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Foreword

The 16th International Conference on Human—Computer Interaction, HCI
International 2014, was held in Heraklion, Crete, Greece, during June 22-27,
2014, incorporating 14 conferences/thematic areas:

Thematic areas:

Human-Computer Interaction
Human Interface and the Management of Information

Affiliated conferences:

11th International Conference on Engineering Psychology and Cognitive
Ergonomics

8th International Conference on Universal Access in Human—Computer
Interaction

6th International Conference on Virtual, Augmented and Mixed Reality
6th International Conference on Cross-Cultural Design

6th International Conference on Social Computing and Social Media

8th International Conference on Augmented Cognition

5th International Conference on Digital Human Modeling and Applications
in Health, Safety, Ergonomics and Risk Management

Third International Conference on Design, User Experience and Usability

e Second International Conference on Distributed, Ambient and Pervasive

Interactions
Second International Conference on Human Aspects of Information Security,
Privacy and Trust

e First International Conference on HCI in Business
e First International Conference on Learning and Collaboration Technologies

A total of 4,766 individuals from academia, research institutes, industry, and
governmental agencies from 78 countries submitted contributions, and 1,476 pa-
pers and 225 posters were included in the proceedings. These papers address
the latest research and development efforts and highlight the human aspects of
design and use of computing systems. The papers thoroughly cover the entire
field of human—computer interaction, addressing major advances in knowledge
and effective use of computers in a variety of application areas.

This volume, edited by Masaaki Kurosu, contains papers focusing on the

thematic area of human—computer interaction (HCT), addressing the following
major topics:

Gesture-based interaction
Gesture, gaze and activity recognition



VI

Foreword

Speech, natural language and conversational interfaces
Natural and Multimodal interfaces

Human-robot interaction

Emotions recognition

The remaining volumes of the HCI International 2014 proceedings are:

Volume 1, LNCS 8510, Human-Computer Interaction: HCI Theories,
Methods and Tools (Part I), edited by Masaaki Kurosu

Volume 3, LNCS 8512, Human—Computer Interaction: Applications and Ser-
vices (Part III), edited by Masaaki Kurosu

Volume 4, LNCS 8513, Universal Access in Human—Computer Interaction:
Design and Development Methods for Universal Access (Part I), edited by
Constantine Stephanidis and Margherita Antona

Volume 5, LNCS 8514, Universal Access in Human—Computer Interaction:
Universal Access to Information and Knowledge (Part II), edited by
Constantine Stephanidis and Margherita Antona

Volume 6, LNCS 8515, Universal Access in Human—Computer Interaction:
Aging and Assistive Environments (Part III), edited by Constantine
Stephanidis and Margherita Antona

Volume 7, LNCS 8516, Universal Access in Human—Computer Interaction:
Design for All and Accessibility Practice (Part IV), edited by Constantine
Stephanidis and Margherita Antona

Volume 8, LNCS 8517, Design, User Experience, and Usability: Theories,
Methods and Tools for Designing the User Experience (Part I), edited by
Aaron Marcus

Volume 9, LNCS 8518, Design, User Experience, and Usability: User Expe-
rience Design for Diverse Interaction Platforms and Environments (Part II),
edited by Aaron Marcus

Volume 10, LNCS 8519, Design, User Experience, and Usability: User Expe-
rience Design for Everyday Life Applications and Services (Part IIT), edited
by Aaron Marcus

Volume 11, LNCS 8520, Design, User Experience, and Usability: User
Experience Design Practice (Part IV), edited by Aaron Marcus

Volume 12, LNCS 8521, Human Interface and the Management of Informa-
tion: Information and Knowledge Design and Evaluation (Part I), edited by
Sakae Yamamoto

Volume 13, LNCS 8522, Human Interface and the Management of Infor-
mation: Information and Knowledge in Applications and Services (Part IT),
edited by Sakae Yamamoto

Volume 14, LNCS 8523, Learning and Collaboration Technologies: Designing
and Developing Novel Learning Experiences (Part 1), edited by Panayiotis
Zaphiris and Andri Ioannou

Volume 15, LNCS 8524, Learning and Collaboration Technologies:
Technology-rich Environments for Learning and Collaboration (Part II),
edited by Panayiotis Zaphiris and Andri Ioannou



Foreword VII

e Volume 16, LNCS 8525, Virtual, Augmented and Mixed Reality: Designing
and Developing Virtual and Augmented Environments (Part I), edited by
Randall Shumaker and Stephanie Lackey

e Volume 17, LNCS 8526, Virtual, Augmented and Mixed Reality: Applica-
tions of Virtual and Augmented Reality (Part IT), edited by Randall
Shumaker and Stephanie Lackey

e Volume 18, LNCS 8527, HCI in Business, edited by Fiona Fui-Hoon Nah

e Volume 19, LNCS 8528, Cross-Cultural Design, edited by P.L. Patrick Rau

e Volume 20, LNCS 8529, Digital Human Modeling and Applications in Health,
Safety, Ergonomics and Risk Management, edited by Vincent G. Duffy

e Volume 21, LNCS 8530, Distributed, Ambient, and Pervasive Interactions,
edited by Norbert Streitz and Panos Markopoulos

e Volume 22, LNCS 8531, Social Computing and Social Media, edited by
Gabriele Meiselwitz

e Volume 23, LNAI 8532, Engineering Psychology and Cognitive Ergonomics,
edited by Don Harris

e Volume 24, LNCS 8533, Human Aspects of Information Security, Privacy
and Trust, edited by Theo Tryfonas and Ioannis Askoxylakis

e Volume 25, LNAI 8534, Foundations of Augmented Cognition, edited by
Dylan D. Schmorrow and Cali M. Fidopiastis

e Volume 26, CCIS 434, HCI International 2014 Posters Proceedings (Part I),
edited by Constantine Stephanidis

e Volume 27, CCIS 435, HCI International 2014 Posters Proceedings (Part II),
edited by Constantine Stephanidis

I would like to thank the Program Chairs and the members of the Program
Boards of all affiliated conferences and thematic areas, listed below, for their
contribution to the highest scientific quality and the overall success of the HCI
International 2014 Conference.

This conference could not have been possible without the continuous support
and advice of the founding chair and conference scientific advisor, Prof. Gavriel
Salvendy, as well as the dedicated work and outstanding efforts of the commu-
nications chair and editor of HCI International News, Dr. Abbas Moallem.

I would also like to thank for their contribution towards the smooth organi-
zation of the HCI International 2014 Conference the members of the Human—
Computer Interaction Laboratory of ICS-FORTH, and in particular
George Paparoulis, Maria Pitsoulaki, Maria Bouhli, and George Kapnas.

April 2014 Constantine Stephanidis
General Chair, HCI International 2014
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HCI International 2015

The 15th International Conference on Human—Computer Interaction, HCI In-
ternational 2015, will be held jointly with the affiliated conferences in Los An-
geles, CA, USA, in the Westin Bonaventure Hotel, August 2-7, 2015. It will
cover a broad spectrum of themes related to HCI, including theoretical issues,
methods, tools, processes, and case studies in HCI design, as well as novel in-
teraction techniques, interfaces, and applications. The proceedings will be pub-
lished by Springer. More information will be available on the conference website:
http://www.hcii2015.0rg/

General Chair

Professor Constantine Stephanidis
University of Crete and ICS-FORTH
Heraklion, Crete, Greece

E-mail: cs@ics.forth.gr
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RemoteHand: A Wireless Myoelectric Interface

Andreas Attenberger and Klaus Buchenrieder
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Abstract. While myoeletric signals (MES) have long been employed for
actuating hand prostheses, their potential as novel input for the inter-
action with computer systems has received little attention up until now.
In this contribution, we present RemoteHand, a system that fosters re-
mote device control through the transmission of myoelectric data over
WLAN. This allows to manipulate objects through the user’s muscle
activity regardless of their physical location. In our setup, a mechanical
hand is controlled through electromyographic (EMG) sensors placed over
the user’s forearm muscles. This approach is compared to a conventional
remote device control exercised by a tablet touchpad. The results of our
user study show that wireless interaction through myoelectric signals is
a valid approach. Study participants achieved interaction speeds equal
to those of a standard input method. Users especially value myoelectric
input with regard to novelty and stimulation.

Keywords: EMG, Myoelectric Signals, Prosthetic Hand, Remote Con-
trol, Wireless.

1 Introduction

Baseline work on employing myoelectric data for controlling upper limb prosthe-
ses dates back to 1948 [1]. Extensive research on MES processing has advanced
since, mostly with a focus on prosthesis control [2]. In this contribution, we
disclose a system for remote device interaction profiting from forearm muscle
activity. While an actual prosthetic hand serves as the device to be actuated
in immediate user-vicinity, our MES-based console opens new venues to inter-
act with computer systems. This aspect of EMG signal acquisition has only
received limited attention. Existing wireless EMG solutions are solely employed
for gathering the signal data on a computer for further analysis or do not focus
on MES exclusively. Our contribution presents a working, myoelectric control
system with data transmitted through a WLAN connection, thus removing lo-
cation constraints. With RemoteHand users are given the ability to remotely
control a mechanical hand, making it possible to utilize their muscle activity
for manipulating remote objects. Our user study shows, that wireless myoelec-
tric sensing presents an invaluable amelioration in human computer interaction.
On average, the participants achieved interaction speeds similar to or exceed-
ing an established touch interface. RemoteHand also received high user-ratings
regarding stimulating aspects and the novelty of the approach.

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 3-11, 2014.
© Springer International Publishing Switzerland 2014
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2 Related Work

In this contribution, we focus on surface EMG electrode systems rather than
invasive subcutaneous, implanted sensors. Wireless EMG solutions applying sur-
face electrodes are commercially available from companies like BTS! or DelSys?.
However, such system solutions focus on the analysis of EMG data with respect
to medical aspects. These products generally use a proprietary protocol for signal
transmission, excluding the disclosure of the measured data for another purpose
or subsequent processing with custom computer systems. Generally, such sys-
tems merely serve as preprocessing blocks and no control information is derived
from the myoeletric signal.

While mainstream research in EMG control targets the advancement of pros-
thetic devices, we explicitly consider EMG sensor data as a novel means for
human computer interaction. Augmenting interaction capabilites through my-
oelectric sensing was notably introduced by the artist Stelarc with an EMG-
controlled third hand in 1980 [3]. Research on EMG input for human computer
interaction has since only been deducted sparingly. Saponas et al. investigated
the overall feasibility of myo-induced interaction solely focusing on gesture recog-
nition [4]. They used eight sensors and only measured signals, not including an
interaction component for the user. In a subsequent publication, the authors
extend their approach to interactive systems and reveal a wireless EMG device
prototype [5]. The proposition for a wearable EMG forearm band has recently
resurfaced with the MYO band 2, which will additionally include accelerometers
as integral components [6]. It was announced to be released to the market at
the end of 2013, however shipping of final units is now planned for mid-2014*.
Dubost and Tanaka employ EMG signals for interaction in musical performance
[7]. Other systems include myoelectric sensing as an additional input method [8]
or solely as a means to enhance interaction with an existing system [9] [10].

The RemoteHand prototype presented in this contribution enables wireless
network transmission of EMG control information, so that the object or device
to be interacted with can be physically distant from the user. Only standard
hardware components are employed in our setup. Furthermore, in contrast to
other approaches, our setup requires only two EMG sensors, reducing the amount
of time spent on sensor positioning. Finally, as in traditional prosthesis control,
we solely rely only on signal thresholding to derive control information without
the need for a system training phase.

3 Prototype

A typical forearm EMG signal of a wrist flexion is shown in Figure 2. The average
signal strength, as denoted by the RMS values, rises during muscle contraction

! http://www.btsbioengineering.com/products/surface-emg/bts-freeemg/
2 http://www.delsys.com/Products/Wireless.html

3 https://www.thalmic.com/myo/

4 https://www.thalmic.com/en/myo/faq/
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Fig.1. The prototype setup with Arduino-Boards, EMG-Amplifier, i-Pad and the
Michelangelo Hand by Otto Bock HealthCare

before returning to the background noise-level when the movement concludes.
This sensor signal, picked up by EMG sensors, is then amplified, processed and
sent over a wireless network connection for device control. The prototype is
displayed in Figure 1, showing the Bagnoli EMG sensor and amplifier system
manufactured by Delsys®, an Arduino Uno board with a Sparkfun WiFly shield,
an iPad with i0S 6, a second Arduino equipped with a Arduino WiFi and a
Sparkfun Bluetooth Mate Gold shield and the Michelangelo Hand  furnished
by Otto Bock HealthCare. Not pictured is the WLAN access port that both the
iPad and the WiFi-Shield connect to. The amplified myoelectric sensor data is
connected to the analog inputs of the Arduino Uno with the mounted WiFly
shield. The Arduino samples the analog inputs at about 10kHz and sends out
RMS values to the iPad for each sensor with a window size of 32 values at a
rate of 63Hz. This reduces the amount of data to be transferred as well as the
processing power needed by the iOS app.

The RMS values are visualized in the app window shown in Figure 3. The
lines shown in the realtime graph denote the adjustable thresholds, set to a level
individual for each user, taking into account the background noise of the EMG
signal [11]. As soon as the sensor signal exceeds the threshold, corresponding
control commands are sent by the iPad app through the network to the second
Arduino bearing the WiFi sT}hl/Iield. The control command is in the format required
by the Michelangelo Hand =~ and transmitted through the Sparkfun Bluetooth
shield.

Users can control RemoteHand with three hand gestures exhibiting different
signal levels on the connected sensors: wrist flexion (high signal level on sensor
1 placed over the hand flexor muscles on the forearm), wrist extension (high
activity on sensor 2 placed over the extensor muscles) and a fist or open palm

® http://www.delsys.com/Products/Bagnoli_Desktop.html
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Fig. 2. The EMG signal and derived RMS values for the hand extensor muscles during
wrist extension

gesture yielding a medium signal level on both sensors. Each of the first two
gestures activates a different hand movement or grip, starting from the resting
position. The hand remains in the selected grip or movement as long as the
signal exceeds the threshold. The third gesture, with medium signal levels on
both sensors, selects one of three modes, that can be accessed in the following
order:

— Hand: In this mode, the hand is open as long as both sensor signals are below
the threshold level. When exceeding the threshold, the hand closes either to
a pinch (sensor 1) or a lateral grip (sensor 2).

— Pronation/Supination: When the threshold is exceeded for sensor 1, the hand
is pronated, for sensor 2 the hand is supinated.

— Flexion/Extension: As soon as the threshold level for sensor 1 is reached,
the hand is flexed at the wrist. In case of level saturation for sensor 2, the
hand is extended at the wrist.

The iPad is also eqluipped with an app for touchpad interaction with the
. TN . . . .
Michelangelo Hand |, serving as our baseline app for comparison with the my-
oelectric control. The corresponding control window is shown in Figure 4. The
application allows the same movements as the myoelectric app. When a hand
movement is activated and a movement speed is set with the slider, a corre-
sponding control command for the hand is generated and can be transmitted
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Sensor 1

Fig. 3. i0S app displaying the myoelectric sensor data sampled by the Arduino

Close Lateral |

Pronation ) oFF J

Hand Rexion

Fig. 4. The touchpad interface for controlling the Michelangelo Hand
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with the send button. The commands are again first received by the Arduino
WiFi shield and then transmitted to the hand through the Bluetooth shield.

4 User Study

To determine how users perceive EMG data for remote device control, we asked
a group of 10 able-bodied participants to perform a number of tasks with the fol-
lowing interaction options: a) using myoelectric data from the forearm, visualized
on an iPad and b) solving the task by employing only the iPad’s touch interface
without myoelectric sensing. The participants aged 21-37 were recruited among
students and research staff. Most of them studying or working in the field of com-
puter science. None of the probands had previous experience with myoelectric
device control. After a short introduction to the app and threshold adjustment,
the following tasks were assigned amid the study:

— Task 1 (Hand Close & Open): Starting from the open position, the hand was
to be closed and opened.

— Task 2 (Pronation & Supination): The hand was first to be rotated in one
and then in the opposite direction. The order of the pronation and supination
movements were not predetermined.

Each participant solved the tasks with both interaction options within a 30
minute time slot. The study was conducted with a 2x2 repeated-measures design.
All sessions were recorded on video for further reference and future enhancement
of the system. After completion of all tasks, the participants were asked to
fill the abbreviated version of the standardized User Experience Questionnaire
(UEQ)® for both interaction types (touchpad and myoelectric). One open ended
item was added to the questionnaires prompting the participants to give further
impressions, comments or suggestions with regard to the interaction method.

5 Discussion

The study revealed, that it was a major challenge to find an appropriate thresh-
old when fitting the myoeletric control to the individual participant. Once the
sensors were in place, participants were able to quickly solve both assigned tasks.
As the second task required a mode change for the myoelectric control, it proved
more challgenging and error-prone. Three participants needed a second attempt
to carry out a positive change in mode. Two other participants experienced an
unwanted mode change on the first task. Only one error occured during the
use of the touchpad interface. The median task completion times with median
absolute deviation (MAD) are displayed in Figure 5. One outlier was removed
from task 1 with myoelectric control due to a value greater than three times
the standard deviation and one user was not able to complete task 2 with the
myoelectric control. Despite these errors, task completion times were similar for

5 http://www.ueq-online.org/
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Fig. 5. Comparison of task completion times for both the myoelectric and the touchpad
interface

both interaction types. It is to note that the differences are not statistically sig-
nificant according to the applied paired samples t-test with p > 0.48 for each
one of the tasks. However, this formalized test setup proved the observations we
made during previous experiments with students and various probands.

The results of the UEQ are shown in Figure 6 with 95 percent confidence
intervals. Both interaction types received positive feedback from the users with
the myoelectric interation rating highly on stimulation and novelty. The lower
score for perspicuity might stem from the current issue of having to adjust level-
thresholds, which would probably be too difficult for a user to manage on their
own. Novel users typically require help from more experienced end-users. This
issue was also brought up by one participant in the corresponding questionnaire.
One test-person found, that the system required a high amount of muscle activity
for activation, which was likely caused by too strict threshold settings.

6 Conclusion and Future Work

In this paper, we presented RemoteHand, a wireless myoelectric interaction sys-
tem for manipulating remote objects or as input device for assisted or guided
steering applications. To validate the feasibility of the system, we conducted a
user study comparing the wireless control of an artificial hand through a tra-
ditional touchpad and a myoelectric interface. While task completion times did
not vary significantly between the two approaches, task completion for the my-
oelectric control included a period of error recovery for a number of users. By
increasing the number of operation states, the mode change option could be
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Fig. 6. Results of the UEQ for both interaction types

assigned to either the wrist flexion or the wrist extension gesture instead of
gestures with a medium signal level on both sensors. This could increase the
interaction speed as one of the participants in the study suggested. The results
from the UEQ clearly show, that participants rate the system high with regard to
the stimulating and novel aspects of this interaction type. These characteristics
make myoelectric control also an interesting interface for electronic games. Due
to the introduction of wireless transfer and on-par task completion times, other
applications for controlling distant objects can now be investigated. By employ-
ing a low cost EMG system like the Olimex EKG/EMG shield for the Arduino’,
hardware cost can be further reduced, yielding a setup which can be applied to a
wide range of scenarios. Implementing a method for automatic threshold setting
might improve the perspicuity rating of the system. Furthermore, as the study
has solely been conducted with able-bodied individuals, feasibility and potential
applications for increasing the interaction possibilities exhibited by computer
systems for actual prosthesis users cannot presently be estimated. As patients
usually undergo training for MES control of their prostheses [2], they are how-
ever already familiar with myoelectric interaction and preliminary training of
the interaction method is not necessary for this user group.

" https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/
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Early Prototyping of 3D-Gesture Interaction
within the Presentation-Gesture-Dialog Design Space
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Abstract. Development of gesture interaction requires a combination of three
design matters: presentation, gesture and dialog. In this contribution a first ver-
sion of the tool ProGesture is introduced. The objective of its development is to
cope with the resulting presentation-gesture-dialog design space in a flexible
way. On the one hand, it aims at the early development phases, i.e. at rapid pro-
totyping of 3D-gestures in combination with first UI sketches, such as mock-
ups. On the other hand, it focuses on dialog and presentation modeling, and on
testing based on executable models aiming at a smooth transition from informal
UI sketches to formal models.

Keywords: 3D-Gesture Interaction, Early Prototyping, Model-Based Development.

1 Introduction

3D-gestures, such as touchless hand gestures and body movements are more and more
used in human-computer interaction. Although gesture controlled user interfaces have
been investigated for several years developing systematically intuitive and ergonomic
3D-gesture interactions is still challenging. Work in this field does not only aim at
appropriate gestures taking into account the physiology of the human body and the
users’ goals, but also includes investigation of suitable UI widget types and presenta-
tion as a whole, as well as of the development process.

Nielsen et al. [1] contrast technology-based with human-based approaches for de-
veloping gestures. In the first one, gestures are implemented before being evaluated.
Identified gestures are constrained by current technology resulting in solutions that
may be undesired from the user perspective. Modifications, however, are costly if at
all practicable. In human-based approaches users are asked to demonstrate gestures
that should be implemented. This time, however, users may want gestures that are not
realizable by up-to-date technology. ProGesture, the tool presented in this paper,
supports rapid Prototyping of 3D-Gesture interactions allowing a combination of the
two approaches to overcome the limitations. It is part of the authors’ current work that
addresses the issue of how to elicit and to evaluate gestures following a user-centered
approach.

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 12-23, 2014.
© Springer International Publishing Switzerland 2014
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Model-based UI development involves a user-centered approach in engineering in-
teractive systems. State-of-the-art works often favor the Cameleon framework'. It
defines the modeling layers Task & Concepts, Abstract User Interface (AUI), Con-
crete Ul (CUI), and Final Ul (FUI). The AUI is assumed to be independent of any
modality of interaction while the CUI copes with modality. The idea is to systemati-
cally transform AUI into CUI This is valuable once there is a common agreement on
interaction objects and related interactions. In the area of 3D-interactions this com-
mitment does not exist yet. Furthermore, finding gestures is mostly related to concrete
presentations, e.g. in the form of first Ul sketches, and not to abstract Ul models.
Nevertheless, tools reported in [2-4] have demonstrated the advantages of testing and
prototyping, respectively, by means of executable models. ProGesture likewise
enables to test elicited gestures based on dialog models, but moreover in the context
of first UI sketches, as proposed in former work of the authors [5].

The structure of the paper is as follows: The next section takes a look at the design
space spanned by the design dimensions presentation, dialog and gesture. Here, a
coffee maker is taken as an example of developing gesture-based interactions accord-
ing to a 1-, 2- or 3-axes design subspace. Then, related work is presented, that is fol-
lowed by a short overview of the ProGesture tool. Next, usage scenarios are described
revisiting the coffee maker examples introduced before. The paper concludes with a
summarization of main results and an outlook.

2 Gesture Interaction Design Space

The development space of gesture-based interactions is impacted by different aspects
such as visualization techniques (e.g., 2D vs. 3D), sensor technique (e.g., Microsoft
Kinect vs. LeapMotion) and gesture recognition algorithms (e.g., body movements vs.
finger gestures). The sketches in Fig. 1 focus on presentation, gesture and dialog,
whereby the axes represent the scope for development in each case. The more scope
for design exists on each dimension the more space for finding a solution is available.
If on the contrary the presentation, the gestures and the dialog are fixed the design
space collapses to one point, to the “point of no design options” (PnD in Fig. 1a).

Example 1: Fig. 1b exemplifies a case in which the design space collapses to one
dimension, here the gesture dimension. This is true if a gesture set is to be developed
for an unchangeable application, e.g. for an existing coffee maker in a public area.
The extent of the gesture design scope (distance of G and PnD in Fig.1b) is given by
the applied sensor technology, the decision on gesture types such as body or only
hand gestures, commitment to standard gestures® etc. Since presentation and dialog
are fixed providing no design space they constrain identification of gestures and ges-
ture set, respectively.

! http://giove.isti.cnr.it/projects/cameleon/pdf/CAMELEON%20D1.1R
efFramework.pdf
% Which does not exist at the moment of writing.
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Fig. 1. 3D-gesture interaction design space

Example 2: If only the presentation is given developers deal with a 2-axes design
space (Fig. 1c). The coffee maker mockup, for example, which is partially shown in
Fig. 2, sets the presentation for selecting a coffee. Eliciting gestures for the task “se
lect coffee type” may now result in different gestures affecting the dialog structure.
The appearance and the alignment may suggest a slide gesture to put the virtual focus
on the coffee of choice. The respective dialog is shown in Fig. 2b by means of a state
transition diagram (please ignore the dotted arrows for this example).

The presentation, however, may also suggest a pointing gesture by which users can
directly select a type of coffee. Deciding for this gesture results in a modified dialog
structure (Fig. 2b, the dotted arrows now included). Users will expect no need to

make a detour to cappuccino if the selection should be changed from coffee to espres-
so and vice versa.

® @ N sel _esp
Coffee Cappuccino Espresso sel cap \
2,00€ 2,30€ 150€ K sel _cof
\ L
o
Your Selection \ n
Coffee pnlé,;iflj;"
KAFFEE
Normal Strength
No Milk, no Sugar lr‘
Brew it!
(a) mockup snippet (b) dialog model

Fig. 2. Given presentation mockup and related alternative dialog models

The presentation, more precisely the perceived affordance highly impacts the ges-
tures users will use. The concept of affordances was introduced by Norman [6] and
later on clarified as perceived affordances. It describes a desirable property of a Ul or
the objects of it which leads users to perform the correct actions to reach their goals.
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If gestures, for example, are exhausting the user they have to be changed. Because of
the demand for perceived affordances the presentation may have to be modified as
well. All in all, designing gesture interaction requires a combination of three design
matters: presentation, gesture and dialog.

Example 3: All of the three mentioned axes span the design space if a gesture con-
trolled application is developed from scratch (Fig. 1a). Fig. 3 shows ideas of alterna-
tive designs for a coffee maker. In contrast to the example above the user is able to
select coffee type, sugar and milk in a single dialog step. It is open which composition
of the sugar and milk fields would be favored. Small changes to the layout could im-
pact eliciting gestures from users, and possibly the dialog. The proposal on the left in
Fig. 3 suggests to firstly select the coffee type, afterwards sugar, followed by milk and
at last to confirm these choices. Even if no sugar is wanted the user has to pass over
the sugar field (comparable to the dialog in Fig. 2b without the dotted arrows). This is
not the case in the presentation on the right hand resulting in a modified dialog model.

In the case of the two presentations it is necessary to hold the gesture performing
hand in front of the body while making all of the selections, from the first step up to
the confirmation. Additional gestures may be allowed, e.g. a hold gesture to pause or
a set gesture to fix a selection so that the user is able to relax the hand. Such a deci-
sion may also impact the presentation as well as the dialog.

v
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Fig. 3. Two versions of a design with only one dialog step
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Developers, while prototyping 3D-gesture controlled UI, have to “move” within
the presentation-gesture-dialog design space in a flexible way. They may, for exam-
ple, fix the presentation as well as the dialog based on which they develop gestures in
a subsequent design step. In the next moment, they may fix the gestures to redesign
the presentation and dialog because of new insights. The development requires small
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iteration steps while following a user-centered design approach taking into account
the mutual dependencies of presentation, gesture and dialog.

3 Related Work

Small iteration steps demand rapid prototyping starting as early as possible within the
development process. One approach of early testing is based on executable models. In
respective works [2], [3], [4], [5] user actions are simulated by activating buttons,
while animation of the model diagrams visualizes system reactions in place of Ul
representations. It allows developers to evaluate a design while concentrating on the
AUI independently of concrete gestures. Evaluating real gesture performance and
sequencing is of vital importance once gestures are identified. ProGesture enables
both, indicating gesture actions by means of buttons and, similarly to [7], by execut-
ing real gestures to control the executable model. In [7] gestures (in contrast to Pro-
Gesture only poses, no movements) and dialog models are specified separately. The
gesture recognition is subsequently linked to the executable dialog model in an expli-
cit modeling step. In ProGesture first steps towards an integrated tool are imple-
mented aiming at specifying gestures during a test run and using it in its next step as
user action. All in all, the tool presented in [7] and ProGesture support designers to
cope with the gesture-dialog design space.

Another approach of early testing is revolutionary (also called throw-away) proto-
typing, e.g. mockups. Respective tools are more and more extended to include touch
gestures, e.g. pidoco® and proto.io’. The focus is on presentation and interactions, i.e.
on the presentation-gesture design space. The dialog is specified implicitly by means
of connected, interactive areas by which the user can move within and between pres-
entation units. ProGesture, in contrast, enables to test real-time gestures based on
executable dialog models in the context of presentations to realize the presentation-
gesture-dialog design space.

Explicit, formal dialog models are open to verification of specific properties. The
same holds true for formal descriptions of 3D-gestures. Different gesture formalisms
exist for the specification of poses and body movements, e.g. [8] and [9] that facilitate
integration of gesture specification into the model-based approach. Furthermore, they
enable animation of the gestures [10] supporting evaluation from the perspective of
ergonomics. Current animation tools, however, do not incorporate the dialog or the
presentation. Also the work presented in [7] necessitates video recording of users
performing a gesture to analyze the movements afterwards. ProGesture implements
the by-demonstration concept. Hereby, gestures are recorded and are immediately
available for evaluation purposes — by real gestures in action or by animations.
Furthermore, in ProGesture recorded gestures can be assigned to a dialog and presen-
tation, respectively. The tool presented in [11] follows a similar approach but consid-
ers touch gestures. There are, to the authors' knowledge, only two tools able to specify

3 http://www.pro-tact.de/
4 http://proto.io/
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3D-gestures by demonstration. With the Kinetic Space Tool’ a gesture is performed
only one time and can be used afterwards by different persons. The tool can be linked
to another application by a given communication protocol. With this mechanism, for
example, it would possible to utilize the gestures in combination with executable
models. An integration that enables to switch directly between, e.g. gesture specifica-
tion and dialog modeling, is not possible. In addition, gesture recognition failed too
often in our tests. Omek GAT® supports the by-demonstration concept as well. Speci-
fying gestures demands several repetitions, around 30 performances are recommend-
ed. This is cumbersome particularly when it comes to rapid prototyping in small
iterations.

4 Overview of the ProGesture Tool

The aim of the work presented here is to support developers of 3D-gesture-based Ul
by allowing them to “move” within the given design space in a most flexible way.
This first version of ProGesture is intended as a proof-of-concept tool. In order to
identify relevant requirements, practitioners interested in gesture interaction were
involved from the beginning. It became apparent that it is not possible to raise a com-
plete and thorough set of requirements at the moment due to the novelty of the topic
and related uncertainties concerning good practice and design methods. Therefore, the
tool’s current version serves also as an experimental demonstrator to collect more
precise and detailed requirements on how to develop ProGesture further as well as to
investigate methodic aspects of the user-centered design process.

The tool is basically structured into three modules that are presented below: (1)
gesture editor, (2) dialog editor and (3) model simulator. The gesture editor and the
dialog editor are related to the gesture and to the dialog dimension, respectively. The
presentation dimension, by contrast, is covered by creating Ul sketches or elaborated
UI outside of ProGesture and linking them within it to dialog models and thus to ges-
ture specifications.

The model simulator allows testing and analyzing the dialog model at its own, in
conjunction with gestures as well as in conjunction with gestures and presentation
(involving all three axes then). A further module (4), which is currently under devel-
opment, enables to link gestures directly to presentations and to perform evaluations,
supporting iterative development within the presentation-gesture design space, i.e.
without taking into account a dialog model.

From the functional and software architectural points of view the four modules are
loosely coupled but work together closely. Replacement of each of the modules by a
similar software package is possible, guaranteeing to be able to integrate future devel-
opments, also from third parties.

> Kinetic Space, Training and Recognizing 3D Gestures,
https://code.google.com/p/kineticspace

8 Gesture Authoring Tool,
http://www.omekinteractive.com/products/beckon-usability-
framework
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4.1 Gesture Editor

The gesture editor provides functionalities for recording and editing gestures and
organizing them in gesture sets. A gesture is specified “by-demonstration”, i.e. a user
demonstrates the body movement in front of a sensor. Hence, gestures are not de-
scribed explicitly using a specific human-readable notation, but as frame sequences
comparable to video clips. The system currently employs the Microsoft Kinect sensor
and works with the skeleton data delivered by the Kinect SDK. Consequently, each
frame contains the separate positions of all the skeleton joints that are of relevance for
the respective gesture. This frame sequence is accompanied by specific parameters for
its interpretation, e.g. the tolerable deviation from the “ideal” movement.

Integral part of the gesture editor is a gesture recognizer implemented by our team.
It is based upon the Dynamic Time Warping (DTW) algorithm [12] that is able to
eliminate temporal variations when comparing two gesture sequences. The gesture
recognizer is realized as an independent library and can therefore be employed to use
recorded gestures in other applications. Actually, it is used by all ProGesture modules.

8 Gesture Editor e
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Live View: Control Window: Load / Save Controls

Select Gesture J
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Fig. 4. Screenshot of the gesture editor’s main window

The gestures editor provides first features for editing and testing of recorded ges-
tures supporting iterative development within the gesture design space. When the user
repeats a movement the editor reports the recognized gestures (Fig. 4b). Furthermore,
recorded gestures can be played in a so-called gesture player (Fig. 4a) in order to
analyze the skeleton movements and cut the frame sequence as needed. Additionally,
the skeleton joints that are of relevance for the respective gesture can be selected here,
at that time or earlier before starting the recording (Fig. 4c). They are highlighted in
the gesture player. For example, for a typical wipe gesture of one hand the positions
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and movements of head, legs and feet and even of the other arm are not of relevance
and should be excluded from the gesture recognition process.

4.2  Dialog Editor

The dialog editor supports the specification of dialog models by means of state charts.
Recorded gestures are assigned to state transitions, together with additional informa-
tion relevant for the dialog sequence, i.e. constraints and feedback such as highlight-
ing of a chosen option. The gestures to be assigned to transitions can be selected from
a gesture set. In the case a gesture is not recorded yet and to be specified later on it
can be added to the dialog model by a representative name. In doing so, the dialogue
model is already executable. Therefore, gestures may be specified previous to, during
or after the dialog modeling allowing the developer to arbitrarily shift the design
focus within the gesture-dialog space.

4.3 Model Simulator

The model simulator is based on an executable model that is derived from the dialog
model. It allows the simulation of the dialog to analyze dialog paths, gesture se-
quences and system reactions in different scenarios and in different situations. Di-
alogs can be tested in conjunction with or without the assigned presentation. Addi-
tionally, model execution can be triggered either by mouse clicks or by real gestures.

Thus, the simulator provides various options for the test and evaluation of 3D-
gesture applications, based on combinations of its different features, such as:

e Gesture actions can be simulated with mouse clicks on the graphical representation
of the gesture within the diagram (Fig. 5a). All outgoing transitions of an active
state are listed in a separate window panel (Fig. 5b). Within this panel gesture ac-
tions can be triggered by mouse clicks on buttons labeled with gestures names (e.g.
“increase”, “next” etc. in Fig. 5).

e The gesture player introduced above is also integrated into the simulator (Fig. 5¢).
Developers can use it to recall gestures as well as to analyze and discuss the de-
fined body movements in the context of complete interaction respectively gesture
sequences.

e The dialog model can alternatively be traversed by executing the gestures in reali-
ty, e.g. for evaluating physical effort. Feedback is given with a live skeleton view
(Fig. 5d) while the gesture recognizer works in the background.

e The presentation can be connected, currently via simple network communication.
This enables interaction with the presentation, e.g. based on real gestures, to eva-
luate the whole user experience, also taking into account the system feedback.

e Switching to the gesture editor, existing gestures may be modified or replaced by a
new version and used instantly inside the model simulation.

e A history function stores model simulation sequences, i.e. states traversed and
constraints changed (Fig. 5e). For subsequent analysis they can be played back to-
gether with the involved gestures.
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Fig. 5. Dialog editor in model simulation mode

5 Example Scenarios of Using the ProGesture Tool

The previous section outlines prototyping features of the simulator, and also of the
editor and the fourth module that was shortly mentioned. This section provides in-
sights into the usage of ProGesture by means of three scenarios revisiting the coffee
maker examples (cf. Sect. 2).

5.1 Scenario 1: Developing Gesture Interaction for an Existing Application

In scenario 1 a gesture set is to be developed for an existing application, e.g. for the
coffee maker of example 1 where we want to augment an existing maker in a public
area with a gesture recognition module — causing low technical effort and modifica-
tions of the UI are not possible for some reasons. By consequence, the presentation
and dialog are fixed resulting in a design space with only one dimension, which is
here the gesture axis.

Let us assume that in this scenario a developer’s first step is to analyze the given
UI with respect to the presentation’s units and transitions between them as well as to
the system feedback. As a result the corresponding dialog is documented with the
ProGesture dialog editor, as far as required for gesture test purposes. In addition, the
model is linked with the presentation units, the latter in the form of a simple mockup
including photos of the real coffee maker’s presentation. In this scenario it is assumed
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that the existing UI is composed of a text display listing the available options with
hardware buttons close-by to make the selection.

Now, the developer specifies gestures with the ProGesture gesture editor, taking
into account the existing coffee machine UI. As in this scenario, he has to replace
hardware buttons by gestures, he decides for semaphoric gestures. A semaphoric ges-
ture is precisely designed to designate one specific symbol within a given alphabet,
e.g. like in this scenario, “chose option 17, “... option 2” and “... option 3”. Here, this
gesture type is used to express and confirm the coffee type selection in one step.

After assigning these gestures to the dialog model, the setting can be tested interac-
tively based on the ProGesture executable model — using the real gestures. Problems
may be identified, e.g. in the sequencing of the gestures and prospective solutions can
be devised. Spontaneously, gestures can be modified or replaced by newly recorded
ones using the gesture editor, and then used instantly within a follow-up test.

5.2 Scenario 2: Developing Gesture Interaction for a Given Presentation

In scenario 2, which refers to example 2 (cf. Sec. 2), only the presentation is given:
The coffee maker mockup, of which a selected part is shown in Fig. 2, constraints the
presentation for choosing a coffee type. Here, developers deal with a 2-axes design
space, requiring a design solution concerning gestures and the corresponding dialog.

Let us assume, the developer again starts with analyzing the given UI, though this
time represented by sketches without included concrete dialog behavior. Then, with
the ProGesture gesture editor a set of gestures is compiled, whereby the developer can
choose gestures from existing sets or record new ones. The mockup, as pointed out
for example 2, may suggest a wipe gesture to make a selection. In this scenario, as a
start, the designer decides for this option. The corresponding dialog model (cf. Fig.
2b) can be specified with the dialog editor either previous to the gesture specification,
in parallel or afterwards. Then, the presentation is connected to the dialog model and
an interactive test of the “look and feel” of the chosen 3D-gesture interaction is con-
ducted instantly.

Possibly, as already mentioned in Sec. 2, it would be worth comparing an alterna-
tive: The mockup may also suggest a pointing gesture by which users select a type of
coffee directly. This implies other gestures and a modification of the dialog structure
— both of which is effectively done with the gesture and dialog editor. Switching be-
tween both design versions to compare them is easy and fast.

5.3  Scenario 3: Developing from Scratch

The last scenario exemplifies the development from scratch of a 3D-gesture con-
trolled application (cf. example 3 in Sec. 2). As no design presets or limitations are
given, the design space spans all of the three axes. This time our developer starts to
investigate gestures and corresponding presentation clues, e.g. widgets, based on the
user tasks involved when using the respective coffee maker.

The developer, with a specific gesture concept in mind, generates one or several
presentation mockups using an arbitrary tool. Fig. 3 shows two versions of possible



22 B. Bomsdorf and R. Blum

designs. Here, the central idea is, in contrast to the example in scenario 2, to let the
user select coffee type, sugar and milk in a single dialog step. Since the two drafts
differ in the sequence of selecting of sugar and milk, two slightly different dialog
models have to be specified. This scenario does not imply a specific order of dealing
with the three design dimensions — on the contrary, the designer can switch his focus
arbitrarily.

At last, having connected the dialog model to the mockups, both versions are ready
to be tested. As argued for example 3, the tests may unfold, that additional gestures
may be needed to improve the usability. The resulting modifications for the dialog
model and the gesture set as well as the subsequent evaluation of the new design can
be realized quickly within ProGesture.

6 Summary and Outlook

The gesture recognizer used in ProGesture can also be utilized by a target application.
In such a case only those user-elicited gestures are added to a gesture set that are at
the same time technically realizable — resulting in a combined technology-human-
based approach (cf. [1]). ProGesture additionally supports evaluation of gestures in
the contexts of first Ul drafts up to a final Ul. Wizard of Oz experiments are often
applied for rapid prototyping of gesture-based interactions (e.g. in [13], [14]). ProGes-
ture can be used within such experiments but additionally supports a model-based
development approach. It enables to test real as well as simulated 3D-gesture interac-
tions based on executable dialog models.

ProGesture exists as a proof-of-concept tool that allows to gain first experiences
and to get first feedback from industrial partners of the project (within which the tool
was developed), as well as from an involved ergonomics expert. One of the main
results so far is the importance of including mockups in eliciting and testing gestures,
particularly if the development should result in an innovative design solution. All in
all, it should be possible to shift the focus of development in a flexible way within the
presentation-gesture-dialog design space. Developers may start with a prototype of a
UI and then develop gestures (design space is given by the gesture dimension). While
testing they may encounter problems with single gestures. In ProGesture a person just
has to demonstrate alternative gestures and shortly afterwards use them to interact
with the UI draft. In the case these gestures do not match the presentation (perceived
affordances) and/or dialog behavior, the developer can alter the UI design and assign
the gestures to it (acting in the presentation-dialog design space).

The concept of executable models was implemented to support the transformation
from early models and prototypes to final code of target applications. Currently, the
dialog editor and the model simulator are fully integrated into a coherent tool. This
tool, the gesture editor and the additional, fourth module, that covers the presentation-
gesture design space, are coupled by shared components. Subsequent work will aim at
the integration of all of them. In ongoing work we investigate the development
process and further applications of ProGesture. One objective is to refine the require-
ment specification of tool support for early prototyping of 3D-gesture interaction and
to realize additional requirements in a follow-up version of ProGesture.
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Abstract. The goal of HCI researchers is to make interaction with com-
puter interfaces simpler, efficient and more natural. In a context of object
manipulation, we think that reaching this goal requires the ability to pre-
dict and recognize how humans grasp then manipulate objects. This is
based on studies explaining human vision, reach, grasp taxonomies and
manipulations. In this paper, we study the full cycle of gesture interac-
tion using different points of view, then attempt to organize them using
Norman’s theory of Human Action, we link the psychology of object
sensing to HCI goals and propose a simplification of gestures classes into
four principal families. Our simplification of gestures classes still allow
the expression of more detailed subclasses differentiated by the gesture
properties.

Keywords: Gesture, 3D, Interaction, Hand, Grasping.

1 Introduction

From the birth, human beings tend to discover their environment using all
their senses. They discover the existence of things by sight, then tend to touch,
grasp and manipulate objects before using these recognized items or tools to
accomplish other tasks [35]. Our study focuses on the whole cycle of an in-
teraction [27,26] starting from observation, through grasping and focusing in
manipulation and specifically direct maniplation of objects. We attempt to link
many research areas for the quest of natural and direct interaction as expressed
by Beaudouin-Lafon [2].

This research around natural interaction in 2D and 3D space is a high priority
because interfaces and visualization techniques have evolved from command line
to graphical user interface (GUI) with multidimensional graphical elements, but
the interaction are still almost the same. The presence of mid-cost 3D stereo-
scopic displays, using special glasses, provides an immersion of 3D objects below
and above the rendering surface. Some researchers worked on controlling such
rendering with 2D multi-touch input [34] but this is still very limited and a
real 3D spatial manipulation is more appropriate for direct interaction. In or-
der to reflect real world manipulations with objects, many frameworks like [11]
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or [15] have abstracted the interaction between the hand and objects to those
emulated by physics simulation engines. Even if these ways of interaction with
objects provide a sense of reality, they still provide neither information about
the psychology of grasping and manipulation, nor a prediction of the upcoming
position of the hand and fingers. Hence comes the importance of psychological
research to fill the gap between the goals of HCI among naturalness, efficiency,
discoverability and the current state of studies.

One of the main foci of Human-Computer Interaction researchers is to make
interaction easier and more intuitive allowing a larger spectrum of people to
better use systems. This is called making interaction natural in the meaning
of reducing the need to remember complex operations. Actions should be eas-
ily discoverable and the system may be learned through exploration. From the
other side, there have been many studies on human dexterity and hand grasping
taxonomies. Napier in [24] has proposed the classification of human grasp into
two main categories: power grasp and precise grasp. According to this simple
classification, we think that we can link studies on grasp and the gesture gen-
eration cycle with the objective of HCI research and start a new conquest for a
more natural interaction.

