }
}
private void start() {
 loadLoggingConfiguration();
 Logger logger = LoggerFactory.getLogger("recipeLogger");
 logger.info("Logging for the first Time!");
 logger.warn("A warning to be had");
 logger.error("This is an error!");
}
 

Chapter 9 ■ Exceptions and Logging

218

How It Works
The loadLogConfiguration() function opens a stream to the logging.properties file and passes it to java.util.
logging.LogManager(). Doing so configures the java.util.logging framework to use the settings specified in the
logging.properties file. Then, within the start method of the recipe, the code acquires a logger object named
recipeLogger. The example proceeds to log messages to through recipeLogger. More information on the actual
logging parameters can be found in Recipe 9-10.

SLF4J provides a common API using a simple facade pattern that abstracts the underlying logging
implementation. SLF4J can be used with most of the common logging frameworks, such as the Java Logging API
(java.util.logging), Log4j, Jakarta Commons Logging, and others. In practice, SLF4J provides the flexibility to
choose (and swap) logging frameworks and allows projects that use SLF4J to quickly become integrated into an
application’s selected logging framework.

To use SLF4J in an application, download the SLF4J binaries located at http://www.slf4j.org/. Once they’re
downloaded, extract the contents and add slf4j-api-x.x.x.jar to the project. This is the main .jar file that
contains the SLF4J API (on which a program can call to log information). After adding the slf4j-api-x.x.x.jar file
to the project, find slf4j-jdk14-x.x.x.jar and add that to the project. This second file indicates that SLF4j will use
the java.util.logging classes to log information.

The way SLF4J works is that at runtime SLF4J scans the class path and picks the first .jar that implements the
SLF4J API. In the example case, the slf4j-jdk14-x.x.x.jar is found and loaded. This .jar represents the native
Java Logging Framework (known as jdk.1.4 logging). If, for example, you wanted to use another logging framework,
replace slf4j-jdk14-x.x.x.jar with the corresponding SLF4J implementation for the desired logger. For example, to
use Apache’s Log4J logging framework, include slf4j-log4j12-x.x.x.jar.

Note■■  T he java.util.logging framework is configured by the properties log file.

Once SLF4J is configured, you can log information in your application by calling the SLF4J logging methods. The
methods log information depending on the logging level. The logging level can then be used to filter which messages
are actually logged. The ability to filter messages by log level is useful because there may be a lot of informational
or debugging information being logged. If there is the need to troubleshoot an application, the logging level can
be changed, and more information can be made visible in the logs without changing any code. The ability to filter
messages through their level is referred to as setting the log level. Each logging framework reference contains its
own configuration file that sets the log level (among other things, such as the logging file name and logging-file
configurations). In the example case, because SLF4j is using the java.util.logging framework to log, you would
need to configure the java.util.logging properties for the desired logging. See Table 9-1.

Table 9-1.  Logging Levels

Logging Level Recommendation

Trace Least important of the logging events

Debug Use for extra information that helps with debugging

Info Use for everyday logging messages

Warn Use for recoverable issues, or where the suspicions of a wrong setting/nonstandard
behavior happens

Error Use for exceptions, actual errors, and things that you really need to know

Fatal Most important

http://www.slf4j.org/

Chapter 9 ■ Exceptions and Logging

219

Note■■   When setting the log level, loggers will log at that level and below. Therefore, if a logging configuration sets the
log level to info, messages at the Info, Warn, Error, and Fatal levels will be logged.

9-10. Rotating and Purging Logs
Problem
You have started to log information, but the information logged continues growing out of control. You would like to
keep only the last 250KB worth of log entries within your log files.

Solution
Use SLF4J with java.util.logging to configure rolling logs. In this example, a logger named recipeLogger is used to
log many messages. The output will produce rolled log files with the most recent logged information in the important
Log0.log file.
 
 loadLoggingConfiguration();
 
 Logger logger = LoggerFactory.getLogger("recipeLogger");
 logger.info("Logging for the first Time!");
 logger.warn("A warning to be had");
 logger.error("This is an error!");
 
 Logger rollingLogger = LoggerFactory.getLogger("rollingLogger");
 for (int i =0;i < 5000;i++) {
 rollingLogger.info("Logging for an event with :"+i);
 }
 
logging.properties file
 
handlers = java.util.logging.FileHandler
 
recipeLogger.level=INFO
 
.level=ALL
 
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.FileHandler.pattern=importantLog%g.log
java.util.logging.FileHandler.limit=50000
java.util.logging.FileHandler.count=4 

How It Works
To control the size of log files, configure the java.util.logging framework and specify rolling log files. Choosing
the rolling log files option causes the latest information to be kept in ImportantApplication0.log. Progressively
older information will be in ImportantApplication1.log, ImportantApplication2.log, and so forth. When
ImportantApplication0.log fills to the limit you specify (50,000 bytes in this example), its name will be rotated to

Chapter 9 ■ Exceptions and Logging

220

ImportantApplicationLog1.log, and the other files will have their names similarly rotated downward. The number
of log files to maintain is determined by the java.util.logging.FileHandler.count property, which is set to 4 in this
recipe’s example.

The logging.properties file begins by defining the handlers that the java.util.logging framework will use.
Handlers are objects that take care of logging messages. FileHandler is specified in the recipe, which logs messages
to files. Other possible handlers are the ConsoleHandler (logs to the system.output device), SocketHandler (logs to a
socket), and MemoryHandler (keeps logs in a circular buffer in memory). There is also the possibility of specifying your
own handler implementation by creating a class that extends the Handler abstract class.

Next, the logging levels are defined. Within a logging framework there is the concept of separate logger objects.
A logger can carry different configurations (for example, different logging levels) and can be identified in the log file.
The example configures the recipeLogger’s level to info, whereas the root logger’s level is ALL (root loggers in the
java.util.logging framework are denoted by not having any prefix before the property).

The next section of the logging.properties file defines the FileHandler configuration. The formatter indicates
how the log information will be written to disk. The simpleFormatter writes the information as plain text, with a line
indicating the date and time, a line with the logging level, and the message to be logged. The other default choice for
the formatter is XMLFormatter, which will create XML markup containing the date, time, logger name, level, thread, and
message information for each log event. You can create custom formatters by extending the Formatter abstract class.

Following the formatter, the fileHandler pattern is defined. This specifies the file name and location of the log
files (the %d is replaced by the rolling log number [0 ~ 4]). The Limit property defines how many bytes the log can have
before rolling over (50,000 bytes ~ 50kb). The count defines the maximum index of log files to keep (in this recipe’s
case, it’s 4).

Note■■   Logging can be expensive; if you are logging a lot of information, your Java program will start consuming
memory (as the java.util.logging framework will try to keep all the information that needs to be written to disk
in-memory until it can be flushed). If the java.util.logging framework cannot write the log file as fast as log entries
are created, you will run into OutOfMemory errors. The best approach is to log only the necessary information, and,
if needed, check to see Logger.isDebugEnabled() before writing out debugging log messages. The logging level can be
changed from the logging configuration file.

9-11. Logging Exceptions
From the previous recipes you learned how to catch exceptions and how to log information. This recipe will put these
two recipes together.

Problem
You want to record exceptions in your log file.

Solution
Configure your application to use SLF4J. Utilize try/catch blocks to log exceptions within the error log. In the
following example, an SLF4J Logger is used to log messages from within an exception handler.
 
static Logger rootLogger = LoggerFactory.getLogger("");
private void start() {
 loadLoggingConfiguration();

Chapter 9 ■ Exceptions and Logging

221

 Thread.setDefaultUncaughtExceptionHandler((Thread t, Throwable e) -> {
 rootLogger.error("Error in thread "+t+" caused by ",e);
 });
 
 int c = 20/0;
}
private void loadLoggingConfiguration() {
 FileInputStream ins = null;
 try {
 ins = new FileInputStream(new File("logging.properties"));
 LogManager.getLogManager().readConfiguration(ins);
 } catch (IOException e) {
 e.printStackTrace();
 }
} 

How It Works
The example demonstrates how to use an UncaughtExceptionHandler in conjunction with SLF4J to log exceptions
to a logging file. When logging an exception, it is good to include the stack trace showing where the exception was
thrown. In the example, a thread contains an UncaughtExceptionHandler, which utilizes a lambda expression
containing a logger. The logger is used to write any caught exceptions to a log file.

Note■■  I f an exception is thrown repeatedly, the JVM tends to stop populating the stack trace in the Exception object.
This is done for performance reasons because retrieving the same stack trace becomes expensive. If this happens, you
will see an exception with no stack trace being logged. When that happens, check the log’s previous entries and see
whether the same exception was thrown. If the same exception has been thrown previously, the full stack trace will be
present on the first logged instance of the exception.

223

Chapter 10

Concurrency

Concurrency is one of the toughest topics to handle in modern computer programming; understanding concurrency
requires the capacity of thinking abstractly, and debugging concurrent problems is like trying to pilot an airplane by
dead reckoning. Even so, with modern releases of Java, it has become easier (and more accessible) to write bug-free
concurrent code.

Concurrency is the ability of a program to execute different (or the same) instructions at the same time.
A program that is said to be concurrent has the ability to be split up and run on multiple CPUs. By making concurrent
programs, you take advantage of today’s multicore CPUs. You can even see benefit on single-core CPUs that are I/O
intensive.

In this chapter, we present the most common need for concurrency tasks—from running a background task
to splitting a computation into work units. Throughout the chapter, you will find the most up-to-date recipes for
accomplishing concurrency in Java 8.

10-1. Starting a Background Task
Problem
You have a task that needs to run outside of your main thread.

Solution
Create a class implementation that includes the task that needs to be run in a different thread. Implement a Runnable
interface in the task implementation class and start a new Thread. In the following example, a counter is used to
simulate activity, as a separate task is run in the background.

Note■■   The code in this example could be refactored to utilize method references (see Chapter 6), rather than creating
an inner class for the new Thread implementation. However for clarity, the anonymous inner class has been shown.

 private void someMethod() {
 Thread backgroundThread = new Thread(new Runnable() {
 public void run() {
 doSomethingInBackground();
 }
 },"Background Thread");
 
 System.out.println("Start");
 backgroundThread.start();

Chapter 10 ■ Concurrency

224

 for (int i= 0;i < 10;i++) {
 System.out.println(Thread.currentThread().getName()+": is counting "+i);
 }
 
 System.out.println("Done");
}
 
private void doSomethingInBackground() {
 System.out.println(Thread.currentThread().getName()+
 ": is Running in the background");
}
 

If the code is executed more than once, the output should be different from time to time. The background thread
will execute separately, so its message is printed at a different time across each run.

The same code for creating the background thread can be written as follows if you’re using lambda expressions:
 
Thread backgroundThread = new Thread(this::doSomethingInBackground, "Background Thread"); 

How It Works
The Thread class allows executing code in a new thread (path of execution), distinct from the current thread. The
Thread constructor requires as a parameter a class that implements the Runnable interface. The Runnable interface
requires the implementation of only one method: public void run(). Hence, it is a functional interface, which
facilitates the use of lambda expressions. When the Thread.start() method is invoked, it will in turn create the new
thread and invoke the run() method of the Runnable.

Within the JVM are two types of threads: User and Daemon. User threads keep executing until their run()
method completes, whereas Daemon threads can be terminated if the application needs to exit. An application exits if
there are only Daemon threads running in the JVM. When you start to create multithreaded applications, you must be
aware of these differences and understand when to use each type of thread.

Usually, Daemon threads will have a Runnable interface that doesn’t complete; for example a while (true) loop.
This allows these threads to periodically check or perform a certain condition throughout the life of the program, and
be discarded when the program is finished executing. In contrast, User threads, while alive, will execute and prevent
the program from terminating. If you happen to have a program that is not closing and/or exiting when expected,
you might want to check the threads that are actively running.

To set a thread as a Daemon thread, use thread.setDaemon(true) before calling the thread.start() method.
By default, Thread instances are created as User thread types.

Note■■   This recipe shows the simplest way to create and execute a new thread. The new thread created is a User
thread, which means that the application will not exit until both the main thread and the background thread are
done executing.

10-2. Updating (and Iterating) a Map
Problem
You need to update a Map object from multiple threads, and you want to make sure that the update doesn’t break the
contents of the Map object and that the Map object is always in a consistent state. You also want to traverse (look at)
the content of the Map object while other threads are updating the Map object.

Chapter 10 ■ Concurrency

225

Solution
Use a ConcurrentMap to update Map entries. The following example creates 1,000 threads. Each thread then tries to
modify the Map at the same time. The main thread waits for a second, and then proceeds to iterate through the Map
(even when the other threads are still modifying the Map):
 
Set<Thread> updateThreads = new HashSet<>();
 
private void start() {
 ConcurrentMap<Integer,String> concurrentMap = new ConcurrentHashMap<>();
 for (int i =0;i < 1000;i++) {
 startUpdateThread(i, concurrentMap);
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 concurrentMap.entrySet().stream().forEach((entry) -> {
 System.out.println("Key :"+entry.getKey()+" Value:"+entry.getValue());
 });
 
 updateThreads.stream().forEach((thread) -> {
 thread.interrupt();
 });
}
 
Random random = new Random();
private void startUpdateThread(int i, final ConcurrentMap<Integer, String> concurrentMap) {
 Thread thread = new Thread(() -> {
 while (!Thread.interrupted()) {
 int randomInt = random.nextInt(20);
 concurrentMap.put(randomInt, UUID.randomUUID().toString());
 }
 });
 thread.setName("Update Thread "+i);
 updateThreads.add(thread);
 thread.start();
} 

How It Works
For performing work on a HashTable in a concurrent manner, ConcurrentHashMap allows multiple threads to modify
the HashTable concurrently and safely. ConcurrentHashMap is a HashTable supporting full concurrency for retrievals,
and high concurrency for updates. In the example, 1,000 threads make modifications to the Map over a short period
of time. The ConcurrentHashMap iterator, as well as streams that are generated on a ConcurrentHashMap, allows safe
iteration over its contents. When using the ConcurrentMap’s iterator, you do not have to worry about locking the
contents of the ConcurrentMap while iterating over it (and it doesn’t throw ConcurrentModificationExceptions).

For a complete list of the newly added methods, refer to the online documentation at
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html.

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Chapter 10 ■ Concurrency

226

Note■■   ConcurrentMap iterators, while thread-safe, don’t guarantee that you will see entries added/updated after the
iterator was created.

10-3. Inserting a Key into a Map Only if the Key Is not
Already Present
Problem
A Map within your application is continuously being updated, and you need to put a key/value pair into it if the key
does not already exist. Therefore, you need to check for the key’s presence, and you need assurance that some other
thread doesn’t insert the same key in the meantime.

Solution
Using the ConcurrentMap.putIfAbsent() method, you can determine whether the map was modified atomically.
For example, the following code uses the method to check and insert in a single step, thus avoiding the concurrency
problem:
 
private void start() {
 ConcurrentMap<Integer, String> concurrentMap = new ConcurrentHashMap<>();
 for (int i = 0; i < 100; i++) {
 startUpdateThread(i, concurrentMap);
 }
 
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 
 concurrentMap.entrySet().stream().forEach((entry) -> {
 System.out.println("Key :" + entry.getKey() + " Value:" + entry.getValue());
 });
 
}
 
Random random = new Random();
 
private void startUpdateThread(final int i, final ConcurrentMap<Integer, String> concurrentMap) {
 Thread thread = new Thread(() -> {
 int randomInt = random.nextInt(20);
 String previousEntry = concurrentMap.putIfAbsent(randomInt, "Thread # " + i +
 " has made it!");
 if (previousEntry != null) {
 System.out.println("Thread # " + i + " tried to update it but guess what,
 we're too late!");

Chapter 10 ■ Concurrency

227

 } else {
 System.out.println("Thread # " + i + " has made it!");
 }
 });
 thread.start();
}
 

When running the program, some of the entries will be successfully inserted, while others will not because the
key has already been inserted by another thread.

How It Works
Updating a Map concurrently is difficult because it involves two operations: a check-then-act type of operation. First,
the Map has to be checked to see whether an entry already exists in it. If the entry doesn’t exist, you can put the key
and the value into the Map. On the other hand, if the key exists, the value for the key is retrieved. To do so, we use
the ConcurrentMap’s putIfAbsent atomic operation. This ensures that either the key was present so the value is not
overwritten, or the key was not present and so the value is set. For the JDK implementations of ConcurrentMap, the
putIfAbsent() method will return null if there was no value for the key or return the current value if the key has a
value. By asserting that the putIfAbsent() method returns null, you are assured that the operation was successful
and that a new entry in the map has been created.

There are cases when putIfAbsent() might not be efficient to execute. For example, if the result is a large
database query, executing the database query all the time and then invoking putIfAbsent() will not be efficient.
In this kind of scenario, you could first call the map’s containsKey() method to ensure that the key is not present.
If it’s not present, then call the putIfAbsent() with the expensive database query. There might be a chance that the
putIfAbsent() didn’t put the entry, but this type of check reduces the number of potentially expensive value creation.

See the following code snippet:
 
keyPresent = concurrentMap.containsKey(randomInt);
 if (!keyPresent) {
 concurrentMap.putIfAbsent(randomInt, "Thread # " + i + " has made it!");
 }
 

In this code, the first operation is to check whether the key is already in the map. If it is, it doesn’t execute the
putIfAbsent() operation. If the key is not present, we can proceed to execute the putIfAbsent() operation.

If you are accessing the values of the map from different threads, you should make sure that the values are
thread-safe. This is most evident when using collections as values because they then could be accessed from
different threads. Ensuring that the main map is thread-safe will prevent concurrent modifications to the map.
However, once you gain access to the values of the map, you must exercise good concurrency practices around the
values of the map.

Note■■   ConcurrentMaps do not allow null keys, which is different from its non–thread safe cousin HashMap
(which does allow null keys).

Chapter 10 ■ Concurrency

228

10-4. Iterating Through a Changing Collection
Problem
You need to iterate over each element in a collection. However, other threads are constantly updating the collection.

Solution 1
By using CopyOnWriteArrayList, you can safely iterate through the collection without worrying about concurrency.
In the following solution, the startUpdatingThread() method creates a new thread, which actively changes the list
passed to it. While startUpdatingThread() modifies the list, it is concurrently iterated using the stream forEach()
function.
 
private void copyOnWriteSolution() {
 CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<String>();
 startUpdatingThread(list);
 list.stream().forEach((element) -> {
 System.out.println("Element :" + element);
 });
 stopUpdatingThread();
 
} 

Solution 2
Using a synchronizedList() allows us to atomically change the collection. Also, a synchronizedList() provides a
way to synchronize safely on the list while iterating through it (which is done in the stream). For example:
 
private void synchronizedListSolution() {
 final List<String> list = Collections.synchronizedList(new ArrayList<String>());
 startUpdatingThread(list);
 synchronized (list) {
 list.stream().forEach((element) -> {
 System.out.println("Element :" + element);
 });
 }
 stopUpdatingThread();
} 

How It Works
Java comes with many concurrent collection options. Which collection to use depends on how the read operations
compare with the write operations within the context of your application. If writing occurs far and in-between compared
with reads, using a copyOnWriteArrayList instance is most efficient because it doesn’t block (stop) other threads from
reading the list and is thread-safe to iterate over (no ConcurrentModificationException is thrown when iterating
through it). If there are the same number of writes and reads, using a SynchronizedList is the preferred choice.

In solution 1, the CopyOnWriteArrayList is being updated while you traverse the list. Because the recipe uses the
CopyOnWriteArrayList instance, there is no need to worry of thread safety when iterating through the collection
(as is being done in this recipe by using the stream). It is good to note that the CopyOnWriteArrayList offers a
snapshot in time when iterating through it. If another thread modifies the list as you’re iterating through it, changes
are that the modified list will not be visible when iterating.

Chapter 10 ■ Concurrency

229

Note■■   Locking properly depends on the type of collection being used. Any collections returned as a result of using
Collections.synchronized can be locked via the collection itself (synchronized (collectionInstance)). However,
some more efficient (newer) concurrent collections such as the ConcurrentMap cannot be used in this fashion because
their internal implementations don’t lock in the object itself.

Solution 2 creates a synchronized list, which is created by using the Collections helper class. The Collection.
synchronizedList() method wraps a List object (it can be ArrayList, LinkedList, or another List implementer)
into a list that synchronizes the access to the list operations. Each time that you need to iterate over a list (either by
using the stream, a for loop, or an iterator) you must be aware of the concurrency implications for that list’s iterator.
The CopyOnWriteArrayList is safe to iterate over (as specified in the Javadoc), but the synchronizedList iterator
must be synchronized manually (also specified in the Collections.synchronizedlist.list iterator Javadoc). In the
solution, the list can safely be iterated while inside the synchronized(list) block. When synchronizing on the list,
no read/updates/other iterations can occur until the synchronized(list) block is completed.

10-5. Coordinating Different Collections
Problem
You need to modify different but related collections at the same time and you want to ensure that no other threads can
see these modifications until they have been completed.

Solution 1
By synchronizing on the principal collection, you can guarantee that collection can be updated at the same time.
In the following example, the fulfillOrder method needs to check the inventory of the order to be fulfilled, and if
there is enough inventory to fulfill the order, it needs to add the order to the customerOrders list. The fulfillOrder()
method synchronizes on the inventoryMap map and modifies both the inventoryMap and the customerOrders list
before finishing the synchronized block.
 
private boolean fulfillOrder(String itemOrdered, int quantityOrdered, String customerName) {
 synchronized (inventoryMap) {
 int currentInventory = inventoryMap.get(itemOrdered);
 if (currentInventory < quantityOrdered) {
 System.out.println("Couldn't fulfill order for "+customerName+" not enough
 "+itemOrdered+" ("+quantityOrdered+")");
 return false; // sorry, we sold out
 }
 inventoryMap.put(itemOrdered,currentInventory - quantityOrdered);
 CustomerOrder order = new CustomerOrder(itemOrdered, quantityOrdered, customerName);
 customerOrders.add(order);
 System.out.println("Order fulfilled for "+customerName+" of "+itemOrdered+"
 ("+quantityOrdered+")");
 return true;
 }
}
 

Chapter 10 ■ Concurrency

230

private void checkInventoryLevels() {
 synchronized (inventoryMap) {
 System.out.println("------------------------------------");
 inventoryMap.entrySet().stream().forEach((inventoryEntry) -> {
 System.out.println("Inventory Level :"+inventoryEntry.getKey()+"
 "+inventoryEntry.getValue());
 });
 System.out.println("------------------------------------");
 }
}
 
private void displayOrders() {
 synchronized (inventoryMap) {
 customerOrders.stream().forEach((order) -> {
 System.out.println(order.getQuantityOrdered()+" "+order.getItemOrdered()+" for
 "+order.getCustomerName());
 });
 }
} 

Solution 2
Using a reentrant lock, you can prevent multiple threads from accessing the same critical area of the code. In this
solution, the inventoryLock is acquired by calling inventoryLock.lock(). Any other thread that tries to acquire
the inventoryLock lock will have to wait until the inventoryLock lock is released. At the end of the fulfillOrder()
method (in the finally block), the inventoryLock is released by calling the inventoryLock.unlock() method:
 
Lock inventoryLock = new ReentrantLock();
private boolean fulfillOrder(String itemOrdered, int quantityOrdered, String customerName) {
 try {
 inventoryLock.lock();
 int currentInventory = inventoryMap.get(itemOrdered);
 if (currentInventory < quantityOrdered) {
 System.out.println("Couldn't fulfill order for " + customerName +
 " not enough " + itemOrdered + " (" + quantityOrdered + ")");
 return false; // sorry, we sold out
 }
 inventoryMap.put(itemOrdered, currentInventory - quantityOrdered);
 CustomerOrder order = new CustomerOrder(itemOrdered, quantityOrdered, customerName);
 customerOrders.add(order);
 System.out.println("Order fulfilled for " + customerName + " of " +
 itemOrdered + " (" + quantityOrdered + ")");
 return true;
 } finally {
 inventoryLock.unlock();
 }
}
 

Chapter 10 ■ Concurrency

231

private void checkInventoryLevels() {
 try {
 inventoryLock.lock();
 System.out.println("------------------------------------");
 inventoryMap.entrySet().stream().forEach((inventoryEntry) -> {
 System.out.println("Inventory Level :" + inventoryEntry.getKey() + " " +
 inventoryEntry.getValue());
 });
 System.out.println("------------------------------------");
 } finally {
 inventoryLock.unlock();
 }
}
 
private void displayOrders() {
 try {
 inventoryLock.lock();
 customerOrders.stream().forEach((order) -> {
 System.out.println(order.getQuantityOrdered() + " " +
 order.getItemOrdered() + " for " + order.getCustomerName());
 });
 } finally {
 inventoryLock.unlock();
 }
} 

How It Works
If you have different structures that are required to be modified at the same time, you need to make sure that these
structures are updated atomically. An atomic operation refers to a set of instructions that can be executed as a whole
or none at all. An atomic operation is visible to the rest of the program only when it is complete.

In solution 1 (atomically modifying both the inventoryMap map and the customerOrders list), you pick a
“principal” collection on which you will lock (the inventoryMap). By locking on the principal collection, you
guarantee that if another thread tries to lock on the same principal collection, it will have to wait until the current
executing thread releases the lock on the collection.

Note■■  N otice that even though displayOrders doesn’t use the inventoryMap, you still synchronize on it (in solution 1).
Because the inventoryMap is the main collection, even operations done on secondary collections will still need to be
protected by the main collection synchronization.

Solution 2 is more explicit, offering an independent lock that is used to coordinate the atomic operations instead
of picking a principal collection. Locking refers to the ability of the JVM to restrict certain code paths to be executed
by only one thread. Threads try to obtain the lock (locks are provided, for example, by a ReentrantLock instance, as
shown in the example), and the lock can be given to only one thread at a time. If other threads were trying to acquire
the same lock, they will be suspended (WAIT) until the lock becomes available. The lock becomes available when the
thread that currently holds the lock releases it. When a lock is released, it can then be acquired by one (and only one)
of the threads that were waiting for that lock.

Chapter 10 ■ Concurrency

232

Locks by default are not “fair.” In other words, the order of the threads that requested the lock is not kept; this
allows for very fast locking/unlocking implementation in the JVM, and in most situations, it is generally okay to use
unfair locks. On a very highly contended lock, if there is a requirement to evenly distribute the lock (make it fair),
you do so by setting the setFair property on the lock.

In solution 2, calling the inventoryLock.lock() method, will either acquire the lock and continue, or will
suspend execution (WAIT) until the lock can be acquired. Once the lock is acquired, no other thread will be able to
execute within the locked block. At the end of the block, the lock is released by calling inventoryLock.unlock().

It is common practice when working with Lock objects (ReentrantLock, ReadLock, and WriteLock) to surround
the use of these Lock objects by a try/finally clause. After opening the try block, the first instruction would
be a call to the lock.lock() method. This guarantees that the first instruction executed is the acquisition of the
lock. The release of the lock (by calling lock.unlock()) is done in the matching finally block. In the event of a
RuntimeException occurring while you have acquired the lock, unlocking within the finally clause assures that one
doesn’t “keep” the lock and prevent other threads from acquiring it.

The use of the ReentrantLock object offers additional features that the synchronized statement doesn’t offer. As
an example, the ReentrantLock has the tryLock() function, which attempts to get the lock only if no other threads
have it (the method doesn’t make the invoking thread wait). If another thread holds the lock, the method returns false
but continues executing. It is better to use the synchronized keyword for synchronization and use ReentrantLock only
when its features are needed. For more information on the other methods provided by ReentrantLock, visit
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html.

Tip■■   While this is only a recipe book and proper threading techniques span their own volumes, it is important to raise
awareness of deadlocks. Deadlocks occur when two locks are involved (and are acquired in reverse order within another
thread). The simplest way to avoid a deadlock is to avoid letting the lock “escape.” This means that the lock, when
acquired, should not execute code calling on other methods that could possibly acquire a different lock. If that’s not
possible, release the lock before calling such a method.

Care should be taken in that any operation that refers to one or both collections needs to be protected by the
same lock. Operations that depend on the result of one collection to query the second collection need to be executed
atomically; they need to be done as a unit in which neither collection can change until the operation is completed.

10-6. Splitting Work into Separate Threads
Problem
You have work that can be split into separate threads and want to maximize the use of available CPU resources.

Solution
Use a ThreadpoolExecutor instance, which allows us to break the tasks into discrete units. In the following example,
a BlockingQueue is created, which includes a Runnable object. It then is passed to the ThreadPoolExecutor instance.
The ThreadPoolExecutor is then initialized and started by calling the prestartAllCoreThreads() method, and
then you wait until all the Runnable objects are done executing by calling the shutdown() method, followed by the
awaitTermination() method:
 
private void start() throws InterruptedException {
 BlockingQueue<Runnable> queue = new LinkedBlockingQueue<>();
 for (int i =0;i < 10;i++) {
 final int localI = i;

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html

Chapter 10 ■ Concurrency

233

 queue.add((Runnable) () -> {
 doExpensiveOperation(localI);
 });
 }
 ThreadPoolExecutor executor = new ThreadPoolExecutor(10,10,1000,
 TimeUnit.MILLISECONDS, queue);
 executor.prestartAllCoreThreads();
 executor.shutdown();
 executor.awaitTermination(100000,TimeUnit.SECONDS);
 
 System.out.println("Look ma! all operations were completed");
} 

How It Works
A ThreadPoolExecutor consists of two components: the Queue of tasks to be executed, and the Executor, which tells
how to execute the tasks. The Queue is filled with Runnable objects, on which the method run() contains the code to
be executed.

The Queue used by a ThreadPoolExecutor is an implementer of the BlockingQueue interface. The BlockingQueue
interface denotes a queue in which the consumers of the queue will wait (be suspended) if there are no elements
within the Queue. This is necessary for the ThreadPoolExecutor to work efficiently.

The first step is to fill the Queue with the tasks that need to be executed in parallel. This is done by calling the
Queue’s add() method and passing to it a class that implements the Runnable interface. Once that’s done, the executor
is initialized.

The ThreadPoolExecutor constructor has many parameter options; the one used in the solution is the simplest.
Table 10-1 has a description of each parameter.

Table 10-1.  ThreadPoolExecutor’s Parameters

Parameter Description

CorePoolSize The minimum number of threads that are created as tasks are submitted

MaximumPoolSize The maximum number of threads that the Executor would create

KeepAliveTime The time that the waiting threads will wait for work before being disposed (as long as the
number of live threads is still more than the CorePoolSize)

TimeUnit The unit on which the KeepAliveTime is expressed (that is, TimeUnit.SECONDS,
TimeUnit.MILLISECONDS)

WorkQueue The Blocking queue that contains the tasks to be processed by the Executor

After the ThreadPoolExecutor is initialized, you call the prestartAllCoreThreads(). This method “warms
up” the ThreadPoolExecutor by creating the number of threads specified in the CorePoolSize and actively starts
consuming tasks from the Queue if it is not empty.

Call the shutdown() method of the ThreadPoolExecutor to wait for all the tasks to be completed. By calling
this method, the ThreadPoolExecutor is instructed to accept no new events from the queue (previously submitted
events will finish processing). This is the first step in the orderly termination of a ThreadPoolExecutor. Call the
awaitTermination() method to wait for all the tasks in the ThreadPoolExecutor to be done. This method will force
the main thread to wait until all the Runnables in the ThreadPoolExecutor's queue have completed executing. After
all the Runnables have executed, the main thread will wake up and continue.

Chapter 10 ■ Concurrency

234

Note■■  A ThreadPoolExecutor needs to be configured correctly to maximize CPU usage. The most efficient number
of threads for an executor depends on the types of tasks that are submitted. If the tasks are CPU-intensive, having an
executor with the current number of cores would be ideal. If the tasks are I/O-intensive, the executor should have more
threads than the current number of cores of threads. The more I/O-bound, the higher the number of threads.

10-7. Coordinating Threads
Problem
Your application requires that two or more threads be coordinated to work in unison.

Solution 1
With wait/notify for thread synchronization, threads can be coordinated. In this solution, the main thread waits for
the objectToSync object until the database-loading thread is finished executing. Once the database-loading thread
is finished, it notifies the objectToSync that whomever is waiting on it can continue executing. The same process
occurs when loading the orders into our system. The main thread waits on objectToSync until the orders-loading
thread notifies objectToSync to continue by calling the objectToSync.notify() method. After ensuring that both the
inventory and the orders are loaded, the main thread executes the processOrder() method to process all orders.
 
private final Object objectToSync = new Object();
 
private void start() {
 loadItems();
 
 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 synchronized (objectToSync) {
 objectToSync.notify();
 }
 });
 
 synchronized (objectToSync) {
 inventoryThread.start();
 try {
 objectToSync.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 
 Thread ordersThread = new Thread(() -> {
 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 synchronized (objectToSync) {
 objectToSync.notify();
 }
 });
 

Chapter 10 ■ Concurrency

235

 synchronized (objectToSync) {
 ordersThread.start();
 try {
 objectToSync.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 processOrders();
} 

Solution 2
You can control when the main thread continues using a CountDownLatch object. In the following code, a
CountDownLatch with an initial value of 2 is created; then the two threads for loading the inventory and loading the
order information are created and started. As each of the two threads finish executing, they call the CountDownLatch’s
countDown() method, which decrements the latch’s value by one. The main thread waits until the CountDownLatch
reaches 0, at which point it resumes execution.
 
CountDownLatch latch = new CountDownLatch(2);
 
private void start() {
 loadItems();
 
 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 latch.countDown();
 });
 
 inventoryThread.start();
 
 Thread ordersThread = new Thread(() -> {
 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 latch.countDown();
 });
 
 ordersThread.start();
 
 try {
 latch.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 
 processOrders();
 
}
 

Chapter 10 ■ Concurrency

236

Solution 3
By using Thread.join(), you can wait for a thread to finish executing. The following example has a thread for loading
the inventory and another thread for loading the orders. Once each thread is started, a call to inventoryThread.join()
will make the main thread wait for the inventoryThread to finish executing before continuing.
 
private void start() {
 loadItems();
 
 Thread inventoryThread = new Thread(() -> {
 System.out.println("Loading Inventory from Database...");
 loadInventory();
 });
 
 inventoryThread.start();
 try {
 inventoryThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 
 Thread ordersThread = new Thread(() -> {
 System.out.println("Loading Orders from XML Web service...");
 loadOrders();
 });
 
 ordersThread.start();
 try {
 ordersThread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 processOrders();
} 

How It Works
There are many ways of coordinating threads in Java, and these coordination efforts rely on the notion of making a
thread wait. When a thread waits, it suspends execution (it doesn’t continue to the next instruction and is removed
from the JVM’s thread scheduler). If a thread is waiting, it can then be awakened by notifying it. Within the Java’s
concurrency lingo, the word notify implies that a thread will resume execution (the JVM will add the thread to the
thread scheduler). So in the natural course of thread coordination, the most common sequence of events is a main
thread waiting, and a secondary thread then notifying the main thread to continue (or wake up). Even so, there is
the possibility of a waiting thread being interrupted by some other event. When a thread is interrupted, it doesn’t
continue to the next instruction, but instead throws an InterruptedException, which is a way of signaling that

Chapter 10 ■ Concurrency

237

even though the thread was waiting for something to happen, some other event happened that requires the thread’s
attention. This is better illustrated by the following example:
 
BlockingQueue queue = new LinkedBlockingQueue();
while (true) {
 synchronized (this) {
 Object itemToProcess = queue.take();
 processItem (itemToProcess);
 }
}
 

If you look at the previous code, the thread that executes this code would never terminate because it loops forever
and waits for an item to be processed. If there are no items in the Queue, the main thread waits until there is something
added to the Queue from another thread. You couldn’t graciously shut down the previous code (especially if the thread
running the loop is not a Daemon thread).
 
BlockingQueue queue = new LinkedBlockingQueue();
while (true) {
 synchronized (this) {
 Object itemToProcess = null;
 try {
 itemToProcess = queue.take();
 } catch (InterruptedException e) {
 return;
 }
 processItem (itemToProcess);
 }
}
 

The new code now has the ability of “escaping” the infinite loop. From another thread, you can call
thread.interrupt(), which throws the InterruptedException that is then caught by the main thread’s catch
clause. The infinite loop can be exited within this clause.

InterruptedExceptions are a way of sending extra information to waiting (or sleeping) threads so that they
may handle a different scenario (for example, an orderly program shutdown). For this reason, every operation that
changes the state of the thread to sleep/wait will have to be surrounded by a try/catch block that can catch the
InterruptedException. This is one of the cases in which the exception (InterruptedException) is not really an error
but more of a way of signaling between threads that something has occurred that requires attention.

Solution 1 demonstrates the most common (oldest) form of coordination. The solution requires making a thread
wait and suspending execution until the thread gets notified (or awakened) by another thread.

For solution 1 to work, the originating thread needs to acquire a lock. This lock will then be the “phone number”
on which another thread can notify the originating thread to wake up. After the originating thread acquires the lock
(phone number), it proceeds to wait. As soon as the wait() method is called, the lock is released, allowing other
threads to acquire the same lock. The secondary thread then proceeds to acquire the lock (the phone number) and
then notifies (which, in fact, would be like dialing a wake-up call) the originating thread. After the notification, the
originating thread resumes execution.

In the solution 1 code, the lock is a dummy object identified as objectToSync. In practice, the object on which
locks are waiting and notifying could be any valid instance object in Java; for example, we could have used the this
reference to make the main thread wait (and within the threads we could have used the Recipe 10_7_1.this variable
reference to notify the main thread to continue).

The main advantage of using this technique is the explicitness of controlling on whom to wait and when to notify
(and the ability to notify all threads that are waiting on the same object; see the following tip).

Chapter 10 ■ Concurrency

238

Tip■■   Multiple threads can wait on the same lock (same phone number to be awakened). When a secondary thread
calls notify, it will wake up one of the “waiting” threads (there is no fairness about which is awakened). Sometimes you
will need to notify all the threads; you can call the notifyAll() method instead of calling the notify() method. This is
mostly used when preparing many threads to take some work, but the work is not yet finished setting up.

Solution 2 uses a more modern approach to notification, as it involves a CountDownLatch. When setting up,
specify how many “counts” the latch will have. The main thread will then wait (stop execution) by calling the
CountDownLatch’s await() method until the latch counts down to 0. When the latch reaches 0, the main thread will
wake up and continue execution. As the worker thread completes, call the latch.countdown() method, which will
decrement the latch’s current count value. If the latch’s current value reaches 0, the main thread that was waiting on
the CountDownLatch will wake up and continue execution.

The main advantage of using CountDownLatches is that it is possible to spawn multiple tasks at the same time
and just wait for all of them to complete. (In the solution example, we didn’t need to wait until one or the other thread
were completed before continuing; they all were started, and when the latch was 0, the main thread continued.)

Solution 3 instead offers a solution in which we have access to the thread we want to wait on. For the main thread,
it’s just a matter of calling the secondary thread’s join() method. Then the main thread will wait (stop executing) until
the secondary thread completes.

The advantage of this method is that it doesn’t require the secondary threads to know any synchronization
mechanism. As long as the secondary thread terminates execution, the main thread can wait on them.

10-8. Creating Thread-Safe Objects
Problem
You need to create an object that is thread-safe because it will be accessed from multiple threads.

Solution 1
Use synchronized getters and setters and protect critical regions that change state. In the following example, an object
is created with getters and setters that are synchronized for each internal variable. The critical regions are protected by
using the synchronized(this) lock:
 
class CustomerOrder {
 private String itemOrdered;
 private int quantityOrdered;
 private String customerName;
 
 public CustomerOrder() {
 
 }
 
 public double calculateOrderTotal (double price) {
 synchronized (this) {
 return getQuantityOrdered()*price;
 }
 }
 

Chapter 10 ■ Concurrency

239

 public synchronized String getItemOrdered() {
 return itemOrdered;
 }
 
 public synchronized int getQuantityOrdered() {
 return quantityOrdered;
 }
 
 public synchronized String getCustomerName() {
 return customerName;
 }
 
 public synchronized void setItemOrdered(String itemOrdered) {
 this.itemOrdered = itemOrdered;
 }
 
 public synchronized void setQuantityOrdered(int quantityOrdered) {
 this.quantityOrdered = quantityOrdered;
 }
 
 public synchronized void setCustomerName(String customerName) {
 this.customerName = customerName;
 }
} 

Solution 2
Create an immutable object (an object that, once created, doesn’t change its internal state). In the following code, the
internal variables of the object are declared final and are assigned at construction. By doing so, it is guaranteed that
the object is immutable:
 
class ImmutableCustomerOrder {
 final private String itemOrdered;
 final private int quantityOrdered;
 final private String customerName;
 
 ImmutableCustomerOrder(String itemOrdered, int quantityOrdered, String customerName) {
 this.itemOrdered = itemOrdered;
 this.quantityOrdered = quantityOrdered;
 this.customerName = customerName;
 }
 
 public String getItemOrdered() {
 return itemOrdered;
 }
 
 public int getQuantityOrdered() {
 return quantityOrdered;
 }
 

Chapter 10 ■ Concurrency

240

 public String getCustomerName() {
 return customerName;
 }
 
 public synchronized double calculateOrderTotal (double price) {
 return getQuantityOrdered()*price;
 }
} 

How It Works
Solution 1 relies on the principle that a lock protects any change done to the object. Using the synchronized keyword
is a shortcut to writing the expression synchronized (this). By synchronizing your getters and setters (and any other
operation that alters the internal state of your object), you guarantee that the object is consistent. Also, it is important
that any operations that should occur as a unit (say something that modifies two collections at the same time, as listed in
Recipe 10-5) are done within a method of the object and are protected by using the synchronized keyword.

For instance, if an object offers a getSize() method as well as getItemNumber(int index), it would be unsafe to
write the following object.getItemNumber (object.getSize()-1). Even though it looks that the statement is concise,
another thread can alter the contents of the object between getting the size and getting the item number. Instead, it is
safer to create a object.getLastElement() method, which atomically figures out the size and the last element.

Solution 2 relies on the property of immutable objects. Immutable objects cannot change their internal state, and
objects that cannot change their internal state (are immutable) are by definition thread-safe. If you need to modify the
immutable object due to an event, instead of explicitly changing its property, create a new object with the changed
properties. This new object then takes the place of the old object, and on future requests for the object, the new
immutable object is returned. This is by far the easiest (albeit verbose) method for creating thread-safe code.

10-9. Implementing Thread-Safe Counters
Problem
You need a counter that is thread-safe so that it can be incremented from within different execution threads.

Solution
By using the inherently thread-safe Atomic objects, it is possible to create a counter that guarantees thread safety and
has an optimized synchronization strategy. In the following code, an Order object is created, and it requires a unique
order ID that is generated using the AtomicLong incrementAndGet() method:
 
AtomicLong orderIdGenerator = new AtomicLong(0);
 
 for (int i =0;i < 10;i++) {
 Thread orderCreationThread = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 createOrder(Thread.currentThread().getName());
 }
 });
 orderCreationThread.setName("Order Creation Thread "+i);
 orderCreationThread.start();
 }
 

Chapter 10 ■ Concurrency

241

//
 private void createOrder(String name) {
 long orderId = orderIdGenerator.incrementAndGet();
 Order order = new Order(name, orderId);
 orders.add(order);
 } 

How It Works
AtomicLong (and its cousin AtomicInteger) are built to be used safely in concurrent environments. They have
methods to atomically increment (and get) the changed value. Even if hundreds of threads call the AtomicLong
increment() method, the returned value will always be unique.

If you need to make decisions and update the variables, always use the atomic operations that are offered by
AtomicLong; for example, compareAndSet. If not, your code will not be thread-safe (as any check-then-act operation
needs to be atomic) unless you externally protect the atomic reference by using your own locks (see Recipe 10-7).

The following code illustrates several code safety issues to be aware of. First, changing a long value may be
done in two memory write operations (as allowed by the Java Memory Model), and thus two threads could end up
overlapping those two operations in what might on the surface appear to be thread-safe code. The result would be a
completely unexpected (and likely wrong) long value:
 
long counter = 0;
 
public long incrementCounter() {
 return counter++;
}
 

This code also suffers from unsafe publication, which refers to the fact that a variable might be cached locally
(in the CPU’s internal cache) and might not be committed to main memory. If another thread (executing in another
CPU) happens to be reading the variable from main memory, that other thread may miss the changes made by
the first thread. The changed value may be cached by the first thread’s CPU, and not yet committed to main
memory where the second thread can see it. For safe publication, you must use the volatile Java modifier
(see http://download.oracle.com/javase/tutorial/essential/concurrency/atomic.html).

A final issue with the preceding code is that it is not atomic. Even though it looks like there is only one operation
to increment the counter, in reality there are two operations that occur at the machine-language level (a retrieve of the
variable and then an increment). There could be two or more threads that obtain the same value as they both retrieve
the variable but haven’t incremented it yet. Then all the threads increment the counter to the same number.

10-10. Breaking Down Tasks into Discrete Units of Work
Problem
You have an algorithm that benefits from using a divide-and-conquer strategy, which refers to the ability of breaking
down a unit of work into two separate subunits and then piecing together the results from these subunits. The
subunits can then be broken down into more subunits of work until reaching a point where the work is small enough
to just be executed. By breaking down the unit of work into subunits, you can take advantage of the multicore nature
of today’s processors with minimum pain.

http://download.oracle.com/javase/tutorial/essential/concurrency/atomic.html

Chapter 10 ■ Concurrency

242

Solution
The new Fork/Join framework makes applying the divide-and-conquer strategy straightforward. The following
example creates a representation of the Game of Life. The code uses the Fork/Join framework to speed up the
calculation for each iteration when advancing from one generation to the next:
 
//
 
 ForkJoinPool pool = new ForkJoinPool();
 long i = 0;
 
 while (shouldRun) {
 i++;
 final boolean[][] newBoard = new boolean[lifeBoard.length][lifeBoard[0].length];
 long startTime = System.nanoTime();
 GameOfLifeAdvancer advancer = new GameOfLifeAdvancer(lifeBoard, 0,0, lifeBoard.length-1,
 lifeBoard[0].length-1,newBoard);
 pool.invoke(advancer);
 long endTime = System.nanoTime();
 if (i % 100 == 0) {
 System.out.println("Taking "+(endTime-startTime)/1000 + "ms");
 }
 SwingUtilities.invokeAndWait(() -> {
 model.setBoard(newBoard);
 lifeTable.repaint();
 });
 lifeBoard = newBoard;
 }
//
 
 class GameOfLifeAdvancer extends RecursiveAction{
 
 private boolean[][] originalBoard;
 private boolean[][] destinationBoard;
 private int startRow;
 private int endRow;
 private int endCol;
 private int startCol;
 
 GameOfLifeAdvancer(boolean[][] originalBoard, int startRow, int startCol, int endRow,
 int endCol, boolean [][] destinationBoard) {
 this.originalBoard = originalBoard;
 this.destinationBoard = destinationBoard;
 this.startRow = startRow;
 this.endRow = endRow;
 this.endCol = endCol;
 this.startCol = startCol;
 }
 

Chapter 10 ■ Concurrency

243

 private void computeDirectly() {
 for (int row = startRow; row <= endRow;row++) {
 for (int col = startCol; col <= endCol; col++) {
 int numberOfNeighbors = getNumberOfNeighbors (row, col);
 if (originalBoard[row][col]) {
 destinationBoard[row][col] = true;
 if (numberOfNeighbors < 2) destinationBoard[row][col] = false;
 if (numberOfNeighbors > 3) destinationBoard[row][col] = false;
 } else {
 destinationBoard[row][col] = false;
 if (numberOfNeighbors == 3) destinationBoard[row][col] = true;
 }
 }
 }
 }
 
 private int getNumberOfNeighbors(int row, int col) {
 int neighborCount = 0;
 for (int leftIndex = -1; leftIndex < 2; leftIndex++) {
 for (int topIndex = -1; topIndex < 2; topIndex++) {
 if ((leftIndex == 0) && (topIndex == 0)) continue; // skip own
 int neighbourRowIndex = row + leftIndex;
 int neighbourColIndex = col + topIndex;
 if (neighbourRowIndex<0) neighbourRowIndex = originalBoard.length +
 neighbourRowIndex;
 if (neighbourColIndex<0) neighbourColIndex = originalBoard[0].length +
 neighbourColIndex ;
 boolean neighbour = originalBoard[neighbourRowIndex % originalBoard.length]
[neighbourColIndex % originalBoard[0].length];
 if (neighbour) neighborCount++;
 }
 }
 return neighborCount;
 }
 
 @Override
 protected void compute() {
 if (getArea() < 20) {
 computeDirectly();
 return;
 }
 int halfRows = (endRow - startRow) / 2;
 int halfCols = (endCol - startCol) / 2;
 if (halfRows > halfCols) {
 // split the rows
 invokeAll(new GameOfLifeAdvancer(originalBoard, startRow, startCol,
 startRow+halfRows, endCol,destinationBoard),
 new GameOfLifeAdvancer(originalBoard, startRow+halfRows+1, startCol,
 endRow, endCol,destinationBoard));

Chapter 10 ■ Concurrency

244

 } else {
 invokeAll(new GameOfLifeAdvancer(originalBoard, startRow, startCol, endRow,
 startCol+ halfCols,destinationBoard),
 new GameOfLifeAdvancer(originalBoard, startRow, startCol+halfCols+1,
 endRow, endCol,destinationBoard));
 }
 }
 
 private int getArea() { return (endRow - startRow) * (endCol - startCol); }
 
 } 

How It Works
The Fork/Join framework can be used for breaking down tasks into discrete units of work. The first part of the
solution creates a ForkJoinPool object. The default constructor provides reasonable defaults (such as creating as
many threads as there are CPU cores) and sets up an entry point to submit divide-and-conquer work. While the
ForkJoinPool inherits from ExecutorService, it is best suited to handle tasks that extend from RecursiveAction. The
ForkJoinPool object has the invoke(RecursiveAction) method, which will take a RecursiveAction object and apply
the divide-and-conquer strategy.

The second part of the solution creates the GameOfLifeAdvancer class, which extends the RecursiveAction class.
By extending the RecursiveAction class, the work can be split. The GameOfLifeAdvancer class advances the Game of
Life board to the next generation. The constructor takes a two-dimensional Boolean array (which represents a Game
of Life board), a start row/column, an end row/column, and a destination two-dimensional Boolean array, on which
the result of advancing the Game of Life for one generation is collected.

The GameOfLifeAdvancer is required to implement the compute() method. In this method, determine how much
work there is to be completed. If the work is small enough, the work is completed directly (achieved by calling the
computeDirectly() method and returning). If the work is not small enough, the method splits the work by creating two
GameOfLifeAdvancer instances that process only half of the current GameOfLifeAdvancer work. This is done by either
splitting the number of rows to be processed into two chunks or by splitting the number of columns into two chunks.
The two GameOfLifeAdvancer instances are then passed to the ForkJoin pool by calling the invokeAll() method of the
RecursiveAction class. The invokeAll() method takes the two instances of GameOfLifeAdvancer (it can take as many
as needed) and waits until they both are finished executing (that is, the meaning of the –all postfix in the invokeAll()
method name; it waits for all of the tasks submitted to be completed before returning control).

In this way, the GameOfLifeAdvancer instance is broken down into new GameOfLifeAdvancer instances that each
processes only part of the Game of Life board. Each instance waits for all the subordinate parts to be completed before
returning control to the caller. The resulting division of work can take advantage of the multiple CPUs available in the
typical system today.

Tip■■   The ForkJoinPool is generally more efficient than an ExecutorService because it implements a work-stealing
policy. Each thread has a Queue of work to complete; if the Queue of any thread is empty, the thread will “steal” work
from another thread queue, making a more efficient use of CPU processing power.

Chapter 10 ■ Concurrency

245

10-11. Updating a Common Value Across Multiple Threads
Problem
Your application needs to safely maintain a single summed value across multiple threads.

Solution
Utilize a DoubleAdder or LongAdder to contain the value that is being summed across multiple threads in order to
ensure safe handling. In the following example, two threads are adding values to a DoubleAdder at the same time, and
in the end the value is summed and displayed.
 
DoubleAdder da = new DoubleAdder();
 
private void start() {
 
 Thread thread1 = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 da.add(i1);
 System.out.println("Adding " + i1);
 }
 });
 
 Thread thread2 = new Thread(() -> {
 for (int i1 = 0; i1 < 10; i1++) {
 da.add(i1);
 System.out.println("Adding " + i1);
 }
 });
 
 thread1.start();
 thread2.start();
 
 try {
 System.out.println("Sleep while summing....");
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 
 System.out.println("The sum is: " + da.doubleValue());
 
 }
}
 

Results:
 
Adding 0
Adding 1
Adding 2
Adding 3

Chapter 10 ■ Concurrency

246

Adding 4
Adding 5
Adding 6
Adding 7
Adding 0
Adding 8
Adding 9
Adding 1
Adding 2
Adding 3
Adding 4
Adding 5
Adding 6
Adding 7
Adding 8
Adding 9
The sum is: 90.0 

How It Works
Prior to the release of Java 8, it was important to utilize atomic numbers when working with values across multiple
threads. Atomic variables prevent thread interference without causing obstruction in the way that synchronized
access may cause in some cases. Java 8 introduced a new line of atomic variables that provide for faster throughput
than standard atomic variables. The java.util.concurrent.atomic.DoubleAdder and java.util.concurrent.
atomic.LongAdder classes are preferable to AtomicDouble and AtomicLong in most cases when the values may be
accessed and updated across multiple threads. Both DoubleAdder and LongAdder extend Number, and they are useful
when summing values across threads, especially under high contention.

In the solution, a DoubleAdder is used to sum numbers across two different threads. Using the add() method,
various numbers are “added” to the DoubleAdder value. After the threads have had ample time to perform their work,
the doubleValue() method is called upon to return the sum of all values as a double.

Both the DoubleAdder and LongAdder classes contain similar methods, although the LongAdder does contain a
couple of additional helper methods for incrementing and decrementing the value of the adder. Table 10-2 shows the
methods that are contained within each of the classes.

Table 10-2.  DoubleAdder and LongAdder Methods

Method Description

add() Adds the given value.

decrement() (LongAdder only.) Equivalent to add(-1).

doubleValue() Returns the sum() as a double value (after performing widening primitive conversion on
LongAdder).

floatValue() Returns the sum() as a float value after performing a widening primitive conversion.

increment() (LongAdder only.) Equivalent to add(1).

intValue() Returns the sum() as an int value after performing a narrowing conversion.

longValue() Returns the sum() as a long value (after performing narrowing conversion on DoubleAdder).

(continued)

Chapter 10 ■ Concurrency

247

Tip■■   In the same family as DoubleAdder and LongAdder are the DoubleAccumulator and LongAccumulator classes.
These classes allow one or more variables that are being maintained across threads to be updated using a supplied
function. Both of these classes accept an accumulator function as the first argument and an identity as the second
argument. When updates are applied across the thread, the set of variables used to perform the calculations may grow
dynamically to reduce contention. For more information regarding these classes, which are new to Java 8, refer to the
online documentation: http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/
package-summary.html.

Summary
It is important to understand the fundamentals of concurrency when developing applications. There is nothing worse
than testing an application successfully, and then having it fail with a deadlock once it is released into production.
This chapter started with the basics, demonstrating how to spawn a background task. It then went on to cover various
techniques for handing concurrency, from creating threads to using the Fork/Join framework to divide work into
discrete tasks.

Method Description

reset() Resets the variable’s values to zero.

sum() Returns the current summed value.

sumThenReset() Returns the current summed value and then resets the variable’s values to zero.

toString() Returns the String representation of the summed value.

Table 10-2.  (continued)

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/%0apackage-summary.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/%0apackage-summary.html

249

Chapter 11

Debugging and Unit Testing

Debugging is a big part of software development. To effectively debug, you must be able to “think” like a computer
and dive into the code, deconstructing every step that lead to the logic error that you’re working to resolve. In the
beginning of computer programming, there weren’t a lot of tools to help in debugging. Mostly, debugging involved
taking a look at your code and spotting inconsistencies; then resubmitting the code to be compiled again. Today,
every IDE offers the ability of using breakpoints and inspecting memory variables, making it much easier to debug.
Outside the IDE there are other tools that help in daily debugging, building, and testing of your project; and these
tools ensure that your code is being continually tested for errors introduced when programming. In this chapter, you
explore the different tools that will help aid in debugging, analyzing, and testing Java software.

This chapter covers some debugging and unit testing basics. You will learn how to perform unit testing from the
command-line or terminal using Apache Ant, along with JUnit. You will also learn how to make use of the NetBeans
Profiler, among other tools, for profiling and monitoring your applications.

11-1. Understanding Exceptions
Problem
You caught and logged an exception, and you need to determine its cause.

Solution
Analyze the output from the exception’s printStackTrace() method:
 
try {
 int a = 5/0;
} catch (Exception e) {
 e.printStackTrace();
}
 

Result:
 
java.lang.ArithmeticException: / by zero
 at org.java8recipes.chapter11.recipe11_01.Recipe11_1.start(Recipe11_1.java:18)
 at org.java8recipes.chapter11.recipe11_01.Recipe11_1.main(Recipe11_1.java:13)

Chapter 11 ■ Debugging and Unit Testing

250

How It Works
In programming lingo, a stack refers to the list of functions that were called to get to a point in your program, usually
starting from the immediate (System.out.println()) to the more general (public static void main). Every
program keeps track of which code was executed in order to reach a specific part of the code. Stack trace’s output
refers to the stack that was in memory when an error occurred. Exceptions thrown in Java keep track of where they
occurred and which code path was executed when the exception was thrown. Stack trace shows from the most
specific place where the exception happened (the line where the exception occurred) to the top-level invoker of the
offending code (and everything in between). This information then allows you to pinpoint which method calls were
performed, and may help shed some light on why the exception was thrown.

In this example, the divide-by-zero exception occurred on line 18 of Recipe11_1.java and was caused by a
call from the main() method (at line 13). Sometimes, when looking at the stack trace’s output , you will see methods
that don’t belong to the project. This happens naturally as sometimes method calls are generated in other parts of
a working system. It is, for example, very common to see AWT methods in Swing applications when an exception
is raised (due to the nature of the EventQueue). If you look at the more specific function calls (earliest), you will
eventually run with the project’s own code and can then try to determine why the exception was thrown.

Note■■  T he Stack trace output will contain line number information if the program is compiled with “Debug” info. By
default, most IDEs will include this information when running in a Debug configuration.

11-2: Locking Down Behavior of Your Classes
Problem
You need to lock down the behavior of your class and want to create unit tests that will be used to verify the specific
behavior in your application.

Solution
Use JUnit to create unit tests that verify behavior in your classes. To use this solution, you need to include the JUnit
dependencies in your class path. JUnit can be downloaded from http://www.junit.org. Once it’s downloaded,
add the junit-xxx.jar and junit-xxx-dep.jar files to your project or class path (where xxx is the downloaded
version number). When JUnit becomes part of your project, you will be able to include the org.junit and
junit.framework namespaces.

In this example two unit tests are created for the MathAdder class. The MathAdder class contains two methods:
addNumber (int, int) and substractNumber (int,int). These two methods return the addition (or subtraction) of
their passed parameters (a simple class). The unit tests (marked by the @Test annotation) verify that the MathAdder
class does, in fact, add and/or subtract two numbers.
 
package org.java8recipes.chapter11;
 
import junit.framework.Assert;
import org.junit.Test;
 

http://www.junit.org/

Chapter 11 ■ Debugging and Unit Testing

251

public class Recipe11_2_MathAdderTest {
 
 @Test
 public void testAddBehavior() {
 Recipe_11_2_MathAdder adder = new Recipe_11_2_MathAdder();
 for (int i =0;i < 100;i++) {
 for (int j =0;j < 100;j++) {
 Assert.assertEquals(i+j,adder.addNumbers(i,j));
 
 }
 }
 }
 
 @Test
 public void testSubstractBehavior() {
 Recipe_11_2_MathAdder adder = new Recipe_11_2_MathAdder();
 for (int i =0;i < 100;i++) {
 for (int j =0;j < 100;j++) {
 Assert.assertEquals(i-j,adder.substractNumber(i,j));
 
 }
 }
 }
}
 

To execute this test, use your IDE to run the test class. For example, in NetBeans, you must refactor the test class
to place it into the “Test Packages” module within the NetBeans project. Once you’ve moved the test class into the
desired package within “Test Packages,” run the file to perform the tests.

How It Works
Unit tests are useful for testing your code to ensure that expected behaviors occur within your classes. Including unit tests
in your project makes it less likely to break functionality when adding or refactoring code. When you create unit tests, you
are specifying how an object should behave (what is referred to as its contract). The unit tests ensure that the expected
behavior occurs (they do this by verifying the result of a method and using the different JUnit.Assert methods).

The first step to writing a unit test is to create a new class that describes the behavior you want to verify. One of
the general unit–test naming conventions is to create a class with the same name as the class being tested with the
postfix of Test; in this recipe’s example, the main class is called Recipe11_2_MathAdder, while the testing class is
called Recipe11_2_MathAdderTest.

The unit test class (MathAdderTest) will contain methods that check and verify the behavior of the class. To do so,
method names are annotated. Annotations are forms of metadata, and a developer can “annotate” specified portions
of code, thereby adding information to the annotated code. This extra information is not used by the program, but by
the compiler/builder (or external tools) to guide the compilation, building, and/or testing of the code. For unit-testing
purposes, you annotate the methods that are part of the unit test by specifying @Test before each method name.
Within each method, you use Assert.assertEquals (or any of the other Assert static methods) to verify behavior.

The Assert.assertEquals method instructs the unit-testing framework to verify that the expected value of the
method call from the class that you are testing is the same as the actual value returned by its method call. In the recipe
example, Assert.assertEquals verifies that the MathAdder is correctly adding the two integers. While the scope of
this class is trivial, it shows the bare minimum requirements to have a fully functional unit test.

Chapter 11 ■ Debugging and Unit Testing

252

If the Assert call succeeds, it gets reported in the unit test framework as a “passed” test; if the Assert call fails,
then the unit test framework will stop and display a message showing where the unit test failed. Most modern IDEs
have the capability of running unit test classes by simply right-clicking the name and selecting Run/Debug (and that’s
the intended way of running the Chapter_11_2_MathAdderTest recipe).

While it is true that IDEs can run unit tests while developing, they are created with the intention of being run
automatically (usually triggered by a scheduled build or by a version control system’s check-in), which is what the
Recipe 11-3 talks about.

11-3. Scripting Your Unit Tests
Problem
You want to automatically run your unit tests, rather than manually invoke them.

Solution
Use and configure JUnit and Ant. To do so, follow these steps:

	 1.	 Download Apache Ant (located at http://ant.apache.org/).

	 2.	 Uncompress Apache Ant into a folder (for example, c:\ant for Windows systems or
 /Development for OS X).

	 3.	 Make sure that Apache Ant can be executed from the command-line or terminal. In
Windows, this means adding the apache-ant/bin folder to the path as follows:

a.	 Go to Control Panel ➤ System.

b.	 Click Advanced system settings.

c.	 Click Environment Variables.

d.	 In the System Variables list, double-click the variable name PATH.

e.	� At the end of the string, add ;C:\apache-ant-1.8.2\bin (or the folder that you
uncompressed Apache Ant into).

f.	� Click OK (on each of the popup boxes that were opened before) to accept the
changes.

Note■■  A pache Ant comes pre-installed on OS X, so you do not have to install or configure it. To verify this, open a
terminal window and type ant –version to see which version is installed on the system.

Make sure that the JAVA_HOME environment variable is defined. In Windows, this means adding a new
environment variable called JAVA_HOME. For example:

Go to Control Panel ➤ System.

	 4.	 Click Advanced system settings.

	 5.	 Click Environment Variables. In the System Variables list, check to see whether there is
variable named JAVA_HOME and that the value points to your JDK distribution. If JAVA_HOME
is not present, click New. Set the variable name to JAVA_HOME and set the variable value to
C:\Program Files\Java\jdk1.7.0 or the root of your JDK 7 installation.

http://ant.apache.org/

Chapter 11 ■ Debugging and Unit Testing

253

On OS X, environment variables are set up within the .bash profile file, which resides within the user home
directory. To add JAVA_HOME, add a line such as the following to the .bash_profile:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk/Contents/Home

Test that you can reach Ant, and that Ant can find your JDK installation. To test that the changes took effect,
do the following:

	 6.	 Open a command window or terminal.

	 7.	 Type ANT.

If you receive the message "Ant is not recognized as an internal or external command", redo the first steps
of setting up the PATH variable (the first set of instructions). If you receive the message "unable to locate tools.jar",
you need to create and/or update the JAVA_HOME path for your installation (the second set of instructions).

The message "Buildfile: build.xml does not exist!" means that your setup is ready to be built using
Ant. Congratulations!

Note■■   When changing environment variables in Microsoft Windows, it is necessary to close previous command-line
windows and reopen them because changes are only applied to new command windows. To open a command window in
Microsoft Windows, click Start, type CMD, and press Enter.

Create build.xml at the root of your project and put the following bare-bones Ant script as the contents of the
build.xml file. This particular build.xml file contains information that Ant will use to compile and test this recipe.
 
<project default="test" name="Chapter11Project" basedir=".">
<property name="src" location="src"/>
<property name="build" location="build/"/>
<property name="src.tests" location="src/"/>
<property name="reports.tests" location="report/" /> 
 
<path id="build.path">
<fileset dir="dep">
<include name="**/*.jar" />
</fileset>
<pathelement path="build" />
</path>
  
<target name="build">
<mkdir dir="${build}" />
<javac srcdir="${src}" destdir="${build}">
<classpath refid="build.path" />
</javac>
</target>
 
<target name="test" depends="build">
<mkdir dir="${reports.tests}" />
<junit fork="yes" printsummary="yes" haltonfailure="yes">
<classpath refid="build.path" />
<formatter type="plain"/> 

Chapter 11 ■ Debugging and Unit Testing

254

<batchtest fork="yes" todir="${reports.tests}">
<fileset dir="${src.tests}">
<include name="**/*Test*.java"/>
</fileset>
</batchtest>
</junit>
</target>
</project> 

Note■■  T o execute this recipe, open a command-line window or terminal, navigate to the Chapter 11 folder, type ant,
and press Enter.

How It Works
Apache Ant (or simply Ant) is a program that allows you to script your project’s build and unit testing. By configuring
Ant, you can build, test, and deploy your application using the command-line. (In turn, it can be scheduled to be run
automatically by the operating system.) Ant can automatically run unit tests and report on the result of these tests.
These results can then be analyzed after each run to pinpoint changes in behavior.

Due to Ant’s complexity, it has a large learning curve, but it allows for a lot of flexibility on compiling, building,
and weaving code. By using Ant, it is possible to achieve the utmost configuration on how your project is built.

Note■■   Visit http://ant.apache.org/manual/index.html for a more in-depth tutorial of Ant.

The build.xml file contains instructions on how to compile your project, which class path to use, and what unit
tests to run. Each build.xml contains a <project> tag that encapsulates the steps to build the project. Within each
<project> there are targets, which are “steps” in the build process. A <target> can depend on other targets, allowing
you to establish dependencies in your project (in this recipe’s example, the target “test” depends on the target “build,”
meaning that to run the test target, Ant will first run the build target).

Each target contains tasks. These tasks are extensible, and there is a core set of tasks that you can use out of the
box. The <javac>task will compile a set of Java files specified within the src attribute and write the output to the
dest attribute. As part of the <javac> task, you can specify which class path to use. In this example, the class path is
specified by referring to a previously defined path, known as build.path. Ant provides ample support for creating
class paths. In this recipe, the class path is defined as any file that has the .jar extension located in the dep folder.

The other task in the build target is <junit>. This task will find a unit test specified in its task and run it. The unit
tests are defined within the <batchtest> property. By using the <fileset> property, it is possible to tell JUnit to find
any file that has the word Test in its name and ends with the .java extension. Once JUnit runs each test, it will write
out a summary to the console and write a report on the results of the unit tests to the reports.tests folder.

Note■■   You can define variables in a build.xml file by using the <property> tag. Once a property is defined, it can be
accessed as part of another task using the ${propertyName} syntax. This allows you to quickly change a build script in
response to structural changes (for example, switching target/source folders around).

http://ant.apache.org/manual/index.html

Chapter 11 ■ Debugging and Unit Testing

255

11-4. Finding Bugs Early
Problem
You want to ensure that you are able to find the maximum number of bugs at design time.

Solution
Use FindBugs to scan your software for issues. Use an Ant build file that includes FindBugs for reporting purposes.

The following is the new build.xml file that adds FindBugs reporting:
 
<project default="test" name="Chapter11Project" basedir=".">
 
<property name="src" location="src"/>
<property name="build" location="build/"/>
<property name="reports.tests" location="report/" />
<property name="classpath" location="dep/" /> 

<!-- Findbugs Static Analyzer Info -->
<property name="findbugs.dir" value="dep/findbugs" />
<property name="findbugs.report" value="findbugs" /> 

<path id="findbugs.lib" >
<fileset dir="${findbugs.dir}" includes="*.jar"/>
</path>
<taskdef name="findbugs" classpathref="findbugs.lib" classname="edu.umd.cs.findbugs.anttask.
 indBugsTask"/> 
 
<path id="build.path">
<fileset dir="dep">
<include name="**/*.jar" />
</fileset>
</path>
 
<target name="clean">
<delete dir="${build}" />
<delete dir="${reports.tests}" />
<delete dir="${coverage.dir}" />
<delete dir="${instrumented}" />
<mkdir dir="${build}" />
<mkdir dir="${reports.tests}" />
<mkdir dir="${coverage.dir}" /> 

</target>
 
<target name="build">
<javac srcdir="${src}" destdir="${build}" debug="${debug}">
<classpath refid="build.path" />
</javac>
</target>
 
<target name="test" depends="clean,build">
<junit fork="yes" printsummary="yes" haltonfailure="yes">
<classpath refid="build.path" />

Chapter 11 ■ Debugging and Unit Testing

256

<formatter type="plain"/> 

<batchtest fork="yes" todir="${reports.tests}">
<fileset dir="${build}">
<include name="**/*Test*.class"/>
</fileset>
</batchtest>
<jvmarg value="-XX:-UseSplitVerifier" />
</junit>
 
</target>
 
<target name="findbugs" depends="clean">
<antcall target="build">
<param name="debug" value="true" />
</antcall>
 
<mkdir dir="${findbugs.report}" />
<findbugs home="${findbugs.dir}"
 output="html"
 outputFile="${findbugs.report}/index.html"
 reportLevel="low"
>
<class location="${build}/" />
<auxClasspath refid="build.path" />
<sourcePath path="${src}" />
</findbugs>
</target>
</project>
 

To run this recipe, download FindBugs (http://findbugs.sourceforge.net/downloads.html). Uncompress
into a folder in your computer, then copy the contents of the ./lib/ folder into your project’s /dep/findbugs folder
(create the /dep/findbugs folder if necessary). Make sure that /dep/findbugs/findbugs.jar and /dep/findbugs/
findbugs-ant.jar are present.

How It Works
FindBugs is a Static Code Analyzer (SCA). It will parse your program’s compiled file and spot errors in coding (not
syntax errors, but certain types of logic errors). As an example, one of the errors that FindBugs will spot is comparing
two strings using == instead of String.equals(). The analysis is then written as HTML (or text) that can be viewed
with a browser. Catching errors from FindBugs is easy, and adding it as part of your continuous integration process is
extremely beneficial.

At the beginning of build.xml, you define the FindBugs tasks. This section specifies where the .jar files are that
define the new task (dep\findbugs), and also determines where to put the report when done.

The build.xml also has a new target project called “findbugs.” The findbugs target compiles the source files
with debug information (having debug information helps on the FindBugs report as it will include the line number
when reporting errors), and then proceeds to analyze the byte-code for errors. In the findbugs task, you specify the
location of the compiled .class files (this is the <class> property), the location of the dependencies for your project
(<auxClasspath> property), and the location of the source code (<sourcePath> property).

Within the findbugs target, there is an <antcall> task. The <antcall> task simply runs the target specified within
the <antcall> task. Just before the <antcall> task, you assign the debug <property> to true. This in turns gets passed
to the <javac> task as debug="${debug}". When the debug <property> is set to true, the <javac> task will include

http://findbugs.sourceforge.net/downloads.html

Chapter 11 ■ Debugging and Unit Testing

257

debug information into the compilation of the Java source files. Having debug information in the compiled files will
help generate a more readable FindBugs report, as it will include line numbers for where issues are found. The trick
of assigning properties from within an Ant target is used throughout build.xml files to selectively enable certain
behavior when going through specific build targets. If you were to build the regular build target, the results of the build
would not contain debug information. If instead, you were to build the findbugs target because the findbugs target
replaces the debug <property> to true, the result of the build would have debug information.

Tip■■  T o invoke Ant to run the default “target” (as specified in the build.xml), you just type ant. To specify another
.xml file (instead of build.xml), you type ant –f nameofotherfile.xml. To change the default target to run, you type
the name of the target at the end (for example, ant clean). To run this example, type ant –f findbugsbuild.xml
findbugs. This will ask Ant to use the findbugsbuild.xml file and to run the findbugs target.

11-5. Monitoring Garbage Collection in your Application
Problem
You notice that your application seems to be slowing down and suspect that there are garbage collections happening.

Solution 1
Add -Xloggc:gc.log-XX:+PrintGCDetails-XX:+PrintGCTimeStamps as parameters when starting your Java program.
These parameters allow you to log garbage collection information to the gc.log file, including the time garbage
collections occur, along with the details (if it was a minor or major garbage collection and how long it took).
 
Ant target that executes Recipe 11_5 with garbage logging on.
 
<target name="Recipe11_5" depends="build">
<java classname="org.java8recipes.chapter11.Recipe11_5" fork="true">
 <classpath refid="build.path" />
 <jvmarg value="-Xloggc:gc.log" />
 <jvmarg value="-XX:+PrintGCDetails" />
 <jvmarg value="-XX:+PrintGCTimeStamps" />
</java>
</target>
 

In this build.xml file, the Java task is being used to add the arguments for garbage collection logging to the
compiler before launching the application. To run this example throughout Ant, type ant Recipe11_5.

Solution 2
Analyze your program’s memory consumption and more by using the NetBeans “Profiler” tool. To run the profiler,
select the file or project that you want to perform the profiling against and choose the Profile Project or Profile File
command from within the NetBeans Profile menu. You can also right-click the project or file to access the contextual
menu Profile option.

The Profiler dialog (Figure 11-1) will open, allowing you to select and configure options. In this solution, simply
select the Run button to perform the profiling with the default settings.

Chapter 11 ■ Debugging and Unit Testing

258

Once the profiler begins, it will run until you stop it using the Stop button on the Controls panel. The generated
output should resemble something like that shown in Figure 11-2.

Figure 11-1.  NetBeans Profiler

Figure 11-2.  NetBeans Profiler results

Chapter 11 ■ Debugging and Unit Testing

259

How It Works
Adding the flag to log garbage collection in solution 1 will cause your Java application to write minor and major
garbage collections information into a log file. This allows you to “reconstruct” in time what happened to the
application and to spot probable memory leaks (or at least other memory-related issues). This is the preferred
troubleshooting method for production systems, as it is usually lightweight and can be analyzed after the fact.

Solution 2 instead involves using an open source tool that comes installed with NetBeans IDE. This tool
allows you to profile code while it is running. It is a great tool to understanding in situ what’s occurring within your
application, as you can see real-time CPU consumption, garbage collections, threads created, and classes loaded.

This recipe barely scratches the surface of the NetBeans profiler. See the online documentation at
https://profiler.netbeans.org/ for more information.

Note■■  B efore you can use the NetBeans profiler, you must calibrate the target JVM. To do so, open the Manage
Calibration Data dialog within NetBeans and select the JVM that you want to calibrate. You can find the Manage
Calibration Data option by opening the Profile menu, then choosing Advanced Commands.

11-6. Obtaining a Thread Dump
Problem
Your program seems to “hang” without doing anything, and you suspect that there might be a deadlock.

Solution
Use JStack to get a thread dump, and then analyze the thread dump for deadlocks. The following JStack is a thread
dump from the class org.java8recipes.chapter11.recipe11_06.Recipe 11_6, which creates a deadlock:
 
jstack -l 6557
 
Found one Java-level deadlock:
=============================
"Thread-0":
 waiting for ownable synchronizer 0x000000076ab20da0, (a java.util.concurrent.locks.
ReentrantLock$NonfairSync),
 which is held by "main"
"main":
 waiting for ownable synchronizer 0x000000076ab20dd0, (a java.util.concurrent.locks.
ReentrantLock$NonfairSync),
 which is held by "Thread-0"
 
Java stack information for the threads listed above:
===
"Thread-0":
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab20da0> (a java.util.concurrent.locks.ReentrantLock$NonfairSync)

https://profiler.netbeans.org/

Chapter 11 ■ Debugging and Unit Testing

260

 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueued
Synchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueuedSynchronizer.
java:870)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.
java:1199)
 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java8recipes.chapter11.recipe11_06.Recipe11_6.lambda$start$0(Recipe11_6.java:25)
 at org.java8recipes.chapter11.recipe11_06.Recipe11_6$$Lambda$1/1528902577.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:744)
"main":
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x000000076ab20dd0> (a java.util.concurrent.locks.
ReentrantLock$NonfairSync)
 at java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueued
Synchronizer.java:836)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueuedSynchronizer.
java:870)
 at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.
java:1199)
 at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:209)
 at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:285)
 at org.java8recipes.chapter11.recipe11_06.Recipe11_6.start(Recipe11_6.java:34)
 at org.java8recipes.chapter11.recipe11_06.Recipe11_6.main(Recipe11_6.java:18)
 
Found 1 deadlock.
 

For this recipe to function properly on Windows, you must have as part of your PATH environment variable the
JDK’s bin folder (For example C:\Program Files\java\jdk1.8.0\bin). If you have this path, you can run the tools
such as JStack and JPS. JStack comes pre-installed on OS X, so you should be able to run it out of the box.

The JStack command uses as an argument –l (a dash and the letter L), which specifies a Long listing (it does
extra work to get more information about the threads running). The JStack also needs to know the PID of the target
VM. A quick way to list all running JVMs is to type JPS and press Enter. This will list the running VMs and their PIDs.
Figure 11-3 shows a screenshot of a JStack finding a deadlock in Recipe 11-6 from an OS X machine.

Chapter 11 ■ Debugging and Unit Testing

261

Note■■   For the purposes of this example, j.u.c.l represents java.util.concurrent.locks, and aqs represents
AbstractQueuedSynchronizer.

How It Works
JStack allows you to see all the stack traces that the current running threads have. JStack will also try to find deadlocks
(circular dependencies of locks) that might be stalling your system. JStack will not find other problems such as livelock
(when a thread is always spinning, such as with something like while(true)), or starvation (when a thread cannot
execute because it is too low of a priority or there are too many threads competing for resources), but it will help you
understand what each of the threads in your program is doing.

Deadlocks happen because one thread is waiting for a resource that another thread has, and the second thread is
waiting for a resource that the first thread has. In this situation, neither thread can continue because both are waiting
for each other to release the resource that each one owns. Deadlocks don’t only happen between two threads, but can
also involve a “string” of threads so that Thread A is waiting for Thread B is waiting for Thread C is waiting for Thread
D is waiting for the original Thread A. It is important to understand the dump to find the culprit resource.

In this recipe’s example, Thread-0 wants to acquire the lock named 0x00000000eab716b8; it’s described in
the thread dump as “waiting for ownable synchronizer.” Thread-0 cannot acquire the lock because it is held by the
main thread. The main thread, on the other hand, wants to acquire the lock 0x00000000eab716e8 (notice that they
are different; the first lock ends in b8, while the second ends in e8), which is held by Thread-0. This is a textbook
definition of a deadlock on which each thread is forever waiting for each other to release the lock the other thread has.

Figure 11-3.  JStack results

Chapter 11 ■ Debugging and Unit Testing

262

Aside from deadlock, looking at thread dumps gives you an idea about what your program is doing in realtime.
Especially in multithreaded systems, using thread dumps will help clarify where a thread is sleeping or what condition
it is waiting for.

Note■■   JStack is usually lightweight enough to be run in a live system, so if you need to troubleshoot live problems,
you can safely use JStack.

263

Chapter 12

Unicode, Internationalization,
and Currency Codes

The Java platform provides a rich set of internationalization features to help you create applications that can be used
across the world. The platform provides the means to localize your applications, format dates and numbers in a
variety of culturally-appropriate formats, and display characters used in dozens of writing systems.

This chapter describes only some of the most frequent and common tasks that programmers must perform when
developing internationalized applications. Because new features have been added to the Java language with regard to
its abstraction of languages and regions, this chapter describes some of the new ways you might use the Locale class.
Other new features will be transparent to the developer, such as the update to adhere to newer Unicode standards,
but the updates provide compliance so that JDK 8 will remain relevant for years to come. Java 8 includes support for
Unicode 6.2.0, which adds 733 characters, 7 new scripts, and 11 new blocks.

Note■■   The source code for this chapter’s examples is available in the org.java8recipes.chapter12 package.
See the introductory chapters for instructions on how to find and download sample source code.

12-1. Converting Unicode Characters to Digits
Problem
You want to convert a Unicode digit character to its respective integer value. For example, you have a string containing
the Thai digit for the value 8 and you want to generate an integer with that value.

Solution
The java.lang.Character class has several static methods to convert characters to integer digit values:

•	 public static intdigit(char ch, int radix)

•	 public static intdigit(intch, int radix)

The following code snippet iterates through the entire range of Unicode code points from 0x0000 through
0x10FFFF. For each code point that is also a digit, it displays the character and its digit value 0 through 9. You can find
this example in the org.java8recipes.chapter12.recipe12_1.Recipe12_1 class.
 

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

264

int x = 0;
for (int c=0; c <= 0x10FFFF; c++) {
 if (Character.isDigit(c)) {
 ++x;
 System.out.printf("Codepoint: 0x%04X\tCharacter: %c\tDigit: %d\tName: %s\n", c, c,
 Character.digit(c, 10), Character.getName(c));
 }
}
System.out.printf("Total digits: %d\n", x);
 

Some of the output follows:
 
Codepoint: 0x0030 Character: 0 Digit: 0 Name: DIGIT ZERO
Codepoint: 0x0031 Character: 1 Digit: 1 Name: DIGIT ONE
Codepoint: 0x0032 Character: 2 Digit: 2 Name: DIGIT TWO
Codepoint: 0x0033 Character: 3 Digit: 3 Name: DIGIT THREE
Codepoint: 0x0034 Character: 4 Digit: 4 Name: DIGIT FOUR
Codepoint: 0x0035 Character: 5 Digit: 5 Name: DIGIT FIVE
Codepoint: 0x0036 Character: 6 Digit: 6 Name: DIGIT SIX
Codepoint: 0x0037 Character: 7 Digit: 7 Name: DIGIT SEVEN
Codepoint: 0x0038 Character: 8 Digit: 8 Name: DIGIT EIGHT
Codepoint: 0x0039 Character: 9 Digit: 9 Name: DIGIT NINE
Codepoint: 0x0660 Character: ۰ Digit: 0 Name: ARABIC-INDIC DIGIT ZERO
Codepoint: 0x0661 Character: ۱ Digit: 1 Name: ARABIC-INDIC DIGIT ONE
Codepoint: 0x0662 Character: ۲ Digit: 2 Name: ARABIC-INDIC DIGIT TWO
Codepoint: 0x0663 Character: ۳ Digit: 3 Name: ARABIC-INDIC DIGIT THREE
Codepoint: 0x0664 Character: ٤ Digit: 4 Name: ARABIC-INDIC DIGIT FOUR
Codepoint: 0x0665 Character: ٥ Digit: 5 Name: ARABIC-INDIC DIGIT FIVE
Codepoint: 0x0666 Character: ٦ Digit: 6 Name: ARABIC-INDIC DIGIT SIX
Codepoint: 0x0667 Character: ۷ Digit: 7 Name: ARABIC-INDIC DIGIT SEVEN
Codepoint: 0x0668 Character: ۸ Digit: 8 Name: ARABIC-INDIC DIGIT EIGHT
Codepoint: 0x0669 Character: ۹ Digit: 9 Name: ARABIC-INDIC DIGIT NINE
...
Codepoint: 0x0E50 Character: ๐ Digit: 0 Name: THAI DIGIT ZERO
Codepoint: 0x0E51 Character: ๑ Digit: 1 Name: THAI DIGIT ONE
Codepoint: 0x0E52 Character: ๒ Digit: 2 Name: THAI DIGIT TWO
Codepoint: 0x0E53 Character: ๓ Digit: 3 Name: THAI DIGIT THREE
Codepoint: 0x0E54 Character: ๔ Digit: 4 Name: THAI DIGIT FOUR
Codepoint: 0x0E55 Character: ๕ Digit: 5 Name: THAI DIGIT FIVE
Codepoint: 0x0E56 Character: ๖ Digit: 6 Name: THAI DIGIT SIX
Codepoint: 0x0E57 Character: ๗ Digit: 7 Name: THAI DIGIT SEVEN
Codepoint: 0x0E58 Character: ๘ Digit: 8 Name: THAI DIGIT EIGHT
Codepoint: 0x0E59 Character: ๙ Digit: 9 Name: THAI DIGIT NINE
...
Total digits: 420 

Note■■   The sample code prints to the console. Your console may not print all the character glyphs shown in this
example because of font or platform differences. However, the characters will be correctly converted to integers.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

265

How It Works
The Unicode character set is large, containing more than a million unique code points with integer values ranging
from 0x0000 through 0x10FFFF. Each character value has a set of properties. One of the properties is isDigit. If this
property is true, the character represents a numeric digit from 0 through 9. For example, the characters with code
point values 0x30 through 0x39 have the character glyphs 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. If you simply convert these
code values to their corresponding integer values, you would get the hexadecimal values 0x30 through 0x39. The
corresponding decimal values are 48 through 57. However, these characters also represent numeric digits. When
using them in calculations, these characters represent the values 0 through 9.

