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Preface

Most of the leading algorithms in computer vision are based on global optimization
methods. Such methods compute the solution of a given problem as minimizer of a
suitable cost functional that penalizes deviations from previously made assumptions
and integrates them in a global manner, i.e., over the entire image domain. Since this
way of modelling is very transparent and intuitive, it is not surprising that such
methods have become popular and successful tools to tackle many fundamental
problems in computer vision such as, e.g., motion estimation, stereo reconstruction,
image restoration, and object segmentation. However, there is also a price to pay when
employing global optimization methods. The corresponding cost functionals often
lead to optimization problems that are both mathematically challenging and compu-
tationally expensive.

In order to discuss recent advances and challenges in the design and the solution of
global optimization methods, Dagstuhl Seminar 11471 on Efficient Algorithms for
Global Optimisation Methods in Computer Vision was held during November 20–25,
2011, at the International Conference and Research Center (IBFI), Schloss Dagstuhl,
near Wadern in Germany. The seminar focused on the entire algorithmic development
pipeline for global optimization problems in computer vision: modelling, mathematical
analysis, numerical solvers, and parallelization. In particular, the goal of the seminar
was to bring together researchers from all four fields to analyze and discuss the con-
nections between the different stages of the algorithmic design pipeline. The seminar
included researchers from the fields of computer science and mathematics alike.

From all submissions, eight high-quality full articles were finally accepted after a
strict reviewing process. Each article was reviewed by at least two international
experts in the field and only articles with exclusively positive reviews were accepted
for publication. The accepted articles reflect the state of the art in the field and focus
on recent developments in efficient approaches for continuous optimization and
related parallelization aspects on high-end cluster systems.

We would like to thank the team at castle Dagstuhl for the professional support and
the perfect atmosphere during the seminar. Furthermore, we would like to thank the
participants of the Dagstuhl seminar for their active discussions, their dedication
during the seminar as well as for the quality of their timely reviews. Apart from all
authors, we would also like to thank Ke Chen and Martin Welk for providing addi-
tional reviews. The organization of this event would not have been possible without
the effort and the enthusiasm of many people. We would like to thank all who
contributed to the success of this seminar.

November 2013 Andrés Bruhn
Thomas Pock

Xue-Cheng Tai
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Dense Elastic 3D Shape Matching

Frank R. Schmidt1(B), Thomas Windheuser2,
Ulrich Schlickewei2, and Daniel Cremers2

1 BIOSS Center of Biological Signalling Studies,
University Freiburg, Freiburg, Germany

schmidt@cs.uni-freiburg.de
2 Technische Universität München, München, Germany

Abstract. We propose a novel method for computing a geometrically
consistent and spatially dense matching between two 3D shapes X and Y
by means of a convex relaxation. Rather than mapping points to points
we match infinitesimal surface patches while preserving the geometric
structures. In this spirit, we consider matchings between objects’ sur-
faces as diffeomorphisms which are by definition geometrically consis-
tent. Since such diffeomorphisms can be represented as closed surfaces
in the product space X × Y , we are led to a minimal surface problem in
a four-dimensional space. The proposed discrete formulation describes
the search space with linear constraints which leads to a binary lin-
ear program. We propose an approximation approach to this potentially
NP-hard problem. To overcome memory limitations, we also propose
a multi-scale approach that refines a coarse matching until it reaches
the finest level. As cost function for matching, we consider a thin shell
energy, measuring the physical energy necessary to deform one shape
into the other. Experimental results demonstrate that the proposed LP
relaxation allows to compute high-quality matchings which reliably put
into correspondence articulated 3D shapes. To our knowledge, this is the
first solution to dense elastic surface matching which does not require an
initialization and provides solutions of bounded optimality.

1 Introduction

1.1 Shape Similarity and Elastic Matching

Computing the similarity of 3D objects is among the central challenges both
for humans and computers in order to structure the world around them. How
can one determine that two hands are similar, that two faces are similar? A
closer analysis of this problem reveals that the estimation of shape similarity
is tightly coupled to the estimation of correspondence: Two hands in different
articulation, for example, turn out to be similar because respective fingers all
match a corresponding finger. The similarity of two given shapes can therefore be
determined by finding the minimal elastic deformation which matches one shape
into the other. While there exist algorithms for dense elastic surface match-
ing, these algorithms typically only determine a locally optimal solution. They

A. Bruhn et al. (Eds.): Global Optimization Methods, LNCS 8293, pp. 1–18, 2014.
DOI: 10.1007/978-3-642-54774-4 1, c© Springer-Verlag Berlin Heidelberg 2014



2 F.R. Schmidt et al.

Fig. 1. Geometrically Consistent Elastic Matching. We propose to cast the dense
elastic matching of surfaces in 3D as a codimension-two minimal surface problem which
aims at minimizing the distortion when transforming one shape into the other. We show
that a consistent discretization of this minimal surface problem gives rise to an integer
linear program. By means of LP relaxation we can compute near-optimal matchings
such as the one shown above. These matchings are dense triangle-wise matchings. (For
visualization we combined triangles to patches and colored them consistently with their
corresponding patch.)

require appropriate initialization and can therefore not be employed in a fully
unsupervised manner. In particular, the accurate and unsupervised comparison
of more sophisticated shapes remains an important challenge.

In this work, we propose a novel framework for finding an optimal geometri-
cally consistent matching between two surfaces. We formulate shape matching as
a minimal surface problem which allows for a linear programming discretization.
This model comes with a sound physical interpretation and allows to compute
high-quality matching without need for initialization. In parts, this work has
been presented at vision conferences [1,2]. The goal of this paper is to combine
both, the linear programming approach and the related multi-scaling approach
into one comprehensive paper.

1.2 Related Work

While the matching of two different 3D shapes constitutes a very difficult prob-
lem, the problem becomes much easier in one less dimension. It is interesting to
note that the matching of mere planar shapes can be solved by means of dynamic
programming in runtimes which are subcubic in the number of points on each
shape [3]. This is because the matching of planar shapes can be cast as a prob-
lem of finding a shortest closed curve of certain homotopy in a planar graph.

Unfortunately, the concepts of dynamic programming and variants of Dijk-
stra’s algorithm do not extend to the third dimension where the solution is no
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longer a shortest path but a minimal closed surface in a higher-dimensional
space. Therefore, existing approaches for three-dimensional shape matching typ-
ically rely on local optimization techniques. Our approach tries to overcome this
limitation by describing these closed surfaces with linear constraints involving
the boundary operator. Inspired by Sullivan [4], the boundary operator was
previously introduced in the context of image segmentation by Grady [5] and
Schoenemann et al. [6].

The paradigm of the Gromov–Hausdorff framework, proposed by Mémoli
and Sapiro in [7], is to find the correspondence which minimizes the geodesic
distortion. Bronstein et al. [8] proposed an efficient method for computing such
correspondences in a coarse-to-fine strategy much akin to optical flow algorithms.
In [9] the same Gromov–Hausdorff framework was merged with the idea of dif-
fusion distances. Other approaches to shape matching employ techniques from
conformal geometry [10,11] or Riemannian geometry [12]. The physically moti-
vated energy model we use in this work is related to the works of Litke et al.
[13] and of Rumpf and Wirth [14].

All the above-mentioned methods have in common that they use a local
optimization technique to minimize a non-convex energy. As a consequence, the
quality of solutions depends heavily on a good initialization and an appropriately
designed coarse-to-fine strategy. In addition, solutions do not come with any
optimality guarantees, which implies that in principle they can be arbitrarily
bad. To overcome these problems, methods with a more global flavor have been
recently proposed.

On the one hand, Zeng and coworkers [15] formulate shape matching as a
graph matching problem of third order and apply the QPBO algorithm [16].
Although the overall approach does not guarantee globally optimal solutions, it
is able to detect when a proposed matching pair is globally optimal. Two major
drawbacks of this approach are that firstly it suffers from a very high compu-
tational complexity, considering all triples of possible matchings. In practice it
allows only the matching of a few feature points which is then post-processed
with a local method. Secondly, this approach lacks a continuous counterpart, as
it merely matches discrete points rather than surface elements.

On the other hand, Lipman and Daubechies [17] recently proposed to com-
pare surfaces of genus zero and open surfaces using optimal mass transport and
conformal geometry. Computationally, this amounts to solving a linear program
in n2 variables where n is the number of vertices used in the discretization of the
surfaces. The problem with this approach is that no spatial regularity is imposed
on the matchings.

1.3 Contribution

We propose a novel formulation for the shape matching problem based on finding
an optimal surface of codimension 2 in the product of the two shape surfaces.
This surface minimizes the physical deformation energy needed for deforming
one shape into the other. We derive a consistent discretization of the continuous
framework and show that the discrete minimal surface problem amounts to a
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linear program. Compared to existing approaches the proposed framework has
the following advantages:

– The LP formulation is a global approach allowing to compute matchings which
are independent of initialization with no post-processing.

– The proposed method guarantees a geometrically consistent matching in the
sense that the surfaces are mapped into one another in a continuous and
orientation preserving manner.

– We provide a discretization of the set of diffeomorphisms by means of linear
constraints. This is remarkable because in previous formulations the diffeo-
morphism constraint is non-linear and computationally very difficult [18].

– The algorithmic formulation is independent of the particular choice of defor-
mation energy and can be applied universally. As an example, we show that
one can also incorporate local feature similarity in order to improve perfor-
mance.

– In order to be independent of potential memory limitations, we propose a
multiscale-approach that starts with a coarse matching that is then refined
in every iteration.

– Experiments demonstrate that reliable and dense matchings are obtained even
for larger problem instances with no need for post-processing.

The paper is organized as follows. In Sect. 2 we present the relationship
between 3D shape matching and the computation of a minimal surface in a
4D manifold. In Sect. 3 we present the discretization that we use in order to
model arbitrary surfaces in the induced 4D space and in Sect. 4 we address
the problem of finding an approximation of the involved integer linear program.
After introducing in Sect. 5 a multi-resolution approach in order to also compute
dense shape matching, we provide shape matching results in Sect. 6. Section 7
concludes this work.

2 From Continuous Shape Matching to Minimal Surfaces

One of our goal is to cast the shape matching problem as the computation of
a minimal surface in a four-dimensional space. In Sect. 2.1 we formulate the
overall energy that we want to minimize. It combines a physically motivated
membrane energy with a bending energy. Subsequently, we show in Sect. 2.2 how
this problem can be translated into an equivalent problem of finding a minimal
codimension-two surface in the product space of the two involved shapes.

2.1 Shape Matching Based on Minimizing Deformation Energies

In the following, we assume that the two shapes X,Y ⊂ R
3 are differentiable,

oriented, closed surfaces. While most 3D shape matching approaches like to
interpret a matching just as a bijective mapping between the surface points of
these shapes, we pursue a fundamentally different approach. The main reason is
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that in general, bijections do not respect the underlying two-dimensional struc-
ture of surfaces. In fact, there are even continuous bijections between a line
and a two-dimensional patch like the continuous space-filling curve as shown
by Hilbert [19]. Therefore, we propose to search for diffeomorphisms instead of
bijections.

Diffeomorphisms f : X → Y are bijections for which both, f and f−1 are
differentiable. This does not only cope with the dimensionality problem presented
above, but it also helps us to propose an energy function that is symmetric in f
and f−1. Since both f and its inverse exist, the optimal matching f between X
and Y also gives rise to the optimal matching between Y and X, namely f−1 :
Y → X. The set of diffeomorphisms Diff(X,Y ) can be separated in two different
classes, into the class of orientation preserving diffeomorphisms Diff+(X,Y ) and
the class of orientation reversing diffeomorphisms Diff−(X,Y ).

In the following, we formulate the shape matching problem as an optimization
problem over Diff+(X,Y ):

min
f∈Diff+(X,Y )

E(f) + E(f−1) (1)

where E is a suitable energy on the class of all diffeomorphisms between surfaces.
Note that we choose a symmetric problem formulation, penalizing at the same
time deformation energy of X into Y and of Y into X. This is necessary because
usually E takes different values on f and on f−1.

The energy functional we use is borrowed from elasticity theory in physics [20].
Here, we interpret the shapes X and Y as surfaces or “thin shells”. If we now
try to find the deformation of X into Y , it requires a certain amount of stretch-
ing and bending. This results in an energy that usually combines a membrane
energy Emem and a bending energy Ebend penalizing deformations in the first
and in the second fundamental forms of the surfaces. In this work we use the
following formulation:

E(f) =
∫

X

(trgX
E) + μtrgX

(E2)
︸ ︷︷ ︸

Emem

+λ

∫
X

(HX(x) − HY (f(x))2

︸ ︷︷ ︸
Ebend

(2)

where E = f∗gY − gX is the difference between the metric tensors of X and Y ,
typically called the Lagrange strain tensor, trgX

(E) is the norm of this tensor
(see [21]), HX and HY denote the mean curvatures and μ and λ are parameters
which determine the elasticity and the bending property of the material. This
energy is a slightly simplified version of Koiter’s thin shell energy [22].

After presenting the overall energy E(f)+E(f−1) that we want to minimize,
we will reformulate this problem in the next section into a problem of finding a
minimal surface in a four-dimensional space.

2.2 Shape Matchings and Their Graph Surfaces

As we mentioned in Sect. 2.1, every matching function f : X → Y between
two shapes X and Y is an orientation preserving diffeomorphism. Given such a
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matching, its graph

Γ = { (x, f(x))| x ∈ X} (3)

becomes a surface in the four-dimensional1 product space X × Y . This surface
Γ comes with the two natural projections:

πX : Γ → X πY : Γ → Y

(x, y) �→ x (x, y) �→ y

that will help us to characterize a diffeomorphism completely by its graph:

Proposition 1 (Graph Surfaces). Let Γ be the graph of a diffeomorphism
f : X → Y . Then

1. Γ is a differentiable, connected, closed surface in the product space X × Y .
2. The projections πX and πY are both diffeomorphisms.
3. The two orientations which Γ naturally inherits from X and Y coincide.

Vice versa, any surface Γ ⊂ X × Y which satisfies Conditions 1–3 is the graph
of an orientation-preserving diffeomorphism between X and Y . We call such
surfaces graph surfaces.

The energy E(f) + E(f−1) can be expressed as Ẽ(Γ ) via

E(f) + E(f−1) = E(πY ◦ (πX)−1) + E(πX ◦ (πY )−1) =: Ẽ(Γ ). (4)

Concluding the above discussion, we have transformed the optimization prob-
lem (1) into an optimization problem over the set of all graph surfaces in X ×Y ,
namely

min Ẽ(Γ )
subject to Γ ⊂ X × Y is a graph surface

(5)

We remark that the idea of casting optimal diffeomorphism problems as
minimal surface problems has been applied previously in the theory of nonlinear
elasticity [23]. In the setup of shape matching, it is related to the approach that
Tagare [24] proposed for the matching of 2D shapes. Its connection to orientation
preserving diffeomorphisms was made in [3].

3 The Discrete Setting

In this section we develop a discrete representation of graph surfaces introduced
in Sect. 2.2. We start in Sect. 3.1 with the definition of discrete surface patches in
X × Y . These patches are derived from a given discrete triangulation of X and
Y itself. The surface patches in the product space X ×Y are the building blocks
for discrete graph surfaces that we introduce in Sect. 3.2. Finally in Sect. 3.3 we
give a discrete version of the energy minimization problem (5).
1 X × Y is a 4-manifold embedded in R

6.
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(a1, b1)
(a2, b2)

(a3, b3)

b1

b3

b2

a1 a2
a3

X

Y X × Y

(a1, b1)
(a2, b1)

(a3, b3)

b1

b3

a1 a2
a3

X

Y X × Y

Fig. 2. Product Triangles. To assure a geometrically consistent, elastic matching
from mesh X to mesh Y , we define a space of feasible solutions which is spanned by
a set of 45 basic matchings among triangles, edges and vertices on either mesh. Two
representative matchings and their corresponding representation in the product space
X × Y are shown. Left image: The triangle (a1, a2, a3)

T on surface X is matched to
triangle (b1, b2, b3)

T on Y by assigning vertex ai to vertex bi. This directly corresponds
to the triangle with vertices (ai, bi) in the product graph. Right image: The triangle
(a1, a2, a3)

T is matched to the edge (b1, b3)
T , represented here as degenerate triangle

(b1, b1, b3)
T .

3.1 Discrete Surface Patches

In the following, we assume that a shape X is given as a triangulated oriented
surface mesh GX = (VX , EX , FX), consisting of a set of vertices VX , a set of
directed edges EX and a set of oriented triangles FX .

While the orientation of X defines a natural orientation of the faces in FX ,
such a natural orientation does not exist for the edge in EX . Moreover, two faces
f1, f2 ∈ FX that touch each other along an edge e ∈ EX induce opposite orien-
tations onto this edge e. Since edges on X do not have a preferable orientation,
we fix an orientation for each edge on X. Thus, whenever two vertices a1 and
a2 of X are connected by an edge, either

(
a1

a2

)
∈ EX or

(
a2

a1

)
= −

(
a1

a2

)
∈ EX .

For simplicity, we extend the set of edges by degenerate edges

EX = EX ∪
{(

a

a

) ∣∣∣∣ a ∈ VX

}
. (6)

By assumption, the triangular faces of X are oriented. If the vertices a1, a2, a3

build an oriented triangle on X, then
⎛
⎝a1

a2

a3

⎞
⎠ =

⎛
⎝a2

a3

a1

⎞
⎠ =

⎛
⎝a3

a1

a2

⎞
⎠ ∈ FX

and analogously to the edges, we extend the set of triangles by degenerate tri-
angles

FX = FX ∪
⎧⎨
⎩
⎛
⎝a1

a2

a2

⎞
⎠
∣∣∣∣ a1, a2 ∈ VX , ±

(
a1

a2

)
∈ EX

⎫⎬
⎭ . (7)
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Due to the definition of EX , degenerate triangles can consist of two vertices or
even of only one vertex. The existence of these degenerate triangles will allow
stretching or compression of parts of the shapes as we will see below (cf. right
image of Figs. 2 and 6).

Next, we define triangles F , edges E and vertices V that operate as building
blocks for the graph surfaces introduced in Sect. 2.2. To this end, let us assume
that two shapes X and Y are given as triangulated oriented surface meshes
GX = (VX , EX , FX) resp. GY = (VY , EY , FY ) and that EX , FX , EY , FY are
defined as above. Then define the graph G = (V,E, F ) of the product space
X × Y by

V :=VX × VY

E :=EX × EY

F :=(FX × FY ) ∪ (FX × FY )

The product triangles in F are the pieces which are later glued together in order
to obtain discrete graph surfaces. For shape matching, a product triangle

⎛
⎝(a1, b1)

(a2, b2)
(a3, b3)

⎞
⎠ ∈ F (8)

is interpreted as setting vertex ai ∈ VX in correspondence with vertex bi ∈ VY .
While a triangle provides us with such a point-to-point matching, it also takes
care of the geometric structure within the two shapes X and Y . In that sense it
is more powerful than a mere point matching.

Given two non-degenerate triangles a ∈ FX and b ∈ FY , we allow for 45
different matchings between them:

– 3 orientation-preserving bijective matchings,
– 36 triangle-to-edge matchings and
– 6 triangle-to-vertex matchings.

The degenerate triangle-to-edge and triangle-to-vertex matchings allow us to
handle infinitesimal stretching and compression in the proposed framework.
Visualizations for two of the 45 possibilities is given in Fig. 2.

3.2 Discrete Surfaces

Following Sect. 2, a diffeomorphism can be represented as a surface Γ ⊂ X × Y
satisfying conditions 1–3 of Proposition 1. In this section we derive discrete
versions of these three properties. First, we define a surface in the product space:

Definition 1. A discrete surface in G = (V,E, F ) is a subset Γ ⊂ F . The
set of all discrete surfaces is denoted by surf(G).
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(a3, b3)

(a2, b2)
(a1, b1)

(a4, b4)
f1 f2

b1

b3b4

b2

a1 a2
a3a4

X

Y X × Y

(a4, b4)

(a1, b1)
(a2, b1)

(a5, b2)(a3, b3)

b1

b3b4

b2

a1 a2
a3a4 a5

X

Y X × Y

Fig. 3. Geometric Consistency. To ensure that neighboring triangles on X are
matched with neighboring triangles on Y , we impose the closedness condition. Left
image (general case): The triangles (a1, a2, a3)

T and (b1, b2, b3)
T are matched,

thereby activating f2. The boundary condition ∂Γ = 0 ensures that the matching
continues with a correspondence whose triangles in X and Y are positively incident to
(a1, a3)

T and (b1, b3)
T respectively. This constraint is satisfied for example by triangle

f1 which is visualized here. Right image (stretching): The stretching is achieved by
matching triangle (a1, a2, a3)

T to edge (b3, b1)
T . Again, the geometric consistency is

granted by the boundary condition evaluated on the product edges ((a2, b1), (a3, b3))
T

and ((a3, b3), (a1, b1))
T .

As we have seen in Sect. 3.1, any triangle in F can be interpreted as matching
a (possibly degenerated) triangle of FX to a (possibly degenerated) triangle of
FY . Thus, the intuitive meaning of a discrete surface Γ ⊂ F is a set of point cor-
respondences between the shapes X and Y . Imposing the discrete counterparts
of 1–3 on such a discrete surface will result in a geometrically consistent match-
ing that approximates a diffeomorphism between the continuous counter-parts
of X and Y .

Discrete Version of Condition 1. In the following we will find a condi-
tion which guarantees the continuity of our matching. Recall that the boundary
operator for triangle meshes [25] maps triangles to their oriented boundary. We
extend this definition to the product graph G.

As for the sets EX and EY we choose arbitrary orientations for each product
edge e ∈ E. By means of these orientations we define for any edge (v1, v2)� ∈ E
connecting two vertices v1, v2 ∈ V a vector O

(
(v1, v2)�) ∈ Z

|E| whose e-th entry
is given by

O
(
(v1, v2)�)

e
=

⎧⎪⎨
⎪⎩

1 if e =
(
v1
v2

)
−1 if e =

(
v1
v2

)
0 else.

(9)

The triangles in F naturally inherit orientations from the triangles in FX

and FY . This allows us to define the boundary operator as follows.

Definition 2. The boundary operator ∂ : F → Z
|E| is defined by

∂

⎛
⎝(a1, b1)

(a2, b2)
(a3, b3)

⎞
⎠ := O

(
(a1, b1)
(a2, b2)

)
+ O

(
(a2, b2)
(a3, b3)

)
+ O

(
(a3, b3)
(a1, b1)

)
, (10)
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where the ai ∈ VX and bi ∈ VY form triangles on X resp. on Y and
(
(ai,bi)
(aj ,bj)

) ∈ E

connects the vertices (ai, bi) ∈ V with (aj , bj) ∈ V . The boundary operator is
linearly extended to a map

∂ : surf(G) → Z
|E|. (11)

and a discrete surface Γ in G is closed if ∂Γ = 0.

The closedness condition ensures that adjacent triangles on X are in corre-
spondence with adjacent triangles on Y and therefore guarantees the geometric
consistency (see Fig. 3). The natural discrete version of Condition 1 is a closed,
connected discrete surface in G.

Discrete Version of Condition 2. Analogously to the continuous case, we
can project product triangles of F to triangles of the surfaces X and Y .

Definition 3. The projection πX : F → Z
|FX | is defined by

πX

⎛
⎝(a1, b1)

(a2, b2)
(a3, b3)

⎞
⎠ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ea if a =

⎛
⎜⎝

a1

a2

a3

⎞
⎟⎠ ∈ FX

(0, . . . , 0) else

. (12)

Here, ea is the base vector with 1 in the a-entry and 0 in all other entries.
We extend the projection πX linearly to a map πX : surf(G) → Z

|FX |. The
projection πY : F → Z

|FY | and its linear extension πY : surf(G) → Z
|FY | are

defined analogously.

