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Preface

This book introduces some of the recent key developments in polarization
optical methods that have made possible the quantitative studies of tissues
and biological cells essential to biomedical diagnostics. It also presents a
number of advanced novel polarimetric technologies that have future potential
for laboratory and clinical medical diagnosis.

In the book, the theory of polarization transfer in a random medium is used
as the basis for a quantitative description of the interaction of polarized light
with tissues and fluids. This theory employs the modified transfer equation
for Stokes parameters to predict the polarization structure of single and mul-
tiple scattered optical fields. With our ultimate goal being the design of new
noninvasive medical diagnostic methods, we introduce the backscattering po-
larization matrices (Jones matrix and Mueller matrix) that describe strongly
scattering tissues. Experimental 2-D polarization patterns and Monte Carlo
simulations of matrix elements are also presented. Optical coherence polariza-
tion tomography is described as a new tool for the measurement of polarization
in tissues. Jones vector measurements, imaging by optical coherence tomogra-
phy, and the problem of conversion from a Jones matrix to a Mueller matrix
are discussed. A number of diagnostic techniques based on polarized light
detection are presented, including CW polarization imaging, multiwavelength
polarization imaging, polarization correlometry of tissues with expressed bire-
fringence, partially coherent polarization-sensitive speckle-spectroscopy, po-
larization spectroscopy, microscopy and cytometry. Examples of biomedical
applications of these techniques for cataract and glaucoma early diagnostics,
glucose sensing in the human body, hematological and skin disease prediction,
and bacteria detection are presented.

The audience for which this book is written consists of researchers,
postgraduate students, biomedical engineers, and medical doctors who are
interested in the design and application of optical and laser methods and
instruments for medical science. Investigators who are deeply involved in the
field will find up-to-date results on the topics discussed. Physicians and bio-
medical engineers may be interested in clinical applications of the presented
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techniques and in the instrumentation described. Laser and fiber optics en-
gineers may also be interested in the book because acquaintance with the
extensive potential for laser and fiber optics medical applications may stim-
ulate new ideas for laser and fiber optics design. The large number of funda-
mental concepts and basic research on light-tissue interactions presented in
the book should make it useful for a broad audience that includes students
and physicians.

The authors are grateful to Dr. Habil Claus E. Ascheron for his valuable
suggestions and help on preparation of this book. It should be mentioned
that some of the original materials included in the book were arrived at while
working on the following grants: 25.2003.2 the Russian Federation President’s
grant “Supporting of Scientific Schools” of the Russian Ministry for Industry,
Science and Technologies, 2.11.03 “Leading Research-Educational Teams” of
the Russian Ministry of Education, 04-02-16533 of the Russian Foundation
for Basic Research, and REC-006 “Nonlinear Dynamics and Biophysics” of
CRDF and the Russian Ministry of Education, as well as EB00319, CA71980
and CA092415 of the U.S. National Institutes of Health, and BES-9734491 of
the U.S. National Science Foundation.

The authors are thankful to their colleagues, especially Prof. Irina L. Mak-
simova, Prof. Yurii P. Sinichkin, and Dr. Georgy V. Simonenko, for their
cooperation in this endeavor.

They are also thankful to Prof. P. Gupta, Prof. K. Meek, and Dr. A. Kishen
for their comments on sections of this book. Finally, the authors are grateful
to Mary Ann Dickson for grammatically editing the entire manuscript.

Valery V. Tuchin March 2006
Lihong V. Wang
Dmitry A. Zimnyakov
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1

Introduction

1.1 Light Interaction with Tissues

Utilizing the interaction of light with biological tissues and fluids for prac-
tical purposes depends on understanding the properties of two large classes
of biological media. One of them comprises weakly scattering (transparent)
tissues and fluids like cornea, crystalline lens, vitreous humor, and aqueous
humor of the front chamber of eye. The other class includes strongly scattering
(opaque or turbid) tissues and fluids like skin, brain, vessel wall, eye sclera,
blood, and lymph [1–7]. The interaction of light with biological media of the
first class can be described by a model of single (or low-step) scattering in an
ordered medium with closely packed scatterers that have a complex refractive
index. Light propagation in tissues of the second class can be described by a
model of multiple scattering of scalar or vector waves in a random or ordered
low-absorbing medium.

The optical transparency of tissues is maximal in the near infrared (NIR)
region, which is due to the absence, in this spectral range, of strong intrinsic
chromophores that would absorb radiation in living tissues [1–7]. However,
these tissues are characterized by rather strong scattering of NIR radiation,
which prevents the attainment of clear images of localized inhomogeneities
arising due to various pathologies, e.g., tumor formation or the growth of
microvessels. Thus, this volume devotes special attention in the sections on
tissue optical tomography and spectroscopy to the development of methods
for the selection of image-carrying photons and the detection of photons pro-
viding spectroscopic information. Often the vector nature of light transport in
scattering media, such as tissues, is ignored because of its rapid depolarization
during propagation in a randomly inhomogeneous medium. However, in cer-
tain tissues (transparent eye tissues, cellular monolayers, mucous membrane,
superficial skin layers, etc.), the degree of polarization of the transmitted or
reflected light is measurable even when the tissue has considerable thickness.

Many tissues – such as eye cornea, sclera, tendon, cartilage, which are
classified as fibrous tissues, and other structured tissues such as retina, tooth
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enamel and dentin – show a wide variety of polarization properties: linear
birefringence, optical activity, and diattenuation. These properties are pri-
marily defined by the tissue structure – anisotropy of form – or by the intrin-
sic anisotropic character of the tissue components or metabolic molecules –
anisotropy of material. Collagen, muscle fibers, keratin, and glucose belong to
this latter group.

The propagation of polarized light in a birefringent turbid medium is com-
plicated because both the birefringent and the scattering effects can change
the polarization state of light. Information about the structure of a tissue
and the birefringence of its components can be extracted from the registered
depolarization degree of initially polarized light, the polarization state trans-
formation, or the appearance of a polarized component in the scattered light.

Since incident polarized light is rapidly depolarized in turbid tissues by
light scattering, polarization-sensitive detection of reflected or transmitted
light selects only the early escaping photons and rejects the multiply scattered
light [1–7]. Thus, for a light beam reflected from a tissue, the polarization
properties of light can be employed as a selector of the photons coming from
different depths in the tissue. For transmitted light, they can act as a selector
of ballistic or quasi-ballistic photons. Such polarization gating can, therefore,
provide novel contrast mechanisms for tissue imaging and spectroscopy. As for
practical implications, polarization techniques are expected to lead to simpler
schemes of optical medical tomography than those used in existing diagnostic
methods and also to provide additional information about the structure of
tissues.

Since a variety of optical medical techniques employ lasers, light coherence
is very important for the analysis of light interaction with tissues and cells.
The problem can be viewed in terms of a loss of coherence due to the scattering
of light in a random medium with multiple scattering and/or a change in the
statistics and polarization states of speckles in a scattered field. Similarly, the
coherence of light is of fundamental importance for the selection of photons
that have experienced no, or a small number, of scattering events, as well as for
the generation of speckle-modulated fields from scattering phase objects with
single and multiple scattering. Such approaches are important for coherence
tomography, diffractometry, holography, photon-correlation spectroscopy, and
the speckle-interferometry of tissues and biological flows. The use of optical
sources with a short coherence length opens up new opportunities in coherent
interferometry and the tomography of tissues and blood flows.

To understand the general formalism for the scattering and absorption
of light by arbitrarily shaped and arbitrarily oriented particles in tissue
components, to learn exact and approximate theoretical methods and com-
puter codes for calculating the scattering and polarization properties of these
arbitrary shaped small particles, the following literature is recommended
[8–20].
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1.2 Definitions of Polarized Light

Definitions of polarized light, its properties, as well as production and detec-
tion techniques are described in a voluminous literature on this topic [21–28].

Polarization refers to the pattern described by the electric field vector as
a function of time at a fixed point in space. When the electrical field vector
oscillates in a single, fixed plane all along the beam, the light is said to be
linearly polarized. A linearly polarized wave can be resolved into two mutually
orthogonal components. If the plane of the electrical field rotates, the light
is said to be elliptically polarized, because the electrical field vector traces
out an ellipse at a fixed point in space as a function of time. If the ellipse
happens to be a circle, the light is said to be circularly polarized. The connec-
tion between phase and polarization can be understood as follows: circularly
polarized light consists of equal quantities of linear mutually orthogonal po-
larized components that oscillate exactly 90◦ out of phase. In general, light
of arbitrary elliptical polarization consists of unequal amplitudes of linearly
polarized components where the electrical fields of the two polarizations os-
cillate at the same frequency but have some constant phase difference. Light
of arbitrary polarization can be represented by four numbers known as Stokes
parameters [21–28].

In polarimetry, the Stokes vector S of a light beam is constructed based on
six flux measurements obtained with different polarization analyzers in front
of the detector

S =

⎛⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎠ =

⎛⎜⎜⎝
IH + IV

IH − IV

I+45◦ − I−45◦

IR − IL

⎞⎟⎟⎠ , (1.1)

where IH, IV, I+45◦ , I−45◦ , IR, and IL are the light intensities measured
with a horizontal linear polarizer, a vertical linear polarizer, a +45◦ linear
polarizer, a 45◦ linear polarizer, a right circular analyzer, and a left circular
analyzer in front of the detector, respectively. Because of the relationship
IH + IV = I+45◦ + I−45◦ = IR + IL = I, where I is the intensity of the
light beam measured without any analyzer in front of the detector, a Stokes
vector can be determined by four independent measurements, for example,
IH,IV,I+45◦ , and IR,

S =

⎛⎜⎜⎝
IH + IV

IH − IV

2I+45◦ − (IH + IV)
2IR − (IH + IV)

⎞⎟⎟⎠ . (1.2)

From the Stokes vector, the degree of polarization (DOP), the degree of
linear polarization (DOLP), and the degree of circular polarization (DOCP)
are derived as
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DOP =
√

Q2 + U2 + V 2
/

I, (1.3)

DOLP =
√

Q2 + U2
/

I,

DOCP =
√

V 2
/

I.

If the DOP of a light field remains unity after transformation by an optical
system, this system is nondepolarizing; otherwise, the system is depolarizing.

The Mueller matrix (M) of a sample transforms an incident Stokes vector
Sin into the corresponding output Stokes vector Sout:

Sout = MSin. (1.4)

Obviously, the output Stokes vector varies with the state of the incident
beam, but the Mueller matrix is determined only by the sample and the optical
path. Conversely, the Mueller matrix can fully characterize the optical polar-
ization properties of the sample. The Mueller matrix can be experimentally
obtained from measurements with different combinations of source polarizers
and detection analyzers. In most general cases, a 4× 4 Mueller matrix has 16
independent elements; therefore, at least 16 independent measurements must
be acquired to determine a full Mueller matrix.

The normalized Stokes vectors for the four incident polarization states, H,
V, +45◦, and R, are, respectively,

SHi =

⎛⎜⎜⎝
1
1
0
0

⎞⎟⎟⎠ , SVi =

⎛⎜⎜⎝
1
−1
0
0

⎞⎟⎟⎠ , S+45◦i =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , SRi =

⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ , (1.5)

where H, V, +45◦, and R, represent horizontal linear polarization, vertical
linear polarization, +45◦ linear polarization, and right circular polarization,
respectively. We may express the 4 × 4 Mueller matrix as M = [M1 M2 M3

M4], where M1, M2, M3, and M4 are four column vectors of four elements
each. The four output Stokes vectors corresponding to the four incident po-
larization states, H, V, +45◦ and R, are denoted, respectively, by SHo, SVo,
S+45◦o, and SRo. These four output Stokes vectors are experimentally mea-
sured based on (1.2) and can be expressed as⎧⎪⎪⎨⎪⎪⎩

SHo = MSHi = M1 + M2

SVo = MSVi = M1 − M2

S+45◦o = MS+45◦i = M1 + M3

SRo = MSRi = M1 + M4.

(1.6)
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The Mueller matrix can be calculated from the four output Stokes vec-
tors [29]:

M = 1
2×[

SHo + SVo, SHo − SVo, 2S+45◦o − (SHo + SVo), 2SRo − (SHo + SVo)
]
.
(1.7)

In other words, at least four independent Stokes vectors must be measured
to determine a full Mueller matrix, and each Stokes vector requires four inde-
pendent intensity measurements with different analyzers.

For an overview of light polarization properties, its fundamentals and ap-
plications, the reader is referred to [21–28].



2

Tissue Structure and Optical Models

2.1 Introduction

As biological tissue is an optically inhomogeneous and absorbing medium,
light propagation within a tissue depends on the scattering and absorption
properties of its components – the cells, cell and fiber structures, and cell
organelles [1–7]. In particular, the parameters such as particle size, shape,
and density, the properties of the ground substance around the scattering
particles, and the polarization states of the incident light play important roles
in the propagation of light in turbid media [1–20].

The vector nature of propagating light waves [21–28] is especially impor-
tant in transparent tissues, such as anterior eye tissues [2, 4, 5], but much
attention has also been focused recently on investigation of the polarization
properties of light propagation in strongly scattering media [4–7]. In scatter-
ing media, the vector nature of light waves is manifested as the polarization
of an initially unpolarized light or as the depolarization (generally, a change
in the character of the polarization) of an initially polarized beam that has
been propagated in a medium.

Tissue polarization anisotropy exhibits primarily linear birefringence
caused by fibrous structures – common constituents of many connective
tissues. The refractive index of the medium is higher along the length of
the fibers than across the width. This is called anisotropy of form. Due
to their chirality, some molecules of tissue structures, for example keratin,
or metabolic molecules like glucose, are responsible for what is called the
material anisotropy of tissues.

Propagation of polarized light in a birefringent turbid medium is rather
complicated, because both the birefringence and the scattering effect the po-
larization states of the light. The scattered radiation contains information
about the sizes and shapes of the tissue structural elements, their orientation,
optical constants, and other parameters. To extract this information and to
interpret experimental results on light scattering, the researcher must develop
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an appropriate optical model for the particular tissue being considered and
describe the light propagation in the medium based on this model.

In view of the great diversity and structural complexity of tissues [1–7],
the development of adequate optical models accounting for the scattering and
absorption of light is often the most complex step of a study. Therefore, in
this chapter we will consider (1) tissue structure; (2) the optical properties
of tissue components; (3) continuous and particle tissue models, including
eye tissues; (4) the origin of tissue anisotropy; and (5) the fractal properties
of tissues and cell aggregates.

2.2 Continuous and Discrete Tissue Models

Two approaches are currently used for tissue modeling. They are (1) tissue
modeled as a medium with a continuous random spatial distribution of op-
tical parameters [2, 4, 5, 29, 30] and (2) tissue modeled as a discrete ensemble
of scatterers [1–7, 31]. The choice of approach is dictated by both the struc-
tural specificity of the tissue under study and the kind of light scattering
characteristics that are to be obtained.

Most tissues are composed of structures with a wide range of sizes, and
most can be described as a random continuum of the inhomogeneities of the
refractive index with a varying spatial scale [29,30]. Phase contrast microscopy
has been used, in particular, to show that the structure of the refraction in-
dex inhomogeneities in mammalian tissues is similar to the structure of frozen
turbulence in a number of cases [29]. This fact is of fundamental importance
for understanding the peculiarities of radiation transfer in tissue, and it may
be a key to the solution of the inverse problem of tissue structure reconstruc-
tion. This approach is applicable for tissues with no pronounced boundaries
between elements that feature significant heterogeneity. The process of scat-
tering in these structures may be described under certain conditions using the
model of a phase screen [30,32,33].

The second approach to tissue modeling is its representation as a system
of discrete scattering particles. This model has been advantageously used to
describe the angular dependence of the polarization characteristics of scat-
tered radiation [16, 19, 20, 34]. Blood is the most important biological exam-
ple of a disperse system that entirely corresponds to the model of discrete
particles.

Biological media are often modeled as ensembles of homogeneous spherical
particles, since many cells and microorganisms, particularly blood cells, are
close in shape to spheres or ellipsoids. A system of noninteracting spherical
particles is the simplest tissue model. Mie theory rigorously describes the
diffraction of light in a spherical particle [16, 24]. The development of this
model involves taking into account the structures of the spherical particles,
namely, the multilayered spheres and the spheres with radial nonhomogeneity,
anisotropy, and optical activity [19,20].
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As connective tissue consists of fiber structures, a system of long cylinders
is the most appropriate model for it. Muscular tissue, skin dermis, dura mater,
eye cornea, and sclera belong to this type of tissue formed essentially by
collagen fibrils. The solution of the problem of light diffraction in a single
homogeneous or multilayered cylinder is also well understood [16].

2.3 Scatterer Size Range and Distribution

The sizes of cells and tissue structure elements vary in size from a few dozen
nanometers to hundreds of micrometers [4, 5–7, 35–48]. The size of bacte-
ria is usually a few micrometers. Blood cells(erythrocytes, leukocytes, and
platelets) exhibit the following parameters. A normal erythrocyte in plasma
has the shape of a concave–concave disc with a diameter varying from 7.1
to 9.2 μm, a thickness of 0.9–1.2 μm in the center and 1.7–2.4 μm on the pe-
riphery, and a volume of 90 μm3. Leukocytes are formed like spheres with a
diameter of 8–22 μm. Platelets in the blood stream are biconvex disk-like par-
ticles with diameters ranging from 2 to 4 μm. Normally, blood has about ten
times as many erythrocytes as platelets and about 30 times as many platelets
as leukocytes.

Most other mammalian cells have diameters in the range of 5–75 μm. In
the epidermal layer, the cells are large (with an average cross-sectional area
of about 80 μm2) and quite uniform in size. Fat cells, each containing a single
lipid droplet that nearly fills the entire cell and therefore results in eccentric
placement of the cytoplasm and nucleus, have a wide range of diameters from
a few microns to 50–75 μm. Fat cells may reach a diameter of 100–200 μm in
pathological cases.

Additionally, there are a wide variety of structures within cells that de-
termine tissue light scattering. Cell nuclei are on the order of 5–10 μm in di-
ameter, mitochondria, lysosomes and peroxisoms have dimensions of 1–2 μm,
ribosomes are on the order of 20 nm in diameter, and structures within various
organelles can have dimensions up to a few hundred nanometers. In reality,
the scatterers in cells are not spherical. The models of prolate ellipsoids with
a ratio of the ellipsoid axes between 2 and 10 are more typical.

In fibrous tissues or tissues containing fiber layers (cornea, sclera, dura
mater, muscle, myocardium, tendon, cartilage, vessel wall, retinal nerve fiber
layer, etc.) and composed mostly of microfibrils and/or microtubules, typical
diameters of the cylindrical structural elements are 10–400 nm. Their length
is in a range from 10–25 μm to a few millimeters.

The dominant scatterers in an artery may be the fibers, the cells, or the
subcellular organelles. Muscular arteries have three main layers. The inner
intimal layer consists of endothelial cells with a mean diameter of less than
10 μm. The medial layer consists mostly of closely packed smooth muscle cells
with a mean diameter of 15–20 μm; small amounts of connective tissue, includ-
ing elastic, collagenous, and reticular fibers as well as a few fibroblasts, are
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also located in the media. The outer adventitial layer consists of dense fibrous
connective tissue that is largely made up of 1–12 μm in diameter collagen
fibers and thinner, 2–3 μm in diameter, elastin fibers.

Another two examples of complex scattering structures are myocardium
and the retinal nerve fiber layer. The myocardium consists mostly of car-
diac muscle which comprises myofibrils (about 1 μm in diameter) that in turn
consist of cylindrical myofilaments (6–15 nm in diameter) and aspherical mi-
tochondria (1–2 μm in diameter). The retinal nerve fiber layer comprises bun-
dles of unmyelinated axons that run across the surface of the retina. The
cylindrical organelles of the retinal nerve fiber layer are axonal membranes,
microtubules, neurofilaments, and mitochondria. Axonal membranes, like all
cell membranes, are thin (6–10 nm) phospholipid bilayers that form cylindrical
shells enclosing the axonal cytoplasm. Axonal microtubules are long tubular
polymers of the protein tubulin with an outer diameter of ≈ 25 nm, an in-
ner diameter of ≈15 nm, and a length of 10–25 μm. Neurofilaments are stable
protein polymers with a diameter of ≈ 10 nm. Mitochondria are ellipsoidal or-
ganelles that contain densely involved membranes of lipid and protein. They
are 0.1–0.2 μm thick and 1–2 μm long.

Gaussian, gamma, or power size distributions are typical in optics of dis-
persed systems [49]. For some tissues, the size distribution of the scattering
particles may be essentially monodispersive and for others it may be quite
broad. Two opposite examples are transparent eye cornea stroma which has a
sharply monodispersive distribution and turbid eye sclera which has a rather
broad distribution of collagen fiber diameters [4,5]. There is no universal dis-
tribution size function that would describe all tissues with equal adequacy.
Polydispersion for randomly distributed scatterers can be accounted for by
using the gamma distribution or the skewed logarithmic distribution of scat-
terers’ diameters, cross sections, or volumes [4, 5, 29, 31, 44, 50, 51]. For turbid
tissues such as eye sclera, the gamma radii distribution function is applica-
ble [50,51]:

η(a) = aμ exp(−μβ), (2.1)

where σ/am = 2.35μ−0.5, β = a/am, σ is the half-width of the distribution,
and am is the more probable scatterer radius.

A two-phase system made up of an ensemble of equally sized small particles
and a minor fraction of larger ones provides a good model of pathological
tissue, e.g., a cataractous lens [4].

For epithelial cells and their nuclei scattering structures, log-normal size
distributions of spherical or slightly prolated ellipsoidal particles are charac-
teristic [45]:

η(a) = (1/aσ
√

2π) exp{−[(ln(a) − ln(am)]2/2σ2}. (2.2)

In particular, for epithelial cells and their nucleus components, two log-normal
size distributions for small and big spherical scatterers with the following
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parameters were found in a certain line of rat prostate carcinoma cells [45]:
am1 = 0.012 μm, σ1 = 1.15 μm and am2 = 0.59 μm, σ2 = 0.43 μm.

When a description of scattering by particles of complex shape is required,
different procedures, e.g., the method of T-matrices, can be applied [19, 20,
45]. Complexly shaped scatterers, like cells themselves, may be modeled as
aggregates of spherical particles [46].

2.4 Refractive-Index Variations and Absorption

The tissue components that contribute most to the local refractive-index vari-
ations are the connective tissue fibers (bundles of elastin and collagen), cy-
toplasmic organelles (mitochondria, lysosoms, and peroxisomes), cell nuclei,
and melanin granules [29, 31, 40–45, 47, 48, 50–57]. Figure 2.1 shows a hypo-
thetical index profile formed by measuring the refractive index along a line
in an arbitrary direction through a tissue. The widths of the peaks in the
actual index profile are proportional to the diameters of the elements, and
their heights depend on the refractive index of each element relative to that
of its surroundings. This is the origin of the tissue discrete particle model.
In accordance with this model, the index variations may be represented by a
statistically equivalent volume of discrete particles having the same index but
different sizes.

In inhomogeneous materials, such as tissues, the refractive indices of the
fibrils, the interstitial medium, and the tissue itself can be derived using the
law of Gladstone and Dale, which states that the resulting value represents
an average of the refractive indices of the components related to their volume
fractions [4]:

n̄ =
N∑

i=1

nifi,
∑

i

fi = 1, (2.3)

where ni and fi are the refractive index and volume fraction of the individual
components, respectively, and N is the number of components.

Fibers
Interstitial
fluid Cytoplasm

Nucleus Statistical mean index

nfnor,nnc
ncp
nis

<Δn>
n–s

n–o

Organelles

Actual index

Fig. 2.1. A hypothetical index profile formed by measuring the refractive index
along a line in an arbitrary direction through a volume of soft tissue [31]
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The statistical mean index profile in Fig. 2.1 illustrates the nature of the
approximation implied by this model. According to (2.3), the average back-
ground index is defined as the weighted average of the refractive indices of
the cytoplasm and the interstitial fluid, ncp and nis, as

n̄0 = fcpncp + (1 − fcp)nis, (2.4)

where fcp is the volume fraction of the fluid in the tissue contained inside the
cells. Since approximately 60% of the total fluid in soft tissue is contained in
the intracellular compartment, in accordance with [40–42,52] ncp = 1.37 and
nis = 1.35, it follows that n̄0 =1.36.

The refractive index of a particle can be defined as the sum of the back-
ground index and the mean index variation:

n̄s = n̄0 + 〈Δn〉 , (2.5)

which can be approximated by another volume–weight average,

〈Δn〉 = ff(nf − nis) + fnc(nnc − ncp) + for(nor − ncp). (2.6)

Here subscripts f, is, nc, cp, and or refer to fibers, interstitial fluid, nuclei,
cytoplasm, and organelles, respectively, which are identified as the major con-
tributors to the index variations. The terms in parentheses in this expression
are the differences between the refractive indices of the three types of tissue
components and their respective backgrounds. The multiplying factors are the
volume fractions of the elements in the solid portion of the tissue. The refrac-
tive index of the connective-tissue fibers is about 1.47, which corresponds to
approximately 55% hydration of collagen, its main component [4]. The nu-
cleus and the cytoplasmic organelles in mammalian cells that contain similar
concentrations of proteins and nucleic acids, such as the mitochondria and
the ribosomes, have refractive indices that fall within a relative narrow range
(1.38–1.41) [40, 41]. The measured index for the nuclei is nnc = 1.39 [42, 52].
Accounting for this and supposing that nor = nnc = 1.39, the mean index
variation can be expressed in terms of the fibrous-tissue fraction ff only:

〈Δn〉 = ff(nf − nis) + (1 − ff)(nnc − ncp). (2.7)

Collagen and elastin fibers comprise approximately 70% of the fat-free dry
weight of the dermis, 45% of the heart, and 2–3% of the nonmuscular internal
organs [31]. Therefore, depending on the tissue type, ff may be as small as
0.02 or as large as 0.7. For nf − nis = 1.47 − 1.35 = 0.12 and nnc − ncp =
nor − ncp = 1.39 − 1.36 = 0.03, the mean index variations that correspond to
these two extremes are 〈Δn〉 = 0.03–0.09.

For example, the nucleus and cell membrane of fibroblasts have an index
of refraction of 1.48, the cytoplasm has an index of 1.38, and the averaged
index of a cell is 1.42 [53]. The collagenous fibrils of cornea and sclera have
an index of refraction of 1.47, and the refraction index of the ground matter
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is 1.35 [55]. The relative index of human lymphocytes in respect to plasma
varies from 1.01 < m < 1.08 [56]. Additional information on the refractive
indices of biological cells and tissues may be found in [4, 57,58].

The matter surrounding the scatterers (intercellular liquid and cytoplasm),
the so-called ground substance, is composed mainly of water with salts and
organic components dissolved in it. The ground matter index is usually taken
as n0 = 1.35–1.37. The scattering particles themselves (organelles, protein
fibrils, membranes, protein globules) exhibit a higher density of proteins and
lipids in comparison with the ground substance and thus a greater index of
refraction n1 = 1.39–1.47. This implies that the simplest way to model tissue
is to consider the binary fluctuations in the index of refraction of the various
tissue structures.

Absorption for most tissues in the visible region is insignificant except for
the absorption bands of blood hemoglobin and some other chromophores (see
Fig 2.2) [1–7]. The absorption bands of protein molecules are mainly in the
near UV region. Absorption in the IR region is essentially defined by water
contained in tissues. For example, the index for Bacillus subtilis spores has
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Fig. 2.2. Absorption spectra of skin and aorta; spectra of tissue components –
water (75%), epidermis, melanosome, and whole blood – are also presented; di-
agnostic lasers and their wavelengths as well as diagnostic window and wave-
length ranges suitable for superficial and deep spectroscopy are shown (Adapted
from S. Jacques, “Strengths and weaknesses of various optical imaging tech-
niques,” Saratov Fall Meeting’01, Internet Plenary Lecture, Saratov, Russia, 2001,
http://optics.sgu.ru/SFM)
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a value of about 1.5, and its imaginary part is smaller than 0.01 in a wide
spectral range [54]. The real part of the erythrocyte index with respect to
plasma is m = 1.041–1.067 (λ = 600 nm), and its imaginary part is varied
within 10−2–10−5 in the wavelength range λ = 350–1, 000 nm.

The above examples provide evidence that tissue inhomogeneities have
sizes comparable to, or smaller than, visible or NIR wavelengths and small
relative indices of refraction. Hence, they must be considered as optically soft.
For most tissues the size parameter of the particles x = 2πr/λ (where r is
the particle radius, λ is the light wavelength in a tissue) varies in a wide
range 0.1 < x < 100 for the visible/IR region. The absorption of particles
and ground medium is rather small in this wavelength range. This enables
different approximation methods, described in [1–7, 12–14, 16, 19, 20], to be
used for calculations.

2.5 Tissue Anisotropy

Many biological tissues are optically anisotropic [59–96] Tissue birefringence
results primarily from the linear anisotropy of fibrous structures, which forms
the extracellular media. The refractive index of a medium is higher along
the length of a fiber than along the cross section. A specific tissue structure
is a system composed of parallel cylinders that create an uniaxial birefrin-
gent medium with the optic axis parallel to the cylinder axes. This is called
birefringence of form. A large variety of tissues, such as eye cornea, tendon,
cartilage, eye sclera, dura mater, testis, muscle, nerve, retina, bone, teeth,
myelin, etc., exhibit form birefringence. All of these tissues contain uniaxial
and/or biaxial birefringent structures. For instance, in bone and teeth, these
are mineralized structures originating from hydroxyapatite crystals. In partic-
ular, enamel prisms, fairly well-oriented hexagonal crystals of hydroxyapatite
of 15–20 nm in diameter and up to 160 nm in length, packed into an organic
matrix with an overall cross section of 4–6 μm, and dentin tubules, shelled
organic cylinders with a highly mineralized shell with diameters of 1–5 μm,
play an important role in tooth birefringence.

Tendon consists mostly of parallel, densely packed collagen fibers. Inter-
spersed between the parallel bundles of collagen fibers are long, elliptical fi-
broblasts. In general, tendon fibers are cylindrical in shape with diameters
ranging from 20 to 400 nm [59, 60]. The ordered structure of collagen fibers
running parallel to a single axis makes tendon a highly birefringent tissue.

Arteries have a more complex structure than tendons. The medial layer
consists mostly of closely packed smooth muscle cells with a mean diameter of
15–20 μm. Small amounts of connective tissue, including elastic, collagenous,
and reticular fibers, as well as a few fibroblasts, are also located in the media.
The outer adventitial layer consists of dense fibrous connective tissue. The
adventitia is largely made up of collagen fibers, 1–12 μm in diameter, and
thinner elastin fibers, 2–3 μm in diameter. As with tendon, the cylindrical
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collagen and elastin fibers are ordered mainly along one axis, thus, causing
the tissue to be birefringent.

Myocardium, on the other hand, contains fibers oriented along two dif-
ferent axes. Myocardium consists mostly of cardiac muscle fibers arranged in
sheets that wind around the ventricles and atria. In pigs, the myocardium
cardiac muscle is comprised of myofibrils (about 1 μm in diameter) that in
turn consist of cylindrical myofilaments (6–15 nm in diameter) and aspheri-
cal mitochondria (1–2 μm in diameter). Myocardium is typically birefringent
since the refractive index along the axis of the muscle fiber is different from
that in the transverse direction [59,60].

Form birefringence arises when the relative optical phase between the
orthogonal polarization components is nonzero for forwardly scattered light.
After multiple forward scattering events, a relative phase difference accumu-
lates and a delay (δ) similar to that observed in birefringent crystalline materi-
als is introduced between orthogonal polarization components. For organized
linear structures, an increase in phase delay may be characterized by a dif-
ference (Δn) in the effective refractive index for light polarized along, and
perpendicular to, the long axis of the linear structures. The effect of tissue
birefringence on the propagation of linearly polarized light is dependent on the
angle between the incident polarization orientation and the tissue axis. Phase
retardation, δ, between orthogonal polarization components, is proportional
to the distance (d) traveled through the birefringent medium [82]

δ =
2πΔnd

λ
. (2.8)

A medium of parallel cylinders is a positive uniaxial birefringent medium
[Δn = (ne − no) > 0] with its optic axis parallel to the cylinder axes (see
Fig. 2.3a). Therefore, a case defined by an incident electrical field directed
parallel to the cylinder axes will be called “extraordinary,” and a case with
the incident electrical field perpendicular to the cylinder axes will be called
“ordinary.” The difference (ne −no) between the extraordinary index and the

(a)

ne

no
ne

no

(b)

Fig. 2.3. Models of tissue birefringence: (a) system of long dielectric cylinders, (b)
system of thin dielectric plates
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ordinary index is a measure of the birefringence of a medium comprised of
cylinders. For the Rayleigh limit (λ � cylinder diameter), the form birefrin-
gence becomes [63,66]

Δn = (ne − no) =
f1f2(n1 − n2)2

f1n1 + f2n2
, (2.9)

where f1 is the volume fraction of the cylinders, f2 is the volume fraction of
the ground substance, and n1, n2 are the corresponding indices. For a given
index difference, maximal birefringence is expected for approximately equal
volume fractions of thin cylinders and ground material. For systems with large
diameter cylinders (λ � cylinder diameter), the birefringence goes to zero [66].

For a system of thin plates (see Fig. 2.3b), the following equation is ob-
tained [24]

n2
e − n2

o = −f1f2(n1 − n2)
f1n2

1 + f2n2
2

, (2.10)

where f1 is the volume fraction occupied by the plates, f2 is the volume
fraction of the ground substance, and n1, n2 are the corresponding indices.
This implies that the system behaves like a negative uniaxial crystal with its
optical axis aligned normally with the plate surface.

Form birefringence is used in biological microscopy as an instrument for
studying cell structure. The sign of the observed refractive index difference
points to the particle shape closest to that of the rod or the plate, and if n1

and n2 are known, one can then assess the volume fraction occupied by the
particles. To separate the birefringence of the form and the particle materials,
the refractive indices of the particles and the ground substance should be
matched, because form birefringence vanishes with n1 = n2.

Linear dichroism (diattenuation), i.e., different wave attenuation for two
orthogonal polarizations, in systems formed by long cylinders or plates is
defined by the difference between the imaginary parts of the effective indices
of refraction. Depending on the relationship between the sizes and the optical
constants of the cylinders or plates, this difference can take both positive and
negative values [24].

Reported birefringence values for tendon, muscle, coronary artery, my-
ocardium, sclera, cartilage, skin are on the order of 10−3 (see, for instance,
[64,67,68,75,76,78–82]). The measured refractive index variations for the fast
and slow axes of rabbit cornea show that its birefringence varies within the
range of 0 at the apex, or top of the cornea, to 5.5 × 10−4 at the base of the
cornea where it attaches to the sclera [62, 70]. The predominant orientation
of collagenous fibers in different regions of the cornea results in birefringence
and dichroism [69]. Based on experimental results, it has been assumed that
the birefringent portions of the corneal surface all have a relatively universal
fast axis located approximately 160◦ from the vertical axis, defined as a line
that runs from the apex of the cornea through the pupil [70].

A new technique – polarization-sensitive optical coherence tomography
(PS OCT) – allows for the measurement of linear birefringence in turbid tissue
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with high precision [78–82, 84]. The following data have been reported using
this technique: for rodent muscle, 1.4×10−3 [81,82]; for normal porcine tendon,
(4.2±0.3)×10−3 and for thermally treated (90◦C, 20 s), (2.24±0.07)×10−3;
for porcine skin, 1.5 × 10−3–3.5 × 10−3; for bovine cartilage 3.0 × 10−3 [84];
and for bovine tendon, (3.7±0.4)×10−3 [79]. Such birefringence provides 90%
phase retardation at a depth on the order of several hundred micrometers.

The magnitude of birefringence and diattenuation are related to the den-
sity and other properties of the collagen fibers, whereas the orientation of
the fast axis indicates the orientation of the collagen fibers. The amplitude
and orientation of birefringence of the skin and cartilage are not as uniformly
distributed as in tendon. In other words, the densities of collagen fibers in
skin and cartilage are not as uniform as in tendon, and the orientation of the
collagen fibers are not distributed in as orderly a fashion [84].

Because many components in biological tissues contain intrinsic, and/or
form, birefringence, polarization-sensitive optical technologies are of great in-
terest for application in ophthalmology [4–7, 65, 67, 69–72, 85, 86], dermatol-
ogy [81, 87, 88], and dentistry [89, 90]. Functional information in some bio-
logical systems is associated with transient changes in birefringence. For in-
stance, photothermal injury during laser surgery is associated with birefrin-
gence changes in subsurface tissue components. Therefore, changes in bire-
fringence may indicate changes in the functionality, structure, or viability of
tissues.

In addition to linear birefringence and dichroism (diattenuation), many
tissue components show optical activity. In polarized light research, the mole-
cule’s chirality that stems from its asymmetric molecular structure, results in
a number of characteristic effects generically called optical activity [15,93]. A
well-known manifestation of optical activity is the ability to rotate the plane
of linearly polarized light about the axis of propagation. The amount of rota-
tion depends on the chiral molecular concentration, the pathlength through
the medium, and the light wavelength. For instance, chiral asymmetrically en-
coded in the polarization properties of light transmitted through a transparent
media enables very sensitive and accurate determination of glucose concentra-
tion. Tissues containing chiral components display optical activity [70,91,92].
Interest in chiral turbid media is driven by the attractive possibility of non-
invasive in situ optical monitoring of the glucose in diabetic patients. Within
turbid tissues, however, where the scattering effects dominate, the loss of po-
larization information is significant and the chiral effects due to the small
amount of dissolved glucose are difficult to detect.

In complex tissue structures, chiral aggregates of particles, in particular
spherical particles, may be responsible for tissue optical activity (see Fig. 2.4).
More sophisticated anisotropic tissue models can also be constructed. For ex-
ample, eye cornea can be represented as a system of plane anisotropic layers
(plates, i.e., lamellas), each of which is composed of densely packed long cylin-
ders (fibrils) (see Fig. 2.3) with their optical axes oriented along a spiral (see
Fig. 2.5). This fibrilar—lamellar structure of the cornea is responsible for the
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(a) (b)

Fig. 2.4. Examples of chiral aggregates of spherical particles

Fig. 2.5. A schematic illustration of the lamellar organization of the cornea stroma
[96]

linear and circular dichroism and its dependence on the angle between the
lamellas [69].

2.6 Volume Fraction and Spatial Ordering of Particles

A discrete particle ensemble is characterized by the packing density or, in
other words, by the volume fraction occupied by particles. Evidently, in addi-
tion to particle size, the volume fraction of particles defines the optical prop-
erties of an ensemble by changing the refractive index (see (2.3–2.7)), optical
anisotropy (see (2.9, 2.10)), and other characteristics. The volume fraction
of particles for a certain tissue may be experimentally found using electron
micrographs of tissue slices. This is a straightforward approach based on the
measurement of the area occupied by an element of a particular size for a cer-
tain slice. Unfortunately, systematic errors, caused by cross sectioning of 3D
particles within the examined slice, may occur. Such errors lead to distortion
of the volume fractions of the different tissue elements [94]. Estimations of a
volume fraction occupied by scattering particles may also be accomplished by
the weighting of a native tissue and dry rest.

The volume fraction occupied by the scattering particles in tissues, such
as muscle, cornea, sclera and eye lens, covers from 20 to 40%. Convention-
ally, whole blood contains (4–5) × 106 erythrocytes, (4–9) × 103 leukocytes,
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and (2–3) × 105 platelets in 1mm3. Cells make up 35–45% of the blood
volume. The volume fraction f of erythrocytes in the blood is called the
hematocrit H. For normal blood, H = 0.4. The remaining 60% of the blood
volume is mostly the plasma – an essentially transparent water solution of
salts.

Most tissues are comprised of cellular and subcellular structures located
in close proximity to each other. In general, densely packed structures are
likely to exhibit correlation scattering, an effect that has been observed,
for instance, in cornea stroma [4, 5, 95–99]. Cornea is comprised of indi-
vidual collagen fibrils that are closely packed parallel to one another in a
lamella. If each fibril in the lamella scattered light independently, then the
scattering cross section of the lamella should be the product of the cross
section of a single fibril and the number of fibrils in the lamella. If all
of the cornea fibers scattered light independently, the cornea would scat-
ter 90% of the light incident on it, and we would see essentially nothing.
However, the fibrils do not scatter independently and the coherent scatter-
ing (interference) effects cannot be neglected. Accordingly, correlated po-
larization effects can be observed [98–101]. For example, in spherical parti-
cle suspensions, as the particle concentration increases beyond a concentra-
tion at which independent scattering can be assumed, the degree of polar-
ization increases (rather than decreases) as the scatterer concentration in-
creases [100,101].

Thus, the spatial organization of the particles forming a tissue plays a sub-
stantial role in the propagation of polarized light. As mentioned above, with
very small packing densities, incoherent scattering by independent particles
occurs. If the volume fraction occupied by the particles is equal to, or more
than, 0.01–0.1, coherent concentration effects appear. The concentration of
scattering particles is adequate in most tissues to allow spaces between indi-
vidual scatterers that are comparable to their sizes. If, however, the particle-
size distribution is rather narrow, then dense packing entails a certain degree
of order in the arrangement of the particles.

Spatial ordering is of utmost importance in optical eye tissue
[4, 5, 69, 94–99, 102–104]. In a large variety of other tissues, spatial order-
ing is also more-or-less inherent, particularly in tendon, cartilage, dura mater,
skin or muscle. The high degree of order in densely packed scatterers ensures
high transmission in the cornea and eye lens. Tissue structures with statis-
tically ordered periodical variations in the index at characteristic scales of
light wavelength, like photon crystals [104], exhibit high transmission spectral
regions and bands for which the propagation of electromagnetic waves is for-
bidden. The position and depth of these bands depends on the size, refractive
index and spatial arrangement of the scattering particles.

To account for the interparticle correlation effects which are important for
systems with volume fractions of scatterers higher than 1–10% (dependent on
particle size), the following expression is valid for the packing factor ωp of a
medium filled with a volume fraction fs of scatterers with different shapes [16]:
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ωp =
(1 − fs)p+1

[1 + fs(p − 1)]p−1
, (2.11)

where p is a packing dimension that describes the rate at which the empty
space between scatterers diminishes as the total density increases. The pack-
ing of spherical particles is described well by packing dimension p = 3. The
packing of sheet-like and rod-shaped particles is characterized by a p that
approaches 1 and 2, respectively. Since the elements of tissue have all of these
different shapes and may exhibit cylindrical and spherical symmetry simulta-
neously, the packing dimension may lie anywhere between 1 and 5. When one
calculates optical coefficients at high concentrations of particles, the size distri-
bution η(2a) [(2.1) and (2.2)] should be replaced by the correlation-corrected
distribution [31]

η′(2a) =
[1 − η(2a)]p+1

[1 + η(2a)(p − 1)]p−1
η(2a). (2.12)

Most of the observed scattering properties of soft tissue that are explained
in the model treat tissue as a collection of scattering particles, whose volume
fractions are distributed according to a skewed log-normal distribution mod-
ified by a packing factor, to account for correlated scattering among densely
packed particles [31].

2.7 Eye Tissue Optical Models

Healthy tissues of the anterior human eye chamber, e.g., the cornea and lens,
are highly transparent to visible light due to their ordered structure and
the absence of strongly absorbing chromophors. Scattering is an important
feature of light propagation in eye tissues. The size of the scatterers and
the distances between them are smaller than, or comparable with, the wave-
length of visible light. The relative refractive index of the scattering matter
is equally small (soft particles). Typical eye tissue models are long, round
dielectric cylinders (corneal and scleral collagen fibers) or spherical parti-
cles (lens protein structures) that have a refractive index ns and are distrib-
uted in the isotropic ground matter with a refractive index n0 ≤ ns in an
orderly (transparent cornea and lens) or quasiorderly (sclera, opaque lens)
manner [2,4,5,50,51,61,63,66,69,95–99,102–127]. Light scattering analysis in
eye tissue often is possible using a single scattering model owing to the small
scattering cross-section (soft particles).

Let’s consider the structure of the cornea and the sclera in more detail to
demonstrate tissues with different size distributions and spatial ordering of
scatterers [2, 4, 5, 95, 105–114]. The cornea is the frontal section of the eye’s
fibrous capsule; its diameter is about ≈ 10mm. The sclera is a turbid opaque
tissue that covers nearly 80% of the eye and serves as a protective membrane
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to provide, along with the cornea, for counteraction against internal and ex-
ternal forces and to retain eye shape. Both tissues are composed of collagen
fibrils immersed in a ground substance [95,105–114]. The fibrils have a shape
similar to that of a cylinder. They are packed in bundles like lamellae. Within
each lamella, all of the fibers are nearly in parallel with each other and with
the lamella plane. Fibrils and lamellar bundles are immersed within an amor-
phous ground (interstitial) substance containing water, glycosaminoglycans,
proteins, proteoglycans, and various salts. The glycosaminoglycans play a key
role in regulating the assembly of the collagen fibrils as well as in tissue per-
meability to water and other molecules [110]. The indices of refraction for the
fibers and the ground substance differ markedly.

The structural elements that give the cornea the strength to preserve its
proper curvature while withstanding intraocular pressure (14–18 mm Hg) are
located within its stromal layer, which constitutes 0.9 of the cornea’s thick-
ness [95–97, 105]. The stroma is composed of several hundred successively
stacked lamellae, each about 2 μm in thickness (three sequential lamellae are
shown in Fig. 2.6a). Human corneal thickness averages 0.52 mm. A few flat
cells (keratocytes) are dispersed between the lamellae, and these occupy only
0.03–0.05 of the stromal volume. Each lamella is composed of a parallel array
of collagen fibrils.

(a) (b)

Fig. 2.6. Electron micrographs of the human cornea (×32, 000) (a) (collagen fibrils
have a uniform diameter and are arranged in the same direction within the lamellae)
and sclera (×18, 000) (b) (collagen fibrils display various diameters; they are much
larger than those in the cornea) [105]. K is the keratocyte; Mf is the microfibril.



22 2 Tissue Structure and Optical Models

Although the cornea fibril diameters vary from 25 to 39 nm in differ-
ent mammals, the fibrils are quite uniform in diameter within each species
[105,110,114]. Spacing between fibril centers is equal to 45–65 nm; intermole-
cular spacing within fibrils is in the range of 1.56–1.63 nm [114]. The fibrils
in the human cornea have a uniform diameter of about 30.8 ± 0.8 nm with
a periodicity close to two diameters, 55.3 ± 4.0 nm, and rather high regu-
larity in the organization of fibril axes about one another (see Fig. 2.6a),
The intermolecular spacing is 1.63 ± 0.10 nm [114]. Thus, the stroma has
at least three levels of structural organization: the lamellae that lie paral-
lel to the cornea’s surface; the fibrillar structure within each lamella that
consists of small, parallel collagen fibrils with uniform diameters that have
some degree of order in their spatial positions; and the collagen molecular
ultrastructure.

The sclera contains three layers: the episclera, the stroma and the lamina
fusca [108]. The stroma is the thickest layer of the sclera. The thickness of
the sclera and the arrangement of the collagen fibers show regional (limbal,
equatorial, and posterior pole region) and aging differences. In the stroma,
the collagen fibrils exhibit a wide range of diameters from 25 to 230 nm (see
Fig. 2.6b) [105]. The average diameter of the collagen fibrils increases gradually
from about 65 nm in the innermost part to about 125 nm in the outermost
part of the sclera [109]; the mean distance between fibril centers is about 285
nm [112]. Collagen intermolecular spacing is similar to that in the cornea; in
bovine sclera, particularly, it is equal (1.61 ± 0.02 nm) [110].

The fibrils are also arranged in individual bundles in a parallel fashion
but more randomly than those in the cornea. Moreover, within each bun-
dle, the groups of fibers are separated from each other by large empty la-
cunae randomly distributed in space [105]. Collagen bundles show a wide
range of widths (1–50 μm) and thicknesses (0.5–6 μm) and tend to be wider
and thicker toward the inner layers. These ribbon-like structures are mul-
tiply cross-linked; their length can be a few millimeters [108]. They cross
each other in all directions but remain parallel to the scleral surface. The
episclera has a similar structure with more randomly distributed, and less
compact, bundles than the stroma. The lamina fusca contains a larger quan-
tity of pigments, mainly melanin, which is generally located between the
bundles. The sclera itself does not contain blood vessels but has a num-
ber of channels that allow arteries, veins, and nerves to enter into or leave
the eye [108]. The thickness of the sclera is variable. It is thicker at the
posterior pole (0.9–1.8 mm); it is thinnest at the equator (0.3–0.9 mm); and
at the limbus, it is in the range of 0.5–0.8 mm [108]. Hydration of the hu-
man sclera can be estimated at 68%. About 75% of its dry weight is due
to collagen; 10% is due to other proteins; and 1% to mucopolysaccharides
[108].

In designing an optical model of a tissue, in addition to the form, size,
and density of the scatterers as well as tissue thickness, it is important to
have information on the refractive indices of the tissue components. Following
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[51, 108, 113, 114], we can estimate the refractive index of the corneal and
scleral fibrils (hydrated collagen), nc, using (2.4) which was written for the
average refractive index of the tissue, n̄t:

nc =
n̄t − (1 − fc)nis

fc
, (2.13)

where fc is the volume fraction of the hydrated collagen, and nis is the refrac-
tive index of the interstitial fluid.

The refractive indices measured for the dry corneal collagen and for the
interstitial fluid are: ndry

c = 1.547 and nis = 1.345–1.357 [95–97,108,113,114].
The refractive index of the corneal stroma measured for many species is n̄t =
1.375 ± 0.005 [114]. Therefore, for nis = 1.356 and fc = 0.32, corresponding
to a tissue hydration of 76.2% and a collagen content of 61.3% of the dry
weight [114], on the basis of (2.13), it is easy to obtain the refractive index of
the hydrated fibrils as nc = 1.415.

The direct measurement of the average refractive index of sclera using an
Abbe refractometer gives n̄t = 1.385 ± 0.005 for λ = 589 nm. Because of the
similarly fibrous nature of the cornea and the sclera, it is expected that at
equal hydration the refractive indices of scleral collagen and its interstitial fluid
should be equal to these indices in the cornea. For n̄t = 1.385, nis = 1.345, and
fc = 0.31, corresponding to a tissue hydration of 68% and a collagen content
of 75% of the dry weight, it follows from (2.13) that for the refractive index
of the scleral fibrils, nc = 1.474. Changes of nc and fc with hydration can be
evaluated from measurements of the refractive index and the thickness of the
collagen films [128].

While both tissues are composed of similar molecular components, they
have different microstructures and thus very different physiological functions.
The cornea is transparent, allowing for more than 90% of the incident light to
be transmitted. The collagen fibrils in the cornea have a much more uniform
size and spacing than those in the sclera, resulting in a greater degree of spatial
order in the organization of the fibrils in the cornea compared with the sclera.
The sclera of the eye is opaque to light; it scatters almost all wavelengths of
visible light and thus appears white.

Light propagation in a densely packed disperse system can be analyzed
using the radial distribution function g(r), which statistically describes the
spatial arrangement of particles in the system. The function g(r) is the ratio
of the local number density of the fibril centers at a distance r from a reference
fibril at r = 0 to the bulk number density of fibril centers [96]. It expresses the
relative probability of finding two fibril centers separated by a distance r; thus
g(r) must vanish for values of r ≤ 2a (a is the radius of a fibril; fibrils cannot
approach each other closer than touching). The radial distribution function
of scattering centers g(r) for a certain tissue may be calculated on the basis
of tissue electron micrographs (see Fig 2.6).

The technique for the experimental determination of g(r) involves count-
ing the number of particles, placed at a specified spacing from an arbitrarily
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chosen initial particle, followed by statistical averaging over the whole ensem-
ble. In a two dimensional case, the particle number ΔN at the spacing from
r to r + Δr is related to function g(r) by the following equation:

ΔN = 2πρg(r)rΔr, (2.14)

where ρ is the mean number of particles for a unit area.
The radial distribution function g(r) was first found for the rabbit cornea

by Farrell et al. [96]. Figure 2.7a depicts a typical result for one of the cornea
regions, which was obtained by determining the ratio of the local mean density
of the centers as a function of radii taken from 700 fibril centers. The function
g(r) = 0 for r ≤ 25 nm, which is consistent with a fibril radius of 14 ± 2 nm,
can be calculated from the electron micrograph [96]. The first peak in the dis-
tribution gives the most probable separation distance, which is approximately
50 nm. The value of g(r) is essentially unity for r ≥ 170 nm, indicating that
the fibril positions are correlated over no more than a few of their nearest
neighbors. Therefore, a short-range order exists in the system.

Similar calculations for several regions of the human eye sclera [103] are
illustrated in Fig. 2.7b. Electron micrographs from [105], averaged for 100 fib-
ril centers, were processed (see Fig 2.6b). Function g(r) for the sclera was
obtained on the basis of the spatial distribution of the fibril centers, neglect-
ing discrepancy in their diameters. Some noise is due to the small volume of
statistical averaging. The obtained results present evidence of the presence
of a short-range order in the sclera, although the degree of order is less pro-
nounced than in the cornea. The function g(r) = 0 for r ≤ 100 nm, which is
consistent with the mean fibril diameter of ≈ 100 nm derived from the electron
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Fig. 2.7. Histograms of radial distribution functions g(r) obtained from electron
micrographs of the rabbit cornea [96] (a) and the human sclera [103] (b).
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micrograph (see Fig 2.6b) [105]. The first peak in the distribution gives the
most probable separation distance, which is approximately 285 nm. The value
of g(r) is essentially unity for r ≥ 750 nm, indicating a short-range order
in the system. The short-range order, being characterized by a ratio of this
specific distance (decay of spatial correlation) to the most probable particle
separation distance, (750/285) ≈ 2.7, is smaller than the similar ratio for the
cornea, (170/50) = 3.4.

The spatial density (refractive index) fluctuations of a tissue can also be
analyzed by resolving 2D-profiles of refractive index variations into Fourier
components, which provide a basis for a detailed and quantitative descrip-
tion of the microstructure [111,112]. These Fourier components represent the
predominant spatial density fluctuations and the structural ordering. A com-
parable study of the human cornea and sclera has shown that the cornea
reveals much less collagen fibril spacing and greater spatial order than the
sclera [111,112].

The eye lens is also an example of a tissue in which the short-range spa-
tial order is of crucial importance. Because of its high index of refraction and
transparency, a lens focuses light to form an image at the retina. The eye
lens material exhibits a certain viscosity that is capable of altering its radius
of curvature and thus its focal length through the action of accommodating
muscles. The healthy human lens is a coherent structure containing about
60% water and 38% protein [119–127]. The lens consists of many lens fiber
cells. The predominant dry components of a mammalian lens are three kinds
of structural proteins named α -, β -, and γ - crystallins, and their combined
weight accounts for about 33% of the total weight of the lens [129]. The crys-
talline lens grows throughout life and in addition undergoes a variety of bio-
chemical changes as a person ages. The potential changes include age-related
cataract formation, which can lead to greatly increased light scattering and
coloration and eventually to lens opacity. The light scattering is caused by
random fluctuations in the refractive index. These fluctuations can be density
or optical anisotropy fluctuations [61,65,66,75,102,119,121,125]. Fluctuations
in the refractive index due to density may arise because of (1) an aggrega-
tion of lens proteins, (2) a microphase separation (cold-induced cataract), or
(3) syneresis (water releases from the bound state in the hydration layers of
lens proteins and becomes bulk water which increases the refractive index
difference between the lens proteins and the surrounding fluid). Analyses of
polarized light scattering by human cataracts have shown that 15–30% of the
turbidity results from optical anisotropy fluctuations.

Eye lens transparency can be explained by a short-range ordering in the
packing structure of the lens proteins. This idea was first suggested by Benedek
[130]. The primary role among the ocular lens proteins is played by the water-
soluble α-crystallin which has a shape that is close to spherical with a diameter
of about 17 nm. Studies of lens transparency, birefringence and optical activity
are of importance to the facilitation of early diagnosis of cataracts [119–127,
129–133].
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The types of fiber cell disruption due to cataract formation include
intracellular globules, clusters of globules, vacuoles with the contents wholly or
partially removed, clusters of highly curved cell membranes, and odd-shaped
domains of high or low density [127]. These spherical objects are variable in
size (often in the range 100–250 nm) and occur in clusters that create potential
scattering centers.

2.8 Fractal Properties of Tissues and Cell Aggregates

Since a biological tissue is generally composed of complex structures with di-
mensions ranging from several dozens of nanometers to several millimeters,
a fractal-like structure may be employed to investigate the relationship be-
tween optical (polarization) properties and structural features [4,5,29–31,44,
77, 134–152]. Particle aggregation is assumed to be a model of physiological
and rheological dense media, for example, red blood cell aggregation, blood
coagulation, and gelation and aggregation of gastric mucin, etc. [145,146].

Fractals or fractal objects are either self-similar structures or scale in-
variant ones [134–138]. Fractals that are found in nature are called random
fractals, and their structure shows self-similarity only in a statistical sense.
Random fractals are better described by the term “scale invariant” rather than
self-similar. The fractal concept enables one to describe such random systems
as polymers, colloidal aggregates and tissues [29–31,44,77,134–152]. The frac-
tal dimension is a measure of how the fractal object fills up space. There
is some correspondence between the observed complexity or roughness of a
random object and its fractal dimensions. The fractal properties of random
systems strongly affect their light scattering capability [29–31,44,77,136–151].
The same mass of particles may induce small scattering in a dense cluster and
significantly greater scattering in a fractal one. The peculiarities that occur in
the multiple scattering of fractals are caused by a slowly falling correlation of
particle density [137, 145]. Fractal effects at multiple scattering are observed
even for fractal clusters whose sizes are smaller than the wavelength; they are
sensitive to light polarization.

Since the spatial distributions of the constituents of many types of tissues
appear to satisfy the conditions of statistical self-similarity [140, 143], fractal
analysis may potentially provide a much simpler basis for the analysis of
tissue. Statistical self-similarity implies that an object is composed of building
blocks with inherent statistical regularities that can be described by a power
law. The correlations of a variety of tissues in the refractive indices exhibit
characteristics of a random fractal with a Hurst coefficient between 0.3 and
0.5 [44].