When a character has the digit property, use the Character.digit() static method to convert it to its
corresponding integer digit value. Note that the digit() method is overloaded to accept either char or int arguments.
Additionally, the method requires a radix. Common values for the radix are 2, 10, and 16. Interestingly, although the
characters a-f and A-F do not have the digit property, they can be used as digits using radix 16. For these characters,
the digit() method returns the expected integer values 10 through 15.

A complete understanding of the Unicode character set and Java’s implementation requires familiarity with
several new terms: character, code point, char, encoding, serialization encoding, UTF-8, and UTF-16. These terms are
beyond the scope of this recipe, but you can learn more about these and other Unicode concepts from the Unicode
website at http://unicode.org or from the Character class Java API documentation.

12-2. Creating and Working with Locales
Problem
You want to display numbers, dates, and time in a user-friendly way that conforms to the language and cultural
expectations of your customers.

Solution
The display format for numbers, dates, and time varies across the world and depends on your user’s language and
cultural region. Additionally, text collation rules vary by language. The java.util.Locale class represents a specific
language and region of the world. By determining and using your customer’s locale, you can apply that locale to a
variety of format classes, which can be used to create user-visible data in expected forms. Classes that use Locale
instances to modify their behavior for a particular language or region are called locale-sensitive classes. You can learn
more about locale-sensitive classes in Chapter 4, “Numbers and Dates.” That chapter shows you how to use Locale
instances in the NumberFormat and DateFormat classes. In this recipe, however, you learn different options for creating
these Locale instances.

You can create a Locale instance in any of the following ways:

Use the •	 Locale.Builder class to configure and build a Locale object.

Use the static •	 Locale.forLanguageTag() method.

Use the •	 Locale constructors to create an object.

Use preconfigured static •	 Locale objects.

The Java Locale.Builder class has setter methods that allow you to create locales that can be transformed
into well-formed Best Common Practices (BCP) 47 language tags. The “How It Works” section describes the BCP 47
standard in more detail. For now, you should simply understand that a Builder creates Locale instances that comply
with that standard.

http://unicode.org/

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

266

The following code snippet from the org.java8recipes.chapter12.recipe12_2.Recipe12_2 class demonstrates
how to create Builder and Locale instances. You use the created locales in locale-sensitive classes to produce
culturally correct display formats:
 
private static final long number = 123456789L;
private static final Date now = new Date();
 
private void createFromBuilder() {
 System.out.printf("Creating from Builder...\n\n");
 String[][] langRegions = {{"fr", "FR"}, {"ja", "JP"}, {"en", "US"}};
 Builder builder = new Builder();
 Locale l = null;
 NumberFormat nf = null;
 DateFormat df = null;
 for (String[] lr: langRegions) {
 builder.clear();
 builder.setLanguage(lr[0]).setRegion(lr[1]);
 l = builder.build();
 nf = NumberFormat.getInstance(l);
 df = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG, l);
 System.out.printf("Locale: %s\nNumber: %s\nDate: %s\n\n",
 l.getDisplayName(),
 nf.format(number),
 df.format(now));
 }
 

The previous code prints the following to the standard console:
 
Creating from Builder...
 
Locale: French (France)
Number: 123 456 789
Date: 14 septembre 2011 00:08:06 PDT
 
Locale: Japanese (Japan)
Number: 123,456,789
Date: 2011/09/14 0:08:06 PDT
 
Locale: English (United States)
Number: 123,456,789
Date: September 14, 2011 12:08:06 AM PDT
 

Another way to create Locale instances is by using the static Locale.forLanguageTag() method. This method
allows you to use BCP 47 language tag arguments. The following code uses the forLanguageTag() method to create
three locales from their corresponding language tags:
 
...
System.out.printf("Creating from BCP 47 language tags...\n\n");
String[] bcp47LangTags= {"fr-FR", "ja-JP", "en-US"};
Locale l = null;
NumberFormat nf = null;
DateFormat df = null;

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

267

for (String langTag: bcp47LangTags) {
 l = Locale.forLanguageTag(langTag);
 nf = NumberFormat.getInstance(l);
 df = DateFormat.getDateTimeInstance(DateFormat.LONG, DateFormat.LONG, l);
 System.out.printf("Locale: %s\nNumber: %s\nDate: %s\n\n",
 l.getDisplayName(),
 nf.format(number),
 df.format(now));
}
...
 

The output is similar to the results created from the Builder-generated Locale instance:
 
Creating from BCP 47 language tags...
 
Locale: French (France)
Number: 123 456 789
Date: 14 septembre 2011 01:07:22 PDT
...
 

You can also use constructors to create instances. The following code shows how to do this:
 
Locale l = new Locale("fr", "FR");
 

Other constructors allow you to pass fewer or more arguments. The argument parameters can include language,
region, and optional variant codes.

Finally, the Locale class has many predefined static instances for some commonly used cases. Because the
instances are predefined, your code needs to reference only the static instances. For example, the following example
shows how to reference existing static instances representing fr-FR, ja-JP, and en-US locales:
 
Locale frenchInFrance = Locale.FRANCE;
Locale japaneseInJapan = Locale.JAPAN;
Locale englishInUS = Locale.US;
 

Refer to the locale Java API documentation for examples of other static instances.

How It Works
The Locale class gives locale-sensitive classes the context they need to perform culturally-appropriate data formatting
and parsing. Some of the locale-sensitive classes include the following:

•	 java.text.NumberFormat

•	 java.text.DateFormat

•	 java.util.Calendar

A Locale instance identifies a specific language and can be finely tuned to identify languages written in a
particular script or spoken in a specific world region. Locale is an important and necessary element for creating
anything that depends on language or regional influences.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

268

The Java Locale class is always being enhanced to provide better support for modern BCP 47 language tags.
BCP 47 defines Best Common Practices for using ISO standards for language, region, script, and variant identifiers.
Although the existing Locale constructors continue to be compatible with prior versions of the Java platform, the
constructors do not support the additional script tags. For example, only the newer Locale.Builder class and
Locale.forLanguageTag() method support the newer functionality that identifies scripts. This newer class and
method were introduced in Java 7. Because the Locale constructors do not enforce strict BCP 47 compliance, you
should avoid the constructors in any new code. Instead, developers should migrate their code to use the new Builder
class and the forLanguageTag() method.

A Locale.Builder instance has a variety of setter methods that help you configure it to create a valid,
BCP 47–compliant Locale instance:

•	 public Locale.BuildersetLanguage(String language)

•	 public Locale.BuildersetRegion(String region)

•	 public Locale.BuildersetScript(String script)

Each of these methods throws a java.util.IllFormedLocaleException if its argument is not a well-formed
element of the BCP 47 standard. The language parameter must be a valid two- or three-letter ISO 639 language
identifier. The region parameter must be a valid two-letter ISO 3166 region code or a three-digit M.49 United Nations
“area” code. Finally, the script parameter must be a valid four-letter ISO 15924 script code.

The Builder lets you configure it to create a specific BCP 47–compliant locale. Once you set all the
configurations, the build() method creates and returns a Locale instance. Notice that all the setters can be chained
together for a single statement. The Builder pattern works by having each configuration method return a reference to
the current instance, on which further configuration methods may be called.
 
Locale aLocale = new Builder().setLanguage("fr").setRegion("FR").build();
 

The BCP 47 document and the standards that comprise it can be found at the following locations:

BCP 47 (language tags): •	 http://www.rfc-editor.org/rfc/bcp/bcp47.txt

ISO 639 (language identifiers): •	 http://www.loc.gov/standards/iso639-2/php/code_list.php

ISO 3166 (region identifiers): •	 http://www.iso.org/iso/country_codes/iso_3166_code_
lists/country_names_and_code_elements.htm

ISO 15924 (script identifiers): •	 http://unicode.org/iso15924/

United Nations M.49 (area identifiers): •	 http://unstats.un.org/unsd/methods/m49/m49.htm

12-3. Setting the Default Locale
Problem
You want to set the default locale for all locale-sensitive classes.

Solution
Use the Locale.setDefault() method to set a Locale instance that all locale-sensitive classes will use by default.
This method is overloaded with the following two forms:

•	 Locale.setDefault(Locale aLocale)

•	 Locale.setDefault(Locale.Category c, Locale aLocale)

http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://unicode.org/iso15924/
http://unstats.un.org/unsd/methods/m49/m49.htm

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

269

This example code demonstrates how to set the default locale for all locale-sensitive classes:
 
Locale.setDefault(Locale.FRANCE);
 

You can also set the default for two additional locale categories, DISPLAY and FORMAT:
 
Locale.setDefault(Locale.Category.DISPLAY, Locale.US);
Locale.setDefault(Locale.Category.FORMAT, Locale.FR);
 

You can create code that uses these specific locale categories within your application to mix locale choices for
different purposes. For example, you may choose to use the DISPLAY locale for ResourceBundle text while using the FORMAT
locale for date and time formats. The example code from the org.java8recipes.chapter12.recipe12_3.Recipe12_3
class demonstrates this more complex usage:
 
public class Recipe12_3 {
  
 private static final Date NOW = new Date();
  
 public void run() {
 // Set ALL locales to fr-FR
 Locale.setDefault(Locale.FRANCE);
 demoDefaultLocaleSettings();
  
 // System default is still fr-FR
 // DISPLAY default is es-MX
 // FORMAT default is en-US
 Locale.setDefault(Locale.Category.DISPLAY, Locale.forLanguageTag("es-MX"));
 Locale.setDefault(Locale.Category.FORMAT, Locale.US);
 demoDefaultLocaleSettings();
  
 // System default is still fr-FR
 // DISPLAY default is en-US
 // FORMAT default is es-MX
 Locale.setDefault(Locale.Category.DISPLAY, Locale.US);
 Locale.setDefault(Locale.Category.FORMAT, Locale.forLanguageTag("es-MX"));
 demoDefaultLocaleSettings();
  
 // System default is Locale.US
 // Resets both DISPLAY and FORMAT locales to en-US as well.
 Locale.setDefault(Locale.US);
 demoDefaultLocaleSettings();
  
 }
  
 public void demoDefaultLocaleSettings() {
 DateFormat df =
 DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT);
 ResourceBundle resource =
 ResourceBundle.getBundle("SimpleResources",
 Locale.getDefault(Locale.Category.DISPLAY));

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

270

 String greeting = resource.getString("GOOD_MORNING");
 String date = df.format(NOW);
 System.out.printf("DEFAULT LOCALE: %s\n", Locale.getDefault());
 System.out.printf("DISPLAY LOCALE: %s\n", Locale.getDefault(Locale.Category.DISPLAY));
 System.out.printf("FORMAT LOCALE: %s\n", Locale.getDefault(Locale.Category.FORMAT));
 System.out.printf("%s, %s\n\n", greeting, date);
 }
  
 public static void main(String[] args) {
 Recipe12_3 app = new Recipe12_3();
 app.run();
 }
}
 

This code produces the following output:
 
DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: fr_FR
FORMAT LOCALE: fr_FR
Bonjour!, 19/09/11 20:31
 
DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: es_MX
FORMAT LOCALE: en_US
¡Buenos días!, 9/19/11 8:31 PM
 
DEFAULT LOCALE: fr_FR
DISPLAY LOCALE: en_US
FORMAT LOCALE: es_MX
Good morning!, 19/09/11 08:31 PM
 
DEFAULT LOCALE: en_US
DISPLAY LOCALE: en_US
FORMAT LOCALE: en_US
Good morning!, 9/19/11 8:31 PM

How It Works
The Locale class allows you to set the default locale for two different categories. The categories are represented by the
Locale.Category enumeration:

•	 Locale.Category.DISPLAY

•	 Locale.Category.FORMAT

Use the DISPLAY category for your application’s user interface. Setting the default DISPLAY locale means that
the ResourceBundle class can load user interface resources for that particular locale independently from the FORMAT
locale. Setting the FORMAT default locale affects how the various Format subclasses behave. For example, a default
DateFormat instance will use the FORMAT default locale to create a locale-sensitive output format. Again, these two
categories are independent, so you can use different Locale instances for different needs.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

271

In this recipe’s sample code, the Locale.setDefault(Locale.FRANCE) method call sets the default system,
DISPLAY, and FORMAT locales to fr-FR (French in France). This method always resets both the DISPLAY and FORMAT
locales to match the system locale. When creating a new resource bundle, the ResourceBundle class uses the system
locale by default. However, by providing a Locale instance argument, you tell the bundle to load resources for a
specific locale. For example, even though the system locale is Locale.FRANCE, you can specify a DISPLAY default locale
and use that DISPLAY locale in your ResourceBundle.getBundle() method call. For example, this code attempts to
load a language bundle for es-MX even though the system locale is still Locale.FRANCE:
 
Locale.setDefault(Locale.Category.DISPLAY, Locale.forLanguageTag("es-MX"));
Locale.setDefault(Locale.Category.FORMAT, Locale.US);
DateFormat df = DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT);
ResourceBundle resource =
 ResourceBundle.getBundle("org.java8recipes.chapter12.resource.SimpleResources",
 Locale.getDefault(Locale.Category.DISPLAY));
String greeting = resource.getString("GOOD_MORNING");
 

In this case, it finds a GOOD_MORNING resource with the “¡Buenos días!” value because the DISPLAY default locale
is an argument. The resource bundle is a file with translated property strings for various locales. The file named
SimpleResources_en.properties (English) has a GOOD_MORNING property that is written “Good morning!” Note
that translations of each property in the resource bundle must exist in the locale-specific resource files in order to
be displayed. The Java code does not translate these strings. Instead, it just selects an appropriate translation of the
desired property based on the selected locale.

Note■■  A lthough the DateFormat and NumberFormat classes will automatically use the default FORMAT locale if you
do not provide a locale argument in their creation method, the ResourceBundle.getBundle() method always uses the
system locale by default. To use the DISPLAY default locale in a ResourceBundle(), you must explicitly provide it as
an argument.

12-4. Matching and Filtering Locales
Problem
You would like to match against or filter a list of locales and return only those that meet the specified criteria.

Solution
Make use of the new locale matching and filtering methods that have been introduced in the java.util.Locale class
in Java 8. If you’re given a comma-separated list of locales in string format, you can apply a filter or “priority list” to
that string to return only those locales within the string that meet the filter. In the following example, a list of language
tags is filtered using the java.util.Locale filterTag method, returning the matching tags in String format:
 
List<Locale.LanguageRange> list1 = Locale.LanguageRange.parse("ja-JP, en-US");
list1.stream().forEach((range) -> {
 System.out.println("Range:" + range.getRange());
});

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

272

ArrayList localeList = new ArrayList();
localeList.add("en-US");
localeList.add("en-JP");
 
List<String> tags1 = Locale.filterTags(list1, localeList);
System.out.println("The following is the filtered list of locales:");
tags1.stream().forEach((tag) -> {
 System.out.println(tag);
});
 

Results:
 
Range:ja-jp
Range:en-us
The following is the filtered list of Locales:
en-us
 

The filter() method of the Locale classes allows you to return a list of matching Locale instances. In the
following example, a list of locale language tags is used to filter Locale classes out of a list of locales.
 
String localeTags = Locale.ENGLISH.toLanguageTag() + "," +
 Locale.CANADA.toLanguageTag();
List<Locale.LanguageRange> list1 = Locale.LanguageRange.parse(localeTags);
list1.stream().forEach((range) -> {
 System.out.println("Range:" + range.getRange());
});
ArrayList<Locale> localeList = new ArrayList();
localeList.add(new Locale("en"));
localeList.add(new Locale("en-JP"));
 
List<Locale> tags1 = Locale.filter(list1, localeList);
System.out.println("The following is the matching list of Locales:");
tags1.stream().forEach((tag) -> {
 System.out.println(tag);
});
 

Here are the results:
 
Range:en
Range:en-ca
The following is the matching list of locales:
en

How It Works
Methods have been added to the java.util.Locale class in Java 8 that allow you to filter Locale instances or
language tags based on a supplied priority list in List<Locale.LanguageRange> format. The filtering mechanism is
based on RFC 4647. The following list contains a short summary of these filtering methods:

•	 filter(List<Locale.LanguageRange>, Collection<Locale>)

filter(List<Locale.LanguageRange>, Collection<Locale>, Locale.FilteringMode)

(Returns matching list of Locale instances)

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

273

•	 filterTags(List<Locale.LanguageRange>, Collection<String>)

filterTags(List<Locale.LanguageRange>, Collection<String>, Locale.FilteringMode)

(Returns matching list of language tags)

To work with each of the methods, a sorted priority order should be sent as the first parameter. This priority order
is a list of Locale.LanguageRange objects, and it should be sorted in descending order, based on priority or weight. The
second argument in the filter() methods is a collection of locales. This collection contains the locales that will be
filtered. The optional third argument contains a Locale.FilteringMode. Table 12-1 lists the different filtering modes.

12-5. Searching Unicode with Regular Expressions
Problem
You want to find or match Unicode characters in a string. You want to do that using regular expression syntax.

Solution 1
The easiest way to find or match characters is to use the String class itself. String instances store Unicode character
sequences and provide relatively simple operations for finding, replacing, and tokenizing characters using regular
expressions.

To determine whether a string matches a regular expression, use the matches() method. The matches() method
returns true if the entire string exactly matches the regular expression.

The following code from the org.java8recipes.chapter12.recipe12_5.Recipe12_5 class uses two different
expressions with two strings. The regular expression matches simply confirm that the strings match a particular
pattern as defined in the variables enRegEx and jaRegEx.
 
private String enText = "The fat cat sat on the mat with a brown rat.";
private String jaText = "Fight 文字化け!";
 
boolean found = false;
String enRegEx = "^The \\w+ cat.*";
String jaRegEx = ".*文字.*";
String jaRegExEscaped = ".*\u6587\u5B57.*";
found = enText.matches(enRegEx);

Table 12-1.  Locale.FilteringMode Values

Mode Description

AUTOSELECT_FILTERING Specifies filtering mode that is based on the given priority list of languages.

EXTENDED_FILTERING Specifies extended filtering.

IGNORE_EXTENDED_RANGES Specifies basic filtering.

MAP_EXTENDED_RANGES Specifies basic filtering, and if any extended languages are included in the language
priority list, they are mapped to the basic language range.

REJECT_EXTENDED_RANGES Specifies basic filtering, and if any extended languages are included in the language
priority list, the list is rejected and IllegalArgumentException is thrown.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

274

if (found) {
 System.out.printf("Matches %s.\n", enRegEx);
}
found = jaText.matches(jaRegEx);
if (found) {
 System.out.printf("Matches %s.\n", jaRegEx);
}
found = jaText.matches(jaRegExEscaped);
if (found) {
 System.out.printf("Matches %s.\n", jaRegExEscaped);
}
 

This code prints the following:
 
Matches ^The \w+ cat.*.
Matches .*文字.*.
Matches .*文字.*.
 

Use the replaceFirst() method to create a new String instance in which the first occurrence of the regular
expression in the target text is replaced with the replacement text. The code demonstrates how to use this method:
 
String replaced = jaText.replaceFirst("文字化け", "mojibake");
System.out.printf("Replaced: %s\n", replaced);
 

The replacement text is shown in the output:
 
Replaced: Fight mojibake!
 

The replaceAll() method replaces all occurrences of the expression with the replacement text.
Finally, the split() method creates a String[] that contains text that is separated by the matched expression.

In other words, it returns text that is delimited by the expression. Optionally, you can provide a limit argument that
constrains the number of times the delimiter will be applied in the source text. The following code demonstrates the
split() method splitting on space characters:
 
String[] matches = enText.split("\\s", 3);
for(String match: matches) {
 System.out.printf("Split: %s\n",match);
}
 

The code’s output is as follows:
 
Split: The
Split: fat
Split: cat sat on the mat with a brown rat.

Solution 2
When the simple String methods aren’t sufficient, you can use the more powerful java.util.regex package to work
with regular expressions. Create a regular expression using the Pattern class. A Matcher works on a String instance
using the pattern. All Matcher operations perform their functions using Pattern and String instances.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

275

The following code demonstrates how to search for both ASCII and non-ASCII text in two separate strings. See
the org.java8recipes.chapter12.recipe12_5.Recipe12_5 class for the complete source code. The demoSimple()
method finds text with any character followed by ".at". The demoComplex() method finds two Japanese symbols
in a string:
 
public void demoSimple() {
Pattern p = Pattern.compile(".at");
 Matcher m = p.matcher(enText);
 while(m.find()) {
 System.out.printf("%s\n", m.group());
 }
}
 
public void demoComplex() {
 Pattern p = Pattern.compile("文字");
 Matcher m = p.matcher(jaText);
 if (m.find()) {
 System.out.println(m.group());
 }
}
 

Running these two methods on the previously defined English and Japanese text shows the following:
 
fat
cat
sat
mat
rat
文字

How It Works
The String methods that work with regular expressions are the following:

•	 public boolean matches(String regex)

•	 public String replaceFirst(String regex, String replacement)

•	 public String replaceAll(String regex, String replacement)

•	 public String[] split(String regex, int limit)

•	 public String[] split(String regex)

The String methods are limited and relatively simple wrappers around the more powerful functionality of the
java.util.regex classes:

•	 java.util.regex.Pattern

•	 java.util.regex.Matcher

•	 java.util.regex.PatternSyntaxException

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

276

The Java regular expressions are similar to those used in the Perl language. Although there is a lot to learn about
Java regular expressions, probably the most important points to understand from this recipe are these:

Your regular expressions can definitely contain non-ASCII characters from the full range of •	
Unicode characters.

Because of a peculiarity of how the Java language compiler understands the backslash •	
character, you will have to use two backslashes in your code instead of one for the predefined
character class expressions.

The most convenient and readable way to use non-ASCII characters in regular expressions is to type them
directly into your source files using your keyboard input methods. Operating systems and editors differ in how they
allow you to enter complex text outside of ASCII. Regardless of operating system, you should save the file in the UTF-8
encoding if your editor allows. As an alternate but more difficult way to use non-ASCII regular expressions, you can
encode characters using the \uXXXX notation. Using this notation, instead of directly typing the character using your
keyboard, you enter \u or \U, followed by the hexadecimal representation of the Unicode code point. This recipe’s
code sample uses the Japanese word “文字” (pronounced mo-ji). As the example shows, you can use the actual
characters in the regular expression or you can look up the Unicode code point values. For this particular Japanese
word, the encoding will be \u6587\u5B57.

The Java language’s regular expression support includes special character classes. For example, \d and \w are
shortcut notations for the regular expressions [0-9] and [a-zA-Z_0-9], respectively. However, because of the Java
compiler’s special handling of the backslash character, you must use an extra backslash when using predefined
character classes such as \d (digits), \w (word characters), and \s (space characters). To use them in source code,
for example, you enter \\d, \\w, and \\s, respectively. The sample code used the double backslash in Solution 1 to
represent the \w character class:
 
String enRegEx = "^The \\w+ cat.*";

12-6. Overriding the Default Currency
Problem
You want to display a number value using a currency that is not associated with the default locale.

Solution
Take control of which currency is printed with a formatted currency value by explicitly setting the currency used in
a NumberFormat instance. The following example assumes that the default locale is Locale.JAPAN. It changes the
currency by calling the setCurrency(Currency c) method of its NumberFormat instance. This example comes from
the org.java8recipes.chapter12.recipe12_5.Recipe12_5 class.
 
BigDecimal value = new BigDecimal(12345);
System.out.printf("Default locale: %s\n", Locale.getDefault().getDisplayName());
NumberFormat nf = NumberFormat.getCurrencyInstance();
String formattedCurrency = nf.format(value);
System.out.printf("%s\n", formattedCurrency);
Currency c = Currency.getInstance(Locale.US);
nf.setCurrency(c);
formattedCurrency = nf.format(value);
System.out.printf("%s\n\n", formattedCurrency);
 

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

277

The previous code prints out the following:
 
Default locale: 日本語 (日本)
￥12,345
USD12,345

How It Works
You use a NumberFormat instance to format currency values. You should explicitly call the getCurrencyInstance()
method to create a formatter for currencies:
 
NumberFormat nf = NumberFormat.getCurrencyInstance();
 

The previous formatter will use your default locale’s preferences for formatting numbers as currency values. Also,
it will use a currency symbol that is associated with the locale’s region. However, one very common use case involves
formatting a value for a different region’s currency.

Use the setCurrency() method to explicitly set the currency in the number formatter:
 
nf.setCurrency(aCurrencyInstance); // requires a Currency instance
 

Note that the java.util.Currency class is a factory. It allows you to create currency objects in two ways:

•	 Currency.getInstance(Locale locale)

•	 Currency.getInstance(String currencyCode)

The first getInstance call uses a Locale instance to retrieve a currency object. The Java platform associates a
default currency with the locale’s region. In this case, the default currency currently associated with the United States
is the U.S. dollar:
 
Currency c1 = Currency.getInstance(Locale.US);
 

The second getInstance call uses a valid ISO 4217 currency code. The currency code for the U.S. dollar is USD:
 
Currency c2 = Currency.getInstance("USD");
 

Once you have a currency instance, you simply have to use that instance in your formatter:
 
nf.setCurrency(c2);
 

This formatter now is configured to use the default locale’s number format symbols and patterns to format the
number value, but it will display the targeted currency code as part of the displayable text. This allows you to mix the
default number format patterns with other currency codes.

Note■■   Currencies have both symbols and codes. A currency code always refers to the three-letter ISO 4217 code.
A currency symbol is often different from the code. For example, the U.S. dollar has the code USD and the symbol $. A currency
formatter will typically use a symbol when formatting a number in the default locale using the currency of that locale’s region.
However, when you explicitly change the currency of a formatter, the formatter doesn’t always have knowledge of a localized
symbol for the target currency. In that case, the format instance will often use the currency code in the displayed text.

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

278

12-7. Converting Byte Arrays to and from Strings
Problem
You need to convert characters in a byte array from a legacy character set encoding to a Unicode string.

Solution
Convert legacy character encodings from a byte array to a Unicode string using the String class. The following code
snippet from the org.java8recipes.chapter12.recipe12_6.Recipe12_6 class demonstrates how to convert a legacy
Shift-JIS encoded byte array to a string. Later in this same example, the code demonstrates how to convert from
Unicode back to the Shift-JIS byte array.
 
byte[] legacySJIS = {(byte)0x82,(byte)0xB1,(byte)0x82,(byte)0xF1,
(byte)0x82,(byte)0xC9,(byte)0x82,(byte)0xBF,
(byte)0x82,(byte)0xCD,(byte)0x81,(byte)0x41,
(byte)0x90,(byte)0xA2,(byte)0x8A,(byte)0x45,
(byte)0x81,(byte)0x49};
 
// Convert a byte[] to a String
Charset cs =Charset.forName("SJIS");
String greeting = new String(legacySJIS, cs);
System.out.printf("Greeting: %s\n", greeting);
 

This code prints out the converted text, which is “Hello, world!” in Japanese:
 
Greeting: こんにちは、世界!
 

Use the getBytes() method to convert characters from a string to a byte array. Building on the previous code,
convert back to the original encoding with the following code and compare the results:
 
// Convert a String to a byte[]
byte[] toSJIS = greeting.getBytes(cs);
 
// Confirm that the original array and newly converted array are same
Boolean same = false;
if (legacySJIS.length == toSJIS.length) {
 for (int x=0; x< legacySJIS.length; x++) {
 if(legacySJIS[x] != toSJIS[x]) break;
 }
 same = true;
}
System.out.printf("Same: %s\n", same.toString());
 

As expected, the output indicates that the round-trip conversion back to the legacy encoding was successful.
The original byte array and the converted byte array contain the same bytes:
 
Same: true

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

279

How It Works
The Java platform provides conversion support for many legacy character set encodings. When you create a String
instance from a byte array, you must provide a charset argument to the String constructor so that the platform knows
how to perform the mapping from the legacy encoding to Unicode. All Java strings use Unicode as their native encoding.

The number of bytes in the original array does not usually equal the number of characters in the result string. In
this recipe’s example, the original array contains 18 bytes. The 18 bytes are needed by the Shift-JIS encoding to represent
the Japanese text. However, after conversion, the result string contains nine characters. There is not a 1:1 relationship
between bytes and characters. In this example, each character requires two bytes in the original Shift-JIS encoding.

There are literally hundreds of different charset encodings. The number of encodings is dependent on your Java
platform implementation. However, you are guaranteed support of several of the most common encodings, and your
platform most likely contains many more than this minimal set:

US-ASCII•	

ISO-8859-1•	

UTF-8•	

UTF-16BE•	

UTF-16LE•	

UTF-16•	

When constructing a charset, you should be prepared to handle the possible exceptions that can occur when the
character set is not supported:

•	 java.nio.charset.IllegalCharsetNameException, thrown when the charset name is illegal

•	 java.lang.IllegalArgumentException, thrown when the charset name is null

•	 java.nio.charset.UnsupportedCharsetException, thrown when your JVM doesn’t support
the targeted charset

12-8. Converting Character Streams and Buffers
Problem
You need to convert large blocks of Unicode character text to and from an arbitrary byte-oriented encoding. Large
blocks of text may come from streams or files.

Solution 1
Use java.io.InputStreamReader to decode a byte stream to Unicode characters. Use java.io.OutputStreamWriter
to encode Unicode characters to a byte stream.

The following code uses InputStreamReader to read and convert a potentially large block of text bytes from a file
in the class path. The org.java8recipes.chapter12.recipe12_8.StreamConversion class provides the complete
code for this example:
 
public String readStream() throws IOException {
 InputStream is = getClass().getResourceAsStream("resource/helloworld.sjis.txt");
 InputStreamReader reader = null;
 StringBuilder sb = new StringBuilder();

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

280

 if (is != null){
 reader = new InputStreamReader(is, Charset.forName("SJIS"));
 int ch = reader.read();
 while(ch != -1) {
 sb.append((char)ch);
 ch = reader.read();
 }
 reader.close();
 }
 return sb.toString();
}
 

Similarly, you can use an OutputStreamWriter to write text to a byte stream. The following code writes a string to
a UTF-8 encoded byte stream:
 
public void writeStream(String text) throws IOException {
 OutputStreamWriter writer = null;
 FileOutputStream fos = new FileOutputStream("helloworld.utf8.txt");
 writer = new OutputStreamWriter(fos, Charset.forName("UTF-8"));
 writer.write(text);
 writer.close();
}

Solution 2
Use java.nio.charset.CharsetEncoder and java.nio.charset.CharsetDecoder to convert Unicode character buffers to
and from byte buffers. Retrieve an encoder or decoder from a charset instance with the newEncoder() or newDecoder()
method. Then use the encoder’s encode() method to create byte buffers. Use the decoder’s decode() method to create
character buffers. The following code from the org.java8recipes.chapter12.recipe12_8.BufferConversion class
encodes and decodes character sets from buffers:
 
public ByteBuffer encodeBuffer(String charsetName, CharBuffer charBuffer)
 throws CharacterCodingException {
 Charset charset = Charset.forName(charsetName);
CharsetEncoder encoder = charset.newEncoder();
 ByteBuffer targetBuffer = encoder.encode(charBuffer);
return targetBuffer;
 
}
public CharBuffer decodeBuffer(String charsetName, ByteBuffer srcBuffer)
 throws CharacterCodingException {
 Charset charset = Charset.forName(charsetName);
 CharsetDecoder decoder = charset.newDecoder();
 CharBuffer charBuffer = decoder.decode(srcBuffer);
 return charBuffer;
}

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

281

How It Works
The java.io and java.nio.charset packages contain several classes that can help you perform encoding conversions
on large text streams or buffers. Streams are convenient abstractions that can assist you in converting text using a
variety of sources and targets. A stream can represent incoming or outgoing text in an HTTP connection or even a file.

If you use an InputStream to represent the underlying source text, you will wrap that stream in an
InputStreamReader to perform conversions from a byte stream. The reader instance performs the conversion from
bytes to Unicode characters.

Using an OutputStream instance to represent the target text, wrap the stream in an OutputStreamWriter. A writer
will convert your Unicode text to a byte-oriented encoding in the target stream.

To effectively use either an OutputStreamWriter or an InputStreamReader, you must know the character
encoding of your target or source text. When you use an OutputStreamWriter, the source text is always Unicode, and
you must supply a charset argument to tell the writer how to convert to the target byte-oriented text encoding. When
you use an InputStreamReader, the target encoding is always Unicode. You must supply the source text encoding as
an argument so that the reader understands how to convert the text.

Note■■   The Java platform’s String represents characters in the UTF-16 encoding of Unicode. Unicode can have
several encodings, including UTF-16, UTF-8, and even UTF-32. Converting to Unicode in this discussion always means
converting to UTF-16. Converting to a byte-oriented encoding usually means to a legacy non–Unicode charset
encoding. However, a common byte-oriented encoding is UTF-8, and it is entirely reasonable to convert Java’s “native”
UTF-16 Unicode characters to or from UTF-8 using the InputStreamReader or OutputStreamWriter class.

Yet another way to perform encoding conversions is to use the CharsetEncoder and CharsetDecoder classes.
A CharsetEncoder will encode your Unicode CharBuffer instances to ByteBuffer instances. A CharsetDecoder will
decode ByteBuffer instances into CharBuffer instances. In either case, you must provide a charset argument.

A charset represents a character set encoding defined in the IANA Charset Registry. When creating a charset
instance, you should use the canonical or alias names of the charset as defined by the Registry. You can find the
Registry at http://www.iana.org/assignments/character-sets.

Remember that your Java implementation will not necessarily support all the IANA charset names. However,
all implementations are required to support at least those shown in Recipe 12-7 of this chapter.

12-9. Setting the Search Order of Locale-Sensitive Services
Problem
You want to designate a specified search order for locale-sensitive services within the Java runtime environment.

Solution
Specify the desired order for locale-sensitive services using the java.locale.providers property. In the following
example, the SPI and CLDR providers are specified within the property.
 
java.locale.providers=SPI,CLDR

http://www.iana.org/assignments/character-sets

Chapter 12 ■ Unicode, Internationalization, and Currency Codes

282

How It Works
Setting the java.locale.providers property, as of the release of Java 8, specifies the search order of locale-sensitive
services. This property is read upon Java runtime startup. To set the order of services, specify the acronym(s),
separated by commas. The following services are available for use:

•	 SPI: Locale-sensitive services represented by SPI (Service Provider Interface) providers

•	 JRE: Locale-sensitive services in the Java runtime environment

•	 CLDR: Provider based on the Unicode Consortium’s CLDR project

•	 HOST: Provider that reflects the user’s custom settings in the underlying operating system

Summary
Internationalization is a key to developing culturally responsive applications. It allows for application text to be
changed in an effort to adhere to the culture and language in which the application is being used. This chapter
provided some examples of how to make use of internationalization techniques to overcome the nuances of cross-
culture development. The chapter also covered topics regarding Unicode conversions.

283

Chapter 13

Working with Databases

Almost any nontrivial application contains a database of some sort. Some applications use in-memory databases,
while others use traditional relational database management systems (RDBMSs). Whatever the case, it is essential that
every Java developer have some skills working with databases. Over the years, the Java Database Connectivity (JDBC)
API has evolved quite a bit, and over the past couple of releases there have been some major advancements.

This chapter covers the basics of using JDBC for working with databases. You will learn how to perform all the
standard database operations, as well as some advanced techniques for manipulating data. You’ll also learn how you
can create secure database applications and save time on development using some of the latest advancements in
the API. In the end, you will be able to develop Java applications that work with traditional RDBMSs such as Oracle
database, PostgreSQL, and MySQL.

Note■■   To follow along with the examples in this chapter, run the create_user.sql script to create a database user
schema. Then, run the create_database.sql script within the database schema that you just created.

The database examples in this book are tailored for use with an Apache Derby or Oracle database.

13-1. Connecting to a Database
Problem
You want to create a connection to a database from within a desktop Java application.

Solution 1
Use a JDBC Connection object to obtain the connection. Do this by creating a new connection object, and then
load the driver that you need to use for your particular database vendor. Once the connection object is ready, call
its getConnection() method. The following code demonstrates how to obtain a connection to an Oracle or Apache
Derby database, depending on the specified driver.
 

Chapter 13 ■ Working with Databases

284

public Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl;
 if(driver.equals("derby")){
 jdbcUrl = "jdbc:derby://" + this.hostname + ":" +
 this.port + "/" + this.database;
 } else {
 jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +
 this.port + ":" + this.database;
 }
 System.out.println(jdbcUrl);
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
}
 

The method portrayed in this example returns a Connection object that is ready to be used for database access.

Solution 2
Use a DataSource to create a connection pool. The DataSource object must have been properly implemented and
deployed to an application server environment. After a DataSource object has been implemented and deployed, it
can be used by an application to obtain a connection to a database. The following code shows code that you can use
to obtain a database connection via a DataSource object:
 
public Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup("jdbc/myOracleDS");
 conn = ds.getConnection();
 
 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
}
 

Notice that the only information required in the DataSource implementation is the name of a valid DataSource object.
All the information that is required to obtain a connection with the database is managed within the application server.

How It Works
There are a couple of different ways to create a connection to a database within a Java application. How you do so
depends on the type of application you are writing. Utilization of the DriverManager is often used if an application will
be stand-alone or if it is a desktop application. Web-based and intranet applications commonly rely on the application
server to provide the connection for the application via a DataSource object.

Creating a JDBC connection involves a few steps. First, you need to determine which database driver you will
need. After you’ve determined which driver you will need, you download the JAR file containing that driver and place
it into your CLASSPATH. For this recipe, either an Oracle database or Apache Derby connection is made. Each of the

Chapter 13 ■ Working with Databases

285

database vendors will provide different JDBC drivers packaged in JAR files that have different names; consult the
documentation for your particular database for more information. Once you have obtained the appropriate JAR file
for your database, include it in your application CLASSPATH. Next, use a JDBC DriverManager to obtain a connection
to the database. As of JDBC version 4.0, drivers that are contained within the CLASSPATH are automatically loaded into
the DriverManager object. If you are using a JDBC version prior to 4.0, the driver will have to be manually loaded.

To obtain a connection to your database using the DriverManager, you need to pass a string containing the
JDBC URL to it. The JDBC URL consists of the database vendor name, along with the name of the server that hosts the
database, the name of the database, the database port number, and a valid database username and password that has
access to the schema that you want to work with. Many times, the values used to create the JDBC URL are obtained
from a Properties file so that they can be easily changed if needed. To learn more about using a Properties file to
store connection values, see Recipe 13-5. The code that is used to create the Oracle database JDBC URL for Solution 1
looks like the following:
 
String jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":" +
 this.port + ":" + this.database;
 

Once all the variables have been substituted into the string, it will look something like the following:
 
jdbc:oracle:thin:@hostname:1521:database
 

Similarly, the Apache Derby URL string would look like the following:
 
jdbc:derby://hostname:1521/database
 

Once the JDBC URL has been created, it can be passed to the DriverManager.getConnection() method to obtain
a java.sql.Connection object. If incorrect information has been passed to the getConnection() method, a java.
sql.SQLException will be thrown; otherwise, a valid Connection object will be returned.

The preferred way to obtain a database connection is to use a DataSource when running on an application
server or to have access to a Java Naming and Directory Interface (JNDI) service. To work with a DataSource object,
you need to have an application server deploy it to. Any compliant Java application server such as Glassfish, Oracle
Weblogic, or WildFly will work. Most of the application servers contain a web interface that can be used to easily
deploy a DataSource object. However, you can manually deploy a DataSource object by using code that will look like
the following:
 
org.java8recipes.chapter13.recipe13_01.FakeDataSourceDriver ds =
 new org.java8recipes.chapter13.recipe13_1.FakeDataSourceDriver();
ds.setServerName("my-server");
ds.setDatabaseName("JavaRecipes");
ds.setDescription("Database connection for Java 8 Recipes");
 

This code instantiates a new DataSource driver class and then sets properties based on the database that you
want to register. DataSource code such as that demonstrated here is typically used when registering a DataSource in
an application server or with access to a JNDI server. Application servers usually do this work behind the scenes if you
are using a web-based administration tool to deploy a DataSource. Most database vendors will supply a DataSource
driver along with their JDBC drivers, so if the correct JAR resides within the application or server CLASSPATH, it should
be recognized and available for use. Once a DataSource has been instantiated and configured, the next step is to
register the DataSource with a JNDI naming service.

Chapter 13 ■ Working with Databases

286

The following code demonstrates the registration of a DataSource with JNDI:
 
try {
 Context ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.bind("jdbc/java8recipesDB");
} catch (NamingException ex) {
 ex.printStackTrace();
}
 

Once the DataSource has been deployed, any application that has been deployed to the same application
server will have access to it. The beauty of working with a DataSource object is that your application code doesn’t
need to know anything about the database; it only needs to know the name of the DataSource. Usually the name
of the DataSource begins with a jdbc/ prefix, followed by an identifier. To look up the DataSource object, an
InitialContext is used. The InitialContext looks at all the DataSources available within the application server
and returns a valid DataSource if it is found; otherwise, it will throw a java.naming.NamingException exception. In
Solution 2, you can see that the InitialContext returns an object that must be casted as a DataSource.
 
Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/myOracleDS");
 

If the DataSource is a connection pool cache, it will send one of the available connections within the pool when
an application requests it. The following line of code returns a Connection object from the DataSource:
 
conn = ds.getConnection();
 

Of course, if no valid connection can be obtained, a java.sql.SQLException is thrown. The DataSource
technique is preferred over the DriverManager because database connection information is stored in only one place:
the application server. Once a valid DataSource is deployed, it can be used by many applications.

After a valid connection has been obtained by your application, it can be used to work with the database. To learn
more about working with the database using a Connection object, see Recipes 13-2 and 13-4.

13-2. Handling Connection and SQL Exceptions
Problem
A database activity in your application has thrown an exception. You need to handle the SQL exception so that your
application does not crash.

Solution
Use a try-catch block in order to capture and handle any SQL exceptions that are thrown by your JDBC
connection or SQL queries. The following code demonstrates how to implement a try-catch block in order to
capture SQL exceptions:
 
try {
 // perform database tasks
} catch (java.sql.SQLException){
 // perform exception handling
}

Chapter 13 ■ Working with Databases

287

How It Works
A standard try-catch block can be used to catch java.sql.Connection or java.sql.SQLException exceptions.
Your code will not compile if these exceptions are not handled, and it is a good idea to handle them properly in order
to prevent your application from crashing if one of these exceptions is thrown. Almost any work that is performed
against a java.sql.Connection object will need to contain error handling to ensure that database exceptions are
handled correctly. In fact, nested try-catch blocks are often required to handle all the possible exceptions. You need
to ensure that connections are closed once work has been performed and the Connection object is no longer used.
Similarly, it is a good idea to close java.sql.Statement objects for memory allocation cleanup as well.

Because Statement and Connection objects need to be closed, it is common to see try-catch-finally blocks
used to ensure that all resources have been tended to as needed. It is not unlikely that you will see older JDBC code
that resembles the following style:
 
try {
 // perform database tasks
} catch (java.sql.SQLException ex) {
 // perform exception handling
} finally {
 try {
 // close Connection and Statement objects
 } catch (java.sql.SQLException ex){
 // perform exception handling
 }
}
 

Newer code should be written to take advantage of the try-with-resources statement, which allows one to
offload resource management to Java, rather than performing manual closes. The following code demonstrates how to
use try-with-resources to open a connection, create a statement, and then close both the connection and statement
when finished.
 
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 // PERFORM SOME WORK
 }
} catch (SQLException e) {
 e.printStackTrace();
}
 

As seen in the previous pseudo-code, nested try-catch blocks are often required in order to clean unused
resources. Proper exception handling sometimes makes JDBC code rather laborious to write, but it will also ensure
that an application requiring database access will not fail, causing data to be lost.

Chapter 13 ■ Working with Databases

288

13-3. Querying a Database and Retrieving Results
Problem
A process in your application needs to query a database table for data.

Solution
Obtain a JDBC connection using one of the techniques as described in Recipe 13-1, and then use the java.sql.
Connection object to create a Statement object. A java.sql.Statement object contains the executeQuery() method,
which parses a string of text and uses it to query a database. Once you’ve executed the query, you can retrieve the
results of the query into a ResultSet object. The following example queries a database table named RECIPES and
prints the results:
 
String qry = "select recipe_num, name, description from recipes";
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUM");
 String name = rs.getString("NAME");
 String desc = rs.getString("DESCRIPTION");
 
 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
} catch (SQLException e) {
 e.printStackTrace();
}
 

If you execute this code using the database script that is included with Chapter 13, you will receive the
following results:
 
13-1 Connecting to a Database DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException

How It Works
One of the most commonly performed operations against a database is a query. Performing database queries using
JDBC is quite easy, although there is a bit of boilerplate code that needs to be used each time a query is executed.
First, you need to obtain a Connection object for the database and schema that you want to run the query against. You
can do this by using one of the solutions found in Recipe 13-1. Next, you need to form a query and store it in string
format. The Connection object is then used to create a Statement. Your query string will be passed to the Statement
object’s executeQuery() method in order to actually query the database. Here, you can see what this looks like
without the use of try-with-resources for resource management.
 
String qry = "select recipe_num, name, description from recipes";
Connection conn;
Statement stmt = null;
 

Chapter 13 ■ Working with Databases

289

try {
 conn = createConn.getConnection()
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);
...
 

The same code can be more efficiently written as follows:
 
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
...
 

As you can see, the Statement object’s executeQuery() method accepts a string and returns a ResultSet object.
The ResultSet object makes it easy to work with the query results so that you can obtain the information you need in
any order. If you take a look at the next line of code in the example, a while-loop is created on the ResultSet object.
This loop will continue to call the ResultSet object’s next() method, obtaining the next row that is returned from
the query with each iteration. In this case, the ResultSet object is named rs, so while rs.next() returns true, the
loop will continue to be processed. Once all the returned rows have been processed, rs.next() will return a false to
indicate that there are no more rows to be processed.

Within the while loop, each returned row is processed. The ResultSet object is parsed to obtain the values of
the given column names with each pass. Notice that if the column is expected to return a string, you must call the
ResultSet getString() method, passing the column name in string format. Similarly, if the column is expected
to return an int, you’d call the ResultSet getInt() method, passing the column name in string format. The same
holds true for the other data types. These methods will return the corresponding column values. In the example in the
solution to this recipe, those values are stored into local variables.
 
String recipe = rs.getString("RECIPE_NUM");
String name = rs.getString("NAME");
String desc = rs.getString("DESCRIPTION");
 

Once the column value has been obtained, you can do what you want to do with the values you have stored
within local variables. In this case, they are printed out using the System.out() method.
 
System.out.println(recipe + "\t" + name + "\t" + desc);
 

A java.sql.SQLException could be thrown when attempting to query a database (for instance, if the Connection
object has not been properly obtained or if the database tables that you are trying to query do not exist). You must
provide exception handling to handle errors in these situations. Therefore, all database-processing code should be
placed within a try block. The catch block then handles a SQLException, so if one is thrown, the exception will be
handled using the code within the catch block. Sounds easy enough, right? It is, but you must do it each time you
perform a database query. Lots of boilerplate code.

It is always a good idea to close statements and connections if they are open. Using the try-with-resources
construct is the most efficient solution to resource management. Closing resources when finished will help ensure
that the system can reallocate resources as needed, and act respectfully on the database. It is important to close
connections as soon as possible so that other processes can use them.

Chapter 13 ■ Working with Databases

290

13-4. Performing CRUD Operations
Problem
You need to have the ability to perform standard database operations within your application. That is, you need the
ability to create, retrieve, update, and delete (CRUD) database records.

Solution
Create a Connection object and obtain a database connection using one of the solutions provided in Recipe 13-1; then
perform the CRUD operation using a java.sql.Statement object that is obtained from the java.sql.Connection
object. The following code excerpts demonstrate how to perform each of the CRUD operations using JDBC:
 
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
  
public class CrudOperations {
 
 static CreateConnection createConn;
 public static void main(String[] args) {
  
 createConn = new CreateConnection();
 performCreate();
 performRead();
 performUpdate();
 performDelete();
 System.out.println("-- Final State --");
 performRead();
   
 }
  
 private static void performCreate(){
 String sql = "INSERT INTO RECIPES VALUES(" +
 "next value for recipes_seq, " +
 "'13-4', " +
 "'Performing CRUD Operations', " +
 "'How to perform create, read, update, delete functions', " +
 "'Recipe Text')";
 
 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 // Returns row-count or 0 if not successful
 int result = stmt.executeUpdate(sql);
 if (result > 0){
 System.out.println("-- Record created --");
 } else {
 System.out.println("!! Record NOT Created !!");

Chapter 13 ■ Working with Databases

291

 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 
 }
  
 private static void performRead(){
 String qry = "select recipe_number, recipe_name, description from recipes";
  
 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 ResultSet rs = stmt.executeQuery(qry);
 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUMBER");
 String name = rs.getString("RECIPE_NAME");
 String desc = rs.getString("DESCRIPTION");
 
 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
  
 }
  
 private static void performUpdate(){
 String sql = "UPDATE RECIPES " +
 "SET RECIPE_NUMBER = '13-5' " +
 "WHERE RECIPE_NUMBER = '13-4'";
 
 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 int result = stmt.executeUpdate(sql);
 if (result > 0){
 System.out.println("-- Record Updated --");
 } else {
 System.out.println("!! Record NOT Updated !!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
  
 private static void performDelete(){
 String sql = "DELETE FROM RECIPES WHERE RECIPE_NUMBER = '11-5'";
 
 try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();) {
 int result = stmt.executeUpdate(sql);
 if (result > 0){
 System.out.println("-- Record Deleted --");

Chapter 13 ■ Working with Databases

292

 } else {
 System.out.println("!! Record NOT Deleted!!");
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
  
}
 

Here is the result of running the code:
 
Successfully connected
-- Record created --
13-1 Connecting to a Database―DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException
13-4 Performing CRUD Operations How to Perform Create, Read, Update, Delete Functions
-- Record Updated --
-- Record Deleted --
-- Final State --
13-1 Connecting to a Database DriverManager and DataSource Implementations
13-2 Querying a Database and Retrieving Results Obtaining and Using Data from a DBMS
13-3 Handling SQL Exceptions Using SQLException

How It Works
The same basic code format is used for performing just about every database task. The format is as follows:

	 1.	 Obtain a connection to the database.

	 2.	 Create a statement from the connection.

	 3.	 Perform a database task with the statement.

	 4.	 Do something with the results of the database task.

	 5.	 Close the statement (and database connection if you’re finished using it).

The main difference between performing a query using JDBC and using data manipulation language (DML) is
that you will call different methods on the Statement object, depending on which operation you want to perform. To
perform a query, you need to call the Statement executeQuery() method. In order to perform DML tasks such as
insert, update, and delete, call the executeUpdate() method.

The performCreate() method in the solution to this recipe demonstrates the operation of inserting a record
into a database. To insert a record in the database, construct a SQL INSERT statement in string format. To perform
the insert, pass the SQL string to the Statement object’s executeUpdate() method. If the INSERT is performed, an
int value will be returned that specifies the number of rows that have been inserted. If the INSERT operation is not
performed successfully, either a zero will be returned or a SQLException will be thrown, indicating a problem with the
statement or database connection.

The performRead() method in the solution to this recipe demonstrates the operation of querying the database.
To execute a query, call the Statement object’s executeQuery() method, passing a SQL statement in string format.
The result will be a ResultSet object, which can then be used to work with the returned data. For more information
on performing queries, see Recipe 13-3.

Chapter 13 ■ Working with Databases

293

The performUpdate() method in the solution to this recipe demonstrates the operation of updating record(s)
within a database table. First, construct a SQL UPDATE statement in string format. Next, to perform the update
operation pass the SQL string to the Statement object’s executeUpdate() method. If the UPDATE is successfully
performed, an int value will be returned, which specifies the number of records that were updated. If the UPDATE
operation is not performed successfully, either a zero will be returned or a SQLException will be thrown, indicating a
problem with the statement or database connection.

The last database operation that needs to be covered is the DELETE operation. The performDelete() method
in the solution to this recipe demonstrates the operation of deleting record(s) from the database. First, construct n
SQL DELETE statement in string format. Next, to execute the deletion, pass the SQL string to the Statement object’s
executeUpdate() method. If the deletion is successful, an int value specifying the number of rows deleted will
be returned. Otherwise, if the deletion fails, a zero will be returned or a SQLException will be thrown, indicating a
problem with the statement or database connection.

Almost every database application uses at least one of the CRUD operations at some point. This is foundational
JDBC that needs to be known if you are working with databases within Java applications. Even if you will not work
directly with the JDBC API, it is good to know these foundational basics.

13-5. Simplifying Connection Management
Problem
Your application requires the use of a database, and in order to work with the database, you need to open a
connection for each interaction. Rather than code the logic to open a database connection every time you need to
access the database, you want to use a single class to perform that task.

Solution
Write a class to handle all the connection management within your application. Doing so will allow you to call that
class in order to obtain a connection, rather than setting up a new Connection object each time you need access to the
database. Perform the following steps to set up a connection management environment for your JDBC application:

	 1.	 Create a class named CreateConnection.java that will encapsulate all the connection
logic for your application.

	 2.	 Create a PROPERTIES file to store your connection information. Place the file somewhere
on your CLASSPATH so that the CreateConnection class can load it.

	 3.	 Use the CreateConnection class to obtain your database connections.

The following code is a listing of the CreateConnection class that can be used for centralized connection
management:
 
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Properties;
import javax.naming.Context;

Chapter 13 ■ Working with Databases

294

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;
 
public class CreateConnection {
 
 static Properties props = new Properties();
 
 String hostname = null;
 String port = null;
 String database = null;
 String username = null;
 String password = null;
 String driver = null;
 String jndi = null;
  
 public CreateConnection() {
 // Looks for properties file in the root of the src directory in Netbeans project
 try (InputStream in = Files.newInputStream(FileSystems.getDefault().
 getPath(System.getProperty("user.dir") + File.separator + "db_props.properties"));) {
 props.load(in);
 in.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 loadProperties();
 }
 
 public final void loadProperties() {
 hostname = props.getProperty("host_name");
 port = props.getProperty("port_number");
 database = props.getProperty("db_name");
 username = props.getProperty("username");
 password = props.getProperty("password");
 driver = props.getProperty("driver");
 jndi = props.getProperty("jndi");
 
 }
 
 /**
 * Demonstrates obtaining a connection via DriverManager
 *
 * @return
 * @throws SQLException
 */
 public Connection getConnection() throws SQLException {
 Connection conn = null;
 String jdbcUrl;
 if (driver.equals("derby")) {
 jdbcUrl = "jdbc:derby://" + this.hostname + ":"
 + this.port + "/" + this.database;
 } else {

Chapter 13 ■ Working with Databases

295

 jdbcUrl = "jdbc:oracle:thin:@" + this.hostname + ":"
 + this.port + ":" + this.database;
 }
 conn = DriverManager.getConnection(jdbcUrl, username, password);
 System.out.println("Successfully connected");
 return conn;
 }
 
 /**
 * Demonstrates obtaining a connection via a DataSource object
 *
 * @return
 */
 public Connection getDSConnection() {
 Connection conn = null;
 try {
 Context ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup(this.jndi);
 conn = ds.getConnection();
 } catch (NamingException | SQLException ex) {
 ex.printStackTrace();
 }
 return conn;
 }
}
 

Next, the following lines of text are an example of what should be contained in the properties file that is used for
obtaining a connection to the database. For this example, the properties file is named db_props.properties:
 
host_name=your_db_server_name
db_name=your_db_name
username=db_username
password=db_username_password
port_number=db_port_number
#driver = derby or oracle
driver=db_driver
jndi=jndi_connection_string
 

Finally, use the CreateConnection class to obtain connections for your application. The following code
demonstrates this concept:
 
CreateConnection createConn = new CreateConnection();
try(Connection conn = createConn.getConnection();) {
 performDbTask();
} catch (java.sql.SQLException ex) {
 System.out.println(ex);
}
 

This code uses try-with-resources to automatically close the connection when it is finished performing the
database task.

Chapter 13 ■ Working with Databases

296

How It Works
Obtaining a connection within a database application can be code-intensive. Moreover, the process can be prone to
error if you retype the code each time you need to obtain a connection. By encapsulating database connection logic
within a single class, you can reuse the same connection code each time you require a connection to the database.
This increases your productivity, reduces the chances of typing errors, and also enhances manageability because if
you have to make a change, it can occur in one place rather than in several different locations.

Creating a strategic connection methodology is beneficial to you and others who might need to maintain your
code in the future. Although data sources are the preferred technique for managing database connections when
using an application server or JNDI, the solution to this recipe demonstrates the use standard JDBC DriverManager
connections. One of the security implications of using the DriverManager is that you will need to store the database
credentials somewhere for use by the application. It is not safe to store those credentials in plain text anywhere, and it
is also not safe to embed them in application code, which might be decompiled at some point in the future. As seen in
the solution, a properties file that on disk is used to store the database credentials. Assume that this properties file will
be encrypted at some point before deployment to a server, and that the application will be able to handle decryption.

As seen in the solution, the code reads the database credentials, hostname, database name, and port
number from the properties file. That information is then pieced together to form a JDBC URL that can be used by
DriverManager to obtain a connection to the database. Once obtained, that connection can be used anywhere and
then closed. Similarly, if using a DataSource that has been deployed to an application server, the properties file can
be used to store the JNDI connection. That is the only piece of information that is needed to obtain a connection to
the database using the DataSource. To the developer using the connection class, the only difference between the two
types of connections is the method name that is called in order to obtain the Connection object.

You could develop a JDBC application so that the code used to obtain a connection needs to be hard-coded
throughout. Instead, this solution enables all the code for obtaining a connection to be encapsulated by a single
class so that the developer does not need to worry about it. Such a technique also allows the code to become more
maintainable. For instance, if the application were originally deployed using the DriverManager, but then later had
the ability to use a DataSource, very little code would need to be changed.

13-6. Guarding Against SQL Injection
Problem
Your application performs database tasks. To reduce the chances of a SQL injection attack, you need to ensure that no
unfiltered strings of text are being appended to SQL statements and executed against the database.

Tip■■   Although prepared statements are the solution to this recipe, they can be used for more than just protecting
against SQL injection. They also provide a way to centralize and better control the SQL used in an application. Instead
of creating multiple, possibly different, versions of the same query, for example, you can create the query once as a
prepared statement and invoke it from many different places throughout your code. Any change to the query logic need
happen only at the point where you prepare the statement.

Solution
Use PreparedStatements for performing the database tasks. PreparedStatements send a precompiled SQL statement
to the DBMS rather than a string. The following code demonstrates how to perform a database query and a database
update using a java.sql.PreparedStatement object.

Chapter 13 ■ Working with Databases

297

In the following code example, a PreparedStatement is used to query a database for a given record. Assume that
the string recipeNumber is passed to this code as a variable.
 
String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES " +
 "WHERE RECIPE_NUMBER = ?";
 
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 ResultSet rs = pstmt.executeQuery();
 while(rs.next()){
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}
 

The next example demonstrates the use of a PreparedStatement for inserting a record into the database. Assume
that the recipeNumber, title, description, and text strings are passed to this code as variables.
 
String sql = "INSERT INTO RECIPES VALUES(" +
 "NEXT VALUE FOR RECIPES_SEQ, ?,?,?,?)";
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.setString(2, title);
 pstmt.setString(3, description);
 pstmt.setString(4, text);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
} catch (SQLException ex){
 ex.printStackTrace();
}
 

In this last example, a PreparedStatement is used to delete a record from the database. Again, assume that the
recipeNumber string is passed to this code as a variable.
 
String sql = "DELETE FROM RECIPES WHERE " +
 "RECIPE_NUMBER = ?";
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.executeUpdate();
 System.out.println("Recipe " + recipeNumber + " successfully deleted.");
} catch (SQLException ex){
 ex.printStackTrace();
}
 

As you can see, a PreparedStatement is very much the same as a standard JDBC statement object, but instead it
sends precompiled SQL to the DBMS rather than strings of text.

Chapter 13 ■ Working with Databases

298

How It Works
While standard JDBC statements will get the job done, the harsh reality is that they can sometimes be insecure and
cumbersome to work with. For instance, bad things can occur if a dynamic SQL statement is used to query a database,
and a user-accepted string is assigned to a variable and concatenated with the intended SQL string. In most ordinary
cases, the user-accepted string would be concatenated, and the SQL string would be used to query the database as
expected. However, an attacker could decide to place malicious code inside of the string (a.k.a. SQL Injection), which
would then be inadvertently sent to the database using a standard Statement object. The use of PreparedStatements
prevents such malicious strings from being concatenated into a SQL string and passed to the DBMS because they use
a different approach. PreparedStatements use substitution variables rather than concatenation to make SQL strings
dynamic. They are also precompiled, which means that a valid SQL string is formed prior to the SQL being sent to the
DBMS. Moreover, PreparedStatements can help your application perform better because if the same SQL has to be
run more than one time, it has to be compiled only once. After that, the substitution variables are interchangeable, but
the overall SQL can be executed by the PreparedStatement very quickly.

Let’s take a look at how a PreparedStatement works in practice. If you look at the first example in the solution to
this recipe, you can see that the database table RECIPES is being queried, passing a RECIPE_NUMBER and retrieving the
results for the matching record. The SQL string looks like the following:
 
String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES " +
 "WHERE RECIPE_NUM = ?";
 

Everything looks standard with the SQL text except for the question mark (?) at the end of the string. Placing a
question mark in a string of SQL signifies that a substitute variable will be used in place of that question mark when
the SQL is executed. The next step for using a PreparedStatement is to declare a variable of type PreparedStatement.
This can be seen with the following line of code:
 
PreparedStatement pstmt = null;
 

A PreparedStatement implements AutoCloseable, and therefore it can be utilized within the context of a
try-with-resources block. Once a PreparedStatement has been declared, it can be put to use. However, use of a
PreparedStatement might not cause an exception to be thrown. Therefore, in the event that try-with-resources
is not used, a PreparedStatement should occur within a try-catch block so that any exceptions can be handled
gracefully. For instance, exceptions can occur if the database connection is unavailable for some reason or if the SQL
string is invalid. Rather than crashing an application due to such issues, it is best to handle the exceptions wisely
within a catch block. The following try-catch block includes the code that is necessary to send the SQL string to the
database and retrieve results:
 
try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 ResultSet rs = pstmt.executeQuery();
 while(rs.next()){
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 }
} catch (SQLException ex) {
 ex.printStackTrace();
}
 

First, you can see that the Connection object is used to instantiate a PreparedStatement object. The SQL string
is passed to the PreparedStatement object’s constructor on creation. Since the PreparedStatement is instantiated
within the try-with-resources construct, it will be automatically closed when it is no longer in use. Next, the

Chapter 13 ■ Working with Databases

299

PreparedStatement object is used to set values for any substitution variables that have been placed into the SQL
string. As you can see, the PreparedStatement setString() method is used in the example to set the substitution
variable at position 1 equal to the contents of the recipeNumber variable. The positioning of the substitution
variable is associated with the placement of the question mark (?) within the SQL string. The first question mark
within the string is assigned to the first position, the second one is assigned to the second position, and so forth.
If there were more than one substitution variable to be assigned, there would be more than one call against the
PreparedStatement, assigning each of the variables until each one has been accounted for. PreparedStatements
can accept substitution variables of many different data types. For instance, if an int value were being assigned
to a substitution variable, a call to the setInt(position, variable) method would be in order. See the online
documentation or your IDE’s code completion for a complete set of methods that can be used for assigning
substitution variables using PreparedStatement objects.

Once all the variables have been assigned, the SQL string can be executed. The PreparedStatement object
contains an executeQuery() method that is used to execute a SQL string that represents a query. The executeQuery()
method returns a ResultSet object, which contains the results that have been fetched from the database for the
particular SQL query. Next, the ResultSet can be traversed to obtain the values retrieved from the database. Again,
positional assignments are used to retrieve the results by calling the ResultSet object’s corresponding getter methods
and passing the position of the column value that you want to obtain. The position is determined by the order in
which the column names appear within the SQL string. In the example, the first position corresponds to the RECIPE_
NUMBER column, the second corresponds to the RECIPE_NAME column, and so forth. If the recipeNumber string variable
was equal to "13-1", the results of executing the query in the example would look something like the following:
 
13-1: Connecting to a Database - DriverManager and DataSource Implementations
 

Of course, if the substitution variable is not set correctly or if there is an issue with the SQL string, an exception
will be thrown. This would cause the code that is contained within the catch block to be executed. You should also be
sure to clean up after using PreparedStatements by closing the statement when you are finished using it. If you’re not
using a try-with-resources construct, it is a good practice to put all the cleanup code within a finally block to be
sure that the PreparedStatement is closed properly even if an exception is thrown. In the example, the finally block
looks like the following:
 
finally {
 if (pstmt != null){
 try {
 pstmt.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}
 

You can see that the PreparedStatement object that was instantiated, pstmt, is checked to see whether it is NULL.
If not, it is closed by calling the close() method.

Working through the code in the solution to this recipe, you can see that similar code is used to process
database INSERT, Update, and DELETE statements. The only difference in those cases is that the PreparedStatement
executeUpdate() method is called rather than the executeQuery() method. The executeUpdate() method will
return an int value representing the number of rows affected by the SQL statement.

The use of PreparedStatement objects is preferred over JDBC Statement objects. This is due to the fact that they
are more secure and perform better. They can also make your code easier to follow and maintain.

Chapter 13 ■ Working with Databases

300

13-7. Performing Transactions
Problem
The way in which your application is structured requires a sequential processing of tasks. One task depends on
another, and each process performs a different database action. If one of the tasks along the way fails, the database
processing that has already occurred needs to be reversed.

Solution
Set your Connection object auto-commit to false and then perform the transactions you want to complete. Once
you’ve successfully performed each of the transactions, manually commit the Connection object; otherwise,
roll back each of the transactions that have taken place. The following code example demonstrates transaction
management. If you look at the main() method of the TransactionExample class, you will see that the Connection
object’s autoCommit() preference has been set to false, and then the database transactions are performed. If all the
transactions are successful, the Connection object is manually committed by calling the commit() method; otherwise,
all the transactions are rolled back by calling the rollback() method.
 
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
 
public class TransactionExample {
 public static Connection conn = null;
 
 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 CreateConnection createConn = new CreateConnection();
 conn = createConn.getConnection();
 conn.setAutoCommit(false);
 queryDbRecipes();
 successFlag = insertRecord(
 "13-6",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
 
 if (successFlag == true){
 
 successFlag = insertRecord(
 "13-6B",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
 }
 
 // Commit Transactions
 if (successFlag == true)

Chapter 13 ■ Working with Databases

301

 conn.commit();
 else
 conn.rollback();
 
 conn.setAutoCommit(true);
 queryDbRecipes();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 
 }
  
 private static void queryDbRecipes(){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES";
 
 try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 ResultSet rs = pstmt.executeQuery();
 while(rs.next()){
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 }
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
  
 }
  
 private static boolean insertRecord(String recipeNumber,
 String title,
 String description,
 String text){
 String sql = "INSERT INTO RECIPES VALUES(" +
 "NEXT VALUE FOR RECIPES_SEQ, ?,?,?,?)";
 boolean success = false;
 try(PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setString(1, recipeNumber);
 pstmt.setString(2, title);
 pstmt.setString(3, description);
 pstmt.setString(4, text);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
 success = true;

Chapter 13 ■ Working with Databases

302

 } catch (SQLException ex){
 success = false;
 ex.printStackTrace();
 }
 return success;
 }
  
}
 

In the end, if any of the statements fails, all transactions will be rolled back. However, if all the statements execute
properly, everything will be committed.

How It Works
Transaction management can play an important role in an application. This holds true especially for applications that
perform different tasks that depend on each other. In many cases, if one of the tasks performed within a transaction
fails, it is preferable for the entire transaction to fail rather than having it only partially complete. For instance,
imagine that you were adding database user records to your application database. Now let’s say that adding a user
for your application required a couple of different database tables to be modified, maybe a table for roles, and so on.
What would happen if your first table was modified correctly and the second table modification failed? You would
be left with a partially complete application user addition, and your user would most likely not be able to access
the application as expected. In such a situation, it would be nicer to roll back all the already-completed database
modifications if one of the updates failed so that the database was left in a clean state and the transaction could be
attempted once again.

By default, a Connection object is set up so that auto-commit is turned on. That means that each database
INSERT, UPDATE, or DELETE statement is committed right away. Usually, this is the way that you will want your
applications to function. However, in circumstances where you have many database statements that rely on one
another, it is important to turn off auto-commit so that all the statements can be committed at once. To do so, call the
Connection object’s setAutoCommit() method and pass a false value. As you can see in the solution to this recipe,
the setAutoCommit() method is called passing a false value, the database statements are executed. Doing so will
cause all the database statement changes to be temporary until the Connection object’s commit() method is called.
This provides you with the ability to ensure that all the statements execute properly before issuing commit(). Take a
look at this transaction management code that is contained within the main() method of the TransactionExample
class within the solution to this recipe:
 
boolean successFlag = false;
...
CreateConnection createConn = new CreateConnection();
conn = createConn.getConnection();
conn.setAutoCommit(false);
queryDbRecipes();
successFlag = insertRecord(
 "13-6",
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
 
if (successFlag == true){
 

Chapter 13 ■ Working with Databases

303

 successFlag = insertRecord(
 null,
 "Simplifying and Adding Security with Prepared Statements",
 "Working with Prepared Statements",
 "Recipe Text");
}
// Commit Transactions
if (successFlag == true)
 conn.commit();
else
 conn.rollback();
 
conn.setAutoCommit(true);
 

Note that the commit() method is called only if all transaction statements were processed successfully. If any of
them fail, the successFlag is equal to false, which would cause the rollback() method to be called instead. In the
solution to this recipe, the second call to insertRecord() attempts to insert a NULL value into the RECIPE.ID column,
which is not allowed. Therefore, that insert fails and everything, including the previous insert, gets rolled back.

13-8. Creating a Scrollable ResultSet
Problem
You have queried the database and obtained some results. You want to store those results in an object that will allow
you to traverse forward and backward through the results, updating values as needed.

Solution
Create a scrollable ResultSet object and then you will have the ability to read the next, first record, last, and previous
record. Using a scrollable ResultSet allows the results of a query to be fetched in any direction so that the data can
be retrieved as needed. The following example method demonstrates the creation of a scrollable ResultSet object:
 
private static void queryDbRecipes(){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES";
 
 try(PreparedStatement pstmt =conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_INSENSITIVE, ResultSet.CONCUR_READ_ONLY);
 ResultSet rs = pstmt.executeQuery()) {
 
 rs.first();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 rs.next();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 rs.previous();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));

Chapter 13 ■ Working with Databases

304

 rs.last();
 System.out.println(rs.getString(2) + ": " + rs.getString(3) +
 " - " + rs.getString(4));
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 
}
 

Executing this method will result in the following output using the data that was originally loaded for this chapter:
 
Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-3: Handling SQL Exceptions - Using SQLException

How It Works
Ordinary ResultSet objects allow results to be fetched in a forward direction. That is, an application can process a
default ResultSet object from the first record retrieved forward to the last. Sometimes an application requires more
functionality when it comes to traversing a ResultSet. For instance, let’s say you want to write an application that
allows for someone to display the first or last record that was retrieved, or perhaps page forward or backward through
results. You could not do this very easily using a standard ResultSet. However, by creating a scrollable ResultSet, you
can easily move backward and forward through the results.

To create a scrollable ResultSet, you must first create an instance of a Statement or PreparedStatement that has
the ability to create a scrollable ResultSet. That is, when creating the Statement, you must pass the ResultSet scroll
type constant value to the Connection object’s createStatement() method. Likewise, you must pass the scroll type
constant value to the Connection object’s prepareStatement() method when using a PreparedStatement. There are
three scroll type constants that can be used. Table 13-1 displays those three constants.

Table 13-1.  ResultSet Scroll Type Constants

Constant Description

ResultSet.TYPE_FORWARD_ONLY Default type, allows forward movement only.

ResultSet.TYPE_SCROLL_INSENSITIVE Allows forward and backward movement. Not sensitive to
ResultSet updates.

ResultSet.TYPE_SCROLL_SENSITIVE Allows forward and backward movement. Sensitive to
ResultSet updates.

You must also pass a ResultSet concurrency constant to advise whether the ResultSet is intended to be
updatable. The default is ResultSet.CONCUR_READ_ONLY, which means that the ResultSet is not updatable. The other
concurrency type is ResultSet.CONCUR_UPDATABLE, which signifies an updatable ResultSet object.

In the solution to this recipe, a PreparedStatement object is used, and the code to create a PreparedStatement
object that has the ability to generate a scrollable ResultSet looks like the following line:
 
pstmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);
 

Chapter 13 ■ Working with Databases

305

Once the PreparedStatement has been created as such, a scrollable ResultSet is returned. You can traverse
in several directions using a scrollable ResultSet by calling the ResultSet methods indicating the direction you
want to move or the placement that you want to be. The following line of code will retrieve the first record within the
ResultSet:
 
ResultSet rs = pstmt.executeQuery();
rs.first();
 

The solution to this recipe demonstrates a few different scroll directions. Specifically, you can see that the
ResultSet first(), next(), last(), and previous() methods are called in order to move to different positions
within the ResultSet. For a complete reference to the ResultSet object, see the online documentation that can be
found at http://docs.oracle.com/javase/8/docs/api/java/sql/ResultSet.html.

Scrollable ResultSet objects have a niche in application development. They are one of those niceties that are
there when you need them, but they are also something that you might not need very often.

13-9. Creating an Updatable ResultSet
Problem
An application task has queried the database and obtained results. You have stored those results into a ResultSet
object, and you want to update some of those values in the ResultSet and commit them back to the database.

Solution
Make your ResultSet object updatable, and then update the rows as needed while iterating through the results. The
following example method demonstrates how to make ResultSet updatable and then how to update content within
that ResultSet, eventually persisting it in the database:
 
private static void queryAndUpdateDbRecipes(String recipeNumber){
 String sql = "SELECT ID, RECIPE_NUMBER, RECIPE_NAME, DESCRIPTION " +
 "FROM RECIPES " +
 "WHERE RECIPE_NUMBER = ?";
 ResultSet rs = null;
 try (PreparedStatement pstmt =
 conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_
UPDATABLE);){
  
 pstmt.setString(1, recipeNumber);
 rs = pstmt.executeQuery();
 while(rs.next()){
 String desc = rs.getString(4);
 System.out.println("Updating row" + desc);
  
 rs.updateString(4, desc + " -- More to come");
 rs.updateRow();
 }
  
 } catch (SQLException ex) {
 ex.printStackTrace();
 } finally {

http://download.java.net/jdk8/docs/api/java/sql/ResultSet.html

Chapter 13 ■ Working with Databases

306

 if (rs != null){
 try {
 rs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 

This method could be called passing a string value containing a recipe number. Suppose that the recipe number
"13-1" was passed to this method; the following output would be the result:
 
Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException
Updating rowDriverManager and DataSource Implementations
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException

How It Works
Sometimes you need to update data as you are parsing it. Usually this technique involves testing the values that are
being returned from the database and updating them after comparison with another value. The easiest way to do this
is to make the ResultSet object updatable by passing the ResultSet.CONCUR_UPDATABLE constant to the Connection
object’s createStatement() or prepareStatement() method. Doing so causes the Statement or PreparedStatement
to produce an updatable ResultSet.

Note■■  S ome database JDBC drivers do not support updatable ResultSets. See the documentation of your JDBC
driver for more information. This code was run using Oracle’s ojdbc6.jar JDBC driver on Oracle database 11.2 release.

The format for creating a Statement that will produce an updatable ResultSet is to pass the ResultSet
type as the first argument and the ResultSet concurrency as the second argument. The scroll type must be TYPE_
SCROLL_SENSITIVE to ensure that the ResultSet will be sensitive to any updates that are made. The following code
demonstrates this technique by creating a Statement object that will produce a scrollable and updatable ResultSet
object:
 
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
 

The format for creating a PreparedStatement that will produce an updatable ResultSet is to pass the SQL
string as the first argument, the ResultSet type as the second argument, and the ResultSet concurrency as the third
argument. The solution to this recipe demonstrates this technique using the following line of code:
 
pstmt = conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 

Chapter 13 ■ Working with Databases

307

Both of the lines of code discussed in this section will produce scrollable and updatable ResultSet objects. Once
you have obtained an updatable ResultSet, you can use it just like an ordinary ResultSet for fetching values that
are retrieved from the database. In addition, you can call one of the ResultSet object’s updateXXX() methods to
update any value within the ResultSet. In the solution to this recipe, the updateString() method is called, passing
the position of the value from the query as the first argument and the updated text as the second argument. In this
case, the fourth element column listed in the SQL query will be updated.
 
rs.updateString(4, desc + " -- More to come");
 

Finally, to persist the values that you have changed, call the ResultSet updateRow() method, as seen in the
solution to this recipe:
 
rs.updateRow();
 

Creating an updatable ResultSet is not something that you will need to do every day. In fact, you might never
need to create an updatable ResultSet. However, for the cases in which such a strategy is needed, this technique can
come in very handy.

13-10. Caching Data for Use When Disconnected
Problem
You want to work with data from a DBMS when you are in a disconnected state. That is, you are working on a device
that is not connected to the database, and you still want to have the ability to work with a set of data as though you are
connected. For instance, you are working with data on a portable device, and you are away from the office without a
connection. You want to have the ability to query, insert, update, and delete data, even though there is no connection.
Once a connection becomes available, you want to have your device synchronize any database changes that have
been made while you were disconnected.

Solution
Use a CachedRowSet object to store the data that you want to work with while offline. This will afford your application
the ability to work with data as though it were connected to a database. Once your connection is restored or you
connect back to the database, synchronize the data that has been changed within the CachedRowSet with the database
repository. The following example class demonstrates the use of a CachedRowSet. In this scenario, the main() method
executes the example. Suppose that there were no main() method, though, and that another application on a portable
device were to invoke the methods of this class. Follow the code in the example and consider the possibility of
working with the results that are stored within the CachedRowSet while not connected to the database. For instance,
suppose that you began some work in the office while connected to the network and are now outside of the office,
where the network is spotty and you cannot maintain a constant connection to the database:
 
package org.java8recipes.chapter13.recipe13_10;
 
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import javax.sql.rowset.spi.SyncProviderException;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
 

Chapter 13 ■ Working with Databases

308

public class CachedRowSetExample {
 
 public static Connection conn = null;
 public static CreateConnection createConn;
 public static CachedRowSet crs = null;
 
 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 // Perform Scrollable Query
 queryWithRowSet();
  
 // Update the CachedRowSet
 updateData();
  
 // Synchronize changes
 syncWithDatabase();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 
 }
 
 /**
 * Call this method to synchronize the data that has been used in the
 * CachedRowSet with the database
 */
 public static void syncWithDatabase() {
 try {
 crs.acceptChanges(conn);
 } catch (SyncProviderException ex) {
 // If there is a conflict while synchronizing, this exception
 // will be thrown.
 ex.printStackTrace();
 } finally {
 // Clean up resources by closing CachedRowSet
 if (crs != null) {
 try {
 crs.close();
 } catch (SQLException ex) {

Chapter 13 ■ Working with Databases

309

 ex.printStackTrace();
 }
 }
 }
 }
 
 public static void queryWithRowSet() {
 RowSetFactory factory;
 
 try {
 
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();
 
 // Create a CachedRowSet object using the factory
 crs = factory.createCachedRowSet();
 
 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 
 // Populate a query that will obtain the data that will be used
 crs.setCommand("select id, recipe_number, recipe_name, description from recipes");
 // Set key columns
 int[] keys = {1};
 crs.setKeyColumns(keys);
 crs.execute(conn);
 
 // You can now work with the object contents in a disconnected state
 while (crs.next()) {
 System.out.println(crs.getString(2) + ": " + crs.getString(3)
 + " - " + crs.getString(4));
 }
 
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 
 public static boolean updateData() {
 boolean returnValue = false;
 try {
 // Move to the position before the first row in the result set
 crs.beforeFirst();
  
 // traverse result set
 while (crs.next()) {
 // If the recipe_num equals 11-2 then update
 if (crs.getString("RECIPE_NUMBER").equals("13-2")) {
 System.out.println("updating recipe 13-2");

Chapter 13 ■ Working with Databases

310

 crs.updateString("description", "Subject to change");
 crs.updateRow();
 }
 
 }
 returnValue = true;
  
 // Move to the position before the first row in the result set
 crs.beforeFirst();
  
 // traverse result set to see changes
 while (crs.next()) {
 
 System.out.println(crs.getString(2) + ": " + crs.getString(3)
 + " - " + crs.getString(4));
  
 }
  
 } catch (SQLException ex) {
 returnValue = false;
 ex.printStackTrace();
 }
 return returnValue;
 }
}
 

Running this example code will display output that looks similar to the following code, although the text
might vary depending on the values in the database. Notice that the database record for Recipe 13-2 has a changed
description after the update of the CachedRowSet.
 
Successfully connected
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Subject to Change
13-3: Handling SQL Exceptions - Using SQLException
Updating Recipe 13-2
13-1: Connecting to a Database - DriverManager and DataSource Implementations - More to Come
13-2: Querying a Database and Retrieving Results - Obtaining and Using Data from a DBMS
13-3: Handling SQL Exceptions - Using SQLException

How It Works
It is not possible to remain connected to the Internet all the time if you are working on a mobile device and traveling.
Nowadays there are devices that allow you to perform substantial work while you are on the go, even when you
are not connected directly to a database. In such cases, solutions like the CachedRowSet object can come into play.
The CachedRowSet is the same as a regular ResultSet object, except it does not have to maintain a connection
to a database in order to remain usable. You can query the database, obtain the results, and place them into a
CachedRowSet object; and then work with them while not connected to the database. If changes are made to the data
at any point, those changes can be synchronized with the database at a later time.

Chapter 13 ■ Working with Databases

311

There are a couple of ways to create a CachedRowSet. The solution to this recipe uses a RowSetFactory (new as of
Java SE 7) to instantiate a CachedRowSet. However, you can also use the CachedRowSet default constructor to create a
new instance. Doing so would look like the following line of code:
 
CachedRowSet crs = new CachedRowSetImpl();
 

Once instantiated, you need to set up a connection to the database. There are also a couple of ways to do
this. Properties could be set for the connection that will be used, and the solution to this recipe demonstrates this
technique within comments. The following excerpt from the solution sets the connection properties using the
CachedRowSet object’s setUsername(), setPassword(), and setUrl() methods. Each of them accepts a string value,
and in the example that string is obtained from the CreateConnection class:
 
// Alternatively populate the CachedRowSet connection settings
// crs.setUsername(createConn.getUsername());
// crs.setPassword(createConn.getPassword());
// crs.setUrl(createConn.getJdbcUrl());
 

Another way to set up the connection is to wait until the query is executed and pass a Connection object to the
executeQuery() method. This is the technique that is used in the solution to this recipe. But before you can execute
the query, it must be set using the setCommand() method, which accepts a string value. In this case, the string is the
SQL query that you need to execute:
 
crs.setCommand("select id, recipe_number, recipe_name, description from recipes");
 

Next, if a CachedRowSet will be used for updates, the primary key values should be noted using the setKeys()
method. This method accepts an int array that includes the positional indices of the key columns. These keys are
used to identify unique columns. In this case, the first column listed in the query, ID, is the primary key:
 
int[] keys = {1};
crs.setKeyColumns(keys);
 

Finally, execute the query and populate the CachedRowSet using the execute() method. As mentioned
previously, the execute() method optionally accepts a Connection object, which allows the CachedRowSet to obtain a
database connection.
 
crs.execute(conn);
 

Once the query has been executed and the CachedRowSet has been populated, it can be used just like any other
ResultSet. You can use it to fetch records forward and backward, or by specifying the absolute position of the row
you’d like to retrieve. The solution to this recipe demonstrates only a couple of these fetching methods, but the most-
often-used ones are listed in Table 13-2.

Chapter 13 ■ Working with Databases

312

It is possible to insert and update rows within a CachedRowSet. To insert rows, use the moveToInsertRow()
method to move to a new row position. Then populate a row by using the various methods [CachedRowSet,
updateString(), updateInt(), and so on] that correspond to the data type of the column you are populating within
the row. Once you have populated each of the required columns within the row, call the insertRow() method,
followed by the moveToCurrentRow() method. The following lines of code demonstrate inserting a record into the
RECIPES table:
 
crs.moveToInsertRow();
crs.updateInt(1, sequenceValue); // obtain current sequence values with a prior query
crs.updateString(2, “13-x”);
crs.updateString(3, “This is a new recipe title”);
crs.insertRow();
crs.moveToCurrentRow();
 

Updating rows is similar to using an updatable ResultSet. Simply update the values using the CachedRowSet
object’s methods [updateString(), updateInt(), and so on] that correspond to the data type of the column that you
are updating within the row. Once you have updated the column or columns within the row, call the updateRow()
method. This technique is demonstrated in the solution to this recipe.
 
crs.updateString("description", "Subject to change");
crs.updateRow();
 

To propagate any updates or inserts to the database, the acceptChanges() method must be called. This method
can accept an optional Connection argument in order to connect to the database. Once called, all changes are
flushed to the database. Unfortunately, because time might have elapsed since the data was last retrieved for the
CachedRowSet, there could be conflicts. If such a conflict arises, a SyncProviderException will be thrown. You can
catch these exceptions and handle the conflicts manually using a SyncResolver object. However, resolving conflicts is
out of the scope of this recipe, so for more information, see the online documentation that can be found at
http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html.

CachedRowSet objects provide great flexibility for working with data, especially when you are using a device that
is not always connected to the database. However, they can also be overkill in situations where you can simply use a
standard ResultSet or even a scrollable ResultSet.

Table 13-2.  CachedRowSet Fetching Methods

Method Description

first() Moves to the first row in the set.

beforeFirst() Moves to the position before the first row in the set.

afterLast Moves to the position after the last row in the set.

next() Moves to the next position in the set.

last() Moves to the last position in the set.

http://download.oracle.com/javase/tutorial/jdbc/basics/cachedrowset.html

Chapter 13 ■ Working with Databases

313

13-11. Joining RowSet Objects When Not Connected to the Data
Source
Problem
You want to join two or more RowSets while not connected to a database. Perhaps your application is loaded on a
mobile device that is not always connected to the database. In such a case, you are looking for a solution that will
allow you to join the results of two or more queries.