Let now Γ be a discrete surface in G. Then we say that the projections of Γ
to X and Y are discrete diffeomorphisms if and only if

πX(Γ ) = (1, . . . , 1) ∈ Z
|FX | and πY (Γ ) = (1, . . . , 1) ∈ Z

|FY |. (13)

This gives a discrete version of Condition 2.
Note that in this definition we do not ask for injectivity on the vertices

set. This is necessary for modelling discretely strong compressions. However,
conditions (13) ensure a global bijectivity property which is sufficient in our
context.

Discrete Version of Condition 3. By definition, the set of surfaces in G only
contains surface patches which are consistently oriented. Therefore any surface
in surf(G) satisfies Condition 3.

Definition 4. Let Γ ∈ {0, 1}|F | be a discrete surface in G, represented by its
indicator vector. Then Γ is a discrete graph surface in G if⎛

⎝ ∂
πX

πY

⎞
⎠ · Γ =

⎛
⎝0
1
1

⎞
⎠ . (14)
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3.3 Discrete Surface Energy

Now we introduce a discrete energy on the set of product triangles in G. For the
membrane energy in (2) we adopt the term proposed by Delingette [26]. Given
two triangles T1, T2 ⊂ R

3, Delingette computes the stretch energy Emem(T1 →
T2) necessary for deforming T1 in T2. In our framework we associate with each
product triangle (a, b) ∈ F consisting of a = (a1, a2, a3)� ∈ FX and b =
(b1, b2, b3)� ∈ FY the membrane cost

Emem(a, b) := Emem

⎛
⎝
⎛
⎝a1

a2

a3

⎞
⎠ →

⎛
⎝b1

b2

b3

⎞
⎠
⎞
⎠+ Emem

⎛
⎝
⎛
⎝b1

b2

b3

⎞
⎠ →

⎛
⎝a1

a2

a3

⎞
⎠
⎞
⎠ . (15)

For the bending term we proceed similarly associating with each product triangle
(a, b) the cost

Ebend(a, b) =
∫

a

(HX − HY )2 +
∫

b

(HY − HX)2. (16)

In practice we discretize the mean curvature following [27].
Next, we extend the energy linearly from discrete surface patches to discrete

surfaces in G. Identify a discrete surface with its indicator vector Γ ∈ {0, 1}|F |.
Define the vector E ∈ R

|F | whose f -th entry is

Ef = Emem(f) + Ebend(f). (17)

Then the discrete energy of Γ is given by the vector product

Et · Γ. (18)

4 Linear Programming Solution

In the previous section we have introduced a discrete notion of graph surfaces
(14) and a discrete deformation energy (18) for such graph surfaces. This enables
us to state the discrete version of (5) in the form of a binary linear program:

min
Γ∈{0,1}|F |

Et · Γ

subject to

⎛
⎝ ∂

πX

πY

⎞
⎠ · Γ =

⎛
⎝0
1
1

⎞
⎠ .

(19)

For solving (19), we relax the binary constraints to Γ ∈ [0, 1]|F |. This relaxed
version can be solved globally optimally in polynomial time. We employed an
alternating direction method developed by Eckstein et al. [29]. This algorithm
is parallelizable which allowed us an efficient implementation on the GPU.

Since the constraint matrix of the relaxed problem is not totally unimodular,
we are not guaranteed an integral solution. A simple thresholding scheme would



12 F.R. Schmidt et al.

Fig. 4. SHREC 2011 benchmark and matching different objects. Left: The
image illustrates the performance of the proposed method on the SHREC 2011 [28]
dataset. Right: Matching of two different objects. While it is not well defined what
a good matching between a skirt and trousers is, it is really remarkable how well
the proposed algorithm finds a matching that apparently minimizes the deformation
energy.

destroy the geometric consistency of the solution. Instead, we propose an itera-
tive scheme: solve the relaxed version of (19), fix the variables with values above
a threshold >0.5 to 1 and solve the relaxed version of (19) with these additional
constraints. If there is no variable with value above the threshold fix only one
variable with the highest value. In our experiments, this scheme typically con-
verged to a binary solution after less than 10 iterations, in no experiment it took
more than 20 iterations.

5 Multiresolution Framework

Because the number of product triangles grows quadratically with the number of
triangles in both shapes the resulting Integer Linear Program (ILP) has a very
high number of variables and constraints. Even the minimization of the relaxed
Linear Program (LP) becomes impractical for state-of-the-art LP solvers, if the
shapes have more than 250 triangles. In this section we present a multiresolution
approach that overcomes this limitation and allows to match shapes of more than
2000 triangles.

The basic idea of the multiresolution approach is to solve the problem at a
very coarse scale with the methods described in Sect. 4 and to recursively use
the found solution to narrow the search space at the next finer level. To reduce
the size of the search space we impose that a possible solution at a finer level
must lie “near” an already found solution at the coarser scale.

For the definition of “near” we use a hierarchy of triangles across the res-
olution levels. Suppose that we obtain a triangle mesh Xi from a finer trian-
gle mesh Xi+1 by repeatedly merging triangles. In practice we use the quadric
edge decimation algorithm [30] in its OpenMesh implementation [31]. Denote by
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χi : F (Xi+1) → F (Xi) the child-parent relation, mapping each triangle in FXi+1

to the triangle it is merged to on the coarser mesh Xi. These maps are extended
to maps between the extended sets of triangles χi : FXi+i

→ FXi
(see Sect. 3.2).

Let now X and Y be two high-resolution meshes and let X = Xn,Xn−1, . . . ,
X0 and Y = Yn, Yn−1, . . . , Y0 be successive coarsenings with corresponding child-
parent relations {χi}0≤i≤n−1 and {ψi}0≤i≤n−1. We proceed as follows:

1. We compute a discrete graph surface Γ0 (cf. Definition 4) inducing a matching
of the coarsest meshes X0 and Y0. We use the methods described in Sect. 4
for this task.

2. Assuming inductively that we have found a discrete graph surface Γi which
induces a matching of Xi and Yi, we search for a discrete graph surface Γi+1.
This surface has to lie in a search space which is reduced using the input of
the already computed surface Γi. Rather than allowing Γi+1 to be built of
all product triangles Fi+1 between Xi+1 and Yi+1, we only allow for product
triangles whose parents or whose parents’ neighbors are set in correspondence
by Γi. Thus, Γi+1 is searched as a subset of the reduced set of product triangles

F red
i+1 =

⎧⎨
⎩(fa, fb) ∈ Fi+1

∣∣∣∣∣∣
∃(f ∞

a, f ∞
b) ∈ Γi ⊂ Fi s.t.

χi(fa) ∈ N (f ∞
a) and

ψi(fa) ∈ N (f ∞
b)

⎫⎬
⎭ . (20)

Here, for a triangle f on a triangle mesh we used the set of triangles in the
one-ring or the two-ring of its vertices as neighborhood N (f).
Then we compute Γi+1 by solving problem (19) over the reduced search space,
that is Γi+1 ∈ {0, 1}|F red

i+1|.
3. We repeat Step 2 until a discrete graph surface Γn has been computed which

induces a matching between X and Y .

6 Experimental Results

We have introduced a framework for computing geometrically consistent elastic
matchings between 3D shapes using LP relaxation. We evaluated the proposed
method on several shapes taken from the SHREC 2011 benchmark [28] and a
dataset by Vlasic et al. [32].

6.1 Matching of Articulated Shapes

A common problem in shape matching is that the same shape may undergo sub-
stantial deformation and articulation. Nevertheless, one would like to reliably
identify corresponding structures. Figures 1 and 7 show the matchings computed
for models of different articulations. Although the movement of arms and legs
deform the shapes drastically the proposed method identifies the correct match-
ings. Since the proposed framework enforces geometric consistency matching
errors occur only on a small spatial scale. In contrast to methods without spa-
tial regularization strong outliers such as single points matched to the wrong leg
do not arise.
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Fig. 5. Multiresolution Framework. The images show matchings between two
shapes at different resolutions. As described in Sect. 5 the computational cost is dras-
tically reduced by first solving the matching problem at a lower resolution and then
using the obtained solution to restrict the search space at the next higher resolution.

Elastic matching of planar shapes [3] Proposed elastic matching of 3D shapes

Fig. 6. 2D and 3D Shape Matching. While the elastic matching of planar shapes
can be solved in polynomial time as a minimal cyclic path on a torus [3], the framework
developed in this paper allows to compute an elastic matching of 3D shapes via linear
programming relaxation. In both cases, missing parts can be accounted for due to the
elasticity.
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6.2 Partial Matching

The ability of the proposed method to model stretching and shrinking also allows
to match shapes where large parts of the geometry are missing. The right image of
Fig. 6 demonstrates this ability experimentally. The proposed algorithm matches
the remaining parts of a human body missing a hand, a leg and the head to its
original shape.

Fig. 7. Linear Interpolation. The images show a matching between the leftmost
and rightmost models taken from the SHREC 2011 benchmark [28] by linearly inter-
polating between the triangle correspondences. This transition illustrates the geometric
consistency property of the proposed method: At any time during the interpolation the
model is a closed triangle mesh.

6.3 Quantitative Evaluation

We quantitatively evaluated the proposed method on 30 pairs of models from
Vlasic et al. [32] by computing the mean geodesic error. One of the matchings
is visualized in Fig. 1. Computing each of the matchings took about 2 hours.
The results were compared to matchings generated by the GMDS method of
Bronstein et al. [8] using their code.

Given two meshes X,Y and the available ground truth correspondences
(xi, yi) we defined the mean geodesic error of a matching ϕ : X → Y by
1
N

∑
i d(ϕ(xi), yi), where d is the normalized geodesic distance on the mani-

fold of mesh Y . The mean geodesic error produced by GMDS (using their code)
was 0.079 while the proposed method had a mean geodesic error of 0.03.

Of course, this experiment does not pretend to be an exhaustive comparison
against all methods in the literature. Nonetheless it shows, that the proposed
method can compete with state-of-art matching algorithms in terms of accuracy
while guaranteeing geometrically consistent solutions.

7 Conclusion

We proposed a new framework for finding a geometrically consistent matching
of 3D shapes which minimizes an elastic deformation energy. The approach is
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based on finding discrete minimal surfaces which set infinitesimal surface patches
on both shapes into correspondence. In that sense the framework manages to
generalize the planar shape matching to the more complex 3D shape matching.
While the planar shape matching finds correspondences between infinitesimal
line elements of two contours, the 3D shape matching sets infinitesimal surface
elements in correspondence. We showed that a consistent discretization leads
to an integer linear program. As a consequence, we can compute high-quality
solutions to the matching problem which are independent of initialization by
means of LP relaxation.

To improve the runtime and overcome possible memory limitations, we also
introduced a multi-scale approach that improves iteratively matchings from a
coarse level to its finest level. Experimental results confirm that the proposed
method generates reliable dense correspondences for a variety of articulated real-
world shapes.

Acknowledgments. The 3D shape data in Figs. 1, 4 (right) and 5 is courtesy of Vlasic
et al. [32]. The 3D shape data in Figs. 4 (left), 6 and 7 is taken from the SHREC 2011
benchmark [28].
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Abstract. Regularization of matrix-valued data is important in many
fields, such as medical imaging, motion analysis and scene understand-
ing, where accurate estimation of diffusion tensors or rigid motions is
crucial for higher-level computer vision tasks. In this chapter we describe
a novel method for efficient regularization of matrix- and group-valued
images. Using the augmented Lagrangian framework we separate the
total-variation regularization of matrix-valued images into a regulariza-
tion and projection steps, both of which are fast and parallelizable. Fur-
thermore we extend our method to a high-order regularization scheme for
matrix-valued functions. We demonstrate the effectiveness of our method
for denoising of several group-valued image types, with data in SO(n),
SE(n), and SPD(n), and discuss its convergence properties.

Keywords: Regularization · Matrix-manifolds · Lie-groups · Total-
variation · Segmentation

1 Introduction

Matrix-valued signals are an important part of computer vision and image
processing. Specific fields where matrix-valued data is especially important
include tracking and motion analysis [28,43,44,56], robotics [37,38,59,60], image
processing and computer vision [10,40,42,63], as well as more general optimiza-
tion research [63] and 3D reconstruction [10].

Developing efficient regularization schemes for matrix-valued images is an
important aspect of analysis and processing in these fields. These images have
been an integral part of various domains, such as image processing [4,11,15,25,
39,48,52,58,62], motion analysis [31,43,56], and surface segmentation [44].

We present an efficient method for augmented Lagrangian smoothing of maps
from a Cartesian domain into matrix manifolds such as SO(n), SE(n) and
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SPD(n), the manifolds of special-orthogonal, special-Euclidean, and symmet-
ric, positive-definite, matrices, respectively. Specifically, the data we regularize
can be represented as matrices with constraints on their singular values or eigen-
values. The augmented Lagrangian technique allows us in such cases to separate
the optimization process into a total-variation (TV, [45]) regularization step and
an eigenvalue or singular value projection step, both of which are fast and easily
parallelizable using consumer graphic processing units (GPUs).

Our method handles each constraint separately via an auxiliary variable.
Optimization with respect the separate variables results in a closed-form solu-
tion obtained via shrinkage or matrix decomposition, and is efficient to compute.
Specifically, the update rule associated with solving the Lie-group auxiliary vari-
able is similar for the case of SO(n), SE(n) and SPD(n), leading to a unified
framework which we describe in Sects. 3, 4. We briefly discuss convergence prop-
erties of the suggested algorithms in Sect. 5. In Sect. 6 we demonstrate a few
results of our method, including motion analysis from depth sensors, direction
diffusion, and DTI denoising and reconstruction. Section 7 concludes the paper.

2 A Short Introduction to Lie-Groups

Lie-groups are differentiable manifolds endows with an algebraic group structure,
with smooth generators. Lie-groups and their structure have been used exten-
sively in computer vision, and have been the subject of intense research efforts,
involving statistics of matrix-valued data [39], and regularization of matrix-
valued images [20,53], as well as describing the evolution of differential processes
with Lie-group data [12,24]. We give a short introduction to Lie-groups in this
section and refer the reader to the literature for an in-depth discussion [21,50].

Because of the group nature of Lie-groups, elements can be mapped via
multiplication with their inverse, to the origin. This provides us with a diffeo-
morphically mapping each points and its neighborhood onto a neighborhood of
the origin element, by group action with their inverse, to the identity element of
the group. The tangent space in the origin therefore defines a canonical way of
parameterizing small changes of the manifold elements via a vector space. Such
a vector space is known as the Lie-algebra corresponding to the Lie-group. Lie-
algebras are equipped with an anti-symmetric bilinear operator, the Lie-bracket,
that describes the non-commutative part of the group product. Lie-brackets are
used in tracking [6], robotics, and computer vision [35], among other applica-
tions.

We deal with two Lie-groups, and two related matrix manifolds in this work.
The Lie-groups mentioned are

The rotations group SO(n) - The group SO(n) describes all rotations of the
n-dimensional Euclidean space. Elements of this group can be described in a
matrix form

SO(n) =
{
R ⊂ Rn×n,RTR = I,det(R) = 1

}
, (1)
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with the group product being matrix multiplication. The Lie-algebra of this
group is the space so(n), which can be described by the set of skew-symmetric
matrices,

so(n) =
{
A ⊂ Rn×n,AT = −A

}
. (2)

Another manifolds which are of interest and are highly related to SO(n) are its
quotient manifolds, the Stiefel manifolds.

The special-Euclidean group SE(n) - This group represents rigid transfor-
mations of the n-dimensional Euclidean space. This group can be thought of as
the product manifold of SO(n) and the manifold R

n describing all translations
of the Euclidean space. In matrix form this group can be written as

SE(n) =
{(

R t
0 1

)
,R ⊂ SO(n), t ⊂ R

n

}
, (3)

with matrix multiplication as the group action.
The Lie-algebra of this group can be written as

se(n) =
{(

A t
0 0

)
,A ⊂ so(n), t ⊂ R

n

}
, (4)

We note that these groups have trivially-defined embeddings into Euclidean
spaces, and an easily computable projection operator from the embedding space
onto the group. Also, the embedding space we relate to is equipped with a
norm: → · → denote the Frobenius norm in this chapter. The inner product used
in this chapter is also the inner product corresponding to the Frobenius norm –
∈A,B〉 = trace{AT B}. Matrix manifolds for which there exists a simple projector
operator include

Symmetric positive definite matrices SPD(n) - This matrix set has been
studied extensively in control theory [18], as well as in the context of diffusion
tensor images [39], where the matrices are used to describe the diffusion coef-
ficients along each direction. By definition, this group is given in matrix form
as

SPD(n) = {A ⊂ Rn×n,A ◦ 0} , (5)

Stiefel manifolds - The Stiefel manifold Vk(Rn) is defined as the set of all k-
frames in R

n. This can be written as the set of all n×k matrices with orthonormal
columns. This set, too, has a projection operator similar to SO(n).

3 An Augmented Lagrangian Regularization Algorithm
for Matrix-Valued Images

The optimization problem we consider is the equivalent of the total-variation
regularization of a map from the image domain to the matrix-manifold or Lie-
group, G [20],

arg min
uG

∫
→u−1∪u→ + λ→u − u0→2dx. (6)
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The function u represents an element in an embedding of G into Euclidean
space, specifically for the manifolds SO(n), SE(n), SPD(n),Vk(Rn). Elements
of SO(n) and Vk(Rn) can be embedded into R

n2
and R

nk, respectively. Ele-
ments of SE(n) can similarly be embedded into R

(n+1)2 , or more precisely, an
n(n + 1)-dimensional linear subspace of R(n+1)2 . The elements of SPD(n) can
be embedded into R

n(n+1)/2. We note that different choice of effectively parame-
trizing the manifold are possible, simply by making the norm in Eq. 6 a weighted
one. Specific choices of metric has been discussed in [37,60], but currently no
single canonical choice prevails. Choosing an optimal parameterization is beyond
the scope of this work.

We first describe our method in the context of G = SO(n), and then detail
the differences required when G = SE(n) and G = SPD(n).

We use the same notation for representation of the manifold point, its matrix
representation, and its embedding into the embedding space, as specified in each
case we explore.

The term →u−1∪u→ can be thought of as a regularization term placed on ele-
ments of the Lie-algebra about each pixel. In order to obtain a fast regularization
scheme, we look instead at regularization of an embedding of the Lie-group ele-
ments into Euclidean space,

arg min
u : Γ ∃ G

∫
Ω

→∪u→ + λ→u − u0→2dx. (7)

The rationale behind the different regularization term →∪u→ stems from the fact
that SO(n) and SE(n) are isometries of Euclidean space. In fact, denote by uj

vectors in R
n representing the columns of the matrix u(x). Since u(x) is approx-

imately an isometry of Rn, let πλ(x) denote the maximal local perturbation of
the singular values of u−1(x). We assume πλ < 1. In this case,

∣∣∣∣
∥∥∥ ∂

∂xi
u
∥∥∥2

F
−
∥∥∥u−1 ∂

∂xi
u
∥∥∥2

F

∣∣∣∣
=
∣∣∣∑n

j=1

∥∥uj
xi

∥∥2 −∑n
j=1

∥∥u−1uj
xi

∥∥2∣∣∣ (8)

≤ πλ
∑n

j=1

∥∥uj
xi

∥∥2 = πλ →uxi
→2F

Hence, as long as the constraint u(x) ⊂ G ∀x ⊂ Γ is approximately fulfilled
for an isometry group G, →∪u→2F ≈ →u−1∪u→2F . Moreover, such a regularization
is possible whenever the data consists of nonsingular and rectangular matrices,
and has been used also for SPD matrices [57]. Next, instead of restricting u to G,
we add an auxiliary variable, v, at each point, such that u = v, and restrict v to
G. The equality constraint is enforced via augmented Lagrangian terms [22,41].
The suggested augmented Lagrangian optimization now reads

minv∈G,u∈Rm maxμ L(u, v;μ) (9)

= minv∈G,u∈Rm maxμ

∫ [ →∪u→ + λ→u − u0→2+
r
2→v − u→2 + ∈μ, v − u〉

⎛
dx.



Fast Regularization of Matrix-Valued Images 23

Given a fixed Lagrange multiplier μ, the minimization w.r.t. u, v can be split into
alternating minimization steps as described in the following two subsections.

3.1 Minimization w.r.t. v

The minimization w.r.t. v is a projection problem per pixel,

arg minv∈G
r

2
→v − u→2 + ∈μ, u − v〉

= arg minv∈G
r

2

∥∥∥v −
⎝μ

r
+ u

⎞∥∥∥2 (10)

= ProjG
⎝μ

r
+ u

⎞
, (11)

where ProjG (·) denotes a projection operator onto the specific matrix-group G,
and its concrete form for SO(n),SE(n) and SPD(n) will be given later on.

3.2 Minimization w.r.t. u

Minimization with respect to u is a vectorial TV denoising problem

arg min
u∈Rm

∫
→∪u→ + ⎠λ →u − ⎠u (u0, v, μ, r)→2 dx, (12)

with ⎠u = 2λu0+rv+2μ
2λ+r . This problem can be solved via fast minimization tech-

niques – specifically, we chose to use the augmented-Lagrangian TV denoising
algorithm [51], as we now describe. In order to obtain fast optimization of the
problem with respect to u, we add an auxiliary variable p, along with a constraint
that p = ∪u. Again, the constraint is enforced in an augmented Lagrangian man-
ner. The optimal u now becomes a saddle point of the optimization problem

min
u ∈ R

m

p ∈ R
2m

max
µ2

∫ [ ≤p≤ + λ̃ ≤u − ũ (u0, v, μ, r)≤2

+μT
2 (p − ∇u) + r2

2
≤p − ∇u≤2

]
dx, (13)

We solve for u using the Euler-Lagrange equation,

2⎠λ(u − ⎠u) + (div μ2 + r2 div p) + r2πu = 0, (14)

for example, in the Fourier domain, or by Gauss-Seidel iterations.
The auxiliary field p is updated by rewriting the minimization w.r.t. p as

arg min
p ⊂ R

2m

∫
→p→ + μT

2 p +
r2
2

→p − ∪u→2, (15)

with the closed-form solution [51,61]

p =
1
r2

max
(

1 − 1
→w→ , 0

)
w,w = r2∪u − μ2. (16)



24 G. Rosman et al.

Hence, the main part of the proposed algorithm is to iteratively update v, u,
and p respectively. Also, according to the optimality conditions, the Lagrange
multipliers μ and μ2 should be updated by taking

μk = μk−1 + r
⎧
vk − uk

⎨
(17)

μk
2 = μk−1

2 + r2
⎧
pk − ∪uk

⎨
.

Let

F(u, v, p;μ, μ2) =
∫ [

λ →u − u0→2 + r2
2 →p − ∪u→2 + r

2→u − v→2+
+μT (u − v) + μT

2 (p − ∪u) + →p→
⎛

dx. (18)

the constrained minimization problem in Eq. 7 becomes the following saddle-
point problem

min
v ⊂ G

u ⊂ R
m

p ⊂ R
2m

max
μ,μ2

F(u, v, p;μ, μ2) (19)

An algorithmic description is summarized as Algorithm 1, whose convergence
properties are discussed in Sect. 5.

Algorithm 1 Fast TV regularization of matrix-valued data

1: for k = 1, 2, . . . , until convergence do
2: Update uk(x), pk(x), according to Eqs. (14, 16).
3: Update vk(x), by projection onto the matrix group,

– For SO(n) matrices, according to Eq. (20).
– For SE(n) matrices, according to Eq. (21).
– For SPD(n) matrices, according to Eq. (22).

4: Update μk(x), μk
2(x), according to Eq. (17).

5: end for

3.3 Regularization of Maps onto SO(n)

In the case of G = SO(n), although the embedding of SO(n) in Euclidean space
is not a convex set, the projection onto the matrix manifold is easily achieved
by means of the singular value decomposition [19]. Let USVT =

⎧
μ
r + uk

⎨
be

the SVD decomposition of μ
r + uk, we update v by

vk+1 = ProjSO(n)

⎝μ

r
+ uk

⎞
= U(x)VT (x), (20)

USVT =
⎝μ

r
+ uk

⎞
.
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Other possibilities include using the Euler-Rodrigues formula, quaternions, or
the polar decomposition [29]. We note that the non-convex domain SO(n) pre-
vents a global convergence proof of the type shown in Subsect. 5.2 for SPD(n).
Convergence properties of the algorithm, in the case of G = SO(n) and G =
SE(n), are discussed in Subsect. 5.1.