The tissue structure can be represented as a multifractal composed of
various fractal formation types [77, 140]. For bone tissue, the main fractal el-
ements are trabeculae (formations with flatly lying mineralized fibers), and
osteons (a region with a spiral-like orientation of fibers raised at an angle
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of 30–60◦) [77]. The above fractal types form an architectonic multifrac-
tal network. The geometric dimensions of biofractals may be rather large
(100–1000 μm). In many cases, fractal geometry provides a key to understand-
ing the scattering peculiarities of these objects.

The structure of various biological aggregates may be described in terms of
statistical (irregular) fractal clusters [152], i.e., statistically self-similar objects
with the fractal dimension Df < 3 defined by power relations

G(r) ∼ (r/R)Df−3, N ∼ (R/2a)Df , (2.15)

where G(r) is the binary density–density correlation function, N is the number
of particles in the aggregate, R is the average size of the aggregates (r.m.s.
radius R, gyration radius Rg, etc.), and 2a is the size of the monomers. From
(2.15), one can see the essential property of fractal aggregates – low average
density and large density fluctuations within short-range distances. A direct
consequence of this property of the binary density correlations of monomers
inside a cluster is the power law for the angular dependence of the static
structure factor (normalized intensity) of light, X-ray, or neutron scattering
S(q) ∼ (qR)−Df , where q = 2k/ sin(θ/2), k = 2πn/λ0, and θ is the scattering
angle [147].

The above-presented power laws for G(r) and S(q) are observed in the
asymptotic sense only, when the value of the scattering vector of the probing
irradiation q satisfies the strong inequality 2a � q−1 � R [148]. For real
objects within the visible and IR range, the condition qR � 1 is usually
not fulfilled rigorously, since the average size of the aggregates does not, as a
rule, exceed 1 μm. In these cases, the character of the decrease in the density
correlation when approaching the cluster boundary becomes important. This
decrease is described by using the so-called cutoff function h(r/R), which is
included in the complete correlation function rDf−3h(r/R) [149,150]. Several
forms of h(x = r/R), including a single exponential model, h(x) ∼ exp(−bx),
have been proposed in the literature (see discussion and relevant citations
in [150]). Based on experimental data [136,150,151] and computer simulations
[149], the following approximation seems to be the most appropriate for fractal
aggregates

h(x) ≈ exp(−bxν), ν ≈ Df ≈ 2, (2.16)

where b ∼ 1 for reaction limited aggregates, and b ∼ 1/2 for diffusion limited
aggregates [147,152].

Thus, the scattering centers in tissue have a wide range of dimensions
and tend to aggregate into complex forms suggestive of fractal objects. The
skewed logarithmic distribution function, which is the most plausible on phys-
ical grounds, is used extensively in particle-size analysis. The skewed logarith-
mic distribution function for the volume fraction of particles of diameter 2a
has the view [31]:

η(2a) =
Fv

Cm
(2a)3−Df exp

[
−{ln(2a) − ln(2am)}2

2σ2

]
, (2.17)
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where
Cm = σ

√
2π(2am)4−Df exp[(4 − Df)2σ2/2]

is the normalizing factor;

Fv =

∞∫
0

η(2a)d(2a)

is the total volume fraction of the particles; and the quantities 2am and σ set
the center and width of the distribution, respectively; Df is the (volumetric)
fractal dimension.

At the limit of an infinitely broad distribution of particle sizes,

η(2a) ≈ (2a)3−Df . (2.18)

For 3 < Df < 4, this power-law relationship describes the dependence of the
volume fractions of the subunits of an ideal mass fractal on their diameter 2a.
These size distributions expand the size distributions, described by (2.1) and
(2.2), to account for the fractal properties of tissues.

For calculations of the optical coefficients at a high concentration of par-
ticles, the size distribution η(2a) (2.17) and (2.18) should be replaced by the
correlation-corrected distribution, described by (2.12) [31].

Scatterers in the epidermal layer of the skin also exhibit a log-normal size
distribution, whereas the spatial fluctuations in the index of refraction of dense
fibrous tissues, such as the dermis, follow a power law [44].

2.9 Summary

Biological tissues and cells are optically inhomogeneous and slightly absorbing
media in the visible and the NIR ranges. Light propagation and interactions
with tissue depend on the optical and structural properties of cells, fibers, and
other structural elements making up the tissue. The size range, typical shapes,
values of refractive indices, densities, and arrangement of tissue components
that are overviewed in this chapter are important for the development and
application of adequate theories or approximations for describing polarized
light interactions with particular types of tissue. Theoretical approaches that
are valid for both weakly and strongly scattering media and corresponding
experimental protocols will be considered in Chaps. 3–5.

Tissue models that will be studied further include virtually all areas of
dispersion-media optics including (1) simple single scattering approximation;
(2) incoherent multiple scattering, described by the radiation transfer equa-
tion; and (3) multiple-wave scattering in condensed systems of electrodynam-
ically interacting scatterers.
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Polarized Light Interactions with Weakly
Scattering Media

3.1 Introduction

As demonstrated in Chap. 2, the majority of tissues and cells can be rep-
resented as particle systems composed of optically soft scattering particles
(with a low degree of refractive index mismatch between the scatterers and
ground medium). That allows one to restrict the description of light propa-
gation to a single scattering approximation in a number of cases [1–7]. Such
media are considered to be weakly scattering ones. Polarized light interactions
with a scattering medium are displayed as a transformation of the polarization
state (linear, circular, or elliptical) when the light beam propagates within the
medium. To correctly exploit a single scattering approximation, the optical
thickness of the object under study must be quite small. In strongly scattering
structures, like turbid tissues or blood, this means it is necessary to restrict
the technique to thin histological tissue sections and blood monolayers.

The majority of mammalian tissues are structured as densely packed par-
ticle systems with characteristic dimensions on the order of the wavelength.
Therefore, a certain correlation, which can be accounted for theoretically,
should exist between waves scattered by adjacent particles. To arrive at this
correlation, it is necessary to sum the amplitudes of the scattered waves with
regard to their phase relations. Such interference interaction is expected to
result in an essential alteration of the scattered intensity and the polarization
characteristics of the scattered light when compared to similar quantities for
a system of noninteracting particles.

Models described in this chapter include only certain elements of the the-
oretical apparatus used in dispersion-media optics, including simple single
scattering approximation and scattering in condensed systems of electrody-
namically interacting scatterers. More complete theoretical descriptions may
be found in [8–20].

Definitions of polarized light, its properties, as well as production and
detection techniques are described in a voluminous literature on this topic
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[21–28]. Some important definitions, such as Stokes vector and Mueller matrix
formalism for polarized light characterization, are presented in Chap. 1.

In this chapter we will consider (1) the fundamentals of polarized light
propagation in scattering media and (2) transformation light polarization in
scattering anisotropic media using Mueller matrix formalism and the deriva-
tion of the Stokes parameters of scattered light.

3.2 Noninteracting Particles

Let us consider the transformation of polarization (linear, circular, or ellipti-
cal) in a scattering medium composed of noninteracting particles. The optical
softness of the tissue scattering particles makes it possible to utilize a single
scattering approximation in a number of cases. To correctly exploit this ap-
proximation, the optical thickness of the object under study must be small,
τ < 0.1 [14]. In strongly scattering structures, this means a restriction to thin
histological sections.

The geometry needed to describe the scattering of light by a particle is
shown in Fig. 3.1 [16]. The incident monochromatic plane wave comes from
below and travels along the positive z-axis. Some of the light is scattered by
the particle along the direction indicated by the vector, S1, toward a detector
located at a distance r from the particle. The scattering direction is defined
by the scattering angle, θ, and azimuthal angle, ϕ. The scattering plane is
originated by the vector S1 and the z-axis. The electrical field of the incident

Incident   beam

Particle

Scattering
plane

S0

E

ϕ

θ

E
z

r

x

E

S1

E lli

⊥i

⊥s

IIs

Fig. 3.1. Geometry of the scattering of light by a particle located at the origin [16].
The incident light beam is parallel to the z-axis. A detector is located at a distance
r from the origin along the vector �S1
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light is in the x − y plane and can be resolved into components parallel, E‖i,
and perpendicular, E⊥i, to the scattering plane. The electrical field vector and
the intensity of the incident light beam are given by

Ei = E‖i + E⊥i, (3.1)

Ii =
〈
E‖iE∗

‖i + E⊥iE
∗
⊥i

〉
, (3.2)

where the asterisk denotes complex conjugation and the brackets denote a
time average.

The electrical field of the scattered light wave is perpendicular to S1 and
can be resolved into components E‖s and E⊥s, which are parallel and per-
pendicular, respectively, to the scattering plane. The scattered electrical field
vector is given by

Es = E‖s + E⊥s. (3.3)

There is a linear relationship between the incident and scattered field com-
ponents, defined by (3.1) and (3.3) [16,30,31]:[

E‖s
E⊥s

]
=

eik(r−z)

−ikr

[
S2 S3

S4 S1

] [
E‖i
E⊥i

]
, (3.4)

where k = 2π/λ, λ = λ0/n̄ is the wavelength in the scattering medium, n̄
is the mean refractive index of the scattering medium, λ0 is the wavelength
of the light in the vacuum, i =

√−1, r is the distance from the scatterer to
the detector, and z is the position coordinate of the scatterer. The complex
numbers S1−4 are the elements of the amplitude scattering matrix (S-matrix)
or the Jones matrix (J) [16, 21–31]. They each depend on scattering and az-
imuthal angles θ and ϕ, and contain information about the scatterer. Both
amplitude and phase must be measured to quantify the amplitude scattering
matrix. The measurements of the matrix elements can be done using a two-
frequency Zeeman laser, which produces two laser lines with a small frequency
separation (about 250 kHz) and orthogonal linear polarizations [31], or by the
coherence optical tomography (OCT) technique [32].

In terms of the electrical field components the Stokes parameters from
(1.1) and (1.2) are given by

I =
〈
E‖E∗

‖ + E⊥E∗
⊥
〉

,

Q =
〈
E‖E∗

‖ − E⊥E∗
⊥
〉

, (3.5)

U =
〈
E‖E∗

⊥ + E⊥E∗
‖
〉

,

V =
〈
i(E‖E∗

⊥ − E⊥E∗
‖)
〉

.

All Stokes parameters have the same dimension – energy per unit area per
unit time per unit wavelength. For an elementary monochromatic plane or
spherical electromagnetic wave [19],
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I2 ≡ Q2 + U2 + V 2. (3.6)

For an arbitrary light beam, as in the case of a partially polarized quasimono-
chromatic light that is due to the fundamental property of additivity, the
Stokes parameters for the mixture of the elementary waves are sums of the
respective Stokes parameters of these waves. Equation (3.6) is replaced by the
inequality [16,19]:

I2 ≥ Q2 + U2 + V 2. (3.7)

The degree of polarization (DOP), the degree of linear polarization
(DOLP), and the degree of circular polarization (DOCP) for the incident and
scattered light are defined by (1.3). In particular, for the DOLP (PL) and the
DOCP (PC) of the scattered light, we have:

PL = (I‖ − I⊥)/(I‖ + I⊥) =
√

Q2
s + U2

s /Is, (3.8)

PC =
√

V 2
s /Is. (3.9)

The values of the normalized Stokes parameters, which correspond to a certain
polarization, are described by (1.5).

In the far field, the polarization of the scattered light is described by the
Stokes vector Ss connected with the Stokes vector of the incident light Si (see
(1.4) [16]

Ss = M · Si, (3.10)

where M is the normalized 4 × 4 scattering matrix (intensity or Mueller’s
matrix):

M =

⎡⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎦ . (3.11)

Elements of the light-scattering matrix (LSM) depend on the scattering angle
θ, the wavelength, and also the geometrical and optical parameters of the
scatterers.

Element M11 is what is measured when the incident light is unpolarized,
the scattering angle dependence of which is the phase function of the scattered
light. It provides only a fraction of the information theoretically available from
scattering experiments. M11 is much less sensitive to chirality and long-range
structure than some of the other matrix elements [16, 31]. M12 refers to the
degree of linear polarization of the scattered light, M22 displays the ratio of
depolarized light to the total scattered light (a good measure of the scatterers’
nonsphericity), M34 displays the transformation of 45◦ obliquely polarized
incident light into circularly polarized scattered light (uniquely characteristic
for different biological systems); the difference between M33 and M44 is a good
measure of the scatterers’ nonsphericity.
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In general, all 16 elements of the LSM are nonzero. However, during scat-
tering by a single particle with a fixed orientation, only 7 elements (out of
16) of the LSM are independent resulting from the 4 complex elements of the
amplitude matrix minus an irrelevant phase.

The following nine relations connect the LSM elements of a single particle,
or nondepolarizing system of particles, whose Mueller matrix is obtained by
coherent summation of the matrices of the individual particles of the system
[19,33,34]:

(M11 + M22)
2 − (M12 + M21)

2 = (M33 + M44)
2 + (M34 − M43)

2
, (3.12)

(M11 − M22)
2 − (M12 − M21)

2 = (M33 − M44)
2 + (M34 + M43)

2
, (3.13)

(M11 + M21)
2 − (M12 + M22)

2 = (M13 + M23)
2 + (M14 + M24)

2
, (3.14)

(M11 − M21)
2 − (M12 − M22)

2 = (M13 − M23)
2 + (M14 − M24)

2
, (3.15)

(M11 + M12)
2 − (M21 + M22)

2 = (M31 + M32)
2 + (M41 + M42)

2
, (3.16)

(M11 − M12)
2 − (M21 − M22)

2 = (M31 − M32)
2 + (M41 − M42)

2
, (3.17)

(M13M14 − M23M24)
(
M2

33 − M2
34 + M2

43 − M2
44

)
(3.18)

= (M33M34 + M43M44)
(
M2

13 − M2
14 − M2

23 + M2
24

)
,

(M31M41 − M32M42)
(
M2

33 − M2
43 + M2

34 − M2
44

)
(3.19)

= (M33M43 + M34M44)
(
M2

31 − M2
41 − M2

32 + M2
42

)
,

(M14M23 − M32M42)
(
M2

33 − M2
43 + M2

34 − M2
44

)
(3.20)

= (M42M31 + M41M32)
(
M2

14 − M2
24 − M2

13 + M2
23

)
.

For particle systems with depolarization, the first six equalities rearrange
to inequalities, i.e., in (3.12)–(3.17) we have to change “=” to “≥.” During
scattering by a collection of randomly oriented scatterers, there are ten inde-
pendent parameters.

Another important characteristic of LSM is the ‖M‖2 quantity [34]:

‖M‖2 =
4∑

i,j

M
2

ij , (3.21)

where M ij is the LSM element normalized to the first one, i.e., M11. The
equality ‖M‖2=4 is the necessary and sufficient condition for a given ma-
trix M to describe a nondepolarizing biological object. For depolarizing ob-
jects, ‖M‖2 takes a value from 1 to 4. This quantity serves as a test of the
consistency of the experimental data from a light scattering experiment and
is especially important in tissue measurements. For example, the square of
the norm of the experimental matrices of the human normal and cataract
eye lenses is minimal for scattering angles close to 90◦, and, correspondingly,
equal to 3.3 and 2.5 [34]. This result agrees well with the theoretical estimate
[35].
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In addition to the degree of light polarization, defined by (1.3), (3.8) and
(3.9), diattenuation (linear dichroism) is introduced as

D = (P 2
1 − P 2

2 )/(P 2
1 + P 2

2 ) =
√

M2
12 + M2

13 + M2
14/M11, (3.22)

where P1 and P2 are the principal coefficients of the amplitude transmission
for the two orthogonal polarization eigenstates.

The LSM for macroscopically isotropic and symmetric media has the well-
known block-diagonal structure [14]

M(θ) =

⎡⎢⎢⎣
M11(θ) M12(θ) 0 0
M12(θ) M22(θ) 0 0

0 0 M33(θ) M34(θ)
0 0 −M34(θ) M44(θ)

⎤⎥⎥⎦ . (3.23)

In general, only eight LSM elements are nonzero and only six of these
are independent. Moreover, there are special relationships for two specific
scattering angles 0 and π [19]:

M22(0) = M33(0),M22(π) = −M33(π),

M12(0) = M34(0) = M12(π) = M34(π) = 0,

M44(π) = M11(π) − 2M22(π). (3.24)

Rotationally symmetric particles have an additional property [19]:

M44(0) = 2M22(0) − M11(0). (3.25)

The structure of the LSM further simplifies for spherically symmetric particles,
which are homogeneous or radially inhomogeneous (composed of isotropic
materials with a refractive index depending only on the distance from the
particle center), because in this case [19]

M11(θ) ≡ M22(θ), M33(θ) ≡ M44(θ). (3.26)

The phase function, i.e., the M11 element, satisfies the normalization con-
dition [16,19]:

2π

π∫
0

M11(θ) sin θdθ = 1. (3.27)

The quantity

g ≡ 〈cos θ〉 = 2π

π∫
0

M11(θ) cos θ sin θdθ (3.28)

is called the scattering anisotropy parameter (mean cosine of the scattering
angle θ) or the asymmetry parameter of the phase function. The g-factor



3.2 Noninteracting Particles 35

varies from −1 to +1. It is positive for particles that scatter predominantly
in the forward direction, negative for backscattering particles, and zero for
symmetric phase functions with M11(π − θ) = M11(θ).

The average scattering cross section per particle is given by [16]

σsca = (λ2/2π)(1/I0)

π∫
0

I(θ) sin θdθ, (3.29)

where I0 is the intensity of the incident light and I(θ) is the angle distribution
of the scattered light. For macroscopically isotropic and symmetric media, the
average scattering cross section is independent of the direction and polariza-
tion of the incident light. The average extinction, σext, and absorption, σabs,
coefficients are also independent of the direction and polarization state of the
incident light:

σext = σsca + σabs. (3.30)

The probability that a photon incident on a small volume element will
survive is equal to the ratio of the scattering and extinction cross sections
and is called the albedo for single scattering, Λ:

Λ =
σsca

σext
. (3.31)

If a particle is small with respect to the wavelength of the incident light,
its scattering can be described as the re-emission of a single dipole. This
Rayleigh theory is applicable under the condition that m(2πa/λ) � 1, where
m is the relative refractive index of the scatterers, (2πa/λ) is the size para-
meter, a is the radius of the particle, and λ is the wavelength of the inci-
dent light in a medium [16]. For NIR light and scatterers with a typical (for
biological tissue) refractive index relative to the ground m=1.05–1.11, the
maximum particle radius must be about 12–14 nm for Rayleigh theory to re-
main valid. With this theory, the scattered intensity is inversely proportional
to λ4 and increases as a6; the angular distribution of the scattered light is
isotropic.

The Rayleigh–Gans or Rayleigh–Debye theory addresses the problem of
calculating scattering by a special class of arbitrary shaped particles. It re-
quires |m− 1| �1 and (2πa′/λ)|m− 1| � 1, where a′ is the largest dimension
of the particle [5, 19, 20, 31]. These conditions mean that the electrical field
inside the particle must be close to that of the incident field and that the par-
ticle can be viewed as a collection of independent dipoles that are all exposed
to the same incident field. A biological cell might be modeled as a sphere
of cytoplasm with a higher refractive index (ncp = 1.37) relative to that of
the surrounding water medium (nis = 1.35); then m = 1.015 for the NIR
light. This theory is valid for particle dimensions up to a′ = 0.8–1.0 μm. This
approximation has been applied extensively to calculations of light scatter-
ing from suspensions of bacteria [31]. It is also applicable for describing light
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scattering from cell components (mitochondria, lysosomes, peroxisomes, etc.)
in tissues with small dimensions and refraction [4, 36–38].

The Fraunhofer diffraction approximation is useful [31] for describing for-
ward direction scattering caused by large particles (on the order of 10 μm).
According to this theory, scattered light has the same polarization as incident
light and the scatterer pattern is independent of the refractive index of the
object. For small scattering angles, the Fraunhofer diffraction approximation
accurately represents a change in intensity as a function of particle size. That
is why this approach is applicable in laser flow cytometry.

Mie or Lorenz-Mie scattering theory is an exact solution of Maxwell’s
electromagnetic field equations for homogeneous spheres [16,24]. In the general
case, light scattered by a particle becomes elliptically polarized. The single-
scattering Jones and Mueller matrices for a spherical particle of an optically
inactive material are presented in Appendix.

3.3 Densely Packed Correlated Particles

A certain correlation exists between waves scattered by adjacent particles in
a densely packed medium that has characteristic dimensions on the order of
a wavelength. Therefore, it is necessary to sum the amplitudes of scattered
waves with regard to their phase relations. The interference interaction may
result in an essential alteration of the total scattered intensity, of its angular
dependence, or of the polarization characteristics of the scattered light as
compared with similar quantities for a system of noninteracting particles.

To illustrate light scattering in a correlated disperse system, we will use
a radial distribution function g(r), which is a statistical characteristic of the
spatial arrangement of the scatterers [5, 39] (see Fig. 2.6). Let us consider N
spherical particles in a finite volume. The pair distribution function gij(r)
is proportional to the conditional probability of finding a particle of type j
at distance r from the origin given that there is a particle of type i at the
origin (Fig. 3.2). In a model of mutually impenetrable (hard) spheres, the
interparticle forces are zero, except for the fact that two neighbor particles
cannot interpenetrate each other.

The arrangement of particles in a densely packed system is not entirely
random. A short-range order can be observed which is more ordered when
the density of the scattering centers is greater and their size distribution is
narrower. Near the origin of the coordinates, in the region within the effective
particle diameter, the function g(r) = 0, which points to the impenetrability
of a particle. Function g(r) has a few maxima whose positions correspond to
distances from the chosen particle to its first, second, etc. neighbors. Nonzero
values of minima are indicative of a particle distribution between various
coordination spheres. It is obvious that the correlation between the pairs of
particles should be degraded with r; hence, limr→∞ g(r) = 1. Function g(r)
is the ratio of the local number density of the scattering centers at a distance
rfrom an arbitrary center to the bulk number density.
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2nd coordinating sphere
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r0

1

g(r)

1st coordinating sphere

Fig. 3.2. Diagram of radial distribution function g(r) that is proportional to the
probability of particle displacement at a certain distance r from an arbitrarily fixed
particle [40]

Analogous problems are characteristic for statistical mechanics considering
the dynamics and positions of particles with regard to interparticle interac-
tions [40]. The pair distribution function was obtained in the framework of
various approximate theories for one, two, or L species in a mixture [41–43].
In a model of hard spheres distributed in three-dimensional space, g(r) exists
as the analytical solution of the Percus–Yevick (PY) integral equation. The
Monte Carlo statistical simulation is also sometimes used.

For monodispersing systems of spherical particles with a diameter of
2a, g(r) is represented by an approximation of the hard spheres as follows [44]:

g(r) = 1 +
1

4πf

∞∫
0

H2
3 (z)

1 − H3(z)
sin zx

zx
z2dz, for x > 1, (3.32)

where x = r/2a,

H3 (z) = 24f

1∫
0

c3 (x)
sin zx

zx
x2dx, c3 (x) = −α − βx − δx3 (3.33)

α =
(1 + 2f)2

(1 − f)4
, β = −6f

(1 + 0.5f)2

(1 − f)4
, δ =

1
2
f

(1 + 2f)2

(1 − f)4
, (3.34)

f is the volume fraction of particles.
Let us consider light scattering by a system of N spherical particles [45].

In general, the field affecting a particle differs from the field of the incident
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wave Ei since the latter also contains the total field of adjacent scatterers.
Within the single scattering approximation (Born’s approximation), the field
affecting the particle does not essentially differ from that of initial wave. In
cases where double scattering of the field affects the particle, one needs to take
the sum of the initial field plus the single-scattered field, and so on [46]. For
transparent tissues composed of optically soft quasiregularly packed particles,
the use of the single-scattering approximation yields quite satisfactory results
[4, 5, 39,47–62].

A field scattered by a particle with the center defined by radius-vector rj

differs from one scattered by a particle placed at the origin of the coordinates
by a phase multiplier characterizing the phase shift of the waves. The phase
difference is equal to (2π/λ)(S0 − S1)rj , where S0 and S1 are the unit vectors
of the directions of the incident and the scattered waves (see Fig. 3.1). The
difference between these vectors is called the scattering vector q:

q =
2π

λ
(S0 − S1). (3.35)

Taking into account that the wavevector module is invariable with elastic
scattering, the value of the scattering vector is found as follows:

|q| ≡ q =
4π

λ
sin(θ/2), (3.36)

where θ is the angle between directions S0 and S1, i.e., it is the scattering
angle. The amplitude of a wave scattered by a system of N particles will be

Es =
N∑

j=1

Esj =
N∑

j=1

E0jei�q�rj , (3.37)

where E0j is the scattering amplitude of an isolated particle. The single scat-
tering intensity for the given spatial realization of the N particle arrange-
ment is

I = |Es|2 =
N∑

j=1

E0j

N∑
i=1

E∗
0ie

i�q(�rj−�ri). (3.38)

For real systems, the mean scattering intensity of an ensemble of particles
can be only detected, because of thermal particle motion, finite measuring
time, and a finite area of a photodetector, such as

〈I〉 =

〈
N∑

j=1

N∑
i=1

E0jE
∗
0ie

i�q(�rj−�ri)

〉
. (3.39)

The brackets show the averaging over all possible configurations of the
particle arrangement in the system. This equation represents the sum of the
two contributions to noncoherent scattered intensity. One defines the light
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distribution on the assumption that there is no interference of light scattered
by various particles. The other term regards the interference affect on the light
field structure and depends on the degree of order in the particle arrangement
that is characterized by the radial distribution function g(r). For an isotropic
system of identical spherical particles, we may write [52]

〈I〉 = |E0|2 NS3(θ), (3.40)

S3(θ) =

⎧⎨⎩1 + 4πρ

R∫
0

r2 [g(r) − 1]
sin qr

qr
dr

⎫⎬⎭ , (3.41)

where q is defined by (3.36), ρ is the mean density of particles, and R is the
distance for that g(r) → 1. Quantity S3(θ) is the so-called structure factor.
This factor describes the alteration of the angle dependence of the scattered
intensity which appears with a higher particle concentration. To approximate
the hard spheres used for the derivation of (3.41), the structure factor is equal
to

S3(θ) = 1/[1 − H3(q)], (3.42)

where H3(q) is defined by (3.33).
For small particle concentrations, the approximation of excluded volume

is applicable: g(r) = 0 for r that are shorter than the particle diameter and
have unity over long distances. In this approximation, the structure factor for
a system of spherical particles takes the form:

S3(θ) = 1 − fΦ(qa), (3.43)

where a is the particle radius and Φ(qa) is the function defined by the following
equation:

Φ (qa) =
3 (sin qa − qa cos qa)

(qa)3
. (3.44)

Function Φ(qa) modulates the angular dependence of the scattering inten-
sity by diminishing its value at small angles and generating a diffusion ring
at ten-degree angles for particle dimensions comparable with the wavelength.

For a very small concentration of particles, the structure factor is nearly a
unit, and the intensity of scattering by a disperse system is essentially a sum
of the contributions of the independent scatterers.

For systems of small soft particles, the structure factor only changes
slightly as a function of the scattering angle. Therefore, the particle inter-
action reveals itself mainly by a uniform decrease in scattering intensity in
all directions for linearly polarized and unpolarized incident light (see Fig. 3.3
(calculated by I. L. Maksimova) and Fig. 3.4). For systems of large particles,
the structure factor is noticeably less than a unit only in the region of small
scattering angles (see Figs. 3.3 and 3.5). In general, particle interaction makes
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Fig. 3.3. The structure factor S3(θ) (3.41) as a function of the scattering angle θ
and particle radius a, the wavelength 633 nm, the volume fraction f = 0.4, the
relative refraction index m = 1.105 (calculated by I. L. Maksimova)
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Fig. 3.4. The calculated angular dependencies of the scattered intensity for a system
of small spherical particles, 0.02 μm radius, the incident wave is linearly polarized in
parallel (a) or perpendicular (b) to the scattering plane; dotted line – independent
particles, the wavelength 633 nm, the volume fraction f = 0.1, the relative refraction
index m = 1.105 [45]

the angular dependence of the scattering intensity more symmetric with less
overall scattered intensity, and, therefore, allows much more collimated trans-
mittance for both small and large soft particles.

For the case of infinitely long identically aligned cylinders with a radius
a and a light that is incident normally to their axes, the structure factor is
defined within the approximation of a single scattering, as follows:

S2 (θ) =

⎧⎨⎩1 + 8πa2ρ

R∫
0

[g (r) − 1]J0

(
2πa

λ
r sin

θ

2

)
dr

⎫⎬⎭ , (3.45)
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Fig. 3.5. The calculated angular dependences of the scattered intensity for a system
of large spherical particles, 0.5 μm radius, the incident wave is linearly polarized in
parallel (a) or perpendicular (b) to the scattering plane; dotted line – independent
particles, the wavelength 633 nm, the volume fraction f = 0.4, the relative refraction
index m = 1.105 [45]

where R is the distance for that g(r) →1. As the light is incident perpendicu-
larly to the cylinder axis, the scattered light propagates only in the direction
perpendicular to the axis.

The light scattering intensity angular dependences for systems of spherical
and cylindrical particles in the single scattering approximation are described
by (3.40), (3.41), and (3.45). The structure factor, which transforms these
dependences, is defined by the spatial particle arrangement, and it is inde-
pendent of the state of light polarization. Therefore, for systems of identical
particles, when the single scattering approximation is valid, the angular de-
pendences of all of the elements of LSM are multiplied by the same quantity,
accounting for interference interaction (see (3.40)):

Mij(θ) = M0
ij(θ)NS3(θ), (3.46)

where M0
ij(θ) is the LSM elements for an isolated particle. Consequently, the

LSM for the system of monodisperse interacting particles coincides with that
of the isolated particle (see (A.10)) if normalization to the magnitude of its
first element M11 is used.

Unlike in monodispersing systems, in differently sized densely packed par-
ticle systems, the normalization of the matrix elements to M11 does not
eliminate the influence of the structure factor on the angular dependences
of the matrix elements. In the simplest case of a bimodal system of scatter-
ers, an expression analogous to (3.41) and (3.45) can be found using four
structural functions g11(r), g22(r), g12(r), and g21(r), which characterize the
interaction between particles of similar and different sizes [52]. A bimodal sys-
tem formed by a great number of equally sized small particles, and a minor
fraction of coarse ones, provides a good model of pathological tissue, e.g., a
cataract eye lens.



42 3 Polarized Light Interactions with Weakly Scattering Media

180

a
b

120

1.0

0.5

0.0

−0.5

−1.0

60

M34

M
33

Mij
M11

M
12

q

Fig. 3.6. The LSM angular dependences of binary mixture of spherical particles [52].
(a) Calculated by taking into account the interparticle interaction, (b) with inde-
pendent scatterers. Particle diameters: 2a1 = 0.06 μm and 2a2 = 0.5 μm, volume
fractions: f1 = 0.3 and f2 = 0.02, relative index of refraction m = 1.07, the wave-
length 0.63 μm. Calculations done for the random arrangement of scattering particles
(neglecting cooperative effects) are shown by a dashed line

Fig. 3.6 depicts the calculated results for the LSM of a binary mixture of
spherical particles with different diameters and volume fractions. For compar-
ison, the LSM angular dependences of the same binary mixture, neglecting
cooperative effects, have also been calculated. It can be seen that the normal-
ized LSM of a dense binary mixture is substantially altered due to the inter-
ference interaction. The high concentration of small particles is responsible
for the order in their arrangement followed by a lower intensity of scatter-
ing in all directions and the higher intensity of straightforwardly propagating
light (ballistic component). As a consequence, for the dense mixtures under
study, the results of the solution of the inverse problem that were obtained
for the experimental dense mixture LSM, neglecting the cooperative effects,
should yield an overestimated value of the relative fraction of large particles.
The LSM variations due to cooperative effects are of a more complicated na-
ture for a binary system whose two components are sized on the order of the
wavelength of incident light and they cannot be interpreted so uniquely as
those in the preceding case. Numerical estimates for binary systems of dif-
ferent compositions show [52] the considered effects to be of the most crucial
importance for the LSM in the visible region for the mixtures of particles with
2a1 < 0.2 μm and 2a2 > 0.25 μm.

3.4 Summary

In this chapter, Stokes vector and Mueller matrix formalism for polarized
light characterization is described. Such formalism is general and, therefore,
applicable for the analysis of polarized light propagation in complex optically
inhomogeneous media. As a first step in describing polarized light propagation
in tissues, a single scattering approximation that is valid for weakly scattering
media is discussed.
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Based on Mie theory, a single scattering Mueller matrix for a spherical
particle of an optically inactive material is derived. More complex tissue
structures, containing particles with a specific shape and composition, can
be modeled using the Mie theory concept that the electromagnetic fields of
the incident, internal, and scattered waves are each expanded in a series. In
particular, Mie theory has been extended to arbitrary coated spheres and to
arbitrary cylinders [19, 20, 31]. A linear transformation can be made between
the fields in each of the regions. This approach can also be used for nonspher-
ical objects such as spheroids [19,20]. The linear transformation is called the
transition matrix (T-matrix). The T-matrix for spherical particles is diagonal.

Previously, Stokes vectors were defined for the case of a monochromatic
plane wave, and the Mueller matrix for single scattering. These concepts are
generalized in this chapter to more complicated situations. Stokes vectors
were defined for a quasimonochromatic wave [14] and the Mueller matrix for
an ensemble of interacting particles [4, 5]. In systems of small soft particles,
interaction reveals itself mainly in a uniform decrease of scattering intensity in
all directions for linearly polarized and unpolarized incident light. For systems
with large particle interactions, it is important only in the region of small
scattering angles. In general, particle interaction makes angular dependence
of scattering intensity more symmetric with less overall scattered intensity,
which, therefore, provides much more collimated transmittance for both small
and large soft particles.

For systems with identical particles where a single scattering approxima-
tion is valid, the angular dependences of all of the elements of LSM are mul-
tiplied by the same quantity to account for interference interaction. Unlike
monodisperse systems, the normalization of matrix elements to M11 does not
eliminate the influence of the structure factor (interaction) on the angular
dependences of the matrix elements for different size densely packed particle
systems.



4

Polarized Light Interactions with Strongly
Scattering Media

4.1 Introduction

The majority of biological tissues are turbid media that display strong scatter-
ing characteristics and low absorption rates (up to two orders less absorption
coefficient than scattering coefficient for visible and NIR wavelengths). More-
over, in their natural state, (non-sliced) tissues are rather thick. Therefore,
multiple scattering is a specific feature of a wide class of tissues [1–7].

The polarization effects of light propagation through various multiply-
scattering media, including biological tissues, are fully described by the vector
radiative transfer equation [8–10]. Radiative transfer theory (RTT) originated
as a phenomenological approach based on the consideration of the transport of
energy through a medium filled with a large number of particles which ensures
energy conservation [11–14]. This medium, composed of discrete, sparsely, and
randomly distributed particles is treated as continuous and locally homoge-
neous. As discussed in Chap. 3, the concept of single scattering and absorption
by an individual particle can be replaced by the concept of single scatter-
ing and absorption by a small homogeneous volume element. It was shown
that under certain simplifying assumptions, RTT follows logically from the
electromagnatic theory of multiple wave scattering in discrete random media
(see [9]).

In the framework of RTT, the scattering and absorption of small volume
elements follows from the Maxwell equations which are given by the incoherent
sums of the respective characteristics of the constituent particles; the result of
scattering is not the transformation of a plane incident wave into a spherical
scattered wave but, rather, the transformation of the specific intensity vector
(Stokes) of the incident light into the specific intensity vector of the scattered
light [9].

In this chapter, we will consider the vector radiative transfer equation
(VRTE) and its scalar approximation, as well as principles and results of the
Monte Carlo modeling of light scattering matrix (LSM) elements for polarized
light propagation within multiple scattering media. We will also analyze the
specificity of densely packed particle systems.
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4.2 Multiple Scattering and Radiative Transfer Theory

4.2.1 Vector Radiative Transfer Equation

For macroscopically isotropic and symmetric plane-parallel scattering media,
the VRTE can be substantially simplified as follows [9]:

dS(r̄, ϑ, ϕ)
dτ(r̄)

= −S(r̄, ϑ, ϕ)

+
Λ(r̄)
4π

+1∫
−1

d(cos ϑ′)

2π∫
0

dϕ′ Z̄(r̄, ϑ, ϑ′, ϕ − ϕ′)S(r̄, ϑ′, ϕ′), (4.1)

where S is the Stokes vector defined by (3.1); r̄ is the position vector; ϑ and
ϕ are the angles characterizing the incident direction, the polar (zenith) and
the azimuth angles;

dτ(r̄) = ρ(r̄) 〈σext(r̄)〉ds (4.2)

is the optical path-length element; ρ is the local particle number density; 〈σext〉
is the local ensemble-averaged extinction coefficient;, ds is the path-length ele-
ment measured along the unit vector of the direction of the light propagation;
Λ is the single scattering albedo; ϑ′ and ϕ′ are the angles that characterize the
scattering direction, the polar (zenith) and the azimuth angles, respectively;
Z̄ is the normalized phase matrix

Z̄(r̄, ϑ, ϑ′, ϕ − ϕ′) = R(Φ)M(θ)R(Ψ); (4.3)

M(θ) is the single scattering Mueller matrix, defined by (3.18); θ is the scat-
tering angle, and R(φ) is the Stokes rotation matrix for angle φ (see Appendix,
(A.11)–(A.15), φ ≡ ϕ),

R(φ) =

⎡⎢⎢⎣
1 0 0 0
0 cos 2φ − sin 2φ 0
0 sin 2φ cos 2φ 0
0 0 0 1

⎤⎥⎥⎦ . (4.4)

The phase matrix, (4.3), links the Stokes vectors of the incident and scat-
tered beams, specified relative to their respective meridional planes. To com-
pute the Stokes vector of a scattered beam with respect to its meridional
plane, one must calculate the Stokes vector of the incident beam with respect
to the scattering plane, multiply it by the scattering matrix (to obtain the
Stokes vector of the scattered beam with respect to the scattering plane),
and then compute the Stokes vector of the scattered beam with respect to
its meridional plane. This procedure involves two rotations of the reference
plane, shown in Fig. 4.1: Φ = −φ; Ψ = π − φ and Φ = π + φ; Ψ = φ. The
scattering angle θ and the angles Φ and Ψ are expressed via the polar and the
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Fig. 4.1. Geometry for rotations of the Stokes vector during a scattering event,
adapted from [9]

azimuth incident and scattering angles:

cos θ = cos ϑ′ cos ϑ + sin ϑ′ sin ϑ cos(ϕ′ − ϕ),

cos Φ =
cos ϑ − cos ϑ′ cos θ

sin ϑ′ sin θ
,

cos Ψ =
cos ϑ′ − cos ϑ cos θ

sin ϑ sin θ
. (4.5)

The first term on the right-hand side of (4.1) describes the change in the
specific intensity vector over the distance ds that is caused by extinction and
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dichroism; the second term describes the contribution of light illuminating a
small volume element centered at r̄ from all incident directions and scattered
into the chosen direction.

For real systems, the form of the VRTE, (4.1), tends to be rather complex
and often intractable. Therefore, a wide range of analytical and numerical
techniques have been developed to solve the VRTE. Because of an impor-
tant property of the normalized phase matrix, (4.3), being dependent on the
difference of the azimuthal angles of the scattering and incident directions
rather than on their specific values [9], an efficient analytical treatment of the
azimuthal dependence of the multiply scattered light, using a Fourier decom-
position of the VRTE, is possible. The following techniques and their combi-
nations can be used to solve VRTE: the transfer matrix method, the singular
eigenfunction method, the perturbation method, the small-angle approxima-
tion, the adding-doubling method, the matrix operator method, the invariant
embedding method, and the Monte Carlo (MC) method [5, 6, 8–10,15,16].

4.2.2 Scalar Radiative Transfer Equation

When the medium is illuminated by unpolarized light and/or only the in-
tensity of multiply-scattered light needs to be computed, the VRTE can be
replaced by its approximate scalar counterpart. In that case, in (4.1) the
Stokes vector is replaced by its first element (i.e., radiance) (see (3.1)) and
the normalized phase matrix by its (1,1) element (i.e., the phase function) (see
(3.34)). The scalar approximation provides poor accuracy when the size of the
scattering particles is much smaller than the wavelength but acceptable results
for particles comparable to and larger than the wavelength [9,11]. There is an
ample literature on analytical and numerical solutions of the scalar radiative
transfer equation [1–5,7, 12,14,16–18].

The description of a continuous wave (CW) of unpolarized light propaga-
tion in a scattering medium is possible in the framework of stationary RTT.
This theory has been successfully used to work out some practical aspects of
tissue optics [1–5,7]. Usually, in tissue optics, the main stationary equation of
RTT for monochromatic light is used in the form that follows from (4.1):

∂I(r̄, s̄)
∂s

= −μeI(r̄, s̄) +
μs

4π

∫
4π

I(r̄, s̄′)p(s̄, s̄′)dΩ′, (4.6)

where I(r̄, s̄) is the radiance (or specific intensity) – average power flux density
at a point r̄ in the given direction s̄ (W cm−2 sr−1);

μe = μs + μa (4.7)

is the extinction (interaction or total attenuation) coefficient, cm−1; μs is
the scattering coefficient, cm−1; μa is the absorption coefficient, cm−1; p(s̄, s̄′)
is the scattering phase function, sr−1; dΩ′ is the unit solid angle about the
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direction s̄′, sr. It is assumed that there are no radiation sources inside the
medium. The extinction coefficient is connected with the extinction cross-
section σext, defined by (3.37) for a system of scattering and absorption par-
ticles as μe = ρσext; ρ is the particle density.

To characterize the relationship between the scattering and absorption
properties of a tissue, a parameter such as the single scattering albedo is
usually introduced Λ = μs/μe (see (3.38)). The albedo ranges from zero, for a
completely absorbing medium, to unity for a completely scattering medium.

If radiative transport is examined in a domain G ⊂ R3, and ∂G is the
domain boundary surface, then the boundary conditions for ∂G can be written
in the following general form:

I(r̄, s̄)
∣∣∣(s̄N̄)<0 = I0(r̄, s̄) + R̃I(r̄, s̄)

∣∣∣
(s̄N̄)>0

, (4.8)

where r̄ ∈ ∂G, N̄ , is the outside normal vector to ∂G, I0(r̄, s̄) is the incident
light distribution at ∂G, and R̃ is the reflection operator. When both absorp-
tion and reflection surfaces are present in domain G, conditions analogous to
(4.8) must be given at each surface.

For practical purposes, the integral of the function I(r̄, s̄) over certain
phase space regions (r̄, s̄) is of greater value than the function itself. Specifi-
cally, optical probing of tissues frequently measures the outgoing light distri-
bution function at the medium surface, which is characterized by the radiant
flux density or irradiance (W cm−2):

F (r̄) =
∫

(s̄N̄)>0

I(r̄, s̄)(s̄N̄)dΩ, (4.9)

where r̄ ∈ ∂G.
Often in tissue optics the measured quantity is actually the total radiant

energy fluence rate U(r̄). It is the sum of the radiance over all angles at a
point r̄ and is measured by W cm−2:

U(r̄) =
∫
4π

I(r̄, s̄)dΩ. (4.10)

The phase function p(s̄, s̄′) describes the scattering properties of the
medium and is, in fact, the probability density function for scattering in the
direction s̄′ of a photon traveling in the direction s̄. In other words, it charac-
terizes an elementary scattering act. If scattering is symmetric relative to the
direction of the incident wave, then the phase function depends only on the
scattering angle θ (angle between directions s̄ and s̄′) (see (3.34)), i.e.,

p(s̄, s̄′) = p(θ) ≡ M11(θ). (4.11)

The assumption of a random distribution of scatterers in a medium (i.e.,
the absence of spatial correlation in the tissue structure) leads to normaliza-
tion as described by (3.34).
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In practice, the phase function is usually well approximated with the aid
of the postulated Henyey–Greenstein function [1–5,7]:

p(θ) =
1
4π

1 − g2

(1 + g2 − 2g cos θ)3/2
, (4.12)

where g is the scattering anisotropy parameter (mean cosine of the scattering
angle θ), described by (3.35). In application to biological tissues and liquids,
the value of g varies in a range from 0 to 1 : g = 0 corresponds to isotropic
(Rayleigh) scattering and g = 1 to total forward scattering (Mie scattering of
large particles).

In general, the integro-differential equation (4.6) is too complicated to be
employed for the analysis of light propagation in scattering media. Therefore,
it is frequently simplified by representing the solution in the form of spherical
harmonics. Such simplification leads to a system of (N + 1)2 connected dif-
ferential partial derivative equations known as the PN approximation. This
system is reducible to a single differential equation of the order (N + 1). For
example, four connected differential equations reducible to a single diffusion-
type equation are necessary for (N = 1) [1–5]. It has the following form for
an isotropic medium:

(∇2 − μ2
d)U(r̄) = −Q(r̄), (4.13)

where
μd = [3μa(μ′

s + μa)]1/2 (4.14)

is the inverse diffusion length, cm−1;

Q(r̄) = D−1q(r̄), (4.15)

q(r̄) is the source function (i.e., the number of photons injected into the unit
volume),

D =
c

3(μ′
s + μa)

(4.16)

is the photon diffusion coefficient, cm2 c−1;

μ′
s = (1 − g)μs (4.17)

is the reduced (transport) scattering coefficient, cm−1; and c is the velocity of
light in the medium. The transport mean free path (MFP) of a photon (cm)
is defined as

lt =
1

μ′
s + μa

. (4.18)

It is worthwhile to note that the transport MFP lt is the distance over
which the photon loses its initial direction and, in a medium with anisotropic
single scattering, significantly exceeds the MFP in a medium with isotropic
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single scattering, lph:

lt >> lph ≡ 1
μe

. (4.19)

Diffusion theory provides a good approximation in the case of a small
scattering anisotropy factor g ≤ 0.1 and large albedo Λ → 1. For many tissues,
g ≈ 0.6–0.9 and can be as large as 0.990–0.999, in blood for example [1–5].
This significantly restricts the applicability of the diffusion approximation. It
is argued that this approximation can be used at g < 0.9 when the optical
thickness τ of an object is of the order 10–20:

τ =

s∫
0

μeds. (4.20)

The so-called first order solution is realized for optically thin and weakly
scattering media (τ < 1, Λ < 0.5) when the intensity of a transmitted (coher-
ent) wave is described by expression [19]:

I(s) = (1 − RF)I0 exp(−τ), (4.21)

where the incident intensity I0(W cm−2) is defined by the incident radiant flux
density or irradiance (see (4.9)) F0 and a solid angle delta function points in
the direction Ω0 : I0 = F0δ(Ω − Ω0);RF denotes the Fresnel reflection on the
tissue boundary. Given a narrow beam (e.g., a laser), this approximation may
be applied to denser tissues (τ > 1, Λ< 0.9). However, certain tissues have Λ ≈
1 in the diagnostic and therapeutic wavelength window range (see Fig. 2.2)
which makes the first order approximation inapplicable even at τ � 1.

A more strict solution of the transport equation is possible using the dis-
crete ordinates method (multiflux theory) in which (4.6) is converted into a
matrix differential equation for illumination along many discrete directions
(angles) [13]. The solution approximates an exact one as the number of angles
increases. It has been shown above that the fluence rate can expand in powers
of the spherical harmonics, separating the transport equation into the compo-
nents for spherical harmonics. This approach also leads to an exact solution
provided the number of spherical harmonics is sufficiently large. For example,
in a study of tissues that made use of up to 150 spherical harmonics [20], the
resulting equations were solved by the finite-difference method [21]. However,
this approach requires tiresome calculations if a sufficiently exact solution is
to be obtained. Moreover, it is not very suitable for δ-shaped phase scattering
functions [19].

Tissue optics extensively employs simpler methods for the solution of
transport equations, e.g., the two-flux Kubelka–Munk theory or the three,
four, and seven-flux models. Such representations are natural and very fruitful
for laser tissue probing. Specifically, the four-flux model [13,22] is actually two
diffuse fluxes traveling to meet each other (Kubelka–Munk model) and two
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collimated laser beams, the incident one and the one, and the one reflected
from the rear boundary of the sample. The seven-flux model is the simplest
three-dimensional representation of scattered radiation and an incident laser
beam in a semi-infinite medium [23]. Of course, the simplicity and the pos-
sibility of expeditious calculation of the radiation or the rapid determination
of tissue optical parameters (solution of the inverse scattering problem) are
achieved at the expense of accuracy.

4.3 Monte Carlo Simulation Technique

The MC method that is widely used for the numerical solution of the RTT
equation [10, 24, 25] in different fields (astrophysics, atmosphere and ocean
optics, etc.) appears to be especially promising, in particular for the purposes
of medical optical tomography and spectroscopy [1–5,22,26–36], for the solu-
tion of direct and inverse radiation transfer problems for media with arbitrary
configurations and boundary conditions. The method is based on the numer-
ical simulation of photon transport in scattering media. Random migrations
of photons inside a sample can be traced from their input until absorption or
output.

A straightforward simulation using the MC method has the following ad-
vantages:

– One can employ any scattering matrix; there are no obstacles to the use of
strongly forward-directed phase functions or experimental single scattering
matrices;

– The polarization calculation requires a computation time that is only twice
that needed for the evaluation of the intensity;

– Any reasonable number of detectors can be accounted for without a no-
ticeable increase in the computation time; there are no difficulties in de-
termining the radiation parameters inside the medium;

– It is possible to model media with complex geometries where radiance
depends not only on the optical depth, but also on the transverse coordi-
nates.

The liability of the obtained results to statistical variations on the order of
a few percentages with acceptable computation times is the main disadvantage
of the MC technique. For a twofold increase in accuracy, one needs a fourfold
increase in computation time. The MC method is also impractical for great
optical depths (τ > 100).

A few MC codes for the modeling of polarized light propagation through
a scattering layer are available in the literature (see, for example, [10, 24, 28,
32–36]). To illustrate the MC simulation technique applied to modeling the
angular dependencies of the scattering matrix elements in this section, the
algorithm described in [35] is discussed. Another example demonstrating the
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application of a time-resolved MC technique to tissue imaging is discussed in
Chap. 9.

Let a flux of photons within an infinitely narrow beam be incident exactly
upon the center of the spherical volume filled up by the scattering parti-
cles [35]. The path of a single photon migration in the medium is accounted
for in a process of computer simulation. The photons are considered in this
case to be ballistic particles. Different evens possible in the course of the pho-
ton migration are estimated by the appropriate probability distributions. In
the model under study, the photons would either be elastically scattered or
absorbed during their collisions with the medium particles. A certain outcome
of every event is found by a set of uniformly distributed random numbers. The
probability of scattering in a given direction is determined in accordance with
the scattering at a single particle. One is able to specify the cross-section
of the scattering and the values of the scattering matrix elements for every
photon interaction with a scatterer.

When an incident photon enters a scattering layer, it is allowed to travel a
free pathlength, l. The l value depends on the particle concentration, ρ, and
extinction cross-section, σext. The free pathlength l is a random quantity that
takes any positive value with the probability density, p(l) [25]:

p (l) = ρσexte−ρσextl. (4.22)

The particular realization of the free pathlength l is dictated by the value
of a random number γ that is uniformly distributed over the interval [0], [1]:

l∫
0

p (l) dl = γ. (4.23)

Substituting (4.22) into (4.23) yields the value l of the certain realization
in the form

l =
1

ρσext
ln γ. (4.24)

If the distance l is larger than the thickness of the scattering system,
then this photon is detected as transmitted without any scattering. If, having
passed the distance l, the photon remains within the scattering volume, then
the possible events of the photon–particle interaction (scattering or absorp-
tion) are randomly selected.

Within the spherical system of coordinates, the probability density of pho-
ton scattering along the direction specified by the angle of scattering θ be-
tween the directions of the incident and scattered photons and by the angle
φ between the previous and new scattering planes, p(θ, φ):

p(θ, φ) =
Is(θ, φ) sin θ

2π∫
0

π∫
0

Is(θ, φ) sin θ dθ dφ

, (4.25)
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where Is(θ, φ) is the intensity of the light scattered in the direction (θ, φ) in
respect to the previous direction of the photon, defined by angles ϑ and ϕ
(see (4.1) and (4.5)). For spherical particles, this intensity is given by Mie
formulas with allowances for the state of polarization of each photon. An
integral Is(θ, φ) over all scattering directions, similar to (3.36), determines
the scattering cross-section

σsca =

2π∫
0

π∫
0

Is(θ, φ) sin θ dθ dφ. (4.26)

The probability density of the photon scattering along the specified direc-
tion, p(θ, φ), depends on the Mueller matrix of the scattering particle M(θ, φ)
(a single scattering matrix) and the Stokes vector S associated with the pho-
ton ((3.4) and (3.17)). The single scattering Mueller matrix M(θ, φ) links the
Stokes vectors of the incident [Si (0,0)] and scattered [Ss(θ, φ)] light (see Ap-
pendix, (A.1)–(A.10)). For spherical scatterers, the elements of this matrix
may be factorized:

M(θ, φ) = M(θ)R(φ). (4.27)

The single scattering matrix M(θ) of spherical particles has the form,
described by (3.30) and (3.33). The elements of this matrix are given by
Mie formulas (A.2)–(A.10), which are functions of the scattering angle θ and
the diffraction parameter x = 2πa/λ, where a is the radius of the spherical
particle, and λ is the wavelength in the medium.

The matrix R(φ) describes the transformation of the Stokes vector un-
der rotation of the plane of scattering through the angle φ, which is defined
by (4.4). Thus, the intensity of the light scattered by spherical particles is
determined by the expression

Is(θ, φ) = [M11(θ)Ii + (Qi cos 2φ + Ui sin 2φ)M12(θ)] , (4.28)

where Qi and Ui are components of the Stokes vector of the incident light
(see (3.4) and (3.17)). As follows from this equation, the probability p(θ, φ)
(4.25), unlike the scattering matrix (4.27), cannot be factorized. It appears to
be parametrized by the Stokes vector associated with the scattered photon.
In this case, one should use a rejection method to evaluate p(θ, φ).

The following method of generating pairs of random numbers with the
probability density p(θ, φ) may be used [35,36]. In a three-dimensional space,
the function p(θ, φ) specifies some surface. The values (θ, φ) corresponding to
the distribution p(θ, φ) are chosen using the following steps:

(1) A random direction (θγ , φγ) with a uniform spatial distribution is se-
lected; the values of the random quantities θγ , and φγ distributed over the
intervals (0, π) and (0, 2π), respectively, are found from the equations

cos θγ = 2γ − 1, φγ = 2πγ, (4.29)
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where γ is a random number uniformly distributed over the interval
(0,1).

(2) The surface specified by the function p(θ, φ) is surrounded by a sphere

of radius
�

R, equal to the maximum value of the function p(θ, φ); a random

quantity rγ = γ
�

R is generated.
(3) The direction (θγ , φγ) is accepted as the random direction of the photon

scattering at this stage, provided the condition rγ ≤ p(θγ , φγ) is satisfied. In
the opposite case, steps 1 and 2 are repeated.

The migration of the photon in the scattering medium can be described
by a sequence of transformations for the related coordinate system. Each
scattering event is accompanied by a variation of the Stokes vector associated
with the photon. The new Stokes vector Sn+1 is a product of the preceding
Stokes vector, transformed to the new scattering plane, and the Mueller matrix
(or LSM) Mk(θ) of the scattering particle:

Sn+1 = Mk (θ)Rn(φ)Sn , (4.30)

where the matrix Rn(φ) (see (4.4)) describes the rotation of the Stokes vector
around the axis specifying the direction of propagation of the photon before
the interaction.

For the chosen scattering direction, the Stokes vector is recalculated using
(3.17), (3.30), (3.33), (A.2)–(A.10), and (4.29). The value thus obtained is
renormalized so that the intensity remains equal to unity. Thus, the Stokes
vector associated with the photon contains information only about the vari-
ation of the state of polarization of the scattered photon. Real intensity is
determined by measuring the number of detected photons in the chosen di-
rection within the detector aperture.

The above procedure is repeated as long as the photon appears to be
outside the scattering volume. In this case, if the photon propagation direction
intersects the surface of the detector, the photon is detected. Upon detection,
the Stokes vector is rotated from the current plane of the last scattering to
the scattering plane of the laboratory coordinate system. The values obtained
are accumulated in the appropriate cells of the detector whose number is
defined by the photon migration direction. Furthermore, with registering, the
photon is classified in accordance with the scattering multiplicity and the
length of the total path. For every non-absorbed photon, the direction and
the coordinates of the point at which it escapes the scattering volume, as well
as the number of scattering acts it has experienced, are also recorded. The
spatial distribution of the radiation scattered by the scattering volume can
be obtained with regard to polarization by analyzing the above data for a
sufficiently large number of photons.

To find the full LSM of an object, we detect the light scattering for four
linearly independent states of polarization of incident light, S1i, S2i, S3i, and
S4i. This allows us to construct the following system of linear equations

CM′ = S′, (4.31)
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where M′ is the column matrix composed of the found matrix elements of the
LSM of the object and S′ is the 16-element vector containing the Stokes vec-
tor elements recorded upon light scattering for the four independent states of
incident light polarization. The transformation matrix C is determined by the
choice of the initial set of the Stokes vectors of incident light. Having solved
this system of equations for the following set of Stokes vectors S1i = (1, 1, 0, 0),
S2i = (1,−1, 0, 0), S3i = (1, 0, 1, 0), and S4i = (1, 0, 0, 1), one can find the de-
sired LSM of the object, M′ =M:

M =
1
2

⎡⎢⎢⎣
I1 + I2 I1 − I2 2I3 − (I1 + I2) 2I4 − (I1 + I2)

Q1 + Q2 Q1 − Q2 2Q3 − (Q1 + Q2) 2Q4 − (Q1 + Q2)
U1 + U2 U1 − U2 2U3 − (U1 + U2) 2U4 − (U1 + U2)
V1 + V2 V1 − V2 2V3 − (V1 + V2) 2V4 − (V1 + V2)

⎤⎥⎥⎦ ,

(4.32)
where the elements of the Stokes vectors of the scattered light obtained in
each of the four cases are denoted as Sn = (In, Qn, Un, Vn), n = 1, 2, 3, 4. As
a result, we can calculate the angular dependencies for all of the elements of
LSM with allowances for the contributions of multiple scattering.