Solution
Use a JoinRowSet to take data from two relational database tables and join them. The data from each table that will
be joined should be fetched into a RowSet and then the JoinRowSet can be used to join each of those RowSet objects
based on related elements contained within them. For instance, suppose that there were two related tables within a
database. One of the tables stores a list of authors, and the other table contains a list of chapters that are written by
those authors. The two tables can be joined using SQL by the primary and foreign key relationship.

Note■■   A primary key is a unique identifier within each record of a database table, and a foreign key is a referential
constraint between two tables.

However, the application will not be connected to the database to make the JOIN query, so it must be done using
a JoinRowSet. The following class listing demonstrates one strategy that can be used in this scenario:
 
package org.java8recipes.chapter13.recipe13_11;
 
import com.sun.rowset.JoinRowSetImpl;
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.rowset.CachedRowSet;
import javax.sql.rowset.JoinRowSet;
import javax.sql.rowset.RowSetFactory;
import javax.sql.rowset.RowSetProvider;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
 
public class JoinRowSetExample {
 
 public static Connection conn = null;
 public static CreateConnection createConn;
 public static CachedRowSet bookAuthors = null;
 public static CachedRowSet authorWork = null;
 public static JoinRowSet jrs = null;
 
 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 // Perform Scrollable Query

Chapter 13 ■ Working with Databases

314

 queryBookAuthor();
 queryAuthorWork();
  
 joinRowQuery();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
  
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (bookAuthors != null) {
 try {
 bookAuthors.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (authorWork != null) {
 try {
 authorWork.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 if (jrs != null) {
 try {
 jrs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 
 }
 
 public static void queryBookAuthor() {
 RowSetFactory factory;
 
 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();
 
 // Create a CachedRowSet object using the factory
 bookAuthors = factory.createCachedRowSet();
 

Chapter 13 ■ Working with Databases

315

 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 
 // Populate a query that will obtain the data that will be used
 bookAuthors.setCommand("SELECT ID, LASTNAME, FIRSTNAME FROM BOOK_AUTHOR");
 
 bookAuthors.execute(conn);
 
 // You can now work with the object contents in a disconnected state
 while (bookAuthors.next()) {
 System.out.println(bookAuthors.getString(1) + ": " + bookAuthors.getString(2)
 + ", " + bookAuthors.getString(3));
 }
 
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
  
 public static void queryAuthorWork() {
 RowSetFactory factory;
 
 try {
 // Create a new RowSetFactory
 factory = RowSetProvider.newFactory();
 
 // Create a CachedRowSet object using the factory
 authorWork = factory.createCachedRowSet();
 
 // Alternatively populate the CachedRowSet connection settings
 // crs.setUsername(createConn.getUsername());
 // crs.setPassword(createConn.getPassword());
 // crs.setUrl(createConn.getJdbcUrl());
 
 // Populate a query that will obtain the data that will be used
 authorWork.setCommand("SELECT AW.ID, AUTHOR_ID, B.TITLE FROM AUTHOR_WORK AW, " +
 "BOOK B " +
 "WHERE B.ID = AW.BOOK_ID");
 
 authorWork.execute(conn);
 
 // You can now work with the object contents in a disconnected state
 while (authorWork.next()) {
 System.out.println(authorWork.getString(1) + ": " + authorWork.getString(2)
 + " - " + authorWork.getString(3));
 }
 
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 

Chapter 13 ■ Working with Databases

316

 public static void joinRowQuery() {
 try {
 // Create JoinRowSet
 jrs = new JoinRowSetImpl();
  
 // Add RowSet & Corresponding Keys
 jrs.addRowSet(bookAuthors, 1);
 jrs.addRowSet(authorWork, 2);
  
 // Traverse Results
 while(jrs.next()){
 System.out.println(jrs.getInt("ID") + ": " +
 jrs.getString("TITLE") + " - " +
 jrs.getString("FIRSTNAME") + " " +
 jrs.getString("LASTNAME"));
 }
  
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
  
 }
}
 

Running this class will result in output that resembles the following:
 
Successfully connected
100: JUNEAU, JOSH
101: DEA, CARL
102: BEATY, MARK
103: GUIME, FREDDY
104: JOHN, OCONNER
105: TESTER, JOE
110: TESTER, JOE
111: OCONNER, JOHN
1: 100 - Java 8 Recipes
2: 100 - Java 7 Recipes
3: 100 - Java EE 7 Recipes
4: 100 - Introducing Java EE 7
5: 103 - Java 7 Recipes
6: 101 - Java 7 Recipes
7: 111 - Java 7 Recipes
8: 102 - Java 7 Recipes
9: 101 - Java FX 2.0 - Introduction by Example
111: Java 7 Recipes - JOHN OCONNER
103: Java 7 Recipes - FREDDY GUIME
102: Java 7 Recipes - MARK BEATY
101: Java FX 2.0 - Introduction by Example - CARL DEA
101: Java 7 Recipes - CARL DEA

Chapter 13 ■ Working with Databases

317

100: Introducing Java EE 7 - JOSH JUNEAU
100: Java EE 7 Recipes - JOSH JUNEAU
100: Java 7 Recipes - JOSH JUNEAU
100: Java 8 Recipes - JOSH JUNEAU

How It Works
A JoinRowSet is a combination of two or more populated RowSet objects. It can be used to join two RowSet objects
based on key/value relationships, just as if it were a SQL JOIN query. In order to create a JoinRowSet, you must first
populate two or more RowSet objects with related data, and then they can each be added to the JoinRowSet to create
the combined result.

In the solution to this recipe, the tables that are queried are named BOOK_AUTHOR, BOOK, and AUTHOR_WORK. The
BOOK_AUTHOR table contains a list of author names, while the AUTHOR_WORK table contains the list of books along with
the corresponding AUTHOR_ID. The BOOK table contains book specifics. Following along with the main() method,
first the BOOK_AUTHOR table is queried, and its results are fetched into a CachedRowSet using the queryBookAuthor()
method. For more details regarding the use of CachedRowSet objects, see Recipe 13-10.

Next, another CachedRowSet is populated with the results of querying the AUTHOR_WORK and BOOK tables, as the
queryAuthorBook() method is called. At this point, there are two populated CacheRowSet objects, and they can now
be combined using a JoinRowSet. In order to do so, each query must contain one or more columns that relate to the
other table. In this case, the BOOK_AUTHOR.ID column relates to the AUTHOR_WORK.AUTHOR_ID column, so the RowSet
objects must be joined on those column values.

The final method that is invoked within the main() is joinRowQuery(). This method is where all the JoinRowSet
work takes place. First, a new JoinRowSet is created by instantiating a JoinRowSetImpl() object:
 
jrs = new JoinRowSetImpl(); 

Note■■   You will receive a compile-time warning when using JoinRowSetImpl because it is an internal SUN proprietary
API. However, the Oracle version is OracleJoinRowSet, which is not as versatile.

Next, the two CachedRowSet objects are added to the newly created JoinRowSet by calling its addRowSet()
method. The addRowSet() method accepts a couple of arguments. The first is the name of the RowSet object that
you want to add to the JoinRowSet, and the second is an int value indicating the position within the CachedRowSet,
which contains the key value that will be used to implement the join. In the solution to this recipe, the first call
to addRowSet() passes the bookAuthors CachedRowSet, along with the number 1 because the element in the
first position of the bookAuthors CachedRowSet corresponds to the BOOK_AUTHOR.ID column. The second call to
addRowSet() passes the authorWork CachedRowSet, along with number 2 because the element in the second position
of the authorWork CachedRowSet corresponds to the AUTHOR_WORK.AUTHOR_ID column.
 
// Add RowSet & Corresponding Keys
jrs.addRowSet(bookAuthors, 1);
jrs.addRowSet(authorWork, 2);
 

Chapter 13 ■ Working with Databases

318

The JoinRowSet can now be used to fetch the results of the join, just as if it were a normal RowSet. When calling
the corresponding methods [getString(), getInt(), and so on] of the JoinRowSet, pass the name of the database
column corresponding to the data you want to store:
 
while(jrs.next()){
System.out.println(jrs.getInt("ID") + ": " +
 jrs.getString("TITLE") + " - " +
 jrs.getString("FIRSTNAME") + " " +
 jrs.getString("LASTNAME"));
}
 

Although a JoinRowSet is not needed every day, it can be handy when performing work against two related sets
of data. This holds true especially when the application is not connected to a database all the time, or if you are trying
to use as few Connection objects as possible.

13-12. Filtering Data in a RowSet
Problem
Your application queries the database and returns a large number of rows. The number of rows within the cached
ResultSet is too large for the user to work with at one time. You would like to limit the number of rows that are visible
so that you can perform different activities with different sets of data that have been queried from the table.

Solution
Use a FilteredRowSet to query the database and store the contents. The FilteredRowSet can be configured to filter
the results that are returned from the query so that the only contents visible are the rows that you want to see. In the
following example, a filter class is created that will later be used to filter the results that are returned from a database
query. The filter in the example is used to limit the number of rows that are visible based on an author’s last name.
The following class contains the implementation of the filter:
 
package org.java8recipes.chapter13.recipe13_12;
 
import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.Predicate;
 
public class AuthorFilter implements Predicate {
 
 private String[] authors;
 private String colName = null;
 private int colNumber = -1;
 
 public AuthorFilter(String[] authors, String colName) {
 this.authors = authors;
 this.colNumber = -1;
 this.colName = colName;
 }
 

Chapter 13 ■ Working with Databases

319

 public AuthorFilter(String[] authors, int colNumber) {
 this.authors = authors;
 this.colNumber = colNumber;
 this.colName = null;
 }
 
 @Override
 public boolean evaluate(Object value, String colName) {
 
 if (colName.equalsIgnoreCase(this.colName)) {
 for (String author : this.authors) {
 if (author.equalsIgnoreCase((String)value)) {
 return true;
 }
 }
 }
 return false;
 }
 
 @Override
 public boolean evaluate(Object value, int colNumber) {
 
 if (colNumber == this.colNumber) {
 for (String author : this.authors) {
 if (author.equalsIgnoreCase((String)value)) {
 return true;
 }
 }
 }
 return false;
 }
  
 @Override
 public boolean evaluate(RowSet rs) {
 
 if (rs == null)
 return false;
 
 try {
 for (int i = 0; i < this.authors.length; i++) {
 
 String authorLast = null;
 
 if (this.colNumber > 0) {
 authorLast = (String)rs.getObject(this.colNumber);
 } else if (this.colName != null) {
 authorLast = (String)rs.getObject(this.colName);
 } else {
 return false;
 }
 

Chapter 13 ■ Working with Databases

320

 if (authorLast.equalsIgnoreCase(authors[i])) {
 return true;
 }
 }
 } catch (SQLException e) {
 return false;
 }
 return false;
 }
 
}
 

The filter is used by a FilteredRowSet to limit the visible results from a query. As you will see, utilizing a
FilteredRowSet provides the capability of filtering data in an object-oriented manner at the applicaton level, rather
than doing so at the SQL database level. The benefit is that you can implement a series of filters and apply them to the
same result set, returning the desired result. Using such an option eliminates the requirement to perform multiple
database queries returning different data sets.

The following class demonstrates how to implement a FilteredRowSet. The main() method calls a method that is
appropriately named implementFilteredRowSet(), and it contains the code that is used to filter the results of a query
on the BOOK_AUTHOR and AUTHOR_WORK tables so that only results from the authors with the last name of DEA and JUNEAU
are returned:
 
package org.java8recipes.chapter13.recipe13_12;
 
import com.sun.rowset.FilteredRowSetImpl;
import java.sql.Connection;
import java.sql.SQLException;
import javax.sql.RowSet;
import javax.sql.rowset.FilteredRowSet;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
 
public class FilteredRowSetExample {
 
 public static Connection conn = null;
 public static CreateConnection createConn;
 public static FilteredRowSet frs = null;
 
 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 implementFilteredRowSet();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {

Chapter 13 ■ Working with Databases

321

 ex.printStackTrace();
 }
 }
 if (frs != null) {
 try {
 frs.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 }
 }
 
 public static void implementFilteredRowSet() {
 
 String[] authorArray = {"DEA", "JUNEAU"};
 
 AuthorFilter authorFilter = new AuthorFilter(authorArray, 2);
 
 try {
 frs = new FilteredRowSetImpl();
 
 frs.setCommand("SELECT TITLE, LASTNAME "
 + "FROM BOOK_AUTHOR BA, "
 + "AUTHOR_WORK AW, "
 + "BOOK B "
 + "WHERE AW.AUTHOR_ID = BA.ID "
 + "AND B.ID = AW.BOOK_ID");
 
 frs.execute(conn);
 
 System.out.println("Prior to adding filter:");
 viewRowSet(frs);
 System.out.println("Adding author filter:");
 frs.beforeFirst();
 frs.setFilter(authorFilter);
 viewRowSet(frs);
 } catch (SQLException e) {
 e.printStackTrace();
 }
 
 }
 
 public static void viewRowSet(RowSet rs) {
 try {
 while (rs.next()) {
 System.out.println(rs.getString(1) + " - "
 + rs.getString(2));
 }

Chapter 13 ■ Working with Databases

322

 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
}
 

The results of running this code would look similar to the following lines. Notice that only the rows of data
corresponding to the authors listed in the filter are returned with the FilteredRowSet.
 
Successfully connected
Prior to adding filter:
Java 7 Recipes - JUNEAU
Java 7 Recipes - BEATY
Java 7 Recipes - DEA
Java 7 Recipes - GUIME
Java 7 Recipes - OCONNER
Java EE 7 Recipes - JUNEAU
Java FX 2.0 - Introduction by Example - DEA
Adding author filter:
Java 7 Recipes - JUNEAU
Java 7 Recipes - DEA
Java EE 7 Recipes - JUNEAU
Java FX 2.0 - Introduction by Example – DEA

How It Works
Often, the results that are returned from a database query contain a large number of rows. As you probably know,
too many rows can create issues when it comes to visually working with data. It usually helps to limit the number of
rows that are returned from a query by using a WHERE clause on a SQL statement so that only relevant data is returned.
However, if an application retrieves data into an in-memory RowSet and then needs to filter the data by various
criteria without additional database requests, an approach other than a query needs to be used. A FilteredRowSet
can be used to filter data that is displayed within a populated RowSet so that it can be more manageable to work with.

There are two parts to working with a FilteredRowSet. First, a filter needs to be created which will be used to
specify how the data should be filtered. The filter class should implement the Predicate interface. There may be
multiple constructors, each accepting a different set of arguments, and the filter may contain multiple evaluate()
methods that each accept different arguments and contain different implementations. The constructors should
accept an array of contents that can be used to filter the RowSet. They should also accept a second argument, either
the column name that the filter should be used against or the position of the column that the filter should be used
against. In the solution to this recipe, the filter class is named AuthorFilter, and it is used to filter data per an array
of author names. Its constructors each accept an array containing the author names to filter, along with either the
column name or position. Each of the evaluate() methods has the task of determining whether a given row of data
matches the specified filter; in this case, the author names that have been passed in via an array. The first evaluate()
method is called if a column name is passed to the filter rather than a position, and the second evaluate() method is
called if a column position is passed. The final evaluate() method accepts the RowSet itself, and it does the work of
going through the data and returning a Boolean to indicate whether the corresponding column name/position values
match the filter data.

The second part of the FilteredRowSet implementation is the work of the FilteredRowSet. This can be seen
within the implementFilteredRowSet() method of the FilteredRowSetExample class. The FilteredRowSet will
actually use the filter class that you’ve written to determine which rows to display. You can see that the array of
values that will be passed to the filter class is the first declaration within the method. The second declaration is
the instantiation of the filter class AuthorFilter. Of course, the array of filter values and the column position that
corresponds to the filter values is passed into the filter constructor.
 

Chapter 13 ■ Working with Databases

323

String[] authorArray = {"DEA", "JUNEAU"};
 
// Creates a filter using the array of authors
AuthorFilter authorFilter = new AuthorFilter(authorArray, 2);
 

To instantiate a FilteredRowSet, create a new instance of the FilteredRowSetImpl class. After it is instantiated,
simply set the SQL query that will be used to obtain the results using the setCommand() method and then execute it by
calling the executeQuery() method.
 
// Instantiate a new FilteredRowSet
frs = new FilteredRowSetImpl();
// Set the query
frs.setCommand("SELECT TITLE, LASTNAME "
 + "FROM BOOK_AUTHOR BA, "
 + "AUTHOR_WORK AW, "
 + "BOOK B "
 + "WHERE AW.AUTHOR_ID = BA.ID "
 + "AND B.ID = AW.BOOK_ID");
// Execute the query
frs.execute(conn);
 

Note■■   You will receive a compile-time warning when using FilteredRowSetImpl because it is an internal SUN
proprietary API.

Notice that the filter has not yet been applied. Actually, at this point what you have is a scrollable RowSet
that is populated with all the results from the query. The example displays those results before applying the filter.
To apply the filter, use the setFilter() method, passing the filter as an argument. Once that has been done, the
FilteredResultSet will display only those rows that match the criteria specified by the filter.

Again, the FilteredRowSet technique has its place, especially when you are working with an application that
might not always be connected to a database. It is a powerful tool to use for filtering data, working with it, and then
applying different filters and working on the new results. It is similar to applying WHERE clauses to a query without
querying the database.

13-13. Querying and Storing Large Objects
Problem
The application that you are developing requires the storage of strings of text that can include an unlimited number of
characters.

Solution
It is best to use a character large object (CLOB) data type to store text when the size of the strings that need to be stored is
very large. The code in the following example demonstrates how to load a CLOB into the database and how to query it:
 
package org.java8recipes.chapter13.recipe13_13;
 
 

Chapter 13 ■ Working with Databases

324

import java.sql.Clob;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.java8recipes.chapter13.recipe13_01.CreateConnection;
 
public class LobExamples {
 
 public static Connection conn = null;
 public static CreateConnection createConn;
 
 public static void main(String[] args) {
 boolean successFlag = false;
 try {
 createConn = new CreateConnection();
 conn = createConn.getConnection();
 loadClob();
 readClob();
 } catch (java.sql.SQLException ex) {
 System.out.println(ex);
 } finally {
 
 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 
 }
 }
 
 public static void loadClob() {
 Clob textClob = null;
 String sql = "INSERT INTO RECIPE_TEXT VALUES("
 + "next value for recipe_text_seq, "
 + "(select id from recipes where recipe_number = '13-1'), "
 + "?)";
 try (PreparedStatement pstmt = conn.prepareStatement(sql);) {
 textClob = conn.createClob();
 textClob.setString(1, "This will be the recipe text in clob format");
 // obtain the sequence number in real world
 // set the clob value
 pstmt.setClob(1, textClob);
 pstmt.executeUpdate();
  
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }
 

Chapter 13 ■ Working with Databases

325

 public static void readClob() {
 String qry = "select text from recipe_text";
 Clob theClob = null;
 try(PreparedStatement pstmt = conn.prepareStatement(qry);
 ResultSet rs = pstmt.executeQuery();) {
 
 while (rs.next()) {
 theClob = rs.getClob(1);
 System.out.println("Clob length: " + theClob.length());
 System.out.println(theClob.toString());
 }
 System.out.println(theClob.toString());
   
 } catch (SQLException ex) {
 
 ex.printStackTrace();
 }
 }
}

How It Works
If your application requires the storage of string values, you need to know how large those strings might possibly
become. Most databases have an upper boundary when it comes to the storage size of VARCHAR fields. For instance, the
Oracle database has an upper boundary of 2,000 characters and anything exceeding that length will be cut off. If you
have large amounts of text that need to be stored, use a CLOB field in the database.

A CLOB is handled a bit differently from a string within Java code. In fact, it is actually a bit odd to work with the
first couple of times you use it because you have to create a CLOB from a Connection.

Note■■  I n reality, CLOBs and BLOBs (binary large objects) are not stored in the Oracle table where they are defined.
Instead, a large object (LOB) locator is stored in the table column. Oracle might place the CLOB in a separate file on the
database server. When Java creates the Clob object, it can be used to hold data for update to a specific LOB location in
the database or to retrieve the data from a specific LOB location within the database.

Let’s take a look at the loadClob() method contained in the solution to this recipe. As you can see, a Clob object
is created using the Connection createClob() method. Once the Clob has been created, you set its contents using
the setString() method by passing the position indicating where to place the string and the string of text itself:
 
textClob = conn.createClob();
textClob.setString(1, "This will be the recipe text in clob format");
 

Once you have created and populated the Clob, you simply pass it to the database using the PreparedStatement
setClob() method. In the case of this example, the PreparedStatement performs a database insert into the
RECIPE_TEXT table by calling the executeUpdate() method as usual.

Querying a Clob is fairly straightforward as well. As you can see in the readClob() method that is contained
within the solution to this recipe, a PreparedStatement query is set up and the results are retrieved into a ResultSet.
The only difference between using a Clob and a string is that you must load the Clob into a Clob type.

Chapter 13 ■ Working with Databases

326

Note■■   Calling the Clob getString() method will pass a funny-looking string of text that denotes a Clob object.
Therefore, calling the Clob object’s getAsciiStream() method will return the actual data that is stored in the Clob.

Although Clobs are fairly easy to use, they take a couple of extra steps to prepare. It is best to plan your
applications accordingly and try to estimate whether the database fields you are using might need to be CLOBs due to
size restrictions. Proper planning will prevent you from going back and changing standard string-based code to work
with Clobs later.

13-14. Invoking Stored Procedures
Problem
Some logic that is required for your application is written as a database-stored procedure. You require the ability to
invoke the stored procedure from within your application.

Solution
The following block of code shows the PL/SQL that is required to create the stored procedure that will be called by
Java. The functionality of this stored procedure is very minor; it simply accepts a value and assigns that value to an OUT
parameter so that the program can display it:
 
create or replace procedure dummy_proc (text IN VARCHAR2,
 msg OUT VARCHAR2) as
begin
 -- Do something, in this case the IN parameter value is assigned to the OUT parameter
 msg :=text;
end;
 

The CallableStatement in the following code executes this stored procedure that is contained within the
database, passing the necessary parameters. The results of the OUT parameter are then displayed back to the user.
 
try(CallableStatement cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");) {
 cs.setString(1, "This is a test");
 cs.registerOutParameter(2, Types.VARCHAR);
 cs.executeQuery();
 
 System.out.println(cs.getString(2));
 
} catch (SQLException ex){
 ex.printStackTrace();
}
 

Running the example class for this recipe will display the following output, which is the same as the input. This is
because the DUMMY_PROC procedure simply assigns the contents if the IN parameter to the OUT parameter.
 
Successfully connected
This is a test

Chapter 13 ■ Working with Databases

327

How It Works
It is not uncommon for an application to use database-stored procedures for logic that can be executed directly
within the database. In order to call a database-stored procedure from Java, you must create a CallableStatement
object, rather than use a PreparedStatement. In the solution to this recipe, a CallableStatement invokes a stored
procedure named DUMMY_PROC. The syntax for instantiating the CallableStatement is similar to that of using a
PreparedStatement. Use the Connection object’s prepareCall() method, passing the call to the stored procedure.
The stored procedure call must be enclosed in curly braces {} or the application will throw an exception.
 
cs = conn.prepareCall("{call DUMMY_PROC(?,?)}");
 

Once the CallableStatement has been instantiated, it can be used just like a PreparedStatement for setting the
values of parameters. However, if a parameter is registered within the database-stored procedure as an OUT parameter,
you must call a special method, registerOutParameter(), passing the parameter position and database type of the
OUT parameter that you want to register. In the solution to this recipe, the OUT parameter is in the second position and
it has a VARCHAR type.
 
cs.registerOutParameter(2, Types.VARCHAR);
 

To execute the stored procedure, call the executeQuery() method on the CallableStatement. Once this has
been done, you can see the value of the OUT parameter by making a call to the CallableStatement getXXX() method
that corresponds to the data type:
 
System.out.println(cs.getString(2));

A NOTE REGARDING STORED FUNCTIONS

Calling a stored database function is essentially the same as calling a stored procedure. However, the syntax to
prepareCall() is slightly modified. To call a stored function, change the call within the curly braces to entail
a returned value using a ? character. For instance, suppose that a function named DUMMY_FUNC accepted one
parameter and returned a value. The following code would be used to make the call and return the value:
 
cs = conn.prepareCall("{? = call DUMMY_FUNC(?)}");
cs.registerOutParameter(1, Types.VARCHAR);
cs.setString(2, "This is a test");
cs.execute();
 
A call to cs.getString(1) would then retrieve the returned value.

13-15. Obtaining Dates for Database Use
Problem
You want to convert a LocalDate properly, in order to insert it into a database record.

Chapter 13 ■ Working with Databases

328

Solution
Utilize the static java.sql.Date.valueOf(LocalDate) method to convert a LocalDate object to a java.sql.Date
object, which can be utilized by JDBC for insertion or querying of the database. In the following example, the current
date is inserted into a database column of type Date.
 
private static void insertRecord(
 String title,
 String publisher) {
 String sql = "INSERT INTO PUBLICATION VALUES("
 + "NEXT VALUE FOR PUBLICATION_SEQ, ?,?,?,?)";
 LocalDate pubDate = LocalDate.now();
 try (Connection conn = createConn.getConnection();
 PreparedStatement pstmt = conn.prepareStatement(sql);) {
 pstmt.setInt(1, 100);
 pstmt.setString(2, title);
 pstmt.setDate(3, java.sql.Date.valueOf(pubDate));
 pstmt.setString(4, publisher);
 pstmt.executeUpdate();
 System.out.println("Record successfully inserted.");
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
}

How It Works
In Java 8, the new Date-Time API (Chapter 4) is the preferred API for working with dates and times. Therefore, when
working with date values and databases, the JDBC API must convert between SQL dates and new Date-Time LocalDate
objects. The solution to this recipe demonstrates that to obtain an instance of java.sql.Date from a LocalDate object,
you simply invoke the static java.sql.Date.valueOf() method, passing the pertinent LocalDate object.

13-16. Handling Resources Automatically
Problem
Rather than manually opening and closing resources with each database call, you would prefer to have the application
handle such boilerplate code for you.

Solution
Use the try-with-resources syntax to automatically close the resources that you open. The following block of code uses
this tactic to automatically close the Connection, Statement, and ResultSet resources when it is finished using them:
 
String qry = "select recipe_number, recipename, description from recipes";
 
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 

Chapter 13 ■ Working with Databases

329

 while (rs.next()) {
 String recipe = rs.getString("RECIPE_NUMBER");
 String name = rs.getString("RECIPE_NAME");
 String desc = rs.getString("DESCRIPTION");
 
 System.out.println(recipe + "\t" + name + "\t" + desc);
 }
} catch (SQLException e) {
 e.printStackTrace();
}
 

The resulting output from running this code should look similar to the following:
 
Successfully connected
13-1 Connecting to a Database DriverManager and DataSource Implementations - More to Come
13-2 Querying a Database and Retrieving Results Subject to Change
13-3 Handling SQL Exceptions Using SQLException

How It Works
Handling JDBC resources has always been a pain in the neck. There is a lot of boilerplate code that is required for
closing resources when they are no longer needed. Since the release of Java SE 7, this has not been the case.
Java 7 introduced automatic resource management using try-with-resources. Through the use of this technique,
the developer no longer needs to close each resource manually, which is a change that can cut down on many lines
of code.

In order to use this technique, you must instantiate all the resources for which you want to have automatic
handling enabled within a set of parentheses after a try clause. In the solution to this recipe, the resources that are
declared are Connection, Statement, and ResultSet.
 
try (Connection conn = createConn.getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(qry);) {
 

Once those resources are out of scope, they are automatically closed. This means there is no longer a requirement
to code a finally block to ensure that resources are closed. The automatic resource handling is not only available
to database work, but to any resource that complies with the new java.lang.Autocloseable API. Other operations
such as file I/O adhere to the new API as well. There is a single close() method within java.lang.Autoclosable that
manages the closing of the resource. Classes that implement the java.io.Closeable interface can adhere to the API.

Summary
In many applications, databases have become essential for storing important information. As such, it is important
to have a good understanding of how to utilize databases for use within applications. This chapter started from the
beginning, covering recipes on getting started with database access. It then covered important topics such as how to
securely access and modify data, transaction management, and data access when not connected to a network. You
should now have a sound understanding of some techniques for working with data for your Java solutions. Do keep in
mind that there are many data access solutions, and the recipes in this chapter cover just some of the ways to tackle
the beast of information management.

331

Chapter 14

JavaFX Fundamentals

The JavaFX 8.0 API is Java’s next generation GUI toolkit for developers to build rich cross-platform applications.
JavaFX 8.0 is an update from JavaFX 2.2 that’s based on a scene graph paradigm (retained mode) as opposed to
the traditional immediate mode style rendering. JavaFX’s scene graph is a tree-like data structure that maintains
vector-based graphic nodes. The goal of JavaFX is to be used across many types of devices such as mobile devices,
smartphones, TVs, tablet computers, and desktops.

Before the creation of JavaFX, the development of rich Internet applications involved the gathering of many
separate libraries and APIs to achieve highly functional applications. These separate libraries include Media,
UI controls, Web, 3D, and 2D APIs. Because integrating these APIs can be rather difficult, the talented engineers at
Sun Microsystems (now Oracle) created a new set of JavaFX libraries that combine all the same capabilities under
one roof. JavaFX is the Swiss Army Knife of GUIs. JavaFX 8 is a pure Java (language) API that allows developers to
leverage existing Java libraries and tools.

Depending on who you talk to, you will likely encounter different definitions of “user experience” (or in the
UI world, UX). But one fact still remains—users will always demand better content and increased usability from
GUI applications. In light of this fact, developers and designers often work together to craft applications to fulfill this
demand. JavaFX provides a toolkit that enables both the developer and designer (in some cases, they are the same
person) to create functional yet esthetically pleasing applications. Another thing to acknowledge is that if you are
developing a game, media player, or the usual enterprise application, JavaFX will not only assist in developing richer
UIs but you’ll also find that the APIs are extremely well designed to greatly improve developer productivity (I’m all
about the user of the API’s perspective).

There are entire books written on JavaFX, and it would be impossible to cover all the capabilities of the toolkit.
Hopefully, these recipes can steer you in the right direction by providing practical and real-world examples.
So I encourage you to explore other resources to gain further insight into JavaFX. I highly recommend the books:
Pro JavaFX Platform (Apress, 2009), Pro JavaFX 2.0 Platform (Apress, 2012), Pro JavaFX 8, and JavaFX 8: Introduction
by Example (Apress 2014). These books go in depth to help you create professional grade applications. In this chapter
you will learn the fundamentals of JavaFX to rapidly develop Rich Internet applications. It provides you with a solid
foundation for working with JavaFX.

Note■■   For releases of JavaFX prior to JavaFX 8, the SDK was a separate download from the standard JDK. That is, the
JavaFX 1.x and 2.x SDKs had to be downloaded and installed separately. JavaFX 8 changes that requirement, as it comes
as part of JDK 8. This book covers JavaFX 8 only, although many of the solutions may function properly on JavaFX 2.x.
If you need to install JavaFX 2.x, refer to the online documentation (http://docs.oracle.com/javafx/) or a book that
covers JavaFX 2.x, such as JavaFX 2.0: Introduction by Example, which was written by Carl Dea and published by Apress.
To see the online JavaFX 8 documentation, visit http://docs.oracle.com/javase/8/javase-clienttechnologies.htm.

http://docs.oracle.com/javafx/
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm

Chapter 14 ■ JavaFX Fundamentals

332

14-1. Creating a Simple User Interface
Problem
You want to create, code, compile, and run a simple JavaFX Hello World application.

Solution 1
Develop a JavaFX Hello World application using the JavaFX project-creation wizard in the NetBeans IDE.

CREATING A JAVAFX HELLO WORLD APPLICATION IN NETBEANS

To quickly get started with creating, coding, compiling, and running a simple JavaFX Hello World application using
the NetBeans IDE, follow these steps:

1.	L aunch NetBeans IDE.

2.	 From the File menu, select New Project.

3.	U nder Choose Project and Categories, select the JavaFX folder.

4.	U nder Projects, select the JavaFX Application and click Next.

a.	N ote: If this is your first JavaFX project in NetBeans, the JavaFX module may
automatically activate at this time.

5.	 Specify HelloWorldMain for your project name.

6.	 Change or accept the defaults for the Project Location and Project Folder fields.

7.	E nsure that the JavaFX Platform is set to JDK 1.8. Leave the Create a Custom Preloader box
checked.

8.	M ake sure the Create Application Class option is selected. Click Finish.

9.	 In the NetBeans IDE on the Projects tab, select the newly created project. Open the Project
Properties dialog box to verify that the Source/Binary format settings are JDK 8. Click
Sources under Categories.

10.	 After closing the Java Platform Manager window, click OK to close the Project
Properties window.

11.	 To run and test your JavaFX Hello World application, access the Run menu and select Run
Main Project. You could also right-click on the project directory and choose Run from the
contextual menu.

Figure 14-1 shows a simple JavaFX Hello World application launched from the NetBeans IDE.

Chapter 14 ■ JavaFX Fundamentals

333

Solution 2
Use your favorite editor to code your JavaFX Hello World application. Once the Java file is created, you will use the
command-line prompt to compile and run your JavaFX application. Following are the steps to create a JavaFX Hello
World application to be compiled and run on the command-line prompt.

CREATING A JAVAFX HELLO WORLD APPLICATION IN A TEXT EDITOR

To quickly get started:

1.	 Copy and paste the following code into your favorite editor and save the file as
HelloWorldMain.java.

The following source code is a JavaFX Hello World application:
 
package org.java8recipes.chapter14.recipe14_01;
 
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
import javafx.scene.Group;
public class HelloWorldMain extends Application {
 
 final Group root = new Group();
 /**
 * @param args the command line arguments
 */

Figure 14-1.  JavaFX Hello World launched from the NetBeans IDE

Chapter 14 ■ JavaFX Fundamentals

334

 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World");
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction((event) -> {
 System.out.println("Hello World");
 });
 root.getChildren().add(btn);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

 
2.	 After saving the file named HelloWorldMain.java, use the command-line prompt to

navigate to the file.

3.	 Compile the source code file HelloWorldMain.java using the Java compiler javac:
 
javac -d . HelloWorldMain.java

 
4.	R un and test your JavaFX Hello World application. Assuming you are located in the same

directory as the HelloWorldMain.java file, type the following command to run your JavaFX
Hello World application from the command-line prompt:

 
java org.java8recipes.chapter14.recipe14_01.HelloWorldMain

 

Note■■   This class can also be created within an existing JDK 8 application. For instance, the project that contains
the sources for this book contains all of the JavaFX recipes in the org.java8recipes.chapter14 source package.
This is possible since JavaFX no longer requires additional configuration; it is already part of any JDK 8 project.

How It Works
Following are descriptions of the two solutions. Both solutions require JavaFX 8 or JavaFX 2.x along with JDK 7.
Solution 1 demonstrates how to build a JavaFX application using the NetBeans IDE. Solution 2 covers the
development of a simple JavaFX application via your favorite text editor, and use of the command-line or terminal to
compile and execute JavaFX programs.

Chapter 14 ■ JavaFX Fundamentals

335

The NetBeans IDE makes it very easy to develop a JavaFX application via a JavaFX project. In fact, NetBeans
provides a template Hello World application after following the JavaFX project-creation wizard. This is a great solution
for beginning any JavaFX application, as it provides a great starting point for building more sophisticated solutions.

To create a simple JavaFX Hello World application using your favorite text editor, follow Solution 2, Steps 1 and 2.
To compile and run your Hello World program on the command line, follow Solution 2, Steps 3 and 4. Once you enter
the source code into your favorite editor and save the source file, compile and run the JavaFX program. Open the
command-line or terminal window and navigate to the directory location of the Java file named HelloWorldMain.java.

Here, we review a way to compile the file using the command javac -d . HelloWorldMain.java. You will notice
the -d . before the file name. This lets the Java compiler know where to put class files based on their package name.
In this scenario, the HelloWorldMain package statement is helloworldmain, which will create a subdirectory under
the current directory. The following commands will compile and run the JavaFX Hello World application:
 
cd \<path to project>\org\java8recipes\chapter14\recipe14_01
 
javac –d . HelloWorldMain.java
 
java helloworldmain.HelloWorldMain 

Note■■   There are many ways to package and deploy JavaFX applications. To learn more, see “Learning How to Deploy
and Package JavaFX Applications” at http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm.
For in-depth JavaFX deployment strategies, see Oracle’s “Deploying JavaFX Applications” at
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm.

In both solutions you’ll notice in the source code that JavaFX applications extend the
javafx.application.Application class. The Application class provides application lifecycle functions such as
launching and stopping during runtime. This also provides a mechanism for Java applications to launch JavaFX GUI
components in a threadsafe manner. Keep in mind that synonymous to Java Swing’s event dispatch thread, JavaFX
has its own JavaFX application thread. New in JavaFX 8, it is possible for the event dispatch thread and the JavaFX
application thread to be merged (see Recipe 14-18).

Taking a look at the code, in the main() method’s entry point you launch the JavaFX application by simply
passing in the command-line arguments to the Application.launch() method. Once the application is in a ready
state, the framework internals will invoke the start() method to begin. When the start() method is invoked, a
JavaFX javafx.stage.Stage object is available for the developer to use and manipulate.

You’ll notice that some objects are oddly named, such as Stage and Scene. The designers of the API have
modeled things similar to a theater or a play in which actors perform in front of an audience. With this same analogy,
in order to show a play, there are basically one-to-many scenes that actors perform in. And, of course, all scenes are
performed on a stage. In JavaFX the Stage is equivalent to an application window similar to Java Swing API JFrame or
JDialog. You may think of a Scene object as a content pane capable of holding zero-to-many Node objects. A Node
is a fundamental base class for all scene graph nodes to be rendered. A scene graph is a tree data structure that
maintains an internal model of all nodes or graphical objects that are part of an application. Commonly used nodes
are UI controls and Shape objects. Similar to a tree data structure, a scene graph will contain children nodes by using
a container class Group. You’ll learn more about the Group class later when you look at the ObservableList, but for
now think of them as Java Lists or Collections that are capable of holding Nodes.

Once the child nodes have been added, you set the primaryStage’s (Stage) scene and call the show() method on
the Stage object to show the JavaFX window.

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm

Chapter 14 ■ JavaFX Fundamentals

336

One last thing: in this chapter most of the example applications are structured the same as this example, in
which recipe code solutions will reside inside the start() method. Most of the recipes in this chapter follow the same
pattern. For the sake of brevity, much of the boilerplate code is not shown. To see the full source listings of all the
recipes, download the source code from the book’s website.

14-2. Drawing Text
Problem
You want to draw custom text within a JavaFX application.

Solution
Create Text nodes to be placed on the JavaFX scene graph by utilizing the javafx.scene.text.Text class. As Text
nodes are to be placed on the scene graph, you decide you want to create randomly positioned Text nodes rotated
around their (x, y) positions scattered about the scene area.

The following code implements a JavaFX application that displays Text nodes scattered about the scene graph
with random positions and colors:
 
primaryStage.setTitle("Chapter 14-2 Drawing Text");
Group root = new Group();
Scene scene = new Scene(root, 300, 250, Color.WHITE);
Random rand = new Random(System.currentTimeMillis());
for (int i = 0; i < 100; i++) {
 int x = rand.nextInt((int) scene.getWidth());
 int y = rand.nextInt((int) scene.getHeight());
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);
 
 Text text = new Text(x, y, "Java 8 Recipes");
 
 int rot = rand.nextInt(360);
 text.setFill(Color.rgb(red, green, blue, .99));
 text.setRotate(rot);
 root.getChildren().add(text);
}
 
primaryStage.setScene(scene);
primaryStage.show();
 

Figure 14-2 shows random Text nodes scattered about the JavaFX scene graph.

Chapter 14 ■ JavaFX Fundamentals

337

How It Works
To draw text in JavaFX, you create a javafx.scene.text.Text node to be placed on the scene graph
(javafx.scene.Scene). In this example you’ll notice text objects with random colors and positions scattered about
the Scene area.

First, you create a loop to generate random (x,y) coordinates to position Text nodes. Second, you create random
color components between (0–255 RGB) to be applied to the Text nodes. Third, the rotation angle (in degrees) is a
randomly generated value between (0–360 degrees) to cause the text to be slanted. The following code creates random
values that will be assigned to a Text node’s position, color, and rotation:
 
int x = rand.nextInt((int) scene.getWidth());
int y = rand.nextInt((int) scene.getHeight());
int red = rand.nextInt(255);
int green = rand.nextInt(255);
int blue = rand.nextInt(255);
int rot = rand.nextInt(360);
 

Once the random values are generated, they will be applied to the Text nodes, which will be drawn onto the
scene graph. The following code snippet applies position (x, y), color (RGB), and rotation (angle in degrees) onto the
Text node:
 
Text text = new Text(x, y, "Java 8 Recipes");
text.setFill(Color.rgb(red, green, blue, .99));
text.setRotate(rot);
 
root.getChildren().add(text);
 

Figure 14-2.  Drawing text in random places

Chapter 14 ■ JavaFX Fundamentals

338

You will begin to see the power of the scene graph API by its ease of use. Text nodes can be easily manipulated as
if they were Shapes. Well, actually they are Shapes. Defined in the inheritance hierarchy, Text nodes extend from the
javafx.scene.shape.Shape class and are therefore capable of doing interesting things such as being filled with colors
or rotated about an angle. Although the text is colorized, this still tends to be somewhat boring. However, in the next
recipe you will learn how to change a text’s font.

14-3. Changing Text Fonts
Problem
You want to change text fonts and add special effects to the Text nodes.

Solution 1
Create a JavaFX application that uses the following classes to set the text font and apply embedded effects to Text
nodes:

•	 javafx.scene.text.Font

•	 javafx.scene.effect.DropShadow

•	 javafx.scene.effect.Reflection

The code that follows sets the font and applies effects to Text nodes. It uses the Serif, SanSerif, Dialog, and
Monospaced fonts along with the drop shadow and reflection effects:
 
primaryStage.setTitle(“Chapter 14-3 Changing Text Fonts”);
Group root = new Group();
Scene scene = new Scene(root, 330, 250, Color.WHITE);
 
// Serif with drop shadow
Text java8Recipes2 = new Text(50, 50, “Java 8 Recipes”);
Font serif = Font.font(“Serif”, 30);
java8Recipes2.setFont(serif);
java8Recipes2.setFill(Color.RED);
DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
java8Recipes2.setEffect(dropShadow);
root.getChildren().add(java8Recipes2); 
 
// SanSerif
Text java8Recipes3 = new Text(50, 100, “Java 8 Recipes”);
Font sanSerif = Font.font(“SanSerif”, 30);
java8Recipes3.setFont(sanSerif);
java8Recipes3.setFill(Color.BLUE);
root.getChildren().add(java8Recipes3);
 
// Dialog
Text java8Recipes4 = new Text(50, 150, “Java 8 Recipes”);
Font dialogFont = Font.font(“Dialog”, 30);

Chapter 14 ■ JavaFX Fundamentals

339

java8Recipes4.setFont(dialogFont);
java8Recipes4.setFill(Color.rgb(0, 255, 0));
root.getChildren().add(java8Recipes4);
 
// Monospaced
Text java8Recipes5 = new Text(50, 200, “Java 8 Recipes”);
Font monoFont = Font.font(“Monospaced”, 30);
java8Recipes5.setFont(monoFont);
java8Recipes5.setFill(Color.BLACK);
root.getChildren().add(java8Recipes5);
 
Reflection refl = new Reflection();
refl.setFraction(0.8f);
java8Recipes5.setEffect(refl);
 
primaryStage.setScene(scene);
primaryStage.show();
 

Figure 14-3 shows the JavaFX application with various font styles and effects (drop shadow and reflection)
applied to the Text nodes.

Figure 14-3.  Changing text fonts

Solution 2
Make use of the new TextFlow node to assist in stringing rich text together. Use an FXML file to construct an object
graph, and then apply CSS styles to the nodes of the graph within the FXML. This solution provides a better path for
those who are more comfortable working in a markup language than in Java code. It also demonstrates how to use
a style sheet to declare the styles for your application.

Chapter 14 ■ JavaFX Fundamentals

340

First, let’s take a look at the FXML that’s used to construct the layout. The following lines of markup construct a
scene graph that contains a Pane enclosing a TextFlow. The TextFlow contains a series of Text nodes, each of which
has different styles applied. The following listing contains the sources for textfonts.fxml.
 
<?xml version="1.0" encoding="UTF-8"?>
 
<?import java.net.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>
  
<Scene width="200" height="75" fill="white" xmlns:fx="http://javafx.com/fxml">
 <stylesheets>
 <URL value="@textfonts.css"/>
 </stylesheets>
 <Pane fx:id="pane">
 
 <TextFlow styleClass="mainmessage">
 <Text styleClass="span1">Hello </Text>
 <Text text=" "/>
 <Text styleClass="span2, large">Java</Text>
 <Text styleClass="span3, slant">FX</Text>
 <Text text=" "/>
 <Text styleClass="cool">8</Text>
  
 </TextFlow>
 </Pane>
</Scene>
 

Within the FXML, a cascading style sheet named textfonts.css is imported. The following listing contains the
styles, which reside in textfonts.css.
 
.mainmessage {
 -fx-font-family: "Helvetica";
 -fx-font-size: 30px;
}
 
.span1 {
 -fx-color: "red";
}
 
.span2 {
 -fx-font-family: "Serif";
 -fx-font-size: 30px;
 -fx-color: "red";
}
 

http://javafx.com/fxml

Chapter 14 ■ JavaFX Fundamentals

341

.span3 {
 -fx-font-family: "Serif";
 -fx-font-size: 30px;
 -fx-fill: "orange";
 -fx-font-style: italic;
}
 
.cool {
 -fx-effect: dropshadow(gaussian, gray, 8, 0.5, 8, 8);
}
 

Lastly, a standard JavaFX application class is used to instantiate the example. The following sources are taken
from ChangingTextFontsSolution2.java, and they demonstrate how to load the FXML and construct the stage.
 
@Override
public void start(Stage stage) throws Exception {
 stage.setTitle("Chapter 14-3 Changing Text Fonts Using TextFlow and FXML");
 stage.setScene((Scene) FXMLLoader.load(getClass().getResource("textfonts.fxml")));
 stage.show();
}
 

The resulting application will render a scene that resembles the result shown in Figure 14-4.

Figure 14-4.  TextFlow and FXML

How It Works
Solution 1 demonstrates how to apply fonts to text using standard Java code. Vector-based graphics allow you to scale
shapes and apply effects without issues of pixilation (jaggies). JavaFX nodes use vector-based graphics. In each Text
node, you can create and set the font to be rendered onto the scene graph. Here is the code to create and set the font
on a Text node:
 
Text java8Recipes2 = new Text(50, 50, "Java 8 Recipes");
Font serif = Font.font("Serif", 30);
Java8Recipes2.setFont(serif);
 

Chapter 14 ■ JavaFX Fundamentals

342

In solution 1, the drop shadow is a real effect (DropShadow) object and is actually applied to a single Text node
instance. The DropShadow object is set to be positioned based on an x and y offset in relation to the Text node.
You also can set the color of the shadow; here we set it to gray with a .588 opacity. Following is an example of setting a
Text node’s effect property with a drop shadow effect (DropShadow):
 
DropShadow dropShadow = new DropShadow();
 dropShadow.setOffsetX(2.0f);
 dropShadow.setOffsetY(2.0f);
 dropShadow.setColor(Color.rgb(50, 50, 50, .588));
 java8Recipes2.setEffect(dropShadow);
 

Although this recipe is about setting text fonts, it also applied effects to Text nodes. Another effect has been
added (just kicking it up a notch). While creating the last Text node using the monospaced font, the popular reflection
effect is applied. The code following code is set so that .8 or 80 percent of the reflection is shown. The reflection values
range from zero (0%) to one (100%). The following code snippet implements a reflection of 80% with a float value of
0.8f:
 
Reflection refl = new Reflection();
refl.setFraction(0.8f);
 
java8Recipes5.setEffect(refl);
 

Solution 2 demonstrates how to construct a user interface using FXML, CSS, and Java. While this recipe focuses
on text and fonts, it is important to note that FXML solutions clearly follow a model-view-controller standard,
separating UI code from business logic. It is also important to note that if the UI in this example were to contain
buttons or other nodes that contained actions, a controller class would need to be created as well to embody the
action logic.

In the second example, an FXML file contains the structured layout for the user interface, which consists of a
Scene, Pane, TextFlow, and a series of Text nodes. The scene contains a <stylesheets> element, which is used to
specify which style sheets to apply to the elements within the XML. The Pane node is used as a base for the layout, and
it contains each of the other nodes within the UI. The TextFlow node is new in JavaFX 8, and it is a special layout that
is designed to lay out rich text. The TextFlow can lay many different Text nodes into a single flow.

As you can see from the FXML, each of the Text nodes within the TextFlow have different styles associated
with them, based on those styles that have been defined within the attached style sheet. The properties for styles in
JavaFX style sheets are preceded by –fx-, and property names and values are separated by a colon and terminated by
a semicolon (;). For the most part, JavaFX style properties align nicely with standard CSS properties. For a complete
summary, refer to the documentation at http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm.

The TextFlow uses the text and font of each node that is embedded within, as well as its own width and text
alignment, to determine the placement of the text. Nodes other than Text can also be embedded within a TextFlow.
When adding Text nodes to a TextFlow, you can set word wrap by specifying a maximum width of the TextFlow via
the setMaxWidth() method. It is also possible to include a \n at the end of any strings within a Text node to initiate
a line break. The following code performs the same solution as 1, but uses TextFlow to lay out the Text nodes, rather
than adding each to the scene graph separately.
 
primaryStage.setTitle(“Chapter 14-3 Changing Text Fonts”);
Group root = new Group();
Scene scene = new Scene(root, 330, 250, Color.WHITE);
 
// Serif with drop shadow
Text java8Recipes2 = new Text(50, 50, “Java 8 Recipes”);
Font serif = Font.font(“Serif”, 30);

http://docs.oracle.com/javafx/2/css_tutorial/jfxpub-css_tutorial.htm

Chapter 14 ■ JavaFX Fundamentals

343

java8Recipes2.setFont(serif);
java8Recipes2.setFill(Color.RED);
DropShadow dropShadow = new DropShadow();
dropShadow.setOffsetX(2.0f);
dropShadow.setOffsetY(2.0f);
dropShadow.setColor(Color.rgb(50, 50, 50, .588));
java8Recipes2.setEffect(dropShadow);
  
// SanSerif
Text java8Recipes3 = new Text(50, 100, “Java 8 Recipes\n”);
Font sanSerif = Font.font(“SanSerif”, 30);
java8Recipes3.setFont(sanSerif);
java8Recipes3.setFill(Color.BLUE);
  
// Dialog
Text java8Recipes4 = new Text(50, 150, “Java 8 Recipes\n”);
Font dialogFont = Font.font(“Dialog”, 30);
java8Recipes4.setFont(dialogFont);
java8Recipes4.setFill(Color.rgb(0, 255, 0));
 
// Monospaced
Text java8Recipes5 = new Text(50, 200, “Java 8 Recipes”);
Font monoFont = Font.font(“Monospaced”, 30);
java8Recipes5.setFont(monoFont);
java8Recipes5.setFill(Color.BLACK);
 
Reflection refl = new Reflection();
refl.setFraction(0.8f);
java8Recipes5.setEffect(refl);
TextFlow flow = new TextFlow(java8Recipes2, java8Recipes3, java8Recipes4, java8Recipes5);
 
root.getChildren().add(flow);
 

There were a lot of concepts introduced within this recipe. You will learn more about FXML in a later recipe, or
for more information you can see the online documentation at http://docs.oracle.com/javafx/2/get_started/
fxml_tutorial.htm. You an learn more about the TextFlow layout reading the documentation at
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html.

14-4. Creating Shapes
Problem
You want to create shapes to be placed on the scene graph.

Solution
Use JavaFX’s Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve, Rectangle, SVGPath,
and Text classes in the javafx.scene.shape.* package. The following code draws various complex shapes. The first
complex shape involves a cubic curve drawn in the shape of a sine wave. The next shape, called the ice cream cone,

http://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
http://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/text/TextFlow.html

Chapter 14 ■ JavaFX Fundamentals

344

uses the path class that contains path elements (javafx.scene.shape.PathElement). The third shape is a Quadratic
Bézier curve (QuadCurve) and it forms a smile. The final shape is a delectable donut. You can create this donut shape
by subtracting two ellipses (one smaller and one larger):
 
@Override
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-4 Creating Shapes");
 Group root = new Group();
 Scene scene = new Scene(root, 306, 550, Color.WHITE);
 
 // CubicCurve
 CubicCurve cubicCurve = new CubicCurve();
 cubicCurve.setStartX(50);
 cubicCurve.setStartY(75); // start pt (x1,y1)
 cubicCurve.setControlX1(80);
 cubicCurve.setControlY1(-25); // control pt1
 cubicCurve.setControlX2(110);
 cubicCurve.setControlY2(175); // control pt2
 cubicCurve.setEndX(140);
 cubicCurve.setEndY(75);
 cubicCurve.setStrokeType(StrokeType.CENTERED);
 cubicCurve.setStrokeWidth(1);
 cubicCurve.setStroke(Color.BLACK);
 cubicCurve.setStrokeWidth(3);
 cubicCurve.setFill(Color.WHITE);
 
 root.getChildren().add(cubicCurve);
 
 // Ice cream
 Path path = new Path();
 
 MoveTo moveTo = new MoveTo();
 moveTo.setX(50);
 moveTo.setY(150);
 
 QuadCurveTo quadCurveTo = new QuadCurveTo();
 quadCurveTo.setX(150);
 quadCurveTo.setY(150);
 quadCurveTo.setControlX(100);
 quadCurveTo.setControlY(50);
 
 LineTo lineTo1 = new LineTo();
 lineTo1.setX(50);
 lineTo1.setY(150);
 
 LineTo lineTo2 = new LineTo();
 lineTo2.setX(100);
 lineTo2.setY(275);
 
 LineTo lineTo3 = new LineTo();
 lineTo3.setX(150);
 lineTo3.setY(150);

Chapter 14 ■ JavaFX Fundamentals

345

 path.getElements().add(moveTo);
 path.getElements().add(quadCurveTo);
 path.getElements().add(lineTo1);
 path.getElements().add(lineTo2);
 path.getElements().add(lineTo3);
 path.setTranslateY(30);
 path.setStrokeWidth(3);
 path.setStroke(Color.BLACK);
 
 root.getChildren().add(path);
 
 // QuadCurve create a smile
 QuadCurve quad = new QuadCurve();
 quad.setStartX(50);
 quad.setStartY(50);
 quad.setEndX(150);
 quad.setEndY(50);
 quad.setControlX(125);
 quad.setControlY(150);
 quad.setTranslateY(path.getBoundsInParent().getMaxY());
 quad.setStrokeWidth(3);
 quad.setStroke(Color.BLACK);
 quad.setFill(Color.WHITE);
 
 root.getChildren().add(quad);
 
 // outer donut
 Ellipse bigCircle = new Ellipse(100, 100, 50, 75/2);
 //bigCircle.setTranslateY(quad.getBoundsInParent().getMaxY());
 bigCircle.setStrokeWidth(3);
 bigCircle.setStroke(Color.BLACK);
 bigCircle.setFill(Color.WHITE);
 
 // donut hole
 Ellipse smallCircle = new Ellipse(100, 100, 35/2, 25/2);
 
 // make a donut
 Shape donut = Path.subtract(bigCircle, smallCircle);
 donut.setStrokeWidth(1);
 donut.setStroke(Color.BLACK);
 // orange glaze
 donut.setFill(Color.rgb(255, 200, 0));
 
 // add drop shadow
 DropShadow dropShadow = new DropShadow();
 dropShadow.setOffsetX(2.0f);
 dropShadow.setOffsetY(2.0f);
 dropShadow.setColor(Color.rgb(50, 50, 50, .588));
 
 donut.setEffect(dropShadow);
 

Chapter 14 ■ JavaFX Fundamentals

346

 // move slightly down for spacing
 donut.setTranslateY(quad.getBoundsInParent().getMinY() + 10);
 
 root.getChildren().add(donut);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

Figure 14-5 displays the sine wave, ice cream cone, smile, and donut shapes created using JavaFX.

Figure 14-5.  Creating shapes

Chapter 14 ■ JavaFX Fundamentals

347

How It Works
In this solution, you generated some basic 2D shapes. The first shape is a javafx.scene.shape.CubicCurve class,
which allows you to construct a cubic curve (a “squiggly line”) effect. To create a cubic curve, simply look
for the appropriate constructor to be instantiated. The following code snippet is used to create a
javafx.scene.shape.CubicCurve instance:
 
CubicCurve cubicCurve = new CubicCurve();
cubicCurve.setStartX(50);
cubicCurve.setStartY(75); // start pt (x1,y1)
cubicCurve.setControlX1(80);
cubicCurve.setControlY1(-25); // control pt1
cubicCurve.setControlX2(110);
cubicCurve.setControlY2(175); // control pt2
cubicCurve.setEndX(140);
cubicCurve.setEndY(75);
cubicCurve.setStrokeType(StrokeType.CENTERED);
cubicCurve.setStrokeWidth(1);
cubicCurve.setStroke(Color.BLACK);
cubicCurve.setStrokeWidth(3);
cubicCurve.setFill(Color.WHITE);
 

You begin by instantiating a CubicCurve() instance. Next, the curve’s attributes are specified in any order by
utilizing the object’s setter methods and passing a single value to each. Once you’re finished specifying values on the
CubicCurve() object, you can add it to the scene graph using the following notation:
 
root.getChildren().add(cubicCurve);
 

The ice cream cone shape is created using the javafx.scene.shape.Path class. As each path element is created
and added to the Path object, each element is not considered a graph node (javafx.scene.Node). This means they do
not extend from the javafx.scene.shape.Shape class and cannot be a child node in a scene graph to be displayed.
When looking at the Javadoc (see http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html),
you will notice that a Path class extends from the Shape class that extends from the (javafx.scene.Node) class, and
therefore a Path is a graph node, but path elements do not extend from the Shape class. Path elements actually extend
from the javafx.scene.shape.PathElement class, which is only used in the context of a Path object. So you won’t be
able to instantiate a LineTo class to be put in the scene graph. Just remember that the classes with To as a suffix are
path elements, not real Shape nodes. For example, the MoveTo and LineTo object instances are Path elements added
to a Path object, not shapes that can be added to the scene. The following are Path elements added to a Path object to
draw an ice cream cone:
 
// Ice cream
Path path = new Path();
 
MoveTo moveTo = new MoveTo();
moveTo.setX(50);
moveTo.setY(150);
 
...// Additional Path Elements created.
LineTo lineTo1 = new LineTo();
lineTo1.setX(50);
lineTo1.setY(150);
 

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/shape/Path.html

Chapter 14 ■ JavaFX Fundamentals

348

...// Additional Path Elements created.
 
path.getElements().add(moveTo);
path.getElements().add(quadCurveTo);
path.getElements().add(lineTo1);
 

Rendering the QuadCurve (smile) object, you instantiate a new QuadCurve object and set each of the attributes
accordingly. Again, each of the attributes accepts a single value.

Last is the tasty donut shape with a drop shadow effect, which is actually created by two circular ellipses.
By subtracting the smaller ellipse (donut hole) from the larger ellipse area, a newly derived shape is created and
returned using the Path.subtract() method. Following is the code snippet that creates the donut shape using the
Path.subtract() method:
 
// outer donut
Ellipse bigCircle = ...//Outer shape area
 
// donut hole
Ellipse smallCircle = ...// Inner shape area
 
// make a donut
Shape donut = Path.subtract(bigCircle, smallCircle);
 

Next, a drop shadow effect is added to the donut. This time instead of drawing the shape twice, similar to a prior
recipe, you draw it once and use the setEffect() method to apply a DropShadow object instance to the donut Shape
object. Similar to the prior technique, you set the offset of the shadow by calling setOffsetX() and setOffsetY().

Note■■   In the previous release, builder objects could be used to create shapes a bit more easily. However, the builder
classes were removed from JavaFX 8 due to performance and bloating issues. If you’re maintaining code that utilizes
builder classes, it is recommended that you to migrate away from them and make use of the standard objects, as demon-
strated in this recipe.

14-5. Assigning Colors to Objects
Problem
You want to fill your shapes with simple colors and gradient colors.

Solution
In JavaFX, all shapes can be filled with simple colors and gradient colors. The following are the main classes used to
fill shape nodes:

•	 javafx.scene.paint.Color

•	 javafx.scene.paint.LinearGradient

•	 javafx.scene.paint.Stop

•	 javafx.scene.paint.RadialGradient

Chapter 14 ■ JavaFX Fundamentals

349

The following code uses the preceding classes to add radial and linear gradient colors as well as transparent
(alpha channel level) colors to shapes. This recipe uses an ellipse, rectangle, and rounded rectangle. A solid black line
(as depicted in Figure 14-5) also appears in the recipe to demonstrate the transparency of the shape’s color.
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-5 Assigning Colors To Objects");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 300, Color.WHITE);
  
 Ellipse ellipse = new Ellipse(100, 50 + 70/2, 50, 70/2);
 RadialGradient gradient1 = new RadialGradient(0,
 .1, // focus angle
 80, // focus distance
 45, // centerX
 120, // centerY
 false, // proportional
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED), new Stop(1, Color.BLACK));
 
 ellipse.setFill(gradient1);
 root.getChildren().add(ellipse);
 
 // Create line
 Line blackLine = new Line();
 blackLine.setStartX(170);
 blackLine.setStartY(30);
 blackLine.setEndX(20);
 blackLine.setEndY(140);
 blackLine.setFill(Color.BLACK);
 blackLine.setStrokeWidth(10.0f);
 blackLine.setTranslateY(ellipse.prefHeight(-1) + ellipse.getLayoutY() + 10);
 
 root.getChildren().add(blackLine);
 
 // Create rectangle
 Rectangle rectangle = new Rectangle();
 rectangle.setX(50);
 rectangle.setY(50);
 rectangle.setWidth(100);
 rectangle.setHeight(70);
 rectangle.setTranslateY(ellipse.prefHeight(-1) + ellipse.getLayoutY() + 10);
 
 // Create linear gradient
 LinearGradient linearGrad = new LinearGradient(
 50, //startX
 50, //startY
 50, //endX
 50 + rectangle.prefHeight(-1) + 25, //endY
 false, //proportional

Chapter 14 ■ JavaFX Fundamentals

350

 CycleMethod.NO_CYCLE,
 new Stop(0.1f, Color.rgb(255, 200, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));
 
 rectangle.setFill(linearGrad);
 root.getChildren().add(rectangle);
 
 // Create rectangle with rounded corners
 Rectangle roundRect = new Rectangle();
 roundRect.setX(50);
 roundRect.setY(50);
 roundRect.setWidth(100);
 roundRect.setHeight(70);
 roundRect.setArcWidth(20);
 roundRect.setArcHeight(20);
 roundRect.setTranslateY(ellipse.prefHeight(-1) +
 ellipse.getLayoutY() +
 10 +
 roundRect.prefHeight(-1) +
 roundRect.getLayoutY() + 10);
 
 LinearGradient cycleGrad = new LinearGradient(50,
 50,
 70,
 70,
 false,
 CycleMethod.REFLECT,
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));
  
 roundRect.setFill(cycleGrad);
 root.getChildren().add(roundRect);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
  

Figure 14-6 displays the various types of colorized fills that can be applied to shapes.

Chapter 14 ■ JavaFX Fundamentals

351

How It Works
Figure 14-5 shows shapes displayed from top to bottom starting with an ellipse, rectangle, and a rounded rectangle
having colored gradient fills. When drawing the eclipse shape, you will be using a radial gradient that appears as if it
were a 3D spherical object. Next, a rectangle filled with a yellow semitransparent linear gradient is created. A thick
black line shape was drawn behind the yellow rectangle to demonstrate the rectangle’s semitransparent color. Lastly,
a rounded rectangle filled with a green-and-black reflective linear gradient resembling 3D tubes in a diagonal
direction is generated.

The amazing thing about colors with gradients is that they can often make shapes appear three-dimensional.
Gradient paint allows you to interpolate between two or more colors, which gives the shape depth. JavaFX provides
two types of gradients: a radial (RadialGradient) and a linear (LinearGradient) gradient. A radial gradient
(RadialGradient) is applied to the ellipse shape in the example.

Table 14-1 is taken from the JavaFX 8 Javadoc definitions found for the RadialGradient class
(http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html).

Figure 14-6.  Color shapes

Table 14-1.  RadialGradient Properties

Property Data Type Description

focusAngle double Angle in degrees from the center of the gradient to the focus point to which
the first color is mapped

focusDistance double Distance from the center of the gradient to the focus point to which the first
color is mapped

centerX double X coordinate of the center point of the gradient’s circle

centerY double Y coordinate of the center point of the gradient’s circle

(continued)

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/RadialGradient.html

Chapter 14 ■ JavaFX Fundamentals

352

In this recipe, the focus angle is set to zero, the distance is set to .1, the center X and Y are set to (80,45), the radius
is set to 120 pixels, the proportional is set to false, the cycle method is set to the no cycle (CycleMethod.NO_CYCLE), and
the two color stop values are set to red (Color.RED) and black (Color.BLACK). These settings create a radial gradient
by starting with the color red at a center position of (80, 45) (upper left of the ellipse) and then interpolating it to the
color black with a distance of 120 pixels (radius).

Next, a rectangle having a yellow semitransparent linear gradient is created. A linear gradient (LinearGradient)
paint is used for the yellow rectangle.

Table 14-2 is taken from the JavaFX 8.0 Javadoc definitions found for the LinearGradient class
(see http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html).

Table 14-2.  LinearGradient Properties

Property Data Type Description

startX double X coordinate of the gradient axis start point

startY double Y coordinate of the gradient axis start point

endX double X coordinate of the gradient axis end point

endY double Y coordinate of the gradient axis end point

proportional boolean Whether the coordinates are proportional to the
shape that this gradient fills

cycleMethod

opaque

CycleMethod

boolean

Cycle method applied to the gradient
Whether this paint is completely opaque

stops List<Stop> Gradient’s color specification

Property Data Type Description

radius double Radius of the circle defining the extents of the color gradient

proportional boolean Coordinates and sizes are proportional to the shape that this gradient fills

cycleMethod CycleMethod Cycle method applied to the gradient

opaque

stops

boolean

List<Stop>

Whether the paint is completely opaque

Gradient’s color specification

Table 14-1.  (continued)

To create a linear gradient paint, you specify the startX, startY, endX, and endY for the start\end points. The start
and end point coordinates denote where the gradient pattern starts and stops.

To create the second shape (yellow rectangle), set the start X and Y to (50, 50), the end X and Y to (50, 75), the
proportional to false, the cycle method to no cycle (CycleMethod.NO_CYCLE), and the two color stop values to yellow
(Color.YELLOW) and black (Color.BLACK), with an alpha transparency of .784. These settings provide a linear gradient
for the rectangle from top to bottom, with a starting point of (50, 50) (top-left of the rectangle). It then interpolates to
the color black (bottom-left of the rectangle).

Finally, you’ll notice a rounded rectangle with a repeating pattern of a gradient using green and black
in a diagonal direction. This is a simple linear gradient paint that is the same as the linear gradient paint
(LinearGradient), except that the start X, Y and the end X, Y are set in a diagonal position, and the cycle method is set

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/paint/LinearGradient.html

Chapter 14 ■ JavaFX Fundamentals

353

to reflect (CycleMethod.REFLECT). When specifying the cycle method to reflect (CycleMethod.REFLECT), the gradient
pattern will repeat or cycle between the colors. The following code snippet implements the rounded rectangle having
a cycle method of reflect (CycleMethod.REFLECT):
 
LinearGradient cycleGrad = new LinearGradient(50,
 50,
 70,
 70,
 false,
 CycleMethod.REFLECT,
 new Stop(0f, Color.rgb(0, 255, 0, .784)),
 new Stop(1.0f, Color.rgb(0, 0, 0, .784)));

14-6. Creating Menus
Problem
You want to create standard menus in your JavaFX applications.

Solution
Employ JavaFX’s menu controls to provide standardized menu capabilities such as check box menus, radio menus,
submenus, and separators. The following are the main classes used to create menus.

•	 javafx.scene.control.MenuBar

•	 javafx.scene.control.Menu

•	 javafx.scene.control.MenuItem

The following code calls into play all the menu capabilities listed previously. The example code simulates a building
security application containing menu options to turn on cameras, sound an alarm, and select contingency plans.
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-6 Creating Menus");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250, Color.WHITE);
 
 MenuBar menuBar = new MenuBar();
 
 // File menu - new, save, exit
 Menu menu = new Menu("File");
 menu.getItems().add(new MenuItem("New"));
 menu.getItems().add(new MenuItem("Save"));
 menu.getItems().add(new SeparatorMenuItem());
 menu.getItems().add(new MenuItem("Exit"));
 
 menuBar.getMenus().add(menu);
 

Chapter 14 ■ JavaFX Fundamentals

354

 // Cameras menu - camera 1, camera 2
 Menu tools = new Menu("Cameras");
 CheckMenuItem item1 = new CheckMenuItem();
 item1.setText("Show Camera 1");
 item1.setSelected(true);
 tools.getItems().add(item1);
 
 CheckMenuItem item2 = new CheckMenuItem();
 item2.setText("Show Camera 2");
 item2.setSelected(true);
 tools.getItems().add(item2);
 
 menuBar.getMenus().add(tools);
  
 // Alarm
 Menu alarm = new Menu("Alarm");
 ToggleGroup tGroup = new ToggleGroup();
 
 RadioMenuItem soundAlarmItem = new RadioMenuItem();
 soundAlarmItem.setToggleGroup(tGroup);
 soundAlarmItem.setText("Sound Alarm");
 
 RadioMenuItem stopAlarmItem = new RadioMenuItem();
 stopAlarmItem.setToggleGroup(tGroup);
 stopAlarmItem.setText("Alarm Off");
 stopAlarmItem.setSelected(true);
 
 alarm.getItems().add(soundAlarmItem);
 alarm.getItems().add(stopAlarmItem);
 
 Menu contingencyPlans = new Menu("Contingent Plans");
 contingencyPlans.getItems().add(new CheckMenuItem("Self Destruct in T minus 50"));
 contingencyPlans.getItems().add(new CheckMenuItem("Turn off the coffee machine "));
 contingencyPlans.getItems().add(new CheckMenuItem("Run for your lives! "));
 
 alarm.getItems().add(contingencyPlans);
 menuBar.getMenus().add(alarm);
 
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
 
 root.getChildren().add(menuBar);
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

Figure 14-7 shows a simulated building security application containing checked, and submenu items.

Chapter 14 ■ JavaFX Fundamentals

355

How It Works
Menus provide standard ways to allow users to select options from windowed platform applications. Menus should
also have hot keys or keyboard equivalents. Users will often want to use the keyboard instead of the mouse to navigate
the menu. This recipe parallels Recipe 14-8, and you’ll notice lots of similarities.

To create a menu, first create an instance of a MenuBar that will contain one-to-many menu (MenuItem) objects.
Creating a menu bar:
 
MenuBar menuBar = new MenuBar();
 

Secondly, create menu (Menu) objects that contain one-to-many menu item (MenuItem) objects and other Menu
objects making submenus. To create a menu:
 
Menu menu = new Menu("File");
 

Third, create menu items to be added to Menu objects, such as menu (MenuItem), check (CheckMenuItem), and
radio menu items (RadioMenuItem). Menu items can have icons in them. We don’t showcase this in the recipe, but we
encourage you to explore the various constructors for all menu items (MenuItem). When creating a radio menu item
(RadioMenuItem), you should be aware of the ToggleGroup class. The ToggleGroup class is also used on regular radio
buttons (RadioButtons) to allow only one selected option at any one time. The following code creates radio menu
items (RadioMenuItems) to be added to a Menu object:
 
// Alarm
 Menu alarm = new Menu("Alarm");
 ToggleGroup tGroup = new ToggleGroup();
 
 RadioMenuItem soundAlarmItem = new RadioMenuItem();
 soundAlarmItem.setToggleGroup(tGroup);
 soundAlarmItem.setText("Sound Alarm");
 
 RadioMenuItem stopAlarmItem = new RadioMenuItem();
 stopAlarmItem.setToggleGroup(tGroup);
 stopAlarmItem.setText("Alarm Off");
 stopAlarmItem.setSelected(true);
 

Figure 14-7.  Creating menus

Chapter 14 ■ JavaFX Fundamentals

356

 alarm.getItems().add(soundAlarmItem);
 alarm.getItems().add(stopAlarmItem);
 

At times you may want to separate menu items with a visual line separator. To create a visual separator,
create an instance of a SeparatorMenuItem class to be added to a menu via the getItems() method. The method
getItems() returns an observable list of MenuItem objects (ObservableList<MenuItem>). As you will see in Recipe
14-10, you can be notified when items in a collection are altered. The following code line adds a visual line separator
(SeparatorMenuItem) to the menu:
 
menu.getItems().add(new SeparatorMenuItem());
 

Other menu items used are the check menu item (CheckMenuItem) and the radio menu item (RadioMenuItem),
and they are similar to their counterparts in JavaFX UI controls check box (CheckBox) and radio button (RadioButton),
respectively.

Prior to adding the menu bar to the scene, you will notice the bound property between the preferred width of the
menu bar and the width of the Stage object via the bind() method. When binding these properties you will see the
menu bar’s width stretch when the user resizes the screen. You will see how binding works in Recipe 14-9, “Binding
Expressions.” This code snippet shows the binding between the menu bar’s width property and the stage’s width
property.
 
menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
 
root.getChildren().add(menuBar); 

14-7. Adding Components to a Layout
Problem
You want to add UI components to a layout similar to a grid type layout for easy placement.

Solution
Use JavaFX’s javafx.scene.layout.GridPane class. This source code implements a simple UI form containing first
and last name field controls and using the grid pane layout node (javafx.scene.layout.GridPane):
 
GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5);
gridpane.setVgap(5);
 
Label fNameLbl = new Label(“First Name”);
TextField fNameFld = new TextField();
Label lNameLbl = new Label(“First Name”);
TextField lNameFld = new TextField();
Button saveButt = new Button(“Save”);
 
// First name label
GridPane.setHalignment(fNameLbl, HPos.RIGHT);
gridpane.add(fNameLbl, 0, 0);
  

Chapter 14 ■ JavaFX Fundamentals

357

// Last name label
GridPane.setHalignment(lNameLbl, HPos.RIGHT);
gridpane.add(lNameLbl, 0, 1);
 
// First name field
GridPane.setHalignment(fNameFld, HPos.LEFT);
gridpane.add(fNameFld, 1, 0);
 
// Last name field
GridPane.setHalignment(lNameFld, HPos.LEFT);
gridpane.add(lNameFld, 1, 1);
 
// Save button
GridPane.setHalignment(saveButt, HPos.RIGHT);
gridpane.add(saveButt, 1, 2);
 
root.getChildren().add(gridpane);
 

Figure 14-8 depicts a small form containing UI controls laid out using a grid pane layout node.

Figure 14-8.  Adding controls to a layout

How It Works
One of the greatest challenges in building user interfaces is how controls can be placed onto the display area. When
developing GUI applications, it is ideal for an application to allow the users to move and adjust the size of their
viewable area while maintaining a pleasant user experience. Similar to Java Swing, JavaFX layout has stock layouts that
provide the most common ways to display UI controls on the scene graph. This recipe demonstrates the GridPane class.

Recall Recipe 14-4, in which you implemented a custom layout to display components in a grid-like manner. You
may notice similarities, but we left a lot of implementation features out, such as adjusting min/max sizes, padding,
and vertical alignments. Amazingly, the JavaFX team has created a robust grid-like layout called the GridPane.

First you create an instance of a GridPane. Next, you set the padding by using an instance of an Inset object.
After setting the padding, you simply set the horizontal and vertical gap. The following code snippet instantiates a grid
pane (GridPane) with padding, horizontal, and vertical gaps set to 5 (pixels):
 
GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(5);
gridpane.setVgap(5);
 

Chapter 14 ■ JavaFX Fundamentals

358

The padding is the top, right, bottom, and left spacing around the region's content in pixels. When obtaining the
preferred size, the padding will be included in the calculation. Setting the horizontal and vertical gaps relate to the
spacing between UI controls within the cells.

Next, simply place each UI control into its respective cell location. All cells are zero relative. Following is a code
snippet that adds a Save button UI control into a grid pane layout node (GridPane) at cell (1, 2):
 
gridpane.add(saveButt, 1, 2);
 

The layout also allows you to horizontally or vertically align controls in the cell. The following code statement
right-aligns the Save button:
 
GridPane.setHalignment(saveButt, HPos.RIGHT);

14-8. Generating Borders
Problem
You want to create and customize borders around an image.

Solution
Create an application to dynamically customize border regions using JavaFX’s CSS styling API.

The following code creates an application that has a CSS editor text area and a border view region surrounding an
image. By default the editor’s text area will contain JavaFX styling selectors that create a dashed-blue line surrounding
the image. You will have the opportunity to modify styling selector values in the CSS Editor by clicking the Bling!
button to apply border settings.
 
primaryStage.setTitle("Chapter 14-8 Generating Borders");
Group root = new Group();
Scene scene = new Scene(root, 600, 330, Color.WHITE);
 
// create a grid pane
GridPane gridpane = new GridPane();
gridpane.setPadding(new Insets(5));
gridpane.setHgap(10);
gridpane.setVgap(10);
 
// label CSS Editor
Label cssEditorLbl = new Label("CSS Editor");
GridPane.setHalignment(cssEditorLbl, HPos.CENTER);
gridpane.add(cssEditorLbl, 0, 0);
 
// label Border View
Label borderLbl = new Label("Border View");
GridPane.setHalignment(borderLbl, HPos.CENTER);
gridpane.add(borderLbl, 1, 0);
 
// Text area for CSS editor
final TextArea cssEditorFld = new TextArea();
cssEditorFld.setPrefRowCount(10);
cssEditorFld.setPrefColumnCount(100);

Chapter 14 ■ JavaFX Fundamentals

359

cssEditorFld.setWrapText(true);
cssEditorFld.setPrefWidth(150);
GridPane.setHalignment(cssEditorFld, HPos.CENTER);
gridpane.add(cssEditorFld, 0, 1);
 
String cssDefault = "-fx-border-color: blue;\n"
 + "-fx-border-insets: 5;\n"
 + "-fx-border-width: 3;\n"
 + "-fx-border-style: dashed;\n";
 
cssEditorFld.setText(cssDefault);
 
// Border decorate the picture
final ImageView imv = new ImageView();
final Image image2 = new Image(GeneratingBorders.class.getResourceAsStream("smoke_glass_buttons1.png"));
imv.setImage(image2); 
 
final HBox pictureRegion = new HBox();
pictureRegion.setStyle(cssDefault);
pictureRegion.getChildren().add(imv);
gridpane.add(pictureRegion, 1, 1); 
 
Button apply = new Button("Bling!");
GridPane.setHalignment(apply, HPos.RIGHT);
gridpane.add(apply, 0, 2);
 
apply.setOnAction((e) -> {
 pictureRegion.setStyle(cssEditorFld.getText());
});
 
root.getChildren().add(gridpane);
primaryStage.setScene(scene);
primaryStage.show();
 

Figure 14-9 illustrates the border customizer application.

Chapter 14 ■ JavaFX Fundamentals

360

How It Works
JavaFX is capable of styling JavaFX nodes similar to Cascading Style Sheets (CSS) in the world of web development
(also demonstrated in Recipe 14-3). This powerful API can alter a node’s background color, font, border, and many
other attributes, essentially allowing the developer or designer to skin GUI controls using CSS.

This solution to this recipe allows users to enter JavaFX CSS styles in the left text area and, by clicking the Bling!
button on the UI, apply the style around the image shown to the right. Based on the type of node, there are limitations
to what styles can be set. To see a full listing of all style selectors, refer to the JavaFX CSS Reference Guide:
 
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html.
 

In the first step of applying JavaFX CSS styles, you must determine which type of node you want to style. When
setting attributes on various node types, you will discover that certain nodes have limitations. In this recipe, the intent
was to put a border around the ImageView object. Because ImageView is not extending from Region, it doesn’t contain
border style properties. So, to resolve this, simply create an HBox layout to contain the imageView and apply the JavaFX
CSS against the HBox. The following code applies JavaFX CSS border styles to a horizontal box region (HBox) using the
setStyle() method:
 
String cssDefault = "-fx-border-color: blue;\n"
 + "-fx-border-insets: 5;\n"
 + "-fx-border-width: 3;\n"
 + "-fx-border-style: dashed;\n";
final ImageView imv = new ImageView();
...//
final HBox pictureRegion = new HBox();
pictureRegion.setStyle(cssDefault);
pictureRegion.getChildren().add(imv);

Figure 14-9.  Generating borders

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

Chapter 14 ■ JavaFX Fundamentals

361

14-9. Binding Expressions
Problem
You want to synchronize changes between two values.

Solution
Use the javafx.beans.binding.* and javafx.beans.property.* packages to bind variables. There is more than
one scenario to consider when binding values or properties. This recipe demonstrates the following three binding
strategies:

Bidirectional binding on a Java Bean•	

High-level binding using the Fluent API•	

Low-level binding using •	 javafx.beans.binding.* binding objects

The following code is a console application implementing these three strategies. The console application will
output property values based on various binding scenarios. The first scenario is a bidirectional binding between a
string property variable and a string property owned by a domain object (Contact), such as the firstName property.
The next scenario is a high-level binding using a fluent interface API to calculate the area of rectangle. The last
scenario is using a low-level binding strategy to calculate the volume of a sphere. The difference between the
high-and low-level binding is that the high level uses methods such as multiply() and subtract() instead of the
operators * and -. When using low-level binding, you use a derived NumberBinding class such as a DoubleBinding
class. With a DoubleBinding class you override its computeValue() method so that you can use the familiar operators
such as * and - to formulate complex math equations:
 
package org.java8recipes.chapter14.recipe14_09;
 
import javafx.beans.binding.DoubleBinding;
import javafx.beans.binding.NumberBinding;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
 
/**
 * Recipe 14-9: Binding Expressions
 * @author cdea
 * Update: J. Juneau
 */
public class BindingExpressions {
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 System.out.println("Chapter 14-9 Binding Expressions\n");
  

Chapter 14 ■ JavaFX Fundamentals

362

 System.out.println("Binding a Contact bean [Bi-directional binding]");
 Contact contact = new Contact("John", "Doe");
 StringProperty fname = new SimpleStringProperty();
 fname.bindBidirectional(contact.firstNameProperty());
 StringProperty lname = new SimpleStringProperty();
 lname.bindBidirectional(contact.lastNameProperty());
 
 �System.out.println("Current - StringProperty values : " + fname.getValue() + "

" + lname.getValue());
 �System.out.println("Current - Contact values : " + contact.getFirstName() + "

" + contact.getLastName());
  
 System.out.println("Modifying StringProperty values");
 fname.setValue("Jane");
 lname.setValue("Deer");
 
 �System.out.println("After - StringProperty values : " + fname.getValue() + "

" + lname.getValue());
 �System.out.println("After - Contact values : " + contact.getFirstName() + "

" + contact.getLastName());
  
 System.out.println();
 System.out.println("A Area of a Rectangle [High level Fluent API]");
 
 // Area = width * height
 final IntegerProperty width = new SimpleIntegerProperty(10);
 final IntegerProperty height = new SimpleIntegerProperty(10);
  
 NumberBinding area = width.multiply(height);
 
 System.out.println("Current - Width and Height : " + width.get() + " " + height.get());
 System.out.println("Current - Area of the Rectangle: " + area.getValue());
 System.out.println("Modifying width and height");
  
 width.set(100);
 height.set(700);
  
 System.out.println("After - Width and Height : " + width.get() + " " + height.get());
 System.out.println("After - Area of the Rectangle: " + area.getValue());
 
 System.out.println();
 System.out.println("A Volume of a Sphere [low level API]");
 
 // volume = 4/3 * pi r^3
 final DoubleProperty radius = new SimpleDoubleProperty(2);
 
 DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius);
 }
 

Chapter 14 ■ JavaFX Fundamentals

363

 @Override
 protected double computeValue() {
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
 };
 
 System.out.println("Current - radius for Sphere: " + radius.get());
 System.out.println("Current - volume for Sphere: " + volumeOfSphere.get());
 System.out.println("Modifying DoubleProperty radius");
  
 radius.set(50);
 System.out.println("After - radius for Sphere: " + radius.get());
 System.out.println("After - volume for Sphere: " + volumeOfSphere.get());
   
 }
}
 
class Contact {
 
 private SimpleStringProperty firstName = new SimpleStringProperty();
 private SimpleStringProperty lastName = new SimpleStringProperty();
 
 public Contact(String fn, String ln) {
 firstName.setValue(fn);
 lastName.setValue(ln);
 }
 
 public final String getFirstName() {
 return firstName.getValue();
 }
 
 public StringProperty firstNameProperty() {
 return firstName;
 }
 
 public final void setFirstName(String firstName) {
 this.firstName.setValue(firstName);
 }
 
 public final String getLastName() {
 return lastName.getValue();
 }
 
 public StringProperty lastNameProperty() {
 return lastName;
 }
 
 public final void setLastName(String lastName) {
 this.lastName.setValue(lastName);
 }
}
 

Chapter 14 ■ JavaFX Fundamentals

364

The following output demonstrates the three binding scenarios:
 
Binding a Contact bean [Bi-directional binding]
Current - StringProperty values : John Doe
Current - Contact values : John Doe
Modifying StringProperty values
After - StringProperty values : Jane Deer
After - Contact values : Jane Deer
 
A Area of a Rectangle [High level Fluent API]
Current - Width and Height : 10 10
Current - Area of the Rectangle: 100
Modifying width and height
After - Width and Height : 100 700
After - Area of the Rectangle: 70000
 
A Volume of a Sphere [low level API]
Current - radius for Sphere: 2.0
Current - volume for Sphere: 25.132741228718345
Modifying DoubleProperty radius
After - radius for Sphere: 50.0
After - volume for Sphere: 392699.0816987241

How It Works
Binding implies that at least two values are being synchronized. This means when a dependent variable changes, the
other variable changes. JavaFX provides many binding options that enable developers to synchronize properties in
domain objects and GUI controls. This recipe demonstrates the three common binding scenarios.