We also note that the projection via SVD can be used to project matrices
onto the Stiefel manifolds [33], themselves quotient groups of SO(n) [55]. Thus,
the same algorithm can be used for Stiefel manifolds as well.

3.4 Regularization of Maps onto SE(n)

In order to regularize images with values in SE(n), we use an embedding into
R

n(n+1) as our main optimization variable, u, per pixel.
The projection step w.r.t. v applies only for the n2 elements of v describing

the rotation matrix, leaving the translation component of SE(n) unconstrained.
Specifically, let v = (vR, vt), vR ⊂ R

n2
, vt ⊂ R

n denotes the rotation and
translation parts of the current solution. Updating v in step 3 of algorithm 1
assumes the form

vk+1
R = U(x)VT (x), USVT =

⎝μR

r
+ uk

R

⎞

vk+1
t =

⎝μt

r
+ uk

t

⎞
(21)

vk+1 = ProjSE(n)(v
k) = (vk+1

R , vk+1
t ).

3.5 Regularization of Maps onto SPD(n)

The technique described above can be used also for regularizing symmetric
positive-definite matrices. A most prominent example for such matrices is that
of diffusion tensor images [4,5,13,27,30,49,53]. This includes several attempts
to define efficient and physically meaningful regularization techniques for DTI
regularization [7,53,65]. Many papers dealing with the analysis of DTI rely on
the eigenvalue decomposition of the tensor as well, i.e. for tractography [14],
anisotropy measurements [64], and so forth. It is not surprising that the intuitive
choice of projecting the eigenvalues of the matrices onto the positive half-space
is shown to be optimal [9,23].

When using an augmented Lagrangian approach, the minimization problem
w.r.t. v in step 3 of algorithm 1 is therefore solved by projection of eigenvalues,

vk+1 = ProjSPD(n)(v
k) = U(x) diag

⎝⎠λ⎞UT (x), (22)

Udiag (λ)UT =
⎝μ

r
+ uk

⎞
,
⎝⎠λ⎞

i
= max ((λ)i , 0) ,

where the matrix U is a unitary one, representing the eigenvectors of the matrix,
and the eigenvalues

⎝⎠λ⎞
i
are the positive projection of the eigenvalues (λ)i. Opti-

mization w.r.t. u is done as in the previous cases, as described in Algorithm 1.
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Furthermore, the optimization w.r.t. u, v is now over the domain R
m ×

SPD(n), and the cost function is convex, resulting in a convex optimization
problem. The convex domain of optimization allows us to formulate a conver-
gence proof for the algorithm similar to the proof by Tseng [54]. This is discussed
in Subsect. 5.2. An example of using the proposed method for DTI denoising and
reconstruction is shown in Sect. 6.

3.6 A Higher-Order Prior for Group-Valued Images

We note that the scheme we describe is susceptible to the staircasing effect, since
it minimizes the total variation of the map u. While one possibility to avoid such
artifacts is to incorporate a linear diffusion term into the functional, there exists a
much more elegant solution by incorporating a higher-order differential operator
into the regularization term. One such possibile higher-order term generalizes
the scheme presented by Wu and Tai [66], by replacing the per-element gradient
operator with a Hessian operator. The resulting equivalent of Eq. 7 becomes

arg min
u ⊂ G

∫
→Hu→ + λ→u − u0→2dx, (23)

where Hu is the per-channel Hessian operator, defined (on two-dimensional
domains) by

⎝
Hu(k)

⎞
i,j

=

⎩⎧
D−+

xx u(k)
⎨
i,j

⎧
D++

xy u(k)
⎨
i,j⎧

D++
yx u(k)

⎨
i,j

⎧
D−+

yy u(k)
⎨
i,j

⎫
(24)

The numerical scheme solves the saddle-point problem

min
u ⊂ R

m

p ⊂ R
4m,

v ⊂ G

max
μ2

∫ [
→p→ + ⎠λ →u − ⎠u (u0, v, μ, r)→2

+μT
2 (p − Hu) + r2

2 →p − Hu→2
⎛

dx, (25)

The update step w.r.t. u as in Eq. 14 is easy to modify, resulting in the
Euler-Lagrange equation

2⎠λ(u − ⎠u) − (H∗μ2 + r2H
∗p) + r2H

∗Hu = 0, (26)

where H∗ is the adjoint operator of the Hessian,

H∗p(k) = D+−
xx

⎝
p(k)

⎞11
+ D−−

xy

⎝
p(k)

⎞12
+ D−−

yx

⎝
p(k)

⎞21
+ D+−

yy

⎝
p(k)

⎞22
.

(27)

The update step w.r.t. p remains similar to Eq. 16, and is given by

p =
1
r2

max
(

1 − 1
→w→ , 0

)
w,w = r2Hu − μ2. (28)

Updates of the variable v and the Lagrange multipliers μ, μ2 remain the same
as in Algorithm 1. As will be shown in Sect. 6, this regularization term prevents
formation of staircasing effects where these are inappropriate.
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4 Regularized DTI Reconstruction

There are several possibilities of using the proposed regularization scheme for
DTI reconstruction from diffusion-weighted measurements. Instead of adding a
fidelity term as in Eq. (7), we add a term for fitting the Stejskal-Tanner equations
[49], based on a set of measurements describing the diffusion in specific directions,
and reconstruct the full diffusion tensor at each voxel. The fitting term can be
written as ⎬

i

∥∥∥∥bigT
i ugi − log

(
Si

S0

)∥∥∥∥
2

,

where bi and gi are the b-values and gradient vectors, u is the diffusion tensor
reconstructed at each voxel, and Si

S0
define the relative signal ratio for each

direction at each voxel. The complete minimization problem reads

arg min
v ⊂ SPD(n)

u

⎭ ∑
i

∥∥∥bigT
i ugi − log

⎝
Si

S0

⎞∥∥∥2 + λ→∪u→

+ r
2→v − u→2 + ∈μ, v − u〉dx. (29)

While the memory requirements seem less favorable for fast optimization,
looking closely at the quadratic penalty data term, we see it can be expressed
by looking at a fitting term for the Stejskal-Tanner equations,

⎬
i

∥∥∥∥bigT
i ugi − log

(
Si

S0

)∥∥∥∥
2

= uTAu + bT u + c, (30)

where A is a constant matrix over the whole volume,

A =
⎬

i

b2i


⎪

g41 2g31g2 2g31g3 g21g
2
2 2g21g2g3 g21g

2
3

2g31g2 4g21g
2
2 4g21g2g3 2g1g

3
2 4g1g

2
2g3 2g1g2g

2
3

2g31g3 4g21g2g3 4g21g
2
3 2g1g

2
2g3 4g1g2g

2
3 2g1g

3
3

g21g
2
2 2g1g

3
2 2g1g

2
2g3 g42 2g32g3 g22g

2
3

2g21g2g3 4g1g
2
2g3 4g1g2g

2
3 2g32g3 4g22g

2
3 2g2g

3
3

g21g
2
3 2g1g2g

2
3 2g1g

3
3 g22g

2
3 2g2g

3
3 g43

⎜
⎟⎟⎟⎟⎟⎟⎟⎟⎟

(31)

and b is the vector

b =
⎬

i

bi log
(

Si

S0

)⎧
2g21 4g1g2 4g1g3 2g22 4g2g3 2g23

⎨T
, (32)

and c is the scalar image

c =
⎬

i

(
log

(
Si

S0

))2

. (33)
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We note that, unlike the denoising case, in the reconstruction case it is the
data term that couples together the elements of the tensor together. Care must
be taken so as to handle this coupled data term.

Reconstruction with the new data term can be computed using several tech-
niques.

– Freezing all elements of the tensor but one, we obtain from the Euler-Lagrange
equations pertaining to Eq. 29 an update rule for the image, to be computed in
the Fourier domain, or via Gauss-Seidel iterations. While the coupling between
the tensor elements (expressed via the non-diagonal matrix A) prevents us
from treating each tensor element separately, the optimization w.r.t. each of
the elements converges quite rapidly.

– Another possibility is to take a block Gauss-Seidel approach, and optimize
each tensor separately, going over all the voxels one-by-one.

– Yet another possibility is to further decouple the TV and data term, using sep-
arate variables and constraining them using an augmented Lagrangian app-
roach.

Of the above techniques, we have tried the first one. The reconstruction
obtained is the spatially-regularized version of the linear-least-squares (LLS)
method. One can incorporate a weighted least-squares (WLS, [47]), or nonlinear-
least-squares (NLS) [27] data term instead. Combining such data terms and
exploring the interaction between the regularization and nonlinear terms is
beyond the scope of this work.

5 Convergence Properties of the Algorithm

We now turn to discuss the local convergence of Algorithm 1.

5.1 Local Convergence for SO(n),SE(n) Regularization

Looking at regularization of maps onto SO(n),SE(n), the non-convex nature of
the optimization domain in Eq. 9 makes it difficult to prove global convergence.
Furthermore, the nature of the projection operator into SO(n) and SE(n), makes
it difficult to ascertain that at some point the sequence of iterants will converge.
While showing there exists a converging subsequence of iterants is easy due
to the boundedness of the sub-levelsets [54], the discontinuous nature of the
projection unto non-convex spaces may cause the algorithm to oscillate, although
this behaviour does not appear in practice. In order to avoid such a possibility
and allow for an easy proof of convergence, we take a proximal step approach,
and slightly modify our algorithm, as suggested by Attouch et al. [3], changing
the first two steps of the algorithm into the minimization problems

uk = arg min
u

F(u, vk−1, μ) +
1
∂k

→u − uk−1→2 (34)

vk = arg min
v∈G

F(uk, v, μ) +
1
∂k

→v − vk−1→2.
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The proof of convergence becomes similar to the one shown by Attouch et al. [3].
Since F(u, v) > −∞ and {F(uk, vk)} is non-increasing, we have that F(uk, vk)
converges to some finite value. Furthermore, by induction we can show that
the residual converges to 0, providing us with a guarantee of the asympthotic
behavior of the process.

The optimization steps in the modified algorithm remain a projection step
and total-variation denoising, but with a change in their parameters. For exam-
ple, the optimal update rule for v becomes

arg min
v∈SO(n)

r

2
→v − u→2 + ∈μ, v − u〉 +

1
2∂k

→v − vk−1→2 =

arg min
v∈SO(n)

(
r

2
+

1
2∂k

)
→v→2 − ∈v, ru + μ +

vk−1

∂k
〉

+
r

2
→u→2 − ∈μ, u〉 +

1
2∂k

→vk−1→2 =

arg min
v∈SO(n)

(
r

2
+

1
2∂k

)∥∥∥∥∥v − ru + μ + vk−1
θk

r + 1
θk

∥∥∥∥∥
2

,

where 1
2θk

denotes the coupling between each iterant and its previous value.
We stress, however, that in practice the algorithm converges without the above
modification quite well.

5.2 Global Convergence for SPD(n) Regularization

For SPD(n) regularization we basically do a coordinate descent on a convex
domain [54] and therefore can show global convergence of our method. At each
step of the inner iteration, we do a full minimization with respect to the selected
variables block u, v and p. Using the notation provided by [54], we can rewrite
our functional as

Fμ,μ2(u, v, p) = f0(u, v, p) + f1(u) + f2(v) + f3(p), (35)

where

1. f0 is a convex, smooth, function.

f0(u, v, p) =
r

2
→v − u→2 + ∈μ, v − u〉 +

r2
2

→p − ∪u→2 + ∈μ2, p − ∪u〉

2. f1, f2 and f3 are convex, lower-semicontinuous, continuous in their effective
domain,

f1(u) = →u − u0→2 (36)
f2(v) = 0 (37)

f3(p) = →p→. (38)
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By [54, Proposition 1], it can be shown that the alternating minimization
will converge to a minimizer of Fμ,μ2(u, v, p). Along the same proof in [67],
it can be proved the whole algorithm converges. For completeness we repeat
the proof here. The following characterization for the minimizers of functional
F(u, v, p;μ, μ2) will be used. Assume that (u∗, v∗, p∗) is one of the minimizers,
and for arbitrary (u′, v′, p′) we have,

λ→u∗ − u0→2 − λ→u′ − u0→2 + r2(p∗ − ∪u∗,−(∪u∗ − ∪u′))
+r(u∗ − v∗, u∗ − u′) + (μ∗, u∗ − u′) + (μ∗

2,−(∪u∗ − ∪u′)) ≤ 0 (39)
−r(u∗ − v∗, v∗ − v′) − (μ∗, v∗ − v′) ≤ 0 (40)

→p∗→ − →p′→ + r2(p∗ − ∪u∗, p∗ − p′) + (μ∗
2, p

∗ − p′) ≤ 0 (41)

(see [17], p.38 Proposition 2.2)

Theorem 51. The sequence (uk, vk, pk;μk, μk
2) generated by Algorithm 1 con-

verges to the saddle-point (u∗, v∗, p∗;μ∗, μ∗
2) of the functional F(u, v, p;μ, μ2)

Proof. Let ūk = u∗−uk,v̄k = v∗−vk,p̄k = p∗−pk, μ̄k = μ∗−μk, and μ̄k
2 = μ∗

2−μk
2

Since (u∗, v∗, p∗;μ∗, μ∗
2) is the saddle point of F(u, v, p;μ, μ2), we have

F(u∗, v∗, p∗;μ∗, μ∗
2) ≤ F(u′, v′, p′;μ∗, μ∗

2),∀u, v, p (42)

In particular when u′ = uk (39) still holds

λ→u∗ − u0→2 − λ→uk − u0→2 + r2(p∗ − ∪u∗,−∪(u∗ − uk))
+r(u∗ − v∗, u∗ − uk) + (μ∗, u∗ − uk) + (μ∗

2,−∪(u∗ − uk)) ≤ 0 (43)

On the other hand, since (uk, vk, pk;μk, μk
2) is the minimizer of F(u, v, p;μk, μk

2),
uk will also satisfy (39) and after substituting u′ = u∗ we obtain

λ→uk − u0→2 − λ→u∗ − u0→2 + r2(pk − ∪uk,−∪(uk − u∗))
+r(uk − vk, uk − u∗) + (μk, uk − u∗) + (μk

2 ,−∪(uk − u∗)) ≤ 0. (44)

Adding the two inequalities yields

r2(p̄k − ∪ūk,−∪ūk) + r(ūk − v̄k, ūk) + (μ̄k, ūk) + (μ̄2
k,−∪ūk) ≤ 0 (45)

Similarly, w.r.t v∗, vk using the same argument to (40) we have

− r(u∗ − v∗, v∗ − vk) − (μ∗, v∗ − vk) ≤ 0 (46)
−r(uk − vk, vk − v∗) − (μk, vk − v∗) ≤ 0 (47)

adding two inequalities yields

− r(ūk − v̄k, v̄k) − (μ̄k, v̄k) ≤ 0 (48)

w.r.t p∗, pk, the same argument is applied to (41)

→p∗→ − →pk→ + r2(p∗ − ∪u∗, p∗ − pk) + (μ∗
2, p

∗ − pk) ≤ 0 (49)
→pk→ − →p∗→ + r2(pk − ∪uk, pk − p∗) + (μk

2 , p
k − p∗) ≤ 0 (50)
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thus

r2(p̄k − ∪ūk, p̄k) + (μ̄2
k, p̄k) ≤ 0 (51)

Adding (45), (48) and (51) we have

r2→p̄k − ∪ūk→2 + r→ūk − v̄k→2 + (μ̄2
k, p̄k − ∪ūk) + (μ̄k, ūk − v̄k) ≤ 0 (52)

By the way of updating multipliers, also note that u∗ = v∗ and p∗ = ∪u∗ we
obtain

μ̄k+1 = μ̄k + r(ūk − v̄k) (53)
μ̄k+1
2 = μ̄k

2 + r2(p̄k − ∪ūk) (54)

therefore by (52) we have

r2→μ̄k+1→2 + r→μ̄k+1
2 →2 − r2→μ̄k→2 − r→μ̄k

2→2
= 2rr2(μ̄k, ūk − v̄k) + 2rr2(μ̄k

2 , p̄
k − ∪ūk) + r2r2→ūk − v̄k→2 + rr22→p̄k − ∪ūk→

≤ −r2r2→ūk − v̄k→2 − rr22→p̄k − ∪ūk→ ≤ 0 (55)

This actually implies μk and μk
2 are bounded, and

lim
k≤∞

→pk − ∪uk→ = 0 (56)

lim
k≤∞

→uk − vk→ = 0 (57)

With this in mind, it is not hard to show that (uk, vk, pk;μ∗, μ∗
2) converge to the

saddle-point of the functional

6 Numerical Results

As discussed above, the proposed algorithmic framework is quite general and is
suitable for various applications. In this section, several examples from differ-
ent applications are used to substantiate the effectiveness and efficiency of our
algorithm.

6.1 Directions Regularization

Analysis of principal directions in an image or video is an important aspect
of modern computer vision, in fields such as video surveillance [26,36, and ref-
erences therein], vehicle control [16], crowd behaviour analysis [34], and other
applications [40].

The input in this problem is a set of normalized/unnormalized direction
vectors located throughout the image domain, either in a dense or sparse set of
locations. The goal is to obtained a smoothed version of the underlying direction
field. Since SO(2) is isomorphic to S1, the proposed regularization scheme can be
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used for regularizing directions as well, as we demonstrate. A reasonable choice
for a data term would try to align the rotated first coordinate axis with the
motion directions in the area,

EPMD(U) =
⎬

(xj ,yj)∈N (i)

⎝
U1,1 (vj)x + U1,2 (vj)y

⎞
, (58)

where
⎝
xj , yj , (vj)x , (vj)y

⎞
represent a sampled motion particle [34] in the video

sequence, and Ui,j represent elements of the solution u.
In Fig. 1 we demonstrate two sparsely sampled, noisy, motion fields, and a

dense reconstruction of the main direction of motion at each point. The data
for the direction estimation was corrupted by adding component-wise Gaussian
noise. In the first image, the motion field is comprised of 4 regions with a different
motion direction at each region. The second image contains a sparse sampling
of an expansion motion field of the form

v(x, y) =
(x, y)T

→ (x, y) → . (59)

Such an expansion field is often observed by forward-moving vehicles. Note that
despite the fact that a vanishing point of the flow is clearly not smooth in terms
of the motion directions, the estimation of the motion field is still correct.

An example of the higher order regularization term is shown in Fig. 2, using
the approach suggested in Subsect. 3.6. Note the smooth boundaries create due
to the sparsely sampled data term – while the TV solution forces staircasing in
the solution, the higher order regularization does not.

In Fig. 3 we used the algorithm to obtain a smooth field of principal motion
directions over a traffic sequence taken from the UCF crowd flow database [2].
Direction cues are obtained by initializing correlation-based trackers from arbi-
trary times and positions in the sequence, and observing all of the tracks simul-
tenaously. The result captures the main traffic lanes and shows the viability of
our regularization for real data sequences.

Yet another application for direction diffusion is in denoising of directions
in fingerprint images. An example for direction diffusion on a fingerprint image
taken from the Fingerprint Verification Competition datasets [1] can be seen in
Fig. 4. Adding a noise of χ = 0.05 to the image and estimating directions based
on the structure tensor, we smoothed the direction field and compared it to the
field obtained from the original image. We used our method with λ = 3, and the
modified method based on Eq. 26 with ψ = 10, as well as the method suggested
by Sochen et al. [46] with ϕ = 100, T = 425. The resulting MSE values of the
tensor field are 0.0317, 0.0270 and 0.0324, respectively, compared to an initial
noisy field with MSE = 0.0449. These results demonstrate the effectiveness of
our method for direction diffusion, even in cases where the staircasing effect may
cause unwanted artifacts.
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Fig. 1. TV regularization of SO(n) data. Left-to-right, top-to-bottom: the initial esti-
mated field for a 4-piece piecewise constant motion field, a concentric motion field, the
denoised images for the piecewise constant field and the concentric motion field. Differ-
ent colors mark different orientations of the initial/estimated dense field, black arrows
signify the measured motion vectors, and blue arrows demonstrate the estimated field
after sampling.

6.2 SE(n) Regularization

We now demonstrate a smoothing of SE(3) data obtained from locally matching
between two range scans obtained from a Kinect device. For each small surface
patch from the depth image we use an iterative closest point (ICP) algorithm
[8] to match the surface from the previous frame. For each point in the fore-
ground, an ICP algorithm is used to match the point’s neighborhood from frame
i to that of frame i − 1. The background is segmented by simple thresholding.
The results from this tracking process over raw range footage are an inher-
ently noisy measurements set in SE(3). We use our algorithm to smooth this
SE(3) image, as shown in Fig. 5. It can be seen that for a careful choice of the
regularization parameter, total variation in the group elements is seen to signif-
icantly reduce rigid motion estimation errors. Furthermore, it allows us to dis-
cern the main rigidly moving parts in the sequence by producing a scale-space of
rigid motions. Visualization is accomplished by projecting the embedded matrix
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Fig. 2. TV regularization of SO(n) data, based on the same data from Fig. 1, with
a higher-order regularity term. Different color mark different orientations of the esti-
mated motion field. Left: TV regularization result as demonstrated in Fig. 1. Right:
regularization results based on Eq. 23. The parameter λ was chosen to be 2 for the
upper example, and 0.2 for the lower example.

onto 3 different representative vectors in R
12. The regularization is implemented

using the CUDA framework, with computation times shown in Table 1. Using 15
outer iterations and 3 Gauss-Seidel iterations per inner iteration, practical con-
vergence is achieved in 63 milliseconds on an NVIDIA GTX-580 card for QVGA-
sized images, demonstrating the efficiency of our algorithm and its potential for
real-time applications. This is especially important for applications such as ges-
ture recognition where fast computation is important. A residual plot in the left
sub-figure of Fig. 6 demonstrates convergence of our method.

Furthermore, since the main constraint for SO(n) matrices (or the rotation
part of SE(n) matrices) is that of orthogonality, we measure during convergence

errorth(u) =
∥∥UT U − I

∥∥2
F

(60)

The plot of errorth as a function of the iterations is shown in the right
sub-figure of Fig. 6. The plot demonstrates the enforcement of the constraint
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Fig. 3. Regularization of principal motion directions. The red arrows demonstrate mea-
surements of motion cues based on a normalized cross-correlation tracker. Blue arrows
demonstrate the regularized directions fields.

u ⊂ G by the augmented Lagrangian scheme for most of the convergence. The
close adherence to the isometry assumption validates in practice our usage of
the regularization proposed in Eq. 7 for isometry groups.

6.3 DTI Regularization

In Fig. 7 we demonstrate a smoothing of DTI data from [32], based on the
scheme suggested in Sect. 3.5, using the Slicer3D tool in order to visualize the
tensors via ellipsoid glyphs. Figure 8 demonstrates the convergence rate for the
regularization. MSE of the matrix representation was 0.0406 in the corrupted
image and 0.0248 in the regularized image.

In Figs. 9, 10 we demonstrate reconstruction of the DTI tensors, again based
data from Lundervold et al. [32], using a set of 30 directional measurements.
The measure ratios log

⎝
Si

S0

⎞
were added a Gaussian additive noise of standard

deviation 100. The reconstructed image obtained by regularized reconstruction
with λ = 1 × 10−3 had an MSE of 2.1 × 10−4, compared to 8.9 × 10−3 without
regularization.
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Fig. 4. TV regularization of SO(2) data based on fingerprint direction estimation. Left-
to-right, top-to-bottom: The fingerprint image with added Gaussian noise of σ = 0.05,
the detected direction angles, the detected directions displayed as arrows, the detected
directions after regularization with λ = 3, regularization results using Eq. 9, regulariza-
tion results based on higher-order diffusion term with λ = 6, the regularization result by
Sochen et al. [46].
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Fig. 5. Regularization of SE(3) images obtained from local ICP matching of the surface
patch between consecutive Kinect depth frames. Left-to-right: diffusion scale-space
obtained by different values of λ: 1.5, 1.2, 0.7, 0.2, 0.1, 0.05 , the foreground segmentation
based on the depth, and an intensity image of the scene.