A simulation was performed for the systems of spherical particles with a
relative index of refraction of m = 1.2; these are uniformly distributed within
a spherical volume at volume fraction f = 0.01 [35]. In the calculations, the
illuminating beam is assumed to be infinitely narrow and incident exactly
upon the center of the scattering volume in the zero angle direction, and the
scattered radiation is detected at different scattering angles in the far zone by
a detector with a full angular aperture of 1◦ in the scattering plane and 5◦ in
a plane that is perpendicular to the scattering one.

The angular distributions of the total scattering intensity for different scat-
tering systems of spherical particles with a small radius, a = 0.05 μm, or a
large radius, a = 0.3 μm, are presented in Fig. 4.2. The average multiplicity of
the scattering of the detected radiation increases with increasing dimensions
of the scattering system. For systems of small particles at illumination in the
visible range, the Rayleigh approximation is applicable. For rather small di-
mensions of scattering volume, less than 1 mm in diameter, the contribution
of single scattering is predominant. It follows from the intensity angular de-
pendence, which is rather isotropic (compare Fig. 4.2a with Fig. 3.4 presenting
a single scattering angular dependences for non-interacting particles). As the
dimensions of the scattering system increase, the fraction of the contributions
from higher multiplicity scattering grows as well. For a 20 mm diameter sys-
tem, the detected light contains noticeable contributions of scattering from the
10th—20th multiplicity. With a further increase in system dimensions, most
of the incident light is scattered in the backward direction and the scattering
intensity in the forward half-plane vanishes. For this reason, after a certain
value, the dimensions of the scattering system hardly affect the shape of the
diagram of the scattering multiplicity distribution.

Systems comprised particles with a size on the order of the wavelength
(Fig. 4.2b) also show an increase in the contributions from higher order
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Fig. 4.2. Angular distributions of the total scattering intensity for multiply-
scattering systems of spherical particles having a relative refractive index of m = 1.2
and uniformly distributed within a spherical volume at the volume fraction f = 0.01:
(a) particles with small radius, a = 0.05 μm, diameter of the system is equal to (1) 1,
(2) 2, and (3) 20 mm; and (b) particles with large radius, a = 0.3 μm, diameter of
the system is equal to (1)2, (2)200, and (3)2, 000 μm; the infinitely narrow unpolar-
ized light beam incidents exactly upon the center of the scattering volume in the
zero angle direction; the wavelength is 633 nm [35]

scattering with increasing dimensions of the scattering system. The system
transforms from the forward to backward directed scattering mode at a rather
small thickness, 2 mm in the diameter.

As can be seen, the intensity of unpolarized light at a higher scattering
multiplicity weakly depends on the scattering angle and carries almost no in-
formation about the size of the scattering particles. Note that systems of small
particles, at triple scattering, may already be considered nearly isotropic, while
angular distributions for large particles, strongly elongated in the forward di-
rection at single scattering (see Fig. 3.5), remain anisotropic for sufficiently
high scattering multiplicity (four to six scattering events for a system of 0.2
mm in diameter, Fig. 4.2b).

The view of the LSM elements’ angular dependences under the conditions
of multiple scattering differs substantially from that for the LSM of a single-
scattering system. It is seen from Figs. 4.3 and 4.4 that multiple scattering
flattens the angular dependences of the LSM elements. The solid line shows
the results of the calculation of a normalized LSM for an isolated spherical
particle with a similar radius and relative index of refraction. All elements
of the LSM are normalized to the M11 element (total scattering intensity)
along the given direction, and the element M11 is presented in the plot as
normalized to unity in the forward direction.

Since the single scattering angular distribution for particles with sizes sub-
stantially exceeding the Rayleigh limit is strongly asymmetric, the scattering
intensity at large angles is very low. For this reason, one must trace the
trajectories of a great number of photons to obtain good accuracy in this
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Fig. 4.3. The MC simulation: the angular distributions of the LSM elements for
the multiple scattering systems of small spherical particles (a = 0.05 μm, m = 1.2)
uniformly distributed within a spherical volume (f =0.01); diameter of the system is
equal to 1 mm (–•–), 2 mm (–Δ–), and 20 mm (–◦–); the solid line shows the results
of calculations of the approximation of a single scattering; the infinitely narrow
unpolarized light beam incidents exactly upon the center of the scattering volume
in the zero angle direction; the wavelength is 633 nm [35]

angular range. Therefore, to demonstrate the fine structure of the angular
dependence of the matrix elements, we need to use 107–108 photons in the
simulation [33,35].

When scattering by particle suspensions in a spherical cell of small di-
ameter occurs, almost all of the detected photons are singly scattered. An
increase in the optical thickness considerably enhances the contribution of
multiple scattering. The angular dependences of the LSM elements have a
form close to the single scattering LSM, provided that the optical thickness
of the scattering system τ does not exceed unity for systems of large particles
considered ten times or more larger than systems of small particles.

The multiple-scattering intensity (the element M11) for a cell of large di-
ameter decreases with an increasing scattering angle more slowly than the
single-scattering intensity. As the cell diameter further increases, backward
scattering becomes predominant (see Figs. 4.2–4.4). In systems of small par-
ticles (see Fig. 4.3), the growth of the multiple scattering contributions is ac-
companied by a gradual decrease in the magnitude of all the elements except
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Fig. 4.4. The MC simulation: the angular distributions of the LSM elements for the
multiple scattering systems of large spherical particles (a = 0.3 μm, m = 1.2) uni-
formly distributed within a spherical volume (f =0.01); the diameter of the system
is equal to 0.002 mm (–•–), 0.2 mm (–Δ–), and 2 mm (–◦–); the solid line shows the
results of the calculations of the approximation of single scattering; the infinitely
narrow unpolarized light beam incidents exactly upon the center of the scattering
volume in the zero angle direction; the wavelength is 633 nm [35]

for M11; i.e., the form of the LSM approaches that of the ideal depolarizer.
The magnitudes of the elements M12 and M21 decrease in nearly the same
way while the elements M33 and M44 also decrease in magnitude but M44

decreases faster. As a result, multiple scattering gives rise to a difference in
the detected values of the elements M33 and M44 even for systems of spheri-
cal particles. The values of the element M22 eventually become smaller than
unity, this decrease being more substantial in the range of scattering angles
close to 90◦. Thus, the manifestation of the effect of multiple scattering in
monodisperse systems of spherical particles, which is revealed in the appear-
ance of non-zero values of the difference |M33 −M44| and |1−M22|, is similar
to the manifestation of the effect of non-sphericity on the scatterers observed
under conditions of single scattering [37].

For large particle systems, multiple scattering also decreases the magni-
tudes and smoothes out the angular dependences of the normalized elements
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of the LSM (see Fig. 4.4). The corresponding angular dependences, as com-
pared to the LSM of small particles, show the following specific features: the
minimum value of the element M22 is reached not at 90◦ but rather at large
scattering angles; the fine structure of the angular dependences for all of the
elements are smeared, even in the presence of a small fraction of multiply-
scattered light; and finally, the very important result that the element M44,
unlike other elements, at the limit of high scattering multiplicity, tends to
0.5 rather than zero for all scattering angles. Such a form of the LSM means
that the radiation scattered by the large particles retains circular polarization
at higher scattering multiplicities. This result serves as a confirmation of the
preferential survival of some types of polarization under conditions of multiple
scattering for different sizes of scattering particles or tissue structures [28,38].

The process of multiple scattering photons during their migration can be
described as a series of successive rotations of their coordinate systems, de-
termined by the scattering planes and directions. Since these rotations are
random, the detected photons are randomly polarized and, hence, the de-
tected light is partially depolarized. Depolarization increases with the increas-
ing multiplicity of the scattering. An important integral characteristic of the
depolarizing ability of the scattering object is the quantity ‖M‖2 (see (3.28)).
For a non-depolarizing object, it is equal to 4; for a depolarizing object, it
takes values between 4 and 1. For example, the depolarizing ability of sys-
tems of small particles (a = 0.05 μm) increases monotonically with increasing
optical thickness, i.e., ‖M‖2 calculated for θ = 90◦ changes from 3 to 2.2, and
further to 1, as the diameter of the system goes from 1 to 2, and further to
20 mm at a particle volume fraction of f = 0.01. The depolarization weakly
depends on the scattering angle and shows a weakly pronounced maximum in
direction close to θ = 90◦ [35, 39]. These tendencies fit well the values of the
squared norm of the experimental matrices of the human normal and cataract
eye lenses, which are minimal for θ = 90◦, and correspondingly equal to 3.3
and 2.5 [40]. For systems of large particles (a = 0.3 μm) at optical thicknesses
where a single-scattering regime dominates, ‖M‖2 ≈ 4 for all scattering an-
gles. For optically thick systems (2 mm, f = 0.01), ‖M‖2 is close to unity for
all scattering angles. For moderate optical thicknesses (0.2 mm, f = 0.01), the
depolarizing ability is strongly different for different directions. The scattered
light may be almost completely polarized in the region of the small scatter-
ing angles, completely depolarized at the large angles (θ = 120◦) and partly
polarized in the backward direction. The angular range of the strongest de-
polarization corresponds to the angle at which the element M22 acquires a
minimum value (see Fig. 4.4).

The simulated dependences allow one to estimate the limits of applica-
bility of the single scattering approximation when interpreting the results of
experimental studies of disperse scattering systems. It follows from these sim-
ulations that modifications of the LSM of monodisperse systems of spherical
particles due to the effects of multiply scattering have much in common with
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modifications of the LSM of singly scattering systems due to deviation in the
shape of the particles from spherical. This fact imposes serious limitations on
the application of the measured LSM of biological objects for solving the in-
verse problem to determine particle nonsphericity. The appropriate criteria to
distinguish the effects of multiple scattering and particle nonsphericity have
yet to be developed.

It is important to note that the comparison of the MC simulation, which
accounted for all of the orders of multiple scattering, with the analytical
double-scattering model indicated no essential change in the backscattering
polarization patterns [32,41]. This is due to the fact that the main contribution
comes from the near-double-scattering trajectories in which light suffers two
wide-angle scatterings and many near-forward scatterings among the multiple-
scattering trajectories. The contributions of such multiple, but near-double,
scattering trajectories are obviously well approximated by the contributions
of the corresponding double-scattering trajectories.

The above MC technique of photon trajectory modeling is well suited to
the simulation of multiple scattering effects in a system of randomly arranged
particles. Furthermore, this scheme allows for an approximate approach to
describe the interference effects caused by space particle ordering. To this
end, one should include the interference of scattered fields into calculations of
the single scattering Mueller matrix and integral cross-sections of a particle.
In other words we account for the interference effects of the simulation of the
single scattering properties at the first stage, and then use these properties
in the MC simulation of multiple scattering. Such an approach is admissible
if the size of the region of the local particle ordering is substantially smaller
than the mean free photon pathlength.

4.4 Densely Packed Particle Systems

The spatial correlation of individual scatterers results in the necessity to con-
sider the interference of multiply scattered waves. The particle reradiation
in the densely packed disperse system induces the distinction of an effective
optical field from the incident one in a medium. Under these conditions, the
statistical theory of multiple wave scattering seems to be most promising for
describing the collective interaction between an ensemble of particles and elec-
tromagnetic radiation [42,43].

The rigorous theory of wave multiple scattering is constructed on the basis
of fundamental differential equations for the fields, followed by using statistical
considerations [42]. The total field E(r) at the point r is the sum of the
incident field Ei (r) and the scattered fields from all particles with regard to
their phases,

E (r) = Ei (r) +
N∑

j=1

Es
j (r) , (4.33)



62 4 Polarized Light Interactions with Strongly Scattering Media

where Es
j (r) is the scattered field of the jth particle. The field scattered by the

jth particle is defined by the parameters of this particle and by the effective
field incident on the particle.

Twersky has derived a closed system of integral equations describing the
processes of multiple scattering [44]. A rigorous solution in a general form
has not been found yet for this problem. In actual calculations, various ap-
proximations are exploited in order to perform the averaging of (4.33) over
statistical particle configurations. For example, the quasi-crystalline approx-
imation proposed for densely packed media by Lax [45] is the most efficient
for tissue optics.

The averaging of (4.33) over statistical particle configurations results in
an infinite set of equations that is truncated at the second step by applying
the quasi-crystalline approximation. The closed system of equations obtained
for the effective field is reduced to a system of linear equations by expansion
in terms of vector spherical or cylindrical harmonics. The explicit expressions
[46, 47] for the expansion coefficients involve the radial distribution function
as well as the Mie coefficients for a single particle. The equality to zero for the
determinant of this system of linear equations yields the dispersion relation
for the effective propagation constant keff of this medium [48]. For systems of
particles whose sizes are small, as compared with wavelength, the expression
for keff , obtained in this way, has the view [46]:

k2
eff = k2 +

3fy

D
k2

[
1 + i

2
3

k2a2y

D
S3(θ = 0)

]
, (4.34)

where

y =
n2

1 − n2
0

n2
1 + 2n2

0

, D = 1−fy, S3 (θ = 0) =
1

1 − H3
, H3 = −24f

(
α

3
+

β

4
+

δ

6

)
;

(4.35)
f is the volume fraction occupied by particles with the refractive index n1, and
the α, β, δ values are found according to the approximation of hard spheres
(see (3.39)–(3.41)). The calculated effective index of refraction

neff = n′
eff + in′′

eff (4.36)

is complex, even if the particles and a base substance surrounding them exhibit
no intrinsic absorption. The imaginary part of the effective index of refrac-
tion n′′

eff describes the energy diminishing for an incident plane wave due to
scattering in all directions. The transmittance of this layer with thickness z is

T = exp(−4π

λ
n′′

effz). (4.37)

The quantity μe = (2π/λ)n′′
eff is the extinction coefficient. The value of the

imaginary part of the effective index of refraction grows for these systems with
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a higher radiation frequency and it nonmonotonously depends on the parti-
cle concentration in the layer. As a result, the transmittance of the disperse
layer decreases for small particle concentrations with a greater concentration
of particles, and starting at f ≈ 0.1, the transmittance grows up, or the so-
called clearing effect takes place. The real portion of the effective index of
refraction in this approximation is essentially independent of the wavelength
and alters monotonously with growing particle concentration to approach the
refractive index of the particles. The near ordering in the scatterers’ arrange-
ment with their greater concentration not only provides conditions for the
manifestation of secondary scattered wave interference but also changes the
regime of the propagation of noncoherent multiply scattered light [49]. This
may be accompanied by the so-called concentration effects of clearing and
darkening.

The optical softness of tissues enables one to employ, during calculation, an
expansion by scattering multiplicities while restricting by low orders. In [50],
an expression was obtained for the effective index of refraction of the eye
cornea modeled on a system of cylinder scatterers in the form of expansion
by scattering multiplicities; the effects of polarization anisotropy were then
analyzed with respect to the double scattering contributions.

Using the theory of multiple scattering, Twersky [51] succeeded in deriving
approximate expressions for absorption μa and scattering μs coefficients that
describe light propagation in blood. The blood hematocrit H is related to the
erythrocyte concentration ρ and to the volume of an erythrocyte Ve by the
following ratio [13]

ρ = H/Ve. (4.38)

Thus, the absorption factor μa is

μa = (H/Ve)σa. (4.39)

For sufficiently small values of H(H < 0.2), the scattering coefficient is given
by the equation

μs = (H/Ve)σs. (4.40)

For H > 0.5, the particles become densely packed and the medium is almost
homogeneous. In this case, blood may be considered a homogeneous medium
containing hemoglobin in which the scattering particles formed by plasma
surrounding the red blood cells are embedded. Within the limits of H → 1,
“plasma particles” disappear and the scattering coefficient should tend to
zero. This results in the following approximate equation for μs [13, 52]:

μs ≈ H(1 − H)
Ve

σs, (4.41)

where coefficient (1 − H) regards the scattering termination with H → 1.
However, the absolute dense packing (H = 1) is not attainable in reality;
for example, for the hard sphere approximation, H may not exceed 0.64.
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Considering this fact and keeping in mind the physiological conditions, the
affect of cell packing on light scattering might be described by a more complex
function

μs = (H/Ve)σsF (H), (4.42)

where the packing function F (H) accounts for the physiological condition of
the red blood cells, particularly the cell deformability at high concentration.

Although the equations from Twersky’s wave-scattering theory [44, 51]
agree reasonably well with the measured optical density data for a whole
blood layer [52], researchers have had to resort to curve-fitting techniques
to evaluate the parameters in Twersky’s equations. This theory also does
not describe the spatial distribution of reflected and transmitted light and,
therefore, does not accommodate light detectors and sources that do not share
a common optical axis. By contrast, the RTT discussed above, particularly its
more simple diffusion approximation, overcomes the mentioned limitations of
wave-scattering theory. However, to be applied to densely packed tissues, this
theory must account for particle interaction and size distribution effects. In
combination with theories describing particle interactions, the use of empirical
data can be considered a fruitful and practical approach for modeling the
optical properties of tissues.

For example, by using diffusion theory, Steinke and Shepherd [52] have
corrected the dependence (4.41) of the scattering coefficient μs for a thin
blood layer on the hematocrit H, as follows:

μs ≈ (H/Ve)σs(1 − H)(1.4 − H). (4.43)

Using the concept of the combination of photon-diffusion theory and par-
ticle representation of tissues, Schmitt and Kumar have developed a micro-
optical model which explains most of the observed scattering properties of
soft tissue [53]. The model treats tissue as a collection of scattering parti-
cles whose volume fractions are distributed according to a skewed log-normal
distribution modified by a packing factor to account for correlated scattering
among densely packed particles (see (2.12), (2.17), and (2.18)).

Assuming that the waves scattered by the individual particles in a thin slice
of the modeled tissue volume add randomly, then the scattering coefficient of
the volume can be approximated as the sum of the scattering coefficients of
the particles of a given diameter,

μs =
Np∑
i=1

μs(2ai), (4.44)

where

μs(2ai) =
η(2ai)

vi
σs(2ai); (4.45)

Np is the number of particle diameters η(2ai) is the volume fraction of the
particles of the diameter 2ai (see (2.12), (2.17) and (2.18)), and σs(2ai) is the
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optical cross-section of an individual particle with diameter 2ai and volume
νi. The volume-averaged phase function p(θ) (and scattering anisotropy pa-
rameter g) of the tissue slice is the sum of the angular-scattering functions
pi(θ) (and anisotropy parameters, gi) of the individual particles weighted by
the product of their respective scattering coefficients:

p(θ) =

Np∑
i=1

μs(2ai)pi(θ)

Np∑
i=1

μs(2ai)

; (4.46)

g =

Np∑
i=1

μs(2ai)gi(2ai)

Np∑
i=1

μs(2ai)

. (4.47)

The reduced scattering coefficient is usually defined as μ′ = μ(1 − g).
The volume-averaged backscattering coefficient can be defined as the sum
of the particle cross-sections weighted by their angular-scattering functions
evaluated at 180◦,

μb =
Np∑
i=1

η(2ai)
vi

σs(2ai)pi(180◦). (4.48)

The product of μb(cm−1 sr−1) and the thickness of the tissue slice yield
the fraction of the incident irradiance backscattered per unit solid angle in
the direction opposite the incident light.

An evaluation of the model conducted by applying Mie theory to a collec-
tion of spheres with a wide range of sizes gave a set of parameters for the dis-
tribution and packing of the particles [Df = 3.7, n̄0 = 1.352, n̄s = 1.420, Fν =
0.2, 2am = 1.13 μm, σ = 2 μm, p = 3 (see (2.5), (2.12) and (2.17))] that yield
credible estimates of the scattering coefficients and scattering anisotropy para-
meters of representative soft tissues. Table 4.1 summarizes the optical proper-
ties predicted by the model at three wavelengths (633, 800, and 1,300 nm) for a
soft tissue containing different dry-weight fractions of connective tissue fibers
(ff = 0.03, 0.3, and 0.7). The coefficients μs, μ

′
s, μb, and g were computed for

determined parameters of the particle system. In general, these calculations
fit well with the experimental data for in vitro and even in vivo measurements
of optical parameters of soft tissues.

It follows from the model [53] that: (1) as an optical medium, tissue is rep-
resented best by a volume of scatterers with a wide distribution of sizes; (2)
fixing the total volume fraction of particles and their refractive indices places
upper and lower bounds on the magnitude of the scattering coefficient; (3) the
scattering coefficient decreases with wavelength approximately as μs ∼ λ2−Df

for 600 ≤ λ ≤ 1,400 nm, where Df is the limiting fractal dimension, and
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Table 4.1. Wavelength dependent optical coefficients of model tissues with three
different dry-weight fiber fraction (ff), for Df = 3.7 [53]

optical coefficients

633 nm 800 nm 1,300 nm
ff ff ff

0.03 0.3 0.7 0.03 0.3 0.7 0.03 0.3 0.7
μs(cm

−1) 105 224 402 69 146 274 29 63 119
μ′

s(cm
−1) 8.0 20 45 5.7 14 32 3.0 7.5 16.5

μb(cm−1sr−1) 0.8 2.2 5.0 0.5 1.3 3.1 0.3 0.9 2.0
g 0.92 0.91 0.89 0.92 0.90 0.88 0.90 0.88 0.86

(4) scatterers in tissue with diameters between λ/4 and λ/2 are the domi-
nant backscatterers, and the scatterers that cause the greatest extinction of
forward-scattered light have diameters between 3λ and 4λ.

A reduced scattering coefficient, decreasing with wavelength in accordance
with a power law, was experimentally demonstrated for normal, dehydrated
and coagulated human aorta and rat skin in an in vitro study [54–56]:

μ′
s ∝ λ−h. (4.49)

For the human aorta under conditions of direct heating (100◦ C), h was
reduced from 1.38 for the normal tissue sample to 1.06 for the heated one.
For the rat skin impregnated by glycerol (mostly dehydration effect) in the
wavelength range 500 – 1,200 nm, h was 1.12 for the normal skin, decreased
subsequently with increasing time in glycerol(h = 1.09 for 5 min in glycerol,
0.85 for 10 min, 0.52 for 20 min), and went back to 0.9 for the rehydrated
sample [56].

In vivo backscattering measurements for the human skin and underlying
tissues also demonstrated the power law for wavelength dependence on the
reduced scattering coefficient [57]:

μ′
s = qλ−h(λ in μm). (4.50)

In particular, for reflectance spectra from the human forearm in the wave-
length range 700–900 nm, constants q and h were determined to be 550 ± 11
and 1.11 ± 0.08, respectively. From Mie theory, it follows that the power
constant h is related to an averaged size of the scatterers – the so-called
Mie-equivalent radius aM. Once h is determined, this radius can be derived
from [57]

h = −1109.5a3
M + 341.67a2

M − 9.36961aM − 3.9359(aM < 0.23 μm), (4.51)
h = 23.909a3

M − 37.218a2
M + 19.534aM − 3.965(0.23 < aM < 0.60 μm). (4.52)

These relations were determined for a relative refractive index between the
spheres and surrounding medium, m = 1.037. The in vivo measured constant
h = 1.11 leads to a aM value of 0.30 μm, which is about two times less than
the mean radius (0.57 μm) used in the above discussed model of a collection
of packed spheres with a wide range of sizes [53].
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4.5 Summary

In general, for polarized light propagated in a strongly scattering medium,
multiple scattering decreases the magnitudes and smoothes out the angular
dependencies of the normalized LSM elements characterizing the polarized
light interaction with the medium. For media composed of large particles that
are specified by a high degree of single scattering anisotropy or considerable
photon transport length, the scattered radiation retains preferential circular
polarization at higher scattering multiplicities. This and other theoretical re-
sults of this chapter serve as a confirmation of the preferential survival of
certain types of polarization under conditions of multiple scattering for dif-
ferent sizes of scattering particles or tissue structures (see Chap. 5).

The simulated LSM elements, and their angular dependences, allow one
to estimate the limits of the applicability of single scattering approximations
to interpret the results of experimental studies of tissues and tissue-like phan-
toms. In particular, it was shown that the modification of the LSM of a
monodisperse system of spherical particles associated with multiple scattering
has much in common with the modification of single scattering LSM associ-
ated with particle nonsphericity.

The MC technique of photon trajectory modeling described in the chap-
ter is well suited to the simulation of multiple scattering effects in a system
of randomly arranged particles. Furthermore, on this basis, an approximate
approach for describing the interference effects caused by space particle order-
ing can be suggested. For that, one must include the interference of scattered
fields in the calculations of the single scattering Mueller matrix and integral
cross-sections of the particles. Initially we account for the interference effects
of the simulation of the single scattering properties (see Chap. 3) and then use
these properties in a MC simulation of the multiple scattering effects. Such an
approach is quite admissible because the size of the region of the local particle
ordering (a few particle diameters) is substantially smaller than the mean free
photon pathlength.



5

Polarization Properties of Tissues and
Phantoms

5.1 Introduction

It has been shown that polarized light propagation in tissues depends on their
scattering, absorption, and anisotropic properties. The anisotropic properties
of a tissue in turn depend on the tissue morphology, i.e., the scatterers’ size
and shape, refractive index, internal structure, and the birefringence and op-
tical activity of the materials of the tissue components [1–9]. The polarization
properties of elastically scattered light are described by a 16-element light
scattering matrix (LSM), each element being dependent on the incident and
scattering angles, wavelength, size, shape, and material of the scatterers (see
(3.18), (3.48), (3.63), (4.32) and Figs. 4.3, 4.4).

The LSM elements and their dependence on the scattering angles pro-
vide information on the structure and properties of a tissue under study. The
solution of the appropriate inverse problem provides values for the size distrib-
ution function of the scattering particles, their index of refraction, shape, and
orientation. Most tissues and biological liquids have quite complicated struc-
tures and the complexity of their LSMs depends on the object’s parameters;
hence, often the solution to the inverse problem is quite difficult or even im-
possible. Along with this, in a number of cases, a qualitative estimation of the
object’s properties is sufficient, and an exact solution of the inverse problem
is not required. The general view of experimental LSM, its norm values and
the symmetry relations of the elements (see (3.11)–(3.21) and (3.23)–(3.26))
allow one to compare an object under study with a certain class of scattering
systems [10]. An estimate of the state of the studied objects using experimen-
tal LSM can be obtained from the relationships among the matrix elements.
These relations and the LSM norm values can also be criteria for estimating
the correctness of experimental results.

In this chapter, we will consider the principles of scattering matrix mea-
surements and describe the actual measuring instruments that have been de-
scribed in the literature. The peculiarities and distinctive properties of the



70 5 Polarization Properties of Tissues and Phantoms

experimental LSM of thin tissue slices or cell monolayers, as well as of thick
strongly scattering tissues and tissue-like phantoms, will be analyzed.

5.2 Light Scattering Matrix Meters

The simplest and, probably, the most pictorial way to measure the LSM
elements’ angular dependencies is to use a conventional scatterometer (neph-
elometer) with various polarization optical elements placed ahead of, and
after, the scattering medium. Usually linear polarizers and quarter-wave plates
are employed as such elements [8, 9, 11–13]. A possible result of the measure-
ments is combinations of the LSM elements. Actually, these combinations
are obtained by multiplying the matrices of optical elements placed ahead of
the scattering object, the matrices of the scattering object itself, and those
of optical elements placed after the scattering object (Fig. 5.1). In general,
four measurements are necessary to obtain one LSM element. Despite the fact
that this technique is reasonable, if rather cumbersome, its application may
be followed by significant relative errors that are associated with small matrix
elements obtained as differences in the great signals [8]. These errors can be
partially avoided by modulating the polarization state in the incident or the
scattered beam.

The operation principle of the LSM meter [14–19] (Fig. 5.1), based on the
modulation of the polarization of the incident laser beam followed by the
scattered light demodulation (transformation of polarization modulation to
intensity modulation), is described by the following matrix equation:

S = AF′MFPS0, (5.1)

P F

A
S

S0

PMT

Discriminator

Counter

Interface

F�

Object

Θj

j�

-'

-

Fig. 5.1. Scheme of laser scattering matrix meter based on the principle of mechan-
ically rotated phase plates (see text for details) [14,19]
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where S and S0 are the Stokes vectors of the recorded and source radiation,
respectively; P, A, and F′, are the Mueller matrices for the linear polarizers
and the phase plates placed, respectively, ahead of and after the scattering
medium. As the phase plates are rotated, the intensity recorded by a pho-
todetector, i.e., the first element of the Stokes vector S, depends on time. By
multiplying the matrices in (5.1) and performing the appropriate trigonomet-
ric transformations, one can show that the output intensity can be represented
as a Fourier series, namely [20],

I = a0 +
K∑

k=1

(a2k cos 2kϕ + b2k sin 2kϕ), (5.2)

where

a2k =
N∑

i=1

I(ϕi) cos 2kϕi; b2k =
N∑

i=1

I(ϕi) sin 2kϕi; (5.3)

I(ϕi) is the intensity of the scattered light detected by the photoreceiver for
a certain orientation of the fast axis of the first retarder, ϕi; and N is the
number of measurements per rotation cycle of the first phase plate F .

The coefficients of the series described by (5.2) are defined by the values
of the matrix M elements of the object under study, and their measurement
ensures a system of linear equations to determine the matrix M. The number
of equations and the degree of stipulation for this system of equations are
dependent on the choice of the ratio between the rotation rates of the phase
plates (retarders). An optimal choice of the rotation rates relationship at 1:5
allows an optimally stipulated system of linear equations (K = 12 to be
derived to find the full matrix M of the object under study [20].

The LSM meter presented schematically in Fig. 5.1 is designed with rotat-
ing retarders (λ/4-phase plates). Due to its comparatively simple measuring
procedures and software, it avoids many of the experimental artifacts peculiar
to DC measurements and to systems utilizing electrooptic modulators [8]. The
LSM meter has a fixed polarizer P and analyzer A and two rotating-phase
plates, F and F ′, before and after the sample. The polarizer and analyzer
are aligned in parallel with each other and their transmission planes are or-
thogonal to the scattering plane; the fast axis of each phase plate, F and F ′,
forms an angle with the scattering plane ϕ and ϕ′, as a result, the respective
phase differences, δ and δ′, are induced. The ratio of the rotation rates of the
phase plates is set equal to 1:5, i.e., ϕ′ = 5ϕ, because all of the 16 matrix
elements are uniquely determined in this case. The computer-controlled LSM
meter provides automatic scattering angle scanning in the range 0±175◦ with
a step of 4′ and an accuracy of 5′′. A single-mode stable He:Ne laser (633 nm)
is used as a light source. Computer-driven retarders provide N = 256 indi-
cations per one rotation cycle of the first phase plate F . A photon counting
system is used with the photomultiplier tube (PMT), amplitude discriminator
(clipping amplifier), and counter. The fast Fourier transform analysis allows
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one to measure and calculate all 16 S-matrix elements for the fixed scattering
angle during about 1 s with an accuracy of 3–5%.

A number of LSM meters (Mueller matrix scatterometers) and instruments
for polarization measurements designed for in vitro and in vivo studies of bio-
logical olbjects are also available (see, for example, [6,8,9,12,13,21–42]). Some
of them provide fast and automatic measurements of all 16 LSM elements over
a wide range of scattering angles [30] or for a certain scattering angle, 90◦ [25].
For example, the system described in [30] has a 0–360◦ range of scattering an-
gles; it uses two electro-optical modulators for polarization modulation at two
different frequencies 2,000 and 251 Hz of the incident He:Ne (633 nm) laser
beam; it provides simultaneous four-detector polarization sensitive detection
and matrix elements calculation with an accuracy of 1–3%, depending on the
element, and a measuring time of 1 s for the whole matrix at one incident
angle and one scattering angle.

Many other systems also work in the backscattering or transmittance mode
and are used mostly for imaging tissue or scattering media. Examples of such
schemes include the Stokes-vector imaging system [28, 29, 31–33], a scheme
for mapping degree of polarization [36, 37, 42, 43], a method of polarization-
difference imaging [38], and a polarization-multispectral imaging system [34].
Both scanning polarimetry, which incorporates ellipsometry into a confocal
scanning laser opthalmoscope [28, 29], and full-field CCD-based single wave-
length or multispectral polarization imaging systems [31,32,34,36,42] are also
in use.

Various instrumental errors or imperfections characteristic of LSM meters
(Mueller matrix meters), such as the dual-rotating-retarder LSM [19], the
Mueller matrix polarimeter [31], rotating-retarder Stokes polarimeters [40],
and the liquid crystal based Stokes polarimeter [41], are widely discussed as
various means for their optimization.

5.3 LSM of Thin Tissue and Cell Layers

A number of brief reviews of experimental results from studies on the
polarization-scattering characteristics of biological objects are available in the
literature [4,6,8,9,14,44–48]. The following regularities can be cited that allow
the parameters of scattering particles (tissue or other bio-object components)
to be classified by analyzing their LSM. The distinction between elements
M22 and M11 serves as the measure for scattering particles to be nonspheri-
cal. These peculiarities have been studied in different kinds of pollen [49] and
marine organisms [50, 51]. However, as follows from Monte Carlo modeling
(see Figs. 4.3 and 4.4), with a certain turbidity in a system of spherical par-
ticles, an analogous distinction between elements M22 and M11 is caused by
multiple scattering.

As noted in [48, 49] and [52–56], element M34 is most specific for various
biological microorganisms. This element is sensitive to small morphological
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alterations in scatterers. It has been shown that the element M34 is affected
by a small surface roughness on a sphere [53]. It has also been proven that
M34 measurements may be a basis for determining the diameters of rod-
shaped bacteria (Escherichia coli cells) that are difficult to measure using
other techniques [54]. The angular dependences of the normalized element
M34/M11 for different bacteria turn out to be oscillating functions whose
maxima positions are very sensitive to varying sizes of the bacteria [54–56].
This allows bacterial growth to be followed [56].

In [49] and [52], the measuring results are presented for the whole LSM
of some biological particles. A high specificity of the normalized element
M34/M11 is shown for every type of biological scatterer. Stable distinctions are
revealed in the values of M34/M11 for spores of two mutant varieties of bac-
teria, which are distinguished by variations in their specific structures which
are invisible with traditional scattering techniques. The distinctions of other
matrix elements, however, are seen less clearly for these two types of similar
scatterers.

When scattering is well described by the Rayleigh–Gans theory, then
M34 = 0. Thus, a nonzero value for this element can be associated with devi-
ation of the particle characteristics from those that satisfy the Rayleigh–Gans
theory. This is possibly the reason why M34 is so sensitive to the characteris-
tics of biological scatterers [11].

The polarization characteristics for suspensions of biological particles have
been described in [44], where the sensitivity of different matrix elements to
variations in scatterer shape and size is analyzed. It is noted that the values
of elements M33 and M44 in the backward scattering direction may serve as
indicators of particle nonsphericity.

LSM measurement is also used to examine the optical parameters of blood
cells. For example, the determination of the real part of the relative index of
refraction of blood cells, m, is based on the study of the angular structures
of the LSM nonzero elements [57]. This method is applicable to normal or
gamma distributions of polydisperse particle systems and does not require
data on particle concentration; only the conditions of single scattering must
be obeyed. The technique is reduced to finding a scattering angle at which the
LSM element is zero within a range of scattering angles of 80–120◦. Further,
the relative index of refraction m is derived from the nomograms valid for
m = 1.02–1.07. If the element is nonzero within the angular range 80–120◦,
thus m > 1.07, one needs to determine a scattering angle at which element
M34 is zero.

The measurement of angular dependences for the total LSM of blood ery-
throcytes enables one to distinguish between disc-like and spherulated cells
(spherocytes) in relation to their packing density in a monolayer [18] (Fig. 5.2).
The angular dependence of the matrix element M11 in both cell types turns out
to be influenced by the packing density in the angular range of θ = 15–16◦. The
angular dependences of the elements M11,M22,M33, and M21 at θ = 110–170◦

are found to be far more affected by the shape of the scatterers than by their
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Fig. 5.2. Angular distributions of the normalized (to M11) LSM elements of the
monolayer of erythrocytes: experimental: M22 (1, 3), M33 (5, 6), M12 (7), M21 (8);
theoretical (Mie theory): M22 (2), M33 (4); for disc-like erythrocytes (3, 5, 7, 8) and
spherocytes (1, 2, 4, 6) (from [18] with corrections)

concentration. It is also possible to derive the refractive indices of erythrocytes
from measurements of the M12 magnitude at scattering angles θ ≈ 140–160◦.
A study [57] revealed the high susceptibility of the angular dependences of
LSM elements (M11 and M12) to the degree of erythrocyte aggregation in
blood plasma.

LSM measurements have also been used to examine the formation of li-
posome complexes with plague capsular antigens [14] and various particle
suspensions, e.g., those of spermatozoid spiral heads [8, 9].

Determination of the LSM elements is equally promising for more effective
differentiation between blood cells by time-of-flight cytometry [9, 48, 58, 59].
It is noted in [48] that the comparison between measured signals for all types
of human white blood cells allows one to distinguish between two types of
granulocytes.

LSM elements measurement in the backscattering mode for thin tissue
samples, 25–250 μm of the human skin dermis, bone and muscle, shows a high
level of birefringence and random orientation of the local structure of these
tissues [60,61].

The measurement of angular dependences of LSM elements in a human
lens reveals a significant difference for clear and opaque (cataractous) eyes
(Fig. 5.3). This distinction is due to large nonspherical scattering particles
appearing in the medium of the turbid lens (because of the formation of
high-molecular proteins). A transparent lens contains a monodisperse system
of small-diameter scatterers. A turbid lens contains a reasonable fraction of
larger scatterers. The high sensitivity of the LSM element angular dependences
to the variations in the medium structure makes it possible to employ LSM
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Fig. 5.3. Experimental angular dependences for LSM elements of (a) normal lens
5 h after the death of a 56-year-old subject and (b) cataractous lens 5 h after the
death of an 88-year-old subject. Measurements were performed at a wavelength of
633 nm [62]

measurements for early diagnosis of alterations in the tissue structure which
are related to the appearance of cataracts.

This inference can be illustrated by the results of the direct model experi-
ments presented in Fig. 5.4 [6,63,64]. The measurements are performed in an
α-crystalline solution (quasi-monodisperse particle fraction of ≈ 0.02 μm in
diameter) from a freshly isolated calf lens and in solutions of high molecular-
weight proteins (mean diameter ≈ 0.8 μm) from opaque lenses. The figure
shows that measurements of the angular dependences of the LSM elements
permits the identification of a coarsely dispersed fraction of scatterers that is
difficult to achieve by spectrophotometry.

The method of polarizing light biomicroscopy has been shown to yield
qualitative characteristics that permit detection of images of the eye lens
that correlate with visual acuity; with standard biomicroscopy, there is no
correlation [65].

Laser scattering matrix measurements are also employed for the in vitro
examination of various eye tissues, from cornea to retina. In vivo measure-
ments in the intact eye are equally feasible, provided a fast LSM meter is
used to exclude a sensorimotor eye globe response. In this case, structural
information about selected eye tissues can be obtained to diagnose cataract
and other ophthalmologic disorders.
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Fig. 5.4. Angular dependences for LSM elements of α-crystallin solutions and a
fraction of large-size scatterers isolated from the cataractous lens. The volume frac-
tions of α-crystallin f1 = 0.3 and the large-particle fraction: (1) f2 = 0 (T = 99%);
(2) f2 = 5 × 10−5 (T = 98%); (3) f2 = 1.4 × 10−4 (T = 94%); and (4) f2 =
2.5 × 10−4 (T = 90%), T is the transmittance of the 5 mm thick solution at
λ = 633 nm [14]

A survey of rabbit eye LSM has demonstrated that the aqueous humor
in the anterior eye chamber is actually a transparent isotropic substance ex-
hibiting weak light scattering properties (the intensity of scattered light does
not exceed 1.5–2% of the incident light intensity) owing to the presence of
dissolved organic components. The results of an LSM study in the vitreous
humor indicate that its amorphous tissue does not affect the polarization of
straight-transmitting light, offering a possibility for ocular fundus image and
optic nerve structure examination, which is important for early diagnosis of
glaucoma [28, 29, 34, 66]. On the other hand, certain pathological changes in
the vitreous humor may be responsible for the alteration of the LSM elements.
Specifically, a minor intraocular hemorrhage is easy to identify by virtue of
conspicuous light scattering from erythrocytes.
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Scanning laser polarimetry [28, 29] and multispectral imaging micro-
polarimeter [34, 66] assess the retinal nerve fiber layer (RNFL) for glaucoma
diagnosis by detecting the birefringence of the peripapillary RNFL. It has been
found that RNFL behaves as a linear retarder. The retardance is constant at
a wavelength range between 440 and 830 nm and persists after tissue fixa-
tion [34]. The average birefringence measured in the transmittance mode by
the multispectral imaging micropolarimeter [34,66] for a few rat RNFLs with
an average thickness of 13.9± 0.4 μm is 0.23± 0.01 (nm μm−1) (or 2.3× 10−4)
before and 0.19 ± 0.01 (nm μm−1) (or 1.9 × 10−4) after tissue fixation.

Many tissues demonstrate effects of optical activity that are manifested in
circular dichroism and circular birefringence. The optical activity of tissues
may be conditioned by the optical activity of the substance they are formed
from and by their structural peculiarities. Circular intensity differential scat-
tering (CIDS) is the difference between scattered intensities for left and right
circularly polarized incident light. CIDS effects can be investigated by mea-
suring the LSM element M14 [11]. The so-called “form-CIDS” is an anisotropy
caused by the helical structure of a particle [48]. The CIDS interrelation with
the scatterer structure has been considered [67]. Measurements of CIDS are
used to study the secondary and tertiary structures of macromolecules [68],
the polymerization of hemoglobin in sickle red blood cells [69].

To account for the fibrilar-lamellar structure of eye cornea (see Figs. 2.3,
2.5, and 2.6), theoretical spectra of linear dichroism and dependences of cir-
cular dichroism and birefringence on the angle between lamellas have been
obtained [70]. A system of plane anisotropic layers, each of which is rep-
resented by a densely-packed system of long cylinders (fibrils) whose optical
axes were oriented along a spiral, has also been considered as a corneal model.
The theoretical results correspond qualitatively to the in vitro experimental
data for the LMS of the rabbit cornea.

The polarimetric quantification of glucose is based on the phenomenon of
optical rotatory dispersion (ORD) whereby a chiral molecule in an aqueous
solution rotates a plane of linearly polarized light passing through the solution
[71, 72]. The angle of rotation depends linearly on the concentration of the
chiral species. At physiological concentrations and pathlengths of about 1 cm,
the optical rotation due to glucose is on the order of 0.005◦. The anterior
chamber of the eye (the fluid-filled space directly below the cornea) has been
suggested as a sight well suited to polarimetric noninvasive measurements
[72, 73], since scattering in the eye is generally very small compared to other
tissues.

5.4 Strongly Scattering Tissues and Phantoms

As follows from Chap. 4, given the known character of the Stokes vector
transformation for each scattering act, the state of polarization following
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multiple light scattering in a highly scattering medium can be found us-
ing various approximations of multiple scattering theory or the MC method.
For small particles, the effects of multiple scattering are apparent as a bro-
ken symmetry relationship between the LSM elements (see (3.23)–(3.26)),
M12(θ) �= M21(θ),M33(θ) �= M44(θ), and a significant reduction of linear po-
larization of the light scattered at angles close to π/2 [74].

For a system of small spatially uncorrelated particles, the degree of linear
(i = L) and circular (i = C) polarization in the far region of the initially
polarized (linearly or circularly) light transmitted through a layer of thickness
d is defined by the relation [75].

Pi
∼= 2d

lS
sin h(lS/ξi) · exp(−d/ξi), (5.4)

where ls = 1/μs is the scattering length,

ξi = (ζi · ls/3)0.5 (5.5)

is the characteristic depolarization length for a layer of scatterers, d � ξi, ζL =
ls/[ln(10/7)], ζC = ls/(ln 2).

As can be seen from (5.4), the characteristic depolarization length for lin-
early polarized light in tissues that can be represented as ensembles of Rayleigh
particles is approximately 1.4 times greater than the corresponding depolar-
ization length for circularly polarized light. One can employ (5.4) to assess
the depolarization of light propagating through an ensemble of large-scale
spherical particles whose sizes are comparable to the wavelength of incident
light (Mie scattering). For this purpose, one should replace ls by the transport
length lt ∼= 1/μ′

s (see. (4.17) and (4.18)) and take into account the dependence
on the size of the scatterers in ζL and ζC . With growth in the size of the scat-
terers, the ratio ζL/ζC changes. It decreases from ∼1.4 down to 0.5 as 2πa/λ
increases from 0 up to ∼4, where a is the radius of the scatterers and λ is the
wavelength of the light in the medium; it remains virtually constant at the
level of 0.5 when 2πa/λ grows from ∼4 to 15.

Monte Carlo numerical simulations and model experiments in aqueous la-
tex suspensions with particles of various diameters demonstrate that there
are three regimes of dependence of the ratio of the degree of linear polariza-
tion to circular polarization for transmitted light, PL/PC, on the ratio d/lt
(Fig. 5.5) [75]. In the Rayleigh range, PL/PC grows linearly with an increase
of d/lt. In the intermediate range, this ratio remains constant. In the range
of Mie scattering, this quantity linearly decreases. The behavior of this quan-
tity is associated with the transition of the system under study from one of
isotropic scattering to one of anisotropic scattering.

Qualitatively, the physical mechanism behind the change in the depolariza-
tion character for isotropic single-scattering is associated with the fact that a
considerable probability of backward scattering in each event of light–medium
interaction does not distort linear polarization, whereas backward scattering
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Fig. 5.5. Semilogarithmic dependences of the degree of polarization ratio PL/PC on
d/lt for three ka values, k = 2π/λ. The solid line corresponds to Rayleigh scatter-
ing (ka � 1) and the dashed lines indicate a correspondence between experimental
findings and Eq. (5.4) at ls = lt. The experimental points are measurements for
aqueous suspensions of polystyrol latex spherical particles having diameters 0.22
(�) and 1.05 (◦) μm, λ0 = 670 nm [75]

for circular polarization is equivalent to the reversal of polarization direction
(similar to reflection from a mirror), i.e., it is equivalent to depolarization.
For the same reason, in the case of a strongly elongated scattering phase
function, the degree of circular polarization in an individual scattering event
(anisotropic single-scattering) for light propagating in a layer remains nonzero
for lengths greater than the degree of linear polarization.

These arguments also follow from the above MC simulation of polarized
light interaction with multiply scattering systems [76] and from experimental
works [25, 27]. For example, with high scattering multiplicities, the radiation
scattered by large particles holds preferential circular polarization (LSM ele-
ment M44 is far from zero for all scattering angles) (see Fig. 4.4). With mul-
tiple scattering, the LSM for a monodisperse system of randomly distributed
spherical particles is modified to be approximately identical to the single-
scattering LSM of a system containing nonspherical particles, or optically
active spheres [76,77].

Thus, different tissues, or the same tissues in various pathological or func-
tional states, should display different responses to probes with linearly or
circularly polarized light. This effect can be employed both in optical medical
tomography and in determining the optical and spectroscopic parameters of
tissues. As follows from (5.4), the depolarization length in tissues should be
close to the mean transport path length lt of a photon (see (4.17) and (4.18)),
because this length characterizes the distance within which the direction of
light propagation and, consequently, the polarization plane of the linearly po-
larized light, becomes totally random after many sequential scattering events.

Since the length lt is determined by the parameter g characterizing the
anisotropy of the scattering, the depolarization length also substantially de-
pends on this parameter. Indeed, the experimental data of [78] demonstrate
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Fig. 5.6. Dependence of the depolarization degree (I‖I⊥) of laser radiation (He:Ne
laser, λ = 633 nm; Ar laser, λ = 476/488/514 nm) on the penetration depth for (a)
brain tissue (gray and white matter) and (b) whole blood (low hematocrit) [78].
Measurements were performed within a small solid angle (10−4 sr) along the axis of
a laser beam 1 mm in diameter

that the depolarization length lp of linearly polarized light, which is defined as
the length within which the ratio I‖/I⊥ decreases down to 2, displays such a
dependence. The ratio mentioned above varies from 300 to 1, depending on the
thickness of the sample and the type of tissue (Fig. 5.6). These measurements
were taken within a narrow solid angle (∼10−4 sr) in the direction of the inci-
dent laser beam. The values of lp differed considerably for the white matter of
brain and tissue from the cerebral cortex: 0.19 and 1.0 mm for λ = 476–514 nm
and 0.23 and 1.3 mm for λ = 633 nm, respectively. Human skin dermis (blood-
less) has a depolarization length of 0.43 mm (λ = 476–514 nm) and 0.46 mm
(λ = 633 nm). The depolarization length at λ = 476–514 nm decreases in
response to a pathological change in the tissue of aorta wall: 0.54 mm for a
normal tissue, 0.39 mm for the stage of tissue calcification, and 0.33 mm for
the stage of necrotic ulcer. Whole blood with a low hematocrit is characterized
by a considerable depolarization length (about 4 mm) at λ = 633 nm, which
is indicative of dependence on parameter g, whose value for blood exceeds the
values of this parameter for tissues of many other types and can be estimated
as 0.982–0.999 [4, 5, 79].

In contrast to depolarization, the attenuation of collimated light is deter-
mined by the total attenuation coefficient μe (see (4.21)). For many tissues,
μe is much greater than μ′

s. Therefore, in certain situations, it is impossible
to detect pure ballistic photons (photons that do not experience scattering),
but forward scattered photons retain their initial polarization and can be used
for imaging [80–82]. This is illustrated by Figs. 5.7 and 5.8, which present the
experimental data for the decay of degree of linear polarization PL (see (3.8)),
obtained for a gelatin gel–milk phantom (a model of bloodless dermis) within
a broad wavelength range [46,83], and for various tissues and blood as a func-
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measurements are smaller than the symbols used

tion of light transmission [27]. The kink in the characteristics of polarization
decay (Fig. 5.7b), which is observed for a small thickness of 0.6 mm, can be
attributed to the transition of a medium to the regime of multiple scattering.

The authors of [84] experimentally demonstrated that laser radiation re-
tains linear polarization at the level of PL ≤ 0.1 within 2.5lt. Specifically,
for skin irradiated in the red and NIR ranges, we have μa

∼= 0.4 cm−1, μ′
s
∼=

20 cm−1, and lt ∼= 0.48mm. Consequently, light propagating in skin can retain
linear polarization within a length of about 1.2 mm. Such an optical path in
tissue corresponds to a delay time of 5.3 ps, which provides an opportunity to
produce polarization images of macro-inhomogeneities in a tissue with spatial
resolution equivalent to the spatial resolution that can be achieved with the
selection of photons using more sophisticated time-resolved techniques. In ad-
dition to the selection of diffuse-scattered photons, polarization imaging makes
it possible to eliminate specular reflection from the surface of a tissue, which
allows one to apply this technique to the imaging of microvessels in facile skin
and to the detection of birefringence and optical activity in superficial tissue
layers [36,84–86].

Polarization imaging is a new direction in tissue optics [4–6,24,27,29,31–
36, 60, 75, 77, 81–106]. The most promising approaches for polarization tissue
imaging – linear polarization degree mapping, two-dimensional backscattering
Mueller matrix measurements, polarization-sensitive optical coherence tomog-
raphy (OCT), and full-field polarization-speckle technique – are discussed in
detail in the following chapters.

It should be noted that in media containing large-scale scatterers (a com-
mon tissue model), depolarization is a higher order effect (∼θ4, θ < 1) than
polarization (∼θ2) [107]. It should be emphasized that analysis of the polar-
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ization state in cases involving small-angular multiple scattering is important
for many problems pertaining to the optical diagnosis of biological media
which can be represented as random systems with long-range correlations of
fluctuations of dielectric permittivity. Such systems display coherent scatter-
ing effects [108, 109] or may be expected to show fluctuations of polarization
similar to those in disordered media with large-scale inhomogeneities [110].

In weakly absorbing media showing small-angular multiple scattering, the
degree of linear polarization for a Henyey–Greenstein phase function (see
(4.12)) is described by the following formula [107]:

PL = − [(μ′
sz)4/2θ2

] [√
1 + (θ/μ′

sz)2 − 1
]2 [

1 + (θ/μ′
sz)2

]
. (5.6)

This means that, in a very small angle range θ � μ′
sz), the degree of polar-

ization does not depend on the depth (z)

PL = −θ2/8. (5.7)

At the wings of the scattering angle dependence (θ � μ′
sz), it tends to

PL = −θ2/2, (5.8)

which equals the degree of polarization of singly scattered light.

5.5 Summary

A large variety of polarization-sensitive optical instruments have been used in
the in vitro and in vivo studies of biological objects that are described in the
literature. Light scattering matrix meters (or Mueller matrix scatterometers)
that provide fast and automatic measurements of all 16 LSM elements for a
wide range of scattering angles are the most appropriate measuring systems
for in vivo medical diagnostics. The most advanced systems have a 0–360◦

range of scattering angles, electro-optical modulation of polarization, parallel
polarization-sensitive detection, a matrix elements calculation accuracy of 1–
3%, and a measuring time of 1 s for the whole matrix at one incident angle
and one scattering angle.

LSM measurements are widely exploited for diagnostic purposes to exam-
ine the optical parameters of thin tissue layers and blood cells. For example,
the angular measurements of the total LSM of blood erythrocytes enable us to
distinguish between disc-like and spherulated cells, to account for their pack-
ing density in a monolayer, and to estimate the refractive indices of erythro-
cytes and their degree of aggregation. Such measurements also show promise
for the examination of liposome complexes, other biological particle suspen-
sions, and r cell differentiation in time-of-flight cytometry.

LSM measurements can be employed for in vivo studies of various human
eye tissues, from cornea to retina. Polarization studies of corneal, eye lens,
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vitreous humor, and optic nerve structures are important for early diagnosis
of cataracts, glaucoma, intraocular hemorrhages, etc.

CIDS measurements are used to study secondary and tertiary structures
of macromolecules, the polymerization of hemoglobin in sickle red blood cells.

The anterior chamber of the eye has been suggested as a potential sight
for noninvasive polarimetric rotational glucose sensing with a high degree of
accuracy, since scattering in the eye is generally very small compared to that
in other tissues.

For strongly scattering tissues, there are three different regimes for linear
and circular polarization light transportation. For tissues predominantly com-
posed of small (Rayleigh) particles, the ratio of linear to circular polarization
components grows linearly with an increase in tissue thickness. In the range of
Mie scattering, this quantity linearly decreases, and in the intermediate range,
remains constant. Such behavior of different scattering systems is associated
with the isotropic, anisotropic, or intermediate mode of single scattering at-
tributed to the system under study. All of these regimes are important for
designing polarization-sensitive technologies for medical diagnosis.

Polarization imaging is a new direction in tissue optics. The most promis-
ing approaches for polarization tissue imaging include the following: linear po-
larization degree mapping, the polarization-spectral method, two-dimensional
backscattering Mueller matrix measurements, polarization-sensitive OCT, and
the full-field polarization-speckle technique. These topics are discussed in de-
tail in the following chapters.



6

Polarization-Dependent Interference of
Multiply Scattered Light

6.1 Introduction

With increasing turbidity in a scattering system, the stochasticity of light
propagation in random media causes a number of dissipation phenomena [1]
related to the increasing entropy in the distributions of the local parameters
of the scattered optical fields. Among these phenomena, the decay of polar-
ization of the multiply scattered light is one of the most important features of
radiative transfer in random media. This phenomenon is related to the vector
nature of electromagnetic waves running through a scattering system. From
physical observation, we expect that the specific relaxation scale character-
izing the rate of suppression of the initial polarization of light propagating
in a multiply scattering medium will be closely related to other relaxation
scales which characterize an increase in the uncertainty of the other funda-
mental parameters of electromagnetic radiation. An obvious goal, therefore, is
to determine the relationship between the polarization relaxation parameters,
which can be introduced as the characteristic spatial scales of the decay of the
polarization characteristics chosen to describe the scattered field [2–4], and the
relaxation parameter that characterizes the spatial scale in which the almost
total loss of information about the initial direction of the light propagation
occurs. In terms of radiative transfer theory, the latter parameter is defined as
the mean transport free path (MTFP, see Chap. 4, (4.18); see also, e.g., [5]).
The relationship between the MTFP and the polarization decay parameters is
controlled by the individual properties of each scattering medium, and, con-
sequently, a given scattering system can be specified with adequate reliability
using measurements of the polarization decay rate for the given scattering
and detection conditions. Thus, the introduction of additional polarization
measurement channels into those systems traditionally used for optical diag-
nostics and visualization of optically dense scattering media provides a novel
quality and expands the functional ability of these systems.

An instance of particular interest is the appearance of polarization effects
in the case of stochastic interference [6] of electromagnetic waves traversing
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random media. The most familiar examples of such an appearance are the
polarization-dependent effect of coherent backscattering and the polarization
dependence of temporal correlations of electric field fluctuations induced by
the multiple scattering of coherent light by nonstationary media. These phe-
nomena indicate the vector character of electromagnetic radiation propagating
in random media.

In this chapter, a variety of fundamental effects, related to the mani-
festation of the vector nature of light in the case of multiple scattering by
disordered media, are considered from the viewpoint of their applications in
the optical diagnostics of scattering systems with complex structures such as
biological tissue.

6.2 Coherent Backscattering

Research on the coherent backscattering effect for the case of bulk scattering
of coherent light by dense random media was pioneered by Van Albada and
Lagendijk [7] and Wolf and Maret [8]. Their qualitative explanation of the co-
herent backscattering phenomenon obviously follows from analysis of the for-
mation of a backscattered field induced by the multiple scattering of a plane
scalar monochromatic wave in a random medium with half-space geometry
Fig. (6.1). For a given scattering angle θ, considered to be the superposition
of partial multiply scattered waves with equal wave vectors ks, the scattered
field features an increase in the resulting amplitude for the exact backscatter-
ing geometry (ks = − ki, where ki is the wave vector of the incident wave, and,
respectively, ks is the wave vector of the outgoing multiply scattered wave).
This feature is obviously caused by the constructive interference of partial
waves associated with “direct” and “reverse” sequences of elementary scatter-
ing events (see, e.g., the sequences 1, 2, . . . .,m − 1,m and m,m − 1,. . . .,2,1
shown in Fig. 6.1).

i o - i-th scattering site
"direct" loop
"reverse" loop

1

2 3 i

m

Fig. 6.1. Interpretation of the coherent backscattering effect in the case of multi-
ple scattered scalar waves. The scattered field is detected exactly in the backward
direction with respect to the incident wave
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Both sequences are characterized by the same values of the propagation
paths in a random medium, and, therefore, the phase delay between the “di-
rect” and “reverse” partial waves for each pair of these waves is equal to
zero. The constructive interference of all partial contributions in the case of
θ = 180◦ causes a twofold increase in the scattered field intensity in compar-
ison with the noncoherent summation of scattered partial waves. Any small
divergence between the directions of ki and ks causes an abrupt decrease in
the resulting intensity for all of the partially scattered waves with the same
wave-vector ks down to the value determined by the noncoherent summation
of the partial waves.