Our contributions are : 1. Attempt to link between multi-fields of research
around gesture, 2. Proposition of a new simplified taxonomy of gestures, 3. Rising
the problematic of gestures prediction with virtual objects.

This paper proposes a representation of previous work on neuropsychology,
grasp and gesture from different points of view and by using Norman model of
human interaction to organize the separate areas of research, then explaining the
limits of stopping the studies at grasping and not continuing to manipulation. In
the next chapter we discuss manipulation of objects and we propose a simplified
taxonomy.

2 Overview of the Related Work Around the Hand and
Gesture

2.1 The Evolution of the Hand with Tool Use

When the first primates have left the trees, they started freeing their hands for
new uses. As Napier [23] refers to, the use of hands in hominids evolved from self
feeding. In contrast to most animals which use their both hands, hominids and
some great apes are able to use one hand to grasp objects thanks to the thumb.
It was thought that humans are the only creatures with the ability to create
tools instead of just using them, they were even called “Homo Faber”. Even if
it cited in Napier’s book, it was discovered recently that apes can use and even
create tools [32]. This evolution of the ability to grasp, then the use and creation
of tools in primates, diverged just in a small fraction that made the anatomy
of human hand with more dexterity only for precise gestures manipulations like
playing musical instruments [19].
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2.2 Gestures and the Speech in the Brain

The recent man and the great apes like the chimpanzees can use hand gestures for
communication [31]. David McNeill has emphasized on the relation between the
gesture and the speech. In his book [20] he made an analysis of gestures relatively
to speech. The taxonomy he proposed categorize gesticulation, speech-linked
gestures, emblems and pantomime. The taxonomy of gestures vis-a-vis speech
has its background as their are both proceeded by the same neural system in
the brain [40].

2.3 Motor and Vision Brain Pathways

Manipulating an object requires detecting its presence mainly using the eyes,
then planning an action. An experiment run by Aglioti et al. [1] demonstrated
that the visual illusions have not impacted the motor action. This experiment
has proven that the perception and the action are two separate paths that do not
interfer with each others [5]. Another work has suggested that even for a hand
action to occur, there are two pathways, one for moving the fingers and another
for transporting the hand itself [29]. More detailed studies about hand movement
and the physiology of grasping are made by Nowak et al. [28] studying subjects
with disorders in the somatosensory system, or with the Parkinson’s diseases
among many others.

2.4 Proprioception, Exteroception and Manipulation Area

The proprioception is the individual perception of himself, and the self sense
of the parts of the body. [38]. This knowledge is acquired during the first years
of the individual existence and decline by aging. The proprioceptive kinesthetic
sensory system intervene in controlling and correcting limb movements during a
reach movement.

The importance of proprioception in a 3D gesture maniplation has been stud-
ied by Mine et al. [21]. The lack of feedback makes an interaction very difficult
and should be compensated by the proprioceptive capacity. Memorizing real
world positions by the exteroception, allow an efficient acces and reach to the
objects. In reaching study, it is easier to remember a position relative to ones
own hand more accurately than a position fixed in a virtual space.

2.5 Troubles in gestures Choices and Manipulation: Gestemes and
Kinemes

The planning of manipulation starts with knowledge acquired in proprioception,
which is the self sense of the parts of the body. It’s a learning process which starts
from the childhood and keeps enhancing through the age. In the grasping process,
proprioception is primordial to orient the palm and reshape the hand [17].

The classification of Signoret and North cited in [33] considers the two distinct
functional levels in gestures after a study on people having apraxia problems,
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and who fail in chosing either the right gesture for a specified object, or in
performing the gesture through the right list of kinemes. These levels explained
more in Bertranne thesis [4], are the goal of the gesture and the motor realization.
Gesture production needs in the same time the choice of the right gesteme,
then the sequence of kinemes performed with the hand. During the experiments,
patients were asked either to just mimic a just performed gesture to evaluate
the ideomotor apraxia, or to perform a named gesture to evaluate the ideational
apraxia.

2.6 Grasp, Hand Shape and Fingers Configuration

The human dexterousity in grasping is efficient but very difficult to mimic. Re-
searchers who want to build robots capable of grasping and moving objects focus
on human grasping creating taxonomies which would be possible to mimic on
robots [6]. The need for a robot capable of performing a multitude of tasks,
Cutkosky [8] and Feix et al. [10] started by studying human grasp selection.
These robots needs to grasp objects in order to manipulate them which include
moving or rotating. Even if the goal is for robots, the main element in the process
is the human, his/her hand and its dexterous manipulation [36] .

2.7 The Search for the Best Gesture Interaction in HCI

Many Human-Computer Interaction researchers have been working on tracking
the best gestures to be used for a system. In their research, like the one conducted
Wobbrock et al. and Gustafson et al. [39,13], they asked subjects during an
experiment to perform what they thought would be the best gesture to achieve
a specific task. During so, we may argue that the methods used in these studies
are more statistical analyses than a proper reverse engineering of the human
behaviors. Other studies focuses on finding newer methods of interaction or new
gestures like Nacenta et al. work [22], or by the introduction of different sensors
for the human manipulation [14].

2.8 Simulating a Rich Interaction

Physics simulation libraries are used to add a feeling of real interaction with
objects like in the work by Frohlich et al. [11]. Given the properties of objects,
Newtonian forces are computed to move, distort or bounce an object according
on its type and how a user is touching it. Systems using these libraries are not
able to gather semantics of gestures. They also can not predict user intention
before the user hand reaches the object.

3 Organization of the Related Work

3.1 Organizing through a Real Scenario

The multidisciplinary nature of the related work makes studying the subject of
gesture interaction difficult. Many researchers tried to take the problem from
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their point of view. Even with such diverse work, we can start to find what
are the common things between them all and then glue parts together. All the
research previously referred is around the human and objects. We think that in
a real scenario, in which the human is manipulating objects, would put all the
reseach pieces in place. Our practical case of study out of this work is with a
human manipulating 2D and/or 3D stereoscopic objects which are on or above
a table space as in figure 1 and the detailed interaction figure 2.

In this context, the user detects objects through vision with a possible 3D
optical illusion (stereoscopy), reaches the object inside his interaction space,
grasps the object depending on its form and the intended manipulation, then
manipulates it through gestures. In the same time the operator uses 2D and 3D
gestures, and this is why a single recognizer for the two cases is needed.

<&

Fig. 1. The manipulation of the gestures on and above the table, using 2D and 3D
virtual objects and captured via 3D sensors

Cycle of a Gestural

interaction 7
6 . 9
1. Discovery #
2. Comprehension + proprioperception # ‘“ f’
3. Programming movements )
4. Touch and grasp T L
5. Manipulation : Apparent Gesture »
6. Detection (sensors)
7. Recognition 1
8. Meta-Recognition and Matching Rules @:
9. Filtring and Transformation =& model
10. Consumption by applications L
feedback ]
* feedback

Fig. 2. The cycle of a gestural interaction, including the human, the hand, the object,
the sensors, the handling daemons, and applications
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3.2 Norman’s Theory of Human Action as an Organizing Method

From a HCI point of view, and as the human is the generator of gestures, we
propose the use of Norman’s theory of Human Action Cycle [25] to position the
areas of research together on the cycle. Norman describes seven stages-of-action
in his model, during an experiment like ours, all these stages are fullfiled as it is
included in his description of an interaction. The seven stages can be divided in
3 parts: Goal formation, Execution, and Evaluation. The perception can be in
the Goal formation part. The Execution having translation of goals into a set of
tasks can be attached to gestemes, the sequencing of tasks into action sequence
can be attached to kinemes and reaching, the execution can be through the
grasping and manipulation. The evalution part may include the feedback in a
non-exhaustive way, and which is not in the scope of this paper.

3.3 The Urge to Link with the HCI Discipline

The goal of connecting areas together means understanding the problem deeper.
This understanding can be transformed later into a model able to receive a
partial amount of the hand information and then can extrapolate the missing
data. We believe that a model based on the shared knowledge from different
fields can satisfies the naturality question [12].

3.4 The Naturality from EMG and fMRI

The electromyogram (EMG) is the electrical signal detectable by electrodes on
the skin of the muscle. And the functional magnetic resonance imaging (fMRI)
is a neuroimaging technique that measures brain activity from the changes in
blood flow coupled with neuronal activation. The brain activation during an
operation allows the detection of what makes an operation stressful. Ehrsson
et al. [9] studied forces and brain activation during a power and precision grip
manipulation. The results show that even if the power grip forces are higher, the
left-sided brain activity is the principal activation and it is low, while in precision
grip with small forces generated, both sides and more regions are activated. We
think that the more an operation is natural, the less zones are activated in the
brain and the less stress it generates.

Other studies confirm the gesture and speech being proceed by the same
neural system, should they be manipulated and detected using similar methods?

3.5 Comparison with a Legacy Device: The Mouse

Gesture technologies have always tried to compare to the mouse. Mainly claiming
that they are able to ditch the mouse from its current dominent position in
computing. These claims have been demonstrated to be wrong. The mouse is
currently more efficient for the usual tasks [3]. The comparison was trying to
beat the mouse.
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The specificity of the mouse is that manipulating the mouse don’t differ a lot
from the hand rest position. While gesture systems tend to trigger fatigue and
disconfort due to the gorilla arm effect. The rest position of the hand means less
activation in the brain and less stress.

3.6 Enaction and Vicarious Learning

There are two ways of organizing knowledge in the brain, either enactive knowl-
edge through action and motor skills like manipulating objects. Or learning by
observation. Do we manipulate objects gestures by doing ourselves or by watch-
ing others do?

4 Prediction of Gestures

4.1 Affordance of Object Grasping

In a grasp, we can gather rich information in relation to the object properties, the
setting, the relationship, the goal, and the anatomy of the user [37]. According to
the previous studies on grasping, the way we grasp an object may be predicted
according to the opposition plans, and in a virtual environment with virtual
objects, we can simplify the model even more by ignoring a part of the grasp
properties like the relationship and the goal.

Opposition plans [16,17] gives us hints about where fingers would be posi-
tioned for an object. In a virtual environment, we put the focus on pushing
the user into a pad opposition as there is no object tactile feedback. This affor-
dance of object grasping prepares the way into manipulation and thus gesture
manipulation affordance.

4.2 Affordance of Gesture Manipulation

Manipulating an object in a virtual environment means moving the hands and
stroking in the 3D space. The affordance of a manipulative gesture for an object
is related to the affordance of grasping on the same object. The prediction of
gestures is not always possible. But for many cases, the hand posture before
reaching the object is relevent for what the user is willing to do. The form
of the object, the hand posture before grasp and the position from where the
hand through the limb reaches the object is a telling factor of the user gesture
intention. These three, in some cases, remove many alternative possibilities of
what is remaining to recognize as in figure 3. A user reaching a pawn object in a
chess game from the upper side means he is willing to move it to another place.
The scaling of the object is impossible, and the form of the pawn which has a
base eliminates the possibility of rotation.
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Fig. 3. Cases of gestures prediction

5 Simplifying of Gesture Manipulation Recognition

5.1 Role of the Hand and the Object

In our manipulation study, and in order to simplify the process, we suppose that
the hand is the human tool used to act on a object whose existence is required.
The notion of naturality of the interaction can not be processed without an
object receiving the hand touch, grasp and movements.

5.2 Definition of Multitouch Gestures in 4 Classes

Multi-touch gestures are generally expressed in a wide form of possibilities, each
one has a separate name which add a lot of complexity in definition and in
use [41]. A burst nomination of multitouch gestures does not facilitate neither
their user nor building a recognizer engine for them. With the hypothesis of
having an object as a direct receiver of the gesture, we can organize the multi-
touch gestures as shown by the figure 4 into four principal families'. Then,
in order to detect sub-categories, we compute properties like the number of
fingers, speed and time. The factorization of gestures into a small set of categories
is previously cited by a work of Reisman et al. [30] as Rotate-Scale-Translate
interaction.

5.3 Definition of Spatial Gestures in 4 Classes

We have questioned spatial gestures classes after handling multi-touch ones. We
wanted to know whether it is possible to do the same classification into basic
families as in figure 5. The work by Bullock et al. [7] made a specific classification
for human maniplation, but using only rotation and translation. In his work,
squeezing the syringue is considered as a translation task. We take the object
into consideration, and if it is deformable, then a new category is required and
in this case is the scaling gesture.

Meanwhile, not all gestures that exist can be expressed using one of the classes
if the hypothesis of the receiver object is not satisfied. Non natural gestures that
cannot be guessed unless being teached in advance like the Cyclostar by Malacria
et al. [18] for dragging and zooming cannot be expressed by our system.

! Using multi-touch figures from http://www.lukew.com/ff/entry.asp?1073
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Fig. 4. Families of multi-touch gestures and specific gestures depending on number of
fingers or the speed
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Fig. 5. Families of spatial gestures

5.4 Detecting Specific Gestures and the Points of View

Four classes of gesture is not enough to detect all gestures. We need more detailed
characteristics allowing fine differentiation. From the characteristics we can list
the number of fingers, the speed of the gesture, the delay in operation, the size
of the interaction zone, the central point.

How a gesture recognition is handled differ from one system to another. Many
systems wait for the gesture to start, record its stroke until the gesture finishes,
then starts the recognition. The recognition results are only available at the
end. Other more advanced systems, as the ones implemented in smartphones,
don’t wait until a gesture finishes, they start recognition when a fixed threshold
is reached and each chunk of small movement beyond the threshold is decided
from the four basic classes. Sometimes many decisions are fired at the same
time, letting the final decision to meta recognition tools. In the case of Linux,
recognition of long strokes as standalone gesture needs a meta system capable
of matching predefined rules with the chunks feed.

6 Conclusion and Future Work

In this paper, we have explored most of the areas of research around gestures, in
an attempt to extend the view of the problem to a wider public. We have shown
that the recognition of gestures needs first a recognition of objects properties,
human grasping, understanding of how we see and decide. The context and sce-
nario of a gesture manipulation experience and the Norman’s theory of human
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action helped us organize these blocks of research and raise the question why
some legacy devices still beat new sensors and input devices. We have presented
why the prediction of user gestures from hand posture during the grasping can
improve current gesture recognizers. We have presented a taxonomy for clas-
sifying gestures either in 2D or in 3D in a few main classes and then detect
sub-categories using a set of properties. Future work will target a deeper study
to strengthen the links between the presented research areas and the develope-
ment of a real prototype to experiment the theoretical notions presented.
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Abstract. This paper represents an implementation of a computer vision based
interface; iPanel which employs an arbitrary panel and tip pointers as a
spontaneous, wireless and mobility device. Also the proposed system can
accurately identify the tip movements of the panel and simulate the relevant
events on the target environment. By detecting the key pressing, mouse clicking
and dragging actions, the system can fulfill many tasks. Therefore, it enables
users to use their fingers naturally to interact with any application as well as
with any mobility enabled devices.

Keywords: Computer vision, Human computer interaction, gesture recognition,
optical character recognition, wearable computing.

1 Introduction

Human computer interaction is the technique of studding the relations between people
and computer or computer mediated information. Thus it involves the design, devel-
opment and evaluation of models, systems and applications from a human-centered
perspective. Since its inception in the 1980s, HCI has been primarily concerned with
designing more usable computer systems, attractive conventional computing devices,
be it the computer desktop, the Web, or the mobile phone. It evaluates the existing
designs and shows how to improve them. And, it attempts to apply its methods to
design more user friendly systems from the start. Human-computer interaction com-
prise many sub domains such as gesture reconstruction, event detection, video track-
ing, object recognition, learning, indexing, motion estimation, and image restoration.
Each sub domain is a unique concept of computer vision and it attempt to address a
particular area of HCI, where the computers are pre-programmed to solve tasks or the
interactions (e.g. touch screens, tablet PCs).

It has been identified and observed that many researches are adopting gesture re-
construction and ended up with implementing excellent results (e.g. Microsoft is re-
searching on how user can interact with computers or computational devices in
more efficient and user friendly manner [7]. Thus gesture recognition, sensor based
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interactions and augmented realities are becoming more and more popular. This is the
main reason that gesture recognition is more important and required to simplify the
user interaction with the computers of computational devices. As an example, several
people are discussing in a meeting room using a large display. They may need to
draw, to suggest their ideas. However, it is unrealistic to facilitate every user a key-
board and a mouse. Even more, in a large lecture room, the lecturer sometimes needs
to write down something on a small whiteboard. However, the audience far from him
or remote audience may not be able to see clearly what he writes on the board. There-
fore, need for a vision based system is necessary to analyze and understand what the
lecturer writes and retrieve on a remote display, while avoiding bandwidth con-
straints. Furthermore, most of the smart mobile provide a QWERTY keyboard with
tiny keys. It is really difficult to type with those keys. Yet, providing a large screen
would lead to unnecessary problems such as size of the phone. In order to address the
above a vision based solution has been suggested.

2 Human Computer Interaction

Human-Computer Interaction (HCI) is a technology researching on people, computer
and the communications between them. Designing interactive computer systems to be
effective, efficient, easy and enjoyable to use is important, so that people and society
may realize the benefits of computation based devices such as mouse or keyboard.
According to [2] use of these devices are recognized way of interaction with interfaces
based on Window, Icon, Menu and Pointer (WIMP) paradigms which have succeeded
for decades. Eventually software interfaces have got improved and interactive, lot of
effort and code has been put behind the development of interactive software. None-
theless, the use of traditional computational devices such as keyboard and mouse do
not provide an expected way of interaction.

Most of the innovative interfaces such as Microsoft Surface [11] tend to support
multi user interaction and are recognized to be augmented reality based products. Due
to that reason there has been lot of concern on development on alternative and natural
interaction methods to support interaction with such interfaces, while supporting for
the existing conventional computing devices. Thus human-computer interaction de-
sign is human centered approach where human is given more priority. Also the pre-
vious work done by [2] note that “The human, the user, is, after all, the one whom
computer systems are designed to assist. The requirements of the users should there-
fore be our first priority”.

3 Computer Vision and Gesture Recognition

In its most general meaning, a gesture is any physical configuration of the body,
whether the person is aware of it or not, whether performed with the entire body or
just the facial muscles, whether static in nature or involving a movement. In the com-
puter vision literature, gesture usually refers to a continuous, dynamic motion, whe-
reas a posture is a static configuration.
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Computer vision based gesture recognition is a sub domain of HCI and it compris-
es of a wide range of shapes, motions and texture based variations. And also it in-
cludes different gesture recognition methods such as applying Fourier transform ([6]),
wavelet transform ([4]) or Principal Component Analysis (PCA) ([16]) on images,
Edge orientation histogram, temporal templates ([17]) and oriented rectangular
patches ([8]). Thus, it is very important to study on these gesture recognition method
differences and select good features to define simple and natural gestures which will
be easily adoptable to be used for human computer interaction. Recognition of ges-
tures includes object detection, motion analysis, extraction of features, and machine
learning. Besides real time recognition has been a stimulating task in all the time.
Efficient recognition of positions can be adopted for an effectively simulation of key-
board events. For example, posture classification refers to the estimation of finger
configurations, that is, the ability to distinguish a fist from a flat palm and so on. As
described by [9] describes different kinds of gestures from what has become known as
Kendon's Gesture Continuum. However practical limitations due to varying luminous
conditions and complex backgrounds can exist. Thus, finger tracking and use of non-
geometric features such as color and outline are also important for a reliable and
strong recognition. There is an extensive body of related computer vision research
which could fill many books. Here, author has summarized the major works that
could fit the bill for real-time user interface operation through hand gesture recogni-
tion in a fairly unconstrained environment. To get an independent overview, the read-
er is referred to a paper by [5] a survey on “computer vision for interactive computer
graphics” and an evaluation of the state of the art by [15]. Three common tasks for
computer vision processing are; (1) The detection of the presence of an object in an
image. (2) The spatial tracking of a once-acquired object over time. (3) Recognition
of one of many object types

3.1  Preprocessing

Preprocessing is the progression of color space conversion, edge detection, morpho-
logical operations, noise removal and thresholding. Therefore, it is implemented in
almost every vision based algorithms as an entry point to be suitable for the image
processing. According to [14] color space conversion, noise removal, edge detection
and outlines extraction has to be carried out during the preprocessing stage.

3.2 Detection

As [3] showed in early neuron scientific experiments the human visual system has the
amazing ability to detect hands in almost any configuration and situation, and possi-
bly a single “hand neuron” is responsible for recording and signaling such an event.
The computer vision researches have not quite yet achieved this goal. However, it is
vital that a hand is supposed to function as an input mechanism to the computer is
strongly and consistently perceived in front of arbitrary background, for the
reason that all further stages and functionalities depends on it. Object detection of
artificial objects, such as colored sticks as in [18] can achieve very high detection rates



iPanel: A Computer-Vision Based Solution for Interactive Keyboard and Mouse 39

regardless of low false positive rates. According to [20] face detection has attracted a
great amount of interest and many methods relying on shape, texture, and/or temporal
information have been thoroughly investigated over the years. Author has carried out
some researches on finding hands in grey-level images based on their appearance and
texture. As assert by [19] “Combining with skin color segmentation, view independent
posture recognition can be used to detect hands. Since skin color segmentation has
already limited the searching range, hand detection can be very efficient”. [12] dem-
onstrated that, lately improved classifiers have succeeded compelling results for view
and posture independent hand detection. However, most of the hand detection me-
thods resort to less object-specific approaches and as an alternative employ color
information (see, for example [21]), sometimes in combination with location priors
(for example [10]), motion flow or background differencing (for example [13]).

3.3 Tracking

Background subtraction is very important for motion analysis and object tracking
because of it’s a basic function that enables to build statistical model of background.
And used for segmenting moving objects for the background. If the detection method
is flexible and fast enough to operate at image acquisition frame rate, it can be used
for tracking as well. However, tracking hands is extremely difficult since they can
move very fast and their appearance can change enormously within a few frames. As
[1] asserts that some of the most effective head trackers, for example, use a fixed oval
shape model which is fast and appropriate for the inelastic head structure. Similarly,
more or flexible hand models work well for a few select hand configurations and
relatively static lighting conditions. Since tracking with an inflexible appearance
model is not possible for hands in general, most approaches alternative to shape-free
color information or background differencing as in the mentioned works by [10], and
[13]. Other methods incorporate for example, texture and color information and can
then recognize and track a small number of fixed shapes regardless of arbitrary back-
grounds (for example, [22]). As per the research work, a particle filtering method is
optimized for speed mean shift, and dynamic weights determine the blend of color
with motion data. That explains, the faster the object moves, the more weight is given
to the motion data, and slower object movements result in the color cue being
weighted higher. Some of their performance is surely due to simple, however usually
effective dynamical model (of the object velocity), which could add to the suggested
solution as well. Object breakdown based on visual flow (for example, normalized
graph cuts as proposed by [23]) can produce good results for tracking objects that
display a limited amount of twists during global motions and, thus have a fairly un-
changing flow ([24])

3.4 Skin Color

Skin color detection is widely used to detect hand configurations and thus it is
very important in gesture recognition. Skin color classification is preferred for fast
processing and due to its effective response to non-rigid objects such as hands.
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Previously absorbed results shows it can be achieved only by skin color properties,
for example, by [25] who used it in combination with a neural network to estimate
gaze direction. [26] Demonstrate interface quality hand gesture recognition only with
color segmentation means. Their method uses an HSV like color space, which is pos-
sibly beneficial to skin color identification.

The appearance of skin color differs mostly in intensity while the chrominance re-
mains fairly consistent. Thus, and according to [27], color spaces that separate intensi-
ty from chrominance are suitable to skin segmentation when simple threshold-based
segmentation is used. However, their results are based on a few images only, while a
paper from [28] examined a huge number of images and found an excellent classifica-
tion performance with a histogram-based method in RGB color space. It appears that
very simple threshold methods or other linear filters accomplish better results in HSV
space, while more complex methods, particularly learning-based, nonlinear models
excel in any color space. [28] Also state that Gaussian mixture models are lower to
histogram based approaches. This is true as long as a large enough training set is
available. Otherwise, Gaussians can fill in for inadequate training data and achieve
better classification results. [29] Showed that object tracking based on color informa-
tion is possible with a method called CamShift which is based on the mean shift algo-
rithm. These methods dynamically slide a “color window” along the color probability
distribution to dynamically parameterize thresholding segmentation. A certain amount
of lighting changes can be allocated with. Patches or drops of uniform color have also
been used, especially in fairly controlled scenes. According to [30] achieve excellent
segmentation with dynamic adaptation of the skin color model based on the observed
image.

3.5 Contours Extraction

Contour processing is performed on images typically after performing edge detection
or thresholding. Contour extraction is used after canny edge detection algorithm, to
detect an inserted object using color cluster feature. In theory, the contour or outline
of an object reveals a lot about its shape and orientation. If perfect segmentation is
possible, comparison based on curve matching is a feasible approach to object classi-
fication. For example as [31] assert that, based on polar coordinates above can be
done. One can benefit even more from curve descriptors that are invariant to scale
differences and rigid transformations such as those by [32] and Shape Context de-
scriptors. For less-than-perfect conditions however, more powerful 2D methods must
be used. Those usually set on finding enough local clues in the image to place a shape
model close to where the most likely placed of this shape can be found in the image
data. Iterative methods frequently try to minimize an energy defined as images which
are not aligned properly (far from an edge). For a hand in top view, these modes could
theoretically be the movements of each finger. Statistical models of an object's 3D
shape, often called “point clouds,” can also be built (as did, for example, [33]), but
they shall not be further measured since their speed performance might drop. Accord-
ing to [34] took a popular approach and had their recognition method learn from ex-
tracted hand images instead of from actual photographs. During testing, edge data
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between the observation and the learned database are compared and 3D hand configu-
rations can be estimated from 2D grey-level edges. According to their paper, match-
ing takes less than a second for an approximate result, but too long for interactive
frame rates. [35] assert that; detect hands uniquely in postures regardless of messy
backgrounds. The distance between two curves or contours is the mean of the dis-
tances between each point on one curve and its closest point on the other curve.

4 Implementation

4.1 Hand Gesture Recognition

Hand gestures can be recognized with various means and varying fidelity. They are
not in one particular identification technique, but with various sensing mechanisms.
Hand detection for user interfaces must favor reliability over expressiveness: false
positives are less tolerable than false negatives. Since detecting hands in arbitrary
configurations is a largely unsolved problem in computer vision, the detector for iPa-
nel allows reliable and fast detection of the hand in one particular posture from a par-
ticular view direction. Starting the interaction from this initiation pose is particularly
important for a hand gesture interface that serves as the sole input modality as it func-
tions as a switch to turn on the interface: without this and instead with an always-on
interface, any gesture might inadvertently be interpreted as a command. The output of
the detection stage amounts to the extent of the detected hand area in image coordi-
nates. This software system is capable of detecting the human hand in monocular
video, tracking its location over time, and recognizing a set of finger configurations
(postures). It operates in real time on commodity hardware and its output can thus
function as a user interface.

The software system that realizes the vision-based hand gesture recognition and al-
lows for its utilization as a user interface consists of a number of software compo-
nents that will be described in the following. iPanel main component pronounced
“skindetector” is a library and the core gesture recognition module that implements all
of the computer vision methods for detection, tracking, and recognition of hand ges-
tures. This module receives the direct video feed from a camera and generated the
analyzed gesture results to the main application. This application called WinTalk
class library, which handles pipeline initialization and implements convenience func-
tions. In addition to these runtime components, there is also an offline module that
implements ANN (Artificial Neural Networking) training for the detection and recog-
nition components.

The core module is a combination of recently developed methods with novel algo-
rithms to achieve real-time performance and robustness. A careful orchestration and
automatic parameterization is largely responsible for the high speed performance
while multi-modal image cue integration guarantees robustness. Yet, initially an hard-
coded values has been used to identify the hand gestures of the author in order to
make sure that, development phase has not been misguided with different values.
There are three stages: the first stage detects the presence of the hand in series of
posture (It is required to have the vision interface always active since hand gestures
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which are used as mouse movements may be used as commands). Yet, identifying a
series of postures could cause different errors in the application due to the misleading
of generated events. However, the issue has been addressed by a different mechanism,
and to be discussed in the following paragraphs. After this gesture based activation,
the second stage serves as an initialization to the third stage, the main tracking- and
posture recognition stage. This multi-stage approach makes it possible to take advan-
tage of less general situations at each stage. Exploiting spatial and other constraints
that limit the dimensionality and/or extent of the search space achieves better quality
and faster processing speed. Author uses this at a number of places: the generic skin
color model is adapted to the specifics of the observed user for posture recognition is
positioned with fast model free tracking. However, staged systems are more prone to
error propagation and failures at each stage. To avoid these pitfalls, every stage makes
conservative estimations and uses multiple image cues (grey-level texture and local
color information) to increase confidence in the results. “SkinDetector” assists as a
library for gesture recognition that can be built into any windows application that
demands a hand gesture user interface. However, it does not handle any user display-
specific operations such as image acquisition or display. Thus, it requires some pro-
gramming before it can be used. The final output of the vision system indicates for
every frame the 2D location of the hand with the number of fingers if is tracked, or
that it has not been detected yet. If the dominant hand's posture is recognized, it is
described with a string identifier as a classification into a set of predefined, recogniz-
able hand configurations.

4.2 Hand Detection

Fig. 1. (1) Actual output of the custom YCrCb based skin detection algorithm. (2) Output - Hsv
based skin detection algorithm.

YCrCb / Custom YCrCb Based Skin Detection. Y' is the luminance component
and Cr and Cb are the red-difference and blue-difference chroma components. Y’
(with prime) is distinguished from Y which is luminance, meaning that light intensity
is nonlinearly encoded based on gamma corrected RGB primaries. Yet, identifying
the skin using YCrCb algorithm is very challenging because of the difficulty of identi-
fying the correct Ycc color range.

Hsv Based Skin Detection. In the HSV color system, the colors of maximum satura-
tion are not necessarily pure. The HSV, an alternate representation of a given RGB
color space, and the saturated colors in HSV are in fact the colors bordering the
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corresponding RGB triangle in the chromaticity diagram. For this reason, the HSV
color system has be identified as device dependent, meaning that it is not an absolute
colorimetric space, but relative to the gamut of the RGB color space it describes. The
third coordinate in HSV has the value or brightness; black has zero brightness. Start-
ing from the hues disk one can imagine the HSV space as a collection of hues circles
with varying color value, one on top of the other and of the same size or of sizes di-
minishing with value. The Fig.1 (2) shows, the identified hand postures using the Hsv
skin detection algorithm.

Both algorithms custom YCrCb and Hsv based skin detection can used to identify
the user skin of hand gestures. However, most of the researches shows, that the source
frame is converted to both Ycc and Hsv color spaces and observed that Hsv color
space provides better segmentation in practice over Ycc. Furthermore, it has been
tested with different skin colors during various times of the day. The reason was Hsv
provides clear separation of luminance and chrominance. Yet, it is more vital to train
the algorithms through an ANN approach to recognize any type of skin in order to
ensure that the every skin component has been identified in the image stream.

4.3  Recognition

In order to place flock features, initially context hulls are recognized through the iden-
tified counters, a centered point on top of the detected skin and a clock wise rotation.
The Flock of Features follows small grey-level image artifacts. A weak global con-
straint on the features' locations is enforced, keeping the features tightly together.
Features that are not likely to still be on an area of the hand appearance are relocated
to close proximity of the remaining features and on an area with high skin color prob-
ability. This technique integrates grey-level texture and dimensionless color cues,
resulting in more robustness towards tracking disturbances cause by background arti-
facts. From the feature locations a small area is determined that is scanned for the key
postures that recognition is attempted for. Once prefect detection has been performed
events are bind with the fingers.

44  Execution

In order to perform key pressing events author has been developed on his own algo-
rithm though out series of researches. The identified method was to capture three
different postures of figure movements and analyze them to meet the requirements of
performing key press actions. In the algorithm each of the fingertip positions are
stored on a collection along with a finger number. When a key press is performed
through the gestures it is noticeable that particular fingertip’s positions are change
through Y axis of the screen while X axis on constant (But X axis could be slightly
changed based on the movement). For example, if the initial X and Y position of a
fingertip is X = 150, Y = 200; in the event of performing key press tip positions are
changed to X = 155, Y = 265 and then again it changes to a position X = 152, Y =
225. [37] Discussed a similar algorithm in there research related to wearable multi-
touch interaction. According to their solution three dimensional (X, Y and Z) fingertip
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detection has been used. However, author insists to use his own algorithm in order to
minimize the complexity and to improve effective mechanism to identify the event of
key press.

4.5 Finding Rectangles and Identify Characters

Finding rectangles involves finding axis aligned rectangles in binary image. These
rectangles will help in separating the area of the image that contains text from the rest
of the image. Even though, this is a huge process to carry out Tesseract API, provide
all the required processing and identifying algorithms. Therefore, no custom algo-
rithms have been developed in order to analyze images or to identify. Furthermore, to
identify language dependent characters Tesseract API required initializing with rele-
vant tesseract data and language dictionaries. Following Fig.4 (1) illustrates charac-
ters identified by the module.

—

N
~] W
00 A~

Fig. 2. (1) Characters identified by the OCR module. (2) User designed key arrangement and
module generated virtual keyboard.

5 Evaluation

5.1 Expert Evaluation

An expert evaluation was conducted on the research to measure the validity and ap-
propriateness of the approaches, methodologies, and models used by the author. The
expert evaluation process has been started at the requirement gathering stage in order
to understand and evaluate the user requirements. Then a thorough analysis and eval-
uation has been conducted in the design phase to avoid expensive mistakes, since the
design can be altered prior to any major recourses commitment. Therefore, sample
design and prototypes have been provided though it is difficult to get an accurate
assessment of the experience of interaction. [4] assert that four different approaches
that could adopt to expert analysis: (1) cognitive walkthrough, (2) heuristic evalua-
tion, (3) the use of models and (4) use of previous work. The author uses three ap-
proaches in order evaluate system properly.

Cognitive walkthrough approach has been adopted and it evaluation is the code
walkthrough to check certain characteristics (for example, that coding style is adhered
to proper coding standards). The general idea behind the heuristic evaluation is that
several evaluators independently critique the system to identify potential usability
problems and to understand the severity of the problems. The final approach used to
evaluate the iPanel system is “use of previous work”. Expert knowledge on previous
experience also has been involved in order to provide the feedback for the system.



iPanel: A Computer-Vision Based Solution for Interactive Keyboard and Mouse 45

Furthermore, their comment regarding research holds a significant impact for the
future enhancements on the application. A questioner has been used to gather expert
reviews on the iPanel. With the intension of understanding the accuracy of the output,
and the suitability of implemented algorithms, along with identifying the independen-
cy on user hand gestures; 71% of the participation has been awarded “Excellent” for
the accuracy of the hand gesture recognition algorithm, while 28% stated “Good”.
Also it is notable to discuss all the experts have been agreed that, Hsv based skin col-
or detection along with structural analysis can provide an effective person indepen-
dent hand and finger detection.

6 Conclusion

Author has been developed the iPanel, a computer vision system for recognition of
hand gestures in real-time and perform key strokes in order to allow real time interac-
tion with a virtual keyboard. Novel and improved vision methods had to be devised to
meet the strict demands of user interfaces. Tailoring system and applications for hand
motions within a comfort zone that we have established improves user satisfaction
and helps optimizing the vision methods. Multiple applications demonstrated such as
windows, web, and mobile showed iPanel in action and indicated that it adds to the
options of interaction with non-traditional computing environments.
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Abstract. This paper describes the MTGest framework, an open library for add-
ing multi-touch gesture interaction to HTML-based mobile web applications.
MTGest was used in a comparative study to evaluate the multi-touch
gesture interaction in a mobile web application in comparison to a native i0OS
mobile application. The results indicates that in most cases the web based ges-
tures efficiency is either approximately the same or higher than the iOS-based
app. The study was carried out as an initial experiment using isolated gestures,
targeting the i0OS platform only. For generalizing the results there is a need to
perform detailed user evaluation studies with different platforms and for more
complex interaction scenarios.

Keywords: Smart Devices, Smartphones, Tablets, Mobile Apps, Web Apps,
Multi-Touch Gesture, Interaction Design, Mobile Environments.

1 Introduction and Related Work

Due to the popularity of smart devices and mobile applications (also called mobile
apps), companies are offering more and more their product support in them. In
order to reach to a broad pool of potential users, companies need to develop their
applications for many of the existing mobile platforms (e.g., Google Android [2],
Apple i0OS [1], Microsoft Windows Phone [5]). Developing mobile apps separately
for each platform is costly and time consuming while keeping focus on just one
platform reduces the number of accessible users. We found in our previous study [3]
that developing mobile apps through cross-platform development frameworks (where
the application is developed once and deployed on the possible target platforms)
still lacks in many aspects such as: few platforms support, only partially support
of the targeted platform’s interaction schema, far behind the native development
environments.
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Mobile web applications (also called mobile web apps) are based on web technolo-
gies like HTML, CSS, and JavaScript. HTML5' as an upcoming standard by W3C?
provides the possibility of offline browsing as well as accessing many device re-
sources (such as localization services or sensors); hence, HTML5-based web apps can
be used as an alternative to the native mobile apps in many cases. There are many
benefits of this approach such as: requires less efforts and resources for developing,
supports all platforms, provides a consistent user experience and interaction concept
across all platforms. However, HTMLS5 lacks built-in tags for the functionality of
current multi-touch gesture interaction paradigm, which reduces the web apps’ appli-
cability compared to the native mobile apps. HTMLS5 provides a set of interfaces for
the basic touch events but does not have built-in functions to support directly most of
the current multi-touch gestures. In this work, we focus on adding the current multi-
touch gesture interaction paradigm support in HTML-based documents in order to
provide the current multi-touch gestures (e.g., double tap, swipe, flick, zooming, rota-
tion) in mobile web apps.

We provide this support through our developed library, called MTGest (Multi-
Touch Gestures) library. This library enables mobile web apps the provision of multi-
touch gesture interaction inside them in order to give the expected user experience
and interaction concept of the current mobile paradigm across all platforms. For
checking the efficiency and user satisfaction with the provided multi-touch interaction
support in mobile web apps by our MTGest library, we conducted a user evaluation
study. In this conducted study, users from different backgrounds and expertise tried
two simple apps, i.e., one mobile web app based on MTGest library and the other one
a i0S-based mobile app based on iOS native gesture support. Users tried each gesture
on both apps one-by-one and gave their feedback using a questionnaire form. Results
show the same level of efficiency and user satisfaction in many cases, as well as bet-
ter in few cases and lower in some other cases. Overall, results indicate that mobile
web apps through MTGest kinds of libraries can be an alternative solution in the fu-
ture.

Some other frameworks for the support of multi-touch gestures are: jQMultiTouch
[7] web tool-kit, inspired by JQuery, for creating multi-touch interfaces; Gesture Cod-
er [6] for generating code to recognize multi-touch gestures. However, we chose
JQuery® and hammer.js* as foundations due to their powerful abstraction from low-
level implementation details and their cross-browser compatibility. One way of work-
ing with the MTGest library has already been described in detail in [4], whereas this
paper focuses on the study comparing MTGest with native gestures.

The remainder of the paper is structured as follows: In Section 2, we introduce
our MTGest library. In Section 3, we provide details of the conducted user evalua-
tion study. In Section 4, we present and discuss the results. Finally, we conclude in
Section 5.

W3C - HTMLS. http://www.w3 .0org/TR/html5/

World Wide Web Consortium. http://www.w3 .org/

The jQuery Foundation - http://jquery.com/

Eight Media - http://eightmedia.github.com/hammer. js/

2w o0 =
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2 The MTGest Library

HTMLS, the new specification of HTML by W3C, is still in working-in-progress
process. HTML5 provides a set of interfaces’ for touch events. However, it lacks
built-in tags for the functionality of multi-touch gestures.

Our MTGest (Multi-Touch Gestures Library) library, based on JavaScript and
JQuery, enables the support of multi-touch gesture interaction in HTML5-based doc-
uments. It is built on top of the hammer.js library, which is also based on JavaScript,
for controlling gestures on touch devices. It supports most of the single and multi-
touch gestures in the current mobile domain. Moreover, it is possible to define own
gestures in which the developer specifies the criteria for such a gesture, e.g., tapping
three fingers together.

The standard gestures supported by our library are: tap, double tap, hold, drag,
swipe, transform (pinch), rotation, flick, zoom and rotation together, and shake. Addi-
tional customized gestures (e.g., three-fingers tapping or multi-fingers swiping) are
also provided for using in some specific interaction context.

The MTGest library works as follows. The provided functions, corresponding to
each gesture, by the library are attached to a container representing a specific area in
the HTML document. The hammer.js is also attached to the same container to get the
touch events happen to this container. It is possible to attach more than one gesture to
the same container. Then the specific area in the HTML document, representing the
container, gives the interaction according to the attached gestures. Figure 1 provides
the overall architecture.

Touch Recognizer Web-App

JavaScript single-touch
hammer.js

HTML5-App

container.hammer.touches

My
LQ)
UC/)

JavaScript
touches.js
Hammer DB . @ ...

MTGest Library

Fig. 1. The overall architecture of the working of MTGest library

5 https://dvcs.w3.org/hg/webevents/raw-file/tip/

touchevents.html
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3 The User Evaluation Study

We performed a user evaluation study in a controlled environment, where the focus
was on comparing the multi-touch gesture interaction support provided through our
MTGest library and a native mobile platform. This was done through developing two
simple mobile apps, one was a mobile web app that provides the desired multi-touch
gestures through our MTGest library while the other one was a native i0S-based mo-
bile app that provided these gestures’ support through the native iOS library.

In the following, we provide details of the both developed apps (i.e., the mobile
web app and the iOS-based mobile app), the study goal and hypothesis, and the expe-
riment settings.

3.1  The Testing Apps

For testing the multi-touch gesture interaction support through our MTGest library
and a native mobile platform library, we developed two simple apps. The first one
was a mobile web app that used our MTGest library for providing the multi-touch
gesture interaction support, while the second one was an Apple iOS-based native
mobile app that provided the multi-touch gesture interaction support using the i10S
native gestures support. Both apps provided the same level of functionality and there
was no difference in the interface style or layout. This was done in order to avoid any
biasedness in the user evaluation study.

Eight touch- and multi-touch gestures, mostly the standard ones provided by most
of the current platforms, were implemented in both apps. These gestures include: tap,
double tap, hold, drag, swipe, flick, zoom (both zoom-in and zoom-out), and rotation.
In both apps, each gesture was covered up on one page where each page contained
several (up to four) containers having the implementation of the underlying gesture.
These containers were different in size and orientation with the same gesture support
in order to provide a variety of user interaction with the underlying gesture. When a
user interacts correctly with the container through the specified gesture, a feedback is
shown to the user for this correct interaction; otherwise nothing is shown. The user
can go to the next page for interacting with the next gesture any time or after finishing
the interaction with all containers on the current page.

In the cases of tap, double tap, and hold gestures, we implemented four containers
on each page having the underlying gesture support. Figure 2 (a) shows the screen-
shot of the native iOS-based app where the four containers have the double tap ges-
ture interaction. The green correct mark indicates that the user has successfully inte-
racted with this container with the double tap gesture. In the case of drag gesture,
there were two sets of containers. One set was showing a key while the other one was
showing the lock, as shown in Figure 2 (b). The container set showing the key shape
were linked with the drag gesture. When a use drags this key container to a lock con-
tainer, the app indicates a successful execution of the gesture.

In the case of swipe gesture, both apps provided four containers to provide the inte-
raction support in four directions (i.e., left-to-right, right-to-left, up-to-down, and
down-to-up), as shown in Figure 3 (a). The user needs to swipe the finger from the
tail to the head of the arrow in order to execute the swipe gesture interaction correctly.
In the case of flick gesture (here the flick gesture represents same as its representation
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in i0S), both apps provided one container that had the interaction of flick gesture in
four directions same as with swipe gesture case, as shown in Figure 3 (b). Finally, the
zoom and rotate gestures were implemented through two containers in both apps. In
the case of zoom gesture, both containers were different in size and it was up to users
to play with them for checking zoom-in and zoom-out interaction. While in the case
of rotate gesture, two figures were given in the containers up-side-down orientation
so that users can rotate them in normal orientation.

o 105 Simulator - Pad 110520 (118508)

Just make a doubletap! " Drag the keys in their locks!

’ -

(@) (b)

Fig. 2. (a) A screen-shot of the page with the double tap gesture support, (b) A screen-shot of
the page with the drag gesture support

Swipe in the direction of the arrow! Flick in the direction of the arrow!