Table 1. GPU processing times for various sizes of images, given in milliseconds.

Outer iterations 15 15 25 50
GS iterations 1 3 1 1

320 × 240 49 63 81 160
640 × 480 196 250 319 648
1920 × 1080 1745 2100 2960 5732
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Fig. 6. A residual plot (left), and orthogonality error norm plot (right) for SE(3)
denoising as demonstrated in Fig. 5, for λ = 0.2.
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Fig. 7. TV denoising of images with diffusion tensor data. Left-to-right: the origi-
nal image, an image with added component-wise Gaussian noise of σ = 0.1, and the
denoised image with λ = 30.
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Fig. 8. A residual plot for DTI denoising (left) and reconstruction (right) as demon-
strated in Figs. 7, 9, respectively.

Fig. 9. TV-regularized reconstruction of images with diffusion tensor data. Left-to-
right: the original image, an image with added component-wise Gaussian noise, and
the denoised image. Noise was of standard deviation 100, λ = 1 × 10−3.
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Fig. 10. TV-regularized reconstruction of diffusion tensor data. Left-to-right: the orig-
inal reconstruction without noise, the noisy least-squares fitting solution (used as ini-
tialization), and the regularized reconstruction result. Top-to-bottom: a visualization of
the principal directions, the fractional anisotropy, and the mean diffusivity. The noise
added to the field ratio logarithm was of strength 100, λ = 1 × 10−3.

7 Conclusions

In this chapter we demonstrate thed effectiveness of augmented Lagrangian reg-
ularization of matrix-valued maps. Specifically, we have shown the efficiency and
effectiveness of the resulting total-variation regularization of images with matrix-
valued data taken from SO(n), SE(n), and SPD(n). For the case of SPD(n) we
have shown the method’s usefulness for denoising and regularized reconstruction
of DTI data, as well as noted the convexity of the resulting optimization problem.

In future work we intend to explore the various ways of handling the matrix-
valued regularization problem and the coupling between matrix elements, as well
as extend our work into different data types and applications.
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59. Žefran, M., Kumar, V., Croke, C.: On the generation of smooth three-dimensional
rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1998)
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Abstract. We study and extend the recently introduced total general-
ized variation (TGV) functional for multichannel images. This functional
has already been established to constitute a well-suited convex model
for piecewise smooth scalar images. It comprises exactly the functions of
bounded variation but is, unlike purely total-variation based function-
als, also aware of higher-order smoothness. For the multichannel version
which is developed in this paper, basic properties and existence of mini-
mizers for associated variational problems regularized with second-order
TGV is shown. Furthermore, we address the design of numerical solu-
tion methods for the minimization of functionals with TGV2 penalty
and present, in particular, a class of primal-dual algorithms. Finally,
the concrete realization for various image processing problems, such as
image denoising, deblurring, zooming, dequantization and compressive
imaging, are discussed and numerical experiments are presented.

Keywords: Total generalized variation · Multichannel images · Primal-
dual algorithms · Image denoising · Image deblurring · Zooming · Dequan-
tization · Compressive imaging

1 Introduction

Many imaging problems are nowadays solved by variational methods, i.e., by
finding a minimizer of a functional which models the problem in terms of encour-
aging potential solutions of the problems by low values and penalizing unsuitable
images by high values. Typically, the variational problems are cast in the form

min
u

F (u) + λ(u)

where data term F models the fitness of the image u with respect to some given
data and the regularization functional λ represents an underlying image model
incorporating the essential features of the sought class of images. The latter func-
tional is responsible for the qualitative properties of the solutions, it is therefore
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important to choose it appropriately. As images often possess multiple channels
such as red, green, blue (RGB) or cyan, magenta, yellow, black (CYMK), such
a model should also account for multichannel data. Moreover, regarding the effi-
cient computation of numerical solutions, convexity of the objective functional
is of great significance. In terms of algorithms, it is therefore favorable to con-
sider convex models λ . This work is concerned with a multichannel version of the
total generalized variation (TGV), which has been introduced, in its scalar form,
in [4] and provides a well-suited convex model for piecewise smooth images. In
particular, we study methods for the efficient global minimization of associated
variational problems.

Let us discuss, along TGV, some existing regularization functionals for scalar
images which are well-known and used in mathematical image processing. The
most widely used is probably the total variation seminorm [28] which reads as

TV(u) =
∫

Ω

d|⊂u| = sup
{∫

Ω

u div v dx
∣∣∣ v → C1

c (Γ,Rd), ∈v∈∈ ≤ 1
}

.

where |⊂u| denotes the variation-measure of the distributional derivative Du
which is a vector-valued Radon measure. Its main feature is the incorporation of
discontinuities along hypersurfaces making it a suitable model for images with
edges. Indeed, solutions of variational problems with total-variation regulariza-
tion admit many desirable properties, most notably the appearance of sharp
edges. Unfortunately, one can also observe typical artifacts which are associated
with the regularization with TV. The most prominent of these artifacts is the so-
called staircasing effect, i.e., the undesired appearance of edges [21,36]. This is a
side-effect of the model assumption that an image consists is piecewise constant
up to a discontinuity set. Natural images are, however, often piecewise smooth
due to shading, for instance. Several modified models have been suggested to
overcome this limitation. The most famous is the Mumford-Shah model [20]
which reads as

λMS(u) =
∫

Ω\Γ

|⊂u|2 dx + πHd−1(∂ )

and measures piecewise smoothness on Γ up to the discontinuity set ∂ whose
length (or surface measure) is also penalized. This functional can be well-defined
on the set of special functions of bounded variation SBV(Γ). However, λMS

is non-convex which implies considerable analytical and practical effort when
solving associated variational problems [1,24]. As we are interested in algorithms
which can efficiently and globally solve variational imaging problems, we focus,
in the following, on convex problems as their stationary points are always global
minimizers. An illustration of the effect for most of these models applied to the
image denoising problem with L2-discrepancy term can be found in Fig. 1.

A first approach to reduce staircasing artifacts in a convex way is to smooth
out the singularity at 0 for the penalization of the gradient [35]:

TVε(u) =
∫

Ω

dχε(⊂u), χε(t) =
√

|t|2 + ψ2 − ψ.
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Fig. 1. Comparison of different first- and second-order image models for variational
image denoising with L2-discrepancy. Left column: The original image (top) and noisy
input image (bottom). Columns 2–4: Results for variational denoising with different
regularization terms. The parameters were optimized for best PSNR.

Here, χε(d⊂u) has to be interpreted in the sense of a function of a Radon
measure. It can also be expressed as a dual functional:

TVε(u) = sup
{∫

Ω

u div v − χ∗
ε(v) dx

∣∣∣ v → C1
c (Γ,Rd)

}
,

with

χ∗
ε(t) =

{
ψ
(
1 −

√
1 − |t|2) for |t| < 1,

◦ else.

This reduces the tendency towards piecewise constant solutions. However, as
χε still grows as fast as | · |, discontinuities and consequently, the staircasing
effect still appears. Such an observation can generally be made for first-order
functionals penalizing the measure-valued gradient with linear growth at ◦.

One approach to overcome these defects is to incorporate higher-order deriv-
atives into the image model. An obvious choice is taking the total variation of
second order [14,19] which can also be expressed in a dual formulation using
symmetric matrix fields v : Γ ∪ Sd×d:

TV2(u) =
∫

Ω

d|⊂2u| = sup
{∫

Ω

u div2v dx
∣∣∣ v → C2

c (Γ,Sd×d), ∈v∈∈ ≤ 1
}

.

Here, the derivative ⊂u is modeled to be piecewise constant which has the con-
sequence that it is itself a regular function and can thus not have any discon-
tinuities. Therefore, solutions of variational problems with TV2 penalty cannot
have jump discontinuities and object boundaries become inevitably blurry.
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These effects cannot be overcome by changing the underlying second-order
differentiation operator. For instance, taking the Laplacian

∈Δu∈M =
∫

Ω

d|Δu| = sup
{∫

Ω

uΔv dx
∣∣∣ v → C2

c (Γ), ∈v∈∈ ≤ 1
}

leads to a significantly weaker smoothness measure whose kernel is the set of
harmonic functions on Γ which are arbitrarily smooth. Moreover, regularity
theory for elliptic equations [30] tells us that each function u → L1(Γ) with
Δu → M(Γ) also belongs to the Sobolev space W 1,q

loc (Γ) for each 1 ≤ q < d/(d−1)
and hence, u can also not contain jump discontinuities.

One approach to incorporate smoothness information on different scales is to
combine first- and second-order derivatives. This can, for instance, be realized
by considering the weighted sum of TV and TV2 [23]. Another possibility is to
interpret an image u = u1 + u2 as the sum of a piecewise constant function u1

and piecewise smooth function u2. This results in infimal convolution models,
for instance, with TV and TV2:

(TV � πTV2)(u) = inf
u=u1+u2

∫
Ω

d|⊂u1| + π

∫
Ω

d|⊂2u2|.

Indeed, this model yields piecewise smooth functions [8]. However, plugging this
functional into variational problems given solutions which still admit staircasing
artifacts in situations where they also appear for TV-model. It seems that the
tendency of TV2 to incorporate the smoothness information of u is not strong
enough such that the TV-term is still responsible for the overall impression of
the solution. Again, changing the second-order term in the infimal convolution
to ∈Δu∈M, for instance [10], leads to results which are comparable to TV-TV2

infimal convolution.
The total generalized variation model [4] can now be motivated by the dual

formulation of (TV � πTV2) which reads as

(TV � πTV2)(u) = sup
{∫

Ω

uw dx
∣∣∣ v1 → C1

c (Γ,Rd), ∈v1∈∈ ≤ 1,

v2 → C2
c (Γ,Sd×d), ∈v2∈∈ ≤ π,

w = div v1 = div2v2
}

.

The total generalized variation of second order now arises from the introduction
of the additional constraint v1 = div v2:

TGV2
(β,1)(u) = sup

{∫
Ω

u div2v dx
∣∣∣v → C2

c (Γ,Sd×d), ∈v∈∈ ≤ π, ∈div v∈∈ ≤ 1
}

.

It is a special case of the total generalized variation of order k and positive
weights ϕ = (ϕ0, . . . , ϕk−1) which is defined as follows:

TGVk
α(u) = sup

{∫
Ω

u divkv dx
∣∣∣ v → Ck

c (Γ,Symk(Rd)),

∈divκv∈∈ ≤ ϕκ, κ = 0, . . . , k − 1
}

. (1)
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For a detailed description of the notions utilized here, we ask for the reader’s
patience until Sect. 2. This functional can be interpreted to measure smooth
regions as well as jump discontinuities in a convex manner. In particular, it
leads to solutions which desirable properties when used as a regularization term
for variational imaging problems.

The models presented above also extend to the multichannel case. Among
the several choices which are possible, the most obvious is just summing up
the respective regularization functionals over each channel. In this situation, the
qualitative properties of the solutions of variational problems are comparable
to the scalar versions. However, there are other choices which realize coupling
between the channels, e.g. for TV, see [7,37]. Nevertheless, these models again
lead to results which are similar to the scalar case in particular, the typical
staircasing artifacts are also present. We can therefore expect that the qualitative
properties of scalar models are generally reflected in respective multichannel
versions. This motivates to define the total generalized variation functional also
for multichannel data.

The aim of the present paper is, on the one hand, to shortly review as well as
to extend the notion of total generalized variation to multichannel images and
thus to provide a framework for color images. This is done in Sect. 2. Moreover,
we present and discuss, in Sect. 3 a class of numerical methods which are easy
to implement and suitable to solve general convex variational imaging problems
with TGV2

α-penalty. These are applied in Sect. 4 to a variety of imaging prob-
lems: denoising, deblurring, zooming, dequantization and compressive imaging.
This includes in particular a specific numerical algorithm for each of these prob-
lems. Finally, conclusions are drawn in Sect. 5.

2 Total Generalized Variation

2.1 General Theory for Scalar Functions

Let us first review the concept of total generalized variation (1) for the scalar
case as introduced [4], starting with a more detailed explanation of the notions
involved in its definition.

Throughout this section, we assume that d → N, d ∃ 1 is a fixed space dimen-
sion, usually, for images, we have d = 2. Moreover, let Γ ≤ Rd be a domain, i.e.,
a non-empty, open and connected set. We need the space of symmetric tensors
on Rd, denoted by Symk(Rd). The latter is defined, for each k → N, as

Symk(Rd) = {ξ : Rd × · · · × Rd︸ ︷︷ ⎛
k times

∪ R
∣∣ ξ multilinear and symmetric}.

It is, however, convenient to identify elements ξ → Symk(Rd) with its coefficients
{ξβ}β∈Mk

where

Mk =
{

π → Nd
∣∣∣ |π| =

d⎝
i=1

πi = k
}

,
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is the set of multiindices of order k. This allows to define the spaces of compactly
supported symmetric tensor fields Cm

c (Γ,Symk(Rd)) for m, k → N. For symmet-
ric k-tensor fields which are smooth enough, iterated divergence operators are
defined componentwise by

(divκv)β =
⎝

γ∈Mκ

κ!
γ!

δκvβ+γ

δxγ
for each component π → Mk−κ.

Here, γ! denotes the factorial for multiindices, i.e., γ! =
⎞d

i=1 γi!. Moreover,
we define the supremum norm of a compactly supported continuous symmetric
tensor field v → Cc(Γ,Symk(Rd)) as

∈v∈∈ = sup
x∈Ω

{⎠ ⎝
β∈Mk

k!
π!

vβ(x)2
⎧1/2}

which corresponds to the ◦-norm with respect to the pointwise Frobenius norm
for tensors.

With these prerequisites, TGVk
α according to (1) makes sense for any scalar

function u → L1
loc(Γ), any order k → N, k ∃ 1 and any set of weights ϕ =

(ϕ0, . . . , ϕk−1) satisfying ϕκ > 0 for κ = 0, . . . , k − 1.
As we will later focus on total generalized variation of second order, i.e.,

k = 2, let us elaborate on the above notions in this specific case. It turns out
that TGV2

α can equally be written as

TGV2
α(u) = sup

{∫
Ω

u div2v dx
∣∣∣ v → C2

c (Γ,Sd×d), ∈v∈∈ ≤ ϕ0, ∈div v∈∈ ≤ ϕ1

}

with Sd×d denoting the space of symmetric d × d matrices. The first and sec-
ond divergences of a symmetric matrix field are then vector and scalar fields,
respectively, given by

(div v)i =
d⎝

j=1

δvij

δxj
, (div2v) =

d⎝
i=1

δvii

δx2
i

+ 2
2⎝

i=1

⎝
j<i

δvij

δxiδxj
.

Likewise, the ◦-norms of matrix and vector fields v and w, respectively, used
here are given by

∈v∈∈ = sup
x∈Ω

{⎠ d⎝
i=1

vii(x)2 + 2
d⎝

i=1

⎝
j<i

vij(x)2
⎧1/2}

,

∈w∈∈ = sup
x∈Ω

{⎠ d⎝
i=1

wi(x)2
⎧1/2}

.

Let us now summarize some basic properties of the total generalized varia-
tion and discuss solvability of inverse problems with TGV-regularization for
the second-order case.
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First, observe that for k = 1, it follows from the definition (1) that the total
generalized variation coincides, up to a factor, with the total variation, i.e., we
have TGVk

α = ϕ0TV. Hence, one can indeed speak of a generalization of the
total variation.

Having defined TGVk
α according to (1), one can show that it constitutes

a proper, convex and lower semi-continuous functional on each Lp(Γ) space
(1 ≤ p < ◦) which is moreover translation and rotation invariant. The space

BGVk(Γ) = {u → L1(Γ) | TGVk
α(u) < ◦}, ∈u∈BGVk = ∈u∈1 + TGVk

α(u)

is a Banach space which is independent of the weights ϕ0, . . . , ϕk−1 chosen in
the definition of TGVk

α. On this space, TGVk
α is a semi-norm which vanishes

exactly on Pk−1(Γ), the space of polynomials of degree less than or equal to
k−1. It can be interpreted as a model for piecewise smooth functions as follows.
Let u be piecewise polynomials of maximal degree k − 1, i.e.,

u =
n⎝

i=1

ηΩi
qi

where Γ1, . . . , Γn ≤ Γ are disjoint Lipschitz subdomains such that Γ =
⎨n

i=1 Γi

and qi → Pk−1(Γ) for i = 1, . . . , n. Then, we have that TGVk
α is finite and

measures the jump of the derivatives, from the zeroth to the (k − 1)-st order, of
these polynomials only at the interfaces ∂i,j = δΓi ∀ δΓj ∀ Γ:

TGVk
α(u) ≤ 1

2

n⎝
i,j=1

∫
Γi,j

k−1⎝
κ=0

∣∣|||(⊂k−1−κ(qi − qj) ≈ νi

)∣∣ dHd−1(x)

where ||| denotes the symmetrization of a tensor and νi the outer normal of Γi.
In some cases, the estimate can be proven to be sharp. Again, see [4] for the
proofs and more details.

For the second-order total generalized variation it has been shown in [5] that
for u → L1(Γ),

TGV2
α(u) = min

p∈BD(Ω)
ϕ1∈⊂u − p∈M + ϕ0∈E(p)∈M.

Here, BD(Γ) denotes the space of vector fields of bounded deformation [33], i.e.,
the set of vector fields whose weak symmetrized derivative E(p) = 1

2 (⊂p + ⊂pT)
is a matrix-valued Radon measure. Moreover, ∈ · ∈M denotes the Radon norm
for vector-valued and matrix-valued Radon measures, respectively.

Furthermore, for bounded Lipschitz domains Γ ≤ Rd, BGV2(Γ) coincides
with BV(Γ), the space of functions of bounded variation, in the topological
sense, i.e., there exist 0 < c < C < ◦ such that for each u → BV(Γ),

c
(∈u∈1 + TGV2

α(u)
) ≤ ∈u∈1 + TV(u) ≤ C

(∈u∈1 + TGV2
α(u)

)
.

We therefore have also the usual embeddings BGV2(Γ) ↪∪ Lp(Γ) for 1 ≤ p ≤
d/(d−1) which are compact for p < d/(d−1). Finally, there is also a variant of the
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Poincaré-Friedrichs inequality available which states that for a linear projection
P : Ld/(d−1)(Γ) ∪ P1(Γ) onto P1(Γ), we can find a constant C > 0, only
depending on Γ, P and ϕ such that

∈u − Pu∈d/(d−1) ≤ CTGV2
α(u) for all u → BV(Γ). (2)

This can be used to solve the linear inverse problem

Ku = f

with TGV2
α-regularization. Indeed, existence of solutions for the Tikhonov

functional

min
u∈Lp(Ω)

∈Ku − f∈2H
2

+ TGV2
α(u)

where p → (1,◦), p ≤ d/(d − 1), K : Lp(Γ) ∪ H is linear, continuous and H
is a Hilbert space can be shown under the assumption that K is injective on
ker(TGV2

α) = P1(Γ). Proofs and more details regarding these results can be
found in [5].

2.2 Extension to Multichannel Images

In order to deal with, e.g., color images, it is convenient to have a notion of
total generalized variation also for vector-valued images u : Γ ∪ RL for some
L ∃ 1. Here, we assume that color information can be encoded by a linear space,
for instance R3 for the RGB or YUV color space and R4 for the CYMK color
space. The space RL is then equipped with a norm | · |≤ which provides a way
to compare colors allowing to incorporate the characteristics of different color
channels.

In order to define TGVk
α for vector-valued images, we need to know the dual

norm of | · |≤ which is given, for y → RL, by

|y|∗ = sup
x∈RL, |x|◦∞1

x · y.

This dual norm can now be extended to L-tuples of symmetric tensors ξ →
Symk(Rd)L by setting

|ξ|∗,k =
∣∣|ξ|∣∣∗, where |ξ| → RL, |ξ|l =

⎠ ⎝
β∈Mk

k!
π!

ξ2β

⎧1/2

. (3)

Consequently, the ◦-norms for compactly supported symmetric tensor fields of
order k read as

v → Cc(Γ,Symk(Rd)L) : ∈v∈∈,∗,k = sup
x∈Ω

|v(x)|∗,k.

A vector-valued version of TGVk
α for a u → L1

loc(Γ,RL) can then be defined as

TGVk
α(u) = sup

{∫
Ω

L⎝
l=1

ul(divkvl) dx
∣∣∣ v → Ck

c (Γ,Symk(Rd)L),

∈divκv∈∈,∗,κ ≤ ϕκ, κ = 0, . . . , k − 1
}

. (4)
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Slightly abusing notation and since in the scalar case, it coincides with (1) up
to a positive constant, TGVk

α will in the following always refer to this definition
unless it is explicitly stated otherwise.

Example 1. An obvious choice for | · |≤ is, of course, the Euclidean norm |x|≤ =(⎩L
l=1 x2

l

)1/2. It is dual to itself, so

ξ → Symk(Rd)L : |ξ|∗,k =
⎠ L⎝

l=1

⎝
β∈Mk

k!
π!

ξ2l,β

⎧1/2

which is a generalization of the Frobenius norm to Symk(Rd)L and therefore
making this space a Hilbert space. The associated TGVk

α involves, consequently,
only Hilbert norms which can be exploited in numerical computations.

With more or less effort we can see that this functional possesses basically
the same properties as TGVk

α for the scalar case. As we will use them in the
sequel, we highlight some of these properties. We start with basic observations.

Proposition 1. The functional TGVk
α is non-negative on L1

loc(Γ,RL). For
each 1 ≤ p ≤ ◦, TGVk

α restricted to Lp(Γ,RL) is proper, convex and lower
semi-continuous.

Proof. Note that for each v → Ck
c (Γ,Symk(Rd)L) which satisfies the constraints

∈divκ∈∈,κ ≤ ϕκ, we also have that −v satisfies the same constraints. Plugging in
both v and −v, we see that we can replace

⎫
Ω

⎩L
l=1 uldivkvl dx by its absolute

value in (4) without changing the supremum. Hence, TGVk
α(u) ∃ 0.

To see that TGVk
α is proper, observe that TGVk

α(0) = 0. Finally, for each
v → Ck

c (Γ,Symk(Rd)L) which satisfies the constraints in (4), we have divkv →
Cc(Γ,RL) and hence, the mapping

u ∞∪
∫

Ω

L⎝
l=1

ul divkvl dx

is in the dual space of Lp(Γ,RL). Consequently, TGVk
α is a pointwise supremum

of convex and continuous functionals on Lp(Γ,RL) which implies the convexity
and lower semi-continuity. �

The next is the observation that each of the vector-valued TGVk
α are equiv-

alent in the following sense:

Proposition 2. There are constants 0 < c < C < ◦ such that for each u →
L1
loc(Γ,RL), we have

c

L⎝
l=1

TGVk
α(ul) ≤ TGVk

α(u) ≤ C

L⎝
l=1

TGVk
α(ul). (5)

Here, TGV k
α on the left- and right-hand side has to be understood in the sense

of (1).
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Proof. Denote by |x|1 =
⎩L

l=1 |xl| the 1-norm on RL whose dual is the ◦-norm
|y|∈ = maxl=1,...,L |yl|. Note that by (3),

∈ξ∈∈,k = max
l=1,...,L

|ξ|l for all ξ → Symk(Rd)L. (6)

For a fixed k and an arbitrary norm | · |≤ in RL, the corresponding tensor norms
| · |∗,κ are equivalent to | · |∈,κ, i.e., there exist 0 < c < C < ◦ such that

κ = 0, . . . , k − 1 and ξ → Symκ(Rd)L : C−1|ξ|∈,κ ≤ |ξ|∗,κ ≤ c−1|ξ|∈,κ.

This implies for v → Ck
c (Γ,Symk(Rd)L) that

∈divκv∈∈,∗,κ ≤ ϕκ ⇒ ∈divκv∈∈,∈,κ ≤ Cϕκ,

∈divκv∈∈,∈,κ ≤ cϕκ ⇒ ∈divκv∈∈,∗,κ ≤ ϕκ.