A theoretical consideration of the coherent backscattering effect based on
the scalar theory of wave propagation in disordered media [9–11] provides
the triangular form of the backscattering peak with the half width depend-
ing on the ratio l∗/λ (l∗ is the MTFP value of the scattering medium and
λ is the wavelength of the probe light in the scattering medium). Using the
scheme presented in Fig. 6.1, we conclude that, if km differs from k0, the
phase shift between the partial contributions characterized by ”direct” and
”inverse” propagation through the scattering medium can be estimated as(
k0 + km

) · (r1 − rm), where r1 and rm are the positions of the first and
last scattering sites in the considered sequence of scattering events. In this
case, the average interference term, due to all contributions with m scatter-
ing events, will be nonzero and positive for

∣∣km + k0

∣∣ < L−1
m , where Lm is

the average diameter of the loops corresponding to the trajectories of scat-
tered waves in the scattering medium (these loops are not necessarily closed).
It is obvious that the minimum value of Lm is the average distance be-
tween two successive scattering events; that is, the elastic mean free path
l (in the case of isotropic scattering, when l ≈ l∗). Hence, an increase in
the scattered intensity, from an incoherent background value up to a fac-
tor of 2 inside a cone of angular width on the order of λ/l centered at the
backscattering direction, should be expected. More rigidly, an increase can
also be described by using diagrammatic calculations of the intensity of the
scalar wave backscattered from a semi-infinite medium [11]. These calculations
lead to the following form for the angular dependence of the backscattered
light:

I (θ) ∼ (l−1 + kθ
)−2 {1 + [1 − exp (−4k zextθ/3)]/lkθ} , (6.1)

where zext (of the order of l) is the extrapolation length which can be obtained
from the boundary conditions for the diffuse light propagation in the semi-
infinite medium. In the case of anisotropic scattering, the mean scattering
length l should be replaced by the transport mean free path l∗. For small
scattering angles, the angular dependence of the intensity of the coherently
backscattered light in the case of anisotropic scattering has the asymptotic
form:

I (θ) ∼ 5kθ l∗/3, (6.2)
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which predicts the triangular form of the coherent backscattering peak ob-
served in the experiments.

The vector nature of optical fields contributes an additional feature to the
coherent backscattering phenomenon which is manifested as the dependence
of the angular distribution of the intensity inside the backscattering cone on
the polarization state of the detected backscattered radiation. Typically, in
early studies of coherent backscattering, a random medium was illuminated
by a linearly polarized collimated laser beam and the angular dependencies
of the intensity of the two linearly polarized components of backscattered
light were analyzed. One of them is a co-polarized component with the same
polarization azimuth as the incident light, and the other is a crosspolarized
component with the electric vector orthogonally directed with respect to the
electric vector of the incident wave. A typical scheme of an experimental setup
used to analyze the shape of the polarization-dependent coherent backscat-
tering peak is shown in Fig. 6.2.

The normal to flat surface of a cell filled by an optically thick scatter-
ing medium (such as, an aqueous suspension of polystyrene beads) is slightly
inclined with respect to the axis of the illuminating laser beam. This is neces-
sary to avoid the influence of specular reflections from the cell surface on the
coherence backscattering measurements. A manually rotated polarizer P2 is

TS

S

S

PD PH  P2
L3 BS

CELL

P1

LASER

CH
L1
L2
D

Fig. 6.2. An optical scheme used to study the coherent backscattering effect for
orthogonally polarized components of backscattered light (see, e.g., [8]). P1 and
P2 are polarizers; CH is a chopper; lenses L1 and L2 form the telescopic system –
beam expander and collimator; D is a diaphragm; BS is a beam splitter; lens L3 is
used to transform the angular distribution of the backscattered light intensity to the
corresponding spatial distribution in its focal plane; S is a screen; the detection unit
used to analyze the angular dependence of the backscattered light intensity consists
of a pinhole diaphragm PH, a photodetector PD, and a translation stage TS
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used to select the co-polarized or crosspolarized component of the backward
scattered light. Typical forms of the angular distributions of the intensity of
the “polarized” (co-polarized) and “depolarized” (crosspolarized) parts of the
backscattered radiation are illustrated by Fig. 6.3.

A qualitative explanation, based on transfer matrix formalism, can be pro-
vided to interpret the difference between the values of the backscattering en-
hancement factors (i.e., the ratio of the intensity of the light scattered exactly
in the backward direction to the backscattered intensity outside the coherent
backscattering cone) for co-polarized and crosspolarized detected light [7]. By
introducing the two-dimensional polarization vector of propagating light as p,
we can establish the relationship between the incoming and outgoing light
as pout = Mpin, where M is a 2 × 2 matrix, defined by a certain scattering
diagram (light path). The resulting intensity of the scattered light can be ob-
tained from the square of the sum of all possible light paths. The scattered
light intensity outside the coherent backscattering cone can be obtained by an
incoherent summation, and this multiple-scattered background will be almost
totally depolarized. This leads to the following relationship for the elements
of a transfer matrix: 〈

M2
11

〉
=
〈
M2

22

〉
=
〈
M2

12

〉
=
〈
M2

21

〉
, (6.3)

where the ensemble averaging is provided by a summation over all possible
light paths. Inside the coherent backscattering cone, the reverse light path
should be added coherently to each light path. The reverse path is obtained
from a given path by reversing all of its momenta; its transfer matrix M̃ can be
obtained by using the following rule: M̃ij = Mji. By taking into account the
symmetry requirements, we can conclude that all of the crossproducts should
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Fig. 6.3. Typical shapes of the coherent backscattering peaks for co-polarized and
crosspolarized components in the case of bulk scattering by random dielectric media
(for specified scattering systems, see, e.g., [7] and [8])
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vanish: 〈MijMkl〉 ∼ δikδjl. When this result is used to add two backscatter di-
agrams coherently, a polarization-dependent enhancement factor is obtained,
and its value is equal to 2 for the backscattered light polarized parallel to
the incident light and 1 for the perpendicular component. Note that in real
scattering systems, the experimentally measured values of the enhancement
factor differ from those obtained on the basis of the above simple qualita-
tive considerations. In particular, in the case of aqueous suspensions of 1.091
μm polystyrene beads, the values of the enhancement factor obtained by Van
Albada and Lagendijk [7] are close to 1.6 for the co-polarized component
(instead of the predicted value of 2) and close to 1.3 for the crosspolarized
component (instead of the predicted unity value). Similarly, in an experiment
with 0.46 μm polystyrene spheres in water, Wolf and Maret [8] obtained values
on the order of 1.75 for the co-polarized component and 1.25 for the crosspo-
larized component. On the other hand, an experimental study of coherent
backscattering from a disordered sample consisting of BaSO4 particles (Ko-
dak reflection filter, [12]) showed an absence of an expressed peak for angular
dependence in the intensity of the crosspolarized component while the depen-
dence of the co-polarized component was characterized by an enhancement
factor approximately equal to 1.9.

More rigid theoretical considerations provided by Stephen and Zwilich [10]
allowed them to obtain values of an enhancement factor equal to 1.9 and 1.2,
respectively. An expanded theoretical study of the coherent backscattering
of light by disordered media based on diagrammatic calculations was carried
out by Akkermans et al. [11]. Other variables, including the time-dependent
effects, the effects of absorption and the fractal nature of the scattering media
were considered with particular attention devoted to anisotropic scattering
and the influence of the polarization state of the backscattered light. They
found that the angular dependencies of the intensity of the co-polarized and
crosspolarized components of backscattered light for the scattering system,
which is characterized by isotropic scattering, can be described by the follow-
ing relationship:

III(θ) ∼
∑

n

dnIII(n) exp

(
−n

3

(
2πl

λ

)2

θ2

)
,

I⊥(θ) ∼
∑

n

(1 − dnII)C(n)I(n) exp

(
−n

3

(
2πl

λ

)2

θ2

)
, (6.4)

where summation is carried out over the number of scattering events which
correspond to various contributions to the scattered optical field. I (n) is
the incoherent contribution obtained for scalar waves within the diffusion
approximation (I (n) ∼ n−1.5); and the values of dnII are the depolariza-
tion ratios, which determine the intensity transfer from the initial polar-
ization to the perpendicular component. In the case of isotropic scattering,
dnII =

(
1 + 2

(
0.7
)n−1)

/
(
2 +

(
0.7
)n−1). The values of C(n) are the average
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coherence ratios between pairs of time-reversed sequences of scattering events,
which vary from 1 for n = 2 to zero for n → ∞. It should be noted, how-
ever, that this approach breaks down in the case of short paths because of
the inaccuracy of the expressions for dn‖, I(n), and C(n) under this condition.
Nevertheless, the obtained expressions are in good agreement with the exper-
imental results [5]. These authors noted that the main results obtained for
Rayleigh scattering systems can be easily expanded to the case of nonpoint-
like scatterers characterized by expressed scattering anisotropy. Anisotropic
scattering can be described as the replacement of the mean elastic free path l
by the MTEP l∗ in the above expressions.

Of particular interest is the manifestation of coherent backscattering of cir-
cularly or linearly polarized light for random dielectric media whose optical
properties are altered by a Faraday rotation, or for scattering media with nat-
ural optical activity. Such specific scattering systems, which were considered
by MacKintosh and John [13], can be defined as time-reversal-noninvariant
and parity-nonconserving media. It has been established that the effect of
breakdown of the time-reversal and parity symmetries is similar to that of the
case of backscattering from systems with confined geometry or from an ab-
sorptive medium. In these cases, the suppression of the long scattering paths
reduces the intensity of the coherent backscattering peak. However, the in-
fluence of a Faraday rotation or the natural optical activity of a scattering
medium on the coherent backscattering of circularly polarized light is char-
acterized by the opposite tendencies: the first suppresses only backscattered
light of the same helicity as the incident light, whereas the latter suppresses
coherence in the opposite helicity channel while the helicity-preserving channel
remains unaffected. This study shows that in the case of circularly polarized
light the helicity-preserving component of the backscattered peak is quantita-
tively similar to the peak calculated for scalar waves. The enhancement factor
for these conditions is exactly equal to 2. This similarity is also manifested
in the dependence of the backscattered peak parameters on the thickness and
absorption properties of the scattering medium.

It should be noted, however, that observable changes in the backscattered
peak shape can be obtained in the case of a very strong Faraday rotation. For
instance, estimates of the required rotation for a scattering medium charac-
terized by an elastic mean free path equal to 20 μm provide a value on the
order of 500◦ per mm. In real materials, such a strong rotation is accompanied
by absorption, and it is difficult to distinguish between these effects.

6.3 Polarization-Dependent Temporal Correlations of
the Scattered Light

A difference in propagation conditions for partial waves with different polar-
ization states running through disordered media is also manifested as the influ-
ence of the polarization discrimination of detected multiply scattered light on
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the decay of the temporal correlation G1 (τ) = 〈E (t) E∗ (t + τ)〉 of scattered
field fluctuations, which are induced by random motions of scattering sites in
the probed medium. This influence results from differences in the pathlength
statistics of partial components of the multiply scattered optical field. These
partial components are characterized by different polarization states. In par-
ticular, if the multiple scattering nonstationary medium is probed by a linearly
polarized coherent light, the difference in the pathlength statistics for the co-
polarized (I‖) and crosspolarized (I⊥) components of the detected scattered
light manifests itself as the difference in the values of the correlation time of the
intensity fluctuations of the scattered light. Consequently, the correlation func-
tions of the detected intensity fluctuations g2 (τ) = 〈I (t) I (t + τ)〉/〈I2 (t)

〉−1
for the co-polarized (g2‖ (τ)) and the crosspolarized (g2⊥ (τ)) components are
characterized by different values of the decay rate, estimated as the asymp-
totic value of the slope of curves g2‖ (τ) and g2⊥ (τ) in the vicinity of τ= 0.
Such divergence of the decaying polarization-sensitive correlation functions
of the scattered light intensity fluctuations is especially pronounced for the
specific case of backscattered light detection, in which the difference between
pathlength distributions of the I‖ and I⊥ components becomes dramatic. Ex-
perimental study of the influence of the detected light polarization state on
the decay of the temporal correlations of coherent radiation backscattered by
random nonstationary media was pioneered by MacKintosh et al. [14]. The
most fundamental results obtained in their work are listed as follows:

(1) The decay rates, as well as the ratio of the intensities of the backscattered
components with opposite polarization states in the case of scattering
media illuminated by linearly polarized light (i.e., the co-polarized and
crosspolarized components), are strongly influenced by the scatter size
parameter ka (k is the wave number of the probe light and a is the char-
acteristic size of the scattering particle, e.g., the radius for spherical par-
ticles). In the case of Rayleigh scattering systems consisting of small-sized
particles and characterized by an isotropic phase function, the difference
between the slopes of g2‖ (τ) and g2⊥ (τ) is maximal and the backscattered
light is characterized by a significant degree of residual polarization. On
the other hand, in media with an expressed scattering anisotropy (Mie
scattering regime), the degree of residual polarization of the backscat-
tered radiation approaches 0, and the difference in the slopes of g2‖ (τ)
and g2⊥ (τ) is small;

(2) In the case of scattering media probed by circularly polarized light, the
behavior of the detected components with opposite helicity (i.e., with right
circularly polarized and left circularly polarized light) differs from that of
linearly polarized light. In particular, with small-sized scattering particles,
the correlation function for the helicity-preserving channel (i.e, for scat-
tered light with the same helicity as the incident light) decays faster than
that in a polarization channel with the same helicity. This feature can be
explained by the fact that with circularly polarized light, the low-order
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scattering sequences yield backscattered light that is primarily of the op-
posite helicity and the incident and reflected photons are related by mirror
symmetry.

An important issue in studying the multiple scattering of coherent light
by disordered nonstationary systems is the asymptotic behavior of the tem-
poral autocorrelation functions of the scattered field fluctuations G1 (τ) =
〈E (t) E∗ (t + τ)〉. Based on a diffusion approximation, a theoretical predic-
tion for a case involving backscattering from a disordered Brownian medium
has G1 (τ) decaying as ∼1 − γ

√
6τ/τ0 with an increasing time delay, where

τ0 is the single-scattering correlation time for a Brownian medium equal to(
k2D

)−1. D is the self-diffusion coefficient of the Brownian particles. It should
be noted that theoretical predictions of the shape of the coherent backscat-
tering cone show the linear asymptotic, which is also dependent on the slope
parameter γ. The value of γ is controlled by the boundary reflectivity and
the mean scattering pathlength. Estimating on the basis of the scalar diffu-
sion theory of light propagation in disordered media, the slope equals ≈ 2.4.
For realistic scattering systems, the experimentally obtained values of γ are
strongly influenced by the scattering anisotropy of the probed medium as well
as the polarization state of the detected light. In particular, the experimental
data obtained by MacKintosh et al., leads to the following relations between
the scattering anisotropy, the polarization state of the probe light and the
autocorrelation function slope:

– If a scattering medium consisting of small-sized particles is illuminated by a
linearly polarized light and the linearly polarized backscattered component
with the same polarization state as of an incident light (the co-polarized
component) is detected, then the slope is approximately equal to γ‖ ≈ 1.45;
the “crosspolarized” autocorrelation function is characterized by γ⊥ ≈
3.06;

– The expressed anisotropic scattering (Mie scattering regime) is character-
ized by the close values of γ‖ and γ⊥: γ‖ ≈ 1.96, γ⊥ ≈ 2.17;

– If a Rayleigh scattering medium is illuminated by a circularly polarized
light and the values of γ are estimated for circularly polarized components
of the backscattered light with the same (γ+) or opposite (γ−) helicity as
an incident light, then γ+ ≈ 2.68, γ− ≈ 1.59;

– Similar estimates for scattering systems consisting of large-sized scatter-
ing particles lead to the following relationships: γ+ ≈ 1.72, γ− ≈ 2.62. In
this case, the circular polarization channels exhibit a high degree of polar-
ization memory and their relative behavior appears reversed with respect
to the case of Rayleigh scattering systems. This means that the helicity-
preserving channel decays more slowly than the opposite-helicity channel.
This effect is also reflected in the intensity ratio: 〈I+〉/〈I−〉 = 1.40.

A theoretical consideration of these effects was carried out by MacKintosh
and John [15]. In a case involving the probing of multiply scattering media
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by linearly polarized light and backscattered light detection, the evolution
of the polarization state for the various partial components of the scattered
optical field allows for the following geometric interpretation (Fig. 6.4). Each
partial component propagating in the scattering medium and undergoing the
sequence of scattering events on the randomly distributed scattering sites,
can be characterized by the current orientations of its wave vector ki and
unit vector êi which characterize the current direction of the electric field
vector. Correspondingly, each ki state can be represented by the position of
the imaging point on the surface of a sphere of radius k. The upper pole
of the sphere corresponds to the wave vector of the incoming probe light and
the bottom pole corresponds to the wave vector of the outgoing backscat-
tered light. If a scattering system consists of large-sized scattering sites (Mie
scattering regime) and is characterized by an anisotropic phase function, then
each backscattered component is generated as a result of a sequence of a great
number of scattering events. This process can be interpreted as the gradual
movement of the imaging point from the upper pole of the sphere to the bot-
tom pole. The following rule for the transformation of êi to êi+1 due to the
ith scattering event, can be considered [14]:

êi+1 ∼ êi −
(
kiêi

)
ki

/∣∣ki

∣∣2, (6.5)

where ki is the intermediate wave vector for the ith scattering event.
Each backscattered partial contribution can be associated with a certain

trajectory of the imaging point which connects both poles of the sphere.
Considering the various trajectories along the meridians, M1,M2 and M3,

e
_

e
_

e
_

e
_
||

e
_

k
_
i

k
_ k

_

−k
_
i

e
_

L3

L2

M2

M3
45�

L1

M1

Fig. 6.4. Evolution of the polarization state of linearly polarized light propagating
in multiply scattering medium
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it is easy to see that if the electric field vector of the incoming linearly polar-
ized light is oriented in the meridian plane (M1), or directed orthogonally to
this plane (M3), then the sequences of the scattering events, which correspond
to the movement of the imaging point along the trajectories L1 and L3, will
cause the direction of the electric field vector for the outgoing backscattered
component to be the same as for incident light. But the sequence of scatter-
ing events presented by the L2 trajectory will cause the outgoing component
with the electric vector to be orthogonally oriented with respect to the electric
vector of the incident light. Thus, for scattering media with strong scattering
anisotropy, the contributions of the partial components that preserve the ini-
tial polarization state and the components that cause a 90◦ rotation of the
electric vector, will be approximately the same, and the resulting outgoing
light will be almost totally depolarized.

On the other hand, with scattering media characterized by an isotropic
phase function (Rayleigh scattering systems), the relative contributions of the
low-step-scattered partial components (single-scattered, twice-scattered, etc.)
are sufficient and results in a noticeable degree of residual linear polarization.

By considering a nonstationary scattering medium and analyzing the cor-
relation properties of the backscattered light propagating in two polariza-
tion channels which are characterized by opposite polarization states (such as
channels with parallel and perpendicular polarization in the case of incident
linearly polarized light), we can introduce two temporal correlation functions
of scattered field fluctuations:

G1II (τ) = 〈EII (t) E∗
II (t + τ)〉 ; G1⊥ (τ) = 〈E⊥ (t) E∗

⊥ (t + τ)〉 . (6.6)

MacKintosh and John obtained the following relationship for G1II (τ) , G1⊥ (τ)
in a case involving backscattering from a Brownian medium consisting of un-
correlated point-like scatterers (the so-called white-noise model, in which the
incident and reflected wave vectors do not influence the light propagation
inside the scattering medium):

G1II(τ) ∝ G(τ, 0) +
20
7

G
(
τ,
√

9/7
)

(6.7)

G1II(τ) ∝ G(τ, 0) − G
(
τ,
√

9/7),

where the parameter-dependent function G (τ, ζ) is calculated as:

G (τ, ζ) =
∫ ∞

0

dz exp (−z/l)
∫ ∞

0

dz′ exp (−z′/l)
∫

d2ρ

×

⎡⎢⎢⎣exp
{
− (6τ

/
τ0 + ζ2

)0.5
[
ρ2 + (z − z′)2

]0.5

/l

}
[
ρ2 + (z − z′)2

]0.5 (6.8)

−
exp

{
− (6τ

/
τ0 + ζ2

)0.5
[
ρ2 + (z + z′ + 2zb)

2
]0.5

/l

}
[
ρ2 + (z + z′ + 2zb)

2
]0.5

⎤⎥⎥⎦ ,
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and the z axis is directed normally to the interface between the free space
and the scattering medium, ρ2 = x2 + y2. l is the mean scattering free path
length, and zb is the so-called extrapolation length depending on the bound-
ary reflectivity of the scattering medium. The parameter ζ can be considered
the “effective absorption” of the propagating light causing a cut-off of the
long-path components due to the polarization discrimination of the detected
backscattered light. With ζ �= 0, only short-path components with s ≤ l∗/ζ
contribute to the detected backscattered light. Thus, it is easy to see that the
co-polarized correlation function G1II (τ) is enhanced because of the cut-off
of the long-path components and the predominating contribution of the short
paths, while the correlation function for crosspolarized light is mainly influ-
enced by the long-path components which obviously cause the depolarization
of the propagating wave. Estimates of the asymptotic values of the autocorre-
lation function slope γ for co-polarized and crosspolarized light backscattered
from a Rayleigh scattering medium were achieved by using (6.7) and (6.8)
which yielded magnitudes of γII ≈ 1.6 and γ⊥ ≈ 2.7 which are very close to
the experimental values obtained in the case of scattering 488 nm light from
uncorrelated polystyrene latex spheres with a diameter of 0.091 μm [14].

A similar analysis can be used to consider a scattering media illumina-
tion with circularly polarized light. Calculations of the correlation functions
for the two circularly polarized channels (one referred to as the helicity-
preserving channel and the other as the opposite helicity channel) give the
polarization-dependent correlation functions for light backscattered from a
disordered medium consisting of point-like scatterers as:

G1+ (τ) = G1 (τ, 0) +
1
2
G1

(
τ,
√

9/7
)
− 5

6
G1

(
5
9
τ,
√

5/3
)

;

G1− (τ) = G1 (τ, 0) +
5
7
G1

(
τ,
√

9/7
)

+
5
3
G1

(
5
9
τ,
√

5/3
)

.

(6.9)

These relations give the slope values for the helicity preserving and opposite
helicity channel as γ+ ≈ 2.4 and γ− ≈ 1.7. The obtained relations are valid
in the case of short delay times τ and for isotropic scattering by small-sized
particles.

In comparison with linearly polarized light, circularly polarized light,
which propagates in a disordered medium with expressed scattering
anisotropy, demonstrates the existence of “polarization memory.” This ef-
fect is related to a much lower decay rate for the wave helicity in comparison
with the randomization rate for the propagation direction and results in a
dramatic difference between γ+ and γ− for scattering anisotropy g ≥ 0.7 as
was mentioned in [15]. Following MacKintosh and John, the superior sur-
vival of circular polarization compared to that of linear polarization can be
explained by the fact that the probability of scattering with, and without,
a spin flip depends only on the scattering angles which are independent of
the azimuthal rotations. Considered in terms of the Born approximation for a
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case of scattering from small particles, the amplitudes for scattering through
an angle θ with, and without, a spin flip can be obtained as proportional
to (1 − cos θ)/2 and (1 + cos θ)/2, respectively. This gives the probability of
a spin flip for small scattering angles decreasing as θ4, while the degree of
randomization of the wave’s direction grows as n〈θ2〉 after n scattering events.

In the case of large scattering particles, a similar analysis can be carried
out based on Mie theory. With highly anisotropic scattering, the temporal
correlation function of the field fluctuations in the helicity preserving channel
is enhanced in comparison with the opposite helicity channel by the more
probable paths without a spin flip. It has been shown [15] that the probabil-
ities of scattering events without, and with, a spin flip can be expressed for
anisotropic scattering as follows:

p± ≡ 1
2

(1 ± A) , (6.10)

where A is the asymmetry factor which depends on the scattering anisotropy
(i.e., on the particle size). For Mie scattering systems, A ≈ 1. Thus, the prob-
ability of n scattering events without a spin slip is equal to [(1 + A)/2]n.
After calculation, the following expression for the pathlength probability den-
sity distributions corresponding to the helicity preserving and the opposite
helicity channels were obtained:

ρ± (s) =
ρ (s)

2

(
1 ± e−s/n′l

)
, (6.11)

where the asymmetry factor is related to n′ as A ≡ exp(−1/n′) and n′ is de-
termined by the number of scattering events which are required to randomize
the wave’s helicity. In particular, for scattering systems with g = 0.9, the value
of n′ was found to be equal to ∼50. Such differences in the pathlength distri-
butions for the helicity preserving and the opposite helicity channels resulted
in the above mentioned divergence of the slope values γ+ and γ−.

Also, the polarization-dependent temporal correlations of light multiply
scattered by nonstationary random media have been studied under a wide va-
riety of scattering conditions by many research groups. In particular, Kuz’min
and Romanov [16] studied the angular dependencies of correlation functions
theoretically to determine the copolarized and cross-polarized components of
light backscattered by Brownian scattering systems. The slope parameters
for the field correlation functions g1II(τ) and g1⊥(τ) were calculated inside,
and outside, of the coherent backscattering cone. It was found that the initial
slope for g1II(τ) decreases with an increasing scattering angle (i.e., the angle
between the directions of the incident light propagation and scattered light
collection). On the other hand, the initial slope for g1⊥(τ) does not depend
on the scattering angle.

A specific case of polarization-dependent behavior of temporal correlation
functions of scattered light fluctuations involves multiple scattering from dense
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crystallizing colloidal systems which can be considered scattering media with
partial correlations between separate scattering sites. It was discovered by
Sanyal et al. [17] that the appearance of a crystalline phase in dense colloidal
suspensions causes specific behaviors of the copolarized and crosspolarized
temporal correlation functions of scattered light, namely, the decay to zero
of the time correlation for depolarized light (crosspolarized component) as in
a liquid, and the existence of a noticeable residual correlation at large decay
times for co-polarized scattered light (as expected for the solid phase). It was
also found that with colloidal samples that were aged for several weeks, the
temporal correlation function for the crosspolarized signal also became non-
decaying. This effect was observed for 0.115 μm diameter charged polystyrene
spheres in water with a volume fraction f = 0.03. A mixed bed of ion-exchange
resins in suspension at the bottom of the cell was used to reduce the ionic im-
purities. The sample cell was probed by light from a Kr laser (λ = 647.1 nm),
and light scattered at θ = 165◦ was detected. The normalized autocorrelation
functions of the intensity fluctuations of the co-polarized and crosspolarized
components of the scattered light were measured using a Malvern correlator.
The autocorrelation functions of the field fluctuations were obtained from
corresponding intensity correlation functions based on the Siegert relation-
ship [18]: g2(τ) = 1 + |g1(τ)|2.

At the initial stage of the experiment (before adding resins), both correla-
tion functions g1II(τ) and g1⊥(τ) demonstrate behavior which is typical for the
above described noncorrelated random media; their decay fits well with the
form: ∼ exp

⌊−γ(6τ/τ0)0.5
⌋

with τ0 = 1.8086ms and γII ≈ 1.89 and γ⊥ ≈ 2.87.
The appearance of a micro-crystalline phase after adding resins manifests it-
self as the decay of g1II(τ) to a nonzero constant and the decay of g1⊥(τ)
to zero at essentially the same rate as in the liquid. Additional transmission
measurements carried out on the same state of the sample also show similar
behavior indicating that the sample is in a state of arrested translation mo-
tion throughout, which is typical for the solid state. Because of the ergodicity
of the system being considered, the experimental autocorrelation functions of
the co-polarized light, obtained by using ensemble and time averaging, exhibit
different behavior (in particular, the ensemble averaged intensity correlation
function is characterized by a slower decay rate and a larger residual value
than the time-averaged correlation function).

This behavior of polarization-dependent temporal correlations of scattered
light has been explained based on the consideration of wave propagation in
densely packed random media. Because the studied system is characterized
by the following ratio: λ > af−1/3 (a is the particle radius), several par-
ticles are contained inside an arbitrarily chosen local volume of the probed
medium, which is defined by a characteristic size on the order of the wave-
length of the probe light. In this case the spatial fluctuations of the dielectric
tensor components can be described in terms of a smoothly varying field. By
considering the wave equation for the electric field of a monochromatic wave
propagating in a densely packed random fluctuating medium, the following
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system of equations for the amplitudes of the co-polarized and crosspolarized
components of the propagating waves can be written:

− ∂2

∂s2

(
EII(s)
E⊥(s)

)
= k2

0

↔
A (�(s), t)

(
EII(s)
E⊥(s)

)
+ k2

0 [ℵ (�(s), t) + 1]
(

EII(s)
E⊥(s)

)
,

(6.12)
where �(s) is the random-walk path of the propagation of the partial wave in

the scattering medium; ε0ℵ and ε0

↔
A are the local fluctuations of the isotropic

and anisotropic parts of the dielectric tensor components; and ε0 is the av-
erage dielectric constant of the medium which is isotropic at large spatial
scales. With some simplifying assumptions about the structural properties of
the scattering medium, the system, described by (6.12), may be solved ana-
lytically. After ensemble averaging, the following expressions can be obtained
for the “single-path” polarization-dependent correlation functions of the field
fluctuations:

G1II (τ) =
E2

0

2
exp
[
−Cs + Cse−τ/τI − Ss

] [
exp
(
Sse−τ/τA

)
+ exp

(
−Sse−τ/τA

)]
G1⊥ (τ) =

E2
0

2
exp
[
−Cs + Cse−τ/τI − Ss

] [
exp
(
Sse−τ/τA

)
− exp

(
−Sse−τ/τA

)]
,

where the constants C and S are defined by the covariance terms for the
fluctuating anisotropic part of the dielectric tensor which are assumed to be
delta-correlated in space and exponentially decaying in time. The values of
τI and τA characterize the temporal decay of the covariance terms.

It is easy to see that at a large-time limit (τ � τI , τA), the “single-path”
correlation function for the co-polarized component is characterized by a non-
zero asymptotic value of (E2

0/2 exp[−(S + C)s], while the crosspolarized cor-
relation function asymptotically approaches zero. In other words, the effect
of the residual nonzero temporal correlation of the co-polarized component of
the multiply scattered light is associated with the presence of some anisotropic
entities caused by the imperfectly crystallized regime.

Similar behavior of the temporal correlation functions of the co-polarized
and cross-polarized components of laser light multiply scattered by collagen-
containing tissue was observed in a speckle-correlation experiment with human
sclera [19]. In the terms of the theoretical interpretation presented here, it can
be concluded that the presence of anisotropic components, such as collagen
fibers in the tissue structure, cause noticeable diversity in g2‖ (τ) and g2⊥ (τ)
when the time scale is large.

6.4 Polarization Microstatistics of Speckles

One of the fundamental manifestations of the polarization phenomena in the
multiple scattering of coherent light by disordered media is the vector na-
ture of speckle-modulated multiply scattered optical fields. When manifested
as random spatial fluctuations of amplitudes and phases of the orthogonally
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directed components of the scattered field in the observation plane, the vec-
tor nature of the multiply scattered speckles usually appears at spatial scales
that are associated with the characteristic size of the “coherence area” of the
observed speckle field (i.e., the average speckle size). In the case of multiple
scattering, the vector statistics of the speckle fields are related to the proba-
bility of a change in the polarization state of the partial waves propagating
in a random medium along the different Feynman paths which are associated
with the random sequences of many scattering events. Each scattering event
rotates the incident polarized field randomly. Consequently, the resulting ob-
served field at the arbitrarily chosen detection point is constructed as the
superposition of the partial waves incoming to the detection point from the
scattering medium. This process changes the incident polarization state in a
statistical fashion.

In the particular case of scalar speckle fields, which are usually induced
by the propagation of a coherent light in single scattering systems with no
birefringence, the statistical properties of the spatial fluctuations of the speckle
amplitude, phase and intensity are totally described by the corresponding
probability density functions ρ(E), ρ(ϕ) and ρ(I). In the general case of a
vector speckle field, the statistical description of the random fluctuations of
scattered light requires a more sophisticated approach. A convenient method
for arriving at such a description is to use the covariance, or the coherency
matrix of the scattered light, which depends on both the properties of the
scattering medium and the polarization state of the incident light. The basic
variables for describing the in-observation-plane amplitude distribution of the
scattered field are the real and the imaginary parts of the field components
Ex = Er

x+iEi
x and Ey = Er

y +iEi
y, where −∞ < Er,i

x,y < ∞ and the coordinate
system 0xy is usually introduced by taking into account the polarization state
of the incident light. The Gaussian statistics of the real and imaginary parts
of the scattered field components Ex, Ey are usually assumed in cases of the
multiple scattering of coherent light by random media, and the following form
of the joint probability density function for the above considered four variables
can be introduced, as shown by Goodman [20] and used by Barakat [21]:

ρ
(
Er

x, Ei
x, Er

y , Ei
y

)
=

1
π2d

exp
(
−1

d

[
j22 |Ex|2 + j11 |Ey|2 −

− 2Re (j12E∗
xEy)]) ,

(6.13)

where jkm are the elements of the 2 × 2 covariant Hermitian matrix � intro-
duced as:

� =
( 〈E∗

xEx〉 〈E∗
xEy〉〈

E∗
yEx

〉 〈
E∗

yEy

〉) (6.14)

the brackets 〈 〉 denote the ensemble averaging, and d = det �.
In scattering systems with statistically independent Feynman paths, the

following relations are valid for the elements of the coherency matrix:

〈Er
xEr

y〉 = 〈Ei
xEi

y〉 =
1
2
jr
12; 〈Er

xEi
y〉 = −〈Ei

xEr
y〉 =

1
2
ji
12. (6.15)
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In addition, the following relation takes place for � as the Hermitian matrix:

j12 = j∗21 = jr
12 + iji

12. (6.16)

The matrix elements jkm are simply related with the averaged values of
the Stokes parameters of the scattered light:

〈I〉 = j11 + j22;

〈Q〉 = j11 − j22; (6.17)

〈U〉 = 2jr
12;

〈V 〉 = 2ji
12,

and, correspondingly,

d =
1
4
(〈I〉2 − 〈Q〉2 − 〈U〉2 − 〈V 〉2).

The total degree of polarization can be easily calculated as:

P =

√〈Q〉2 + 〈U〉2 + 〈V 〉2
〈I〉 =

√
1 − 4 det2 �

|tr�|2 . (6.18)

Thus, by measuring the “global” polarization parameters of multiply scattered
light, such as 〈I〉, 〈Q〉, t〈U〉, 〈V 〉, one can reconstruct the statistical properties
of the Gaussian speckle fields of the expressed vector nature.

Another type of variables can be introduced to describe the polarization
microstatistics of multiple scattered speckle fields. Here, the object of spe-
cific interest is the probability density functions of the parameters of the
polarization ellipse reconstructed at each point of the observation plane.
Figure 6.5 shows the variety of such local polarization ellipses where each

Fig. 6.5. Variety of shapes and orientations of the polarization ellipse for the vector
speckle field
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is associated with a certain speckle spot in the observation plane. A set of
polarization ellipse parameters (Fig. 6.6). can be introduced [22] – the am-
plitudes of the major (Aa) and the minor (Ab) axes, and the corresponding
intensities Ia = (Aa)2, Ib = (Ab)2, which are determined by the following
relations:

Ia = (Aa)2 =
1
2

{
(Ax)2 + (Ay)2

+

√[
(Ax)2 − (Ay)2

] 2

+ 4 (Ay)2 (Ay)2 cos2 δ

}
,

Ib = (A b)
2 =

1
2

{
(Ax)2 + (Ay)2

−
√[

(Ax)2 − (Ay)2
] 2

+ 4 (Ay)2 (Ay)2 cos2 δ

}
,

Ax =
√

(Er
x)2 + (Ei

x)2,

Ay =
√

(Er
y)2 + (Ei

y)2,

δ = arg(Ey) − arg(Ex).

In addition, the azimuth of the polarization ellipse is characterized by the
angles ψ± between the major (+) and minor (−) axes relative to the x axis. For
this set of parameters, the joint probability density function can be obtained
in the case of Gaussian speckle fields [21] by taking into account (6.13):

ρ (Ia, Ib, ψ±) =
1
πd

Ia − Ib√
IaIb

exp
(
− (j11 + j22) (Ia + Ib)

2d

)
× cosh

(
2 |j12|

d
sin β

√
IaIb

)
× cosh [Z (ψ±) (Ia − Ib)] , (6.19)

where Z(ψ±) = j12
d cos β sin 2ψ± + (j11−j22)

2d cos 2ψ± and the value of β is
determined as β = arg(j12).

Ay

Ay

Aa

Ab

Fig. 6.6. Parameters of the polarization ellipse
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We can see that ρ(Ia, Ib, ψ±) is always equal to zero if Ia = Ib. This means
that the probability of finding the speckle spot in which the scattered light
is circularly polarized is equal to zero for any scattering system except the
trivial case of d ≡ 0, which corresponds to circular input polarization and a
unit degree of polarization.

6.5 The Concept of Polarization-Correlation Universality

The concept of polarization-correlation universality was considered by Freund,
Kaveh, Berkovits, and Rosenbluh [23] in relation to the microstatistics of
optical waves in random media. Microstatistics is associated with the vector
nature of speckle-modulated optical fields induced by the multiple scattering
of coherent light in disordered media. Following this approach, we can denote
the scattered field components by Ein,out, so that Exy represents a y-polarized
output produced by a x-polarized input, and we can introduce the correlation
matrix of the scattered fields as:

C =

⎛⎜⎜⎝
1 0 0 Γ
0 ρ δ 0
0 δ∗ ρ 0

Γ ∗ 0 0 1

⎞⎟⎟⎠ , (6.20)

where Cij = 〈EiE
∗
j 〉; the brackets 〈 〉 imply ensemble averaging and the follow-

ing condensed notation is used: xx = 1, xy = 2, yx = 3, and yy = 4. This form
of the correlation matrix follows from the symmetry considerations of a statis-
tically isotropic medium and is not model specific. All of the matrix elements
are normalized by the value of the co-polarized intensity C11 = 〈|Exx|2〉. With
this formalism, the crosspolarized intensity C22 = 〈|Exy|2〉 can be considered
as the measure of the depolarization of the scattered light; Γ and δ describe
the partial correlation of the scattered fields.

The relationship between the elements of the correlation matrix C and the
elements of the coherency matrix � can be obtained by consideration of the
scattering matrix F , which establishes a connection between the components
of the input and scattered fields. Following Eliyahu and Eliyahu et al. [22,24,
25], we can write:

� =
〈
EsE

⊕
s

〉
= 〈FT�i

(
FT
)⊕〉,

Es = FTEi; �i = EiE
⊕
i ,

where Ei, Es are the incident and scattered fields and �i is the coherency
matrix of the incident light. In this way, the elements of the correlation matrix
ρ, Γ , and Δ can be obtained from elements of the scattering matrix F as:

ρ =
〈
|Fxy|2

〉
,

Γ = 〈F ∗
xxFyy〉 , (6.21)

Δ =
〈
F ∗

xyFyx

〉
.
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Analysis of polarization transfer for model scattering systems consisting of
point-like noncorrelated scattering sites leads to the existence of the so-called
sum rule: Γ + δ = 1 − ρ. In the case of a predominating contribution of the
long-path diffuse partial components to the formation of multiply scattered
fields, the depolarization parameter ρ approaches 1, and the values of Γ and δ
approach zero, i.e., the scattered light becomes almost totally depolarized and
the fields are almost completely uncorrelated. Such scattering conditions are
typical in the case of light transmission through an optically thick disordered
slab. On the other hand, the diagrammatic calculations for the case of diffuse
reflection lead to the following relation Γ � δ that gives Γ ∼ 1 − ρ. These
simple relations allow the statistical moments of multiply scattered fields to
be expressed in terms of relatively simple functions of depolarization ρ and
thus provide a simple universal description of the polarization correlations in
random media.

Depending on the illumination and detection conditions, the polarization
correlation of speckle-modulated multiply scattered fields will manifest itself
in different forms. Consider that a linearly polarized beam is used to illu-
minate the sample which is characterized by arbitrary depolarization ρ, and
the scattered light is detected without a polarizer. In this case, the normal-
ized value of the intensity crosscorrelation function for two speckle patterns
recorded for two values of the polarization azimuth angle of the incident light
(I(θ0) is the reference speckle pattern, and I(θ) is the second speckle pattern)
can be presented in the following simple form:

Cu(θ0, θ) = (1 − β) cos2(θ − θ0) + β; (6.22)
β = (1 − ρ)2/(1 + ρ)2.

The subscript u means that no polarizer is placed in the output beam.
An experimental study of the crosscorrelation functions of speckle-

modulated intensity distributions obtained from surface as well as bulk
scatterers of a different nature, which are characterized by a wide range of
ρ values (from ρ = 0.002 for bright stainless-steel surface scatterer to ρ =
0.94 for BaSO4 diffuse reflectance coating) have shown gratifying agreement
between the experimental data and the theoretical predictions expressed by
(6.22). In this case, the existence of a simple universal form for the correlation
of unpolarized speckle patterns, which allows description in terms of a single,
easily determined depolarization parameter ρ, is evident.

The more specific case is the polarization discrimination of multiply scat-
tered light outgoing from the sample. If a fixed polarizer is inserted into the
output beam and the input polarization direction θ0 is varied, then the ob-
served form of the correlation function, C(θ0, θ), is strongly influenced by the
choice of the reference speckle pattern I(θ0). If both values, θ0 and θ, are
measured from the direction defined by the fixed output polarizer, then the
crosscorrelation function C(θ0, θ) has the following form [23]:

Cp(θ0, θ) =
[cos θ0 cos θ + ρ sin θ0 sin θ]

(cos2 θ0 + ρ sin2 θ0)(cos2 θ + ρ sin2 θ)
, (6.23)
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where the subscript p indicates the presence of a polarizer in the output
beam. Experimental studies of crosscorrelation functions of speckle patterns,
recorded with the use of a fixed polarizer, have also shown excellent agreement
with the theoretical predictions given by (6.23).

When examined for an arbitrarily chosen coherence area (speckle spot),
the intensity oscillations caused by rotation of the input polarization direction
obey the generalized Malus law:

I(θ) = a cos2(θ − α) + b, (6.24)

where a (the “modulation depth”) and b (the “baseline”) are positively de-
fined random values. Probability distributions of a and b are determined by
the microstatistics of speckle field fluctuations. In the case of expressed multi-
ple scattering, the statistical distribution of the initial phase α of the speckle
intensity oscillations must be uniformly distributed between 0 and π, and
it is necessarily statistically independent of a and b. The analytical descrip-
tion of the a and b distributions is a rather difficult problem but the specific
case of totally depolarized outgoing light and without an output polarizer is
characterized by the following probability distribution of “modulation depth”
values [23]:

Pa(a/〈a〉) = (3π/8〈a〉)x2K1(x), x = 3πa/4〈a〉, (6.25)

where 〈a〉 = (3π/8)〈I〉, 〈I〉 is the mean speckle intensity, and Km is a modified
Bessel function of order m. The nth order statistical moment of a is expressed
as follows:

〈an〉/〈a〉n = (8/3π)nΓ (1 + n/2)Γ (2 + n/2). (6.26)

where Γ is the gamma function.
The probability distribution of the “baseline” can be approximated in the

case of a large b by the negative exponential distribution:

Pb (b) ∼ exp (−4b/〈I〉) . (6.27)

Another specific case of strong scattering with ρ = 1, in which the input
polarization direction is kept fixed and a polarizer is rotated in the output
beam, is described by:

Pa (a/〈a〉) = (π/2 〈a〉) yK0 (y) ,

y = πa/2 〈a〉 , 〈a〉 = (π/2) 〈I〉 .
(6.28)

The hypothesis of polarization-correlation universality was verified by ex-
amining the polarization microstatistics of speckle patterns induced by the
multiple scattering of laser light by disordered media of a different nature. In
particular, the suggestion that speckle microstatistics is a universal function
of depolarization ρ was examined with the use of thin alumina membranes
as the scattering samples [26]. These membranes, known as Anopore mem-
branes, were stacked to obtain higher ρ values and submerged in water for
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lower ρ values. Thus, a set of scattering samples characterized by the wide
range of ρ was obtained. The thickness of the Anopore membranes is equal to
60 μm and the pores are 0.1 μm (type I) or 0.2 μm (type II) in diameter. The
surface density of pores is about 109 cm−2. These parameters give values of
depolarization ρ (in air) equal to 0.75 and 0.90, respectively. Estimates of the
extinction mean-free-path lengths for these samples submerged in water give
values of 33 and 22 ± 1 μm for type-I and type-II, respectively.

Light scattering experiments were carried out for transmission mode. In
order to verify (6.24), the polarization microstatistics of speckle patterns were
examined for the case of a varying polarization angle θ. An Ar-ion laser (20
mW output at 514.5 nm, linear polarization) was used as an illumination
source and the laser beam was expanded to obtain a light spot of 6 mm in
diameter on the sample surface. Changes in θ were provided by a half-wave
plate which was placed between the laser and the beam expander and rotated
by a step motor. Oscillations of the scattered light intensity were detected at
different points of the detection plane (0.28 m from the sample) with a light-
collecting optical fiber with a core of 3.7 μm in diameter. These detection
conditions provided an average speckle size in the detection zone that was
about 80 times larger than the detector aperture, which corresponded to the
fiber core. Two-dimensional scanning of the distal end of the optical fiber al-
lowed for the recording of the scattered light intensity oscillations for different
coherence areas, or speckles in the detection plane. The signal from the output
of the optical fiber was detected with the use of a cooled photomultiplier tube
in the photon-counting mode.

In accordance with [26], the parameters a and b (see (6.24)) were calculated
from an experimentally obtained intensity time series as:

a = [8{〈I2〉 − 〈I〉2}]0.5; b = 〈I〉 − a/2, (6.29)

as follows from the theoretical predictions. Then both values of the modula-
tion parameters were normalized by the average frequency for convenience.
The empirical probability density distribution of the modulation depth para-
meter a obtained for the sample characterized by the unit value of ρ, demon-
strates excellent agreement with the theoretical predictions. Because of the
absence of a compact analytical form of the theoretical prediction for the
probability distribution ρ(a) for the intermediate values of 0 ≤ ρ < 1, the
following empirical model was used to fit the obtained experimental data:

〈ã〉Pã(ã) = βãν exp(−ξã)

with β, ν and ξ as the fitting parameters. Note that this fitting relation as-
ymptotically reduces to (6.28) with an increasing value of ã if β = 3π1.5

/
4,

ν = 1.5, and ξ =2.
The empirical statistics of the normalized baseline value are characterized

by asymptotic decay Pb(b) ∼ exp(−αb). In the case of a single-scattering
regime (ρ → 0), the concept of polarization-correlation universality predicts
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the negative exponential statistics with α → 1 for the baseline value. On
the contrary, for a sufficient multiple scattering regime characterized by a
unit value of depolarization, the value of the asymptotic decay parameter α
reported in [26] is equal to 4 for 0.5 ≤ b ≤ 1.5 . For comparison, a similar
value for the Amopore membranes in air was found to be equal to ≈ 3 ±
0.3 for the same interval of b. Analysis of the experimentally obtained values
of α, depending on the depolarization value ρ, shows that the asymptotic
decay parameter becomes relatively constant at a value of 3 down to ρ ∼ 0.5.
This means that theoretical predictions for the asymptotic decay of baseline
statistics might need some revision. It should be noted that for empirically
obtained baseline statistics, the exponential asymptotic falloff was observed at
b ∼= 1, while the theoretical prediction of α = 4 assumed b � 1. Tarhan and
Watson noted that because of the exceedingly low probability of observing
large values of b, it was not possible to establish with certainty whether α ∼= 3
will evolve into α = 4 at the limit, or not. No indication of such a crossover
was found in this work.

Comparative analysis of the polarization microstatistics of speckles for
cases of speckle pattern formation by laser light multiply scattered in the for-
ward as well as in the backward direction (the value of ρ for both scattering
regimes is equal to 1) has shown “modulation depth” statistics to be in excel-
lent agreement with the theoretical predictions given by Freund et al. [23].

Thus, the experimental verification of the hypothesis of polarization-
correlation universality, carried out by Tarhan and Watson with high reso-
lution for a wide range of values of the depolarization parameter, has demon-
strated excellent agreement with the theoretical predictions of “modulation
depth” statistics that have empirical distributions in the case of unity ρ. On
the contrary, the asymptotic behavior of the baseline statistics differ from the
predictions made on the basis of the concept of polarization-correlation uni-
versality. Also, the differences in the baseline statistics for different samples
characterized by the same values of the depolarization parameter indicate that
scattering parameters in addition to ρ may be required in order to completely
characterize baseline distributions.

In addition, the major argument against polarization-correlation univer-
sality in multiple scattering is that the form of the temporal autocorrelation
functions for multiply scattered light in reflection is not universal but instead
depends on both the diffraction parameter of the scattering site and the po-
larization state of the incident light [26]. In their “Comment on ‘Polarization
memory of multiply scattered light,”’ Freund and Kaveh [27] have presented
the argument below, which, from their viewpoint, supports the hypothesis of
polarization-correlation universality in multiple scattering.

Previously, the claim of universality was based on a scalar-wave treatment
of the vector optical fields and the agreement of this treatment with some
experimental results. It was noted by Freund and Kaveh that for the tem-
poral correlation problem, the major differences between the scalar and the
vector fields can be considered in terms of the different relative weights of
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the Feynman paths associated with transport of multiply scattered light. Dif-
ferent polarization channels of the vector field weigh these paths differently.
For a linearly polarized output, for example, the parallel, co-polarized output
channel weighs short, polarization preserving paths more heavily than does
the scalar approach, while the perpendicular, crosspolarized channel places
greater relative weight on long, depolarizing paths. Following Freund et al., it
is possible to provide an equivalent to the scalar approach by the simultaneous
collection of both channels, i.e., to simply collect all of the multiply scattered
light without any polarization bias. For instance, in the case of incident lin-
early polarized light, the unbiased total intensity can be simply presented as
the sum of partial intensities corresponding to co-polarized and crosspolarized
output channels:

I(t) = III(t) + I⊥(t).

Following from an assumption about the absence of correlations of waves
propagating in the opposite polarization channels, the unbiased temporal cor-
relation function of the scattered field can be written as:

G1(τ) = [〈III〉G1(τ, γII) + 〈I⊥〉G1(τ, γ⊥)]/[〈III〉 + 〈I⊥〉], (6.30)

where γ parametrizes the differences between the two channels. A possible
way to obtain the unbiased temporal correlation function of the scattered
field fluctuations is to use the heterodyne measurements in combination with
polarization discrimination of the scattered light with the use of a polarizer
at 45◦ with respect to II,⊥ directions in order to combine the optical fields
from both channels with equal weights.

In the frames of the scalar wave approach, the field autocorrelation func-
tion of light backscattered from the random Brownian medium can be pre-
sented for short times in the following approximate analytical form:

G1(τ, γ) ≈ exp
(
−γ
√

6τ/τ0

)
,

where τ0 is the single scattering correlation time. Similarly, the normalized
unbiased temporal correlation function can also be considered for intensity
fluctuations of the scattered light:

G2(τ) ≈ exp
(
−2〈γ2〉

√
6τ/τ0

)
. (6.31)

Considering the asymptotic behavior of both g1(τ) and g2(τ) at τ → 0,
the parameters 〈γ1〉 and 〈γ2〉 can be expressed as:

〈γ1〉 = [〈III〉 γII + 〈I⊥〉 γ⊥]/[〈III〉 + 〈I⊥〉];
〈γ2〉 =

[
〈III〉2 γII + 〈I⊥〉2 γ⊥

]/[
〈III〉2 + 〈I⊥〉2

]
.

(6.32)

The calculations of the “unbiased” parameter 〈γ1〉 carried out by Fre-
und and Kaveh with the use of experimental data for the backscattered light
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presented in, [9] yielded a value of 〈γ1〉 equal to 2.06 ± 0.03 for widely differ-
ent particle sizes and for both circularly and linearly polarized input fields.
Similarly, a “universal” value of 2.0 ± 0.1 was obtained for 〈γ2〉. They also
mentioned that the average 5% dispersion matches well the stated 5% error
limits of [9].

Following Freund and Kaveh, the simple relations between the values of
the slope parameter γ for the “unbiased” or “scalar” autocorrelation function,
the autocorrelation functions for polarization channels with the opposite po-
larization states, and the depolarization parameter ρ as the central point of
the concept of universality could be established:

γopposite =
[

1 + ρ

ρ + ρa

]
γ0;

γsame = ρaγopposite,

(6.33)

where a = 4/3 and γ0 is the scalar value of γ. A comparison of the measured
values of γ and the values calculated with the use of (6.33) has shown that the
suggested simple relations “provide a nearly perfect description of the data
for widely different particle sizes for both linear and circular polarizations.”

Freund and Kaveh have noted, however, that although the comparison
of theoretical predictions based on the universality concept with the results
of correlation experiments supports the suggestion about system-independent
behavior, the obtained value of γ0 (2.06) is somewhat larger than the expected
value predicted by scalar theory:

γ0 = 1 + Δ = 1.7104 . . . ., (6.34)

where Δ, which is determined by the boundary conditions for the diffusion
problem in the case of semi-infinite geometry, can be obtained from Milne
theory.

This discrepancy manifests itself as a too large decay rate in the experi-
mentally obtained temporal correlation of intensity fluctuations in comparison
with the theoretical prediction (the measured g2(τ) appears too narrow). The
explanation of such behavior suggested by Freund and Kaveh is related to the
problem of internal surface reflections which act to reinject a portion of the
scattered light into the scattering medium and thus elongate the Feynman
paths traversed by the photons.

The concept of polarization-correlation universality (especially in the part
of the system-independent microstatistics of speckle-modulated multiply scat-
tered fields) has met with criticism based on the conclusion that the diffusion
approximation cannot be used to predict the value of the correlation decay
parameter γ; nor can it be used to make any statement about the universality
of the value of γ [28]. It was mentioned that “given the very broad variety
of media that exhibit diffusive-light propagation, this apparent system inde-
pendence may be purely fortuitous, and it would seem premature to claim
that the value of γ is universal. Moreover, given the tenuous state of current
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theoretical work on this point, any claims of strong universality are clearly
premature and misleading.”

6.6 Summary

A specific property of optical fields induced by the multiple scattering of
coherent radiation in disordered media is the wide variety of local polariza-
tion states associated with the speckle structure of the scattered field. Multi-
ply scattered speckles as the product of the stochastic interference of coherent
light propagating through random media are characterized by elliptical polar-
ization with the parameters of a polarization ellipse varying from one speckle
to another in a stochastic manner.

The parameters of polarization microstatistics of multiply scattered speck-
les are controlled by the optical properties of the scattering medium and thus
an analysis of the polarization-dependent stochastic interference of multiply
scattered waves can be applied to characterize scattering systems. Among
other interference phenomena accompanying the multiple scattering of coher-
ent light by random media, polarization-dependent coherent backscattering
and polarization-sensitive temporal fluctuations of coherent light scattered by
nonstationary systems can be considered as the physical basis for the develop-
ment of novel diagnostic techniques applicable to the analysis of the structure
of weakly ordered media such as, biological tissues. In particular, our specific
interest is the study of the different behaviors of polarization-dependent tem-
poral correlations of light multiply scattered by collagen-containing tissues.
The presence of anisotropic (collagen-containing) components in tissue struc-
tures causes the apparent differences between the correlation characteristics
of multiply scattered light with different polarization states and thus can be
used for tissue structure characterization.



7

Decay of Light Polarization in Random
Multiple Scattering Media

7.1 The Similarity in Multiple Scattering of Coherent
Light

The relationship between the statistical properties of Feynman path
distributions, which characterize the pathlength statistics of partial waves
propagated in random media, and the statistical properties of multiply scat-
tered vector optical fields manifest themselves in a number of theoretically
predictable and experimentally observable effects [1–9]. One of these is the
appearance of similarities in multiple scattering. A group of relaxation phe-
nomena in the case of coherent light propagation in a disordered system can
be considered a manifestation of this similarity, or its likelihood, in multiple
scattering. This similarity is related to the same forms of dependencies of
certain statistical moments of scattered optical fields on the specific spa-
tial scales which characterize the decay of the corresponding moments in
the course of coherent light propagation in disordered media. The following
relaxation effects should be considered [10–12]:

– The existence of temporal correlations of amplitude and intensity fluctua-
tions in scattered optical fields at a fixed detection point for nonstationary
systems of scattering particles

– The decay of the polarization of light propagated in disordered systems
– The manifestation of Bougier’s law in the case of multiple scattering with

noticeable absorption.