_—
%
(@) (b)

Fig. 3. (a) Four directed arrows show the swipe gesture interaction in the same direction, (b) the
arrows inside the container represent the flick gesture interaction in the same direction
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3.2  Study Goal and Hypothesis

The goal of this user study was to analyze whether our developed MTGest library can
provide the touch- and multi-touch gestures interaction support in mobile web apps
compared to native mobile apps (here we target only the Apple iOS platform) from
the perspective of efficiency of such interaction support and user satisfaction level
with the underlying interaction. We compare the results from the following criteria:

e Efficiency: We check whether the underlying gesture worked accurately and the
interaction-response time was appropriate. In this regard, we collect subjects’ feed-
back for both apps and compare them.

e User Satisfaction: We collect subjects’ feedback for both apps and compare them.

Our hypothesis is that in term of efficiency and user satisfaction, our proposed
MTGest library provides approximately the same interaction support for the underly-
ing gestures compared to the native platform (i.e., the iOS platform) support.

3.3  The Experiment Settings

We performed the evaluation study with 12 subjects (3 females and 9 males). We
categorized them according to their experience with smart-devices and mobile plat-
forms. Four subjects were experienced users of Apple iOS platform, three subjects
were experienced of Android platform, while the remaining 6 subjects were without
much expertise in any specific mobile platform. The age of subjects were between 20
and 36 years old with a mean of 27.5.

The test devices for both developed apps (i.e., the mobile web app based on our
MTGest library and the iOS-based native mobile app) were Apple iPad 2 with the
same specifications. We installed the web app on one device while the native app on
the other device. Before start of the experiment, a brief tutorial was given to each
subject about the goal of the experiment. For each tested gesture, subjects were asked
first to try all the containers having the underlying gesture support on both devices.
Then they were asked to fill a closed-ended questionnaire form with a likert scale
from 1 to 5, where 1 meant strongly disagree and 5 meant strongly agree. There were
total four questions in this mode, same for both apps separately. The aim of first two
questions was to get the subjects’ feedback for checking the efficiency of the underly-
ing library (i.e., the MTGest library or the native iOS library) in providing the support
of the tested gesture interaction. The aim of the later two questions was to get the
subjects’ feedback for checking their satisfaction level with the tested gesture for both
apps. These four questions were:

1. The gesture works accurately.

2. The interaction-response time of the gesture was appropriate.

3. Overall, I am satisfied with this gesture facility through the underlying app (i.e.,
the web app or the iOS-based app).

4. In future, I would like to use this gesture through the underlying app (i.e., the web
app or the iOS-based app.
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At the end of closed-end questions for each gesture, subjects were also asked that
which mode (i.e., the web app or the native app) for this gesture is preferable by them
for the future usage, with the option of selecting one or both apps. In order to avoid
any biasedness towards the second testing app due to the learning effects, half of the
subjects were asked to test the web app first and then the iOS-based native app, while
the other half were asked to test the i0S-based app first and then the web app.

4 Results and Discussions

In this section, we provide the results of our conducted user evaluation study and
discuss them to check whether they reflect our initial hypothesis. After testing each
gesture on both apps, subjects were asked to answer the set of questions regarding the
tested gesture.
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Fig. 4. The subjects’ feedback for questions 1 and 2, collected through the likert-scale

Figure 4 provides the subjects’ feedback with regard to the first two questions for
each of the tested gesture on both apps. For the fap gesture, all subjects strongly
agreed for the accurately work of iOS-based app, while 9 subjects strongly agreed and
2 subjects just agreed for the web app. Regarding the second question, all subjects
strongly agreed for both apps except one that rated agreed for the web app. Results for
the double tap gestures are also nearly the same in both cases for both apps. This indi-
cates that our MTGest library provides the same level of efficiency for these two ges-
tures. The case of hold gesture is interested, as the subjects’ feedback for the web app
is far better than the i0OS-based app. We observed that i0S gives a too quick interac-
tion response, which the subjects might not expected from the hold gesture as they
were expecting a little wait for keeping hold the touch. That might be the reason for
this lower ranking by subjects. We also observed that subjects from the Android
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platform or non-experienced background were more reluctant in liking the iOS-based
app response, while they felt happy with the web app response. In the case of drag
gesture, subjects’ feedback was a bit better for the iOS-based app compared to the
web app. However, the difference was not very noticeable.

In the case of swipe gesture, subjects’ feedback about the web app was much high-
er than the i0OS-based app. We observed that again this is because the too quick re-
sponse in i0S, as even if the subject swiped just little more than half of the swipe area
length it started working. In the case of web app, it worked only when subjects swiped
the whole length of the swipe area. Due to this, subjects felt more confident in web
app compared to the iOS-based app. This is also indicated in the case of flick gesture,
where subjects’ feedback about the web app was slightly better than the iOS-based
app. In the case of zoom gesture, subjects rated iOS-based app better than the web
app. However, again the difference is not much significant. Finally, in the case of
rotate gesture, subjects rated quite higher the i0S-based app compared to the web
app. We observed that this is because of the image drawing performance issue in the
web app, as the image is drawn on the page each time the user moves the fingers for
the rotation.

Overall, the subjects’ feedback of the first two questions indicates that in most cas-
es the web app efficiency is either approximately same or higher than the iOS-based
app. While in some complex gestures such as zooming and rotation, it is behind the
10S-based app. However, this can be improved in future. In summary, we can say that
the overall feedback of these two questions confirm our hypothesis regarding the
efficiency of our developed MTGest library.
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Fig. 5. The subjects’ feedback for questions 3 and 4, collected through the likert-scale

Figure 5 provides the subjects’ feedback with regard to the later two questions
for each of the tested gesture on both apps. The aim of these two questions was to
check the user satisfaction level with the tested gesture interaction. For the tap
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gesture, the subjects’ feedback with the iOS-based app was a bit higher than the web
app. Moreover, 11 subjects preferred for using this gesture through iOS-based app
and 9 subjects also went for web app too. It is noted that in the case of future usage of
the tested gesture, subjects were free to choose one or both. In the case of double tap
gestures, subjects’ feedback was approximately the same. Also, 11 subjects choose
the 10S-based app while 10 mentioned the web app for the future usage of this ges-
ture. We observed that subjects’ feedback improved towards positive with the web
app after getting experience. In the case of hold gesture, the subjects’ feedback re-
flects the feedback of question 1 and 2, as their satisfaction trend for the web app was
quite higher than the i0OS-based app. They significantly also preferred the web app for
the future usage of this gesture (12 compared to 4). In the case of drag gesture, the
subjects’ feedback was a bit higher for the iOS-based app compared to the web app.
However, 10 subjects choose web app while 9 subjects choose iOS-based app for the
future usage of this gesture.

In the case of swipe gesture, subjects’ feedback about the web app was much high-
er than the i0S-based app. Moreover, 10 subjects preferred web app and 5 preferred
i0S for the future usage of this gesture. We observed that subjects’ feedback for the
web app was increased because the web app provided better the expected interaction
(i.e., working when user swipes through the whole area rather than just a part of it) in
this gesture implementation. The same also went for the flick gesture, where subjects’
feedback again was more towards the web app. However in this case, the subjects’
preference for the future usage of this gesture was nearly the same for both the web
app and the 10S-based app, i.e., 8 and 7. In the case of zoom gesture, subjects were a
bit higher satisfied with the i0S-based app than the web app. However, the difference
is unnoticeable. Finally, in the case of rotate gesture, subjects significantly rated
higher the i0OS-based app compared to the web app. Also, only 2 subjects preferred
the usage of this gesture in web app compared to 9 for the i0OS-based app.

Overall, the subjects’ feedback of the later two questions reflects their experience
with the tested gesture on both apps and approximately the same as of the previous
two questions. Except in the cases of drag or rotate gestures, the subjects’ feedback
about the later two closed-ended questions for the web app was either approximately
the same as for iOS-based app or higher than it. However, the subjects’ feedback
regarding their satisfaction level has many limitations. There are many factors (e.g.,
users’ expectations, curiosity, their interests in new experiences, their expertise with
gestures, their positive attitude towards Apple, their low expertise with MTGest li-
brary, etc.) that can affect users’ satisfaction level. In spite of this, results of the study
provide an indication that the web apps have the potential of providing an alternative
to the native mobile apps if they get support by multi-touch gestures libraries.
MTGest library is one of the candidate libraries; however, it needs to be improved for
providing better performance in the cases of some complex gestures (e.g., zoom and
rotation). Moreover, as the study targeted only the iOS platform and the tested scena-
rios were quite simple; hence, for generalizing the results there is a need to perform
detailed user evaluation studies with different platforms and with more complex inte-
raction scenarios.
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5 Conclusion

In this paper, we showed that the MTGest library is feasible to be used for multi-
touch gestures with regard to efficiency and user satisfaction. We performed an initial
evaluation study with 12 subjects comparing the MTGest library with the native i0S
gestures. A main issue of the study was to compare single multi-touch interaction in
an isolated scenario.

The results showed, that MTGest works accurately for tap, double tap, hold, drag,
swipe, flick without showing a significant difference to the native iOS gestures. In-
deed, swipe and flick gestures were rated significantly better. The rotation gesture
worked significantly more accurate on the native iOS implementation. In general, the
study indicates that in most cases the web app efficiency is either approximately same
or higher than the i0S-based app.

With regard to user satisfaction, the results of the study indicated not a clear result.
The subjects’ satisfaction level reflects their experience with the tested gesture on
both apps. In general, there is no significant difference between web based gestures
and native gestures. This leads us to the conclusion, that using MTGest is reasonable
although it needs to be improved for providing better performance in the cases of
some of the more complex gestures.

Future work will deal with the performance of a detailed user evaluation consider-
ing the usage of gestures within a concrete scenario and also do a comparison with
other mobile operating systems, such as Google Android or Microsoft Windows
Phone.
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Abstract. We present Harmonic Navigator (HN), a system for navigating and
exploring harmonic spaces extracted from large musical corpora, to be used in
music composition and performance. A harmonic space is a set of harmonies
(chords) and transitions between harmonies found in a music corpus. By navi-
gating this space, the user can derive new harmonic progressions, which have
correct voice leading. HN is controllable via a Kinect gesture interface. To aid
the user, the system also incorporates stochastic and evolutionary techniques.
HN offers for two primary modes of interaction: a harmonic transition selector,
called harmonic palette, which utilizes a GUI to navigate harmonic transitions
in a front-to-back manner; and a harmonic-flow scrubber, which presents a
global overview of a harmonic flow and allows the user to perform common
audio scrubbing and editing tasks. Both GUIs use colors to indicate harmonic
density based on Legname’s density degree theory.

Keywords: harmonic navigation, computer music, graphical user interface, ges-
ture language, Kinect sensor, harmonic space, music composition, music per-
formance.

1 Introduction

The use of computation in music composition and performance has emerged from
advancements in music technology, such as MIDI interface and synthesized instru-
ments, explorations in the use of mathematic and aleatoric principles in composition
by composers like Iannis Xenakis, Gyorgy Ligeti and John Cage [1,2], and the appli-
cation of artificial intelligence tools to music analysis and generation.

Several systems have emerged in recent decades to assist with music performance
and composition, including Cope’s EMI [3], Biles’ GenJam [4], and Pachet’s Conti-
nuator [5]. These are discussed in more detail in the next section. We present a novel
system that provides an innovative, gesture-driven user interface for navigating
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harmonic spaces of music from large corpora. This system combines stochastic and
evolutionary techniques and is an extension of Monterey Mirror, an interactive sys-
tem for melodic exploration [6].

Harmonic Navigator allows for user-guided generation of new harmonic (chord)
material from an existing musical corpus (currently we explore the Riemenschneider
collection of 371 J.S. Bach Chorales). This corpus is used to train a Markov model, a
stochastic model that represents the transition probabilities of chords in the
corpus. The Markov model is capable of rapidly generating material that is similar to
the provided corpus. In practice, the generated material often contains only short-
term similarities (event-to-event) and lacks long-term coherent structure. We utilize a
genetic algorithm to search the Markov model for high-quality material. Using
power-law metrics as a fitness measurement allows the genetic algorithm to select
material that is similar to target material, such as a user-provided melody or harmonic
flow [7-8].

Finally, the system allows saving of a generated chord progression, for further
processing and use in music composition projects.

This paper focuses on the user interface aspects of the Harmonic Navigator. The
remaining sections are organized as follows: section 2 presents related background
research; section 3 describes the target audience and presents a high-level task analy-
sis for the system; section 4 describes the user interface in more detail; section 5 pro-
vides an overview of the system architecture and major software components; finally,
section 6 discusses future work.

2 Background

Within the last 50 years there have been numerous applications of computing and
artificial intelligence in analysis, generation, composition, and performance of music.
While these results are sometimes judged by how well they model human intelligence
(strong Al), the real contribution lies in how they may enhance human creativity and
facilitate artistic exploration and expression.

GenJam generates jazz improvisations for real time performance [4]. GenJam
is trained using an interactive genetic algorithm, which determines fitness through
a human mentor. The trained population is used to “trade fours” with a human
performer.

The Corpus-Based Harmonic Progressions Generator [10] mixes stochastic selec-
tion via Markov models and user input to generate harmonic progressions in real time.
The user enters information to specify harmonic complexity and tension, as well as a
bass-line contour. This is used by the system to influence the selection of harmonies
from the trained Markov models, and to generate a harmonic progression.

Experiments in Music Intelligence (EMI) is the most comprehensive work in auto-
mated computer music generation to-date [3]. EMI analyzes a corpus of musical
works and trains Markov models. EMI can then automatically compose pieces in a
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style similar to the corpus. EMI works offline and has been used to generate numer-
ous pieces in the style of various composers.

Continuator is an interactive music performance system which accepts musical in-
put from a human performer. It completes musical material in the same style as the
user input [5]. Using a musical corpus, the system trains several Markov models.
Human performer input is matched against the various Markov models until a match
is found. The corresponding Markov model is used to generate a musical continua-
tion. This makes the system sometimes generate perfect reproductions of earlier mu-
sical input, and other times less accurate repetitions (introducing interesting varia-
tions).

NEvMuse [11] is an experiment in using genetic programming to evolve music
pieces based on examples of desirable pieces. NEvMuse uses power-law metrics as
fitness functions. In an evaluation experiment, these metrics were able to predict the
popularity of 2000 musical pieces with 90.7% accuracy. The system was used to au-
tonomously “compose” variations of J.S. Bach’s Invention #13 in A minor (BWV
784). Similarly to NevMuse, the Navigator’s genetic algorithm uses power-law me-
trics to determine fitness.

Monterey Mirror [6] uses Markov models, genetic algorithms and power-law me-
trics to generate musical phrases in real-time, based on musical input from a human
performer. Markov models are used to capture short-term correlations in melodic
material. The genetic algorithm is then used to explore the space of probable note
combinations, as captured by the Markov model, in search of novel, yet similar me-
lodic material. Similarity is measured using power-law metrics, which capture long-
term correlations in melodic material, i.e., the statistical balance between expectation
and surprise across various musical parameters [8].

Harmonic Navigator is implemented in Jython and Java using custom GUI, MIDI
and OSC libraries. It incorporates computational elements from NevMuse and Monte-
rey Mirror to allow human performers to navigate the space of musical harmonies
using a gesture-based interface [12].

In this paper, we present a new user interface for the Harmonic Navigator that al-
lows composers and performers to create new music by modifying musical output of a
generative system in real-time.

3 Target Audience

The Harmonic Navigator (HN) is a gesture-based interactive system for exploring
harmonic spaces of distinct (or composite) musical styles (see Fig. 1). Also, it may
be used to generate music in real-time, in collaboration with human performers.
The UI has been designed for users with, at least, basic training in functional
tonality (first-year college harmony, or equivalent). However, as we collect usability
feedback from more users, this Ul may evolve (e.g., to provide more or, even, less
information).
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Fig. 1. One of the authors interacting with the system

3.1  Music Composers

HN can be incorporated by music composers, in a computer-aided composition con-
text. In particular, a composer may use it to explore compositional ideas in harmonic
spaces derived from various musical corpora. These can consist of pre-existing libra-
ries of established musical (and therefore harmonic) styles, or could be a collection of
the composer’s previous own body of work. By employing these corpora, traditional
harmonies may be derived and be evaluated on a consonance/dissonance scale [14].
More dense harmonies may also be explored, and may be similarly evaluated on a
consonance/dissonance scale [9]. In order for this to work well, the music corpora
loaded to the system must contain enough musical pieces (for harmonic variety) and
should be stylistically consistent (e.g., consist only of Baroque pieces, or Impression-
ist pieces). By combining two stylistically inconsistent groups of pieces, this would
create a rather disjoint harmonic space, consisting of two mostly isolated "islands"
(although it would be possible to "travel" from one to the other, via, some common
basic harmonies, which may appear in pieces from both styles, but function in differ-
ent ways in each).

3.2  Music Educators

HN may also be used to enhance traditional classroom pedagogy in tonal harmony.
Professors may engage students through tonal harmony games implemented on an
HN platform. “Players” could interactively assign appropriate tonal function and
hierarchy to each important pitch in a melody: tonic, predominant or dominant [13],
and then select from a variety of available chords in various inversions. In the end,
users may gain a much deeper appreciation for harmonic functions quicker and retain
it for a much longer time.
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It could also be used to explore pitch-set generated harmony or 12-tone and serial har-
monic styles in a more advanced 20" century harmony course. In this context, HN will
provide even more insight to the student, as it would be able to offer suggestions that take
into account pitch usage and cycling, in addition to the harmonic spacing and density.

3.3  Music Performers

Finally, HN may be used in musical performances. Musicians and non-musicians
(e.g., members of the audience, or passers-by), may utilize MIDI and OSC controllers
(e.g., iPhone TouchOSC client), as well as traditional instruments, to create harmonic
contexts for improvised performances. Another related possibility is to com-
pose/design musical games (e.g., the system could be driven through audience partic-
ipation) to engage, inspire, and possibly challenge musicians in various performance
environments, or to allow non-musicians to create musical performances in unconven-
tional settings (such as art galleries with HN sound installations).

4 User Interface

The Harmonic Navigator offers two primary modes of interaction: a gesture-based
harmonic transition selector, called the harmonic palette, and a harmonic-flow scrub-
ber, which presents a global view of a flow being generated. The first UI provides a
tree-level view, and thus allows for localized control and inter-harmony navigation.
The second UI provides a forest-level view, and supports scrubbing and editing ac-
tions. Herein we focus mainly on scrubbing actions (such as playback in arbitrary
speed). Both views use colors to indicate harmonic density calculated using Leg-
name’s density degree theory [9].

4.1 The Harmonic-Palette View

The Harmonic-Palette View presents available harmonies as a dynamic navigable
space. It utilizes a 3D front-to-back approach. The interface presents users with a
harmonic palette, from which to choose a follow-up harmony (see Fig. 2). The
palette contains a number of circles, each representing a harmony. The current har-
mony is located in the center of the display. Follow-up harmonies are determined by
the current harmony (as dictated by the training corpus), and are placed in a clockwise
fashion, around a clock face labeled with the 12 tones. Pieces are normalized
to the tonic, so pitch C is always positioned at 0. We use vertically stacked numbers
to denote harmonic intervals. This is consistent with the vertical placement of
notes on a staff. We have considered using Western musical notation, however, this
representation provides more direct information, i.e., users can see the intervals right
away - they do not have to derive them from the musical notation.

Moreover, the size (radii) of follow-up circle-harmonies corresponds to transition
probabilities from the current harmony (the larger, the more probable).

In the case of multiple follow-up harmonies having the same root pitch (e.g., see E
and A root pitches, in Fig. 2, they are arranged around a smaller clock face. The size
(radius) of this clock face corresponds to the sum of the enclosed harmonies’ proba-
bilities. Hovering the cursor over this clock face zooms in to display a larger version
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of the clock face, which presents more information about the contained harmonies,
and allows the user to select one. These harmonies are arranged inside the smaller
clock face based on the second pitch in the harmony.

When dealing with multiple harmonies that have the same second pitch, these har-
monies will also be placed inside an even smaller clock. This hierarchical grouping
continues until all harmonies can be represented individually.

The HN engine is capable of making recommendations for what it considers possi-
bly aesthetic choices for follow-up harmonies. This is accomplished via a genetic
algorithm which runs continuously (in the background) to suggest interesting harmon-
ic flows. The follow-up harmony (or harmonies) selected by the genetic algorithm is
(are) identified by a special bright ring around a suggested harmony. Since the genet-
ic algorithm is running continuously, it is possible for the suggested harmony to
change (by the genetic algorithm discovering a better choice) as the user is contem-
plating.

Circle-harmonies are assigned color based on intervallic tension. Since intervallic
tension is already visible on the interface, through the displayed harmonic intervals,
the assigned color representation is redundant. This emphasizes the existing informa-
tion, and makes it more visible to non-experts.

Intervallic tension of a chord is determined by two factors. One is the intervallic
content of the chord - a chord with more tense intervals has a higher tension factor,
and thus sounds more dissonant. The relaxation vs. tension of the chord is mapped to
cool vs. warm colors on a color wheel, i.e., blues are cool (relaxed) and reds or yel-
lows are warm (tense).

Fig. 2. The harmonic palette interface is used to select a follow-up harmony. The current har-
mony is in the center. Follow-up harmonies are arranged in a clockwise fashion, around a
clock face corresponding to the 12 tones. Numbers represent harmonic intervals in a chord.
Color (here reproduced in grayscale) denotes chord harmonic density.
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4.2  Gesture Language for the Harmonic Palette

The Harmonic Palette UI has been designed to support three main user tasks for har-
monic navigation. These are:

1. “Explore the current harmony palette”;
2. “Select a follow-up harmony”; and
3. “Backtrack” (i.e., unselect current harmony and return to the previous palette).

Our current prototype is implemented using the Kuatro system. The Kuatro system is
a new architecture for supporting a multitude of sensors and wireless controllers for
audio/visual interactive installations. The main objective behind its design is to hide
the complexities of communicating with such devices, and allow the UI developer to
focus on the higher-level aspects of designing an effective Ul for audio/visual control
of a computer music application. The Kuatro architecture will be reported elsewhere.

We have designed a Kinect-based gesture language to implement the above user
tasks. (We are also exploring gesture languages for other controllers, such as the Leap
Motion sensor and OSC control via smartphones.) The Kinect gesture language utiliz-
es only one hand via three gestures (freeing the second hand for other activities, such
as interacting with MIDI and OSC controllers):

e Hand Movement in the X-Y Plane — Moving the hand left-to-right and up-to-
down moves the cursor around the display. This action supports exploration of the
current harmony palette (e.g., hovering over a secondary clock face to enlarge it).

e Hand Push — Pushing towards a follow-up harmony selects it. This moves the
selected circle-harmony to the center, begins sounding the corresponding harmony
(via MIDI), and displays the next harmony palette. This action supports moving
forward in the harmonic space.

e Hand Wave — Waving over the current circle-harmony (center of the display),
stops sounding it, and returns to the previous harmonic palette (to possibly try
something else). This action supports moving backward in the harmonic space.

In particular, moving backwards allows the user to step back to previous harmony
selection points, and try other alternatives. While this may seem peculiar during live
performance, it may be utilized creatively (not unlike sound looping, and/or “scrat-
ching” by DJs). On the other hand, this is quite natural for composition tasks (i.e.,
“should I use this harmony or that?” or ‘“what harmonic choices would I have here,
had I gone to a relative minor three chords ago?”).

4.3 Harmonic-Flow View

The Harmonic-Flow View presents a global, forest-level view of a harmonic flow gen-
erated by the user through the harmonic palette UI (or automatically by the harmonic
generator engine). Through this view, the user may explore and update the different
harmonies comprising the harmonic flow as they desire. As seen in Fig. 3, harmonies
are placed horizontally across the display. For each harmony being selected, alternate
harmonies, as determined by the Markov model, are displayed vertically.
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Fig. 3. The harmonic-flow scrubber interface is used to view a complete harmonic flow, as
constructed through the lower-level interface (see Fig. 2). The harmonic flow appears on the
horizontal. Individual harmonies are displayed as rectangles. Hovering over a rectangle
presents alternative harmonies (on the vertical). Color, again, denotes chord harmonic density.

4.4  Gesture Language for the Harmonic Flow
The Harmonic Flow Ul supports three main user tasks. These are:

1. “Forward and backward scrubbing”;
2. “Explore alternative harmonies”; and
3. “Select a new harmony”.

As mentioned earlier, through the Kuatro architecture, users may utilize various ges-
ture and motion controllers to interact with the UI. Herein, we present a Kinect-based
language for users to control the system via their location in a room (many other pos-
sibilities exist for other controllers and sensors). By viewing the room from above,
we use an X-Y coordinate system to track a user through the room and map their loca-
tion to specific tasks.

¢ Movement along the x-axis — The x-axis runs parallel to the display and controls
the scrubbing capabilities. By moving parallel to the display, the user identifies
which harmonies are played across the flow. The tempo of scrubbing is controlled
by how fast or slow the user is moving in this direction.

e Movement along the y-axis — The y-axis is perpendicular to the display. By mov-
ing along the y-axis, the user plays the harmonies presented in the vertical list of
harmonic alternatives. As the user moves closer to the display, they play harmonies
upward in the transition list; these are harmonies with increasing tension. As the
user moves away from the display, they play harmonies downward in the transition
list; these are harmonies with decreasing tension.

A user selects an alternative harmony by beginning to move again across the x-axis.
Also, selecting an alternative harmony triggers HN to regenerate the flow based on
their new selection, if opted by the user, via the genetic algorithm. The genetic
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algorithm and the corresponding automated generation of harmonic flows is presented
extensively in [15].

5 System Architecture

The Harmonic Navigator system uses a Model-View-Controller architecture based
on the Kuatro system. This reduces complexity from the UI design and implementa-
tion, while allowing for a multitude of controllers, such as a mouse, a Kinect, and
smartphones using OSC clients (e.g., TouchOSC). In Fig. 4, the View in this archi-
tecture is the UI, the controller is the Gesture Engine, and the Model is the Harmonic
Generator. To support a wide range of controllers we have implemented a protocol
for the Gesture Engine to communicate via OSC. (This will be presented in a future
publication.)

User Interface

Harmonic
Generator

Markov
| et rgne

Fig. 4. Harmonic Navigator architecture using a Microsoft Kinect

Gesture Engine

6 Discussion and Future Work

The Harmonic Navigator is a powerful tool for exploring harmonic spaces in a direct,
physical, and accessible manner. As new gesture control devices are introduced, its
power will only increase. The possibility of allowing non-expert musically users to
experience harmonic flows in such an intimate manner presents various possibilities
for further work. We are currently exploring an application that will introduce the
novice theory student to the notion of tonal function in common practice music. The
system attaches a T, PD or D label to each suggested chord in the harmonic flow
scrubber, and the user can quickly develop their listening ability to recognize tonal
function and navigate harmonically through a musical phrase using harmonic implica-
tions alone. They can then harmonize a given melody or bass line in a more musically
intelligent way by selecting chords with the appropriate function label among the ones
suggested by HN, thus gaining a deeper understanding of tonal harmony. This deeper
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understanding would normally take several years of study, as well as keyboard profi-
ciency. This type of learning could be further enhanced by creating a physical space
larger than the user, so that he can navigate through it by walking around the space,
“scrubbing” through the functional harmonic space, as possible via the Kuatro archi-
tecture discussed above.

We have presented Harmonic Navigator, a system for navigating and exploring
harmonic spaces extracted from large musical corpora, to be used in music composi-
tion and performance. This system is currently being evaluated with actual users, in
order to improve its usability and possibly improve its UL

In closing, video demos of the system are available here:

e A demo of the harmonic palette Ul being controlled via a Kinect -
http://goo.gl/ni7ZVl.
¢ A demo of the harmonic flow view - http://goo.gl/hpXk2G.
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Abstract. A large multi-touch tabletop has remote areas that the users
might not touch by their hands. This forces users to move around the
tabletop. In this paper, we present a novel remote control technique
which we call HandyScope. This technique allows users to manipulate
those remote areas. Moreover, users can move an object between the
nearby area and the remote areas using a widget. In addition, users
can precisely point a remote area quickly because this system includes
our proposed control-display ratio changing system. To evaluate the per-
formance of HandyScope, we compared HandyScope with direct touch
manipulation. The results show that HandyScope is significantly faster
in selection.

Keywords: bimanual interaction, multi-touch, gesture, dynamic control-
display gain, pointing, target acquisition, pull-out.

1 Introduction

A large multi-touch tabletop allows users to surround the tabletop and touch
the tabletop from their respective positions. However, it has remote areas that
users might not touch by their hands; for example, touching a distant object
displayed on the opposite side of the tabletop is difficult due to the large size of
the touch screen. This forces users to move around the tabletop.

To solve this problem, we present a novel remote control technique which we
call HandyScope (Figure 1). This technique allows users to manipulate remote

(@) (b) (©
pulledfvectorharldler %
} pulling-finger } \

Fig. 1. HandyScope allows users to point and manipulate the remote area. a) When
users put two fingers, and b) drag their finger to cross the segment between the two
fingers, then ¢) HandyScope is activated.

base-segment

base-fingers

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 69-80, 2014.
© Springer International Publishing Switzerland 2014
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areas (e.g., move, rotate, and resize distant objects) and move an object between
the nearby area and the remote areas. In addition, users can precisely point a
remote area quickly by using the widget because this system includes the control-
display (C-D) ratio changing system which we have already proposed [21].

2 Related Work

Remote pointing techniques have been intensively investigated to facilitate es-
pecially pointing on large wall displays. Such techniques are device-based point-
ing [6,14], gesture-based pointing [19], and gaze-based pointing [8]. In contrast,
our technique allows users to point remote areas on tabletops, which adopt a
bimanual gesture. Therefore, we focus on pointing techniques for tabletops and
studies of bimanual interaction.

Pointing Techniques for Tabletops

Parker et al. used the stylus tip’s shadow to point at a remote position [15].
In the work of Banerjee et al. [3], users could point at a remote position on
tabletops and dynamically change C-D ratio using one hand while performing a
pointing manipulation with the other hand. The above techniques required addi-
tional devices that obtain the position of users’ hands to realize direct-pointing.
Bartindale et al. [5] developed an onscreen mouse for multi-touch tabletops that
allows users to point at a remote position, similar to a conventional physical
mouse. However, this technique required to use tabletops that allow for a mea-
surement of the area of hand’s contact. In contrast, our technique can be applied
to tabletops that detect multi-touch points without additional devices and recog-
nizing the shape of hands. Matejka et al. [13] also developed an onscreen mouse,
while its activation method is still open in the literature.

I-Grabber [1] is an onscreen widget controlled by bimanual multi-touch inter-
action. Our technique is also controlled by using bimanual multi-touch interac-
tion. However, our technique allows users to change the C-D ratio and to use
only a single multi-touch gesture from activation to pointing. Therefore, users
can point precisely and quickly.

Bimanual Interaction

There was some research on bimanual interaction such as 3D operation [16,20],
modeling [2,10], and precise selection [7] . In contrast, our technique allows users
to point remote areas using bimanual interaction.

Tokoro et al. presented a pointing technique that utilized two acceleration
sensors, and postures of both hands pointing at a remote position [17]. Fur-
thermore, Malik et al. developed a bimanual pointing technique by using image
processing [12]. In contrast with these techniques, our technique is performed by
using touch based gestures.
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3 HandyScope

HandyScope allows users to manipulate remote areas using a circular widget.
The widget is composed of two parts, a scope and a handler. The scope is sent
to remote areas to select an area manipulated; the handler is used to manipulate
the remote area by users. The scope area is displayed in the handler; and all
events onto the handler area are sent to the scope area. Therefore, users can
manipulate (e.g., move, rotate, and resize) the remote objects within the scope,
using the handler. Moreover, this technique uses pull-out, a bimanual multi-touch
gesture [22]. This gesture allows multiple users to, without conflicting with other
touch gestures, simultaneously manipulate remote areas. Below we describe the
interaction of HandyScope and its advantages.

3.1 Activation and Control Technique

Figure 1 shows the procedure of HandyScope. Users put two fingers of their
non-dominant hand (base-fingers) on a tabletop as shown in Figure la. When
users drag a finger of their dominant hand (pulling-finger) to cross the segment
between the base-fingers (base-segment) as shown in Figure 1b, a circle (scope)
is displayed on the ray between the midpoint of the base-segment; another circle
(handler) is displayed around the pulling-finger as shown in Figure lc. If users
arrange the pulled-vector, the scope position is updated according to the change.
Users can quit control anytime by detaching both of the base-fingers from the
tabletop.

3.2 Deciding the Position of Scope with Dynamic C-D Ratio

Suppose that P;(z,y) and k; are the i-th scope position and the i-th C-D ratio
after ¢ frames have passed since users placed their base-fingers on the tabletop
as shown in Figure 2, respectively. Then P; and k; are given by the following
formulas:

Pi=Go+ Y KAV,

J

AV, = Vi ~ Vi,
1S3
ki:ax . 1
S0l M)

So and S; are the length of base-segment when base-fingers were placed on the
tabletop, and the length of i-th base-segment, respectively. Then, the C-D ratio
k; is calculated as the ratio of the two lengths with o which is a constant. Fur-
thermore, Gy is the midpoint of base-segment, and V; is the pulled-vector from
G, to the pulling-finger. Then P; is calculated using k; and AV; (the difference
of V;) caused by moving dominant or non-dominant hand. Both P; and k; are
calculated in each frame.
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Fig.2. Moving the circular widget using a simple gesture

Cc-D ratio% @

Large » Small
Fig. 3. Dynamic C-D ratio according to the length of base-segment

As (1) shows, k;, the C-D ratio in our technique, changes depending on the
length of the base-segment. Figure 3 shows the relation between the C-D ratio
and the length of base-segment. When users pinch out the base-fingers, k; be-
comes large. Similarly, when users pinch in the base-fingers, k; becomes small.
This design allows users to selectively perform rough control with a large C-D
ratio or precise control with a small C-D ratio, because they can point while con-
trolling the C-D ratio simultaneously. For example, users can move scope roughly
and quickly with a large C-D ratio, then they can move the scope precisely and
slowly with a small C-D ratio as shown in Figure 4.

3.3 Remote Manipulation Using the Widget

Users can manipulate remote objects using the handler, e.g., resize the remote
objects (Figure 5a) and rotate the remote objects (Figure 5b). To achieve this,
the scope area is displayed in the handler and all events onto the handler area are
sent to the scope area. Therefore, users can manipulate remote objects without
walking to remote areas or bringing remote objects to nearby area.

()

Fig. 4. Usage of dynamic C-D ratio. Users a) roughly point at a distant position quickly
with a large C-D ratio, and then b) precisely point at an object with a small C-D ratio.
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Fig. 5. Manipulating remote objects from nearby area: a) resizing the remote objects
and b) rotating the remote objects

Fig. 6. Transferring objects between a nearby area and a remote area, namely, a) from
the remote area to the nearby area and b) from the nearby area to the remote area

3.4 Transferring Objects between Nearby and Remote Area

If users select a remote object in the handler and drag it outside the handler,
the remote object is transferred to the nearby area as shown in Figure 6a. Cor-
respondingly, if users select a nearby object and drag it into the handler, the
nearby object is transferred to the remote area as shown in Figure 6b. In this
way, users can transfer the objects quickly between the nearby and the remote
area.

3.5 Adjusting the Widget

Users can adjust the widget by interacting with the edge of the handler. To move
the circular widget again to manipulate other remote areas, users drag the edge
of the handler as shown in Figure 7. By pinching in and out on the edge of the
handler, users can resize the circular widget as shown in Figure 8. In this way,
users can manipulate larger objects at the remote areas.

3.6 The Advantages of HandyScope

HandyScope allows users to manipulate remote areas. This is similar to Fris-
bee [11] or Dynamic Portals [18]. However, Frisbee requires users to determine
the remote area in advance; Dynamic Portals needs collaborator(s) to select the
remote area. In contrast, HandyScope allows users to activate it from any po-
sition and decide the remote area quickly by dynamically changing C-D ratio.
Furthermore, it is possible adjust the position and the size again.
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Fig. 7. Moving the circular widget again Fig. 8. Resizing the circular widget

4 Evaluation

We conducted experiment to measure the performance of HandyScope. In this
experiment, we compared HandyScope (HandyScope condition) with the exist-
ing direct touch (Touch condition) in terms of typical three manipulations on
tabletops. These three manipulations were Selecting, Rotating, and Resizing.

4.1 Participants and Evaluation Environment

Ten undergraduate and graduate students ranging in age from 20 to 24 (M=22.8,
SD=0.5) participated in this experiment. One of them was left-handed. All of
them had never used HandyScope.

We show the evaluation environment in Figure 9. As the tabletop in this
evaluation, we used a 1470 mm x 80 mm 60-inch display (PDP-607CMX!) with
a multi-touch function by attaching a multi-touch frame (PQ Lab, Multi-Touch
G3?). We adjusted the height of the tabletop to 93 cm. This height was selected
to be consistent to those of the tabletops in studies on tabletops such as [4,9,23],
ranging from 91 cm to 105 cm. We assigned 12 to « of (1) in Section 3.2, so that
participants did not need to change the C-D too frequently in this environment.

4.2 Task

We asked the participants to perform Selecting task, Rotating task, and Re-
sizing task, in this order. The design of these tasks follows the ones used in
evaluating the pointing technique for tabletops by Banerjee et al. [3]. We asked
them to complete a practice task before performing the real ones. The amount of
the practice task was 1/4 of the real task. We divided the participants into two
groups to counterbalance the order effect between two technique conditions. One
group performed the Touch condition first, and the other performed HandyScope
condition first. Participants could use each hand freely in this experiment. We
asked them to answer a questionnaire after having finished all tasks. The ex-
periment lasted approximately one and a half hour per participant, including

! http://pioneer. jp/biz/karte/PDP-607CMX . html
2 http://multitouch.com/product.html
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Fig. 9. Experimental environment Fig.10. Positions of start point
and target objects

answering the questionnaire. A participant was paid 1640 JPY (approximately
16 USD) for her /his participation.

4.3 Selecting Task

We asked the participants to select a target object displayed at some position.
First, a participant stand at the center of one short side of the tabletop (the
spot marked by black tape as shown in Figure 9) before each trial. From this
position, she/he selected a target object displayed at some position. Figure 10
illustrates the position of both the start point and the target objects displayed
on the tabletop. The start point and a target object were displayed before each
trial.

In HandyScope condition, a participant started the Selecting task by starting
HandyScope on the start point. Then, she/he moved the scope to the target ob-
ject, and tapped it. When the target object was tapped, the trial was completed
and a beep was played. In Touch condition, a participant started the Selecting
task by tapping the start point. Then, she/he moved (i.e., walked or ran) to
the position where she/he could touch the target object, and tapped the target
object.

In this task, independent variables were: target distance (900 and 1100 pixels,
i.e. approximately 922 and 1127 mm, respectively), target angle (-15, 0, and 15
degree), target size (40, 60, and 80 pixels, i.e. approximately 41, 61, and 82 mm,
respectively), and technique (HandyScope and direct touch).
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Fig. 11. Mean of the trial-times for each task

Each participant performed 3 trials in each combination of factors, thus per-
formed 108 (2 x 3 x 3 x 2 x 3) trials in total. Independent variables for each
technique were presented in randomized order.

Results. We measured the time to complete a trial (trial-time). The left two
bars in Figure 11 show the mean of the trial-times with each technique. The
mean time was 1942.6 ms in Touch condition, and was 1715.2 ms in HandyScope
condition. The result of t-test between the two mean times was t(9)=2.72,
p=-011<.050. This result suggests that selecting in HandyScope condition was
significantly faster than that in Touch condition.

4.4 Rotating Task

We asked the participants to rotate an object to fit a dock displayed at some
position. The object was displayed at the same position as the dock, while its
angle was different, to make the participants just rotate the object in this task.
The start point, the positions, and the action to start the task were the same as
those of Selecting task.

In HandyScope condition, a participant rotated an object to fit the dock by
HandyScope. If the angle of the object and the dock were the same (i.e., within
+ 5 degree), the color of the object’s border became red. In this condition,
when she/he finished manipulation, then one trial was completed and a beep
was played. In Touch condition, she/he moved to a position where she/he could
touch the target object, and then rotated the target object.

In this task, independent variables were: target distance (900 and 1100 pix-
els, i.e. approximately 922 and 1127 mm, respectively), target angle (-15, 0, and
15 degree), dock size (60 and 80 pixels, i.e. approximately 61 and 82 mm, re-
spectively), rotate angle (-45 and 45 degree), and technique (HandyScope and
Touch). Each participant performed 2 trials in each combination of factors, thus
performed 96 (2 x 3 x 2 x 2 x 2 x 2) trials in total. Independent variables for
each technique were presented in randomized order.
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Results. The middle two bars in Figure 11 show the mean of the trial-times
with each technique. The mean time was 4520.4 ms in Touch condition, and
4443.5 ms in HandyScope condition. The result of t-test between the two mean
times was t(9)=.267, p=.397>.050. There was no significant difference in mean
time between each technique.

4.5 Resizing Task

We asked the participants to resize an object to fit the dock displayed at some
position. The object was displayed at the same position as the dock, while its
size was different. The start point, the positions, and the action to start the task
were the same of those of Selecting task.

In HandyScope condition, a participant resized an object to fit the dock by
HandyScope. If the size of the object and the dock were same (i.e., within +
5 pixel), the color of the object’s border became red. In this condition, when
she/he finished the manipulation, then one trial was completed and a beep was
played. In Touch condition, she/he moved to a position where she/he could touch
the target object, and then resized a target object.

In this task, independent variables were: target distance (900 and 1100 pixels,
i.e. approximately 922 and 1127 mm, respectively), target angle (-15, 0, and 15
degree), dock size (60 and 80 pixels, i.e. approximately 61 mm and 82, respec-
tively), resize direction (expanding and decreasing), and technique (HandyScope
and Touch). Each participant performed 2 trials in each combination of factors,
thus performed 96 (2 x 3 X 2 x 2 x 2 x 2) trials in total. Independent variables
for each technique were presented in randomized order.

Results. The right two bars in Figure 11 show the mean of the trial-times with
each technique. The mean time was 4277.9 ms in Touch condition, and 4438.2
ms in HandyScope condition. The result of t-test between the two mean time
was £(9)=-.935, p=.187>.050. There was no significant difference in mean time
between each technique.

4.6 Consideration

The mean of the trial-times in HandyScope condition was significantly faster in
Selecting task. However, there was no significant difference between techniques in
Rotating task and Resizing task. From these results, HandyScope is considered
to be useful for selecting a remote area.

In contrast, there was no significant difference between techniques in Rotat-
ing task and Resizing task. The possible cause of this derives from the fact
that restarting HandyScope took time. In this experiment, there were situations
where the participants accidentally detached their fingers before finishing the
trial. In this case, they needed extra time to restart HandyScope to manipulate
again. In contrast, in Touch condition, they needed little time to manipulate
again in such situations, because they had already moved near the target object.
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Because of this, we considered that HandyScope took time to Rotating task and
Resizing task. To avoid accidentally quitting HandyScope, we modify the design
of HandyScope to remain activated even if users detach their base-fingers. In
this case, we will place an additional button for quitting HandyScope around
the edge of the handler; users push this button to quit HandyScope instead of
detaching their base-fingers.

4.7 Questionnaire

Figure 12 shows the results of questionnaire asking a favorite technique by task.

In Selecting task, all of participants preferred HandyScope. In addition, in
Resizing task, eight out of ten participants preferred HandyScope. As the reason
of these results, all of these participants said that they could manipulate remote
objects without moving, by using HandyScope.

In Rotating task, five participants preferred HandyScope; other five partici-
pants preferred direct touch. Two of the participants said that they prefer direct
touch because they could use both hands. In addition, two of the other partic-
ipants said that they had some trouble in keeping the base-fingers touched on
the tabletop. Another of the participants also commented that he had serious
troubles in restarting HandyScope when he missed the trial.

In Resizing task, two of the participants who preferred direct touch also com-
mented that they had troubles in keeping their base-fingers on the tabletop.

5 Discussion

To investigate whether multiple users simultaneously manipulate remote areas
without conflict with other touch gestures using HandyScope, we conducted a
collaborative task which arranged cluttered photos as shown in Figure 13. In this
task, twenty photos were displayed on the tabletop. The size, angle, and location
of the photos were random. Two of the authors arranged the photos cooperating
with each other. We stood around the tabletop and did not walk. If we could
touch the photos, we manipulated the photos using direct touch. In contrast, if
we could not touch the photos, we manipulated the photos using HandyScope.
We continued this task five times.
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Fig. 13. Collaborative work of multiple users

As a result of this task, we did not observe any accidental activation of
HandyScope. Therefore, HandyScope has potential for avoiding conflict with
other touch gestures. As future work, we would like to perform a detailed eval-
uation of collaborative work using HandyScope.