Denoting

Kk
α = {v → Ck

c (Γ,Symk(Rd))
∣∣ ∈divκv∈∈ ≤ ϕκ for κ = 0, . . . , k − 1},

Kk
α,∗ = {v → Ck

c (Γ,Symk(Rd)L)
∣∣ ∈divκv∈∈,∗,κ ≤ ϕκ for κ = 0, . . . , k − 1}

and Kk
α,∈ analogously to Kk

α,∗, the latter leads to cKk
α,∈ ≤ Kk

α,∗ ≤ CKk
α,∈ and,

consequently,

c sup
v∈Kk

α,∞

∫
Ω

L⎝
l=1

uldivkvl dx ≤ TGVk
α(u) ≤ C sup

v∈Kk
α,∞

∫
Ω

L⎝
l=1

uldivkvl dx. (7)

From (6) now follows that Kk
α,∈ = (Kk

α)L, hence

sup
v∈Kk

α,∞

∫
Ω

L⎝
l=1

∫
Ω

ul(divkvl) dx =
L⎝

l=1

sup
vl∈Kk

α

∫
Ω

uldivkvl dx =
L⎝

l=1

TGVk
α(ul).

Together with (7), this gives (5). �
Corollary 1. The kernel of TGVk

α for multichannel data reads as

ker(TGVk
α) = {u → L1

loc(Γ)L
∣∣ TGVk

α(u) = 0}
=
{

u(x) =
⎝

|α|∞k−1

aαxα a.e. in Γ
∣∣∣ aα → RL for ϕ → Nd, |ϕ| ≤ k − 1

}

Proof. Observe that the norm equivalence (5) gives that TGVk
α(u) = 0 if and

only if TGVk
α(ul) = 0 for l = 1, . . . , L in the sense of (1). This is in turn

equivalent to ul(x) =
⎩

|α|∞k−1 aα,lx
α a.e. in Γ for aα,l → R and each ϕ → Nd

with |ϕ| ≤ k−1 and each l = 1, . . . , L. Arranging each {aα,l} to a vector aα → RL

yields the result. �
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Remark 1. For the case k = 2, the statement of Corollary 1 reads as

ker(TGV2
α) = {u(x) = Ax + b a.e. in Γ

∣∣ A → RL×d, b → RL}. (8)

Remark 2. An even more general definition for TGV for multichannel data would
arise from choosing, for each k = 0, 1, . . ., a norm | · |≤,k on Symk(Rd)L, setting
| · |∗,k its dual norm and defining again TGVk

α as in (4), utilizing the supremum
norms associated to | · |∗,k. However, this requires, besides a model how to mea-
sure the distance of colors in the respective representation in RL, also a model
for each Symk(Rd)L. In this view, setting the dual norm as in (3) seems quite
natural.

Nevertheless, such a model is, for example, given by choosing | · |≤ as above
and defining the dual norm | · |∗,k for Symk(Rd)L as

|ξ|∗,k = sup
|x|◦∞1, |y|∗∞1

x · ξ(y, . . . , y︸ ︷︷ ⎛
k times

)

where each ξl → Symk(Rd) is interpreted as a multilinear mapping. This can be
interpreted as a generalization of the spectral norm for tensors of arbitrary order
(which is also known as the least cross norm). It is, however, not clear how to
treat these norms in concrete numerical implementations.

2.3 Solution of Variational Problems

Let us now consider variational problems for recovering multichannel images
supported on the bounded Lipschitz domain Γ ≤ Rd which are regularized with
a TGV2

α penalty. The general problem reads as

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u) (9)

where p → (1,◦), p ≤ d/(d − 1) and F : Lp(Γ,RL) ∪ (−◦,◦] is a proper,
convex and lower semi-continuous functional which is also bounded from below.

For the following, we choose projection operators which project on the kernel
of TGV2

α which is given as follows (recall (8)):

{u : Γ ∪ RL
∣∣ u(x) = Ax + b a.e. for some A → RL×d, b → RL}.

A projection operator onto the kernel is then a mapping P which satisfies

P : Lp(Γ,RL) ∪ ker(TGV2
α) linear, P |ker(TGV2

α) = id, P 2 = P.

To obtain existence of solutions for (9), the following coercivity assumption on
F is made: For any sequence {un} in Lp(Γ,RL) it follows that

∈Pun∈p ∪ ◦ and {∈(id − P )un∈p} bounded ⇒ F (un) ∪ ◦.
(10)

Under these prerequisites, there exists at least one minimizer.
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Theorem 1. If (10) is satisfied, then (9) possesses a minimizer.

Proof. The case where F + TGV2
α is constant ◦ is trivial, so let F + TGV2

α

be proper. Let {un} be a minimizing sequence in Lp(Γ)L, i.e., limn→∈(F +
TGV2

α)(un) = inf (F + TGV2
α). Then, {TGV2

α(un)} has to be bounded as
{F (un)} is bounded from below.

Now, for each l = 1, . . . , L, we have that Pl : u ∞∪ (Pu)l is a projection
onto P1(Γ), so there exists a constant C1 > 0 such that ∈ul − Plu∈d/(d−1) ≤
C1TGVk

α(ul), for each u → Ld/(d−1)(Γ,RL) see (2), hence, in view of Proposi-
tion 2 it follows that

∈un − Pun∈d/(d−1) ≤ C2

L⎝
l=1

∈un
l − Plu

n∈d/(d−1)

≤ C1C2

L⎝
l=1

TGV2
α(un

l ) ≤ c−1C1C2TGV2
α(un).

This implies, by continuous embedding Ld/(d−1)(Γ,RL) ↪∪ Lp(Γ,RL), that
{∈(id − P )un∈p} is bounded. In addition, we can exclude that ∈Pun∈p is
unbounded: If there is an unbounded subsequence, then by restricting to that
subsequence without relabeling, we can achieve that {un} is still a minimiz-
ing sequence with ∈Pun∈p ∪ ◦ and ∈(id − P )un∈p is bounded. By assump-
tion, F (un) ∪ ◦ and (F + TGV2

α)(un) ∪ ◦ which is a contradiction to
{un} being a minimizing sequence. Hence, ∈Pun∈p is bounded. As we have
un = Pun + (id − P )un for each n and each summand on the right-hand side
gives a bounded sequence, the boundedness of {un} follows. By reflexivity of
Lp(Γ,RL), a subsequence of {un} converges weakly to some u∗ → Lp(Γ,RL).
The sum F + TGV2

α is convex and lower semi-continuous as its summands
are, according to the assumptions as well as Proposition 1, which implies weak
sequential lower semi-continuity and finally

(F + TGV2
α)(u∗) ≤ lim inf

n→∈ (F + TGV2
α)(un) = inf

u∈Lp(Ω,RL)
(F + TGV2

α)(u).

Therefore, u∗ is the sought minimizer. �

3 Numerical Approximation and Minimization

3.1 Discretization as a Convex-Concave Saddle-Point Problem

For the numerical solution, we first discretize the problem (9). For simplicity, we
assume that Γ = (0, N1) × (0, N2) ≤ R2 for some positive N1, N2 → N as it is
easy to generalize to arbitrary domains and dimensions.

Following essentially the presentation in [4], we first replace Γ by the
discretized grid

Γh = {(i, j)
∣∣ i, j → N, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}.
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The TGV2
α functional will be discretized by finite differences where we also

choose step-size 1, again for the sake of simplicity. For this purpose, we introduce
the respective forward and backward operators which are, up to the factor −1,
adjoint to each other:

(δ+
x u)i,j =

⎬
ui+1,j − ui,j for 1 ≤ i < N1,

0 for i = N1,

(δ+
y u)i,j =

⎬
ui,j+1 − ui,j for 1 ≤ j < N2,

0 for j = N2,

as well as

(δ−
x u)i,j =

⎭


u1,j if i = 1
ui,j − ui−1,j for 1 < i < N1,
−uN1−1,j for i = N1,

(δ−
y u)i,j =

⎭


ui,1 for j = 1,
ui,j − ui,j−1 for 1 < j < N2,
−ui,N2−1 for j = N2.

Let us further introduce the appropriate vector spaces of functions, vector and
tensor fields. For L ∃ 1, define

U = {u : Γh ∪ R}L, V = {u : Γh ∪ R2}L, W = {u : Γh ∪ Sym2(R2)}L.

We will denote v = (vl, . . . , vl) → V and its components (vl)1 and (vl)2. Likewise
the components of w = (w1, . . . , wL) → W are (wl)11, (wl)12 and (wl)22. For
convenience, we introduce

a, b : Γh ∪ R : 〈a, b〉 =
N1⎝
i=1

N2⎝
j=1

ai,jbi,j

The spaces U, V and W will be interpreted as Hilbert spaces with the scalar
products

u, r → U : 〈u, r〉U =
L⎝

l=1

〈ul, rl〉,

v, p → V : 〈v, p〉V =
L⎝

l=1

〈(vl)1, (pl)1〉 + 〈(vl)2, (pl)2〉,

w, q → W : 〈w, q〉W =
L⎝

l=1

〈(wl)11, (ql)11〉 + 〈(wl)22, (ql)22〉 + 2〈(wl)12, (ql)12〉.

The gradient, symmetrized gradient as well as the divergence operator for vector
and tensor fields can then be expressed as

⊂h : U ∪ V, (⊂hu)l =
⎪

δ+
x ul

δ+
y ul

⎜
,

Eh : V ∪ W, (Eh(v))l =
⎪

δ−
x (vl)1 1

2

(
δ−

y (vl)1 + δ−
x (vl)2

)
1
2

(
δ−

y (vl)1 + δ−
x (vl)2

)
δ−

y (vl)2

⎜
,
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and

divh : V ∪ U, (divhv)l = δ−
x (vl)1 + δ−

y (vl)2,

divh : W ∪ V, (divhw)l =
⎪

δ+
x (wl)11 + δ+

y (wl)12

δ+
x (wl)12 + δ+

y (wl)22

⎜
.

Note that with the scalar products introduced above, it holds that (⊂h)∗ =
−divh as well as (Eh)∗ = −divh. In order to define a discrete version of TGV2

α,
we still need the norms

v → V : ∈v∈∈ = max
(i,j)∈Ωh

⎠ L⎝
l=1

(
(vl)1i,j

)2 +
(
(vl)2i,j

)2⎧1/2

,

w → W : ∈w∈∈ = max
(i,j)∈Ωh

⎠ L⎝
l=1

(
(wl)11i,j

)2 +
(
(wl)22i,j

)2 + 2
(
(wl)12i,j

)2⎧1/2

.

These norms correspond to discrete ◦-norms with respect to the norms accord-
ing to (3) where | · |≤ is the Euclidean norm on RL, also see Example 1. With
the constraint divhw = v, we can now deduce a discrete version of TGV2

α:

TGV2
α(u) = max {〈u, divhv〉U

∣∣ (v, w) → V × W, divhw = v,

∈w∈∈ ≤ ϕ0, ∈v∈∈ ≤ ϕ1}.

Introducing indicator functionals, i.e.,

IK(x) =
⎬

0 if x → K,
◦ else

and observing that

−I{0}(divhw − v) = min
p∈V

〈p, divhw − v〉V ,

the discrete functional can be rewritten to

TGV2
α(u) = max

(v,w)∈V ×W
min
p∈V

〈u, divhv〉U + 〈p, divhw − v〉V

−I{‖ · ‖∞∞α0}(w) − I{‖ · ‖∞∞α1}(v).

One can show that the maximum and minimum can be interchanged. Moreover,
the constraints are symmetric around 0, so the above can be rewritten to

TGV2
α(u) = min

p∈V
max

(v,w)∈V ×W
〈⊂hu − p, v〉V + 〈Eh(p), w〉

−I{‖ · ‖∞∞α0}(w) − I{‖ · ‖∞∞α1}(v). (11)

Next, assume that Fh : Γh ∪ (−◦,◦] is proper, convex and lower semi-
continuous and corresponds to a discretized version of the data term F in (9).
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Then, a discretization of the variational problem (9) is given by the saddle-point
problem

min
(u,p)∈U×V

max
(v,w)∈V ×W

〈⊂hu − p, v〉V + 〈Eh(p), w〉W + Fh(u)

−I{‖ · ‖∞∞α0}(w) − I{‖ · ‖∞∞α1}(v). (12)

We also like to consider the situation where Fh is also given by the solution of
a certain maximization problem:

Fh(u) = max
λ∈Λ

〈Ku, λ〉Λ + ⎟Fh(u) − Gh(λ) (13)

where Λ is a finite-dimensional Hilbert space, K : U ∪ Λ a linear mapping and⎟Fh : U ∪ (−◦,◦], Gh : Λ ∪ (−◦,◦] are proper, convex and lower semi-
continuous functionals. In this case, we like to solve the saddle-point problem

min
(u,p)∈U×V

max
(v,w,λ)∈V ×W×Λ

〈⊂hu − p, v〉V + 〈Eh(p), w〉W + 〈Ku, λ〉Λ + ⎟Fh(u)

−I{‖ · ‖∞∞α0}(w) − I{‖ · ‖∞∞α1}(v) − Gh(λ). (14)

3.2 A Numerical Algorithm

For the solution of (12) and (14), any kind of numerical algorithm for the solution
of convex-concave saddle point problems can be used. Here, we chose to employ
the primal-dual ascent-descent method with primal extragradient according to
[9]. The main reason is its applicability for a wide range of problems as we will
see in Sect. 4. However, for the solution of specialized problems, other algorithms
might be suited and efficient as well. Basically, every convergent method which
finds a zero of a maximal monotone operator or the sum to two maximally
monotone operators may work [13,18,27]. In its general form, the method finds
a saddle point for the problem

min
x∈X

max
y∈Y

〈Kx, y〉Y + F(x) − G(y) (15)

where X , Y are Hilbert spaces, K : X ∪ Y is a linear and continuous mapping,
and F : X ∪ (−◦,◦], G : Y ∪ (−◦,◦] are proper, convex and lower semi-
continuous functionals.

In order to state the algorithm, we need the notion of resolvent operators
(id + τδF)−1 and (id + σδG)−1 for the subgradients of F and G, respectively.
They can be characterized as the solutions of

x∗ = (id + τδF)−1(x̄) ⇔ x∗ = arg min
x∈X

∈x − x̄∈2X
2

+ τF(x),

y∗ = (id + σδG)−1(ȳ) ⇔ y∗ = arg min
y∈Y

∈y − ȳ∈2Y
2

+ σG(y)

where σ, τ > 0. These resolvent operators are assumed to be computationally
accessible. We will discuss some examples in Sect. 4.
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The iteration procedure for the solution of (15) can be written as follows.
Choose σ, τ > 0 such that στ∈K∈2 < 1. For initial values (x0, y0) → X × Y and
x̄0 = x0, the iteration reads as⎭


yn+1 = (id + σδG)−1(yn + σKx̄n),
xn+1 = (id + τδF)−1(xn − τK∗yn+1),
x̄n+1 = 2xn+1 − xn.

(16)

If X and Y are finite dimensional, this algorithm is known [9] to converge to a
saddle point (x∗, y∗) of (15) provided that a saddle point exists.

We like to apply this algorithm for the solution of (12) and (14). First, let
us address the problem (12) which admits the structure (15) if one chooses

X = U × V, Y = V × W, K =
[⊂h −id

0 Eh

]
⇒ K∗ =

[−divh 0
−id −divh

]

as well as

F(x) = F(u, p) = Fh(u),
G(y) = G(v, w) = I{‖ · ‖∞∞α1}(v) + I{‖ · ‖∞∞α0}(w).

As the functionals F and G are the sum of functionals which only depend on one
component of x and y, respectively, the resolvent operators decouple meaning
that they can be performed componentwise. For G, they correspond to projection
operators on the respective constraint sets. They can be seen to correspond to

v∗ = arg min
‖v‖∞∞α1

∈v − v̄∈2V
2

⇔ v∗ = Pα1(v̄) =
v̄

max
(
1, |v̄|

α1

) ,

w∗ = arg min
‖w‖∞∞α0

∈w − w̄∈2V
2

⇔ w∗ = Pα0(w̄) =
w̄

max
(
1, |w̄|

α0

)

where the operations on the right-hand side have to be interpreted in the point-
wise sense with |v̄| and |w̄| according to

v̄ → V : |v̄|i,j =
⎠ L⎝

l=1

(
(v̄l)1i,j

)2 +
(
(v̄l)2i,j

)2⎧1/2

,

w̄ → W : |w̄|i,j =
⎠ L⎝

l=1

(
(w̄l)11i,j

)2 +
(
(w̄l)22i,j

)2 + 2
(
(w̄l)12i,j

)2⎧1/2

.

For F , the componentwise resolvents just correspond to (id + σδFh)−1 and, as
the functional is independent of p, to the identity on V , respectively.

Finally, in order to choose the step sizes σ and τ , we need an estimate for
the norm of K. One can see that ∈⊂h∈2 < 8 and ∈Eh∈2 < 8 which leads, after
some computations, to the estimate

∈K∈2 <
17 +

√
33

2
< 12.
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Algorithm 1 Solve minu∈U Fh(u) + TGV2
α(u)

1. Choose σ > 0, τ > 0 such that στ 1
2
(17 +

∈
33) ≤ 1.

2. Choose (u0, p0) ∇ U × V , (v0, w0) ∇ V × W and set ū0 = u0, p̄0 = p0.
3. For n = 0, 1, 2, . . . iterate according to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vn+1 = Pα1

(
vn + σ(≥hūn − p̄n)

)
,

wn+1 = Pα0

(
wn + σEh(p̄n)

)
,

un+1 = (id + τ∂Fh)−1(un + τdivhvn+1),
pn+1 = pn + τ(vn+1 + divhwn+1),
ūn+1 = 2un+1 − un,
p̄n+1 = 2pn+1 − pn.

4. Return uN for some large N .

Hence, the primal-dual method for the saddle-point problem (12) reads as
follows.

Note that the problem of choosing N , i.e., finding an appropriate stopping
criterion, remains. However, as our major goal is to demonstrate the applicability
and efficiency of algorithms suitable for the minimization of TGV2

α, we do not
discuss this issue here. Let us nevertheless remark that it is possible to compute
estimates for the primal-dual gap for the underlying saddle-point problem which
allows to estimate the distance of the current iterate to the minimizer in terms
of the functional values. These estimates could be used to implement a stopping
criterion, see, for instance [3].

It can be seen in Algorithm 1 that the resolvent (id + τδFh)−1 is needed in
order to perform the computational procedure. In some cases, this resolvent is
not computationally accessible or expensive to compute. It might, however, be
possible to write Fh in terms of (13) where the resolvents (id + τδ ⎟Fh)−1 and
(id+σδGh)−1 are easy to compute. In such a case, the algorithm can be modified
in order to accommodate for this situation: Indeed, the associated saddle-point
problem (14) can be represented by (15) if one chooses

X = U × V, Y = V × W × Λ, K =

⎡
⎣⊂h −id

0 Eh

K 0

⎤
⎦ ⇒ K∗ =

[−divh 0 K∗

−id −divh 0

]

as well as

F(x) = F(u, p) = ⎟Fh(u),
G(y) = G(v, w, λ) = I{‖ · ‖∞∞α1}(v) + I{‖ · ‖∞∞α0}(w) + Gh(λ).

As in the previous case, all the resolvents decouple and each component of x and
y can be updated individually. However, one has be more careful when choosing
σ and τ as the norm of K can only be guaranteed to obey

∈K∈2 <

√
(∈K∈2 − 1)2 + 32 + ∈K∈2 + 17

2
< ∈K∈2 + 12.
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The primal-dual method then corresponds to the following.

Algorithm 2 Solve minu∈U Fh(u) + TGV2
α(u)

. with Fh(u) = maxλ∈Λ 〈Ku, λ〉Λ + ⎟Fh(u) − Gh(λ)

1. Choose σ > 0, τ > 0 such that στ 1
2
(
√

(≈K≈2 − 1)2 + 32 + ≈K≈2 + 17) ≤ 1.
2. Choose (u0, p0) ∇ U × V , (v0, w0, λ0) ∇ V × W × Λ.

Set ū0 = u0, p̄0 = p0.
3. For n = 0, 1, 2, . . . iterate according to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn+1 = Pα1

(
vn + σ(≥hūn − p̄n)

)
,

wn+1 = Pα0

(
wn + σEh(p̄n)

)
,

λn+1 = (id + σ∂Gh)−1(λn + σKūn)

un+1 = (id + τ∂F̃h)−1
(
un + τ(divhvn+1 − K∗λn+1)

)
,

pn+1 = pn + τ(vn+1 + divhwn+1),
ūn+1 = 2un+1 − un,
p̄n+1 = 2pn+1 − pn.

4. Return uN for some large N .

Again, the procedure converges to a saddle-point, so uN for N large enough
is close to a solution of the original problem.

4 Application to Mathematical Imaging Problems

Now, we aim at applying the total generalized variation model to some well-
known variational problems. One the one hand, we show how existence in the
continuous setting can be ensured using the results of Sect. 2. On the other hand,
it is also discussed how the algorithms in Sect. 3 can be realized and how they
perform in numerical experiments.

4.1 Denoising

We first look at the TGV2
α-regularized multichannel denoising problem for a

noisy image f → Lq(Γ,RL) where q → [1,◦). Let the norm in Lq(Γ,RL) be
based on the vector norm | · |≤. Then, the variational denoising problem with
Lq-data term, is to solve

min
u∈Lq(Ω,RL)

F (u) + TGV2
α(u), F (u) =

1
q

∫
Ω

|u − f |q≤ dx =
∈u − f∈q

q

q
. (17)

We like to verify existence of a minimizer in Lp(Γ,RL) for some p → (1,◦)
with p ≤ d/(d − 1). For this purpose, observe that it is easy to see that F is
non-negative, proper, convex and lower semi-continuous on Lp(Γ,RL), the latter
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with the help of Fatou’s lemma. To establish property (10), set r = min(p, q)
and choose P : Lr(Γ,RL) ∪ ker(TGV2

α) as a linear and continuous projection.
If, for a sequence {un} in Lp(Γ,RL) it holds that ∈Pun∈p ∪ ◦, then also
∈Pun∈q ∪ ◦ since all norms are equivalent on the finite-dimensional space
ker(TGV2

α). Consequently, as P is continuous on Lq(Γ,RL),

∈un − f∈q ∃ ∈un∈q − ∈f∈q ∃ c∈Pun∈q − M

for some constants c > 0 and M > 0. Hence, F (un) ∪ ◦ and (10) is satisfied.
By Theorem 1, there exists a minimizer.

Let us now discretize (17) according to Sect. 3. For this purpose, we choose
Fh for some data f → U according to

Fh(u) =
1
q

N1⎝
i=1

N2⎝
j=1

|ui,j − fi,j |q≤

which is in accordance with a discretization step-size of 1. We like to use Algo-
rithm 1 which needs the resolvent (id + τδFh)−1. For | · |≤ = | · | the Euclidean
norm on RL and q → {1, 2}, this operator can be computed:

u∗ = (id + τδFh)−1(ū) ⇔ u∗ =

⎭


ū + τf

1 + τ
if q = 2,

f + Sτ (ū − f) if q = 1.

where Sτ is the pointwise shrinkage operator

Sτ (u) =
u

|u| max(0, |u| − τ)

where we agree to set u/|u| = 0 where u = 0. This leads to the following iteration
for {un} in Algorithm 1:

un+1 =

⎭


un + τ(divhvn+1 + f)
1 + τ

if q = 2,

f + Sτ (un + τdivhvn − f) if q = 1.