Relaxation of the statistical moments of the scattered optical fields can
be considered in terms of Feynman path distributions, i.e., by the statisti-
cal analysis of ensembles of optical paths for partial waves, which propagate
in the scattering medium and from which the observed scattered field can
be constructed. In the diffusion scattering mode, each partial component of
the multiply scattered optical field is associated with a sequence of a great
number, N , of statistically independent scattering events and is characterized
by path s. The statistical moments of the scattered field can be considered
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as the integral transforms of the probability density function, ρ(s). Within
a weak scattering limit, when l, l∗ � λ (l and l∗ are the mean elastic free
path and the mean transport free path for the scattering medium [see [5]
in Chap. 6] and λ is the wavelength of the probe light) such second-order
statistical moments as the average intensity of scattered light, the temporal
correlation function of the field fluctuations and the degree of polarization of
the multiply scattered light at the arbitrarily chosen detection point can be
expressed for N = s/l � 1 as the Laplace transforms of ρ(s). In particular,
the average intensity of the scattered light for a multiply scattering medium
with nonzero absorption can be written using the modified Bougier’s law:

〈I〉 ∼=
∞∫
0

exp(−μas)ρ(s)ds =

∞∫
0

exp(−s/la)ρ(s)ds, (7.1)

where averaging is carried out over all possible configurations of the scattering
sites. The normalization condition can be written in the following form:

∞∫
0

ρ(s)ds = 〈I〉0, (7.2)

where 〈I〉0 is the average intensity in the absence of absorption.
For nonstationary disordered media consisting of moving scattering parti-

cles, the normalized temporal autocorrelation function of the scattered field
fluctuations is expressed as [13–16]:

g1(τ) ≈

∞∫
0

exp[−B(τ)s/l]ρ(s)ds

∞∫
0

ρ(s)ds

, (7.3)

where B(τ) is determined by the variance of the displacements of the scatter-
ing sites for the time delay τ . In the particular case of Brownian systems, the
exponential kernel of the integral transform (7.3) is equal to exp (−2τ s/ τ0l

∗).
The relaxation of the initial polarization state of coherent light propa-

gating in a disordered multiply scattering medium is caused by an energy
flux interchange between partial waves with different polarization states. In
particular, if propagated light has initial linear polarization, the linearly “co-
polarized” and “cross-polarized” partial components of the scattered field can
be considered. The first of these is characterized by the the electric field vector
in the same direction as the incident illuminating beam and the other in an
orthogonal direction to it. In a similar way, the interrelationship between the
left circularly polarized component and the right circularly polarized compo-
nent can be analyzed if an illuminating light with initial circular polarization
is used. Propagation of linearly polarized light in a strongly scattering disor-
dered medium can be considered by solution of the Bethe–Salpeter equation
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for the case of the transfer of a linearly polarized partial, “single-path” con-
tribution, which undergoes n scattering events in a disordered medium with
isotropic scattering [5]. This consideration yields the following expressions for
the intensities of the “single-path” cross-polarized and co-polarized compo-
nents [17]:

Is
‖ = f s

‖(n)Is(n),
Is
⊥ = f s

⊥(n)Is(n),
(7.4)

where the single-path “scalar” intensity Is(n) can be obtained by evaluating
the photon density for a scalar wave propagating at a distance correspond-
ing to n scattering events, and the weighting functions f s

‖(n), f s
⊥(n) can be

determined by their dependencies on the number of scattering events [5, 17]:

f s
‖(n) =

[(
10
15

)n−1 + 2
(

7
15

)n−1
]/

3,

f s
‖(n) =

[(
10
15

)n−1 − ( 7
15

)n−1
]/

3.
(7.5)

Thus, by introducing a value for the polarization degree of the arbitrary
single-path contribution of a scattered optical field with a propagation path
equal to s ≈ nl as P s(n) =

[
Is
‖(n) − Is

⊥(n)
]/[

Is
‖(n) + Is

⊥(n)
]
, we can obtain

the following:

P s(n) =
f‖(n) − f⊥(n)
f‖(n) + f⊥(n)

=
3
(

7
15

)n−1

2
(

10
15

)n−1 +
(

7
15

)n−1 = (7.6)

= 3
[
2 exp

{
(n − 1) ln

10
7

}
+ 1
]−1

.

Correspondingly, the single-path polarization degree P s(n) for a linearly
polarized light obeys the exponential decay P s(n) ∼= 1.5 exp {(n − 1)/n′} with
the decay parameter equal to n′

L ≈2.804 for long propagation distances with
a great number of scattering events n � 1.

If a multiple scattering disordered medium is illuminated by circularly
polarized light, then the single-path degree of the circular polarization
of the multiple scattered light can be introduced as the ratio P s

C(n) =
[I+(n) − I−(n)]/[I+(n) + I−(n)], where I+(n), I−(n) are the intensities of the
circularly polarized partial contributions which undergo n scattering events
and have the same helicity as an incident circularly polarized light (+) or
the opposite helicity (−). Similar consideration of the multiple scattering of
circularly polarized light also leads to exponential decay of the single-path
degree of the circular polarization with the value of the decay parameter
equal to n′

C ≈ ln 2 ≈ n′
L/2 [17].

If polarized light propagates in a disordered medium characterized by a suf-
ficiently nonzero value of the anisotropy parameter g (the case of anisotropic
scattering), then the decay parameter n′

L,C should be replaced by the effective
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value ñ′
L,C, which is determined by the optical properties of the scattering par-

ticles that form the scattering system. Introducing the depolarization length,
ξL,C = ñ′

L,Cl, as one of the dimension scales which characterize the scattering
system, we find the relationship between ξL,C and another important scale –
the mean transport free path l∗. This relationship is strongly influenced by
the optical properties of the scattering medium as well as by the illumination
and detection conditions.

The degree of residual polarization in a scattered optical field at an arbi-
trarily chosen detection point can be determined by averaging the single-path
polarization degree over the ensemble of partial components of a scattered
optical field characterized by the path length density distribution ρ(s):

PL,C =

∞∫
0

P s
L,C(s)ρ(s)ds ≈ 3

2

∞∫
0

exp
(
− s

ξL,C

)
ρ(s)ds, (7.7)

where the probability density function ρ(s) is determined by the conditions of
the light propagation in the scattering medium between a source of polarized
light and a detection system which is used for polarization discrimination of
the scattered light.

The theoretically predicted exponential decay of the single-path polariza-
tion degree with an increasing path length s was directly observed in the
experiments using time-resolved intensity measurements of the co-polarized
and cross-polarized components of a backscattered light in a case involv-
ing optically dense media illumination by a short pulse of linearly polar-
ized laser light [18]. In these experiments, the colloidal systems consisted of
aqueous suspensions of 1-μm-diameter silica spheres with an ionic strength
of 0.03 m L−1 NaNO3,pH = 9.5, and the volume fractions ranged from 5%
to 54%. The scattering samples were probed by laser pulses with a duration
of 150 fs emitted by a dispersion-compensated, self-mode-locked Ti:sapphire
laser pumped by a frequency-doubled Nd:YAG laser. The backscattered light
pulses were analyzed with a background-free cross-correlation technique. The
Ti:sapphire laser, which had a repetition frequency of 76 MHz, was tuned to
a wavelength of 800 nm, and its output was split into two beams by a 50:50
beam splitter. One beam passed through a delay stage and served as a gating
pulse in the crosscorrelator. Data runs were typically recorded with a 3-mm
(20 fs) step size. The other beam passed through a mechanical chopper, a
second beam splitter, and a 15 cm focal length converging lens to reach a
sample placed at the focus of the beam. The estimated value of the photon
density corresponding to a single pulse of probe light was found to be equal
to 5.3 × 1013 cm−2 per pulse.

The degree of polarization of the backscattered light was determined by
using a half-wave plate and a Glan-Tompson polarizer. Typical shapes of the
detected pulses of the co-polarized and cross-polarized components of the
backscattered light from two scattering samples with strongly differing scat-
tering coefficient values are illustrated in Fig. 7.1. The inset illustrates the
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Fig. 7.1. The pulse shapes for co-polarized and cross-polarized components of
backscattered light. Solid lines, the scattering sample with a 5% volume concen-
tration of silica spheres; dotted line, the scattering sample with a 25% volume con-
centration of silica spheres. (1, 2) Intensity of the co-polarized component; (3, 4)
intensity of the cross-polarized component. inset shows the evolution of the time-
dependent degree of linear polarization of backscattered light for both samples (I, 5%
volume concentration of the scattering sites; II, 25% concentration of the scattering
sites) [18]

tendency of the time-dependent degree of linear polarization of the backscat-
tered light to decay.

The single-path degree of the linear polarization can be expressed in simple
exponential form as P s

L(n) ≈ exp(−n/n′
L) where n′

L is regarded as the average
number of scattering events needed to depolarize the optical wave. For an
effective speed of light, veff and the mean elastic scattering free path l, the
time scale of the depolarization process can be estimated to be on the order
of τ = n′

Ll/veff .
The validity of the exponential decay model for describing the dissipa-

tion of the initial polarization state of light propagating in multiple scattering
random media was confirmed by experimental studies (using slab geometry)
of the depolarizing properties of optically thick random media which were
probed in the transmittance mode [10,11,17]. By applying a diffusion approx-
imation, we can find the path-length density distributions ρ(s) for optically
thick slabs in the transmittance mode and, after this, evaluate the single-sided
Laplace transformation Lρ(m) =

∫∞
0

exp(−s/ml∗)ρ(s)ds, which, when ana-
lyzed for the fixed value of m, exponentially decays with an increase in the
dimensionless slab thickness L/l∗. This tendency is illustrated in Fig. 7.2. The
above discussed exponential decay of the “single-path” degree of polarization
causes the approximately exponential decay of the degree of polarization of
light transmitted through an optically thick slab (L/l∗ ≥ 5) with the in-
creasing ratio L/l∗. Indeed, the dependencies of the degree of polarization
of linearly or circularly polarized light transmitted through optically dense
scattering slabs on a dimensionless slab thickness (obtained in experiments
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Fig. 7.2. The Laplace transformations of the pathlength density distributions for
probe light, which is transmitted through a scattering slab, that depends on the nor-
malized slab thickness [10,12]. The probability density functions ρ(s) were calculated
with the use of a diffusion approximation
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Fig. 7.3. The measured values of the degree of linear polarization of light transmit-
ted through the scattering slabs [10]. Scattering systems are aqueous suspensions of
polystyrene beads of various sizes. The values of the degree of polarization are plot-
ted against the dimensionless scattering coefficient of the corresponding scattering
system. Wavelength and cuvette thickness: 514 nm (Ar-ion laser) and 10 mm – for
0.460 μm and 1.07 μm particles; 532 nm (diode-pumped Nd-laser) and 20 mm – for
0.261 μm, 0.605 μm, and 2.19μm particles

with monodisperse aqueous suspensions of polystyrene beads of various sizes)
show that PL,C falls as: PL,C ∼ exp(−KL/l∗) with K depending on the size
of the scattering particles and the type of polarization of the incident light
(Fig. 7.3).

The principle of similarity in multiple scattering that follows from the ex-
ponential form of the “single-path” parameters of multiply scattered optical
fields, such as the “single-path” degree of polarization and the “single-path”
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temporal correlation function of scattered field fluctuations for nonstationary
scattering media, is manifested as the equality of spatial scales which charac-
terize the decay rate for the corresponding parameter.

In particular, such equality allows us to introduce a specific parame-
ter for nonstationary scattering media such as a characteristic correlation
time [19,20]. This parameter establishes the relationship between the charac-
teristic spatial scale of the dissipation of the optical field correlation that is
due to multiple scattering in a fluctuating random medium, the depolarization
length, and the dynamic properties of a Brownian scattering medium. It can
be written as follows:

τcd ≈ l∗

2ξLDk2
0

, (7.8)

where ξL is the depolarization length for linearly polarized radiation in the
scattering medium, D is the translation diffusion coefficient of the scattering
particles, and k0 is the wave-number of the probe light.

It is easy to conclude that the characteristic correlation time is indepen-
dent of the concentration of the scattering sites but is determined by their
optical and dynamic properties. Thus, the characteristic correlation time can
be considered the universal parameter of multiple scattering dynamic media.
Figure 7.4 illustrates the principle of evaluation of τcd by using results taken
from simultaneous measurements of the temporal correlation function and the
degree of polarization of the multiply scattered light.

Experiments with aqueous suspensions of polystyrene sphere irradiated by
linearly polarized light from an Ar-ion laser demonstrate the independence of
the characteristic correlation time from the volume fraction of the scattering
particles (Fig. 7.5).

The values of τcd were determined by the method illustrated in Fig. 7.4.
Normalized values of the module of the field correlation functions were ob-
tained from experimentally measured intensity correlation functions by using

P1

g1(t)

tcd t

C2 < C1

P2

C2

C1

Fig. 7.4. Method for determining the characteristic correlation time for multiply
scattering Brownian medium
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Fig. 7.5. Concentration dependencies of the characteristic correlation time and the
half-width of the autocorrelation function of the intensity fluctuations obtained in
experiments with aqueous suspensions of polystyrene beads (left, bead diameter
0.46 μm; right, bead diameter 1.07 μm) [19]

the Siegert relation (see Chap. 6, [18]). Moreover, measurements of the “con-
ventional” correlation time, reported as the half-width of normalized field
correlation functions, were performed. Figure 7.5 shows a logarithmic plot of
the experimentally measured concentration dependencies of τcd and Δτ0.5 (the
“conventional” correlation time estimated as the halfwidth of the correlation
peak).

Analysis of the experimental data shows that in the experimental range
of the concentrations of the aqueous suspensions of polystyrene beads, the
concentration dependencies Δτ0.5 = ϕ(c) are close to power-law functions
Δτ0.5 ∼ c−α. The exponents α in the power-law functions approximating the
experimental values of Δτ0.5 in Fig. 7.5 are ≈ 2.21 and ≈ 1.96 for polystyrene
beads of diameters 0.46 and 1.07 μm, respectively. These values are in sat-
isfactory agreement with the value α = 2 given by the diffusion approach.
Specifically, as was mentioned in [6], for an optically thick layer of thickness
L consisting of Brownian scattering particles, the normalized autocorrelation
function of the amplitude fluctuations of the scattered coherent radiation al-
lows the following approximation:

g1(τ) ≈ exp
(
−
√

6τ/τ0
L

l∗

)
.

Thus, analysis of polarized light transfer based on the principle of similar-
ity provides additional possibilities for describing the scattering properties of
probed media. In particular, the influence of the size parameter of the scat-
tering sites on the decay of polarization of propagated light can be studied
with this approach, as was shown in [19].
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7.2 Influence of Scattering Anisotropy and Scattering
Regime

Study of the influence of the size parameter of scattering centers on the decay
of the initial polarization state of coherent light backscattered by random me-
dia was pioneered by MacKintosh et al. [8]. On the basis of measurements
of the intensity of backscattered light that corresponded to the opposite po-
larization channels (co-polarized and cross-polarized backscattered light for
a linearly polarized probe light and components of scattered light with the
opposite helicity for a circularly polarized probe light), they concluded that
the backscattering of linearly polarized light from a random medium consist-
ing of large-sized dielectric particles (Mie scattering regime) is accompanied
by significant suppression of the polarization of the outgoing multiple scat-
tered light (i.e., the backscattered light is almost totally depolarized). On the
contrary, backscattering by random media, consisting of small-sized dielectric
particles (Rayleigh scattering regime), is characterized by a significant degree
of polarization of the backscattered light. If circularly polarized light is used
to probe scattering media in the backscattering mode, then scattering ensem-
bles consisting of small-sized particles are characterized by similar values of
intensity of backscattered light in the polarization channels with the opposite
helicity. By contrast, the backscattering of circularly polarized light by media
with expressed scattering anisotropy exhibits a high degree of polarization
memory, which is manifested as a noticeable difference between the values
of intensity for a helicity-preserving polarization channel and a polarization
channel with the opposite helicity: 〈I+〉/〈I−〉 = 1.40 for a scattering system
with l∗ = 10l [8].

A Monte Carlo simulation was used to analyze the influence of the size pa-
rameter of the scattering dielectric spheres on the decay of linear polarization
in a backscattering mode [21]. In the procedure that followed, a transforma-
tion of the complex amplitude of partial waves, which form a backscattered
optical field due to random sequences of scattering events, was simulated
(Fig. 7.6). Each partial wave was induced by an incident linearly polarized
monochromatic plane wave propagating along the z-axis of the “fundamen-
tal” coordinate system (x, y, z). The electric field of an incident wave was
directed along the x-axis. A scattering medium was considered as the dis-
ordered ensemble of nonabsorbing dielectric particles with a given value of
size parameter. The relative refractive index of the spheres was taken to be
1.2, which is approximately equal to the refractive index of polystyrene beads
in water. The direction of the propagation of the incident linearly polarized
plane monochromatic wave relative to the “fundamental” coordinate system
was characterized by a normalized wave-vector k̄0

/∣∣k̄0

∣∣ = (0, 0, 1) where the
z-axis was aligned with a normal to the scattering medium surface.
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Fig. 7.6. The scheme of the transformation of the polarization state of a partial
wave due to a random sequence of scattering events (Monte-Carlo simulation) [21]

The transformation of the electric field of the propagating partial wave was
analysed for a sequence of n scattering events. For each ith step, the trans-
formation of the complex amplitude for both of the orthogonally polarized
components of the propagating wave was described by a (2 × 2) scattering
matrix (Skm (θ, φ, i)) = (S′′

km (θ, i)) × (S′
km (φ, i)). The complex elements of

the scattering matrix were calculated for simulated random values of the scat-
tering angle θ and azimuth angle φ by using the current coordinates (x̃i, ỹi, z̃i)
that were related to the ith scattering event.

The z̃i-axis is directed along the wavevector of the partial wave that prop-
agates after the ith scattering event, and the x̃i-axis is perpendicular to the
scattering plane. The scattering angle distribution that corresponds to the Mie
phase function for a single scatter with a given value of size parameter was
used for simulation of the random value of θ for each scattering event. Ran-
dom values of the azimuth angle φ were considered to be uniformly distributed
within the range (0, 2π). The (S′

km(φ, i)) matrix characterizes the transforma-
tion of the x̃ and ỹ components of the electric field of the partial wave, which
propagates after the (i − 1)th scattering event, due to rotation by the angle φ
during conversion of the (x̃i−1, ỹi−1, z̃i−1) current coordinates to the (x̃i, ỹi, z̃i)
coordinates:

(Ex̃(i − 1), Eỹ(i − 1) ⇒ E′
x̃(i − 1), E′

ỹ(i − 1)), see Fig. 7.6.
The (S′

km(θ, i)) matrix elements, which are calculated using Mie theory,
characterize the transformation of the electric field components that is due to
the ith scattering event:

(E′
x̃(i − 1), E′

ỹ(i − 1) ⇒ Ex̃(i), Eỹ(i)), see Fig. 7.6.
During the simulation, only the n-times scattered partial waves, which

were characterized by a z component of the normalized wavevector with val-
ues between −0.985 and −1 (relative to the “fundamental” coordinates), were
selected for further analysis. The magnitudes Ix = |Ex|2 and Iy = |Ey|2
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were evaluated by calculating the x and y components of the electric field in
the “fundamental” coordinates for each selected n-times scattered outgoing
partial wave. After this, values

〈
I‖
〉

= 〈Ix〉 and 〈I⊥〉 = 〈Iy〉 were calcu-
lated by averaging over the whole ensemble of selected partial waves with
−1 ≤ kzn/|k̂n| ≤ −0.985 and a single-path value of P s

L for a given number of
scattering events was obtained as P s

L = (
〈
I‖
〉− 〈I⊥〉)

/
(
〈
I‖
〉

+ 〈I⊥〉).
Figure 7.7 illustrates the typical dependencies of the degree of single-

path linear polarization on the number of scattering events as a result of
the simulation procedure described above for two different scattering regimes
(the Rayleigh scattering regime for small values of the anisotropy parameter
[Fig. 7.7a] and the Mie scattering regime for large values of g [Fig. 7.7b]).

For a given number of scattering events, the values of
〈
I‖
〉
, 〈I⊥〉 and P s

L(n)
were calculated for a simulated scattering system, which was characterized
by a given value of the size parameter by averaging over the ensemble of
10,000 outgoing partial waves. After this, the obtained values of the single-
path residual polarization were plotted in semilogarithmic coordinates against
the number of scattering events n. The bars show an increase in the deviation
of the obtained P s

L(n) values (with respect to the mean value of the single-path
residual polarization) with an increase in the number of scattering events. The
value of the anisotropy parameter for each simulated scattering system was
calculated as the mean cosine of the scattering angle by using Mie theory.

Typically, all of the curves obtained by the simulation procedure are char-
acterized by the presence of two specific regions: a relatively small “low-step
scattering” region with values of the single-path polarization degree which
are close to 1, and a “diffusion scattering” region characterized by an approx-
imately exponential decay of the single-path polarization degree P s

L(n). The
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Fig. 7.7. The dependencies of the “single-path” degree of residual linear polarization
in the backscattering mode on the number of scattering events (results of monte-carlo
simulation): (a) isotropic scattering (ka = 1, g ≈ 0.178); (b) anisotropic scattering
(ka = 6.5, g ≈ 0.915)



122 7 Decay of Light Polarization in Random Multiple Scattering Media

location of the overlap between these regions, as well as the polarization de-
cay rate for the diffusion scattering region, strongly depends on the anisotropy
parameter of the scattering particles.

Values of the normalized depolarization length mL, which were estimated
as mL = (1 − g)n̄′

L by using the exponential approximation P s
L ∝ exp(−n/n̄′

L),
are presented in Fig. 7.8 (represented by full circles) as dependent on the
anisotropy parameter.

In order to obtain the dependence of the normalized depolarization length
on g, the dependencies of single-path residual polarization on n (which are
similar to those presented in Fig. 7.8) were obtained by using the above de-
scribed Monte Carlo procedure for scattering systems that are characterized
by given values of the size parameter and, correspondingly, the anisotropy pa-
rameter. After this, the values of n̄′

L were determined versus g by evaluation of
the slope of the corresponding dependencies of lnP s

L = f(n) for the “diffusion
scattering” region.

For small scatterers (the Rayleigh scattering regime), the value of mL that
was obtained was approximately equal to 4.2. This magnitude diverges from
the above presented theoretical value mL ≈ n̄′

L ≈ 2.8 [17] by approximately
35%. With an increase in the anisotropy parameter up to values on the order
of 0.6–0.8, mL decreases insignificantly. With larger values of g, the decay rate
becomes large and mL falls to values on the order of 1.0–1.2 in the vicinity of
the first Mie resonance (ka ≈ 8, g ≈ 0.93).
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Fig. 7.8. The normalized depolarization length for linearly polarized light in the
backscattering mode versus the parameter of scattering anisotropy. Full circles,
results of Monte-Carlo simulation; open circles, experimental data; (1) 1.07 μm
polystyrene beads in water, volume fraction is 10%, L = 3 mm, λ = 488 nm; (2)
the same as 1, but λ = 633 nm; (3) Teflon, L= 30 mm, λ = 488 nm; (4) same as
(3), but λ = 633 nm; (5) 0.091 μm polystyrene beads in water, volume fraction is
5%, λ = 488 nm [8]; (6) 0.605 μm polystyrene beads in water, volume fraction is 2%,
λ = 488 nm [8]; (7) 0.46 μm polystyrene beads in water, volume fraction is 10%,
L = 3mm, λ = 515 nm [22]
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In the “forward-scattering” mode (i.e., when the simulated partial waves
are selected using the condition 0.985 ≤ kzn/|k̂n| ≤ 1), the dependencies of the
single-path polarization degree on the number of scattering events obtained
by the Monte-Carlo simulation for the Rayleigh scattering system are similar
to those obtained for the backscattering mode (Fig. 7.9).

Thus, it can be concluded that the estimates of the depolarization length
for linearly polarized light in scattering systems characterized by ka � 1
are insensitive to the regime of scattered light collection. On the contrary,
the depolarization length for linearly polarized light, estimated under similar
conditions for forward scattering systems consisting of large-sized particles,
significantly exceeds the value of the mean transport free path (Fig. 7.9). Re-
sults of experimental studies on polarization decay in the forward scattering of
linearly polarized light by optically thick disordered layers of dielectric spheres
([10, 17], see also Fig. 7.3) express a depolarization length ξL that increases
with an increase in the size parameter ka of the scattering sites.

With multiple scattering systems consisting of optically soft dielectric
spheres (e.g., aqueous suspensions of polystyrene spheres), the maximal value
of ξL in the forward scattering mode was found in the vicinity of the first
Mie resonance [17]. Theoretical analysis of the polarization decay of lin-
early polarized light multiply scattered in the forward direction by disordered
media [24,25] also shows better preservation of linear polarization of forward
scattered light in random media with an expressed scattering anisotropy.

When compared with a phantom scattering media, the propagation of po-
larized light in tissue is characterized by some features related to the rate
of polarization dissipation. These features were studied by Jacques et al.
[26–29], Sankaran et al. [30–32], Wang, Schmitt, and many other researchers
(see, e.g., [33–35]) in experiments with varoius in vivo and in vitro tissues
such as human skin, porcine adipose tissue, and whole blood, etc.
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Fig. 7.9. The dependencies of the “single-path” degree of residual linear polarization
in the forward scattering mode on the number of scattering events (results of Monte-
Carlo simulation): (a) isotropic scattering (ka = 1, g ≈ 0.178); (b) anisotropic scat-
tering (ka = 6.5, g ≈ 0.915) [23]
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Fig. 7.10. The degree of linear and circular polarization in sections of porcine
adipose tissue as a function of tissue thickness [32]

The difference between the values of the depolarization length of linearly
or circularly polarized light estimated in experiments with tissue layers and
corresponding parameters of phantom scattering media (for instance, aque-
ous suspensions of polystyrene beads) with the same optical properties (the
mean transport free path and the parameter of scattering anisotropy) as the
examined tissue samples can be considered the main peculiarity of polariza-
tion decay in biological tissue. Figure 7.10 shows the values of the degree of
linear and circular polarization of light transmitted through a porcine adipose
layer; these are dependent on the layer thickness. As in the case of phantom
monodisperse scattering systems consisting of dielectric spheres of equal size,
the dependence of PL and PC (the degree of circular polarization) on the
thickness of the tissue layer demonstrates the presence of two characteristic
regions: the region of nondiffuse scattering in optically thin (L ≤ l∗) tissue
samples, which is characterized by the slow decay of the initial polarization,
and the region in which an abrupt decrease of the degree of polarization takes
place with the increasing thickness of the tissue layer. It is necessary to note
that the decay rates for linear and circular polarization in the latter case are
characterized by similar values and appear significantly smaller in comparison
with scattering phantoms with similar optical properties. In any case, at the
present time the peculiarities of polarized light transfer in real tissues at the
cellular and subcellular levels of the spatial scales require further theoretical
and experimental investigation.

7.3 Residual Polarization of Incoherently Backscattered
Light

Specific conditions in the formation of multiply scattered optical fields in
the backscattering of polarized light by optically thick disordered media (in
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particular, the sigificant contribution of nondiffusing components character-
ized by short propagation paths s ∼ l∗ in a scattering medium and the strong
influence of the boundary conditions of radiative transfer at the interface
“free space-scattering medium”) cause the existence of a noticeable degree of
residual polarization in backward scattered light. This effect is not related
to the above discussed effect of polarization-dependent coherent backscatter-
ing (see Chap. 6). The residual polarization of backscattered light is caused
by the summation of intensities of partial waves propagating in the scat-
tering medium at different distances and thus is characterized by different
values of the “single-path” degree of polarization P s

L,C. Because of its incoher-
ent nature, the residual polarization must be observed outside the coherence
backscattering cone. The approximate analytical expression for the degree of
residual polarization of incoherently backscattered light can be obtained by
using the above discussed principle of similarity for the particular conditions
(illumination of an optically thick scattering medium by a linearly polarized
plane wave and detection of the backward scattered plane wave component
of a multiply-scattered optical field). On this basis, by using the assumption
about the approximately exponential decay of P s

L, the degree of residual linear
polarization of the detected light can be expressed as [21]:

P r
L ≈ 3

2
exp(−γ

√
3/m′

L), (7.9)

where the above introduced slope parameter γ (see Chap. 6, (6.34) is controlled
by the total boundary reflectivity of the scattering medium (in particular,
the value of γ is strongly influenced by the existence of multiple reflections
of partial waves at the interface between the free space and the scattering
medium).

An important property of the degree of residual polarization measured un-
der the above-mentioned conditions is that the value of P r

L does not depend
on the concentration, c, of the scattering sites in the weak-scattering limit
(l � λ) but is determined only by the optical properties of an individual
scatterer. This follows from the relationship between the values of the depo-
larization length and the mean transport free path for the scattering medium:
ξL,C = m′

L,Cl∗ ∼ c−1 where the factors m′
L,C are controlled by the scattering

anisotropy. For scattering media such as disordered ensembles of spherical
dielectric particles, the relationship discussed above between the scatter-
ing anisotropy and the normalized depolarization length ξL/l∗ (see Fig. 7.8)
leads to a significant degree of residual linear polarization in cases involv-
ing backscattering from an optically thick medium consisting of small-sized
particles (the Rayleigh scattering regime). On the other hand, backscattering
from disordered systems of large-sized dielectric particles (the Mie scatter-
ing regime) are characterized by an almost totally suppressed residual linear
polarization. It is easy to evaluate the extreme values of the degree of resid-
ual linear polarization of linearly polarized light backscattered from optically
thick media with expressed scattering anisotropy by substituting m′

L ≈ 1 in
(7.9): P r

L ≈ 0.043.
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Figure 7.11 displays the experimentally obtained values of P r
L of light

backscattered from the layers of aqueous suspensions of 1.07 μm polystyrene
beads [21,36]. With this size of scattering particles, the Mie scattering regime
is typical for a probe radiation with values of the wavelength of 632 nm and
488 nm, respectively.

The existence of three regions with strongly differing behavior in terms
of the degree of residual polarization, which depends on the dimensionless
thickness L/.l∗ of the layer, should be mentioned:

– The region where an abrupt decrease in P r
L occurs with an increase

in L/.l∗, which is caused by an increasing concentration of scattering
particles; in this scattering regime, the degree of residual polarization is
strongly influenced by the optical thickness of the layer.

– The plateau-wise region which is reached only at larger values of scatter
concentration; in this case, the scattering layer can be considered a semi-
infinite disordered medium and the experimentally obtained P r

L is close
to the value defined by (7.9);

– The region where further increasein the scatter concentration is accom-
panied by gradual increase in the degree of residual polarization; such
behavior can be interpreted as the manifestation of cooperative phenom-
ena in multiple scattering where the scattering by each scatterer must
be considered by taking into account the influence of closely neighboring
scattering sites; typically, one of the concentration-dependent phenomena
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Fig. 7.11. The dependencies of the degree of residual linear polarization of backscat-
tered light on the normalized thickness of a scattering slab (the parameter L/l∗ was
changed by changing the volume fraction of the scattering particles). The scattering
medium is the aqueous suspension of 1.07 μm polystyrene beads; (1) 633 nm probe
light; (2) 488 nm probe light; (3) the extreme value of the degree of residual linear
polarization for anisotropic scattering
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is the nonmonotonic behavior of the mean transport free path (a decrease
in l∗ with an increasing c, which is typical for disordered systems in a
weak-scattering limit, is changed to the opposite behavior in a densely
packed media due to the role of cooperative effects) [37].

The extreme value of P r
L measured within the plateau-wise region at 488

nm is noticeably smaller than the corresponding value measured at 632 nm;
this is an obvious manifestation of the influence of the increasing scattering
anisotropy. The manifestation of the effect of the preservation of residual po-
larization in a backscattering experiment with biological tissue was discussed
by Studinski and Vitkin [34].

7.4 Polarization Decay in Absorbing Media

Analysis of the dependencies of the degree of residual polarization of light
backscattered from a medium on the wavelength of a probing linearly po-
larized radiation can be proposed as an optical method for analyzing mul-
tiply scattering media that exhibit selective absorption caused by the pres-
ence of certain chromophores. Such an approach is feasible because of the
high level of sensitivity of the polarization state of the radiation, that is
scattered and absorbed by the medium at the wavelength of the probe ra-
diation, to the changes in the optical parameters of the medium [38]. This
effect is connected with the cut-off of a part of the partial components
of the scattered optical field that are characterized by a large value of
the effective optical path in media with finite absorption. Thus, compari-
son of the degree of residual polarization of the radiation scattered from a
medium measured inside the absorption band and also far from it, can be
used, in particular, to estimate the concentration of a chromophore in the
medium.

In the scattering medium, the effect of the probe light absorption on the
degree of residual polarization P r

L can be taken into account by introduc-
ing an additional Bouguer factor describing the cut-off of partial components
characterized by large values of s and then by modifying (7.7) to the following
form:

P r
L ≈ 3

2

∞∫
0

exp(−{s/ξL + μas})ρ(s)ds

/ ∞∫
0

exp(−μas)ρ(s)ds, (7.10)

in which a change in the condition for the normalization of the probability
density of the optical paths due to additional absorption is taken into ac-
count. It should be noted that within the framework of the classical diffusion
approximation of radiation-transfer theory, the effective value of the radiation
diffusion coefficient is considered dependent on the absorption coefficient of
the medium μa : D = c/3{μs(1 − g) + μa} (see (4.16), (4.18), (4.19), and, for
example, [39]). In its turn, this leads to the dependence of the probability
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density function for the optical paths on μa : ρ(s) = ρ(s, μa). But, as has been
shown in a number of papers [40–43], the calculation of the characteristics
of scattered radiation within the framework of the diffusion approximation
agrees considerably better with the experimental data and the simulation re-
sults if the radiation diffusion coefficient is taken to be independent of μa, i.e.,
D = c/3{μs(1 − g)}. Thus, when analyzing the influence of absorption on the
degree of residual polarization of backscattered light, we can choose ρ(s) to
correspond to the case of a nonabsorbing medium. Consequently, the effect of
absorption on the distribution of the optical paths of partial components of a
scattered field can be taken into account by introducing additional Bouguer
factors into the integral transformations of ρ(s) in (7.10).

By considering the detection of co-polarized and cross-polarized compo-
nents of an optical field backscattered by an optically thick semi-infinite ab-
sorbant medium, we can conclude, on the basis of the principle of similarity,
that the degree of residual polarization of the backscattered light can be ex-
pressed as follows:

P r
L ≈ 3

2
exp(−γ

{√
3l∗{1 + μaξL}

ξL

}
−
√

3l∗μa). (7.11)

The validity of this expression is related to the exponential approximation
of the kernel of the integral transformation, obtained within the framework of
the solution of the Bethe–Salpeter equation (see above). Thus, we conclude
that the prediction error for P r

L, with the use of (7.11), depends on the modal
value of smod of the distribution of the optical paths of the backscattered
partial components under backscattering and decreases with an increasing
anisotropy factor of scattering when smod � l.

Figure 7.12 presents the theoretical dependencies of P r
L on the dimension-

less parameter μal for the backscattering of a plane linearly polarized mono-
chromatic wave from a semi-infinite random medium consisting of dielectric
spherical particles with substantially differing values of the diffraction parame-
ter ka and a relative refractive index equal to 1.2 (this value corresponds, for
example, to such often used model scattering media as polystyrene particles
in water when visible-range radiation is used).

According to the results of the Monte Carlo simulation and the experimen-
tal data presented in [21], the values of the normalized depolarization length
ξL/l∗ were taken to be equal to 1 for large-sized scattering particles (the Mie
scattering regime, ka � 1) and 4 for Rayleigh particles with ka � 1.

When random scattering media are probed by a nonmonochromatic lin-
early polarized light, the spectral dependencies of the degree of residual polar-
ization of the backscattered light are controlled, on the one hand, by the effect
of the wavelength λ on ξL and l∗ and, on the other hand, by the dependence of
the absorption coefficient of the scattering medium on λ. The selective absorp-
tion of a scattering medium caused by the presence of certain chromophores
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Fig. 7.12. The theoretical dependencies of the ultimate degree of residual polar-
ization of backscattered light on the dimensionless parameter μal

∗. solid line, Mie
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leads to an increase in the degree of residual polarization within the spectral
intervals that correspond to the absorption bands of the chromophores.

Figure 7.13 presents a typical dependence of the degree of residual polariza-
tion of backscattered light on the wavelength of the probe radiation, obtained
in the experiment with whole milk as the phantom scattering medium. The
inset illustrates the spectral dependence of the effective optical density D(λ)
of the sample under study as determined from its diffuse reflection spectrum
R(λ) according to the known relationship D = − lg[R(λ)].

In the 550–650-nm wavelength range, where the intrinsic absorption of
whole milk is relatively small (inset in Fig. 7.13), the dependence of the degree
of residual polarization on the wavelength demonstrates an increase in P r

L

with an increasing λ, which is caused by an increase in ξL with a decreasing
effective value of the diffraction parameter for the scattering medium in the
regime of detection of the backscattered radiation [21]. The increase in the
intrinsic absorption of whole milk in the 450–530-nm spectral range results in
a substantial increase in the degree of residual polarization, P r

L, in the short-
wavelength region of the visible spectrum. It should be noted that samples of
whole milk from different lots that were studied in the experiment demonstrate
considerable variation of spectra P r

L(λ) (in particular, the measured values of
the degree of residual polarization at wavelength of 610 nm vary from 0.05 to
0.11), which, obviously, is caused by a spread of the statistical characteristics
of the size distributions of the different components of milk from different lots.

The adding of chromophore (for instance, a food dye) to whole milk leads
to a substantial increase in the degree of residual polarization for the in-
tervals of the wavelengths that correspond to the absorption bands of the
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Fig. 7.13. The spectral dependence of the degree of residual polarization of
backscattered light with an initial linear polarization for the whole milk as a scat-
tering medium. The inset shows the spectral dependence of the optical density cal-
culated from the spectrum of the diffuse reflectance

chromophore (Fig. 7.14). The dependencies of the degree of residual polariza-
tion on the absorption coefficient are approximated with satisfactory accuracy
by an analytical expression (7.11) when ξL and l∗ are used as the fitting para-
meters. In particular, Fig. 7.15 demonstrates the values of P r

L obtained in the
experiment and the corresponding approximated curve as functions of the val-
ues of the absorption coefficient of the aqueous solutions of the dyes (Fig. 7.14),
measured at the maximum points of absorption (515 and 610 nm). In the
process of approximation, we obtained the following fitting values: ξL ≈ 1.3l∗

and l∗ ≈ 0.4 mm. In accordance with [21], such a relationship between ξL

and l∗ must correspond to the effective values of the anisotropy factor, g ≈
0.85–0.90, for scattering systems consisting of optically “soft” dielectric par-
ticles with a relative refractive index on the order of 1.2. This result is in
satisfactory agreement with the known data on milk microstructure [44] and
the optical characteristics of similar scattering systems such as Intralipid [45].

Hemoglobin and melanin are the main chromophores that control the ab-
sorption spectra of biological tissues in visible/near infrared range probe radi-
ation [46]. An increase in the content of blood in the surface layers of in vivo
biological tissues results in an increase in the degree of residual polarization of
backscattered light for those spectral intervals corresponding to the absorp-
tion bands of blood in the visible range. In particular, this effect is observed
as the quantitative correlation between P r

L at the wavelength corresponding
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Fig. 7.14. The spectral dependencies of the degree of residual polarization of
backscattered light with initial linear polarization obtained with different con-
centrations of absorbers for whole milk with an added absorber (food dye).
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(b) 1: μa = 0, 2: μa = 0.107 mm−1, 3: μa = 0.247 mm−1, 4: μa = 0.388 mm−1.
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Fig. 7.15. The results of the fitting of experimental data for whole milk (Fig. 7.14)
with the use of (7.11). (1) Theoretical dependence, (2, 3) experimental results cor-
responding to the maximal absorbance of the added absorbers (see Fig. 7.14)

to the maximum of an absorption band of blood (535–575 nm) and the value
of the erythema index for human skin with induced erythema. The erythema
index for treated skin was determined according to the procedure described
in [47]. The erythema was produced in the skin of the forearm of a volunteer
by removing the surface layers of epidermis with the use of skin strip technol-
ogy [48] which involves the application of an adhesive film. In this case, the
thickness of the removed layers of epidermis was approximately 4–8 μm. The
layer-by-layer removal of epidermis produced by mechanical action produces
an increase in the level of microcirculation and, consequently, an increase in
the blood content of the subsurface layers of skin.

Figure 7.16 demonstrates the spectra of the degree of residual polarization,
P r

L, for samples of in vivo healthy skin in the initial state (1) and skin with
different degrees of induced erythema (2, 3). The corresponding spectra of
the optical density of the biological tissues are also presented for comparison.
These spectra display increasing absorption in the 535–575-nm spectral region
(the absorption band of the oxygenized form of hemoglobin) with the progress
of erythema. It should be noted that beyond the absorption bands of blood,
the dependencies, P r

L(λ), demonstrate a decrease in the degree of residual
polarization with increasing wavelength, which can be caused by the effect of
additional absorption of the probe radiation in the tissue volume by natural
chromophores (in particular, by melanin). The spectral dependence of the
absorption coefficient of melanin in the visible range is characterized by a rapid
monotonic decrease with an increasing wavelength and can be approximated
by the power-law dependence of the following form: μa ∼ λ−3.5 [49].

Thus, if we disregard the absorption of the probe radiation caused by
hemoglobin, we find that the presence of melanin in the subsurface layers
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Fig. 7.16. The experimental dependencies of the optical density (1–3) and the
degree of residual polarization (1′–3′) for in vivo human skin. (1) normal tissue, (2, 3)
tissue with erythema

Table 7.1. The relationship between the measured values of the erythema index
and the degree of residual linear polarization of backscattered light in in vivo human
skin

the index of erythema the degree of residual polarization

40 ± 2 0.24 ± 0.02
60 ± 3 0.31 ± 0.03

96 ± 4.8 0.39 ± 0.04
128 ± 6.4 0.47 ± 0.04
174 ± 8.7 0.54 ± 0.05

The wavelength of the probe light corresponds to the maximal absorbance of
hemoglobin

of human skin leads to an increase in the degree of residual polarization of
backscattered light in the short-wavelength region in the visible range.

For comparison, the values of P r
L are presented in Table 7.1 for the probe

radiation wavelength that corresponds to the maximum absorption of the
hemoglobin of blood (the 535–575-nm band) for different values of the ery-
thema index for the skin region under study. These were measured according
to the procedure described in [47]. Similar results were obtained recently for
a case of erythema induced by the laser-mediated ablation of in vivo human
epidermis as a basic part of the skin resurfacing procedure [50]. The unam-
biguous correlation between P r

L and the values of the erythema index allows
us to propose spectral measurements of the degree of residual polarization of
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backscattered linearly polarized probe radiation as a method for functionally
diagnosing the state of the dermal layer of human skin.

Thus, the effect of light absorption by a multiply scattering medium on the
degree of residual polarization of backscattered light can be interpreted within
the framework of the concept of the optical path distribution for specified con-
ditions of scattered field formations. Spectral analysis of the degree of residual
polarization, including the technology of controlled selective absorbance of the
media under study, can be proposed as a new method for investigating the
optical properties of multiply scattering media, including biological tissues.

Highly absorbing random medium, in which the light penetration depth
is comparable with the characteristic size of the scattering sites, manifests
itself as a quasi-two-dimensional, rough-surface structure. On the contrary,
a transition between the volume and surface scattering effects takes place
with an increase in the light penetration depth. An experimental study of the
manifestation of probe light absorption in random media on the formation
of backscattered polarization patterns was carried out by Dogariu et al. [51].
Because of the strong localization of the backscattered light patterns in the
vicinity of the point of incidence of the narrow probe beam, the effect of
internal reflections on a dielectric interface was used in these experiments
to enlarge the spatial extent of the observed polarization patterns and to,
thereby, facilitate the quantitative data collection. The geometry of the po-
larization experiment used by Dogariu et al. is shown in Fig. 7.17. A cuvette
with a 1-mm-thick window was filled with a highly absorbant suspension.
A focused linearly polarized He:Ne laser beam was directed on the outer in-
terface (“II”) of the cell window (the diameter of a light spot was equal to
0.3 mm). The images of window surface II were captured with the use of a
CCD camera arranged with a polarizer in orthogonal orientation to polar-
ization direction of the incident light. The highly absorbant scattering media
schematically shown above interface I were aqueous suspensions of carbonyl
iron (polydisperse particles with an average size of 4.5 μm) and cerium oxide

4

5 6

a

b

||

|

3

2

1

Fig. 7.17. The scheme of the experimental setup used to study the polarization
patterns in the case of the backscattering of linearly polarized light from a highly
absorbant medium [51]: (1) dielectric layer, (2) beam splitter, (3) narrow illuminating
beam, (4) imaging system; (5) polarizer, (6) detector
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particles (3.5 μm average size) with various volume fractions. Under the sim-
plifying assumption about the monodisperse character of these suspensions,
their optical parameters, such as the scattering and absorption coefficients,
were calculated using Mie theory. In the course of recording the cross-polarized
patterns, 50 frames were typically acquired and averaged.

The typical shapes of cross-polarized patterns (equal intensity contour
plots) obtained for different values of light penetration depth are illustrated
in Fig. 7.18. As can be seen, increasing absorbance causes the transformation
of cross-polarized patterns from axially symmetric equal intensity contours
to the fourfold intensity distributions that are typical of the cross-polarized
patterns obtained from dielectric layers with rough surfaces. The observed
evolution of the polarization patterns with a decrease in the light penetration
depth can be explained in terms of the ray-optics approach as was shown by
Dogariu et al. In the ray representation, the field emitted at one point after
a single-scattering event is completely determined by the incident field and
the local properties (geometry and complex refractive index) of the boundary.
This approach is applicable if the characteristic length scales of the scattering
system are significantly larger than the wavelength of the probe light. Forma-
tion of the cross-polarized patterns is explained by the use of the following
ray-propagation model schematically shown in Fig. 7.19.
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Fig. 7.18. The equal intensity contours for experimentally observed polarization
patterns obtained under different absorption conditions; (i–iv) the values of the
penetration depth of the probe light are equal to 7 μm, 12 μm, 20 μm, and 40 μm,
respectively [51]
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Fig. 7.19. Schematic of an in-plane, multiple scattering sequence developed inside
a dielectric layer in contrast to a strongly absorbant medium [51]

A typical feature of the observed patterns is the existence of three distinct
regions, such as a bright central spot, a dark surrounding ring, and a clearly
expressed four-lobe structure with contrast which decreases rapidly with in-
creasing radial distance. The appearance of the central depolarized spot is
evidently caused by the direct retroreflection of the incident beam and imper-
fect depolarizers. Also, the existence of the dark ring is easily explained by
the ray tracing inside the dielectric layer (cell window, see Fig. 7.19). In the
case of the small aperture angle of the imaging system, the rays leaving the
layer at points of type IIii will be eliminated, and only rays exiting at points
of type IIiii, which suffered cornerlike scattering sequences of two reflections
on the inner interface (I) and one reflection on the outer interface (II), will
contribute to the formation of the observed pattern. As the incidence angles
on the outer interface are in general smaller than the limit angle of the total
internal reflection, most of the light is transmitted through the outer interface
at large angles and, therefore, cannot be collected. Thus, a very small part is
reflected toward the points of type Iii. At the limit angle, an abrupt increase
in brightness is evident because all of the light incident at IIii is reflected
toward points Iii.

The main features of the observed cross-polarized patterns, such as the
four-lobe structure, can be considered as follows. The coplanar scattering se-
quences in the plane containing the incident polarization vector as well as in
the orthogonal plane preserve the initial polarization azimuth of the propa-
gating light, while the scattering sequences in the planes at azimuthal angle ϕ
cause the rotation π−2ϕ of the polarization vector. Such scattering sequences
cause the formation of similar polarization patterns in weak volume scatter-
ing of narrow beams [52]. The randomization of the polarization vector due
to multiple scattering is the competing factor that diminishes the contrast of
the observed patterns as it takes place with increasing radial distance.

It is easy to show that in cases of axial symmetry and reflections from
the inner interface between the dielectric layer and “surface-like” medium,
which is isotropic and homogeneous, the outgoing wave can be describedby
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the following relationship [51]:

Ēout ∼ ex

∣∣Ēout

∣∣ sin 2ϕ + ey

∣∣Ēout

∣∣ cos 2ϕ, (7.12)

where ex is determined by the orientation of the polarization vector of the
incident beam, ey corresponds to orthogonal direction, and ϕ is the azimuthal
angle of the corner-like sequence of scattering events. The scattering event
on the inner interface can be described in terms of the ray-optics approach
by introducing the effective surface with the local slope specified by a unit
random vector N(θ, ϕ). In this case, the outgoing field at point IIii will be
determined by deterministic reflection events governed by Snell’s law and by
a random process described as stochastically changing N(θ, ϕ).

The influence of polarization discrimination on the outgoing light from the
crossed polarizer is simply defined by the following relationship that describes
the azimuthal distribution of the intensity of the backscattered cross-polarized
light:

I⊥out(ϕ) ∼
∣∣Ēout

∣∣2
2

(1 − cos 4ϕ). (7.13)

As can be seen, this relationship describes the four-lobe structure of the
observed polarization patterns, but the appearance of any anisotropy of the
boundary will destroy the fourfold symmetry.

It is clear that the traces of the rays emerging at point IIii are typically
more complicated than the above-described in-plane sequences. Due to mul-
tiple reflections, the outgoing field also depends on nonlocal properties of
the scattering “surface-like” medium. These processes are associated with
nonplanar reflection sequences, the appearance of relative phase differences
that are due to the total internal reflections, etc. However, because of the
random nature of multiple-scattering processes, they result in the stochas-
tic depolarization of the outgoing light. In turn, the random depolarization
diminishes the contrast of the observed polarization patterns.

In the frames of the considered ray-optics model, if we do not take into
account the radial dependence of the cross-polarized backscattered intensity,
the depolarizing effects can be described by the introduction of an additional
generic rotation γ of the electric vector. Thus, after the ideal cornerlike se-
quence, the cross-polarized component of the electric field can be written as:

Ē⊥out = Ēout sin(2ϕ + γ). (7.14)

The value of γ is regarded as the fluctuating part of the rotation angle
with the probability distribution determined by the statistical properties of
the “quasisurface.” Under the above mentioned conditions (the isotropy and
the statistical homogeneity of the “quasisurface”), the fluctuations of γ can
be considered as a zero-mean random process. In this case, evaluation of the
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ensemble-averaged cross-polarized intensity yields the following relationship:

〈I⊥out〉 = (
〈∣∣Ēout

∣∣2〉/2)(1 + (1 − 2
〈
cos2 γ

〉
) cos 4ϕ). (7.15)

This formula also shows the fourfold structure of the azimuthal dependen-
cies of the detected cross-polarized intensity, but the contrast of the observed
polarization patterns is reduced and controlled by the value of

〈
cos2 γ

〉
. By

assuming that the rms value of γ is proportional to the average penetration
depth of the probe light, the characteristic changes in the experimentally ob-
tained patterns, which result from the increasing absorption of the probed
medium, can be easily interpreted.

7.5 Summary

Analysis of polarization decay in weakly ordered media (for instance, biolog-
ical tissues) can be used as an effective method to characterize the structural
properties of scattering systems. In particular, the spectral dependence of the
degree of residual polarization of backscattered radiation is strongly influ-
enced by the optical properties of the probed scattering media, such as the
values of the reduced scattering coefficient and the absorption coefficient at
the wavelength of the probe light. In turn, these parameters are controlled
by structural parameters, such as the average size and concentration of scat-
tering particles as well as by the type and concentration of the absorbant
components of the probed medium. This allows for the development of rel-
atively simple polarization techniques for functional diagnostics and for the
visualization of in vivo biological tissues in the laboratory or clinical setting.
Some of the related techniques will be considered in Chap. 11. The high sen-
sitivity of the degree of residual polarization of backscattered light to changes
in the absorption or scattering properties of probed media is the physical
basis for several novel approaches to medical polarization diagnostics which
employ controlled changes in the optical parameters of the scattering system
(by adding absorbing agents).
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Degree of Polarization in Laser Speckles from
Turbid Media

8.1 Introduction

The degree of polarization (DOP) of scattered light from biological tissues
is an important concept and deserves special attention. As a coherent light
source is generally used in the experiments, speckle patterns play significant
roles in the polarization measurements. The statistics of laser speckle pat-
terns, including partially polarized speckle patterns, were well described in
Goodman’s chapter [1]. In fact, partially polarized speckle patterns have been
studied extensively in recent years [2–5]. Fercher and Steeger [2,3] determined
the theoretical first-order statistics of the Stokes parameters and later veri-
fied the theory with experiments. Brosseau et al. [5] studied the statistics of
normalized Stokes parameters and discussed potential applications. Freund
et al. [6] proposed microstatistics to describe the polarization behavior of a
single coherence area in a speckle field. The work was focused on deriving
polarization correlation functions for extracting information from the speckle
pattern about the direction of the incident polarization. Tarhan et al. [7] fur-
ther investigated the microstatistics; they measured the intensity at many
points in a speckle pattern for a given polarization angle of the incoming laser
beam and obtained the probability density distributions for the parameters in
the statistics. However, these two studies did not evaluate the DOP at those
points in the speckle field, which is a key parameter for the understanding
of polarized speckle fields. Elies et al. [8], in a more recent investigation of
speckle polarization, observed a speckle field produced by light reflected from
a polished aluminum sample with a CCD camera. Their results showed that
depolarization among multiple speckle grains increased with sample inclina-
tion although each speckle grain remained polarized.

Li et al. [9] reported on an investigation of polarization in a speckle field
formed by coherent light transmitted through a surface-scattering medium
(a ground-glass plate) or a volume-scattering medium (a wax plate). The
degree of polarization, as well as the degree of linear polarization (DOLP) and
the degree of circular polarization (DOCP), was measured both within a single
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coherence area and over multiple coherence areas and modeled theoretically.
Although it is widely acknowledged that multiple scattering events in volume-
scattering media can depolarize polarized incident light and hence reduce the
DOP, this study demonstrated that the measured DOP depends significantly
on the conditions of observation. Readers are encouraged to refer to Sect. 6.4
for a related discussion.

8.2 Experiments and Simulation

To extend this work further, Li et al. [9] developed an experimental setup
as shown in Fig. 8.1. A diode laser (850 nm) emitted a beam of 1.5 mm in
FWHM diameter and of 60 m in coherence length. After passing through an
optical isolator and a half-wave retardation plate, the beam was horizontally
linearly polarized with a DOP of 0.99 and an intensity fluctuation of ∼1%.
The isolator and the retardation plate were used to prevent back reflection
into the laser and to fine tune the orientation of the polarization, respectively.
The beam was incident upon the sample, which produced a speckle field from
the transmitted light. An iris was placed close behind the sample to control
the average size of the coherence areas in the speckle field. Another iris was
used to select a portion of the speckle field for observation. The selected light,
after passing through a variable-wave plate, a Glan-Thompson analyzer, and a
nonpolarizing beam splitter, was detected by a large-area photoreceiver. The
variable wave plate was calibrated to an accuracy of 99% before measure-
ments. A chopper, operating at 900 Hz, modulated the beam intensity, and
the output of the photoreceiver was measured with a lock-in amplifier to im-
prove the signal-to-noise ratio. The chopper was set behind the first iris (close
to the sample) to ensure that only the light emerging from the sample was
modulated and detected. A CCD camera was used to monitor the speckle pat-
tern simultaneously. A 3-mm-thick wax plate was used as a volume-scattering
sample, which diffusely scattered the light to be received. The wax sample was
sufficiently thick to produce a speckle pattern of a high contrast, approach-
ing the theoretical limit for unpolarized speckles (∼70%). For comparison, a
ground-glass plate was used as a surface-scattering sample, which deformed
the optical wavefront only on the surface of the sample.

Laser S D1 D2 A BSI

HW VW

R

C CCD

Fig. 8.1. Experimental setup. I, optical isolator; HW, half-wave plate; S, sample; D1

and D2, irises; C, chopper; VW, variable-wave plate; A, analyzer; BS, nonpolarizing
beam splitter; R, photoreceiver
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The average diameter (d) of the coherence areas in the speckle field at the
plane of detection, located at the second iris, was estimated by the following
expression [10]:

d =
2.44λL

D1
, (8.1)

where L is the distance between the two irises, D1 is the diameter of the first
iris, and λ is the optical wavelength. Equation (8.1) is based on the definition
of the diameter of the Airy disk, which represents the minimum speckle size in
a speckle pattern [11] and can be used to estimate the average speckle size in
a “fully developed” speckle pattern. By definition, a “fully developed” speckle
pattern is completely polarized (DOP = 1). Although the speckle patterns in
these experiments are not “fully developed” due to the depolarization caused
by multiple scattering [12], for simplicity, (8.1) was used as an approximation
for the average speckle size. For measurements of a single coherence area
(multiple coherence area), D1 was set to 0.1 mm (2 mm), yielding an average
diameter for the coherence areas of 14.8 mm (0.74 mm) at the detection plane
with L = 711mm. By varying the area of detection determined by the size of
the second iris (D2), one could select the number of detected coherence areas,
which were monitored with the CCD camera.

Figure 8.2a shows the DOP, DOLP, and DOCP measured within a single
coherence area as functions of the size of the detection area. For the ground-
glass sample, the DOP showed little variation associated with the size of the
detection area and remained at ∼0.99, which was approximately the same as
that of the laser source. By contrast, for the wax sample, only the DOP of
those small areas of detection was close to unity, and the DOP decreased as
the area of detection was enlarged. The DOLP and DOCP behaved similarly
for the wax sample. For the ground-glass sample, the DOLP and DOCP
had nearly constant values: ∼0.99 and ∼0, respectively, which showed that
linear-polarization states were maintained in the speckle field. Small fluctua-
tions were seen in the DOCP measured from the ground-glass sample, which
were due to low signal-to-noise ratios in the detection of the low-intensity
circular-polarized component. Figure 8.2b shows the DOP, DOLP and DOCP
measured for multiple coherence areas. For both the ground-glass and the
wax samples, the trends in Fig. 8.2a continued. It should be mentioned that
the results in Fig. 8.2a, b were not joined together because the measurements
were not made under the same conditions as a result of the replacement of
the first iris.