6 Conclusion

We designed and implemented a remote control technique, HandyScope. The
technique allows users to manipulate remote areas that users might not touch
with their hands. In addition, users can move an object between the nearby
area and the remote areas using the widget. The evaluation using the prototype
revealed that HandyScope is a useful technique for selecting a remote area.
Moreover, the questionnaire results showed that HandyScope is liked by users.
In our future work, we plan to investigate the performance of transferring the
objects using HandyScope. Moreover, we would like to use HandyScope on large
wall multi-touch displays.
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Comparing Hand Gesture Vocabularies for HCI
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Goethe-University Frankfurt am Main

Abstract HCI systems are often equipped with gestural interfaces draw-
ing on a predefined set of admitted gestures. We provide an assessment
of the fitness of such gesture vocabularies in terms of their learnability
and naturalness. This is done by example of rivaling gesture vocabularies
of the museum information system WikiNect. In this way, we do not only
provide a procedure for evaluating gesture vocabularies, but additionally
contribute to design criteria to be followed by the gestures.

1 Motivation

Hand gestures are of great interest for HCI applications, since they are consid-
ered to help “to develop more natural and efficient human-computer interfaces.”
[1] There are two kinds of prevalent HCI gestures: manipulators and semaphores
[2]. Manipulators are actions that manipulate some entity provided by the dis-
play — for instance, pushing a button or moving a slider. Therefore, manipulators
are largely driven by the displayed entity and its functionality. This “tight re-
lationship between the actual movements of the gesturing hand/arm with the
entity being manipulated” [2, p. 172] is not a defining feature of semaphores.
Rather, semaphoric gestures are hand /arm forms that are organized as a prede-
fined, often stylized vocabulary, or lexicon [2, p. 173]. Such gesture vocabularies
can be designed in a better or worse way. Semaphores are considered to be bet-
ter, if they are more “intuitive” or “motivated”. Motivatedness is accomplished
if the form (hand shape, movement trajectory) of a gesture “imitates the refer-
ent by selecting one or more of its visually perceivable features” [3, 49]. In other
words: intuitive gestures resemble their object, they are iconic. However, it is
well known now that iconic gestures do not signify or refer on their own. Rather,
other means are required for establishing signification, for instance, a conven-
tional one [4]. Conventionality involves arbitrariness that has to be mastered by
learning. Of course, users favor gesture vocabularies that can be learned easily
[5, p. 33]. Accordingly, a second dimension for evaluating sets of semaphores has
to be their learnability.

Both lines of assessing the fitness of gesture vocabularies have been pursued
in previous research by different methodologies, for example:

— the naturalness of gesture vocabularies has been investigated by [6] by means
of user studies;

— the learnability of semaphores (including an empirically specified intuitive-
ness index) have been studied as an analytical optimization problem by [7].

M. Kurosu (Ed.): Human-Computer Interaction, Part IT, HCII 2014, LNCS 8511, pp. 81-92, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. WikiNect application scenario: rating Fig. 2. Representation of Checkmark
of an image (taken from [9]) gesture from Table 3

The latter work deals with static hand configurations from one robotic arm
control vocabulary. The present paper further develops optimization procedures
for gesture vocabularies, mainly in two respects:

1. firstly, in addition to static gesture, also dynamic gestures are accounted for;
2. secondly, evaluation is not only based on one gesture vocabulary, but is
carried out as a comparison between different sets of semaphores.

The testing environment for the comparison of gesture vocabularies is the Wiki-
Nect system [8] (see also www.hucompute.org/ressourcen/wikinect). Wiki-
Nect is a platform for the gestural writing of wikis in the context of museums.
Using the Kinect technology, WikiNect allows for a non-contact, gesture-based
segmentation, linkage, attribution and rating of (segments of) images. As an on-
site museum information system, WikiNect aims at enabling museum visitors
to describe, evaluate and comment images of the corresponding exhibition. In
Figure 1 (taken from [9]) a typical WikiNect application scenario is given where
a user selects an image by means of a pointing gesture and appreciates it using
a semaphoric, codified “OK” gesture.

Being an HCI application that is addressed to the diverse audience of museum
visitors, WikiNect itself has an interest in natural and learnable gesture-based
interactions. Accordingly, the gesture vocabularies to be evaluated are taken
from two prototype implementations of WikiNect [10,11]. To this end, Section 2
describes the gesture vocabularies in conjunction with a subset of tasks accom-
plished by WikiNect. Section 3 accounts for task-gesture mappings in terms
of a quadratic optimization problem. It starts from a quantitative analysis of
Wikipedia-based image descriptions which results in a corresponding set of soft
constraints. The evaluation rationale and experimentation for assessing gesture
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Table 1. Selected tasks accomplished by WikiNect

Navigation Tasks Segmentation Tasks

Scrolling backward Select image Circular segment
Scrolling forward Segment image Rectangular segment
Close, back to Main Save image Polygonal segment
Undo Display segments Free-hand segmentation

Table 2. Spatial expressions partitioned according to three spatial modalities Direc-
tion, Relations, and Form

Direction Relation Form
left above behind circle
right below through rectangle
up by at triangle
down in on cornered
front around between bent
back in front of along random
straight

vocabularies is finally presented in Section 4, while Section 5 provides a conclud-
ing discussion.

2 WikiNect Gestures, Tasks and Annotations

The usage of WikiNect is subdivided into a navigation and a segmentation
component [8]. Navigation gestures are used for selecting WikiNect’s functional
modules, while segmentation gestures are operative in the segmentation mode.
Table 1 lists 12 of these tasks which have been implemented in two prototype
systems according to different design strategies [10,11]. The first prototype, here-
after called WN-1, provides a set of controlling gestures taken from the InkCan-
vas class of the .NET Framework and mapped onto the system’s operations [10].
The second prototype, WN-2, can be operated mainly by manipulation gestures
(e.g., by pushing buttons that trigger a certain operation) [11].

Any gesture used to implement WikiNect has been represented in terms of
spatial predicates. The rationale behind this is to allow for task-gesture map-
pings: gestures are preferably mapped to tasks with which they share many
predicates. In order to obtain a set of spatial predicates, we use the list of the
spatial predicates collected by [12, p. 97]. This list has been extended by (1) the
directions spanned along the body axes and (2) basic form-related predicates.
The spatial predicates are partitioned according to the spatial modalities direc-
tion, relation and form — see Table 2. They are used to label both the tasks and
the gestures for spatial properties, either quite literally or associatively. Some
notes on the application of the predicates:
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Table 3. Navigational gestures used in [10] for implementing WikiNect

Gesture Image Movement Task Task Naturalness
Annotation Annotation
right, straight, towards right Scrolling back, below, 0
—_—
along backward left
left, straight, towards left ~ Scrolling front, up, right 0
<
along forward
through, \/ Checkmark, (1) Select (1) around, (1) 0.077; (2)
cornered, towards image, (2) through; (2)  0.1; (3) 0
down, up, down-left, Segment in, through;
right towards image, (3) (3) in, random
up-right Save image
right, through, A towards right, Close active  back, below, 0
cornered, up, upward window, back left
around, above to main
through, right, towards right, (1) Undo, (2) (1) back, (1) 0.033; (2)
cornered, v downward Display down, left, 0.031
down, around, segments of an random; (2)
below image in, around, by,
random

— If a movement comprises a change of direction, it is understood as to run
through the turning point and the predicate “through” is chosen.

— If a task contains a temporal aspect like backwards (i.e., going back in the
system’s history), three conceptualizations are acknowledged:

1. Stack — orientation along longitudinal axis (“up”, “down”);
2. Tape — orientation along transversal axis (“right”, “left”);
3. Gaze — orientation along sagittal axis (“front”, “back”).

— Closed forms give rise to containment indicated by “in”.

We emphasize that the annotation so far has the status of a working hypoth-
esis. We aim at demonstrating that our approach is feasible and provides useful
results without claiming that the predicate list is the only possible one.

For illustration, the description and annotation of gestures and tasks of WN-
2 is given in Tables 3 and 4. The columns “Movement” and “Image” contain
a shorthand and a pictorial representation of the gestures. The column “Nat-
uralness” shows the naturalness index calculated according to the procedure
explained in Section 4.1. To make the gestures’ forms objects of quantitative
analyses, they are coded according to the kinematic-oriented representation for-
mat of [13] — see Figure 2 for an example. Based on text-based representations
of this kind, we apply distance measures in optimizing task-gesture mappings.
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Table 4. Segmentation gestures used in [10] for implementing WikiNect

Gesture Image Movement Task Task Naturalness
Annotation Annotation
circle, around, Circle Cut out circle, bent, in, 0.18
bent circular around

segment
around, Rectangle Cut out in, cornered, 0.15
rectangle, rectangular around,
cornered segment rectangle
around, Triangle Cut out triangle, in, 0.15
triangle, polygonal around,
cornered segment cornered
through, left, < Towards Activate random, in, 0
right, down, down-left, free-hand around, circle,
cornered, towards segmentation rectangle,
between down-right triangle

3 Towards Optimal Task-Gesture Mappings

The task of image description is schematized to a certain degree [14]. WikiNect
deals with four such routinized tasks: rating, segmenting, linking and attributing
images (e.g., with information about painters or techniques). Our aim is to find
gestural representations of theses tasks so that users can make image descriptions
by using WikiNect, that is, by gestural writing [9]. A naive way to realize this
would be to select from an artificial lexicon of prespecified gestures. The problem
is rather how to justify any mapping of image description tasks onto gestures. An
iconic gesture, for example, is a natural candidate to manifest a gestalt-related
image description, while a deictic gesture is a better candidate for selecting
images on the screen.

Our approach to solve this problem is twofold: firstly, we analyze Wikipedia
as the biggest sample of image descriptions to learn about the frequency dis-
tributions of the actions involved in such descriptions. Secondly, we utilize this
information to derive constraints that any procedure of gesture selection should
fulfill to provide both efficiently producible and learnable gestures for gestural
writing. This approach follows a twofold optimization criterion: we select ges-
tures for actions of image descriptions such that the more frequent the action the
more easily producible the gesture while preserving a certain amount of discrim-
inability (i.e., learnability) among gestural manifestations of different actions.

Information about the frequency distributions of image description tasks is not
directly accessible for lack of large-scale annotations of corresponding speech acts.
However, the English Wikipedia offers a range of data to approach this informa-
tion. To learn about the frequency distribution of linking images, for example,
we can explore hyperlinks between articles about these images (see Table 5 for a



86 A. Mehler. T. vor der Briick, and A. Liicking

Table 5. Statistics of image description articles in the English Wikipedia

Attribute Value
articles 2,862
instances of painting/artwork template 2,926
links among the 2,862 articles 62,725
corpus size 14.7MB
average size (per article) 5.3KB
date of extraction 2014=2012 November 1, 2014

statistics of the underlying corpus; see Figure 3 for the resulting distribution (dis-
tributions have been shifted by one, to account for zero frequencies)). Likewise,
to get information about the frequency distribution of image attributions, we
explore every instance of Template:Infobox_artwork! (Figure 4). Next, since
there is no matching template for segmenting images, we need to assess the cor-
responding frequency distribution indirectly. This is done by exploring the fre-
quency distribution of section headers like Composition, Analysis or Details
within the corpus of image articles (Figure 5). Likewise, because of the lack
of directly accessible ratings of images, we explore the ratings of their corre-
sponding articles (as manifested by the Rate this page-section). In this way,
we approximate a frequency distribution of image-related ratings (Figure 6).
As can be seen by Figures (3-6), each of the four tasks (linking, attributing,
segmenting and rating) results in a power-law-like frequency distribution be-
ing reminiscent of Zipf’s law of least effort [15]. Only a couple of images is, for
example, linked to many other images while most images are linked only once
(Figure 3). Likewise, there is a small set of predominant attributes while most
attributes are rarely used if at all. Further, the frequency distribution of section
headers shows a small set of predominant sections (Figure 5) that leave behind
a huge set of rarely used ones: apart from conventional sections in Wikipedia
(e.g. References or External links), the former set is exemplified by headers
like Artist, Description and Composition. That is, when writing about the
content of images, Wikipedians follow a power law according to which they pre-
fer a small range of topics of highest probability. Analogously, the distribution
of the numbers of ratings strictly follows a power law (Figure 6) in any of the
four dimensions considered by Wikipedia: a few images have many ratings while
most images have few ratings or none at all.

In sum, image descriptions follow a highly skewed distribution such that the
frequencies of the underlying actions decay according to a power law. Thus, when
looking for gestural manifestations of such actions we can follow the example of
natural languages [15]: the more frequent an action the simpler its manifesta-
tion should be. Since we need to manifest different actions simultaneously, we
additionally need to preserve discriminability among neighboring ranks in the

! We also explore Template: Infobox_Painting which redirects to
Template:Infobox_artwork.


Template:Infobox_artwork
Template:Infobox_Painting
Template:Infobox_artwork
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frequency distribution of gestural manifestations. As a rule of thumb: optimizing
along the criterion of least effort should not happen at the expense of discrim-
wnability and thus learnability among highly frequent gestures. In what follows, we
represent this finding in terms of a quadratic integer programming problem whose
solution leads to the optimal task-gesture mapping — subject to the operative
constraints (number of tasks, gesture repertoire etc.).
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Generally speaking, a quadratic integer programming problem requires all
decision variables to be integer, while its constraints are required to be linear
and the objective function to contain a quadratic term. To reformulate this
in terms of gesture modeling, we proceed as follows: let n be the number of
gestures and m the number of tasks. Assume that gestures and tasks are all
numbered so that the set of tasks is given by T' = {¢1,...,t¢,} and the set of
gestures by G = {g1,...,9m}. The decision variables in this mapping problem
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104 — e ———— Table 6. Frequency distribution of tasks
B 1 by predicates

10° g 1 Task Freq. Perc. %

r 1 Circular segment 1,180 10.37

10° g 1 Close, back to Main 719 6.32

| Display segments 1,399 12.29

10t b . | Free-hand segmentation 1,189 10.45

8 1 Rectangular segment 1,172 10.3

L 1 Save image 1,121 9.85

100 4 Scrolling backward 719 6.32

0 100 12 1 Scrolling forward 827 7.27

Segment image 1,132 9.95

Fig. 6. 1-shifted complementary cumula- Select image 62 0.54

tive distributions of ratings show four dis- Polygonal segment L171 10.29

tributions of the rating template (trust- Undo 691 6.07

worthy (green circle, exp. 0.7 (1.7), R’= Sum 11,382 100

99%), well-written (orange bars, exp. 0.72
(1.72), R’ = 99%), objective (red crosses,
exp. 0.7 (1.7), R = 99%), and complete
(blue triangles, exp. 0.7 (1.7), R = 99%))

are binary features x;; that are 1 if gesture g; should be mapped to task ¢; and
zero otherwise. A hard constraint is to require that each task is always mapped
to a single gesture, i.e., synonymous gestures and not-assigned tasks are not
allowed. We formalize this by means of equality constraints:

Zmijzlforj:{l,...,m}; (1)
i=1

Since the number of gestures exceeds the number of taks, some gestures have
to be polysemous and are assigned to several tasks. For the gestures, we only
require that each gesture is assigned to at least one action:

m
injzlfori:{l,...,n} (2)
j=1
In addition to hard constraints, three soft constraints are encoded into the
objective function:

1. The simpler the gesture, the more frequent the action to which it is mapped.

2. The more frequent an action, the more motivated the gesture mapped onto
it. Since the mapping of gestures to actions has to be memorizable, it should
be motivated as much as possible (as explained in Section 4.1).

3. The more frequent two actions, the easier the discriminability of their ges-
tural manifestations.
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We represent Constraint 1 and 2 by a linear model and Constraint 3 by a
squared term as part of the objective function. Given two sets of tasks and
gestures (Section 2), an assessment of the motivation of any candidate task-ges-
ture-relation (Section 4.1), a frequency distribution of tasks (Section 4.2), and a
measure of the discriminability of gestures (based on their matrix representations
— see Figure 2 and [13]), we finally get an optimization problem whose solution,
henceforth called gesture optimizer, leads to an optimal task-gesture mapping
subject to the operative constraints.

4 Experimentation

In this section, we compare two instantiations of the gesture optimizer and con-
trast them with their corresponding null-models of random task-gesture assign-
ments. To this end, we utilize both implementations of WikiNect (see Sec. 2).

For instantiating the optimizer, we first need to specify two boundary condi-
tions: the motivation of task-gesture relations and the frequency distribution of
image description tasks.

4.1 On the Naturalness of Task-Gesture Relations

In order to find an optimal mapping of gestures onto tasks, one needs to know the
degree of motivation by which a candidate gesture fits as a manifestation of the
tasks. If a user wants to move, for example, something to the left of the display,
it is a bad choice to signal this by moving the hand to the right. We provide
a simple quantification of this sort of naturalness in terms of bipartite graphs
whose bottom mode comprises the candidate gestures and whose top mode is
spanned by the tasks under consideration. For any pair {g, ¢} of gestures g and
tasks t, an edge occurs in the graph whose initial weight equals the overlap of
the predicate descriptions P(g) and P(t):

[P(g) N P(t)]
min(|P(g)|, [ P(t)])

Next, we account for diversification in the bipartition. The reason is to prefer
unifying task-gesture mappings (in terms of 1 : 1 mappings). To see this, think
of a system of n tasks, n > 2, mapped onto one or two gestures. Because of the
polysemy of the gestures (as a function of the predicates assigned to them), this
system tends to be unnatural: it leads to a semantic overload of the gestures in
question. Thus, we re-weight edges as follows (d, is the degree of vertex v in the
bipartition):

wi({g,t}) = (3)

2

wly, ) =willo ), 7,

(4)

Obviously, a 1 : 1-mapping does not alter w;. Conversely, if the gesture is
polysemous or the task is manifested by different gestures, then wy < w;. Finally,
for any gesture (task), we get a rank order of tasks (gestures) according to their
decreasing degree of naturalness. Note that the edge weights are ordinally scaled.
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Table 7. Assignments determined by the optimizer for scenarios 1 and 2

Task Gesture (Scenario 1) Gesture (Scenario 2)
Scrolling backwards Left Grab and drag left
Close window Left Grab and drag left
Save Image Left Grab and drag right
Display image segments Right below Grab and drag right
Scrolling forward Right Push forward
Selection Right above Push forward
Segment Image Checkmark Push forward
Circular segment Circle Push forward
Free-hand segmentation Circle Push forward
Rectangular segment Rectangle Set image point
Polygonal segment Triangle Set image point
Undo Open triangle Grab and drag left

4.2 Towards a Frequency Distribution of Image Description Tasks

In order to provide a frequency distribution of image description tasks for imple-
menting the gesture optimizer, we cannot rely on the Wikipedia data explored
in Section 3. The reason is that we focus on the specific task list of WikiNect
(see Table 3 and 4). Thus, we alternatively analyze a specialized corpus of image
descriptions [18]. The aim is to estimate the probability by which the tasks of
Table 1 are conducted in sessions of image description. Since the Wally corpus
[18] does not annotate this information and since some of the focal tasks are even
not observable in the corpus, we account for this probability indirectly. Following
the former sections, we relate tasks and gestures by the predicates they share in
their descriptions (see Table 3 and 4). As we map a range of expressions onto
these predicates (e.g., round and around are explored as manifestations of the
same-named predicate around), the mapping is done by observing the corpus
frequencies of the predicates’ verbal manifestations. The result of this mapping
is shown in Table 6. In contrast to our findings of Section 3, this distribution
does not fit a power-law. This may hint at insufficient or even erroneous descrip-
tions of tasks and gestures. For example, though we additionally accounted for
multi-word expressions (e.g., in the front of ), we did not resolve paraphrases of
spatial descriptions. Thus, Table 6 has to be understood as a first attempt to
estimating the frequencies in questions.

4.3 Results

We tested our approach on two scenarios: given the set of tasks listed in Table 1, the
scenarios are distinguished by using the WN-1 and WN-2 set of gestures, respec-
tively. For both scenarios, we determined the optimal assignment for the decision
variables by means of the Gurobi optimizer? and therefore the optimal mapping

2 http://www.gurobi . com
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Table 8. Values of the objective function as determined by the optimizer and the base
line method

Scenario 1 Scenario 2
Optimized value —2.09 —-1.14
Baseline value —0.98 —0.55

from tasks to gestures that minimizes the objective function (see Table 7 for the
optimal mappings).?

As a base line, we estimated the expectation value of the objective function
by generating 1,000 random assignments of tasks to gestures that fulfill the
hard constraints of the optimization problem. The evaluation shows that the
optimizer determines assignments for both scenarios for which the objective
function values are lower than the base line values (see Table 8 — recall that the
lower the objective value the easier to learn and more natural the assignment).
Furthermore, the optimal value of the objective function of scenario 1 is below
the optimal value of scenario 2, which indicates that scenario 1 is the superior one
in terms of learnability and naturalness. Since the number of gestures exceeds
the number of tasks in both scenarios, some gestures have to be assigned to more
than one task. As can be seen in Table 7, for instance, the Circle gesture from
scenario 1 is assigned to both the tasks circle and free-hand segmentation, since
both tasks can be chosen in the same context. Thus, the gesture Circle, which
intuitively is strongly related to circular segmentation mode, gets ambiguous
under this assignment. This observation hints at context as a further parameter
for improving our model in future work.

5 Conclusion

Based on the notions of learnability and naturalness, we provide the gesture op-
timizer, a method to assess the fitness of HCI gesture vocabularies to a set of
tasks. Optimization is expressed as a quadratic integer programming problem
sensitive to a number of constraints. The method is tested in a gesture vocabu-
lary comparison of two WikiNect implementations. Given frequency information
of the tasks, a discriminability order between the gestures and a naturalness
index based on spatial annotations for gesture-task mappings, we found that
the gesture optimizer not only distinguishes gesture vocabularies from a random
baseline, but also ranks the vocabularies in the intuitively correct way. Thus, in
order to provide an assessment for HCI gestures, the gesture optimizer fuses in-
formation and considerations from different sources. Not all of these sources are
fully developed yet. However, even given these conditions, we could show that
naturalness, frequency and learnability are effective design criteria for devis-
ing good HCI gesture vocabularies. This result shows that existing vocabularies

3 For the second scenario, the optimizer was able to determine the optimal value, for
the first scenario we used the best solution found before reaching a time limit.
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(think, e.g., of touch gestures!) can be evaluated and, possibly, improved. The
gesture optimizer also delineates criteria for designing new vocabularies, so that
the method proposed here has many practical applications and provides a test
bed for further studies on the fitness of HCI gestures.
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Abstract. A virtual reality model for a motional electromotive force physics
experiment, “Fleming’s rail,” was designed and developed. A hand gesture in-
terface was constructed to control a virtual simulation using a Microsoft Kinect
sensor and a finger-gesture interface SDK. A gesture-based object tracking test
was performed to examine the effects of virtual hand visualization. In addition,
motion trajectories of real hands with and without hand visualization were ana-
lyzed. Trajectories obtained with hand visualization exhibited higher Hurst ex-
ponent values compared with those obtained without virtual hand visualization.
This suggests that the displacement change was more persistent with positive
fluctuation feedback, indicating sensory feedback for real hand motions. For
comparison, the effects of the model on learning Fleming’s left- and right-hand
rules were experimentally tested. Results exhibited that knowledge acquisition
from the model was almost equivalent to that from the real experiment.

Keywords: Hand gesture interface, virtual reality learning material, Hurst
exponent.

1 Introduction

In introductory physics, it is important to understand invisible physical quantities,
such as force, energy, electric current, and voltage, because certain visible phenomena
are explained from invisible physical quantities; e.g., a visible standing wave is
explained as a superposition of two invisible waves traveling in opposite directions.
To this end, mathematical simulations have been useful for generating visualizations
of such physical mechanisms, and computer simulations have become popular as
resources for learning [1].

Attempts have been made to apply virtual reality (VR) technology to the visualiza-
tion of physics simulations in order to merge theory with real experiments and phe-
nomena [2]. Such attempts have been partially intended for the correction of common
beginner misconceptions [3]. The augmented reality technique is effective to visualize
invisible components in real objects and phenomena [4]. In addition, projection map-
ping techniques are applicable to represent virtual components directly onto real
objects and to make objects interactive using augmented reality.

With these approaches, one can interact with real physical objects by using virtual
components that supplement these with physical properties. This will be effectively

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 93-101, 2014.
© Springer International Publishing Switzerland 2014
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achieved by designing a natural user interface[5, 6] for the virtual components to be
manipulated as real objects.

The purpose of this study is to develop a VR model for a physics experiment of
motional electromotive force, i.e., “Fleming’s rail.” A hand gesture interface was
introduced using a Microsoft Kinect sensor to manipulate the model. By using the
hand gesture interface SDK provided by 3Gear Systems Inc., user hand gestures were
exhibited as virtual hand gestures. The virtual hands manipulated the model’s
components according to the user’s real hand motions.

This visualization is expected to help the user manipulate the VR model and ex-
plore the physical phenomena shown in it. In addition, this virtual experiment is con-
ducted simultaneously with a real (i.e., non-virtual) version of the same experiment.
Thus, the user can learn from both the real and virtual experiments at the same time.

In this paper, the motion trajectories of real hands are analyzed both with and
without virtual visualization. Results showed that higher positive feedback for the
motions was observed with the visualization of virtual hands. In addition, the effect of
the model in attaining the basic knowledge of Fleming’s left- and right-hand rules was
compared using the virtual and real experiments separately. It was concluded that the
effectiveness of the virtual experiment was equivalent to that of the real experiment.

2 Methods

2.1 Development Environment

The gestural interface SDK that tracked hand and finger motion was provided by
3Gear Systems [7]. An application was constructed using Light Weight Java Game
Library 2.9.0 with OpenGL for 3D graphics. The motion sensors used were a Micro-
soft Kinect for Xbox 360 and an ASUSTek Xtion PRO. The development and tests
were performed on an Apple Mac mini with a 27-inch display. The Kinect sensor was
set 65 cm above the surface of the desk where hand gestures were performed.

2.2  Model

Fleming’s rail consists of two long parallel rails on which a mobile conducting bar is
mounted. The virtual model has a scale of 510 x 100 arbitrary units, which
correspond to 510 x 100 mm as detected by the Kinect sensor.

The model is switched between generator mode and motor mode. In generator
mode, the left sides of the rails are connected, thereby forming a circuit (Fig. 1 left).
The mobile conducting bar can be moved according to the motion of the user’s right
hand. As the conducting bar is moved in the magnetic field, the electrons of the bar
are driven by magnetic force to generate an electric current within the circuit.

In motor mode, the left sides of the rails are connected with an external battery to
form a circuit (Fig. 1 right). The electric current provided by the battery is again dri-
ven by magnetic force, and the mobile bar moves in the direction of the rail. In this
mode, the voltage of the battery varies as per the height of the left hand.
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Fig. 1. Real Fleming’s rail experiment and the VR model: (left) motor mode; (right) generator
mode

Generator mode is initiated by a right-hand pinch gesture, and motor mode is initiated
by a left-hand pinch gesture. For the motor, the directions of the electric current,
magnetic field, and mechanical force are assigned to the middle finger, first finger,
and thumb of the left hand, respectively. Similarly, electric current, magnetic field,
and mechanical force are assigned to corresponding fingers of the right hand. In our
model, the directions of these vectors are presented on the corresponding virtual
hands; thus, the user can verify the relationships of these vectors by comparing them
with those shown in the computer display.

Fig. 2. 1D tracking test

2.3 Tracking Test

To compare the participant’s hand motion with and without virtual hand visualization,
a simple tracking test was introduced. A spherical object is generated at a randomly
chosen position in the virtual space where the model rails are set (Fig. 2). When the
participant’s right hand point position collides with the sphere, it is moved to another
randomly selected position. The position of the real hand was defined as the joint base
of the middle finger. The participant tracks the sphere, and the Kinect sensor detects
the trajectory of the user’s hand motions. The sphere was generated in one, two, and
three dimensions. For 1D tracking, the sphere was placed within =230 = x = 230
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(arbitrary unit; corresponds to mm in real space), y = 30, and z = 0. The y-axis corres-
ponds to a vertical line, and the z-axis corresponds to depth. For 2D tracking, the area
for sphere motion was within —230 = x = 230, y = 30, and =50 = z = 50. For 3D
tracking, the sphere appeared within —230 = x = 230,30 =y = 130, and -50 = z =
50. Under these conditions, the target sphere was captured approximately once per 20
frames of position detection.

During the tracking test, participants were asked to practice tracking in 3D for 30 s.
Then, they attempted 1D tracking, followed by 2D and 3D tracking with virtual hand
visualization. For each dimension, tracking continued for approximately 20 s and was
repeated three times. The same procedure was repeated without the virtual hands.
There were seven participants: four male and three female undergraduate university
students.

For analysis, the following Hurst exponent H was calculated for hand motion tra-
jectories. Let x(f) be the value of a fluctuating variable at time ¢. Then, for arbitrary
time difference At, the standard deviation i(Ar) of the difference of the variable X,(Ar)
= x(t) — x(¢ + Af) tends to exhibit a power law, which is expressed as follows.

W (AD = AP 1))

The exponent H is the Hurst exponent. If the fluctuation is a non-correlated Brownian
fluctuation, H = 0.5. Thus, as H increases, the change of fluctuation tends to sustain
with the positive feedback. In turn, as H decreases below 0.5, development of fluctua-
tion is suppressed with negative feedback.

2.4 Classroom Practice

To compare the effectiveness of the virtual experiment with the real one, a classroom
practice study was performed. Thirty students from a literature class were divided into
groups A and B and were made to take a pretest before the main instructions were
provided. Group A, which consisted of 14 students (10 female; four male), was in-
structed using the VR model. Group B, which consisted of 12 students (eight female;
four male), was instructed using the real Fleming’s rails experiment. After the initial
instruction, a posttest was carried out. For the second instruction, instruction materials
were exchanged between Groups A and B. Finally, another posttest was performed.
Each participant attempted to conduct the virtual experiment once.

The pretest and posttests consisted of two questions regarding the use of Fleming’s
left- and right-hand rules, and a 5-point Likert scale questionnaire was used to deter-
mine the confidence level of the answers. The degree of difficulty was slightly
increased from the pretest to the second posttest.

3 Results

3.1 Tracking Test

Figure 3 shows examples of 1D hand motion tracking with and without virtual hand
visualization. The range of hand motion in the x-direction is rather large for the case
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Fig. 3. Real hand motion trajectories for 1D tracking in x-, y-, and z-directions: (top) with vir-
tual hand visualization; (bottom) with virtual hand visualization

with no hand visualization, which indicates that the rendering of the virtual hand re-
duces excessive motion. In addition, fluctuations in the y- and z-directions are smaller
with the virtual hand, which indicates that the real hand motions are smoother and less
excessive, and the user may be more careful when tracking motions.

Figure 4 shows log—log plots of Eq. (1) for 1D tracking with virtual hands. In the
x-direction, the motion naturally persists and 4, increases. In the y- and z-directions,
deviation is suppressed and motions are smooth with high H values.

1000

® x_axis
Avy-axis h, ~ A9
Oz-axis

fluctuation A

time interval Az [frame]

Fig. 4. Log—log plots of displacement % vs. time difference At for x-, y-, and z-directions for 1D
tracking with virtual hand visualization
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Figure 5 shows a comparison of Hurst exponent H of the hand motions with and
without virtual hand visualization. This figure shows the results of trajectories for all
three dimensions. Hurst exponent H for the motion with virtual hands showed higher
values than without the visualization. This implies that both acceleration and decele-
ration toward the target were smoother and sustained when the virtual hands were
displayed. Paired t-tests did not support the hypothesis that there would be no differ-
ence in the mean values of H with and without the virtual hands (significance level of
0.05); p-values were 2.0 x 107 for 1D tracking, 1.7 x 107 for 2D tracking, and 1.1 x
107 for 3D tracking.
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motion trajectories
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Fig. 5. Comparison of Hurst exponents of hand motion trajectories with and without virtual
hand visualization for 1D, 2D, and 3D tracking (error bars show standard deviations)
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Fig. 6. Spatial dimensions dependency of Hurst exponents of hand motion with virtual hand
visualization. The target sphere appears on the x-axis in 1D tracking, and it appears on the xz-
plane in 2D tracking. The error bars show standard deviations; error bars for the z-axis are thick
and light gray.
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Figure 6 shows the dependence of Hurst exponent H to the spatial dimensions of
tracking with virtual hand visualization. For 1D and 2D tracking, hand motion was
primarily restricted to the xz-plane, which corresponds to the surface of the desk. In
these cases, motion in the y-direction was not persistent; thus, more non-correlated
randomness was observed, as is shown by the H-values that are close to 0.5. In 3D
tracking, the range of motion was extended vertically, and the motion was also smooth,
as is shown in the increased H-value as compared with the 1D and 2D tracking.

3.2 Classroom Practice

Figure 7 shows the rate change of correct answers. In addition, Fig. 8 shows the
change of the self-confidence histograms for the participants’ answers. Before instruc-
tion, 51% of participants strongly denied self-confidence, and the total rate of correct
answers was 39%.
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Fig. 7. Change of the percentage of correct answers for two types of instructions and two types
of questions
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Fig. 8. Changes in confidence levels for student answers from the pretest and two posttests



100 T. Mikami and S. Matsuura

After the first instruction, 64% of participants strongly agreed that were confident,
and the total rate of correct answers was 87%. For the total seven failed answers, six
cases were for the question on the generator, and five were from group B, which was
first instructed with the experiment. This may partially reflect the fact that Fleming’s
right hand rule is not always taught in Japanese high schools. After the second in-
struction, 78% of participants strongly agreed that they were confident in their
answers, and the total rate of correct answer was 94%.

The results, which show that the rate of correct answers increased and the distribu-
tion of confidence reversed, indicate that both the VR experiment and the real expe-
riment were effective for learning Fleming’s left and right rules. In addition, several
subsequent tests were conducted for the same participants. The test results show that
the rate of total correct answers obtained the following week was 83% and was 98%
the week after that.

Figure 9 shows a comparison of confidence level histograms between the two in-
struction orders, i.e., from VR experiment to real experiment type (light color) and
from real experiment to VR experiment type (hatched dark color). No obvious devia-
tion was found between the confidence distributions of these instruction orders. A
Welch two sample test showed that the hypothesis, i.e., the difference in means for
the first posttests was expected to be zero, was supported at a significance level of
0.05 (p-value of 0.78). In addition, the test showed that the hypothesis for the second
posttest was rejected with a p-value of 0.53.
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Fig. 9. Comparison of the student self-confidence histograms for two types of instruction
through two posttests

These results suggest that the effectiveness of the VR model for learning Fleming’s
left- and right-hand rules does not differ between the real and virtual Fleming’s rails
experiments. However, from the descriptions of the impression of this entire session,
many students commented that the virtual experiment was effective for confirming
what was learned in the real experiment. This suggests that it is helpful in general to
use VR material during or after a real experiment. In addition, some participants
commented that this VR content was memorable because the virtual space manipula-
tion was similar to the real experiment.
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4 Conclusion

VR learning material for Fleming’s rails was constructed, and a natural interface for
manipulation was produced using hand gesture input through a Microsoft Kinect sen-
sor. A virtual space object-tracking test demonstrated that the Hurst exponent of tra-
jectories of real hand motions was higher when the virtual hands were visualized.
This suggests that visual hand motion feedback results in smoother physical motion,
which in turn facilitates more effective tracking.

Classroom practice revealed that the virtual experiment is almost equally effective
as a real experiment for learning Fleming’s left- and right-hand rules. By simulating
hand manipulation, the VR material was a relatively natural and effective supplement
to the real experiment. This may be partially due to the strong relationship between
hand movements and Fleming’s left and right hand rules. In this sense, the gestural
interface may be applicable to learning materials that are related to somatosensory
stimulation.
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Abstract. According to the rapid spread of the Internet, the new devices and
web applications using the newest multimedia technologies are proposed one
after another and they become commodity in an instant. In these new web
communications, the natural and intelligible interaction corresponding to the
user's various demands is required. In the communication in which persons do
the direct dialogue in the interaction not only on the web but also in real world,
it is widely known by the psychology field that the nonverbal information
which is hard to express in words such as expression of face and gesture is play-
ing the important role. In our research, the new analysis method of interaction
using the dynamical model is proposed and paid our attention to the characteris-
tic gestures especially. These gestures are the special motions such as lively or
powerful actions which used effectively in Kabuki, anime, dance and the
special gestures in the speech and presentation of attracting audiences. By ana-
lyzing the mechanisms of these characteristic gestures mathematically, we can
design the new interactive interfaces easily which are natural and familiar for
all users.

Keywords: Nonverbal Communication.

1 Introduction

The conventional researches about the role of nonverbal information such as the facial
expression and gestures have been studied by cognitive and social psychologists for
many years. It was advocated by A. Mehrabian in 1981 that there were many rates
which was occupied by nonverbal information farther than verbal one [1]. M. Wagner
found out in 2004 that the gesture would play very important role when forming the
place which shared early stage of communications in elementary school education [2].
Furthermore, D. McNeil discovered in 2005 that the language was assumed to consti-
tute the independent communication channel, although gesture and language were the
same growing points [3]. In the research on the interaction of human and computers,
B. Reeves pointed out in 1996 that people tends to treat computers and other media as
if they were either real people or real places, it was called by Media equation [4]. And
B. Shneiderman in 1997 advocated that there was two poles of dialog with direct
communication and agent (including 3D character), and he pointed out that the effect
on the dialog with the humanoid agent was skeptical [5]. On the other hand, since it is
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the natural interaction and does not need special operation, there are many researches
for the dialog with 3D character. There is the interesting research of expression of
body language using an interactive robot by T. Nishida [6], he showed that it was
insufficient just to reproduce motions and facial expression but also needs to express
the higher order expression such as emotion called Conversational informatics. But
many of old researches based on psychology have some problems that they are used
subjective evaluation and lack in reproducibility.

There is the field of mechanical robot control where prosperous research of quan-
titative analysis of human’s motions is proceeding. In this field, S. Kudoh in 2006
analyzed that the adaptive control of balance in a walk of humanoid robot by defining
the moment of robot’s arm in four-musculars model [7]. And Y. Uno showed in 1989
that there was the relation between four-muscular model in motion of human's upper
arm and torque as the bell type velocity change [8]. In the kinematical analysis of
sports, M. Feltner analyzed in 1986 the movements of shoulder and arm in pitching of
baseball [9] and C. Putnam conducted to show rules of pitching motion quantitatively
between upper arm and torque of joint in football [10]. But these conventional re-
searches aimed the specific sports motions, so there was little research which paid its
attention to the gesture in communication. Under these circumstances, we tried to
make modeling the mechanism of characteristic gesture communication by referring
to these motion evaluating methods.

2 Definition of Nonverbal Information

In this section, the nonverbal information which is the main theme of our research is
defined and categorized. There is the following well known nonverbal information in
human communication. “Facial expressions”: They not only express person's indivi-
duality but also include the much information such as emotions, internal feeling and
intention. ”View direction”: Many feeling information is included in the movement
of eyes such as turned away ones eyes, winks and gazing and so on. “Pose and ges-
ture”: Many communicating information is included like gesture, pose and motion of
hands and figures. Furthermore adding the Individual distance to them, people are
taking various communications by selecting them according to each situation appro-
priately. Among this nonverbal information, we tried to quantify the structure of ges-
ture communication because of the numerical analysis was not performed until now.
The characteristic gestures can be classified into the following two categories like
Reality and Actuality shown in Tablel.

Table 1. Definition and classification of gestures

Characteristics of gestures

Reality Actuality

Smooth and flowing motion . . .
Not awkward motion Vivid performance, powerful and persuasive action

Correctness and continuity of | Creation of presence, sense of closeness and persuasion.

accuracy ex. Gesture of emphasis and exaggeration
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“Reality”: Correctness of motion, continuity and smoothness of accuracy are required. It is the
level in which numerical evaluation, analysis and reappearance are possible.

“Actuality”: Gestures which are intentionally used by persons although not necessarily the
natural motion but they give some strong impression for recipient. It is the motion that is inten-
tionally used for emphasis (exaggeration) in the remarkable speech and attracting audiences,
too. We estimated that people could feel the sense of closeness to 3D characters when this
actuality was realized.

3 Definition of Mathematical Analysis Model

We selected the kinematic dynamics of articulated structure as the mathematical
model in order to analyze gestures quantitatively. The torque value 7 which arises at
each joint (it expresses the strength of exaggeration in motion) can be given using the
angle data 6 of each joint defined by multiple skeletal structure shown in Figure 3. It
can be given by the equation of motion in Equation 1. In Equation 1,0 is the time
series data of each joint angle [0,,6,,- - -6,;] , M is inertia matrix, C is coriolis force,
also g shows the gravity andd” and@’’ are the angular velocity and angular accelera-
tion for every joint, respectively.

T=M@®)0"+C (0,0 )0 +g(0) (1

wrist T

1 oweir;‘mr/\
V7

2dy 7,

(@ (®)

Fig. 1. Three dimensional skeletal model of 3D character (right arm)

Furthermore, Lagrange function L is defined by Equation 2 when we expressed
Equation 1 by generalized coordinate system using joint angle 8(1 = 0~n), also the
equation of motion Q; is given by the Equation 3 using L.

L = 0<i<n {(Kinetic energy of link i) — (Potential energy of link i) } ()

dEAN
Ql = dt 86',' 86, (3)

where i=0 ~n
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The following nonlinear ordinary differential equations can generally be described
by the equation of motion Q; as Equation 4. In the right-hand side of Equation 4, the
first term is the angular velocity, second term shows the force of coriolis and centri-
fugal force, and the third term is gravity, respectively. In case of rotational movement,
Q; turns into torquet which arises at each joint as shown in Equation 5. Furthermore,
T; shows the conversion matrix which translates into the world coordinate system
from the local coordinate of the j-th joint, J; is the inertia tensor of j-th link and m;
shows the mass of i-th link, g’ is the gravity vector and S; expresses the position
vector of center of gravity of the j-th link.

ZZtrace [BT BT} y zzjltmce[ 0:T J,g} .
] = B .0 .

J
e S5 6. =5 2696." 36

— = g"db . where i=0~n 4

Y
=] (Bf )N (5)

In this paper, when calculating the inertia tensor Ji, each link is approximated with
the elliptic cylinder shown in Figure 1-b, therefore the density distribution inside of
each link sets constant. We estimate that d,,, is minute mass at the point P (mass cen-
ter of gravity at each link is the point (X, yp, Z,) in local coordinate system) in the
rigid body, then inertia tensor H of the circumference of center of gravity at each link
can be denoted by Equation 6.

XX Xy Xz

yx Yy I)’Z

sz Izy Izz
H = ©6)

I =_[(ypz+zp2) dm B I(Zp2+xp2) dm

Where s Iy = Pr, =
J(x,,2+yl,2) dm ,
J.=1, = J.xpypdm Iyza’m =1 :jszpdmp
Xy yx zx Xz

If we approximate each link such as shown in Figure 1-b, the inertia procession J
will be given by the Equation 7. However, the length of the elliptic cylinder shall be
2d and center of gravity is at the starting point, further the length direction is defined
by x-axis, y-axis and z-axis in the direction which intersects perpendicularly
with them. The y-axis of the path of the ellipse of the section which intersects
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perpendicularly within the length direction, and the length of z shaft-orientations are
set to a and b, respectively.

g0 0 Y

S

o bms o

0
d
;- A 0 0o 1 N

4 Gesture Evaluation System

Block diagram of gesture assessment system is showed in Figure 2. In this system,
gestures of humans (actors) are captured using motion tracking [11], and they are
changed into time-series-data 6(61, 62, ... On) of each joint angle shown in Figure 3.
And torque 7t is calculated which arises at each joint by using kinematical dynamics
analysis. In case when the direct dynamical analysis is used, we can calculate the
change of time-series-data 6(61, 62, ... 6n) of joint angle from each joint torque .
Therefore, we can generate or correct the gestures of 3D character. In our proposed
system, the special data of the body which required for the calculation of kinematical
analysis is used such as standard Japanese body shape data like m0 is 1.49 kg, m1 is
1.08 kg and m2 is 0.24m, 10 is 0.28 m, 11 is 1.08m and 12 is 0.17m, respectively.

" z Skeletal model Analysis algorithm
Motion tracking
skeletal s‘rmchlre‘ inverse dynamics

. ; f—1) Gesture replace
== || directdynamics (Fotd = T
(t—=6)
& (i=0~~n) Data of human body
m;, [ (j=0"n)

Fig. 2. Gesture analysis system and process using 3D character

Furthermore, the value T, is defined by Equation 8 which is integrated with the sum
of time squares derivative value from start time #, of motion to end time 7, at each
joint torque t as the total amount torque value of each gesture. Generally, T, expresses
the size of time average torque change of each gesture. When T, is quantitatively
small, it means that few amounts of change of motion and the degree of emphasis of
gesture will be small movement.