The resulting algorithm was implemented in Python [25] using Scientific Tools
for Python (SciPy) [34] and graphics-processing unit (GPU) acceleration based
on NIVIDA’s CUDATM Toolkit [22] via the Python interface PyCUDA [16].
Computations where performed on a AMD PhenomTM 9950 Quad-Core Proces-
sor with a NVIDIA GeForce GTX 280 GPU with 1 Gigabyte of memory. The
outcome of the TGV2-based denoising procedure, for the L2-norm and L1-norm
as well as a comparison to the standard TV-based counterparts, are depicted in
the Figs. 2 and 3, respectively. In order to compare the models, the parameters
were chosen to give the best peak signal-to-noise ratio (PSNR). The actual val-
ues as well as the image size, noise level, iteration count and computation time
can be found in the respective captions. One can observe that the multichannel
TGV2 image model is able to recover smooth regions as well as discontinuities
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at object boundaries. In particular, artifacts which are typical for TV-based
denoising, do not appear when TGV2 is used. The improved image quality is
also reflected by a slightly higher PSNR value. However, since this distance
measure is essentially based on pointwise comparison and is not incorporating
neighborhood information, more accurate recovery of smooth regions does not
lead to an significantly higher PSNR, although the differences can noticeably
be visually perceived. Of course, usage of the TGV2 image model come with
higher computational effort. In the case of denoising, TV and TGV2 roughly
need the same number of iterations such that TGV2 needs about 2 to 3 times
more computation time. The absolute computation time is, however, still quite
low thanks to the parallelization provided by the GPU.

Fig. 2. Example for variational denoising according to (17) with L2 data fitting term
and TV/TGV2 image model. Top: The original image [31] (left, 640 × 480 pixels,
RGB) and a noise-perturbed version (right, additive Gaussian noise, standard deviation
σ = 0.2). Bottom: Result of TV-based denoising (left, PSNR=31.91 dB, 500 iterations,
computation time: 0.48 s), and TGV2-based denoising (right, PSNR=32.29 dB, 500
iterations, computation time: 1.29 s). Images licenced under CreativeCommons-by-sa-
2.0 (http://creativecommons.org/licenses/by-sa/2.0/).

http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 3. Example for variational denoising with L1 data fitting term and TV/TGV2

image model. Top: The original image [29] (left, 512 × 512 pixels, RGB) and a noise-
perturbed version (right, 33.3 % of the pixels replaced by random values). Bottom:
Result of TV-based denoising (left, PSNR=33.23 dB, 1000 iterations, computation
time: 0.98 s), and TGV2-based denoising (right, PSNR=33.77 dB, 1000 iterations, com-
putation time: 2.46 s).

Additionally, the proposed primal-dual algorithm admits the convergence
behavior which is typical for first-order methods. In terms of the discrete energy
which arises by maximizing the saddle-point functional in (12), i.e.,

J(u, p) =
N1⎝
i=1

N2⎝
j=1

1
q
|ui,j − fi,j |q + ϕ1|⊂hu − pi,j |i,j + ϕ0|Eh(p)|i,j ,

one can observe a quick decrease within the first 100 iterations which then
becomes slower (see Fig. 4). Note that the method is non-monotone which can
also seen in the behavior of J . However, in the denoising examples, this was only
noticeable in the first few iterations.
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Fig. 4. Convergence behavior for the L2-TGV2 (left) and the L1-TGV2 (right) denois-
ing examples of Figs. 2 and 3, respectively.

Remark 3. In order to preserve more details, one approach is to introduce a spa-
tially dependent parameter which serves as a weight for the L2-discrepancy, i.e.,

F (u) =
1
2

∫
Ω

λ|u − f |2 dx, λ → L∈(Γ).

An appropriate choice of λ then leads, in conjunction with TV-regularization, to
denoised images which indeed admit more details [11]. Recently, this framework
has been extended to TGV2

α-regularization which yields further improvements,
see [2] for details.

4.2 Deblurring

Next, let us discuss the deblurring of a multichannel image. We model this
problem as the general linear inverse problem of finding a solution to

Ku = f

where, for some p → (1,◦), p ≤ d/(d − 1) the operator K : Lp(Γ,RL) ∪ H is a
linear and continuous mapping into a Hilbert space H in which the data f → H
is also given. We like to regularize this generally ill-posed problem with TGV2

α

and solve the associated Tikhonov minimization problem, i.e.,

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u), F (u) =

∈Ku − f∈2H
2

. (18)

This problem turns out to have a solution as soon as K is injective on ker(TGV2
α):

Let us assume that

Ku = 0 for some u → ker(TGV2
α) ⇒ u = 0,

which is, as ker(TGV2
α) is finite-dimensional, equivalent to the existence of a c >

0 such that ∈Ku∈H ∃ c∈u∈p for each u → ker(TGV2
α). For an arbitrary projection

operator P : Lp(Γ,RL) ∪ ker(TGV2
α) and a sequence {un} in Lp(Γ,RL) such

that ∈Pun∈p ∪ ◦ and {∈(id − P )un∈p} is bounded, we then have

∈Ku − f∈H ∃ ∈KPun∈H − ∈K(id − P )un∈H − ∈f∈H ∃ c∈Pun∈H − M
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for some M > 0 and the above c > 0. Hence F (un) ∪ ◦ as n ∪ ◦. Together
with the observation that F is non-negative, proper, convex, continuous (and
hence, lower semi-continuous), this implies by Theorem 1 that there is always a
solution to (18).

In the concrete case of deblurring, we model the forward operator K as the
convolution with a kernel k → L∈(Rd) with compact support Γ0. The data
space is H = L2(Γ′,RL) where Γ′ is a non-empty open set which models the
region on which the blurred image is measured. We assume that only data on Γ
is convolved which is satisfied if

Γ′ − Γ0 = {x − y
∣∣ x → Γ′, y → Γ0} ≤ Γ.

Furthermore, let k ∃ 0 almost everywhere and such that
⎫

Ω0
k dx = 1. The

operator K is then given by

Ku = u ∗ k, (u ∗ k)(x) =
∫

Ω0

u(x − y)k(y) dy for x → Γ′. (19)

Note that ∈u ∗ k∈∈ ≤ ∈u∈1∈k∈∈, so K is in particular continuous between
Lp(Γ,RL) and H. It remains to verify that K is injective on ker(TGV2

α). For
this purpose, let u(x) = Ax + b for A → RL×d, b → RL such that Ku = 0. Then,
for m → Rd, mi =

⎫
Ω0

yi dy, we have
∫

Ω0

(
A(x − y) + b

)
k(y) dy = Ax + (b − Am) for all x → Γ′

meaning that Ku is an affine linear function on Γ′. As Γ′ contains a non-empty
open set, Ku = 0 is only possible if A = 0 and b − Am = b = 0, implying
that u = 0. This shows the injectivity, hence (18) can always be solved for the
blurring operator according to (19).

Let us now discuss the numerical realization of the solution of (18) in the
framework of Sect. 3. Regarding the general problem, we assume that K can
be discretized to a Kh : U ∪ Λ where the Hilbert space Λ corresponds to the
discretized data space H. The discrepancy functional for discrete data f → Λ
then reads as

Fh(u) =
∈Khu − f∈2Λ

2
.

To describe Λ and Kh for the blurring operator (19), let k → R(2M+1)×(2M+1) a
discrete convolution kernel which is indexed through −M, . . . , M . The data can
then be measured on the set

Γ′
h = {(i, j)

∣∣ i, j → N,M + 1 ≤ i ≤ N1 − M, M + 1 ≤ j ≤ N2 − M}.

Consequently, we let Λ = {Γh ∪ R}L such that the discrete convolution oper-
ator becomes

Khu = u ∗ k, (u ∗ k)l
i,j =

M⎝
i′=−M

M⎝
j′=−M

ul
i−i′,j−j′ki′,j′ for (i, j) → Γ′

h.
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One can easily see that if k is normalized, i.e., k ∃ 0 componentwise and⎩M
i=−M

⎩M
j=−M ki,j = 1, then ∈Kh∈ ≤ 1.

There is now the choice whether to take Algorithm 1 or 2 for the numerical
solution. Let us shortly discuss Algorithm 1. Here, one has again to evaluate the
resolvent operator which corresponds to

u∗ = (id + τδFh)−1(ū) ⇔ u∗ = (id + τK∗
hKh)−1(ū + τK∗

hf).

Hence, the iteration step for un+1 reads as

un+1 = (id + τK∗
hKh)−1

(
un + τ(divhvn+1 + K∗

hf)
)

which involves the solution of a linear equation. As this might be quite costly,
in particular if it has to be done iteratively and the evaluation of Kh or K∗

h is
expensive, we also discuss Algorithm 2 which, as it turns out, does not involve
such an inversion step.

It bases on the observation that Fh can be written as

Fh(u) = max
λ∈Λ

〈Khu, λ〉Λ −
⎠∈λ∈2Λ

2
+ 〈f, λ〉Λ

⎧

which is of the form (13) with ⎟Fh(u) = 0 and Gh(λ) = 1
2∈λ∈2Λ + 〈f, λ〉Λ. The

resolvent associated with the subgradient of ⎟Fh again turns out to be the identity
while

λ∗ = (id + σδGh)−1(λ̄) ⇔ λ∗ =
λ̄ − σf

1 + σ
.

Hence, the iteration steps for λ and u in Algorithm 2 read as
⎭


λn+1 =
λn + σ(Khūn − f)

1 + σ
,

un+1 = un + τ(divhvn+1 − K∗
hλn+1).

This variant provides an alternative in which only one evaluation of Kh and
K∗

h is necessary in each iteration step. However, one needs to have an estimate
for ∈Kh∈ in order to choose step-sizes σ and τ such that convergence can be
ensured. In the case of the discrete convolution operator introduced above, one
obtains again the estimate ∈Kh∈ ≤ 1 for normalized kernels.

As in Subsect. 4.1, this method has again been implemented in Python using
PyCUDA. Computations have been performed to deconvolve a blurred image
which has additionally been contaminated by noise. The same configuration as
for the denoising experiments has been used, the outcome as well as the details
are shown in Fig. 5. Again, one can observe the ability of the TGV2-model to
nicely resolve smooth regions as well as sharp edges. One can also observe that
the computation time is only slightly higher compared to TV-based deblurring.
This is due to the fact that most of the time is spent in evaluating the forward
and adjoint operator Kh and K∗

h, respectively.
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Fig. 5. Example for variational deblurring according to (18) with L2 data fitting term
and TV/TGV2 image model. Top: The original image [15] (left, 512×384 pixels, RGB)
and a blurred, noise-perturbed version (right, out-of-focus kernel with 15 pixels diame-
ter, additive Gaussian noise, standard deviation σ = 0.05). Bottom: Result of TV-based
deblurring (left, PSNR=31.45 dB, 1000 iterations, computation time: 45.63 s), and
TGV2-based deblurring (right, PSNR=32.05 dB, 1000 iterations, computation time:
46.72 s).

4.3 Zooming

The following deals with the problem of recovering an image from a projected
version which can be interpreted as a zooming problem. In order to describe
the setting, let p → (1,◦) with p ≤ d/(d − 1) and Z ≤ Lp(Γ,RL) be a closed
subspace which is modelling images at a low-resolution in which a low-resolution
image f → Z is given. Furthermore, let the operator PZ : Lp(Γ,RL) ∪ Z be
a continuous projection onto Z which is modelling the way the resolution is
reduced. The corresponding zooming problem then reads as

min
u∈Lp(Ω,RL)

F (u) + TGV2
α(u), F (u) = I{0}(PZu − f). (20)

Let us discuss existence of solutions. As PZ is continuous and rg(PZ) = Z, it
is obvious that the indicator functional F is non-negative, proper, convex and



Recovering Piecewise Smooth Multichannel Images 69

lower semi-continuous. To establish the desired coercivity property, we need the
assumption

ker(PZ) ∀ ker(TGV2
α) = {0}.

Note that this implies that PZ is injective on ker(TGV2
α) as PZu = 0 and

u → ker(TGV2
α) implies u = 0. Now, if P : Lp(Γ,RL) ∪ ker(TGV2

α) is a linear,
continuous projection, then there is a constant c > 0 such that ∈PZPu∈p ∃
c∈Pu∈p for each u → Lp(Γ,RL). Thus, for each sequence {un} in Lp(Γ,RL)
such that ∈Pun∈p ∪ ◦ and {∈(id − P )un∈p} is bounded, it is impossible that
PZun − f = 0 for each n: If this is the case, then

PZPun + PZ(id − P )un = PZun = f

and consequently,

c∈Pun∈p ≤ ∈PZPun∈p = ∈PZ(P − id)un + f∈p ≤ C + ∈f∈p

which implies that ∈Pun∈p is bounded, a contradiction. Hence, F (un) ∪ ◦ as
this argumentation also applies to each subsequence. This establishes (10) and,
by Theorem 1, existence of a minimizer.

Example 2. Let Γ = (0,M1) × (0,M2) with M1,M2 ∃ 2. Denote by Qi,j =
(i − 1, i) × (j − 1, j) and set

Z =
{M1⎝

i=1

M2⎝
j=1

ci,jηQi,j

∣∣∣ ci,j → RL
}

which is modelling N × M pixel images. A projection onto Z is then given by

PZu =
M1⎝
i=1

M2⎝
j=1

⎠∫
Qi,j

u dx
⎧
ηQi,j

.

A u → ker(TGV2
α) can be expressed by u(x) = a1x1 + a2x2 + b where a1, a2, b →

RL. We then see that

ci,j =
∫

Qi,j

u dx =
2i − 1

2
a1 +

2j − 1
2

a2 + b

so a1 = c2,1 − c1,1, a2 = c1,2 − c1,1 and b = 2c1,1 − 1
2 (c1,2 + c2,1). Hence, if

PZu = 0, then c1,1 = c1,2 = c2,2 = 0 and consequently, u = 0. This shows
ker(PZ) ∀ ker(TGV2

α) = {0}, thus a solution for the zooming problem (20) with
averaging over squares exists.

Example 3. Let Γ = (0, π)2 and M1,M2 ∃ 2 and denote by

zi,j(x) = ζi(x1)ζj(x2), ζi(x) =

⎭


√
1
π

if i = 0,√
2
π

cos(ix) if i > 0,
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which is corresponding to the cosine orthonormal basis of L2(Γ). The space Z
and a projection PZ is then given by

Z =
{M1−1⎝

i=0

M2−1⎝
j=0

ci,jzi,j

∣∣∣ ci,j → RL
}

, PZu =
M1−1⎝
i=0

M2−1⎝
j=0

⎠∫
Ω

zi,ju dx
⎧
zi,j .

For a u → ker(TGV2
α), i.e., u(x) = a1x1 + a2x2 + b, a1, a2, b → RL we see that

c0,0 =
π2

2
(a1 + a2) + πb, c1,0 = −4a1, c0,1 = −4a2

which implies that if PZu = 0, then also u = 0. Again, we thus have ker(PZ) ∀
ker(TGV2

α) = {0} and consequently, a minimizer for the zooming problem (20)
with cosine low-pass filter exists.

For a numerical realization, we have to discretize the space Z. In case of
Example 3, a good choice is the corresponding two-dimensional discrete cosine
basis. For a discrete low-pass image f → (RM1×M2)L, 2 ≤ M1 ≤ N1, 2 ≤ M2 ≤
N2, and with DCT denoting the associated parallel discrete cosine transform
operator, the discrete functional Fh reads as

Fh(u) =
⎬

0 if DCT(u)i,j = fi,j for 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
◦ else.

Consequently, since DCT is an orthonormal mapping, the resolvent reads as

(id + τδFh)−1(u) = DCT−1(⎟c),
⎟ci,j =

⎬
fi,j if 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
DCT(u)i,j else.

The iteration step which computes un+1 in Algorithm 1 then reads as
⎭


cn+1 = DCT(un + τdivhvn+1),

⎟cn+1
i,j =

⎬
fi,j for 0 ≤ i ≤ M1 − 1, 0 ≤ j ≤ M2 − 1,
cn+1
i,j else,

un+1 = DCT−1(⎟cn+1).

This procedure was again implemented in Python/PyCUDA and tested on
the same machine as for the experiments in the previous subsections. The out-
come of a zooming experiment with the factor 8 can be seen in Fig. 6. Compared
to TV-based zooming, it is interesting to observe that neither models lead to
pronounced staircasing artifacts. However, one sees that the TGV2 model nev-
ertheless leads to a solution which appears less blocky.

4.4 Dequantization

Although images are often modelled as functions which admit continuous values,
their digital representation is often quantized to a finite number of bins. The most
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Fig. 6. Example for variational zooming with the TV/TGV2 image model according
to 4.3. Top: The original image [17] (left, 512 × 512 pixels, RGB) and a low-resolution
representation (right, 64 × 64 pixels, DCT low-pass coefficients). Bottom: Result of
TV-based zooming (left, PSNR=36.60 dB, 2000 iterations, computation time: 4.44 s),
and TGV2-based zooming (right, PSNR=37.30 dB, 2000 iterations, computation time:
7.46 s). Images licenced under CreativeCommons-by-sa-2.0 (http://creativecommons.
org/licenses/by-sa/2.0/).

common case is the 256-level representation which corresponds to 8 bits per pixel
and color channel. In the case where significantly less bins are available, the
image representing the pixelwise centers of the respective bins appears blocky
and unnatural. Hence, one is interested in restoring a more natural image from
a quantized image. We assume that each bin has the form

[a, b] = {c → RL
∣∣ al ≤ cl ≤ bl, l = 1, . . . , L} for some a, b → RL.

The given data can then be represented by the respective lower and upper bound
functions flower, fupper → Lp(Γ,RL) for some p → (1,◦), p ≤ d/(d − 1) which
have to satisfy flower ≤ fupper (componentwise) almost everywhere in Γ. The
feasible images are then given by u → Lp(Γ,RL) such that flower ≤ u ≤ fupper
almost everywhere in Γ. As the standard dequantization ⎟f = 1

2 (flower+fupper) is

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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the image which is most probable if for almost every pixel x → Γ, the values are
uniformly distributed in [flower(x), fupper(x)], we like to minimize TGV2

α under
the above constraint penalizing also the distance to the standard dequantization.
This results in the minimization problem⎭


min

u∈Lp(Ω,RL)
F (u) + TGV2

α(u),

F (u) = I{flower∞u∞fupper a.e.}(u) +
1
p

∫
Ω

|u − ⎟f |p≤ dx.
(21)

The functional F : Lp(Γ,RL) ∪ (−◦,◦] can easily seen to be non-negative,
proper, convex and lower semi-continuous, see also Subsect. 4.4. Moreover, as
we have F (u) ∃ 1

p∈u − ⎟f∈p
p for each u, the proof of (10) in Subsect. 4.1 directly

leads to (10) for the above F and, consequently, to the existence of minimizers
by virtue of Theorem 1.

The functional F can be discretized in a straightforward way:

Fh(u) =

⎭


1
p

N1⎝
i=1

N2⎝
j=1

|ui,j − ⎟fi,j |
p

≤ if (flower) ≤ u ≤ (fupper),

◦ else.

The associated resolvent operator is explicitly computable in case | · |≤ is the
Euclidean norm and q = 2:

(id + τδFh)−1(ū) = min
⎠
fupper,max

⎠
flower,

ū + τ ⎟f
1 + τ

⎧⎧
,

hence, Algorithm 1 can be employed yielding an iteration step for un+1 which
reads as

un+1 = min
⎠
fupper,max

⎠
flower,

ū + τ(divhvn+1 + ⎟f)
1 + τ

⎧⎧
.

This algorithm has again been implemented. A numerical test on an image show-
ing an oak leaf is depicted in Fig. 7. One observes that the TV-based dequantiza-
tion coincides in essential parts with either flower or fupper which cause the result
to appear blocky. In contrast to that, the TGV2

α-based model yields smooth tran-
sitions where necessary. In both cases, however, some of the small details in the
leaf are lost.

Remark 4. Let us remark that the need for appropriate dequantization also
arises in artifact-free JPEG decompression. In this situation, the blockwise DCT-
coefficients are only given in a quantized form. This problem can also be solved
with TV and TGV2

α regularization, see [3,6] for details.

4.5 Compressive Imaging

The last problem we like to discuss is the compressive imaging or ‘single-pixel
camera’ reconstruction of a one-channel image [12], a problem which is already
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Fig. 7. Example for variational dequantization with the TV/TGV2 image model
according to (21). Top: The original image [32] (left, 512 × 512 pixels, RGB)
and a quantized representation (right, 6 bins per color channel). Bottom: Result of
TV-based dequantization (left, PSNR=29.59 dB, 2000 iterations, computation time:
1.88 s), and TGV2-based dequantization (right, PSNR=29.87 dB, 2000 iterations, com-
putation time: 4.76 s). Images licenced under CreativeCommons-by-sa-2.0 (http://
creativecommons.org/licenses/by-sa/2.0/).

set in finite dimensions. Here, an image is not observed directly but only the
accumulated gray values over random pixel patterns are measured. One essen-
tial point is that the number of measurements is significantly smaller than the
number of pixels. For a discrete image of size N1 × N2, let M � N1N2 and
f → RM represent the data. For each 1 ≤ m ≤ M , let km → {0, 1}N1×N2 be
the random pixel pattern which is associated with the m-th measurement. The
sought image u → U then obeys

Ku = f, where (Ku)m =
N1⎝
i=1

N2⎝
j=1

km
i,jui,j , 1 ≤ m ≤ M.

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
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Fig. 8. Example for TV/TGV2 compressive imaging reconstruction. Top: TV-based
reconstruction of a 64 × 64 image from 18.75 %, 9.375 %, 6.25 % and 4.6875 % of the
data (from left to right). Bottom: TGV2-based reconstruction obtained from the same
data.

As this constraint is highly ambiguous, the compressive imaging approach assumes
that the image u is sparse in a certain representation which is usually translated
into the discrete total variation TV(u) being small. A way to reconstruct u from
f is then to solve

min
u∈U

TV(u) + Fh(u), Fh(u) = I{0}(Ku − f).

We like to test the TGV2
α-model for this application and propose to solve, numer-

ically, the problem

min
u∈U

TGV2
α(u) + Fh(u), Fh(u) = I{0}(Ku − f). (22)

For this purpose, we rewrite Fh according to (13):

Fh(u) = sup
λ∈Λ

〈Ku, λ〉Λ − Gh(λ), Gh(u) = 〈f, λ〉Λ

where Λ = RM . Hence, one can employ Algorithm 2 where the iteration steps
for λn+1 and un+1 reads as

⎬
λn+1 = λn + σ(Kūn − f),
un+1 = un + τ(divhvn+1 − K∗λn+1).
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The norm of K can be estimated in terms of the Frobenius norm

∈K∈ ≤ ∈K∈F =
⎠ M⎝

m=1

|km|22
⎧1/2

which is easily computable from the given random pixel patterns km, 1 ≤ m ≤
M .

This method has also been implemented and tested. The utilized test data
was the compressed sensing camera ‘mug’ data set from Rice’s single-pixel cam-
era project [26]. In Fig. 8, the outcome of the computations is depicted. Com-
paring the results for TV and TGV2, one can see a noticeable increase in visual
quality as smooth regions are resolved better. Even a low number of samples,
rough features of the object is still perceptible in the TGV2

α reconstruction. One
has to note, however, that the current method is only suitable to study the effect
of the TGV2-model as it takes an extremely large number of iteration and, con-
sequently, much computation time, in order to obtain the results. The reason
seems to lie in the ill-posedness of the inversion of K, for which Algorithm 2 only
performs a Landweber-type iteration (‘perturbed’ by the TGV2

α regularization).
In this case, it might be more efficient to utilize Algorithm 1.