From the Stokes vectors obtained with the ground-glass sample, it was
found that the horizontally linear polarization state of the laser source was
maintained in each measurement. In the measurements of the wax sample, a
variation of the relative distribution of speckle intensity was observed with the
CCD camera when the analyzer was rotated, indicating that the polarization
states in the speckle field were nonuniformly distributed. Based on the effect
of scattering on light polarization, it was deduced that the multiple scattering
events in the wax sample caused the broadened distribution of polarization in
the speckle field.
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Fig. 8.2. Measured DOP, DOLP, and DOCP as functions of the area of detection.
Ad is the area of detection, controlled by the diameter of the second iris (D2);
As is the average area of the coherence areas, computed through their estimated
average diameter (d). (a) Measurements within a single coherence area, where As =
171mm2. (b) Measurements over multiple coherence areas, where As = 0.43 mm2

The probability density functions (PDFs) of the Stokes parameters in the
speckle field that were generated by the wax sample were investigated. Speckle
patterns containing multiple coherence areas were recorded with the CCD
camera. The Stokes parameters measured at each CCD pixel were taken for a
statistical estimation. Figure 8.3 shows the PDFs of the four Stokes parame-
ters that were measured in the speckle field from the wax sample. The PDF
of the first Stokes parameter, I, was similar to that obtained by Goodman [1]
for the intensity of the sum of two speckle patterns, which was different from
the negative exponential distribution of a fully polarized speckle pattern. The
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Fig. 8.3. Normalized probability density functions of Stokes parameters, which were
measured in the speckle fields generated by the wax sample: (a) I, (b) Q, (c) U ,
(d) V . The probability density function of the first Stokes parameter I in the speckle
field generated by the ground-glass sample is also given in (a) for comparison. <>
represents the average values. See Chap. 3 for the definitions of I, Q, U, V

other three PDFs were symmetrically distributed. For comparison, a PDF of
the first Stokes parameter of a speckle pattern from the ground-glass sample is
shown in Fig. 8.3a as well. It is seen that the distribution of this PDF is closer
to the negative exponential distribution. Note that the DOPs corresponding
to the two speckle fields in Fig. 8.3a are ∼0.13 and ∼0.99, respectively. The
variation of the PDF with the DOP agrees with Goodman’s theory [1]. Ac-
cording to Fercher et al.’s theory [2] in which the speckle field was described as
a superposition of two fully developed uncorrelated linearly polarized speckle
fields, the symmetrical distribution of the PDF of the second Stokes parameter
indicates that the mean intensities of the two fields are the same.

In addition, to further understand the phenomenon observed, the polariza-
tion states in speckle fields from a surface- and a volume-scattering medium,
respectively, were theoretically simulated. For the volume-scattering medium,
both the polarization state and the phase of the transmitted optical field were
assumed to be randomized by multiple scattering events. For the surface-
scattering medium, only the phase of the transmitted optical field was as-
sumed to be randomized as a result of the deformation of the phase front.
In the simulation, the optical field at the first iris (D1) was represented by a
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Jones vector:

E(ξ, η) =
[

Ex(ξ, η)
Ey(ξ, η)

]
=
[

Ex0(ξ, η)e−jφx(ξ,η)

Ey0(ξ, η)e−jφy(ξ,η)

]
, (8.2)

where Ex(ξ, η) and Ey(ξ, η) were two orthogonal components of the field,
and (ξ, η) was the coordinate of a point in the plane where the first iris was
located. A pupil function was applied to simulate the first iris, which gave
the distribution of the optical field in the plane. For the surface-scattering
medium, a horizontally linear polarization state with a constant Ex0 and a
zero Ey0 was assumed:

E(ξ, η) =
[

Ex0e
−jφx(ξ,η)

0

]
, (8.3)

and the phase, φx(ξ, η) , was assumed to be randomized. For the volume-
scattering medium, several assumptions were made: arctan(Ey0(ξ, η)/Ex0(ξ, η))
was randomized between –π and π whereas the total optical intensity
(E2

x0
(ξ, η) + E2

y0
(ξ, η)) remained constant, and the phases, φx(ξ, η) and

φy(ξ, η), were randomized as well. For both of the media, the phase was
evenly randomized between –π and π.

The two field components, Ex(ξ, η) and Ey(ξ, η), were diffracted indepen-
dently, which generated two independent speckle patterns in the far field. The
diffraction processes were simulated by Fourier transforms:

Ex(x, y) = F {Ex(ξ, η)} , (8.4)
Ey(x, y) = F {Ey(ξ, η)} , (8.5)

where Ex(x, y) and Ey(x, y) denoted the optical fields at point (x, y) on the
observation plane, and F{} denoted the Fourier transform. The final speckle
pattern was generated by the summation of the two speckle patterns. The
Stokes vectors of the speckle pattern were then calculated as follows:⎡⎢⎢⎣

I
Q
U
V

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Ex(x, y)E∗

x(x, y) + Ey(x, y)E∗
y(x, y)

Ex(x, y)E∗
x(x, y) − Ey(x, y)E∗

y(x, y)
Ex(x, y)E∗

y(x, y) + Ey(x, y)E∗
x(x, y)

Ex(x, y)E∗
y(x, y) − Ey(x, y)E∗

x(x, y)

⎤⎥⎥⎦ . (8.6)

The results of the simulation are shown in Fig. 8.4. Fig. 8.4a shows the
variations of the DOP, DOLP, and DOCP with the size of the detection area
within a single coherence area. Figure 8.4b shows the results over multiple co-
herence areas. The simulation results qualitatively agree with the experimental
observation: a constant DOP of unity for the surface-scattering medium and
a decreasing DOP for the volume-scattering medium as the area of detection
increases are observed. The DOLP and DOCP decrease with the enlargement
of the detection area for the volume scattering medium, whereas they remain
constant for the surface-scattering medium. Due to the statistical nature of
a speckle field, the experimental results and the simulation results can be
compared only qualitatively.
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(a) The variations of DOP, DOLP, and DOCP within a single coherence area. (b)
The variations of DOP, DOLP, and DOCP over multiple coherence areas

Figure 8.5 displays the four Stokes-vector components of a segment of
the speckle field from the volume-scattering medium corresponding to the
maximum area of detection in Fig. 8.4a. It is clearly seen that the profiles
are different among the four components. This agrees with the experimental
observation from the wax sample and indicates that the Stokes vectors (polar-
ization states) and the DOPs can vary from point to point in the speckle field,
even within a single coherence area. This conclusion differs from the previ-
ous findings in speckle fields formed by light reflected from surface-scattering
media [8].
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Fig. 8.5. The Stokes-vector components for a volume-scattering medium within a
coherence area corresponding to the maximum in Fig. 8.4a

8.3 Discussion and Conclusions

The explanation of the results from the surface-scattering medium is that
because the speckle field is formed by the diffraction of an optical field with a
single polarization state, consequently, the speckle field maintains the original
polarization. For the volume-scattering medium, the independent diffraction
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processes of Ex and Ey create two orthogonal speckle fields polarized in the x
and y directions, respectively. The vector sum of the two orthogonal speckle
fields yields the total speckle field. Although the polarization states before
diffraction are randomized, each point in the total speckle field has a DOP of
unity because the resultant Ex and Ey components have a particular ratio of
amplitude and a particular phase relation. Of course, the polarization states at
different points in the total speckle field are statistically different from each
other because both the ratio of amplitude and the phase between the two
orthogonal speckle fields vary from point to point. The Stokes vector for an
area containing more than one such “point” is then determined by summing
the Stokes vectors of all of the points in the area. As a result, the DOP of
the area is less than unity and decreases statistically as the area is enlarged
because more points are included in the enlarged area. It is worth noting
that because of their statistical nature, polarization states and DOPs can be
different even for detection areas of the same size.

It can be concluded that the measured DOP, DOLP, and DOCP in a
speckle field that is generated by a volume-scattering medium depends on
the size of the detection area; These values decrease with an increasing area
of detection, and only the DOP of an area much smaller than a coherence
area is close to unity. This conclusion is important for the understanding of
polarization phenomena in biomedical optics, where polarized coherent light is
applied and a speckle field is generated. When the DOP, DOLP, and DOCP of
a speckle field from a scattering medium such as biological tissue are measured,
the above properties should be considered, especially if the measurement is
made from a small area in the field. The fact that these parameters may
vary statistically even for areas of the same size should be taken into account
as well. Moreover, if a speckle field was observed in reflection mode from a
piece of biological tissue, contributions from both the rough surface and the
multiscattered light should be considered.

It is useful to compare the conclusions reported here with those reported
on the DOP in a heterodyne detection scheme such as the one used in optical
coherence tomography (OCT). It was found that the DOP in OCT maintains a
value of unity as long as the scattering sample is stable during data acquisition
regardless of how many speckles are detected [13]. OCT is an amplitude-based
detection system that uses interference heterodyne. OCT detects the electric
field of only the coherent part of the backscattered light. The electric field of
the light from various locations on the detector surface is projected onto the
analyzing polarization state and then added in amplitude. Equivalently, the
electric field vectors of the light from the various locations of the detector are
summed, and the vector sum is then projected onto the analyzing polarization
state. As a result of this coherent-detection scheme in OCT, a DOP of unity
is maintained despite scattering.
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Monte Carlo Modeling of Polarization
Propagation in Strongly Scattering Media

9.1 Introduction

In optical imaging and diagnostics, the optical properties of the biological
tissue samples are unknown; only the incident light and output light can be
measured. The goal of optical imaging or diagnostics in biological tissue is
to retrieve the optical properties of the sample based on the measurable pa-
rameters, which is an inverse problem. The corresponding forward problem
involves calculating the measurable output with known input parameters and
known optical properties of the sample. A clear understanding of the forward
problem is rudimentary for solving the inverse problem because inverse algo-
rithms are often built upon forward solutions. Studying the forward problem
facilitates the understanding of light transport in scattering biological tissues.

Monte Carlo simulation has been proven to be an accurate and flexible
approach and has been widely used in tissue optics [1–4]. It can be applied
to complex tissue structures and compositions. In conventional Monte Carlo
simulations, polarization of the incident light is not considered. However, light
fields are inherently vector-based, which means polarization is an important
feature. In recent years, tissue polarimetry has become an attractive topic in
biomedical optics [5]. Besides conventional optical contrast, polarized light fur-
nishes polarization contrasts that are related to specific tissue properties. For
example, collagen fibers possess linear birefringence [6] and glucose molecules
have circular birefringence (optical activity) [7]. These polarization contrasts
cannot be revealed by non-polarized light. In addition to providing polar-
ization contrasts, polarization-based techniques have also been employed to
discriminate weakly scattered light from strongly scattered light. It is widely
recognized that the original polarization state is lost in diffusely scattered
light but is partially preserved in weakly scattered light. For a detailed dis-
cussion on degrees of polarization, refer to Chap. 8. By using polarization
discrimination, one can perform imaging using weakly scattered photons.

The propagation of polarized light in scattering (turbid) media is a com-
plex process. Parameters, such as the size, shape, and density of the scatterers
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as well as the polarization state of the incident light, all play important
roles [8]. A good understanding of this process is essential for improving the
polarization-based techniques. Because the number of scattering events is re-
lated to the optical path length or the time of propagation, a time-resolved
study is needed to understand the evolution of polarization in turbid media.

In this chapter, a time-resolved Monte Carlo technique is used to simulate
the propagation of polarized light in turbid media [9, 10]. Mie theory is used
to calculate the single scattering events [11]. A Mueller-matrix approach is ap-
plied because it provides a complete description of the polarization properties
of the light and the materials [12]. Specifically, the reflection and transmis-
sion Mueller matrices of turbid media, and the evolution of the degree of
polarization (DOP) in turbid media, are studied. The effects of the size of
the scatterers and the polarization state of the source are studied as well. A
continuous-wave (CW) Monte Carlo code modeling polarized light interaction
with a multiple scattering medium is described in Sect. 4.3 [13].

9.2 Method

Because of the nature of the Monte Carlo simulation used, coherent phe-
nomena, such as laser speckles, are not modeled. Nevertheless, the simulation
method can be applied in the non-coherent regime or in cases where the co-
herent effect is removed, such as ensemble-averaged measurements. A detailed
account of a Monte Carlo simulation of non-polarized light transport in scat-
tering media can be found elsewhere [4]. Several groups have used Monte
Carlo techniques to simulate the steady-state backscattering Mueller matrix
of polarized light from a turbid medium [14,15]. Whereas an indirect method
utilizing the symmetry of the backscattering Mueller matrix was used in [14],
the direct tracing method [15] is used here. The turbid medium is assumed
to have a slab structure, on which a laboratory coordinate system is defined
(Fig. 9.1). A pencil beam is incident upon the origin of the coordinate system
at time zero along the Z axis.

The basic idea is to track the Stokes vector of each photon packet. The
derivation of the single scattering Mueller matrix from Mie theory is shown in
the Appendix. The coordinate transformation equations used in the simulation
are also shown in the Appendix. The flow chart of the program is shown in
Fig. 9.2.

Y 0
X

Z

Fig. 9.1. Laboratory coordinate system for the Monte Carlo simulation
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Fig. 9.2. Flow chart of Monte Carlo simulation of propagation of polarized light in
turbid media

In the simulation, the Stokes vector and the local coordinates of each
incident photon packet are traced statistically. At each scattering event, the
incoming Stokes vector S of the photon packet is first transformed into the
scattering plane through a rotation operator R and then through a scattering
matrix M:

S′ = M(θ)R(φ)S, (9.1)

where S is the Stokes vector before scattering; R(φ) is the rotation matrix
(see (A.11)); S′ is the Stokes vector of the scattered photon; θ is the polar
angle; φ is the azimuth angle; and M is the single-scattering Mueller matrix,
given by Mie theory as follows [11] (see also (3.30)):

M(θ) =

⎡⎢⎢⎣
M11 M12 0 0
M12 M11 0 0
0 0 M33 M34

0 0 −M34 M33

⎤⎥⎥⎦ . (9.2)

The element M11 satisfies the following normalization requirement:

2π

π∫
0

M11(θ) sin(θ)dθ = 1. (9.3)
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The I ′ component of S′ = {I ′, Q′, U ′, V ′} represents the scattered intensity.
Therefore, I ′/I represents the joint probability density function (PDF) of the
polar angle θ and the azimuth angle φ, which is a function of the incident
Stokes vector S = {I,Q,U, V }:

ρ(θ, φ) = M11(θ) + M12(θ)[Q cos(2φ) + U sin(2φ)]/I. (9.4)

Here, the polar angle θ is first sampled according to M11(θ), and the azimuth
angle φ is sampled with the following function:

ρθ(φ) =
ρ(θ, φ)

2πM11(θ)
. (9.5)

It is worth noting that a biased sampling technique was used in [15]. The
Stokes vectors of all the output-photon packets are transformed to the lab-
oratory coordinate system and then accumulated to obtain the final Stokes
vector. The Mueller matrix of the scattering media can be calculated alge-
braically from the Stokes vectors of four different incident polarization states
[16]. The DOP is calculated by

DOP =
√

Q2 + U2 + V 2/I. (9.6)

To accelerate the computation, the single-scattering Mueller matrix and the
PDFs of the scattering angles are calculated and stored in arrays before the
photon packets are traced. The path length of the photon packets is recorded
to provide pathlength- or time-resolved information. For purposes of illustra-
tion, the scatterers are assumed to be spherical; the thickness of the scattering
slab is taken to be 2 cm; the temporal resolution is 1.33 ps, corresponding to
0.4 mm in real space; the wavelength of light is 543 nm; the absorption co-
efficient is 0.01 cm−1; the index of refraction of the turbid medium is unity,
matching that of the ambient. The dimensions of the pseudocolor images in
the following section are 4, 4, and 2 cm along the X, Y , and Z axes, respec-
tively.

9.3 Results

Figure 9.3 shows the reflection and the transmission Mueller matrices of a
turbid medium with a scattering coefficient of 4 cm−1 and a scatterer radius
of 0.102 μm. The calculated Mueller-matrix elements are normalized to the
M11 element to compensate for the radial decay of intensity. Each of the
images is displayed with its own color map to enhance the image contrast.
The size of each image is 4 × 4 cm2.

The patterns of the reflection Mueller matrix are identical to those re-
ported previously [14, 15]. The symmetries in the patterns can be explained
by the symmetries in the single-scattering Mueller matrix and the turbid
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Fig. 9.3. (a) Reflection Mueller matrices and (b) transmission Mueller matrices of
a slab of turbid medium

medium [14]. The transmission Mueller matrix has different patterns from
the reflection Mueller matrix. One of the noticeable differences appears in ele-
ments M31 and M13, which are antisymmetric in the reflection Mueller matrix
but symmetric in the transmission Mueller matrix. This difference is caused
by the mirror effect in the reflection process of the scattered light.

Fig. 9.4 shows the time-resolved DOP propagation in the turbid medium
with right-circularly (R) and horizontal-linearly (H) polarized incident light.
The scattering coefficient is 1.5 cm−1, and the radius of the scatterers is 0.051
μm. The scattering anisotropic factor 〈cos(θ)〉 is 0.11. The transport mean free
path is calculated to be 0.74 cm. In the simulation, the Stokes vectors of the
forward propagating photons are accumulated to calculate the DOP. As shown
in the movies, the DOPs at the expanding edges of the distributed light remain
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Fig. 9.4. Time sequences of the DOP propagation in the slab (0.051 μm particle).
The X axis is along the horizontal direction, and the Z axis is along the vertical
direction. R: right-circularly polarized incident light. H: horizontal-linearly polarized
incident light

near unity because these photons experience few scattering events. As the light
propagates in the medium, the DOP in some regions decreases significantly.
The DOP patterns are dependent on the single-scattering Mueller matrix and
the density of the scattering particles.

The DOP images in Fig. 9.4 show different patterns for the R- and the
H-polarized incident light. As expected, such a difference appears in the
DOP images of transmitted light as well. As shown in Fig. 9.5, the DOP
images of the transmitted light are rotationally symmetric for circularly po-
larized incident light, whereas such symmetry does not exist for linearly
polarized incident light. This difference is related to the dependence of the
scattering probability on the incident Stokes vector (9.4) and (9.5). The Stokes
vectors of the R- and the H-polarized light are {1, 0, 0, 1} and {1, 1, 0, 0},
respectively. According to (9.5), the R-polarized light has a uniform PDF
for the azimuth angle, whereas the H-polarized light has a non-uniform one.
Hence, the single-scattering pattern depends on the polarization state of the
incident light. As changes in the DOP are related strongly to single scattering
events, it is understandable that the DOP images have different features for
different incident Stokes vectors.

To demonstrate the dependence of the evolution of the DOP on the num-
ber of scattering events, we record the time-resolved images of the average
number of scattering events of the transmitted light (Fig. 9.6). The simula-
tion parameters are the same as those for Figs. 9.4 and 9.5. As it can be
seen, the transmitted photons experience more and more scattering events
as time elapses. If we compare Figs. 9.5 and 9.6, it is clear that the patterns
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Fig. 9.5. Time sequences of the DOP of the transmitted light with R-polarized (left
side images) and H-polarized (right side images) incident light (0.051 μm particle).
The X axis is along the horizontal direction, and the Y axis is along the vertical
direction

of the DOP are related directly to the patterns of the scattering counts—the
DOP decreases as the number of scattering events increases. Nevertheless, the
number of scattering events does not solely determine the change in the DOP.
Two dark regions are clearly visible in Fig. 9.5b, but they are inseparable in
Fig. 9.6b. The change in the DOP must also depend on the nature of each
scattering event as determined by the single-scattering Mueller matrix.

To study the effect of the size of the scatterers, we simulate the evolution
of the DOP in a scattering medium with a different radius (1.02 μm). The
scattering coefficient of the medium is 14 cm−1, and the anisotropic factor is
0.91. The transport mean free path is 0.76 cm, which is similar to the value
for Figs. 9.4–9.6. The time-resolved propagation of the DOP in the medium
is shown in Fig. 9.7. The DOP movie of the transmitted light is shown in
Fig. 9.8.

Note the different patterns in Figs. 9.7 and 9.8 and Figs. 9.4 and 9.5. The
key difference is that the DOP of R-polarized incident light is preserved much
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Fig. 9.6. Time sequences of the weighted-averaged numbers of scattering events
for R-polarized (left side images) and H-polarized (right side images) incident light.
The numbers of scattering events are normalized to a maximum value of 7 for the
plots. The X axis is along the horizontal direction, and the Y axis is along the
vertical direction

better than the DOP of H-polarized incident light for the large scatterers, as
shown in Figs. 9.7 and 9.8. In contrast, the DOP of H-polarized incident light
is preserved better than the DOP of R-polarized incident light for the small
scatterers, as shown in Figs. 9.4 and 9.5. This observation is consistent with
previous experimental and theoretical findings.

Another significant difference is that the DOP patterns for the large
scatterers become rotationally symmetric even when the incident light is
H-polarized. This phenomenon can be easily understood if we examine the
PDFs of the scattering angle for different particle sizes. The scattering angle
θ is determined by M11, and its PDF ρ(θ) is 2π M11 sin(θ). The PDF of the
azimuth angle φ is function of both φ and the incident Stokes vector, as de-
fined in (9.5). The contribution of the φ-dependent term is proportional to
|M12/M11|. The curves of ρ(θ) and |M12/M11| are shown in Fig. 9.9. When
the size of the scatterer is small, ρ(θ) is approximately homogeneous and the
photon is likely to be scattered into 60 – 120◦ (Fig. 9.9a). At these angles, the
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|M12/M11| ratio has large values and (9.5) depends strongly on φ. When the
size of the scatterer is large, most of the photons are scattered into smaller an-
gles (Fig. 9.9b). The |M12/M11| ratio is small at small scattering angles, which
means that the homogeneous-distribution term is dominant in the probability
distribution function of the φ angle. As a consequence, the scattering process
becomes rotationally symmetric for the larger particle sizes.

As observed in Figs. 9.5 and 9.8, the DOP at the center of the 2D time-
resolved images is smaller than that in the outer area. However, the DOP
decreases radially in the time-integrated images (Fig. 9.10), which is in agree-
ment with previous experimental results [8]. This is because the photons exit-
ing at the early times have a limited span in space and hence have a dominant
weight in the central area. These early exiting photons preserve the DOP bet-
ter because they experience fewer scattering events than the photons exiting
at later times. Consequently, a combination of time-gating and polarization
discrimination [17] is better at rejecting multi-scattered photons than either
technique alone. Figure 9.10 also reveals that the DOP decreases as the scat-
tering coefficient increases. The radial distribution of the DOP becomes flat
at a large scattering coefficient because of the increasing number of multi-
scattered photons.
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The X axis is along the horizontal direction, and the Y axis is along the vertical
direction
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scattering coefficients. The particle radius was 1.02 μm. The incident light was H
polarized

9.4 Summary

In this chapter, a Monte Carlo technique was employed to simulate the time-resolved
propagation of polarized light in scattering media. Results are consistent with prior
experimental findings. Hence, time-resolved simulation is a useful tool for under-
standing the essential physical processes of polarization propagation in turbid media.
Because of the nature of the Monte Carlo simulation, coherent phenomena, such as
laser speckles, are not modeled. Nevertheless, the simulation method can be applied
in the non-coherent regime or in cases where the coherent effect is removed, such as
ensemble-averaged measurements.



10

Polarization-Sensitive Optical Coherence
Tomography

10.1 Introduction

As a result of its noninvasive characteristic, its high spatial resolution and
its easy optical fiber implementation, optical coherence tomography (OCT)
is emerging as an important optical imaging modality. Various technical ap-
proaches have been developed to increase its spatial resolution [1,2], imaging
rate [3,4], and image quality [5,6]. To completely retrieve the information car-
ried by backscattered light fields, both amplitude and polarization information
need to be recorded. Conventional OCT systems record the amplitude but not
the polarization information from scattered light. In contrast, polarization-
sensitive OCT can capture the polarization states of backscattered light and,
as a result, can reveal the polarization properties, such as birefringence, of a
sample, which cannot be recovered by conventional OCT [7–16]. Birefringence
is related to various biological components such as collagen, muscle fibers,
myelin, retina, keratin, and glucose. Consequently, polarization can provide
novel contrast mechanisms for imaging, diagnosis, and sensing. In Mueller
calculus, the polarization state of light can be completely characterized by a
Stokes vector, and the polarization transforming properties of an optical sam-
ple can be completely characterized by a Mueller matrix. The combination of
Mueller calculus and OCT offers a unique way to acquire the Mueller matrix
of a scattering sample with OCT resolution [10,11]. Yao and Wang [10] were
the first to report on two-dimensional depth-resolved Mueller-matrix images
of biological tissues measured with OCT based on 16 combinations of source
and detection polarization states. The relatively time-consuming nature of
the measurement process, however, limited the application of the technique
to stable samples such as bones. Jiao et al. [11] further demonstrated that
the degree of polarization (DOP) of backscattered light measured by OCT is
unity throughout the detection range and that a DOP of unity indicates that
the measured Mueller matrix is nondepolarizing. This conclusion allows the
use of a Jones matrix, instead of a Mueller matrix, in OCT.
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To minimize motion artifacts in soft-tissue imaging, a system that can
determine the Jones matrix with a single depth scan (A-scan) has been de-
veloped [17, 18]. In other words, this system can acquire a Jones matrix as
fast as its conventional OCT counterpart can acquire a regular image. The
measured Jones matrix can be further transformed into an equivalent Mueller
matrix to take advantage of the latter’s superiority in revealing polarization-
independent information.

10.2 Experimental System: Serial Implementation

As described in Chap. 2, a 4×4 Mueller matrix has 16 independent elements in
the most general cases; therefore, at least 16 independent measurements must
be acquired to determine a full Mueller matrix. As will be discussed in the
subsequent sections, the number of necessary measurements can be reduced
in polarization-sensitive OCT to construct a Jones or Mueller matrix.

In an OCT system, the interference signal generated by the light beams
from the reference arm and the sample arm is

IOCT = 2Re
{
< Es(ls) · E∗

r,A(lr) >
}

= 2[Is,A(ls)Ir,A]1/2 |V (Δl)| cos(k0Δl),
(10.1)

where Es denotes the sample electric field, Er,A denotes the reference electric
field with a polarization state A, ls and lr are the optical path lengths of the
sample arm and the reference arm, respectively, Is,A denotes the light inten-
sity from the sample arm projected onto polarization state A, Ir,A denotes
the intensity of light in polarization state A from the reference arm, V is the
temporal coherence function of the field, Δl represents the path-length differ-
ence between the sample and reference arms, and k0 is the magnitude of the
average wave vector.

The path-length difference can be approximately converted to the optical
depth, which is the physical depth multiplied by the index of refraction, in the
sample in the ballistic or quasiballistic regime. For light reflected from a given
optical depth in the sample, the following quantity is used to substitute for
the time-resolved intensity in conventional polarimetry that would otherwise
be directly measured by a noninterference analyzer of polarization state A:

Is,A ∝ I2
OCT/Ir,A (10.2)

Figure 10.1 shows a schematic of the OCT system that quantifies the
Mueller matrix of biological tissue with a series of polarization measurements.
A superluminescent diode (SLD) with a center wavelength of 850 nm and
a full-width-at-half-maximum (FWHM) bandwidth of 26 nm is used as the
light source. The light intensity after the polarizer P is 400 μW. After pass-
ing through polarizer P, the half-wave plate HW, and the quarter-wave plate
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Fig. 10.1. Schematic of the serial Mueller OCT system: SLD, superluminescent
diode; P, polarizer; HW, zero-order half-wave plate; QW, zero-order quarter-wave
plate; NBS, non-polarization beam splitter; VW, variable wave plate; M, mirror; L1,
L2, lens; PD, photodiode

QW, the light is split by a nonpolarization beam splitter (NBS). The sam-
ple beam is focused into the sample by an objective lens (L1). The reference
beam passes through a variable wave plate (VW) and is reflected back. The
reflected beams from the reference and sample arms are coupled into a single-
mode fiber and detected by a silicon photodiode. The depth resolution of this
system is 10 μm. The step size of the lateral scan is also 10 μm. The focal spot
size of the objective lens (L1) is 6.9 μm in air and larger in tissue. The lateral
resolution is expected to be around 10 μm.

Four different incident polarization states, H, V, +45◦, and R are achieved
by rotating the half-wave plate (HW) and the quarter-wave plate (QW) in the
source arm. For each of these four incident polarization states, the variable
wave plate (VW) in the reference arm is adjusted to sequentially achieve the
H, V, P, and R polarization states. The light intensities of both the source
arm and the reference arm are measured for each of the 16 combinations of
polarization states in the source and reference arms. The source intensity is
measured for calibration purposes. The reference intensities are used to con-
vert the OCT signals for calculations of Stokes vectors and Mueller matrices.
A total of 16 polarization-sensitive OCT images are acquired and processed
to obtain the 16 Mueller matrix images [Mij ]. Alternatively, if the Stokes vec-
tor of the backscattered light is sought for a given incident polarization state,
only four measurements need be acquired by varying the reference polarization
state.

The OCT system was carefully calibrated and validated. The four incident
polarization states, as well as the four reference polarization states associated
with each incident polarization state, were examined in terms of polarization
purity. The polarization purity is defined as Imin/Imax, where Imax is the
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signal intensity of the designed polarization state and Imin is the intensity
of the orthogonal polarization state. As the beam splitter is not an ideal
polarization-independent optical element, the Mueller matrix of the beam
splitter was measured for calibration.

10.3 Jones Calculus and Mueller Calculus

A Jones matrix (J) transforms an input Jones vector (EIN) into an output
Jones vector (EOUT) while a Mueller matrix (M) transforms an input Stokes
vector (SIN) into an output Stokes vector (SOUT):

EOUT =
[

EOH

EOV

]
= JEIN =

[
J11 J12

J21 J22

] [
EiH

EiV

]
, (10.3)

SOUT =

⎡⎢⎢⎣
I
Q
U
V

⎤⎥⎥⎦ = MSIN =

⎡⎢⎢⎣
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎤⎥⎥⎦
⎡⎢⎢⎣

Ii

Qi

Ui

Vi

⎤⎥⎥⎦ , (10.4)

where EOH and EOV are the horizontal and vertical components of the electric
vector of the output light field, EiH and EiV are the horizontal and vertical
components of the electric vector of the input light field, I, Q, U , and V are
the elements of the Stokes vector of the output light, and Ii, Qi, Ui, and Vi

are the elements of the Stokes vector of the input light, respectively. I and
Ii are the intensity of the output and input light, respectively. In an OCT
system, Ii represents the intensity of the incident light in the sample arm, and
I represents the detected intensity of the backscattered light. In (10.4), we
can clearly see that M11 represents the intensity transformation property of
the sample and contains no polarization information.

The Jones matrices of a homogenous partial polarizer (JP) and a homoge-
nous elliptical retarder (JR) can be expressed as

JP =
[

P1 cos2 α + P2 sin2 α (P1 − P2) sin α cos α e−iΔ

(P1 − P2) sin α cos α eiΔ P1 sin2 α + P2 cos2 α

]
, (10.5)

JR =

[
eiϕ/2 cos2 θ + e−iϕ/2 sin2 θ (eiϕ/2 − e−iϕ/2) sin θ cos θ e−iδ

(eiϕ/2 − e−iϕ/2) sin θ cos θ e−iδ eiϕ/2 sin2 θ + e−iϕ/2 cos2 θ

]
,

(10.6)
where P1, P2 are the principal coefficients of the amplitude transmission for
the two orthogonal polarization eigenstates, α is the orientation of JP, ϕ and θ
are the retardation and orientation of JR, respectively, and Δ and δ are the
phase differences for the vertical and horizontal components of the eigenstates
of JP and JR, respectively.
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A retarder is called elliptical when its eigenvectors are those of ellipti-
cal polarization states. A linear retarder is a special case where the eigen-
polarizations are linear; and a Faraday rotator is another special case where
the eigenpolarizations are circular. When two or more linear retarders are
cascaded, the overall retarder is generally elliptical.

A polarizing element is called homogeneous when the two eigenvectors of
its Jones matrix are orthogonal [19, 20]. Linear polarizers and linear and cir-
cular retarders are typical homogeneous polarizing optical elements. A typical
example of inhomogeneous polarizing elements is a circular polarizer, whose

Jones matrix is 1
2

[
1 1
i i

]
, which is constructed by using a linear polarizer set at

45◦ followed by a λ/4 plate with its fast axis set at horizontal. The eigenvectors

of such a circular polarizer are 1√
2

[
1
−1

]
for a −45◦ linear polarization state

and 1√
2

[
1
i

]
for a right circular polarization state; these are not orthogonal.

For an intensity-based noninterference detection system, a turbid medium
is generally depolarizing unless the detector is small; in other words, when
a completely polarized light beam (DOP = 1) is scattered by the medium,
the output light becomes partially polarized (DOP < 1) unless the area of the
detector is much less than the average size of speckles. This point is covered in
more detail in Chap. 8. However, OCT is an amplitude-based detection system
using interference heterodyne, which detects the part of the backscattered
electric field that is coherent with the reference beam, regardless of whether
the overall backscattered light is partially polarized or not. The OCT signal,
IOCT, received by a detector of a finite area can be considered as the sum
of the contributions from the backscattered optical fields, Esi, reaching the
various points of the detector:

IOCT = Er · Es1 + Er · Es2 + Er · Es3 + . . .

= Er · (Es1 + Es2 + Es3 + . . .) (10.7)
= Er · Es,

where Er represents the reference optical field, Es is an equivalent total
backscattered optical field, and the dot product represents the interference
signal (apart from a constant factor). As shown in (10.7), each backscattered
optical field from the sample contributes to the OCT signal by projecting onto
the reference optical field, Er. Equivalently, the backscattered optical fields
reaching the various points of the detector can be summed in vector, and the
vector sum, Es, is then projected onto the reference optical field to yield the
OCT signal. One can imagine this is equivalent to shrinking the full field over
the area of detection to a single point before interfering with the reference
beam. If all of the Esi share the same polarization state, Es will have the
same polarization state; otherwise, Es will have a net apparent polarization
state. In either case, the measured Es will have a unique polarization state.
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As a result, the DOP measured by OCT will be unity. In an intensity-based
noninterference detection system, by contrast, the backscattered optical fields
reaching the various points of the detector would add in intensity. In this case,
if all of the Esi do not share the same polarization state, the DOP will be less
than unity.

Unlike a Mueller matrix, which is suitable for all kinds of optical systems,
a Jones matrix can only be applied to a nondepolarizing optical system. A
Jones matrix can completely characterize the polarization properties of a non-
depolarizing optical system. In other words, for a nondepolarizing optical sys-
tem, a Jones matrix is equivalent to a Mueller matrix. A Jones matrix has four
complex elements, in which one phase is arbitrary and, consequently, seven
real parameters are independent. Equivalently, there are seven independent
parameters in a nondepolarizing Mueller matrix.

When the two matrices are equivalent, the Jones and Mueller matrices
have different advantages. A Jones matrix has fewer elements and the physical
meanings of the matrix elements are clearer. On the other hand, a Mueller
matrix uses only real numbers; and the intensity transformation property of
a sample is explicitly expressed in its M11 element, which provides an image
of the sample without the influence of its polarization property. M11 contains
no polarization artifact such as is usually encountered in a conventional OCT
image when the sample contains birefringence. Therefore, a Mueller matrix
clearly separates the structural information from the polarization information
of a sample.

The Jones matrix of a nondepolarizing optical system can be transformed
into an equivalent nondepolarizing Mueller matrix by the following relation-
ship [21]:

M = U(J ⊗ J∗)U−1

= U
[

J11J∗ J12J∗

J21J∗ J22J∗

]
U−1 (10.8)

= U

⎡⎢⎢⎣
J11J

∗
11 J11J

∗
12 J12J

∗
11 J12J

∗
12

J11J
∗
21 J11J

∗
22 J12J

∗
21 J12J

∗
22

J21J
∗
11 J21J

∗
12 J22J

∗
11 J22J

∗
12

J21J
∗
21 J21J

∗
22 J22J

∗
21 J22J

∗
22

⎤⎥⎥⎦U−1,

and a Jones vector of a light field can be transformed into a Stokes vector by

S =
√

2U(E ⊗ E∗) =
√

2U
[

EHE∗

EVE∗

]
=

√
2U

⎡⎢⎢⎣
EHE∗

H

EHE∗
V

EVE∗
H

EVE∗
V

⎤⎥⎥⎦ , (10.9)
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where ⊗ represents the Kronecker tensor product and U is the 4 × 4 Jones–
Mueller transformation matrix:

U =
1√
2

⎡⎢⎢⎣
1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎤⎥⎥⎦ . (10.10)

At least two independent incident polarization states, which are not necessar-
ily orthogonal, are needed to fully determine a Jones matrix.

10.4 Experimental System: Parallel Implementation

Figure 10.2 shows a schematic of the OCT system that quantifies a Jones
matrix of biological tissue with multiple polarization measurements in paral-
lel. Two super luminescent diodes (SLD) are employed as low-coherence light
sources and are amplitude modulated at 3 and 3.5 kHz by modulating the
injection current. The two light sources are in horizontal and vertical polar-
ization states, respectively, and each delivers about 200 μw of power to the
sample. The central wavelength, FWHM bandwidth, and the output power
of the light sources are 850 nm, 26 nm, and 3 mw, respectively. The Jones
vectors of the two sources are [1, 0]T and [0, 1]T, respectively, where the su-
perscript T transposes the row vectors into column vectors. The two source

SLDH

PDH

L1

L3

SPF

M

SNBS

S
LD

V

P
D

VL4

PBS1

PBS2

L2

QW1
QW2

Fig. 10.2. Schematic of the parallel Jones OCT system: SLDH and SLDV, su-
perluminescent diodes, horizontally polarized (H) and vertically polarized (V), re-
spectively; PBS1 and PBS2, polarizing beam splitters; SPF, spatial filter assembly;
NBS, nonpolarizing beam splitter; QW1 and QW2, zero-order quarter-wave plates;
M, mirror; L1, L2 L3 and L4, lenses; PDH and PDV, photodiodes for H and V
polarization components
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beams are merged by a polarizing beam splitter (PBS1), filtered by a spa-
tial filter assembly and then split into the reference arm and the sample arm
by a nonpolarizing beam splitter (NBS). The sample beam passes through a
quarter-wave plate (λ/4 plate), the fast axis of which is oriented at 45◦ and is
focused into the sample by an objective lens (L1: f = 15 mm and NA = 0.25).
The Jones vectors of the sample beam at the sample surface for the two
sources are [1, i]T and [1,−i]T, which are right-circularly and left-circularly
polarized, respectively. The reference arm consists of a λ/4 plate, the fast axis
of which is oriented at 22.5◦, a lens (L2), and a mirror. After retro-reflection
by the reference mirror and double passing through the λ/4 plate, the hori-
zontal polarization (H) of the incident light is converted into 45◦ polarization,
[1, 1]T, while the vertical polarization (V) of the incident light is converted
into −45◦ polarization, [1,−1]T, and then the reference beam combines with
the backscattered sample beam through the NBS. The combined light is split
into two orthogonal polarization components, i.e., the horizontal and verti-
cal components of the Jones vector, by a polarization beam splitter PBS2.
The two components are coupled into two single-mode fibers with objective
lenses. The two polarization components are detected by photodiodes PDH
and PDV, respectively. A data-acquisition board (DAQ board), sampling at
50 kHz per channel, digitizes the two signals. The scan speed of the refer-
ence arm is 0.5mms−1 generating a Doppler frequency of about 1.2 kHz. The
carrier frequencies, 1.8, 2.3, 4.2, and 4.7 kHz, are the beat and harmonic fre-
quencies between this Doppler frequency and the modulation frequencies of
the light sources.

The two function generators (DS345, Stanford Research Systems), which
are used for the modulation of the two light sources, respectively, are synchro-
nized and share the same time base. Burst mode was used to ensure that the
initial phases of the two modulation signals are fixed for each A-scan. The
time delay between the scanning of the two channels of the DAQ board is
10 μs. The phase difference between the two channels caused by this time de-
lay for each beat and harmonic frequency was compensated for during signal
processing.

For OCT signals based on single-backscattered photons, the incident Jones
vector Ei in the sample arm is transformed to the detected Jones vector Eo by

Eo = JNBSJQBJSBJMJSIJQIEi

= JNBSJQBJJQIEi = JTEi,
(10.11)

where JQI and JQB are the Jones matrices of the λ/4 plate for the incident
and the backscattered light, respectively, JSI and JSB are the Jones matrices
of the sample for the incident and backscattered light, respectively, JM is the
Jones matrix of the single backscatterer – the same as the one for a mirror,
JNBS is the Jones matrix of the reflecting surface of the nonpolarizing beam
splitter, J is the combined round-trip Jones matrix of the scattering medium,
and JT is the overall round-trip Jones matrix.



10.4 Experimental System: Parallel Implementation 169

In (10.11), the output Jones vector Eo is constructed for each light source
from the measured horizontal and vertical components of the OCT signal.
Upon acquiring the output Jones vectors and knowing the input Jones vectors,
the overall round-trip Jones matrix JT can be calculated. The Jones matrix J
of the sample can be extracted from JT by eliminating the effect of the Jones
matrices of the quarter-wave plate, the mirror and the beam splitter.

In a commonly used convention, JM transforms the polarization state of
the forward light expressed in the forward coordinate system into the polar-
ization state expressed in the backward coordinate system. Similarly, JNBS

transforms the polarization state of the backward light into the polarization
state expressed in the detection coordinate system. However, in this work
we express the polarization states of both the forward and backward light in
the forward coordinate system. In this convention, JM and JNBS are identity
matrices:

JM = JNBS =
[

1 0
0 1

]
. (10.12)

In each A-scan, the optical paths for the forward and backward light are
the same, and, therefore, the Jones’ reversibility theorem can be applied [22].
The Jones reversibility theorem indicates that the Jones matrices, JBWD and
JFWD of an ordinary optical element for the backward and forward light prop-
agations, have the following relationship if the same coordinate system is used
for the Jones vectors: JBWD = JT

FWD. Therefore, we have the following rela-
tionships:

JSB = JT
SI,JQB = JT

QI =
1√
2

[
1 −i
−i 1

]
, (10.13)

J = JSBJMJSI = JT
SIJSI = JT, (10.14)

JT = JNBSJQBJJQI = JT
QIJJQI = JT

T. (10.15)

In other words, matrices J and JT are transpose symmetric. Because of this
symmetry, the number of independent parameters in the Jones matrix is re-
duced from seven to five.

As reported by Yao and Wang, who used Monte Carlo simulation [23],
the light backscattered from the sample can be divided into two parts: Class
I and Class II. Class I light provides a useful signal, which is scattered by
the target layer in a sample and the path-length difference of which from
the reference light is within the coherence length of the light source. Class II
light is the part scattered from the rest of the medium, whose path-length
difference from the reference light is also within the coherence length of the
light source. Class II light contributes to the background noise of the OCT
signal. The weight of Class II light in the detected OCT signal increases with
depth and will exceed that of the Class I signal beyond some critical depth.
An increase in the weight of the Class II light deteriorates the resolution and
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signal-to-noise ratio and thus limits the effective imaging depth. The Class I
signal also contains multiply scattered photons, but owing to the requirement
of matching the optical path-lengths, these multiple scattering events must
be small-angle scattering.

For the multiply scattered photons, (10.11) still holds if the probabilities
for photons to travel along the same round-trip path, but in opposite direc-
tions, are equal, which is a valid assumption when the source and detector
have reciprocal characteristics. As these photons are coherent, the round-trip
Jones matrix of the sample J is the sum of the Jones matrices of all the possi-
ble round-trip paths; and for each possible path – for example, the kth path –
the round-trip Jones matrix is the sum of the Jones matrices for the two
opposite directions [Ji(k) and Jr(k)]. Consequently, we have

J =
∑

k

[Ji (k) + Jr (k)] =
∑
k

{
Ji (k) + [Ji (k)]T

}
= JT. (10.16)

In other words, J, as well as JT, still possesses transpose symmetry even if
multiple scattering occurs, as long as the source and the detector meet the
condition.

After calculation, (10.11) can be expressed as

[
EoH

EoV

]
=

⎡⎢⎣ i
2

(J11 − 2iJ12 − J22)
1
2

(J11 + J22)
1
2

(J11 + J22)
i
2

(−J11 − 2iJ12 + J22)

⎤⎥⎦×
[

EiH

EiV

]

=
[

JT11 JT12

JT12 JT22

]
×
[

EiH

EiV

]
,

(10.17)

where Jij and JTij (i, j = 1, 2) are the elements of J and JT, respectively.
For two light sources with independent polarization states, (10.17) can be
rearranged as[

EoH1 EoH2

EoV1 EoV2

]
=
[

JT11 JT12

JT12 JT22

]
×
[

EiH1 EiH2eiβ

EiV1 EiV2eiβ

]
, (10.18)

where EoH1 and EoH2, EoV1 and EoV2 are the elements of the output Jones
vectors for source 1 and source 2, respectively, and β is a phase difference
related to the characteristics of the two light sources. If the two light sources
are identical, β is zero. In practice, the spectral characteristics of the two light
sources are close but not identical. JT can be calculated from (10.18) as[

JT11 JT12

JT12 JT22

]
=
[

EoH1 EoH2

EoV1 EoV2

]
×
[

EiH1 EiH2eiβ

EiV1 EiV2eiβ

]−1

=
1
D

[
EoH1 EoH2

EoV1 EoV2

]
×
[

EiV2eiβ −EiH2eiβ

−EiV1 EiH1

]
,

(10.19)
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as long as the determinant

D =
∣∣∣∣EiH1 EiH2eiβ

EiV1 EiV2eiβ

∣∣∣∣ = eiβ

∣∣∣∣EiH1 EiH2

EiV1 EiV2

∣∣∣∣ �= 0, (10.20)

i.e., the two light sources are not in the same polarization state. The random
phase difference β can be eliminated with the transpose symmetry of JT:

eiβ (EoH1EiH2 + EoV1EiV2) = (EoV2EiV1 + EoH2EiH1) . (10.21)

Equation (10.21) can be solved when (EoH1EiH2 + EoV1EiV2) �= 0. Once JT

is found, J can then be determined from JT. Six real parameters of J can be
calculated, in which one phase is arbitrary and can be subtracted from each
element, and eventually five independent parameters are retained.

When (EoH1EiH2 + EoV1EiV2) = 0, it is impossible to eliminate the ran-
dom phase by using the transpose symmetry. This situation happens if the
sample arm does not alter the polarization states of the two incident beams in
addition to producing a mirror reflection. For example, this situation occurs
if (1) a horizontal or vertical incident beam is used, (2) a λ/4 plate is not
inserted in the sample arm, and (3) the fast axis of a birefringent sample is
horizontal or vertical. The use of the λ/4 plate at a 45◦ orientation in the sam-
ple arm can ameliorate the situation. However, there are still some drawbacks
with this configuration. For example, when the round-trip Jones matrix J is
equivalent to one of a half-wave plate with its fast axis oriented at 45◦ and thus
JT is equivalent to an identity matrix, we have (EoH1EiH2 + EoV1EiV2) = 0.
To overcome this drawback, we can employ two nonorthogonal incident po-
larization states; for example, one source will be in a horizontal polarization
state and the other source in a 45◦ polarization state.

The interference signals are band-pass filtered with central frequencies
of 4.2 kHz and 4.7 kHz and a bandwidth of 10 Hz – the harmonic frequencies of
the interference signals of source H and source V, respectively – to extract the
interference components of each light source. The interference components are
used to form the imaginary parts of the elements of the output Jones vectors,
Ex,y(t), where x and y represent the detected polarization state (H or V) and
the source polarization state (H or V), respectively; the corresponding real
parts are obtained through inverse Hilbert transformation [24,25]:

Re{Ex,y(t)} =
1
π

P

∫ ∞

−∞

Im{Ex,y(t)}
τ − t

dτ , (10.22)

where P stands for the Cauchy principal value of the integral. Unlike other
transforms, the Hilbert transformation does not change the domain. A conve-
nient method of computing the Hilbert transform is by means of the Fourier
transformation. If u(t) and v(t) are a Hilbert pair of functions, i.e.,

u(t) H⇐⇒ v(t), (10.23)
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and U(w) and V (w) are the Fourier transforms of u(t) and v(t), the following
algorithm can be used to calculate the Hilbert transform [25]:

u(t)
F⇒U(w) ⇒ V (w) = −i · sgn(w)U(w)

F−1

⇒ v(t), (10.24)

v(t)
F⇒V (w) ⇒ U(w) = i · sgn(w)U(w)

F−1

⇒ u(t), (10.25)

where F and F−1 denote the Fourier and inverse Fourier transformations,
respectively; sgn(w) is the signum function defined as

sgn(w) =

⎧⎨⎩
+1 w > 0

0 w = 0
−1 w < 0.

(10.26)

The real and imaginary parts of each interference component are combined to
form the complex components of the output Jones vectors. Upon determining
the output Jones vector, when the input Jones vectors are known, the elements
of the Jones matrix J of the sample can then be calculated from (10.17).

10.5 Experimental Results

The system is often tested by measuring the matrix of a standard sample –
a λ/4 wave-plate at various orientations in combination with a mirror. Fig-
ure 10.3a shows the amplitude of the vertical components of the measured
Jones vector versus the orientation of the wave-plate, where the amplitude
of each Jones vector was normalized to unity. Figure 10.3b shows the phase
differences between the vertical components and the horizontal components
of the Jones vectors. The calculated results were averaged over 1,000 points
centered at the peak of the interference signals, where 1,000 points correspond
to 10 μm – the resolution of the system. The results show that the measured
data agree very well with the theoretical values.

The parallel OCT system was applied to image soft tissue – a piece of
porcine tendon. The tendon was mounted in a cuvette filled with saline so-
lution. The sample was transversely scanned with a step size of 5 μm, and
multiple A-scan images were taken. The digitized interference signals were
first band-pass filtered with software and Hilbert transformed to extract the
analytical signals of each polarization component. For each A scan, the pixels
were formed by averaging the calculated elements of the Jones matrix over
segments of 1,000 points. Two-dimensional (2D) images were formed from
these A-scan images and then median filtered. The final 2D images are shown
in Fig. 10.4.

Clear band structures can be seen in some of the images, especially in M24,
M33, M34, M42, M43, and M44. The period of the band structure is ∼ 0.13mm.
There is no such band structure present in the M11 image, which is the image
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Fig. 10.3. (a) Normalized amplitude of the vertical components of the measured
Jones vectors of a quarter-wave plate versus the orientation of the fast axis. HV is
for the horizontally polarized incident light and VV is for the vertically polarized
incident light. The lines represent the expected theoretical values. (b) Phase differ-
ences between the vertical and the horizontal components of the Jones vectors of
the same quarter-wave plate. The standard deviations are smaller than the symbols

based on the intensity of the back-scattered light. In other words, the M11

image is free of the effect of polarization. We believe that the band structure is
generated by the birefringence of the collagen fibers in the porcine tendon. The
band structure distributes quite uniformly in the measured region; therefore,
the birefringence is also uniform in the measured area.

Although all the polarization properties of a sample are contained in the
Mueller matrix implicitly, explicit polarization parameters can be extracted
from the matrix. The nondepolarizing Mueller matrix M can be decomposed
by polar decomposition [19,26]:

M = MPMR, (10.27)

where MP and MR are the Mueller matrices of a diattenuator and an elliptical
retarder, respectively. In biological tissues, it is reasonable to believe that the
orientations of the diattenuator and retarder are the same. In this case, M is
homogenous in the polarization sense [26] and the order of MP and MR in
(10.27) is reversible. Only linear birefringence is considered in M and circular
birefringence is not taken into account. The magnitude of birefringence and
the diattenuation are related to the density and the properties of collagen
fibers in the sample, whereas the orientation of the birefringence indicates the
orientation of the collagen fibers.
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Fig. 10.4. 2D Mueller-matrix images of a piece of porcine tendon. Each image
except M11 is pixel-wise normalized with the M11 element and shares the same
color table. The size of each image is 0.5 mm × 1 mm

We extracted polarization information from a piece of porcine tendon set
at various orientations. The rotation axis of the sample is collinear with the
optical axis (direction of incidence). The measurements were made at five
different orientations with an interval of 10◦. The M42 and M43 elements in
(10.27) for a Mueller matrix that contains linear birefringence and linear or
circular diattenuation can be expressed as

M42 = P (P1, P2) sin(2θ) sin(δ),
M43 = −P (P1, P2) cos(2θ) sin(δ),

(10.28)

where P is a function of the principal coefficients of the amplitude transmis-
sion, P1 and P2, for the two orthogonal polarization eigenstates of MP, θ and
δ are the orientation of the fast axis and the phase retardation of the retarder,
respectively.

To increase the signal-to-noise ratio, every 20 adjacent A scans of M42

and M43 in the calculated 2D images were laterally averaged and fitted for a
physical depth of 0.4 mm (optical depth divided by the refractive index, which
is assumed to be 1.4) from the surface. The calculated birefringence from
the fitted data is (4.2 ± 0.3) × 10−3, which is comparable to the previously
reported value of (3.7 ± 0.4) × 10−3 for bovine tendon [7]. The calculated
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orientations of the fast axis are (0± 4)◦, (9± 2.9)◦, (20.9± 1.9)◦, (30± 2.8)◦

and (38± 4.3)◦ after subtracting an offset angle. The small angular offset is
due to the discrepancy between the actual and the observed fiber orientations.
The results are very good considering that the tendon was slightly deformed
when it was mounted in the cuvette and the rotation axis for the sample
may not have been exactly collinear with the optical axis. The diattenuation,
defined as

D = (P 2
1 − P 2

2 )
/

(P 2
1 + P 2

2 ) =
√

M2
12 + M2

13 + M2
14

/
M11,

was averaged over all the orientations and linearly fitted over a depth of
0.3 mm. The fitted D versus the round-trip physical path length increases
with a slope of 0.26mm−1 and reaches 0.075 ± 0.024 at the depth of 0.3 mm
after subtracting an offset at the surface.

10.6 Other Implementations

Optical fiber based polarization-sensitive OCT has been implemented [27].
Fiber-based systems possess advantages in alignment and handling. However,
the fibers distort the polarization states of the optical beams, which require
calibration. As the polarization distortion varies with time in imaging, dy-
namic calibration is required [28].

The serial implementation presented in Sect. 10.2 has also been
extended to spectral interferometer based OCT (Fig. 10.5) [29]. The mode-
locked Ti:sapphire laser produces a 150-fs light pulse with a central wavelength
of 775 nm and a bandwidth of ±13 nm. The back-reflected probe and reference
beams are combined and then measured by a spectrometer consisting of a
grating and a Fourier-transform lens. The spectral interferometric fringes are
projected onto a CCD camera. It can be shown that the inverse Fourier trans-
form of the spectral fringes yield the axial structure of the sample. Therefore,

Mode-locked Laser

Pol.HW1

HW2

G CL CCD

QW1
QW4

BS

M

To computer

Obj. Sample

QW2
QW3
Reference mirror

1D
 scanning

Fig. 10.5. Schematic of a polarization-sensitive spectral interferometric OCT sys-
tem. BS, beam splitter; M, mirror; G, grating; CL, cylindrical lens; Obj., objective;
Pol., polarizer; HW1, HW2, half-wave plates; QW1–QW4, quarter-wave plates; 1D,
one-dimensional. (Permission of reprint of this figure was obtained from Optical
Society of America.)
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the advantage of the spectral interferometer based OCT over the conventional
axial scanning OCT is that it acquires one-dimensional images with a single
shot measurement. The principle of constructing a Mueller matrix using this
system is identical to that presented in Sect. 10.3.

10.7 Summary

In this chapter, we have presented various methods for the implementation
of Mueller or Jones matrix measurements based on OCT. The Jones matrix
can be used because of the coherent detection scheme in OCT. However, the
Mueller matrix is often used for the final presentation because the upper-
left element M11 of the matrix provides polarization independent information
related to backscattering only, i.e., it separates the contributions from po-
larization and backscattering. If a Jones or Mueller matrix is measured, the
quantification of polarization is complete; otherwise, it is partial. This technol-
ogy is expected to find immediate application in burn imaging and glaucoma
detection.



11

Biomedical Diagnostics and Imaging

11.1 Introduction

This chapter is dedicated to consideration of the various polarization-sensitive
techniques that can be applied to the imaging and functional diagnosis of bi-
ological tissue. The polarization discrimination of a probe light that has been
scattered by, or transmitted through, a probed tissue is the common basis for
all of the considered methods. This principle is realized in a simple fashion in
the polarization imaging of structural inhomogeneities that are hidden in the
probed tissue volume. Typically, the probed tissue site is irradiated by linearly
polarized light, and the tissue structure is imaged with scattered linearly po-
larized light that has an orthogonal polarization direction. Despite the obvious
simplicity of this approach, it appears to be a powerful tool for functional di-
agnostics and for the imaging of diseased fragments of skin tissue and, in some
cases, subcutaneous tissues. This feature, in combination with relatively inex-
pensive commercially available instrumentation and nonsophisticated image
processing algorithms (e.g., normalization and subtraction of images), offers
an opportunity for the successful implementation of these methods in clinical
practice. The addition of spectral selection of scattered radiation provides a
novel quality to the polarization-sensitive methods and significantly improves
their diagnostic potential.

Polarization-based technologies can also be applied to other types of func-
tional diagnostics, such as concentration analysis of various tissue compo-
nents (e.g., glucose sensing). Some of these methods are also discussed in this
chapter.

11.2 Imaging through Scattering Media and Tissues
with Use of Polarized Light

In recent years, the principle of polarization discrimination of multiply
scattered light has been fruitfully applied by many research groups to
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morphological analysis and to visualization of subsurface layers in strongly
scattering tissues [1–8]. One of the most popular approaches to polarization
imaging in heterogeneous tissues is based on using linearly polarized light to
irradiate the object (the chosen area of the tissue surface) and to reject the
scattered light with the same polarization state (co-polarized radiation) by
the imaging system. Typically, such polarization discrimination is achieved
simply by placing a polarizer between the imaging lens and the object. The
optical axis of the polarizer is oriented perpendicularly to the polarization
plane of the incident light. Thus, only the cross-polarized component of the
scattered light contributes to the formation of the object image. Despite
its simplicity, this technique has been demonstrated to be an adequately
effective tool for functional diagnostics and for the imaging of subcutaneous
tissue layers. Moreover, the separate imaging of an object with co-polarized
and cross-polarized light permits separation of the structural features of the
shallow tissue layers (such as skin wrinkles, the papillary net, etc.), and the
deep layers (such as the capillaries in derma). The elegant simplicity of this
approach has stimulated its widespread application in both laboratory and
clinical medical diagnostics.

A typical scheme of instrumentation for polarization imaging using the
above-discussed approach is presented in Fig. 11.1.