{5
S+ +
D\ dr dt dt

T, = (8)
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In this equation,z; ,7, andz, are torque values of each joint which are calculated by
Equation 1 and they are raised at the shoulder joint, elbow and wrist of the dynamic
model of 3D character shown in Figure 3, respectively.

5 Experiments and Results

Some experiments by using the characteristic gestures and results in order to verify
the usefulness of our proposed model are described in this section. As the experimen-
tal gestures used for the proof, we selected twenty-five characteristic gestures careful-
ly which were the motions such as using in Walt Disney's anime, dance, theater,
Japanese Kabuki and the emphasizing (exaggeration) gestures of effective speech and
presentations. The classification of the gestures which used for the experiments and
the feature of each motion are listed in Appendix. In Appendix, Category A includes
the action like "kime (finalized action)" and "tame (emphasis/exaggerating motion)"
of Japanese Kabuki, Category B is the motion of dance movement of Laban's classifi-
cation [12] and Category C is gestures of anime characters effectively used in Walt
Disney’s movie [13] and characteristic exaggerating gestures used by the emotional
expression technique [14]. Furthermore, we classified in Category D which is the
exaggeration gestures used in the comedy of Japan called Manzai. In order to com-
pare the effect of emphasis gestures in the communication, we selected the gestures in
Category E which are often used for the method of persuading in the speech and pres-
entations like Mr. S. Jobs and Mr. B. Obama who charm audience and attract atten-
tion. All experimental results showed that the motion of these gestures had strong
correlation with the value of torque t of main joints which were able to calculate by
our proposed model (See Figure 3 and 4 [11]).

6 Gesture Generation and Compensation by Direct Dynamics

By using the direct dynamical analysis method , it is possible to calculate each joint
angle 6(01, 62, ...6n) from the amount of changes of joints torque. When the torque
value t of multiple joint skeletal structure of 3D character is generated or corrected,
then we can estimate the movement of link of each skeletal structure using Newton-
Euler method as follows. The angular acceleration 6” (6”1, 6”2, ...8”n) which arises at
each joint of 3D character is given by following Equation 10 by transforming
Equation 1.

0°=M@®)" {t—C(®,0 )0 —g(®)} (10)

In case the displacement anglef(0) and articular velocityd (0) of each joint of 3D
character at the time t = O (which is starting position) and the torque value t(t) (which
arises at each joint from time ts of start time to target time fe) are given, then we can
obtain the numerical solution of 4(t) by defining some suitable value of At by solving
A(t) and i) (t) of each joint at the time t = 0,At, 2At, 3At ..., one by one until the pur-
pose time fe. Andé(t) and ' (t) at time t are obtained, the value of A(t+A) in time t+A
andd (t+A) can be calculated using the equation of motion in Equation 10, and by
supposing the value of 6 (t) of Equation 10 is still more nearly constant in the minute
time interval [t and t+A] is drawn by Equation 11.
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B(t +At) = 6(t) + 0" AL+ (At )26% (11)

Furthermore, it is possible to omit the third term which is square of At of Equation
11 because it is minute, then we can obtain Equation 12. The solution of Equation 12
is approximated to the clause of the first item of Euler series expansion one by one to
the last time te with At. We selected the calculating step At of Newton-Euler method
to 0.0029 by considering the convergence time. We checked the convergent accuracy
error of calculation from our exploratory experiment, even if it used minute At value
beyond this value [11].

B(t +At) =0(t) + 6 (HAt (12)

7 Verification about Naturalness of Generated Gestures

In this section, the validity of our proposed model is verified by using twenty-five cha-
racteristic gestures which are listed in Appendix. We compared the naturalness (actuali-
ty) of generated gestures with the original motions by using the following method. As
the basic experiments, some exaggerated gestures are generated by Inverse dynamical
calculation since the difference appears clearly. For these gestures, we replaced the
torque value 7 of the natural motion (without exaggeration) by newly calculated torque
value t,,, for each gesture which was classified from Category A to Category E in
Appendix. They both move same start and target position (destination) correctly.
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Fig. 3. (a) Natural gesture (b) Exaggerating gesture and each Torque (Gesture 18)
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In Figure 3, we showed the typical example of (a) natural gesture without exaggera-
tion and (b) gesture with exaggeration as representative case of Gesture 18 in Catego-
ry D. Also in Figure 3 (c) and (d), the inward and outward rotational swing torquers in
horizontal plane (rotation of circumference of z-axis) of right shoulder is expressed
with solid line, it is the main link of multiple joint skeletal structure. The external and
inner rotation torque (rotation of circumference of x-axis) 7, is shown by dashed line
and long dashed line shows the inward and outward rotational swing torquery of left
elbow, and outward swing and the adduction torquezs (rotational of circumference
around y-axis), respectively.al In Figure 4, we showed another typical example of (a)
natural gesture without exaggeration and (b) gesture with exaggeration as representa-
tive case of emphasis gesture in speech Geture 21 in Category E. The inward and
outward rotational swing torquers (rotation of circumference of z-axis) in horizontal
plane of right shoulder were expressed with the solid line in Figure 4-(c) and (d). The
external and inner rotation torque (rotation of circumference of x-axis) 7, showed by
dashed line and long dashed line was the inward and outward rotational swing
torquery of right elbow and outward swing and the adduction torque (rotation of cir-
cumference around y-axis) g respectively. We tried to compensate by replacing the
torque value of the main link of multiple joint skeletal structure of natural motion
(without exaggeration) by the exaggerating torque value t,,,. Some typical cases are
shown as follows.

End
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Fig. 4. (a) Natural gesture (b) Exaggerating gesture and each Torque (Gesture 21)



110 T. Naka and T. Ishida

Case-1: As the natural Gesturel8 in Category D, we tried to replace the torque value
of external and inner rotation torquet? of left shoulder and inward and outward rota-
tional swing torquet9 of left elbow by each exaggerating torquetnew?7 andtnew9.

Case-2: Same as Case-1 of natural Gesture21 in Category E, we replaced the tor-
que value of external and inner rotation torquet; of right shoulder and inward and
outward rotational swing torquets of right elbow by exaggerating torquest,,,,.

In both cases, new gestures of each joints anglesbnew (01,02« « +0n ) from
new torque tnew are given by using the above mentioned direct dynamical method.

8 Results

We conducted to verify the reproducibility of actuality based on the subjective eval-
uation to the characteristic gestures which were newly generated by our proposed
kinematical method. As for the evaluation, we used DSCQS (Double Stimulus Conti-
nuous Quality Scale) method of subjectively comparing the newly generated gestures
with original ones. The flow of evaluation of DSCQS method is as follows. We
showed evaluators the original exaggeration gesture as reference about 10 sec and
placing interval of about 3 sec after that, we showed the newly generated exaggera-
tion gestures about 10 sec. These trials were set into one pair and shown twice repeat-
edly. Each evaluator was requested to perform evaluation to both gestures at the time
of second presentation. In these experiments, the order of presentation was changed at
random without teaching each one which was the gesture of the original (reference).
Twelve men and women (nine men and three women) of adult in twenties were se-
lected for evaluator. Each evaluator was asked to mark the subjective evaluating value
over each pair of gestures with continuation measure based on the five steps of quality
as shown in Figure 5. Furthermore, the final score was normalized to 0 to 100 (maxi-
mum of measure is 100), and the evaluation value of the new exaggerating gesture
from the difference of the reference was used as Evaluation difference (DE). Ten
evaluators average value was adopted for this DE value as the last evaluation result
(the maximum and minimum difference of evaluation result was accepted of each
trial). This DE value shows the difference of subjectivity value of the nature of ges-
tures. In case the impression of naturalness will be strong then DE become small (near
the natural exaggerating gesture). It can be said to be one index of natural impression
(actuality) when it has small value.

Reference Comparing
Gesture Gesture

100 -+
Evaluation Point I
Excellent 100 T
Difference
Good + T
‘ L v
Fair ~ s I
Poor
Bad 0 T 1
0 4L 4

Fig. 5. Measure and value of DSCQS evaluation
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All evaluating results of above mentioned DSCQS method are shown in Table 2. The
subjective evaluation values of the original exaggerating gesture used as reference,
the value of newly generated exaggeration, and the evaluation difference DE value are
listed, respectively. As for the result of Case 1, the average value of subjectivity eval-
uation of the original exaggeration gesture of Gesture 18 in Category D was 91.0, the
average value of the newly generated exaggeration gesture became 69.8 and evalua-
tion difference DE was set to 21.4. As for the result of Case 2, the average value of
the original exaggeration gesture of Gesture 21 in Category E was set to 97.3, the
average value of newly generated exaggeration gesture was 80.0 and evaluation dif-
ference DE became 17.3. Furthermore, total average value of subjectivity evaluation
of the original exaggeration gestures became from 80.1 to 98.2 for all the gestures
used for experiment from Category A to Category E, and the average value of the
generated new exaggeration gesture was through 44.3 to 85.7 and each difference DE
was set to 35.8 to 12.5. In all categories, the most natural exaggerating gesture was
Category E with the subjectivity value of 80 to 90 percent. The DE value of the newly
exaggerating gesture was the value from 60 to 70 percent of near impression (actuali-
ty) for other categories.

Table 2. Results of subjective evaluation of each exaggerating gestures

Refe:lirelce ges- Generated gesture DE value

Category Gesture 1 90.1 55.0 35.1
A Gesture 3 85.9 55.1 30.8
Category Gesture 6 78.3 47.1 31.2
B Gesture 10 80.1 443 35.8
Category Gesture 11 85.6 514 342
C Gesture 14 89.3 54.8 34.5
Cate- Gesture 18 91.0 69.6 214
goryD Gesture 19 92.1 64.8 27.3
Category Gesture 21 97.3 80.0 17.3
E Gesture 22 98.2 85.7 12.5

9 Conclusion

In this paper, the new quantitative evaluation technique of the mechanism of nonver-
bal communication which is especially paying attention to the characteristic gestures
in the web communication was proposed. We analyzed the effect of the gestures using
kinematic dynamical method by choosing the characteristic gestures carefully which
were used for the purpose of exaggeration and emphasis in Kabuki, Disney's anime
and the communication and presentation of attracting audiences and we obtained the
following conclusions.

1. The exaggeration and emphasis degree of gesture has high correlation with the
main joints torque value and it can be quantified by both inward and outward
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rotational torque value and changing ratio of main joints such as shoulders, elbows
and wrists of skeletal structure.

. As for each characteristic gestures, it is possible to obtain the natural exaggeration

gestures by correcting or replacing the torque values of natural motion withz,,,,
of the exaggeration ones. This calculation was conducted by using the direct
dynamical method.

. We performed to proof the actuality of those newly generated gestures based on

the subjective evaluation, and the natural exaggerating gesture was generated with
the result of subjective evaluation value was 80 percent or more near impression.

We can use these results for the wide range of the fields such that the development of
user interface with 3D characters on the web with feeling actuality and the designing
the natural and intelligible gesture interaction in real world.

References

10.

11.

12.

13.
14.

Mehrabian, A.: Silent messages: Implicit communication of emotions and attitudes, 2nd
edn. Wadsworth (1981)

Wagner, M., Mitchell, A., Nathan, J.: The role of gesture in instructional communication.
In: 6th International Conference on Learning Sciences, pp. 35—43 (2004)

McNeill, D.: Gesture and thought. The University of Chicago Press (2005)

Reeves, B., Nass, C.: The media equation How people treat computers, television and new
media like real people and places. University of Chicago Press (1996)

Shneiderman, B., Maes, P.: DEBATE: Direct manipulation vs interface agents. Interac-
tions 4(6), 42-61 (1997)

Nishida, T., Jain, L., Faucher, C. (eds.): Modelling machine emotions for realizing intelli-
gence: Foundations and applications. Smart Innovation, Systems and Technologies Series.
Springer (2010)

Kudoh, S., Komura, T., Ikeuchi, K.: Stepping motion for a human-like character to main-
tain balance against large perturbations. In: IEEE International Conference on Robotics
and Automation, ICRA2003 (2006)

Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human
multijoint arm movement-minimum torque-change model. Biological Cybernetics 61,
89-101 (1989)

Feltner, M., Dapena, J.: Dynamics of the shoulder and elbow joints of the throwing arm
during a baseball pitch (1986)

Putnam, C.: Sequential motions of body segments in striking and throwing skills: descrip-
tions and explanations (suppl. 1), 125-135 (2003)

Naka, T., Ishida, T.: Consideration of the effect of gesture exaggeration in web3D com-
munication using 3DAgent. IEICE J96-D(8), 1925-1934 (2013) (in Japanese)

Bartenieff, I., Lewis, D.: Body Movement Coping with the environment. Gordon and
Breach Publishers (1980)

Johnston, O., Thomas, F.: The Illusion of Life. Hyperion (1981)

Morris, D.: Gestures, Their origins and distribution. Stein and Day (1979)



Hand-Object Interaction: From Grasping to Using

Long Nil’z, Ye Liul’*, and Xiaolan Fu!

! State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese
Academy of Sciences, Beijing 100101, China
{nil, liuye, fuxl}@psych.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Evidence from psychology has shown that visual man-made manipul-
able objects can afford grasping actions even without the observers’ intention
to grasp them, and humans are able to use grasping information to recognize
objects. But little is known if visual man-made objects, especially tools, can
potentiate much more complex actions associated with using an object. In the
present study, a priming paradigm was used to explore if passively viewing
manipulable objects could be enough to activate specific action information
about how to use them. The results showed that target objects with similar
functional manipulation information to the prime objects were identified signifi-
cantly faster than that with dissimilar manipulation knowledge to the prime
objects. This is the first evidence by using behavioral study to indicate that just
passively viewing a manipulable object is sufficient to activate its specific
manipulation information that could facilitate object identification even without
participants’ intention to use them. The implications of manipulation knowledge
in object affordances and object representation are discussed.

Keywords: Structural manipulation, Functional manipulation, Object recogni-
tion, Object affordances.

1 Introduction

How do humans interact with objects? One type of object-hand interaction is called
structural manipulation (or volumetric manipulation), depending on online visual
processing of objects’ action-related properties such as object size or handle orienta-
tions [1 and 2]. Just imagine you grasp a cell-phone on your desk and move it from
the left to the right. In order to implement these serious actions, you have to adjust
your hand grip to the real size of the cell-phone and grasp it correctly. Another type of
hand-object interaction that is more important in our daily life is functional manipula-
tion, using the object with its function [1 and 2]. If you want to text a message with
your phone, all you have to do is grasp it first and poke its keys or touch the screen.
Though both types of object manipulations concern the ways we interact with objects
[1, 2, and 3], learning how to use an object, especially a tool is of greater significance
for individual development given the ubiquity of tool usage in human history.
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The difference and dissociation between structural manipulation and functional
manipulation have been supported by neuropsychological studies suggesting that
there may exist two separate motor systems of hand-object interaction: dorso-dorsal
pathway devoted to on-line translation of action-related properties of objects into
motor program for reaching and grasping actions and a ventro-dorsal stream devoted
to transforming object features into the appropriate object using action [1 and 2].
More importantly, psychological research has also shown that although both types of
manipulation represent the possible interactions with objects, action associated with
using an object seems more crucial to object representation [4].

But unfortunately, the bulk of psychological as well as human-computer interac-
tion research aiming to examine hand-object interactions so far hasn’t paid attention
to functional actions, but only focused on simple and mechanical object grasping
actions. For example, in robotics and automation field, robotic grasping has been an
active research subject for decades, and a great deal of efforts has been spent on grasp
synthesis algorithms to help robots grasp visually presented objects [5 and 6]. In addi-
tion, efforts have also been focused on object recognition using grasping cues [7 and
8] and grasp recognition by robots [9]. This is also the case in psychology. By far,
examination of the interaction between perception and action has primarily centered
on how visual features of an object can potentiate human’s reaching and grasping
actions toward the object. Psychological research has shown that visually presented
graspable object can directly activate observer’s structural action representation,
which in turn influences both recognition [10] and grasping execution [11] toward
that object.

These lines of evidence support Gibson’s “object affordances” hypothesis [12 and
13] suggesting that humans perceive directly what tools afford in terms of meaningful
actions, and visual objects can potentiate motor responses even in the absence of the
observer’s intention to implement an action. A growing body of evidence has already
indicated that visual manipulable objects can automatically elicit action representation
associated with grasping and moving an object without the observer’s intention to act
and even without their attention allocated to it [14 and 15]. For example, when partic-
ipants were instructed to respond rapidly to the change in the prime objects’ back-
ground color (either blue or yellow) by mimicking precision or power grip responses,
they produced faster precision-grip responses to pinchable prime objects compared
to the “graspable” ones, and faster power-grip responses when primed with graspable
objects compared to pinchable objects, suggesting that the grip type of prime object
irrelevant to the task affected participants’ structural hand response (precision and
power grasp) [16]. However, the potentiated action has been largely limited to struc-
tural manipulation associated with grasping and moving a manipulable object in terms
of hand-object interaction.Therefore, little is known about if visual objects can also
directly afford functional manipulation even when observer’s attention is not allo-
cated to the objects. Few psychological studies that touched on this issue provided
inconsistent results. Evidence from neuroimaging studies showed that passively view-
ing a manipulable tool suffices to evoke its action information [17]. But due to the
fact that most of the man-made objects in these experiments can be manipulated
in both ways (e.g., we can structurally manipulate a calculator by grasping and
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moving it, and functionally manipulate it by poking its keys), we are not sure it is the
structural manipulation or functional manipulation that leads to the activation of mo-
tor-related brains areas, including inferior parietal lobule, intraparietal sulcus and
superior parietal lobule [17 and 18]. Brain imaging studies cannot help us to detangle
the respective contribution of grasp-based action and function-based action. Several
behavioral studies provided much more straightforward evidence suggesting that a
manipulable object has to be processed to some degree before its functional manipula-
tion information being evoked, and passively viewing the object is not enough to
potentiate its functional manipulation information [19 and 20].

Based on the previous research, the goal of present study is twofold. We will
examine: 1) if passively viewing a manipulable object is sufficient to activate its func-
tion-based action information; and 2) if so, is the function-based action information of
a manipulable object able to affect its recognition? In order to address these issues, a
priming paradigm modified from Helbig et al. [21] was used. Given the extensive
experience we have interacted with common objects in terms of using them in our
daily life, we hypothesized that function-based action knowledge could be a necessary
component of object representation rather than a by-product of object processing.
Therefore, it is predicted that passively viewing objects suffices to elicit their
function-based actions.

2 Method

2.1  Participants

Participants consisted of a total of 16 undergraduate and graduate students (12 males
and 4 females), ranging from 20 to 26 years of age (M = 20.1 years). All parti-cipants
had normal or corrected-to-normal vision, and they were unaware of the purpose of
the experiment.

2.2 Stimuli

We used 132 Gray-scale photographs of objects, including 86 man-made familiar
manipulable objects and 46 animals, all of which were turned into a square of
280x280 pixels. Picture size on the screen was circa 9.7 cm by 9.7 cm, with a viewing
distance about 85cm in order to keep the same visual angle about 6.5° with Helbig et
al. [21]. All images were presented in the center of a 17-inch CRT computer monitor
with a resolution of 1,024 by 768 pixels and a refresh rate of 80 Hz.

According to the functional manipulation actions of the prime objects and target
objects, the experiment set up four conditions: congruent condition (the prime object
and target object shared similar functional manipulation, e.g. a calculator and key-
board shared the same action of manipulation “poke” when using them); incongruent
condition (functional manipulation of the prime object was different from that of tar-
get object, e.g., actions associated with using a keyboard and using an abacus were
different ); control condition (the prime objects were man-made object but hardly
served a functional manipulation, e.g., tower) and unrelated condition (the prime
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objects were animals). Each of the four conditions contained 27 prime-target pairs
with the same set of 27 target objects.

Because the participants were required to conduct object categorization task (judg-
ing if the target object is living or nonliving), we added another four filter conditions
in each of which the same set of 27 living objects was used as target objects while the
prime objects kept the same to the corresponding four experimental conditions.
Therefore, the experiment was consisted of 27x4x2 trails in total.

In order to match object familiarity of the prime objects as well as visual similarity
of prime-target pairs that might compound the expected functional manipulation con-
gruency effect, we first asked 30 participants, none of whom took part in the experi-
ment, to rate the familiarity and object manipulability of the original 184 objects
pictures. Ratings were also obtained with regard to visual similarity and functional
manipulation congruency between 196 pairs of prime and target objects, all of which
were matched from the 184 objects. All the dimensions were rated on a five-point
scale. We selected the final 27 prime-target pairs in each condition that repeated-
measured ANOVA revealed no significant difference in the familiarity of the prime
objects among the four critical conditions, but showed significant differences in func-
tional manipulation congruency of the prime-target pairs among the four critical con-
ditions, F(3, 24) = 256.8, p < .001. Post-hoc tests showed that functional manipulation
congruency of prime-target objects in congruent condition (4.06) is much higher than
that in incongruent (2.23, p < .001), control (1.25, p < .001) and unrelated conditions
(1.09, p < .001). Although repeated measure ANOVA also revealed significant differ-
ences in visual similarity of the prime-target pairs among the four critical conditions,
F(3, 24)=55.16, p < .001, Post hoc tests showed that the difference was attributed
to higher visual similarity of prime-target pairs in congruent (3.25) and incongruent
condition (3.12) than that in control (1.57, p < .001) and unrelated conditions (1.37, p
< .001), while visual similarity between congruent and incongruent conditions
revealed no difference.

2.3  Procedure

The experiment procedure was adapted from Helbig et al.’s research [21]. As schema-
tized in Fig. 1, each trail started with a fixation point that remained 500ms on the
center of the screen. After a blank white screen of 700ms, the prime object was
present for 300ms and immediately replaced by another blank screen that was pre-
sented for 250ms. The blank screen was immediately followed by the target object
that would not disappear until the response was made.

Different from the task in Helbig et al.’s research, the present experiment required
participants to make object categorization task as quickly as possible without sacrific-
ing accuracy. Object categorization responses were made by pressing A if the target
object was man-made and L if it was a living object on the keyboard. All participants
were right-handed and the dominant right hand was always used for responding to
man-made targets. RTs were measured from the onset of the target objects.
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Target object

Prime object

Fig. 1. Sequence of presentation in a typical trail for experiment

3 Results

All the data were analyzed using SPSS 17.0C (SPSS China). One participant was not
included in the analysis because of his accuracy that is below three standard deviation
of the mean. Response accuracy was not analyzed because it approached the ceiling
that is higher than 99.7% in each condition. Reaction times more than 3 standard dev-
iations above the mean were abandoned, as were trails with incorrect response. Total-
ly, 1.54% trials were excluded. Because the primary goal of the present study is to
examine if the action congruency effect would occur when the prime objects were
merely passively viewed, therefore the data was analyzed with paired T-tests to di-
rectly compare participants’ reaction times to target objects in congruent conditions
with reaction times in incongruent conditions. Due to our prediction that the target
objects in congruent condition would be identified much faster than in incongruent
condition, one tailed paired t-tests was conducted.

570 1 p< .05

)

520 T T .

Congruent Incongruent  Control Unrelated

Fig. 2. Mean reaction times of target object classification in the four critical conditions
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The response times for incongruent condition is the longest (RT = 556ms), while it
is the shortest for congruent condition (RT = 543ms). Identification time for control
condition (RT = 553ms) and unrelated condition (RT = 552ms) fell in between
(Fig. 2). The results of the paired t-test showed that participants classified man-made
target objects that shared with the prime objects similar functional manipulation sig-
nificantly faster than target objects with different manipulation from the primes, #26)
= 1.9, p < .05. It also revealed faster responses for congruent condition as compared
with the control condition, ¢ (26) = 1.73, p < .05, as well as the unrelated condition, ¢
(26) = 1.8, p < .05. No significant difference was found among incongruent condition,
control condition and unrelated condition.

4 Discussion

Results of the experiment indicated that there was a reliable priming effect for func-
tional manipulation. Specifically, when an object that afforded a specific functional
action was primed by anther object with a similar functional manipulation, it would
be processed and then identified more quickly. The action congruency effect occurred
even when action-related information of the prime object was irrelevant to the expe-
rimental task and our participants had no intention to make any action response to the
prime. More importantly, given the fact that the prime object per se was irrelevant to
the categorization task, this result strongly demonstrated that passively viewing a
manipulable object was sufficient to elicit its functional manipulation knowledge.
Additionally, the action congruency effect couldn’t be attributed to several potential
variables due to the fact that both the visual similarity of the prime-target pairs in
congruent and incongruent conditions and the familiarity of the primes among the
four critical conditions were controlled in the experiment.

4.1 Hand-Object Interaction: From Grasping to Using

Since initially introduced by Gibson to explain how inherent “meanings” of objects in
the environment can be directly perceived, and linked to the action possibilities of-
fered to the agent [13], concept of object affordances has been developed by many
other researchers and used in a variety of fields [see reviews, 22 and 23]. Though
contemporary researchers still hold different views on affordances, most of them have
been primarily focused on simple and mechanical actions associated with grasping
objects, which relies on online processing of visual manipulation properties, such as
object shape, size and orientation. As mentioned above, in robotics and automation
field, scientists aim to create autonomous robotics not only capable of grasping a
manipulable object, but also of categorizing and detecting objects according to their
grasping affordances. However, our interaction with manipulable objects is not li-
mited to simple and biomechanical reaching-out and grasping actions, it also involves
complex functional manipulation that is more central to human’s life dominated by
tool use. Therefore, a more intelligent robot should be also capable of functionally
manipulating a tool, and recognizing a tool according to its functional affordances.
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The present study provided direct evidence for the notion that visual manipulable
objects would also automatically afford human’s action representation associated with
using them, and the potentiated functional manipulation would in turn affect recogni-
tion of the objects. The extension of affordances in humans would be applied to robot-
ics filed as well. New algorithms or methods would be explored to help robots
functionally manipulate a visually presented tool or recognize the object by extracting
its functional manipulation affordances.

4.2  Is Functional Action Knowledge A Key Part of Object Representation?

Though much evidence from behavioral , brain imaging and even neuropsychological
research supported that action knowledge associated with an object’s specific usage is
an important component of the its representation, less of them are not without contro-
versies [20]. Generally, we are not sure whether the activation of functional action
information has a genuine causal role in object representation, or it is just a by-
product of semantic or post-semantic object processing [for a review see 24]. Moreo-
ver, as for the issue if functional manipulation could be elicited under passively
viewing condition, brain imaging research has not provided us a consistent picture.
For example, while some studies have indicated that passive viewing of tools is suffi-
cient to evoke a range of specific cortical activation associated with motor processes
[17 and 18], others reported that brain regions specific to tools was evoked only when
participants engaged in naming or object categorization task, not during passively
viewing [25].

To our knowledge, the present study provided the first behavioral evidence that
functional manipulation can be evoked under passive viewing condition. Due to the
fact that participants in our experiment were neither required to attend to the prime
objects nor biased to process action-related properties of the primes by asking them to
make responses with prehensile actions, the action congruency effect we obtained
excludes the possibility that the automatic activation of functional manipulation is an
epiphenomenon of semantic or post-semantic object processing. On the contrary, it
suggests that action representation associated with object use can pop out even when
viewed passively. This result strongly supports the view that functional manipulation
knowledge of man-made object is a necessary part of object representation.
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Abstract. Many of todays software development processes include
model-driven engineering techniques. They employ domain models, i.e.
formal representations of knowledge about an application domain, to
enable the automatic generation of parts of a software system. Tools
supporting model-driven engineering for software development today are
often desktop-based single user systems. In practice though, the design
of components or larger systems often still is conducted on whiteboards
or flip charts. Our work focuses on interaction techniques allowing for
the development of gesture-based diagram editors that support teams
in establishing domain models from a given meta-model during the de-
velopment process. Users or groups of users are enabled to instantiate
meta-models by free-hand or pen-based sketching of components on large
multi-touch screens. In contrast to previous work, the description of
multi-touch gestures is derived directly from the graphical model rep-
resenting the data.

Keywords: Multi-touch gestures, model-based development.

1 Graphical Model-Driven Development

To allow for the graphical modeling of artifacts according to a given data model,
graphical models can be used to represent features of the data model. These
models contain shapes and containers providing a graphical description of data
models and supporting the development of graphical diagram editors. One exam-
ple of graphical modeling within the Eclipse framework is the Graphical Editing
Framework (GEF) [13], which provides methods for the creation of graphical ed-
itors for the Eclipse Modeling Framework (EMF). The Graphiti Toolkit [7] based
on GEF provides a graphical model for the representation of model instances,
the Graphiti pictogram model. In our prototypical diagram editor, instances of
a data-model can be created and manipulated by interacting with graphical rep-
resentations specified using the Graphiti pictogram model, which are linked to
the appropriate elements of the data model (see Figure 1).
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Fig. 1. Model-driven diagram editor based on Eclipse

1.1 Formal Representation of Gestures

Explicit methods for gesture recognition are based on patterns of strokes that
are compared to the user input and evaluated regarding their similarity. To
represent these strokes, previous developments use domain-specific languages to
define multi-touch interaction such as the Gesture Description Language (GDL)
[9] or the Gesture Markup Language (GML). In contrast, we propose to use
the graphical representation of artifacts that is already present in the graphical
model to derive multi-touch gestures. We identified three modes of gesture inter-
action that have been employed by users to sketch the various graphical items
specified using the pictogram model: Single-touch / single-stroke, single-touch /
multi-stroke, and multi-touch / multi-stroke (see Figure 2).

Lo d ™

Fig. 2. (left) single-touch / single-stroke. (middle) single-touch / multi-stroke. (right)
multi-touch / multi-stroke.

2 Related Work

Interaction with diagram editors was been simplified by enabling finger- or pen-
based gestural sketching input. Plimmer et al. [12] give some overview about
sketching tools developed for multiple application domains, such as UML mod-
elling and Ul generation, as well as on the gesture recognition algorithms that
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have been employed in the various works. Rubine’s algorithm [14], a single-stroke
pattern-matching algorithm, is one of the recognition techniques employed e.g. in
InkKit [12], SUMLOW/5] and the Knight UML Designer [6]. Rubine’s algorithm
performs a comparison between features extracted from registered patterns and
features extracted from user input. In the implementation in InkKit, the recog-
nition process is started manually, while in SUMLOW, a timer is responsible for
starting the recognition.

This is regarded as a drawback by Alvardo et al., who provide continuous
recognition in their SketchREAD engine [1], using a gesture recognition algo-
rithm based on bayesian networks.

In their SKETCH framework [15], Sangiorgi et al. employ a recognition al-
gorithm based on the Levenshtein Distance [10], using string-based descriptions
of gestures describing cardinal directions. The development effort on SKETCH
seems to have ceased since 2010.

Scribble [16] is a GEF-based framework which allows for a seamless extension
of GEF editors with gesture input. Since no pre-generated patterns are used,
users are enabled to choose their own gestures, making the framework usable in
many different application domains. The GEF editors that are augmented by
Scribble have to be trained by the user to support their respective gestures of
choice.

The related work shows the relevance of gesture-based input for diagram ed-
itors in multiple application domains. Multiple methods towards gesture recog-
nition have been evaluated, with descriptions of gestures being either program-
matic, pattern-based or feature-based. In contrast to the existing work, we pro-
pose methods for generating gesture description from the graphical models used
to represent entities of the application domain.

3 Specification of Graphical Models

A Graphical Model contains graphical representations of the elements contained
in a Data Model that represents concepts of the underlying application domain.
In the context of workflow editing, a model-based graphical workflow editor
contains a model of the workflow items (i.e. activity, event, loop, connection,
etc.), and a graphical model containing graphical representations of these items
(i.e. rectangle, diamond shape, line, etc.). By selecting graphical shapes in the
editor, the user is enabled to instantiate concepts of the underlying data model.

In our prototypical application, we extended the graphical modeling frame-
work Graphiti to allow for sketching of instances of the underlying pictogram
model used by Graphiti. As can be seen in Figure 3, we extended Graphiti’s Di-
agram Editor to make use of a Gesture Recognizer, that is able to detect shapes
contained in the graphical model of the application. On detection of sketched
fragments of the graphical model, instances of the underlying data model are cre-
ated and the associated feature of the graphical model is added to the editor’s
scenegraph.
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Fig. 3. Architecture of the prototypical diagram editing framework. Instances of the
gesture model are recognized by a $N gesture recognizer, features of the data model
and the graphical model are instantiated for display by the system.

3.1 Recognition of Sketched Graphical Models

To be able to recognize sketched user input, fragments of the graphical model,
such as can be seen in Figure 5, have to be able to be detected by the Gesture Rec-
ognizer. We would like to give a short introduction about the methods that are
employed in the Gesture Recognizer for sketch recognition, and for transforma-
tion of the pictogram model fragments to reference templates for the recognizer
component.

The $1-Recognizer, a pattern-matching algorithm for single-stroke gestures,
was introduced by Wobbrock et. al. [17]. It uses simple lists of coordinates as pat-
terns for gesture recognition, which are compared to user input. The algorithm
is implemented in four steps:

— Resampling. Because of different speed of user input, gestures contain dif-
ferent numbers of input points. In this step, the point path is resampled to
contain a certain number of equidistant points, Wobbrock et. al. propose to
use 64 points per point path.

— Rotation. Point paths are rotated in negative direction such that the in-
dicative angle, the angle formed between the centroid of the gesture and the
gestures first point, is 0.

— Scale and translation. After scaling the point path to a reference square, the
centroid of the point path is translated to (0,0).

— Recognition. The point path is continuously rotated to find the minimum
path-distance between the point path and supplied reference patterns.

The $1 recognizer’s main benefits are simple implementation, high speed and
that extensive training is unnecessary. This simplicity comes with several draw-
backs. The algorithm is not able to distinguish input according to its orientation,
aspect ratio or position, making it impossible to differentiate between e.g. squares
and non-square rectangles. Also, $1 is not usable for multi-stroke gestures.
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<?xml version="1.0" encoding="UTF-8"7>
<pi:Diagram xmi:version="2.0"
xmlns:xmi="http://www.omg. org /XMI”
xmlns: xsi="http://www.w3.0rg/2001/XMLSchema—instance”
xmlns: al="http://eclipse.org/graphiti/mm/algorithms”
xmlns: pi="http://eclipse.org/graphiti/mm/pictograms”
visible="true” active="true” name="">
<children xsi:type="pi:ContainerShape” visible="true” active="true”>
<graphicsAlgorithm xsi:type="al:Polyline” foreground="//@colors.0”
lineWidth="2" width="40" height="40">
<points x="0" y="20"/>
<points x=720" y="0"/>
<points x=740" y="20"/>
<points x=720" y="40"/>
<points x="0" y="20"/>
</graphicsAlgorithm >
<children visible="true”>
<properties key="gesture” value="1"/>
<graphicsAlgorithm xsi:type="al:Ellipse”
foreground="//@colors.0” lineWidth="3" filled="false”
width="18" height="18" x="11" y="11"/>
</children>
<children>
<properties key="gesture” value="2"/>
<graphicsAlgorithm xsi:type="al:Polyline”
foreground="//@colors.0” >
<points x=70" y="0"/>
<points x=750” y="100"/>
<points x="100" y="0"/>
</graphicsAlgorithm >
</children>
</children>
<colors red=7102" green="102" blue="255"/>
</pi:Diagram>

Fig. 4. Instance of Graphiti pictograms model representing the or data model instance
of our prototypical workflow editor

Protractor [11] was developed to address some shortcomings of the $1 recog-
nizer, the key difference being sensitivity to orientation, making it possible to
distinguish eight base orientations. The $N recognizer [2] improves on the $1 al-
gorithm, allowing for the representation of multi-stroke gestures as single-stroke
gestures, combining the last point in a stroke with the first point of the following
stroke. This allows for the recognition of a mixture of single- and multi-strokes.
The $N Protractor [3] is a combination of the $N recognizer and the aforemen-
tioned Protractor algorithm.

The main reason for selecting the $N family of algorithms for our application
framework is the simplicity of transforming fragments of the employed graph-
ical model into patterns for the recognizer. The coordinate lists contained in
the al:Polyline elements of the graphical model, as well as al:Rectangle and
al:Polygon elements, as can be seen in Figure 5, can be easily converted into
required coordinate lists for the $N recognizer. For shapes such as al:Ellipse and
al:RoundedRectangle, we sample the shape to provide the appropriate coordinate
lists.
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o On

Fig. 5. Input possibilities for the or element: (left) mathematical symbol. (middle)
circular gesture. (right) circular + diamond gesture.

3.2 Functionality of the Workflow Editor

We selected an existing EMF-based workflow editor to evaluate our prototypical
gesture based sketching framework. The editor uses traditional mouse based in-
teraction according to the WIMP concept. In addition to interactions performed
using existing Eclipse interfaces, possible interactions with the editor are sepa-
rated into two categories. As can be seen in Figure 1, the right side of the editor
contains a list of workflow objects that can be dragged to the main diagram in
the middle of the workspace, instantiating entities of the graphical model and
placing them inside the diagram. Inside the diagram, existing workflow objects
can be moved, deleted or connected using transitions between ports contained
in workflow objects.

3.3 Integration of Gesture Recognition

The extended architecture of the workflow editor can be seen in Figure 6.
Input, processing and detection of gesture based sketching are enabled inside
Graphiti’s Diagram FEditor and our additional Gesture Recognizer. The link be-
tween Graphiti and gesture recognition is Graphiti’s Interaction Component,
where touch input is received and forwarded to the newly introduced gesture
recognizer. Upon detection of one of the entities provided in the graphical model
based on Graphiti’s pictogram model, the Diagram Type Provider is used to
instantiate the particular entities of the data model and the graphical model
respectively.

4 FEvaluation

The evaluation of our prototype was performed on a Dell XPS One 27 featuring
a capacitive multi-touch display. The gestures that were automatically generated
from the graphical model of our workflow editor were evaluated in a user study
involving 15 participants. Furthermore, a comparison between the existing, tra-
ditional mouse-based interaction and gesture based usage was performed. This
was done to gather evidence towards if expected advantages of gesture based
sketching, such as higher intuitiveness, or expected disadvantages such as fat-
finger problem or user fatigue, dominate the user experience. The evaluation
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Fig. 6. Integration of gesture based sketching into the Graphiti architecture (adapted
from Brand et al. [4])

was performed using two different quantitative methods, a formative user sur-
vey, and user transparent observation of behaviour. Participants in the study
have not been involved in the development of the gesture recognition, although
most of them belonged to the same faculty with similar background in software
engineering, the application domain of the tasks in the user study.

To achieve the above mentioned goals, the following scenario was prepared.
The participants were to sketch the graphical workflow elements Process, If,
Or, And, Loop and Ports. Ports belonging to some of the elements were to
be connected using Transitions. The workflow editor was to detect sketched
workflow elements and position them at the respective position in the diagram.

Indicators that were rated were based on the NASA TLX evaluation [8] to as-
sess cognitive and physical demands, overall effort, mental effort, physical effort,
temporal effort, time pressure, performance and frustration levels. The observer
that was monitoring the participants was mainly passive. Although the sequence
of user tasks was arranged through the use of a survey sheet, the approach to-
wards the solution of each task was presented to be open to the preferences of
the user. The advances of the users were logged in the background and analyzed
afterwards.

4.1 Evaluation Results

Following a short introduction of the evaluated categories are an evaluation of
the most interesting results of the user study. Mental effort of gesture based
sketching was perceived to be lower as traditional mouse interaction throughout
the study. Further, a significant reduction in mental effort between the first
and the following tasks leads to the impression that the method of interaction is



128 F. Niebling et al.

learned after a very short period of familiarization, and can thus be characterized
as intuitive.

Physical effort was perceived to be higher using gestures than using mouse
interaction, a result that was to be expected since gesture interaction requires
free movement of a stretched arm in mid-air in front of the display. Physical
effort seems to be a fundamental weakness of gesture interaction, which is also
seconded by results in the overall effort category. Temporal effort was also per-
ceived to be higher for gesture interaction, even on tasks where measurements of
the time requirements for mouse based and gesture based interaction where sim-
ilar. Overall values for frustration where quite high when recognition of sketched
objects failed. This happened mainly in the sketching of ports, with a recognition
rate as low as 67.5%, where recognition rates for the other workflow elements re-
liably achieved between 90% and 100%. Further evaluation has since shown that
the low rate of recognition of ports was due to problems with the positioning
of the performed sketching. Multiple users have tried to sketch ports slightly on
the outside of existing workflow objects, when ports were actually only added to
workflow objects when the sketching was performed on the inside of an object,
due to programming errors in the prototype.

Although multiple participants of the study voiced their discomfort with
longer periods of gesture interaction on a desktop computer due to physical
effort, overall evaluation has shown that users accepted the process of gesture
based sketching of graphical representations as equal to mouse based interaction.

The decision to allow for multi-stroke gestures has to be reconsidered, as
only two of the 15 participants made active usage of multi-stroke sketching for
the And element, even after being explicitly advised towards the possibility of
multi-stroke sketching.

Fig. 7. Pen-input on interactive whiteboard
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Multiple users intuitively reduced complex geometries to simpler gestures that
represented subsets of the graphical representation of objects. E.g., the surround-
ing diamond of the graphical representations of the And and Or elements (see
Figure 5) have been disregarded by most users, leaving just a simple circle ges-
ture for the Or element and a plus gesture for the And element.

All participants but one have sketched transitions in a straight line between
workflow objects, even when the final graphical representation of a transition
was not a straight line to avoid cutting existing workflow elements.

5 Summary and Conclusion

We have evaluated a method for diagram sketching where gestures were au-
tomatically derived from the underlying graphical model of the application. A
prototypical workflow editor based on Eclipse and Graphiti was augmented to
support the generation of templates for a gesture recognizer from the Graphiti
pictogram model. A formative user study was performed to evaluate user inter-
action with the modified editor.

As a fundamental difference towards previous work, the presented concept
and prototypical implementation allows for collaborative multi-user interaction
using multi-touch multi-stroke gestures. Evaluation with single user interaction
on a desktop PC have shown that the sketching of workflows was accepted to
be largely equivalent to mouse-based interaction concerning the preparation of
workflow diagrams. Follow-up testing has shown tendencies that collaborative
scenarios featuring digital whiteboards are promising targets for further user
studies. Independent of the testing environment, our evaluations have shown that
gestures derived from graphical models are accepted as input methods by users.
The intuitive reduction of graphical representations by users towards simpler ge-
ometric subsets suggests further areas of research towards automatic generation
of intuitive gestures from graphical models.

6 Future Work

Several different methods that support graphically similar objects need to be
evaluated in future work. First, using context to allow the system to choose the
item that is perceived to be of higher probability. Second, the support of similar
objects using the same gestures, with additional pop-up menus allowing the user
to choose one of the different objects. Third, further evaluation which parts of
the graphical model are perceived by users to carry the most significance or
relevance. Identifying parts that are perceived to be meaningful by users given
a graphical representation is also necessary the more complex graphical models
become.

Further work is also needed in the evaluation of introducing mobile multi-
touch devices such as tablets into the software modeling process, expanding
the collaborative user environment from single devices such as whiteboards to
multiple devices.
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Abstract. Traditional methods of authenticating a user, including password, a
Personal Identification Number (PIN), or a more secure PIN entry method (A
PIN entry method resilient against shoulder surfing [14]), can be stolen or ac-
cessed easily and, therefore, make the authentication unsecure. In this work, we
present the usability of our multi-sensor based and standalone finger ring called
Pingu in providing a highly secure access system. Specifically, Pingu allows
users to make a 3D signature and record the temporal pattern of the signature
via an advanced set of sensors. As a result, the user creates a 3D signature in air
using his finger. Our approach has two main contributions: (1) Compared to
other wearable devices, a finger ring is more socially acceptable, and (2) signa-
tures created via a finger in the air or on a surface leaves no visible track and,
thus, are extremely hard to forge. In other words, a 3D signature allows much
higher flexibility in choosing a safe signature. Our experiment shows that the
proposed hardware and methodology could result in a very high level of user
authentication/identification performance.

Keywords: uman Computer Interaction (HCI), Touch less gestural interaction,
Wearable device, Finger ring.

1 Introduction

Due to increased capability of a smartphone, users tend to store all of their personal
information in their mobile devices. Smart technology, however, raises a serious threat
to a user’s credentials, unless the access to these devices is secured by information
unique to each user. As an example, access to a user’s smartphone may lead to his
bank account, social security number, email accounts, or other personal information.
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© Springer International Publishing Switzerland 2014
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Traditional methods used for authenticating a login include entering a password,
Personal Identification Number (PIN). Previous research shows that it’s not difficult
to replicate this information, thereby making it insecure. A more robust solution will
be to provide users with a unique way of interaction with their computing device.
While a modern computing device easily fits a human hand, our world of interaction
is not limited by the size of the device. With this motivation, we have developed a
multi-sensor based framework called Pingu [1] that helps a user perform gestural
signatures to access his computing device (e.g. smartphone). Pingu is calibrated in the
form of a miniature, wearable finger ring that can perform sharp and tiny gestures.
When the user performs his signature as a general gesture, sensor readings specific to
each sensor are recorded, even if the device is not in the vicinity of the user. These
sensor readings define the 3D trajectory of the ring and, therefore, are unique to each
individual.