One of the easiest ways to bind variables is using a bidirectional bind. This scenario is often used when domain
objects contain data that will be bound to a GUI form. This recipe creates a simple contact (Contact) object
containing a first name and last name. Notice the instance variables using the SimpleStringProperty class. Many
of these classes, which end in Property, are javafx.beans.Observable classes that can all be bound. In order for
these properties to be bound, they must be the same data type. In the preceding example, you create the first name
and last name variables of type SimpleStringProperty outside the created Contact domain object. Once they have
been created, you bind them bidirectionally to allow changes to update on either end. So if you change the domain
object, the other bound properties are updated. And when the outside variables are modified, the domain object’s
properties are updated. The following demonstrates bidirectional binding against string properties on a domain
object (Contact):
 
Contact contact = new Contact("John", "Doe");
StringProperty fname = new SimpleStringProperty();
fname.bindBidirectional(contact.firstNameProperty());
StringProperty lname = new SimpleStringProperty();
lname.bindBidirectional(contact.lastNameProperty());
 

Next up is how to bind numbers. Binding numbers is simple when using the Fluent API. This high-level
mechanism allows developers to bind variables to compute values using simple arithmetic. Basically, a formula is
“bound” to change its result based on changes to the variables it’s bound to. Look at the Javadoc
(http://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html) for details on all the
available methods and number types. In this example, you simply create a formula for an area of a rectangle.
The area (NumberBinding) is the binding, and its dependencies are the width and height (IntegerProperty)

http://docs.oracle.com/javase/8/javafx/api/javafx/beans/binding/Bindings.html

Chapter 14 ■ JavaFX Fundamentals

365

properties. When binding using the fluent interface API, you’ll notice the multiply() method. According to the
Javadoc, all property classes inherit from the NumberExpressionBase class, which contains the number-based fluent
interface APIs. The following code snippet uses the fluent interface API:
 
// Area = width * height
final IntegerProperty width = new SimpleIntegerProperty(10);
final IntegerProperty height = new SimpleIntegerProperty(10);
NumberBinding area = width.multiply(height);
 

The last scenario on binding numbers is considered more of a low-level approach. This allows developers to use
primitives and more complex math operations. Here, you use a DoubleBinding class to solve the volume of a sphere
given the radius. You begin by implementing the computeValue() method to perform the calculation of the volume.
Shown is the low-level binding scenario to compute the volume of a sphere by overriding the computeValue() method:
 
final DoubleProperty radius = new SimpleDoubleProperty(2);
 
DoubleBinding volumeOfSphere = new DoubleBinding() {
 {
 super.bind(radius);
 }
 
 @Override
 protected double computeValue() {
 return (4 / 3 * Math.PI * Math.pow(radius.get(), 3));
 }
};

14-10. Creating and Working with Observable Lists
Problem
You want to create a GUI application containing two list view controls that allow users to pass items between the
two lists.

Solution
You can take advantage of JavaFX’s javafx.collections.ObservableList and javafx.scene.control.ListView
classes to provide a model-view-controller (MVC) mechanism that updates the UI’s list view control whenever the
backend list is manipulated.

The following code creates a GUI application containing two lists that allow users to send items contained in
one list to the other. Here you will create a contrived application to pick candidates to be considered heroes. The user
picks potential candidates from the list on the left to be moved into the list on the right to be considered heroes. This
demonstrates UI list controls’ (ListView) ability to be synchronized with backend store lists (ObservableList).
 

Chapter 14 ■ JavaFX Fundamentals

366

public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-10 Creating and Working with ObservableLists");
 Group root = new Group();
 Scene scene = new Scene(root, 400, 250, Color.WHITE);
 
 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 
 // candidates label
 Label candidatesLbl = new Label("Candidates");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);
 
 Label heroesLbl = new Label("Heroes");
 gridpane.add(heroesLbl, 2, 0);
 GridPane.setHalignment(heroesLbl, HPos.CENTER);
 
 // candidates
 final ObservableList<String> candidates = FXCollections.observableArrayList("Super man",
 "Spider man",
 "Wolverine",
 "Police",
 "Fire Rescue",
 "Soldiers",
 "Dad & Mom",
 "Doctor",
 "Politician",
 "Pastor",
 "Teacher");
 final ListView<String> candidatesListView = new ListView<>(candidates);
 candidatesListView.setPrefWidth(150);
 candidatesListView.setPrefHeight(150);
 
 gridpane.add(candidatesListView, 0, 1);
 
 // heros
 final ObservableList<String> heroes = FXCollections.observableArrayList();
 final ListView<String> heroListView = new ListView<>(heroes);
 heroListView.setPrefWidth(150);
 heroListView.setPrefHeight(150);
 
 gridpane.add(heroListView, 2, 1);
  
 // select heroes
 Button sendRightButton = new Button(">");
 sendRightButton.setOnAction((e) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();

Chapter 14 ■ JavaFX Fundamentals

367

 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
 });
 
 // deselect heroes
 Button sendLeftButton = new Button("<");
 sendLeftButton.setOnAction((e) -> {
 String notHero = heroListView.getSelectionModel().getSelectedItem();
 if (notHero != null) {
 heroListView.getSelectionModel().clearSelection();
 heroes.remove(notHero);
 candidates.add(notHero);
 }
 });
 
 VBox vbox = new VBox(5);
 vbox.getChildren().addAll(sendRightButton,sendLeftButton);
 
 gridpane.add(vbox, 1, 1);
 GridPane.setConstraints(vbox, 1, 1, 1, 2,HPos.CENTER, VPos.CENTER);
 
 root.getChildren().add(gridpane);
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

Figure 14-10 depicts the hero selection application.

Figure 14-10.  ListViews and ObservableLists

Chapter 14 ■ JavaFX Fundamentals

368

How It Works
When dealing with Java collections you’ll notice there are so many useful container classes that represent all kinds
of data structures. One commonly used collection is the java.util.ArrayList class. When building applications
with domain objects that contain an ArrayList, developers can easily manipulate objects inside the collection.
But, in the past (back in the day), when using Java Swing components combined with collections was a challenge,
especially updating the GUI to reflect changes in the domain object. How do you resolve this issue? Well, JavaFX’s
ObservableList to the rescue!

Speaking of rescue, this recipe demonstrates a GUI application to allow users to choose their favorite heroes.
This is quite similar to application screens that manage user roles by adding or removing items from list box
components. In JavaFX, use a ListView control to hold string objects. Before creating an instance of a ListView, the
ObservableList containing the candidates is created. In the example, you’ll notice the use of a factory class called
FXCollections, in which you can pass in common collection types to be wrapped and returned to the caller as an
ObservableList. This recipe passes in an array of strings instead of an ArrayList, so hopefully you get the idea
about how to use the FXCollections class. Be sure to use it wisely: “With great power, there must also come great
responsibility.” This code line calls the FXCollections class to return an observable list (ObservableList):
 
ObservableList<String> candidates = FXCollections.observableArrayList(...);
 

After creating an ObservableList, a ListView class is instantiated using a constructor that receives the
observable list. Shown here is code to create and populate a ListView object:
 
ListView<String> candidatesListView = new ListView<String>(candidates);
 

In the last item of business, the code will manipulate the ObservableLists as if they were java.util.
ArrayLists. Once manipulated, the ListView will be notified and automatically updated to reflect the changes of the
ObservableList. The following code snippet implements the event handler and action event when the user presses
the send right button:
 
// select heroes
Button sendRightButton = new Button(">");
sendRightButton.setOnAction((e) -> {
 String potential = candidatesListView.getSelectionModel().getSelectedItem();
 if (potential != null) {
 candidatesListView.getSelectionModel().clearSelection();
 candidates.remove(potential);
 heroes.add(potential);
 }
});
 

When setting an action, you implement an EventHandler via a lambda expression to listen for a button press
event. When a button press event arrives, the code will determine which item in the ListView was selected. Once the
item was determined, you clear the selection, remove the item, and add the item to the hero’s ObservableList.

14-11. Generating a Background Process
Problem
You want to create a GUI application that simulates a long-running process using background processing while
displaying the progress to the users.

Chapter 14 ■ JavaFX Fundamentals

369

Solution
Create an application typical of a dialog box that shows the progress indicators while copying files in the background.
The following are the main classes used in this recipe:

•	 javafx.scene.control.ProgressBar

•	 javafx.scene.control.ProgressIndicator

•	 javafx.concurrent.Task classes

The following source code is an application that simulates a file copy dialog box displaying progress indicators
and performing background processes:
 
package org.java8recipes.chapter14.recipe14_11;
 
import java.util.Random;
import javafx.application.Application;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Task;
import javafx.geometry.Pos;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.ProgressIndicator;
import javafx.scene.control.TextArea;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
 
public class BackgroundProcesses extends Application {
 
 static Task copyWorker;
 final int numFiles = 30;
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-11 Background Processes");
 Group root = new Group();
 Scene scene = new Scene(root, 330, 120, Color.WHITE);
 

Chapter 14 ■ JavaFX Fundamentals

370

 BorderPane mainPane = new BorderPane();
 �mainPane.layoutXProperty().bind(scene.widthProperty().subtract(mainPane.widthProperty()).

divide(2));
 root.getChildren().add(mainPane);
 
 final Label label = new Label("Files Transfer:");
 final ProgressBar progressBar = new ProgressBar(0);
 final ProgressIndicator progressIndicator = new ProgressIndicator(0);
 
 final HBox hb = new HBox();
 hb.setSpacing(5);
 hb.setAlignment(Pos.CENTER);
 hb.getChildren().addAll(label, progressBar, progressIndicator);
 mainPane.setTop(hb);
 
 final Button startButton = new Button("Start");
 final Button cancelButton = new Button("Cancel");
 final TextArea textArea = new TextArea();
 textArea.setEditable(false);
 textArea.setPrefSize(200, 70);
 final HBox hb2 = new HBox();
 hb2.setSpacing(5);
 hb2.setAlignment(Pos.CENTER);
 hb2.getChildren().addAll(startButton, cancelButton, textArea);
 mainPane.setBottom(hb2);
 
 // wire up start button
 startButton.setOnAction((e) -> {
 startButton.setDisable(true);
 progressBar.setProgress(0);
 progressIndicator.setProgress(0);
 textArea.setText("");
 cancelButton.setDisable(false);
 copyWorker = createWorker(numFiles);
 
 // wire up progress bar
 progressBar.progressProperty().unbind();
 progressBar.progressProperty().bind(copyWorker.progressProperty());
 progressIndicator.progressProperty().unbind();
 progressIndicator.progressProperty().bind(copyWorker.progressProperty());
 
 // append to text area box
 copyWorker.messageProperty().addListener(new ChangeListener<String>() {
 
 �public void changed(ObservableValue<? extends String> observable, String oldValue,

String newValue) {
 textArea.appendText(newValue + "\n");
 }
 });
 
 new Thread(copyWorker).start();
 });
 

Chapter 14 ■ JavaFX Fundamentals

371

 // cancel button will kill worker and reset.
 cancelButton.setOnAction((e) -> {
 startButton.setDisable(false);
 cancelButton.setDisable(true);
 copyWorker.cancel(true);
 
 // reset
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 progressIndicator.progressProperty().unbind();
 progressIndicator.setProgress(0);
 textArea.appendText("File transfer was cancelled.");
 });
 
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 
 public Task createWorker(final int numFiles) {
 return new Task() {
 
 @Override
 protected Object call() throws Exception {
 for (int i = 0; i < numFiles; i++) {
 long elapsedTime = System.currentTimeMillis();
 copyFile("some file", "some dest file");
 elapsedTime = System.currentTimeMillis() - elapsedTime;
 String status = elapsedTime + " milliseconds";
 
 // queue up status
 updateMessage(status);
 updateProgress(i + 1, numFiles);
 }
 return true;
 }
 };
 }
 
 public void copyFile(String src, String dest) throws InterruptedException {
 // simulate a long time
 Random rnd = new Random(System.currentTimeMillis());
 long millis = rnd.nextInt(1000);
 Thread.sleep(millis);
 }
}
 

Figure 14-11 shows the Background Processes application, which simulates a file copy window.

Chapter 14 ■ JavaFX Fundamentals

372

How It Works
One of the main pitfalls of GUI development is knowing when and how to delegate work (Threads). You are constantly
reminded of thread safety, especially when it comes to blocking the GUI thread. When using the Java Swing API, the
SwingWorker object must be implemented to defer non-GUI work off of the event dispatch thread (EDT). Similar
patterns and principles still apply in the world of JavaFX.

You begin by creating not one but two progress controls to show the user the work being done. One is a progress
bar and the other is a progress indicator. The progress indicator shows a percentage below the indicator icon. The
following code snippet shows the initial creation of progress controls:
 
final ProgressBar progressBar = new ProgressBar(0);
final ProgressIndicator progressIndicator = new ProgressIndicator(0);
 

Next, you create a worker thread via the createWorker() method. The createWorker() convenience method
will instantiate and return a javafx.concurrent.Task object, which is similar to the Java Swing’s SwingWorker class.
Unlike the SwingWorker class, the Task object is greatly simplified and easier to use. If you compare the last recipe
you will notice that none of the GUI controls is passed into the Task. The clever JavaFX team has created observable
properties that allow you to bind against. This fosters a more event-driven approach to handling work (tasks). When
creating an instance of a Task object you implement the call() method to perform work in the background. During
the work being done, you may wish to queue up intermediate results such as progress or text info. For this, you can
call the updateProgress() and updateMessage() methods. These methods will update information in a threadsafe
manner so that the observer of the progress properties will be able to update the GUI safely without blocking the GUI
thread. The following code snippet demonstrates the ability to queue up messages and progress:
 
// queue up status
updateMessage(status);
updateProgress(i + 1, numFiles);
 

After creating a worker Task, you unbind any old tasks bound to the progress controls. Once the progress controls
are unbound, you then bind the progress controls to the newly created Task object called copyWorker. Shown here is
the code used to rebind a new Task object to the progress UI controls:
 
// wire up progress bar
progressBar.progressProperty().unbind();
progressBar.progressProperty().bind(copyWorker.progressProperty());
progressIndicator.progressProperty().unbind();
progressIndicator.progressProperty().bind(copyWorker.progressProperty());
 

Figure 14-11.  Background processes

Chapter 14 ■ JavaFX Fundamentals

373

Next, you implement a ChangeListener to append the queued results into the TextArea control. Another
remarkable thing about JavaFX properties is that you can attach many listeners similar to Java Swing components.
Finally the worker and controls are all wired up to spawn a thread to go off in the background. The following code line
shows how to launch a Task worker object:
 
new Thread(copyWorker).start();
 

Lastly, the Cancel button will simply call the Task object’s cancel() method to kill the process. Once the task is
cancelled the progress controls are reset. Once a worker Task is cancelled it cannot be reused. When pressed, the Start
button recreates a new Task. If you want a more robust solution, you should look at the javafx.concurrent.Service
class. The following code line will cancel a Task worker object:
 
copyWorker.cancel(true);

14-12. Associating Keyboard Sequences with Applications
Problem
You want to create keyboard shortcuts for menu options.

Solution
Create an application that will use JavaFX’s key combination APIs. The main classes you will be using are shown here:

•	 javafx.scene.input.KeyCode

•	 javafx.scene.input.KeyCodeCombination

•	 javafx.scene.input.KeyCombination

The following source code listing is an application that displays the available keyboard shortcuts that are bound
to the menu items. When the user performs a keyboard shortcut, the application will display the key combination on
the screen:
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-12 Associating Keyboard Sequences");
 Group root = new Group();
 Scene scene = new Scene(root, 530, 300, Color.WHITE);
 
 final StringProperty statusProperty = new SimpleStringProperty();
 
 InnerShadow iShadow = new InnerShadow();
 iShadow.setOffsetX(3.5f);
 iShadow.setOffsetY(3.5f);
 
 final Text status = new Text();
 status.setEffect(iShadow);
 status.setX(100);
 status.setY(50);
 status.setFill(Color.LIME);
 status.setFont(Font.font(null, FontWeight.BOLD, 35));
 status.setTranslateY(50);
 

Chapter 14 ■ JavaFX Fundamentals

374

 status.textProperty().bind(statusProperty);
 statusProperty.set("Keyboard Shortcuts \nCtrl-N, \nCtrl-S, \nCtrl-X");
 root.getChildren().add(status);
 
 MenuBar menuBar = new MenuBar();
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
 root.getChildren().add(menuBar);
 
 Menu menu = new Menu("File");
 menuBar.getMenus().add(menu);
 
 MenuItem newItem = new MenuItem();
 newItem.setText("New");
 newItem.setAccelerator(new KeyCodeCombination(KeyCode.N, KeyCombination.CONTROL_DOWN));
 newItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-N");
 });
 menu.getItems().add(newItem);
 
 MenuItem saveItem = new MenuItem();
 saveItem.setText("Save");
 saveItem.setAccelerator(new KeyCodeCombination(KeyCode.S, KeyCombination.CONTROL_DOWN));
 saveItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-S");
 });
 menu.getItems().add(saveItem);
 
 menu.getItems().add(new SeparatorMenuItem());
 
 MenuItem exitItem = new MenuItem();
 exitItem.setText("Exit");
 exitItem.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.CONTROL_DOWN));
 exitItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-X");
 });
 menu.getItems().add(exitItem);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

Figure 14-12 displays an application that demonstrates keyboard shortcuts.

Chapter 14 ■ JavaFX Fundamentals

375

How It Works
The solution to this recipe demonstrates how to create key combination or keyboard shortcuts using the new
javafx.scene.input.KeyCodeCombination and javafx.scene.input.KeyCombination classes. Seeing that the
previous recipe was a tad boring, we decided to make things a little more interesting here. This recipe displays Text
nodes onto the scene graph when the user performs the key combinations. When displaying the Text nodes, we
applied an inner shadow effect. The following code snippet creates a Text node with an inner shadow effect:
 
InnerShadow iShadow = new InnerShadow();
iShadow.setOffsetX(3.5f);
iShadow.setOffsetY(3.5f);
 
final Text status = new Text();
status.setEffect(iShadow);
status.setX(100);
status.setY(50);
status.setFill(Color.LIME);
status.setFont(Font.font(null, FontWeight.BOLD, 35));
status.setTranslateY(50);
 

To create a keyboard shortcut, you simply call a menu or button control’s setAccelerator() method. In this
recipe, the key combination are set using the MenuItem node’s setAccelerator() method. The following code line
specifies the key combinations for a Ctrl-N:
 
MenuItem newItem = new MenuItem();
newItem.setText("New");
newItem.setAccelerator(new KeyCodeCombination(KeyCode.N, KeyCombination.CONTROL_DOWN));
newItem.setOnAction((e) -> {
 statusProperty.set("Ctrl-N");
});
 

Figure 14-12.  Keyboard sequences/shortcuts

Chapter 14 ■ JavaFX Fundamentals

376

As you can see from the code, when the accelerator (key combination) is pressed in the example, the onAction
ActionEvent is triggered. It sets the statusProperty value to Ctrl-N via a lambda expression.

14-13. Creating and Working with Tables
Problem
You want to display items in a UI table control similar to Java Swing’s JTable component.

Solution
Create an application using JavaFX’s javafx.scene.control.TableView class. The TableView control provides the
equivalent functionality to Swing’s JTable component.

To exercise the TableView control you will be creating an application that will display bosses and employees. On
the left you will implement a ListView control containing bosses, and employees (subordinates) will be displayed in a
TableView control on the right.

Shown here is the source code of a simple domain (Person) class to represent a boss or an employee to be
displayed in a ListView or TableView control:
 
package org.java7recipes.chapter15.recipe15_14;
 
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
 
public class Person {
 
 private StringProperty aliasName;
 private StringProperty firstName;
 private StringProperty lastName;
 private ObservableList<Person> employees = FXCollections.observableArrayList();
 
 public final void setAliasName(String value) {
 aliasNameProperty().set(value);
 }
 
 public final String getAliasName() {
 return aliasNameProperty().get();
 }
 
 public StringProperty aliasNameProperty() {
 if (aliasName == null) {
 aliasName = new SimpleStringProperty();
 }
 return aliasName;
 }
 
 public final void setFirstName(String value) {
 firstNameProperty().set(value);
 }
 

Chapter 14 ■ JavaFX Fundamentals

377

 public final String getFirstName() {
 return firstNameProperty().get();
 }
 
 public StringProperty firstNameProperty() {
 if (firstName == null) {
 firstName = new SimpleStringProperty();
 }
 return firstName;
 }
 
 public final void setLastName(String value) {
 lastNameProperty().set(value);
 }
 
 public final String getLastName() {
 return lastNameProperty().get();
 }
 
 public StringProperty lastNameProperty() {
 if (lastName == null) {
 lastName = new SimpleStringProperty();
 }
 return lastName;
 }
 
 public ObservableList<Person> employeesProperty() {
 return employees;
 }
 
 public Person(String alias, String firstName, String lastName) {
 setAliasName(alias);
 setFirstName(firstName);
 setLastName(lastName);
 }
 
}
 

The following is the main application code. It displays a list view component on the left containing bosses and a
table view control on the right containing employees:
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-13 Working with Tables");
 Group root = new Group();
 Scene scene = new Scene(root, 500, 250, Color.WHITE);
 
 // create a grid pane
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(10);
 gridpane.setVgap(10);
 

Chapter 14 ■ JavaFX Fundamentals

378

 // candidates label
 Label candidatesLbl = new Label("Boss");
 GridPane.setHalignment(candidatesLbl, HPos.CENTER);
 gridpane.add(candidatesLbl, 0, 0);
 
 // List of leaders
 ObservableList<Person> leaders = getPeople();
 final ListView<Person> leaderListView = new ListView<>(leaders);
 leaderListView.setPrefWidth(150);
 leaderListView.setPrefHeight(150);
 
 // display first and last name with tooltip using alias
 leaderListView.setCellFactory(new Callback<ListView<Person>, ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> param) {
 final Label leadLbl = new Label();
 final Tooltip tooltip = new Tooltip();
 final ListCell<Person> cell = new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null) {
 leadLbl.setText(item.getAliasName());
 setText(item.getFirstName() + " " + item.getLastName());
 tooltip.setText(item.getAliasName());
 setTooltip(tooltip);
 }
 }
 }; // ListCell
 return cell;
 
 }
 }); // setCellFactory
 
 gridpane.add(leaderListView, 0, 1);
 
 Label emplLbl = new Label("Employees");
 gridpane.add(emplLbl, 2, 0);
 GridPane.setHalignment(emplLbl, HPos.CENTER);
 
 final TableView<Person> employeeTableView = new TableView<>();
 employeeTableView.setPrefWidth(300);
 
 final ObservableList<Person> teamMembers = FXCollections.observableArrayList();
 employeeTableView.setItems(teamMembers);
 
 TableColumn<Person, String> aliasNameCol = new TableColumn<>("Alias");
 aliasNameCol.setEditable(true);
 aliasNameCol.setCellValueFactory(new PropertyValueFactory("aliasName"));
 
 aliasNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);
 

Chapter 14 ■ JavaFX Fundamentals

379

 TableColumn<Person, String> firstNameCol = new TableColumn<>("First Name");
 firstNameCol.setCellValueFactory(new PropertyValueFactory("firstName"));
 firstNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);
 
 TableColumn<Person, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new PropertyValueFactory("lastName"));
 lastNameCol.setPrefWidth(employeeTableView.getPrefWidth() / 3);
 
 employeeTableView.getColumns().setAll(aliasNameCol, firstNameCol, lastNameCol);
 gridpane.add(employeeTableView, 2, 1);
 
 // selection listening
 leaderListView.getSelectionModel().selectedItemProperty().addListener(
 (ObservableValue<? extends Person> observable,
 Person oldValue, Person newValue) -> {
 if (observable != null && observable.getValue() != null) {
 teamMembers.clear();
 teamMembers.addAll(observable.getValue().employeesProperty());
 }
 });
 
 root.getChildren().add(gridpane);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

The following code shows the getPeople() method contained in the WorkingWithTables main application class.
This method populates the UI TableView control shown previously:
 
private ObservableList<Person> getPeople() {
 ObservableList<Person> people = FXCollections.<Person>observableArrayList();
 Person docX = new Person(“Professor X”, “Charles”, “Xavier”);
 docX.employeesProperty().add(new Person(“Wolverine”, “James”, “Howlett”));
 docX.employeesProperty().add(new Person(“Cyclops”, “Scott”, “Summers”));
 docX.employeesProperty().add(new Person(“Storm”, “Ororo”, “Munroe”));
 
 Person magneto = new Person(“Magneto”, “Max”, “Eisenhardt”);
 magneto.employeesProperty().add(new Person(“Juggernaut”, “Cain”, “Marko”));
 magneto.employeesProperty().add(new Person(“Mystique”, “Raven”, “Darkhölme”));
 magneto.employeesProperty().add(new Person(“Sabretooth”, “Victor”, “Creed”));
 
 Person biker = new Person(“Mountain Biker”, “Jonathan”, “Gennick”);
 biker.employeesProperty().add(new Person(“JavaJuneau”, “Joshua”, “Juneau”));
 biker.employeesProperty().add(new Person(“Freddy”, “Freddy”, “Guime”));
 biker.employeesProperty().add(new Person(“Mark”, “Mark”, “Beaty”));
 biker.employeesProperty().add(new Person(“John”, “John”, “O’Conner”));
 biker.employeesProperty().add(new Person(“D-Man”, “Carl”, “Dea”));
 

Chapter 14 ■ JavaFX Fundamentals

380

 people.add(docX);
 people.add(magneto);
 people.add(biker);
 
 return people;
}
 

Figure 14-13 displays the application that demonstrates JavaFX’s TableView control.

Figure 14-13.  Working with tables

How It Works
Just for fun we created a simple GUI to display employees and their bosses. You notice in Figure 14-13 on the left is
a list of people (the bosses). When users select a boss, their employees will be shown to in the TableView area to the
right. You’ll also notice the tooltip when you hover over the selected boss.

Before considering the TableView control, it’s important that you understand the ListView that is responsible
for updating the TableView. In model-view fashion, an ObservableList is created that contains all the bosses for the
ListView control’s constructor. This code calls the bosses leaders. The following code creates a ListView control:
 
// List of leaders
ObservableList<Person> leaders = getPeople();
final ListView<Person> leaderListView = new ListView<Person>(leaders);
 

Next, create a cell factory to properly display the person’s name in the ListView control. Because each item is
a Person object, the ListView does not know how to render each row in the ListView control. You simply create
a javafx.util.Callback generic type object by specifying the ListView<Person> and a ListCell<Person> data
types. If you’re using a trusty IDE such as NetBeans, it will pregenerate things such as the implementing method
call(). Next is the variable cell of type ListCell<Person> (within the call() method), in which you create a lambda
expression. The lambda expression contains an implementation for an updateItem() method. To implement the
updateItem() method, obtain the person information and update the Label control (leadLbl). Lastly, you set the
tooltip to the associated text.

Chapter 14 ■ JavaFX Fundamentals

381

You then create a TableView control to display the employee base on the selected boss from the ListView.
When creating a TableView, first create the column headers. Use the following code to create a table column:
 
TableColumn<String> firstNameCol = new TableColumn<String>("First Name");
firstNameCol.setProperty("firstName");
 

Once you have created a column, you’ll notice the setProperty() method, which is responsible for calling the
person Bean’s property. When the list of employees is put into the TableView, it will know how to pull the properties to
be placed in each cell in the table.

Last is the implementation of the selection listener on the ListViewer in JavaFX, called a selection item property
(selectionItemProperty). Create and add a ChangeListener to listen to selection events. When a user selects a boss,
the TableView is cleared and populated with the boss’ employees. Actually it is the magic of the ObservableList that
notifies the TableView of changes. To populate the TableView via the teamMembers (ObservableList) variable, use
this code:
 
teamMembers.clear();
teamMembers.addAll(observable.getValue().employeesProperty());

14-14. Organizing the UI with Split Views
Problem
You want to split up a GUI screen by using split divider controls.

Solution
Use JavaFX’s split pane control. The javafx.scene.control.SplitPane class is a UI control that enables you to divide
a screen into frame-like regions. The split control allows users to move the divider between any two split regions with
the mouse.

Shown here is the code used to create the GUI application that utilizes the javafx.scene.control.SplitPane
class. That class divides the screen into three windowed regions. The three windowed regions are a left column, an
upper-right region, and a lower-right region. In addition, Text nodes are added to the three regions.
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-14 Organizing UI with Split Views");
 Group root = new Group();
 Scene scene = new Scene(root, 350, 250, Color.WHITE);
 
 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());
 
 //List<Node> items = splitPane.getItems();
 VBox leftArea = new VBox(10);
 
 for (int i = 0; i < 5; i++) {
 HBox rowBox = new HBox(20);
 final Text leftText = new Text();
 leftText.setText("Left " + i);

Chapter 14 ■ JavaFX Fundamentals

382

 leftText.setTranslateX(20);
 leftText.setFill(Color.BLUE);
 leftText.setFont(Font.font(null, FontWeight.BOLD, 20));
 
 rowBox.getChildren().add(leftText);
 leftArea.getChildren().add(rowBox);
 }
 leftArea.setAlignment(Pos.CENTER);
 
 // Upper and lower split pane
 SplitPane splitPane2 = new SplitPane();
 splitPane2.setOrientation(Orientation.VERTICAL);
 splitPane2.prefWidthProperty().bind(scene.widthProperty());
 splitPane2.prefHeightProperty().bind(scene.heightProperty());
 
 HBox centerArea = new HBox();
 
 InnerShadow iShadow = new InnerShadow();
 iShadow.setOffsetX(3.5f);
 iShadow.setOffsetY(3.5f);
 
 final Text upperRight = new Text();
 upperRight.setText("Upper Right");
 upperRight.setX(100);
 upperRight.setY(50);
 upperRight.setEffect(iShadow);
 upperRight.setFill(Color.LIME);
 upperRight.setFont(Font.font(null, FontWeight.BOLD, 35));
 upperRight.setTranslateY(50);
 centerArea.getChildren().add(upperRight);
 
 HBox rightArea = new HBox();
 
 final Text lowerRight = new Text();
 lowerRight.setText("Lower Right");
 lowerRight.setX(100);
 lowerRight.setY(50);
 lowerRight.setEffect(iShadow);
 lowerRight.setFill(Color.RED);
 lowerRight.setFont(Font.font(null, FontWeight.BOLD, 35));
 lowerRight.setTranslateY(50);
 rightArea.getChildren().add(lowerRight);
 
 splitPane2.getItems().add(centerArea);
 splitPane2.getItems().add(rightArea);
 
 // add left area
 splitPane.getItems().add(leftArea);
 
 // add right area
 splitPane.getItems().add(splitPane2);
 

Chapter 14 ■ JavaFX Fundamentals

383

 // evenly position divider
 ObservableList<SplitPane.Divider> dividers = splitPane.getDividers();
 for (int i = 0; i < dividers.size(); i++) {
 dividers.get(i).setPosition((i + 1.0) / 3);
 }
 
 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 root.getChildren().add(hbox);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
 

Figure 14-14 depicts the application using split pane controls.

Figure 14-14.  Split views

How It Works
If you’ve ever seen a simple RSS reader or the Javadocs, you’ll notice that the screen is divided into sections with
dividers. This recipe creates three areas—the left, upper right, and lower right.

You begin by creating a SplitPane that divides the left from the right area of the scene. Then you bind its width
and height properties to the scene so the areas will take up the available space as the user resizes the stage. Next,
you create a VBox layout control representing the left area. In the VBox (leftArea), you loop to generate a series of
Text nodes. Next, generate the right side of the split pane. The following code snippet allows the split pane control
(SplitPane) to divide horizontally:
 
SplitPane splitPane = new SplitPane();
splitPane.prefWidthProperty().bind(scene.widthProperty());
splitPane.prefHeightProperty().bind(scene.heightProperty());
 

Chapter 14 ■ JavaFX Fundamentals

384

Now you create the SplitPane to divide the area vertically, which will form the upper-right and lower-right
region. Shown here is the code used to split a window region vertically:
 
// Upper and lower split pane
SplitPane splitPane2 = new SplitPane();
splitPane2.setOrientation(Orientation.VERTICAL);
 

At last you assemble the split panes and adjust the dividers to be positioned so that the screen real estate is
divided evenly. The following code assembles the split panes and iterates through the list of dividers to update their
positions:
 
splitPane.getItems().add(splitPane2);
 
// evenly position divider
ObservableList<SplitPane.Divider> dividers = splitPane.getDividers();
for (int i = 0; i < dividers.size(); i++) {
 dividers.get(i).setPosition((i + 1.0) / 3);
}
 
HBox hbox = new HBox();
hbox.getChildren().add(splitPane);
root.getChildren().add(hbox);

14-15. Adding Tabs to the UI
Problem
You want to create a GUI application with tabs.

Solution
Use JavaFX’s tab and tab pane control. The tab (javafx.scene.control.Tab) and tab pane control
(javafx.scene.control.TabPane) classes allow you to place graph nodes in individual tabs.

The following code example creates a simple application having menu options that allow users to choose a tab
orientation. The available tab orientations are top, bottom, left, and right.
 
public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-15 Adding Tabs to a UI");
 Group root = new Group();
 Scene scene = new Scene(root, 400, 250, Color.WHITE);
 
 TabPane tabPane = new TabPane();
 
 MenuBar menuBar = new MenuBar();
 
 EventHandler<ActionEvent> action = changeTabPlacement(tabPane);
 
 Menu menu = new Menu("Tab Side");
 MenuItem left = new MenuItem("Left");
 

Chapter 14 ■ JavaFX Fundamentals

385

 left.setOnAction(action);
 menu.getItems().add(left);
 
 MenuItem right = new MenuItem("Right");
 right.setOnAction(action);
 menu.getItems().add(right);
 
 MenuItem top = new MenuItem("Top");
 top.setOnAction(action);
 menu.getItems().add(top);
 
 MenuItem bottom = new MenuItem("Bottom");
 bottom.setOnAction(action);
 menu.getItems().add(bottom);
 
 menuBar.getMenus().add(menu);
 
 BorderPane borderPane = new BorderPane();
 
 // generate 10 tabs
 for (int i = 0; i < 10; i++) {
 Tab tab = new Tab();
 tab.setText("Tab" + i);
 HBox hbox = new HBox();
 hbox.getChildren().add(new Label("Tab" + i));
 hbox.setAlignment(Pos.CENTER);
 tab.setContent(hbox);
 tabPane.getTabs().add(tab);
 }
 
 // add tab pane
 borderPane.setCenter(tabPane);
 
 // bind to take available space
 borderPane.prefHeightProperty().bind(scene.heightProperty());
 borderPane.prefWidthProperty().bind(scene.widthProperty());
 
 // add menu bar
 borderPane.setTop(menuBar);
 
 // add border Pane
 root.getChildren().add(borderPane);
 
 primaryStage.setScene(scene);
 primaryStage.show();
}
 
private EventHandler<ActionEvent> changeTabPlacement(final TabPane tabPane) {
 return (ActionEvent event) -> {
 MenuItem mItem = (MenuItem) event.getSource();
 String side = mItem.getText();

Chapter 14 ■ JavaFX Fundamentals

386

 if ("left".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.LEFT);
 } else if ("right".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.RIGHT);
 } else if ("top".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.TOP);
 } else if ("bottom".equalsIgnoreCase(side)) {
 tabPane.setSide(Side.BOTTOM);
 }
 };
}
 

Figure 14-15 displays the tabs application, which allows users to change the tab orientation.

Figure 14-15.  TabPane

How It Works
When you use the TabPane control, you may already know the orientation in which you want your tabs to appear.
This application allows you to set the orientation by the left, right, top, and bottom menu options.

If you’re familiar with the Swing API, you may notice that the JavaFX TabPane is very similar to the Swing
JTabbedPanel. Instead of adding JPanels, you simply add javafx.scene.control.Tab instances. The following code
snippet adds Tab controls to a TabPane control:
 
TabPane tabPane = new TabPane();
Tab tab = new Tab();
tab.setText("Tab" + i);
tabPane.getTabs().add(tab);
 

When you’re changing the orientation the TabPane control, use the setSide() method. The following code sets
the orientation of the TabPane control:
 
tabPane.setSide(Side.BOTTOM);
 

Chapter 14 ■ JavaFX Fundamentals

387

In this recipe, a Menu is used to change the orientation of the TabPane control. Different orientations were
assigned to the different MenuItem nodes of the Menu, and an EventHandler identified as changeTabPlacement is used
to change the orientation when the different MenuItem is selected. The EventHandler simply inspects the text of the
MenuItem to determine which orientation should be applied to the TabPane.

14-16. Developing a Dialog Box
Problem
You want to create an application that contains a dialog box containing some text fields for user entry.

Solution
Use JavaFX’s stage (javafx.stage.Stage) and scene (javafx.scene.Scene) APIs to create a dialog box.

The following source code listing is an application that simulates a change password dialog box. The application
contains menu options to pop up the dialog box. In addition to using the menu options, users can set the dialog box’s
modal state (modality).
 
public class DevelopingADialog extends Application {
 
 static Stage LOGIN_DIALOG;
 static int dx = 1;
 static int dy = 1;
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 private static Stage createLoginDialog(Stage parent, boolean modal) {
 if (LOGIN_DIALOG != null) {
 LOGIN_DIALOG.close();
 }
 return new MyDialog(parent, modal, "Welcome to JavaFX!");
 }
 
 @Override
 public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 14-16 Developing a Dialog");
 Group root = new Group();
 Scene scene = new Scene(root, 433, 312, Color.WHITE);
 
 MenuBar menuBar = new MenuBar();
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
  
 Menu menu = new Menu("Home");
 

Chapter 14 ■ JavaFX Fundamentals

388

 // add change password menu itme
 MenuItem newItem = new MenuItem("Change Password", null);
 newItem.setOnAction((ActionEvent event) -> {
 if (LOGIN_DIALOG == null) {
 LOGIN_DIALOG = createLoginDialog(primaryStage, true);
 }
 LOGIN_DIALOG.sizeToScene();
 LOGIN_DIALOG.show();
 });
 
 menu.getItems().add(newItem);
 
 // add separator
 menu.getItems().add(new SeparatorMenuItem());
 
 // add non modal menu item
 ToggleGroup modalGroup = new ToggleGroup();
 RadioMenuItem nonModalItem = new RadioMenuItem();
 nonModalItem.setToggleGroup(modalGroup);
 nonModalItem.setText("Non Modal");
 nonModalItem.setSelected(true);
  
 nonModalItem.setOnAction((ActionEvent event) -> {
 LOGIN_DIALOG = createLoginDialog(primaryStage, false);
 });
 
 menu.getItems().add(nonModalItem);
 
 // add modal selection
 RadioMenuItem modalItem = new RadioMenuItem();
 modalItem.setToggleGroup(modalGroup);
 modalItem.setText("Modal");
 modalItem.setSelected(true);
  
 modalItem.setOnAction((ActionEvent event) -> {
 LOGIN_DIALOG = createLoginDialog(primaryStage, true);
 });
 menu.getItems().add(modalItem);
 
 // add separator
 menu.getItems().add(new SeparatorMenuItem());
 
 // add exit
 MenuItem exitItem = new MenuItem("Exit", null);
 exitItem.setMnemonicParsing(true);
 exitItem.setAccelerator(new KeyCodeCombination(KeyCode.X, KeyCombination.CONTROL_DOWN));
 exitItem.setOnAction((ActionEvent event) -> {
 Platform.exit();
 });
 menu.getItems().add(exitItem);
 

Chapter 14 ■ JavaFX Fundamentals

389

 // add menu
 menuBar.getMenus().add(menu);
 
 // menu bar to window
 root.getChildren().add(menuBar);
 
 primaryStage.setScene(scene);
 primaryStage.show();
 
 addBouncyBall(scene);
 }
 
 private void addBouncyBall(final Scene scene) {
 
 final Circle ball = new Circle(100, 100, 20);
 RadialGradient gradient1 = new RadialGradient(0,
 .1,
 100,
 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));
 
 ball.setFill(gradient1);
 
 final Group root = (Group) scene.getRoot();
 root.getChildren().add(ball);
 
 Timeline tl = new Timeline();
 tl.setCycleCount(Animation.INDEFINITE);
 KeyFrame moveBall = new KeyFrame(Duration.seconds(.0200), (ActionEvent event) -> {
 double xMin = ball.getBoundsInParent().getMinX();
 double yMin = ball.getBoundsInParent().getMinY();
 double xMax = ball.getBoundsInParent().getMaxX();
 double yMax = ball.getBoundsInParent().getMaxY();
  
 // Collision - boundaries
 if (xMin < 0 || xMax > scene.getWidth()) {
 dx = dx * -1;
 }
 if (yMin < 0 || yMax > scene.getHeight()) {
 dy = dy * -1;
 }
  
 ball.setTranslateX(ball.getTranslateX() + dx);
 ball.setTranslateY(ball.getTranslateY() + dy);
 });
 

Chapter 14 ■ JavaFX Fundamentals

390

 tl.getKeyFrames().add(moveBall);
 tl.play();
 }
}
 
class MyDialog extends Stage {
 
 public MyDialog(Stage owner, boolean modality, String title) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
 initModality(m);
 setOpacity(.90);
 setTitle(title);
 Group root = new Group();
 Scene scene = new Scene(root, 250, 150, Color.WHITE);
 setScene(scene);
 
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);
 
 Label mainLabel = new Label("Enter User Name & Password");
 gridpane.add(mainLabel, 1, 0, 2, 1);
  
 Label userNameLbl = new Label("User Name: ");
 gridpane.add(userNameLbl, 0, 1);
 
 Label passwordLbl = new Label("Password: ");
 gridpane.add(passwordLbl, 0, 2);
  
 // username text field
 final TextField userNameFld = new TextField("Admin");
 gridpane.add(userNameFld, 1, 1);
 
 // password field
 final PasswordField passwordFld = new PasswordField();
 passwordFld.setText("drowssap");
 gridpane.add(passwordFld, 1, 2);
  
 Button login = new Button("Change");
 login.setOnAction((ActionEvent event) -> {
 close();
 });
 gridpane.add(login, 1, 3);
 GridPane.setHalignment(login, HPos.RIGHT);
 root.getChildren().add(gridpane);
 }
}
 

Chapter 14 ■ JavaFX Fundamentals

391

Figure 14-16 depicts the change password dialog box application with the non-modal option enabled.

Figure 14-16.  Developing a dialog box

How It Works
To create dialogs, JavaFX uses another instance of a javafx.stage.Stage class to be displayed to the user. Similar to
extending from a JDialog class in Swing, you simply extend from a Stage class. You have the opportunity to pass in
the owning window in the constructor, which then calls the initOwner() method. The modal state of the dialog box
can be set using the initModality() method. The following class extends from the Stage class, having a constructor
initializing the owning stage and modal state:
 
class MyDialog extends Stage {
 
 public MyDialog(Stage owner, boolean modality, String title) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
 initModality(m);
 
 ...// The rest of the class
 

The rest of the code creates a scene (Scene) similar to the main application’s start() method. Because login
forms are pretty boring, we decided to create an animation of a bouncing ball while the user is busy changing the
password in the dialog box. (You will see more about creating animation in future recipes.)

Chapter 14 ■ JavaFX Fundamentals

392

When the menu item for Change Password is selected, the createLoginDialog method checks to see if there is
already an instance of MyDialog instantiated. If so, it closes that instance and generates a new one. The newly created
dialog is then displayed. Similarly, the RadioMenuItem controls call the createLoginDialog method, passing different
Boolean values to indicate whether the instantiated MyDialog instance should be set to modal or not. As mentioned
earlier, the bouncy ball has no bearing on the dialog; it’s just added for effect.

14-17. Printing with JavaFX
Problem
You want to provide the ability to print a designated node in your application scene graph.

Solution
Utilize the JavaFX Print API, new to JavaFX 8, to print designated nodes, and to construct sophisticated print dialogs.
In this solution, a JavaFX application for drawing is generated. The drawing application allows you to print the canvas
via a Print button. When the Print button is invoked, a dialog is opened that provides printing options such as printer
and layout selection.

The following code is used to construct the application stage, including all buttons and drawing features. This
first class does not contain any of the printing logic—you’ll see that next—and these sources are being shown to make
it easy to follow along with the example.
 
public class PrintingWithJavaFX extends Application {
 
 static Stage PRINT_DIALOG;
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(PrintingWithJavaFX.class, args);
 }
 
 private static Stage createPrintDialog(Stage parent, boolean modal, Canvas node) {
 if (PRINT_DIALOG != null) {
 PRINT_DIALOG.close();
 }
 // Copy canvas
 WritableImage wim = new WritableImage(300, 300);
 node.snapshot(null, wim);
 ImageView iv = new ImageView();
 iv.setImage(wim);
 return new PrintDialog(parent, modal, "Printing Menu", iv);
 }
  
 @Override
 public void start(Stage primaryStage) {
 
 StackPane root = new StackPane();
 Canvas canvas = new Canvas(300, 300);
 final GraphicsContext graphicsContext = canvas.getGraphicsContext2D();
 

Chapter 14 ■ JavaFX Fundamentals

393

 final Button printButton = new Button("Print");
 final BooleanProperty printingProperty = new SimpleBooleanProperty(false);
 printButton.setOnAction(actionEvent-> {
 printingProperty.set(true);
 if (PRINT_DIALOG == null) {
 PRINT_DIALOG = createPrintDialog(primaryStage, true, canvas);
 }
 PRINT_DIALOG.sizeToScene();
 PRINT_DIALOG.show();
 });
 printButton.setTranslateX(3);
 
 final Button resetButton = new Button("Reset");
 resetButton.setOnAction(actionEvent-> {
 graphicsContext.clearRect(1, 1,
 graphicsContext.getCanvas().getWidth()-2,
 graphicsContext.getCanvas().getHeight()-2);
 });
 resetButton.setTranslateX(10);
 
 // Set up the pen color chooser
 ChoiceBox colorChooser = new ChoiceBox(FXCollections.observableArrayList(
 "Black", "Blue", "Red", "Green", "Brown", "Orange")
);
 // Select the first option by default
 colorChooser.getSelectionModel().selectFirst();
 
 colorChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;
 Color newColor;
 switch(idx.intValue()){
 case 0: newColor = Color.BLACK;
 break;
 case 1: newColor = Color.BLUE;
 break;
 case 2: newColor = Color.RED;
 break;
 case 3: newColor = Color.GREEN;
 break;
 case 4: newColor = Color.BROWN;
 break;
 case 5: newColor = Color.ORANGE;
 break;
 default: newColor = Color.BLACK;
 break;
 }
 graphicsContext.setStroke(newColor);
 
 });
 colorChooser.setTranslateX(5);
 

Chapter 14 ■ JavaFX Fundamentals

394

 ChoiceBox sizeChooser = new ChoiceBox(FXCollections.observableArrayList(
 "1", "2", "3", "4", "5")
);
 // Select the first option by default
 sizeChooser.getSelectionModel().selectFirst();
 
 sizeChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;
 
 switch(idx.intValue()){
 case 0: graphicsContext.setLineWidth(1);
 break;
 case 1: graphicsContext.setLineWidth(2);
 break;
 case 2: graphicsContext.setLineWidth(3);
 break;
 case 3: graphicsContext.setLineWidth(4);
 break;
 case 4: graphicsContext.setLineWidth(5);
 break;
 default: graphicsContext.setLineWidth(1);
 break;
 }
 });
 sizeChooser.setTranslateX(5);
 
 canvas.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent event) -> {
 graphicsContext.beginPath();
 graphicsContext.moveTo(event.getX(), event.getY());
 graphicsContext.stroke();
 });
 
 canvas.addEventHandler(MouseEvent.MOUSE_DRAGGED, (MouseEvent event) -> {
 graphicsContext.lineTo(event.getX(), event.getY());
 graphicsContext.stroke();
 });
 
 canvas.addEventHandler(MouseEvent.MOUSE_RELEASED, (MouseEvent event) -> {
 });
 
 HBox buttonBox = new HBox();
 buttonBox.getChildren().addAll(printButton, colorChooser, sizeChooser, resetButton);
 
 initDraw(graphicsContext, canvas.getLayoutX(), canvas.getLayoutY());
 
 BorderPane container = new BorderPane();
 container.setTop(buttonBox);
 
 container.setCenter(canvas);
 

Chapter 14 ■ JavaFX Fundamentals

395

 root.getChildren().add(container);
 Scene scene = new Scene(root, 400, 400);
 primaryStage.setTitle("Recipe 14-17: Printing from JavaFX");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
  
 private void initDraw(GraphicsContext gc, double x, double y){
 double canvasWidth = gc.getCanvas().getWidth();
 double canvasHeight = gc.getCanvas().getHeight();
 
 gc.fill();
 gc.strokeRect(
 x, //x of the upper left corner
 y, //y of the upper left corner
 canvasWidth, //width of the rectangle
 canvasHeight); //height of the rectangle
 
 //gc.setFill(Color.RED);
 //gc.setStroke(Color.BLUE);
 //gc.setLineWidth(1);
 
 }
  
}
 

Next, you will take a look at the sources to create the PrintDialog class, which contains all of the application’s
printing logic. When use press the Print button, the dialog opens. It contains a handful of nodes that use the JavaFX
Print API.
 
class PrintDialog extends Stage {
 
 public PrintDialog(Stage owner, boolean modality, String title, Node printNode) {
 super();
 initOwner(owner);
 Modality m = modality ? Modality.APPLICATION_MODAL : Modality.NONE;
 initModality(m);
 setOpacity(.90);
 setTitle(title);
 Group root = new Group();
 Scene scene = new Scene(root, 450, 150, Color.WHITE);
 setScene(scene);
 
 GridPane gridpane = new GridPane();
 gridpane.setPadding(new Insets(5));
 gridpane.setHgap(5);
 gridpane.setVgap(5);
  
 Label printerLabel = new Label("Printer: ");
 gridpane.add(printerLabel, 0, 1);
 
 Label layoutLabel = new Label("Layout: ");
 gridpane.add(layoutLabel, 0, 2);
 

Chapter 14 ■ JavaFX Fundamentals

396

 final Printer selectedPrinter = Printer.getDefaultPrinter();
 // printer pick list
 ChoiceBox printerChooser = new ChoiceBox(FXCollections.observableArrayList(
 Printer.getAllPrinters())
);
 // Select the first option by default
 printerChooser.getSelectionModel().selectFirst();
 
 gridpane.add(printerChooser, 1, 1);
 
 ChoiceBox layoutChooser = new ChoiceBox(FXCollections.observableArrayList(
 "Portait", "Landscape")
);
 layoutChooser.getSelectionModel().selectFirst();
 
 layoutChooser.getSelectionModel().selectedIndexProperty().addListener(
 (ChangeListener)(ov, old, newval) -> {
 Number idx = (Number)newval;
 switch(idx.intValue()){
 �case 0: selectedPrinter.createPageLayout(Paper.A0, PageOrientation.

PORTRAIT, Printer.MarginType.EQUAL);
 break;
 �case 1: selectedPrinter.createPageLayout(Paper.A0, PageOrientation.

LANDSCAPE, Printer.MarginType.EQUAL);
 break;
 
 �default: selectedPrinter.createPageLayout(Paper.A0, PageOrientation.

PORTRAIT, Printer.MarginType.EQUAL);
 break;
 }
 });
 gridpane.add(layoutChooser,1,2);
 Button printButton = new Button("Print");
 printButton.setOnAction((ActionEvent event) -> {
 print(printNode, selectedPrinter);
 });
 gridpane.add(printButton, 0, 3);
 
 GridPane.setHalignment(printButton, HPos.RIGHT);
 root.getChildren().add(gridpane);
 }
  
 public void print(final Node node, Printer printer) {
  
 PrinterJob job = PrinterJob.createPrinterJob();
 job.setPrinter(printer);
 if (job != null) {
 boolean success = job.printPage(node);
 if (success) {
 job.endJob();
 }
 }
 }
}
 

Chapter 14 ■ JavaFX Fundamentals

397

Figure 14-17 shows the application. The area within the canvas (drawing area) is printed using the dialog
(see Figure 14-18).

Figure 14-17.  JavaFX drawing application with print functionality

Figure 14-18.  Printing the menu by utilizing the JavaFX Print API

Chapter 14 ■ JavaFX Fundamentals

398

How It Works
In releases of JavaFX prior to JavaFX 8, there was no standard API for printing portions of an application stage. In
JavaFX 8, a Print API has been added to standardize the way in which printing features are handled. The API also
makes it easy to enable applications with printing functionality using very little code. The API is quite large, as it
contains a number of classes, but it is very straight-forward and easy to use.

To enable print functionality for a specified node, start by working with the javafx.print.PrinterJob class, as it
contains all of the functionality for generating a very simple printing task. To send a node to the default system printer,
simply invoke PrintJob.createPrinterJob() to return a PrinterJob object. Once the object has been returned,
check to ensure that it is not null, and then call its printPage() method, passing the node to be printed. The excerpt
of the solution that contains this functionality is shown in the following lines of code:
 
public void print(final Node node, Printer printer) {
  
 PrinterJob job = PrinterJob.createPrinterJob()
 job.setPrinter(printer);
 if (job != null) {
 boolean success = job.printPage(node);
 if (success) {
 job.endJob();
 }
 }
}
 

While use of the PrinterJob is all that is required to send a node to the printer, the API allows for much more
customization. Table 14-3 lists the different classes available in the API, along with a brief description of what they do.

Table 14-3.  JavaFX Print API

Class Name Description

JobSettings Encapsulates settings for a print job

PageLayout Encapsulates layout settings

PrintRange Used to select the range or constrain print pages

Paper Encapsulates the paper sizes for printers

PaperSource Input tray used for Paper

Printer Represents the destination for a print job

PrinterAttributes Encapsuates the attributes for a printer

PrinterJob Used to invoke a JavaFX scene graph print

PrintResolution Represents supported device resolution

In the example, a Print dialog is generated that allows users to select where to send the printjob. It also provides
the controls to select the desired print layout (portait or landscape). The Printer.getDefaultPrinter() method can
be invoked to return the default printer for the host machine. In the example, a ChoiceBox is used to display all of the
printers that are available on the host by calling the Printer.getAllPrinters() method. The selected printer is then
set on the PrinterJob within the print method, which sends the desired node to that printer.

Chapter 14 ■ JavaFX Fundamentals

399

The printer layout is chosen via another ChoiceBox, and the selected printer’s options are updated when a layout
selection is made. The following line of code demonstrates how to set the layout to PageOrientation.PORTRAIT for a
selected print:
 
selectedPrinter.createPageLayout(Paper.A0, PageOrientation.PORTRAIT, Printer.MarginType.EQUAL);
 

Any Node can be sent to a PrinterJob, but it is important to send a copy of the Node that you want to print, as the
print task may modify that Node.

The Print API is large, but it is easy to understand. This recipe just scratches the surface on what is possible with
the API. We recommend that you read through the Javadoc for more details, once you are ready to develop your own
printer processes. However, this recipe should provide a basic understanding of how to get started. See the following
link for the Javadoc: http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html.

14-18. Embedding Swing Content in JavaFX
Problem
You want to embed some simple Java Swing content into a JavaFX application.

Solution
Create a JavaFX application and embed the Swing content into it using the SwingNode class. In the following example,
a simple JavaFX application is used to toggle between a Swing-based user entry form and a JavaFX-based form.
A JavaFX button within the application can be used to determine which of the forms should be displayed when the
user clicks it.

First, let’s take a look at the code for the Swing form that is embedded into the JavaFX application. The code
resides in a class entitled SwingForm.java.
 
import java.awt.GridLayout;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
public class SwingForm extends JPanel {
 
 JLabel formTitle, first, last, buttonLbl;
 protected JTextField firstField, lastField;

 public SwingForm(){
 
 JPanel innerPanel = new JPanel();

 GridLayout gl = new GridLayout(3,2);
 innerPanel.setLayout(gl);
 
 first = new JLabel("First Name:");
 innerPanel.add(first);
 firstField = new JTextField(10);
 innerPanel.add(firstField);
 

http://docs.oracle.com/javase/8/javafx/api/javafx/print/package-summary.html

Chapter 14 ■ JavaFX Fundamentals

400

 last = new JLabel("Last Name:");
 innerPanel.add(last);
 lastField = new JTextField(10);
 innerPanel.add(lastField);
 
 JButton button = new JButton("Submit");
 button.addActionListener((event) -> {
 Platform.runLater(()-> {
 UserEntryForm.fxLabel.setText("Message from Swing form...");
 });
 });
 buttonLbl = new JLabel("Click Me:");
 innerPanel.add(buttonLbl);
 innerPanel.add(button);
 add(innerPanel);
 }
}
 

Next, let’s look at the JavaFX code that is used to create the graphical user interface, including the toggle button
and the JavaFX form. Note that the Swing form is embedded using the SwingNode object.
 
public class UserEntryForm extends Application {
 
 private static ToggleButton fxbutton;
 private static GridPane grid;
 public static Label fxLabel;
 
 @Override
 public void start(Stage stage) {
 final SwingNode swingNode = new SwingNode();
 createSwingContent(swingNode);
 BorderPane pane = new BorderPane();
 Image fxButtonIcon = new Image(
 getClass().getResourceAsStream("images/duke1.gif"));
 String buttonText = "Use Swing Form";
 fxbutton = new ToggleButton(buttonText, new ImageView(fxButtonIcon));
 fxbutton.setTooltip(
 new Tooltip("This button chooses between the Swing and FX form"));
 fxbutton.setStyle("-fx-font: 22 arial; -fx-base: #cce6ff;");
 fxbutton.setAlignment(Pos.CENTER);
 fxbutton.setOnAction((event)->{
 ToggleButton toggle = (ToggleButton) event.getSource();
 if(!toggle.isSelected()){
 swingNode.setDisable(true);
 swingNode.setVisible(false);
 grid.setDisable(false);
 grid.setVisible(true);
 fxbutton.setText("Use Swing Form");
 } else {
 swingNode.setDisable(false);
 swingNode.setVisible(true);
 grid.setDisable(true);

Chapter 14 ■ JavaFX Fundamentals

401

 grid.setVisible(false);
 fxbutton.setText("Use JavaFX Form");
 }
 });
 // Disable SwingNode by default
 swingNode.setVisible(false);
 Text appTitle = new Text("Swing/FX Form Demo");
 appTitle.setFont(Font.font("Tahoma", FontWeight.NORMAL, 20));
 
 pane.setTop(appTitle);
 HBox formPanel = new HBox();
 formPanel.setSpacing(10);
 fxLabel = new Label("Message from JavaFX form...");
 
 formPanel.getChildren().addAll(fxFormContent(), swingNode);
 
 pane.setCenter(formPanel);
 VBox vbox = new VBox();
 vbox.getChildren().addAll(fxbutton, fxLabel);
 
 pane.setBottom(vbox);
 
 Scene scene = new Scene(pane, 700, 500);
 stage.setScene(scene);
 stage.setTitle("Swing Form Embedded In JavaFX");
 stage.show();
 }
 
 private void createSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(new SwingForm());
 });
 }
 
 private GridPane fxFormContent() {
 grid = new GridPane();
 grid.setAlignment(Pos.CENTER);
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setPadding(new Insets(25, 25, 25, 25));
 
 Text scenetitle = new Text("Enter User");
 scenetitle.setFont(Font.font("Tahoma", FontWeight.NORMAL, 20));
 grid.add(scenetitle, 0, 0, 2, 1);
 
 Label first = new Label("First Name:");
 grid.add(first, 0, 1);
 
 TextField firstField = new TextField();
 grid.add(firstField, 1, 1);
 
 Label last = new Label("Last Name:");
 grid.add(last, 0, 2);
 

Chapter 14 ■ JavaFX Fundamentals

402

 TextField lastField = new TextField();
 grid.add(lastField, 1, 2);
 
 Button messageButton = new Button("Click");
 messageButton.setOnAction((event) ->{
 fxLabel.setText("Message from JavaFX Form...");
 });
 grid.add(messageButton, 0,3);
 
 return grid;
 
 }
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }
 
}
 

Upon invocation, the application looks like the one shown in Figure 14-19.

Figure 14-19.  Using SwingNode to embed a Swing form

Chapter 14 ■ JavaFX Fundamentals

403

How It Works
There are a great number of applications that have been written using the Java Swing framework. Sometimes
it makes sense to make use of those applications from within a JavaFX application, or embed portions of those
Swing applications where it makes sense. The javafx.embed.swing.SwingNode class makes it possible to embed
a JComponent instance into a JavaFX application with little effort, by passing the JComponent to the SwingNode
setContent() method. The content is repainted automatically and all events are forwarded to the JComponent
instance without user intervention.

In the example to this recipe, a simple Java Swing form is embedded by instantiating a new SwingNode object
and passing to it an instance of the class SwingForm. The Swing content should run on the Event Dispatch Thread
(EDT), so any Swing access should be made on the EDT. That said, a new thread is created using SwingUtilities.
invokeLater, and a lambda expression encapsulates the Runnable that is used to set the Swing content.

It is possible to interact with JavaFX content from within Swing code as well. To do so, you must run the JavaFX
code within the JavaFX application thread by making a call to the javafx.application.Platform class and invoking
the runLater() method, passing a Runnable. For instance, in the example code, the button in the Swing form can call
back to the JavaFX label to change the text using the following code. Note that the JavaFX label is a public field, so it is
accessible directly from within the Swing class.
 
JButton button = new JButton("Submit");
 button.addActionListener((event) -> {
 Platform.runLater(()-> {
 UserEntryForm.fxLabel.setText("Message from Swing form...");
 });
 }); 

Note■■   By default, the JavaFX application thread and the Swing Event Dispatch Thread (EDT) are separated. The EDT
does not run the GUI code for a Swing application. However, in JavaFX, the platform GUI thread runs the application code.
There is an experimental setting that enables single threading mode, which allows the JavaFX platform GUI thread to
become the EDT when using Swing and JavaFX together. To enable the experimental setting, execute your code with the
following option: Djavafx.embed.singleThread=true

By utilzing the new features of JavaFX 8, you can generate a JavaFX application that contains embedded Swing
code that can communicate directly with the JavaFX code.

Summary
JavaFX is the successor to the Java Swing API. It enables developers to produce sophisticated and powerful user
interfaces for the next generation of applications. This chapter provided you with a basic understanding of JavaFX,
along with some of the most widely used JavaFX APIs. Over the course of the next few chapters, you’ll learn more
about JavaFX, such as how to construct 3D objects and WebViews.

405

Chapter 15

Graphics with JavaFX

Have you ever heard someone say, “When two worlds collide”? This expression is used when a person from a different
background or culture is put in a situation where they are at odds and must face very hard decisions. When we build a
GUI application requiring animations, we are often in a collision course between business and gaming worlds.

In the ever-changing world of rich client applications, you probably have noticed an increase of animations such
as pulsing buttons, transitions, moving backgrounds, and so on. When GUI applications use animations, they can
provide visual cues to the users to let them know what to do next. With JavaFX, you can have the best of both worlds.

Figure 15-1 illustrates a simple drawing coming alive.

Figure 15-1.  Graphics with JavaFX

In this chapter you will create images, animations, and Look and Feels. Fasten your seatbelts; you’ll discover
solutions to integrate cool game-like interfaces into your everyday applications.

Note■■   Refer to Chapter 14 if you are new to JavaFX. Among other things, it will help you create an environment in
which you can be productive using JavaFX.

Chapter 15 ■ Graphics with JavaFX

406

15-1. Creating Images
Problem
There are photos in your file directory that you would like to quickly browse through and showcase.

Solution
Create a simple JavaFX image viewer application. The main Java classes used in this recipe are:

•	 javafx.scene.image.Image

•	 javafx.scene.image.ImageView

•	 EventHandler<DragEvent> classes

The following source code is an implementation of an image viewer application:
 
package org.java8recipes.chapter15.recipe15_01;
 
import java.io.File;
import java.util.ArrayList;
import java.util.List;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
 
/**
 * Recipe 15-1: Creating Images
 *
 * @author cdea
 * Update: J Juneau
 */
public class CreatingImages extends Application {
 
 private final List<String> imageFiles = new ArrayList<>();
 private int currentIndex = -1;
 private final String filePrefix = "file:";
 

Chapter 15 ■ Graphics with JavaFX

407

 public enum ButtonMove {
 
 NEXT, PREV
 };
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-1 Creating a Image");
 Group root = new Group();
 Scene scene = new Scene(root, 551, 400, Color.BLACK);
 
 // image view
 final ImageView currentImageView = new ImageView();
 
 // maintain aspect ratio
 currentImageView.setPreserveRatio(true);
 
 // resize based on the scene
 currentImageView.fitWidthProperty().bind(scene.widthProperty());
 
 final HBox pictureRegion = new HBox();
 pictureRegion.getChildren().add(currentImageView);
 root.getChildren().add(pictureRegion);
 
 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
 });
 
 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);

Chapter 15 ■ Graphics with JavaFX

408

 currentIndex += 1;
 imageFiles.add(currentIndex, filePath);
 }
 filePath = filePrefix + filePath;
 // set new image as the image to show.
 Image imageimage = new Image(filePath);
 currentImageView.setImage(imageimage);
 
 }
 event.setDropCompleted(success);
 event.consume();
 
 });
 
 // create slide controls
 Group buttonGroup = new Group();
 
 // rounded rect
 Rectangle buttonArea = new Rectangle();
 buttonArea.setArcWidth(15);
 buttonArea.setArcHeight(20);
 buttonArea.setFill(new Color(0, 0, 0, .55));
 buttonArea.setX(0);
 buttonArea.setY(0);
 buttonArea.setWidth(60);
 buttonArea.setHeight(30);
 buttonArea.setStroke(Color.rgb(255, 255, 255, .70));
 
 buttonGroup.getChildren().add(buttonArea);
 // left control
 Arc leftButton = new Arc();
 leftButton.setType(ArcType.ROUND);
 leftButton.setCenterX(12);
 leftButton.setCenterY(16);
 leftButton.setRadiusX(15);
 leftButton.setRadiusY(15);
 leftButton.setStartAngle(-30);
 leftButton.setLength(60);
 leftButton.setFill(new Color(1, 1, 1, .90));
 
 leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.PREV);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
 });
 buttonGroup.getChildren().add(leftButton);
 

Chapter 15 ■ Graphics with JavaFX

409

 // right control
 Arc rightButton = new Arc();
 rightButton.setType(ArcType.ROUND);
 rightButton.setCenterX(12);
 rightButton.setCenterY(16);
 rightButton.setRadiusX(15);
 rightButton.setRadiusY(15);
 rightButton.setStartAngle(180 - 30);
 rightButton.setLength(60);
 rightButton.setFill(new Color(1, 1, 1, .90));
 rightButton.setTranslateX(40);
 buttonGroup.getChildren().add(rightButton);
 
 rightButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.NEXT);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
 });
 
 // move button group when scene is resized
�buttonGroup.translateXProperty().bind(scene.widthProperty().subtract(buttonArea.getWidth() + 6));
�buttonGroup.translateYProperty().bind(scene.heightProperty().subtract(buttonArea.getHeight() + 6));
 root.getChildren().add(buttonGroup);
 
 primaryStage.setScene(scene);
 primaryStage.show();
 }
 
 /**
 * Returns the next index in the list of files to go to next.
 *
 * @param direction PREV and NEXT to move backward or forward in the list of
 * pictures.
 * @return int the index to the previous or next picture to be shown.
 */
 public int gotoImageIndex(ButtonMove direction) {
 int size = imageFiles.size();
 if (size == 0) {
 currentIndex = -1;
 } else if (direction == ButtonMove.NEXT && size > 1 && currentIndex < size - 1) {
 currentIndex += 1;
 } else if (direction == ButtonMove.PREV && size > 1 && currentIndex > 0) {
 currentIndex -= 1;
 }
 
 return currentIndex;
 }
 

Chapter 15 ■ Graphics with JavaFX

410

Figure 15-2 depicts the drag-and-drop operation that gives the user visual feedback with a thumbnail-sized
image over the surface. In the figure, I’m dragging the image onto the application window.

Figure 15-2.  Drag-and-drop in progress

Figure 15-3.  Drop operation completed

Figure 15-3 shows that the drop operation has succesfully loaded the image.

Chapter 15 ■ Graphics with JavaFX

411

How It Works
This recipe is a simple application that allows you to view images having file formats such as .jpg, .png, and .gif.
Loading an image requires using the mouse to drag-and-drop a file onto the window area. The application also allows
you to resize the window, which automatically causes the image to scale while maintaining its aspect ratio. After a few
images are successfully loaded, you will be able to page through each image conveniently by clicking the left and right
button controls, as shown in Figure 15-3.

Before the code walk-through, let’s discuss the application’s variables. Table 15-1 describes instance variables for
this sleek image viewer application.

Table 15-1.  The CreatingImages Instance Variables

Variable Data Type Example Description

imageFiles List<String> /User/pictures/fun.jpg A list of strings, each containing an image’s
absolute file path

currentIndex int 0 A zero relative index number into the
imageFiles list; -1 means no images to view

NEXT enum - User clicks the right arrow button

PREV enum - User clicks the left arrow button

When you’re dragging an image into the application, the imageFiles variable will cache the absolute file
path as a string instead of as the actual image file in order to save memory space. If a user drags the same image
file into the display area, the list will contain duplicate strings representing the image file. As an image is being
displayed, the currentIndex variable contains the index into the imageFiles list. The imageFiles list points to the
string representing the current image file. As the user clicks the buttons to display the previous and next image, the
currentIndex will decrement or increment, respectively. Next, let’s walk through the code detailing the steps for
loading and displaying an image. Later, you will learn the steps for paging through each image with the next and
previous buttons.

Begin by instantiating an instance of the javafx.scene.image.ImageView class. The ImageView class is a graph
node (Node) used to display an already loaded javafx.scene.image.Image object. Using the ImageView node will
enable you to create special effects on the image to be displayed without manipulating the physical image. To avoid
performance degradation when rendering many effects, you can use numerous ImageView objects that reference a
single Image object. Many types of effects include blurring, fading, and transforming an image.

One of the requirements is preserving the displayed image’s aspect ratio as the user resizes the window. Here, you
will simply call the setPreserveRatio() method with a value of true to preserve the image’s aspect ratio. Remember
that because the user resizes the window, you want to bind the width of the ImageView to the Scene’s width to allow the
image to be scaled. After setting up the ImageView, you will want to pass it to an HBox instance (pictureRegion) to be
put into the scene. The following code creates the ImageView instance, preserves the aspect ratio, and scales the image:
 
// image view
final ImageView currentImageView = new ImageView();
 
// maintain aspect ratio
currentImageView.setPreserveRatio(true);
 
// resize based on the scene
currentImageView.fitWidthProperty().bind(scene.widthProperty());
 

Chapter 15 ■ Graphics with JavaFX

412

Next, let’s cover JavaFX’s native drag-and-drop support, which provides many options for users, such as
dragging visual objects from an application to be dropped into another application. In this scenario, the user will be
dragging an image file from the host windowing operating system to the image viewer application. In this scenario,
EventHandler objects must be generated to listen to DragEvents. To fulfill this requirement, you’ll set up a scene’s
drag-over and drag-dropped event handler methods.

To set up the drag-over attribute, call the scene’s setOnDragOver() method with the appropriate generic
EventHandler<DragEvent> type. In the example, a lambda expression is used to implement the event handler.
Implement the handle() method via the lambda expression to listen to the drag-over event (DragEvent). In the event
handler, notice the event (DragEvent) object’s invocation to the getDragboard() method. The call to getDragboard()
will return the drag source (Dragboard), better known as the clipboard. Once the Dragboard object is obtained, it is
possible to determine and validate what is being dragged over the surface. In this scenario, you need to determine
whether the Dragboard object contains any files. If it does, you call the event object’s acceptTransferModes()
by passing in the constant TransferMode.COPY to provide visual feedback to the user of the application (refer to
Figure 15-2). Otherwise, it should consume the event by calling the event.consume() method. The following code
demonstrates setting up a scene’s OnDragOver attribute:
 
 // Dragging over surface
scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
});
 

Once the drag-over event handler attribute is set, you create a drag-dropped event handler attribute so it can
finalize the operation. Listening to a drag-dropped event is similar to listening to a drag-over event in which the
handle() method will be implemented via a lambda expression. Once again, you obtain the Dragboard object from
the event to determine whether the clipboard contains any files. If it does, the list of files is iterated and the file names
are added to the imageFiles list. This code demonstrates setting up a scene’s OnDragDropped attribute:
 
// Dropping over surface
scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);
 currentIndex += 1;
 imageFiles.add(currentIndex, filePath);
 }
 filePath = filePrefix + filePath;
 // set new image as the image to show.
 Image imageimage = new Image(filePath);
 currentImageView.setImage(imageimage);
 

Chapter 15 ■ Graphics with JavaFX

413

 }
 event.setDropCompleted(success);
 event.consume();
 
});
 

As the last file is determined, the current image is displayed. The following code demonstrates loading an image
to be displayed:
 
// set new image as the image to show.
Image imageimage = new Image(filePath);
currentImageView.setImage(imageimage);
 

For the last requirements relating to the image viewer application, simple controls are generated that allow the
users to view the next or previous image. I emphasize “simple” controls because JavaFX contains two other methods
for creating custom controls. One way (CSS styling) is discussed later, in Recipe 15-5. To explore the other alternative,
refer to the Javadoc on the Skin and Skinnable APIs.

The simple buttons in this example are created using Java FX’s javafx.scene.shape.Arc to build the left and
right arrows on top of a small transparent rounded rectangle called javafx.scene.shape.Rectangle. Next, an
EventHandler that listens to mouse-pressed events is added via a lambda expression, and it will load and display the
appropriate image based on the enums ButtonMove.PREV and ButtonMove.NEXT.

When instantiating a generic class with a type variable between the < and > symbols, the same type variable will
be defined in the handle()’s signature. When implementing the event handler logic, you determine which button
was pressed and then return the index into the imageFiles list of the next image to display. When loading an image
using the Image class, it is possible to load images from the file system or from a URL. The following code instantiates
an EventHandler<MouseEvent> lambda expression to display the previous image in the imageFiles list:
 
leftButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(ButtonMove.PREV);
 if (indx > -1) {
 String namePict = imageFiles.get(indx);
 namePict = filePrefix + namePict;
 final Image image = new Image(namePict);
 currentImageView.setImage(image);
 }
});
 

The right button’s (rightButton) event handler is identical. The only thing different is that it must determine
whether the previous or next button was pressed via the ButtonMove enum. This information is passed to the
gotoImageIndex() method to determine whether an image is available in that direction.

To finish the image viewer application, you bind the rectangular button’s control to the scene’s width and
height, which repositions the control as the user resizes the window. Here, you bind the translateXProperty() to
the scene’s width property by subtracting the buttonArea's width (Fluent API). In the example, you also bind the
translateYProperty() based on the scene’s height property. Once your buttons control is bound, your user will
experience user interface goodness. The following code uses the Fluent API to bind the button control’s properties to
the scene’s properties:
 
// move button group when scene is resized
buttonGroup.translateXProperty().bind(scene.widthProperty().subtract(buttonArea.getWidth() + 6));
buttonGroup.translateYProperty().bind(scene.heightProperty().subtract(buttonArea.getHeight() + 6));
root.getChildren().add(buttonGroup);

Chapter 15 ■ Graphics with JavaFX

414

15-2. Generating an Animation
Problem
You want to generate an animation. For example, you want to create a news ticker and photo viewer application with
the following requirements:

It will have a news ticker control that scrolls to the left.•	

It will fade out the current picture and fade in the next picture as the user clicks the button •	
controls.

It will fade in and out button controls when the cursor moves in and out of the scene area, •	
respectively.

The news ticker will pause when the mouse hovers over the text, and will start again once the •	
mouse moves away from the text.

Solution
Create animated effects by accessing JavaFX’s animation APIs (javafx.animation.*). To create a news ticker, you
need the following classes:

•	 javafx.animation.TranslateTransition

•	 javafx.util.Duration

•	 javafx.event.EventHandler<ActionEvent>

•	 javafx.scene.shape.Rectangle

To fade out the current picture and fade in next picture, you need the following classes:

•	 javafx.animation.SequentialTransition

•	 javafx.animation.FadeTransition

•	 javafx.event.EventHandler<ActionEvent>

•	 javafx.scene.image.Image

•	 javafx.scene.image.ImageView

•	 javafx.util.Duration

To fade in and out button controls when the cursor moves into and out of the scene area, respectively, you need
the following classes:

•	 javafx.animation.FadeTransition

•	 javafx.util.Duration

Shown here is the code used to create a news ticker control:
 
// create ticker area
final Group tickerArea = new Group();
final Rectangle tickerRect = new Rectangle();
tickerRect.setArcWidth(15);
tickerRect.setArcHeight(20);
tickerRect.setFill(new Color(0, 0, 0, .55));

Chapter 15 ■ Graphics with JavaFX

415

tickerRect.setX(0);
tickerRect.setY(0);
tickerRect.setWidth(scene.getWidth() - 6);
tickerRect.setHeight(30);
tickerRect.setStroke(Color.rgb(255, 255, 255, .70)); 
 
Rectangle clipRegion = new Rectangle();
clipRegion.setArcWidth(15);
clipRegion.setArcHeight(20);
clipRegion.setX(0);
clipRegion.setY(0);
clipRegion.setWidth(scene.getWidth() - 6);
clipRegion.setHeight(30);
clipRegion.setStroke(Color.rgb(255, 255, 255, .70));
 
tickerArea.setClip(clipRegion);
 
// Resize the ticker area when the window is resized
tickerArea.setTranslateX(6);
tickerArea.translateYProperty().bind(scene.heightProperty().subtract(
 tickerRect.getHeight() + 6));
tickerRect.widthProperty().bind(scene.widthProperty().subtract(
 buttonRect.getWidth() + 16));
clipRegion.widthProperty().bind(scene.widthProperty().subtract(
 buttonRect.getWidth() + 16));
tickerArea.getChildren().add(tickerRect); 
 
root.getChildren().add(tickerArea); 
 
// add news text
Text news = new Text();
news.setText("JavaFX 8 News Ticker... | New Features: Swing Node, Event Dispatch Thread and JavaFX
Application Thread Merge, " +
 "New Look and Feel - Modena, Rich Text Support, Printing, Tree Table Control, Much More!");
news.setTranslateY(18);
news.setFill(Color.WHITE);
tickerArea.getChildren().add(news);  
 
final TranslateTransition ticker = new TranslateTransition();
ticker.setNode(news);
int newsLength = news.getText().length();
 
// Calculated guess based upon length of text
ticker.setDuration(Duration.millis((newsLength * 4/300) * 15000));
ticker.setFromX(scene.widthProperty().doubleValue());
ticker.setToX(-scene.widthProperty().doubleValue() - (newsLength * 5));
ticker.setFromY(19);
ticker.setInterpolator(Interpolator.LINEAR);
ticker.setCycleCount(1);
 

Chapter 15 ■ Graphics with JavaFX

416

// when ticker has finished reset and replay ticker animation
ticker.setOnFinished((ActionEvent ae) -> {
 ticker.stop();
 ticker.setFromX(scene.getWidth());
 ticker.setDuration(new Duration((newsLength * 4/300) * 15000));
 ticker.playFromStart();
});
 
// stop ticker if hovered over
tickerArea.setOnMouseEntered((MouseEvent me) -> {
 ticker.pause();
});
 
// restart ticker if mouse leaves the ticker
tickerArea.setOnMouseExited((MouseEvent me) -> {
 ticker.play();
});
 
ticker.play();
 

Here is the code used to fade out the current picture and fade in the next picture:
 
// previous button
Arc prevButton = // create arc ...
 
prevButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(PREV);
 if (indx > -1) {
 String namePict = imagesFiles.get(indx);
 final Image nextImage = new Image(namePict);
 SequentialTransition seqTransition = transitionByFading(nextImage, currentImageView);
 seqTransition.play();
 }
});
 
buttonGroup.getChildren().add(prevButton);
 
// next button
Arc nextButton = //... create arc
 
buttonGroup.getChildren().add(nextButton);
 
nextButton.addEventHandler(MouseEvent.MOUSE_PRESSED, (MouseEvent me) -> {
 int indx = gotoImageIndex(NEXT);
 if (indx > -1) {
 String namePict = imagesFiles.get(indx);
 final Image nextImage = new Image(namePict);
 SequentialTransition seqTransition = transitionByFading(nextImage, currentImageView);
 seqTransition.play();
 
 }
});
 

Chapter 15 ■ Graphics with JavaFX

417

//... the rest of the start(Stage primaryStage) method 
 
public int gotoImageIndex(int direction) {
 int size = imagesFiles.size();
 if (size == 0) {
 currentIndexImageFile = -1;
 } else if (direction == NEXT && size > 1 && currentIndexImageFile < size - 1) {
 currentIndexImageFile += 1;
 } else if (direction == PREV && size > 1 && currentIndexImageFile > 0) {
 currentIndexImageFile -= 1;
 }
 
 return currentIndexImageFile;
}
 
public SequentialTransition transitionByFading(final Image nextImage, final ImageView imageView) {
 FadeTransition fadeOut = new FadeTransition(Duration.millis(500), imageView);
 fadeOut.setFromValue(1.0);
 fadeOut.setToValue(0.0);
 fadeOut.setOnFinished((ActionEvent ae) -> {
 imageView.setImage(nextImage);
 });
 FadeTransition fadeIn = new FadeTransition(Duration.millis(500), imageView);
 fadeIn.setFromValue(0.0);
 fadeIn.setToValue(1.0);
 SequentialTransition seqTransition = new SequentialTransition();
 seqTransition.getChildren().addAll(fadeOut, fadeIn);
 return seqTransition;
}
 

The following code is used to fade in and out the button controls when the cursor moves into and out of the scene
area, respectively:
 
// Fade in button controls
scene.setOnMouseEntered((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(0.0);
 fadeButtons.setToValue(1.0);
 fadeButtons.play();
});

// Fade out button controls
scene.setOnMouseExited((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(1);
 fadeButtons.setToValue(0);
 fadeButtons.play();
});
 

Figure 15-4 shows the photo viewer application with a ticker control in the bottom region of the screen.

Chapter 15 ■ Graphics with JavaFX

418

How It Works
This recipe takes the photo viewer application from Recipe 15-1 and adds a news ticker and some nice photo-changing
animation. The main animation effects focus on translating and fading. First, a news ticker control is created, and
it scrolls Text nodes to the left by using a translation transition (javafx.animation.TranslateTransition). Next,
another fading effect is applied so that slow transitions will occur when the user clicks the previous and next buttons to
transition to the next image. To perform this effect, a compound transition (javafx.animation.SequentialTransition)
is used, consisting of multiple animations. Finally, to create the effect of the button controls fading in and out based
on where the mouse is located, you use a fade transition (javafx.animation.FadeTransition).

Before I begin to discuss the steps to fulfill the requirements, I want to mention the basics of JavaFX animation.
The JavaFX animation API allows you to assemble timed events that can interpolate over a node’s attribute values to
produce animated effects. Each timed event is called a keyframe (KeyFrame), and it’s responsible for interpolating over
a node’s property over a period of time (javafx.util.Duration). Knowing that a keyframe’s job is to operate on a
node’s property value, you have to create an instance of a KeyValue class that will reference the desired node property.
The idea of interpolation is simply the distributing of values between a start and end value. An example is to move a
rectangle by its current x position (zero) to 100 pixels in 1,000 milliseconds; in other words, move the rectangle 100
pixels to the right during one second. Shown here is a keyframe and key value to interpolate a rectangle’s x property
for 1,000 milliseconds:
 
final Rectangle rectangle = new Rectangle(0, 0, 50, 50);
KeyValue keyValue = new KeyValue(rectangle.xProperty(), 100);
KeyFrame keyFrame = new KeyFrame(Duration.millis(1000), keyValue);
 

When creating many keyframes that are assembled consecutively, you need to create a timeline. Because
timeline is a subclass of javafx.animation.Animation, there are standard attributes—such as its cycle count and
auto-reverse—that you can set. The cycle count is the number of times you want the timeline to play the animation.
If you want the cycle count to play the animation indefinitely, use the value Timeline.INDEFINITE. The auto-reverse
is the capability for the animation to play the timeline backward. By default, the cycle count is set to 1, and the

Figure 15-4.  Photo viewer with a news ticker

Chapter 15 ■ Graphics with JavaFX

419

auto-reverse is set to false. When adding keyframes you simply add them using the getKeyFrames().add()
method on the TimeLine object. The following code snippet demonstrates a timeline playing indefinitely with auto-
reverse set to true:
 
Timeline timeline = new Timeline();
timeline.setCycleCount(Timeline.INDEFINITE);
timeline.setAutoReverse(true);
timeline.getKeyFrames().add(keyFrame);
timeline.play();
 

With this knowledge of timelines you can animate any graph node in JavaFX. Although you can create timelines
in a low-level way, it can become very cumbersome. You are probably wondering whether there are easier ways to
express common animations. Good news! JavaFX has transitions (Transition), which are convenience classes that
perform common animated effects. Some of the common animation effects you can create with transitions include:

•	 javafx.animation.FadeTransition

•	 javafx.animation.PathTransition

•	 javafx.animation.ScaleTransition

•	 javafx.animation.TranslateTransition

To see more transitions, see javafx.animation in the Javadoc. Because Transition objects are also subclasses of
the javafx.animation.Animation class, you can set the cycle count and auto-reverse attributes. This recipe focuses
on two transition effects: translate transition (TranslateTransition) and fade transition (FadeTransition).

The first requirement in the problem statement is to create a news ticker. In a news ticker control, Text nodes
scroll from right to left inside a rectangular region. When the text scrolls to the left edge of the rectangular region
you will want the text to be clipped to create a view port that only shows pixels inside of the rectangle. To do this,
you first create a Group to hold all the components that comprise a ticker control. Next you create a white rounded
rectangle filled with 55 percent opacity. After creating the visual region, you create a similar rectangle that represents
the clipped region using the setClip(someRectangle) method on the Group object. Figure 15-5 shows a rounded
rectangular area that serves as the clipped region.