In the imaging system developed by Demos et al. [5], a dye laser with
Nd:YAG laser pumping is used as the illumination source. The probe beam
diameter is 10 cm, and the average intensity is approximately equal to
5mW cm−2. A cooled CCD camera with a 50 mm focal length lens is used to

Cross-section of the sample 

"Interestting" tissue
to be imaged

z-axis

 Polarization
or

spectral
filtering

Chicken breast Tissue

Polarizer or narrow-band filter

Front illumination

Lens

D

Fig. 11.1. The instrument for selective polarization or spectral imaging of subsur-
face tissue layers [5]
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Fig. 11.2. The co-polarized and cross-polarized images of the human palm [5]

detect retroreflected light and to capture the image. A first polarizer, placed
after the beam expander, is used to ensure illumination with linearly polarized
light. A second polarizer is positioned in front of the CCD camera with its
polarization orientation perpendicular or parallel to that of the illumination.

The efficiency of selective polarization imaging is illustrated in Fig. 11.2,
where the human palm images obtained from the parallel orientation of the
second polarizer (left panel, surface image, papillary pattern is clearly seen)
and from the perpendicular orientation (subsurface image) are presented.
A 580-nm polarized laser light illumination is used in this case.

Another example is the cross-polarized images of a tissue phantom, such
as chicken breast tissue containing a fat lesion 3.5 mm in size beneath the
surface. Panels (a) and (b) show images obtained with 580 nm and 630 nm
illumination, respectively. Both images are then normalized, and the 580 nm
image subtracted from the 630 nm image. The result is shown in panel (c). For
comparison, the 3.5 mm outer layer of the chicken breast tissue is removed and
the image of the fat tissue lesion is obtained separately (panel (d)) (Fig. 11.3).

A similar camera system, but one that uses an incoherent white light
source such as a xenon lamp, is described in [9], where results are presented
of a pilot clinical study of various skin pathologies using polarized light. The
image processing algorithm that is used is based on evaluation of the degree of
polarization (Ipar − Iper) / (Ipar − Iper), which is then considered the imaging
parameter. The polarization images of pigmented skin sites (freckles, tattoos,
pigmented nevi) and unpigmented skin sites (nonpigmented intradermal nevi,
neurofibromas, actinic keratosis, malignant basal cell carcinomas, squamous
cell carcinomas, vascular abnormalities (venous lakes), and burn scars) are
analyzed to find the differences caused by various skin pathologies. Also, the
point-spread function of the backscattered polarized light is analyzed for im-
ages of a shadow cast from a razor blade onto a forearm skin site. This function
describes the behavior of the degree of polarization at the imaging parameter
near the shadow edge. It was discovered that near the shadow edge, the degree
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Fig. 11.3. Polarization images of a fat tissue lesion hidden in chicken breast tissue [5]

of polarization approximately doubles in value because no Iper photons are
superficially scattered into the shadow-edge pixels by the shadow region while
Ipar photons are directly backscattered from the superficial layer of these pix-
els. This result suggests that the point-spread function in skin for cross-talk
between pixels of the polarization image has a half-width-half-max of about
390 μm.

Comparative analysis of polarization images of normal and diseased human
skin has shown the ability of the above approach to emphasize image contrast
based on light scattering in the superficial layers of the skin. The polariza-
tion images can visualize disruption of the normal texture of the papillary
and upper reticular layers caused by skin pathology. Polarization imaging has
proven itself an adequately effective tool for identifying skin cancer margins
and for guiding surgical excision of skin cancer. Various modalities of polariza-
tion imaging are also considered in [10]. In particular, polarization-difference
imaging techniques are demonstrated to improve the detectability of target
features that are embedded in scattering media. The improved detectability
occurs with both passive imaging in moderately scattering media (<5 opti-
cal depths) and with active imaging in more highly scattering media. These
improvements are relative to what is possible with equivalent polarization-
blind, polarization-sum imaging under the same conditions. In this study, the
point-spread functions for passive polarization-sum and polarization imaging
in single-scattering media are studied analytically, and Monte Carlo simula-
tions are used to study the point-spread functions in single- and moderately
multiple-scattering media. The obtained results indicate that the polarization-
difference point-spread function can be significantly narrower than the corre-
sponding polarization-sum point-spread function, implying that better images
of target features with high-spatial-frequency information can be obtained by
using differential polarimetry in scattering media. Although the analysis is
performed using passive imaging at moderate optical depths, the results have
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potential implications for mitigating the effects of multiple scattering in ex-
periments performed in more highly scattering media with active imaging
methods.

11.3 Transillumination Polarization Techniques

The polarization discrimination of light that is passed through multiply scat-
tering media also provides high efficiency in the detection and imaging of
inhomogeneities embedded in the probed medium. In particular, the transil-
lumination polarization diaphanography of a heterogeneous scattering object
is considered in [11]. This technique makes it possible to locate and to image
absorbing objects hidden in a strongly scattering medium. The method uses
modulation of the polarization azimuth of a linearly polarized laser beam and
lock-in detection of the light transmitted through the object. The instrumen-
tation is schematically depicted in Fig. 11.4.

The scattering sample is probed by an Ar-ion laser beam. The orientation
of the polarization plane of the probe beam is modulated by a Pockels cell as
follows: during the first half-period of the modulating signal, it is not changed
and during the second half-period, it is rotated by 90◦. Transmitted (depo-
larized) and forward-scattered (polarized) components of the probe light are
collimated by two diaphragms and divided in two channels by a polarizing
beam-splitter. Movable black rods are used as phantom absorbing objects to
estimate the capability of this imaging technique.

The signal processing algorithm is based on discrimination of the scattered
component of the detected light (S) that is considered totally depolarized in
comparison with the polarized transmitted component (U).

Lock-in PMT

PMTPCLaser

Lock-in

Fig. 11.4. Schematic of the setup for transillumination polarization diaphanography
of scattering objects with absorbing inclusions. PC, pockels cell; PMT, photomulti-
plier tube [11].
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Output signals of lock-in amplifiers are:

LA = U1 +
1
2
S1 − 1

2
S2,

LB = U1 − 1
2
S1 +

1
2
S2.

(11.1)

Thus, summation of the output signals gives only the transmitted (nonscat-
tered) component:

LA + LB = U1 + U2, (11.2)

which can be used to form the shadow image of the probed absorbing inho-
mogeneity, if the scanning procedure is provided.

The dependencies of the PMT output signal (before the lock-in processing)
on the absorber position are shown in Fig. 11.5. This case corresponds to
conventional diaphanography.

However, the lock-in processing of the detected signals in the two polar-
ization channels provides much better quality in the shadow image than in
the image obtained for a nonscattering background medium (Fig. 11.6). It
was found that polarization-modulation diaphanography allows one to gen-
erate shadow images of a hidden object in a highly dense medium which is
characterized by up to 29 average scattering processes [11].

Comparisons of polarization imaging with applications of partially depo-
larized transmitted light and conventional transillumination visualization are
carried out in [12]. In this case, the absorbing inhomogeneity, such as the
blackened plate within a scattering slab, is probed by a linearly polarized
laser beam (Fig. 11.7) and the shadow images are reconstructed from the pro-
files of the intensity and the degree of polarization P of the transmitted light
(Fig. 11.8). Note that the dependencies of the degree of linear polarization on
the edge position exhibit an increase in P in the vicinity of the edge. The
explanation of this peculiarity is similar to that proposed by Jacques et al. [9]

Position (cm)Position (cm)

N
or

m
al

iz
ed

 s
ig

na
l

Front of the cuvette Middle of the cuvette Back of the cuvette

−4 −3 −2 −1 0 1 2 3 4 −4 −3 −2 −1 0 1 2
0

1

3 4 −4 −3 −2 −1 0 1 2 3 4

Position (cm)

Fig. 11.5. Cross-sections of the shadow images of the absorbing rod embedded
in the strongly scattered medium (10% Intralipid solution) [11]. The images were
obtained for different positions of the rod (see notations above each panel) without
lock-in processing
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Fig. 11.6. Shadowgrams of a pair of absorbing rods with a 1 mm diameter. The
scattering medium is Intralipid – 10%; the nonscattering medium is water. The
cuvette thickness is 30 mm [11]

for the polarization-sensitive detection of backscattered light (see Sect. 11.2).
Analysis of the quality of the shadow images of the object obtained with the
use of the conventional transillumination imaging technique and polarization
visualization allows us to conclude that the latter approach provides a better
quality of shadowgrams in cases involving moderately scattering media.

11.4 Potentialities and Restrictions of Polarization
Imaging with Backscattered Light

In this subsection, the effects of the optical properties of the scattering media
and of the scattering geometry on the quality of the polarization images of
a hidden inhomogeneity are discussed [13]. Polarization imaging is produced
by employing the polarization characteristics (the normalized intensities of
the co- and cross-polarized components and the degree of polarization) of the
backscattered radiation with the initial linear polarization as the visualization
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Fig. 11.7. Schematic sketch of the experimental setup for transillumination polar-
ization imaging. (1) linearly polarized beam of He–Ne laser; (2) detector; (3) flat
glass cuvette filled by diluted milk; (4) absorbing half-plane; (5, 6) polarizers; (7)
collimating diaphragms or light-collecting optical fiber; (8) chopper

parameters. The model represents the scattering medium as a layer containing
a plate-like absorbing heterogeneity. This plate is parallel to the boundaries of
the medium. The depth of the inhomogeneity position within the scattering
layer, at which the polarization imaging retains its efficiency, is estimated.

Our evaluation of the quality of the polarization images is based primarily
on the above-described presentation of multiply scattered depolarized light
(see Chap. 7) as a superposition of partial contributions characterized by dif-
ferent values of the optical paths s in the scattering mezdium. The statisti-
cal properties of the ensemble of partial contributions are described by the
probability density function of the optical paths ρ(s), whereas the statistical
moments of the scattered light are represented by the integral transforms of
ρ(s) with properly chosen kernels. Following from the analysis presented in
Chap. 7, the degree of polarization of multiply scattered radiation with ini-
tial linear polarization can be approximately represented in the form of the
Laplace transform of ρ(s):

P r
L =

I‖ − I⊥
I‖ + I⊥

≈ 3
2

∞∫
0

exp
(
− s

ξL

)
ρ (s) ds, (11.3)

where I‖ and I⊥ are, respectively, the intensities of the co- and cross-polarized
components of the scattered light. The parameter ξL is the depolarization
length for linearly polarized light.

By considering the polarization visualization of the absorbing macro-
heterogeneity, with the degree of polarization of backscattered light as
the visualization parameter, we can define the contrast of the polarization
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Fig. 11.8. Experimental dependencies of the normalized intensity (left panel) and
degree of linear polarization (right panel) of transmitted light on the half-plane edge
position at different concentrations of the background scattering medium (diluted-
milk)

image as:

V =
P r,in

L − P r,back
L

P r,in
L + P r,back

L

, (11.4)



186 11 Biomedical Diagnostics and Imaging

where P r,in
L is the degree of residual linear polarization of the backscattered

light detected in the region of the localization of the heterogeneity and P r,back
L

is the analogous quantity determined far from the region of localization.
By considering the above-mentioned model of an inhomogeneous scattering
medium (Fig. 11.9), we can estimate the contrast V of the reconstructed po-
larization images as a function of the scattering layer thickness H, the depth
of inhomogeneity position H̃, the transport mean free path l∗ of the scat-
tering medium, the scattering anisotropy g, and the depolarization length
ξL. The probability density function of the optical paths ρ(s), depending on
the detection conditions (in the region of inhomogeneity localization or far
from it), can be obtained with a Monte Carlo (MC) simulation. It should be
noted that modern analytic methods based on various approximations of the
radiative transfer equation (RTE) do not allow one to obtain an adequate
description of the path length density ρ(s) with a short-path limit (i.e., for
small values of s), whereas the portion of short-path photons in the detected
scattered light is significant under the backscattering condition. The MC code
used to simulate path-length distributions for the model discussed is basically
similar to that described in [14].

In the course of the simulation, the values of ρ(s) were obtained, under the
condition of illumination of a scattering layer with an absorbing rear boundary,
by using a broad collimated beam and detecting the backscattered radiation.
The Laplace transform values are calculated from the obtained values of ρ(s)
for the specified depolarization length ξL, and the contrast of the polarization
images is then evaluated for different parameters of the model.

The theoretical dependencies of V on the normalized depth of inhomogene-
ity position H/l∗, for different values of the dimensionless thickness of the
scattering medium H̃/l∗, are plotted in Fig. 11.10. A scattering medium with
an expressed scattering anisotropy (g = 0.85) is assumed. The depolarization
length is set equal to 1.5l∗. The values of the polarization image contrast
are also presented for different values of the transport mean free path under

2

H

13

H
~

Fig. 11.9. Model used for analyzing the quality of the polarization images of an
object embedded in a scattering medium. (1) scattering medium layer; (2) absorbing
rear boundary of the layer; (3) absorbing half-plane
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Fig. 11.10. Theoretical dependencies of the contrast in the test object image ob-
tained with the degree of polarization as a visualization parameter on the normalized
depth of the absorber position. H/l∗ = (1)1, (2)2.5, (3)5, (4)10, and (5) 20. Dashed
and dotted curves represent the dependencies of the contrast on H/l∗ for the fixed
values of H/H̃

condition H/H̃ = const. This corresponds to variations in the concentration
of scattering particles with a fixed scattering geometry. The analysis of the ob-
tained dependencies allows us to conclude that the maximum value of contrast
in the polarization images, obtained with the use of P r

L as the visualization
parameter, is reached at the depth of an inhomogeneity position on the or-
der of (0.3–1.5)l∗. In particular, for H/H̃ = 1/3, the maximum value of the
contrast (≈0.45) corresponds to H/l∗ ≈ 0.9. An increase in the depth of the
heterogeneity position results in a shift of the contrast maximum to the region
of smaller values of the parameter H̃/l∗, that corresponds to a decrease in the
concentration of the scattering particles.

To compare the efficiency of the various polarization imaging modalities,
the following experimental setup is used (Fig. 11.11). The total normalized
intensity (the intensity of the co-polarized and cross-polarized components)
or the degree of residual linear polarization of the backscattered light are
considered as the visualization parameters. The scattering medium consists of
a water–milk emulsion at low volume concentrations of milk in a rectangular
glass cell (180 × 260 × 260mm3). The side walls, as well as the rear wall,
of the cell are blackened. The absorbing object – a rectangular plate with
blackened rough surfaces – is positioned in the central part of the cell at
different distances H (from 10 to 40 mm) from the transparent front wall.

Light from a nonmonochromatic source (a halogen lamp) was used as the
probe radiation. The probe light was linearly polarized perpendicular to the
plane of incidence. To eliminate the negative effect of specular reflection from
the front wall of the cell, the illuminating beam was directed at an angle of 30◦
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Fig. 11.11. Schematic diagram of the polarization imaging experiment. (1) A cell
with a scattering medium, (2) absorbing plate, (3) white marker, (4) black markers,
(5) polarizer, (6) analyzer, (7) source of nonmonochromatic light (a halogen lamp),
(8) CCD camera, and (9) PC

relative to the normal to the wall. The capture of the backscattered radiation is
performed with a color CCD camera (Panasonic NV-RX70EN). A manually
rotated polarizer is placed between the camera and the object to provide
the selection of co-polarized and cross-polarized components of backscattered
light. To preclude the influence of the automatic built-in system that controls
image brightness, normalization of the dynamic range of the image being
recorded is realized at a fixed intensity of the source by using black and white
markers in the visual field (Fig. 11.11). The capture of images is done using a
Miro DC20 frame grabber (product of MiroVideo, Germany).

The color 8-bit images of the object are captured with 647×485 resolution
for each of the three chromatic coordinates (R, G, and B) with the use of co-
polarized and cross-polarized backscattered light. The brightness distributions
for each of the R, G, B image components along an arbitrarily chosen line of
the image (Fig. 11.12) are applied to reconstruct the images of the absorb-
ing heterogeneity with different visualization parameters (the backscattered
light intensity, the intensities of the co- and cross-polarized components, and
the degree of polarization of the backscattered radiation). The values of the
contrast and the edge sharpness are determined for each obtained image de-
pending on the experimental conditions. In this case, the contrast is defined
as:

V =
Tmax − Tmin

Tmax + Tmin
, (11.5)

where Tmax is the average value of the visualization parameter over a group
consisting of 10 pixels outside the heterogeneity zone, and Tmin is the corre-
sponding value determined in the heterogeneity zone.

The image sharpness is determined as the quantity (Δx)−1, which is the
inverse of the edge width for the inhomogeneity image. The edge width is
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Fig. 11.12. Distributions of backscattered radiation intensity along an arbitrarily
chosen line of the image for different volume concentrations of milk emulsion: (1)
0%, (2) 0.66%, (3) 1.96%;, and (4) 5.51% (R-component of the color image)

estimated by the number of pixels, for which the value of the visualization
parameter changed from 0.1 to 0.9 of its maximum value.

Figure 11.13 demonstrates the distributions of the backscattered inten-
sity (R-component), along an arbitrarily chosen line of the object image,
for the different milk concentrations. In the absence of a scattering medium
and, hence, the backscattered radiation, the image contrast is equal to zero
(Fig. 11.13a, curve 1). Increase in the milk concentration results in a sharp
increase in the image contrast, which was estimated for the different charac-
teristics of backscattered radiation that are used as the visualization para-
meters, up to the maximum values with the subsequent monotonic decrease
(Fig. 11.13a). A similar behavior is also observed for the G- and B-components
of the object image.

An obvious explanation of the contrast decrease in regions of high scatter
concentration is related to the transition from the low-step scattering regime,
in the case of H ∼= l∗, to the strong scattering regime when H � l∗. This
transition occurs in the region of scattering volume between the absorbing
heterogeneity and the front wall of the cell.

Comparison of the image contrast values obtained with the different visual-
ization parameters allows us to conclude that the maximal value of V (≈0.48)
is obtained for the degree of residual polarization P r

L. In this case, the max-
imum of the contrast is shifted to the region of high scatter concentration
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Fig. 11.13. Dependencies of (a) the contrast and (b) the sharpness of the image
edge on the volume concentration of milk emulsion when the normalized intensity
of the (1) unpolarized light, (2) co-polarized components and (3) crosspolarized
components, and (4) the degree of polarization of backscattered radiation are used
as the visualization parameter

in comparison with the other visualization parameters (Itot, III, and I⊥,
Fig. 11.13a). As mentioned above, the MC simulation gives the maximal con-
trast in images reconstructed with P r

L for H ∼ (0.3–1.5)l∗ (in the depen-
dence on the scattering medium parameters). In the case discussed here,
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the maximal contrast value is obtained experimentally for H at a milk con-
centration of c equal to 1.5%. By using the experimentally established de-
pendence of the scattering coefficient for water–milk emulsion on the milk
concentration: μs ≈ 0.082 mm−1 × c (%) [12], and taking into account the
relation l∗ = [μs (1 − g)]−1 , we find that the maximal contrast is obtained at
H ≈ 0.4l∗, which agrees satisfactorily with the results of the MC simulation.
The maximal contrast of the polarization image (≈0.48) is also in fair agree-
ment with the MC results (contrast on the order of 0.55–0.65 for small values
of the ratio H/H̃). Increasing depth in the inhomogeneity position H causes
a shift in the contrast maximum to a region of lower concentrations, which
was also revealed in the MC simulation (decreasing scatter concentration cor-
responded to a decrease in the parameter H̃/l∗).

Comparison of the experimental data and the MC results allows us to
conclude that maximal contrast in the polarization image is obtained at the
depth of an inhomogeneity position on the order of (0.25–0.6)ξL (depending on
the degree of residual polarization in the backscattered background component
detected outside the region of the inhomogeneity localization). In particular,
this conclusion agrees with data on polarization visualization of skin, which
points to the efficiency of polarization visualization for epidermis and upper
layers of papillary derma (100–150 μm) [16]

The dependencies presented in Fig. 11.13a are obtained with the absorbing
object placed at a distance L = 20mm from the entrance window of the
cell. Similar behavior is observed with a decreasing wavelength of the probe
radiation, when instead of a R-component of the object image, its G- and
B-components are processed.

Figure 11.13b illustrates the effect of scatter concentration on the sharp-
ness of the polarization image. The rapid decrease of (Δx)−1 in the region
of low-step scattering with increasing scatter concentration and its saturation
with strong scattering in the probed medium should be noted. In addition, the
value of the image sharpness is practically independent of the visualization
parameter used for image reconstruction.

Thus, polarization visualization can provide certain advantages in the case
of intermediate scattering regimes, when the modal value of the photon path
length in the scattering medium is comparable with the depolarization length.
Therefore, polarization images should be the most sensitive to morphological
changes in tissue structure, especially in subcutaneous tissue layers. The opti-
mal correlation between the depth of light penetration into the tissue volume
and the depolarization length can be obtained by the selection of the appro-
priate wavelength for probe radiation.

11.5 Polarized Reflectance Spectroscopy of Tissues

One of the promising approaches to early cancer diagnosis is based on analysis
of a single scattered component of light perturbed by tissue structure. The
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wavelength dependence on the intensity of the radiation, elastically scattered
by the tissue structure, appears sensitive to changes in tissue morphology that
are typical of pre-cancerous lesions. In particular, it has been established that
specific features of malignant cells, such as increased nuclear size, increased
nuclear/cytoplasmic ratio, pleomorphism, etc. [16], are markedly manifested
in the elastic light scattering spectra of probed tissue [17]. A specific fine peri-
odic structure in the wavelength of backscattered light has been observed for
mucosal tissue [18]. This oscillatory component of light scattering spectra is
attributable to a single scattering from surface epithelial cell nuclei and can
be interpreted within the framework of Mie theory. Analysis of the amplitude
and frequency of the fine structure allows one to estimate the density and
size distributions of these nuclei. It should be noted, however, that the ex-
traction of a single scattered component from the masking multiple scattering
background is a problem. Also, absorption of stroma related to the hemoglobin
distorts the single scattering spectrum of the epithelial cells. Both of these fac-
tors should be carefully taken into account when interpreting the measured
spectral dependencies of backscattered light.

The negative effects of a diffuse background and of hemoglobin absorption
can be significantly reduced by the application of a polarization discrimina-
tion technique in the form of illumination of the probed tissue with linearly
polarized light followed by separate detection of the elastic scattered light
at parallel and perpendicular polarization states (i.e., the co-polarized and
cross-polarized components of the backscattered light) [19,20]. This approach,
called polarized elastic light scattering spectroscopy, or polarized reflectance
spectroscopy (PRS), will potentially provide a quantitative estimate not only
of the size distributions of cell nuclei but also of the relative refractive in-
dex of the nucleus. These potentialities, which have been demonstrated in a
series of experimental works with tissue phantoms and in vivo epithelial tis-
sues [17–20], allow one to classify the PRS technique as a new step in the
development of noninvasive optical devices for real-time diagnostics of tissue
morphology and, consequently, for improved early detection of pre-cancers in
vivo. An important step in the further development of the PRS method will
be the design of portable and flexible instrumentation applicable to in situ tis-
sue diagnostics. In particular, fiber optic probes are expected to “bridge the
gap between benchtop studies and clinical applications of polarized reflectance
spectroscopy” [21].

11.6 Glucose Sensing

Measurement of glucose concentration within the human body is of widespread
interest in the health care of diabetics [22–41]. Automatic noninvasive moni-
toring of glucose concentration is also important for controlling growing cell
cultures in tissue engineering, primarily for the production of implantable
in vitro tissues and organs [29, 30]. A wide range of optical technologies
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have been designed in attempts to develop more robust noninvasive meth-
ods for glucose sensing. The methods include infrared [28, 29, 33, 36, 37], Ra-
man [29, 34], and fluorescent [29, 34, 35] spectroscopies, as well as polarimet-
ric [22–24, 27, 29, 30, 37–39], heterodyning [26, 31, 32], and optical coherence
tomography (OCT) [40,41] techniques.

The polarimetric quantification of glucose is based on the phenomenon of
optical rotatory dispersion (ORD), whereby a chiral molecule in an aqueous
solution will rotate the plane of linearly polarized light passing through the
solution ch11:bib [22–24, 27, 29, 30, 34, 37, 38]. The angle of rotation depends
linearly on the concentration of the chiral species, the pathlength through the
sample, and a constant for the molecule that is called the specific rotation.
The net rotation in degrees is expressed as [29,37]:

φ = αλLC, (11.6)

where αλ is the specific rotation for the species in deg dm−1 g−1 l at wave-
length λ, L is the pathlength in dm, and C is the concentration in g l−1.

The specific rotation for any wavelength can be determined based on two-
wavelength measurements in the spectral range free of absorption bands of a
given chiral molecule using the expression [38]:

αλ =
k0

λ2 − λ2
0

, (11.7)

where the constants k0 and λ0 are computed by determining the specific rota-
tion at two different wavelengths. The specific rotation of a particular chiral
molecule depends also on the pH and temperature of the medium. At a fixed
pH and temperature, this equation allows for separate evaluation of the contri-
bution of the particular analyte (glucose) on the background of the other an-
alytes if multispectral measurements and the corresponding regression model
are provided [38].

Glucose in the body is dextrorotatory (rotates light in the right-handed
direction) and has a specific rotation from +75.0 to +27.5 deg dm−1 g−1 l
with a wavelength change from 500 to 800 nm [37]. At the sodium D-line of
589 nm, it is equal to +52.6 deg dm−1 g−1 l, and with the He:Ne laser at 633 nm
often used in polarimeters, αλ = +45.6 deg dm−1 g−1 l. For example, for the
measurement on a wavelength of 633 nm at physiological concentrations (a
normal blood glucose level of 1 g l−1 and a pathlength of about 1 cm, the
optical rotation due to glucose is 4.56 mdeg [29].

In turbid samples, both the rotation of the linearly polarized light and the
level of polarization (linear and circular) preservation vary with the glucose
concentration [42, 43]. Unfortunately, the optical rotation in typical physi-
ological measurements, which equals approximately 10−3 deg, is about 40
times smaller than the current detection limit for turbid tissue. The chirality-
induced increase in the preservation of polarization is also not visible in the
background of the refractive index matching effect that is caused by glucose.
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Therefore, using a polarization sensitive optical technique makes it difficult
to measure in vivo glucose concentration in blood through the skin because of
the strong light scattering which causes light depolarization. A tissue thickness
of 4 mm is sufficient to prompt about 95% depolarization [29]. For this reason,
the anterior chamber of the eye has been suggested as a sight well suited for
polarimetric measurements [22–24,29,32,34,37–39], since scattering in the eye
is generally very low compared to that in other tissues, and a high correlation
exists between the glucose in the blood and in the aqueous humor. The age-
dependent steady-state glucose concentration in the aqueous humor is about
70% of that of blood. A time-delay between blood and aqueous humor glucose
concentrations caused by glucose diffusivity within the blood vessel walls and
eye tissues is in the range of 20–30 min [23, 32, 44]. These values fit well
the rate of glucose diffusion in connective tissues of corresponding thickness
and temperature [45]. Figure 11.14 depicts an optical sensing scheme with an
involved anterior chamber (the fluid-filled space directly below the cornea –
the aqueous humor).

The high accuracy of anterior eye chamber measurements is also due to the
low concentration of optically active aqueous proteins (0.13 g l−1 [44]) within
the aqueous humor, which is a result of diffusion filtering in the surround-
ing tissues. Figure 11.15 [38] illustrates that at a given pH and temperature,
the contribution to polarization rotation made by the major aqueous chiral
protein – albumin and molecules of ascorbic acid (evaluated at their average
physiological levels) – is very low on the background of rotation induced by
glucose. Moreover, these two components are contrarotatory and thus will

Fig. 11.14. Optical sensing of glucose in the anterior chamber of the eye. Light pass-
ing through the anterior chamber interacts with the aqueous humor. A commonly
proposed beam path is shown [37]
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Fig. 11.15. Observed optical rotations for physiological concentrations of aqueous
humor analytes, glucose, albumin, and ascorbic acid for a 1 cm pathlength [38]

partially cancel each other out. As also follows from Fig. 11.15 and (11.7),
a multiwavelength measuring system will take into account the compensation
of any confounding effects from other chiral analytes.

A number of techniques for acquiring measurements with the required high
degree of accuracy exist and generally fall into two categories: those which uti-
lize crossed polarizers to measure rotation via amplitude changes, and those
which measure the relative phase shift of modulated polarized light pass-
ing through the sample [37]. Figure 11.16 illustrates each of these approaches
schematically. It presents the optical system structures for the amplitude and
phase techniques as well as the resulting polarization and intensity signals
that contain information about the optical rotation.

First, an open-loop, amplitude based polarimeter is suggested for optical
glucose measurements in the eye [22, 23]. In order to increase the signal-to-
noise ratio of the polarization measurements, a phase polarimeter is proposed
and tested in in vitro studies [24]. A further increase in sensitivity, that can
provide measurements at the level of a few millidegrees, is demonstrated in
in vitro studies for a close-loop feedback controlled system, where the sta-
bility is improved with digital feedback control usage and tested on glucose
measurements in aqueous cell culture media [29,30,37].

One of the prototypes of the digital close-loop controlled polarimeter for
in vitro and in vivo measurements is presented in Fig. 11.17 [38]. A diode laser
emitting 3.5 mW of power at 635 nm is used as the light source. The laser beam
is linearly polarized at a high degree of 100,000:1 by the initial Glan-Thompson
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Fig. 11.16. Amplitude-and phase-based polarimetric measurements [37]. (A) In the
amplitude approach, light from a monochromatic source (Src) is passed through a
linear polarizer (P1), a polarization modulator (Mod), a sample (Sam), and a second
linear polarizer perpendicular to the first (P2) before being recorded by a detector
(Det). (B) The resulting polarization vector and observed intensity are symmetric
when no optically active sample is present and asymmetric if the sample is optically
active with net rotation φ. (C) In the phase approach, the polarization modulated
sample and reference beams are split by a beam splitter (BS), passed through crossed
linear polarizers (P2, P3), and recorded by separate detectors (Det1, Det2). (D) A
rotation of polarization in the sample causes a phase shift between the intensity
signals recorded by the two detectors

polarizer (P). Modulation of the polarization vector is then provided by the
Faraday rotator (FR) driven by a sinusoidal function generator at a frequency
of 1.09 kHz and a modulation depth of approximately ±1◦. This modulated
optical signal propagates through a test tube [eyecoupling device (ED)] that is
designed with plane parallel windows and filled with saline for index matching.
The ED surrounds the anesthetized rabbit’s eye to allow propagation of light
directly through the anterior chamber of the eye. A Faraday compensator
(FC) is used to provide feedback compensation within the system; it nullifies
any rotation due to the optically active sample. The Glan-Thompson polarizer,
which is cross-polarized to the incident polarization, then serves as an analyzer
(A) which transforms the modulation of the polarization vector into intensity
modulation that is detected by a photodiode (D). A digital lock-in amplifier,
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Fig. 11.17. Block diagram of the digital closed-loop controlled polarimeter, in which
the sample holder is used for in vitro samples and the eye coupling device is used
for in vivo studies [38]

computer and FC power supply are used to drive the FC and, therefore, to
nullify the system.

The operation of the system is described by the following equation [38]:

I ∝ E2 =
(

φ2 +
θ2
m

2

)
+ 2φθm sin(ωmt) − θ2

m

2
cos(2ωmt), (11.8)

where θm is the depth of the Faraday modulation, ωm is the modulation
frequency, and φ is the rotation due to the optically active sample subtracted
from any feedback rotation due to the compensation of the FC. It follows
from (11.8) that without an optically active sample and with the DC term
removed, the signal detected consists only of the double frequency (2ωm) term.
When the optically active sample is presented, the signal detected becomes
an asymmetric sinusoid, which contains both the fundamental (ωm) and the
double frequency components.

As mentioned above, potential problems with the polarimetric sensing of
glucose in the eye include the presence of other optically active confounders in
the aqueous humor (see Fig. 11.15). In addition, linear and circular birefrin-
gence of the cornea as well as eyeball motion artifacts may significantly affect
glucose measurements [37]. Problems related to corneal and other analytes
rotation may potentially be solved by using multispectral polarimeters. Dual-
wavelength polarimetric systems, based on He–Ne lasers with wavelengths of
594 and 633 nm and on diode lasers with wavelengths of 670 and 830 nm,
were recently designed [37]. To overcome corneal linear birefringence inclu-
sion and to extract glucose specific rotation, appropriate optical elements [37],
closed-loop multispectral probing [38], or full Jones or Mueller matrix mea-
surements [34] could be used.
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The major advantage of the optical heterodyne polarimeter described in
[31] and [32] is its low sensitivity to light scattering due to antenna properties
of optical heterodyning [46]. Such a polarimeter is rather simple and provides
experimental sensitivity on the order of 10−4 deg for the optical rotation angle.
A two-frequency Zeeman laser that provides two orthogonal linearly polarized
states (P and S), with a temporal frequency difference of 2.6 MHz, and a
Glan-Thompson analyzer at a fixed azimuth angle θs are the main optical
elements of the system. Two optical frequencies are mixed on a photodetector
and amplified; then, the amplitude of the heterodyne signal is measured by a
digital voltmeter.

If laser light is incident on an optical active media, such as the aqueous
humor that rotates the P- and S-polarized states by angle φ simultaneously,
then the output intensity, after the analyzer, is expressed as [32]

Is = a1a2 sin 2(θs + φ) cos(Δωt), (11.9)

where a1 and a2 are the amplitudes with respect to the laser eigenmodes, and
Δω = ω1–ω2 is the beat frequency between the two modes.

To calibrate zero concentration, the azimuth angle of the analyzer is gen-
erally set at 1◦. Consequently, for the small rotating angles of interest, (11.9)
can be reduced to

Is
∼= 2a1a2(θs + φ) cos(Δωt). (11.10)

With zero glucose concentration testing, Is ≡ I0, i.e., I0 = 2a1a2θs cos(Δωt);
thus the difference intensity for nonzero concentration is proportional to the
rotation angle φ,

|ΔI| = |Is − I0| = 2a1a2φ. (11.11)

By using an optical heterodyning technique, the sensitivity of the detectable
increment of the aqueous glucose concentration in the rabbit eye of 4mg dl−1

within the 100–170-mg dl−1 range at a signal-to-noise ratio of 7 was measured.
Some other less-sophisticated methods for polarization sensitive detection

of glucose in the eye anterior chamber are possible. A theoretical analysis of a
method based on Brewster reflection off the ocular lens was recently conducted
[39]. It shows that circular incident polarization performed better than linear
polarization with this method. This is attributed to the high sensitivity to
lens reflection error of the linear entrance polarization and to the need for an
accurate adjustment of the linear polarization orientation.

A new approach to glucose sensing based on the detection of polarized
fluorescence radiation from stretch-oriented reference film and a fluorophore,
which changes intensity in response to glucose, was also recently suggested
[35]. A glucose-sensitive fluorescent signal is provided by a glucose/galactose
binding protein (which decreases fluorescence intensity upon glucose binding).
Micromolar glucose concentration sensitivity results from the combination
of the glucose-sensitive protein and the polarization-sensitive reference film.
Using UV light diodes, one can construct simple and economical devices for
glucose sensing.
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11.7 Cytometry and Bacteria Sensing

Cytometry, which is based on the polarization properties of elastically scat-
tered light, provides valuable structural information about biological particles,
which is helpful for more precise cell or microorganism differentiation [47–61].
Polarization measurements can be collected for flow cytometry (when scat-
tered light from an individual cell or microorganism in a flow is detected) and
for suspensions of biological particles (when scattering fields from a collection
of cells or microorganisms are analyzed). Several techniques for polarized light
scattering are described in [47–61]. In general, full amplitude (Jones) or in-
tensity (Mueller) scattering matrix measurements (see Chap. 1) can be used.
Simplicity and time limitations dictate that only certain characteristic matrix
elements or their combinations can be evaluated.

Experimental studies on the application of polarization-scattering tech-
niques to the physiological monitoring of cells, bacteria, and other microor-
ganisms are described widely in the literature [47–61]. Mueller matrix mea-
surements have been used to examine the formation of liposome complexes
with plague capsular antigens [57] and various particle suspensions, e.g., those
of spermatozoid spiral heads [49,50]. It is found that element M34 is the most
specific for the identification of various biological microorganisms, because of
its sensitivity to small morphological alterations in the scatterers.

A single photoelastic modulator can be used for such measurements [47,48].
Stable distinctions are revealed in the values of the normalized element
M34/M11 for spores of two mutant varieties of bacteria, which can be dis-
tinguished by variations in their specific structure but are invisible by means
of traditional scattering techniques [47, 48]. It has also been proven that the
M34 measurement is suitable for determining the diameter of rod-shaped bac-
teria (Escherichia coli cells) that are difficult to measure using other tech-
niques [53]. The angular dependencies of the normalized element M34/M11 of
different bacteria turn out to be oscillating functions whose maxima positions
are very sensitive to the varying sizes of the bacteria [52–54]. An analysis of
the sensitivity of different matrix elements to variation in the scatterer shape
and size for suspensions of biological particles has shown that in the back-
ward scattering direction the values of elements M33 and M44 may serve as
indicators of particle nonsphericity [51].

One promising polarization technique is the so-called phase differential
scattering (PDS) method, which is relatively simple and free of experimental
errors [49, 50]. As already mentioned, the two-frequency (ω1 + ω2) Zeeman
laser, with two collinear orthogonally linear polarized laser beams, is suitable
for polarization measurements [31,32]. Linear or circular birefringence can be
easily and accurately measured using such a laser [49,50]. When light from the
Zeeman laser is scattered by a sample, the phase and amplitude of the beat
frequency signal (Δω = ω1 −ω2), produced by laser beams that are mixed on
the photodetector, contain information about the structural properties of the
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scatterer. The only optical component required for such PDS measurements
is an analyzing polarizer placed in front of the photodetector.

Measurements for the various scattering angles that provide valuable struc-
tural information can also be easily acquired. The transmission axis of the
analyzer is oriented at an angle, η, with respect to the horizontal scattering
plane. Usually, η = 0◦, 45◦, or 90◦. All other angles give redundant informa-
tion. The precise orientation of the transmission axis of the analyzer is critical
only for η = 0◦ or 90◦.

At a given scattering angle, the particle may interact with the two inci-
dent polarizations differently. The specificity of the interactions depends on
the size, refractive index, morphology, internal structure, and optical activity
of the scatterer. Three different modes of measurements are possible. (1) Mea-
surement of the amplitude of the beat frequency signal (Δω) at a setting of
the transmission axis of the analyzer η = 45◦, which characterizes the differ-
ence in efficiency of scattering for horizontal and vertical polarizations of the
incident light. (2) Measurement of the phase of the beat frequency signal when
the analyzer is oriented at η = 45◦, which gives information on the retarding
of one of the scattered polarizations relative to the other. (3) Measurements
of the amplitude and phase of the beat frequency signal when the analyzer
is at η = 0◦ and 90◦, which characterizes the conversion of one orthogonal
polarization into the other at light scattering.

The quantitative theory for PDS is based on the scattering amplitude
matrix (Jones matrix) formalism [49,50]. For scattering of the two frequencies
of Zeeman laser radiation by a particle with fixed orientation, the relationship
between the scattered and the incident electric fields is given by the following
equation [49] (see (3.4)):

[
E||s
E⊥s

]
=

eik(r−z)

−ikr

[
S2 S3

S4 S1

] [
E0

||ie
−iω1t

E0
⊥ie

−iω2t

]
, (11.12)

where the incident beam is propagating in the z direction; E0
||ie

−iω1t is the
incident electric field parallel to the scattering plane; E0

⊥ie
−iω2t is the incident

electric field perpendicular to the scattering plane; E||s and E⊥s are the scat-
tered electric fields parallel and perpendicular to the scattering plane; S1−4

are Jones matrix elements; r is the distance from the scatterer to the detec-
tor; k is the mean wave number; and ω1 and ω2 are the laser frequencies,
Δω = ω1 − ω2 � ω1, ω2.

After the analyzer, the detected scattered intensity is described by

I = DC + Γ cos(Δωt + γ), (11.13)

where DC is a time-independent constant, Γ is the amplitude of the beat
frequency signal, and γ is the phase of the beat frequency or PDS phase.
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For a single scatterer and three different orientations of the analyzer, at
η = 0◦, 45◦, and 90◦, the PDS phase can be calculated using (11.12) with
S1−4 = A1−4eiψ1−4 [49]

γ (0◦) = ψ2 − ψ3, (11.14)

γ (45◦) = tan−1 A2 sin ψ2 + A4 sin ψ4

A2 cos ψ2 + A4 cos ψ4
−tan−1 A1 sin ψ1 + A3 sin ψ3

A1 cos ψ1 + A3 cos ψ3
, (11.15)

γ (90◦) = ψ4 − ψ1. (11.16)

These equations for the phase and corresponding equations for the PDS
amplitude Γ can be expressed in the terms of the Mueller matrix (see (3.5),
(3.10), and (3.11)) [49]:

γ (0◦) = tan−1 M14 + M24

M13 + M23
, (11.17)

γ (45◦) = tan−1 M14 + M34

M13 + M33
, (11.18)

γ (90◦) = tan−1 M14 − M24

M13 − M23
, (11.19)

Γ (0◦) ∝ [(M13 + M23)2 + (M14 + M24)2
]1/2

, (11.20)

Γ (45◦) ∝ [(M13 + M33)2 + (M14 + M34)2
]1/2

, (11.21)

Γ (90◦) ∝ [(M13 − M23)2 + (M14 − M24)2
]1/2

. (11.22)

Equations (11.14)–(11.16) are valid for a single particle with a fixed orien-
tation or for a collection of noninteracting spherical particles with an isotropic
dielectric constant. Relying on the fact that the Mueller matrix for a collection
of particles equals the sum of the matrices for the individual particles, and
using (11.17)–(11.22), the PDS amplitude and phase can be calculated for a
collection of non-spherical particles.

The PDS amplitude at analyzer orientations η = 0◦ or 90◦ is sensitive to
the sample chirality, because of the zero values of the orientationally averaged
elements M13, M23, M14, and M24 for the nonchiral particles [62]. To get
additional PDS information, instead of a linear analyzer, a circular polariza-
tion sensitive analyzer can be used. To irradiate an object by two orthogonal
circular polarizations, a quarter-wave plate can also be used just after the
Zeeman laser. This also gives additional information about the object’s struc-
ture [49,50].
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Fig. 11.18. Phase differential scattering (PDS) from pure aqueous suspensions of
different viable bacteria [49,50]. Phase of PDS signal, γ (45◦), is shown plotted as a
function of scattering angle, θ. The bacteria are Neisseria lactamica (solid curves),
Leptospira biflexa (chain-dash curves), E. coli B (dashed curve), and Staphylococcus
aureus (dotted curve), all at a concentration of approximately 5 × 107 bacterial
cells per ml. The two Neisseria samples were aliquots from the same culture. They
were run 5 h apart. Before the measurements, one of the samples was stored at
room temperature. The two Leptospira samples were obtained from separate cultures
grown 3 weeks apart

Figures 11.18 and 11.19 illustrate angular dependences of the PDS phase
for bacterial aqueous suspensions. Measurements were taken at the transmis-
sion axis of the linear analyzer at 45◦ to the scattering plane. Such data are
approximately equal to arctan(M34/M33) for orientationally averaged scat-
terers (see (11.18)). Therefore, they are somewhat related to M34 measure-
ments [47, 48]. However, PDS measurements are simpler and less sensitive to
experimental artifacts, in particular, to scattering cell birefringence.

PDS angular dependences are very sensitive to bacterial structure (see
Figs. 11.18 and 11.19). It is easy to differentiate such viable bacteria as Neis-
seria lactamica, Leptospira biflexa, E. coli B, and Staphylococcus aureus. In
contrast, the PDS phase is not very sensitive to reasonable changes in the stor-
age time (a few hours) of the same bacterial culture or to separate cultures
of the same bacteria type grown a few weeks apart. Nevertheless, the sensi-
tivity is rather high for differentiating some structural changes that appear,
for instance, due to different growing conditions (encapsulated and unencap-
sulated B. subtilis bacteria). Pure aqueous suspensions of bacteria have been



11.7 Cytometry and Bacteria Sensing 203

0
−5

−4

−3

−2

−1

0

1

2 Unencapsulated Encapsulated

3

4

5

20 40

Scattering angle (Deg)

R
el

at
iv

e 
ph

as
e 

(D
eg

)

60 80

Fig. 11.19. Phase differential scattering (PDS) from pure aqueous suspensions of
viable B. subtilis bacteria at a concentration of 5×107 bacterial cells per ml [49,50].
The phase of the PDS signal, γ (45◦), is shown plotted as a function of scattering an-
gle, θ. The solid curve represents the PDS phase data for the encapsulated bacteria,
and the dashed curve is a replicate run (the same sample stored at room tempera-
ture and run 20 min later). The chain-dash curve represents an identical sample of
bacteria grown under conditions that preclude encapsulation. The dotted curve is a
replicate run (the same sample stored at room temperature and run 20 min later)

distinguished by their PDS signature at concentrations as low as 5 × 105

bacterial cells per ml. At concentrations above 5 × 107 ml−1, the multiple
scattering, which hides the fine structure in the PDS data, is expected to be
important [63]. The backscattering mode of measurement is also possible.

Laser flow cytometry is a sensitive tool, which can serve to identify and
separate various populations of cells, particularly white blood cells. Therefore,
it is of great interest in medical diagnosis [49,50,55,56,59]. A flow cytometer
(see Fig. 11.20) consists of a cuvette, in which a cell suspension is forced to flow
and to be centered due to the application of a hydrofocusing technique. Cells in
flow interact one by one with a perpendicular-to-cell-flow focused laser beam
and produce various signals – fluorescence, scattering in forward, perpendic-
ular, or backward directions. Fluorescence measurements usually require cell
staining. Scattering techniques are free of any effect on the cell, which makes
them more attractive for use. Polarization scattering technologies, which are
sensitive to the details of cell morphology (nonsphericity, inhomogeneity, ex-
istence of internal granules, membrane roughness, encapsulation, etc.), work
well in combination with other scattering techniques. The basis for combined
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Fig. 11.20. Optical scheme of a portable solid state flow cytometer [64]. DL is
the diode laser (780 nm); CD1 – CD4 are the lenses from the CD player; R is the
retarder – a half wavelength plate; P1 and P2 are the linear polarizers; C1 and C2
are the cylindrical lenses; F is the time-of-flight cuvette; B is the direct light beam
shutter; S1 and S2 are spherical lenses; PD is the photodiode; D is the diaphragm;
BS is the beam splitter; APD1 and APD2 are the avalanche photodiodes

scattering flow cytometry is concurrent measurements of scattered light inten-
sity for different wavelengths for different scattering and detecting angles and
for different states of polarization in incident and scattered light. For exam-
ple, the major components of the human leukocyte population (lymphocytes,
monocytes, and granulocytes) are easily differentiated in combined measure-
ments of the scattering intensity in the forward (within limits of 0.5◦–2.0◦) and
perpendicular (90◦ ± 30◦) directions (see Fig. 11.21a) or depolarized scatter-
ing under angle of 90◦ (see Fig. 11.21b). In this latter case, the differentiation
of granulocytes into two fractions – neutrophils and eosinophils – is possible.

The optical scheme of a portable and inexpensive time-of-flight cytome-
ter, which is based on a single mode diode laser (780 nm, 20 mW) and two
avalanche photodetectors for the detection of weak scattering polarized and
unpolarized components with angles smaller than 90◦ is presented in Fig. 11.20
[64].

11.8 Polarization Microscopy and Tissue Clearing

Polarized light microscopy has been used in biomedicine for more than a cen-
tury to study optically anisotropic biological structures that may be difficult,
or even impossible, to observe using a conventional light microscope. Obvi-
ously, polarization microscopy is a routine technique. A number of commercial
microscopes are available on the market, and numerous investigations of bi-
ological objects have been made using polarization microscopy. Nevertheless,
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Fig. 11.21. The light-scattering histograms of human white blood cells, as measured
in a flow cytometer and presented in coordinates “Forward scattering – rectangular
scattering (90◦)” (a) and “Depolarized rectangular scattering (90◦) – rectangular
scattering (90◦)” (b) [64]. Areas marked as L, M, G, N, and E show, respectively, the
distributions of lymphocytes, monocytes, granulocytes, neutrophils, and eosinophils.
Each point of the distributions corresponds to scattering by a separate cell flowing
through the cytometer

modern polarization microscopy has the potential to enable us to acquire new
and more detailed information about biological cells and tissue structures.
Over the years, the equipment for polarized light microscopy has been per-
fected so that now it is possible to detect optical path differences of even
less than 0.1 nm [65–70]. Such sensitivity as well as the capability to exam-
ine scattering samples are due to recent achievements in video, interferential,
and multispectral polarization microscopy. Full Mueller matrix measurements
and other combined techniques, such as polarization/confocal and polariza-
tion/OCT microscopy, promise new capabilities for polarization microscopy
that involve receiving more precise structural information about the objects
plus the ability to provide in vivo measurements.

In this section, we shall discuss only a few of the recent studies and novel
techniques that have the potential to examine the anisotropic properties of
scattering samples. One of the examples is the multispectral imaging micropo-
larimeter (MIM) technique, which can detect the birefringence of the peripap-
illary retinal nerve fiber layer (RNFL) in glaucoma diagnosis [68,69]. The op-
tical scheme of MIM is presented in Fig. 11.22. Light from a tungsten–halogen
lamp, followed by an interference filter (band of 10 nm), provides monochro-
matic illumination to an integrating sphere (IS). Lens L1 (F = 56mm) col-
limates the beam incident onto a polarizer (P). Use of an integrating sphere
assures that the output intensity of the polarizer varies less than 0.2% as it
rotates 360◦. Lens L2 (F = 40.5mm,NA = 0.13) focuses the image of the exit
aperture of the integrating sphere onto a specimen (SP) in a chamber (CB)
with a flat entrance and exit windows. Lens L3 (F = 60mm,NA = 0.07)
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Fig. 11.22. Optical scheme of the multispectral imaging micropolarimeter used in
transmission mode [69]. LS is the light source; IF is the interference filter; IS is the
integrating sphere; P is the linear polarizer; SP is the specimen; CB is the chamber;
L1, L2, and L3 are the lenses; C′ is the linear retarder; A is the linear analyzer; and
CCD is the charge-coupled device

focuses the specimen image onto a cooled CCD camera that provides a pixel
size of about 4 μm on a specimen in an aqueous medium (magnification ≈5.8).
Although the lenses are achromatic, the wide spectral range (440–830 nm) re-
quires only small changes in the detection optics position (moving the lens
L3 and CCD together within a 0.5 mm range) to adjust the focus for each
wavelength. A liquid crystal linear retarder (C′), followed by a linear analyzer
(A), is used to measure the output Stokes vector of the specimen. Both po-
larizer and analyzer are Glan-Taylor polarization prisms. The azimuth and
retardance of the retarder are set for a few discrete values, and the azimuth
of the analyzer is always fixed at 45◦. Each setting of the retarder (respec-
tively, azimuth and retardance – (1) 0◦, 90◦; (2) 0◦, 200◦; (3) 22.5◦, 207◦;
(4) –22.5◦, 207◦) – is characterized by a 1 × 4 measurement vector. The four
retarder/analyzer settings together are characterized by a 4×4 matrix D with
each row corresponding to one measured vector.

A Stokes vector S̄ can be calculated as

S̄ = D−1R̄, (11.23)

where D−1 is the inverse of the measurement matrix and R̄ is a 4×1 response
vector corresponding to the four retarder/analyzer settings [71].

To evaluate the linear retardance of a specimen, the Mueller matrix should
be found from the measurements of the incident S̄inc and the output S̄ Stokes
vectors (see Chap. 3):

S̄ = KM(ρ, δ)S̄inc, (11.24)

where the factor K accounts for the losses of intensity in transmission and
ρ and δ are, respectively, the azimuth and retardance of the specimen. This
expression includes four equations for the three unknowns, K, ρ, and δ. In
most cases it is useful to overdetermine the system of equations in (11.24) by
using more than one S̄inc.
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The retardance and azimuth of a living and fixed rat’s RNFLs are mea-
sured over a wide spectral range [69]. It is found that the RNFL behaves
as a linear retarder and that the retardance is approximately constant at a
wavelength range from 440 to 830 nm. The average birefringence measured
for a few unfixed rat RNFLs, with an average thickness of 13.9 ± 0.4 μm, is
0.23 ± 0.01(nm μm−1) ≡ 2.3 × 10−4. The influence of the polarization prop-
erties of the retina on the RNFL’s anisotropic properties is stated. Images
presented in Fig. 11.23 illustrate the importance of correcting for the polar-
ization properties of the retina and for the distributions of retardance and
azimuth within the sample.

Another technique, which is related to quantitative polarized light mi-
croscopy, is based on a video microscopy technique, which is applied to mea-
sure variations in the orientations of the collagenous fibers arranged in lamel-
lae within eye corneal tissue [65]. The lamellar structure of the cornea and
sclera is very visible in Figs. 2.5 and 2.6. Within a lamella, the fibrils are par-
allel, but the fibrils of adjacent lamellae do not, in general, run in the same
direction. They may have a relative orientation at any angle between 0◦ and
180◦.

As was discussed in Sect. 2.7, in the corneal stroma, the fibrils have a diam-
eter of 25–39 nm while the mean diameter of scleral fibrils is equal to 100 nm.
Therefore, the individual fibrils cannot be resolved with light microscopy, but
due to the intrinsic birefringence of collagen fibrils and its dependence on the
angle of their orientation from lamella to lamella, they can be recognized.
Along its fiber axis, collagen is highly birefringent, so those lamellae that
are cut parallel to the fiber axes (θ = 0◦, see Fig. 11.24a) appear brighter
under polarized light when the polarizer and analyzer are crossed and the
length of the tissue section is oriented at 45◦ to the polarizer/analyzer axis
(see Fig. 11.24b). Collagen is not birefringent perpendicular to its fiber axis
(θ = 90◦, see Fig. 11.24a); so those lamellae that are cut perpendicular to their
fibril direction appear completely dark in this section (see Fig. 11.24b). The
variation of intensity along the transect X–Y across the cornea section (see

a b

Fig. 11.23. Estimated retardances (arrows’ length) and slow axes (arrows’ direc-
tion) of the bundle and gap areas of rat RNFLs [69]. The images are at 440 nm.
Sizes of images: (a) 222 × 199 μm; (b) 187 × 177 μm. Nerve fiber bundles appear as
brighter bands. Each arrow starts in the center of the area measured. The calibration
bar is 1 nm of retardance. (a) The white arrows represent measurements that are
not corrected for retinal polarization ability and the black arrows are the corrected
ones. (b) The black arrows are corrected bundle retardances; the white small arrows
in the gaps show the variation of residual retardances, also after correction
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Fig. 11.24. Polarization microscopy of a collagenous tissue structure [65]. (a)
Schematic diagram of a tissue section containing three lamellae (the number of
fibrils is greatly reduced and the relative fibril diameter greatly exaggerated; an ac-
tual electronic micrograph is shown in Fig. 2.6); angle θ is the angle of inclination
of the fibrils relative to the plane of sectioning. (b) Digital photomicrograph of a
section through part of a rabbit cornea viewed under polarized light (×500). (c)
The variation in intensity along the transect X–Y across the cornea section of a
photomicrograph (b)

Fig. 11.24b) is caused by the different angular orientation of the particular
lamella (totally about 15 lamellae are seen) and presented in Fig. 11.24c.

Because of the regular arrangement of the lamellae, the angle θ is all that is
necessary to define the three-dimensional orientation of the fibrils in sections
of normal cornea. Nevertheless, to find this angle distribution for a specific
tissue section, the lamellar birefringence of form that contributes about 67% to
the total birefringence should be accounted for [65]. For sections of disrupted
pathological cornea and for sections of sclera and limbus (the region where the
cornea and sclera fuse), the situation is more complicated because the lamellae
have a much less ordered “wavy” arrangement (see Fig. 2.6b for sclera).

Many tissues possess very complex patterns of alignment of the structure-
forming elements. Some promising polarization-microscopic methods for gen-
erating alignment maps for such tissues have been developed (see, for exam-
ple, [72–74]). The method presented in [72, 73], as well as the method used
in [65], is a useful tool in cases where the tissue structure along the direction
of probing light propagation can be considered to be a uniform one.

In [72,73], a microscopic polarimetry method for generating fiber alignment
maps, which can be used for characterization of the structure of fibrous tissues,
tissue phantoms, and other fibrillar materials, is considered. This method is
based on probing the sample with elliptically polarized light from a rotated
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quarter-wave plate and an effective circular analyzer. Nonlinear regression
techniques are implemented for estimating the optical parameters of the optic
train and the sample. The processing of the sequence of images obtained
with different mutual orientations of the rotated quarter-wave plate and the
analyzer, which is based on the fast harmonic analysis, permits the recovery
of an alignment direction map and a retardation map. These maps describe
a spatial distribution of a sample’s local linear birefringence and, therefore,
can be used for morphological analysis of tissues with an expressed structural
anisotropy that have linear birefringence as their dominant optical property.
The potential of this method for accurately generating alignment maps for
samples that act as linear retarders to within a few degrees of retardation,
has been demonstrated in experiments with an in vitro sample of a porcine
heart valve leaflet.