With wireless connectivity, feedback mechanism, and an advanced set of sensors,
Pingu offers a wide range of applications. In addition, unlike previously proposed
wearable devices (such as gloves, wristwatch [2, 6]), Pingu is a standalone device that
does not require any extra hardware for interaction with a computing device and is also
socially wearable. In this work, we explore the usability of Pingu in providing a secure
authentication method for users to access their computing devices. To illustrate further,
we conducted a user study with 24 participants, where each participant performs his
signature in the form of a gesture and the sensor readings specific to the gesture are
recorded. We show that the recorded sensor readings provide rich information specific
to each gesture made by a user and with simple classification algorithms, the users can
be authenticated based on their signatures with very high accuracy.

The rest of this paper is organized as follows. In Section 2, we review the related
potential solutions for generating 3D signatures. Then in Section 3, we explain the
architecture of the Pingu’s hardware. In Experiments Section, the data collection and
feature extraction via Pingu are explained. Section 5 presents our results of signature
classification via different machine learning algorithms. In Section 6, further classifi-
cation based on correlation and frequency features is illustrated. Finally, we conclude
the paper in the Section 7.

2 Related Works

In recent years, different gestural recognition approaches are developed which are
either used to generate 3D signatures such as MagiSign [5, 16], or can potentially be
used to generate a 3D signature [2, 3, 4, 6, 7, 15].

In our previous work, MagiSign [5, 16], a 3D signature is created via influencing
the magnetic field of a magnetic (compass) sensor embedded in mobile devices.
However, the space of interaction is limited to the immediate 3D space around the
device. Moreover, while Pingu can work with any computing device, MagiSign works
only with smartphones (e.g., an iPhone). Finally, using multiple sensors in Pingu
leads to a more precise gesture recognition in comparison to only one magnetic sensor
in MagiSign.
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In other approaches, which can potentially be used for 3D signature such as Acce-
leration Sensing Glove [2], a user has to wear additional gloves to interact with the
computing device. The disadvantage of this approach is that they can be socially un-
acceptable or obtrusive. Other frameworks, such as Gesture Pendant [3] and Sixth-
Sense [4], require users to wear pendant and additional hat, respectively, which suffer
from the same problems. Moreover, in approaches like SixthSense and Gesture Pen-
dant, there is a need for an optical sensor (e.g., camera) which causes problem when
performed gestures are not in the direct line of sight of the sensor.

Finger rings or wristwatches can be used to solve the problem of social awkward-
ness. Pinchwatch [6] uses a wristwatch for finger gesture recognition with the help of
a camera. By performing sliding and dialing motions, some functions are invoked.
However it still has the occlusion problem. More recently, Nenya [7], a magnetically-
tracked finger ring, is developed which includes a permanent magnet in the form of a
finger ring and worn-watch wireless tracking bracelet. The magnetometer is used to
track the ring’s position and a Bluetooth radio allows the bracelet to send ring input to
the user’s device. However, Nenya only supports 1D input in comparison to 3D inputs
supported by Pingu. Furthermore, the IR Ring provides an innovative method which
can be used for Authenticating users’ touches on a multi touch display [13].

3 Design

Figure 1 shows the prototype for Pingu. Specifically, Pingu has four sensors: a tri-axis
accelerometer, a tri-axis gyroscope, a tri-axis magnetometer, and proximity sensing
plates with two channels. The accelerometer is used to detect the orientation and mo-
tion of the device along X, y, and z axes. A tri-axel gyroscope detects the angular rate
of movement of the ring along the three axes X, y, and z. The deformation of magnetic
fields is useful in recognizing coarse gestures made around the device. In addition, the
proximity-sensing plates allow sensing the proximity of other fingers. The feature set
obtained from one or more sensors can then be combined to form a feature vector
specific to each gesture. Based on the movement of the ring, each of these sensors
provides a feature set. Table 1 lists the details specific to three sensors and radio tech-
nology used in the design of Pingu.

Built-in sensors

-

» RGBLED
Battery
M ForceReactor

Proximity sensing

Fig. 1. Prototype for our multi-sensor based framework called Pingu
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Table 1. Sensors used in the design of Pingu with their specifications.

Sensor Description
Accelerometer [-8g, 8¢g]
Magnetometer [-2gauss, 2gauss]

Gyroscope [-2000deg/s, 2000deg/s]

Bluetooth Up to 2m

4 Experiment

To evaluate the usability of Pingu in secure authentication, we perform gestures de-
fined as a signature. Since Pingu is worn on a finger, even sharp and tiny gestures can
be used for the purpose of authentication. When the user performs a gesture, the asso-
ciated sensor data is collected. The sensor readings define the temporal pattern of the
signature and, thus, can be used in matching the signature for authentication. Our
experiments were split into two categories:

1. Signature in the air and
2. Signature on the table

Setting the two medium of air and desk provides a variety of surfaces for gesturing. In
this way, the methodology can be tested under more variable yet practical scenarios.
The desk medium is a surface which is commonly available for users during the ges-
turing process. The air medium also provides the fantasy of writing in air for the user,
when the two other mediums are not available.

Signatures for each user are recorded on two different mediums to evaluate Pingu
for its dynamic usability. In other words, these two experiments ensure that the usabil-
ity of Pingu in secure authentication is irrespective of the surface (or medium) of
interaction. Each signature is first performed in the air and then on the table. Mul-
tiple templates per signature are collected. Specifically, when a signature is per-
formed, the 3D trajectory of the ring is recorded in the form of sensor readings. For
example, as the ring moves, the accelerometer, embedded in Pingu, measures the
linear acceleration along three axes: X, y, and z.

Since Pingu performs sharp and tiny gestures, any general gesture can be used as a
signature pattern. When a user performs a gesture, the sensor readings specific to the
gesture are compared to the previously recorded signature pattern (template) for the
user. The two patterns can be compared via Dynamic Time Warping (DTW) tech-
nique and if the difference between the two patterns is less than a pre-defined thre-
shold, the signature is accepted. Next, we provide details on the datasets and the clas-
sifiers used to analyze signatures made by the users.
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Fig. 2. An example of a 3D signature made in the air

4.1 Data Collection

Our dataset consists of six signatures, obtained from 24 users. Every user performs
each of these six signatures 15 times. The sensor readings specific to each signature
are captured via a Java desktop application. To classify the signatures based on the
sensor readings captured, we extract an extended set of features, specific to every
sensor reading captured for each signature performed by a user. To extract feature
vector from the sensor readings, we use the following approach.

4.2  Feature Extraction

We mixed the data collected from all the 24 users and cross-validated. For this pur-
pose, we formed a feature vector containing the data specific to each sensor. For ex-
ample, the feature vector specific to accelerometer contains the following:

1. Mean and variance of the linear acceleration along X, y, and z axes (6 features),
2. Mean and variance of the Euclidian norm of the linear acceleration along x, y, and
z axes (2 feature),

The feature vector from gyroscope is obtained in a similar manner. Feature vector for
each sensor, therefore, contains 8 elements. Since multiple windows provide more
detailed information in gesture classification, our results are based on 4 windows.
Feature vectors obtained from each window are concatenated to form a new feature
vector of 32 (=8x4) features.

5 Signature Classification

The feature vectors obtained for each sensor are then concatenated to form a large
feature set that represents the features defining each signature. To classify users based
on their signatures, we use a set of four classifiers: (a) Decision Tree (DT), a decision
tool that uses graphs and model of decisions to derive the outcomes and conse-
quences, (b) Multi-Layer Perceptron (MLP), a feedforward artificial neural network
that models the relationship of inputs and outputs to find the patterns, (c) Naive Bayes
(NB), a probabilistic classifier that uses Bayes’ theorem with strong independence
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assumptions, and (d) Support Vector Machines (SVM), which set hyperplanes in high
dimensional space for using classification and regression. The current implementa-
tions available for these classifiers in Weka machine learning toolkit version 3.7.0
[11, 12] on Mac OS X are used. Tables 2-3 list the classification accuracy obtained
for both sets of experiments. As shown, MLP and SVM outperform the other two
classifiers (i.e., DT and NB). In addition, we note that using simple features (i.e.,
mean and variance of sensor readings) can enable us to classify users (based on their
signature patterns) with an accuracy of about 99% in both experiment categories.

Table 2. Signature Classification for 24 Users in Signature in the air

Classifier Accuracy
MLP 98.8889%
DT 82.2222%
NB 97.5%
SVM 99.1667%

Table 3. Signature Classification for 24 Users in Signature on the table

Classifier Accuracy
MLP 99.1549%
DT 87.0423%
NB 97.4648%
SVM 99.4366%

6 Correlation and Energy Features

To illustrate the effect of a feature set on the accuracy of classification techniques, we
extract piecewise correlation and frequency features of sensor readings. Frequency
features measure the intensity in the movement of ring and are calculated as the sum
of squared discrete FFT magnitudes. The correlation features, on the other hand, help
differentiate between sharp and tiny gestures made by users. Together, these features
help capture the periodicity in sensor readings. Thus, we performed another study of
classifyingsignatures with a feature set that contains frequency and correlation fea-
tures in addition to mean and variance extracted from each of the three sensors. Spe-
cifically,

1. Piecewise correlation between linear acceleration along x, y, and z axes (3 fea-

tures), and
2. Frequency domain features along x, y, and z axes (3 features).
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Feature vector for each sensor, therefore, contains 14 elements. With a window size
of 4, the size of the feature set is 56 (=14x4). To classify, we again use the four clas-
sifiers listed earlier. Tables 4-5 present our results obtained for the experiments per-
formed in air and on the table. The results indicate that with correlation and frequency
features, the accuracy can be excelled to 100%.

Table 4. Signature Classification for 24 Users in Signature in the air (with Correlation and
Frequency features)

Classifier Accuracy
MLP 100%
DT 86.6667%
NB 98.3333%
SVM 100%

Table 5. Signature Classification for 24 Users in Signature on the table (with Correlation and
Frequency features)

Classifier Accuracy
MLP 100%
DT 86.6667%
NB 99.1549%
SVM 99.7183%

7 Conclusions

In this work, we have proposed a unique secure authentication solution and presented
our results for this system using a standalone, miniature, and wearable finger ring
called Pingu. Pingu is a socially wearable, small finger ring that is equipped with
multiple sensors to provide rich information about the signatures made by a user. Our
analysis for signature recognition is based on a large dataset of 24 users and we have
shown that with simple classification algorithms, the signature performed by a user
can be recognized with a very high accuracy. Therefore it can be a trustworthy au-
thentication solution for many applications.

References

1. Ketabdar, H., Moghadam, P., Roshandel, M.: Pingu: A new miniature wearable device for
ubiquitous computing environments. In: 2012 Sixth International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), IEEE (2012)



138

10.

11.

12.

13.

14.

15.

16.

M. Roshandel et al.

Perng, J.K., Fisher, B., Hollar, S., Pister, K.S.J.: Acceleration sensing glove (ASG). In:
The Third International Symposium on Wearable Computers (ISWC 1999), pp. 178-180
(1999)

Starner, T., et al.: The gesture pendant: A self-illuminating, wearable, infrared computer
vision system for home automation control and medical monitoring. In: The Fourth Inter-
national Symposium on Wearable Computers. IEEE (2000)

Mistry, P., Maes, P.: SixthSense: a wearable gestural interface. In: ACM SIGGRAPH
ASIA 2009 Sketches. ACM (2009)

Ketabdar, H., Moghadam, P., Naderi, B., Roshandel, M.: Magnetic signatures in air for
mobile devices. In: Mobile HCI 2012, pp. 185-188 (2012)

Loclair, C., Gustafson, S., Baudisch, P.: PinchWatch: a wearable device for one-handed
microinteractions. In: Proc. MobileHCI (2010)

Ashbrook, D., Baudisch, P., White, S.: Nenya: subtle and eyes-free mobile input with
a magnetically-tracked finger ring. In: Proceedings of the 2011 Annual Conference on
Human Factors in Computing Systems. ACM (2011)

Kratz, S., Rohs, M.: HoverFlow: expanding the design space of around-device interaction.
In: Proc. of the 11th International Conference on Human Interaction with Mobile Devices
and Services, Bonn, Germany, pp. 1-8 (2009)

Butler, A., Izadi, S., Hodges, S.: SideSight: multi- “touch” interaction around small devic-
es. In: Proc. UIST, pp. 201-204 (2008)

Kim, J., He, J., Lyons, K., Starner, T.: The Gesture Watch: a wireless contact-free gesture
based wrist interface. In: Proc. ISWC, pp. 15-22 (2007)

Witten, H.I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann (1999)
http://www.cs.waikato.ac.nz/ml/weka/

Ring, T.I., Roth, V., Schmidt, P., Giildenring, B.: Authenticating users’ touches on a multi-
touch display. In: Proc. UIST (2010)

Roth, V., Richter, K., Freidinger, R.: A PIN entry method resilient against shoulder surfing.
In: Proc. 11th ACM Conference on Computer and Communications Security, Washington,
DC, USA (2004)

Ketabdar, H., Abolhassani, A.H., Roshandel, M.: MagiThings: Gestural Interaction with
Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor.
IJMHCI 5(3), 2341 (2013)

Ketabdar, H., Moghadam, P., Naderi, B., Roshandel, M.: Magnetic signatures in air for
mobile devices. In: Mobile HCI 2012, pp. 185-188 (2012)



What You Draw Is What You Search:
The Analog Gesture

Benoit Rouxel', Franck Poirierz, Jean-Yves Antoine3,
and Gilles Coppin'

! Lab-STICC, Telecom Bretagne CS 83818, 29238 Brest, France
{benoit.rouxel,gilles.coppin}@telecom-bretagne.eu
21ab-STICC, Université de Bretagne-Sud 56000 Vannes, France
franck.poirier@univ-ubs. fr
3 Université Francois Rabelais de Tours, LI, 3 place Jean Jaures, 41000 Blois, France
jean-yves.antoine@univ-tours. fr

Abstract. This paper presents a new type of gesture for identifying spatio-
temporal patterns: the analog gesture. Analog gestures can be characterized by
some features (speed, acceleration, direction, and angle) which describe the dy-
namic morphology of the gesture. At first, we detail interactive tasks that
should benefit for the use of analog gestures. Then we give a state of the art
concerning gesture recognition and investigate the specificity and the main
properties of the analog gesture. Then, we propose a review of the surveillance
maritime system called Hyperion which uses analog gestures. Finally, we give
an example of the use of this type of gesture by the operator. It concerns the in-
teractive detection of ship abnormal trajectories in the context of maritime
surveillance.

Keywords: Gesture recognition, time-space pattern search, tabletop computing.

1 Introduction

Gestural interfaces are increasingly present in our daily lives. Nowadays, many dif-
ferent gestures have been investigated to enrich interaction. It is possible to use 3D-
gestures to control characters in video games or 2D-gestures to make a call with a
smartphone. Gestures may be associated with different commands; for instance,
symbol drawing can be used as a shortcut for calling software functions [1].

The recognized gestures refer to an action, a symbol or an idea, which refer them-
selves to software functions. However, to the best of our knowledge, there is no at-
tempt in the literature [6,7,8,12] to consider gestures which can directly refer to a
time-space pattern of reference. We call time-space pattern (TSP) a series of positions
that takes into account space and time simultaneously. We consider positions com-
posed of a location and a timestamp. TSPs are useful in many domains, such as the
behavioral analysis of pedestrians in a crowd, optical character recognition, and more
generally any study that aims at spatio-temporal clustering and classification. In this
paper, we considered the application domain of maritime surveillance, where TSPs
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correspond to boat trajectories that take into consideration the boats speed. Schematic
examples of such trajectories are given in figure 1. The TSP on the left corresponds to
a uniform speed while the right corresponds to a deceleration.

%//XX//M

Fig. 1. TSP with uniform speed (left) and deceleration (right). All positions are sampled with
the same frequency.

Our proposal consists in investigating the potential uses a new gesture type called
analog gesture (AG) which is based on the explicit specification of a TSP. An analog
gesture is a gesture dedicated to the expression of spatial and temporal features of a
trajectory (or by extension a shape). The gesture is called “analog”, because we ex-
pect lengths, orientations and speeds to be proportional or representative of the real
trajectory, which is expressed through a TSP.

The paper is organized as follows. Section 2 presents some works related to our
problematic. To the best of our knowledge, gestures have not been used so far to ex-
press of all the features describing a TSP. This is the aim of the analog gesture, which
is defined in section 3. We then described the Hyperion platform, a maritime surveil-
lance application where analog gesture is useful. Finally, we focus on the integration
of the analog gesture in Hyperion before a final conclusion.

2 Related Work

Previous works in gesture recognition mainly focus on path recognition. $1 Gesture
Recognizer [14] is a 4-step algorithm that recognize a predefinite gesture extracted
from a finite alphabet of unistroke gestures. The algorithm was later extended ($-
family) to enable multistroke gesture recognition [13]. Other algorithms as like in
Octopocus [2] or the turning angle algorithm [5] use template alphabets to recognize
gestures. Though originally applied on images, the turning angle algorithm can be
applied on gesture recognition.

Contrary to the aforementioned algorithms, PaleoSketch [10] does not use any al-
phabet. This application improves free hand draws by replacing parts of the sketch
with ideal shapes. For example, it replaces a round sketch with a circle and a line
sketch with a straight line. When a new shape is drawn, a corner finding algorithm
produces a polyline interpretation that closely fits the original shape. After that, each
subpart of the computed polyline is analyzed and replaced with the closest simple
shape. The simple shape library is composed of several shapes, like line, arc, circle
and ellipse. This approach does not use templates to recognize a big shape; the shape
is seen as an addition of simple shapes. A very large number of shapes can thus be
represented with gestures as long as those shapes can be decomposed in simple
shapes. Nevertheless, all those works only focus on the shape. They don’t take into
account the speed of the gesture which was used to draw the shape.
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Holz and al. [4] takes into account the speed of the gesture in a selection technique
they proposed for querying time-series graphs. To select a part of the graph, users
sketch over part of the graph, establishing the level of similarity through the speed at
which they sketch. Whereas this technique uses a temporal parameter (speed of
sketch), it does not allow the expression of free shapes. To search a specific shape, a
similar one has to exist.

Rubine’s algorithm [11] classifies gestures according to 13 criteria like the length
and the angle of the bounding box diagonal, the maximum speed and the duration of
the gesture. This algorithm requires an initial training by drawing sample gestures.
Even though time is taken into accounts in gesture classification with maximum speed
and duration criteria, those two time parameters are too few to express acceleration in
a TSP for example. In addition, the template alphabet required by this technique does
not allow the expression of all spatial characteristics of a TSP.

While some works focus on the spatial dimension, others use template alphabets
which reduce the number of recognized path to the size of the alphabet.

3 The Analog Gesture

The analog gesture is a gesture dedicated to the expression of spatial and temporal
characteristics of a trajectory. This gesture taken as a whole is devoted to be decom-
posed into a series of segments. Spatial characteristics will mostly correspond to the
lengths of the segments as well as their orientations; while temporal the features are
expressed via the speed or acceleration within the segment.

Table 1. Parameters used to characterize a trajectory

Dimension Parameter Recognized feature
Number of dimension 2D, 3D
Angle Each 15°-interval
Direction Continuous
Space Shape Spatial inking | Previously defined area
of the

Sequence of remarkable object in the

i Path . .
drawing a environment crossed by the drawing

Orientation A direction or the opposite direction
Time Speed Zero, slow, medium, fast
. Strong deceleration, deceleration,
Acceleration . .
acceleration, strong acceleration
. Same pressure, increasing pressure
Force Variation of pressure P ’ ep ’

decreasing pressure

The speed and variation of pressure are important when we produce the gesture.
Table 1 presents the three dimensions of the gesture realization were used to charac-
terize the gesture and therefore the intended TSP. These three dimensions are space,
time and force. For each dimension, one or more parameters are recognized.



142 B. Rouxel et al.

For each parameter, the assigned value is either continuous or discrete according to
human abilities. Since human can draw a direction with a fairly good accuracy, there-
fore this is a continuous parameter. On the contrary, people are unable to draw a TSP
with an accurate speed, so this parameter can take only few values (zero, slow, normal
and fast), and therefore is a discrete parameter.

Analog gestures are multi-touch gestures whenever the objective is to express rela-
tive evolutions of multiples trajectories. For instance, in the maritime surveillance
domain, if we want to indicate that two vessels are sailing close together on near pa-
rallel courses (this situation occurs in boarding situation), we have to use two fingers.

Analog gestures allow in one hit, to express simultaneously various parameters of a
segment (length, orientation, speed) as well as complex objects composed of chained
segments.

To prove the utility of this type of gesture and how it works in real situation, we
will show how we integrated AG in an effective application of maritime surveillance
called Hyperion. In the two next parts, we will present the Hyperion platform and
after that, we will expose how we use the gesture in this platform.

4 Hyperion Platform

VTS are control centers from which the maritime traffic is monitored. They aim at
improving the safety and the organization of the traffic and at protecting the environ-
ment. The VTS controllers deal with many different types of information at the same
time (AIS, radar, weather ...). This considerable amount of raw information involves
a heavy cognitive load which reduces the efficiency of the operator.

We propose to develop a domain-specific maritime surveillance system (Hyperion)
to reduce cognitive load through a process of computer-aided decision-making.
Hyperion is an application dedicated to help vessel traffic service (VTS) controllers. It
is developed in Java on Diamond Touch DT107 a touch table.

The main aim of Hyperion platform is to highlight abnormal behaviors of moving
vessels. The abnormal behaviors are defined by rules. These rules can contain static
properties, a behavior (trajectory) and an anchorage (restriction of a rule to a specific
area). Since there rules are strongly related to TSP patterns of sailing behaviour, such
behaviours are defined by the controller (expert) using AG.

In order to detect abnormal behaviors of moving vessels in a maritime area, we
propose to combine a bottom-up and a top-down approach. The analysis of how sur-
veillance operators work [9] has shown that they were more looking for abnormal
trajectories than checking normal ones. This is why we propose in a rule based expert
system devoted to the maritime traffic analysis, to focus on the detection of abnormal
behaviors.

The top-down approach allows the operator to define a rule characterizing what
he/she considers an abnormal situation in a given area. These rules work like a filter-
ing function. Any vessel matching the rules is highlighted (fig. 2).

The bottom-up approach restricts the identification of abnormal behaviors to prede-
fined but well established rules. For example, if a vessel breaks a rule of navigation, it
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must be reported to the operator. This type of detection is robust in trivial situations.
Without these predefined rules, the operator would have to define a larger number of
rules for simple situations. Subsequently, he would not be focusing on the detection of
abnormal behaviors.

Hyperion works on 2 main modes: an operational mode and a rule edition mode.
When the application starts, the operational mode is on. In this mode, a ship breaking
a rule is highlighted, and the user has to check the alert report and possibly report a
false positive recognition. In rule edition mode, the user can create, search and delete
rules, and apply them on map elements (vessels, harbors and areas).

4.1  Operational Mode

Figure 2 shows the interface in operational mode: a map represents the current situa-
tion. Vessels, harbors and areas appear on the map while alert reports are displayed on
right of the map. Rules can be applied on every map elements. Moreover, the areas
can be created, modified and deleted by the operator.

When an alert occurs, an alert box which give an overview of the alert goes down
from top to bottom right of the screen while, an animation catches the operator atten-
tion on the boat triggering the alert. Until alert is treated, the alert box stays in the
stack of alerts. Alert box presents the icon of the rule, the time since the alert, the boat
name, the rule name, and a number and a color that corresponds to the rule priority. If
a vessel breaks a rule, it takes the color of the rule priority or a color corresponding to
the sum of broken rules priorities, if more than one rule is broken.

Fig. 2. Hyperion GUI in operational mode
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4.2  Rule Edition Mode

To add a new rule on map elements, the user has to tap and hold on an element. A
circular menu appears and the operator can choose the create rule item. If the tap and
hold gesture is performed directly on the map (not on a map element) the created rule
will apply on the entire area monitored by the VTS. The user can also apply an exist-
ing rule on a map element. In this case, the user has to select an existing rule and
apply it on a map element.

The set of applied rules can be modified in rule edition mode. In Hyperion plat-
form, a rule is composed of 5 properties: a rule name, a priority, an anchorage, a dy-
namic behavior (trajectory) and a set of static properties like the boat name or its size.

Figure 3 shows Hyperion GUI when the user is creating a new rule. In this situa-
tion, the map and its elements are displayed in the background and two new boxes
appear in the bottom left corner. The first one is a detailed view of the currently rule
edited and the second one allows the testing of the rule.

In the rule box, each part of the rule is visible. First, the text area in the top left
corner allows the showing and editing of the rule name. First, a default name “rule
n°--" is given to the rule. Below, the slider corresponds to the rule priority that allows
the user to order alert treatment by setting the colors and the numbers to the Vigipirate
code (a French alert state). The anchorage area shows the “anchorage” property of the
rule. The box in the middle (“behavior”) shows the abnormal trajectory expressed by
the rule. These two properties are expressed using analog gestures performed directly
on the map. Finally, the last box shows the static rule properties. For example, if we
want to express a rule forbidding a military ship to enter an area, we have to add the
military property. The static property set can be accessed by performing an up swipe
on the property box.

Fig. 3. Create a new rule in Hyperion platform
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The second box concerns rule testing. At the top, the button “test” is used to test
rule on the last 24 hours or less according to the recorded history. When a rule is
tested a text area under test button displays the number of alerts that would have been
raised over the recorded period, as well as the number of false alarms (boats trigger-
ing an alarm but considered as normal by the operator). Finally, the circle allows user
to replay the recorded history to understand better the alerts triggered by his rule. To
play history, it is possible to tap on the play symbol or to move the slider around the
symbol to go backwards or forwards.

Figure 4 shows the research of rules, where the user in looking for rules expressing
a given behaviour: a list appears above the rule view. It contains every rule in the
system, which corresponds to the research. To apply an existing rule on a map ele-
ment, user just has to drag and drop rule from the list, to the element. In this case, the
rule is cloned and the “anchorage” property of the cloned rule is replaced with the
new map element.

T aam R

Fig. 4. Rule selection in Hyperion GUI

This section aimed at the description of the Hyperion system, and how it uses
rules: next section focusses more on the use of AG in the platform.

5 Use of Analog Gesture for Vessel Trajectory Appointment

Let us consider a simplified example to describe how AGs are used in Hyperion: sup-
pose the controller wants to describe a vessel trajectory starting from a harbor,
suddenly turning to the southeast while accelerating.

Without AG, operator should to select the harbor to indicate the anchorage proper-
ty of the rule. To express the abnormal trajectory, the operator has to learn the rule
syntax and write it in a text editor like in [3].
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With AG, the surveillance controller has just to perform a gesture from the point
on the map indicating the harbor, going away from the port at normal speed and
turning abruptly and rapidly to the bottom right corner of the touch table screen
(figure 5a). In a same gesture and without learning process from the operator,
“anchorage” and “behavior” properties are added to the edited rule.

When the gesture is completed, a feedback appears on rule view (figure 5b). This
feedback allows the user to see what is understood by the system. If the operator does

not agree with the recognized TSP, he/she can cancel his/her action by performing
another gesture.
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Fig. 5. a- Example of real gesture (left) and b- its corresponding feedback, with the same sam-
pling frequency.

Analog gesture is limited to maritime surveillance domain. In aerial monitoring
domain, it would be possible to use this type of gesture to watch the air traffic. It

would be possible to add AG to easily plan the itinerary of an unmanned vehicle like
UAY or unmanned car.

6 Conclusion

We saw that in some situation, we need to refer to TSP global features. Therefore, we
propose the concept of analogical gesture which allows people to directly match to the
TSP of reference in the system. Finally, we present the Hyperion platform, our
maritime surveillance application which uses the AG.

The analog gesture recognizer is developed. Now, we have to make some experi-

ments to know if it is a real benefit for an operator to express the main characteristics
of a trajectory via a gesture, in terms of precision and time to realize this task.
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Abstract. Typical view sharing system has same camera alignment that camera
take images from back of remote instructor. We change this alignment to cam-
era take images from front of remote instructor for preventing occlusions
caused by a body of remote instructor self. Also as visual feedbacks, a mirror
image of remote instructor is indicated in display of remote instructor side.
Eventually remote instructor can confirm own instruction in the display. There-
fore due to displaying the mirror image of remote instructor and changing cam-
era alignment, we proposed and implement a novel remote collaboration system
which prevents occlusion problems caused by instructor body self when he/she
sends clear instructions by whole body gesture and allows instructor to use di-
rect manipulation.

Keywords: Remote collaboration, Occlusion, Augmented Reality, View shar-
ing system, Spatial AR.

1 Introduction

Work conducted by a local worker under the instructions of a remote instructor is
called remote collaboration [1-3]. Using a telecommunication terminal, the remote
instructor and the local worker transmit and receive sounds and videos to accomplish
their work since they cannot share voices and views directly. On the other hand, a
worker and an instructor sometimes communicate regarding objects and places in real
work spaces in local collaborative works. To conduct such communication smoothly,
a support system sends the remote instructions including the place of the local worker.

Especially, some studies focus on the situation in which a remote instructor
provides an instruction to a local worker with real objects, for example, repairing
machinery. In these studies, a tabletop display is adopted to capture the gesture of the
instructor and a projector is adopted to indicate the gesture image to the real-world
directly [9-12]. With these devices, it becomes easy that a local worker realizes an
instruction intuitively with watching the projected image of instruction gesture on the
work environment. This study focuses on remote collaboration in which a local work-
er works with real objects using a remote instructor. The goal of this study is to
achieve an interaction that allows a remote instructor to provide a local worker with
clear and accurate instructions by means of various gestures. A view sharing system
between remote instructor and local worker are often used in this type of remote
collaboration. In particular, we focus to occlusion problems when making clear
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instructions by gestures. To solve this problem, we apply spatial augmented reality
technique to view sharing system for remote collaboration..

2 Related Work

Some researches study the support of the instruction to the local worker by the remote
instructor as a remote collaboration. Some of these research focus on the remote col-
laboration with real-world objects. The teleoperated laser pointer is adopted in some
research as a pointing tool for remote collaboration [4-6]. Cterm [4] and GestureLaser
[5] are device placed in a work space, and WACL [6] is a wearable device. Each of
these is compact size and consists of a camera, a microphone, a speaker and a laser
pointer which can be controlled remotely. The instructor can pan and tilt the laser
pointer on the camera to point at real-world objects. GestureMan [7] is a system
equipped with not only a teleoperated laser pointer but also a robot head and a robot
arm. The robot head and the robot arm trace the motion of the remote instructor.

Kondo [8] develops view sharing system between an instructor and a worker for
remote collaboration. This system is constructed from the video-see-through Head
Mounted Displays (HMD) and motion trackers. The system allows two users in re-
mote places to share their first-person views each other.

To achieve the instruction considering embodiment in the remote collaboration,
some researches display the image or the shadow of the instructor on the work envi-
ronment [9-12]. These systems allow to transmit the embodiment and awareness to
the remote worker by sharing their arms and gestures each other on the displayed
image. These research show the remote communication becomes smooth by consider-
ing embodiment and transmitting the awareness information or gestures. Therefore,
the instruction via work field images including target object is effective for the remote
collaboration with real-world objects. Moreover, considering embodiment and trans-
mitting gesture or awareness information is important in the instruction with real-
world objects. However, above systems focus on the system placed on the work envi-
ronment. There has been little researches which proposes the instructor system, the
remote interaction for the instructor and deploying spatial AR techniques.

3 View Sharing System Using Instructor Mirror Image

In typical view sharing system for remote collaboration, as conveying remote instruc-
tion to local worker, researchers studied indicating only arm image of instructor and
line drawing [14-15], whole body or upper of instructor [13][16] and some instruc-
tions in VR space rebuilt for remote instructor. Especially, we focus to Kuzuoka
works [17] that upper body image can help to understand instructor’s gestures and
measure intelligibility of worker and instructor. Along to the principle, we use images
of instructor’s upper body to support nonverbal communication.

In typical view sharing system for remote collaboration, HMD and table top dis-
play are used for displaying situation of remote instructor and local worker sites each
other. Remote instructor and local worker cannot take different field of view because
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Grabbed Image

Finger-tips are
concealed by
body
(Occlusion)

Fig. 1. Occlusion problems in typical view sharing system

view of remote instructor and local worker are perfectly matched in remote collabora-
tion systems such as both remote instructor and local worker wears HMD. Finally,
remote instructor cannot observe worker sites freely, and then performance of remote
collaboration is decreased in tasks such as searching and picking. Using table top
display in such remote collaboration are often used to compensate the previous prob-
lem that remote instructor cannot observe working site. In such remote collaboration
system, instructions for real objects are conducted by gestures of only finger and arm.
However, gesture of whole body, face and other body parts cannot be used in such
kind of system due to deployment of the display placed horizontally. In our proposed
system we use old fusion wall type LCD panel as output device for instructor to use
gestures of whole body.

Typical view sharing system for remote collaboration has almost same camera
alignment that camera take images from back of remote instructor as shown in fig 1.
We change this alignment to take camera images from front of remote instructor for
preventing occlusions caused by a body of remote instructor self as shown in bottom
of fig 2. Also as visual feedbacks, a mirror image of remote instructor is indicated in
display of remote instructor side as shown in fig 3. Eventually remote instructor
can confirm own instruction in the display with this Spatial AR technique. Therefore
due to displaying the mirror image of remote instructor and changing camera align-
ment, we proposed and implement a novel remote collaboration system which
prevents occlusion problems caused by instructor body self when they sends clear
instructions by whole body gesture and allows instructor to use direct manipulation.
We suppose to unveil relationship among tasks efficiently, whole body gesture and
even face expressions in remote collaboration regarding objects and places in real
work spaces.
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Fig. 2. Camera alignment in typical view sharing system and proposed system
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3.1  System Overview

Our proposed system is composed of instructor and worker interfaces. Fig 4 shows ap-
pearance of instructor interface. It composed of Flat panel display (Mitsubishi,
55P-FD100) to indicate video image of worker side, and Microsoft Kinect to capture
instructor’s body movement. The Kinect is deployed between the Flat panel display and
standing position of instructor. Kinect can capture depth and RGB image of instructor at
the same time. Image of only instructor can be extracted from RGB image according to
the depth image. After that extracted instructor image is sent to worker interface as
shown in Fig 3. Also instructor cannot touch the display directly with deploying the
Kinect between the display and standing position of instructor. Instructor cannot recog-
nize where instructor is pointing to exact. It causes a lack of direct touch and decreasing
usability. To compensate those issues, transparent image of instructor body is superim-
posed to image on the display as shown in upper right of Fig 4.

Fig 5 shows worker interface. The worker interface is composed of a projector
(Mitsubishi, LVP-DX95) and RGB camera (Logicool, HD Pro Webcam C920). The
RGB camera capture circumstance of worker side. Image of instructor upper body is
overlaid on working place with the projector as shown in Fig 5. This interface is not
special and this style is typical Procams (Projector and Camera systems). Because of
that we do not focus to improvement of worker interface in this paper.

Superimposing mirror Image
As visual feed back
for instructor

Camera
Projector

Overlaying instructor's
upper body image

Fig. 4. Appearance of instructor interface (Left) and worker interface (Right)

Fig 3 shows process of instructions. Worker interface capture working place in-
cluding worker’s hand and objective parts of this task. The captured image stream is
sent to instructor interface via TCP/IP network. At this time, we apply keystone effect
to configure and compensate distortion. And then the corrected image indicate on the
large display located in front of the instructor. Observing the image stream of worker
side, the instructor make instructions by finger pointing and whole body gesture.
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Also, image of instructor upper body can be extracted according to depth image of
Kinect. Those image is sent to worker side, and then the instructor upper body is
overlaying on work place. Finally, instructor’s finger pointing and whole body gesture
are duplicated in worker side. Referring duplicated nonverbal channel, the worker
conduct tasks. Simultaneously, the image is superimposed to the display in instructor
side as visual feedback for the instructor. Also aural communication can be used each
other as full duplex via Skype.

3.2  User Study and Result

We conduct 2 type user study. After that we called them Experiment 1 and 2. Task 1
can be accomplished by pointing out only 1 place. Also we set that occlusion prob-
lems do not occur so much as the experiment condition of Experiment 1. Aim of Ex-
periment 1 is to confirm that the proposed system can mark almost same performance
as well as typical view sharing interface as shown in upper of fig 2.

In Experiment 2, subject should be pointing out 2 places to accomplish. We set
Experiment 2 condition that occlusion problems occur so much. Aim of Experiment 2
is to confirm that the proposed system can perform much more than typical view shar-
ing interface.

In Experiment 1, we set a task that subjects place some blocks on gridded paper as
shown in left of Fig 5. The blocks are painted by random color pattern not to distin-
guish at once. Also the gridded paper is painted by random color pattern. It means that
we let instructor use finger pointing rather than aural instruction. In experiment 2, we
set a task that subject draw a line from two point indicated by remote instructor on a
gridded board (Right of Fig 5). Some base points are painted as large black circle on
the gridded board. The base points avoid that remote instructor spend time for search-
ing two points which convey to a local worker.

12 subjects (ages 21-25, 11 male and 1 female) conduct Experiment 1 and 2 to
consider order effects. As a result, typical view sharing is faster than the proposed
interface in Experiment 1. Significant difference is found in task completion time
of Experiment 1. In Experiment 2, the proposed interface is faster than the typical
view shared interface. Significant difference is found in task completion time of
Experiment 2.

Also we conduct questionnaire after Experiment 1 and 2. In experiment 1, we can-
not find significant difference among almost all evaluation items excepting “Which
condition do you transmit the instruction easier?”. In terms of “Which condition
do you transmit the instruction easier?”, the proposed interface is more easier
than typical interface. In Experiment 2, the proposed interface obtain good impres-
sions and obtain significant differences in “Which condition do you transmit the in-
struction easier?”, “Which condition do you conduct the instruction precisely?”
and “Which condition do you feel burdens during instructions?”. However, we cannot
find significant difference in “Which condition do you conduct the instructions
faster?”
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Fig. 5. Gridded board (Left). Blocks and gridded paper (Right).

3.3 Discussion

In Experiment 1 which needs one pointing instructions, the typical existed interface
mark shorter completion time than the proposed interface. As quantities evaluation,
we cannot find significant difference among almost all evaluation items excepting
“Which condition do you transmit the instruction easier?”.

In Experiment 2 which needs two pointing instructions, the proposed interface
marks shorter completion time than typical interface. As quantities evaluation, the
proposed interface provides better impressions than the typical interface. Especially,
quite large difference is obtained in evaluation item of “Do you feel burden when
instructions?” because instructors should take unnaturally posture during instruction
in the typical interface. It can say the proposed interface using mirror image can com-
pensate those occlusion problems. Also the proposed interface can provide same im-
pression when conducting one pointing instruction.

4 Sharing Face Expression among Worker and Instructor
Using Mirror Image

In previous chapter, we proposed, implemented and evaluated view sharing system
using instructor mirror image as application of remote collaboration with installing
spatial AR techniques. As a result, we can compensate occlusions problems during
two pointing instructions. Also we propose a method of sharing face expression
among worker and multiple instructors using mirror image as other application of
remote collaboration with installing spatial AR technique. We assume that application
can mark good performance in remote collaboration between two or three instructors
and one field worker.

As shown in fig 6, two or three instructor are considering how to instruct. Then,
local worker can watch the conversation among instructors with observing face ex-
pression, gestures and body. The local worker might obtain much nonverbal commu-
nication comparing to a method of left and middle of Fig 6. Finally, understanding the
conversation deeply, the local worker can conduct tasks smoothly.
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Fig. 6. Advantage of sharing face expression with using mirror image of instructors

5 Conclusion

We propose, implement and evaluate new view sharing system for remote collabora-
tion. We change this alignment to camera take images from front of remote instructor
for preventing occlusions caused by a body of remote instructor self. Also as visual
feedbacks, a mirror image of remote instructor is indicated in display of remote in-
structor side. Eventually remote instructor can confirm own instruction in the display.
Therefore due to displaying the mirror image of remote instructor and changing
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camera alignment, we proposed and implement a novel remote collaboration system
which prevents occlusion problems caused by instructor body self when he/she sends
clear instructions by whole body gesture and allows instructor to use direct manipula-
tion. Also we propose a method of sharing face expression among worker and mul-
tiple instructors using mirror image as other application of remote collaboration with
installing spatial AR technique.
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Abstract. In the work at hand, a method is presented that can pre-
dict gestures during input. The scheme is based on the specification of
prominent points defining subgestures within templates. Classification
of a partial input is only against a small set of subgestures pre-selected
by nearest neighbor searches regarding these prominent points. The ges-
ture prediction is invariant against variations in scale, rotation, transla-
tion and speed of an input and handles single-touch, single-stroke and
(sequential) multi-touch gestures. We provide thorough investigations of
the classifiers performance on tests with two medium sized gesture sets.
Results are promising and feasible for a wide range of applications. Even
common direct manipulation operations can be reliably detected.

Keywords: gestures, multi-touch, prediction, classification, template-
based.

1 Introduction and Motivation

In this work, the task of a gesture’s prediction during input is investigated. In
the best case, input is accompanied by continuously adapting interpretations in
terms of the most probably intended gestures. In this way, users can finish their
input as soon as enough of it is seen for proper recognition. Besides the incorpo-
ration of multi-touch to encode more information in time, such shortening can
drastically reduce the time of gestural interaction, too. In addition, a predictive
recognition can connect gestural interaction and direct manipulation or support
tools for dynamic training of gestures. Freeman et al. [7] see the barrier for users
in the necessity of learning complex physical input methods as the main cause
why developers of commercial systems avoid implementations of multi-touch in-
teraction beyond basic direct manipulations as defined by Shneiderman [18].
Consequently, literature mainly focuses on such training purposes or support of
input by feedforward mechanisms that show current predictions [2,3].

2 Known Methods and Applications

In [14], purpose of a gesture’s ‘eager recognition’ is the fluent transition from
gesturing to direct manipulation, targeting to convey additional parameters of
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© Springer International Publishing Switzerland 2014
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the operation. This is realized by forming two sets for each class, one for the suf-
ficient complete ones (unambiguous) and one selection of ambiguous subgestures
of all possible prefixes each gesture can contain. Under modification of weighting
parameters by cross-validation, a binary classifier is trained that decides whether
enough of an actual input is seen (input falls into an unambiguous set) to pass
it to the standard classification method presented in the same work.

The classification method of [14] and its eager recognition routine is used in [9]
for the interpretation of hand drawn sketches of ER-diagrams (4 simple geometric
symbols for entities, relationships, and attributes). A similar method is used in
[19] for the recognition of sketches. Partial (separated by strokes) sketches are
added to the training data which is clustered (supported by a supervised SVM)
by similarity of visually represented features (as in [12]). Assignment of partial
inputs to a class is by a Bayesian approach.

The feedback system ‘Octopocus’ [2] supports single-touch input of gestures
normalized regarding their size by presenting suggestions of possible progress.
Beginnings of each classes’ templates that correspond in length are replaced by
the actual input. This modified gesture is then classified based on the method in
[14] by Mahalanobis distances against the original template set. An alternative
classification by distances between the shape signatures of angular traversal of
the trajectory is proposed, but not investigated. The error measurement in terms
of the distance of a template to the input indicates the probability of performing
a gesture equivalent to this template. This probability is visually presented by
the stroke’s thickness in the depiction of each possible outcome. An approach
similar to ‘Octopocus’ that only displays the most probably intended gesture to
not stress the user is presented in [3]. In contrast to the work in [2], the prediction
scheme scales templates to the bounding box of the current single-touch input.

More sophisticated estimation of the size of a partially entered gesture is done
in [1] on the basis of a scale independent gesture representation by sequences of
quantized absolute angles. Subsequences of similar angles are collapsed to achieve
independence of an input’s duration, which otherwise needs an equal distance
resampling under knowledge of the complete gesture. Two thus computed shape
signatures are compared - up to the length of the shorter one - by the ratio of
their pair-wise angles that exceed a threshold of (w/4). Is this ratio below 10%,
a scaling factor is determined by the mean lengths of all examined segments’
in both trajectories that are represented by those concordant angle-pairs. Tests
showed an average over-estimation of a partial gesture’s real size by 1/3.