5 Conclusions

The framework of total generalized variation, which already constitutes a convex
model for piecewise smooth functions, can easily be extended to the multichannel
case. Compared to the scalar case, the same results hold with respect to basic
properties and existence of solutions for associated convex variational problems.
Furthermore, these problems can be discretized and solved numerically in a
unified way by realizing a primal-dual method for associated convex-concave
saddle point problems. This numerical framework is general enough to devise
efficient algorithms for the solution of common low-level image processing tasks
such as denoising, deblurring, zooming and dequantization. These algorithms can
be implemented, without greater effort, in parallel architecture such as GPUs.
Numerical experiments confirm that the multichannel version of TGV2

α is a
suitable model for natural-looking color images and that incorporating it in
variational problems leads to visually improved results in comparison to the
total-variation counterpart. Moreover, the proof-of-concept application of the
primal-dual algorithm to the single-pixel camera compressive imaging framework
indicates that TGV2

α might also be a suitable model for compressed sensing.
However, due to the ill-posedness in this situation, it seems that more effort has
to be made in order to solve the reconstruction problem efficiently. This could
be a topic of further studies.
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ond ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258
(1965)

31. Steve-h@Flickr: Wet green smiles. Licenced under CreativeCommons-by-
sa-2.0 (http://creativecommons.org/licenses/by-sa/2.0/). http://www.flickr.com/
photos/sbh/3859041020 (2009)

32. Steve-h@Flickr: Oak leaves and bokeh. Licenced under CreativeCommons-by-
sa-2.0 (http://creativecommons.org/licenses/by-sa/2.0/). http://www.flickr.com/
photos/sbh/6802942537 (2012)

33. Temam, R.: Mathematical Problems in Plasticity. Bordas, Paris (1985)
34. The Scipy Community: Scientific tools for Python. http://www.scipy.org/
35. Vese, L.: A study in the BV space of a denoising-deblurring variational problem.

Appl. Math. Opt. 44, 131–161 (2001)
36. Ring, W.: Structural properties of solutions to total variation regularization prob-

lems. ESAIM: Math. Model. Num. 34(4), 799–810 (2000)
37. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving

variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592
(2009)

http://www.nvidia.com/getcuda
http://www.python.org/
http://www.python.org/
http://dsp.rice.edu/cscamera
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://www.flickr.com/photos/schristia/4057490235
http://www.flickr.com/photos/schristia/4057490235
http://creativecommons.org/licenses/by-sa/2.0/
http://www.flickr.com/photos/sbh/3859041020
http://www.flickr.com/photos/sbh/3859041020
http://creativecommons.org/licenses/by-sa/2.0/
http://www.flickr.com/photos/sbh/6802942537
http://www.flickr.com/photos/sbh/6802942537
http://www.scipy.org/


Half-Quadratic Algorithm for λp-λq Problems
with Applications to TV-λ1 Image Restoration

and Compressive Sensing

Raymond H. Chan1(B) and Hai-Xia Liang2(B)

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong, People’s Republic of China

rchan@math.cuhk.edu.hk
2 Mathematics and Physics Teaching Centre, Xi’an Jiaotong-Liverpool University,

No. 111 Ren’ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province,
People’s Republic of China
haixia.liang@xjtlu.edu.cn

Abstract. In this paper, we consider the ∂p-∂q minimization problem
with 0 < p, q ∈ 2. The problem has been studied extensively in image
restoration and compressive sensing. In the paper, we first extend the
half-quadratic algorithm from ∂1-norm to ∂p-norm with 0 < p < 2. Based
on this, we develop a half-quadratic algorithm to solve the ∂p-∂q problem.
We prove that our algorithm is indeed a majorize-minimize approach.
From that we derive some convergence results of our algorithm, e.g. the
objective function value is monotonically decreasing and convergent. We
apply the proposed approach to TV-∂1 image restoration and compressive
sensing in magnetic resonance (MR) imaging applications. The numerical
results show that our algorithm is fast and efficient in restoring blurred
images that are corrupted by impulse noise, and also in reconstructing
MR images from very few k-space data.

Keywords: ∂p regularization · Half-quadratic · Majorize-minimize algo-
rithm · Impulse noise · Compressive sensing · Magnetic resonance imaging

1 Introduction

In this paper, we consider the following λp-λq minimization problem

min
u

{Γ

p
⊂πu⊂p

p +
1
q
⊂Au − f⊂q

q

}
(1)

where 0 < p, q → 2 and u ∈ R
n is an image represented by a vector by con-

catenating the columns. Here, π can be a sparsifying operator such as a wavelet
transform or a regularization operator such as the discrete gradient operator;
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and A can be a sampling operator or a blurring operator. Problem (1) has been
studied extensively in image processing and compressive sensing. For example,
if p = 1, q = 2, and π is the discrete gradient operator, then (1) is the TV-
λ2 minimization problem. It has been successfully applied to image restoration
[20,37,39] because of its good property in preserving edges. TV-λ1 model (i.e.
q = 1) has also been successfully applied to applications such as impulse noise
removal [26,41], image cartoon-texture decomposition [45], feature selection [45],
multiscale decomposition [46], and computer vision [10].

When A is a sampling operator, model (1) with 0 → p → 1 and q = 2 has
received a lot of attention lately because of the introduction of compressive sens-
ing techniques (⊂u⊂0 is defined to be the number of nonzero entries in u). The
techniques allow high resolution images and signals to be reconstructed from
a small amount of data [6,7,17]. There, the linear constrained minimization
problems are considered. Unfortunately, as p = 0, the constrained minimiza-
tion problem is NP-hard [1]. For this reason, different approaches are used to
approximate the λ0-norm [3,14,23,29,30,34], or alternatively one solves the λ1-
norm [5,20,32,47] or the non-convex λp-norm [12–14] problem with 0 < p < 1.
The application of compressive sensing with p = 1 and q = 2 to magnetic res-
onance (MR) image reconstruction can be found in [7,27]. There it was shown
that perfect reconstruction of the Shepp-Logam phantom is possible from 22
radial lines or 9% of the k-space data. For real images which are less sparse
than the synthetic phantoms, one can obtain improved results by having both
a wavelet transform and a discrete gradient in the objective function. However,
the λ1-norm regularized model can not get good results from fewer k-space data.
See [27].

Problem (1) with 0 < p < 1 is a non-convex optimization problem. Theoret-
ical work [15,38] has justified the non-convex approach as it guarantees perfect
reconstruction under a less restrictive condition than that would be needed by
λ1 minimization. There are quite a few algorithms for solving the non-convex
problem, see [4,12–14,35]. The numerical results in [12,13] show that the per-
fect MR image can be recovered from 10 radial lines (i.e. 3.8 % of the k-space
data) for some 0 < p < 1. In [12], a fast algorithm based on the p-shrinkage
reduces the number of lines further to 9. For more details on p-shrinkage, one
may consult [43] where the 1/2-theresholding algorithm was studied. In [42], the
author analyzed the effectiveness of problem (1) in recovering sparse signals. The
results showed that if p ∈ [1/2, 1), then the smaller the p is, the sparser the λp-
norm regularization solution will be; and if p ∈ (0, 1/2], there are no significant
differences in the sparsity of the solution.

In this paper, we propose a half-quadratic algorithm (HQA) to solve (1)
for 0 < p, q → 2. We prove that our algorithm is indeed a majorize-minimize
algorithm [11,24,25] for solving (1) and from that some convergence results can
be obtained immediately. For example, we show that the objective function value
is monotonically decreasing and convergent. We also give the convergence rate of
the method for 1 → p, q → 2. We test our algorithms on two applications: (i) TV-
λ1 minimization problem, and (ii) non-convex λp-λ2 compressive sensing. Problem
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(i) is for restoring blurred images that are corrupted by impulse noise, and our
algorithm can reach high SNR value in less CPU time than the augmented-
Lagrangian method (ALM) in [41] and the fast total variation deconvolution
method (FTVDM) in [44]. Problem (ii) is for reconstructing MR images from few
k-space data, and our algorithm can get better results with less computational
cost than the p-shrinkage algorithm in [12].

The outline of the paper is as follows: In Sect. 2, we first derive our HQA
for model (1) and then adapt it to solve the TV-λ1 minimization problem and
non-convex λp-λ2 compressive sensing problem. In Sect. 3, we prove that our
HQA is indeed a majorize-minimize algorithm, and hence we derive some con-
vergence results for the algorithm. Comparison with the ALM, FTVDM and
the p-shrinkage algorithm [12] are given in Sect. 4. Finally Sect. 5 is on some
concluding remarks.

2 The Half-Quadratic Approach for λp-λq Minimization
Problem

The half-quadratic regularization approach has been used in image processing
[11,19]. In [31], the authors showed the equivalence of the HQ minimization and
the gradient linearization iterations. The HQ technique is based on the fact that,
if 0 �= t ∈ R, then

|t| = min
v>0

{vt2 +
1
4v

} (2)

and the minimum value is reached at v = 1
2|t| . Note that the function vt2+1/(4v)

is quadratic in t but not in v and hence the name half-quadratic. In this section,
we first study the general form of (2) for 0 < p < 2. Then we derive our HQA
to solve (1) and adapt it to the TV-λ1 minimization problem and compressive
sensing.

2.1 The Half-Quadratic Algorithm

The following lemma shows us the corresponding formula of (2) for | · |p with
0 < p < 2.

Lemma 1. For any 0 < p < 2, if 0 �= t ∈ R, then there exist positive constants
∂ and χ such that

|t|p = min
v>0

{
vt2 +

1
χvΓ

}
. (3)

Proof: Let us first assume that ∂, χ > 0 and define

f(v, t) := vt2 +
1

χvΓ
. (4)
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Then f(v, t) is convex with respect to v > 0 for any fixed t �= 0. In addition,
f(v, t) ◦ ∪ as either v ◦ 0 or v ◦ ∪. The minimizer of f(v, t) with respect to
v is therefore given by solving f ∈

v(v, t) = 0 and is equal to

v∗ =
(

∂

χt2

) 1
1+α

. (5)

Substituting (5) into (4), the minimum value is

f(v∗, t) =
[(∂

χ

) 1
1+α

+
1
χ

(
χ

∂

) α
1+α ]

t
2α

1+α .

Since we want the minimum value to be |t|p for any t �= 0, we set



2∂/(1 + ∂) = p,⎛
Γ
∂

⎝ 1
1+α

+ 1
∂

⎛
∂
Γ

⎝ α
1+α

= 1.

Solving the system for ∂ and χ, we have

∂ =
p

2 − p
and χ =

2
2

2−p

(2 − p) · p
p

2−p

. (6)

Clearly both ∂ and χ are positive for any fixed 0 < p < 2. �

Remarks

(a) As an example, for p = 1/2, we have χ = 28/3/3 and ∂ = 1/3. For p = 1, we
have ∂ = 1 and χ = 4, and hence (3) reduces to (2). Note that we would like
to have ∂ > 0 so that the functional f(v, t) is convex with respect to v for
any fixed t �= 0. By (5) and (6), we have

v∗ =
p

2
|t|p−2. (7)

(b) From the above lemma, we know that for fixed ∂, χ > 0 of (6) and any t �= 0,
the minimum of (3) is reached at the stationary point of f(v, t) w.r.t v, which
is an interior point of the open, convex, feasible set R

+.

Next we apply (3) to solve (1). To simplify the discussions, we first consider
the case where 0 < p, q < 2, and leave the case where p and/or q = 2 later.

Case 1: 0 < p, q < 2. Notice that Lemma 1 holds only for t �= 0 as negative
power of |t| appears in v∗, see (7). Hence in order to apply (3), we need to smooth
(1) first. In the following, we denote |ψ|λ :=

⎞
ψ2 + ϕ for any ψ ∈ R and ϕ > 0.

The smoothed λp-λq problem of (1) is

min
u

{Γ

p
⊂πu⊂p

p,θ +
1
q
⊂Au − f⊂q

q,α

}
=: min

u
{κθ,α(u)} (8)
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where ⊂πu⊂p
p,θ :=

⎠n
i=1 |πiu|pθ and ⊂Au − f⊂q

q,α =:
⎠n

i=1 |Aiu − fi|qα , with ξ
and γ being small positive numbers, and πi and Ai are the ith rows of π and A
respectively. Applying (3) to (8), problem (8) becomes

min
u

⎧
n⎨

i=1

⎩
Γ

p
min
vi>0

(
vi|πiu|2θ +

1
χpv

Γp

i

)
+

1
q

min
wi>0

(
wi|Aiu − fi|2α +

1
χqw

Γq

i

)⎫⎬

= min
u,v>0,w>0

⎧
n⎨

i=1

⎩
Γ

p

(
vi|πiu|2θ +

1
χpv

Γp

i

)
+

1
q

(
wi|Aiu − fi|2α +

1
χqw

Γq

i

)⎫⎬

=: min
u,v>0,w>0

{L(u,v,w)}, (9)

where v,w > 0 mean that all the components of v,w are greater than 0. Here
χi and ∂i, i = p, q are scalars given by (6).

To solve (9), we apply the alternating minimization procedure, namely,

vk+1 = arg min
v>0

L(uk,v,wk), (10)

wk+1 = arg min
w>0

L(uk,vk+1,w), (11)

uk+1 = arg min
u

L(u,vk+1,wk+1). (12)

By (7), we know that (10) and (11) have explicit component minimizers

vk+1
i =

p

2
|πiuk|p−2

θ and wk+1
i =

q

2
|Aiuk − fi|q−2

α . (13)

Note that L(u,vk+1,wk+1) is continuously differentiable in u. Hence uk+1 in
(12) is the solution of

0 = ∃uL(u,vk+1,wk+1) = Γπ�Dθ(uk)πu + A�Dα(uk)(Au − f), (14)

where Dθ(uk) and Dα(uk) are diagonal matrices with their ith diagonal entries
being

2
p
vk+1

i = |πiuk|p−2
θ and

2
q
wk+1

i = |Aiuk − fi|q−2
α (15)

respectively. Equation (14) provides us an iterative scheme for finding the mini-
mizer of (8).

Case 2: p and/or q = 2. In that case, the corresponding term in (1) is quadratic
and differentiable. So there is no need to apply the half-quadratic technique (3)
to the term. However, one can easily check by differentiation of (1) that (14)
and (15) are still valid. More precisely, if p = 2, then differentiation of the first
term in (1) gives Γπ�πu. But by (15), Dθ(uk) ≤ I, the identity matrix and
hence the first term of (14) also reduces to Γπ�πu. Similarly, if q = 2, then
Dα(uk) ≤ I and (14) still holds. In particular, if p = q = 2, then (14) reduces
to the least-squares problem as expected, and the minimizer u can be obtained
in one iteration. In the following discussions, we will exclude this trivial case
p = q = 2.
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Thus combining Case 1 and Case 2, we see that (14) holds for 0 < p, q → 2. We
summarize our half-quadratic algorithm (HQA) for the smoothed λp-λq problem
(8) below:

(1) Initialize u0;
(2) For l = 0, 1, · · · until convergence, find uk+1 by solving (cf (14))

⎛
Γπ�Dθ(uk)π + A�Dα(uk)A

⎝
u = A�Dα(uk)f , (16)

where Dθ(·) and Dα(·) are diagonal matrices given in (15).

To find the solution to the λp-λq problem (1), we can use a continuation
method and apply HQA to a sequence of {ξl, γl} going to zero. We will dis-
cuss the implementation in more details in the section on numerical tests, see
Algorithm 1 in Sect. 4.

2.2 Half-Quadratic Algorithm for TV-λ1 and Compressive Sensing

Let us consider HQA (16) for two specific examples: TV-λ1 image restoration
and compressive sensing. The TV-λ1 minimization problem is of the form:

min
u

{
Γ⊂∃u⊂1 + ⊂Au − f⊂1

}
, (17)

where ⊂∃u⊂1 :=
⎠n

i=1

⎞
[(G1)iu]2 + [(G2)iu]2 with (Gj)i representing the ith

row of the finite difference operator in the xj-coordinate. The smoothed version
of (17) is

min
u

⎧
n⎨

i=1

[Γ|∃ui|θ + |Aiu − fi|α ]

⎬
, (18)

where |∃ui|θ :=
⎞

[(G1)iu]2 + [(G2)iu]2 + ξ and ξ, γ ◦ 0. Letting p = q = 1,
π = G in (15) and (16), we see that (16) should be replaced by:

{
Γ

2⎨
j=1

[G�
j Dθ(uk)Gj ] + A�Dα(uk)A

}
u = A�Dα(uk)f , (19)

where Dθ(uk) and Dα(uk) are diagonal matrices with their ith diagonal entries
being |∃uk

i |−1
θ and |Aiuk − fi|−1

α respectively.
Next we consider HQA for MR image reconstruction problem. In [27], a

regularization term combining a discrete gradient ∃ and an orthogonal wavelet
W [8] is considered for 0 < p → 1:

min
u

{
⊂∃u⊂p

p + δ⊂Wu⊂p
p : RFu = f

}
. (20)

Here R is a selection matrix (a diagonal matrix) and F is the Fourier transform.
As mentioned in [12], it is sufficient to use δ = 1 in (20); and for gradient-sparse
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images, we can simply take δ = 0. Problem (20) is related to the minimization
problem

min
u

{Γ

p

⎛
⊂∃u⊂p

p + δ⊂Wu⊂p
p

⎝
+

1
2
⊂RFu − f⊂22

}
, (21)

where Γ is the Lagrange multiplier. As before, since the data fitting term is
quadratic, we keep it intact, and we smooth only the p-norm terms. Hence we
have the following smoothed problem:

min
u

{Γ

p

n⎨
i=1

⎛
|∃ui|pθ + δ|Wiu|pα

⎝
+

1
2
⊂RFu − f⊂22

}
,

with ξ, γ ◦ 0. Correspondingly, Eq. (16) should be replaced by:

[
Γ
⎛ 2⎨

j=1

[G�
j Dθ(uk)Gj ] + δW�Dα(uk)W

⎝
+ F ∗RF

]
u = F ∗Rf , (22)

where F ∗ is inverse Fourier transform, Dθ(uk) and Dα(uk) are diagonal matrices
with their ith diagonal entries being |∃uk

i |p−2
θ and |Wiuk|p−2

α respectively.

3 Convergence Analysis

In this section, we analyze the convergence of the HQA (16) based on the con-
vergence property of the majorize-minimize algorithm (MMA) in [11,24,25,40]
for fixed ξ, γ. We first show that κθ,α(uk) is monotonically decreasing and con-
vergent for 0 < p, q → 2. Then we show that uk is convergent and linearly
convergent for 1 → p, q → 2.

3.1 Convergence of Φβ,γ(uk) for 0 < p, q ≤ 2

The MM optimization technique [11,24,25] is to solve a minimization problem
min
u

κθ,α(u) by

uk+1 = arg min
u

{Q(u,uk)}, (23)

where Q(u,uk), called a tangent majorant function of κθ,α(u) at uk, must satisfy

Q(u,uk) ∀ κθ,α(u), ≈ u ∈ R
n, (24)

Q(u,uk) = κθ,α(u), at u = uk, (25)
∃1Q(u,uk) = ∃κθ,α(u), at u = uk. (26)

Here, ∃1Q(u,uk) denotes the partial derivative with respect to the first vector
variable. Convergence analysis of the MMA can be found in [11,24,25].

For the smoothed λp-λq problem (8), if we define Q(u,uk) := L(u,vk+1,wk+1),
then our HQA (12) can be written as

uk+1 = arg min
u

L(u,vk+1,wk+1) = arg min
u

{Q(u,uk)}, (27)
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which is of the same form as (23). For 0 < p, q < 2, substituting (13) into (27),
we obtain the explicit form of Q(u,uk):

Q(u,uk) =
n⎨

i=1

⎩
Γ

p

⎛p

2
|πiuk|p−2

θ |πiu|2θ +
2 − p

2
|πiuk|pθ

⎝
+

1
q

⎛q

2
|Aiuk − fi|q−2

α |Aiu − fi|2α +
2 − q

2
|Aiuk − fi|pα

⎝⎫
.(28)

We recall that when p or q is equal to 2, there is no need to smooth the corre-
sponding term as it is already differentiable. Hence if we use the convention that
ξ = 0 (or respectively γ = 0) whenever p = 2 (or respectively q = 2), then (28)
holds for all 0 < p, q → 2.

Lemma 2. Let 0 < p, q → 2. For any fixed ξ, γ > 0, the HQA for the smoothed
λp-λq problem (8) is the same as an MMA with tangent majorant function
Q(u,uk) defined by (28).

Proof: Since our HQA (12) is rewritten as (27) with Q(u,uk) given by (28), we
only need to prove that (24)–(26) holds for such Q. Substituting u = uk in (28)
and using the definition of κθ,α(u) in (8), we see that Q(uk,uk) = κθ,α(uk),
which is (25). To prove that Q satisfies (24), we use the Young inequality, which
states that (xa/a + yb/b) ∀ xy for all x, y ∀ 0, a, b ∀ 1 and 1/a + 1/b = 1. Let
us consider the case where 0 < p < 2 first, and set

x = |πiuk|
(p−2)p

2
θ |πiu|pθ , y = |πiuk|

(2−p)p
2

θ , a =
2
p
, b =

2
2 − p

.

Then Young’s inequality implies that

p

2
|πiuk|p−2

θ |πiu|2θ +
2 − p

2
|πiuk|pθ ∀ |πiu|pθ .

Clearly, the inequality becomes a trivial equality when p = 2. Similarly, we can
show that

q

2
|Aiuk − fi|q−2

α |Aiu − fi|2α +
2 − q

2
|Aiuk − fi|pα ∀ |Aiu − fi|qα ,

for all 0 < q → 2. Then by taking the summation, we immediately have Q(u,uk)∀
κθ,α(u); and hence (24) holds. Finally by taking the derivatives of κθ,α(u) and
Q(u,uk) with respect to u, we have

∃κθ,α(u) = Γπ�Dθ(u)πu + A�Dα(u)(Au − f), (29)
∃1Q(u,uk) = ΓπDθ(uk)πu + A�Dα(uk)(Au − f), (30)

where Dθ(·) and Dα(·) are defined as in (14). Substituting u = uk into (29) and
(30), we immediately have (26). �

Based on Lemma 2, we can derive the following fundamental convergence
theorem.
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Theorem 1. Let 0 < p, q → 2. For the sequence {uk} generated by the HQA,
we have that {κθ,α(uk)} is monotonically decreasing and convergent.

Proof: The theorem is a direct result of Lemma 2. First, {κθ,α(uk)} is bounded
from below by 0. In Lemma 2, we have shown that the HQA is an MMA, which
implies that

κθ,α(uk+1) → Q(uk+1,uk) → Q(uk,uk) = κθ,α(uk). (31)

Here the first inequality and the last equality follow from (24) and (25), while
the second inequality holds because uk+1 is a minimizer of Q(u,uk). �

3.2 Convergence of uk for 1 ≤ p, q ≤ 2

Note that if 0 < p, q < 1, the λp-λq minimization problem is non-convex. Hence,
in the following, we discuss the convergence of uk for 1 → p, q → 2 only. In order
that uk is solvable from (16) and hence our HQA will not break down, we need
the following assumption:

ker(π�π) ∞ ker(A�A) = {0}. (32)

We remark that this assumption is very general and usually satisfied. For exam-
ple, in regularization problems, π is usually a difference operator, and hence
is a high-pass filter; whereas A is a blurring operator, and hence is a low-pass
filter. Therefore, (32) holds. For compressive sensing, π is usually taken to be
an orthogonal transform and we have π�π = I. Hence, ker(π�π) = {0} which
implies (32) holds for any A.

In [11,40], the authors gave the convergence proof of general MMAs when the
objective function κ and its corresponding tangent majorant function Q satisfy
Hypotheses 4.1 and 4.2 there. The convergence proof for our HQA will follow
closely the proofs there. More precisely, we will show that our κθ,α defined in (8)
and our Q defined in (27) do satisfy the hypotheses, and hence the convergence
follows immediately. Let us write out the hypotheses below.

Hypothesis 1. [Hypothesis 4.1 in [11]]

1. κ is twice continuously differentiable and strictly convex.
2. κ is coercive, i.e., lim

≤u≤2∞∞
κ(u) = ∪.

3. κ is bounded from below.

Hypothesis 2. [Hypothesis 4.2 in [11]]

(a) There exists a properly defined function C : Rn ◦ R
n×n such that

(i) Q(u,v) = κ(v)+(u − v)�∃κ(v)+ 1
2 (u − v)�C(v)(u − v) for all u,v ∈

R
n.

(ii) C is continuous.
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(iii) There exists a constant η such that, for the smallest eigenvalue Γmin(C(v))
of C(v), the following inequality holds: Γmin(C(v)) ∀ η > 0, for all v ∈
R

n.
(b) κ(u) → Q(u,v) for all u,v ∈ R

n.