Figure 15-5.  Setting the clipped region on the Group object

Once the ticker control is created, you bind the translate Y based on the scene’s height property minus the ticker
control’s height. You also bind the ticker control’s width property based on the width of scene minus the button
control’s width. By binding these properties, the ticker control can change its size and position whenever a user resizes
the application window. This makes the ticker control appear to float at the bottom of the window. The following code
binds the ticker control’s translate Y, width, and clip region’s width property:
 
tickerArea.translateYProperty().bind(scene.heightProperty().subtract(tickerRect.getHeight() + 6));
tickerRect.widthProperty().bind(scene.widthProperty().subtract(buttonRect.getWidth() + 16));
clipRegion.widthProperty().bind(scene.widthProperty().subtract(buttonRect.getWidth() + 16));
tickerArea.getChildren().add(tickerRect);
 

Chapter 15 ■ Graphics with JavaFX

420

Now that the ticker control is complete, you’ll create some news to feed into it. In the example, a Text node
with text that represents a news feed is used. To add a newly created Text node to the ticker control, you call its
getChildren().add() method. The following code adds a Text node to the ticker control:
 
final Group tickerArea = new Group();
final Rectangle tickerRect = //...
Text news = new Text();
news.setText("JavaFX 8 News Ticker... | New Features: Swing Node, Event Dispatch Thread and JavaFX
Application Thread Merge, " +
 "New Look and Feel - Modena, Rich Text Support, Printing, Tree Table Control, Much More!");
news.setTranslateY(18);
news.setFill(Color.WHITE);
tickerArea.getChildren().add(news);
 

Next you have to scroll the Text node from right to left using JavaFX’s TranslateTransition API. The first step is
to set the target node to perform the TranslateTransition. Then you set the duration, which is the total amount of
time the TranslateTransition will spend animating. A TranslateTransition simplifies the creation of an animation
by exposing convenience methods that operate on a Node’s translate X and Y properties. The convenience methods
are prepended with from and to. For instance, in the scenario in which you use translate X on a Text node, there
are the methods fromX() and toX(). The fromX() is the starting value and the toX() is the end value that will be
interpolated. In the example, you base these calculations on the length of the text in the Text node. Therefore, if you
are reading from a remote source, such as an RSS feed, the text length difference should not break the ticker. Next,
you set the TranslateTransition to a linear transition (Interpolator.LINEAR) to interpolate evenly between the
start and end values. To see more interpolator types or to see how to create custom interpolators, see the Javadoc
on javafx.animation.Interpolators. Finally, in the example the cycle count is set to 1, which will animate the
ticker once based on the specified duration. The following code snippet details creating a TranslateTransition that
animates a Text node from right to left:
 
final TranslateTransition ticker = new TranslateTransition();
ticker.setNode(news);
int newsLength = news.getText().length();
ticker.setDuration(Duration.millis((newsLength * 4/300) * 15000));
ticker.setFromX(scene.widthProperty().doubleValue());
ticker.setToX(-scene.widthProperty().doubleValue() - (newsLength * 5));
ticker.setFromY(19);
ticker.setInterpolator(Interpolator.LINEAR);
ticker.setCycleCount(1);
 

When the ticker’s news has scrolled completely off of the ticker area to the far left of the scene, you will
want to stop and replay the news feed from the start (the far right). To do this, you create an instance of an
EventHandler<ActionEvent> object via a lambda expression, to be set on the ticker (TranslateTransition) object
using the setOnFinished() method. Here is how you replay the TranslateTransition animation:
 
// when window resizes width wise the ticker will know how far to move
// when ticker has finished reset and replay ticker animation
ticker.setOnFinished((ActionEvent ae) -> {
 ticker.stop();
 ticker.setFromX(scene.getWidth());
 ticker.setDuration(new Duration((newsLength * 4/300) * 15000));
 ticker.playFromStart();
});
 

Chapter 15 ■ Graphics with JavaFX

421

Once the animation is defined, you simply invoke the play() method to get it started. The following code snippet
shows how to play a TranslateTransition:
 
ticker.play();
 

To pause and start the ticker when the mouse hovers over and leaves the text, you need to implement similar
event handlers:
 
// stop ticker if hovered over
tickerArea.setOnMouseEntered((MouseEvent me) -> {
 ticker.pause();
});
 
// restart ticker if mouse leaves the ticker
tickerArea.setOnMouseExited((MouseEvent me) -> {
 ticker.play();
});
 

Now that you have a better understanding of animated transitions, what about a transition that can trigger
any number of transitions? JavaFX has two transitions that provide this behavior. The two transitions can invoke
individual dependent transitions sequentially or in parallel. In this recipe, you’ll use a sequential transition
(SequentialTransition) to contain two FadeTransitions in order to fade out the current image displayed and to
fade in the next image. When creating the previous and next button’s event handlers, you first determine the next
image to be displayed by calling the gotoImageIndex() method. Once the next image to be displayed is determined,
you call the transitionByFading() method, which returns an instance of a SequentialTransition. When calling the
transitionByFading() method, you’ll notice that two FadeTransitions are created. The first transition will change
the opacity level from 1.0 to 0.0 to fade out the current image, and the second transition will interpolate the opacity
level from 0.0 to 1.0, fading in the next image, which then becomes the current image. At last the two FadeTransitions
are added to the SequentialTransition and returned to the caller. The following code creates two FadeTransitions
and adds them to a SequentialTransition:
 
FadeTransition fadeOut = new FadeTransition(Duration.millis(500), imageView);
fadeOut.setFromValue(1.0);
fadeOut.setToValue(0.0);
fadeOut.setOnFinished((ActionEvent ae) -> {
 imageView.setImage(nextImage);
});
FadeTransition fadeIn = new FadeTransition(Duration.millis(500), imageView);
fadeIn.setFromValue(0.0);
fadeIn.setToValue(1.0);
SequentialTransition seqTransition = new SequentialTransition();
seqTransition.getChildren().addAll(fadeOut, fadeIn);
return seqTransition;
 

For the last requirements relating to fading in and out, use the button controls. Use the FadeTransition to create
a ghostly animated effect. For starters, you create an EventHandler (more specifically, an EventHandler<MouseEvent>
via a lambda expression). It is easy to add mouse events to the scene; all you have to do is override the handle()
method where the inbound parameter is a MouseEvent type (the same as its formal type parameter). Inside of the
lambda, you create an instance of a FadeTransition object by using the constructor that takes the duration and node

Chapter 15 ■ Graphics with JavaFX

422

as parameters. Next, you’ll notice the setFromValue() and setToValue() methods that are called to interpolate values
between 1.0 and 0.0 for the opacity level, causing the fade in effect to occur. The following code adds an EventHandler
to create the fade in effect when the mouse cursor is positioned inside of the scene:
 
// Fade in button controls
scene.setOnMouseEntered((MouseEvent me) -> {
 FadeTransition fadeButtons = new FadeTransition(Duration.millis(500), buttonGroup);
 fadeButtons.setFromValue(0.0);
 fadeButtons.setToValue(1.0);
 fadeButtons.play();
});
 

Last but not least, the fade out EventHandler is basically the same as the fade in, except that the opacity From
and To values are from 1.0 to 0.0, which make the buttons vanish mysteriously when the mouse pointer moves off the
scene area.

15-3. Animating Shapes Along a Path
Problem
You want to create a way to animate shapes along a path.

Solution
Create an application that allows users to draw the path for a shape to follow. The main Java classes used in this recipe
are these:

•	 javafx.animation.PathTransition

•	 javafx.scene.input.MouseEvent

•	 javafx.event.EventHandler

•	 javafx.geometry.Point2D

•	 javafx.scene.shape.LineTo

•	 javafx.scene.shape.MoveTo

•	 javafx.scene.shape.Path

The following code demonstrates drawing a path for a shape to follow:
 
package org.java8recipes.chapter15.recipe15_03;
 
import javafx.animation.PathTransition;
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;

Chapter 15 ■ Graphics with JavaFX

423

import javafx.scene.paint.CycleMethod;
import javafx.scene.paint.RadialGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Circle;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.stage.Stage;
import javafx.util.Duration;
 
/**
 * Recipe 15-3: Working with the Scene Graph
 * @author cdea
 * Update: J Juneau
 */
public class WorkingWithTheSceneGraph extends Application {

 Path onePath = new Path();
 Point2D anchorPt;
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-3 Working with the Scene Graph");

 final Group root = new Group();
 // add path
 root.getChildren().add(onePath);

 final Scene scene = new Scene(root, 300, 250);
 scene.setFill(Color.WHITE);

 RadialGradient gradient1 = new RadialGradient(0,
 .1,
 100,
 100,
 20,
 false,
 CycleMethod.NO_CYCLE,
 new Stop(0, Color.RED),
 new Stop(1, Color.BLACK));
 // create a sphere
 final Circle sphere = new Circle();
 sphere.setCenterX(100);
 sphere.setCenterY(100);
 sphere.setRadius(20);
 sphere.setFill(gradient1);
 
 // add sphere
 root.getChildren().add(sphere);
 

Chapter 15 ■ Graphics with JavaFX

424

 // animate sphere by following the path.
 final PathTransition pathTransition = new PathTransition();
 pathTransition.setDuration(Duration.millis(4000));
 pathTransition.setCycleCount(1);
 pathTransition.setNode(sphere);
 pathTransition.setPath(onePath);

pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 
 // once finished clear path
 pathTransition.onFinishedProperty().set((EventHandler<ActionEvent>)
(ActionEvent event) -> {
 onePath.getElements().clear();
 });
 
 // starting initial path
 scene.onMousePressedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().clear();
 // start point in path
 anchorPt = new Point2D(event.getX(), event.getY());
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements().add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 });
 // dragging creates lineTos added to the path
 scene.onMouseDraggedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().add(new LineTo(event.getX(), event.getY()));
 });

 // end the path when mouse released event
 scene.onMouseReleasedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.setStrokeWidth(0);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
 });
 
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}
 

Figure 15-6 shows the drawn path the circle will follow. When the user performs a mouse release, the drawn path
will disappear and the red ball will follow the path drawn earlier.

Chapter 15 ■ Graphics with JavaFX

425

How It Works
In this recipe, you create a simple application enabling objects to follow a drawn path on the scene graph. To make things
simple, the example uses one shape (Circle) that performs a path transition (javafx.animation.PathTransition).
The application user will draw a path on the scene surface by pressing the mouse button like a drawing program.
Once satisfied with the path drawn, the user releases the mouse press, which triggers the red ball to follow the path,
similar to objects moving through pipes inside a building.

You first create two instance variables to maintain the coordinates that make up the path. To hold the path being
drawn, create an instance of a javafx.scene.shape.Path object. The path instance should be added to the scene
graph before the start of the application. Shown here is the process of adding the instance variable onePath to the
scene graph:
 
// add path
root.getChildren().add(onePath);
 

Next, you create an instance variable anchorPt (javafx.geometry.Point2D) that will hold the path’s starting
point. Later, you will see how these variables are updated based on mouse events. Shown here are the instance
variables that maintain the currently drawn path:
 
Path onePath = new Path();
Point2D anchorPt;
 

First, let’s create a shape that will be animated. In this scenario, you’ll create a cool-looking red ball. To create
a spherical-looking ball, create a gradient color RadialGradient that’s used to paint or fill a circle shape. (Refer to
Recipe 15-6 for how to fill shapes with a gradient paint.) Once you have created the red spherical ball, you need to
create the PathTransition object to perform the path-following animation. After instantiating a PathTransition()
object, simply set the duration to four seconds and the cycle count to one. The cycle count is the number of times the
animation cycle will occur. Next, you set the node to reference the red ball (sphere). Then, you set the path() method

Figure 15-6.  Path transition

Chapter 15 ■ Graphics with JavaFX

426

to the instance variable onePath, which contains all the coordinates and lines that make up a drawn path. After setting
the path for the sphere to animate, you should specify how the shape will follow the path, such as perpendicular to a
tangent point on the path. The following code creates an instance of a path transition:
 
// animate sphere by following the path.
final PathTransition pathTransition = new PathTransition();
pathTransition.setDuration(Duration.millis(4000));
pathTransition.setCycleCount(1);
pathTransition.setNode(sphere);
pathTransition.setPath(onePath);
pathTransition.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 

After you’ve created the path transition, you’ll want it to clean up when the animation is completed. To reset or
clean up the path variable when the animation is finished, create and add an event handler to listen to the onFinished
property event on the path transition object.

The following code snippet adds an event handler to clear the current path information:
 
 // once finished clear path
pathTransition.onFinishedProperty().set((EventHandler<ActionEvent>)
(ActionEvent event) -> {
 onePath.getElements().clear();
});
 

With the shape and transition all set up, the application needs to respond to mouse events that will update the
instance variable mentioned earlier. To do so, listen to mouse events occurring on the Scene object. Here, you will
once again rely on creating event handlers to be set on the scene’s onMouseXXXProperty methods, where the XXX
denotes the actual mouse event name such as pressed, dragged, and released.

When a user draws a path, he or she will perform a mouse-press event to begin the start of the path. To listen to
a mouse-press event, create an event handler with a formal type parameter of MouseEvent. In the example, a lambda
expression is used. As a mouse-press event occurs, clear the instance variable onePath of any prior drawn path
information. Next, simply set the stroke width and color of the path so the users can see the path being drawn. Finally,
add the starting point to the path using an instance of a MoveTo object. Shown here is the handler code that responds
when the user performs a mouse press:
 
 // starting initial path
 scene.onMousePressedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().clear();
 // start point in path
 anchorPt = new Point2D(event.getX(), event.getY());
 onePath.setStrokeWidth(3);
 onePath.setStroke(Color.BLACK);
 onePath.getElements().add(new MoveTo(anchorPt.getX(), anchorPt.getY()));
 });
 

Once the mouse-press event handler is in place, you create another handler for mouse-drag events. Again, look
for the scene’s onMouseXXXProperty() methods that correspond to the proper mouse event that you care about. In
this case, the onMouseDraggedProperty() will be set. Inside the lambda expression, obtain mouse coordinates that

Chapter 15 ■ Graphics with JavaFX

427

will be converted to LineTo objects to be added to the path (Path). These LineTo objects are instances of path element
(javafx.scene.shape.PathElement), as discussed in Recipe 15-5. The following code is an event handler responsible
for mouse-drag events:
 
// dragging creates lineTos added to the path
scene.onMouseDraggedProperty().set((EventHandler<MouseEvent>)
(MouseEvent event) -> {
 onePath.getElements().add(new LineTo(event.getX(), event.getY()));
});
 

Finally, create an event handler to listen to a mouse-release event. When a user releases the mouse, the path’s
stroke is set to zero to appear as if it has removed. Then you reset the path transition by stopping it and playing it from
the start. The following code is an event handler responsible for a mouse-release event:
 
// end the path when mouse released event
 scene.onMouseReleasedProperty().set((EventHandler<MouseEvent>)
 (MouseEvent event) -> {
 onePath.setStrokeWidth(0);
 if (onePath.getElements().size() > 1) {
 pathTransition.stop();
 pathTransition.playFromStart();
 }
});

15-4. Manipulating Layout via Grids
Problem
You want to create a nice-looking form-based user interface using a grid type layout.

Solution
Create a simple form designer application to manipulate the user interface dynamically using the JavaFX’s
javafx.scene.layout.GridPane. The form designer application will have the following features:

It will toggle the display of the grid layout’s grid lines for debugging.•	

It will adjust the top padding of the •	 GridPane.

It will adjust the left padding of the •	 GridPane.

It will adjust the horizontal gap between cells in the •	 GridPane.

It will adjust the vertical gap between cells in the •	 GridPane.

It will align controls within cells horizontally.•	

It will align controls within cells vertically.•	

Chapter 15 ■ Graphics with JavaFX

428

The following code is the main launching point for the form designer application:
 
public class ManipulatingLayoutViaGrids extends Application {
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Chapter 15-4 Manipulating Layout via Grids ");
 Group root = new Group();
 Scene scene = new Scene(root, 640, 480, Color.WHITE);
 
 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());

 // Form on the right
 GridPane rightGridPane = new MyForm();

 GridPane leftGridPane = new GridPaneControlPanel(rightGridPane);

 VBox leftArea = new VBox(10);

 leftArea.getChildren().add(leftGridPane);
 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 root.getChildren().add(hbox);
 splitPane.getItems().addAll(leftArea, rightGridPane);

 primaryStage.setScene(scene);

 primaryStage.show();
 }
}
 

When the form designer application is launched, the target form to be manipulated is shown on the right side
of the window’s split pane. The following code is a simple grid-like form class that extends from GridPane. It will be
manipulated by the form designer application:
 
/**
 * MyForm is a form to be manipulated by the user.
 * @author cdea
 */
public class MyForm extends GridPane{
 public MyForm() {
 
 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);
 

Chapter 15 ■ Graphics with JavaFX

429

 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();
 Label ageLbl = new Label("Age");
 TextField ageFld = new TextField();
 
 Button saveButt = new Button("Save");
 
 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 add(fNameLbl, 0, 0);
 
 // Last name label
 GridPane.setHalignment(lNameLbl, HPos.RIGHT);
 add(lNameLbl, 0, 1);
 
 // Age label
 GridPane.setHalignment(ageLbl, HPos.RIGHT);
 add(ageLbl, 0, 2);
 
 // First name field
 GridPane.setHalignment(fNameFld, HPos.LEFT);
 add(fNameFld, 1, 0);
 
 // Last name field
 GridPane.setHalignment(lNameFld, HPos.LEFT);
 add(lNameFld, 1, 1);
 
 // Age Field
 GridPane.setHalignment(ageFld, HPos.RIGHT);
 add(ageFld, 1, 2);
 
 // Save button
 GridPane.setHalignment(saveButt, HPos.RIGHT);
 add(saveButt, 1, 3);
 
 }
}
 

When the form designer application is launched, the grid property control panel is shown on the left side of the
window’s split pane. The property control panel allows the users to manipulate the target form’s grid pane attributes
dynamically. The following code represents the grid property control panel that will manipulate a target grid pane’s
properties:
 
/** GridPaneControlPanel represents the left area of the split pane
 * allowing the user to manipulate the GridPane on the right.
 *
 * Manipulating Layout Via Grids
 * @author cdea
 */

Chapter 15 ■ Graphics with JavaFX

430

public class GridPaneControlPanel extends GridPane{
 public GridPaneControlPanel(final GridPane targetGridPane) {
 super();  
  
 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);
 
 // Setting Grid lines
 Label gridLinesLbl = new Label("Grid Lines");
 final ToggleButton gridLinesToggle = new ToggleButton("Off");
 gridLinesToggle.selectedProperty().addListener((ObservableValue<? extends Boolean> ov,
Boolean oldValue, Boolean newVal) -> {
 targetGridPane.setGridLinesVisible(newVal);
 gridLinesToggle.setText(newVal ? "On" : "Off");
 });
 
 // toggle grid lines label
 GridPane.setHalignment(gridLinesLbl, HPos.RIGHT);
 add(gridLinesLbl, 0, 0);
  
 // toggle grid lines
 GridPane.setHalignment(gridLinesToggle, HPos.LEFT);
 add(gridLinesToggle, 1, 0);
  
 // Setting padding [top]
 Label gridPaddingLbl = new Label("Top Padding");
  
 final Slider gridPaddingSlider = new Slider();
 gridPaddingSlider.setMin(0);
 gridPaddingSlider.setMax(100);
 gridPaddingSlider.setValue(5);
 gridPaddingSlider.setShowTickLabels(true);
 gridPaddingSlider.setShowTickMarks(true);
 gridPaddingSlider.setMinorTickCount(1);
 gridPaddingSlider.setBlockIncrement(5);
  
 gridPaddingSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {
 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets((double) newVal, right1, bottom1, left1);
 targetGridPane.setPadding(newInsets);
 });  
  
 // padding adjustment label
 GridPane.setHalignment(gridPaddingLbl, HPos.RIGHT);
 add(gridPaddingLbl, 0, 1);
  

Chapter 15 ■ Graphics with JavaFX

431

 // padding adjustment slider
 GridPane.setHalignment(gridPaddingSlider, HPos.LEFT);
 add(gridPaddingSlider, 1, 1);
  
 // Setting padding [top]
 Label gridPaddingLeftLbl = new Label("Left Padding");
  
 final Slider gridPaddingLeftSlider = new Slider();
 gridPaddingLeftSlider.setMin(0);
 gridPaddingLeftSlider.setMax(100);
 gridPaddingLeftSlider.setValue(5);
 gridPaddingLeftSlider.setShowTickLabels(true);
 gridPaddingLeftSlider.setShowTickMarks(true);
 gridPaddingLeftSlider.setMinorTickCount(1);
 gridPaddingLeftSlider.setBlockIncrement(5);
  
 gridPaddingLeftSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {
 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets(top1, right1, bottom1, (double) newVal);
 targetGridPane.setPadding(newInsets);
 });
  
  
 // padding adjustment label
 GridPane.setHalignment(gridPaddingLeftLbl, HPos.RIGHT);
 add(gridPaddingLeftLbl, 0, 2);
 
 // padding adjustment slider
 GridPane.setHalignment(gridPaddingLeftSlider, HPos.LEFT);
 add(gridPaddingLeftSlider, 1, 2);
  
 // Horizontal gap
 Label gridHGapLbl = new Label("Horizontal Gap");
  
 final Slider gridHGapSlider = new Slider();
 gridHGapSlider.setMin(0);
 gridHGapSlider.setMax(100);
 gridHGapSlider.setValue(5);
 gridHGapSlider.setShowTickLabels(true);
 gridHGapSlider.setShowTickMarks(true);
 gridHGapSlider.setMinorTickCount(1);
 gridHGapSlider.setBlockIncrement(5);
  
 gridHGapSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {
 targetGridPane.setHgap((double) newVal);
 });  
  

Chapter 15 ■ Graphics with JavaFX

432

 // hgap label
 GridPane.setHalignment(gridHGapLbl, HPos.RIGHT);
 add(gridHGapLbl, 0, 3);
  
 // hgap slider
 GridPane.setHalignment(gridHGapSlider, HPos.LEFT);
 add(gridHGapSlider, 1, 3);
  
 // Vertical gap
 Label gridVGapLbl = new Label("Vertical Gap");
  
 final Slider gridVGapSlider = new Slider();
 gridVGapSlider.setMin(0);
 gridVGapSlider.setMax(100);
 gridVGapSlider.setValue(5);
 gridVGapSlider.setShowTickLabels(true);
 gridVGapSlider.setShowTickMarks(true);
 gridVGapSlider.setMinorTickCount(1);
 gridVGapSlider.setBlockIncrement(5);
  
 gridVGapSlider.valueProperty().addListener((ObservableValue<? extends Number> ov,
Number oldVal, Number newVal) -> {
 targetGridPane.setVgap((double) newVal);
 });  
  
 // vgap label
 GridPane.setHalignment(gridVGapLbl, HPos.RIGHT);
 add(gridVGapLbl, 0, 4);
  
 // vgap slider
 GridPane.setHalignment(gridVGapSlider, HPos.LEFT);
 add(gridVGapSlider, 1, 4);
  
 // Cell Column
 Label cellCol = new Label("Cell Column");
 final TextField cellColFld = new TextField("0");
  
 // cell Column label
 GridPane.setHalignment(cellCol, HPos.RIGHT);
 add(cellCol, 0, 5);
  
 // cell Column field
 GridPane.setHalignment(cellColFld, HPos.LEFT);
 add(cellColFld, 1, 5);
  
 // Cell Row
 Label cellRowLbl = new Label("Cell Row");
 final TextField cellRowFld = new TextField("0");
  
 // cell Row label
 GridPane.setHalignment(cellRowLbl, HPos.RIGHT);
 add(cellRowLbl, 0, 6);
  

Chapter 15 ■ Graphics with JavaFX

433

 // cell Row field
 GridPane.setHalignment(cellRowFld, HPos.LEFT);
 add(cellRowFld, 1, 6);
  
 // Horizontal Alignment
 Label hAlignLbl = new Label("Horiz. Align");
 final ChoiceBox hAlignFld = new ChoiceBox(FXCollections.observableArrayList(
 "CENTER", "LEFT", "RIGHT")
);
 hAlignFld.getSelectionModel().select("LEFT");
  
 // cell Row label
 GridPane.setHalignment(hAlignLbl, HPos.RIGHT);
 add(hAlignLbl, 0, 7);
  
 // cell Row field
 GridPane.setHalignment(hAlignFld, HPos.LEFT);
 add(hAlignFld, 1, 7);
 
 // Vertical Alignment
 Label vAlignLbl = new Label("Vert. Align");
 final ChoiceBox vAlignFld = new ChoiceBox(FXCollections.observableArrayList(
 "BASELINE", "BOTTOM", "CENTER", "TOP")
);
 vAlignFld.getSelectionModel().select("TOP");
 // cell Row label
 GridPane.setHalignment(vAlignLbl, HPos.RIGHT);
 add(vAlignLbl, 0, 8);
  
 // cell Row field
 GridPane.setHalignment(vAlignFld, HPos.LEFT);
 add(vAlignFld, 1, 8);
  
 // Vertical Alignment
 Label cellApplyLbl = new Label("Cell Constraint");
 final Button cellApplyButton = new Button("Apply");
 cellApplyButton.setOnAction((ActionEvent event) -> {
 for (Node child:targetGridPane.getChildren()) {
  
 int targetColIndx = 0;
 int targetRowIndx = 0;
 try {
 targetColIndx = Integer.parseInt(cellColFld.getText());
 targetRowIndx = Integer.parseInt(cellRowFld.getText());
 } catch (NumberFormatException e) {
  
 }
 System.out.println("child = " + child.getClass().getSimpleName());
 int col = GridPane.getColumnIndex(child);
 int row = GridPane.getRowIndex(child);

Chapter 15 ■ Graphics with JavaFX

434

 if (col == targetColIndx && row == targetRowIndx) {
 GridPane.setHalignment(child, HPos.valueOf(hAlignFld.getSelectionModel().
getSelectedItem().toString()));
 GridPane.setValignment(child, VPos.valueOf(vAlignFld.getSelectionModel().
getSelectedItem().toString()));
 }
 }
 });
 
 // cell Row label
 GridPane.setHalignment(cellApplyLbl, HPos.RIGHT);
 add(cellApplyLbl, 0, 9);
  
 // cell Row field
 GridPane.setHalignment(cellApplyButton, HPos.LEFT);
 add(cellApplyButton, 1, 9);
  
 }
}
 

Figure 15-7 shows a form designer application with the GridPane property control panel on the left and the target
form on the right.

Figure 15-7.  Manipulating layout via grids

Chapter 15 ■ Graphics with JavaFX

435

How It Works
The form designer application allows the users to adjust properties dynamically using the GridPane property
control panel to the left. While adjusting properties from the left control panel, the target form on the right side will
be manipulated dynamically. When creating a simple form designer application, you will be binding controls to
various properties onto the target form (GridPane). This designer application is basically broken into three classes:
ManipulatingLayoutViaGrids, MyForm, and GridPaneControlPanel. The ManipulatingLayoutViaGrids class is the
main application to be launched. MyForm is the target form that will be manipulated, and GridPaneControlPanel is
the grid property control panel that has UI controls bound to the targets form’s grid pane properties.

Begin by creating the main launching point for the application (ManipulatingLayoutViaGrids). This class
is responsible for creating a split pane (SplitPane) that sets up the target form to the right and instantiates a
GridPaneControlPanel to be displayed to the left. To instantiate a GridPaneControlPanel you must pass in the
target form you want to manipulate into the constructor. I will discuss this further, but suffice it to say that the
GridPaneControlPanel constructor will wire its controls to properties on the target form.

Next, you create a dummy form called MyForm. This is your target form that the property control panel will
manipulate. Here, notice that the MyForm extends GridPane. In the MyForm’s constructor, you create and add controls
to be put into the form (GridPane).

To learn more about the GridPane, refer to Recipe 15-8. The following code is a target form to be manipulated by
the form designer application:
 
/**
 * MyForm is a form to be manipulated by the user.
 * @author cdea
 */
public class MyForm extends GridPane{
 public MyForm() {
 
 setPadding(new Insets(5));
 setHgap(5);
 setVgap(5);
 
 Label fNameLbl = new Label("First Name");
 TextField fNameFld = new TextField();
 Label lNameLbl = new Label("Last Name");
 TextField lNameFld = new TextField();
 Label ageLbl = new Label("Age");
 TextField ageFld = new TextField();
 
 Button saveButt = new Button("Save");
 
 // First name label
 GridPane.setHalignment(fNameLbl, HPos.RIGHT);
 add(fNameLbl, 0, 0);
 //... The rest of the form code
 

To manipulate the target form you need to create a grid property control panel (GridPaneControlPanel). This
class is responsible for binding the target form’s grid pane properties to UI controls that allow users to adjust values
using the keyboard and mouse. As you learned in Chapter 14, in Recipe 14-10, you can bind values with JavaFX
properties. But instead of binding values directly, you can also be notified when a property has changed.

Chapter 15 ■ Graphics with JavaFX

436

Another feature that you can add to properties is the change listener. JavaFX javafx.beans.value.
ChangeListeners are similar to Java swing’s property change support (java.beans.PropertyChangeListener).
Similarly, when a bean’s property value has changed, you will want to be notified. Change listeners are designed to
intercept the change by making the old and new value available to the developer. The example starts this process
by creating a JavaFXchange listener for the toggle button to turn gridlines on or off. When a user interacts with
the toggle button, the change listener will simply update the target’s grid pane’s gridlinesVisible property.
Because a toggle button’s (ToggleButton) selected property is a Boolean value, you instantiate a ChangeListener
class with its formal type parameter as Boolean. You’ll also notice the lambda expression change listener
implementation, where its inbound parameters will match the generic formal type parameter specified when
instantiating a ChangeListener<Boolean>. When a property change event occurs, the change listener will invoke
setGridLinesVisible() on the target grid pane with the new value and update the toggle button’s text. The following
code snippet shows a ChangeListener<Boolean> added to a ToggleButton:
 
gridLinesToggle.selectedProperty().addListener(
 (ObservableValue<? extends Boolean> ov,
 Boolean oldValue, Boolean newVal) -> {
 targetGridPane.setGridLinesVisible(newVal);
 gridLinesToggle.setText(newVal ? "On" : "Off");
});
 

Next, you apply a change listener to a slider control that allows the user to adjust the target grid pane’s top
padding. To create a change listener for a slider, you instantiate a ChangeListener<Number>. Again, you’ll use a
lambda expression with a signature the same as its formal type parameter Number. When a change occurs, the slider’s
value is used to create an Insets object, which becomes the new padding for the target grid pane. Shown here is the
change listener for the top padding and slider control:
 
gridPaddingSlider.valueProperty().addListener((
 ObservableValue<? extends Number> ov, Number oldVal, Number newVal) -> {
 double top1 = targetGridPane.getInsets().getTop();
 double right1 = targetGridPane.getInsets().getRight();
 double bottom1 = targetGridPane.getInsets().getBottom();
 double left1 = targetGridPane.getInsets().getLeft();
 Insets newInsets = new Insets((double) newVal, right1, bottom1, left1);
 targetGridPane.setPadding(newInsets);
});
 

Because the implementation of the other slider controls that handle left padding, horizontal gap, and vertical
gap are virtually identical to the top padding slider control mentioned previously, you can fast-forward to cell
constraints controls.

The last bits of grid control panel properties that you want to manipulate are the target grid pane’s cell
constraints. For brevity, the example only allows the user to set a component’s alignment inside of a cell of a GridPane.
To see more properties to modify, refer to the Javadoc on javafx.scene.layout.GridPane. Figure 15-8 depicts the
cell constraint settings for individual cells. An example is to left-justify the label Age on the target grid pane. Because
cells are zero-relative, you will enter 0 in the Cell Column field and 2 into the Cell Row field. Next, you select the
drop-down box Horiz. Align to LEFT. Once you’re satisfied with the settings, click Apply. Figure 15-9 shows the
Age label control left-aligned horizontally. To implement this change, create a lambda expression that implements
EventHandler<ActionEvent> for the apply button’s onAction attribute. Inside of the lambda expression, you iterate

Chapter 15 ■ Graphics with JavaFX

437

the node children owned by the target grid pane to determine whether it is the specified cell. Once the specified cell
and child node is determined, the alignment is applied. The following code shows an EventHandler that applies a cell
constraint when the apply button is pressed:
 
cellApplyButton.setOnAction((ActionEvent event) -> {
 for (Node child:targetGridPane.getChildren()) {
 
 int targetColIndx = 0;
 int targetRowIndx = 0;
 try {
 targetColIndx = Integer.parseInt(cellColFld.getText());
 targetRowIndx = Integer.parseInt(cellRowFld.getText());
 } catch (NumberFormatException e) {
 
 }
 System.out.println("child = " + child.getClass().getSimpleName());
 int col = GridPane.getColumnIndex(child);
 int row = GridPane.getRowIndex(child);
 if (col == targetColIndx && row == targetRowIndx) {
 GridPane.setHalignment(child, HPos.valueOf(hAlignFld.getSelectionModel().
getSelectedItem().toString()));
 GridPane.setValignment(child, VPos.valueOf(vAlignFld.getSelectionModel().
getSelectedItem().toString()));
 }
 }
 });

 Figure 15-8 depicts the cell constraint grid control panel section that left-aligns the control at cell column 0 and
cell row 2.

Figure 15-8.  Cell constraints

Figure 15-9 depicts the target grid pane with the grid lines turned on and the Age label left-aligned horizontally at
cell column 0 and cell row 2.

Chapter 15 ■ Graphics with JavaFX

438

15-5. Enhancing the Interface with CSS
Problem
You want to change the Look and Feel of the GUI interface.

Solution
Apply JavaFX’s CSS styling to graph nodes. The following code demonstrates using CSS styling on graph nodes. The
code creates five themes: Modena, Caspian, Control Style 1, Control Style 2, and Sky. Each theme is defined using
CSS and affects the Look and Feel of a dialog box. Following the code, you can see the two different renditions of the
dialog box:
 
package org.java8recipes.chapter15.recipe15_05;
 
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.control.MenuItem;
import javafx.scene.control.SplitPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
 
/**
 * Recipe 15-5: Enhancing with CSS
 * @author cdea
 * Update: J Juneau
 */
public class EnhancingWithCss extends Application {
 

Figure 15-9.  Target grid pane

Chapter 15 ■ Graphics with JavaFX

439

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 
 @Override
 public void start(Stage primaryStage) {
  
 primaryStage.setTitle("Chapter 15-5 Enhancing with CSS ");
 Group root = new Group();
 final Scene scene = new Scene(root, 640, 480, Color.BLACK);
 MenuBar menuBar = new MenuBar();
 Menu menu = new Menu("Look and Feel");
  
 // New Modena Look and Feel
 MenuItem modenaLnf = new MenuItem("Modena");
 modenaLnf.setOnAction(enableCss(STYLESHEET_MODENA,scene));
 menu.getItems().add(modenaLnf);
  
 // Old default, Caspian Look and Feel
 MenuItem caspianLnf = new MenuItem("Caspian");
 caspianLnf.setOnAction(enableCss(STYLESHEET_CASPIAN, scene));
    
 menu.getItems().add(caspianLnf);
  
 menu.getItems().add(createMenuItem("Control Style 1", "controlStyle1.css", scene));
 menu.getItems().add(createMenuItem("Control Style 2", "controlStyle2.css", scene));
 menu.getItems().add(createMenuItem("Sky", "sky.css", scene));
  
 menuBar.getMenus().add(menu);
 // stretch menu
 menuBar.prefWidthProperty().bind(primaryStage.widthProperty());
  
 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());
  
 // Form on the right
 GridPane rightGridPane = new MyForm();
  
 GridPane leftGridPane = new GridPaneControlPanel(rightGridPane);
 VBox leftArea = new VBox(10);
 leftArea.getChildren().add(leftGridPane);
    
 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 VBox vbox = new VBox();
 vbox.getChildren().add(menuBar);
 vbox.getChildren().add(hbox);
 root.getChildren().add(vbox);
 splitPane.getItems().addAll(leftArea, rightGridPane);
 

Chapter 15 ■ Graphics with JavaFX

440

 primaryStage.setScene(scene);
  
 primaryStage.show();
  
 }
  
 protected final MenuItem createMenuItem(String label, String css, final Scene scene){
 MenuItem menuItem = new MenuItem(label);
 ObservableList<String> cssStyle = loadSkin(css);
 menuItem.setOnAction(skinForm(cssStyle, scene));
 return menuItem;
 }
  
 protected final ObservableList<String> loadSkin(String cssFileName) {
 ObservableList<String> cssStyle = FXCollections.observableArrayList();
 cssStyle.addAll(getClass().getResource(cssFileName).toExternalForm());
 return cssStyle;
 }
  
 protected final EventHandler<ActionEvent> skinForm
 (final ObservableList<String> cssStyle, final Scene scene) {
 return (ActionEvent event) -> {
 scene.getStylesheets().clear();
 scene.getStylesheets().addAll(cssStyle);
 };
 }
  
 protected final EventHandler<ActionEvent> enableCss(String style, final Scene scene){
 return (ActionEvent event) -> {
  
 scene.getStylesheets().clear();
 setUserAgentStylesheet(style);
 };
 }
 
}
 

Figure 15-10 depicts the standard JavaFX Modena Look and Feel (theme).

Chapter 15 ■ Graphics with JavaFX

441

Figure 15-11 depicts the Control Style 1 Look and Feel (theme).

Figure 15-10.  Modena Look and Feel

Chapter 15 ■ Graphics with JavaFX

442

How It Works
JavaFX has the capability to apply CSS styles to the scene graph and its nodes just like browsers apply CSS styles to
elements in an HTML document object model (DOM). In this recipe, you will be skinning a user interface using
JavaFX styling attributes. You basically use the recipe’s UI to apply the various Look and Feels. To showcase the
available skins, a menu selection allows the users to choose the Look and Feel to apply to the UI.

Before discussing the CSS styling properties, take a look at how you load the CSS styles to be applied to a JavaFX
application. The application in the example uses menu items to allow the user to choose the preferred Look and Feel.
When creating a menu item, you’ll create a convenience method to build a menu item that loads the specified CSS
and an EventHandler action, via a lambda expression, to apply the chosen CSS style to the current UI. The Modena
look and feel is loaded by default. Different look and feels can be applied by passing their respective stylesheets to the
setUserAgentStylesheet() method. For instance, to load the Caspian Look and Feel, you simply pass the constant
STYLESHEET_CASPIAN to the setUserAgentStylesheet() method. The following code shows how to create these
menu items:
 
MenuItem caspianLnf = new MenuItem("Caspian");
caspianLnf.setOnAction(skinForm(caspian, scene));
  

Figure 15-11.  Control Style 1 Look and Feel

Chapter 15 ■ Graphics with JavaFX

443

Shown next is the code for adding a menu item containing the Sky Look and Feel CSS style, which is ready to be
applied to the current UI.
 
// New Modena Look and Feel
MenuItem modenaLnf = new MenuItem("Modena");
modenaLnf.setOnAction(enableCss(STYLESHEET_MODENA,scene));
menu.getItems().add(modenaLnf);
 

The setOnAction() method calls a method named enableCss(), which takes a style sheet and the current scene.
The code for enableCss() is as follows:
 
protected final EventHandler<ActionEvent> enableCss(String style, final Scene scene){
 return (ActionEvent event) -> {
  
 scene.getStylesheets().clear();
 setUserAgentStylesheet(style);
 };
 }
 

For each of the other CSS styles, which are not part of the default JavaFX distribution, the menu item creation is a
bit different. This is an example of the code that utilizes the convenience method that was previously discussed.
 
menu.getItems().add(createMenuItem("Control Style 1", "controlStyle1.css", scene));
 

Calling the createMenuItem() method will also call another convenience method to load the CSS file called
loadSkin(). It will also set the menu item’s onAction attribute with an appropriate EventHandler by calling the
skinForm() method. To recap, the loadSkin is responsible for loading the CSS file, and the skinForm() method’s job
is to apply the skin onto the UI application. Shown here are the convenience methods to build menu items that apply
CSS styles to a UI application:
 
 protected final MenuItem createMenuItem(String label, String css, final Scene scene){
 MenuItem menuItem = new MenuItem(label);
 ObservableList<String> cssStyle = loadSkin(css);
 menuItem.setOnAction(skinForm(cssStyle, scene));
 return menuItem;
 }
 
 protected final ObservableList<String> loadSkin(String cssFileName) {
 ObservableList<String> cssStyle = FXCollections.observableArrayList();
 cssStyle.addAll(getClass().getResource(cssFileName).toExternalForm());
 return cssStyle;
 }
 
 protected final EventHandler<ActionEvent> skinForm
 (final ObservableList<String> cssStyle, final Scene scene) {
 return (ActionEvent event) -> {
 scene.getStylesheets().clear();
 scene.getStylesheets().addAll(cssStyle);
 };
}
 

Chapter 15 ■ Graphics with JavaFX

444

Note■■  T o run this recipe, make sure the CSS files are located in the compiled classes area. Resource files can be
loaded easily when placed in the same directory (package) as the compiled class file that is loading them. The CSS files
are co-located with this code example file. In NetBeans, you can select Clean and Build Project or you can copy files to
your classes’ build area.

Now that you know how to load CSS styles, let’s talk about the JavaFX CSS selectors and styling properties. Like
CSS style sheets, there are selectors or style classes associated with Node objects in the scene graph. All scene graph
nodes have a method called setStyle() that applies styling properties that could potentially change the node’s
background color, border, stroke, and so on. Because all graph nodes extend from the Node class, derived classes will
be able to inherit the same styling properties. Knowing the inheritance hierarchy of node types is very important
because the type of node will determine the types of styling properties you can affect. For instance, a Rectangle
extends from Shape, which extends from Node. The inheritance does not include -fx-border-style, which is the part
of node that extends from Region. Based on the type of node, there are limitations to what styles you are able to set. To
see a full list of all the style selectors, refer to the JavaFX CSS Reference Guide:
 
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html
 

All JavaFX styling properties are prefixed with -fx-. For example, all Nodes have the styling property to affect
opacity, and that attribute is -fx-opacity. Following are selectors that style the JavaFX javafx.scene.control.
Labels and javafx.scene.control.Buttons:
 
.label {
 -fx-text-fill: rgba(17, 145, 213);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
 
}
.button{
 -fx-text-fill: rgba(17, 145, 213);
 -fx-border-color: rgba(255, 255, 255, .80);
 -fx-border-radius: 8;
 -fx-padding: 6 6 6 6;
 -fx-font: bold italic 20pt "LucidaBrightDemiBold";
 
}

Summary
In this chapter, we covered a variety of topics that deal with JavaFX graphics. We learned how to create images by
developing an application that allows one to drag and drop images onto a stage, thereby creating a copy of the image.
We then covered recipes; which enable animation of text and also of shapes. Lastly, we learned how to utilize grids
and/or CSS to lay out application components.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/doc-files/cssref.html

445

Chapter 16

Media with JavaFX

JavaFX provides a media-rich API capable of playing audio and video. The Media API allows developers to incorporate
audio and video into their Rich Client Applications. One of the main benefits of the Media API is its cross-platform
abilities when distributing media content via the web. With a range of devices (tablets, music players, TVs, and so on)
that need to play multimedia content, the need for a cross-platform API is essential.

Imagine a not-so-distant future where your TV or wall is capable of interacting with you in ways that you’ve never
dreamed possible. For instance, while viewing a movie you could select items or clothing used in the movie to be
immediately purchased, all from the comfort of your home. With this future in mind, developers seek to enhance the
interactive qualities of their media-based applications.

In this chapter you will learn how to play audio and video in an interactive way. Find your seats for Act III of
JavaFX as audio and video take center stage—as depicted in Figure 16-1.

Figure 16-1.  Audio and video

16-1. Playing Audio
Problem
You want to listen to music and become entertained with a graphical visualization.

Chapter 16 ■ Media with JavaFX

446

Solution
Create an MP3 player by utilizing the following classes:

•	 javafx.scene.media.Media

•	 javafx.scene.media.MediaPlayer

•	 javafx.scene.media.AudioSpectrumListener

The following source code is an implementation of a simple MP3 player:
 
package org.java8recipes.chapter16.recipe16_01;
 
import java.io.File;
import java.util.Random;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.geometry.Point2D;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.media.AudioSpectrumListener;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Line;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.stage.StageStyle;
 
public class PlayingAudio extends Application {
 
 private MediaPlayer mediaPlayer;
 private Point2D anchorPt;
 private Point2D previousLocation;
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
 

Chapter 16 ■ Media with JavaFX

447

 @Override
 public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 16-1 Playing Audio");
 primaryStage.centerOnScreen();
 primaryStage.initStyle(StageStyle.TRANSPARENT);
 
 Group root = new Group();
 Scene scene = new Scene(root, 551, 270, Color.rgb(0, 0, 0, 0));
  
 // application area
 Rectangle applicationArea = new Rectangle();
 applicationArea.setArcWidth(20);
 applicationArea.setArcHeight(20);
 applicationArea.setFill(Color.rgb(0, 0, 0, .80));
 applicationArea.setX(0);
 applicationArea.setY(0);
 applicationArea.setStrokeWidth(2);
 applicationArea.setStroke(Color.rgb(255, 255, 255, .70));
 
 root.getChildren().add(applicationArea);
 applicationArea.widthProperty().bind(scene.widthProperty());
 applicationArea.heightProperty().bind(scene.heightProperty());
 
 final Group phaseNodes = new Group();
 root.getChildren().add(phaseNodes);
 
 // starting initial anchor point
 scene.setOnMousePressed((MouseEvent event) -> {
 anchorPt = new Point2D(event.getScreenX(), event.getScreenY());
 });
 
 // dragging the entire stage
 scene.setOnMouseDragged((MouseEvent event) -> {
 if (anchorPt != null && previousLocation != null) {
 primaryStage.setX(previousLocation.getX() + event.getScreenX() - anchorPt.getX());
 primaryStage.setY(previousLocation.getY() + event.getScreenY() - anchorPt.getY());
 }
 });
 
 // set the current location
 scene.setOnMouseReleased((MouseEvent event) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
 });
 
 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();

Chapter 16 ■ Media with JavaFX

448

 if (db.hasFiles()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
 });
 
 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 if (db.hasFiles()) {
 success = true;
 String filePath = null;
 for (File file : db.getFiles()) {
 filePath = file.getAbsolutePath();
 System.out.println(filePath);
 }
 // play file
 Media media = new Media(new File(filePath).toURI().toString());
 
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
 
 mediaPlayer = new MediaPlayer(media);
 
 // Maintained Inner Class for Tutorial, could be changed to lambda
 mediaPlayer.setAudioSpectrumListener(new AudioSpectrumListener() {
 @Override
 pu�blic void spectrumDataUpdate(double timestamp, double duration, float[]

magnitudes, float[] phases) {
 phaseNodes.getChildren().clear();
 int i = 0;
 int x = 10;
 int y = 150;
 final Random rand = new Random(System.currentTimeMillis());
 for (float phase : phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);
 
 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 phaseNodes.getChildren().add(circle);
 i += 5;
 }
 }
 });
 

Chapter 16 ■ Media with JavaFX

449

 mediaPlayer.setOnReady(mediaPlayer::play);
 }
 
 event.setDropCompleted(success);
 event.consume();
 });
 
 // create slide controls
 final Group buttonGroup = new Group();
 
 // rounded rect
 Rectangle buttonArea = new Rectangle();
 buttonArea.setArcWidth(15);
 buttonArea.setArcHeight(20);
 buttonArea.setFill(new Color(0, 0, 0, .55));
 buttonArea.setX(0);
 buttonArea.setY(0);
 buttonArea.setWidth(60);
 buttonArea.setHeight(30);
 buttonArea.setStroke(Color.rgb(255, 255, 255, .70));
  
 buttonGroup.getChildren().add(buttonArea);
 // stop audio control
 Rectangle stopButton = new Rectangle();
 stopButton.setArcWidth(5);
 stopButton.setArcHeight(5);
 stopButton.setFill(Color.rgb(255, 255, 255, .80));
 stopButton.setX(0);
 stopButton.setY(0);
 stopButton.setWidth(10);
 stopButton.setHeight(10);
 stopButton.setTranslateX(15);
 stopButton.setTranslateY(10);
 stopButton.setStroke(Color.rgb(255, 255, 255, .70));
  
 stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
 });
 buttonGroup.getChildren().add(stopButton);
 
 // play control
 final Arc playButton = new Arc();
 playButton.setType(ArcType.ROUND);
 playButton.setCenterX(12);
 playButton.setCenterY(16);
 playButton.setRadiusX(15);
 playButton.setRadiusY(15);
 playButton.setStartAngle(180 - 30);

Chapter 16 ■ Media with JavaFX

450

 playButton.setLength(60);
 playButton.setFill(new Color(1, 1, 1, .90));
 playButton.setTranslateX(40);
  
 playButton.setOnMousePressed((MouseEvent me) -> {
 mediaPlayer.play();
 });
 
 // pause control
 final Group pause = new Group();
 final Circle pauseButton = new Circle();
 pauseButton.setCenterX(12);
 pauseButton.setCenterY(16);
 pauseButton.setRadius(10);
 pauseButton.setStroke(new Color(1, 1, 1, .90));
 pauseButton.setTranslateX(30);
  
 final Line firstLine = new Line();
 firstLine.setStartX(6);
 firstLine.setStartY(16 - 10);
 firstLine.setEndX(6);
 firstLine.setEndY(16 - 2);
 firstLine.setStrokeWidth(3);
 firstLine.setTranslateX(34);
 firstLine.setTranslateY(6);
 firstLine.setStroke(new Color(1, 1, 1, .90));
 
 final Line secondLine = new Line();
 secondLine.setStartX(6);
 secondLine.setStartY(16 - 10);
 secondLine.setEndX(6);
 secondLine.setEndY(16 - 2);
 secondLine.setStrokeWidth(3);
 secondLine.setTranslateX(38);
 secondLine.setTranslateY(6);
 secondLine.setStroke(new Color(1, 1, 1, .90));
  
 pause.getChildren().addAll(pauseButton, firstLine, secondLine);
 
 pause.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonGroup.getChildren().remove(pause);
 buttonGroup.getChildren().add(playButton);
 mediaPlayer.pause();
 }
 });
 
 playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonGroup.getChildren().remove(playButton);

Chapter 16 ■ Media with JavaFX

451

 buttonGroup.getChildren().add(pause);
 mediaPlayer.play();
 }
 });
 
 buttonGroup.getChildren().add(pause);
 // move button group when scene is resized

 but�tonGroup.translateXProperty().bind(scene.widthProperty().subtract(buttonArea.getWidth()
+ 6));

 but�tonGroup.translateYProperty().bind(scene.heightProperty().subtract(buttonArea.getHeight()
+ 6));

 root.getChildren().add(buttonGroup);
 
 // close button
 final Group closeApp = new Group();
 Circle closeButton = new Circle();
 closeButton.setCenterX(5);
 closeButton.setCenterY(0);
 closeButton.setRadius(7);
 closeButton.setFill(Color.rgb(255, 255, 255, .80));
  
 Node closeXmark = new Text(2, 4, "X");
 closeApp.translateXProperty().bind(scene.widthProperty().subtract(15));
 closeApp.setTranslateY(10);
 closeApp.getChildren().addAll(closeButton, closeXmark);
 closeApp.setOnMouseClicked((MouseEvent event) -> {
 Platform.exit();
 });
 
 root.getChildren().add(closeApp);
 
 primaryStage.setScene(scene);
 primaryStage.show();
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
 
 }
}
 

Figure 16-2 shows a JavaFX MP3 player with visualizations.

Chapter 16 ■ Media with JavaFX

452

How It Works
Before you get started, I’ll discuss the instructions on how to operate the MP3 player. The users will be able to drag
and drop an audio file into the application area to be played. Located on the lower right of the application are buttons
to stop, pause, and resume play of audio media. (The button controls are shown in Figure 16-2.) As the music is
playing, the user will also notice randomly colored balls bouncing around to the music. Once the users are done
listening to the music, they can quit the application by clicking the white rounded close button located in the
upper-right corner.

It is similar to Recipe 15-1, in which you learned how to use the drag-and-drop desktop metaphor to load files
into a JavaFX application. Instead of image files, however, the user is accessing audio files. JavaFX currently supports
the following audio file formats: .mp3, .wav, and .aiff.

Following the same look and feel, you will use the same style as Recipe 15-1. In this recipe, you modify the button
controls to resemble buttons, similar to many media player applications. When the pause button is pressed, it will
pause the audio media from playing and toggle to the play button control, thus allowing the users to resume. As an
added bonus, the MP3 player will appear as an irregular shaped, semitransparent window without borders that can
also be dragged around the desktop using the mouse. Now that you know how the music player will operate, let’s walk
through the code.

First, you need to create instance variables that will maintain state information for the lifetime of the application.
Table 16-1 describes all the instance variables used in this music player application. The first variable is a reference
to a media player (MediaPlayer) object that will be created in conjunction with a Media object containing an audio
file. Next, you create an anchorPt variable used to save the starting coordinate of a mouse press when the users begin
to drag the window across the screen. When calculating the upper-left bounds of the application window during
a mouse-dragged operation, the previousLocation variable will contain the previous window’s screen X and Y
coordinates.

Figure 16-2.  JavaFX MP3 player

Chapter 16 ■ Media with JavaFX

453

Table 16-1 lists the MP3 player application’s instance variables.
In previous chapters relating to GUIs, you saw that GUI applications normally contain a title bar and

windowed borders surrounding the scene. Here, I wanted to raise the bar a little by showing you how to create
irregularly shaped semitransparent windows, thus making things look more hip or modern. As you begin to create
the media player, you’ll notice in the start() method that you prepare the Stage object by initializing the style
using StageStyle.TRANSPARENT. After you initialize the style to StageStyle.TRANSPARENT, the window will be
undecorated, with the entire window area’s opaque value set to zero (invisible). The following code shows you how
to create a transparent window without a title bar or windowed borders:
 
primaryStage.initStyle(StageStyle.TRANSPARENT);
 

With the invisible stage, you create a rounded rectangular region that will be the application’s surface or main
content area. Next, notice the width and height of the rectangle bound to the scene object in case the window is resized.
Because the window isn’t going to be resized, the bind isn’t necessary (it will be needed, however, in Recipe 16-2,
when you get a chance to enlarge your video screen to take on a full-screen mode).

After creating a black, semitransparent, rounded rectangular area (applicationArea), you’ll be creating a simple
Group object to hold all the randomly colored Circle nodes that will show off graphical visualizations while the audio
is being played. Later, you will see how the phaseNodes (Group) variable is updated based on sound information using
an AudioSpectrumListener.

Next, you add EventHandler<MouseEvent> instances to the Scene object (the example uses lambda expressions)
to monitor mouse events as the user drags the window around the screen. The first event in this scenario is a mouse
press, which will save the cursor’s current (X, Y) coordinates to the variable anchorPt. The following code is adding an
EventHandler to the mouse-press property of the Scene:
 
// starting initial anchor point
scene.setOnMousePressed((MouseEvent event) -> {
 anchorPt = new Point2D(event.getScreenX(), event.getScreenY());
});
 

After implementing the mouse-press event handler, you can create an EventHandler to the Scene’s mouse-drag
property. The mouse–drag event handler will update and position the application window (Stage) dynamically,
based on the previous window’s location (upper-left corner) along with the anchorPt variable. Shown here is an event
handler responsible for the mouse-drag event on the Scene object:
 
// dragging the entire stage
scene.setOnMouseDragged((MouseEvent event) -> {
 if (anchorPt != null && previousLocation != null) {
 primaryStage.setX(previousLocation.getX() + event.getScreenX() - anchorPt.getX());
 primaryStage.setY(previousLocation.getY() + event.getScreenY() - anchorPt.getY());
 }
});
 

Table 16-1.  MP3 Player Application Instance Variables

Variable Data Type Example Description

mediaPlayer MediaPlayer N/A A media player control that plays audio and video

anchorPt Point2D 100,100 A coordinate where the user begins to drag the window

previousLocation Point2D 0,0 The upper-left corner of the stage’s previous coordinate;
assists in dragging the window

Chapter 16 ■ Media with JavaFX

454

You will want to handle the mouse-release event. Once the mouse is released, the event handler will update the
previousLocation variable for subsequent mouse-drag events to move the application window about the screen.
The following code snippet updates the previousLocation variable:
 
// set the current location
scene.setOnMouseReleased((MouseEvent event) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
});
 

Next, you will be implementing the drag-and-drop scenario to load the audio file from the file system (using
the File Manager). When handling a drag-and-drop scenario, it is similar to Recipe 15-1, in which you created an
EventHandler to handle DragEvents. Instead of loading image files, you’ll be loading audio files from the host file
system. For brevity, I simply mention the code lines of the drag-and-dropped event handler. Once the audio file is
available, you will create a Media object by passing in the file as a URI. The following code snippet is how to create a
Media object:
 
Media media = new Media(new File(filePath).toURI().toString());
 

Once you have created a Media object you will have to create an instance of a MediaPlayer in order to play
the sound file. Both the Media and MediaPlayer objects are immutable, which is why new instances of each will be
created every time the user drags a file into the application. Next, you will check the instance variable mediaPlayer for
a previous instance to make sure it is stopped before creating a new MediaPlayer instance. The following code checks
for a prior media player to be stopped:
 
if (mediaPlayer != null) {
 mediaPlayer.stop();
}
 

So, here is where you create a MediaPlayer instance. A MediaPlayer object is responsible for controlling the
playing of media objects. Notice that a MediaPlayer will treat sound or video media the same in terms of playing,
pausing, and stopping media. When creating a media player, you specify the media and audioSpectrumListener
attribute methods. Setting the autoPlay attribute to true will play the audio media immediately after it has been
loaded. The last thing to specify on the MediaPlayer instance is an AudioSpectrumListener. So, what exactly is this
type of listener, you say? Well, according to the Javadoc, it is an observer receiving periodic updates of the audio
spectrum. In layman’s terms, it is the audio media’s sound data such as volume, tempo, and so on. To create an
instance of an AudioSpectrumListener, you create an inner class that overrides the method spectrumDataUpdate().
You could have also used a lambda expression here; the example uses the inner class to provide better insight into the
functionality. Table 16-2 lists all the inbound parameters for the audio spectrum listener’s method. For more details,
refer to the Javadoc at
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/AudioSpectrumListener.html.

Table 16-2.  The AudioSpectrumListener's Method spectrumDataUpdate() Inbound Parameters

Variable Data Type Example Description

timestamp double 2.4261 When the event occurred, in seconds

duration Double 0.1 The duration of time (in seconds) the spectrum was computed

magnitudes float[] -50.474335 An array of float values representing each band’s spectrum
magnitude in decibels (non-positive float value)

phases float[] 1.2217305 An array of float values representing each band’s phase

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/AudioSpectrumListener.html

Chapter 16 ■ Media with JavaFX

455

In the example, randomly colored circle nodes are created, positioned, and placed on the scene based on the
variable phases (array of floats). To draw each colored circle, the circle’s center X is incremented by five pixels and
the circle’s center Y is added with each phase value multiplied by 100. Shown here is the code snippet that plots each
randomly colored circle:
 
circle.setCenterX(x + i);
circle.setCenterY(y + (phase * 100));
... // setting the circle
i+=5;
 

Here is an inner class implementation of an AudioSpectrumListener:
 
new AudioSpectrumListener() {
 @Override
 pu�blic void spectrumDataUpdate(double timestamp, double duration, float[] magnitudes, float[]

phases) {
  
 phaseNodes.getChildren().clear();
 int i = 0;
 int x = 10;
 int y = 150;
 final Random rand = new Random(System.currentTimeMillis());
 for(float phase:phases) {
 int red = rand.nextInt(255);
 int green = rand.nextInt(255);
 int blue = rand.nextInt(255);
  
 Circle circle = new Circle(10);
 circle.setCenterX(x + i);
 circle.setCenterY(y + (phase * 100));
 circle.setFill(Color.rgb(red, green, blue, .70));
 phaseNodes.getChildren().add(circle);
 i+=5;
 }
 
 }
 };
 

Once the media player is created, you create a java.lang.Runnable to be set to the onReady attribute to be
invoked when the media is in a ready state. Once the ready event is realized, the run() method will call the media
player object’s play() method to begin the audio. With the dragged-drop sequence completed, you appropriately
notify the drag-and-drop system by invoking the event’s setDropCompleted() method with a value of true. The
following code snippet demonstrates how to implement a Runnable to begin the media player as soon as the media
player is in a ready state using a method reference:
 
mediaPlayer.setOnReady(mediaPlayer::play);
 

Finally, you create buttons with JavaFX shapes to represent the stop, play, pause, and close buttons. When
creating shapes or custom nodes, you can add event handlers to nodes in order to respond to mouse clicks. Although
there are advanced ways to build custom controls in JavaFX, this example uses custom-built button icons from simple
rectangles, arcs, circles, and lines. To see more advanced ways to create custom controls, refer to the Javadoc on the

Chapter 16 ■ Media with JavaFX

456

Skinnable API or to Recipe 16-5. To attach event handlers for a mouse press, simply call the setOnMousePress()
method by passing in an EventHandler<MouseEvent> instance. The following code demonstrates adding an
EventHandler to respond to mouse press on the stopButton node:
 
stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
});
 

Because all the buttons use the same code snippet, only the method calls that each button will perform on the
media player are listed. The last button, Close, isn’t related to the media player, but it provides a way to exit the MP3
player application. The following actions are responsible for stopping, pausing, playing, and exiting the MP3 player
application:
 
Stop - mediaPlayer.stop();
Pause - mediaPlayer.pause();
Play - mediaPlayer.play();
Close - Platform.exit();

16-2. Playing Video
Problem
You want to view a video file complete with controls to play, pause, stop, and seek.

Solution
Create a video media player by utilizing the following classes:

•	 javafx.scene.media.Media

•	 javafx.scene.media.MediaPlayer

•	 javafx.scene.media.MediaView

The following code is an implementation of a JavaFX basic video player:
 
public void start(final Stage primaryStage) {
 primaryStage.setTitle("Chapter 16-2 Playing Video");
 primaryStage.centerOnScreen();
 primaryStage.initStyle(StageStyle.TRANSPARENT);
 
 final Group root = new Group();
 final Scene scene = new Scene(root, 540, 300, Color.rgb(0, 0, 0, 0));
 
 // rounded rectangle with slightly transparent
 Node applicationArea = createBackground(scene);
 root.getChildren().add(applicationArea);
 
 // allow the user to drag window on the desktop
 attachMouseEvents(scene, primaryStage);
 

Chapter 16 ■ Media with JavaFX

457

 // allow the user to see the progress of the video playing
 progressSlider = createSlider(scene);
 root.getChildren().add(progressSlider);
 
 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasFiles() || db.hasUrl() || db.hasString()) {
 event.acceptTransferModes(TransferMode.COPY);
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 }
 } else {
 event.consume();
 }
 });
 
 // update slider as video is progressing (later removal)
 pr�ogressListener = (ObservableValue<? extends Duration> observable, Duration oldValue, Duration

newValue) -> {
 progressSlider.setValue(newValue.toSeconds());
 };
  
 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 URI resourceUrlOrFile = null;
 
 // dragged from web browser address line?
 if (db.hasContent(DataFormat.URL)) {
 try {
 resourceUrlOrFile = new URI(db.getUrl());
 } catch (URISyntaxException ex) {
 ex.printStackTrace();
 }
 } else if (db.hasFiles()) {
 // dragged from the file system
 String filePath = null;
 for (File file:db.getFiles()) {
 filePath = file.getAbsolutePath();
 }
 resourceUrlOrFile = new File(filePath).toURI();
 success = true;
 }
 // load media
 Media media = new Media(resourceUrlOrFile.toString());
 
 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();

Chapter 16 ■ Media with JavaFX

458

 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }
 
 // create a new media player
 mediaPlayer = new MediaPlayer(media);
 
 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty().addListener(progressListener);
  
 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis()/1000);
 mediaPlayer.play();
 });
 
 // Lazy init media viewer
 if (mediaView == null) {
 mediaView = new MediaView();
 mediaView.setMediaPlayer(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);
 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);
 
 mediaView.fitWidthProperty().bind(scene.widthProperty().subtract(220));
 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));
 
 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
 }
 
 // sometimes loading errors occur, print error when this happens
 mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
 });
 
 mediaView.setMediaPlayer(mediaPlayer);
 
 event.setDropCompleted(success);
 event.consume();
 });
 
 // rectangular area holding buttons
 final Group buttonArea = createButtonArea(scene);
 

Chapter 16 ■ Media with JavaFX

459

 // stop button will stop and rewind the media
 Node stopButton = createStopControl();
 
 // play button can resume or start a media
 final Node playButton = createPlayControl();
 
 // pause media play
 final Node pauseButton = createPauseControl();
 
 stopButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer!= null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.stop();
 }
 });
 // pause media and swap button with play button
 pauseButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer!=null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.pause();
 paused = true;
 }
 });
 
 // play media and swap button with pause button
 playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(pauseButton);
 paused = false;
 mediaPlayer.play();
 }
 });
 
 // add stop button to button area
 buttonArea.getChildren().add(stopButton);
 
 // set pause button as default
 buttonArea.getChildren().add(pauseButton);
 
 // add buttons
 root.getChildren().add(buttonArea);
 
 // create a close button
 Node closeButton= createCloseButton(scene);
 root.getChildren().add(closeButton);
 
 primaryStage.setOnShown((WindowEvent we) -> {
 previousLocation = new Point2D(primaryStage.getX(), primaryStage.getY());
 });
 

Chapter 16 ■ Media with JavaFX

460

 primaryStage.setScene(scene);
 primaryStage.show();
 
}
 

Following is the attachMouseEvents() method, which adds an EventHandler to the scene so the video player can
enter full-screen mode.
 
private void attachMouseEvents(Scene scene, final Stage primaryStage) {
 
 // Full screen toggle
 scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 primaryStage.setFullScreen(!primaryStage.isFullScreen());
 }
 });
 ... // the rest of the EventHandlers
}
 

The following method creates a slider control with a ChangeListener to enable the users to search backward and
forward through the video:
 
private Slider createSlider(Scene scene) {
 Slider slider = new Slider();
 slider.setMin(0);
 slider.setMax(100);
 slider.setValue(1);
 slider.setShowTickLabels(true);
 slider.setShowTickMarks(true);
 
 slider.valueProperty().addListener((ObservableValue<? extends Number> observable,
 Number oldValue, Number newValue) -> {
 if (paused) {
 long dur = newValue.intValue() * 1000;
 mediaPlayer.seek(new Duration(dur));
 }
 });
 
 slider.translateYProperty().bind(scene.heightProperty().subtract(30));
 return slider;
}
 

Figure 16-3 depicts the JavaFX basic video player with a slider control.

Chapter 16 ■ Media with JavaFX

461

How It Works
To create a video player, you will model the application similar to the example in Recipe 16-1 by reusing the same
application features such as drag-and-drop files, media button controls, and so on. For the sake of clarity, I took the
previous recipe and moved much of the UI code into convenience functions so you will be able to focus on the Media
APIs without getting lost in the UI code. The rest of the recipes in this chapter consist of adding simple features to the
JavaFX basic media player created in this recipe. This being said, the code snippets in the following recipes will be
brief, consisting only of the necessary code for each new desired feature.

It is important to note that the JavaFX media player supports various media formats. The supported formats are
as follows:

AIFF•	

FXM, FLV•	

HLS (*)•	

MP3•	

MP4•	

WAV•	

For a complete summary of the supported media types, see the online documentation at
http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html.

Just like the audio player created in the last recipe, the JavaFX basic video player has the same basic media
controls, including stop, pause, and play. In addition to these simple controls, you’ve added new capabilities such as
seeking and full-screen mode.

When playing a video you’ll need a view area (javafx.scene.media.MediaView) to show it. You also create a
slider control to monitor the progress of the video, which is located at the lower-left portion of the application shown
in Figure 16-3. The slider control allows the users to seek backward and forward through the video. One last bonus
feature is enabling the video to become full screen by double-clicking the application window. To restore the window,
users repeat the double-click or press Escape.

To quickly get started, let’s jump into the code. After setting the stage in the start() method, you create a
black semitransparent background by calling the createBackground() method (applicationArea). Next, the
attachMouseEvents() method is invoked to set up the EventHandlers so they can enable the users to drag the
application window around the desktop. Another EventHandler to be attached to the scene will allow the users to switch

Figure 16-3.  JavaFX basic video player

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html

Chapter 16 ■ Media with JavaFX

462

to full-screen mode. A conditional is used to check for a double-click in the application window in order to invoke
full-screen mode. Once the double-click is performed, the Stage's method setFullScreen() is invoked with a Boolean
value opposite of the currently set value. Shown here is the code needed to make a window go to full-screen mode:
 
// Full screen toggle
scene.setOnMouseClicked((MouseEvent event) -> {
 if (event.getClickCount() == 2) {
 primaryStage.setFullScreen(!primaryStage.isFullScreen());
 }
});
 

As you continue the steps inside the start() method, a slider control is created by calling the convenience
method createSlider(). The createSlider() method instantiates a Slider control and adds a ChangeListener to
move the slider as the video is playing. The ChangeListener’s changed() method is invoked any time the slider’s value
changes. Once the changed() method is invoked you will have an opportunity to see the old and new values. The
following code creates a ChangeListener to update the slider as the video is being played:
 
// update slider as video is progressing (later removal)
progressListener = (ObservableValue<? extends Duration> observable,
 Duration oldValue, Duration newValue) -> {
 progressSlider.setValue(newValue.toSeconds());
};
 

After creating the progress listener (progressListener), the dragged-dropped EventHandler for the scene is
created.

The goal is to determine whether the pause button was pressed before the user can move the slider. Once a
slider.isPressed() flag is determined, you will obtain the new value to be converted to milliseconds. The dur
variable is used to move the mediaPlayer to seek the position into the video as the user slides the control left or
right. The ChangeListener’s changed() method is invoked any time the slider’s value changes. The following code is
responsible for moving the seek position into the video based on the user moving the slider.
 
slider.valueProperty().addListener((ObservableValue<? extends Number> observable,
 Number oldValue, Number newValue) -> {
 if (slider.isPressed()) {
 long dur = newValue.intValue() * 1000;
 mediaPlayer.seek(new Duration(dur));
 }
});
 

Moving right along, you next implement a drag-dropped EventHandler to handle the media file being dropped
into the application window area. Here the example first checks to see whether there was a previous mediaPlayer. If
there was, the previous mediaPlayer object is stopped and cleanup is performed:
 
 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }
 ...
 

Chapter 16 ■ Media with JavaFX

463

 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis() / 1000);
 mediaPlayer.play();
 });// setOnReady()
 

As with the audio player, you create a Runnable instance to be run when the media player is in a ready state.
You’ll notice also that the progressSlider control uses values in seconds.

Once the media player object is in a ready state, a MediaView instance is created to display the media. The
following code creates a MediaView object to be placed into the scene graph to display video content:
 
// Lazy init media viewer
if (mediaView == null) {
 mediaView = new MediaView();
 mediaView.setMediaPlayer(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);
 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);
 
 mediaView.fitWidthProperty().bind(scene.widthProperty().subtract(220));
 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));
 
 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
}
 
// sometimes loading errors occur, print error when this happens
mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
});
 
mediaView.setMediaPlayer(mediaPlayer);
 
event.setDropCompleted(success);
event.consume();
});
 

Whew! You are finally finished with the scene’s drag-dropped EventHandler. Up next is pretty much the rest of
the media button controls, which are similar to the code at the end of Recipe 16-1. The only difference is a single
instance variable named paused of type Boolean that denotes whether the video was paused. The following code
shows the pauseButton and playButton controlling the mediaPlayer object and setting the paused flag accordingly:
 
// pause media and swap button with play button
pauseButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(playButton);
 mediaPlayer.pause();

Chapter 16 ■ Media with JavaFX

464

 paused = true;
 }
});
 
// play media and swap button with pause button
playButton.setOnMousePressed((MouseEvent me) -> {
 if (mediaPlayer != null) {
 buttonArea.getChildren().removeAll(pauseButton, playButton);
 buttonArea.getChildren().add(pauseButton);
 paused = false;
 mediaPlayer.play();
 }
});
 

That is how you create a video media player. In the next recipe, you learn how to listen to media events and
invoke actions.

16-3. Controlling Media Actions and Events
Problem
You want the media player to provide feedback in response to certain events, such as displaying the text “Paused” on
the screen when the media player’s paused event is triggered.

Solution
You can use one or more of the media event handler methods. Shown in Table 16-3 are all the possible media events
that are raised to allow developers to attach EventHandlers or Runnables.

Table 16-3.  Media Events

Class Set On Method On Method Property Method Description

Media setOnError() onErrorProperty() When an error occurs

MediaPlayer setOnEndOfMedia() onEndOfMediaProperty() Reached the end of the media play

MediaPlayer setOnError() onErrorProperty() Error occurred

MediaPlayer setOnHalted() onHaltedProperty() Media status changes to HALTED

MediaPlayer setOnMarker() onMarkerProperty() Marker event triggered

MediaPlayer setOnPaused() onPausedProperty() Paused event occurred

MediaPlayer setOnPlaying() onPlayingProperty() The media is currently playing

MediaPlayer setOnReady() onReadyProperty() Media player is in a ready state

MediaPlayer setOnRepeat() onRepeatProperty() Repeat property is set

MediaPlayer setOnStalled() onStalledProperty() Media player is stalled

MediaPlayer setOnStopped() onStoppedProperty() Media player has stopped

MediaView setOnError() onErrorProperty() Error occurred in media view

Chapter 16 ■ Media with JavaFX

465

The following code presents the “Paused” text the users, with the “Duration” having a decimal of milliseconds.
This text is overlaid on top of the video when the user clicks the pause button (see Figure 16-4).   

Figure 16-4.  Paused event

 // when paused event display pause message
mediaPlayer.setOnPaused(() -> {
 pauseMessage.setText("Paused \nDuration: " +
 mediaPlayer.currentTimeProperty().getValue().toMillis());
 pauseMessage.setOpacity(.90);
}); 

How It Works
Event-driven architecture (EDA) is a prominent architectural pattern used to model loosely coupled components and
services that pass messages asynchronously. The JavaFX team designed the Media API to be event-driven, and this
recipe demonstrates how to implement it in response to media events.

With event-based programming in mind, you will discover nonblocking or callback behaviors when invoking
functions. In this recipe, you will implement the display of text in response to an onPaused event instead of placing
your code into the pause button. Instead of tying code directly to a button via an EventHandler, you will be
implementing code that will respond to the media player’s onPaused event being triggered. When responding to
media events, you will be implementing java.lang.Runnables.

You’ll be happy to know that you’ve been using event properties and implementing Runnables all along, albeit
usually in the form of lambda epresssions. Hopefully you noticed this in all the recipes in this chapter. When the
media player is in a ready state, the Runnable code will be invoked. Why is this correct? Well, when the media player
is finished loading the media, the onReady property will be notified. That way you can be sure you can invoke the
MediaPlayer’s play() method. I trust that you will get used to event style programming. The following code snippet
demonstrates setting a Runnable instance into a media player object’s OnReady property using a lambda expression:
 
mediaPlayer.setOnReady(() -> {
 mediaPlayer.play();
});
 

Chapter 16 ■ Media with JavaFX

466

So that you can see the difference between the newer Java 8 style of programming versus the older style, here is
the same code implemented without using a lambda expression:
 
mediaPlayer.setOnReady(new Runnable() {
 @Override
 public void run() {
 mediaPlayer.play();
 }
});
 

See how many lines of code you got rid of by using lambdas? How much are you enjoying Java 8 now? You will
be taking steps similar to the onReady property. Once a Paused event has been triggered, the run() method will
be invoked to present to the user a message containing a Text node with the word Paused and a duration showing
the time in milliseconds into the video. Once the text is displayed, you might want to write down the duration as
markers (as you’ll learn in Recipe 16-4). The following code snippet shows an attached Runnable instance, which is
responsible for displaying a paused message and duration in milliseconds at the point at which it was paused in the
video:
 
// when paused event display pause message
mediaPlayer.setOnPaused(() -> {
pauseMessage.setText("Paused \nDuration: " +
 mediaPlayer.currentTimeProperty().getValue().toMillis());
pauseMessage.setOpacity(.90);
});

16-4. Marking a Position in a Video
Problem
You want to provide closed caption text while playing a video in the media player.

Solution
Begin by applying the solution in Recipe 16-3. By obtaining the marked durations (in milliseconds) from the previous
recipe, you will create media marker events at points into the video. With each media marker you will associate text
that will be displayed as closed captions. When a marker comes to pass, the text will be shown in the upper-right side.

The following code snippet demonstrates media marker events being handled in the onDragDropped event
property of the Scene object:
 
... // inside the start() method
 
final VBox messageArea = createClosedCaptionArea(scene);
root.getChildren().add(messageArea);
 
// Dropping over surface
scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 URI resourceUrlOrFile = null;
 

Chapter 16 ■ Media with JavaFX

467

 // dragged from web browser address line?
 if (db.hasContent(DataFormat.URL)) {
 try {
 resourceUrlOrFile = new URI(db.getUrl().toString());
 } catch (URISyntaxException ex) {
 ex.printStackTrace();
 }
 } else if (db.hasFiles()) {
 // dragged from the file system
 String filePath = null;
 for (File file:db.getFiles()) {
 filePath = file.getAbsolutePath();
 }
 resourceUrlOrFile = new File(filePath).toURI();
 success = true;
 }
 // load media
 Media media = new Media(resourceUrlOrFile.toString());
 
 // stop previous media player and clean up
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.currentTimeProperty().removeListener(progressListener);
 mediaPlayer.setOnPaused(null);
 mediaPlayer.setOnPlaying(null);
 mediaPlayer.setOnReady(null);
 }
 
 // create a new media player
 mediaPlayer = new MediaPlayer(media);
 
 // as the media is playing move the slider for progress
 mediaPlayer.currentTimeProperty().addListener(progressListener);
 
 // when paused event display pause message
 mediaPlayer.setOnPaused(() -> {
 pauseMessage.setOpacity(.90);
 });
 
 // when playing make pause text invisible
 mediaPlayer.setOnPlaying(() -> {
 pauseMessage.setOpacity(0);
 });
 
 // play video when ready status
 mediaPlayer.setOnReady(() -> {
 progressSlider.setValue(1);
 progressSlider.setMax(mediaPlayer.getMedia().getDuration().toMillis()/1000);
 mediaPlayer.play();
 });
 

Chapter 16 ■ Media with JavaFX

468

 // Lazy init media viewer
 if (mediaView == null) {
 mediaView = new MediaView(mediaPlayer);
 mediaView.setX(4);
 mediaView.setY(4);
 mediaView.setPreserveRatio(true);
 mediaView.setOpacity(.85);
 mediaView.setSmooth(true);
 
 me�diaView.fitWidthProperty().bind(scene.widthProperty().subtract(messageArea.

widthProperty().add(70)));
 mediaView.fitHeightProperty().bind(scene.heightProperty().subtract(30));
 
 // make media view as the second node on the scene.
 root.getChildren().add(1, mediaView);
 }
 
 // sometimes loading errors occur
 mediaView.setOnError((MediaErrorEvent event1) -> {
 event1.getMediaError().printStackTrace();
 });
 
 mediaView.setMediaPlayer(mediaPlayer);
 
 media.getMarkers().put("First marker", Duration.millis(10000));
 media.getMarkers().put("Second marker", Duration.millis(20000));
 media.getMarkers().put("Last one...", Duration.millis(30000));
 
 // display closed caption
 mediaPlayer.setOnMarker((MediaMarkerEvent event1) -> {
 closedCaption.setText(event1.getMarker().getKey());
 });
 
 event.setDropCompleted(success);
 event.consume();
}); // end of setOnDragDropped
 

The following code shows a factory method that returns an area that will contain the closed caption to be
displayed to the right of the video:
 
private VBox createClosedCaptionArea(final Scene scene) {
 // create message area
 final VBox messageArea = new VBox(3);
 messageArea.setTranslateY(30);
 messageArea.translateXProperty().bind(scene.widthProperty().subtract(152));
 messageArea.setTranslateY(20);
 closedCaption = new Text();
 closedCaption.setStroke(Color.WHITE);
 closedCaption.setFill(Color.YELLOW);
 closedCaption.setFont(new Font(15));
 

Chapter 16 ■ Media with JavaFX

469

 messageArea.getChildren().add(closedCaption);
 return messageArea;
}
 

Figure 16-5 depicts the video media player displaying the closed caption text.

Figure 16-5.  Closed caption text

How It Works
The Media API has many event properties to which the developer can attach EventHandlers or Runnables instances
so they can respond when the events are triggered. This recipe focused on the OnMarker event property.
The Marker property is responsible for receiving marker events (MediaMarkerEvent).

Let’s begin by adding markers to the Media object. It contains a method getMarkers() that returns an
javafx.collections.ObservableMap<String, Duration>. With an observable map, you can add key/value pairs
that represent each marker. Adding keys should be a unique identifier, and the value is an instance of Duration. For
simplicity, this example uses the closed caption text as the key for each media marker. The marker durations are those
written down as users press the pause button at points in the video determined in Recipe 16-3. Be advised that this is
not the recommended approach to use for production-quality code. You may want to use a parallel Map instead.

After adding markers you will be setting an EventHandler into the MediaPlayer object’s OnMarker property
using the setOnMarker() method. Next, you implement an EventHandler via a lambda expression to handle
MediaMarkerEvents that are raised. Once an event has been received, you obtain the key representing the text to be
used in the closed caption. The instance variable closedCaption (javafx.scene.text.Text node) will simply be
shown by calling the setText() method with the key or string associated with the marker.

That’s it for media markers. That goes to show how you can coordinate special effects, animations, and so on
during a video quite easily.

16-5. Synchronizing Animation and Media
Problem
You want to incorporate animated effects in your media display, such as scrolling the text "The End" after the video is
finished playing.

Chapter 16 ■ Media with JavaFX

470

Solution
You simply use Recipe 16-3 together with Recipe 16-2. Recipe 16-3 shows how to respond to media events and
Recipe 16-2 demonstrates how to use the translate transition to animate text.

The following code demonstrates an attached action when the end of a media event is triggered:
 
mediaPlayer.setOnEndOfMedia(() -> {
 closedCaption.setText("");
 animateTheEnd.getNode().setOpacity(.90);
 animateTheEnd.playFromStart();
 });
 

The following method creates a translateTransition of a Text node containing the string “The End” that
appears after an end of media event is triggered:
 
 public TranslateTransition createTheEnd(Scene scene) {
 Text theEnd = new Text("The End");
 theEnd.setFont(new Font(40));
 theEnd.setStrokeWidth(3);
 theEnd.setFill(Color.WHITE);
 theEnd.setStroke(Color.WHITE);
 theEnd.setX(75);
 
 TranslateTransition scrollUp = new TranslateTransition();
 scrollUp.setNode(theEnd);
 scrollUp.setDuration(Duration.seconds(1));
 scrollUp.setInterpolator(Interpolator.EASE_IN);
 scrollUp.setFromY(scene.getHeight() + 40);
 scrollUp.setToY(scene.getHeight()/2);
 
 return scrollUp;
}
 

Figure 16-6 depicts the "The End" text node scrolling along after the OnEndOfMedia event is triggered.

Figure 16-6.  Animating “The End”

Chapter 16 ■ Media with JavaFX

471

How It Works
This recipe showcases how to synchronize events to animated effects. In the code example, when the video
reaches the end, an OnEndOfMedia property event initiates a Runnable instance. Once the instance is initiated, a
TranslateTransition animation is performed by scrolling a Text node upward that contains the string "The End".

Let’s take a look at the setOnEndOfMedia() method associated with the MediaPlayer object. Just like in
Recipe 16-3, you simply call the setOnEndOfMedia() method by passing in a lambda expression implementing
Runnable, which contains the code that will invoke an animation. If you don’t know how the animation works, refer to
Recipe 16-2. Once the event occurs, you will see the text scroll upward. The following code snippet is from inside the
scene.setOnDragDropped() method:
 
mediaPlayer.setOnEndOfMedia(() -> {
 closedCaption.setText("");
 animateTheEnd.getNode().setOpacity(.90);
 animateTheEnd.playFromStart();
});
 

For the sake of space, I trust you know where the code block would reside. If not, refer to Recipe 16-3, in which
you will notice other OnXXX properties methods. To see the entire code listing and download the source code, visit the
book’s website.

To animate "The End" you create a convenience createTheEnd() method to create an instance of a Text node
and return a TranslateTransition object to the caller. The TranslateTransition that’s returned does the following:
it waits a second before playing the video. Next is the interpolator in which you used the Interpolator.EASE_IN to
move the Text node by easing in before a full stop. Last is setting the Y property of the node to move from the bottom
to the center of the viewing area.

The following code creates an animation that scrolls a node in an upward motion:
 
TranslateTransition scrollUp = new TranslateTransition();
scrollUp.setNode(theEnd);
scrollUp.setDuration(Duration.seconds(1));
scrollUp.setInterpolator(Interpolator.EASE_IN);
scrollUp.setFromY(scene.getHeight() + 40);
scrollUp.setToY(scene.getHeight()/2);

Summary
JavaFX has been a venue for development of media-based applications since its beginning. The JavaFX Media
API enables developers to easily add media and media-based controls to any application. In previous versions of
JavaFX, video and audio types were more limited. Java 8 makes it even easier to support different media types and to
implement media controls via lambda expressions.

This chapter provided a brief overview of some JavaFX Media API capabilities. However, we haven’t even
scratched the surface of the possibilities. For more information regarding the JavaFX Media API, see the online
documentation at http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html.

http://docs.oracle.com/javase/8/javafx/api/javafx/scene/media/package-summary.html

473

Chapter 17

JavaFX on the Web

JavaFX provides new capabilities to interoperate with HTML5. The underlying web page–rendering engine in JavaFX
is the popular open-source API called Webkit. Webkit is also used in Google’s Chrome and Apple’s Safari browsers.
HTML5 content consists of JavaScript, CSS, Scalable Vector Graphics (SVG), and new HTML element tags. The
relationship between JavaFX and HTML5 is important because they complement one another by drawing from each
of their individual strengths. For instance, JavaFX’s rich client APIs coupled with HTML5’s rich web content create
a user experience resembling a web application with the characteristics of desktop software. This new breed of
applications is called Rich Client Applications.