In [11], a DTW approach is used to recognize partial input of planar gestures
of the hands. Classification of a partial input is done by comparisons with sub-
gestures of templates in length of the input’s duration. A gesture network is used
to model common subgestures and the formal prediction capacity. It provides
points in time where the classification of a partial input is possible. Further
progress is predicted by averaging trajectories following the input part in the
graph for predefined gestures. However, common partial sequences of gestures
require a manual analysis of the gesture set. Kawashima et al. [10] extend the

! Ignoring the last one, as it can not be determined, if it is already completed.
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concept of [11] to handle input with strong variations in its duration compared to
the specified and quantized (per Self Organizing Maps) templates. The method,
however, requires the computation of Euclidean distances between input and all
possible subsequences of a template to choose the most similar segment as soon
as it differs by a threshold to the second most similar one.

In general, classification by DTW can also be done by relaxing constraints, so
that partial matchings are possible or even preferred [8]. Further approaches can
be found in other application areas. Classification by HMM, for instance, can be
extended by combination of the models [21] or modification of the Viterbi proce-
dure [6] to detect gestures in continuous input streams. Such ‘gesture spotting’
could be transferred to find partially entered gestures within templates.

The Main Problem of a gesture’s early recognition is the estimation of the
amount of input already done. Obviously, absolute criteria as time or the length
of trajectories can provide sufficient indications of this amount, but presume cer-
tain restrictions in input (i.e. fixed size, orientation, speed or scale). Additionally,
nearest neighbor searches within all possible subgestures of all templates are too
expensive if several classifications are to be done during a gesture’s input.

In the methods available so far, single-touch is the common form of input
[14,2,1,3] and tools that provide sophisticated multi-touch gesture input at all are
rare.?. Multi-stroke is supported, for instance, by [19], but prediction is restricted
to partial sketches containing fully drawn strokes. Due to the selection of absolute
(i.e. angular) features [14,1,19] normalization by size [2,3] or usage of time as
a criterion to find subgestures of equal length [11], our required invariances are
currently not fully supported, too.

We require the prediction of gestures to be invariant against variations in
scale, rotation, translation, and speed as having such constraints limits the ver-
satility of the classifier. On the other hand, if such natural variations in input are
required, they can easily be integrated by parameter checks or enhancements by
absolute features. To prevent restrictions to the diversity of gestures, we require
our classification approach to handle single-touch gestures as well as multi-stroke
or (sequential) multi-touch ones as defined in [17].

3 The Proposed Method

The proposed method is based on the definition of prominent points within tem-
plates. The recognition routine of [17] is applied at each new input sample point
(time-outs are possible), but classification is only against templates with a promi-
nent point similar to this last point in input. This way, the classification’s work-
load can be scaled regarding real-time requirements. Each prominent/landmark
point, is represented by a feature vector which is independent of a gesture’s posi-
tion, scale or orientation. If an input is compared to a template, the best fitting

2 Direct manipulation operations (for instance, pinch-gestures) as defined by Shnei-
derman [18], though possibly applied by multi-touch, are not regarded as gestures.
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prominent point allows to estimate the common portion within the template,
which in turn allows the prediction of further progress and training schemes as
in [2,16,3]. Our detailed procedure includes the following steps:

e Find prominent points in each template during training phase.

e Define a representation of landmarks in respect to features supporting all
required invariances and incremental (with gesture length) computation.

e Store landmark points (together with references to the corresponding sub-
gesture) in a data structure that provides fast searches for nearest neighbors.

e During input, find landmarks that are most similar to its currently termi-
nating point and classify it against their corresponding subgestures.

We find prominent points within a gesture’s token (trajectory) by a modified
Ramer-Douglas-Peucker-algorithm [13,5] (abbr.: RDP). It approximates curves
by omitting points that do not provide much information to its contour.

Algorithm 1. ModifiedRamerDouglasPeucker(T,n,f,1)
Require: INPUT: T - single trajectory of an gesture input
Require: INPUT: n - maximum number of landmark points
Require: INPUT: f - index of first point
Require: INPUT: I - index of last point > defining relevant sequence in trajectory
> by ignoring duplicates/first point, point set contains landmarks on end of recursion
STORETOPOINTSET(T(f))
STORETOPOINTSET(T(1))
> if further landmark points are to be included, find the one with maximum
> perpendicular distance to the line segment defined by index 1 and f
ifn>0 & I — f>0then
foralli=f+1tol—1do
distance <— PERPENDICULARDISTANCE(T(1),T(1),T(f))
if distance > maxzdistance then
landmark <+ i
maxdistance < distance
end if
end for
STORETOPOINTSET(T (landmark))
> distribute next landmarks approximately equally on left and right side of the
> currently found one by the number of samples within both parts
left + n - (landmark — f)/(1 — f)
right < n-left
MODIFIEDRAMERDOUGLASPEUCKER((T,left,f,landmark))
MODIFIEDRAMERDOUGLASPEUCKER((T right,landmark,right))
end if

In its original version, the recursive procedure successively selects points that
contain the most relevant contour information. It terminates as soon as a point
would be added whose distance to the polyline formed by already chosen points
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falls below a threshold. We adapted the procedure to collect a maximum number
of points. If one such point is found, the reduced maximum number is distributed
in the ratio of sample points within the trajectory that precede or follow this
currently found prominent point. The first point in the token of a template is
excluded from the list of landmark points after the algorithm’s termination.
All landmark points found by the RDP-algorithm are represented by a feature
vector. The features are depicted in figure 1. They contain the angle between
the first point, landmark and its preceding point (1), the angle enclosed by the
landmark’s preceding point, landmark itself and an incremental center of gravity
(2), the angle between first point, the point half way to the landmark (median)
and the landmark (3) as well as the distance of incremental center of gravity to
the landmark in relation to the length of the trajectory up to the landmark (4).

Fig. 1. The feature set of a landmark (cross) is used for retrieving similar points within
templates. It contains measurements of angles and distances incorporating interesting
points on the trajectory (black dots) and an incremental center of gravity (gray).

An additional feature not depicted in figure 1 is the cosine (self-) distance be-
tween two segments of the partial trajectory up to the landmark that are bisected
by the median. It indicates the trajectory’s continuity. If more than one (partial)
trajectory is included in a subgesture up to the landmark, the structural and
temporal features of [17] are added. All features can be computed in maximum
time relative to the length of the trajectory and in this case incrementally.

For each landmark point within a trajectory of a gesture, the feature vectors of
simultaneous points in possibly existing concurrent® trajectories are retrieved,
too. The combined feature vector for all trajectories at a given point in time
is seen as a point in multi-dimensional space. Every possible combination of
the tokens’ feature vectors (and a reference to the corresponding subgesture) is
added in a kd-tree [4], appropriate for this number of tokens. This data structure
supports efficient searches for nearest neighbors within radii of fixed number or
range. Figure 2 illustrates the complete process.

For each new sample of an input, the kd-tree for its current number of tokens
is chosen. A set of nearest neighbor landmarks in respect to the combined last
points of the input’s trajectories is requested and used for classification. The
result of this classification is our best guess of the intended input.

3 In case of terminated trajectories, their last point is chosen.
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Fig. 2. Signal processing of a gesture (left). Landmark points for a token are detected
and features retrieved and combined with features at simultaneous time or (if at the
current time already completed) past endpoints of other tokens (second picture). For
each ordering of tokens a feature vector is generated and the order corresponding
subgesture is referenced by this point which is included in a kd-tree structure (right).

4 Evaluation

We evaluated our procedure by classification tests of partial gestures for two sets
of templates. The first set (see figure 3 left) contains only multi-touch gestures
and is introduced in [17]. The set was not developed for this purpose and due
to inherent identical prefixes of the gestures?, it is impractical for real world
applications of gesture prediction. However, for analysing purposes and first
impressions of our approach’s performance, this systematical ‘construction flaw’
may be useful. For a more realistic scenario, a second set (see figure 3 right) was
constructed which contains single- as well as multi-touch gestures. One member
of each group of identical prefixes of set 1 was included. In addition to the
three-finger pinch gestures, author-defined two-finger versions were added to
investigate the potential for recognizing direct manipulations by our approach.
Due to the lack of other known multi-touch gesture sets, a selection of letters
from the gesture alphabet presented in [15] and four single-stroke gestures of
[20] (in ‘medium’ speed) are included. Each gesture in the second set contains
all available user-independent templates.

From the first set, six user-dependent test cases were generated and results
averaged. One user-independent test case is used for the second set. For each
test case of each set the following procedure was executed five times: For each
of the 20 gesture classes in a set five® specifications were randomly selected as
templates and five were randomly selected as test instances. In each template, ten
landmark points were detected by the modified RDP method and their feature

* Considering delays in input between strokes, more than half of the gestures within the
sets {1, 2},{5,6,7},{4,9,10,11, 13, 14}, {15, 19} and, at recognition invariant against
rotation, {8,16} are completely equal.

® In one exception only four templates were chosen as in the first gesture set, one user
specified only nine templates for class 2.
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Fig. 3. The two gesture sets used in the tests. Depicted on the left is the original
multi-touch gesture set. A modified and more realistic set combined with gestures of
[20], multi-touch letters of a gesture alphabet [15] and two finger pinching gestures is
seen on the right. Larger dots depict the start of a trajectory, arrows their movement
and dashed smaller dots symbolize their end. Black colored starting points belong to
the first stroke, gray ones to the second.

10

vectors together with the corresponding subgestures included in kd-trees.® The
test instances were splitted into subgestures of lengths between 10% and 100%
(in steps of 10%) by their temporal progress to simulate continuous gesture input
(see figure 4). At classification of a subgesture, the search within a kd-tree (the
one storing instances of the current input’s number of tokens) was restricted
to ten nearest neighbors (approximately 0.14% of all possible subgestures). The
input is classified against these candidates and the best one returned as result.

Fig. 4. Segmentation of a gesture (class 10 of first set) into 10%-steps of its duration

5 For the first set, this resulted in approx. 7300 generated subgestures per test run.
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5 Results and Discussion

In the following section, results regarding both gesture sets are presented. Table
1 lists accuracy values for classifications of partial gestures of set 1 sorted by
average results per gesture class. The left side of figure 5 shows the ratio at which
correct results are already included in the set of one to three or ten candidates
chosen by the nearest neighbor searches for a partial input. On the right side,
the results of the classification against the ten nearest candidates are presented.
Accuracy values are explicitly given for 13 gestures with identical prefixes, the
remaining seven as well as the best and the worst gesture class.

Table 1. Prediction Results for Gesture Set 1

Gesture 10 20 30 40 50 60 70 80 90 100 ©
20 0.8 0.91 0.89 0.89 0.92 0.92 0.92 0.97 0.98 0.99 0.92
17  0.51 0.79 0.94 0.97 0.99 1 1 1 1 1 0.92
18 0.41 0.77 097 1 1 1 1 1 0.99 0.98 0.91
12 0.64 0.68 1 0.96 0.950.94 0.73 1 1 1 0.89
8 0.95 0.64 0.8 0.84 0.84 0.82 0.99 1 1 0.99 0.89
3 0.62 0.8 0.85 0.82 0.83 0.91 0.79 0.93 0.94 0.99 0.85
15 0.48 0.73 0.74 0.78 0.83 0.81 0.95 1 1 1 0.83
19  0.51 0.66 0.85 0.84 0.87 0.85 0.85 0.87 1 1 0.83
16  0.59 0.53 0.78 0.85 0.85 0.87 0.73 1 1 1 0.82
1 0.54 0.52 0.55 0.57 0.57 0.44 0.71 0.92 1 1 0.68
2 0.36 0.49 0.44 0.42 0.42 0.52 0.78 0.96 0.99 0.99 0.64
11 0.17 0.23 0.35 0.35 0.59 0.87 0.87 0.87 0.98 0.98 0.63
7 0.27 0.29 0.46 0.48 0.49 0.53 0.8 0.88 0.97 0.97 0.61
13 0.34 0.33 0.39 0.39 0.39 0.65 0.84 0.86 0.89 0.98 0.61
6 0.37 0.3 0.45 0.47 0.52 0.55 0.57 0.88 0.99 0.95 0.61
14  0.18 0.32 0.33 0.26 0.27 0.6 0.97 1 1 1 0.59
9 0.27 0.28 0.23 0.37 0.37 0.53 0.95 0.96 0.96 0.97 0.59
10 0.22 0.2 0.29 0.23 0.23 0.39 0.93 0.96 0.98 0.99 0.54
5 0.31 0.37 0.36 0.4 0.41 0.42 0.45 0.78 0.93 0.96 0.54
4 0.24 0.22 0.29 0.37 0.4 0.42 0.63 0.85 0.97 0.98 0.54
Q@ 0.44 0.5 0.6 0.61 0.64 0.7 0.82 0.93 0.98 0.99 0.72

As soon as more than 10% of a gesture is entered, in over 50% of the
cases, nearest neighbor templates already represent correct results. For restricted
searches to ten candidates, an upper bound is given in figure 5 (left). Recogni-
tion rates of 90% are possible if at least 20% of an input is seen. At 80% of
input, 98% accuracy can be achieved by correct choices from nearest neighbor
sets. In comparison (figure 5 right), average prediction accuracy is above 50%
with at least 20% of a gesture entered. A correct selection within the two nearest
neighbors would give better results (overall in average 94% against 72% actual
prediction rate). With progression of input, the classifier’s selection from near-
est neighbor sets becomes more reliable.” Actual prediction accuracy is best for
gesture 17 which is classified correctly at more than 60% of input and predicted
with at least 94% rate if more than 30% of it is seen. The seven gestures without
common prefixes are recognized with no less than 88% if input passes 30%.

" Prediction rates for finished gestures (100%) are only slightly worse than results of
the classification approach alone against all full templates.
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Fig. 5. The ratio at which one to three or ten nearest neighbor templates of partial ges-
tures already include correct results is shown left. Next to it, classification accuracies in
relation to a partial input’s progress are presented. Results for best and worst gestures

and subsets that are or are not afflicted by identical prefixes are given separately.

Prediction accuracies regarding gesture set 2 are given in table 2. Figure 6
(left) illustrates these results in comparison to prediction hits by nearest neighbor

searches.

Table 2. Prediction Results for Gesture Set 2

Gesture 10 20 30 40 50 60 70 80 90 100 ©
9 0.76 1 1 1 1 1 1 1 1 1 0.98
2 0.92 0.88 0.92 1 1 1 1 1 1 1 0.97
10 0.8 0.96 0.96 1 1 1 1 1 1 1 097
8 0.56 0.8 1 1 1 1 1 1 1 1 094
6 0.64 0.84 0.96 0.92 0.92 0.92 1 1 1 1 0.92

19 0.6 1 0.920.56 1 1 1 1 1 1 0091
4 0.44 0.92 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.9
18 0.36 0.8 0.84 0.92 0.96 1 1 1 1 1 0.89
16  0.64 0.96 0.92 0.96 0.96 1 1 0.88 0.68 0.88 0.89
5 0.44 0.64 0.84 1 0.920.92 0.92 0.96 1 1 0.86
15 0.64 0.56 0.56 0.72 0.84 1 1 1 1 1 0.83
11 0 04 09 1 1 1 1 1 0.96 0.88 0.82
3 0.76 0.48 1 0.76 0.76 0.72 0.68 1 1 1 0.82
17  0.68 0.88 0.84 0.64 0.48 0.68 1 0.92 0.96 0.96 0.8
7 0.48 0.56 0.88 0.8 0.76 0.76 0.76 1 1 1 038
20 0.56 0.64 0.68 0.8 0.84 0.96 0.92 0.88 0.88 0.6 0.78
12 0.2 0.4 0.76 0.8 0.84 0.8 0.8 0.880.96 1 0.74
1 0.72 0.52 0.44 0.44 0.44 0.36 0.88 0.96 1 1 0.68
13 0.24 0.24 0.16 0.28 0.44 0.48 0.64 0.88 1 0.92 0.53
14 0.12 0.24 0.36 0.4 0.4 0.4 0.36 0.48 0.96 0.88 0.46
© 0.53 0.69 0.8 0.8 0.83 0.85 0.9 0.94 0.97 0.95 0.82
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Fig. 6. Left: Achieved prediction rates in comparison to the rate at which the set of one
to three or ten nearest neighbor templates of a partial input already include the correct
result for classifications regarding gesture set 2. Right: Averaged prediction rates at
three different restrictions (3, 10, 20) of the nearest neighbor search in comparison to
potential prediction rates on optimal choices, i.e., the average rate on which a correct
result would be within the nearest neighbor sets of different sizes.

Accuracies for gesture set 2 are no less than 80% at at least 30% progression
in a gesture’s input and no less than 90% if at least 70% of a gesture is entered.
In average, an overall prediction rate of 82% is achieved.® Again, if less than
30% of a gesture is seen, the nearest neighbor selection alone would give best
results and with input’s progress the subsequent classification gains benefit.

Trying to get more insight into how our approach is influenced by parameter
choices, figure 6 (right) shows averaged (over all lengths) rates of the correct
result being within the set of one to 20 nearest neighbors (prediction potential).
Besides, actual prediction rates by our procedure at three different sizes of near-
est neighbor sets are given. The results show that the set of 20 nearest neighbors
already includes a good pre-selection of gesture templates and searches beyond
that size promise no significant improvements. On the other hand, prediction
rates for our two gesture sets do not improve with a double sized set (20) at all.
The limiting factor probably is a suboptimal selection of good candidates at the
first phases of an input.

The tokens of gestures in set 1 contained 20-27, in average 24, sample
points. Choosing all sample points as landmarks, recognition accuracy improves
marginally by 0.59%. The same modification, however, increases 10-nearest
neighbor hits regarding gesture set 2 from 80% to 83% and average prediction
rates from 82% to 85%. Classification of a partial gesture of set 1 required with

8 Completed gestures of gesture set 2 were classified with an accuracy of 99.80% by
the classifier alone using all full templates.
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our test setting® on average 97.73ms whereas the mean input time for our ran-
domly chosen test gestures was 1.41s with minimum of 1.29s. Practically, more
than ten classifications per input would therefore be possible.

6 Outlook

We presented a method allowing to predict gestures during input that were spec-
ified by templates. This approach can support gesture designers and application
developers in quick prototyping or investigating manifold gesture interaction
techniques. Utilizing a realistic gesture set, even common (for zooming or ro-
tation) gestural direct manipulation operations can be handled when specified
by templates only. If some invariances to input variations are not required, the
feature set can be enhanced by a small set of absolute measurements for further
accuracy improvements. Improvements are conceivable by incorporating passed
observations or predictions by nearest neighbors only depending on an input’s
progression. Still we are keen to see sophisticated applications for a gesture pre-
diction scheme that are beyond every day multi-touch interaction. We imagine
tools to provide dynamical feedforward mechanisms for versatile sketching, text
input systems, and training.
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Abstract. The Xbox Kinect and now the Leap Motion Controller have brought
about a paradigm shift in the way we interact with computers by making the
recognition of 3D gestures affordable. Interfaces now understand natural
user interfaces, integrating gestures, voice and various other kinds of multi-
modal input simultaneously. In this paper we attempted to understand in-air
gesturing better. The purpose of the study was to understand differences be-
tween touchscreen and in-air gesturing for simple human computer interactions.
The comparison of the gestures was done in terms of Muscle effort/fatigue and
Frustration, Satisfaction and Enjoyment We have also tried to study the learna-
bility of in-air gesturing. In our research we found that in-air gesturing was sig-
nificantly superior with respect to muscle effort and fatigue when compared
with touchscreens. We also found that in-air gesturing was found to be more
fun and preferred because of its “coolness factor”. Lastly, in-air gesturing had a
rapid learning curve.

Keywords: HCI, Touch Screens, in-air gestures, ergonomics, EMG, learnabili-
ty, social acceptability, natural user interfaces (NUI).

1 Introduction

Gone are the days when user interfaces were based entirely on buttons, joysticks,
keyboards and mice. Today the world has advanced into direct manipulation devices
such as touchscreens and smart phones. An external device that maps onto the x-y
co- ordinate system of a computer control is no longer required. The future of the
computing world lies in interfaces described in the press as gesture controlled, mo-
tion-controlled, direct, controller- less and natural. The most popular gesture con-
trolled devices that exist in the market today are gaming devices such as the Nintendo
Wii, the Microsoft Kinect, the Sony Eye Toy and the Leap Motion. Smart phones and
tablets are joining the trend of using gestures.

1.1  What Is Gesture Recognition?
Gesture recognition mainly concerns with identifying, recognizing and making mean-

ing of human movements. The human body parts involved can be the hands, arms,

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 170-181, 2014.
© Springer International Publishing Switzerland 2014
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face, head or the body [1]. Kendon states that amongst all human body parts convey-
ing gestures, the hand gestures are the most natural and universal [7]. They form a
direct and instant form of communication. Hand gestures are therefore the most used
method for interaction with technological systems [7]. According to Dr. Harrison at
Carnegie Melon University, the human hands alone are capable of tens of thousands
of gestures, individually and in combination. Some tasks hinder the use of hands to
interact with devices, such as checking email while driving a car [2]. Atia et al
showed that in such cases certain applications use face and body related gestures.
They also showed that using the leg to gesture was limited due to the spatial con-
straints [2].

1.2  Background and Related Work

In a survey, where Americans were polled for the top two inventions that improved
their quality of life, “television remote” and “microwave oven”, emerged as the win-
ners [17]. Freeman and Weissman explored the control of a television using gesture
recognition [17]. They compared voice and gesture as two candidates for equipment
control. Voice had the advantage of having an established vocabulary, but was
deemed not appropriate for the context. Gestural control was more appropriate for the
context, but lacked a natural vocabulary [17].

Perzanowski et al explored the possibility of building a multi- modal interface
based on voice and gestures [13]. Their interface used natural gestures especially
those made using the arms and hands. They made use of meaning-bearing gestures
that were associated with locational cues for a human-robot interaction. The meaning-
bearing gestures mainly included indication of distances (by holding the hands apart)
or directions (tracing a line in the air). When a user says “go there”, the accompany-
ing gesture signaling the direction was essential to make sense of the verbal com-
mand. Perzanowski et al observed that in noisy environments, gestures was largely
used to compensate for lack of comprehensible auditory input [13].

The idea of using “free hand” gestures as an input medium is based out on the
famous “put that there” experiment conducted in 1979. This experiment used primi-
tive gestural input in the form of gestural languages: Task control primarily used ges-
tures. Sign language interpretation was one of them. Some other examples were those
where Sturman [16] presented a gestural command system to orient construction
cranes, while Morita et al showed the use of gestural commands in an orchestra [12].

1.3  Naturalness of Gestures

The more natural a gesture is to its context and the more coherent in its mapping to
human performance, the higher its interaction fidelity will be [4]. Bowman et al con-
ducted a series of experiments to answer the questions they posed. They found that
increased “interaction fidelity” has an increasingly positive experience on the user
performance and efficiency of user tasks. Natural gestures were especially beneficial
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when the tasks were more complex. Users perceived that interactions with a higher
degree of interaction fidelity were more fun, engaging and had higher immersive
value.

Considering learnability of a NUI, Wigdor and Wixon claim that a NUI is one that
provides a quick and enjoyable learning experience from novices to skilled users [18].
This rapid learnability occurs due to practice. They also define an NUI to be extreme-
ly enjoyable.

1.4  Social Acceptability of Gestures

Beyond recognizability, the acceptability of gestures is also critical. Certain cultures
have politeness conventions for gestural use [8]. For example, pointing with the left
hand is considered impolite in the country of Ghana. Here, receiving and giving with
the left hand is also considered taboo [9, 10]. Hand gestures might have some draw-
backs, such as acceptance or rejection in a public space [2]. Atia et al found that pub-
lic found it threatening when a user performed the gesture of a large circle in a public
place [2]. Studies have examined the usability of hand gestures in different generic
environments, especially public places [15]. Ronkienen et al conducted “tap gesture”
based experiments where they presented participants with gesture-based scenarios and
quizzed on their willingness to use the gesture in various situations [15]. It was ob-
served that the social acceptability of performing a gesture was dependent on where it
is performed and the audience it was performed for. Further, certain gestures could be
viewed as threatening in public spaces. Rico and Brewster expanded Ronkienen’s
experiment and examined the social acceptability of eight common gestures, example
wrist rotation, foot tapping, nose tapping, shoulder tapping, etc. [14]. They showed
that acceptability depends on the combination of audience and workplace. For exam-
ple in the US, nose tapping was acceptable when the performer was alone at home, or
in a pub among strangers, but not when alone in a workplace or in front of friends and
family.

1.5 Drawback of Gestures

Baudel and Beaudouin-Lafon extensively explored the limitations of any gesture rec-
ognition system [3]. Fatigue was found to be one the key limitations. Gestural com-
munication used more muscular activity than simple keyboard interaction, mouse
interaction or speech. The wrist, fingers, hands and arms all contributed to the com-
mands. In order for the gestures to be of minimal effort, they had to be concise and
fast. Over time they may induce fatigue in the user [5]. Among the more recognized
tools to measure muscle fatigue is the Electromyographic (EMG) analysis [5]. The
surface EMG has limitations related to electrode placement, skin impedance and
cross-talk [11]. In spite of the limitations, the surface EMG has been shown to be a
valid and reliable tool to identify muscle fatigue [5].
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2 Experimental Design

The purpose of our study was to understand differences between touchscreen and in-
air gesturing for simple computer interactions. Gestures were used to select from a
series of tiles displayed on a computer screen. The comparison of the gestures was
done in terms of measuring

e Muscle fatigue/effort

e Frustration, satisfaction and enjoyment

e Learnability of in-air gesturing, as a measure of the time component was also
measured

2.1  Hypothesis

We hypothesized that in-air gesturing would be preferred to a touchscreen for inte-
racting with a computer and that users would easily learn to use in-air gesturing
during the experimental period

2.2 Participants

Thirty-two participants (SJSU) students taking the course Psych 1 and a few volun-
teers) were recruited to perform the tasks for this study. The participant pool
was coordinated with the SISU Psychology Department. The mean age of the partici-
pants was 20 years old and ranged from 18-29 years old. Fourteen participants were
male and eighteen were female. Recruitment of the participants was entirely volunta-
ry and scheduling was done online using SONA (human-subject pool management
software).

Participants with active musculoskeletal disorders were excluded. This information
was elicited by asking the participant about any disorders. All participants, except two
were right handed. These two were ambidextrous and conducted the experiment using
their right hand. All participants had used a smart phone or tablet with a touchscreen
for at least one month.

The study was approved by the SJSU Institutional Research Board (IRB). A con-
sent form, a photo consent form and an NDA was signed by each participant before
beginning the testing session.

2.3  Apparatus and Instrumentation

A Dell AIO with an 3rd generation Intel Core 17-3770S processor 3.10 GHz with
Turbo Boost 2.0 up to 3.90 GHz configured with 8GB Dual Channel DDR3 SDRAM
at 1600MHz was used to conduct the study. Its’ display was a 27.0” diagonal wide-
screen native resolution (FHD) with tilt base and a Touchscreen with HD support.

The system ran software that emulated the Windows 8 64 bit (Metro) home screen
in English. Surface EMG sensors and software provided by Biometrics Ltd.
(http://www.biometricsltd.com) was utilized. A range of surface EMG pre amplifiers
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was used with either the Biometrics DataLink DLLK900 or DataLOG P3X8 for moni-
toring, storing and analyzing muscle electrical activity.

2.4  Procedure

Learnability Section: Task 1. Learnability section: Task 1 All participants com-
pleted a learnability task. This task helped familiarize the participant with the equip-
ment (interfaces) and the gestures used to perform the task. This task helped deter-
mine if the gestures were easy to learn and remember.

Fig. 1. Tile selection using touch screen and in-air gesturing

The participant was seated upright (back firmly against backrest) on a comfortable
chair with armrests. Armrest height, seat height and distance from the screen were
adjusted so to be consistent relative to each participant’s body size and reach. In prep-
aration for the in-air gesturing, the participant wore a yellow tag on his right index
finger. This helped the recognition algorithm detect the finger for in-air gesturing
more robustly.
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Fig. 2. Input screen with varying tile sizes

In this task, tiles lighted up in a pre-determined order every three seconds and par-
ticipants selected the highlighted tile. The screen consisted of a collage of “Metropoli-
tan” like tiles of four different sizes. The sizes were 310 x 150 pixels - rectangle
shaped tile, 150 x 150 pixels - square shaped tile, 390 x 150 pixels - rectangle shaped
tile and 60 x 60 pixels - square shaped tile. The first two sizes were the native Win-
dows 8 desktop icons. The third size was from an email client, a highly used applica-
tion. The last size was one of the smaller sized tiles prevalently used in Windows 8.
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Tiles were separated uniformly by a 10 pixel gutter. Tiles were highlighted in a pre-
determined fashion every three seconds. The colors were randomized.

Tiles of any size would highlight by showing a black blinking border around the
tile. This task was repeated for both the touchscreen and in-air interface. Participants
tapped the screen in a touchscreen interface and moved a finger in free space for in-air
gesturing to perform a “selection gesture”. The selection gesture was a “Hold to
Click” gesture, where the pointer controlled by the finger was held motionless for
about 1.5 seconds on a tile to indicate selection. Less than the 1.5 second hold would
result in unsuccessful selection of the tile. On selection of a tile, a graphic was dis-
played on the software to provide selection feedback. The tile remained highlighted
until successful selection of the tile was complete, after which the next tile was hig-
hlighted. The hand moved from the resting position (which is the position where the
participant is comfortably seated, with no hand lifted up) to the relevant point of se-
lection. The participants selected a total of 20 tiles during the task. The software run-
ning the task measured the following factor:

Duration: Response time from the point of tile highlight to selection. Question-
naires were administered to elicit subjective data about the experience for the touch-
screen and in-air gesturing interface.

EMG Setup. The surface EMG transducers were placed parallel to the muscle fiber at
three locations on the dominant side of the body as in Figure 3. They are the Upper
trapezius, Anterior deltoid and Extensor Digitorum (the center of the dominant post-
erior forearm at approximately 30% of the distance from the elbow to the wrist). The
muscle was palpated to detect the exact point of muscle activity when the participant
extended his fingers. The ground electrode was connected to the left ankle.

Maximal Voluntary Electrical (MVE) activation measurements were performed
against manual resistance to normalize the EMG signals from each location.

Upper Trapezius

Anterior Deltoid

Extensor
Digitorum

Fig.3. EMG Transducers fixed to the 3 positions in the body

Task 2. Next, the participant performed Task 2. The task and setting was similar to
task 1 but with a different tile layout. Here tiles of a particular size alone were hig-
hlighted each time. The task was performed four times, once for each size. Each task
took approximately 1-2 minutes. EMG data was recorded for each task. The order of
the tasks was randomized to reduce order effects.
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Task 3. Next, Task 1 of the experiment was repeated. The duration was measured and
compared with the initial session. The comparison helped us understand to what ex-
tent learning happened. The same questionnaires were administered once again and
later analyzed for any change in subjective measures. Subjective ratings on discom-
fort and ease of use of the touchscreen and in-air gesturing interface was elicited by
means of self-report questionnaires. This was done at the end of task 1 and 3. The
questionnaires consisted of check boxes, semantic differential scales and open ended
questions. The semantic differential scales used 7 points ranging from very high to
very low with a center point of neutral stance.

3 Analysis of Data

3.1 Learnability Task

The time taken to perform the Learnability Task 1 and Learnability Task 2 for in-air
gesturing alone were compared. Of 32 participants, 26 showed an improvement in
speed in the second session. That made up about 81.25% of the participants. A paired
samples T-test was conducted to compare the mean differences between the times
taken for the two learnability sessions for in-air gesturing alone. The mean time for
Learnability 1 was 142.40 seconds while the mean time for Learnability 2 was only
128.36 seconds. The mean difference was found to be statistically significant,
M=14.04, SD= 16.82, t (31) =4.722, p<0.05, Cohen’s d=0.83. This shows a large
effect in the mean difference. When 1.5 seconds of hold to click time and three
seconds between highlights (82.5 seconds) was reduced from each participant’s time,
we found a statistically significant result with the same t and p values.

3.2 EMG Setup

The participants were subjected to four trials with each one of the four tile sizes.
There were eight tiles in each category in all of the permutations. For each participant,
six values were obtained which were the average value for Upper Trapezius, Anterior
Deltoid and Extensor Digitorium for touchscreen and in-air gesturing.

Fig. 4. Filtered Signals for Upper Trapezius for touch screen and in-air gesturing

Figure 4 shows the values for participant 18’s upper trapezius values for a touch-
screen and in-air gesturing after application of filters. The spikes show activity in the
upper trapezius as it moved to select a tile. We barely see any activity in the second
graph, showing that in-air gesturing requires less effort when it comes to the upper
trapezius. Similarly we saw barely see any activity showing that in-air gesturing
requires less effort for the anterior deltoid. The spikes in the touchscreen were
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attributed to every time the participant stretches out his arm to touch the screen. For
the Extensor Digitorum, some activity was seen with the in-air gesturing when com-
pared to touch screen. The spikes in the touchscreen were attributed to every time the
participant closes the wrist to point to the screen.

Three Repeated measure ANOVAs were conducted to compare the muscle effort
of the Upper Trapezius, Anterior deltoid and Extensor Digitorum immaterial of the
tile size. Significant results were obtained for Upper Trapezius and Anterior deltoid.
Very small significance was obtained for Extensor Digitorum.

Upper Trapezius Arterior Deftoid Extensor Digitorum

mTouchsreen min-ar

Fig. 5. Comparing means values for the 3 muscle points for touchscreen and in-air gesturing

Further ANOVA analysis showed no statistically significant difference between
the four tile sizes for touchscreens. There was statistical significance between the four
tile sizes for in-air gesturing. It was found that tile size 4 was the most difficult to
manipulate in in-air gesturing.
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Fig. 6. Comparison of mean values for Tile sizes versus Muscle point for In-air gesturing

3.3  Subjective Questionnaire Analysis

Familiarity with In-Air Gesturing: To begin with, 10 out of 32 participants were
familiar with in-air gesturing either through Xbox Kinect etc. while 22 were unfami-
liar. About 69% of the participants were unfamiliar with in- air gesturing

Interface Preference: Of the 30 participants, 27 preferred touchscreen at the end
of both learnability sessions. Three participants preferred in-air gesturing to begin
with. Two participants changed their preference from touchscreen to in-air gesturing.
One participant changed preference from in air to touchscreen. One participant’s pre-
ference with respect to in-air gesturing remained the same.
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Analysis of Individual Questions: Touchscreen data reported represents data rec-
orded after the first learnability session. In-air data represents data from both learna-
bility sessions. All data reported is an average of the individual ratings given by the
32 participants.

Figure 7 compares the values for 5 factors. The scale defined 1=low and 7=high.
Touchscreen generally reported the best value. In-air gesturing after the second lear-
nability session reported better values than the first.

Enjoyebilty |
Irritability W
Success [ ———
Physical | ———
Mental | —
1 2 3 4 5 6 7
| Mental ! Physical | Success Irrtability _En,oyah:lr’.v!
In &ir 2 278 | 3 3 234 3.13
f t { t
Min airl 3.15 | 3.66 353 331 3.06
|WTouchscreen| 196 | 2.2 166 15 29 |

Fig. 7. Comparing above 5 questions for touchscreen, in- air gesturing session 1 and in-air
gesturing session 2

No participant felt silly or embarrassed to use the touchscreen. Nine participants
felt so using in-air gesturing after the first session. The number fell to four after the
second session. For in-air gesturing, the degree of embarrassment was 4 (around
mean) after the first session, but fell to a low 2.75 after the second session.

Participants found in-air gesturing initially easier in the first session at a value of
2.84 than in the second session of in-air gesturing, with a value of 3.13

All 32 participants said they would use the touchscreen in a public place. 9 said no
to in-air gesturing after the first session, which came down to 7 after the second ses-
sion. 2 participants changed their preference to yes. Among the 9 participants in the
first session, 6 found it silly to use in-air gesturing. 3 were ready to use it in a public
place even though they found it silly. After the second session, only 2 out of the 7
found it silly to use in-air gesturing. The number increased to 5 for those people who
found it silly but still would use it in a public place.

After the first session, 5 participants didn’t want to own a device, while after the
second session, the number increased to 2. 5 participants who found in-air gesturing
silly, wanted to own a device after the first session. After the second session, 3 who
found it silly wanted to own a device. Further, 2 people who found it silly and didn’t
want to use in-air gesturing in a public place, still wanted to own a device. The vari-
ous reasons people wanted and didn’t want to own a device were multifold. The num-
ber of reasons to own a device outnumbered the ones that were against owning a de-
vice as seen in Table 1.
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Table 1. Reasons quoted verbatim
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I want a device

I don’t want a device

It’s Cool

It will make me self-conscious

Fun and exciting

Too unreliable

For development purposes

Touchscreen is more efficient

Support new technology

Hard to use

Enjoyable for gaming

Hard to control

Easy to use In accurate

Makes life more efficient Feel no need for gesturing

Fun and less work for the shoulder

People get more exercise while using the
Kinect kind of things
For curiosity

I will eventually get used to it
Use when hands are not free

I will use it to create my own gestures
Fun to do something at a distance than up
close

Don’t want to do the extra work in touch-
screens

Only in situations where physical touch is
not possible

4 Discussion

The primary goal of the study was to elicit preference between two interfaces, the
touchscreen and in-air gesturing. A secondary goal of the study was to understand the
learnability of in-air gesturing as it is a new and upcoming technology, especially
given its limitations.

EMG recordings very clearly showed that in-air gesturing was a more ergonomic
methodology of interacting with the computer when compared to touchscreen. Statis-
tically significant results were found for two of the critical muscle points, the Upper
Trapezius and Anterior deltoid. EMG recordings also showed that muscle effort in-
creased significantly when the size of the target decreased. Among the 4 tile sizes
uses, tile size 4 was found most difficult to select during in-air gesturing and differed
statistically significantly from the other 3 sizes.

The experiment session lasted for about 1 hour 15 minutes, approximating about 1
hour of time between the first learnability and second learnability sessions. That ac-
counts for a total of 8 minutes maximum of in-air gesturing. It was found that there
was a statistically significant improvement in the time taken to perform the two simi-
lar sessions. Mean value of the time taken decreased by 14.04 seconds. This was
found to be a large effect. Note that 69% of the participants were using in-air gestur-
ing for the first time in their lives during the experiment. This shows that significant
learnability happened over a period in in-air gesturing within an hour of time.
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Subjective questionnaire analysis showed a similar trend throughout. Touchscreen
always rated better for almost all the questions over in-air gesturing. But between the
two sessions of in-air gesturing, ratings after the second session were always found
better than the first. It is evident that with time and practice, in-air gesturing is compa-
rable to touchscreen eventually for almost all the factors. The only factor that saw a
higher rating in the second session was the “ease of use” of in-air gesturing.

Majority of participants did not find it silly to use in-air gesturing and were ready
to use it in a public place. There were some conflicting answers such as, some partici-
pants who found it silly, were ready to use it in a public place. Some participants who
found it silly and were not ready to use it in a public place still wanted to own a de-
vice. Majority of participants wanted to own a device capable of in-air gesturing. The
most popular reason was because they found it cool, among various other relevant
reasons.

According to Harrison’s definition, the gesture does not directly indicate its intent
because in real life, “hold to click” does not indicate selection [6]. It is interesting to
note that though this gesture is not very intuitive for selection purposes, the learning
curve was found to be very easy and showed statistical significance. This goes against
the literature that claims that it is the naturalness and intuitiveness of a gesture that
defines the learning curve.

We learnt in this experiment that “social acceptability” does play a role. But this
experiment has also shown that this self-consciousness of people actually fades away
with time and people would want to use a device because in-air gesturing is consi-
dered more technologically advanced. It overrides the social taboo of in-air gesturing.

5 Conclusion

In-air gesturing definitely emerged as a winner during the period of the experiment.
Participants clearly showed that it was easy to learn the technique of interacting with
the interface and the subjective attributes were comparable to that of the current reign-
ing touchscreen with the passage of time. The reasons why participants preferred in-
air gesturing outnumbered the reasons why participants preferred the touchscreen and
the reasons were variant and spread across a large spectrum. In-air gesturing emerged
as the winner ergonomically when compared to touchscreen. This experiment has
shown what Steve Jobs once quoted that touchscreen computers are “ergonomically
terrible”. It has also been shown that participants prefer the in-air gesturing to touch-
screen because of the coolness factor associated with new technology.
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Abstract. Despite long standing attention from research communities, the tech-
nology of intelligent agents still harbours a large amount of unrealised potential.
In this text, we argue that agent technology can benefit from a shift in focus
from presentation to possible functionalities. In doing this, our focus is on the
provision of pro-activity: The ability of agents not to merely react but to predic-
tively shape their environments. In order to illustrate our arguments, we present
an instance of interactive technology, showing how pro-active intelligent agents
can be employed in exhibition contexts.

1 Introduction

Scientific research regarding pedagogical agents has mainly been focused on analys-
ing different forms of their depiction, rather than possible features. For example, nu-
merous studies have analysed whether an agent should be designed as either male or
female [13] or whether or not an agent should be displayed as realistic as possible,
including facial animations [1]. In addition to this, Lusk et al. [18] tested if there was
a positive effect on learning with an animated or a static agent and Baylor et al. [2] as
well as Huang et al. [10] hypothesise a beneficial effect on learning as long as the
agent is depicting one’s own peer-group and ethnicity.

Regarding the features of an agent-system however, the focus is largely about es-
tablishing behavioural strategies. These focus on questions such as if agents are to be
depicted as either polite or rude [25], whether the implementation of gestures and
mimic behaviour changes the acquisition of learning material [6] or if social conver-
sations, not touching on the topic itself, help to create a positive learning environment
[23]. What all these research projects have in common is the tendency to analyse pas-
sive features of an agent. But what appears to be missing from empirical discourse is
research regarding active components of pedagogical agent designs such as active
listening, observation of real-world surroundings and just-in-time information aggre-
gation. Those active components would allow for an agent to analyse the environment
and to react pro-actively to changes in it [26] as well as acting on behalf of the user.
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In order to demonstrate the role pro-active agents are able to play with respect to
design of interactive technologies, we discuss a series of design prototypes developed.
These have been implemented in various degrees of fidelity, ranging from paper-
prototypes to mid-fidelity digital artefacts. The devices conceived are targeted at the
museum domain. Their goal is to strike up verbal interaction between previously un-
acquainted museum visitors. Embedded in the wider scope of a design ecology [7],
the system comprises mobile components as well as a stationary wall mounted instal-
lation. The stationary setup is equipped with depth cameras used for monitoring of
users. Museum visitors are provided with tablets which replace traditional printed
museum documentation. On these tablets a personalised instance of an intelligent
agent is presented. This agent acts in the capacity of a museum docent, providing both
additional information as well as helpful incentives regarding the possibilities of the
exhibition visited.

exhibit

knowledge store

explain,
inform,
mediate

Fig. 1. Exploration phase: Agents on mobile devices

The system's main functionality is localised at the wall mounted installation. It
serves in analogy to information plaques, displaying personalized multimedia content.
Designed to accommodate two visitors at the same time, its screen setup realizes a
split-screen configuration. When users approach the display, respective individual
agents migrate from the tablet into the stationary screen space, taking up position at
the left and right periphery of the screen.
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social interaction

Fig. 2. Fig. 3. Wall-mounted display: Agents as facilitators of social interaction

Whenever two visitors use the station concurrently, this marks the critical part of
system operation. User monitoring is employed in order to assess if users are orien-
tated towards each other communicatively or not. Should the system infer communi-
cative interest, an attempt is made to connect both visitors by supplying a communi-
cative incentive. This is provided as follows: Individual agents situated within screen
space leave their position at the periphery of the screen and meet at the lower centre.
Here, they engage in pseudo-social interaction with one another. Hereby an element
of surprise is provided, acting as a helpful catalyst for interaction in exhibition spaces
[14]. The intended effect is for the agents’ owners to react to the surprising behaviour
of their “virtual pets”, ideally by engaging in direct discourse with one another. The
situation is constructed in analogy to phenomena such as dog-owners striking up con-
versations posterior to a meeting of the animals they were walking.

A crucial part of system operation lies in judging if respective users are communi-
catively inclined during the critical phase. To this end, we intend to employ Hidden
Markov Models trained with manually annotated data sets. Among the markers to be
analysed are eye-movement behaviour, body posture as well as complementing
proxemics features [19].

2 Museum Scenario

The depicted scenario consists of a two level system. One is installed on a device
which is handed out to the visitors at the beginning of their tour while the other, the
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main program, is located on a server which is administrating the informational data-
base and which is able to initiate crossovers between the interests of individual visi-
tors. In addition, the exhibits have explanatory screens which present additional in-
formation like the basic description, usage, relevance up to videos of seeing the object
in context of, for example, everyday life or whatever purpose.

Following the extensive examples of Lieberman and Selker [16] regarding an
agent’s depiction and usage as a helpful tool inside a virtual environment, the primary
directionality of the aspired social catalyst would be that of an ‘advisor’ instead of
being an ‘assistant’.