The method proposed in [74] can also be used in more general situations
when the orientation of the structure-forming elements (for instance, the col-
lagen fibers) varies along the probing direction. Such variation should be taken
into account when thick (> 50 μm) tissue layers (e.g., dermis) are analyzed.
In the method discussed [74], a standard polarization microscope arranged
with a video camera can be used. The measurements are usually carried out
with wide-spectral-range color filters and without a quarter-wave plate. The
following expression describes the dependence of the detected signal at any de-
tection point on the angles of orientation of the polarizer (ϑ) and the analyzer
(ϑ’) of the microscope:

iC ≈ B0 + B1 cos η + B2 cos ς + B3 sin η + B4 sin ς,

η = 2 (ϑ − ϑ′) , ς = 2 (ϑ + ϑ′) ,
(11.25)

where Bi(i = 0, 1, 2, 3, 4) are the coefficients which depend on the local opti-
cal properties of the sample in the probed region and the spectral properties
of incident light. As was shown in [74], the measured values of Bi are capa-
ble of providing important information about the sample structure. They can
also be used for characterization of specific features of light propagation in
the sample; in particular, they allow us to recognize the so-called adiabatic
regime of light propagation in the studied medium. This means that in the
adiabatic regime, the orientation of the local optical axis changes smoothly in
the probed region of the tissue. Note that for fibrous tissues, the direction of
the local optical axis typically coincides with the local preferred direction of
fiber orientation. If the adiabatic regime is realized, then the angles υ and φ,
which are calculated from the obtained values of Bi as υ = (1/4)arctg(B2/B4)
and φ = (1/2)arctg(B1/B3), provide information about the structure of the
sample. The angle φ is equal to the angle between the azimuthal projec-
tions of the local optical axes of the medium at the upper and lower bound-
aries of the sample, and the angle υ defines the orientation of the bisector of
the angle between these projections. Analysis of the experimentally obtained
“Bi-maps,” as well as the spatial distributions of υ and φ, can be proposed
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as an effective tool for tissue structure characterization [74]. In particular,
Fig. 11.25 displays the B0-map (this coefficient characterizes the local trans-
mittance of the sample for nonpolarized light), the υ-map, and the φ-map
for the in vitro sample of human epidermis (stratum corneum), which was
obtained from a cuticle of nail. The epidermis layer is placed in a drop of
glycerol and covered with cover-glass. The maps are recovered from seven
digital images of the sample obtained at different orientations of the polar-
izer and an analyzer of the microscope. The spectral selection is carried out
using wide-range green and red glass filters. During the image processing,

Fig. 11.25. The experimentally obtained B0-, υ-, and φ-maps for an in vitro sample
of human epidermis. For the φ-maps, the horizontal orientation of the indicating lines
corresponds to φ = 0. The identity of the υ-, and φ-maps obtained with different
color filters, indicates that the adiabatic regime of polarized light propagation in the
sample takes place [74]
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corrections are made to exclude the influence of polarization imperfections
on the optical elements, the temperature drift and fluctuations of the dark
current on the video camera, and the fluctuations of the illumination source.

The study of collagen structure and function is important for understand-
ing a wide range of pathophysiological conditions, including aging. One of the
prospective laser techniques, which can provide in vivo microscopic monitor-
ing of collagen structure, is polarized second harmonic microscopy [75, 76].
The backscattered second harmonic signal generated by a 100 fs Ti:Sapphire
laser, with a mean wavelength of 800 nm, a maximum energy of 10 nJ, and a
pulse repetition rate of 82 MHz, is measured by a polarized second harmonic
scanning confocal microscope [76]. The microscope objective has a transverse
resolution of about 1.5 μm and an axial resolution of about 10 μm. It should be
noted that inside the scattering media, both numbers increase. The maximum
intensity in the sample is about 4 × 1011W cm−2. To avoid sample damage,
a continuous scanning technique is used.

A systematic analysis of type I collagen in a rat-tail tendon fascicle was
conducted using the microscope described above [76]. Type I collagen from
the fascicles provides one of the strongest second harmonic generation (SHG)
signals of all of the various tissues analyzed by the authors in [76]. They hy-
pothesize that such high SHG efficiency is due to the collagen’s highly ordered
architecture. The polarization properties of collagen are also defined by its or-
dering. It was shown experimentally that the second harmonic signal intensity
varies by about a factor of 2 across a single cross-section of the rat-tail tendon
fascicle [76]. The signal intensity depends both on the collagen organization
and the backscattering efficiency. To characterize collagen structure, both in-
tensity and polarization dependent SHG signals should be detected. Actually,
axial and transverse scans for different linear polarization angles of the input
beam show that SHG in the rat-tail tendon depends strongly on the polariza-
tion of the input laser beam. In contrast to SHG signal intensity, the functional
form of the polarization dependence does not change significantly over a single
cross-section of the sample, and it is not affected by backscattering efficiency.

The measured data are in good agreement with an analytical model de-
veloped for a SHG signal at linear polarized excitation. They are used to
determine the fibril orientation and the ratio between the only two nonzero,
independent elements in the second-order nonlinear susceptibility tensor,
γ ≈ −(0.7–0.8) [76]. The small range of values observed for γ in a tendon
fascicle suggests that there is structural homogeneity. This parameter might,
therefore, be useful in characterizing different collagen structures noninva-
sively [76].

The main problem encountered in the in situ microscopy of tissues is mul-
tiple scattering, which randomizes the direction, coherence, and polarization
state of incident light. A number of optical gating methods have been pro-
posed to filtrate ballistic and least-scattering photons, which carry informa-
tion about the object structure [46]. One of these is the polarization gating
method and its modifications, which are described elsewhere in this book. The
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fundamental limitation of all optical gating methods, including the polariza-
tion one, is the fact that only a small number of ballistic and least-scattering
photons take part in the formation of an object image. Therefore, polarization-
gating techniques in combination with image reconstruction methods can be
useful for improving the image resolution in the case of a highly scattering ob-
ject [77,78]. Both reflection-mode and transmission-mode polarization gating
scanning microscopes have been analyzed [77,78].

An optical immersion technique, based on matching the refractive index of
the tissue scatterers and the surrounding ground (interstitial) medium, allows
one to essentially control the scattering properties of a tissue [46]. Usually
the refractive index of the ground medium is controlled. This is accomplished
by impregnating the tissue with a biocompatible chemical agent, like glucose,
glycerol, propylene glycol, or X-ray contrasting medicals. Due to the fact that
the refractive index of the applied agent is higher than that of the tissue
ground substance, which is close to the index of water, the refractive index
of the ground increases and scattering decreases. Most of the applied agents
are osmotically active; therefore, they can produce a temporal and local dehy-
dration of the tissue which also leads to an increase in the refractive index of
the interstitial space. Reduction of the scattering at optical immersion makes
it possible to detect the polarization anisotropy of tissues more easily and to
separate the effects of light scattering and intrinsic birefringence on the tissue
polarization properties. It is also possible to study birefringence of form with
optical immersion, but when the immersion is strong, the average refractive
index of the tissue structure is close to the index of the ground media, and
the birefringence of form may be too small to see.

The dynamics of tissue optical clearing and the manifestation of tissue
anisotropy at the reduction of scattering are characteristic features, which cor-
relate with clinical data [46,79–81]. Figures 11.26 and 11.27 show experimental
results on the temporal transmittance of linear polarized light through tissue
sections measured by a white-light video-digital polarization microscope on
the application of an immersion agent (X-ray contrasting agent – trazograph-
60) [80]. The immersion solution was heated up to (36–40)◦C and simply
dropped on the tissue sample surface. Sections of the various connective and
vascular tissues of an area of 1 × 1 cm2 and a thickness of 0.1–1.5 mm were
studied. The temporal image contrast C(t) and its rate V (t) are used for a
quantitative description of the diffusion process of the agent in the tissue

C(t) = T (t)/Tmax, (11.26)
V (t) = dC(t)/dt, (11.27)

T (t) is the current sample brightness; Tmax is the maximal sample brightness.
The experimental image contrast rate V (t) is well described by the fol-

lowing empirical equation which is valid for various studied tissue samples:

V (t) = A + B exp(−G × t), (11.28)
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Fig. 11.26. Experimental temporal dependencies for a normalized transmittance
C(t) = T (t)/Tmax of linear polarized light through tissue sections measured by a
white-light video-digital polarization microscope at the application of an immersion
agent (trazograph-60) [80]

where A,B, and G are the empirical parameters associated with the tissue
structure and the chemical agent diffusion ability. Different types of tissues
have quite different rates of optical clearing which is influenced by their struc-
tural peculiarities. For example, for human sclera, A = 0.70, B = 2.59, and
G = 6.4; and for meniscus of the knee joint, A = 0, B = 9.83, and G = 17.2.

Both Figs. 11.26 and 11.27 show rates of tissue optical clearing for differ-
ent tissues when the tissues change from an initial turbid (multiple scattering)
at t = 0 to a less depolarized and more transparent state (less scattering),
C(t)→ 1. Evidently, this difference depends on the tissue structure, which de-
fines the initial (natural) turbidity, and the efficiency of the chemical agent’s
interaction with the tissue. For example, vein and aorta samples have approxi-
mately the same initial turbidity and degree of linear depolarization, but they
interact quite differently with an immersion agent (see Fig. 11.27). The agent
is less able to penetrate the more dense aorta than the vein; therefore, its ac-
tion on the aorta takes several hours while 10 min is enough time to complete
the clearing of the vein.

At the reduction of scattering, tissue birefringence can be measured more
precisely. In particular, the birefringence of form and material can be sepa-
rated. For example, in a translucent human scleral sample that is impregnated
with a highly concentrated glucose solution (about 70%), the measured opti-
cal anisotropy Δn = (ne – no) is equal to ≈ 10−3 [81]. This is 1.5–4.5 folds
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Fig. 11.27. Experimental temporal dependences for a normalized transmittance
C(t) = T (t)/Tmax of linear polarized light through vascular tissue sections (aorta
and vein-Vena cava inferior) measured by a white-light video-digital polarization
microscope at the application of immersion agent (trazograph-60) [80]

less than the other birefringent tissues described in Sect. 2.5, which can be
explained primarily by the reduction in the inclusion of birefringence of form
in the optical immersion.

Additional measurements of the collimated transmittance allow for estima-
tion of the refractive index of the ground substance of the translucent tissue
n2 using expressions derived from radiative transfer and Mie theory [46]

I ≈ I0 exp(−μsd); μs ∝ (n1/n2 − 1)2, (11.29)

where I0 is the intensity of the incident light, μs is the scattering coefficient,
d is the sample thickness, and n1 is the refractive index of the collagen fibers.
Index n2 was evaluated as 1.39. Using this value and the value of the refractive
index of hydrated collagen, n1 = 1.47 estimated in Sect. 2.7, the collagen
volume fraction, f1, can be calculated from (1.9), as

f1(1 − f1) ∼= Δn

(n1 − n2)2
n2, (11.30)

f1
∼= 0.32, which correlates well with the estimation made in Sect. 2.7.
Figure 11.28 illustrates the reversibility of the optical immersion effect.

A polarization-speckle microscope working in transmittance mode was used
to carry out these measurements [79]. The sample was irradiated by a linear
polarized focused laser beam which was scanned along the trace of 1.5 mm
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Fig. 11.28. Time-dependent mean speckle intensity < Is >, averaged over the scan-
ning trace (1.5 mm), and its polarization components < I|| > and < I⊥ >, measured
in the paraxial region for a human sclera sample (d = 0.4 mm) at λ = 633 nm using
a polarization-speckle microscope [79]. (1), (2) and (3) – the subsequent measure-
ments for a sample kept first in trazograph-60 solution (1), then in physiological
solution (0.9% NaCl) (2), and finally again in trazograph-60 solution (3)

to average the speckle modulation in the far zone, where the analyzer and
photodector were placed. Two orthogonal linear polarized components of the
transmitted light were detected.

It can be seen that initially the sample had poor transmittance with the
equal intensity components <I||> = <I⊥> and that multiple scattering takes
place. When the immersion agent acts in the 14th min, <I||> prevails sub-
stantially over <I⊥>, and the tissue becomes less scattering. The subsequent
action of the physiological solution, which washes out the immersion agent,
returns the tissue to its normal (initial) state, and it becomes turbid again
in the 22nd min with no measured difference between the intensities of the
orthogonally polarized components. The secondary application of the immer-
sion agent again makes the tissue less scattering with a maximum reached at
the 28th min. Practically all healthy connective and vascular tissues show the
strong or weak optical anisotropy typical of either uniaxial or biaxial crys-
tals [80,81]. Pathological tissues show isotropic optical properties [82].

Polarization microscopy is also helpful for investigating individual cells,
in particular, for evaluating the amount of glycated hemoglobin in erythro-
cytes that could be an early diagnostic marker of hyperglycemia in diabetic
patients [70]. Hemoglobin glycation causes changes in the cell’s refraction in-
dex. By using polarizing-interference microscopy, it is possible to measure the
light refractive index in an individual erythrocyte [70]. The refractive index of
hemoglobin or a red blood cell, containing about 95% hemoglobin, varies ap-
proximately linearly with a change in glucose concentration – it saturates
only under strong hyperglycemic conditions [41]. A Nomarsky polarizing-
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interference microscope, MPI-5 (Poland), is used for measurements of light
phase retardation [70]. Using a Wollaston prism mounted on an object, the
erythrocyte images for ordinary and extraordinary light beams are completely
separated. In the thickest erythrocyte region, the first interference maxima are
visually adjusted to the eye sensitive purple color for ordinary and extraordi-
nary images by shifting the second Wollaston prism placed in the rear focus
of the object. For each erythrocyte measured, the Wollaston prism displace-
ment renders a second value. From the whole interference bandwidth h and
the measured Wollaston prism displacement 2d, the phase retardation Φ and
the refractive index are calculated for each erythrocyte [70]:

n = nv +
Φ

t
= nv +

dλ

ht
, (11.31)

where nv = 1.5133 ± 0.0001 is the refractive index of the embedding media,
t is the thickness of the erythrocyte, λ = 550 nm. Separate measurements of
the erythrocyte thickness using two embedded media with different refractive
indices gives t = 0.89 μm. Using this value, the refractive index is calculated
with a standard deviation of ±0.0005.

A robust z-polarized confocal microscope employing only one or two bi-
nary phase plates with a polarizer has been suggested by Huse et al. [82]. The
major advantage of the microscope having a significant longitudinal field com-
ponent is that it is then possible to image the z-polarized features in randomly
oriented agglomerations of molecules of biomedical interest.

11.9 Digital Photoelastic Analysis

Photoelasticity is an established experimental technique that has been applied
to study the biomechanics of hard tissues like bone and tooth [83–86]. The
photoelastic measuring technique is based on the stress-induced optical bire-
fringence effect, which for plane stress analysis is described by the following
stress-optic law [87]:

σ1 − σ2 =
θ

2π
fσ

h
=

Nfσ

h
, (11.32)

where (σ1 – σ2) is the difference in the in-plane principle stress, θ is the resul-
tant optical phase generated due to stress-induced birefringence in the sample,
fσ is the material fringe value, and h is the thickness of the specimen. Since
the values of fσ and h are constants for the mechanical stresses, recording the
optical phase (θ) or fringe order (N = θ/2π) at every point of interest on the
fringe pattern allows for analysis of the stress distribution [84–86].

As an example, we shall consider the results of photomechanical studies
of post endodontically rehabilitated teeth, using a conventional circular po-
lariscope and an image processing system, which are the basis for the digital
phase shift photoelastic technique described in [84–86]. A special loading de-
vice has been manufactured that applies loads along the long axis (0◦) and 60◦
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lingual to the long axis of the tooth. Using the polariscope, four phase-stepped
images are obtained for the sample at each load by rotating the analyzer at
0◦, 45◦, 90◦, and 135◦ angles with respect to the polarizer. The fringe patterns
obtained are acquired using a high-resolution (753 × 244 pixels) CCD cam-
era; these are then stored and processed by a computer. The four images are
evaluated using a traditional phase stepping algorithm to obtain a wrapped
phase map [84, 85]. Phase unwrapping is done on selected lines to make the
fringe modulation continuous and to get information on the nature of the
stress distribution.

Figure 11.29 shows a phase-wrapped image of the rehabilitated tooth
model, loaded at 125 N at an angle of 60◦ in the direction of the long axis of
the tooth. It was found that there is a significant (up to three-fold) increase in
the magnitude of the stress within the rehabilitated tooth model in compari-
son with the model of the intact tooth. Increased bending stress is identified
in the cervical region and in the middle region of the root. This results in
higher compressive stress in the cervical region (facial side) and higher tensile
stress in the mid region (lingual side).

Lingual
side Facial

side

Fig. 11.29. Phase-wrapped image obtained from four-phase shifted images in a
rehabilitated tooth model, loaded at 125 N, 60◦ lingual to the long axis of the
tooth [86]
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The designed digital phase-shift photoelastic technique is of importance
for the investigation of hard tissue elasticity distributions; here, for instance,
it highlighted the behavior of a post-core rehabilitated tooth to functional
forces.

11.10 Fluorescence Polarization

Fluorescence polarization measurements are used to estimate various parame-
ters of the fluorophore environment [88]; therefore, they have a potential role
to play in biomedical diagnosis, in particular, in discriminating between nor-
mal and malignant tissues [89–91]. At polarized light excitation, the emission
from a fluorophore in a none-scattering media becomes depolarized because of
the random orientation of the fluorophore molecules and the angular displace-
ment between the absorption and emission dipoles of the molecules [88]. These
intrinsic molecular processes that result in additional angular displacement of
the emission dipoles are sensitive to the local environment of the fluorophore.
As was already shown in preceding chapters, light depolarization in tissues is
determined by multiple scattering; therefore, both excitation and emission ra-
diations should be depolarized in scattering media [88–92]. Polarization state
transformation in scattering media depends on the optical parameters of the
medium: the absorption coefficient, μa; the scattering coefficient, μs(4.7); and
the scattering anisotropy factor, g(3.28). Due to the different structural and
functional properties of normal and malignant tissues, the contribution of
multiple scattering to depolarization may be different for these tissues. The
reduced (transport) scattering coefficient, μ′

s(4.17), or the transport mean free
path (MFP), lt(4.18), in particular, determines the characteristic depolariza-
tion depth for different tissues (see Figs. 5.5–5.8).

Thus, fluorescence polarization measurements may be sensitive to tissue
structural or functional changes, which are caused, for instance, by tissue
malignancy at the molecular level (the sensitivity of excited molecules to the
environmental molecules) or at the macrostructural level (the sensitivity of
propagating radiation to tissue scattering properties).

Mohanty et al. [91] consider a fluorophore located at a distance z from
the surface of a turbid medium. The homogeneous distribution of the fluo-
rophores and the validity of the diffusion approximation for light transport in
a scattering medium are assumed. The average number of scattering events
experienced by the excitation light before it reached the fluorophore, and by
the emitted light before it exited the medium, are described, respectively, as

N1(z) = z × μex
s (11.33)

N2(z) = z × μem
s . (11.34)
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The fluorescence polarization ability is characterized by polarization
anisotropy (r) which is a dimensionless quantity independent of the total
fluorescence intensity of the object [88]

r =
I|| − I⊥
I|| + 2I⊥

. (11.35)

It is defined as the ratio of the polarized component to the total intensity
and is connected with the light polarization value P :

r =
2P

3 − P
. (11.36)

The polarization, measured as

P =
I|| − I⊥
I|| + I⊥

, (11.37)

is an appropriate parameter for describing a light source when a light ray is
directed along a particular axis. The polarization of this light is defined as the
fraction of light that is linearly polarized. In contrast, the radiation emitted
by a fluorophore is symmetrically distributed around this axis, and the total
intensity is not given by I|| + I⊥, but rather by I|| + 2I⊥ (see Sect. 10.4
of [88]).

Assuming that each scattering event reduces the fluorescence polarization
anisotropy r by a factor of A(A = 0–1), the anisotropy of fluorescence that is
due to a fluorophore embedded at a depth z can be written as

r(z) = r0 × A[N1(z)+N2(z)], (11.38)

where r0 is the value of the fluorescence anisotropy without any scattering.
For a homogeneous distribution of fluorophores in a tissue of thickness d,

the observed value of the fluorescence anisotropy is defined by each ith tissue
layer:

robs =
∑

i

(I f
i ri)/

∑
i

I f
i , (11.39)

where I f
i is the contribution to the observed fluorescence intensity from the

ith layer of thickness dz at a depth, z and ri is the value of the fluorescence
anisotropy for this layer.

For the broad-beam illumination of a flat tissue surface, the propagation of
excitation (ex) light beyond a few MFPs (see (4.19)) is well described by one-
dimensional diffusion theory (see (4.13)). In this approximation, and taking
into account μex

e � μex
d , which is valid for many tissues (see (4.7) and (4.14)),

the excitation intensity reaching depth z is expressed as

I(z) ∼= Cex exp(−μex
d z), (11.40)

where Cex is proportional to the excitation intensity and is the function of the
tissue optical parameters at the wavelength of the excitation light [27].
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The fluorescence from the fluorophores, embedded at depth z from the
tissue surface, reaching the same surface will, therefore, be

I f(z) ≈ [Cex exp(−μex
d z)] × ϕ[Cem exp(−μem

d z)], (11.41)

where Cem and μem
d for the emission wavelength are defined similarly as Cex

and μex
d for the excitation wavelength and ϕ is the fluorescence yield.

By substituting the values I f
i from (11.41) and ri from (11.38) in (11.39),

the observed fluorescence anisotropy is expressed as

robs = r0

∫ d

0
exp(−μtot

d z) × A[N1(z)+N2(z)]dz∫ d

0
exp(−μtot

d z)dz
, (11.42)

where

μtot
d = μex

d + μem
d , (11.43)

μtot
s = μex

s + μem
s . (11.44)

Integration of (11.42) gives

robs = r0
μtot

d

μtot
d − ln(A) × (μtot

s )
× 1 − exp(−μtot

d d) × (A)μtot
s d

1 − exp(−μtot
d d)

. (11.45)

Fluorescence anisotropy measurements are usually provided by commer-
cially available spectrometers, the sensitivity of which is different for two
orthogonal polarization states. Therefore, all measured fluorescence spectra
should be corrected for the system response [88]:

r =
I|| − GI⊥
I|| + 2GI⊥

, (11.46)

where G is the ratio of the sensitivity of the instrument to the vertically and
the horizontally polarized light.

Typical G-corrected polarized fluorescence spectra at 340-nm excitation
from malignant and normal breast tissue with thickness ≈2mm are shown
in Fig. 11.30 [91]. Collagen, elastin, coenzymes (NADH/NADPH), and flavins
contribute to these spectra and the spectra received at a longer wavelength
of 460 nm [93–95]. The contribution of NADH dominates with excitation at
340 nm and different forms of flavins dominate with excitation at 460 nm. In
Fig. 11.30, a blue shift in the polarized fluorescence spectra maximum can be
clearly seen in the malignant, as compared to the normal, tissue. A similar
shift of 5–10 nm was observed also for 460 nm excited fluorescence. This shift
is associated with the accumulation of positively charged ions in the intracel-
lular environment of the malignant cell [89]. Some differences, in particular,
a spectral shift of the maximum, between the parallel and cross-polarized flu-
orescence spectra observed for rather thick tissue layers (≈ 2mm), may be
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Fig. 11.30. Typical polarized fluorescence spectra at 340-nm excitation of human
breast tissue samples of 2-mm thickness [91]. Solid curves, spectra with excitation
and emission polarizers oriented vertically (I||); dashed curves, spectra with crossed
excitation and emission polarizers (I⊥). (a) Malignant tissue; (b) normal tissue

associated with wavelength-dependent scattering and the absorption proper-
ties of the tissue (see Fig. 11.30).

The mean fluorescence anisotropy values for normal and malignant hu-
man breast samples of tissue varying from 10 μ m to 2 mm in thickness,
determined with 440 nm emission and 340-nm excitation, are presented in
Fig. 11.31 [91]. The theoretical fit to experimental data using (11.45) and the
parameter of single scattering anisotropy reduction A = 0.7 gives the fol-
lowing data for the anisotropy and optical parameters: r0 = 0.34; μtot

s =
59mm−1; μtot

d = 5.35mm−1 for malignant tissue and r0 ≈ 0.25; μtot
s =

47mm−1; μtot
d = 3.45mm−1 for normal tissue. The anisotropy values are

higher for malignant tissues as compared to normal for very thin tissue
sections, d ≤ 30 μm. By contrast, in thicker sections, the malignant tissue
shows smaller fluorescence anisotropy than the normal tissues.
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Fig. 11.31. The polarized fluorescence anisotropy measured at 440 nm for excita-
tion at 340 nm for malignant (open circles) and normal (filled circles) human breast
tissues as a function of tissue thickness [91]. The error bars represent standard de-
viation. The solid and dashed curves show theoretical fits for normal and malignant
tissues, respectively (11.45). An expanded view of the dependencies of the anisotropy
on tissue thickness for small thicknesses is shown in the insert

The fact that fluorescence anisotropy varies with tissue thickness is asso-
ciated with the manifestation of various mechanisms of fluorescence depolar-
ization which are caused by energy transfer and rotational diffusion in the
fluorophores and by the scattering of excitation and emission light. Energy
transfer and/or rotational diffusion of the fluorophores dominate in thin tissue
sections, and these processes are faster in normal tissues than in malignant
ones. In thicker sections, light scattering dominates with more contribution
to depolarization during light transport within the malignant tissues.

As was already mentioned in the beginning of this section, the light scat-
tering anisotropy factor g and, correspondingly, the reduced scattering coeffi-
cient, μ′

s, or the transport MFP, lt, determine the characteristic depolarization
depth in a scattering medium. Parameter A, characterizing the reduction of
the fluorescence anisotropy per scattering event in the described model, de-
pends on the value of the g-factor [91]. The theoretical analysis done by the
authors of [91] has shown that, for an anisotropy parameter g ranging between
0.7 and 0.9, the value for A varies between 0.7 and 0.8.

The results presented suggest that fluorescence anisotropy measurements
may be used for discriminating malignant sites from normal ones and may
be especially useful for epithelial cancer diagnostics where superficial tissue
layers are typically examined [94,95].
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11.11 Summary

We conclude that polarization-sensitive methods are promising tools for op-
tical medical diagnostics and visualization, especially for in situ morphologi-
cal analysis of living tissue. Additionally, polarization discrimination of scat-
tered probe light, currently being integrated with traditional optical diag-
nostical methods, such as, diffuse reflectance spectroscopy and imaging with
diffuse reflected or transmitted light, offers a possibility for improving the di-
agnostical potential of these methods. Another novel contribution to optical
medical diagnostics should emerge from the morphological study of tissues
with expressed structural anisotropy. Typically, almost all of the polarization-
sensitive techniques that we considered in this chapter can be realized with
inexpensive commercially available instrumentation; neither do they require
sophisticated data processing algorithms. In other words, these methods are
completely suitable for widespread implementation in clinical diagnostic prac-
tice. In addition, fluorescence polarization measurements that can provide
information at the molecular level may also be useful for discriminating ma-
lignant sites from normal ones.
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Appendix

Single-Scattering Mueller Matrix from Mie Theory

Mie theory describes the scattering of a vector plane wave by a homogeneous
sphere. For a spherical particle, its single-scattering Jones matrix is

J =
(

S2 0
0 S1

)
, (A.1)

where S1 and S2 are functions of the polar scattering angle and can be ob-
tained from the Mie theory:

S1(θ) =
∞∑

n=1

2n + 1
n(n + 1)

{anπn(cos θ) + bnτn(cos θ)},

S2(θ) =
∞∑

n=1

2n + 1
n(n + 1)

{bnπn(cos θ) + anτn(cos θ)}.
(A.2)

The parameters πn and τn represent

πn(cos θ) =
1

sin θ
P 1

n(cos θ),

τn(cos θ) =
d
dθ

P 1
n(cos θ),

(A.3)

where P 1
n(cos θ) is the associated Legendre polynomial. The following recursive

relationships are used to calculate πn and τn:

πn =
2n − 1
n − 1

πn−1 cos θ − n

n − 1
πn−2,

τn = nπn cos θ − (n + 1)πn−1,
(A.4)
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and the initial values are:{
π1 = 1, π2 = cos θ,
τ1 = cos θ, τ2 = 3 cos 2θ.

(A.5)

The coefficients an and bn are⎧⎪⎪⎪⎨⎪⎪⎪⎩
an =

S′
n(y)Sn(x) − nrelSn(y)S′

n(x)
S′

n(y)ζn(x) − nrelSn(y)ζ ′n(x)
,

bn =
nrelS

′
n(y)Sn(x) − Sn(y)S′

n(x)
nrelS′

n(y)ζn(x) − Sn(y)ζ ′n(x)
,

(A.6)

where

x = 2πanb/λ,

y = 2πans/λ,

nrel = ns/nb,

(A.7)

where a is the radius of the scattering sphere, λ is the wavelength in vaccuo,
ns is the refractive index of the scattering spheres, and nb is the refractive
index of the background medium. ζn and Sn can be written in terms of Bessel
functions: ⎧⎪⎪⎨⎪⎪⎩

Sn(z) =
( πz

2

)0.5
Jn+0.5(z),

ζn(z) = Sn(z) + iCn(z),
Cn(z) = − ( πz

2

)0.5
Nn+0.5(z),

(A.8)

where Jn+0.5(z) is the Bessel function of the 1st kind and Nn+0.5(z) is the
Bessel function of the 2nd kind. The derivatives of Sn and Cn can be obtained
through {

S′
n(z) =

( π
8z

)0.5
Jn+0.5(z) +

( πz
2

)0.5
J ′

n+0.5(z),
C ′

n(z) = − ( π
8z

)0.5
Nn+0.5(z) − ( πz

2

)0.5
N ′

n+0.5(z).
(A.9)

The single-scattering Mueller matrix can be derived from the Jones matrix
(A.1):

M(θ) = 1
2⎡⎢⎢⎣

|S2|2 + |S1|2 |S2|2 − |S1|2 0 0
|S2|2 − |S1|2 |S2|2 + |S1|2 0 0

0 0 S2S
∗
1 + S1S

∗
2 −i(S2S

∗
1 − S1S

∗
2 )

0 0 i(S2S
∗
1 − S1S

∗
2 ) S2S

∗
1 + S1S

∗
2

⎤⎥⎥⎦ . (A.10)

Coordinate Transformation in a Multiple Scattering
Medium

In polarimetry, every Stokes vector and Mueller matrix are associated with
a specific reference plane and coordinates. In the Mie theory, the Mueller
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Fig. A.1. The coordinates transform of a single scattering event

matrix of a single scattering event is defined in the scattering plane that is
formed by the incident light vector and the scattered light vector. For a general
coordinate system associated with this scattering plane, the Z-axis is along
the direction of photon propagation. The X-axis is within the reference plane
and is perpendicular to the Z-axis. The Y -axis is perpendicular to both the
Z-axis and the reference plane.

There is a local coordinate system associated with each incident photon
packet, and its Stokes vector Sin is associated with this local coordinate sys-
tem. As shown in Fig. A.1, the local coordinate system of the photon before
scattering is (X,Y,Z). After the scattering event, the photon propagates along
the Z ′-axis; θ is the polar scattering angle and ϕ is the azimuth angle. The
scattering plane is formed by the Z-axis and the Z ′-axis, which is the new
reference plane.

We use (9.1) to calculate the Stokes vector of the scattered light. As the
Mueller matrix of the scattering event is defined in the reference plane, we
first need to transform the Stokes vector of the incident light to the coordinate
system associated with the reference plane. This transformation can be done
by rotating the local coordinate system (X,Y,Z) by ϕ along the Z-axis, where
the rotation matrix is

R(ϕ) =

⎡⎢⎢⎣
1 0 0 0
0 cos(2ϕ) sin(2ϕ) 0
0 − sin(2ϕ) cos(2ϕ) 0
0 0 0 1

⎤⎥⎥⎦ , (A.11)

and the new Stokes vector is obtained by

S′
in = R(ϕ)Sin. (A.12)

The local coordinate system of the photon packet is tracked in the process.
The transformation can be divided into two steps. From Fig. A.1, the first step
is to rotate the (X,Y,Z) system by ϕ about the Z-axis, and the second step
is to rotate the coordinate by θ about the rotated Y -axis to get (X ′, Y ′, Z ′).
After the transformation, the Z ′-axis is aligned with the new light vector.
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The transformation matrix is⎡⎣X ′

Y ′

Z ′

⎤⎦ =

⎡⎣ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎤⎦⎡⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤⎦⎡⎣X
Y
Z

⎤⎦ . (A.13)

After a photon packet passes through the turbid medium, its Stokes vec-
tor is recorded and accumulated. The local coordinate system was tracked
in the simulation. In order to record the Stokes vector, the local coordinate
system of each photon packet must be transformed into the laboratory coordi-
nate system. In the laboratory coordinate system (e1, e2, e3), the local photon
coordinate can be written as⎡⎣x

y
z

⎤⎦ =

⎡⎣ e1x e2x e3x

e1y e2y e3y

e1z e2z e3z

⎤⎦⎡⎣ e1

e2

e3

⎤⎦ . (A.14)

To transform the photon Stokes vector from the local coordinate system into
the laboratory coordinate system, the local coordinate system is rotated by its
Z-axis so that the new X-axis lies within the (e2, e3) plane in the laboratory
coordinate. The rotation angle is

ϕ = tan−1(e1x/e1y). (A.15)

The rotation matrix and the new Stokes vector can be obtained from (A.11)
and (A.12).



Glossary

This glossary was compiled using mostly [1-7] (Chap. 1).

absorption the transformation of light (radiant) energy
to some other form of energy, usually heat,
as the light transverses matter

absorption spectrum the spectrum formed by light that has
passed through a medium in which light of
certain wavelengths was absorbed

acquisition time the period of time of acquiring experimental
data

anisotropic scattering a scattering process characterized by a
clearly-apparent direction of photons that
may be due to the presence of large scat-
terers

attenuation a decrease in energy per unit area of a wave
or beam of light; it occurs as the distance
from the source increases and is caused by
absorption or scattering

attenuation (extinction)
coefficient

the reciprocal of the distance over which
light of intensity I is attenuated to I/e ≈
0.37I; the units are typically cm−1

autocorrelation the correlation of an ordered series of obser-
vations with the same series in an altered
order

autocorrelation function the characteristic of the second-order sta-
tistics of a random process that shows how
fast the random value changes from point to
point, e.g., the autocorrelation function of
intensity fluctuations caused by scattering
of a laser beam by a rough surface character-
izes the size and distribution of speckle sizes
in the induced speckle pattern; the Fourier
transform of the autocorrelation function
represents the power spectrum of a random
process

autofluorescence natural tissue fluorescence
ballistic (coherent)
photons

a group of unscattered and strictly straight-
forward scattered photons

backscattering the dispersion of a fraction of the incident
radiation in a backward direction

bimodal distribution a distribution having two modes
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birefringence the phenomenon exhibited by certain crys-
tals in which an incident ray of light is split
into two rays, called an ordinary ray and an
extraordinary ray, which are plane- (linear)
polarized in mutually orthogonal planes

chirality in an object, describes the mirror-equal
“right” or “left” modification; optical ac-
tivity is one of the exhibitions of chirality,
when the asymmetric structure of a mole-
cule or crystal existing of two forms (“right”
and “left”) causes the substance (ensem-
ble of these molecules or crystal) to rotate
the plane of the incident linear polarized
light; the pure “right” or “left” optically ac-
tive substances have identical physical and
chemical properties, but their biochemical
and physiological properties can be quite
different

chromophore a chemical that absorbs light with a charac-
teristic spectral pattern

coherence length characterizes the degree of temporal coher-
ence of a light source: lC = cτC, where c
is the light speed and τC is the coherence
time, which is approximately equal to the
pulse duration of the pulse light source or in-
versely proportional to the frequency band-
width of a continuous wave light source

coherent light light in which the electromagnetic waves
maintain a fixed phase relationship over a
period of time and in which the phase rela-
tionship remains constant for various points
that are perpendicular to the direction of
propagation

constructive interference the interference of two or more waves of
equal frequency and phase, resulting in
their mutual reinforcement and producing a
single amplitude equal to the sum of the
amplitudes of the individual waves

contrast of the intensity
fluctuations

the relative difference between light and
dark areas of a speckle pattern

correlation the degree of correlation between two or
more attributes or measurements on the
same group of elements
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correlation length the length within which the degree of corre-
lation between two measurements of a spa-
tially dependent quantity is high (close to
unity); for example, Lc is the correlation
length of the scattering surface of the spatial
inhomogeneities (random relief)

decorrelation of speckles relates to statistics of the second order
that characterize the size and distribution
of speckle sizes and show how fast the in-
tensity changes from point to point in the
speckle pattern; decorrelation means that
such changes of intensity tend to be faster

depolarization depriving (destruction) of light polarization
destructive interference the interference of two waves of equal fre-

quency and opposite phase, resulting in
their cancellation where the negative dis-
placement of one always coincides with the
positive displacement of the other

developed speckles the speckles that are characterized by
Gaussian statistics of the complex ampli-
tude, the unity contrast of intensity fluctu-
ations, and a negative exponential function
of the intensity probability distribution (the
most probable intensity value in the corre-
sponding speckle pattern is equal to zero;
i.e., destructive interference occurs with the
highest probability)

diagnostic (or
therapeutic) window

the spectral range from 600 to 1,600 nm
within which the penetration depth of the
light beams for most living tissues and blood
is the highest; certain phototherapeutic and
diagnostic modalities take advantage of this
range for visible and NIR light

dichroism a phenomenon related to pleochroism of a
uniaxial crystal so that it exhibits two dif-
ferent colors when viewed from two different
directions under transmitted light; pleochro-
ism is the property possessed by certain
crystals that exhibit different colors when
viewed from different directions under trans-
mitted light; this is one exhibition of the op-
tical anisotropy caused by the anisotropy of
absorption; the varieties of pleochroism are
circular dichroism, different absorption for
light with “right” and “left” circular polar-
ization, and linear dichroism, different ab-
sorption for ordinary and extraordinary rays
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diffuse photons the photons that undertake multiple scatter
with a broad variety of angles

diffusion wave
spectroscopy (DWS)

the spectroscopy based on the study of dy-
namic light scattering in dense media with
multiple scattering and related to the inves-
tigation of the dynamics of particles within
very short time intervals

digital electronic autocor-
relator

a device that reconstructs the time-domain
autocorrelation function of intensity fluctu-
ations

dispersion the state of being dispersed, such as a pho-
ton trajectory (general); the variation of the
index of refraction of a transparent sub-
stance, such as a glass, with the wavelength
of light, the index of refraction increasing as
the wavelength decreases (optics); the sep-
aration of white or compound light into its
respective colors, as in the formation of a
spectrum by a prism (optics); the scattering
of values of a variable around the mean or
median of a distribution (statistics); a sys-
tem of dispersed particles suspended in a
solid, liquid, or gas (chemistry)

Doppler effect the apparent change in the frequency of a
wave, such as a light wave or sound wave,
resulting from a change in the distance
between the source of the wave and the
receiver

Doppler interferometry the dynamic dual-beam interferometry
when the reference beam pathlength is
scanned with a constant speed; the Doppler
signal induced is the measuring signal for
depth profiling of an object placed in the
measuring beam; the method is used in par-
tially coherent interferometry or tomogra-
phy of tissues

Doppler spectroscopy the spectroscopy based on the study of the
dynamic light scattering (Doppler effect) in
media with single scattering and related to
the investigation of the dynamics (velocity)
of particles from the measurements of the
Doppler shifts in the frequency of the waves
scattered by the moving particles
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dynamic light scattering light scattering by a moving object that
causes a Doppler shift in the frequency of
the scattered wave relative to the frequency
of the incident light

elastic (static) light
scattering

light scattering by static (motionless) ob-
jects that occurs elastically, without changes
of a photon energy or light frequency

emission spectrum the emission obtained from a luminescent
material at different wavelengths when it is
excited by a narrow range of shorter wave-
lengths

excitation spectrum the emission spectrum at one wavelength is
monitored and the intensity at this wave-
length is measured as a function of the ex-
citing wavelength

far-field diffraction zone the zone where Fraunhofer diffraction takes
place; this is a type of diffraction in which
the light source and the receiving screen
are effectively at an infinite distance from
the diffraction object, i.e., parallel beams of
wave trains are used

form birefringence birefringence that is caused by the structure
of a medium; for example, a system of long
dielectric cylinders made from an isotropic
substance and arranged in a parallel fashion
shows birefringence of form

forward scattering
problem

the modeling of light propagation in a scat-
tering medium by taking into account the
experimental geometry, source, and detec-
tor characteristics and the known optical
properties of a sample, and predicting the
measurements and associated accuracies
that result

fractal object an object with a self-similar geometry, i.e.,
each arbitrary selected part of it is similar
to the whole object

Fresnel diffraction a type of diffraction in which the light source
and the receiving screen are both at a finite
distance from the diffraction object, i.e., di-
vergent and convergent beams of wavetrains
are used

Fresnel reflection the reflection of a beam of radiation, such
as light, which takes place at the interface
between two media of different refractive
indexes; not all the radiation is reflected,
some may be refracted
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Gaussian correlation
function

the correlation function described by a bell-
shaped (Gaussian) curve

Gaussian light beam a light beam with a Gaussian shape for
the transverse intensity profile; if the in-
tensity at the center of the beam is I0,
then the formula for a Gaussian beam is
I = I0 exp(−2r2/w2), where r is the radial
distance from the axis and w is the beam
“waist;” the intensity profile of such a beam
is said to be bell shaped; a laser beam is
a Gaussian one; a single mode fiber also
creates a Gaussian beam at its output

Gaussian statistics
(normal statistics)

statistics when a bell-shaped (Gaussian)
curve showing a distribution of probability
associated with different values of a variate
are valid

group refractive index the refractive index associated with the
group velocity of a train of waves travel-
ing in a dispersive medium; the group veloc-
ity, and correspondingly the group refractive
index, depends on the mean wavelength of
a train of waves and on the rate of change
of velocity with wavelength

hemoglobin spectrum the main bands are the following: Soret
band: 400–440 nm segment; Q bands: 540–
580-nm segment

Henyey-Greenstein phase
function (HG)

one of the practical semiempirical approxi-
mations of the scattering phase function

homogeneous medium a medium that has common physical
properties, including optical properties,
throughout

image-carrying photons a group of photons selected for producing
an image of a certain macroinhomogeneity
within a scattering medium

immersion medium
(liquid)

a liquid that provides optical matching be-
tween an objective and a biological object;
it enhances the numerical aperture of the
objective and the microscope resolution; in
addition, optical matching reduces surface
reflection and scattering and consequently
allows for receiving higher contrast images

immersion technique the technique used for reduction of light
scattering in a bulk inhomogeneous medium
by matching of the refractive index of the
scatterers and ground substance; immersion
liquids with an appropriate refractive index
and rate of diffusion are usually used
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index of refraction a number indicating the speed of light in
a given medium as either the ratio of the
speed of light in a vacuum to that in the
given medium (absolute index of refraction)
or the ratio of the speed of light in a spec-
ified medium to that in the given medium
(relative index of refraction)

inhomogeneous medium a medium with regular or irregular spatial
distribution of physical properties, including
optical properties

intensity probability den-
sity distribution function

a function that describes the distribution
of probability over the values of the light
intensity

interference of speckle
fields (speckle-modulated
fields)

the interference of the fields in which ampli-
tudes and phases are randomly modulated
due to their interaction (scattering) with
inhomogeneous (scattering) media

inverse MC (IMC)
method

the iterative method that is based on the
statistical simulation of photon transport
in the scattering media and that provides
a tool for the most accurate solutions of
inverse scattering problem; it takes into
account the real geometry of the object,
the measuring system, and light beams; the
main disadvantage is the long computation
time

inverse scattering problem the attempt to take a set of measurements
and error estimates, and only a limited set
of parameters describing the sample and
experiment, and to derive the remaining pa-
rameters; usually the geometry is known, in-
tensities or their parameters are measured,
and the optical properties or sizes of scat-
terers need to be derived; if these properties
are considered to be spatially varying, then
the resultant solutions can be presented as
a 2 or 3D function of space, i.e., as an image

isotropic scattering an equality of scattering properties along all
axes

LASCA acronym for laser speckle contrast analy-
sis; the method uses the spatial statistics of
time-integrated speckles; the full-field tech-
nique for visualizing capillary blood flow

latex a suspension of micron-sized polystyrene
spheres
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light ultraviolet (UV): UVC: 100 – 280 nm, UVB:
280 – 315 nm, UVA: 315 – 400 nm; visible:
400 – 780 nm (violet: 400 – 450 nm, blue: 450
– 480 nm, green: 510 – 560 nm, yellow: 560
– 590 nm, orange: 590 – 620 nm, red: 620 –
780 nm); infrared (IR) light: IRA (or NIR):
780 – 1400 nm, IRB (or middle IR (MIR)):
1400 – 3000 nm, IRC (or far IR (FIR)): 3 –
1000 μm

light scattering change in direction of the propagation of
light in a turbid medium caused by reflec-
tion and refraction by microscopic internal
structures

low-step scattering the scattering process in which on average
each photon undertakes no more than a few
scattering events (approximately less than
five to ten)

LSM [light-scattering ma-
trix (intensity or Mueller’s
matrix)]

the 4 × 4 matrix which connects the
Stokes vector of the incident light with
the Stokes vector of the scattered light; it
describes the polarization state of the scat-
tered light in the far zone that is dependent
on the polarization state of the incident light
and structural and optical properties of the
object

LSM element one of 16 elements of the light-scattering
matrix; each element depends on the
scattering angle and the wavelength, and
geometrical and optical parameters of the
scatterers and their arrangement

Mie or Lorenz–Mie scat-
tering theory

exact solution of Maxwell’s electromagnetic
field equations for a homogeneous sphere

monodisperse model a model presenting a disperse medium as a
monodisperse one, such as an ensemble of
scatterers with an equal size and refractive
index for each scatterer

monodisperse system a disperse system (medium) with a single
value of characteristic parameter, such as an
ensemble of scatterers with the equal size
and refractive index for each scatterer; a
healthy eye cornea is a good example of the
monodisperse system, because it consists of
dielectric rods with the same refractive in-
dex and radius dispersed in a homogeneous
ground substance
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Monte Carlo method a numerical method of statistical modeling;
in tissue studies it provides the most accu-
rate simulation of photon transport in the
samples with a complex geometry, account-
ing for the specificity of the measuring sys-
tem and light beams configuration

multilayered tissue a tissue that consists of many layers with
different structural and optical properties,
such as skin, blood vessel wall, and wall of
bladder

multiple scattering a scattering process in which on average
each photon undertakes many scattering
events (approximately more than five to
ten)

non-Gaussian statistics a statistically nonuniform process in which
the statistical characteristics of the scat-
tered light essentially depend on the
observation angle and the degree of nonuni-
formity of an object

nonuniform medium see inhomogeneous medium
objective speckles the speckles formed in a free space and usu-

ally observed on a screen placed at a certain
distance from an object

optical activity the ability of a substance to rotate the plane
of polarization of plane- (linear) polarized
light (see chirality)

optical slicing the process of extracting the optical image
of a thin layer of tissue; the image is used for
tomographic reconstruction of a whole body
organ

optical path the path of light through a medium,
having a magnitude equal to the geometric
distance through the system times the index
of refraction of the medium

optical phantom a medium that models the transport of
visible and infrared light in tissue and is
needed to evaluate techniques, to calibrate
equipment, to optimize procedures, and for
quality assurance

optical retarder a device that provides an optical retarda-
tion: phase shift or optical path difference;
such retarders as the half- or the quarter-
wavelength plates provide, respectively,
the half-wave or the quarter-wave phase
difference
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osmotic phenomenon the tendency of a fluid to pass through a
semipermeable membrane into a solution
where its concentration is lower, thus equal-
izing the conditions on either side of the
membrane

osmotic stress the force that a dissolved substance ex-
erts on a semipermeable membrane through
which it cannot penetrate, when it is sepa-
rated from a pure solvent by the membrane

paraxial region the region where paraxial rays, lying close
to the axis of an optical system, propagate

phase-contrast microscopy
(phase microscopy)

a microscopy that translates the difference
in the phase of light transmitted through
or reflected by an object into difference of
intensity in the image

phase fluctuations of the
scattered field

the fluctuations that are induced by differ-
ent optical paths for different parts or time
periods of a wave front interacting with an
inhomogeneous generally dynamic medium

phase object an object that introduces the difference in
phase of the light transmitted through or
reflected by an object

λ/4-phase plate see optical retarder; a device that pro-
vides an optical phase shift of 90◦ (π/2 ra-
dians) or an optical path difference equal
to a quarter of the wavelength; a thin plate
of birefringent substance, such as calcite
or quartz, is cut parallel to the optical
axis of the crystal and of a specific thick-
ness that is calculated to give a phase dif-
ference of 90◦ (π/2 radians) between the
emergent ordinary ray and the emergent
extraordinary ray for light of a specified
wavelength; quarter-wave plates are usually
constructed for the wavelength of sodium
light (589 nm); if the angle between the
plane of polarization of light incident upon
the plate and the optic axis of the plate is
45◦, then circularly polarized light is pro-
duced and emerges from the plate; if the
angle is other than 45◦, elliptically polarized
light is produced
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phase shift (phase
difference)

the difference in phase between two wave
forms; phase difference is measured by the
phase angle between the waves; when two
waves have a phase shift (difference) of 90◦

(or π/2 radians), one wave is at maximum
amplitude when the other wave is at zero
amplitude; with a phase difference of 180◦

(π radians), both waves have zero amplitude
at the same time, but one wave is at a crest
when the other wave is at a trough

photon a quantum of electromagnetic radiation,
usually considered as an elementary parti-
cle that has its own antiparticle and that
has zero rest mass and charge and a spin
of 1

photon-correlation
spectroscopy

a noninvasive method for studying the dy-
namics of particles on a comparatively large
time scale; the implementation of the single-
scattering regime and the use of coherent
light sources are of fundamental importance
in this case; the spatial scale of testing a
colloid structure (an ensemble of biological
particles) is determined by the inverse of
the wave vector; quasielastic light scatter-
ing spectroscopy, spectroscopy of intensity
fluctuations, and Doppler spectroscopy are
synonymous terms related to dynamic light
scattering

photon-counting system a system that makes use of a specific method
of photoelectron signal processing and pro-
vides sequential detection of single pho-
tons; photomultipliers (PMT) or avalanche
photodetectors (APD) are usually used for
photoncounting; the technique is applicable
for detecting very weak signals

photon-density wave a wave of progressively decaying intensity;
microscopically, individual photons migrate
randomly in a scattering medium, but col-
lectively they form a photon-density wave
at a modulation frequency that moves away
from a radiation source

photosensitizer a substance that increases the absorption
of another substance at a particular wave-
length band
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photon transport the process of photon travel in a homoge-
neous or inhomogeneous medium with possi-
ble macroinhomogeneities; a photon changes
its direction due to reflection, refraction, dif-
fraction or scattering and can be absorbed
by an appropriate molecule on its way

pixel the smallest element of an image that can
be individually displayed

polarimetry measurement of the polarization properties
of light

polarization of light a state, or the production of a state, in
which rays of light exhibit different prop-
erties in different directions; linear (plane):
when the electric field vector oscillates in a
single, fixed plane all along the beam, the
light is said to be linearly (plane) polarized;
elliptical : when the plane of the electric field
rotates, the light is said to be elliptically
polarized because the electric field vector
traces out an ellipse at a fixed point in space
as a function of time; circular : when the el-
lipse happens to be a circle, the light is said
to be circularly polarized

polarization anisotropy an inequality of polarization properties
along different axes

polarizer a device, often a crystal or prism, that pro-
duces polarized light from unpolarized light

probability density
function (probability
density distribution)

a function that describes the distribution of
probability over the values of a variable

quasielastic light
scattering

see dynamic light scattering

quasimonochromatic wave a wave that has a very narrow but nonzero
frequency (or wavelength) bandwidth; it can
be presented as a group of monochromatic
waves with a slightly different wavelength

quasiordered medium a medium that has a structure very close to
the ordered one, but nevertheless is not com-
pletely ordered which is caused by specific
interactions between molecules and molecu-
lar structures; many of the natural media,
including water and some living tissues, are
examples of quasiordered media
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radiation transfer theory
(RTT)

the theory based on the integro-differential
equation (the Boltzmann or linear trans-
port equation), which is a balance equation
describing the flow of particles (e.g., pho-
tons) in a given volume element that takes
into account their velocity c, location r̄, and
changes due to collisions (i.e., scattering and
absorption)

random medium a specific state of a nonuniform (inho-
mogeneous) medium characterized by the
irregular spatial distribution of its physical
properties, including the optical properties

random phase screen
(RPS)

a specific state of a random medium char-
acterized by random spatial variations of
the refractive index, which induce the
corresponding variations in the phase shift
of the optical wave transmitted through or
reflected by the RPS

Rayleigh theory the theory that addresses the problem of cal-
culating scattering by small particles (with
respect to the wavelength of the incident
light) when individual particle scattering
can be described as if it is a single dipole,
the scattered irradiance is inversely propor-
tional to λ4 and increases as a6, and the
angular distribution of the scattered light is
isotropic

Rayleigh–Debye–Gans
theory (approximation)

the theory that addresses the problem of cal-
culating the scattering by a special class of
arbitrary shaped particles; it requires that
the electric field inside the particle be close
to that of the incident field and that the
particle can be viewed as a collection of in-
dependent dipoles that are all exposed to
the same incident field

reflectance (reflection co-
efficient)

the ratio of the intensity reflected from a
surface to the incident intensity; it is a di-
mensional quantity

reflecting spectroscopy the spectroscopy that is used for the
spectral analysis of the light back-reflected
(scattered) by an object
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refractive index mismatch a difference in the index of refraction of two
media being in contact; a scattering medium
can be considered as a medium containing
scattering particles whose index of refrac-
tion is mismatched relative to index of re-
fraction of the ground substance

scatterer an inhomogeneity or a particle of a medium
that refracts light or other electromagnetic
radiation; light is diffused or deflected as a
result of collisions between the wave and
particles of the medium; sometimes it is
a rough surface or a random-phase screen,
also called scatterer

scattering medium a medium in which a wave or beam of parti-
cles is diffused or deflected by collisions with
particles of this medium

scattering phase function the function that describes the scattering
properties of the medium and is in fact the
probability density function for scattering in
the direction s̄′of a photon travelling in the
direction s̄; it characterizes an elementary
scattering act; if scattering is symmetric rel-
ative to the direction of the incident wave,
then the phase function depends only on the
scattering angle θ (angle between directions
s̄ and s̄′)

scattering spectrum the spectrum of scattered light; it can be
differential, measured or calculated for a
certain scattering angle, or integrated
within an angle (field) of view of the mea-
suring spectrometer

single-mode fiber a fiber in which only a single mode can be
excited; for a fiber with a numerical aperture
NA=0.1 and wavelength 633 nm the single
mode can be excited if the core diameter is
less than 4.8 μm

single-mode laser a laser that produces a light beam with a
Gaussian shape of the transverse intensity
profile without any spatial oscillations (see
Gaussian light beam); in general, such
lasers generate many optical frequencies (so-
called longitudinal modes), which have the
same transverse Gaussian shape
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single scattering the scattering process that occurs when a
wave undertakes no more than one collision
with particles of the medium in which it
propagates

soft scattering particles the refractive index of these particles, ns, is
close to the refractive index of the ground
(interstitial) substance, n0 (ns ≥ n0)

spatial frequency a spatial harmonic in the Fourier transform
of a periodic or aperiodic (random) spatial
distribution

spatial resolution a measure of the ability of an optical imag-
ing system to reveal the details of an image,
i.e., to resolve adjacent elements

speckle a single element of a speckle structure (pat-
tern) that is produced as a result of the in-
terference of a large number of elementary
waves with random phases that arise when
coherent light is reflected from a rough sur-
face or when coherent light passes through
a scattering medium

speckle correlometry a technique that is based on the mea-
surement of the intensity autocorrelation
function, characterizing the size and the dis-
tribution of speckle sizes in a speckle pat-
tern, caused, for example, by a scattering of
coherent light beam from a rough surface;
the statistical properties of the scattering
object’s structure can be deduced from such
measurement

speckle photography the measuring technique that uses a set
of sequential photos of the speckle pattern
taken at different moments or with different
exposures; this is a full-field technique and
can be used to study the dynamic proper-
ties of a scattering object (see LASCA);
the updated instruments make use of com-
puter controlled CCD cameras for averaging
and storing the speckle patterns

speckle statistics of the
first order

the statistics that define the properties of
speckle fields at each point

speckle statistics of the
second order

the statistics that show how fast the inten-
sity changes from point to point in a speckle
pattern, i.e., they characterize the size and
distribution of speckle sizes in the pattern
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specular pertaining to or having the properties of a
mirror

Stokes parameters the four numbers I, Q, U , and V presenting
an arbitrary polarization of light: I refers to
the irradiance or intensity of the light; the
parameters Q, U , and V represent the ex-
tent of horizontal liner, 45◦ linear, and cir-
cular polarization, respectively

Stokes vector the vector that is formed by the four Stokes
parameters

structure function the function that describes the second-order
statistics of a random process and is propor-
tional to the difference between values of the
autocorrelation function for zero and arbi-
trary values of the argument; the structure
function is more sensitive to small-scale os-
cillations

subjective speckles the speckles produced in the image space of
an optical system (including an eye)

time-of-flight the mean time of photon travel between two
points which account for refractive index
and scattering properties of the medium

tissue optical parameters
(properties) control

any kind of physical or chemical action, such
as mechanical stress or changes in osmolar-
ity, which induces reversible or irreversible
changes in the optical properties of a tis-
sue [see immersion medium (liquid) and
immersion technique]

tomographic
reconstruction

obtaining 3D images by which the size,
shape, and position of a hidden object can
be determined

transmittance ratio of the intensity transmitted through
a sample to the incident intensity; it is a
dimensionless quantity

two-photon fluorescence
microscopy

the microscopy that employs both the bal-
listic and scattered photons at the wave-
length of the second harmonic of incident
radiation coming to a wide-aperture pho-
todetector exactly from the focal area of the
excitation beam
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30. G.L. Coté and B.D. Cameron, “Noninvasive polarimetric measurement of glu-
cose in cell culture media,” J. Biomed. Opt. 2(3), 275–281 (1997)

31. C. Chou, Y.C. Huang, C.M. Feng, and M. Chang, “Amplitude sensitive op-
tical heterodyne and phase lock-in technique on small optical rotation angle
detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997)

32. C. Chou, C.Y. Han, W.C. Kuo, Y.C. Huang, C.M. Feng, and J.C. Shyu, “Non-
invasive glucose monitoring in vivo with an optical heterodyne polarimeter,”
Appl. Opt. 37(16), 3553–3557 (1998)

33. J.N. Roe and D.R. Smoller, “Bloodless glucose measurements,” Crit. Rev.
Ther. Drug Carrier Syst., 15(3), 199–241 (1998)
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pH, and corneal birefringence on polarimetric glucose monitoring in the eye,”
J. Biomed. Opt. 7(3), 321–328 (2002)
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