This chapter covers the following topics:

Embedding JavaFX applications in an HTML web page•	

Displaying HTML5 content•	

Manipulating HTML5 content with Java code•	

Responding to HTML events•	

Displaying content from the database•	

JavaFX does not replace HTML5, or the other way around. Rather, they complement each other, and this chapter
contains recipes that demonstrate the strengths of using these two technologies together.

17-1. Embedding JavaFX Applications in a Web Page
Problem
You want to incorporate JavaFX applications into web pages.

Solution
Create a Hello World application using the NetBeans IDE 8.0 or later by using its new project wizard to create an
application to run in a browser. Here are steps to follow to create a Hello World JavaFX application that is embedded
in an HTML web page:

Note■■   For in-depth JavaFX deployment strategies, refer to Oracle’s deploying JavaFX applications at
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm.

http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm

Chapter 17 ■ JavaFX on the Web

474

Here are the steps for running the new project wizard:

	 1.	 Select New Project from the File menu in NetBeans IDE version 8 or later.

	 2.	 Select JavaFX in the Categories section under Choose Project, as shown in Figure 17-1.
Next, select JavaFX Application under Projects. Then click Next to proceed. 

Figure 17-1.  The New Project dialog box

	 3.	 Create a project by specifying a name and selecting the check box to allow the wizard
to generate a main class called MyJavaFXApp.java. Figure 17-2 shows the New JavaFX
Application window, where you specify the project name and location. When you are
finished, click the Finish button. 

Chapter 17 ■ JavaFX on the Web

475

	 4.	 Once your new project has been created, modify the project’s properties and select
browser deployment. To modify the properties, right-click the project and select Properties
via the popup menu. Figure 17-3 shows the project created with a main JavaFX file named
MyJavaFXApp.java. 

Figure 17-2.  The New JavaFX Application dialog box, where you specify the project’s name and location

Figure 17-3.  The MyJavaFXApp.java project

	 5.	 Go into the project’s properties, as shown in Figure 17-4. Select Sources in the Categories
area. Next, adjust the Source/Binary Format option to point to JDK 8 if it doesn’t already. 

Chapter 17 ■ JavaFX on the Web

476

	 6.	 Select the Run option in the Categories list shown in Figure 17-5. Select the In Browser
radio button. Then click the OK button. 

Figure 17-4.  Project Properties—MyJavaFXApp window

Figure 17-5.  Setting up the Run in Browser option

Chapter 17 ■ JavaFX on the Web

477

	 7.	 Run and test the project by clicking the Run button on the toolbar or by pressing the F6 key.
Figure 17-6 depicts the resulting Hello World application running in a browser. 

Figure 17-6.  The MyJavaFXApp Hello World application running inside a browser

How It Works
The easiest way to create an embedded JavaFX application inside an HTML page is to use an IDE such as NetBeans.
Although there are different deployment strategies, such as the Webstart and Standalone modes, here you use the
NetBeans new project wizard to deploy a local web page containing your JavaFX application in your browser.
For in-depth JavaFX deployment strategies, refer to Oracle’s Deploying JavaFX applications at
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm.

The following code is generated by this solution. Notice the JavaFX classes being used, for example, the Stage,
Group, and Scene classes.

Note■■   You can drag the imports and code from another code file into the body of this new main project class, and then
change the name on the class definition line, as appropriate.

http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm

Chapter 17 ■ JavaFX on the Web

478

NetBeans IDE generated the following sources after choosing to create a new JavaFX application for deployment
via a browser: 

package org.java8recipes.chapter17.recipe17_01;
 
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;
 
/**
 *
 * @author cdea
 * Update: Juneau
 */
public class MyJavaFXApp extends Application {
 
 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Application.launch(args);
 }
  
 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World");
 Group root = new Group();
 Scene scene = new Scene(root, 300, 250);
 Button btn = new Button();
 btn.setLayoutX(100);
 btn.setLayoutY(80);
 btn.setText("Hello World");
 btn.setOnAction((ActionEvent event) -> {
 System.out.println("Hello World");
 });
 root.getChildren().add(btn);
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}
 

In step 1, you initiate a new project (shown in Figure 17-6). In step 2, you select the standard JavaFX application
to be created. After selecting the project type, you specify the name of the project. Make sure you click the Create
Application Class check box to allow the wizard to generate the MyJavaFXApp Java file. Once you have clicked Finish,
your newly created application will appear in the Projects tab. Next, you change the project’s properties.

In step 5 you change two categories—Sources and Run. In the Sources category, make sure the Source/Binary
Format is set to JDK 1.8. After updating the Sources category, you determine how the project will run (step 6) through
the Run category. After you select the In Browser radio button, notice the Width and Height options below the
working directory field. To use your own custom web page, click the Browse button to select an existing HTML file.
In this recipe, you can leave this area blank to allow the wizard to generate a generic HTML page. Assuming that you
are done with your settings, you click OK to close the Project Properties window.

Chapter 17 ■ JavaFX on the Web

479

Lastly, you run your embedded JavaFX web application (step 7). To run your application, make sure the project
is set as the main project by selecting Run ➤ Set Main Project ➤ MyJavaFXApp. Once you initiate a run, your browser
will launch, containing a generic web page with your JavaFX application. You’ll also notice that a convenient link
allows you to launch the application as a Webstart application (not embedded).

Note■■  A pplets (Java applications that are embedded in the browser) are not the preferred way of deploying
JavaFX applications, but they are covered in this recipe for completeness. To learn about the different options
for packaging and deploying JavaFX applications, refer to the online guide at
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm.

17-2. Loading Scalable Vector Graphics File Content
Problem
You want to embed HTML5 content in the form of a Scalable Vector Graphics (SVG) file into a JavaFX application.

Solution
Create a JavaFX based-application containing an analog clock that was created as an SVG file. Use JavaFX’s WebView
API to render HTML5 content in your application.

The following source code is a JavaFX application that displays an animated analog clock. The application will
load an SVG file named clock3.svg and display the contents onto the JavaFX Scene graph:
 
package org.java8recipes.chapter17.recipe17_02;
import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
 
/**
 *
 * @author cdea
*/
public class DisplayHtml5Content extends Application {
 private Scene scene;
 @Override public void start(Stage stage) {
 // create the scene
 stage.setTitle("Chapter 17-2 Display Html5 Content");
 final WebView browser = new WebView();
 URL url = getClass().getResource("clock3.svg");
 browser.getEngine().load(url.toExternalForm());
 scene = new Scene(browser,590,400, Color.rgb(0, 0, 0, .80));
 stage.setScene(scene);
 stage.show();
 }
 

http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

Chapter 17 ■ JavaFX on the Web

480

 public static void main(String[] args){
 Application.launch(args);
 }
}
 

This JavaFX code will load and render HTML5 content. Assuming that you have a designer who has provided
content such as HTML5, it will be your job to render assets in JavaFX. The following code represents an SVG file
named clock3.svg that is predominantly generated by the powerful tool called Inkscape, which is an illustrator
tool capable of generating SVG. In the following code, notice hand-coded JavaScript code (inside the CDATA tag) that
will position the second, minute, and hour hands of the clock based on the current time of day. Because all the logic
(from setting the time to animating the hands) is inside this file, things are self-contained, which means any HTML5-
capable viewer can display the file’s contents. So when you’re debugging, you can easily render content in any
HTML5-compliant browser. Later in this chapter, you will see JavaFX code that can interact with HTML5 content.

Shown here is a pared-down version of the SVG analog clock. (To obtain the file’s source code, download the
code from the book’s website.) This is an SVG analog clock created in Inkscape (clock3.svg):
 
<svg
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:cc="http://creativecommons.org/ns#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:svg="http://www.w3.org/2000/svg"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
 xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
 width="300"
 height="250"
 id="svg4171"
 version="1.1"
 inkscape:version="0.48.1 "
 sodipodi:docname="clock3.svg" onload="updateTime()">
 
<script>
 
<![CDATA[
var xmlns="http://www.w3.org/2000/svg"
 
function updateTime()
{
 var date = new Date()
 
 var hr = parseInt(date.getHours())
 if (hr > 12) {
 hr = hr - 12;
 }
 var min = parseInt(date.getMinutes())
 var sec = parseInt(date.getSeconds())
 var pi=180
 

Chapter 17 ■ JavaFX on the Web

481

 var secondAngle = sec * 6 + pi
 var minuteAngle = (min + sec / 60) * 6 + pi
 var hourAngle = (hr + min / 60 + sec /3600) * 30 + pi
 
 moveHands(secondAngle, minuteAngle, hourAngle)
}
 
function moveHands(secondAngle, minuteAngle, hourAngle) {
 
 var secondHand = document.getElementById("secondHand")
 var minuteHand = document.getElementById("minuteHand")
 var hourHand = document.getElementById("hourHand")
 
 secondHand.setAttribute("transform","rotate("+ secondAngle + ")")
 minuteHand.setAttribute("transform","rotate("+ minuteAngle +")")
 hourHand.setAttribute("transform","rotate("+ hourAngle + ")")
 
}
 
]]>
 
</script>
<defs id="defs4173">
... // beginning of SVG code
... // Main clock code
 
<g id="hands" transform="translate(108,100)">
<g id="minuteHand">
<line stroke-width="3.59497285" y2="50" stroke-linecap="round" stroke="#00fff6" opacity=".9" />
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60min"
 by="360" />
</g>
 
<g id="hourHand">
<line stroke-width="5" y2="30" stroke-linecap="round" stroke="#ffcb00" opacity=".9" />
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="12h"
 by="360" />
</g>
<g id="secondHand">
<line stroke-width="2" y1="-20" y2="70" stroke-linecap="round" stroke="red"/>
<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60s"
 by="360" />
</g>
</g>
 
 ... // The rest of the Clock code: shiney glare, black button cover (center) on top of arms
 
</svg>
 

Figure 17-7 depicts a JavaFX application that renders the SVG file clock3.svg displaying an analog clock.

Chapter 17 ■ JavaFX on the Web

482

How It Works
In this recipe, you’ll create an analog clock application that will take existing HTML5 content to be rendered onto the
JavaFX Scene graph. HTML5 allows SVG content to be displayed in browsers. SVG is similar to JavaFX’s Scene graph,
in which nodes can be scaled to different sizes while preserving details. To manipulate SVG or any HTML5 elements,
this example uses the JavaScript language. Depicted in Figure 17-7 is a JavaFX application displaying an animated
analog clock. To learn more about SVG, visit http://www.w3schools.com/svg/default.asp. Before running this
example, make sure the clock3.svg file is located in the build path. In NetBeans you may need to perform a clean and
build before running the application that will copy the resource (clock3.svg) to the build path. You may also want to
manually copy the clock3.svg file to reside in the build path where the DisplayHtml5Content.class file is located if
you are running application on the command line.

You will undoubtedly work with a designer who has used popular tools to generate web content that’s wired to
an application’s functions. To create an analog clock, Carl Dea enlisted his daughter, who is quite proficient with the
Open Source tool Inkscape. Although Inkscape was used to generate the content for this recipe, I will not go
into details regarding the tool because it is beyond the scope of this book. To learn more about Inkscape, visit
http://www.inkscape.org for tutorials and demos. To model the designer and developer workflow, she created a cool
looking clock and I added JavaScript/SVG code to move the clock’s hour, minute, and second hands. Inkscape allows
you to create shapes, text, and effects to generate amazing illustrations. Because SVG files are considered HTML5
content, you can display SVG drawings inside of an HTML5-capable browser. In this scenario, the example displays
the analog clock in JavaFX’s WebView node. You can think of a WebView node as a mini-browser capable of loading and
displaying URLs. When it’s loading an URL you will notice the call to getEngine().load(), where the getEngine()
method returns an instance of the javafx.scene.web.WebEngine object. So, the WebView object is implicitly creating
one javafx.scene.web.WebEngine object instance per WebView object. Shown here is the JavaFX’s WebEngine object
loading the clock3.svg file:
 
final WebView browser = new WebView();
URL url = getClass().getResource("clock3.svg");
browser.getEngine().load(url.toExternalForm());
 

You are probably wondering why the JavaFX source code is so short. This is because its job is to instantiate an
instance of a javafx.scene.web.WebView that instantiates a javafx.scene.web.WebEngine class and passes an URL.
After that, the WebEngine object does all the work by rendering HTML5 content just like any browser. The same code
could be written as follows:
 
final WebView browser = new WebView();
WebEngine engine = browser.getEngine();
URL url = getClass().getResource("clock3.svg");
engine.load(url.toExternalForm()); 

Figure 17-7.  Analog clock

http://www.w3schools.com/svg/default.asp
http://www.inkscape.org/

Chapter 17 ■ JavaFX on the Web

483

When rendering the content, notice that the clock’s arms move or animate; for example, the second hand
rotates clockwise. Before animating the clock, you have to set the clock’s initial position by calling the JavaScript
updateTime() function via the onload attribute on the entire SVG document (located on the root svg element). Once
the clock’s arms are set, you add SVG code to draw and animate by using the line and animate transform elements,
respectively. Shown here is the SVG code snippet that animates the second hand:
 
<g id="secondHand">
<line stroke-width="2" y1="-20" y2="70" stroke-linecap="round" stroke="red"/>
�<animateTransform attributeName="transform" type="rotate" repeatCount="indefinite" dur="60s"
 by="360" />
</g>
 

On a final note, if you want to create a clock like the one depicted in this recipe, visit
http://screencasters.heathenx.org/blog to learn about all things Inkscape. Another impressive and beautiful
display of custom controls that focuses on gauges and dials is the Steel Series by Gerrit Grunwald. To be totally
amazed, visit his blog at http://harmoniccode.blogspot.com.

17-3. Manipulating HTML5 Content with Java Code
Problem
You want to generate HTML5 content via Java code and display it in your JavaFX application.

Solution
Implement a solution that formulates HTML5 content in string format. Once you’ve created the desired HTML5
content, you’ll display it using a WebView node. This example creates a weather application that fetches data from
Yahoo!’s weather service. The following code implements a weather application that retrieves Yahoo!’s weather
information to be rendered as HTML in a JavaFX application:
 
package org.java8recipes.chapter17.recipe17_03;
 
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;
import javafx.concurrent.Worker.State;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
import javafx.util.Duration;
import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
  
 

http://screencasters.heathenx.org/blog
http://harmoniccode.blogspot.com/

Chapter 17 ■ JavaFX on the Web

484

/**
 * Recipe 17-3: Manipulating HTML5 Content
 * @author cdea
 * Updated: J Juneau
 */
public class ManipulatingHtmlContent extends Application {
 String url = "http://weather.yahooapis.com/forecastrss?p=USMD0033&u=f";
 int refreshCountdown = 60;
  
 @Override public void start(Stage stage) {
 // create the scene
 stage.setTitle("Chapter 17-3 Manipulating HTML5 content");
 Group root = new Group();
 Scene scene = new Scene(root, 460, 340);
  
 final WebEngine webEngine = new WebEngine(url);
  
 StringBuilder template = new StringBuilder();
 template.append("<head>\n")
 .append("<style type=\"text/css\">body {background-color:#b4c8ee;}</style>\n")
 .append("</head>\n")
 .append("<body id='weather_background'>");
  
 final String fullHtml = template.toString();
  
 final WebView webView = new WebView();
 IntegerProperty countDown = new SimpleIntegerProperty(refreshCountdown);
 �countDown.addListener((ObservableValue<? extends Number> observable, Number oldValue,

 Number newValue) -> {
webView.getEngine().executeScript("document.getElementById('countdown').innerHTML = 'Seconds till
refresh: " + newValue + "'");
 if (newValue.intValue() == 0) {
 webEngine.reload();
 }
 });
 final Timeline timeToRefresh = new Timeline();
 timeToRefresh.getKeyFrames().addAll(
 new KeyFrame(Duration.ZERO, new KeyValue(countDown, refreshCountdown)),
 new KeyFrame(Duration.seconds(refreshCountdown), new KeyValue(countDown, 0))
);
  
 �webEngine.getLoadWorker().stateProperty().addListener((ObservableValue<? extends State>

 observable, State oldValue, State newValue) -> {
 System.out.println("done!" + newValue.toString());
 if (newValue != State.SUCCEEDED) {
 return;
 }
 // request 200 OK
 Weather weather = parse(webEngine.getDocument());
  

Chapter 17 ■ JavaFX on the Web

485

 StringBuilder locationText = new StringBuilder();
 locationText.append("")
 .append(weather.city)
 .append(", ")
 .append(weather.region)
 .append(" ")
 .append(weather.country)
 .append("
\n");
  
 �String timeOfWeatherTextDiv = "<b id=\"timeOfWeatherText\">" + weather.dateTimeStr +

 "
\n";
 String countdownText = "<b id=\"countdown\">
\n";
 webView.getEngine().loadContent(fullHtml + locationText.toString() +
 timeOfWeatherTextDiv +
 countdownText +
 weather.htmlDescription);
 System.out.println(fullHtml + locationText.toString() +
 timeOfWeatherTextDiv +
 countdownText +
 weather.htmlDescription);
 timeToRefresh.playFromStart();
 });
 
 root.getChildren().addAll(webView);
  
 stage.setScene(scene);
 stage.show();
 }
  
 public static void main(String[] args){
 Application.launch(args);
 }
 private static String obtainAttribute(NodeList nodeList, String attribute) {
 String attr = nodeList
 .item(0)
 .getAttributes()
 .getNamedItem(attribute)
 .getNodeValue();
 return attr;
  
 }
 private static Weather parse(Document doc) {
  
 �NodeList currWeatherLocation = doc.getElementsByTagNameNS("http://xml.weather.yahoo.com/ns/

 rss/1.0", "location");
 
 Weather weather = new Weather();
 weather.city = obtainAttribute(currWeatherLocation, "city");
 weather.region = obtainAttribute(currWeatherLocation, "region");
 weather.country = obtainAttribute(currWeatherLocation, "country");
  

Chapter 17 ■ JavaFX on the Web

486

 �No�deList currWeatherCondition = doc.getElementsByTagNameNS("http://xml.weather.yahoo.com/ns/
rss/1.0", "condition");

 weather.dateTimeStr = obtainAttribute(currWeatherCondition, "date");
 weather.currentWeatherText = obtainAttribute(currWeatherCondition, "text");
 weather.temperature = obtainAttribute(currWeatherCondition, "temp");
  
 String forcast = doc.getElementsByTagName("description")
 .item(1)
 .getTextContent();
 weather.htmlDescription = forcast;
  
 return weather;
 }
 
}
class Weather {
 String dateTimeStr;
 String city;
 String region;
 String country;
 String currentWeatherText;
 String temperature;
 String htmlDescription;
  
}
 

Figure 17-8 depicts the weather application that fetches data from the Yahoo! weather service. In the third line
of the displayed text, you’ll notice that Seconds till refresh: 31 is a countdown in seconds until the next time
weather information will be retrieved. The actual manipulation of HTML content occurs here.

Figure 17-8.  Weather application

Chapter 17 ■ JavaFX on the Web

487

The following shows the HTML that is rendered onto the WebView node:
 
<head>
<style type="text/css">body {background-color:#b4c8ee;}</style>
</head>
<body id='weather_background'>Chicago, IL United States

<b id="timeOfWeatherText">Wed, 16 Apr 2014 11:49 am CDT

<b id="countdown">

 

Current Conditions:

Mostly Cloudy, 45 F

Forecast:

Wed - Partly Cloudy. High: 51 Low: 41

Thu - Partly Cloudy. High: 57 Low: 40

Fri - Mostly Cloudy. High: 41 Low: 36

Sat - Partly Cloudy. High: 45 Low: 42

Sun - Mostly Cloudy. High: 58 Low: 48

<a href="http://us.rd.yahoo.com/dailynews/rss/weather/Chicago__IL/*http://weather.yahoo.com/
 forecast/USIL0225_f.html">Full Forecast at Yahoo! Weather

(provided by The Weather Channel)

How It Works
In this recipe, you parse an RSS feed and construct an HTML string within the JavaFX application, and then display
the HTML via a WebView. The JavaFX application can retrieve XML information from Yahoo!’s weather service
via an URL using a WOEID (location ID) to target a specific location. Once the XML is parsed, the HTML content
is assembled and rendered onto JavaFX’s WebView node. The WebView object instance is a graph node capable of
rendering and retrieving XML or any HTML5 content. The application will also display a countdown in seconds until
the next retrieval from the weather service.

When accessing weather information for your area through Yahoo!’s weather service, you need to obtain a
location ID (WOEID) or the URL to the RSS feed associated with your city. Before I explain the code line by line,
consider these steps for obtaining the RSS feed URL for your local weather forecasts.

	 1.	 Open your browser to http://weather.yahoo.com/.

	 2.	 Enter a city or ZIP code and press the Go button.

	 3.	 Copy the number located at the trailing end of the URL in the browser’s address bar. That
is the location’s WOEID.

	 4.	 Insert the WOEID into http://weather.yahooapis.com/forecastrss?w=WOEID&u=f.

When creating the ManipulatingHtmlContent class for this example, you need two instance variables: url and
refreshCountdown. The url variable will be assigned to the RSS URL web address from step 4. The refreshCountdown
variable of type int is assigned the value of 60 to denote the time in seconds until a refresh or another retrieval of the
weather information takes place.

Like all the JavaFX examples inside of the start() method, you begin by creating the Scene object for the
initial main content region. Next, you create a javafx.scene.web.WebEngine instance by passing in the url into the
constructor. The WebEngine object will asynchronously load the web content from Yahoo!’s weather service. Later you
will learn about the callback method responsible for handling the content when the web content is done loading. The
following code line creates and loads an URL web address using a WebEngine object:
 
final WebEngine webEngine = new WebEngine(url);
 

http://weather.yahoo.com/
http://weather.yahooapis.com/forecastrss?w=WOEID&u=f

Chapter 17 ■ JavaFX on the Web

488

After you create a WebEngine object, you’ll create an HTML document that will act as a template when the web
content is successfully loaded. Although the code contains HTML markup tags in Java code, which violates the
principles of the separation of concerns, this example inlines the HTML by concatenating string values for brevity.
To maintain proper MVC-style separation, you may want to create a separate file containing your HTML content with
substitution sections for data that will change over time. The code snippet that follows is the start of the creation of a
template used to display weather information:
 
StringBuilder template = new StringBuilder();
template.append("<head>\n")
 .append("<style type=\"text/css\">body {background-color:#b4c8ee;}</style>\n")
 .append("</head>\n")
 .append("<body id='weather_background'>");
 

Once you have created the web page by concatenating strings, you create a WebView object instance, which is a
displayable graph node that will be responsible for rendering the web page. Remember in Recipe 17-2 you learned
that a WebView has its own instance of a WebEngine. Knowing this fact, you only use the WebView node to render the
assembled HTML web page, not to retrieve the XML weather information via an URL. In other words, the WebEngine
object is responsible for retrieving the XML from Yahoo!’s weather service to be parsed and then fed into the WebView
object to be displayed as HTML. The following code snippet instantiates a WebView graph node that is responsible for
rendering the HTML5 content:
 
final WebView webView = new WebView();
 

The countdown timer in the example refreshes the weather information being displayed in the application
window. First, you instantiate an IntegerProperty variable, called countdown, to hold the number of seconds until
the next refresh time. Second, you add a change listener (ChangeListener) to update the HTML content dynamically
using JavaFX’s capability to execute JavaScript. The change listener also determines whether the countdown has
reached zero. If so, it invokes the webEngine’s (WebEngine) reload() method to refresh or retrieve the weather
information again. The following code creates an IntegerProperty value to update the countdown text using the
executeScript() method:
 
IntegerProperty countDown = new SimpleIntegerProperty(refreshCountdown);
countDown.addListener((ObservableValue<? extends Number> observable,
 Number oldValue, Number newValue) -> {
 webView.getEngine().executeScript(
 "document.getElementById('countdown').innerHTML = 'Seconds till refresh: "
 + newValue + "'");
 if (newValue.intValue() == 0) {
 webEngine.reload();
 }
}); // addListener()
 

After the ChangeListener is implemented using a lambda expression, a TimeLine object is created to change
the countdown variable, which will trigger the ChangeListener to update the HTML text depicting the seconds until
refresh. The following code implements a TimeLine object that updates the countDown variable:
 
final Timeline timeToRefresh = new Timeline();
timeToRefresh.getKeyFrames().addAll(
 new KeyFrame(Duration.ZERO, new KeyValue(countDown, refreshCountdown)),
 new KeyFrame(Duration.seconds(refreshCountdown), new KeyValue(countDown, 0))
);
 

Chapter 17 ■ JavaFX on the Web

489

The rest of the code creates a ChangeListener that responds to State.SUCCEEDED. Once the webEngine
(WebEngine) has finished retrieving the XML, the change listener (ChangeListener) is responsible for parsing and
rendering the assembled web page into the WebView node. The following code parses and displays the weather data by
calling the loadContent() method on the WebView’s WebEngine instance:
 
if (newValue != State.SUCCEEDED) {
 return;
 }
 Weather weather = parse(webEngine.getDocument());
 
 ...// the rest of the inlined HTML
 
 String countdownText = "<b id=\"countdown\">
\n";
 webView.getEngine().loadContent(fullHtml + location.toString() +
 timeOfWeatherTextDiv +
 countdownText +
 weather.htmlDescription);
 

To parse the XML returned by the webEngine’s getDocument() method, the org.w3c.dom.Document object is
interrogated. For convenience, I created a parse() method to walk the DOM to obtain weather data and return it as a
Weather object. See the Javadocs and Yahoo!’s RSS XML schema for more information on data elements returned from
a weather service.

17-4. Responding to HTML Events
Problem
You want to manipulate HTML5 content with Java code.

Solution
You’ll add a Panic button to your weather application that will simulate an e-mail notification. You’ll also add a Calm
Down button to retract the warning message.

The following code implements the weather application with additional buttons to warn about and then
disregard impending stormy weather:
 
@Override public void start(Stage stage) {
 
... // template building
 

This code adds HTML buttons with their onclick attributes set to invoke the JavaScript alert function via
buttons:
 
template.append("<body id='weather_background'>");
template.append("<form>\n");
�template.append(" <input type=\"button\" onclick=\"alert('warning')\" value=\"Panic Button\" />\n");
�template.append(" <input type=\"button\" onclick=\"alert('unwarning')\" value=\"Calm down\" />\n");
template.append("</form>\n");
 

Chapter 17 ■ JavaFX on the Web

490

The following code is added to the start() method to create the warning message. The opacity is set to zero to be
invisible:
 
 // calls the createMessage() method to build warning message
 final Text warningMessage = createMessage(Color.RED, "warning: ");
 warningMessage.setOpacity(0);
 
... // Countdown code
 

Continuing inside the start() method, this code section is added to update the warning message after the
weather information is retrieved successfully:
 
webEngine.getLoadWorker().stateProperty().addListener(
 (ObservableValue<? extends State> observable,
 State oldValue, State newValue) -> {
 System.out.println("done!" + newValue.toString());
 if (newValue != State.SUCCEEDED) {
 return;
 }
 Weather weather = parse(webEngine.getDocument());
 warningMessage.setText("Warning: " + weather.currentWeatherText +
 "\nTemp: " + weather.temperature + "\n E-mailed others");
 ... // the rest of changed() method
}); // end of addListener method
 

This code sets the OnAlert property, which is an event handler that responds when the Panic or Calm Down
buttons are pressed:
 
webView.getEngine().setOnAlert((WebEvent<String> evt) -> {
 warningMessage.setOpacity("warning".equalsIgnoreCase(evt.getData()) ? 1d : 0d);
});
 

You add the following code as a private method that is responsible for creating a text node (javafx.scene.text.Text).
It is used as the warning message when the user presses the Panic button:
 
 private Text createMessage(Color color, String message) {
 DropShadow dShadow = new DropShadow();
 dShadow.setOffsetX(3.5f);
 dShadow.setOffsetY(3.5f);
 
 Text textMessage = new Text();
 textMessage.setText(message);
 textMessage.setX(100);
 textMessage.setY(50);
 textMessage.setStrokeWidth(2);
 textMessage.setStroke(Color.WHITE);
 textMessage.setEffect(dShadow);
 textMessage.setFill(color);
 textMessage.setFont(Font.font(null, FontWeight.BOLD, 35));
 textMessage.setTranslateY(50);
  

Chapter 17 ■ JavaFX on the Web

491

 return textMessage;
 }
} // end of the RespondingToHtmlEvents class
 

Figure 17-9 shows the weather application displaying a warning message after a user has pressed the Panic
button. To remove the warning message, you can press the Calm Down button.

Figure 17-9.  Weather application displaying a warning message

How It Works
The example in this recipe adds features to the weather application (from Recipe 17-3) that respond to HTML events.
The application is similar to the previous recipe, except that it contains HTML buttons on the web page to be rendered
onto the WebView node. The first button is the Panic button that, when pressed, displays a warning message stating
the current weather condition and a simulated e-mail notification. To retract the warning message, you added a Calm
Down button.

Note■■  B ecause the code is so similar to the previous recipe, I point out only the additions to the source code without
going into great detail.

Chapter 17 ■ JavaFX on the Web

492

To add the buttons, you use the HTML tag <input type=”button”...>, with an onclick attribute set to use
JavaScript’s alert() function to notify JavaFX of an alert event. Shown here are the two buttons added to the web page:
 
StringBuilder template = new StringBuilder();
...// Header part of HTML Web page
template.append("<form>\n");
template.append(" <input type=\"button\" onclick=\"alert('warning')\" value=\"Panic Button\" />\n");
template.append(" <input type=\"button\" onclick=\"alert('unwarning')\" value=\"Calm down\" />\n");
template.append("</form>\n");
 

When the web page renders, the buttons can be clicked, invoking the onclick attribute that will call JavaScript’s
alert() function containing the string message. When the alert() function is invoked, the web page’s owning
parent (the webView’s WebEngine instance) is notified of the alert via the WebEngine’s OnAlert attribute. To respond to
JavaScript’s alerts, an event handler (lambda expression) is added. It responds to the WebEvent objects. The handle()
method simply shows and hides the warning message by toggling the opacity of the warningMessage node (javafx.
scene.text.Text). The following code snippet toggles the opacity of the warning message based on comparing the
event’s data (evt.getData()) that contains the string passed in from the JavaScript’s alert() function. So, if the
message is "warning", the warningMessage opacity is set to 1; otherwise, it’s set to 0 (both of type double).
 
webView.getEngine().setOnAlert(new EventHandler<WebEvent<String>>(){
 public void handle(WebEvent<String> evt) {
 warningMessage.setOpacity("warning".equalsIgnoreCase(evt.getData()) ? 1d : 0d);
 }
});
 

Please see the Javadocs for additional HTML web events (WebEvent).

17-5. Displaying Content from the Database
Problem
You want to display database content in a JavaFX WebView node.

Solution
Create a JavaFX RSS reader. The RSS feed URLs will be stored in a database to be later retrieved. Listed here are the
main classes used in this recipe:

•	 javafx.scene.control.Hyperlink

•	 javafx.scene.web.WebEngine

•	 javafx.scene.web.WebView

•	 org.w3c.dom.Document

•	 org.w3c.dom.Node

•	 org.w3c.dom.NodeList

This recipe uses an embedded database called Derby from the Apache group at http://www.apache.org. As a
requirement, you need to download the Derby software (it is included with NetBeans IDE). To download the latest
version of the software, visit http://db.apache.org/derby/derby_downloads.html. Once it’s downloaded, you can

http://www.apache.org/
http://db.apache.org/derby/derby_downloads.html

Chapter 17 ■ JavaFX on the Web

493

unzip or untar it into a directory. To compile and run this recipe, you need to update the class path in your IDE or
environment variable to point to Derby libraries (derby.jar and derbytools.jar). When running the example code,
you can type a valid RSS URL into the text field and then press the Enter key to load your new RSS headlines. The
headline news will then be listed in the upper-right frame region. Then you can choose a headline news article to read
fully by clicking on a view button beneath it.

The following code implements an RSS reader in JavaFX:
 
package org.java8recipes.chapter17.recipe17_05;
 
import java.util.*;
import javafx.application.Application;
import javafx.beans.value.*;
import javafx.collections.ObservableList;
import javafx.concurrent.Worker.State;
import javafx.event.*;
import javafx.geometry.*;
import javafx.scene.*;
import javafx.scene.control.*;
import javafx.scene.input.*;
import javafx.scene.layout.*;
import javafx.scene.paint.Color;
import javafx.scene.web.*;
import javafx.stage.Stage;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
  
/**
 * Display Contents From Database
 * @author cdea
 */
public class DisplayContentsFromDatabase extends Application {
 
 @Override public void start(Stage stage) {
 Group root = new Group();
 Scene scene = new Scene(root, 640, 480, Color.WHITE);
 final Map<String, Hyperlink> hyperLinksMap = new TreeMap<>();
  
 final WebView newsBrief = new WebView(); // upper right
 final WebEngine webEngine = new WebEngine();
 final WebView websiteView = new WebView(); // lower right
  
 webEngine.getLoadWorker().stateProperty().addListener(
 (ObservableValue<? extends State> observable,
 State oldValue, State newValue) -> {
 if (newValue != State.SUCCEEDED) {
 return;
 }
  

Chapter 17 ■ JavaFX on the Web

494

 RssFeed rssFeed = parse(webEngine.getDocument(), webEngine.getLocation());
  
 hyperLinksMap.get(webEngine.getLocation()).setText(rssFeed.channelTitle);
  
 // print feed info:
 StringBuilder rssSource = new StringBuilder();
 rssSource.append("<head>\n")
 .append("</head>\n")
 .append("<body>\n");
 rssSource.append("")
 .append(rssFeed.channelTitle)
 .append(" (")
 .append(rssFeed.news.size())
 .append(")")
 .append("
\n");
 StringBuilder htmlArticleSb = new StringBuilder();
 for (NewsArticle article:rssFeed.news) {
  
 htmlArticleSb.append("<hr />\n")
 .append("\n")
 .append(article.title)
 .append("
")
 .append(article.pubDate)
 .append("
")
 .append(article.description)
 .append("
\n")
 .append("<input type=\"button\" onclick=\"alert('")
 .append(article.link)
 .append("')\" value=\"View\" />\n");
 }
  
 �String content = rssSource.toString() + "<form>\n" + htmlArticleSb.toString() +

 "</form></body>\n";
 System.out.println(content);
 newsBrief.getEngine().loadContent(content);
 // write to disk if not already.
 DBUtils.saveRssFeed(rssFeed);
 }); // end of webEngine addListener()
 
 newsBrief.getEngine().setOnAlert((WebEvent<String> evt) -> {
 websiteView.getEngine().load(evt.getData());
 }); // end of newsBrief setOnAlert()
  
 // Left and right split pane
 SplitPane splitPane = new SplitPane();
 splitPane.prefWidthProperty().bind(scene.widthProperty());
 splitPane.prefHeightProperty().bind(scene.heightProperty());
 
 final VBox leftArea = new VBox(10);
 final TextField urlField = new TextField();
 urlField.setOnAction((ActionEvent ae) -> {

Chapter 17 ■ JavaFX on the Web

495

 String url = urlField.getText();
 final Hyperlink jfxHyperLink = createHyperLink(url, webEngine);
 hyperLinksMap.put(url, jfxHyperLink);
 HBox rowBox = new HBox(20);
 rowBox.getChildren().add(jfxHyperLink);
 leftArea.getChildren().add(rowBox);
 webEngine.load(url);
 urlField.setText("");
 }); // end of urlField setOnAction()
  
 leftArea.getChildren().add(urlField);
  
 List<RssFeed> rssFeeds = DBUtils.loadFeeds();
 rssFeeds.stream().map((feed) -> {
 HBox rowBox = new HBox(20);
 final Hyperlink jfxHyperLink = new Hyperlink(feed.channelTitle);
 jfxHyperLink.setUserData(feed);
 final String location = feed.link;
 hyperLinksMap.put(feed.link, jfxHyperLink);
 jfxHyperLink.setOnAction((ActionEvent evt) -> {
 webEngine.load(location);
 });
 rowBox.getChildren().add(jfxHyperLink);
 return rowBox;
 }).forEach((rowBox) -> {
 leftArea.getChildren().add(rowBox);
 });
  
 // Dragging over surface
 scene.setOnDragOver((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 if (db.hasUrl()) {
 event.acceptTransferModes(TransferMode.COPY);
 } else {
 event.consume();
 }
 }); // end of scene.setOnDragOver()
  
 // Dropping over surface
 scene.setOnDragDropped((DragEvent event) -> {
 Dragboard db = event.getDragboard();
 boolean success = false;
 HBox rowBox = new HBox(20);
 if (db.hasUrl()) {
 if (!hyperLinksMap.containsKey(db.getUrl())) {
 final Hyperlink jfxHyperLink = createHyperLink(db.getUrl(), webEngine);
 hyperLinksMap.put(db.getUrl(), jfxHyperLink);
 rowBox.getChildren().add(jfxHyperLink);
 leftArea.getChildren().add(rowBox);
 }

Chapter 17 ■ JavaFX on the Web

496

 webEngine.load(db.getUrl());
 }
 event.setDropCompleted(success);
 event.consume();
 }); // end of scene.setOnDragDropped()
  
 leftArea.setAlignment(Pos.TOP_LEFT);
  
 // Upper and lower split pane
 SplitPane splitPane2 = new SplitPane();
 splitPane2.setOrientation(Orientation.VERTICAL);
 splitPane2.prefWidthProperty().bind(scene.widthProperty());
 splitPane2.prefHeightProperty().bind(scene.heightProperty());
 
 HBox centerArea = new HBox();
  
 centerArea.getChildren().add(newsBrief);
 
 HBox rightArea = new HBox();
 
 rightArea.getChildren().add(websiteView);
 
 splitPane2.getItems().add(centerArea);
 splitPane2.getItems().add(rightArea);
 
 // add left area
 splitPane.getItems().add(leftArea);
 
 // add right area
 splitPane.getItems().add(splitPane2);
 newsBrief.prefWidthProperty().bind(scene.widthProperty());
 websiteView.prefWidthProperty().bind(scene.widthProperty());
 // evenly position divider
 ObservableList<SplitPane.Divider> dividers = splitPane.getDividers();
 for (int i = 0; i < dividers.size(); i++) {
 dividers.get(i).setPosition((i + 1.0) / 3);
 }
 
 HBox hbox = new HBox();
 hbox.getChildren().add(splitPane);
 root.getChildren().add(hbox);
  
 stage.setScene(scene);
 stage.show();
  
 } // end of start()
 
 private static RssFeed parse(Document doc, String location) {
  
 RssFeed rssFeed = new RssFeed();
 rssFeed.link = location;
  

Chapter 17 ■ JavaFX on the Web

497

 rssFeed.channelTitle = doc.getElementsByTagName("title")
 .item(0)
 .getTextContent();
 
 NodeList items = doc.getElementsByTagName("item");
 for (int i=0; i<items.getLength(); i++){
 Map<String, String> childElements = new HashMap<>();
 NewsArticle article = new NewsArticle();
 for (int j=0; j<items.item(i).getChildNodes().getLength(); j++) {
 Node node = items.item(i).getChildNodes().item(j);
 childElements.put(node.getNodeName().toLowerCase(), node.getTextContent());
 }
 article.title = childElements.get("title");
 article.description = childElements.get("description");
 article.link = childElements.get("link");
 article.pubDate = childElements.get("pubdate");
  
 rssFeed.news.add(article);
 }
  
 return rssFeed;
 } // end of parse()
  
 private Hyperlink createHyperLink(String url, final WebEngine webEngine) {
 final Hyperlink jfxHyperLink = new Hyperlink("Loading News...");
 RssFeed aFeed = new RssFeed();
 aFeed.link = url;
 jfxHyperLink.setUserData(aFeed);
 jfxHyperLink.setOnAction((ActionEvent evt) -> {
 RssFeed rssFeed = (RssFeed)jfxHyperLink.getUserData();
 webEngine.load(rssFeed.link);
 });
 return jfxHyperLink;
 } // end of createHyperLink()
  
 public static void main(String[] args){
 DBUtils.setupDb();
 Application.launch(args);
 }
}
class RssFeed {
 int id;
 String channelTitle = "News...";
 String link;
 List<NewsArticle> news = new ArrayList<>();
 
 public String toString() {
 �return "RssFeed{" + "id=" + id + ", channelTitle=" + channelTitle + ", link=" + link + ",

news=" + news + '}';
 }

Chapter 17 ■ JavaFX on the Web

498

 public RssFeed() {
 }
 public RssFeed(String title, String link) {
 this.channelTitle = title;
 this.link = link;
 }
}
class NewsArticle {
 String title;
 String description;
 String link;
 String pubDate;
 
 public String toString() {
 �return "NewsArticle{" + "title=" + title + ", description=" + description + ", link=" +

 link + ", pubDate=" + pubDate + ", enclosure=" + '}';
 }
  
}
 

The following code is an excerpt from DBUtils.java. It shows the saveRssFeed() method responsible for
persisting RSS feeds:
 
 public static int saveRssFeed(RssFeed rssFeed) {
 int pk = rssFeed.link.hashCode();
 
 loadDriver();
 
 Connection conn = null;
 ArrayList statements = new ArrayList();
 PreparedStatement psInsert = null;
 Statement s = null;
 ResultSet rs = null;
 try {
 
 // database name
 String dbName = "demoDB";
 
 conn = DriverManager.getConnection(protocol + dbName
 + ";create=true", props);
 
 �rs = conn.createStatement().executeQuery("select count(id) from rssFeed where id = "

 + rssFeed.link.hashCode());
  
 rs.next();
 int count = rs.getInt(1);
  
 if (count == 0) {
 
 // handle transaction
 conn.setAutoCommit(false);
 

Chapter 17 ■ JavaFX on the Web

499

 s = conn.createStatement();
 statements.add(s);
 
 psInsert = conn.prepareStatement("insert into rssFeed values (?, ?, ?)");
 statements.add(psInsert);
 psInsert.setInt(1, pk);
 String escapeTitle = rssFeed.channelTitle.replaceAll("\'", "''");
 psInsert.setString(2, escapeTitle);
 psInsert.setString(3, rssFeed.link);
 psInsert.executeUpdate();
 conn.commit();
 System.out.println("Inserted " + rssFeed.channelTitle + " " + rssFeed.link);
 System.out.println("Committed the transaction");
 }
 shutdown();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 } finally {
 // release all open resources to avoid unnecessary memory usage
 
 // ResultSet
 close(rs);
 
 // Statements and PreparedStatements
 int i = 0;
 while (!statements.isEmpty()) {
 // PreparedStatement extend Statement
 Statement st = (Statement) statements.remove(i);
 close(st);
 }
 
 //Connection
 close(conn);
 
 }
 
 return pk;
 }
 

In Figure 17-10, the JavaFX reader displays three frames. The left column shows a text field at the top to allow the
user to enter new URLs and RSS feed sources as hyperlinks. The upper-right frame contains the headline, an excerpt
of the article, and a view button that renders the article’s web page in the bottom frame (lower-right region).

Chapter 17 ■ JavaFX on the Web

500

Shown here is an example of the HTML output to be rendered in the new headlines region (upper-right frame).
You will also see the HTML view button that’s responsible for notifying the application to load and render the article
in the lower-right frame region:
 
<head>
</head>
<body>
Carl's FX Blog (10)

<form>
<hr />

JavaFX Forms Framework Part 2
Mon, 03 Aug 2009 18:36:02 +0000
Introduction This is
the second installment of a series of blog entries relating to a proof of concept for a JavaFX
Forms Framework. Before I specify the requirements and a simple design of the FXForms Framework, I
want to follow up on comments about tough issues relating to enterprise application development and
JavaFX. If you recall [...]<img alt="" border="0" src="http://stats.wordpress.com/b.gif?host=carlfx.
wordpress.com&blog=6443320&post=339&subd=carlfx&ref=&feed=1" width="1"
height="1" />

Figure 17-10.  JavaFX RSS reader

Chapter 17 ■ JavaFX on the Web

501

<input type="button" onclick="alert('http://carlfx.wordpress.com/2009/08/03/javafx-forms-framework-
part-2/')" value="View" /> 
... // the rest of the headlines
 
</form></body>

How It Works
To create an RSS reader, you need to store feed locations for later reading. When adding a new RSS feed, you will want
to locate the little orange iconic button and drag the URL address line into your JavaFX RSS reader application.
I find that the drag option works on my Firefox browser. However, if dragging doesn’t work for you, I’ve provided a text
field to allow you to cut and paste the URL. Once you enter the URL, press Enter to initiate the headline news loading
process. For example, you can visit Google’s technology news RSS at http://news.google.com/news?pz=1&cf=all&ne
d=us&hl=en&topic=tc&output=rss.

Figure 17-11 depicts the orange RSS icon in the upper left.

Figure 17-11.  The RSS icon

Once the URL is accepted via drag-and-drop or via the text field, the JavaFX RSS reader application will save
the URL location to a database. The RSS application consists of three frame regions: the RSS feed title column (left),
headline news (upper right), and the website view (lower right). To display the news headlines, click the hyperlinks to
the left. To show the entire article in the lower-right frame, click the View button below the headline in the upper-right
frame. Before running the code, the application will require the JAR libraries derby.jar and derbytools.jar to be
included in your project class path. These libraries allow you to save RSS URLs to an embedded JDBC database.

Similar to what you did in Recipe 17-3, you retrieve news information from the Internet. The RSS retrieved will
be using version 2.0. RSS is an XML standard that provides really simple syndication, thus the acronym. Now enough
with the acronyms; let’s jump into the code, shall we?

In the start() method, you create a 640 by 480 white scene display area. Next, you create a map (TreeMap)
containing Hyperlink objects as values and keys representing the URL location (String) to the RSS feed. As before
when displaying HTML content, you need to create WebViews. Here you create two WebViews and one WebEngine.
The two WebViews will render HTML for the news headline frame region and the viewing of the entire article region
(lower right). The single WebEngine is responsible for retrieving the RSS feed when the user clicks the left frame region
containing the RSS hyperlinks.

To support the feature that allows the user to enter an RSS feed, you need to create a text field that can save and
render the headline news. The following code snippet saves an RSS URL and adds an address as a new hyperlink to
the list of feeds.
 

http://news.google.com/news?pz=1&cf=all&ned=us&hl=en&topic=tc&output=rss
http://news.google.com/news?pz=1&cf=all&ned=us&hl=en&topic=tc&output=rss

Chapter 17 ■ JavaFX on the Web

502

final VBox leftArea = new VBox(10);
final TextField urlField = new TextField();
urlField.setOnAction((ActionEvent ae) -> {
 String url = urlField.getText();
 final Hyperlink jfxHyperLink = createHyperLink(url, webEngine);
 hyperLinksMap.put(url, jfxHyperLink);
 HBox rowBox = new HBox(20);
 rowBox.getChildren().add(jfxHyperLink);
 leftArea.getChildren().add(rowBox);
 webEngine.load(url);
 urlField.setText("");
});// end of urlField setOnAction()
  

After the user clicks on a hyperlink the news retrieval is initiated. Once a successful retrieve has occurred on
the webEngine (WebEngine) object, you need to add a ChangeListener instance to respond when the state property
changes to State.SUCCEEDED. With a valid state of State.SUCCEEDED, you begin to parse the XML DOM returned from
the WebEngine’s getDocument() method. Again, I provided a convenience method called parse() to interrogate the
Document object representing the RSS news information.
 
RssFeed rssFeed = parse(webEngine.getDocument(), webEngine.getLocation());
 

Next, you create an HTML page that will list the channel tile and the number of total news headlines
returned. After creating the HTML to display the RSS channel title and the number of articles, you iterate over
all the news headlines to build record sets or rows. Each row will contain an HTML button labeled View to notify
the WebEngine object of an alert containing the article’s URL. When the WebEngine object is notified, the OnAlert
property will contain an event handler to render the entire article in the frame in the lower-right split region. After
the web page is assembled, you call the newsBrief object’s getEngine().loadContent() method to render the
page. Once it’s rendered, you save the URL RSS feed (RssFeed) object to the database by invoking the DBUtils.
saveRssFeed(rssFeed). As a convenience, the saveRssFeed() method will check for duplicates and not save them.
The following code loads the web page to be rendered and saves the newly added rssFeed URL:
 
newsBrief.getEngine().loadContent(content);
// write to disk if not already.
DBUtils.saveRssFeed(rssFeed);
 

As in the previous recipes, you will be responding to HTML WebEvents when the new headline View button is
pressed, which calls a JavaScript’s alert() function. The following code snippet handles a web event (WebEvent)
containing the URL that links to the entire article viewed in the lower-right region:
 
newsBrief.getEngine().setOnAlert((WebEvent<String> evt) -> {
 websiteView.getEngine().load(evt.getData());
}); // end of newsBrief setOnAlert()
 

When creating the headlines region (upper right), which contains the HTML buttons to render the article’s web
page, notice the alert() function containing the URL to be loaded and rendered in the lower split frame region. The
following code is an example of the HTML generated for an headline news containing a View button that can notify
the web engine’s OnAlert web event (WebEvent).
 
<in�put type="button" onclick="alert('http://carlfx.wordpress.com/2009/08/03/javafx-forms-framework-

part-2/')" value="View" /> 

Chapter 17 ■ JavaFX on the Web

503

One last thing to point out is that the RSS application is missing some features. One feature that comes to mind
is the ability to delete individual RSS hyperlinks from the left column region. A workaround is to remove all links
by deleting the database on the file system. Because Derby is an embedded database, you can delete the directory
containing the database. The JavaFX RSS application will re-create an empty database if one doesn’t exist. Hopefully,
you can add new features to enhance this fun and useful application.

Summary
JavaFX works well within the context of web applications. In this chapter, we looked at a few different ways to
combine the realm of web applications and client applications with the convergence of HTML and JavaFX. JavaFX
8 has been tailored for easy integration with HTML5, so we looked at how to interact with HTML5 from JavaFX, and
vice versa. We also looked at the retrieval and display of database information in a JavaFX application, as well as
embedding other rich client content, such as SVG.

505

Chapter 18

Nashorn and Scripting

In Java 6, the javax.script package was included. It enabled developers to embed code written in scripting
languages into Java applications. This began a new generation of applications, as developers were able to construct
Java solutions containing scripts written in languages such as JavaScript and Python. The JavaScript engine that was
used in Java 6 was called Rhino. It is an implementation of the JavaScript engine, developed entirely in Java. While
it contains a full JavaScript implementation, it is an older engine and is no longer compliant with current JavaScript
Standards.

Java 8 introduced a new JavaScript engine called Nashorn. It is based on the ECMAScript-262 Edition 5.1
language specification and supports the javax.script API introduced in Java 6. Besides bringing a modern
JavaScript engine to the Java platform, Nashorn also contains a few new features that make developing JavaScript
and Java solutions easier and more robust. The new command-line tool called jjs provides scripting abilities above
and beyond those that were available with jrunscript. Nashorn also has full access to the JavaFX 8 API, allowing
developers to construct JavaFX applications completely in JavaScript.

This chapter touches on using the Nashorn engine to construct solutions that integrate the worlds of Java and
JavaScript. It does not cover all of the features available with Nashorn, but you with provides enough to get up and
running with this powerful new Java 8 feature.

18-1. Loading and Executing JavaScript from Java
Problem
You want to load and execute JavaScript code from within your Java application.

Solution
Execute the JavaScript using the Nashorn engine, the next-generation JavaScript engine that is part of Java 8 and is
used to execute JavaScript code. The Nashorn engine can be called upon to process in-line JavaScript, or an external
JavaScript file directly within Java code. Execute an external JavaScript file or in-line JavaScript code using the Java
ScriptEngineManager. Once you’ve obtained a ScriptEngineManager(), you get an instance of the Nashorn engine to
use for JavaScript code execution.

Chapter 18 ■ Nashorn and Scripting

506

In the following example, a Nashorn ScriptEngine is used to invoke a JavaScript file that resides on the local file
system.
 
public static void loadExternalJs(){
 ScriptEngineManager sem = new ScriptEngineManager();
 ScriptEngine nashorn = sem.getEngineByName("nashorn");
 try {
 nashorn.eval("load('src/org/java8recipes/chapter18/js/helloNashorn.js')");
 } catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
 }
}
 

The code that resides in the helloNashorn.js file is as follows:
 
print("Hello Nashorn!");
 

Next, let’s take a look at some in-line JavaScript. In the following example, a Nashorn ScriptEngine is obtained,
and then a JavaScript function is created for obtaining the gallons of water for an in-ground pool. The function is then
executed to return a result.
 
public static void loadInlineJs(){
 ScriptEngineManager sem = new ScriptEngineManager();
 ScriptEngine nashorn = sem.getEngineByName("nashorn");
 try {
 nashorn.eval("function gallons(width, length, avgDepth){var volume =
 avgDepth * width * length;" +
 "return volume * 7.48; }");
 nashorn.eval("print('Gallons of water in pool: '+ gallons(16,32,5))");
 } catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
 }
}
 
}
 

Results:
 
run:
Hello Nashorn!
Gallons of water in pool: 19148.800000000003

How It Works
There are many different ways to use the Nashorn engine to execute JavaScript within a Java application. In this recipe,
the example covers two such techniques for doing so, and each of them requires the use of the ScriptEngineManager,
which has been part of the JDK since Java 6. To obtain a Nashorn engine from the ScriptEngineManager, first create
a new instance of the ScriptEngineManager. Once obtained, you can obtain a particular engine by passing the string
value that represents the desired engine to the getEngineByName() method. In this case, you pass the name nashorn
to obtain the Nashorn engine for working with JavaScript. After obtaining the Nashorn engine, you are ready to invoke
a JavaScript file or evaluate inline JavaScript code by calling on the engine’s eval() method.

Chapter 18 ■ Nashorn and Scripting

507

The first code example in this recipe demonstrates how to pass a JavaScript file to the engine for invocation. The
helloNashorn.js in this case contains a single line of JavaScript that prints a message without returning any results.
Perhaps the most difficult part of executing a .js file is that you must ensure that the file is contained in the class path,
or that you are passing the full path to the file to the eval() method.

The second code example demonstrates how to write and evaluate inline JavaScript. First, a function identified as
gallons is defined and it accepts three parameters and returns the number of gallons based on the width, length, and
average depth of a pool. In a subsequent eval() call, the function is invoked, passing parameters and returning
a result. The important point to note in this example is that although the JavaScript spanned multiple eval() calls, the
scope is maintained so that each eval() call within the engine can see objects created within previous calls.

Since Java 6, it has been possible to work with scripting languages from within Java code. The Nashorn engine is
obtained in the same manner as others, by passing a string to indicate the engine by name. The difference between
this JavaScript engine and the previous rendition Rhino is that the new JavaScript engine is much faster and provides
better compliance with the EMCA-normalized JavaScript specification.

18-2. Executing JavaScript via the Command Line
Problem
You want to execute JavaScript via the command line for prototyping or execution purposes.

Solution 1
Invoke the jjs tool, which comes as part of Java 8. To execute a JavaScript file, invoke the jjs tool from the command
line, and then pass the fully qualified name (path included if not in CLASSPATH) of a JavaScript file to execute.
For example, to execute helloNashorn.js, use the following command:
 
jjs /src/org/java8recipes/chapter18/js/helloNashorn.js
Hello Nashorn!
 

To pass arguments to a JavaScript file for processing, call the script in the same manner, but include trailing
dashes --, followed by the argument(s) you want to pass. For example, the following code resides within a file named
helloParameter.js:
 
#! /usr/bin/env
var parameter = $ARG[0];
print(parameter ? "Hello ${parameter}!": "Hello Nashorn!");
 

Use the following command to invoke this JavaScript file, passing the parameter Oracle:
 
jjs /src/org/java8recipes/chapter18/js/helloParameter.js – Oracle
 

Here is the result:
 
Hello Oracle!
 

The jjs tool can also be utilized as an interactive interpreter by simply executing jjs without any options.
The command interpreter allows you to work in a fully interactive JavaScript environment. In the following lines
of code, the jjs tool is invoked to open a command shell, and a function is declared and executed. Finally, the
command shell is exited.
 

Chapter 18 ■ Nashorn and Scripting

508

jjs
jjs> function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
jjs> gallon(16,32,5)
19148.800000000003
jjs> exit()

Solution 2
Make use of the JSR 223 jrunscript tool to execute JavaScript. To execute a JavaScript file, invoke the jrunscript tool
from the command line and pass the fully qualified name (path included if not in CLASSPATH) of a JavaScript file to
execute. For example, to execute helloNashorn.js, use the following command:
 
jrunscript /src/org/java8recipes/chapter18/js/helloNashorn.js
Hello Nashorn!
 

Perhaps you want to pass JavaScript code inline, rather than executing a JavaScript file. In this case, you would
invoke jrunscript with the –e flag and pass the script in-line.
 
jrunscript -e "print('Hello Nashorn')"
Hello Nashorn 

Note■■  S tring interpolation is not available if you’re using the jrunscript utility. Therefore, you must use concatenation
to achieve a similar effect. To learn more about String interpolation, refer to Recipe 18-3.

Similarly to jjs, the jrunscript tool also accepts arguments to pass to a JavaScript file for processing. To pass
arguments using the jrunscript tool, simply append them to the command when invoking the script, with each
argument separated by spaces. For instance, to call the file helloParameter.js and pass an argument, execute the
following command:
 
jrunscript src/org/java8recipes/chapter18/js/helloParameter.js Oracle
 

Also similar to jjs, the jrunscript tool can execute an interactive interpreter, allowing you to develop and
prototype on-the-fly.
 
jrunscript
nashorn> function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
function gallon(width, length, avgDepth){return (avgDepth * width * length) * 7.48;}
nashorn> gallon(16,32,5)
19148.800000000003

How It Works
Since the release of Java SE 6, it has been possible to work with scripting languages from Java. In this recipe, two
solutions were demonstrated for executing JavaScript via the command line or terminal. In Solution 1, you looked
at the jjs command-line tool, which is new in Java 8. This tool can be used to invoke one or more JavaScript files, or
to start an interactive Nashorn interpreter. In the example, you took a look at how to invoke a JavaScript file with and
without passing arguments. You also took a look at how to invoke jjs as an interactive interpreter. The tool contains

Chapter 18 ■ Nashorn and Scripting

509

several useful options. To see an entire list refer to the documentation online at
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jjs.html. The jjs tool is the desired tool for use
with Nashorn because it contains many more options than the jrunscript tool, which was demonstrated in Solution 2.

The jrunscript tool was introduced in Java 6 and it allows you to execute scripts from the command line
or invoke an interactive interpreter, similar to jjs. The difference is that jrunscript also allows you to use other
scripting languages by passing the –l flag, along with the scripting engine name.
 
jrunscript –l js myTest.js
 

The jrunscript tool also contains options, but it is limited in comparison to those available with jjs. To see all of
the options available for jrunscript, refer to the online documentation at
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jrunscript.html.

18-3. Embedding Expressions in Strings
Problem
You want to refer to expressions or values within a string when invoking JavaScript via the jjs utility.

Solution
When using Nashorn as a shell scripting language via the jjs tool, it is possible to embed expressions or values in
strings by enclosing them within dollar signs $ and curly brackets {} in a double quoted string of text. The following
JavaScript resides in a file named recipe18_3.js, and it can be executed by the jjs tool as a shell script. The string
interpolation works in this example because the script has been made executable by adding the shebang as the first
line. Refer to Recipe 18-10 for more information on the shebang.
 
#! /usr/bin/env
function gallons(width, length, avgDepth){var volume = avgDepth * width * length;
 return volume * 7.48; }
print("Gallons of water in pool: ${gallons(16,32,5)}");
 

Execute the JavaScript file via jjs as follows:
 
jjs src/org/java8recipes/chapter18/js/recipe18_3.js
Gallons of water in pool: 19148.800000000003  

Note■■  T his example JavaScript file cannot be run from a ScriptEngineManager because it contains a shebang (it is an
executable script).

How It Works
When you’re using Nashorn’s shell scripting features, you can embed expressions or values in double-quoted strings
of text by enclosing them in dollar signs and curly braces ${...}. This concept is known a string interpolation in the
Unix world, and Nashorn borrows the concept to make it easy to develop shell scripts for evaluating and displaying
information. String interpolation makes it possible alter the contents of a string, replacing variables and expressions
with values. Using this feature, it is easy to embed the contents of a variable in-line within a string without performing
manual concatenation.

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jjs.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jrunscript.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/jrunscript.html

Chapter 18 ■ Nashorn and Scripting

510

In the example for this recipe, a script that is stored within a .js file contains an embedded expression, and it
calls on a JavaScript function to return the calculated number of liquid gallons. This is likely the most useful technique
for real-world scenarios, but it is also possible to make use of embedded expressions when using the jjs tool as an
interactive interpreter.
 
jjs -scripting
jjs> "The current date is ${Date()}"
The current date is Wed Apr 30 2014 23:44:41 GMT-0500 (CDT) 

Note■■  I f you’re not using the scripting features of jjs, string interpolation will not be available. Also, double quotes
must be placed around the string of text, as strings in single quotes are not interpolated. In the example, the
shebang (#! usr/bin/env) is used to make the script executable, thereby invoking the scripting features of jjs.

18-4. Passing Java Parameters
Problem
You want to pass Java parameters to JavaScript for use.

Solution
Utilize a javax.script.SimpleBindings instance to provide a string-based name for any Java field, and then pass
the SimpleBindings instance to the JavaScript engine invocation. In the following example, a Java string parameter is
passed to the Nashorn engine, and then it’s printed via JavaScript.
 
String myJavaString = "This is a Java parameter!";
SimpleBindings simpleBindings = new SimpleBindings();
simpleBindings.put("myString", myJavaString);
ScriptEngineManager sem = new ScriptEngineManager();
ScriptEngine nashorn = sem.getEngineByName("nashorn");
nashorn.eval("print (myString)", simpleBindings);
 

Here is the result:
 
This is a Java parameter!
 

More than one Java type value can be passed in a SimpleBindings instance. In the following example, three float
values are passed in a single SimpleBindings instance, and then they’re passed to a JavaScript function.
 
float width = 16;
float length = 32;
float depth = 5;
SimpleBindings simpleBindings2 = new SimpleBindings();
simpleBindings2.put("globalWidth", width);
simpleBindings2.put("globalLength", length);
simpleBindings2.put("globalDepth", depth);

Chapter 18 ■ Nashorn and Scripting

511

nashorn.eval("function gallons(width, length, avgDepth){var volume = avgDepth * width * length; "+
 " return volume * 7.48; } " +
 "print(gallons(globalWidth, globalLength, globalDepth));", simpleBindings2);
 

Result:
 
19148.800000000003

How It Works
To pass Java field values to JavaScript, use the javax.script.SimpleBindings construct, which is basically a HashMap
that can be used for binding and passing values to the ScriptEngineManager. When values are passed to the Nashorn
engine in this manner, they can be accessed as global variables within the JavaScript engine.

18-5. Passing Return Values from JavaScript to Java
Problem
You want to invoke a JavaScript function and return the result to the Java class that invoked it.

Solution
Create a ScriptEngine for use with Nashorn and then pass the JavaScript function to it for evaluation. Next, create
an Invocable from the engine and then call its invokeFunction() method, passing the string-based name of the
JavaScript function, along with an array of the arguments to be used. In the following example, a JavaScript function
named gallons is passed to the ScriptEngine for evaluation, and it is later invoked using this technique. It then
returns a double value.
 
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine engine = manager.getEngineByName("nashorn");
 
// JavaScript code in a String
String gallonsFunction = "function gallons(width, length, avgDepth){var volume = avgDepth * width *
length; "
 + " return volume * 7.48; } ";
try {
 // evaluate script
 engine.eval(gallonsFunction);
 double width = 16.0;
 double length = 32.0;
 double depth = 5.0;
 Invocable inv = (Invocable) engine;
 double returnValue = (double) inv.invokeFunction("gallons",
 new Double[]{width,length,depth});
 System.out.println("The returned value:" + returnValue);
 
} catch (ScriptException | NoSuchMethodException ex) {
 Logger.getLogger(Recipe18_5.class.getName()).log(Level.SEVERE, null, ex);
}
 

Chapter 18 ■ Nashorn and Scripting

512

Here’s the result:
 
run:
The returned value:19148.800000000003
 

In the following example, a JavaScript file is invoked and returns a string value. The name of the JavaScript file is
recipe18_5.js and its contents are as follows:
 
function returnName(name){
 return "Hello " + name;
}
 

Next, use the ScriptEngine to create an Invocable and call on the JavaScript function within the external
JavaScript file.
 
engine.eval("load('/path-to/src/org/java8recipes/chapter18/recipe18_05/js/recipe18_5.js')");
Invocable inv2 = (Invocable) engine;
String returnValue2 = (String) inv2.invokeFunction("returnName", new String[]{"Nashorn"});
System.out.println("The returned value:" + returnValue2);

How It Works
One of the most useful features of embedded scripting is the ability to integrate the code invoked via a script engine
along with a Java application. In order to effectively integrate script engine code and Java code, the two must be able
to pass values to each other. This recipe covers the concept of returning values from JavaScript back to Java. To do so,
set up a ScriptEngine and then coerce it into a javax.script.Invocable object. The Invocable object can then be
used to execute script functions and methods, returning values from those invocations.

An Invocable object enables you to execute a named JavaScript function or method and return values to the
caller. Invocable can also return an interface that will provide a way to invoke the member functions of the scripting
object. To provide this functionality, the Invocable object contains several methods (see Table 18-1).

Table 18-1.  Invocable methods

Method Description

getInterface(Class<T>) Returns an implementation of an interface using the functions
compiled by the interpreter.

getInterface(Object, Class<T>) Returns an implementation of an interface using member functions
of a scripting object that has been compiled in the interpreter.

invokeFunction(String, Object) Calls on top-level procedures and functions. Returns an object.

invokeFunction(Object, String, Object) Calls a method on a script object that was compiled during a
previous execution.

Before an Invocable can be generated, the JavaScript file or function must be evaluated by the ScriptEngine.
The example demonstrates calling on the eval() method to evaluate an in-line JavaScript function (a string named
gallonsFunction), and it shows how to evaluate an external JavaScript file. Once the eval() method has been called,
the ScriptEngine can be coerced into an Invocable object, as follows:
 
Invocable inv = (Invocable) engine;
 

Chapter 18 ■ Nashorn and Scripting

513

Invocable can then be called upon to execute functions or methods within the evaluated script code. Table 18-1
lists the methods of Invocable that can be used.

In this recipe’s examples, the invokeFunction method is used to call on the functions contained in the script.
The first argument to invokeFunction is the string-based name of the function being called upon, and the second
argument is a list of Objects that are being passed as arguments. The Invocable returns an Object from the JavaScript
function call, which can be coerced into the appropriate Java type.

Sharing values between Java and ScriptEngine instances is very useful. In a real-life scenario, it may be very useful
to call on an external JavaScript file, and have the ability to pass values back and forth between the Java code and the
script. The underlying JavaScript file can be modified, if needed, without recompiling the application. This situation
can be very useful when your application contains some business logic that needs to change from time to time. Imagine
that you have a rules processor that can be used to evaluate strings, and the rules are constantly evolving. In this case,
the rule engine can be written as an external JavaScript file, enabling dynamic changes to that file.

18-6. Using Java Classes and Libraries
Problem
You want to call upon Java classes and libraries within your Nashorn solution.

Solution
Create JavaScript objects based on Java classes or libraries using the Java.type() function. Pass the fully qualified
string-based name of the Java class that you want to utilize to this function and assign it to a variable. The following
code represents a Java object named Employee, which will be utilized via a JavaScript file in this application.
 
package org.java8recipes.chapter18.recipe18_06;
 
import java.util.Date;
public class Employee {
 private int age;
 private String first;
 private String last;
 private String position;
 private Date hireDate;
  
 public Employee(){
  
 }
  
 public Employee(String first,
 String last,
 Date hireDate){
 this.first = first;
 this.last = last;
 this.hireDate = hireDate;
 }
 
 /**
 * @return the first
 */

Chapter 18 ■ Nashorn and Scripting

514

 public String getFirst() {
 return first;
 }
 
 /**
 * @param first the first to set
 */
 public void setFirst(String first) {
 this.first = first;
 }
 
 /**
 * @return the last
 */
 public String getLast() {
 return last;
 }
 
 /**
 * @param last the last to set
 */
 public void setLast(String last) {
 this.last = last;
 }
 
. . .
}
 

Next, let’s take a look the JavaScript file that makes use of the Employee class. This JavaScript code creates a
couple of Employee instances and then prints them back out. It also uses the java.util.Date class to demonstrate
using standard Java classes.
 
var oldDate = Java.type("java.util.Date");
var array = Java.type("java.util.ArrayList");
var emp = Java.type("org.java8recipes.chapter18.recipe18_06.Employee");
 
var empArray = new array();
var emp1 = new emp("Josh", "Juneau", new oldDate());
var emp2 = new emp("Joe", "Blow", new oldDate());
empArray.add(emp1);
empArray.add(emp2);
empArray.forEach(function(value, index, ar){
 print("Employee: " + value);
 print("Hire Date: " + value.hireDate);
});
 

Lastly, you execute the JavaScript file using a ScriptEngineManager:
 
ScriptEngineManager sem = new ScriptEngineManager();
ScriptEngine nashorn = sem.getEngineByName("nashorn");
try {

Chapter 18 ■ Nashorn and Scripting

515

 nashorn.eval("load('/path-to/employeeFactory.js');");
} catch (ScriptException ex) {
 Logger.getLogger(NashornInvoker.class.getName()).log(Level.SEVERE, null, ex);
}
 

Here are the results:
 
Employee: Josh Juneau
Hire Date: Thu April 24 23:03:53 CDT 2014
Employee: Joe Blow
Hire Date: Fri April 25 12:00:00 CDT 2014

How It Works
It is very natural to use Java classes and libraries from within a Nashorn solution. The example in this recipe
demonstrates how to use a Java class that has been generated specifically for use with a custom application, as well as
how to use Java classes and libraries that are part of Java SE. In order to make such classes available to JavaScript, you
must call the Java.type function from within the JavaScript and pass the string-based fully qualified name of the Java
class to be used. The Java.type function returns a JavaScript reference to the Java type. In the following excerpt from
the example, the java.util.Date, java.util.ArrayList, and Employee classes are made available to JavaScript using
this technique.
 
var oldDate = Java.type("java.util.Date");
var array = Java.type("java.util.ArrayList");
var emp = Java.type("org.java8recipes.chapter18.recipe18_06.Employee");
 

Once the types have been made available to JavaScript, they can be invoked in a similar manner to their Java
counterparts. For instance, new oldDate() is used to instantiate a new instance of java.util.Date in the example.
An important difference is that you don’t use getters and setters to call upon Java properties. Rather, you omit the
“get” or “set” portion of the method and begin with a lowercase letter for the field name. This makes property access
from within JavaScript quite easy and much more productive and readable. An example of such access can be seen
from within the forEach loop in the script. To access the employee hireDate property, simply call employee.hireDate
rather than employee.getHireDate().

The ability to access Java seamlessly from within JavaScript makes it possible to create seamless Java and
JavaScript integrations.

18-7. Accessing Java Arrays and Collections in Nashorn
Problem
You need to gain access to a Java array or collection from within your Nashorn solution.

solution
Use the Java.type function to coerce Java arrays to JavaScript. Once coerced, you instantiate the arrays by calling new
and then accessing the members by specifying their index by number. In the following example, a Java int array type
is created within JavaScript, and then it is instantiated and used for storage.
 

Chapter 18 ■ Nashorn and Scripting

516

jjs> var intArray = Java.type("int[]");
jjs> var intArr = new intArray(5);
jjs> intArr[0] = 0;
0
jjs> intArr[1] = 1;
1
jjs> intArr[0]
0
jjs> intArr.length
5
 

Working with collections is quite similar. To access a Java Collection type, you call upon the Java.type function,
passing the string-based name of the type you want to create. Once the type reference has been obtained, it can be
instantiated and accessed from JavaScript.
 
jjs> var ArrayList = Java.type("java.util.ArrayList")
jjs> var array = new ArrayList();
jjs> array.add('hi');
true
jjs> array.add('bye');
true
jjs> array
[hi, bye]
jjs> var map = Java.type("java.util.HashMap")
jjs> var jsMap = new map();
jjs> jsMap.put(0, "first");
null
jjs> jsMap.put(1, "second");
null
jjs> jsMap.get(1);
second

How It Works
To make use of Java arrays and collections from within JavaScript, you invoke the Java.type() function and pass the
name of the Java type that you want to access, assigning it to a JavaScript variable. The JavaScript variable can then be
instantiated and utilized in the same manner as the Java type would be used from within Java code. The examples in
this recipe demonstrate how to access Java arrays, ArrayLists, and HashMaps from within JavaScript.

When working with a Java array type from JavaScript, the type of array must be passed to the Java.type()
function, including an empty set of brackets. Once the type has been obtained and assigned to a JavaScript variable,
it can be instantiated by including the static size of the array within brackets, just as an array would be instantiated
in the Java language. Similarly, the array can be accessed by specifying indices to assign and retrieve values from the
array. To go backward and pass a JavaScript array to Java, use the Java.to() function, passing the JavaScript array to
its Java-type counterpart. In the following code, a JavaScript string array is coerced into a Java type.
 
jjs> var strArr = ["one","two","three"]
jjs> var javaStrArr = Java.type("java.lang.String[]");
jjs> var javaArray = Java.to(strArr, javaStrArr);
jjs> javaArray[1];
two
jjs> javaArray.class
class [Ljava.lang.String;
 

Chapter 18 ■ Nashorn and Scripting

517

Collections are very similar to arrays, in that the Java.type() function must be used to obtain the Java type and
assign it to a JavaScript variable. The variable is then instantiated and the Collection type is then accessed in the
same manner as it would be in the Java language.

18-8. Implementing Java Interfaces
Problem
You want to make use of a Java interface from your Nashorn solution.

Solution
Create a new instance of the interface, passing a JavaScript object consisting of properties. The JavaScript object
properties will implement the methods defined in the interface. In the following example, an interface used for
declaring employee position types is implemented within a JavaScript file. The example demonstrates custom method
implementation, as well as use of a default method. The following code is the interface, PositionType, which will be
implemented in JavaScript.
 
import java.math.BigDecimal;
 
public interface PositionType {
  
 public double hourlyWage(BigDecimal hours, BigDecimal wage);
  
 /**
 * Hourly salary calculation
 * @param wage
 * @return
 */
 public default BigDecimal yearlySalary(BigDecimal wage){
 return (wage.multiply(new BigDecimal(40))).multiply(new BigDecimal(52));
 }
}
 

Next, let’s take a look at the code within the JavaScript file that implements the PositionType interface.
 
var somePosition = new org.java8recipes.chapter18.recipe18_08.PositionType({
 hourlyWage: function(hours, wage){
 return hours * wage;
 }
});
 
print(somePosition instanceof Java.type("org.java8recipes.chapter18.recipe18_08.PositionType"));
var bigDecimal = Java.type("java.math.BigDecimal");
 
print(somePosition.hourlyWage(new bigDecimal(40), new bigDecimal(12.75)));

Chapter 18 ■ Nashorn and Scripting

518

How It Works
Using a Java interface in JavaScript can be beneficial for creating objects that adhere to the implementation criteria.
However, using interfaces in JavaScript is a bit different than using them in a Java solution. For example, interfaces
cannot be instantiated in Java. This is not the case when using them in JavaScript; you must actually instantiate an
object of the interface type in order to use it.

The example demonstrates the implementation of an interface, PositionType, which is used for defining a
number of methods within an employee position. The methods are used for calculating an employee’s hourly and
yearly wage. To make use of the PositionType interface from JavaScript, the new keyword is used to instantiate an
instance of that interface, assigning it to a JavaScript variable. When instantiating the interface, a JavaScript object
is passed to the constructor. The object contains implementations for each of the non-default methods within the
interface by identifying the name of the method, followed by the implementation. In the example, there is only one
method implemented on instantiation—it is identified as hourlyWage(). If there had been more than one method
implemented, the implementations would be separated by commas.

Although using Java interfaces is a bit different in JavaScript, they certainly provide a benefit. In reality, they are
performing the same task within JavaScript as they are within Java. In Java, in order to implement an interface, you
must create an object that implements it. You do the same thing within JavaScript, except that in order to create the
implementing object, you must instantiate an instance of the interface.

18-9. Extending Java Classes
Problem
You want to extend a concrete Java class in your Nashorn JavaScript solution.

Solution
First obtain a reference to the Java class that is to be extended by calling the Java.type() function within your
JavaScript file. Then create the subclass by calling on the Java.extend() function and passing the reference to the
class that will be extended, along with a JavaScript object containing the implementations that will be altered.

The following code is that of the Employee class, which will later be extended from within a JavaScript file.
 
package org.java8recipes.chapter18.recipe18_09;
 
import java.math.BigDecimal;
import java.util.Date;
 
public class Employee {
 private int age;
 private String first;
 private String last;
 private String position;
 private Date hireDate;
  
 . . .
  
 public BigDecimal grossPay(BigDecimal hours, BigDecimal rate){
 return hours.multiply(rate);
 }
}
 

Chapter 18 ■ Nashorn and Scripting

519

Here’s the JavaScript code used to extend the class and use it:
 
var Employee = Java.type("org.java8recipes.chapter18.recipe18_09.Employee");
var bigDecimal = Java.type("java.math.BigDecimal");
var Developer = Java.extend(Employee, {
 grossPay: function(hours, rate){
 var bonus = 500;
 return hours.multiply(rate).add(new bigDecimal(bonus));
 }
});
 
var javaDev = new Developer();
javaDev.first = "Joe";
javaDev.last = "Dynamic";
print(javaDev + "'s gross pay for the week is: " + javaDev.grossPay(new bigDecimal(60),
 new bigDecimal(80)));
 

Here’s the result:
 
Joe Dynamic's gross pay for the week is: 5300

How It Works
To extend a standard Java class from within JavaScript, you call on the Java.extend() function, passing the Java class
that you’d like to extend, along with a JavaScript object containing any fields or functions that will be altered in the
subclass. For the example in this recipe, a Java class entitled Employee is extended. However, the same technique can
be used to extend any other Java interface, such as Runnable, Iterator, and so on.

In this example, to obtain the Employee class in JavaScript, the Java.type() function is called upon, passing the
fully qualified class name. The object that is received from the call is stored in a JavaScript variable named Employee.
Next, the class is extended by calling on the Java.extend() function and passing the Employee class, along with a
JavaScript object. In the example, the JavaScript object that is sent to the Java.extend() function includes a different
implementation of the Employee class grossPay() method. The object that is returned from the Java.extend()
function is then instantiated and accessed via JavaScript.

Extending Java classes within JavaScript can be a very useful feature when you’re working with a Nashorn
solution. The ability to share objects from Java makes it possible to access exiting Java solutions and build on them.

18-10. Creating Executable Scripts in Unix
Problem
You want to enable your JavaScript file to become executable.

Solution
Make a JavaScript file executable by adding a shebang (#!) as the first line of the script, followed by the path to the
location of the jjs executable. In the following example, a very simple JavaScript file is made executable by the
inclusion of a shebang, which points to the symbolic link of the jjs tool.
 
#! /usr/bin/env jjs
print('I am an executable');
 

Chapter 18 ■ Nashorn and Scripting

520

To execute the script, it must be given the proper permissions. Apply the chmod a+x permissions (in Unix) to
make the script executable.
 
chmod a+x src/org/java8recipes/chapter18/recipe18_10/jsExecutable.js
 

The script can now be invoked as an executable, as shown in the following command:
 
Juneau$./src/org/java8recipes/chapter18/recipe18_10/jsExecutable.js
I am an executable

How It Works
To make a script executable, you simply add a shebang to the first line. The shebang is used in Unix-based operating
systems to tell the program loader that the script’s first line should be treated as an interpreter directive, and that the
script should be passed to that interpreter for execution. In the solution to this recipe, the first line of the script tells
the program loader that the script’s contents should be executed using the jjs tool:
 
#! /usr/bin/env jjs
 

By invoking the jjs tool in this manner, the scripting options are automatically enabled, allowing you to
utilize scripting features within the script. The following list includes extra scripting features that can be used when
executing via jjs with scripting options are enabled:

String interpolation: (See Recipe 18-3)•	
 
var threeyr = 365 * 3;
print("The number of days in three years is ${threeyr}");
 
Shell invocations: The ability to invoke external programs•	

Special environment variables are available for use (•	 $ARG and $ENV)

The ability to develop executable scripts in JavaScript can be very powerful. Not only is the world of JavaScript
available at your fingertips, but the entire Java world is available, since you can import Java classes and libraries into
your scripts.

18-11. Implementing JavaFX with Nashorn
Problem
You enjoy working in JavaScript code and want to implement a Java GUI using JavaScript.

Solution 1
Develop a JavaFX application using JavaScript and store it in a JavaScript file. Invoke the file using the jjs tool, along
with the –fx option. The following code is a JavaFX application that is written in JavaScript. The JavaFX application
can be used for collecting car data.
 

Chapter 18 ■ Nashorn and Scripting

521

var ArrayList = Java.type("java.util.ArrayList");
var Scene = javafx.scene.Scene;
var Button = javafx.scene.control.Button;
var TextField = javafx.scene.control.TextField;
var GridPane = javafx.scene.layout.GridPane;
var Label = javafx.scene.control.Label;
var TextArea = javafx.scene.control.TextArea;
 
var carList = new ArrayList();
var carCount = "There are currently no cars";
var car = {
 make:"",
 model:"",
 year:"",
 description:""
};
print(carCount);
function start(primaryStage) {
  
 primaryStage.title="Car Form JS Demo";
  
 var grid = new GridPane();
 grid.hgap = 10;
 grid.vgap = 10;
  
 var makeLabel = new Label("Make:");
 grid.add(makeLabel, 0, 1);
  
 var makeText = new TextField();
 grid.add(makeText, 1, 1);
  
 var modelLabel = new Label("Model:");
 grid.add(modelLabel, 0, 2);
  
 var modelText = new TextField();
 grid.add(modelText, 1, 2);
  
 var yearLabel = new Label("Year:");
 grid.add(yearLabel, 0, 3);
  
 var yearText = new TextField();
 grid.add(yearText, 1, 3);
  
 var descriptionLabel = new Label("Description:");
 grid.add(descriptionLabel, 0, 4);
  
 var descriptionText = new TextArea();
 grid.add(descriptionText, 1, 4);
  
 var button = new Button("Add Car");
 button.onAction = function(){

Chapter 18 ■ Nashorn and Scripting

522

 print("Adding Car:" + makeText.text);
 car.make=makeText.text;
 car.model=modelText.text;
 car.year=yearText.text;
 car.description=descriptionText.text;
 carList.add(car);
 carCount = "The number of cars is: "+ carList.size();
 print(carCount);
 };
 grid.add(button, 0,5);
  
 primaryStage.scene = new Scene(grid, 800, 500);
 primaryStage.show();
}
 

The resulting application looks like that shown in Figure 18-1.

Figure 18-1.  JavaFX application written in JavaScript

Chapter 18 ■ Nashorn and Scripting

523

Solution 2
Write a JavaFX application using Java and embed the JavaScript application implementation using a ScriptEngine.
The following Java class is called CarCollector.java and it implements javafx.application.Application. The Java
class implements the start() method, which contains a ScriptEngine to embed the JavaScript code that implements
the application.
 
package org.java8recipes.chapter18.recipe18_11;
 
import java.io.FileReader;
import javafx.application.Application;
import javafx.stage.Stage;
import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
 
public class CarCollector extends Application {
 
 private final String SCRIPT = getClass().getResource("carCollector.js").getPath();
 
 public static void main(String args[]) {
 launch(args);
 }
 
 @Override
 public void start(Stage stage) {
 try {
 ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
 engine.put("primaryStage", stage);
 engine.eval(new FileReader(SCRIPT));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}
 

Next, let’s take a look at the JavaScript file named carCollector.js, which implements the application. Note that
the code does not contain a start() function, because the application start() method is already implemented in the
Java code. The JavaScript file merely contains the implementation.
 
var ArrayList = Java.type("java.util.ArrayList");
var Scene = javafx.scene.Scene;
var Button = javafx.scene.control.Button;
var TextField = javafx.scene.control.TextField;
var GridPane = javafx.scene.layout.GridPane;
var Label = javafx.scene.control.Label;
var TextArea = javafx.scene.control.TextArea;
 
var carList = new ArrayList();
var carCount = "There are currently no cars";
var car = {
 make: "",
 model: "",

Chapter 18 ■ Nashorn and Scripting

524

 year: "",
 description: ""
};
print(carCount);
 
primaryStage.title = "Car Form JS Demo";
 
var grid = new GridPane();
grid.hgap = 10;
grid.vgap = 10;
 
var makeLabel = new Label("Make:");
grid.add(makeLabel, 0, 1);
 
var makeText = new TextField();
grid.add(makeText, 1, 1);
 
var modelLabel = new Label("Model:");
grid.add(modelLabel, 0, 2);
 
var modelText = new TextField();
grid.add(modelText, 1, 2);
 
var yearLabel = new Label("Year:");
grid.add(yearLabel, 0, 3);
 
var yearText = new TextField();
grid.add(yearText, 1, 3);
 
var descriptionLabel = new Label("Description:");
grid.add(descriptionLabel, 0, 4);
 
var descriptionText = new TextArea();
grid.add(descriptionText, 1, 4);
 
var button = new Button("Add Car");
button.onAction = function() {
 print("Adding Car:" + makeText.text);
 car.make = makeText.text;
 car.model = modelText.text;
 car.year = yearText.text;
 car.description = descriptionText.text;
 carList.add(car);
 carCount = "The number of cars is: " + carList.size();
 print(carCount);
};
grid.add(button, 0, 5);
 
primaryStage.scene = new Scene(grid, 800, 500);
primaryStage.show();

Chapter 18 ■ Nashorn and Scripting

525

How It Works
The Nashorn engine has full access to the JavaFX API. This means that it is possible to construct JavaFX applications
that are written either entirely or partially in JavaScript. The two solutions to this recipe demonstrate each of these
techniques. The first solution demonstrates how to develop a JavaFX application entirely of JavaScript. When you’re
using the technique demonstrated in Solution 1, the JavaScript implementation can be executed by using the jjs tool
and specifying the –fx option, as follows:
 
jjs –fx recipe18_11.js
 

Solution 2 demonstrates how to construct a JavaFX application from Java code, embedding the implementation
code written in JavaScript. To use this technique, construct a standard JavaFX application class by extending the
javafx.application.Application class and overriding the start() method. Within the start() method, create
a Nashorn ScriptEngine object and use it to embed a JavaScript file that contains the application implementation.
Prior to calling the engine’s eval() method and passing the JavaScript file, pass the JavaFX stage to the engine using
the engine’s put() method.
 
engine.put("primaryStage", stage);
 

Digging into the JavaScript code a bit, any of the JavaFX API classes can be imported by using the Java.type()
function and passing the fully-qualified class name. Assign the imported classes to JavaScript variables, which will
later be used in the application construction. When written entirely in JavaScript, a start() function must be created
to contain the JavaFX application stage construction. On the other hand, when you’re using Java code to launch the
application, there is no need to create a start() function. In the example, a GridPane layout is used to construct a
form for capturing car data. The form fields are each constructed with a Label and a TextField or TextArea. The car
data is stored in a JavaScript object when a button is clicked.