Although in later steps it might be necessary to not keep this explicit distinction,
we employ it here for the sake of conceptual clarity. Once stepping into the museum
the aforementioned tablets are handed out together with the admittance ticket. The
tablet would ideally be a small one in the range of current 7” display sizes in order to
be able to keep it in one hand or to easily store it in a pocket.

The screen would be populated by applications like an in-door positioning system,
providing for an accurate ‘you-are-here’-button at all times. Additionally, there would
be different routes presented, available by pushing a button on the side of the screen.

This would allow to find:

e the nearest exit and other points of interest (coffee spots, sanitary installations,
phone spots, souvenirs etc.)

e an information officer, a real human ‘agent’ to talk to and help in case of any prob-
lems with the device or the exhibition

e a personalised route through the exhibition, perhaps even planned ahead from
home

In addition to the device being able to plot routes, the system would be represented by
an embodied agent being able to react and offer conversational topics regarding the
museum and presented objects. A conversational database in the background would
continually track the user’s interaction with the agent and compare it to other visitor’s
inquiries. Due to this, the administrating program can check for similar requests to the
database and proximity of visitors based on their location inside the museum. It could
provide access to personal information about the visitors via their social network con-
nections.

Based on those two cornerstones of information, the system would engage visitors
in a conversation by pre-structuring conversations towards similar interests. Once two
devices and their associated visitors converge to a distance which would allow for a
regular volume speaking voice, the agents initiate their social catalyst routine. This
would happen in three steps.

1. The agents individually acknowledge each other and their respective individual or
group to the person using the device. This happens by virtue of a visible turn of the
agent towards the other one.

2. A user then has the option to either confirm the upcoming interaction or deny it, re-
sulting in a courteous discontinuation of the initiated process. As soon as one party
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denies, the respective agents would suggest politely continuing the tour at another
point of the exhibition — further away from the other group.

3. If the interaction is confirmed by both parties, the agents visually leave the tablet
space and appear on the screen in front of the exhibition.

At first the agents start to interact with each other, which enables them to get the re-
spective parties up to speed about their individual pathways through the exhibition.
Afterwards, the significance of the current exhibit would be explained in the context
of the whole exhibition and conversational pointers engage the humans in front of the
screen to interact with each other.

If the catalyst worked and the visitors continue their journey through the museum
together, the agents continue to provide conversational incentives by engaging the
humans and each other to keep the discussion going.

If it did not work as intended, then the agents return to their previous state as an in-
formational advisor about the exhibit.

3 Research Directions

The aforementioned scenario and requirements provide numerous research opportuni-
ties. A conversational agent is already very well researched as well as regarding
agents working in groups as companions [12]. But due to the necessity of implement-
ing new ways of interconnected databases and agent’s behaviour, the need for an
interdisciplinary approach is obvious. Social sciences for analyzing and categorizing
human conversational behaviour and information sciences for implementing the soft-
ware infrastructure for the agent’s behaviour and the administrating instance govern-
ing the database.

Fig. 4. Tablet with webcam and microphone and pedagogical agent capable of pro-actively
reacting to environmental disturbances while transferring knowledge
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The goal has to be the implementation of a pro-active conversational agent which
is capable of gathering various forms of input. As mentioned before, numerical statis-
tics are able to elicit certain behaviour, like in the case of proximity to another agent
system. Environmental information like shambles in the vicinity or auditory superim-
positions which would hinder a conversation, can be used to either get away from
such incidents or avoid plotting through such areas beforehand. These behaviours
would be in accordance with the postulations of Lieberman and Selker [17] as they
urge to enable computer systems to be able to grasp the context of a situation.

Other pro-active components are facial interpretations by camera systems, finger-
tip temperature through sensors on the surface of the tablet, gait information, body
posture as well as gaze and eye tracking. These person centred information can be
used to indicate a user’s current emotional, vigilance and inquisitiveness state. The
cognition of emotional states via facial action recognition, as shown by Kapoor, Qi
and Picard [11], provide a reliable prognosis of human reactions to certain events.
While Breazeal [5] developed a humanoid robot’s emotional model which is able to
register affective intents based on a user’s voice.

Regarding the interaction between two users, the system should be able to ‘read’
users reactions to the initiation process. Even for humans this is not an easy task since
nonverbal cues are often polysemantic. To adequately register the emotion, context is
once more of relevance to the process. As stated by Olsson and Ochsner [21] the prior
experiences with the persons become relevant which ideally have been tracked by the
agent system along the way up to the point of becoming acquainted with the other
visitor.

Regarding the depiction of the agent, empirical research postulates an agent to be
able to act socially intelligent. Meaning it knows about cultural peculiarities and pos-
sesses the ability to detect and act on them. It has to be perceived as being polite [15,
22, 25] which also extends to the choice of clothing and grooming. The user should be
offered a choice of agent representations since learning from a representative of one’s
own peer group seems to be beneficial [12, 13, 20]. If the agent is equipped with a
voice, then the choice of words and tone of the voice should be polite as well but also
it must not be identifiable as a text-to-speech software. Although immense progress
has been visible over the last decade, it still is not comparable to a human voice,
which might even be more important than appearances [23, 24].

Facial animations of the agent seem to be an issue as well. Static agents still trans-
fer information but some studies [1, 4, 18] postulate a positive effect on motivation,
retention and transference of learning material. Gestures and body postures of an
agent however apparently do not have a positive effect. Once added to an already
facially acting agent, the gestures either showed no [6] or even hindering effects [3].

4 Experiential Structure

Design efforts are guided by a three-partite construal [9] of the museum experience:

Prior to their visit, users become aware of the museum and the possibilities con-
tained within it. During this phase, users utilise information offered in order to decide
which institution to visit.
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During their visit, users interact with installations, and with each other. After the
visit, users possibly relive experiences made and reflect on knowledge gained.

Following this structure, interactive artefacts as well are grouped into three interac-
tion ecologies [8]:

e A web and app-based ecology, allowing for information about the museum to be
gathered.

e A spatially structured ecology within the museum, allowing for incentives to be
generated in the context of interactive installations and mobile devices.

e A web and app-based ecology, allowing for additional information on exhibits to
be obtained and for furthering of social contacts made.

Likewise, distinct content presentation strategies are adopted in order to address dif-
ferent requirements during the phases. I.e. consumption of time-based media poten-
tially creates problems within a museum setting, running the danger of distracting
visitors from the experientially rich environment around them.

However, watching videos or listening to historical recordings can be a useful ac-
tivity during a train ride antecedent to the actual visit. They refer to experiences al-
ready made while prolonging the possibility to exist within the historical space en-
countered.

Agents provide an experiential tie between all three phases. They can be gently in-
troduced in the first phase, provide helpful incentives during the second and act as
gentle reminders in the last one.

5 Conclusion

We have argued for a shift in focus from presentation to functionality within interac-
tive agent research. Numerous scenarios exist where proactively behaving agents
could be beneficial. We detailed one such scenario within the domain of interactive
installations in museums.

The discussion points to a broader issue. Refocusing agent research onto the level
of functionality forces us to reopen the design space. Many of the tacit assumptions
present within existing discourse surrounding pedagogical agents have to be re-
examined. This will provide both for new possibilities while creating new challenges
for the agent research community.
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Abstract. Gesture-based interfaces offer the possibility of an intuitive
command language for assistive robotics and ubiquitous computing. As
an individual’s health changes with age, their ability to consistently per-
form standard gestures may decrease, particularly towards the end of
life. Thus, such interfaces will need to be capable of learning commands
which are not choreographed ahead of time by the system designers.
This circumstance illustrates the need for a system which engages in
lifelong learning and is capable of discerning new gestures and the user’s
desired response to them. This paper describes an innovative approach
to lifelong learning based on clustered gesture representations identified
through the Growing Neural Gas algorithm. The simulated approach uti-
lizes a user-generated reward signal to progressively refine the response
of an assistive robot toward a preferred goal configuration.

Keywords: machine learning, gesture recognition, human-robot inter-
action, assistive robotics.

1 Introduction

As the population ages, their desire to retain a level of independence in the face of
diminished mobility and health will increasingly draw upon assistive technologies
to facilitate essential Activities of Daily Living (ADLs). The work described in
this paper is motivated by a dearth of technologies that might provide adequate
support of these essential ADLs. Effective design, deployment, and use of such
technologies are seen as critical to promoting an improved quality of life and
prolonged independence for the user. The Assistive Robotic Table (ART) project
begun at Clemson University seeks to develop an intelligent class of assistive
devices and services which are highly integrated into the built environment. In
so doing, the environment becomes an adaptive partner to facilitate aging in
place for users whose ability levels are changing.
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Non-verbal communication interfaces, and in particular, gesture-based inter-
faces offer the possibility of an intuitive command language for assistive robotics
and ubiquitous computing. However, as an individual’s health evolves with age,
their ability to perform standard gestures consistently may decrease, particularly
towards the end of life. The envisioned non-verbal communication loop between
a user and the ART appliance (a robotic version of the standard over-the-bed
table) is depicted in Fig. 1.
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Fig.1. (a) The non-verbal communication loop of the Assistive Robotic Table. The
focus of this work is on the emergent (learned) response of this device to the user. (b)
A recent project artifact.

In addition, for impaired or unskilled users, such interfaces will need to be
capable of learning commands whose choreography is not strictly prescribed by
the system designers. These circumstances illustrate the need for a system which
engages in lifelong learning [1] and is capable of discerning new gestures and the
user’s desired response to them. The reported research targets the ART appliance
and presents an approach which learns a user’s preferred three-dimensional con-
figuration of the appliance for tasks performed in a healthcare or home setting.
Results are based on arm-scale gesture motions collected from human partici-
pants and interactions using a simulated human user which controls the appli-
cation of a success indicator (reward) signal.
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Extending past work by the authors [2], a system based on the Growing Neural
Gas (GNG) algorithm [3] is used in this research to create an active mapping
between performed gestures and robotic actuations. The proposed method takes
advantage of the user’s broad view of the problem space to selectively apply
positive rewards where robot actions are tending toward the user’s preferred goal
configuration for a given gesture. Corrections in the form of negative rewards are
similarly applied when the agent is diverging from the intended configuration.

Toward practical application with a live human user, a use/training model for
the system is proposed which aims at reducing both the number of observations
of a new gesture required to train ART to desired responses and the effort
borne by the user in doing so. Thus, the success of the proposed approach is
measured in terms of its speed of convergence to the user’s preferred response
in terms of decreasing numbers of cycles of observation and reward. Also, the
ability of the approach to learn new information while retaining past knowledge
is investigated.

This paper is structured as follows. Section 2 presents past research efforts
in lifelong learning and describes their respective advances and shortcomings.
Section 3 discusses specifics of the system design including data representations,
algorithms and the simulation environment. Section 4 discusses the data collec-
tion fixture, and experimentation scenarios. Section 5 presents and interprets the
experimental results. Finally, conclusions and future work are given in section 6.

2 Related Work

Often, the operational life of a learning system is divided into the distinct phases
of learning versus recognition. This paradigm neglects the possibility that the
system may need to acquire new recognition capabilities in the face of a chang-
ing input distribution from its environment. Conventionally, systems forced to
consider new forms of input must reiterate the training phase. In so doing, they
may suffer degradation in their ability to preserve knowledge acquired in the
past. Thus, by extending their recognition capability, the stability of the system
is compromised [1]. This problem is termed the Stability-Plasticity Dilemma [4].
Toward the development of a system which can acquire new gestures as the user
requires, the need for lifelong learning is considered.

A variant of Kohonen’s self-organizing feature map (SOFM) [5], GNG is ca-
pable of tracking a moving distribution, of adding new reference nodes, and of
operating from static input parameters [6]. Given these qualities, GNG is well
suited to the task of gesture recognition where no labelled data is available.
Indeed, since the acquisition of gesture data is often expensive in terms of the
effort and time required of both the user and the researcher, such a technique
which learns online is particularly desirable. Further, the capabilities of GNG to
add nodes and to alter its topology over time suggest that it may be effective
in learning new gestures as they are observed. For these reasons, GNG is the
clustering method employed in this paper.
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The plasticity of the GNG network lies in its ability to add and delete nodes
during normal operation. The feature vectors of new nodes represent input
patterns which differ from those seen in the past and the topology of the net-
work is altered accordingly. Indeed, this feature of GNG is one of the primary
motivations for its selection in this research. Fritzke [3] proposed the incremen-
tal augmentation of GNG based on the periodic assessment of local error at
each node. The node with the largest accumulated local error is the node whose
receptive field (or cell) is too large to adequately represent the distribution of
inputs within the region and which is most in need of a new node to reduce the
global error of the network. However, in this simple form, incremental learning
may result in the addition of a large number of nodes over time. In such a case,
both overfitting at overlapping cluster boundaries and excessive computing time
may ensue. Alternatively, a maximum node count may be set which potentially
limits network plasticity [1].

Fritzke [7] also proposed a utility-based approach (GNG-U) for the resource-
conserving deletion of nodes in order to allow GNG to track non-stationary input
distributions. However, in terms of life-long learning, this approach may remove
nodes which represent past learning and thus leading to instability. Hamker [1]
proposed a method for stategic insertion of nodes using local error thresholds
developed from quality measures based on both long-term and short-term local
error. The method was effective but focused on supervised learning scenarios.
Furao and Hasegawa [8] extend this work to focus on the insertion of nodes in
unsupervised tasks. This method attempts to assign unlabeled data to clusters
autonomously before applying an adaptive similarity threshold based on cluster
size. Input to an existing node is compared to the threshold to determine if it
represents a new pattern class and is thus a candidate site for node insertion.
The method also performs assessment to determine whether a particular inser-
tion effectively reduced the network error in the long-term. Nodes which do not
reduce the error are deemed ineffective and removed. This method, however,
presupposes separable input distributions in order to place nodes in distinct
clusters.

In each of the approaches mentioned above, however, the possibility of online
learning and the need to accommodate a human user/trainer is neglected. The
presence of a human user poses significant challenges in terms of input data
separability and learning rate. As noted in [2], gesture motion data collected
from human participants may be poorly separated and thus, may adversely affect
the speed of convergence for an algorithm dealing with unlabeled input. This
issue becomes especially important when considering the physical and congitive
burden to the user as they perform and apply feedback to potentially large
numbers of gesture samples. Key differentiating features of our research include
the proposal of a use model which reduces the physical burden on the user, and
a method for making gesture classifications for lifelong learning with unlabeled
data. These features are detailed in section 3.
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3 Method

This section describes the gesture set used for experimentation and its relation-
ship to the ART device. Toward the goals of reducing user effort and size require-
ments of the input data set, a use model and training paradigm are detailed.
Also, a novel method for node insertion which preserves network stability while
promoting the rapid learning of new gestures is described. Essential components
of this method including data representation, simulation, reward generation and
action learning based on GNG were first developed in [2].

3.1 Gesture Types

For the experimentation discussed in this paper, six gesture types are considered.
These are selected with the user’s intention in mind and are broadly indicative
of activities in which the user wishes to engage or to have ART support. These
include eat, read, rest, take (take an item away), give (bring an item closer)
and therapy (use the specially designed therapy surface - see Fig. 1b). Although
no particular choreography is required, performance models for these gestures
were taken from the American Sign Language Dictionary [9] for repeatability
among participants. Envisioned goal configurations for these these gestures are
understood to exercise the three degrees of freedom within ART shown in Fig.
2. Their numerical values are mappings to distinct points (x,y, 8) for simulation
purposes. The qualitative labels and their mappings are given in Table 1.

Table 1. 3D goal configurations for ART

Gesture Type Lift Slide Tilt Mapping in (z,y, 0)
eat low center down (—3.95,3.95,135°)
read high center up (3.95,0,0°)
rest high center down (0,3.95,90°)
take high away from user down (—3.95,0,1807)
give high toward user down (0,3.95,270°)
therapy middle center down (3.95,1.98,22.5°)

3.2 Data Collection and Gesture Representation

A representation of gesture motion based on the concept of Dynamic Instants
(DIs) [10] is employed. DIs are defined as the extrema of acceleration in the
motion of an actor. Using the Microsoft Kinect RGB-D sensor [11] to capture
3D depth data for the motion of an actor’s left hand, the five DIs of greatest
magnitude during an isolated five second performance interval are concatenated
to form a gesture motion descriptor (Fig. 3). The sensor was placed at a height
of 75 ¢m. Participants stood at a distance of 1.3 m in front of the sensor to
perform gesture samples.
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(b)

Fig.2. The three DOFs of ART: (a) the vertical lifting column, (b) the horizontal
sliding table top and (c) the tilting work surface
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Fig. 3. Feature vector format for a depth-sampled gesture. DIs are concatentated in
chronological order by frame number.

3.3 The Growing Neural Gas Algorithm

The Growing Neural Gas (GNG) algorithm [3] is a vector quantization technique
in which neurons (nodes) represent codebook vectors that encode a submanifold
of input data space. GNG forms connections between nodes and thus preserves a
topological representation of input space in a manner functionally similar to the
Self-Organizing Feature Map (SOFM). It is further capable of adding new nodes
so as to allow for a changing input data distribution. The reader is referred to
[2] for details of the algorithm and its implementation in this research.

3.4 Use Model

A use model is proposed which aims at reducing the physical and cognitive
burden to the user in terms of the number of training iterations required for the
system to fully learn the desired actuation. In this model, the user demonstrates
a single sample of a new gesture to a system which has been pretrained to
respond to a baseline set of gestures. The user then observes the robotic agent’s
incremental attempts to assume a desired configuration. As they do so, the user
provides a series of consecutive rewards until the system is fully trained for that
sample.
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Training (or, path shaping [12],[13]) consists of simple binary rewards r €
{=1,0,1} (cold, hot, warm, respectively) assigned to incremental movements of
the robot agent in response to the gesture. Movements toward a user-defined goal
are assigned rewards of 1. Movements away from the goal are assigned rewards
of —1. Gestures which, in the course of training, elicit the full and complete
action toward the user’s goal are deemed fully trained and are given a reward of
0. Upon completion of training for a given gesture, the learning policy for the
GNG node (the action associated with that node) is frozen. Thus, any subsequent
similar gesture whose feature vector falls into the receptive field for the same
node require no further training. For the available data set, this approach is
shown to require a human-tolerable number of training iterations.

3.5 Lifelong Learning

As previously stated, the presence of a human trainer represents a key differ-
ence between the past methods described in section 2 and that presented in this
research. Here, input gesture samples are unlabeled and may not be well sepa-
rated. However, using the proposed use model, the user-generated reward may
be considered a binary in-cluster/out-of-cluster indicator. In the case of fully
trained nodes, an input pattern which receives negative rewards when executing
the action vector associated with that node is interpreted to be of a different
class. The cell location indicated by the input feature vector is, then, likely to
be a good candidate site for node insertion and the formation of a new cluster.

In the proposed approach, the local accumulated error of the winner in this
case (the node nearest the input feature vector) is artificially inflated to the
network maximum. At the same time, any nodes in the network whose most
recent reward is negative (cold nodes) are considered for deletion. The GNG
age parameter for connections within the network may loosely be thought of as
being indicative of a node’s nearness to a cluster center. A node with older-aged
connections has previously been matched with fewer incoming patterns in those
regions where its connections are oldest. When the network has reached a de-
fined maximum node count, the cold node with the highest sum of connection
ages is targeted for deletion by the artificial aging of its connections to the max-
imum age limit. If the network is not at the maximum node count, then a new
node may be added without deletion elsewhere in the network. In cases where all
nodes in the network are either fully trained or are receiving positive rewards,
new nodes may be added above the predefined maximum. This effectively re-
laxes the predefined maximum to afford plasticity when needed. This scheme
for node insertion/deletion is summarized in Algorithm 1. In this manner, new
node clusters are allowed to form without catastrophically eliminating existing
knowledge gained through training.

3.6 GNG Network Distance Metrics

Of particular interest in determining cluster membership for the purpose of ges-
ture classification are the intra-node distances and connectivity which emerge
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Algorithm 1. Node insertion/deletion algorithm

PN O W
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Apply a gesture input sample.
Determine the winner reference node.
Perform the winner’s associated action vector.
Observe the user-generated reward.
if winner is trained and reward is cold or warm then
Inflate local error: winner.E = max(refNode[i].E) + 1.
if numNodes < maxNodeCnt then
A node will be inserted near winner.
else
Locate a cold node having greatest the sum of connection ages.
if A cold node exists then
Target if for delection by inflating connection ages: C[i].age = ageMaz +1.
else
numNodes is allowed to increase beyond maxzNodeCnit.
end if
A node will be inserted near winner.
end if
end if
GNG will perform node insertion and deletion in the next time step.

from the GNG cloud as it matures during operation. These quantities allow for
neighborhood learning [14]. By examining the past rewards of neighboring nodes,

the

system may select action vectors from among those neighbors whose actions

have received positive rewards in the past. This has the effect of allowing a
cluster of nodes to behave similarly and to learn more rapidly, thereby providing
indications of cluster membership to otherwise unlabeled data. For this research,
two distance metrics are considered. These metrics include:

1.

Euclidean distance - node neighbors within a mean distance of all connected
nodes are considered, and

. Estrada’s network clumpiness metric [15] - node neighbors of maximum

clumpness are considered. Clumpiness = for a given node is computed as
in (1).
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&
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(1)

where k; is the degree of node z; and d;; is the network distance between
nodes z; and z; as computed using Floyd’s algorithm [16] with connection
age serving as length. It is shown in section 5, that although computationally
intensive, clumpiness is highly effective as a means of selecting neighborhood
nodes with action vectors likely to yield positive rewards.
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4 Experimentation

Five participants each performed fifty repetitions of each of the six candidate
gestures. This yielded 250 samples of each gesture for a total of 1500 samples.
Participants were encouraged to perform gestures as consistently as possible.
Dynamic instants (DIs) were computed for each sample. Feature vectors were
constructed from the DIs and presented to the system as described in section
3.4.

The 1500 gesture samples for the six candidate gestures were divided into
two data sets. The training data set consisted of the gestures eat, read and
rest. From these, a set of 450 samples (150 samples of each type) were selected
and randomized. The second test data set consisted of the 750 samples of the
gestures take, give and therapy sequenced randomly. The system was initially
pre-trained using the training data set. The network was constrained to include
100 nodes. This step yields the essential GNG data structures A (node list) and
C' (connection list) which define a mature GNG network for the eat, read and
rest gestures contained in the training set.

With the system pretrained, a single epoch (one presentation of all gesture
samples in the data set) was applied one sample at a time according to the use
model described in section 3.4. Upon each presentation of a sample to the system,
a simulation sequence was performed which included execution of GNG, simu-
lation of robotic action, and assignment of reward. This sequence was repeated
for that sample until one of three terminating conditions was reached:

1. The reference node closest to the input gesture sample became fully trained.

2. The input gesture sample received a negative reward in the receptive field of
a fully trained node. In this case, the sample was immediately ignored and
a new node was inserted near the trained node according to Algorithm 1.

3. The number of training iterations exceeded 1000 (the confusion threshold).
This indicates that the formed neighborhood is issuing conflicting action
advice and the input sample is near a boundary between clusters. In this case
also, the sample was ignored. However, the number of attempted learning
iterations was considered in the calculation of outcome metrics.

In this way, a 3-epoch sequence was conducted as described below. Following
each epoch, performance metrics were recorded. These metrics included the total
number of nodes in the GNG network, the number of fully trained nodes, the
percentage of samples ignored, and the average number of training iterations
per sample. The sequence was conducted for the two distance metrics methods
described above.

1. Demonstration of Plasticity. With the system initially trained using the
training data set, a single epoch of the test data set was applied. This phase
was intended to demonstrate the plasticity of the GNG network to learn the
take, give and therapy gestures.

2. Demonstration of Stability of Past Learning. A single epoch of the
training data was reapplied. This phase was intended to demonstrate the
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stability of the system learning implementation. If the implementation is
indeed stable, the outcome would be expected to reflect an already-trained
network. That is, the performance metrics would show iteration counts which
remain tolerably few for a human trainer.

3. Demonstration of Stability of New Learning. A final epoch of the test
data was executed. This phase reinspects the network for the stability of the
newer take, give and therapy gestures introduced by the test data set in the
first epoch.

Results for this experimental procedure are given in section 5.

5 Results and Discussion

Typical results for execution of the three epochs are given in Table 2.

Table 2. Results for three epochs

Samples

Distance Trained Average
Epoch Metric # Nodes #Nodes Ignored Iteratifns
(%)

1 Mean 100 85 9.1 7.32
Clumpiness 100 93 7.3 8.89
2 Mean 99 91 4.9 5.62
Clumpiness 100 98 5.6 2.89
3 Mean 100 93 3.1 0.79
Clumpiness 101 100 1.2 0.97

For epoch 1, the GNG network was previously trained to the eat, read and
rest gestures. Application of the test data in the first epoch shows the plasticity
of the network in learning new gesture types under the proposed use model.
Two metrics in particular are seen as key to evaluation of the use model: (1)
the percentage of samples ignored and (2) the average number of training it-
erations. As previously stated, samples may be ignored by taking too long to
train (exceeding a confusion threshold of 1000 iterations). They may also be ig-
nored if they fall into the receptive field of a previously trained node and receive
negative reward. The rationale to ignore such problem samples is based on the
assertion that non-action on the part of the robot is preferred to persisting with
training and ultimately performing an undesirable action. Further, alteration of
a previously trained action would negatively affect the stability of the system.
Thus, the priority for alteration of the network is set in favor of stability over
the attempt to adapt to a rapidly changing input distribution. It can be seen
from Table 2 that the percentage of samples ignored is small (less than 10.0%).
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The clumpiness metric ignores the fewest samples. This is coupled to the
improved separability of the data set as participants were guided to perform
gestures in a uniform manner. With well-defined clusters in the GNG network,
the proximity of any given gesture input to the cluster center for its class is likely
to have improved, while the distance between cluster centers will have increased.
Thus, the clumpiness computation would be more apt to form its neighborhood
from members its own class.

The average numbers of iterations (less than nine iterations per sample) are
manageable in general, if still somewhat burdensome to the user. It is noted,
however, that those gesture samples which are ignored for having exceeded the
confusion threshold will negatively impact this metric. The attempted iterations
are not deducted from the total iteration count over the epoch and thus con-
tribute to a higher average. After several nodes of each gesture class are fully
trained within the network, the overwhelming majority of subsequent samples
requires no training at all. Further, the average number of training iterations is
seen to decrease further in subsequent epochs. These results demonstrate that
the fully trained network which existed before the test data was first applied is
capable of learning new gestures in a human-tolerable number of time steps.

For epoch 2, training data was reapplied to the network after it had been
newly trained with the test data set. These results reflect the stability of the
GNG implementation. It can be seen that both the average number of iterations
and the percentage of samples ignored are now smaller for both distance metric
schemes. Again, the clumpiness metric yields best results.

Epoch 3 underscores the stability of the system which remains stable through
the reapplication of test data. Both the average numbers of iterations and the
number of samples ignored have decreased from the first application of this
data set under both distance metric schemes. The clumpiness metric is typically
(though not always) seen to ignore the fewest samples. Although not reported
quantitatively here, subsequent epochs for either the training data or the test
data frequently resulted in convergence to zero iterations per sample: the entire
network had become fully trained for the available data sets. This result may be
problematic in cases where gesture data is poorly separable; the algorithm may
have overfit the data. A more discriminating method for node insertion may be
desirable to temper the generalizing capability of the network in such cases.

6 Conclusions and Future Work

In this paper, we have presented a method for training a gesture-based interface
to a robotic agent (ART) with a human user/trainer. We have introduced a
use model for the agent which attempts to minimize the physical and cognitive
loads on the user in terms of training iterations. It has been shown that the GNG
algorithm offers a construct for learning new gesture classes while retaining past
information. Strategic addition and deletion of GNG nodes based on their history
of user-generated reward within a node neighborhood was shown to facilitate
both plasticity and stability of learning.
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Future work in this area will include development of a means by which training
sequences for a given gesture may be abandoned early if they would fail to
converge. Also, alternative network distance metrics (and models for assigning
connection lengths) will be explored in pursuit of faster neighborhood learning.
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Abstract. Besides the emergence of many input devices and sensors,
they are still unable to provide good and simple recognition of human
postures and gestures. The recognition using simple algorithms imple-
mented on top of these devices (like the Kinect) enlarges use cases for
these gestures and postures to newer domains and systems. Our meth-
ods cuts the needed computation and allow the integration of other al-
gorithms to run in parallel. We present a system able to track the hand
in 3D, log its position and surface information during the time, and
recognize hand postures and gestures. We present our solution based on
simple geometric algorithms, other tried algorithms, and we discuss some
concepts raised from our tests.

Keywords: Gesture, Posture, 3D, Kinect, Interaction, Hand.

1 Introduction

During the last years, we have seen a big interest in 3D gesture interaction in the
research and the industrial field, many input devices and sensors were and are
still being released to translate human movements into computer information.
Sadly, many sensors either have complex systems for gesture recognition [11,7],
takes a lot of computation power or still lack good recognition algorithms. Some
studies show that the mouse is still unbeaten in its current use [2] and this
motivates us to figure out new scenarios for gestures and postures systems [4].

3D gestures have also the specificity of not having a clear hardware timing of
when a gesture starts and ends. In contrast with multi-touch devices that define
the beginning and the end of the gesture by fingers touching the surface and
leaving it, in 3D we do not touch physical objects and this is what makes the
problem harder.

The increasing number of sensors and devices, and the emergence of new 3D
visualization techniques like the 3D stereoscopy [14], pushes us to test a new
approach in creating hand gestures and postures recognizers. We target a user
commanding a system using a table and the space above. We take the object itself
into consideration taking a part in the recognition method in a way different from
just using physics simulation libraries [6,17]. We detail in this paper a simple and
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real-time solution for recognizing gestures and postures, which can be embedded
into other systems. As we take the manipulated object into consideration, the
recognition becomes instantaneous and newer concepts start to emerge. We have
chosen to mold geometric recognition algorithms towards our needs.

Our contributions are: 1. The fast system for tracking the hands from the 3D
raw points data. 2. The use of the same geometric algorithms to detect both ges-
tures. 3. The use of the same algorithms to detect postures by transforming the
hand contour into an algorithm input. 4. The experimentation of other methods
and ideas in the same context.

In this paper, we start by describing our base system for recognizing, tracking
and logging the hand in 3D; then we describe how we have used and extended
simple geometric algorithms for 3D gesture analysis and for hand posture recog-
nition. We describe other tested algorithms and finally we discuss the recognition
issues and provide some new ideas coming out from our applied study.

2 Kinect-Based System for Tracking and Recognition

2.1 Installation

In our system as shown in fig. 1 we have used the Kinect as a depth sensing
camera mounted in the ceiling above the user. We have decided to process the
raw data directly to be able to optimize the pipeline and get the maximum speed.
The standard Microsoft Xbox Kinect sensor pipes us a raw input of 640x480
3D points cloud at 30Hz frequency. We limit the captured zone to the size of
100x80cm and a 60cm of depth above the table because of the human reachability
concerns [10] and table size. The Kinect is connected to an Intel Xeon computer
with ubuntu 64bit installed. We have used the open source libfreenect library
for kinect access in addition to OpenCV.

2.2 Tracking of the Blobs

To accelerate the hands detection and tracking, we have decided to do all the
tracking on 2D surfaces and using well designed one pass per frame algorithms.
So while keeping the 3D data of the Kinect on separate data structures, we have
flattened the recorded 3d box of points into a single layered image (in comparison
to a three layered RGB image) which can proceeded by OpenCV. We have used
cvBlob library to label the blobs present on the scene then we apply the same
algorithms described in [3] to track the resulted blobs between frames. We still
have access to all the 3D information after the flattening operation since the
single layer where blobs will be tracked in 2D has been duplicated in memory.

2.3 Extraction of the Hand

The blob we obtained form the hand and the arm, but as we only want infor-
mation about the hand, we extract only that part from the bigger blob of the
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Fig. 1. Kinect Install

full arm and we get the position of the hand center. To extract it, we simplify
the blob into a shape just fewer points, we try to mesure and compare distances
between points and we select the longer segment. As the segment contains the
hand farthest point and the point near the forearm, we select the one which is
near the interaction zone center as shown in fig. 2. To select the hand center,
we have selected a constant interval from the extreme point towards the other
direction. The interval size varies by the hand vertical position.

selected
line

selected extremity

Fig. 2. Hand Extraction

2.4 Logging of the Hands Information

We are able to process data in near real-time while recording the hand surface
shape and the 3D coordinates of hand movements through time for further use in
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posture recognition as shown (fig. 3). Data structures for tracking and identifying
the hand are separated from 3D raw data, but we use them to select the zone
to be recorded. We select a fixed rectangle around hand center and we verify
whether it is inside the recording zone. We have used textual files to facilitate
debugging and allow direct visualization using gnuplot. One problem faced with
3D sensors is that they can only provide the surface layer of an object, and not
the 3D blob in itself. This means that when we speak about recording the hand,
we record only the points of its surface which are between the sensor and the
real hand. This limits for example recognizing what happens below the hand
surface.

“n0000L suface”  +

Fig. 3. The recorded scene including hands, and the extracted and recorded hand
surface

2.5 Application and Research Context

In the previous section we have described the 3D input handling part, but the
general context where our system as described in fig. 4 is used is the mar-
itime surveillance. The input handling and the maritime systems are connected
through a software bus where we can pipe recognition results in one direction
and the commands for the mode of recognition tuning in the other direction.

C++ OpenCV Application

racking Module

Logging Mod.

Gesture Mod.
Posture Mod.

Virtual Machine

Module Activation Command
3D Objects Information

SOFtware Bus

Recognition Results N
Gestures and Postures Kinect Logger

C++ Qt Application

-
\_Reconsurve Maritime Surveillance

Fig. 4. Maritime suveillance system and Kinect Logger system architecture

3 Recognition Methods

3.1 Use of Geometric Algorithms

When starting the development of our project, the performance was one of our
biggest concerns so we focused on using algorithms that take the shortest com-
puting time and we tuned them to our needs. We have studied the Rubine[13]
and the “1 dollar” families [18,9] of stroke recognizers. We have chosen to use
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the 18 recognizer (or its variation “Protractor”) for its simplicity and speed. We
define geometric algorithms as those which use simple geometry operations and
measurements in order to compute a distance value, in contrast to soft computing
algorithms.

3.2 Our Use of 1$ Algorithm in Gesture Recognition

In our system, we track the hand center and the pointing finger. We have ex-
tended the 1$ algorithm to work on 3D strokes. Works like [5] or 3§ [8] have
only used either a different algorithm or a still 2D recognition of 2D strokes
performed in the 3D space, the work of Haubner et al. [5] in particular worked
mostly on searching the flat space of a gesture. In our 3D adaptation of 1$, we
have tested 3D strokes that can not be reduced to a simple plan.

3.3 Our Use of 1$ Algorithm in Posture Recognition

By posture, we define the current configuration of the hand similarly to Baudel et
al. [1]. The 1$ algorithm is supposed to be used with mouse, touch screen or pen
strokes. We have got the idea to keep using it but for hand posture recognition
based on previous work we have made [3]. We have managed to make the hand
contour as the input of the algorithm (fig. 5), then we have recorded a set of
template, and the slightly modified algorithm have worked and we are now able
to detect our set of hand postures, which are just a subset of the American Sign
Language .

direction of
comparison

ending point —a ) &— starting point

Fig.5. Using 1$ in posture recognition

3.4 Pointing 3D Objects on the Table

In our system, as we are able to track the hand center and its extreme, which
can be the pointing finger, we have developed a mode where we track these two
points in 3D and detect the direction pointed by the finger. As a quick and fast
application, we computed the fixed position of the table (Z=constant) to simplify
equations and detect where the user finger is pointing on the table shown in fig. 6
below.

! http://en.wikipedia.org/wiki/American_Sign_Language
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hand extremity

hand center

projected point
on the table

Fig. 6. Pointing on table

4 Other Tested Algorithms

4.1 Extension of Angle Quantization Method in 3D

The angle quantization geometric algorithm [12] works by coding the stroke
into a vector of values. These values calculate the parts being in a specified
angular zone. The algorithm allows fast and high detection rate of strokes but
fails in differencing between repeated stroke patterns like V, VW and VWV. These
patterns have parts in the same angular zone, so even if they are repeated, the
AQ algorithm can’t differenciate between them. We have tried extending the AQ
to the 3D space 2

4.2 Application of the ICP Algorithm for Hand Tracking

We have tried using usual point cloud algorithms like Iterative Closest Point
(ICP) for aligning the recorded hand on one of the templates and use the angles
and positions given by the algorithm to compute the transformation and thus
detect the gesture. The prototype code allowed us to get acceptable results but
appeared to be very slow. The ICP algorithm was not intended for real-time use
and discouraged us from continuing through that research area. We should note
that during the tests, we have tried giving the algorithm the fixed part which is
the hand back without the fingers. The use of this part makes better rotation
recognition. The use of simpler geometric algorithms seems more appropriate.

5 User Experimentation

5.1 Definition of Gestures

In our prototype, and before thinking about how gestures can be natural, we
tried recognizing the usual 3D strokes and we have defined 4 arbitrary and simple
ones as shown in fig. 7 just to test our recognition algorithm. We have chosen
4 gestures that can not be reduced into a 2D plan by studying their principal
components.

2 https://github.com/dylandrover/3D-AQ
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H

"Spring.ges"” "HalfCircleDeep.ges” "3Bounces.ges" "VSquare.ges"

Fig. 7. A set of 4 pure 3D gestures arbitrary selected

5.2 The Naturality of the Performed Gestures

During preliminary tests and recording of 3D command gestures, we have spotted
a problem of memorability, which we think it comes from the background of
human activities. Humans are very well used to write and draw on a 2D paper
but not in space. Only skilled sculptors can interact with a three dimensional
element. What we can do is touching an object, moving it, rotating it, and
sometimes compressing it, but not commanding an object or a system with
indirect gestures. The natural gesture in reference to a hand and an object should
be classified into four basic families: (Touch, Move, Rotate, Scale) in reference
to how we manipulate objects in nature [15]. We think that a hand interaction
with objects need first to be categorized into one of these four classes, then we
look further into sub-properties to achieve a fine-grained classification.

5.3 Benchmarks and Recognition Rates

We have tested the time it takes to compute the gesture after we finish recogni-
tion. It takes less than 60ms on our machine, and with our set of gestures. For
the hand posture recognition, we have made prior tests in the past using the
same posture recognition algorithm and an RGB camera, we were able to reach
realtime recognition rates . When using the Kinect, we have flattened the hand
capture then extracted its contour and we are able to reach a similar but not
yet evaluated recognition rates.

6 Recognition Issues and Ideas

6.1 Gesture Parsing (Start and End)

We have been faced though by the problem of real-time gesture parsing. Knowing
when a gesture starts and when it finishes pushed us first into using a foot pad
to tell the system when it must start considering the recorded 3D points as part
of the gesture, and another foot click to stop recording. The system delivers
after start and stop the detected gesture. A priror work [16] used a posture
to start an interaction. The work could be improved by inheriting ideas from

3 http://youtu.be/AbNKPBCWAEU
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speech recognition system as for detecting the commands between two silences.
In our case, the detection of a possible gesture will be performed between two
stationary positions while posture detection will be performed in them as shown

Y 7%

Fig. 8. The gesture parsing by seeking big difference in hand movements

6.2 Recognition Simplification Using Object Position

While searching for methods to easily detect rotation, we have tried first de-
tecting it in the hand itself based only on the point cloud transformation. This
appeared a computation hog using the ICP algorithm. Then we have questioned
detecting such gesture without the presence of a target object. Having an object
interacting with the hand, and willing a rotation, means that the hand-object
position will change and the line linking their respective centers will rotate. We
can know about the center of an object, and we track the hand, so we know
where it is. We are able to detect rotation instantly using this method.

6.3 Spheres of Interaction

The interaction we want to promote is the one with objects because that is where
natural interaction goes instead of commands or posture interaction. We have
proposed in the previous paragraph that we can simplify algorithms using the
hand and object positions. Here, we extend this approach to define interaction
zones or spheres of interaction around the object as shown in fig. 9. We dedicate
the first sphere around the object, which is bigger than it by two times the hand
thickness, to direct manipulation of the object by moving, resizing, rotating and
selecting it, and the second layer to accept indirect commands to be applied on
it. When the hand is not in these zones, we ignore its posture and movement
which is far from the object.

7 Conclusion and Future Work

In this paper, we have shown that we can provide a system capable of tracking
hand movements in the space above the table, logging information, and recog-
nizing gestures and postures in real-time. The most relevant feature of our work
is that it is able to reach good performances using only very simple algorithms.
Use them in a new way. Our approach can help other researchers by giving them
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L2

=

Fig.9. Spheres or layers of interaction around the object, their size depend on the
object and hand ones

the tests and examples that worked and those which ended up with some con-
straints.We think that the simplification of recognition using information about
the object along with the hand, and the position of these two is an idea to
consider in further studies. Future studies will target making the system more
robust and improve its recognition capabilities. We plan also to target more user
testing and perform new benchmarks.
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Abstract. In this paper we propose a person identification methodology
from frontal standing posture using only skeleton information obtained
from Kinect. In the first stage, features related to the physical charac-
teristic of a person are calculated for every frame and then noisy frames
are removed based on these features using unsupervised learning based
approach. We have also proposed 6 new angle and area related features
along with the physical build of a person for the supervised learning
based identification. Experimental results indicate that the proposed al-
gorithm is able to achieve 96% recognition accuracy and outperforms all
the stat-of-the-art methods suggested by Sinha et al. and Preis et al.

1 Introduction

Biometric Person identification in an image or video is of crucial importance
and it is critical to determine the presence of a particular person for applica-
tions where automatic person recognition is a key enabler such as security and
surveillance, elderly people care etc. People are mainly identified based on dif-
ferent physical and behavioral features e.g. iris, fingerprint, speech, face etc.
But biometric identification based on these modalities are intrusive as they re-
quire direct human interaction. In addition, extracting face, iris or fingerprint
characteristic from a large distance or in poor lighting condition are indeed a
challenging job. This paper aims at developing a novel person identification al-
gorithm based on only physical build characteristic of a person. As the overall
physical structure of a person can be extracted at a large distance and it is
very difficult to imitate or hide, the method has clear advantages over the ex-
iting ones. One approach to determine physical characteristics of person is to
capture skeleton joint co-ordinates over time. But to accomplish this, we need
to have multiple positional cameras to obtain skeleton information. Fortunately,
Microsoft provides us a 3D (RGB-D) sensor platform called ”Kinect” which can
directly provide the 20 skeleton joint co-ordinates. As we are only using skeleton
information instead of video or RGB-D image, our proposed method can prop-
erly ensure user’s privacy and security issue.

After obtaining the skeleton information, the physical build (features) of a person
like body dimensions, height, length of two legs, arms etc. can be easily com-
puted from the data. As human being is capable of identifying a person from
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his/her physical or structural build, any standard statistical learning method
(supervised or unsupervised) can be used to map these unique features to a par-
ticular object class repressing a person. It needs to be mentioned that person
identification using skeleton information already exists in the literature. Preis
et al. [1] used physical build of a person like height, length of torso etc. and
dynamic gait information like step length and velocity for person identification
from constrained side walking pattern. Adrian et al. [2] proposed an unsupervised
learning (K-Means) based identification algorithm based on dynamic angular in-
formation related to the gait pattern using Kinect and obtained 43.6% accuracy
for 4 subjects. Manual gait cycle extraction used by Adrian et al. is not possible
in any realtime system. While Naresh et al. [3] tried to model arbitrary walk-
ing pattern using only physical build characteristics, Sinha et al. [4] proposed
a robust pose and sub-pose based modeling approach for the same. But none
of them tried to identify a person from their only static posture using skeleton
information obtained from Kinect.

For some applications like TV viewership monitoring or monitoring blackboard
activity in school or college, it is very much important to recognize a person
from his/her static posture. The static posture may be interpreted as standing,
sitting, lying or anything else. To address the above usecases, this paper aims
at proposing a novel framework for supervised learning based person identifica-
tion using only frontal standing pose. We have done the frame level performance
analysis as well as comparison our proposed method with respect to existing
solution. The key contributions of the paper are given below

Frontal standing pose based person identification using skeleton data.

— New area and angle related features are proposed for person identification.
— Noisy skeleton data removal using physical characteristic of the person.
Multiclass Support Vector Machine (SVM) with RBF kernel [2] is employed
for supervised learning based person identification.

Rest of the paper is organized as follows. The proposed methodology is described
in the Section 2. The detailed results are provided in Section 3 followed by
conclusion in Section 4.

2 Proposed Methodology

In this paper, we have presented a frontal standing posture based person iden-
tification using only skeleton data obtained from Microsoft K