There are a few things to note about the JavaScript code in both implementations. The syntax is a bit different
than Java code because getters and setters are not used. Also, the implementation for the button action handler is a
simple JavaScript function.

Constructing JavaFX applications using JavaScript can be a fun alternative to using Java code. The syntax has the
feel of using the prior JavaFX Script language, and it is a bit less verbose than Java. It is also nice to be able to change
the application without having to recompile if you’re using the full JavaScript implementation.

Summary
Nashorn enables developers to make use of modern JavaScript capabilities from within the Java ecosystem. The
Nashorn engine has full access to all of the Java APIs, including JavaFX. The new jjs tool provides scripting
capabilities, allowing developers to create executable scripts written entirely in JavaScript.

527

Chapter 19

E-mail

E-mail notification is an integral part of today’s enterprise systems. Java enables e-mail notification by offering
JavaMail API. Using this API, you can send e-mail communications in response to an event (say a completed form or a
finalized script). You can also use the JavaMail API to check an IMAP or POP3 mailbox.

To follow along with the recipes in this chapter, make sure that you have set up your firewall to allow e-mail
communication. Most of the time, firewalls allow outbound communications to e-mail servers without an issue, but
if you are running your own local SMTP (e-mail) server, you may need to configure your firewall to allow the e-mail
server to operate correctly.

Note■■   The JavaMail API is included as part of the Java EE download. If you are using Java SE, you will need to
download and install the JavaMail API.

19-1. Installing JavaMail
Problem
You want to install JavaMail for use by your application in sending e-mail notifications.

Solution
Download JavaMail from Oracle’s JavaMail website. Currently, the download you need is found at
 
http://www.oracle.com/technetwork/java/javamail/.
 

Once you download it, unzip it and add the JavaMail .jar files as dependencies from your project (both
mail.jar and lib*.jar).

How It Works
The JavaMail API is included in the Java EE SDK, but if you are working with the Java SE SDK, you will need to
download and add the JavaMail API to your Java SE project. By downloading and adding the dependencies, you get
access to the robust e-mail API that allows you to send and receive e-mails.

http://www.oracle.com/technetwork/java/javamail/

Chapter 19 ■ E-mail

528

Note■■   If you are not using Java SE 6 or newer, you will also need the JavaBeans Activation Framework (JAF) to use
JavaMail. It is included in Java SE 6 and newer.

19-2. Sending an E-mail
Problem
You need your application to send an e-mail.

Solution
Using the Transport() methods, you can send an e-mail to specific recipients. In this solution, an e-mail message is
constructed and sent through the smtp.somewhere.com server:
 
private void start() {
 Properties properties = new Properties();
 properties.put("mail.smtp.host", "smtp.somewhere.com");
 properties.put("mail.smtp.auth", "true");
 
 Session session = Session.getDefaultInstance(properties,
new MessageAuthenticator("username","password"));
 
 Message message = new MimeMessage(session);
 try {
 message.setFrom(new InternetAddress("someone@somewhere.com"));
 message.setRecipient(Message.RecipientType.TO,
new InternetAddress("someone@somewhere.com"));
 message.setSubject("Subject");
 message.setContent("This is a test message", "text/plain");
 Transport.send(message);
 } catch (MessagingException e) {
 e.printStackTrace();
 }
}
 
class MessageAuthenticator extends Authenticator {
 PasswordAuthentication authentication = null;
 
 public MessageAuthenticator(String username, String password) {
 authentication = new PasswordAuthentication(username,password);
 }
 
 @Override
 protected PasswordAuthentication getPasswordAuthentication() {
 return authentication;
 }
}

http://smtp.somewhere.com/

Chapter 19 ■ E-mail

529

How It Works
To utilize the JavaMail API, start by creating a Properties object that works as a standard Map object (in fact, it
inherits from it), in which you put the different properties that the JavaMail service might need. The hostname is set
using the mail.smtp.host property, and if the host requires authentication then you must set the mail.smtp.auth
property to true. After the properties object is configured, fetch a javax.mail.Session that will hold the connection
information for the e-mail message.

When you’re creating a session, you can specify the login information if the service requires authentication. This
might be necessary when connecting to an SMTP service that is outside of your local area network. To specify the
login information, you must create an Authenticator object, which will contain the getPasswordAuthentication()
method. In this example, there is a new class identified as MessageAuthenticator, which extends the Authenticator
class. By making the getPasswordAuthentication() method return a PasswordAuthentication object, you can
specify the username/password used for the SMTP service.

The Message object represents an actual e-mail message and exposes e-mail properties such as From/To/Subject
and Content. After setting these properties, you call the Transport.send() static method to send the e-mail message.

Tip■■   If you don’t need authentication information, you can call the Session.getDefaultInstance(properties, null)
method, passing a null for the Authenticator parameter.

19-3. Attaching Files to an E-Mail Message
Problem
You need to attach one or more files to an e-mail message.

Solution
Creating a message that contains different parts (called a multipart message) is what allows you to send attachments
such as files and images. You can specify the body of the e-mail message and an attachment. Messages that contain
different parts are referred to as Multipurpose Internet Mail Extensions (MIME) messages. They are represented in the
javax.mail API by the MimeMessage class. The following code creates such a message:
 
Message message = new MimeMessage(session);
message.setFrom(new InternetAddress(from));
message.setRecipient(Message.RecipientType.TO, new InternetAddress(to));
message.setSubject("Subject");
 
// Create Mime "Message" part
MimeBodyPart messageBodyPart = new MimeBodyPart();
messageBodyPart.setContent("This is a test message", "text/plain");
 
// Create Mime "File" part
MimeBodyPart fileBodyPart = new MimeBodyPart();
fileBodyPart.attachFile("<path-to-attachment>/attach.txt");
 
MimeBodyPart fileBodyPart2 = new MimeBodyPart();
fileBodyPart2.attachFile("<path-to-attachment>/attach2.txt");
 

Chapter 19 ■ E-mail

530

// Piece the body parts together
Multipart multipart = new MimeMultipart();
multipart.addBodyPart(messageBodyPart);
multipart.addBodyPart(fileBodyPart);
//add another body part to supply another attachment
multipart.addBodyPart(fileBodyPart2);
 
// Set the content of the message to be the MultiPart
message.setContent(multipart);
Transport.send(message);

How It Works
Within the JavaMail API you can create a Multipurpose Internet Mail Extensions (MIME) e-mail. This type of message
allows it to contain different body parts. In the example, a plain text body part is generated (which contains the text
that the e-mail displays), and then two attachment body parts containing the attachments you are trying to send are
created. Depending on the type of attachments, the Java API will automatically choose an appropriate encoding for
the attachment body part.

After each of the body parts are created, they are combined by creating a MultiPart object and adding each
individual part (the plain text and the attachments) to it. Once the MultiPart object has been assembled to contain all
the parts, it is assigned as the content of the MimeMessage and sent (just like in Recipe 19-2).

19-4. Sending an HTML E-Mail
Problem
You want to send an e-mail that contains HTML.

Solution
You specify the content type of the e-mail as text/html and send a string of HTML as the message body. In the
following example, an e-mail is constructed using HTML content and then it is sent.
 
MimeMessage message = new MimeMessage(session);
try {
 message.setFrom(new InternetAddress(from));
 message.setRecipient(Message.RecipientType.TO, new InternetAddress(to));
 message.setSubject("Subject Test");
 
 // Create Mime Content
 MimeBodyPart messageBodyPart = new MimeBodyPart();
 String html = "<H1>Important Message</H1>" +
 "This is an important message..."+
 "

" +
 "<i>Be sure to code your Java today!</i>" +
 "<H2>It is the right thing to do!</H2>";
 messageBodyPart.setContent(html, "text/html; charset=utf-8");
 

Chapter 19 ■ E-mail

531

 MimeBodyPart fileBodyPart = new MimeBodyPart();
 fileBodyPart.attachFile("/path-to/attach.txt");
 
 MimeBodyPart fileBodyPart2 = new MimeBodyPart();
 fileBodyPart2.attachFile("/path-to/attach2.txt");
 
 Multipart multipart = new MimeMultipart();
 multipart.addBodyPart(messageBodyPart);
 multipart.addBodyPart(fileBodyPart);
 //add another body part to supply another attachment
 multipart.addBodyPart(fileBodyPart2);
 message.setContent(multipart);
 Transport.send(message);
} catch (MessagingException | IOException e) {
 e.printStackTrace();
}

How It Works
Sending an e-mail message that contains HTML content is basically the same as sending an e-mail with standard
text—the only difference is the content type. When you’re setting the content on the message body part of the e-mail,
you set the content to text/html to have the content treated as HTML. There are various ways to construct the HTML
content, including using links, photos, or any other valid HTML markup. In this example, a few basic HTML tags have
been embedded into a string.

Although the example code may not be very useful in real-life systems, it is easy to generate dynamic HTML
content for inclusion within an e-mail. At its most basic form, dynamically generated HTML can be strings of text that
are concatenated to formulate the HTML.

19-5. Sending E-Mail to a Group of Recipients
Problem
You want to send the same e-mail to multiple recipients.

Solution
Use the setRecipients() method from the JavaMail API to send e-mail to multiple recipients. The setRecipients()
method allows you to specify more than one recipient at a time. For example:
 
// Main send body
 message.setFrom(new InternetAddress("someone@somewhere.com"));
 message.setRecipients(Message.RecipientType.TO, getRecipients(emails));
 message.setSubject("Subject");
 message.setContent("This is a test message", "text/plain");
 Transport.send(message);
 
// ------------------
  

Chapter 19 ■ E-mail

532

 private Address[] getRecipients(List<String> emails) throws AddressException {
 Address[] addresses = new Address[emails.size()];
 for (int i =0;i < emails.size();i++) {
 addresses[i] = new InternetAddress(emails.get(i));
 }
 return addresses;
 }

How It Works
By using the setRecipients() method of the Message object, you can specify multiple recipients on the same
message. The setRecipients() method accepts an array of Address objects. In this recipe, because you have a
collection of strings, you create the array as the size of the collection and create InternetAddress objects to fill the
array. Sending e-mails using multiple e-mail addresses (as opposed to individual e-mails) is much more efficient
because only one message is sent from your client to the target mail servers. Each target mail server will then deliver
to all recipients that it has mailboxes for. For example, if you’re sending to five different yahoo.com accounts, the
yahoo.com mail server will need to receive only one copy of the message and it will deliver the message to all the
yahoo.com recipients specified in the message.

Tip■■   If you want to send bulk messages, you might want to specify the Recipient Type as BCC, so that the e-mail
received doesn’t show everyone else that is getting the e-mail. To do so, specify Message.RecipientType.BCC in the
setRecipients() method.

19-6. Checking E-Mail
Problem
You need to check if a new e-mail has arrived for a specified e-mail account.

Solution
You can use javax.mail.Store to connect, query, and retrieve messages from an Internet Message Access Protocol (IMAP)
e-mail account. For example, the following code connects to an IMAP account, retrieves the last five messages from
that IMAP account, and marks the messages as read.
 
Session session = Session.getDefaultInstance(properties, null);
Store store = session.getStore("imaps");
 store.connect(host,username,password);
 System.out.println(store);
 Folder inbox = store.getFolder(folder);
 inbox.open(Folder.READ_WRITE);
 int messageCount = inbox.getMessageCount();
 int startMessage = messageCount - 5;
 int endMessage = messageCount;
 if (messageCount < 5) startMessage =0;
 Message messages[] = inbox.getMessages(startMessage,endMessage);

http://yahoo.com/
http://yahoo.com/
http://yahoo.com/

Chapter 19 ■ E-mail

533

for (Message message : messages) {
 boolean hasBeenRead = false;
 for (Flags.Flag flag : message.getFlags().getSystemFlags()) {
 if (flag == Flags.Flag.SEEN) {
 hasBeenRead = true;
 break;
 }
 }
 message.setFlag(Flags.Flag.SEEN, true);
 System.out.println(message.getSubject() + " "+ (hasBeenRead? "(read)" : "") + message.getContent());
 
}
inbox.close(true);

How It Works
A Store object allows you to access e-mail mailbox information. By creating a Store and then requesting the Inbox
folder, you gain access to the messages in the main mailbox of your IMAP account. With the folder object, you can
request to download the messages from the inbox. To do so, you use the getMessages (start, end) method. The
inbox also provides a getMessageCount() method, which allows you to know how many e-mails are in the inbox.
Keep in mind that the messages start at index 1.

Each message will have a set of flags that can then tell whether the message has been read (Flags.Flag.SEEN)
or whether the message has been replied to (Flags.Flag.ANSWERED). By parsing the SEEN flag, you can then process
messages that haven’t been read before.

To set a message as being read (or answered), call the message.setFlag() method. This method allows you to
set (or reset) e-mail flags. If you’re setting message flags, you need to open the folder as READ_WRITE, which allows you
to make changes to e-mail flags. You also need to call inbox.close(true) at the end of your code, which will tell the
JavaMail API to flush the changes to the IMAP store.

Tip■■   For IMAP over SSL, you should use session.getStore("imaps"). This creates a secure IMAP store.

19-7. Monitoring an E-Mail Account
Problem
You want to monitor when e-mails arrive to a certain account, and you want to process them depending upon their
content.

Solution
Begin with the implementation from Recipe 19-6. Then add IMAP flag manipulation to create a robust e-mail monitor
for your application. In the following example, the checkForMail() method is used to process mail that is being sent
to a mailing list. In this scenario, users can subscribe or unsubscribe from the list by placing one of those words in
the subject line. The following example checks the subject of new messages and deals with them appropriately. The
example also uses message flags to delete processed messages so they need not be read twice. Messages that can’t be
processed are marked as read but left in the server for troubleshooting by a human.
 

Chapter 19 ■ E-mail

534

private void checkForMail() {
 System.out.println("Checking for mail");
 Properties properties = new Properties();
 String username = "username";
 String password = "password";
 String folder = "Inbox";
 String host = "imap.server.com";
 
 try {
 Session session = Session.getDefaultInstance(properties, null);
 Store store = session.getStore("imaps");
 store.connect(host,username,password);
 Folder inbox = store.getFolder(folder);
 inbox.open(Folder.READ_WRITE);
 int messageCount = inbox.getMessageCount();
 Message messages[] = inbox.getMessages(1,messageCount);
 for (Message message : messages) {
 boolean hasBeenRead = false;
 if (Arrays.asList(message.getFlags().getSystemFlags()).contains(Flags.Flag.SEEN)) {
 continue; // not interested in "seen" messages
 }
 if (processMessage(message)) {
 System.out.println("Processed :"+message.getSubject());
 message.setFlag(Flags.Flag.DELETED, true);
 } else {
 System.out.println("Couldn't Understand :"+message.getSubject());
 // set it as seen, but keep it around
 message.setFlag(Flags.Flag.SEEN, true);
 }
 }
 inbox.close(true);
 } catch (MessagingException e) {
 e.printStackTrace();
 }
 }
 
 private boolean processMessage(Message message) throws MessagingException {
 boolean result = false;
 
 String subject = message.getSubject().toLowerCase();
 if (subject.startsWith("subscribe")) {
 String emailAddress = extractAddress (message.getFrom());
 if (emailAddress != null) {
 subscribeToList(emailAddress);
 result = true;
 }
 
 } else if (subject.startsWith("unsubscribe")) {
 String emailAddress = extractAddress (message.getFrom());
 if (emailAddress != null) {
 unSubscribeToList(emailAddress);

Chapter 19 ■ E-mail

535

 result = true;
 }
 }
 
 return result;
 }
  
 private String extractAddress(Address[] addressArray) {
 if ((addressArray == null) || (addressArray.length < 1)) return null;
 if (!(addressArray[0] instanceof InternetAddress)) return null;
 InternetAddress internetAddress = (InternetAddress) addressArray[0];
 return internetAddress.getAddress();
 }

How It Works
After connecting to the IMAP server, the example requests all messages received. The code skips over the ones that
are marked as SEEN. To do so, the recipe uses the Arrays.AsList to convert the array of system message flags into an
ArrayList. Once the list is created, it is a matter of querying the list to see whether it contains the Flag.SEEN enum
value. If that value is present, the example skips to the next item.

When an unread message is found, the message is processed by the processMessage() method. The method
subscribes or unsubscribes the sender of the message depending on the start of the subject line. (This is akin to a
mailing list, where sending a message with the subject of “subscribe” adds the sender to the mailing list.)

After determining which command to execute, the code proceeds to extract the sender’s e-mail from the
message. To do so, the processMessage() calls the extractEmail() method. Each message contains an array of
possible “From” addresses. These Address objects are generic because the Address object can represent Internet
or newsgroup addresses. After checking that the Address object is indeed an InternetAddress, the code casts the
Address object as an InternetAddress and calls the getAddress() method, which contains the actual e-mail address.

Once the e-mail address is extracted, the recipe calls subscribe or unsubscribe, depending on the subject line.
If the message could be understood (meaning that the message was processed), the processMessage() method
returns true (if it couldn’t understand the message, it returns false). In the checkForMail() method, when the
processMessage() method returns true, the message is flagged for deletion (by calling message.setFlag(Flags.
Flag.DELETED, true); otherwise, the message is just flagged as Seen. This allows the message to still be around if
it wasn’t understood or deleted if it was processed. Finally, to commit the new flags on the messages (and expunge
deleted messages), you need to call the inbox.close(true) method.

Summary
Email plays an important role in many systems that we use today. The Java language includes the JavaMail API,
which enables developers to include robust email functionality within their Java applications. The recipes in this
chapter covered the JavaMail API from installation through advanced usage. To learn more about JavaMail, and also
about mail integration with Java applications deployed to enterprise applications servers, please refer to the online
documentation: http://www.oracle.com/technetwork/java/javamail/index-141777.html.

http://www.oracle.com/technetwork/java/javamail/index-141777.html

       

537

Chapter 20

XML Processing

XML APIs have always been available to the Java developer, usually supplied as third-party libraries that could be
added to the runtime class path. Beginning in Java 7, the Java API for XML Processing (JAXP), Java API for XML
Binding (JAXB), and the Java API for XML Web Services (JAX-WS) were included in the core runtime libraries.
The most fundamental XML processing tasks that you will encounter involve only a few use cases: writing and reading
XML documents, validating those documents, and using JAXB to assist in marshalling/unmarshalling Java objects.
This chapter provides recipes for these common tasks.

Note■■   The source code for this chapter’s examples is available in the org.java8recipes.chapter20 package.
See the introductory chapters for instructions on how to find and download this book’s sample source code.

20-1. Writing an XML File
Problem
You want to create an XML document to store application data.

Solution
To write an XML document, use the javax.xml.stream.XMLStreamWriter class. The following code iterates over an
array of Patient objects and writes the data to an .xml file. This sample code comes from the org.java8recipes.
chapter20.recipe20_1.DocWriter example:
 
import javax.xml.stream.XMLOutputFactory;
import javax.xml.stream.XMLStreamException;
import javax.xml.stream.XMLStreamWriter;
...
public void run(String outputFile) throws FileNotFoundException, XMLStreamException,
 IOException {
 List<Patient> patients = new ArrayList<>();
 Patient p1 = new Patient();
 Patient p2 = new Patient();
 Patient p3 = new Patient();
 p1.setId(BigInteger.valueOf(1));

Chapter 20 ■ XML Processing

538

 p1.setName("John Smith");
 p1.setDiagnosis("Common Cold");
 p2.setId(BigInteger.valueOf(2));
 p2.setName("Jane Doe");
 p2.setDiagnosis("Broken Ankle");
 p3.setId(BigInteger.valueOf(3));
 p3.setName("Jack Brown");
 p3.setDiagnosis("Food Allergy");
 patients.add(p1);
 patients.add(p2);
 patients.add(p3);
 XMLOutputFactory factory = XMLOutputFactory.newFactory();
 try (FileOutputStream fos = new FileOutputStream(outputFile)) {
 XMLStreamWriter writer = factory.createXMLStreamWriter(fos, "UTF-8");
 writer.writeStartDocument();
 writer.writeCharacters("\n");
 writer.writeStartElement("patients");
 writer.writeCharacters("\n");
 for (Patient p : patients) {
 writer.writeCharacters("\t");
 writer.writeStartElement("patient");
 writer.writeAttribute("id", String.valueOf(p.getId()));
 writer.writeCharacters("\n\t\t");
 writer.writeStartElement("name");
 writer.writeCharacters(p.getName());
 writer.writeEndElement();
 writer.writeCharacters("\n\t\t");
 writer.writeStartElement("diagnosis");
 writer.writeCharacters(p.getDiagnosis());
 writer.writeEndElement();
 writer.writeCharacters("\n\t");
 writer.writeEndElement();
 writer.writeCharacters("\n");
 }
 writer.writeEndElement();
 writer.writeEndDocument();
 writer.close();
 }
 
}
 

The previous code writes the following file contents:
 
<?xml version="1.0" ?>
<patients>
 <patient id="1">
 <name>John Smith</name>
 <diagnosis>Common Cold</diagnosis>
 </patient>
 <patient id="2">
 <name>Jane Doe</name>

Chapter 20 ■ XML Processing

539

 <diagnosis>Broken ankle</diagnosis>
 </patient>
 <patient id="3">
 <name>Jack Brown</name>
<diagnosis>Food allergy</diagnosis>
</patient>
</patients>

How It Works
The Java standard library provides several ways to write XML documents. One model is the Simple API for XML (SAX).
The newer, simpler, and more efficient model is the Streaming API for XML (StAX). This recipe uses StAX defined in
the javax.xml.stream package. Writing an XML document takes five steps:

	 1.	 Create a file output stream.

	 2.	 Create an XML output factory and an XML output stream writer.

	 3.	 Wrap the file stream in the XML stream writer.

	 4.	 Use the XML stream writer’s write methods to create the document and write the XML
elements.

	 5.	 Close the output streams.

Create a file output stream using the java.io.FileOutputStream class. You can use a try-block to open and
close this stream. Learn more about the new try-block syntax in Chapter 9.

The javax.xml.stream.XMLOutputFactory provides a static method that creates an output factory. Use the
factory to create a javax.xml.stream.XMLStreamWriter.

Once you have the writer, wrap the file stream object in the XML writer instance. You will use the various write
methods to create the XML document elements and attributes. Finally, you simply close the writer when you finish
writing to the file. Some of the more useful methods of the XMLStreamWriter instance are these:

•	 writeStartDocument()

•	 writeStartElement()

•	 writeEndElement()

•	 writeEndDocument()

•	 writeAttribute()

After creating the file and XMLStreamWriter, you always should begin the document by calling the
writeStartDocumentMethod() method. Follow this by writing individual elements using the writeStartElement()
and writeEndElement() methods in combination. Of course, elements can have nested elements. You have the
responsibility to call these in proper sequence to create well-formed documents. Use the writeAttribute() method
to place an attribute name and value into the current element. You should call writeAttribute() immediately after
calling the writeStartElement() method. Finally, signal the end of the document with the writeEndDocument()
method and close the Writer instance.

One interesting point of using the XMLStreamWriter is that it does not format the document output. Unless you
specifically use the writeCharacters() method to output space and newline characters, the output will stream to a
single unformatted line. Of course, this doesn’t invalidate the resulting XML file, but it does make it inconvenient and
difficult for humans to read. Therefore, you should consider using the writeCharacters() method to output spacing
and newline characters as needed to create a human readable document. You can safely ignore this method of writing
additional whitespace and line breaks if you do not need a document for human readability. Regardless of the format,
the XML document will be well formed because it adheres to correct XML syntax.

Chapter 20 ■ XML Processing

540

The command-line usage pattern for this example code is this:
 
java org.java8recipes.chapter20.recipe20_1.DocWriter <outputXmlFile>
 

Invoke this application to create a file named patients.xml in the following way:
 
java org.java8recipes.chapter20.recipe20_1.DocWriter patients.xml

20-2. Reading an XML File
Problem
You need to parse an XML document, retrieving known elements and attributes.

Solution 1
Use the javax.xml.stream.XMLStreamReader interface to read documents. Using this API, your code will pull XML
elements using a cursor-like interface similar to that in SQL to process each element in turn. The following code
snippet from org.java8recipes.DocReader demonstrates how to read the patients.xml file that was generated in
the previous recipe:
 
public void cursorReader(String xmlFile)
throws FileNotFoundException, IOException, XMLStreamException {
 XMLInputFactory factory = XMLInputFactory.newFactory();
 try (FileInputStream fis = new FileInputStream(xmlFile)) {
 XMLStreamReader reader = factory.createXMLStreamReader(fis);
 boolean inName = false;
 boolean inDiagnosis = false;
 String id = null;
 String name = null;
 String diagnosis = null;
 
 while (reader.hasNext()) {
 int event = reader.next();
 switch (event) {
 case XMLStreamConstants.START_ELEMENT:
 String elementName = reader.getLocalName();
 switch (elementName) {
 case "patient":
 id = reader.getAttributeValue(0);
 break;
 case "name":
 inName = true;
 break;
 case "diagnosis":
 inDiagnosis = true;
 break;
 default:
 break;
 }

Chapter 20 ■ XML Processing

541

 break;
 case XMLStreamConstants.END_ELEMENT:
 String elementname = reader.getLocalName();
 if (elementname.equals("patient")) {
 System.out.printf("Patient: %s\nName: %s\nDiagnosis: %s\n\n",id, name,
 diagnosis);
 id = name = diagnosis = null;
 inName = inDiagnosis = false;
 }
 break;
 case XMLStreamConstants.CHARACTERS:
 if (inName) {
 name = reader.getText();
 inName = false;
 } else if (inDiagnosis) {
 diagnosis = reader.getText();
 inDiagnosis = false;
 }
 break;
 default:
 break;
 }
 }
 reader.close();
 }
}

Solution 2
Use the XMLEventReader to read and process events using an event-oriented interface. This API is called an iterator-
oriented API as well. The following code is much like the code in Solution 1, except that it uses the event-oriented
API instead of the cursor-oriented API. This code snippet is available from the same org.java8recipes.chapter20.
recipe20_1.DocReader class used in Solution 1:
 
public void eventReader(String xmlFile)
 throws FileNotFoundException, IOException, XMLStreamException {
 XMLInputFactory factory = XMLInputFactory.newFactory();
 XMLEventReader reader = null;
 try(FileInputStream fis = new FileInputStream(xmlFile)) {
 reader = factory.createXMLEventReader(fis);
 boolean inName = false;
 boolean inDiagnosis = false;
 String id = null;
 String name = null;
 String diagnosis = null;
 
 while(reader.hasNext()) {
 XMLEvent event = reader.nextEvent();
 String elementName = null;
 switch(event.getEventType()) {
 case XMLEvent.START_ELEMENT:

Chapter 20 ■ XML Processing

542

 StartElement startElement = event.asStartElement();
 elementName = startElement.getName().getLocalPart();
 switch(elementName) {
 case "patient":
 id = startElement.getAttributeByName(QName.valueOf("id")).getValue();
 break;
 case "name":
 inName = true;
 break;
 case "diagnosis":
 inDiagnosis = true;
 break;
 default:
 break;
 }
 break;
 case XMLEvent.END_ELEMENT:
 EndElement endElement = event.asEndElement();
 elementName = endElement.getName().getLocalPart();
 if (elementName.equals("patient")) {
 �System.out.printf("Patient: %s\nName: %s\nDiagnosis: %s\n\n",id,

name, diagnosis);
 id = name = diagnosis = null;
 inName = inDiagnosis = false;
 }
 break;
 case XMLEvent.CHARACTERS:
 String value = event.asCharacters().getData();
 if (inName) {
 name = value;
 inName = false;
 } else if (inDiagnosis) {
 diagnosis = value;
 inDiagnosis = false;
 }
 break;
 }
 }
 }
 if(reader != null) {
 reader.close();
 }
}

How It Works
Java provides several ways to read XML documents. One way is to use StAX, a streaming model. It is better than the
older SAX API because it allows you to both read and write XML documents. Although StAX is not quite as powerful as
a DOM API, it is an excellent and efficient API that is less taxing on memory resources.

StAX provides two methods for reading XML documents: a cursor API and an iterator API. The cursor-oriented
API utilizes a cursor that can walk an XML document from start to finish, pointing to one element at a time, and

Chapter 20 ■ XML Processing

543

always moving forward. The iterator API represents an XML document stream as a set of discrete event objects,
provided in the order that they are read in the source XML. The event-oriented, iterator API is preferred over the
cursor API at this time because it provides XMLEvent objects with the following benefits:

The •	 XMLEvent objects are immutable and can persist even though the StAX parser has moved
on to subsequent events. You can pass these XMLEvent objects to other processes or store them
in lists, arrays, and maps.

You can subclass •	 XMLEvent, creating your own specialized events as needed.

You can modify the incoming event stream by adding or removing events, which is more •	
flexible than the cursor API.

To use StAX to read documents, create an XML event reader on your file input stream. Check that events are still
available with the hasNext() method and read each event using the nextEvent() method. The nextEvent() method
will return a specific type of XMLEvent that corresponds to the start and stop elements, attributes, and value data in the
XML file. Remember to close your readers and file streams when you’re finished with those objects.

You can invoke the example application like this, using the patients.xml file as your <xmlFile> argument:
 
java org.java8recipes.chapter20.recipe20_2.DocReader <xmlFile>

20-3. Transforming XML
Problem
You want to convert an XML document to another format, for example to HTML.

Solution
Use the javax.xml.transform package to transform an XML document to another document format.

The following code demonstrates how to read a source document, apply an Extensible Stylesheet Language
(XSL) transform file, and produce the transformed, new document. Use the sample code from the org.java8recipes.
chapter20.recipe20_3.TransformXml class to read the patients.xml file and create a patients.html file. The
following snippet shows the important pieces of this class:
 
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
...
public void run(String xmlFile, String xslFile, String outputFile)
 throws FileNotFoundException, TransformerConfigurationException, TransformerException {
 InputStream xslInputStream = new FileInputStream(xslFile);
 Source xslSource = new StreamSource(xslInputStream);
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer(xslSource);
 InputStream xmlInputStream = new FileInputStream(xmlFile);
 StreamSource in = new StreamSource(xmlInputStream);

Chapter 20 ■ XML Processing

544

 StreamResult out = new StreamResult(outputFile);
 transformer.transform(in, out);
 ...
}

How It Works
The javax.xml.transform package contains all the classes you need to transform an XML document into any other
document type. The most common use case is to convert data-oriented XML documents into user-readable HTML
documents.

Transforming from one document type to another requires three files:

An XML source document•	

An XSL transformation document that maps XML elements to the new document elements•	

A target output file•	

The XML source document is, of course, your source data file. It will most often contain data-oriented content
that is easy to parse programmatically. However, people don’t easily read XML files, especially complex, data-rich
files. Instead, people are much more comfortable reading properly rendered HTML documents.

The XSL transformation document specifies how an XML document should be transformed into a different
format. An XSL file will usually contain an HTML template that specifies dynamic fields that will hold the extracted
contents of a source XML file.

In this example’s source code, you’ll find two source documents:

•	 chapter20/recipe20_3/patients.xml

•	 chapter20/recipe20_3/patients.xsl

The patients.xml file is short and contains the following data:
 
<?xml version="1.0" encoding="UTF-8"?>
<patients>
 <patient id="1">
 <name>John Smith</name>
 <diagnosis>Common Cold</diagnosis>
 </patient>
 <patient id="2">
 <name>Jane Doe</name>
 <diagnosis>Broken ankle</diagnosis>
 </patient>
 <patient id="3">
 <name>Jack Brown</name>
 <diagnosis>Food allergy</diagnosis>
 </patient>
</patients>
 

Chapter 20 ■ XML Processing

545

The patients.xml file defines a root element called patients. It has three nested patient elements. The patient
elements contain three pieces of data:

Patient identifier, provided as the •	 id attribute of the patient element

Patient name, provided as the •	 name subelement

Patient diagnosis, provided as the •	 diagnosis subelement

The transformation XSL document (patients.xsl) is quite small as well, and it simply maps the patient data to a
more user-readable HTML format using XSL:
 
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<head>
 <title>Patients</title>
</head>
<body>
 <table border="1">
 <tr>
 <th>Id</th>
 <th>Name</th>
 <th>Diagnosis</th>
 </tr>
 <xsl:for-each select="patients/patient">
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>
 <td>
 <xsl:value-of select="name"/>
 </td>
 <td>
 <xsl:value-of select="diagnosis"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
</body>
</html>
 </xsl:template>
 </xsl:stylesheet>
 

Using this stylesheet, the sample code transforms the XML into an HTML table containing all the patients and
their data. Rendered in a browser, the HTML table should look like the one in Figure 20-1.

Chapter 20 ■ XML Processing

546

The process for using this XSL file to convert the XML to an HTML file is straightforward, but every step can
be enhanced with additional error checking and processing. For this example, refer to the previous code in the
solution section.

The most basic transformation steps are these:

	 1.	 Read the XSL document into your Java application as a Source object.

	 2.	 Create a Transformer instance and provide your XSL Source instance for it to use during
its operation.

	 3.	 Create a SourceStream that represents the source XML contents.

	 4.	 Create a StreamResult instance for your output document, which is an HTML file in this case.

	 5.	 Use the Transformer object’s transform() method to perform the conversion.

	 6.	 Close all the relevant streams and file instances, as needed.

If you choose to execute the sample code, you should invoke it in the following way, using patients.xml,
patients.xsl, and patients.html as arguments:
 
java org.java8recipes.chapter20.recipe20_3.TransformXml <xmlFile><xslFile><outputFile>

20-4. Validating XML
Problem
You want to confirm that your XML is valid—that it conforms to a known document definition or schema.

Solution
Validate that your XML conforms to a specific schema by using the javax.xml.validation package. The following
code snippet from org.java8recipes.chapter20.recipe20_4.ValidateXml demonstrates how to validate against an
XML schema file:
 
import java.io.File;
import java.io.IOException;
import javax.xml.XMLConstants;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schema;
import javax.xml.validation.SchemaFactory;

Figure 20-1.  A common rendering of an HTML table

Chapter 20 ■ XML Processing

547

import javax.xml.validation.Validator;
import org.xml.sax.SAXException;
...
public void run(String xmlFile, String validationFile) {
 boolean valid = true;
 SchemaFactory sFactory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 try {
 Schema schema = sFactory.newSchema(new File(validationFile));
 Validator validator = schema.newValidator();
 Source source = new StreamSource(new File(xmlFile));
 validator.validate(source);
 } catch (SAXException | IOException | IllegalArgumentException ex) {
 valid = false;
 }
 System.out.printf("XML file is %s.\n", valid ? "valid" : "invalid");
}
...

How It Works
When utilizing XML, it is important to validate it to ensure that the correct syntax is in place, and to ensure that an
XML document is an instance of the specified XML schema. The validation process involves comparing the schema
and the XML document to find any discrepancies. The javax.xml.validation package provides all the classes
needed to reliably validate an XML file against a variety of schemas. The most common schemas that you will use for
XML validation are defined as constant URIs within the XMLConstants class:

•	 XMLConstants.W3C_XML_SCHEMA_NS_URI

•	 XMLConstants.RELAXNG_NS_URI

Begin by creating a SchemaFactory for a specific type of schema definition. A SchemaFactory knows how to parse
a particular schema type and prepares it for validation. Use the SchemaFactory instance to create a Schema object.
The Schema object is an in-memory representation of the schema definition grammar. You can use the Schema
instance to retrieve a Validator instance that understands this grammar. Finally, use the validate() method to
check your XML. The method call will generate several exceptions if anything goes wrong during the validation.
Otherwise, the validate() method returns quietly, and you can continue to use the XML file.

Note■■   The XML Schema was the first to receive “Recommendation” status from the World Wide Web consortium
(W3C) in 2001. Competing schemas have since become available. One competing schema is the Regular Language for
XML Next Generation (RELAX NG) schema. RELAX NG may be a simpler schema and its specification also defines a
non-XML, compact syntax. This recipe’s example uses the XML schema.

Run the example code using the following command-line syntax, preferably with the sample .xml file and
validation files provided as resources/patients.xml and patients.xsl, respectively:
 
java org.java8recipes.chapter20.recipe20_4.ValidateXml <xmlFile><validationFile>

Chapter 20 ■ XML Processing

548

20-5. Creating Java Bindings for an XML Schema
Problem
You want to generate a set of Java classes (Java bindings) that represent the objects in an XML schema.

Solution
The JDK provides a tool that can turn schema documents into representative Java class files. Use the
<JDK_HOME>/bin/xjc command-line tool to generate Java bindings for your XML schemas. To create the Java classes
for the patients.xsd file from Recipe 20-3, you could issue the following command from within a console:

xjc –p org.java8recipes.chapter20.recipe20_5 patients.xsd

This command will process the patients.xsd file and create all the classes needed to process an XML file that
validates with this schema. For this example, the patients.xsd file looks like the following:
 
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="patients">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" name="patient" type="Patient"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="Patient">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="diagnosis" type="xs:string"/>
</xs:sequence>
<xs:attribute name="id" type="xs:integer" use="required"/>
</xs:complexType>
</xs:schema>
 

Executed on the previous xsd file, the xjc command creates the following files in the
org.java8recipes.chapter20.recipe20_5 package:

•	 ObjectFactory.java

•	 Patients.java

•	 Patient.java

How It Works
The JDK includes the <JDK_HOME>/bin/xjc utility. The xjc utility is a command-line application that creates Java
bindings from schema files. The source schema files can be several types, including XML Schemas, RELAX NG, and
others.

The xjc command has several options for performing its work. Some of the most common options specify the
source schema file, the package of the generated Java binding files, and the output directory that will receive the Java
binding files.

Chapter 20 ■ XML Processing

549

You can get detailed descriptions of all the command-line options by using the tools’ –help option:
 
xjc –help
 

A Java binding contains annotated fields that correspond to the fields defined in the XML Schema file. These
annotations mark the root element of the schema file and all other subelements. This is useful during the next step of
XML processing, which involves either unmarshalling or marshalling these bindings.

20-6. Unmarshalling XML to a Java Object
Problem
You want to unmarshall an XML file and create its corresponding Java object tree.

Solution
Unmarshalling is the process of converting a data format, in this case XML, into a memory representation of the object
so that can be used to perform a task. JAXB provides an unmarshalling service that parses an XML file and generates
the Java objects from the bindings you created in Recipe 20-4. The following code can read the file patients.xml
from the org.java8recipes.chapter20.recipe20-6 package to create a Patients root object and its list of Patient
objects:
 
public void run(String xmlFile, String context)
 throws JAXBException, FileNotFoundException {
 JAXBContext jc = JAXBContext.newInstance(context);
 Unmarshaller u = jc.createUnmarshaller();
 FileInputStream fis = new FileInputStream(xmlFile);
 Patients patients = (Patients)u.unmarshal(fis);
 for (Patient p: patients.getPatient()) {
 System.out.printf("ID: %s\n", p.getId());
 System.out.printf("NAME: %s\n", p.getName());
 System.out.printf("DIAGNOSIS: %s\n\n", p.getDiagnosis());
 }
}
 

If you run the sample code on the chapter20/recipe20_6/patients.xml file and use the org.java8recipes.
chapter20 context, the application will print the following to the console as it iterates over the Patient object list:
 
ID: 1
NAME: John Smith
DIAGNOSIS: Common Cold
 
ID: 2
NAME: Jane Doe
DIAGNOSIS: Broken ankle
 
ID: 3
NAME: Jack Brown
DIAGNOSIS: Food allergy
 

Chapter 20 ■ XML Processing

550

Note■■   The previous output comes directly from instances of the Java Patient class that was created from XML
representations. The code does not print the contents of the XML file directly. Instead, it prints the contents of the Java
bindings after the XML has been marshalled into appropriate Java binding instances.

How It Works
Unmarshalling an XML file into its Java object representation has at least two criteria:

A well-formed and valid XML file•	

A set of corresponding Java bindings•	

The Java bindings don’t have to be autogenerated from the xjc command. Once you’ve gained some experience
with Java bindings and the annotation features, you may prefer to create and control all aspects of Java binding by
handcrafting your Java bindings. Whatever your preference, Java’s unmarshalling service utilizes the bindings and
their annotations to map XML objects to a target Java object and to map XML elements to target object fields.

Execute the example application for this recipe using this syntax, substituting patients.xml and
org.java8recipes.chapter20.recipe20_6 for the respective parameters:
 
java org.java8recipes.chapter20.recipe20_6.UnmarshalPatients <xmlfile><context>

20-7. Building an XML Document with JAXB
Problem
You need to write an object’s data to an XML representation.

Solution
Assuming you have created Java binding files for your XML schema as described in Recipe 20-4, you use a
JAXBContext instance to create a Marshaller object. You then use the Marshaller object to serialize your Java object
tree to an XML document. The following code demonstrates this:
 
public void run(String xmlFile, String context)
 throws JAXBException, FileNotFoundException {
 Patients patients = new Patients();
 List<Patient> patientList = patients.getPatient();
 Patient p = new Patient();
 p.setId(BigInteger.valueOf(1));
 p.setName("John Doe");
 p.setDiagnosis("Schizophrenia");
 patientList.add(p);
 
 JAXBContext jc = JAXBContext.newInstance(context);
 Marshaller m = jc.createMarshaller();
 m.marshal(patients, new FileOutputStream(xmlFile));
}
 

Chapter 20 ■ XML Processing

551

The previous code produces an unformatted but well-formed and valid XML document. For readability, the XML
document is formatted here:
 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <patients>
 <patient id="1">
 <name>John Doe</name>
 <diagnosis>Schizophrenia</diagnosis>
 </patient>
 </patients> 

Note■■   The getPatient() method in the previous code returns a list of patient objects instead of a single patient.
This is a naming oddity of the JAXB code generation from the XSD schema in this example.

How It Works
A Marshaller object understands JAXB annotations. As it processes classes, it uses the JAXB annotations to provide
the context needed to create the object tree in XML.

You can run the previous code from the org.java8recipes.chapter20.recipe20_7.MarshalPatients
application using the following command line:
 
java org.java8recipes.chapter20.recipe20_7.MarshalPatients <xmlfile><context>
 

The context argument refers to the package of the Java classes that you will marshal. In the previous example,
because the code marshals a Patients object tree, the correct context is the package name of the Patients class. In
this case, the context is org.java8recipes.chapter20.

Summary
XML is commonly used to transfer data between disparate applications or to store data of some kind to a file.
Therefore, it is important to understand the fundamentals for working with XML in your application development
platform. This chapter provided an overview of how to perform some key tasks for working with XML using Java.

This chapter began with the basics of writing and reading XML. It then demonstrated how to transform XML
into different formats, and how to validate against XML schemas. Lastly, the chapter covered topics detailing how to
perform various tasks using XML data within your applications.

553

Chapter 21

Networking

Today, writing an application that does not communicate over the Internet in some fashion is rare. From sending
data to another machine, to scraping information off remote web pages, networking plays an integral part in today’s
computing world. Java makes it easy to communicate over a network using the New I/O (NIO) and more new I/O
features for the Java platform (NIO.2) APIs. Java SE 7 included a few new features, enabling easier multicasting among
other things. With the addition of these new features, the Java platform contains a plethora of programming interfaces
to help accomplish network tasks.

This chapter does not attempt to cover every networking feature that is part of the Java language, as the topic is
quite large. However, it does provide a handful of recipes that are the most useful to a broad base of developers. You
learn about a few of the standard networking concepts, such as sockets, as well as some newer concepts that were
introduced with the latest release of the Java language. If you find this chapter interesting and want to learn more
about Java networking, you can find lots of resources online. Perhaps the best place to go for learning more is the
Oracle documentation at http://download.oracle.com/javase/tutorial/networking/index.html.

21-1. Listening for Connections on the Server
Problem
You want to create a server application that will listen for connections from a remote client.

Solution
Set up a server-side application that makes use of java.net.ServerSocket to listen for requests on a specified port.
The following Java class is representative of one that would be deployed onto a server, and it listens for incoming
requests on port 1234. When a request is received, the incoming message is printed to the command line and a
response is sent back to the client.
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;
 
public class SocketServer {
 
public static void main(String a[]) {
 final int httpd = 1234;

http://download.oracle.com/javase/tutorial/networking/index.html

Chapter 21 ■ Networking

554

 ServerSocket ssock = null;
 try {
 ssock = new ServerSocket(httpd);
 System.out.println("have opened port 1234 locally");
 
 Socket sock = ssock.accept();
 System.out.println("client has made socket connection");
 
 communicateWithClient(sock);
 
System.out.println("closing socket");
} catch (Exception e) {
System.out.println(e);
} finally {
try{
ssock.close();
} catch (IOException ex) {
System.out.println(ex);
}
}
}
 public static void communicateWithClient(Socket socket) {
 BufferedReader in = null;
 PrintWriter out = null;
 
 try {
 in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 out = new PrintWriter(
 socket.getOutputStream(), true);
 
 String s = null;
 out.println("Server received communication!");
 while ((s = in.readLine()) != null) {
 System.out.println("received from client: " + s);
 out.flush();
 break;
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 in.close();
 out.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}
 

Chapter 21 ■ Networking

555

Executing this program along with the client that is built in Recipe 21-2 will result in the following output from
the SocketServer:
 
have opened port 1234 locally
client has made socket connection
received from client: Here is a test.
closing socket 

Note■■   To run the two recipes so that they work with each other, first start the SocketServer program so that the
client can create a socket using the port that is opened in the server program. After the SocketServer starts, initiate the
SocketClient program to see the two work together.

Caution■■   This SocketServer program opens a port on your machine (1234). Be sure that you have a firewall set
running on your machine; otherwise, you will be opening port 1234 to everyone. This could result in your machine being
attacked. Open ports create vulnerabilities for attackers to break into machines, kind of like leaving a door in your house
open. Note that the example in this recipe has a minimal attack profile because the server is run through only one pass
and will print only a single message from the client before the session is closed.

How It Works
Server applications can be used to enable work to be performed on a server via direct communication from one or
more client applications. Client applications normally communicate to the server application, send messages or data
to the server for processing, and then disconnect. The server application typically listens for client applications, and
then performs some processing against a client request once a connection is received and accepted. In order for a
client application to connect to a server application, the server application must be listening for connections and
then processing them somehow. You cannot simply run a client against any given host and port number combination
because doing so would likely result in a refused connection. The server-side application must do three things: open a
port, accept and establish client connections, and then communicate with the client connections in some way. In the
solution to this recipe, the SocketServer class does all three.

Starting with the main() method, the class begins by opening a new socket on port 1234. This is done by
creating a new instance of ServerSocket and passing a port number to it. The port number must not conflict with
any other port that is currently in use on the server. It is important to note that ports below 1024 are usually reserved
for operating system use, so choose a port number above that range. If you attempt to open a port that is already in
use, the ServerSocket will not successfully be created, and the program will fail. Next, the ServerSocket object’s
accept() method is called, returning a new Socket object. Calling the accept() method will do nothing until a client
attempts to connect to the server program on the port that has been set up. The accept() method will wait idly until
a connection is requested and then it will return the new Socket object bound to the port that was set up on the
ServerSocket. This socket also contains the remote port and hostname of the client attempting the connection, so it
contains the information on two endpoints and uniquely identifies the TCP connection.

Chapter 21 ■ Networking

556

At this point, the server program can communicate with the client program, and it does so using the PrintWriter
and BufferedReader objects. In the solution to this recipe, the communicateWithClient() method contains all the
code necessary to accept messages from the client program, sends messages back to the client, and then returns
control to the main() method that closes the ServerSocket. A new BufferedReader object can be created by
generating a new InputStreamReader instance using the socket’s input stream. Similarly, a new PrintWriter object
can be created using the socket’s output stream. Notice that this code must be wrapped in a try-catch block in case
these objects are not successfully created.
 
in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
out = new PrintWriter(socket.getOutputStream(), true);
 

Once these objects have been successfully created, the server can communicate with the client. It uses a loop
to do so, reading from the BufferedReader object (the client input stream) and sending messages back to the client
using the PrintWriter object. In the solution to this recipe, the server closes the connection by issuing a break, which
causes the loop to end. Control then returns to the main() method.
 
out.println("Server received communication!");
while ((s = in.readLine()) != null) {
System.out.println("received from client: " + s);
out.flush();
break;
}
 

In a real-life server program, the server would most likely listen endlessly without using a break to end
communication. To handle multiple concurrent clients, each client connection would spawn a separate Thread to
handle communication. The server would do something useful with the client communication as well. In the case
of an HTML server, it would send back an HTML message to the client. On an SMTP server, the client would send
an e-mail message to the server, and the server would then process the e-mail and send it. Socket communication is
used for just about any TCP transmission, and both the client and servers create new sockets to perform a successful
communication.

21-2. Defining a Network Connection to a Server
Problem
You need to establish a connection to a remote server.

Solution
Create a Socket connection to the remote server using its name and port number where the server is listening for
incoming client requests. The following example class creates a Socket connection to a remote server. The code then
sends a textual message to the server and receives a response. In the example, the server that the client is attempting
to contact is named server-name and the port number is 1234.

Chapter 21 ■ Networking

557

Tip■■   To create a connection to a local program running on the client machine, set the server-name equal to
127.0.0.1. This is done within the source listing for this recipe. Usually local connections such as this are used only for
testing purposes.

 public class SocketClient {
 
 public static Socket socket = null;
 public static PrintWriter out;
 public static BufferedReader in;
 
 public static void main(String[] args) {
 createConnection("127.0.0.1", 1234);
 }
 
 public static void createConnection(String host, int port) {
 
 try {
 //Create socket connection
 socket = new Socket(host, port);
 // Obtain a handle on the socket output
 out = new PrintWriter(socket.getOutputStream(),
 true);
 // Obtain a handle on the socket input
 in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
 testConnection();
 System.out.println("Closing the connection...");
 out.flush();
 out.close();
 in.close();
 socket.close();
 System.exit(0);
 } catch (UnknownHostException e) {
 System.out.println(e);
 System.exit(1);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 }
 
 public static void testConnection() {
 String serverResponse = null;
 if (socket != null && in != null && out != null) {
 System.out.println("Successfully connected, now testing...");
 
 try {
 // Send data to server
 out.println("Here is a test.");

Chapter 21 ■ Networking

558

 // Receive data from server
 while((serverResponse = in.readLine()) != null)
 System.out.println(serverResponse);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 }
 }
}
 

If you’re testing this client against a server that successfully accepts the request, you will see the following result:
 
Successfully connected, now testing... 

Note■■   This program will do nothing on its own. To create a server-side socket application that will accept this
connection for a complete test, see Recipe 21-1. If you attempt to run this class without specifying a server host that is
listening on the provided port, you will receive this exception: java.net.ConnectException: Connection refused.

How It Works
Every client/server connection occurs via a socket, which is an endpoint in a communication link between two
different programs. Sockets have port numbers assigned to them, which act as an identifier for the Transmission
Control Protocol/Internet Protocol (TCP/IP) layer to use when attempting a connection. A server program that
accepts requests from client machines typically listens for new connections on a specified port number. When a client
wants to make a request to the server, it creates a new socket utilizing the hostname of the server and the port on
which the server is listening and attempts to establish a connection with that socket. If the server accepts the socket,
then the connection is successful.

This recipe discusses the client side of the socket connection, so we will not go into the details of what occurs
on the server side at this time. However, more information regarding the server side of a connection is covered in
Recipe 21-1. The example class in the solution to this recipe is representative of how a client-side program attempts
and establishes connections to a server-side program. In this recipe, a method named createConnection() performs
the actual connection. It accepts a server hostname and port number, which will be used to create the socket. Within
the createConnection() method, the server hostname and port number are passed to the Socket class constructor,
creating a new Socket object. Next, a PrintWriter object is created using the Socket object’s output stream, and a
BufferedReader object is created using the Socket object’s input stream.
 
//Create socket connection
socket = new Socket(host, port);
// Obtain a handle on the socket output
out = new PrintWriter(socket.getOutputStream(),
 true);
// Obtain a handle on the socket input
in = new BufferedReader(new InputStreamReader(
 socket.getInputStream()));
 

Chapter 21 ■ Networking

559

After creating the socket and obtaining the socket’s output stream and input stream, the client can write to the
PrintWriter in order to send data to the server. Similarly, to receive a response from the server, the client reads from
the BufferedReader object. The testConnection() method is used to simulate a conversation between the client
and the server program using the newly created socket. To do this, the socket, in, and out variables are checked to
ensure that they are not equal to null. If they are not equal to null, the client attempts to send a message to the server
by sending a message to the output stream using out.println("Here is a test."). A loop is then created to listen
for a response from the server by calling the in.readLine() method until nothing else is received. It then prints the
messages that are received.
 
if (socket != null && in != null && out != null) {
 System.out.println("Successfully connected, now testing...");
 
 try {
 // Send data to server
 out.println("Here is a test.");
 // Receive data from server
 while((serverResponse = in.readLine()) != null)
 System.out.println(serverResponse);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
}
 

The java.net.Socket class is true to the nature of the Java programming language. It enables developers to code
against a platform-independent API in order to communicate with network protocols that are specific to different
platforms. It abstracts the details of each platform from the developer and provides a straightforward and consistent
implementation for enabling client/server communications.

21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts
Problem
Your application, which is deployed on Linux or Solaris, needs to move data very quickly and efficiently, and you need
to remove any bottlenecks that could slow things down.

Solution
Use the Sockets Direct Protocol (SDP) to bypass TCP, a possible bottleneck in the process. In order to do this, create an
SDP configuration file and set the system property to specify the configuration file location.

Note■■   The SDP was added to the Java SE 7 release for applications deployed in the Solaris or Linux operating
systems only. SDP was developed to support stream connections over InfiniBand fabric, which Solaris and Linux both
support. The Java SE 7 release supports the 1.4.2 and 1.5 versions of OpenFabrics Enterprise Distribution (OFED).

Chapter 21 ■ Networking

560

This configuration file is an example of one that could be used to enable the use of SDP:
 
Use SDP when binding to 192.0.2.1
bind 192.0.2.1 *
 
Use SDP when connecting to all application services on 192.0.2.*
connect 192.0.2.0/24 1024-*
 
Use SDP when connecting to the HTTP server or a database on myserver.org
connect myserver.org 8080
connect myserver.org 1521
 

The following excerpt is taken from the terminal. It is the execution of a Java application named SDPExample,
specifying the SDP system property:
 
% java -Dcom.sun.sdp.conf=sdp.conf -Djava.net.preferIPv4Stack=true SDPExample

How It Works
Sometimes it is essential that an application be as fast as possible while performing network communications.
Transfers over TCP can sometimes decrease performance, so bypassing TCP can be beneficial. Since the release of
Java SE 7, support for the SDP has been included for certain platforms. The SDP supports stream connections over
InfiniBand fabric. Both Solaris and Linux include support for InfiniBand, so SDP can be useful on those platforms.

You don’t need to make any programmatic changes to your applications in order to support SDP. The only
differences when using SDP are that you must create an SDP configuration file, and the JVM must be told to use the
protocol by passing a flag when running the application. Because the implementation is transparent, applications can
be written for any platform, and those that support SDP can merely include the configuration file and bypass TCP.

The SDP configuration file is a text file that is composed of bind and connect rules. A bind rule indicates that the
SDP protocol transport should be used when a TCP socket binds to an address and port that match the given rule.
A connect rule indicates that the SDP protocol transport should be used when an unbound TCP socket attempts to
connect to an address and port that match the given rule. The rule begins with either the bind or connect keyword
indicating the rule type, followed by the hostname or IP address, and a single port number or range of port numbers.
Per the online documentation, a rule has the following form:
 
("bind"|"connect")1*LWSP-char(hostname|ipaddress)["/"prefix])1*LWSP-char("*"|port)
["-"("*"|port)]
 

In the rule format shown here, 1*LWSP-char means that any number of tabs or spaces can separate the tokens.
Anything contained within square brackets indicates optional text, and quotes indicate literal text. In the solution
to the recipe, the first rule indicates that SDP can be used for any port (* indicates a wildcard) on the IP address of
192.0.2.1, a local address. Each local address that is assigned to an InfiniBand adaptor should be specified with a
bind rule in the configuration file. The first connect rule in the configuration file specifies that SDP should be used
whenever connecting to the IP address of 192.0.2.*, using a port of 1024 or greater.
 
connect 192.0.2.0/24 1024-*
 

This rule uses some special syntax that should be noted. Specifically, the /24 suffix of the IP address indicates that the
first 24 bits of the 32-bit IP address should match a specified address. Because each portion of an IP address is eight bits,
this means that the 192.0.2 should match exactly, and the final byte can be any value. The dash -* within the port identifier
specifies the range of 1024 or greater because the wildcard character is used. The third and fourth connect rules in the
configuration file specify that SDP should be used with the hostname of myserver.org and a port of 8080 or 1521.

http://myserver.org

Chapter 21 ■ Networking

561

Next, in order to enable SDP, the –Dcom.sun.sdp.conf property should be specified along with the location to
the SDP configuration file when starting the application. Also, notice in the solution that the property -Djava.net.
preferIPv4Stack is set to true. This indicates that the IPv4 address format will be used. This is necessary because
IPv4 addresses mapped to IPv6 are currently not available in the Solaris OS or under Linux.

Although the SDP is available only with Solaris or Linux, it is a nice addition to the JDK for users of those
platforms. Any performance booster is always viewed as a bonus, and the solution to this recipe certainly falls into
that category.

21-4. Broadcasting to a Group of Recipients
Problem
You want to broadcast datagrams to zero or more hosts identified by a single address.

Solution
Make use of datagram multicasting using the DatagramChannel class. The DatagramChannel class enables more than
one client to connect to a group and listen for datagrams that have been broadcasted from a server. The following sets
of code demonstrate this technique using a client/server approach. The class demonstrates a multicast client.
 
package org.java8recipes.chapter21.recipe21_4;
 
import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.NetworkInterface;
import java.net.StandardProtocolFamily;
import java.net.StandardSocketOptions;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
import java.nio.channels.MembershipKey;
 
public class MulticastClient {
 
 public MulticastClient() {
 }
 
 public static void main(String[] args) {
 try {
 // Obtain Supported network Interface
 NetworkInterface networkInterface = null;
 �java.util.Enumeration<NetworkInterface> enumNI = NetworkInterface.

getNetworkInterfaces();
 java.util.Enumeration<InetAddress> enumIA;
 NetworkInterface ni;
 InetAddress ia;
 ILOOP:
 while (enumNI.hasMoreElements()) {
 ni = enumNI.nextElement();
 enumIA = ni.getInetAddresses();

Chapter 21 ■ Networking

562

 while (enumIA.hasMoreElements()) {
 ia = enumIA.nextElement();
 if (ni.isUp() && ni.supportsMulticast()
 && !ni.isVirtual() && !ni.isLoopback()
 && !ia.isSiteLocalAddress()) {
 networkInterface = ni;
 break ILOOP;
 }
 }
 }
  
 // Address within range
 int port = 5239;
 InetAddress group = InetAddress.getByName("226.18.84.25");
 
 final DatagramChannel client = DatagramChannel.open(StandardProtocolFamily.INET);
 
 client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
 client.bind(new InetSocketAddress(port));
 client.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);
 
 �System.out.println("Joining group: " + group + " with network interface " +

networkInterface);
 // Multicasting join
 MembershipKey key = client.join(group, networkInterface);
 client.open();
 
 // receive message as a client
 final ByteBuffer buffer = ByteBuffer.allocateDirect(4096);
 buffer.clear();
 System.out.println("Waiting to receive message");
 // Configure client to be passive and non.blocking
 // client.configureBlocking(false);
 client.receive(buffer);
 System.out.println("Client Received Message:");
 buffer.flip();
 byte[] arr = new byte[buffer.remaining()];
 buffer.get(arr, 0, arr.length);
 
 System.out.println(new String(arr));
 System.out.println("Disconnecting...performing a single test pass only");
 client.disconnect();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}
 

Chapter 21 ■ Networking

563

Next, a server class can be used to broadcast datagrams to the address that multicast clients are connected to.
The following code demonstrates a multicast server:
 
package org.java8recipes.chapter21.recipe21_4;
 
import java.io.IOException;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.DatagramChannel;
 
public class MulticastServer extends Thread {
 
 protected ByteBuffer message = null;
 
 public MulticastServer() {
 }
 
 public static void main(String[] args) {
 
 MulticastServer server = new MulticastServer();
 server.start();
 
 }
 
 @Override
 public void run() {
 
 try {
 
 // send the response to the client at "address" and "port"
 InetAddress address = InetAddress.getByName("226.18.84.25");
 int port = 5239;
 
 DatagramChannel server = DatagramChannel.open().bind(null);
 System.out.println("Sending datagram packet to group " + address + " on port " + port);
 message = ByteBuffer.wrap("Hello to all listeners".getBytes());
 server.send(message, new InetSocketAddress(address, port));
 
 server.disconnect();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}
 

The server can broadcast a message to each client that is a member of the group. The client should be initiated
first, followed by the server. Once the server is started, it will broadcast the message, and the client will receive it.

Chapter 21 ■ Networking

564

How It Works
Multicasting is the ability to broadcast a message to a group of listeners in a single transmission. A good analogy of
multicasting is radio. Thousands of people can tune into a single broadcast event and listen to the same message.
Computers can do similar things when sending messages to listeners. A group of client machines can tune into
the same address and port number to receive a message that a server broadcasts to that address and port. The Java
language provides multicasting functionality via datagram messaging. Datagrams are independent, nonguaranteed
messages that can be delivered over the network to clients. (Being nonguaranteed means that the arrival, arrival time,
and content are not predictable.) Unlike messages sent over TCP, sending a datagram is a nonblocking event, and
the sender is not notified of the receipt of the message. Datagrams are sent using the User Datagram Protocol (UDP)
rather than TCP. The ability to send multicast messages via UDP is one benefit over TCP, as long as the ordering,
reliability, and data integrity of the message are not mission-critical.

Java facilitates multicast messaging via the MulticastChannel interface. Classes that implement the
MulticastChannel interface have multicasting enabled and can therefore broadcast to groups and receive group
broadcasts. One such class is the DatagramChannel, which is a selectable channel for datagram-oriented sockets. In
the solution to this recipe, both a client and a server program are used to communicate via multicast messaging, and
the DatagramChannel class is used on both sides of the communication. A DatagramChannel must be configured in a
specific way if it is to be used for accepting multicast messages. Specifically, there are options that need to be set on
the DatagramChannel client that is opened. We will discuss those options shortly. The following steps are required for
creating a client that receives multicast messages.

	 1.	 Open a DatagramChannel.

	 2.	 Set the DatagramChannel options that are required to multicast.

	 3.	 Join the client to a multicast group and return a MembershipKey object.

	 4.	 Open the client.

In the solution to this recipe, the client application begins by obtaining a reference to the network interface
that will be used for receiving the broadcast messages. Setting up a NetworkInterface is required for multicasting.
Next, a port number is chosen, as well as a multicasting IP address. The group or registered listeners will use the
IP address in order to listen for broadcasts. The port number must not be in use or an exception will be thrown.
For IPv4 multicasting, the IP address must range from 224.0.0.0 to 239.255.255.255, inclusive. This port and IP
address is the same one used by a server to broadcast the message. Next, a new DatagramChannel is opened using
StandardProtocolFamily.INET. The choices for opening a DatagramChannel are StandardProtocolFamily.INET
or StandardProtocolFamily.INET6, corresponding to IPv4 and IPv6, respectively. The first option that is set on the
DatagramChannel is StandardSocketOptions.SO_REUSEADDR, and it is set to true. This indicates that multiple clients
will be able to “reuse” the address or use it at the same time. This needs to be set for a multicast to occur. The client is
then bound to the port using a new InetSocketAddress instance. Last, the StandardSocketOptions.IP_MULTICAST_
IF option is set to the network interface that is used. This option represents the outgoing interface for multicast
datagrams sent by the datagram-oriented socket.
 
client.setOption(StandardSocketOptions.SO_REUSEADDR, true);
client.bind(new InetSocketAddress(port));
client.setOption(StandardSocketOptions.IP_MULTICAST_IF, networkInterface);
 

Once these options have been set and the port has been bound to the DatagramChannel, it is ready to join the
group of listeners. This can be done by calling the DatagramChanneljoin(InetAddress, NetworkInterface) method,
passing the group address and network interface that will be used by the client. As a result, a java.nio.channels.
MembershipKey object is produced, which is a token that represents the membership of an IP multicast group. Last,
the DatagramChannelopen() method is called, which opens the channel to listen for broadcasts. At this point, the
client is ready to receive multicast messages and it waits for a message to be received.
 

Chapter 21 ■ Networking

565

MembershipKey key = client.join(group, networkInterface);
client.open();
 

The next lines of code in the client take care of receiving messages from the server. In order to receive a
broadcasted message, a ByteBuffer is created and then eventually passed to the DatagramChannel’s receive()
method. Once the receive() method is called, the client will pause until a message is received. You can disable this
feature by calling the DatagramChannel configureBlocking(boolean) method and passing a false value. Next, the
ByteBuffer is converted to a string value and printed out by repositioning the buffer index at 0 using the flip()
method, and then pulling the text starting at index 0 to the last index into a byte[]. Finally, be sure to disconnect the
client when you’re finished. That wraps up the client code portion.
 
// Configure client to be passive and non.blocking
// client.configureBlocking(false);
client.receive(buffer);
// client pauses until a message is received... in this case
System.out.println("Client Received Message:");
buffer.flip();
byte[] arr = new byte[buffer.remaining()];
buffer.get(arr, 0, arr.length);
 
System.out.println(new String(arr));
System.out.println("Disconnecting...performing a single test pass only");
client.disconnect(); 

Note■■   In the example to this recipe, a single pass is performed, and the client is then disconnected. For extended
listening, you would need a loop with a timeout and tests for an ending state.

The server code is fairly basic. You can see that the MulticastServer class extends Thread. This means that this
server application could run in a thread separate from other code within an application. If there were another class
that initiated the MulticastServer class’ run() method, it would run in a thread separate from the class that initiated
it. The run() method must exist in any class that extends Thread. For more information regarding threading and
concurrency, refer to Chapter 10.

The bulk of the server code resides in the run() method. A new InetAddress object is created using the
same IP address that the client registered with in order to join the multicast group. The same port number is also
declared in the server code, and these two objects will be used later in the code block to send the message. A new
DatagramChannel is opened and bound to null. The null value is important because by setting the SocketAddress
equal to null, the socket will be bound to an address that is assigned automatically. Next, a ByteBuffer is created
that contains a message that will be broadcast to any listeners. The message is then sent using the DatagramChannel’s
send(ByteBuffer, InetSocketAddress) method. The send() method in the solution accepts the message as a
ByteBuffer object, as well as a new InetSocketAddress that is created by using the address and port, which was
declared at the beginning of the block. Told you we’d get back to those!
 
server.send(message, new InetSocketAddress(address, port));
 

At this point, the client would receive the message that was sent by the server. As for the client that is
demonstrated in the solution to this recipe, it would then disconnect. Normally in a real-world scenario, a different
class would most likely initiate the server, and its run() method would contain a loop that would continue to execute
until all messages have been broadcast or the loop was told to stop. The client would probably not disconnect until
after a user initiated a shutdown.

Chapter 21 ■ Networking

566

21-5. Generating and Reading from URLs
Problem
You want to generate URLs programmatically in your application. Once the URLs have been created, you’d like to read
data from them for use in your application.

Solution
Make use of the java.net.URL class in order to create an URL. There are a few different ways to generate an URL
depending on the address you are attempting to work with. This solution demonstrates a few different ways to create
URL objects, along with comments indicating the differences. Once the URL objects have been created, one of the
URLs is read into a BufferedReader and printed to the command line.
 
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
 
public class GenerateAndReadUrl {
 
 public static void main(String[] args) {
 try {
 // Generate absolute URL
 URL url1 = new URL("http://www.java.net");
 System.out.println(url1.toString());
 // Generate URL for pages with a common base
 URL url2 = new URL(url1, "search/node/jdk8");
 
 // Generate URL from different pieces of data
 URL url3 = new URL("http", "java.net", "search/node/jdk8");
 
 readFromUrl(url1);
 
 } catch (MalformedURLException ex) {
 ex.printStackTrace();
 }
 }
 
 /**
 * Open URL stream as an input stream and print contents to command line.
 *
 * @param url
 */
 public static void readFromUrl(URL url) {
 try {
 BufferedReader in = new BufferedReader(
 new InputStreamReader(
 url.openStream()));
 

Chapter 21 ■ Networking

567

 String inputLine;
 
 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
 }
 
 in.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}
 

Running this program will result in the HTML from the URL resource identified as url1 being printed to the
command line.

How It Works
Creating URLs in Java code is fairly straightforward thanks to the java.net.URL class, which does all of the heavy
lifting. An URL is a character string that points to a resource on the Internet. Sometimes it is useful to create URLs in
Java code so that you can read content from, or push content to, the Internet resource that the URL is pointing to. In
the solution to this recipe, a few different URL objects are created, demonstrating the different constructors that are
available for use.

The easiest route to use for creating an URL is to pass the standard readable URL string for a resource that is
located on the Internet to the java.net.URL class to create a new instance of the URL. In the solution, an absolute
URL is passed to the constructor to create the url1 object.
 
URL url1 = new URL("http://www.java.net");
 

Another useful way to create an URL is to pass two arguments to the URL constructor and create a relative URL.
It is useful to base relative URLs on the location of another URL. For instance, if a particular site has a number of
different pages, you could create an URL pointing to one of the subpages relative to the URL of the main site. Such is
the case with the url2 object in the solution to this recipe.
 
URL url2 = new URL(url1, "search/node/jdk8");
 

As you can see, the path search/node/jdk8 is relative to the URL that is known as url1. In the end, the human-
readable format of the url2 object is represented as http://www.java.net/search/node/jdk8. There are a couple
more constructors for creating URL objects that take more than two arguments. Those constructors are as follows:
 
new URL (String protocol, String host, String port, String path);
new URL (String protocol, String host, String path);
 

In the solution, the second of the two constructors shown here is demonstrated. The protocol, hostname, and
path of the resource are passed to the constructor to create the url3 object. These last two constructors are usually
most useful when you’re dynamically generating an URL.

http://www.java.net/
http://www.java.net/search/node/jdk8

Chapter 21 ■ Networking

568

21-6. Parsing a URL
Problem
You want to programmatically gather information from an URL in your application.

Solution
Parse the URL using the built-in URL class methods. In the following example class named ParseUrl, an URL object
is created and then parsed using the built-in URL class methods to gather information regarding the URL. After the
information has been retrieved from the URL, it is printed to the command line and then used to create another URL.
 
import java.net.MalformedURLException;
import java.net.URL;
 
public static void main(String[] args) {
URL url1 = null;
URL url2 = null;
try {
 // Generate absolute URL
 url1 = new URL("http://www.apress.com/catalogsearch/result/?q=juneau");
 
 String host = url1.getHost();
 String path = url1.getPath();
 String query = url1.getQuery();
 String protocol = url1.getProtocol();
 String authority = url1.getAuthority();
 String ref = url1.getRef();
 
 System.out.println("The URL " + url1.toString() + " parses to the following:\n");
 System.out.println("Host: " + host + "\n");
 System.out.println("Path: " + path + "\n");
 System.out.println("Query: " + query + "\n");
 System.out.println("Protocol: " + protocol + "\n");
 System.out.println("Authority: " + authority + "\n");
 System.out.println("Reference: " + ref + "\n");
 
 url2 = new URL(protocol + "://" + host + path + "?q=java");
 
 } catch (IOException ex) {
 ex.printStackTrace();
 
 }
 }
 

When this code is executed, the following lines will be displayed:
 
The URL http://www.apress.com/catalogsearch/result/?q=juneau parses to the following:
 
Host: www.apress.com
 

http://www.apress.com/catalogsearch/result/?q=juneau
http://www.apress.com/

Chapter 21 ■ Networking

569

Path: /catalogsearch/result/
 
Query: q=juneau
 
Protocol: http
 
Authority: www.apress.com
 
Reference: null

How It Works
When constructing and working with URLs in an application, it is sometimes beneficial to extract information
pertaining to an URL. This can be easily done using the URL built-in class methods, which can call a given
URL and return strings of information. Table 21-1 explains the accessor methods available in the URL class for
obtaining information.

Table 21-1.  Accessor Methods for Querying URLs

Method URL Information Returned

getAuthority() Authority component

getFile() File name component

getHost() Hostname component

getPath() Path component

getProtocol() Protocol identifier component

getRef() Reference component

getQuery() Query component

Each of these accessor methods returns a string value that can be used for informational purposes or for
constructing other URLs dynamically, as was done in the example. If you take a look at the results from the solution
to this recipe, you can see the information that was obtained regarding the URL via the accessor methods listed in
Table 21-1. Most of the accessors are self-explanatory. However, a couple of them could use further explanation.
The getFile() method returns the file name of the URL. The file name is the same as the result of concatenating the
value returned from getPath() with the value returned from getQuery(). The getRef() method may not be very
straightforward. The reference component that is returned by calling the getRef() method refers to the “fragment”
that may be appended to the end of an URL. For instance, a fragment is indicated using the pound character (#),
followed by a string that usually corresponds to a subsection on a particular web page. Given the URL such as the
following, recipe21_6 would be returned using the getRef() method.
 
http://www.java8recipes.org/chapters/chapter21#recipe21_6
 

http://www.apress.com/
http://www.java7recipes.org/chapters/chapter21#recipe21_6

Chapter 21 ■ Networking

570

Although it’s not always needed, the ability to parse an URL to obtain information can come in very handy
at times. Because the Java language has helper methods built into the java.net.URL class, it makes gathering
information pertaining to URLs a piece of cake.

Summary
This chapter covered a few basic networking features of the Java language. In the recent releases, there have been
some nice new features added, such as the Socket Direct Protocol. However, much of the java.net package has been
unchanged for years, and it is robust and easy to use. This chapter delved into using socket connections and URLs
and broadcasting messages via DatagramChannel. Chapter 22 contains a recipe that covers another new feature of the
java.net package, which is the new URLPermission class.

571

Chapter 22

Security

Security is one of the most important portions of application development. Providing applications that function
properly is only one part of successful application development. Providing a secure application is another
important task that many developers overlook. The Java language makes it easy to develop secure applications by
providing many options and features that make applications more secure. In Java 8, there have been additions and
enhancements across the spectrum of security options, making the Java language even more robust and secure.
The following is a list of some those security features:

TLS 1.1 and TLS 1.2 enabled by default•	

Limited •	 doPrivileged() block permissions

Password-based encryption (SunJCE) now provides stronger algorithms•	

SSL/TLS Server Name Indication (SNI) extension support•	

SunJCE provider is enhanced to support AES/GCM/NoPadding cipher implementation as well •	
as GCM algorithm parameters

SunJCE provider enhanced to support AEAD mode-based cipher suites•	

•	 -importpassword option added to keytool

DKS keystore support•	

Cryptographic algorithms have been enhanced with the SSH-224 variant of SHA-2•	

Enhance support for NSA Suite B cryptography•	

SecureRandom now provides better support for high entropy random number generation•	

New •	 PKIXRevocationChecker class

PKCS 11 Windows support now includes 64-bit•	

New rcache types added to Kerberos 5•	

Kerberos 5 protocol transition supported in same realm as constrained delegation•	

DES-related Kerberos 5 encryption types not supported by default•	

Unbound SASL for the GSS-API/Kerberos 5 mechanism•	

SASL service can support multiple host names•	

Chapter 22 ■ Security

572

JNI bridge to native JGSS on OS X•	

Stronger ephemeral DH keys supported•	

Cipher suites preference customization•	

This chapter contains recipes that cover a handful of these security features.

22-1. Asserting a Subset of Privileges
Problem
You want to run an application with a regular set of privileges, but a portion of the application requires a subset of
privileges in order to prevent a possible security risk.

Solution
Write a privileged block and assert a subset of privileges to the block of code that requires additional security. In the
following code block, standard permissions execute the application, but only a subset of permissions writes the file.
This is done by placing the code in an AccessController.doPrivileged block, which specifies the least amount of
privileges required to complete the task.
 
public static String writeFile(final String filename) {
 return AccessController.doPrivileged(
 (PrivilegedAction<String>) () -> {
 
 try (PrintWriter writer = new PrintWriter(filename, "UTF-8")) {
 writer.println("The first line");
 writer.println("The second line");
 } catch (FileNotFoundException | UnsupportedEncodingException ex) {
 System.out.println(ex);
 }
 return null;
 },
 null,
 new java.io.FilePermission(filename, "write"));
}

How It Works
In Java 8, the AccessController.doPrivileged method has been revamped, allowing you to specify a subset of
privileges that can be used in a block, rather than executing a heightened set of privileges. The API for Privileged
Blocks can be used in the Java language to specify a different set of permissions to execute a portion of code. To
specify the permissions, you must use an AccessController.doPrivileged block, passing a PrivilegedAction that
encapsulates the actions that require the modified permission set. The following code demonstrates the typical use:
 
AccessController.doPrivileged(new PrivilegedAction<void>(){
 public void run(){
 // do something privileged
 }
});
 

Chapter 22 ■ Security

573

The new variation of this technique allows you to specify a subset of privileges, rather than a superset. In the
recipe, a subset of privileges writes a file to disk. The new doPrivileged method accepts three arguments, as you can
see in the following pseudocode:
 
AccessController.doPrivileged(
 PrivilegedAction,
 AccessControlContext,
 java.security.Permission varargs);
 

The first argument is the same as the standard AccessController.doPrivileged, which is a PrivilegedAction.
The PrivilegedAction can be in the format of a class or a lambda expression. In the recipe example, a lambda
expression is the first argument. In either case, the class or lambda must implement the PrivilegedAction functional
interface, which contains the run() method. The run() method returns a value, and this example simply returns a
null since there is no relevant value to return.

The second argument is an AccessControlContext object, which can be used to perform an additional security
check. The AccessControlContext instance can be obtained by calling on the AccessControlContext.getInstance()
from a particular calling context. In the example, null is specified, which indicates that no additional security check
is required.

The third argument is a varargs parameter that’s used to specify the type of permission to be granted.
The argument accepts one or more Permission objects or an array of Permission objects.

The new AccessController.doPrivileged method can be used to indicate least privilege or more privilege
for the task at hand. This method provides a secure way to allow an application running with standard permissions
to execute tasks using a lesser or higher set of permissions. To learn more about this feature, take a look at the
online documentation at http://docs.oracle.com/javase/8/docs/technotes/guides/security/doprivileged.
html#asserting_a_subset_of_privileges.

22-2. Indicating a Server Name for Handshaking
Problem
You want to verify a server name to ensure that it is valid prior to initiating an SSL connection with the server.

Solution
Make use of the Server Name Indication (SNI) extension to determine what server name a client is attempting to
connect to during a handshake. The SNI extension is used in the handshake process to specify which host a client
is attempting to connect to. In the following example, a client is created that indicates a server host for a valid
connection in its SSL parameter list.
 
public class SocketClient {
 
 public static Socket socket = null;
 public static PrintWriter out;
 public static BufferedReader in;
 
 public static void main(String[] args) {
 createConnection("gmail.com",443);
 }
 

http://docs.oracle.com/javase/8/docs/technotes/guides/security/doprivileged.html#asserting_a_subset_of_privileges
http://docs.oracle.com/javase/8/docs/technotes/guides/security/doprivileged.html#asserting_a_subset_of_privileges

Chapter 22 ■ Security

574

 public static void createConnection(String host, int port) {
 
 try {
 SSLSocketFactory factory = HttpsURLConnection.getDefaultSSLSocketFactory();
 SSLSocket sslSocket = (SSLSocket) factory.createSocket(host, port);
 
 SNIHostName serverName = new SNIHostName(host);
 List<SNIServerName> serverNames = new ArrayList<>(1);
 serverNames.add(serverName);
 
 SSLParameters params = sslSocket.getSSLParameters();
 params.setServerNames(serverNames);
 sslSocket.setSSLParameters(params);
 //Create socket connection
 System.out.println("Starting handshake...");
 sslSocket.startHandshake();
 System.out.println("Handshake complete...");
 System.out.println("Peer Host: " + sslSocket.getSession().getPeerHost());
 sslSocket.close();
 System.exit(1);
 } catch (UnknownHostException e) {
 System.out.println(e);
 System.exit(1);
 } catch (IOException e) {
 System.out.println(e);
 System.exit(1);
 }
 }
 
  
}
 

Given the client, the server must use a SNIMatcher class to indicate how to recognize the server name.
The following code demonstrates a server side implementation for determining whether a host name matches
a SNIMatcher object.
 
final int httpd = 443;
SSLServerSocket sslServerSocket = null;
try {
 ServerSocketFactory sslFactory = SSLServerSocketFactory.getDefault();
 sslServerSocket = (SSLServerSocket) sslFactory.createServerSocket(httpd);
 SNIMatcher matcher = SNIHostName.createSNIMatcher("www\\.gmail\\.(com|org)");
 Collection<SNIMatcher> matchers = new ArrayList<>(1);
 matchers.add(matcher);
 
 SSLParameters params = sslServerSocket.getSSLParameters();
 params.setSNIMatchers(matchers);
 sslServerSocket.setSSLParameters(params);
 
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();
 

Chapter 22 ■ Security

575

 System.out.println("closing socket");
 sslSocket.close();
 sslServerSocket.close();
} catch (IOException e) {
 System.out.println(e);
} finally {
 try {
 sslServerSocket.close();
 } catch (IOException ex) {
 System.out.println(ex);
 }
}

How It Works
The Server Name Indication (SNI) extension provides a server with a list of valid servers for connection when
attempting a handshake. The SNI extension uses SSL/TLS protocols to provide this functionality. Given a specified
server name, an application can determine whether it is a valid address for opening an SSLSocket or SSLEngine
connection.

To indicate a server name, use the SSLParameters.setServerNames(List<SNIServerName> serverNames)
method and pass a list containing valid server names. In the recipe example, the server name of gmail.com is set
as valid using the following lines of code:
 
SNIHostName serverName = new SNIHostName(host);
List<SNIServerName> serverNames = new ArrayList<>(1);
serverNames.add(serverName);
 
SSLParameters params = sslSocket.getSSLParameters();
params.setServerNames(serverNames);
sslSocket.setSSLParameters(params);
 

An ArrayList is created containing SNIServerName objects that each indicate a valid server name.
In the example, one SNIServerName object is added to the list. A list of valid servers is then passed to the
SSLParameters.setServerNames() method.

22-3. Specifying a Keystore Password
Problem
You want to secure an SSL keystore with an additional password for added security.

Solution
Specify the new importpassword command option when creating a keystore.
 
keytool -genkey -alias java8recipes -keyalg RSA -keystore keystore.jks -keysize 2048
 

Use the following to import a passphrase:
 
keytool –importpassword –alias java8recipes

http://gmail.com

Chapter 22 ■ Security

576

How It Works
The keytool utility’s new –importpassword command allows you to store a passphrase in the new KeyStore.SecretKeyEntry.
This password provides another level of security beyond the standard keypass because the keypass is used to protect
it. When users issue this command, they must provide the –keypass option along with the keystore password,
otherwise they will be prompted for it.

22-4. Generating the Strongest Random Number Possible
Problem
You are generating random numbers for use with some secure context, such as a RSA key.

Solution
Utilize the SecureRandom.getInstanceStrong() method to produce a SecureRandom object that has been selected
by using the algorithms or providers that are specified in the SecureRandom.strongAlgorithmsSecurity property.
In the following example, a SecureRandom object is generated using the getInstanceStrong() method. A seed is then
generated from the SecureRandom instance, which can later be used for some secure purpose.
 
SecureRandom strongSecure = SecureRandom.getInstanceStrong();
byte seed[] = strongSecure.generateSeed(20);

How It Works
In certain situations, a secure random key is required. One such situation is for generating RSA public and private
keys. In these situations, the SecureRandom getInstanceStrong() method returns a SecureRandom object that was
selected by using the algorithms and providers specified in the secureRandom.strongAlgorithms security policy.
You can obtain the algorithms by calling on the Security.getAlgorithms() method and passing the Java
cryptographic service name.

22-5. Granting Permissions for Rich Internet Applications
Problem
You want to govern permissions for an application based on HTTP, rather than on any type of TCP connection.
Furthermore, you want to specify host names for the HTTP permissions, rather than individual IP addresses.

Solution
Make use of the java.net.URLPermission class, which was introduced in Java 8, in order to define a higher-level
permission than a standard java.net.SocketPermission offers. Doing so will allow you to express permissions in
the context of HTTP request methods and URL scheme. In the following example, the URLPermission class is used to
access an author URL at the http://www.apress.com website. The URLPermission class represents the permission to
access resources defined by a given URL, and also for a set of user-settable request methods and request headers.
In this case, the URLPermission class represents the resources defined at the author URL on the apress.com site.
 

http://www.apress.com/

Chapter 22 ■ Security

577

public static void main(String[] a) {
 URLPermission urlPermission = new URLPermission("https://www.apress.com/index.php/author/author/
view/id/1866");
 try {
 AccessController.checkPermission(urlPermission);
 System.out.println("Ok to open socket");
 } catch (AccessControlException ace) {
 System.out.println(ace);
 }
}
 

In this case, permission would be denied, as this URL is to a private host. However, if you had built an application
that performed a callback to a remote application server, the host would perform a validity check and then provide
access to open the socket for valid requests.

How It Works
Oftentimes, sandboxed applications require the use of permissions to access remote resources. Prior to Java
8, the java.net.SocketPermission was used to perform access control for such resources. Utilization of the
SocketPermission was problematic because this permission is unable to distinguish between HTTP connections,
and some other TCP connection that may not be permitted. SocketPermissions also operate in terms of IP addresses,
rather than host names. This limitation prevents access control given a specified host name, rather than a single IP
address. In the case where more than one virtual server is being hosted at the same IP address, only one could be
accessed using a SocketPermission, whereas many could be accessed if host name resolution were possible.

The java.net.URLPermission was introduced with the release of Java 8, solving some of the issues that were
presented with the use of the SocketPermission. The java.net.URLPermission class is used to represent permission
for access to a resource or set of resources that are defined by a specified URL. Along with the specification of a URL,
the required HTTP access can be specified via user-definable setters and request headers. As such, the URLPermission
class contains two constructors, one that accepts a string-based URL, and the other that accepts a string-based URL
and a string of actions.

The URL that is passed to the URLPermission class can be in multiple formats, so the string may vary depending
on what resource is being accessed. In its simplest format, the URL should use the following format:
 
scheme://authority/path
Eg.("http://www.apress.com/*")
 

The scheme of a URL is usually http or https, but it is not restricted. The authority can contain a number of
details. At the minimum, the authority will be the host name of the remote resource. However, it could also contain
user information, host range, and/or port range. If specified, the optional user information would be a privileged
username followed by the @ character.

The host range is specified via a fully qualified DNS name, along with IPv4 address or IPv6 address portions,
each separated by a (.). The host range DNS name may contain a wildcard character (*) to indicate portions of a DNS
name. For example, you can use the following to indicate a host name that matches only the rightmost domain labels:
"*.apress.com".

The port range portion of the URL is used to specify a single port number or a bounded or unbounded range of
ports that the permission grants access against. Any invalid port number or range will result in the use of the default
port of 80 for HTTP or 443 for HTTPS. You can also specify a wildcard (*) with the port range to indicate all ports.

The path portion of the URL is composed of a sequence of paths in the host server, separated by the / character.
The path is very similar to the FilePermission, but it can be left blank to indicate permission for the root of the host
resource. The path can be used to specify access to a single resource by listing that resource at the end. For example,

https://www.apress.com/index.php/author/author/view/id/1866
https://www.apress.com/index.php/author/author/view/id/1866
http://www.apress.com/*
http://apress.com

Chapter 22 ■ Security

578

for access to a single HTML file, you may specify www.mydns.com/mypage.html. The path may also contain the
wildcard characters * and -. The * specifies all resources in the same directory, whereas the – specifies all resources
recursively below the given path.

The second argument to URLPermission is an actions string. This string is a concatenation of an actions list and
a request headers list. The actions string contains lists of permitted request methods and permitted request headers
of the permission, respectively. The request method options are the HTTP request methods PUT, GET, and DELETE.
The request headers are optional, but if present, they are separated from the request methods via a colon (:). No
whitespace is permitted in the actions string and it is case-sensitive. You can also use a wildcard (*) to represent all
request methods or headers, respectively. Here are a few examples:

No request methods: •	 "PUT,GET,DELETE"

Request methods and request headers: •	 "PUT,GET:MyHeader1,MyHeader2"

All request methods: •	 "*"

The URLPermission class provides a more restrictive level of security than SocketPermissions, as it is targeted
more toward URL and host access. For sandboxed Rich Internet Applications, SocketPermissions for the origin
host is no longer permitted in Java 8, which means that calls from JavaScript code to the application are not granted
SocketPermissions as of Java 8. The Permissions attribute is now required in the JAR file manifest for the main JAR
of all Rich Internet Applications at all levels.

Summary
There have been many new security features added or enhanced in Java 8. This chapter covers only a handful of the
new features, including recipes on providing limited privileges for doPrivilege blocks, SNI for secure handshaking,
and more control over sandboxed Rich Internet Application permissions. For more information about these new
security features, refer to the online documentation so that your applications are using the most robust security
options possible.

http://www.mydns.com/mypage.html

A�       �
Annotations, 251
Applets, 479
Automatic Resource Management (ARM) feature, 214

B�       �
Binary large objects (BLOBs), 325

C�       �
CachedRowSet

acceptChanges() method, 312
code, 307
connection properties, 311
CreateConnection class, 311
execute() method, 311
executeQuery() method, 311
fetching methods, 312
insertRow() method, 312
main() method, 307
moveToCurrentRow() method, 312
moveToInsertRow() method, 312
output, 310
RowSetFactory, 311
setCommand() method, 311
setKeys() method, 311
SyncResolver object, 312
updateRow() method, 312

calculateDaysPlayed() abstract method, 127
CallableStatement, 326
Catch exceptions, 208
Character large object (CLOB)

BLOBs, 325
ClobgetString() method, 326
ConnectioncreateClob() method, 325
data type, 323
executeUpdate() method, 325

getAsciiStream() method, 326
loadClob() method, 325
loading and querying code, 323
PreparedStatement setClob() method, 325
setString() method, 325
VARCHAR fields, 325

Cloneable interface, 115
Closures, 134
Command-line interpreter

compiling and execution, 10
class path, 11
cp parameter, 11
d option, 11
main() method, 11

keyboard input
BufferedReader, 19
and exception handling, 18
InputStreamReader(), 19
terminal input, 19

passing arguments, 16
commit() method, 303
Concurrency, 223

collections helper class, 229
CopyOnWriteArrayList, 228
different collections coordination

atomic operation, 231
fulfillOrder() method, 229
inventoryLock.lock() method, 230
inventoryLock.unlock() method, 230
locking, 231
lock.unlock() method, 232
ReentrantLock object, 232
setFair property, 232

discrete units, 241
key insertion, 226
run() method, 224
runnable interface, 223
startUpdatingThread() method, 228
synchronizedList() method, 228

Index

579

threads, 224
await() method, 238
awaitTermination() method, 232
blockingQueue queue, 237
CorePoolSize, 233
CountDownLatch, 235
inventoryThread.join() method, 236
join() method, 238
JVM’s thread scheduler, 236
KeepAliveTime, 233
MaximumPoolSize, 233
objectToSync, 237
prestartAllCoreThreads() method, 233
processOrder() method, 234
Queue, 233
shutdown() method, 233
ThreadpoolExecutor instance, 232
TimeUnit, 233
wait() method, 237
WorkQueue, 233

threadsafe sbjects
creation, 238
implementing, 240

updation, 224
user and daemon user thread, 224

Connection management
CreateConnection class, 293, 295
DataSource, 296
db_props.properties, 295
DriverManager, 296
JNDI, 296
strategic connection methodology, 296

createPlayer(String) method, 102
Create, retrieve, update, and delete (CRUD)

operations, 290
CSS styling

code implementation, 438
Control Style 1 Look and Feel, 441
enableCss() method, 443
loadSkin() method, 443
Modena Look and Feel, 440
setStyle() method, 444
setUserAgentStylesheet() method, 442

Currency codes
NumberFormat instance

code implementation, 276
getCurrencyInstance() method, 277
setCurrency() method, 277

D�       �
Databases

automatic resource handling, 328
connection object, 286
create_database.sql script, 283

create_user.sql script, 283
CRUD operations

code, 290
executeQuery() method, 292
executeUpdate() method, 292–293
format, 292
performCreate() method, 292
performDelete() method, 293
performRead() method, 292
performUpdate() method, 293
result, 292
Statement executeQuery() method, 292
vs. DML, 292

data caching, disconnected state (see
CachedRowSet)

FilteredRowSet
AuthorFilter, 322
code, 320
evaluate() methods, 322
executeQuery() method, 323
FilteredRowSetImpl, 323
FilteredRowSetImpl class, 323
implementation, 318
implementFilteredRowSet() method, 320, 322
main() method, 320
output, 322
setCommand() method, 323
setFilter() method, 323
WHERE clause, 322–323

JDBC Connection object
DataSource object, 284–285
DataSource registration, 286
DriverManager object, 285
getConnection() method, 283
InitialContext, 286
java.naming.NamingException exception, 286
java.sql.Connection object, 285
java.sql.SQLException, 286
management (see Connection management)
SQL exceptions, 286

JoinRowSet
addRowSet() method, 317
AUTHOR_WORK table, 317
BOOK_AUTHOR table, 317
code, 313
foreign key, 313
getInt() method, 318
getString() method, 318
joinRowQuery() method, 317
main() method, 317
output, 316
primary key, 313
queryAuthorBook() method, 317
queryBookAuthor() method, 317
RowSets, 313
SQL JOIN query, 317

■ index

580

Concurrency (cont.)

large object query and storage (see Character large
object (CLOB))

LocalDate object, 328
query and result retrieval

Connection object, 288
executeQuery() method, 288
java.sql.Connection object, 288
next() method, 289
ResultSet getInt() method, 289
ResultSet getString() method, 289
ResultSet object, 288
rs.next(), 289
Statement object, 288
System.out() method, 289

scrollable ResultSet
code, 303
constants, 304
createStatement() method, 304
forward and backward traverse, 303
PreparedStatement object, 304
prepareStatement() method, 304
record retrieval code, 305

SQL injection protection (see PreparedStatements)
stored procedure invoking, 326
transaction

autoCommit() preference, 300
commit() method, 300, 302–303
insertRecord() method, 303
main() method, 302
management code, 300
rollback() method, 300, 303
sequential processing, 300
setAutoCommit() method, 302

updatable ResultSet
code, 305
concurrency, 306
createStatement() method, 306
output, 306
prepareStatement() method, 306
ResultSet.CONCUR_UPDATABLE constant, 306
ResultSet object, 305
Statement object, 306
TYPE_SCROLL_SENSITIVE, 306
updateRow() method, 307
updateString() method, 307

Data manipulation language (DML), 292
Data structures

code execution
control flow statement, 163
isValidSwitchType() method, 162–163
private static void playHands, 160
private static void printWinner, 161
public class, 160
public static void main, 161
RockPaperScissors class method, 163
switch statement, 160

SwitchTypeCheckerisValidSwitchType()
method, 163

dynamic arrays
arrayList, 176
List<String> method, 176
output, 175
public static boolean screen, 174
public static void screen, 174
StockScreener class method, 174
StockScreener main() method, 175
void main, public static, 174

fixed set constant
abstract and finaljava.lang.Enum class, 155
compiler error/warning, 155
encapsulate constants, 155
enum type, 153
equals() method, 156
FieldType.EMAIL_ADDRESS coding, 154
name() method, 155
ordinal() method, 155
values() and valueOf(String) method, 156

fix-sized arrays
Arrays.toString(int[]) method, 168
GradeAnalyzer class, 164
GradeAnalyzer main() method, 168
initGrades1() method, 167
initGrades2() method, 168
initGrades3() method, 168
min and max grade, 167
object type array, 166
output,GradeAnalyzer class, 166
steps, defining array, 167

generic types
aList.add((Integer)aNum) method, 171
Collection interfaces and classes, 170
CollectionremoveAll() method, 173
compile-time feature, 170
diamond, 173
LinkedList<Double> method, 172
LinkedList<Integer>, 171
Listadd(E e)method, 170
List<String>>bMap method, 173
ListrawList, 171
public interface List, 170
wildcard, 171

intelligent constants design
email address, 157
FieldType enum method, 156
FieldType instances, 159
main() method, 159
password, 156
phone number, 157
social security number, 157
validate() method, 159

iterable objects
add(List<Stock>) method, 179

■ Index

581

collection–based class, 176
iterator() method, 176, 178–179
main() method, 178
Mapvalues() method, 179
remove() method, 179
StockPortfolio method, 176, 178
UnmodifiableIterator class, 179

map iterating, 182
Date-Time API, 65

binary literals, 96
ChronoUnit class, 89
compareTo() methods, 83, 87
format() method, 92
formatting

java.text.SimpleDateFormat class, 92
pattern characters, 93
SimpleDateFormat class, 93, 95

getDay() method, 82
getHours() method, 82
getMinutes() method, 82
getMonth() method, 82
getSeconds() method, 82
getTimeInMillis() method, 90
getTime() method, 82, 90
getTimezoneOffset() method, 82
getYear() method, 82
java.util.Calendar class, 81
java.util.concurrent.TimeUnit enum, 88
java.util.Date class, 81
LocalDate class, 75
LocalDate.of() method, 75
LocalDateTime class, 79

Calendar class, 81, 83
Date object, 81
methods, 80

LocalTime class, 77–79
machine-based timestamp, 83
numeric literals, 95
packages, 66
parse() method, 91
setTime() method, 83
TimeUnit enum, 90
TimeUnit.MILLISECONDS, 90
Time Zone, 84
toHours() method, 90
YearMonth and MonthDay classes, 77

Deadlocks, 261
Debugging and unit testing

annotations, 251
Assert.assertEquals method, 251
FindBugs report, 255, 257
garbage collection, 257
JUnit, 250
printStackTrace() method, 249–250

scripting
Apache Ant program, 254
build.path, 254
build.xml file, 253–254
JAVA_HOME environment variable, 252
JDK installation, 253
JUnit and Ant configuration, 252

thread dump, 259
Decorator pattern, 188
DriverManager.getConnection() method, 285

E�       �
E-mail

Authenticator object, 529
checking, 532–533
getPasswordAuthentication() method, 529
HTML content, 530–531
JavaMail, 527–528
monitoring, 533–535
multipart message, 529–530
multiple recipients, 531–532
Properties object, 529
Transport() methods, 528
Transport.send() static method, 529

Event dispatch thread (EDT), 372
executeQuery() method, 289

F�       �
Factory pattern, 104
Form designer application,

grid type layout, 427
cell constraints, 437
change listeners, 436
code implementation, 428
EventHandler, 436
GridPaneControlPanel, 435
ManipulatingLayoutViaGrids, 435
MyForm, 435
property control panel, 429
target grid pane, 437

G�       �
getConnection() method, 285
Graphics, 405

animating shapes
code implementation, 422
instance variables, 425
mouse-drag events, 427
mouse-press event, 426
mouse-release event, 427
path transition, 426
spherical-looking ball, 425

■ index

582

Data structures (cont.)

CSS styling (see CSS styling)
grid type layout, 427 (see also Form designer

application, grid type layout)
image viewer application

drag and drop operation, 410
instance variables, 411
source code implementation, 406

news ticker and photo viewer application
(see News ticker and photo viewer application)

H�       �
HelloWorld application

command-line prompt
Application class, 335
Application.launch() method, 335
compilation and running, 335
Group class, 335
jmain() method, 335
Node, 335
package and deployment, 335
Scene object, 335
Shape objects, 335
show() method, 335
Stage object, 335
start() method, 335–336

NetBeans IDE
Application class, 335
Application.launch() method, 335
Group class, 335
main() method, 335
Node, 335
Scene object, 335
Shape objects, 335
show() method, 335
Stage object, 335
start() method, 335–336

HTML5 content
countdown timer, 488
display database content, 492
executeScript() method, 488
JavaFX RSS reader, 492

alert() function, 502
code implementation, 493
headline news, 501
RSS feed title column, 501
saveRssFeed() method, 502
WebEngine object, 502
website view, 501
WebViews and WebEngine, 501

loadContent() method, 489
refreshCountdown variable, 487
RSS feed URL, 487
TimeLine object, 488

weather application
alert() function, 492
code implementation, 489
HTML events, 491
OnAlert property, 490
start() method, 490
warning message, 491

weather information, 486
WebEngine object, 487
WebView node, 483, 487
WOEID, 487

I�       �
Image viewer application

drag and drop operation, 410
instance variables

currentIndex, 411
imageFiles, 411
NEXT and PREV, 413

source code implementation, 406
Interactive Development Environment (IDE)

command-line interpreter, 10
JDK installation, 1
string conversion

floating-point number, 15
pattern, 15
primitive data types, 16

variable declaration
fields, 12
for primitive and string types, 12
static fields, 13
visibility, 12
working principle, 14

Internet Message Access Protocol (IMAP)
e-mail account, 532

I/O streams, 187

J, K�       �
Java, 2

CLASSPATH variable
configuration, 26
JAR files, 24
working principle, 25

Enterprise Edition, 2
environment variables

getenv(), 26
ReadOneEnvVariable class, 26
working principle, 27

Mobile Edition, 2
packages

API, 24
directory structure, 23

■ Index

583

naming conflicts, 22
security, 24
working principle, 23

Java 7
CLASSPATH configuring, 24
code organizing, 22–23
command line, 16, 19
executable Java class, 16
Javadoc, 20–21

Java 1, 8
Date-Time API

built-in-utility methods, 38
current date and time, 37
DateTimeFormatter, 37

default method, 34
IDE, 1
JavaFX

DatePicker component, 42
print API, 45
SwingNode, 40

JavaScript
command-line, 48
Nashorn engine, 47

lambda expression, 29
PoolCalculator class, 31
Role annotation, 36
Streams API, 38

Java Archive (JAR) files, 24
Java Community Process.(JCP), 2
Java Database Connectivity (JDBC), 283
Java Development Kit 8 (JDK), 1
Javadoc

comments, 20–21
HTML documentation, 21
tool execution, 22
working principle, 21

Java exceptions
AutoCloseable interface, 215
catching, 208
cleanup code, 209
error class, 207
hierarchy, 207
IllegalArgumentException class, 216
InvalidUsernameException, 208
logging, 208

FileHandler pattern, 220
java.util.logging.LogManager(), 218
loadLogConfiguration() function, 218
Log0.log file code, 219
Logger.isDebugEnabled(), 220
logging Levels, 218
recipeLogger event, 217
SocketHandler, 220

multiple exceptions, 211
rethrowing, 216

RuntimeException class, 208, 215–216
throwing, 210
try/catch syntax, 208
try-with-resources block, 215
uncaught exceptions, 213

JavaFX
background process

cancel() method, 373
ChangeListener, 373
classes, 369
code implementation, 369
controls, 372
createWorker() method, 372
EDT, 372
file copy window, 372
queue up, 372
SwingWorker object, 372
Task object, 372
updateProgress() method, 372

binding expressions
computeValue() method, 361, 365
console application code, 361
Contact object, 364
DoubleBinding class, 361, 365
multiply() method, 365
output, 364
SimpleStringProperty class, 364
strategies, 361

borders generation
CSS editor text code, 358
HBox layout, 360
imageView object, 360
setStyle() method, 360
style selectors, 360

change password dialog, 391
code implementation, 387
initModality() method, 392
initOwner() method, 392
JDialog class, 392
stage and scene, 387
start() method, 392

changing text fonts, 339, 341
code implementation, 338
CSS, 340
DropShadow object, 342
FXML file, 342
javafx.scene.effect.DropShadow, 338
javafx.scene.effect.Reflection, 338
javafx.scene.text.Font, 338
reflection, 342
setMaxWidth() method, 342

colors assignment
classes, 348
code implementation, 349
cycle method, 353
eclipse shape, radial gradient, 351

■ index

584

Java (cont.)

LinearGradient properties, 352
RadialGradient properties, 351
rectangle, semitransparent linear gradient, 351
rounded rectangle, reflective linear gradient, 351
shapes, 351

Hello World application, 473
in browser, 477
MyJavaFXApp.java project, 475
project dialog box, 474
project name and location, 474
project wizard, 474
Run option, 476

HTML5 content, 483
keyboard sequences

classes, 373
code implementation, 373
inner shadow effect, 375
setAccelerator() method, 376

menus creation
bind() method, 356
classes, 353
code implementation, 353
getItems() method, 356
hot keys/keyboard functionality, 355
menu bar, 355–356
menu items, 355
menu objects, 355

NetBeans, 477
ObservableList

ArrayList class, 368
FXCollections class, 368
GUI application code, 366
ListViews, 367–368
MVC mechanism, 366
swing components, 368

printing
API classes, 398
application dialog, 397–398
code implementation, 392
getAllPrinter() method, 399
getDefaultPrinter() method, 399
PrintDialog class, 395
PrintJob.createPrinterJob(), 398
printPage() method, 398

Rich Internet applications (RIAs), 331
scene graph, 331
shapes creation, 346

code implementation, 343
CubicCurve() instance, 347
donut shape, 348
javafx.scene.shape.* package, 343
Path elements, 347
Path.subtract() method, 348
setEffect() method, 348
Shape node, 347

SVG file
analog clock, 479–480
clock3.svg, 480

Swing content
code implementation, 399
runLater() method, 403
setContent() method, 403
SwingNode object, 400, 402

Swiss Army Knife, 331
tables

application code, 378
ChangeListener, 381
code implementation, 376
getPeople() method, 379
JTable component, 376
ListView control, 376, 381
ObservableList, 381
setProperty() method, 381
TableView control, 376, 380–381
updateItem() method, 381

tabs addition
code implementation, 385
setSide() method, 387
tab orientations, 385
TabPane, 386–387

text drawing, 336
UI components, layout

code implementation, 356
GridPane class, 357

UI split views, 383
code implementation, 381
dividers position, 384
GUI application, 381
pane control, 381, 384
VBox layout control, 384
vertical split, 384

user experience, 331
user interface creation (see HelloWorld application)

Java interface, 106
JavaMail, 527–528
Java networking

accept() method, 555
communicateWithClient() method, 556
createConnection() method, 558
DatagramChannel class, 561
DatagramChannelconfigureBlocking(boolean)

method, 565
DatagramChannelopen() method, 564
flip() method, 565
InetSocketAddress instance, 564
infiniBand, gain performance boosts, 559
InputStreamReader instance, 556
in.readLine() method, 559
java.net.ServerSocket, 553
MulticastChannel interface, 564

■ Index

585

NetworkInterface, 564
PrintWriter object, 556
run() method, 565
SDP protocol transport, 560
send() method, 565
server-side application, 553
Socket connection, 556
TCP/IP layer, 558
testConnection() method, 559
UDP, 564
URL (see URL)

Java Platform Manager, 332
JavaScript code execution

eval() method, 507
getEngineByName() method, 506
Java classes and libraries

Java.type function, 515
Java.type() function, 513
ScriptEngineManager, 514

pass Java parameters, 510
returning values

Invocable objects, 512–513
invokeFunction() method, 511
ScriptEngine, 512

ScriptEngineManager(), 505
string interpolation, 509
in Unix, 519
via command line, 507

jjs command-line tool, 508
jrunscript tool, 509
JSR 223 jrunscript tool, 508

java.sql.SQLException, 285
Java Standard Edition (Java SE), 1

Downloads page, 2
verification, 3

java.util.function package, 133

L�       �
Lambda expressions

argument list, 134
body, 135
code authorisation, 135
filter criteria, 141
functional interface, ActionCode, 135, 137
functional interface, HelloType, 133
functional interface, ReverseType, 136
Function<T,R> interface, 136
ivnoke existing methods

Arrays.sort() method, 151
compareByGoals() method, 148
double colon(::) operator, 150
method references, 150

java.util.function package, 137

PassingLambdaFunctions
areaCalc, 146
calculate() method, 146, 148
MainClass, 148

replace anonymous inner classes, 142, 144
runnable implementation, 141–142
sorting

Collections.sort() method, 139–140
Comparator interface, 139
forEach() method, 140
map() function, 140

syntax, 134
variable access, 144–145

Locale instance, 281
BCP 47 document, 268
constructors, 267
creation, 265
Locale.Builder class, 265
Locale.forLanguageTag() method, 266
locale matching and filtering methods, 271
locale-sensitive classes, 267
Locale.setDefault() method, 268

DISPLAY and FORMAT, 269
Locale.Category enumeration, 270

setter methods, 268
Logging exceptions, 207, 220

M�       �
Matching and filtering methods, Locale, 271

filter() method, 272
modes, 273
RFC 4647, 272

Media API, 445
End animation, 469

code implementation, 470
createTheEnd() method, 471
setOnEndOfMedia() method, 471
translateTransition method, 470

events
event handler methods, 464
paused event, 465
working principle, 465

media marker events
closed caption text, 469
onDragDropped event, 466
working principle, 469

MP3 player, 445
class utilization, 446
code implementation, 446
working principle, 452

video player
attachMouseEvents() method, 460
ChangeListener, 460
class utilization, 456

■ index

586

Java networking (cont.)

code implementation, 456
working principle, 461

Media marker events
closed caption text, 469
onDragDropped event, 466
working principle

OnMarker event property, 469
setOnMarker() method, 469

Model-view-controller (MVC), 366
MP3 player, 445

class utilization, 446
code implementation, 446
working principle, 452

AudioSpectrumListener class, 453, 455
instance variables, 453
Media object, 454
MediaPlayer object, 454
mouse-drag event handler, 453
previousLocation variable, 454
setDropCompleted() method, 455
setOnMousePress() method, 456
spectrumDataUpdate() method, 454
StageStyle.TRANSPARENT style, 453

Multipurpose Internet Mail
Extensions (MIME), 529–530

N�       �
Nashorn

accessing Java
array and collection

Java.to() function, 516
Java.type function, 515
Java.type() function, 516

description, 505
Java class, 518
JavaFX, 520
Java interface, 517
load and execute JavaScript

command line, 507
eval() method, 506
getEngineByName() method, 506
ScriptEngineManager(), 505

NetBeans IDE
installation, 1
JavaBeans-Style classes

accessor methods, 9
getMessage(), 8
HelloMessage(), 8
setMessage(String), 8

Java SE project creation, 3
Hello, World, 7
naming, 5
Skeleton code, 5

main() method, 9

packages, 8
directory structure, 8
naming conventions, 8

NetBeans Profiler, 258
News ticker and photo viewer application

classes, 414
clipped region, 419
code implementation, 414
cycle count, 418
EventHandler, 422
JavaFX animation, 418
play() method, 421
setOnFinished() method, 420
Text node, 420
transitionByFading() method, 421
TranslateTransition, 419–420
translating and fading, 418

Numbers, 65
comparison operators, 69
floating-point numbers, 70
format double and long numbers

DecimalFormat class, 67
decimalformat pattern characters, 69
NumberFormat class, 68

monetary values, 71
random number generation

java.util.Random class, 73
Math.random() method, 74
Random setSeed() method, 74

rounding floating-point numbers or Double values
java.lang.Math round() methods, 66–67
roundDoubleToLong() method, 66
roundFloatToInt() method, 66

O�       �
Object-oriented Java, 97

== and != operators, 119–120
booleantrue and booleanfalse result, 123
ByteArrayOutputStream and

ByteArrayInputStream, 119
class encapsulation

constructPlayer() method, 131–132
inner class, 127–129, 131

class functionality, 124–125
class interaction via interface, 114–115
class template definition, 126–127
Cloneable interface, 115–117
control access, 97–98
deep copies, 118
equals() and hashCode() method, 120–122
instance contruction, same class

with different values
builder pattern, 110
buildNewTeam() method, 113

■ Index

587

buildPlayerList() method, 113
designateTeamCity() method, 113
Roster class, 112
TeamBuilder interface, 111
Team object, 111
TeamType interface, 110–111, 113

instance generation, 102–104
interface definition, 106–107, 109
Lisp language, 97
one instance class

enum function, 101
getInstance() accessor method, 100–101
INSTANCE element, 102
privatestaticfinal field, 101
Singleton pattern, 99–100
Statistics class, 101

overridden equals() method, 123
private fields, 98–99
reusable objects creation, 104–106
shallowCopyClone() method, 117–118
string’s hashCode() method, 124
super.clone() method, 118

Oracle’s ojdbc6.jar JDBC driver, 306
Oracle Technology Network (OTN), 1

P, Q�       �
Pokémon® exception, 212
PreparedStatements

catch block, 298–299
close() method, 299
executeQuery() method, 299
finally block, 299
PreparedStatement, 297
recipeNumber String, 299
recipeNumber variable, 299
record deletion, 297
record insertion, 297
ResultSet object, 299
scrollable ResultSet, 304
setInt(position, variable) method, 299
SQL control, 296
SQL string, 298–299
substitution variables, 298–299
try-catch block, 298
updatable ResultSet, 306

R�       �
Relational database management

systems (RDBMSs), 283
ResultSet getInt() method, 289
ResultSet getString() method, 289
Rhino engine, 505

S�       �
Scalable Vector Graphics (SVG) file

analog clock
clock3.svg, 480
getEngine() method, 482
in Inkscape, 480
Inkscape, 482
JavaFX Scene graph, 479
updateTime() function, 483
WebEngine object, 482
WebView node, 482

Security
features, 571
handshake process, 573
internet applications

FilePermission, 578
SocketPermission, 577
URLPermission class, 576–577

random numbers, 576
SSL keystore password, 575
subset of privileges

AccessControlContext object, 573
AccessController.doPrivileged method, 572
doPrivileged method, 573
run() method, 573

Serializing Java objects, 187
convert and traverse, 190
copying file, 196–197
directory creation, 198
directory monitoring

built-in poll mechanism, 202
types,watchEvents, 203
watchKey.pollEvents() method, 203
WatchService.poll, 202

externalizable interface, 192
file moving, 197
Files.createDirectory() method, 199
iterating over files, 199
marker interface, 189
ObjectOutput methods, 192
ObjectOutputStream class, 188
path execution, 196
property files, 203
querying, 200
readExternal(ObjectInput in), 191
readExternal/writeExternal methods, 191
serialization/deserialization mechanism, 191
socket connection

channels.newInputStream(socket)
method, 195

Channels.newOutputStream() method, 195
IP address and port, 195
isDone(),isCancelled() method, 195
ObjectOutputStream.reset() method, 196

■ index

588

Object-oriented Java (cont.)

ObjectOutputStream.writeUnshared()
method, 196

send/receive objects, 194
serverSocketChannel.accept() method, 195
socketChannel.connect() method, 195

string class, 189
transient properties, 189
uncompressing compressed files, 205
writeExternal(ObjectOutput out), 191
XML, 192

Singleton pattern, 101
Sockets direct protocol (SDP), 559
Stack trace, 250
Starvation, 261
Static Code Analyzer (SCA), 256
Streams, 140
Stream Unique Identifier (SUID), 190
Strings

case changing
case-sensitive string, 54
toLowerCase() method, 54
toUpperCase() method, 54

comparing
built-in equals() method, 50
coding, 50
compareTo() and compareToIgnoreCase()

methods, 52
compareToIgnoreCase() method, 50
compareTo() method, 50
comparison operator (==), 52
equalsIgnoreCase() method, 50, 52
Java String equals() method, 52

concatenating
built-in String, 56
combining, 55
concatenation operator, 55
concat() method, 55–56
helper method, 56
StringBuffer class, 55–56
StringBuilder class, 55

data type, programming language, 49
file name end string

endsWith() method, 63
filename variable, 63

helper methods, 50
iterating character string

charAt() method, 58–59
length() and charAt() methods, 59
toCharArray() method, 58–59

numeric conversion
autoboxing, 57
Integer.parseInt() method, 57
integers, 56
Integer.valueOf() method, 56

NumberFormatExeption, 57
parseInt() method, 57
unboxing, 57
valueOf() and parseInt() methods, 57

replacing text
Pattern.compile() method, 62
replaceAll() method, 62

retrieval problem, 49
startingindex and endingindex, 50
substring() method,solution, 49
text matches

code and pattern, 60
coding, 59
Matcher find() method, 61
Matcher lookingAt() method, 61
Matcher matches() method, 61
matches() method, 61
Pattern.compile() method, 61
Pattern.matches() method, 61
regular expressions, 61
String helper matches(), 59
three-step process, 60

trimming whitespace
pattern-searching program, 53
String trim() method, 53

System.out() method, 289

T�       �
Text nodes

changing text fonts, 338
keyboard sequences, 375
text drawing, 336

Thread dump, 259
Throwing, exception, 210
Transmission Control Protocol/Internet

Protocol (TCP/IP) layer, 558

U�       �
Unicode digit character conversion, 263

byte array to Unicode string
charset encodings, 279
getBytes() method, 278

Character.digit() static method, 265
isDigit property, 265
java.lang.Character class, 263
regular expression

demoComplex() method, 275
enRegEx and jaRegEx, 273
replaceAll() method, 274
replaceFirst() method, 274
split() method, 274
String methods, 275

■ Index

589

streams and buffers
InputStreamReader, 279, 281
newEncoder()/newDecoder() method, 280
OutputStreamWriter, 280–281

URL
generation, 566
parsing

accessor methods, 569
getFile() method, 569
getPath() method, 569
getQuery() and getRef() method, 569
ParseUrl class, 568

User Datagram Protocol (UDP), 564

V�       �
Video player

attachMouseEvents() method, 460
ChangeListener, 460
class utilization, 456
code implementation, 456
working principle

attachMouseEvents() method, 461
changed() method, 462
createBackground() method, 461
createSlider() method, 462
media formats, 461
MediaView object, 463
pauseButton and

playButton code, 463
setFullScreen() method, 462
slider.isPressed() flag, 462

VisualVM, 259

W�       �
Webkit, 473

X, Y, Z�       �
XML processing

file reading
hasNext() method, 543
javax.xml.stream.XMLStreamReader

interface, 540
nextEvent() method, 543
StAX, 542
XMLEventReader, 541

file writing
java.io.FileOutputStream class, 539
javax.xml.stream.XMLStreamWriter class, 537
StAX, 539
writeAttribute() method, 539
writeCharacters() method, 539
writeEndElement() method, 539
writeStartDocumentMethod() method, 539
writeStartElement() method, 539
XMLStreamWriter instance, 539

Java binding creation, 548–549
JAXB, 550
transformation

file requirements, 544
HTML table, 546
javax.xml.transform package, 543
patients.xml file, 544
XSL document, 545

unmarshall, 549
validation, 546

■ index

590

Unicode digit character conversion (cont.)

Java 8 Recipes
Second Edition

Josh Juneau

Java 8 Recipes

Copyright © 2014 by Josh Juneau

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6827-7

ISBN-13 (electronic): 978-1-4302-6826-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Jonathan Gennick
Developmental Editor: James Markham
Technical Reviewers: James Weaver and Rohan Walia
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to the Java developer community.
As Java developers, we have the benefit of working on

one of the most widely used platforms in the world.
Without the excellent Java community,

the platform would not be nearly as great as it is today.

This book is also dedicated to my wife, Angela,
and my five children: Kaitlyn, Jacob, Matthew, Zachary,

and Lucas. You are my joy and inspiration.

vii

Contents

About the Author���xli

About the Technical Reviewers���xliii

Acknowledgments�� xlv

Introduction�� xlvii

Chapter 1: Getting Started with Java 8■■ ��1

1-1. Creating a Development Environment��1

Problem�� 1

Solution�� 1

How It Works��� 2

1-2. Getting to “Hello, World”���3

Problem�� 3

Solution�� 3

How It Works��� 7

1-3. Compiling and Executing from the Command-line Interpreter���10

Problem�� 10

Solution�� 10

How It Works��� 11

1-4. Declaring Simple Variables���12

Problem�� 12

Solution�� 12

How It Works��� 14

■ Contents

viii

1-5. Converting to and from a String��15

Problem�� 15

Solution�� 15

How It Works��� 15

1-6. Passing Arguments via Command-Line Execution���16

Problem�� 16

Solution�� 16

How It Works��� 17

1-7. Accepting Input from the Keyboard��18

Problem�� 18

Solution�� 18

How It Works��� 19

1-8. Documenting Your Code��20

Problem�� 20

Solution�� 20

How It Works��� 21

1-9. Organizing Code with Packages���22

Problem�� 22

Solution�� 22

How It Works��� 23

1-10. Configuring the CLASSPATH��24

Problem�� 24

Solution�� 24

How It Works��� 25

1-11. Reading Environment Variables��26

Problem�� 26

Solution�� 26

How It Works��� 27

Summary��28

■ Contents

ix

Chapter 2: New Features of Java 8■■ ���29

Java Language Enhancements��29

2-1. Passing Functionality as a Method Argument���29

Problem�� 29

Solution�� 29

How It Works��� 31

2-2. Calling On an Existing Method from a Lambda Expression��31

Problem�� 31

Solution�� 31

How It Works��� 34

2-3. Providing a Default Method Implementation in an Interface��34

Problem�� 34

Solution�� 34

How It Works��� 35

2-4. Applying the Same Annotation Multiple Times in a Declaration or Type Use������������������������36

Problem�� 36

Solution�� 36

How It Works��� 36

Date-Time API���37

2-5. Incorporating the Current Date and Time��37

Problem�� 37

Solution�� 37

How It Works��� 37

2-6. Obtaining a Date from a Specified String���37

Problem�� 37

Solution�� 37

How It Works��� 38

■ Contents

x

2-7. Performing Date-Time Calculations��38

Problem�� 38

Solution�� 38

How It Works��� 38

Streams API��38

2-8. Iterating Over a Collection of Data��39

Problem�� 39

Solution�� 39

How It Works��� 39

JavaFX��40

2-9. Embedding Swing in JavaFX��40

Problem�� 40

Solution�� 40

How It Works��� 41

2-10. Adding a DatePicker��42

Problem�� 42

Solution�� 42

How It Works��� 43

2-11. Printing from JavaFX��45

Problem�� 45

Solution�� 45

How It Works��� 46

Scripting���47

2-12. Embedding JavaScript in Your Java Application���47

Problem�� 47

Solution�� 47

How It Works��� 47

■ Contents

xi

2-13. Executing JavaScript from the Command-Line��48

Problem�� 48

Solution�� 48

How It Works��� 48

Summary��48

Chapter 3: Strings■■ ��49

3-1. Obtaining a Subsection of a String���49

Problem�� 49

Solution�� 49

How It Works��� 50

3-2. Comparing Strings��50

Problem�� 50

Solution�� 50

How It Works��� 52

3-3. Trimming Whitespace���53

Problem�� 53

Solution�� 53

How It Works��� 53

3-4. Changing the Case of a String��54

Problem�� 54

Solution�� 54

How It Works��� 54

3-5. Concatenating Strings��55

Problem�� 55

Solution #1��� 55

Solution #2��� 55

Solution #3��� 55

How It Works��� 56

■ Contents

xii

3-6. Converting Strings to Numeric Values��56

Problem�� 56

Solution #1��� 56

Solution #2��� 57

How It Works��� 57

3-7. Iterating Over the Characters of a String��58

Problem�� 58

Solution�� 58

How It Works��� 59

3-8. Finding Text Matches��59

Problem�� 59

Solution #1��� 59

Solution #2��� 60

How It Works��� 61

3-9. Replacing All Text Matches���62

Problem�� 62

Solution�� 62

How It Works��� 62

3-10. Determining Whether a File Name Ends with a Given String��63

Problem�� 63

Solution�� 63

How It Works��� 63

Summary��63

Chapter 4: Numbers and Dates■■ ���65

4-1. Rounding Float and Double Values to Integers���66

Problem�� 66

Solution�� 66

How It Works��� 67

■ Contents

xiii

4-2. Formatting Double and Long Decimal Values���67

Problem�� 67

Solution�� 67

How It Works��� 68

4-3. Comparing int Values��69

Problem�� 69

Solution #1��� 69

Solution #2��� 69

How It Works��� 70

4-4. Comparing Floating-Point Numbers��70

Problem�� 70

Solution #1��� 70

Solution #2��� 71

How It Works��� 71

4-5. Calculating Monetary Values��71

Problem�� 71

Solution�� 72

How It Works��� 72

4-6. Randomly Generating Values��73

Problem�� 73

Solution #1��� 73

Solution #2��� 74

How It Works��� 74

4-7. Obtaining the Current Date Without Time���75

Problem�� 75

Solution�� 75

How It Works��� 75

4-8. Obtaining a Date Object Given Date Criteria���75

Problem�� 75

Solution�� 75

How It Works��� 76

■ Contents

xiv

4-9. Obtaining a Year-Month-Day Date Combination��76

Problem�� 76

Solution #1��� 76

Solution #2��� 76

How It Works��� 77

4-10. Obtaining and Calculating Based on the Current Time���77

Problem�� 77

Solution�� 77

How It Works��� 78

4-11. Obtaining and Using the Date and Time Together���79

Problem�� 79

Solution #1��� 79

Solution #2��� 81

Solution #3��� 81

How It Works��� 82

4-12. Obtaining a Machine Timestamp��83

Problem�� 83

Solution�� 83

How It Works��� 84

4-13. Converting Dates and Times Based on the Time Zone��84

Problem�� 84

Solution�� 84

How It Works��� 85

4-14. Comparing Two Dates���87

Problem�� 87

Solution�� 87

How It Works��� 87

■ Contents

xv

4-15. Finding the Interval Between Dates and Times��88

Problem�� 88

Solution #1��� 88

Solution #2��� 88

Solution #3��� 89

How It Works��� 89

4-16. Obtaining Date-Time from a Specified String���91

Problem�� 91

Solution�� 91

How It Works��� 91

4-17. Formatting Dates for Display��92

Problem�� 92

Solution #1��� 92

Solution #2��� 92

How It Works��� 93

4-18. Writing Readable Numeric Literals���95

Problem�� 95

Solution�� 95

How It Works��� 95

4-19. Declaring Binary Literals���96

Problem�� 96

Solution�� 96

How It Works��� 96

Summary��96

Chapter 5: Object-Oriented Java■■ ��97

5-1. Controlling Access to Members of a Class��97

Problem�� 97

Solution�� 97

How It Works��� 98

■ Contents

xvi

5-2. Making Private Fields Accessible To Other Classes��98

Problem�� 98

Solution�� 98

How It Works��� 98

5-3. Creating a Class with a Single Instance���99

Problem�� 99

Solution 1��� 99

Solution 2��� 101

How It Works��� 101

5-4. Generating Instances of a Class���102

Problem�� 102

Solution�� 102

How It Works��� 104

5-5. Creating Reusable Objects��104

Problem�� 104

Solution�� 104

How It Works��� 105

5-6. Defining an Interface for a Class��106

Problem�� 106

Solution�� 106

How It Works��� 106

5-7. Modifying Interfaces without Breaking Existing Code��108

Problem�� 108

Solution�� 108

How It Works��� 109

5-8. Constructing Instances of the Same Class with Different Values���������������������������������������109

Problem�� 109

Solution�� 110

How It Works��� 113

■ Contents

xvii

5-9. Interacting with a Class via Interfaces��114

Problem�� 114

Solution�� 114

How It Works��� 114

5-10. Making a Class Cloneable���115

Problem�� 115

Solution�� 115

How It Works��� 118

5-11. Comparing Objects���119

Problem�� 119

Solution 1��� 119

Solution 2��� 120

How It Works��� 123

5-12. Extending the Functionality of a Class��124

Problem�� 124

Solution�� 124

How It Works��� 125

5-13. Defining a Template for Classes to Extend���126

Problem�� 126

Solution�� 126

How It Works��� 127

5-14. Increasing Class Encapsulation��127

Problem�� 127

Solution�� 127

How It Works��� 131

Summary��132

■ Contents

xviii

Chapter 6: Lambda Expressions■■ ���133

6-1. Writing a Simple Lambda Expression���133

Problem�� 133

Solution�� 133

How It Works��� 134

6-2. Enabling the Use of Lambda Expressions���135

Problem�� 135

Solution 1��� 136

Solution 2��� 136

How It Works��� 137

6-3. Sorting with Fewer Lines of Code���139

Problem�� 139

Solution 1��� 139

Solution 2��� 139

How It Works��� 140

6-4. Specifying Filter Criteria on a Collection of Data��141

Problem�� 141

Solution�� 141

How It Works��� 141

6-5. Implementing Runnable��141

Problem�� 141

Solution�� 141

How It Works��� 142

6-6. Replacing Anonymous Inner Classes��142

Problem�� 142

Solution�� 142

How It Works��� 143

6-7. Accessing Class Variables from a Lambda Expression���144

Problem�� 144

Solution�� 144

How It Works��� 145

■ Contents

xix

6-8. Passing Lambda Expressions to Methods��146

Problem�� 146

Solution�� 146

How It Works��� 148

6-9. Invoking Existing Methods by Name���148

Problem�� 148

Solution�� 148

How It Works��� 150

Summary��152

Chapter 7: Data Structures and Collections■■ ���153

7-1. Defining a Fixed Set of Related Constants��153

Problem�� 153

Solution�� 153

How It Works��� 155

7-2. Designing Intelligent Constants��156

Problem�� 156

Solution�� 156

How It Works��� 159

7-3. Executing Code Based on a Specified Value���159

Problem�� 159

Solution�� 160

How It Works��� 163

7-4. Working with Fix-Sized Arrays��164

Problem�� 164

Solution�� 164

How It Works��� 166

7-5. Safely Enabling Types or Methods to Operate on Objects of Various Types������������������������168

Problem�� 168

Solution�� 168

How It Works��� 170

■ Contents

xx

7-6. Working with Dynamic Arrays���173

Problem�� 173

Solution�� 174

How It Works��� 175

7-7. Making Your Objects Iterable��176

Problem�� 176

Solution�� 176

How It Works��� 178

7-8. Iterating Over Collections��179

Problem�� 179

Solution�� 180

How It Works��� 181

7-9. Iterating Over a Map���182

Problem�� 182

Solution�� 182

How It Works��� 184

7-10. Executing Streams in Parallel���185

Problem�� 185

Solution�� 185

How It Works��� 186

Summary��186

Chapter 8: Input and Output■■ ���187

8-1. Serializing Java Objects��188

Problem�� 188

Solution�� 188

How It Works��� 189

8-2. Serializing Java Objects More Efficiently��190

Problem�� 190

Solution�� 191

How It Works��� 191

■ Contents

xxi

8-3. Serializing Java Objects as XML ��192

Problem�� 192

Solution�� 192

How It Works��� 193

8-4. Creating a Socket Connection and Sending Serializable Objects Across the Wire�������������194

Problem�� 194

Solution�� 194

How It Works��� 195

8-5. Obtaining the Java Execution Path���196

Problem�� 196

Solution�� 196

How It Works��� 196

8-6. Copying a File���196

Problem�� 196

Solution�� 197

How It Works��� 197

8-7. Moving a File��197

Problem�� 197

Solution�� 197

How It Works��� 198

8-8. Creating a Directory��198

Problem�� 198

Solution 1��� 198

Solution 2��� 198

How It Works��� 199

8-9. Iterating Over Files in a Directory���199

Problem�� 199

Solution�� 199

How It Works��� 199

■ Contents

xxii

8-10. Querying (and Setting) File Metadata���200

Problem�� 200

Solution�� 200

How It Works��� 201

8-11. Monitoring a Directory for Changes��201

Problem�� 201

Solution�� 202

How It Works��� 202

8-12. Reading Property Files��203

Problem�� 203

Solution�� 203

How It Works��� 204

8-13. Uncompressing Compressed Files��205

Problem�� 205

Solution�� 205

How It Works��� 206

Summary��206

Chapter 9: Exceptions and Logging■■ ��207

9-1. Catching Exceptions���208

Problem�� 208

Solution�� 208

How It Works��� 209

9-2. Guaranteeing A Block Of Code is Executed���209

Problem ��� 209

Solution�� 210

How It Works��� 210

9-3. Throwing Exceptions���210

Problem�� 210

Solution�� 211

How It Works��� 211

■ Contents

xxiii

9-4. Catching Multiple Exceptions���211

Problem�� 211

Solution 1��� 211

Solution 2��� 212

How It Works��� 212

9-5. Catching the Uncaught Exceptions ��213

Problem�� 213

Solution 1��� 213

Solution 2��� 213

How It Works��� 214

9-6. Managing Resources with try/catch Blocks���214

Problem�� 214

Solution�� 214

How It Works��� 215

9-7. Creating an Exception Class���215

Problem�� 215

Solution 1��� 215

Solution 2��� 216

How It Works��� 216

9-8. Rethrowing the Caught Exception��216

Problem�� 216

Solution�� 216

How It Works��� 217

9-9. Logging Events Within Your Application��217

Problem�� 217

Solution�� 217

How It Works��� 218

9-10. Rotating and Purging Logs��219

Problem�� 219

Solution�� 219

How It Works��� 219

■ Contents

xxiv

9-11. Logging Exceptions���220

Problem�� 220

Solution�� 220

How It Works��� 221

Chapter 10: Concurrency■■ ��223

10-1. Starting a Background Task��223

Problem�� 223

Solution�� 223

How It Works��� 224

10-2. Updating (and Iterating) a Map���224

Problem�� 224

Solution�� 225

How It Works��� 225

10-3. Inserting a Key into a Map Only if the Key Is not Already Present������������������������������������226

Problem�� 226

Solution�� 226

How It Works��� 227

10-4. Iterating Through a Changing Collection���228

Problem�� 228

Solution 1��� 228

Solution 2��� 228

How It Works��� 228

10-5. Coordinating Different Collections ���229

Problem�� 229

Solution 1��� 229

Solution 2 �� 230

How It Works��� 231

10-6. Splitting Work into Separate Threads���232

Problem�� 232

Solution�� 232

How It Works��� 233

■ Contents

xxv

10-7. Coordinating Threads��234

Problem�� 234

Solution 1��� 234

Solution 2��� 235

Solution 3��� 236

How It Works��� 236

10-8. Creating Thread-Safe Objects���238

Problem�� 238

Solution 1 �� 238

Solution 2��� 239

How It Works��� 240

10-9. Implementing Thread-Safe Counters ���240

Problem�� 240

Solution�� 240

How It Works��� 241

10-10. Breaking Down Tasks into Discrete Units of Work��241

Problem�� 241

Solution�� 242

How It Works��� 244

10-11. Updating a Common Value Across Multiple Threads���245

Problem�� 245

Solution�� 245

How It Works��� 246

Summary��247

Chapter 11: Debugging and Unit Testing■■ ��249

11-1. Understanding Exceptions��249

Problem�� 249

Solution�� 249

How It Works��� 250

■ Contents

xxvi

11-2: Locking Down Behavior of Your Classes���250

Problem�� 250

Solution�� 250

How It Works��� 251

11-3. Scripting Your Unit Tests���252

Problem�� 252

Solution�� 252

How It Works��� 254

11-4. Finding Bugs Early��255

Problem�� 255

Solution�� 255

How It Works��� 256

11-5. Monitoring Garbage Collection in your Application���257

Problem�� 257

Solution 1��� 257

Solution 2��� 257

How It Works��� 259

11-6. Obtaining a Thread Dump���259

Problem�� 259

Solution�� 259

How It Works��� 261

Chapter 12: Unicode, Internationalization, and Currency Codes■■ ������������������������������������263

12-1. Converting Unicode Characters to Digits��263

Problem�� 263

Solution�� 263

How It Works��� 265

12-2. Creating and Working with Locales��265

Problem�� 265

Solution�� 265

How It Works��� 267

■ Contents

xxvii

12-3. Setting the Default Locale��268

Problem�� 268

Solution�� 268

How It Works��� 270

12-4. Matching and Filtering Locales���271

Problem�� 271

Solution�� 271

How It Works��� 272

12-5. Searching Unicode with Regular Expressions��273

Problem�� 273

Solution 1��� 273

Solution 2��� 274

How It Works��� 275

12-6. Overriding the Default Currency���276

Problem�� 276

Solution�� 276

How It Works��� 277

12-7. Converting Byte Arrays to and from Strings���278

Problem�� 278

Solution�� 278

How It Works��� 279

12-8. Converting Character Streams and Buffers��279

Problem�� 279

Solution 1��� 279

Solution 2��� 280

How It Works��� 281

12-9. Setting the Search Order of Locale-Sensitive Services��281

Problem�� 281

Solution�� 281

How It Works��� 282

Summary��282

■ Contents

xxviii

Chapter 13: Working with Databases■■ ���283

13-1. Connecting to a Database���283

Problem�� 283

Solution 1��� 283

Solution 2��� 284

How It Works��� 284

13-2. Handling Connection and SQL Exceptions��286

Problem�� 286

Solution�� 286

How It Works��� 287

13-3. Querying a Database and Retrieving Results��288

Problem�� 288

Solution�� 288

How It Works��� 288

13-4. Performing CRUD Operations��290

Problem�� 290

Solution�� 290

How It Works��� 292

13-5. Simplifying Connection Management���293

Problem�� 293

Solution�� 293

How It Works��� 296

13-6. Guarding Against SQL Injection���296

Problem�� 296

Solution�� 296

How It Works��� 298

13-7. Performing Transactions���300

Problem�� 300

Solution�� 300

How It Works��� 302

■ Contents

xxix

13-8. Creating a Scrollable ResultSet��303

Problem�� 303

Solution�� 303

How It Works��� 304

13-9. Creating an Updatable ResultSet��305

Problem�� 305

Solution�� 305

How It Works��� 306

13-10. Caching Data for Use When Disconnected��307

Problem�� 307

Solution�� 307

How It Works��� 310

13-11. Joining RowSet Objects When Not Connected to the Data Source���������������������������������313

Problem�� 313

Solution�� 313

How It Works��� 317

13-12. Filtering Data in a RowSet��318

Problem�� 318

Solution�� 318

How It Works��� 322

13-13. Querying and Storing Large Objects���323

Problem�� 323

Solution�� 323

How It Works��� 325

13-14. Invoking Stored Procedures��326

Problem�� 326

Solution�� 326

How It Works��� 327

■ Contents

xxx

13-15. Obtaining Dates for Database Use��327

Problem�� 327

Solution�� 328

How It Works��� 328

13-16. Handling Resources Automatically���328

Problem�� 328

Solution�� 328

How It Works��� 329

Summary��329

Chapter 14: JavaFX Fundamentals■■ ���331

14-1. Creating a Simple User Interface��332

Problem�� 332

Solution 1��� 332

Solution 2��� 333

How It Works��� 334

14-2. Drawing Text���336

Problem�� 336

Solution�� 336

How It Works��� 337

14-3. Changing Text Fonts��338

Problem�� 338

Solution 1��� 338

Solution 2��� 339

How It Works��� 341

14-4. Creating Shapes��343

Problem�� 343

Solution�� 343

How It Works��� 347

■ Contents

xxxi

14-5. Assigning Colors to Objects��348

Problem�� 348

Solution�� 348

How It Works��� 351

14-6. Creating Menus���353

Problem�� 353

Solution�� 353

How It Works��� 355

14-7. Adding Components to a Layout���356

Problem�� 356

Solution�� 356

How It Works��� 357

14-8. Generating Borders���358

Problem�� 358

Solution�� 358

How It Works��� 360

14-9. Binding Expressions���361

Problem�� 361

Solution�� 361

How It Works��� 364

14-10. Creating and Working with Observable Lists��365

Problem�� 365

Solution�� 365

How It Works��� 368

14-11. Generating a Background Process��368

Problem�� 368

Solution�� 369

How It Works��� 372

■ Contents

xxxii

14-12. Associating Keyboard Sequences with Applications��373

Problem�� 373

Solution�� 373

How It Works��� 375

14-13. Creating and Working with Tables��376

Problem�� 376

Solution�� 376

How It Works��� 380

14-14. Organizing the UI with Split Views��381

Problem�� 381

Solution�� 381

How It Works��� 383

14-15. Adding Tabs to the UI��384

Problem�� 384

Solution�� 384

How It Works��� 386

14-16. Developing a Dialog Box���387

Problem�� 387

Solution�� 387

How It Works��� 391

14-17. Printing with JavaFX���392

Problem�� 392

Solution�� 392

How It Works��� 398

14-18. Embedding Swing Content in JavaFX���399

Problem�� 399

Solution�� 399

How It Works��� 403

Summary��403

■ Contents

xxxiii

Chapter 15: Graphics with JavaFX■■ ���405

15-1. Creating Images��406

Problem�� 406

Solution�� 406

How It Works��� 411

15-2. Generating an Animation��414

Problem�� 414

Solution�� 414

How It Works��� 418

15-3. Animating Shapes Along a Path��422

Problem�� 422

Solution�� 422

How It Works��� 425

15-4. Manipulating Layout via Grids��427

Problem�� 427

Solution�� 427

How It Works��� 435

15-5. Enhancing the Interface with CSS��438

Problem�� 438

Solution�� 438

How It Works��� 442

Summary��444

Chapter 16: Media with JavaFX■■ ��445

16-1. Playing Audio��445

Problem�� 445

Solution�� 446

How It Works��� 452

■ Contents

xxxiv

16-2. Playing Video��456

Problem�� 456

Solution�� 456

How It Works��� 461

16-3. Controlling Media Actions and Events��464

Problem�� 464

Solution�� 464

How It Works��� 465

16-4. Marking a Position in a Video���466

Problem�� 466

Solution�� 466

How It Works��� 469

16-5. Synchronizing Animation and Media��469

Problem�� 469

Solution�� 470

How It Works��� 471

Summary��471

Chapter 17: JavaFX on the Web■■ ��473

17-1. Embedding JavaFX Applications in a Web Page���473

Problem�� 473

Solution�� 473

How It Works��� 477

17-2. Loading Scalable Vector Graphics File Content ���479

Problem�� 479

Solution�� 479

How It Works��� 482

17-3. Manipulating HTML5 Content with Java Code��483

Problem�� 483

Solution�� 483

How It Works��� 487

■ Contents

xxxv

17-4. Responding to HTML Events���489

Problem�� 489

Solution�� 489

How It Works��� 491

17-5. Displaying Content from the Database���492

Problem�� 492

Solution�� 492

How It Works��� 501

Summary��503

Chapter 18: Nashorn and Scripting■■ ��505

18-1. Loading and Executing JavaScript from Java���505

Problem�� 505

Solution�� 505

How It Works��� 506

18-2. Executing JavaScript via the Command Line��507

Problem�� 507

Solution 1��� 507

Solution 2��� 508

How It Works��� 508

18-3. Embedding Expressions in Strings���509

Problem�� 509

Solution�� 509

How It Works��� 509

18-4. Passing Java Parameters���510

Problem�� 510

Solution�� 510

How It Works��� 511

18-5. Passing Return Values from JavaScript to Java���511

Problem�� 511

Solution�� 511

How It Works��� 512

■ Contents

xxxvi

18-6. Using Java Classes and Libraries���513

Problem�� 513

Solution�� 513

How It Works��� 515

18-7. Accessing Java Arrays and Collections in Nashorn��515

Problem�� 515

solution��� 515

How It Works��� 516

18-8. Implementing Java Interfaces��517

Problem�� 517

Solution�� 517

How It Works��� 518

18-9. Extending Java Classes��518

Problem�� 518

Solution�� 518

How It Works��� 519

18-10. Creating Executable Scripts in Unix��519

Problem�� 519

Solution�� 519

How It Works��� 520

18-11. Implementing JavaFX with Nashorn���520

Problem�� 520

Solution 1��� 520

Solution 2��� 523

How It Works��� 525

Summary��525

Chapter 19: E-mail■■ ��527

19-1. Installing JavaMail��527

Problem�� 527

Solution�� 527

How It Works��� 527

■ Contents

xxxvii

19-2. Sending an E-mail��528

Problem�� 528

Solution�� 528

How It Works��� 529

19-3. Attaching Files to an E-Mail Message���529

Problem�� 529

Solution�� 529

How It Works��� 530

19-4. Sending an HTML E-Mail��530

Problem�� 530

Solution�� 530

How It Works��� 531

19-5. Sending E-Mail to a Group of Recipients��531

Problem�� 531

Solution�� 531

How It Works��� 532

19-6. Checking E-Mail��532

Problem�� 532

Solution�� 532

How It Works��� 533

19-7. Monitoring an E-Mail Account���533

Problem�� 533

Solution�� 533

How It Works��� 535

Summary��535

Chapter 20: XML Processing■■ ��537

20-1. Writing an XML File���537

Problem�� 537

Solution�� 537

How It Works��� 539

■ Contents

xxxviii

20-2. Reading an XML File���540

Problem�� 540

Solution 1��� 540

Solution 2��� 541

How It Works��� 542

20-3. Transforming XML���543

Problem�� 543

Solution�� 543

How It Works��� 544

20-4. Validating XML��546

Problem�� 546

Solution�� 546

How It Works��� 547

20-5. Creating Java Bindings for an XML Schema���548

Problem�� 548

Solution�� 548

How It Works��� 548

20-6. Unmarshalling XML to a Java Object��549

Problem�� 549

Solution�� 549

How It Works��� 550

20-7. Building an XML Document with JAXB���550

Problem�� 550

Solution�� 550

How It Works��� 551

Summary��551

Chapter 21: Networking ■■ ��553

21-1. Listening for Connections on the Server���553

Problem�� 553

Solution�� 553

How It Works��� 555

■ Contents

xxxix

21-2. Defining a Network Connection to a Server��556

Problem�� 556

Solution�� 556

How It Works��� 558

21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts��559

Problem�� 559

Solution�� 559

How It Works��� 560

21-4. Broadcasting to a Group of Recipients���561

Problem�� 561

Solution�� 561

How It Works��� 564

21-5. Generating and Reading from URLs��566

Problem�� 566

Solution�� 566

How It Works��� 567

21-6. Parsing a URL���568

Problem�� 568

Solution�� 568

How It Works��� 569

Summary��570

Chapter 22: Security■■ ���571

22-1. Asserting a Subset of Privileges���572

Problem�� 572

Solution�� 572

How It Works��� 572

22-2. Indicating a Server Name for Handshaking��573

Problem�� 573

Solution�� 573

How It Works��� 575

■ Contents

xl

22-3. Specifying a Keystore Password���575

Problem�� 575

Solution�� 575

How It Works��� 576

22-4. Generating the Strongest Random Number Possible��576

Problem�� 576

Solution�� 576

How It Works��� 576

22-5. Granting Permissions for Rich Internet Applications��576

Problem�� 576

Solution�� 576

How It Works��� 577

Summary��578

Index��579

xli

About the Author

Josh Juneau has been developing software and enterprise applications since the
early days of Java EE. Application and database development have been his focus
since the start of his career. He became an Oracle database administrator and
adopted the PL/SQL language for performing administrative tasks and developing
applications for the Oracle database. In an effort to build more complex solutions,
he began to incorporate Java into his PL/SQL applications and later developed
stand-alone and web applications with Java. Josh wrote his early Java web
applications utilizing JDBC and servlets or JSP to work with backend databases.
Later, he began to incorporate frameworks into his enterprise solutions, such as

Java EE and JBoss Seam. Today, he primarily develops enterprise web solutions utilizing Java EE and other
technologies. He also includes the use of alternative languages, such as Jython and Groovy, for some of his projects.

Over the years, Josh has dabbled in many different programming languages, including alternative languages
for the JVM in particular. In 2006, Josh began devoting time to the Jython Project as editor and publisher of the
Jython Monthly newsletter. In late 2008, he began a podcast dedicated to the Jython programming language.
Josh was the lead author for The Definitive Guide to Jython, Oracle PL/SQL Recipes, and Java 7 Recipes, and a solo
author of Java EE 7 Recipes and Introducing Java EE 7, which were all published by Apress. He works as an application
developer and system analyst at Fermi National Accelerator Laboratory, and he also writes technical articles for
Oracle and OTN.

Josh enjoys spending time with his wonderful wife and five children, especially swimming, fishing, playing ball,
and watching movies. To hear more from Josh, follow his blog at http://jj-blogger.blogspot.com. You can also
follow him on Twitter at @javajuneau.

xliii

About the Technical Reviewers

Rohan Walia is a Senior Software Consultant with extensive experience in
client-server, web-based, and enterprise application development. He is an Oracle
Certified ADF Implementation Specialist and a Sun Certifi ed Java Programmer.

Rohan is responsible for designing and developing end-to-end applications
consisting of various cutting-edge frameworks and utilities. His areas of expertise
are Oracle ADF, Oracle WebCenter, Fusion, Spring, Hibernate, and Java/J2EE. When
not working, Rohan loves to play tennis, hike, and travel. Rohan would like to thank
his wife, Deepika Walia, for using all her experience and expertise to review this book.

James Weaver is a developer, author, teacher, and international speaker focused on
client-side Java and the Internet of Things. He tweets at @JavaFXpert.

xlv

Acknowledgments

To my wife Angela: As the years pass, I am still amazed by you and always will be. I want to thank you again for always
being there for me and our children. You’ve helped me make it through this book, and your inspiration always keeps
me moving forward. Thanks for always supporting the work I do. I love you very much.

To my children, Kaitlyn, Jacob, Matthew, Zachary, and Lucas: I love you all so much and I cherish every moment
we have together. You all continue to make me so proud through your schoolwork, scouting, sports, and the myriad
of other things that you achieve. I hate to see you growing up so quickly…sometimes I wish that I could pause time.
I hope that you will understand why I’ve worked so hard on the weekends when you read this book some day.

I want to thank my original co-authors of the first edition of this book: Carl Dea, Freddy Guime, John O’Conner,
and Mark Beaty. You guys know your stuff, and your expertise is engrained within the pages of this second edition just
as much as the first. I had a great time working with you on the original and hope to do so again in the future.

To the folks at Apress: I thank you for providing me with the chance to share my knowledge with others. I especially
thank Jonathan Gennick for the continued support of my work and for providing the continued guidance to produce
useful content for our readers. I also thank Jill Balzano for doing a great job coordinating this project, and Kezia
Endsley for copyediting. The technical reviewers, Jim Weaver and Rohan Walia, have done an excellent job of
solidifying the book content. I really thank you for your hard work and expertise. Lastly, I’d like to thank everyone
else at Apress who had a hand in this book.

To the Java community: Thanks for helping to make the Java platform such an innovative and effective realm for
application development. We all have the privilege of working with a mature and robust platform, and it would not be
successful today if it weren’t for everyone’s continued contributions to the technology. I also thank all the Oracle Java
experts. Once again, the roadmap for the future is still looking great. I am looking forward to using Java technology for
many years to come.

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Java 8
	1-1. Creating a Development Environment
	Problem
	Solution
	How It Works

	1-2. Getting to “Hello, World”
	Problem
	Solution
	How It Works
	Packages
	JavaBeans-Style Classes
	The Main Program

	1-3. Compiling and Executing from the Command-line Interpreter
	Problem
	Solution
	How It Works

	1-4. Declaring Simple Variables
	Problem
	Solution
	How It Works

	1-5. Converting to and from a String
	Problem
	Solution
	How It Works

	1-6. Passing Arguments via Command-Line Execution
	Problem
	Solution
	How It Works

	1-7. Accepting Input from the Keyboard
	Problem
	Solution
	How It Works

	1-8. Documenting Your Code
	Problem
	Solution
	How It Works
	Formatting the Documentation
	Executing the Tool

	1-9. Organizing Code with Packages
	Problem
	Solution
	How It Works

	1-10. Configuring the CLASSPATH
	Problem
	Solution
	How It Works

	1-11. Reading Environment Variable s
	Problem
	Solution
	How It Works

	Summary

	Chapter 2: New Features of Java 8
	Java Language Enhancements
	2-1. Passing Functionality as a Method Argument
	Problem
	Solution
	How It Works

	2-2. Calling On an Existing Method from a Lambda Expression
	Problem
	Solution
	How It Works

	2-3. Providing a Default Method Implementation in an Interface
	Problem
	Solution
	How It Works

	2-4. Applying the Same Annotation Multiple Times in a Declaration or Type Use
	Problem
	Solution
	How It Works

	Date-Time API
	2-5. Incorporating the Current Date and Time
	Problem
	Solution
	How It Works

	2-6. Obtaining a Date from a Specified String
	Problem
	Solution
	How It Works

	2-7. Performing Date-Time Calculations
	Problem
	Solution
	How It Works

	Streams API
	2-8. Iterating Over a Collection of Data
	Problem
	Solution
	How It Works

	JavaFX
	2-9. Embedding Swing in JavaFX
	Problem
	Solution
	How It Works

	2-10. Adding a DatePicker
	Problem
	Solution
	How It Works

	2-11. Printing from JavaFX
	Problem
	Solution
	How It Works

	Scripting
	2-12. Embedding JavaScript in Your Java Application
	Problem
	Solution
	How It Works

	2-13. Executing JavaScript from the Command-Line
	Problem
	Solution
	How It Works

	Summary

	Chapter 3: Strings
	3-1. Obtaining a Subsection of a String
	Problem
	Solution
	How It Works

	3-2. Comparing Strings
	Problem
	Solution
	How It Works

	3-3. Trimming Whitespace
	Problem
	Solution
	How It Works

	3-4. Changing the Case of a String
	Problem
	Solution
	How It Works

	3-5. Concatenating Strings
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	3-6. Converting Strings to Numeric Values
	Problem
	Solution #1
	Solution #2
	How It Works

	3-7. Iterating Over the Characters of a String
	Problem
	Solution
	How It Works

	3-8. Finding Text Matches
	Problem
	Solution #1
	Solution #2
	How It Works

	3-9. Replacing All Text Matches
	Problem
	Solution
	How It Works

	3-10. Determining Whether a File Name Ends with a Given String
	Problem
	Solution
	How It Works

	Summary

	Chapter 4: Numbers and Dates
	4-1. Rounding Float and Double Values to Integers
	Problem
	Solution
	How It Works

	4-2. Formatting Double and Long Decimal Values
	Problem
	Solution
	How It Works

	4-3. Comparing int Values
	Problem
	Solution #1
	Solution #2
	How It Works

	4-4. Comparing Floating-Point Numbers
	Problem
	Solution #1
	Solution #2
	How It Works

	4-5. Calculating Monetary Values
	Problem
	Solution
	How It Works

	4-6. Randomly Generating Values
	Problem
	Solution #1
	Solution #2
	How It Works

	4-7. Obtaining the Current Date Without Time
	Problem
	Solution
	How It Works

	4-8. Obtaining a Date Object Given Date Criteria
	Problem
	Solution
	How It Works

	4-9. Obtaining a Year-Month-Day Date Combination
	Problem
	Solution #1
	Solution #2
	How It Works

	4-10. Obtaining and Calculating Based on the Current Time
	Problem
	Solution
	How It Works

	4-11. Obtaining and Using the Date and Time Together
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	4-12. Obtaining a Machine Timestamp
	Problem
	Solution
	How It Works

	4-13. Converting Dates and Times Based on the Time Zone
	Problem
	Solution
	How It Works

	4-14. Comparing Two Dates
	Problem
	Solution
	How It Works

	4-15. Finding the Interval Between Dates and Times
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	4-16. Obtaining Date-Time from a Specified String
	Problem
	Solution
	How It Works

	4-17. Formatting Dates for Display
	Problem
	Solution #1
	Solution #2
	How It Works

	4-18. Writing Readable Numeric Literals
	Problem
	Solution
	How It Works

	4-19. Declaring Binary Literals
	Problem
	Solution
	How It Works

	Summary

	Chapter 5: Object-Oriented Java
	5-1. Controlling Access to Members of a Class
	Problem
	Solution
	How It Works

	5-2. Making Private Fields Accessible To Other Classes
	Problem
	Solution
	How It Works

	5-3. Creating a Class with a Single Instance
	Problem
	Solution 1
	Solution 2
	How It Works

	5-4. Generating Instances of a Class
	Problem
	Solution
	How It Works

	5-5. Creating Reusable Objects
	Problem
	Solution
	How It Works

	5-6. Defining an Interface for a Class
	Problem
	Solution
	How It Works

	5-7. Modifying Interfaces without Breaking Existing Code
	Problem
	Solution
	How It Works

	5-8. Constructing Instances of the Same Class with Different Values
	Problem
	Solution
	How It Works

	5-9. Interacting with a Class via Interfaces
	Problem
	Solution
	How It Works

	5-10. Making a Class Cloneable
	Problem
	Solution
	How It Works

	5-11. Comparing Objects
	Problem
	Solution 1
	Solution 2
	How It Works

	5-12. Extending the Functionality of a Class
	Problem
	Solution
	How It Works

	5-13. Defining a Template for Classes to Extend
	Problem
	Solution
	How It Works

	5-14. Increasing Class Encapsulation
	Problem
	Solution
	How It Works

	Summary

	Chapter 6: Lambda Expressions
	6-1. Writing a Simple Lambda Expression
	Problem
	Solution
	How It Works

	6-2. Enabling the Use of Lambda Expressions
	Problem
	Solution 1
	Solution 2
	How It Works

	6-3. Sorting with Fewer Lines of Code
	Problem
	Solution 1
	Solution 2
	How It Works

	6-4. Specifying Filter Criteria on a Collection of Data
	Problem
	Solution
	How It Works

	6-5. Implementing Runnable
	Problem
	Solution
	How It Works

	6-6. Replacing Anonymous Inner Classes
	Problem
	Solution
	How It Works

	6-7. Accessing Class Variables from a Lambda Expression
	Problem
	Solution
	How It Works

	6-8. Passing Lambda Expressions to Methods
	Problem
	Solution
	How It Works

	6-9. Invoking Existing Methods by Name
	Problem
	Solution
	How It Works

	Summary

	Chapter 7: Data Structures and Collections
	7-1. Defining a Fixed Set of Related Constants
	Problem
	Solution
	How It Works

	7-2. Designing Intelligent Constants
	Problem
	Solution
	How It Works

	7-3. Executing Code Based on a Specified Value
	Problem
	Solution
	How It Works

	7-4. Working with Fix-Sized Arrays
	Problem
	Solution
	How It Works

	7-5. Safely Enabling Types or Methods to Operate on Objects of Various Types
	Problem
	Solution
	How It Works

	7-6. Working with Dynamic Arrays
	Problem
	Solution
	How It Works

	7-7. Making Your Objects Iterable
	Problem
	Solution
	How It Works

	7-8. Iterating Over Collections
	Problem
	Solution
	How It Works

	7-9. Iterating Over a Map
	Problem
	Solution
	How It Works

	7-10. Executing Streams in Parallel
	Problem
	Solution
	How It Works

	Summary

	Chapter 8: Input and Output
	8-1. Serializing Java Objects
	Problem
	Solution
	How It Works

	8-2. Serializing Java Objects More Efficiently
	Problem
	Solution
	How It Works

	8-3. Serializing Java Objects as XML
	Problem
	Solution
	How It Works

	8-4. Creating a Socket Connection and Sending Serializable Objects Across the Wire
	Problem
	Solution
	How It Works

	8-5. Obtaining the Java Execution Path
	Problem
	Solution
	How It Works

	8-6. Copying a File
	Problem
	Solution
	How It Works

	8-7. Moving a File
	Problem
	Solution
	How It Works

	8-8. Creating a Directory
	Problem
	Solution 1
	Solution 2
	How It Works

	8-9. Iterating Over Files in a Directory
	Problem
	Solution
	How It Works

	8-10. Querying (and Setting) File Metadata
	Problem
	Solution
	How It Works

	8-11. Monitoring a Directory for Changes
	Problem
	Solution
	How It Works

	8-12. Reading Property Files
	Problem
	Solution
	How It Works

	8-13. Uncompressing Compressed Files
	Problem
	Solution
	How It Works

	Summary

	Chapter 9: Exceptions and Logging
	9-1. Catching Exceptions
	Problem
	Solution
	How It Works

	9-2. Guaranteeing A Block Of Code is Executed
	Problem
	Solution
	How It Works

	9-3. Throwing Exceptions
	Problem
	Solution
	How It Works

	9-4. Catching Multiple Exceptions
	Problem
	Solution 1
	Solution 2
	How It Works

	9-5. Catching the Uncaught Exceptions
	Problem
	Solution 1
	Solution 2
	How It Works

	9-6. Managing Resources with try/catch Blocks
	Problem
	Solution
	How It Works

	9-7. Creating an Exception Class
	Problem
	Solution 1
	Solution 2
	How It Works

	9-8. Rethrowing the Caught Exception
	Problem
	Solution
	How It Works

	9-9. Logging Events Within Your Application
	Problem
	Solution
	How It Works

	9-10. Rotating and Purging Logs
	Problem
	Solution
	How It Works

	9-11. Logging Exceptions
	Problem
	Solution
	How It Works

	Chapter 10: Concurrency
	10-1. Starting a Background Task
	Problem
	Solution
	How It Works

	10-2. Updating (and Iterating) a Map
	Problem
	Solution
	How It Works

	10-3. Inserting a Key into a Map Only if the Key Is not Already Present
	Problem
	Solution
	How It Works

	10-4. Iterating Through a Changing Collection
	Problem
	Solution 1
	Solution 2
	How It Works

	10-5. Coordinating Different Collections
	Problem
	Solution 1
	Solution 2
	How It Works

	10-6. Splitting Work into Separate Threads
	Problem
	Solution
	How It Works

	10-7. Coordinating Threads
	Problem
	Solution 1
	Solution 2
	Solution 3
	How It Works

	10-8. Creating Thread-Safe Objects
	Problem
	Solution 1
	Solution 2
	How It Works

	10-9. Implementing Thread-Safe Counters
	Problem
	Solution
	How It Works

	10-10. Breaking Down Tasks into Discrete Units of Work
	Problem
	Solution
	How It Works

	10-11. Updating a Common Value Across Multiple Threads
	Problem
	Solution
	How It Works

	Summary

	Chapter 11: Debugging and Unit Testing
	11-1. Understanding Exceptions
	Problem
	Solution
	How It Works

	11-2: Locking Down Behavior of Your Classes
	Problem
	Solution
	How It Works

	11-3. Scripting Your Unit Tests
	Problem
	Solution
	How It Works

	11-4. Finding Bugs Early
	Problem
	Solution
	How It Works

	11-5. Monitoring Garbage Collection in your Application
	Problem
	Solution 1
	Solution 2
	How It Works

	11-6. Obtaining a Thread Dump
	Problem
	Solution
	How It Works

	Chapter 12: Unicode, Internationalization, and Currency Codes
	12-1. Converting Unicode Characters to Digits
	Problem
	Solution
	How It Works

	12-2. Creating and Working with Locales
	Problem
	Solution
	How It Works

	12-3. Setting the Default Locale
	Problem
	Solution
	How It Works

	12-4. Matching and Filtering Locales
	Problem
	Solution
	How It Works

	12-5. Searching Unicode with Regular Expressions
	Problem
	Solution 1
	Solution 2
	How It Works

	12-6. Overriding the Default Currency
	Problem
	Solution
	How It Works

	12-7. Converting Byte Arrays to and from Strings
	Problem
	Solution
	How It Works

	12-8. Converting Character Streams and Buffers
	Problem
	Solution 1
	Solution 2
	How It Works

	12-9. Setting the Search Order of Locale-Sensitive Services
	Problem
	Solution
	How It Works

	Summary

	Chapter 13: Working with Databases
	13-1. Connecting to a Database
	Problem
	Solution 1
	Solution 2
	How It Works

	13-2. Handling Connection and SQL Exceptions
	Problem
	Solution
	How It Works

	13-3. Querying a Database and Retrieving Results
	Problem
	Solution
	How It Works

	13-4. Performing CRUD Operations
	Problem
	Solution
	How It Works

	13-5. Simplifying Connection Management
	Problem
	Solution
	How It Works

	13-6. Guarding Against SQL Injection
	Problem
	Solution
	How It Works

	13-7. Performing Transactions
	Problem
	Solution
	How It Works

	13-8. Creating a Scrollable ResultSet
	Problem
	Solution
	How It Works

	13-9. Creating an Updatable ResultSet
	Problem
	Solution
	How It Works

	13-10. Caching Data for Use When Disconnected
	Problem
	Solution
	How It Works

	13-11. Joining RowSet Objects When Not Connected to the Data Source
	Problem
	Solution
	How It Works

	13-12. Filtering Data in a RowSet
	Problem
	Solution
	How It Works

	13-13. Querying and Storing Large Objects
	Problem
	Solution
	How It Works

	13-14. Invoking Stored Procedures
	Problem
	Solution
	How It Works

	13-15. Obtaining Dates for Database Use
	Problem
	Solution
	How It Works

	13-16. Handling Resources Automatically
	Problem
	Solution
	How It Works

	Summary

	Chapter 14: JavaFX Fundamentals
	14-1. Creating a Simple User Interface
	Problem
	Solution 1
	Solution 2
	How It Works

	14-2. Drawing Text
	Problem
	Solution
	How It Works

	14-3. Changing Text Fonts
	Problem
	Solution 1
	Solution 2
	How It Works

	14-4. Creating Shapes
	Problem
	Solution
	How It Works

	14-5. Assigning Colors to Objects
	Problem
	Solution
	How It Works

	14-6. Creating Menus
	Problem
	Solution
	How It Works

	14-7. Adding Components to a Layout
	Problem
	Solution
	How It Works

	14-8. Generating Borders
	Problem
	Solution
	How It Works

	14-9. Binding Expressions
	Problem
	Solution
	How It Works

	14-10. Creating and Working with Observable Lists
	Problem
	Solution
	How It Works

	14-11. Generating a Background Process
	Problem
	Solution
	How It Works

	14-12. Associating Keyboard Sequences with Applications
	Problem
	Solution
	How It Works

	14-13. Creating and Working with Tables
	Problem
	Solution
	How It Works

	14-14. Organizing the UI with Split Views
	Problem
	Solution
	How It Works

	14-15. Adding Tabs to the UI
	Problem
	Solution
	How It Works

	14-16. Developing a Dialog Box
	Problem
	Solution
	How It Works

	14-17. Printing with JavaFX
	Problem
	Solution
	How It Works

	14-18. Embedding Swing Content in JavaFX
	Problem
	Solution
	How It Works

	Summary

	Chapter 15: Graphics with JavaFX
	15-1. Creating Images
	Problem
	Solution
	How It Works

	15-2. Generating an Animation
	Problem
	Solution
	How It Works

	15-3. Animating Shapes Along a Path
	Problem
	Solution
	How It Works

	15-4. Manipulating Layout via Grids
	Problem
	Solution
	How It Works

	15-5. Enhancing the Interface with CSS
	Problem
	Solution
	How It Works

	Summary

	Chapter 16: Media with JavaFX
	16-1. Playing Audio
	Problem
	Solution
	How It Works

	16-2. Playing Video
	Problem
	Solution
	How It Works

	16-3. Controlling Media Actions and Events
	Problem
	Solution
	How It Works

	16-4. Marking a Position in a Video
	Problem
	Solution
	How It Works

	16-5. Synchronizing Animation and Media
	Problem
	Solution
	How It Works

	Summary

	Chapter 17: JavaFX on the Web
	17-1. Embedding JavaFX Applications in a Web Page
	Problem
	Solution
	How It Works

	17-2. Loading Scalable Vector Graphics File Content
	Problem
	Solution
	How It Works

	17-3. Manipulating HTML5 Content with Java Code
	Problem
	Solution
	How It Works

	17-4. Responding to HTML Events
	Problem
	Solution
	How It Works

	17-5. Displaying Content from the Database
	Problem
	Solution
	How It Works

	Summary

	Chapter 18: Nashorn and Scripting
	18-1. Loading and Executing JavaScript from Java
	Problem
	Solution
	How It Works

	18-2. Executing JavaScript via the Command Line
	Problem
	Solution 1
	Solution 2
	How It Works

	18-3. Embedding Expressions in Strings
	Problem
	Solution
	How It Works

	18-4. Passing Java Parameters
	Problem
	Solution
	How It Works

	18-5. Passing Return Values from JavaScript to Java
	Problem
	Solution
	How It Works

	18-6. Using Java Classes and Libraries
	Problem
	Solution
	How It Works

	18-7. Accessing Java Arrays and Collections in Nashorn
	Problem
	solution
	How It Works

	18-8. Implementing Java Interfaces
	Problem
	Solution
	How It Works

	18-9. Extending Java Classes
	Problem
	Solution
	How It Works

	18-10. Creating Executable Scripts in Unix
	Problem
	Solution
	How It Works

	18-11. Implementing JavaFX with Nashorn
	Problem
	Solution 1
	Solution 2
	How It Works

	Summary

	Chapter 19: E-mail
	19-1. Installing JavaMail
	Problem
	Solution
	How It Works

	19-2. Sending an E-mail
	Problem
	Solution
	How It Works

	19-3. Attaching Files to an E-Mail Message
	Problem
	Solution
	How It Works

	19-4. Sending an HTML E-Mail
	Problem
	Solution
	How It Works

	19-5. Sending E-Mail to a Group of Recipients
	Problem
	Solution
	How It Works

	19-6. Checking E-Mail
	Problem
	Solution
	How It Works

	19-7. Monitoring an E-Mail Account
	Problem
	Solution
	How It Works

	Summary

	Chapter 20: XML Processing
	20-1. Writing an XML File
	Problem
	Solution
	How It Works

	20-2. Reading an XML File
	Problem
	Solution 1
	Solution 2
	How It Works

	20-3. Transforming XML
	Problem
	Solution
	How It Works

	20-4. Validating XML
	Problem
	Solution
	How It Works

	20-5. Creating Java Bindings for an XML Schema
	Problem
	Solution
	How It Works

	20-6. Unmarshalling XML to a Java Object
	Problem
	Solution
	How It Works

	20-7. Building an XML Document with JAXB
	Problem
	Solution
	How It Works

	Summary

	Chapter 21: Networking
	21-1. Listening for Connections on the Server
	Problem
	Solution
	How It Works

	21-2. Defining a Network Connection to a Server
	Problem
	Solution
	How It Works

	21-3. Bypassing TCP for InfiniBand to Gain Performance Boosts
	Problem
	Solution
	How It Works

	21-4. Broadcasting to a Group of Recipients
	Problem
	Solution
	How It Works

	21-5. Generating and Reading from URLs
	Problem
	Solution
	How It Works

	21-6. Parsing a URL
	Problem
	Solution
	How It Works

	Summary

	Chapter 22: Security
	22-1. Asserting a Subset of Privileges
	Problem
	Solution
	How It Works

	22-2. Indicating a Server Name for Handshaking
	Problem
	Solution
	How It Works

	22-3. Specifying a Keystore Password
	Problem
	Solution
	How It Works

	22-4. Generating the Strongest Random Number Possible
	Problem
	Solution
	How It Works

	22-5. Granting Permissions for Rich Internet Applications
	Problem
	Solution
	How It Works

	Summary

	Index