Lemma 3. Let 1 → p, q → 2 and ker(π�π) ∞ ker(A�A) = {0}. Then κθ,α(u)
defined in (8) satisfies Hypothesis 1. In particular, κθ,α(u) has a unique mini-
mizer.

Proof: By the definition of κθ,α in (8), it is obvious that κθ,α is twice continu-
ously differentiable and bounded from below by 0. We thus only need to prove
the strict convexity and coercivity.

We start with the strict convexity. Taking derivatives on both sides of (29),
we have

∃2κθ,α(u) = Γπ�Pθ(u)π + A�Pα(u)A,

where Pθ(u) and Pα(u) ∈ R
n×n are the diagonal matrices with their ith diagonal

entries being |πiu|p−4
θ (ξ +(p−1)|πiu|2) and |Aiu−fi|q−4

α (γ +(q−1)|Aiu−fi|2)
respectively. Here recall our convention that when p or q = 2, the corresponding
ξ or γ should be set to 0 because there is no need to smooth the term. Bounding
each diagonal entry from below, we have

∃2κθ,α(u)  c1π
�π + c2A

�A,

where

c1 =:

⎧
κθ

|≤γ≤∞≤u≤∞|4−p
β

, 1 → p < 2,

Γ, p = 2,
c2 =:

⎧
α

|≤A≤∞≤u≤∞+≤f≤∞|4−q
γ

, 1 → q < 2,

1, q = 2.

By the assumption (32), we have ∃2κθ,α(u) � 0, and the strict convexity of
κθ,α(u) is proven.

Next we show the coercivity. Note that f(·) = | · |p is convex for p ∀ 1, which
implies that

1
n

n⎨
i=1

f(xi) ∀ f

⎭
1
n

n⎨
i=1

xi

)
. (33)

We rewrite κθ,α in (8) into a summation form and then apply (33). Then we
have

κθ,α(u) =
Γ

p

n⎨
i=1

|πiu|pθ +
1
q

n⎨
i+1

|Aiu − fi|qα

∀ Γn

p

⎛ 1
n

n⎨
i=1

|πiu|θ
⎝p

+
n

q

⎛ 1
n

n⎨
i=1

|Aiu − fi|α
⎝q

. (34)
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Next we apply the inequality
⎠

i |ai| ∀ ⎞⎠
i |ai|2 to (34), then we have

κθ,α(u) ∀ Γn1−p

p

⎛⎞
u�π�πu + ξn

⎝p

+
n1−q

q

⎛√
(Au − f)�(Au − f) + γn

⎝q

∀ c3

⎩⎛⎞
u�π�πu + ξn

⎝p

+
⎛√

(Au − f)�(Au − f) + γn
⎝q
⎫

, (35)

where c3 = min{Γn1−p/p, n1−q/q}. Now, we prove the coercivity of κθ,α(u) by
contradiction. Define

νθ,α(u) = u�(πT π + A�A)u − 2f�Au + ⊂f⊂22 + (ξ + γ)n.

Since π�π + A�A � 0, σ2 =: Γmin(π�π + A�A) > 0. Thus, if ⊂u⊂2 ◦ ∪, we
see that lim≤u≤2∞∞

φβ,γ(u)

≤u≤2
2

∀ σ2. Hence, νθ,α(u) is coercive, i.e. for any M0 > 0,
there exists M1 > 0, for any ⊂u⊂2 ∀ M1, then we have νθ,α(u) > M0. Suppose
that κθ,α(u) is non coercive, i.e.

lim
≤u≤2∞∞

κθ,α(u) �= ∪.

Thus, for the above M0, for any M2 ∀ M1, there exists ⊂u0⊂2 ∀ M2, but yet
κθ,α(u0) → c3 min{(M0/2)p, (M0/2)q}. Together with (35), we have

u�
0 π�πu0 + ξn → M0

2
,

(Au0 − f)�(Au0 − f) + γn → M0

2
.

Summing these two inequalities up, we have νθ,α(u0) → M0, which is a contra-
diction to the coercivity of νθ,α(u). �

Regarding Hypothesis 2, in fact, we cannot show that Hypothesis 2 holds for
arbitrary vectors v. We can only show that it holds for v = uk, the sequence
generated by HQA. However, as we will see later in Theorem 2, it will be enough
for us to prove the convergence of HQA.

Lemma 4. Let 1 → p, q → 2 and ker(π�π) ∞ ker(A�A) = {0}. Then κθ,α(u)
defined in (8) and Q(u,uk) defined in (27) satisfy Hypothesis 2 at v = uk. In
particular, the coefficient matrix of the linear system (16) is invertible.

Proof: By definition of Q(u,uk) in (28), Q(u,uk) is quadratic in u and its
Hessian matrix is given by

∃2
1Q(u,uk) = Γπ�Dθ(uk)π + A�Dα(uk)A, (36)

which is independent of u. Taking the Taylor expansion for Q(u,uk) at uk, we
have

Q(u,uk) = Q(uk,uk) + ≤∇1Q(uk,uk),u − uk≥ +
1

2
(u − uk)�∇2

1Q(uk,uk)(u − uk).
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Since we have proven that the HQA is indeed an MMA in Lemma 2, we can
replace Q(uk,uk) and ∃1Q(uk,uk) by κθ,α(uk) and ∃κθ,α(uk) respectively in
the equality above and then we obtain

Q(u,uk) = κθ,α(uk)+ ⇒∃κθ,α(uk),u − uk〉+
1
2
(u − uk)�∃2

1Q(uk,uk)(u − uk).

Notice that {κθ,α(uk)} is bounded from below by 0 from the definition in (8).
In addition, recalling that {κθ,α(uk)} is monotonically decreasing and bounded
from above by κθ,α(u0) by (31). Therefore, by coercivity, see Hypothesis 1(b),
{⊂uk⊂2} must be bounded from above. Denote the bound by M . Recalling the
definition of Dθ(uk),Dα(uk) in (16), we have

Γmin

⎪∃2
1Q1(uk,uk)

⎜ ∀ Γmin

⎪
c4π

�π + c5A
�A

⎜
:= η, (37)

where

c4 =
{ κ

|||γ ||∞M |β , 1 → p < 2,

Γ, p = 2,
c5 =

{ 1
|M≤A≤∞+≤f≤∞|α , 1 → q < 2,

1, q = 2.

By (32), η > 0. Hypothesis 2(a)(iii) holds.
Hypothesis 2(b) is just (24), and hence is true. Finally notice that the coef-

ficient matrix of the linear system in (16) is precisely ∃2
1Q(uk,uk) in (36) and

hence by (37), it is invertible. �

Since Hypothesis 2 is only valid for uk and not for arbitrary vectors v, we
cannot directly apply the convergence theorems in [11]. However, the proof in
[11] can easily be adapted to prove the following two convergence theorems for
HQA.

Theorem 2. Let 1 → p, q → 2 and ker(π�π) ∞ ker(A�A) = {0}. For the
sequence {uk} generated by HQA, we have

(a) lim
k∞∞

⊂uk − uk+1⊂2 = 0;

(b) {uk} converges to the unique minimizer u∗ of κθ,α(u) from any initial guess
u0.

Proof:

(a) We see from (36) that Q(u,uk) is quadratic in u. Taking Taylor expansion
of Q(u,uk) at uk+1, we have

Q(u,uk) = Q(uk+1,uk) + ⇒∃1Q(uk+1,uk),u − uk+1〉
+

1
2
(u − uk+1)�∃2

1Q(uk,uk)(u − uk+1). (38)

By (23), we have ∃1Q(uk+1,uk) = 0. By taking u = uk in (38) and using
(37), we thus have

Q(uk,uk) ∀ Q(uk+1,uk) +
η

2
⊂uk − uk+1⊂22,
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where η > 0. Together with (31), we obtain that

κθ,α(uk) − κθ,α(uk+1) ∀ Q(uk,uk) − Q(uk+1,uk) ∀ η

2
⊂uk − uk+1⊂22.(39)

By Theorem 1, the convergence of {κθ,α(u)} implies that

lim
k∞0

κθ,α(uk) − κθ,α(uk+1) = 0

Together with (39) and η > 0, we have lim
k∞∞

⊂uk − uk+1⊂2 = 0.

(b) By the proof for Lemma 4, we know that the sequence {⊂uk⊂2} is bounded
from above. Hence it converges to the unique minimizer u∗ if and only if all
convergent subsequences of {uk} converge to u∗. Let {ukj } be an arbitrary
convergence subsequence of {uk} that converges to ū. To finish the proof for
the theorem, we only need to prove that ū = u∗. Since Q(u,ukj ) is quadratic
in u, we have

Q(u,ukj ) = Q(ukj ,ukj ) + ⇒∃1Q(ukj ,ukj ),u − ukj 〉
+

1
2
(u − ukj )�∃2

1Q(ukj ,ukj )(u − ukj ).

By taking the partial derivative with respect to u and substituting (26), we
then have

∃1Q(u,ukj ) = ∃κθ,α(ukj ) + ∃2
1Q(ukj ,ukj )(u − ukj ).

∃1Q(u,v) is continuous since κθ,α is twice continuously differentiable by
Hypothesis 1(a), and C(v) = ∃2

1Q(v,v) is continuous by Hypothesis 2(a)(ii).
Letting u = ukj+1 and using (23), we then have

0 = ∃1Q(ukj+1,ukj ) = ∃κθ,α(ukj ) + ∃2
1Q(ukj ,ukj )(ukj+1 − ukj ). (40)

By (a), we know that lim
j∞∞

⊂ukj+1−ukj ⊂2 = 0. This implies that lim
j∞∞

ukj+1 =

ū. Taking limits to the both sides of (40), we obtain

0 = lim
j∞∞

∃1Q(ukj+1,ukj )

= ∃1Q( lim
j∞∞

ukj+1, lim
j∞∞

ukj )

= ∃1Q(ū, ū) = ∃κθ,α(ū) + ∃2
1Q(ū, ū)(ū − ū) = ∃κθ,α(ū).

By the uniqueness of the minimizer, see Lemma 3, we can conclude that
ū = u∗. �

Theorem 3. Let 1 → p, q → 2 and ker(π�π) ∞ ker(A�A) = {0}. Let u∗ be the
unique minimizer of κθ,α(u) and

Λ := 1 − Γmin

⎛
∃2

1Q(u∗,u∗)−1∃2κθ,α(u∗)
⎝
.

Then Λ < 1 and the sequence {κθ,α(uk)} has a linear convergence rate of at
most Λ while the sequence {uk} is r-linearly convergent with a convergence rate
of at most

√
Λ.

To prove Theorem 3, we can follow the proof of Theorem 6.1 in [11].
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4 Numerical Results

In this section, we test our algorithm on deblurring images corrupted by impulse
noise and restoring MR images from few k-space data. Recall that the HQA given
in (16) is for solving the smoothed λp-λq problem (8) for a fixed pair of smoothing
parameters ξ and γ. To solve the original λp-λq problem (1), we apply the idea
of continuation method on HQA for a sequence of {ξl, γl} going to zero. We
note that continuation methods has been used in solving TV problems before,
see [9,44]. We summarize the HQA for (1) in Algorithm 1.

Algorithm 1 The HQA for solving (1) with 0 < p, q → 2:
(1) Initialize Γ0, γ0,u0;
(2) For l = 0, 1, · · · until stopping criteria are met, do:

(a) For k = 0, 1, · · · until stopping criteria are met, do:
(i) Initialize ul,0 = ul−1;
(ii) Get ul,k+1 by solving

(
ρΛ∗Dβl(u

l,k)Λ + A∗Dγl(u
l,k)A

)
u = A∗Dγl(u

l,k)f , (41)

where Dβl(·) and Dγl(·) are diagonal matrices given as in (14) with Γ =

Γl, γ = γl.
(b) Set ul to be the final solution from part (a).
(c) Update Γl, γl to Γl+1, γl+1.

In all the following tests, we take the stopping criteria for the inner loop as

Λ := ⊂∃κθl,αl(ul,k)⊂2 > 0.2,

where ∃κθ,α(u) has been given in (29).

4.1 Numerical Results on the TV-λ1 Image Restoration

In this section, we apply Algorithm 1 to deblur images that are corrupted
by impulse noise. Here, (41) is replaced by (19) with ul,k replacing uk. The
deblurring problem has been discussed recently in many papers, see for examples
[16,41,44]. Among all these methods, the FTVDM and the ALM are the most
efficient linear algorithms; and according to the numerical results in [41], ALM
is the fastest one. Hence in this paper, we compare our HQA with FTVDM
and ALM only. The FTVDM and ALM codes we used here are provided by the
authors in [41] and we use the same parameters as in [41]. For more details on
the algorithms and the parameters, please consult [41,44].

We test three 256 × 256 images: Barbara, Bridge and Goldhill. The matrix
A is the blurring matrix corresponding to the Gaussian blur generated by the
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MATLAB command

fspecial(’Gaussian’, [7 , 7], 5).

Then salt-and-pepper noise is added to the blurred image to obtain the observed
image f . The noise levels are taken to be 30%, 40%, 50%, 60%. For all methods,
the regularization parameter Γ is set to 1/13, 1/10, 1/8, 1/4 for noise level 30%,
40%, 50%, 60% respectively. In our algorithm, we initialize u0 = rand(size(f)).
As in the FTVDM, to speed up the convergence and improve the resolution qual-
ity, we take large ξ, γ at the beginning and reduce them gradually to smaller
ones respectively. We set ξl to be 10−3, 10−4, · · · , 10−16 and γl = (ξl)2. Equa-
tion (19) is solved by the conjugate gradient (CG) method. Considering that
more iterations for CG are needed with the decreasing of ξ, therefore we fix the
iteration number in the inner loop to be 10 × l at ξl. In all tests, we consider
periodic boundary condition for the difference matrix A, as it is the boundary
conditions used in the tests in [41]. We compare the accuracy of the methods by
the signal-to-noise ratio (SNR) used in [41]. It is defined by

SNR := 10 log10
⊂u − E(u)⊂22

⊂û − u⊂22
(dB).

Here u and û denote the original image and the restored image respectively, and
E(u) is the mean gray-level value of the original image.

First we compare the speed of the three methods. Figures 1, 2 and 3 show
the timing comparison of the three algorithms. Each point in the figures show
the accumulated CPU time until that iteration and the corresponding SNR. The
results show that our method is the fastest amongst the three methods. It is also
the most accurate one.

Table 1. SNR of the restored images.

Image Method Salt-and-pepper noise
30 % 40 % 50 % 60 %

Barbara ALM 13.93 13.35 12.45 11.37
HQA 14.24 13.59 12.83 11.72

Bridge ALM 11.85 10.95 10.13 8.52
HQA 12.03 11.12 10.27 9.00

Goldhill ALM 16.08 15.03 13.78 12.05
HQA 16.50 15.32 14.10 12.72

From Figs. 1, 2 and 3, it is clear that FTVDM is the slowest amongst the
three. In order to compare the accuracy of the two faster methods ALM and
HQA more precisely, we list in Table 1 the average SNR of the recovered images
in five trials by the two methods. To compare the timing fairly, we first run ALM
until its stopping criteria [41] is satisfied, say with t0 CPU seconds. Then we let
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Fig. 1. SNR versus CPU time in seconds for “Barbara” with salt-and-pepper noise.
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Fig. 2. SNR versus CPU time in seconds for “Bridge” with salt-and-pepper noise.
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Fig. 3. SNR versus CPU time in seconds for “Goldhill” with salt-and-pepper noise.
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Fig. 4. The ratio Rk
Φ :=

Φβ,γ(uk+1)−Φβ,γ(uk)

Φβ,γ(uk)−Φβ,γ(uk−1)
versus iteration number for “Barbara”.

The ratios are less than 1, illustrating the linear convergence of {Φβ,γ(uk)}.

HQA run until the CPU time of the kth iteration is just greater than t0. Then
we record the SNR of the (k − 1)th iteration as our result for HQA. We see
from Table 1 that HQA is more accurate than ALM. Recovered images taking
Barbara for example are shown in Fig. 7 for “eyeball” illustration.

We illustrate the convergence rate of {κθ,α(uk)} and {uk} in our HQA as
mentioned in Theorem 3. We use the Barbara image as example. Since we do
not have the true minimizer, we use

Rk
Λ =: [κθ,α(uk+1) − κθ,α(uk)]/[κθ,α(uk) − κθ,α(uk−1)]

and
Rk

u =: [⊂uk+1 − uk⊂2/⊂uk − uk−1⊂2]
to estimate the convergence rate for {κθ,α(uk} and {uk} respectively. In Fig. 4,
we plot the ratio Rk

Λ against the iteration number. We see that the ratios are
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are less than 1, illustrating the linear convergence of {uk}.
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Fig. 6. The figure shows the comparison results of the FTVDM and the HQA for
Barbara image with salt-and-pepper noise removal at noise level 40 %. For HQA, in
(18), Γ = 10−1, 10−2, · · · , 10−17, and correspondingly γ = Γ2. For FTVDM, θw =
1, 22/3, · · · , 210, correspondingly, θz = 1, 2, · · · , 215. At each jump, Γk, γk, θk

w, θk
z jump

to Γk+1, γk+1, θ
k+1
w , θk+1

z in HQA and FTVDM.

all less than 1, indicating that {κθ,α(uk)} is linearly convergent as stated in
Theorem 3. In Fig. 5, we plot Rk

u against the iteration number. We see that Rk
u <

c (c is a positive constant less than 1), indicating that {uk} indeed is linearly
convergent.

In [44], the original energy functional (17) is a non-differentiable functional
of u, hence auxiliary variables w, z and regularization parameters τw, τz are
taken to approximate (17). The approximated problem is

min
w,z,u

{Γ(⊂|w|⊂1 +
τw
2

⊂w − ∃u⊂22) + ⊂z⊂1 +
τz
2

⊂z − (Bu − f)⊂22}

The parameters τw and τz are upper limited to be τw = 210, τz = 215 in the
approximate problem. To speed up the convergence, τw and τz are both imple-
mented in a continuous scheme; that is, let τw and τz take small values at the
beginning and gradually increase their values to 210 and 215 respectively. Spe-
cially, a τw-sequence 20, 22/3, 24/3, · · · , 210 is tested. Accordingly, τz is set to be
20, 21, 22, · · · , 215.

A similar continuation scheme is also taken in our HQA. We take ξ =
10−1, 10−2, · · · , 10−17, correspondingly, γ = ξ2 and compare the FTVDM and
the HQA. Figure 6 shows their comparison results on the SNR versus CPU time
and SNR versus iteration number. The jump shows the improvements in SNR
as τk

w, τk
z , ξk, γk change to τk+1

w , τk+1
z , ξk+1, γk+1.
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30%, Salt & Pepper 40%, Salt & Pepper 50%, Salt & Pepper 60%, Salt & Pepper

By ALM, 
SNR = 13.9857dB,

Cputime=12.52s        

By ALM, 
SNR = 13.3577dB

     Cputime=11.07s       

By ALM,
SNR = 12.3986dB,

     Cputime=12.46s        

By ALM,
SNR = 11.4804dB

    Cputime=16.54s

By FTVDM, 
SNR = 13.9477dB,

Cputime=11.06s          

By FTVDM, 
SNR = 13.3776dB,

       Cputime=19.08s          

By FTVDM,
SNR = 12.376dB,

       Cputime=17.46s         

By FTVDM,
SNR = 11.3799dB,

      Cputime=16.19s 

By HQA, 
SNR = 14.2404dB,

Cputime=12.96s        

By HQA, 
SNR = 13.6344dB,

     Cputime=11.6s         

By HQA,
SNR = 12.8735dB,

     Cputime=12.82s        

By HQA,
SNR = 11.7274dB,

      Cputime=16.74s 

Fig. 7. Restored images.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=5.3374dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 47.8936dB, Cputime=94.26s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 45.0594dB, Cputime=177.23s

By HQA, p = 0.5,λ
SNR = 68.5059dB, Cputime=28.25s

Fig. 8. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 30 radial lines on the
white pixels (11.32 % sampling); Top (right): the backprojection reconstruction with
30 views, which is poor; Bottom (left): the reconstruction from 30 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.

4.2 Numerical Results on the MR Image Reconstruction

In this section, we apply Algorithm 1 to reconstruct MR image from few k-
space data. Here (41) is replaced by (22) with ul,k replacing uk. To test the
efficiency of our algorithm, we compare our algorithm and the p-shrinkage algo-
rithm by Chartrand in [12]. As in [12], we take p = 1/2. In addition, we also give
the numerical results by λ1-norm regularized model for comparison. We test our
algorithm on the two images: 256 × 256 Shepp-Logan phantom and 224 × 224
Brain image. In all the tests, we set ξ to be 10−4, 10−5, · · · , 10−14, and γ = ξ
correspondingly. Moreover, we just use the simple CG method to solve the cor-
responding linear system (22).

We begin with the Shepp-Logan phantom. As in [12], because the phantom
has a very sparse gradient, we do not use the wavelet regularization, and let
δ = 0 in (20). We show the comparison results on the MR image reconstruction
from 10 radial lines (3.85% sampling), 22 radial lines (8.36% sampling), and
30 radial lines (11.32% sampling) respectively. In all the three tests, we take
Γ = 0.0002. When p = 1, the p-shrinkage [12] is actually the soft-thresholding.
The results are shown in Figs. 8, 9 and 10. In all three figures, we see that
our HQA can reach better reconstruction (at least 13–16 dB better) using less
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=4.1622dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 44.523dB, Cputime=88.43s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 42.0413dB, Cputime=270.22s

By HQA, p = 0.5,λ
SNR = 64.9791dB, Cputime=33.72s

Fig. 9. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 22 radial lines on the
white pixels (8.36 % sampling); Top (right): the backprojection reconstruction with 22
views, which is poor; Bottom (left): the reconstruction from 22 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.

computational time (at least 1/2 of the time) than the p-shrinkage algorithm.
Among all the results, the λ1-norm regularization model takes the most time
to obtain a suitable reconstruction image, especially when the k-space data are
very few.

Next, we apply our algorithm to recover the MR brain image in the presence
of noise. We set that the image is corrupted by the white Gaussian noise with
noise level σ = 5. Here, by error and trials, we take Γ = 0.002. Our results
show that the recovered images have higher quality by the ⊂∃u⊂p

p regularization
model than by the ⊂∃u⊂p

p + ⊂Wu⊂p
p. Hence, here, we show the recovered results

from (22) with δ = 0. The comparison results are shown in Fig. 11. For the brain
image, we take 40 views (16.97% sampling). The results show that our HQA can
reach the best reconstruction with the clearest background in the least amount
of time.
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Shepp−Logan phantom Samlpling pattern Min energy, SNR=2.6279dB

By Chartrand, p = 0.5,λ = 0.0002, β
SNR = 30.8118dB, Cputime=395.75s

By Chartrand, p = 1,λ = 0.0002, β
SNR = 16.0182dB, Cputime=591.54s

By HQA, p = 0.5,λ
SNR = 43.7625dB, Cputime=209.1s

Fig. 10. The figure shows the reconstruction for the 256 × 256 Shepp-Logan phontom.
Top (left): the original Shepp-Logan image; Top (middle): the 10 radial lines on the
white pixels (3.85 % sampling); Top (right): the backprojection reconstruction with 10
views, which is poor; Bottom (left): the reconstruction from 10 views by p-shrinkage
algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage algo-
rithm with p = 1/2; Bottom (right): the reconstruction by HQA with with p = 1/2.
From the results, we find that it will take more time to reach a good reconstruction
from fewer k-space data. By ∂1-norm regularized model, it is still difficult to obtain a
good result even with much time, while the ∂p-norm regularized models (0 < p < 1)
do.

5 Conclusion

In this paper, we study the half-quadratic technique for λp-norm and propose an
algorithm for solving λp-λq (0 < p, q → 2) minimization problem. We show that
the algorithm for the related minimization problem with regularization smooth-
ing parameters ξ and γ is equivalent to a majorize-minimize algorithm. Weak
convergence result for 0 < p or q < 1, and linear convergence rate for 1 → p, q → 2
are obtained immediately. We will consider the convergence of the original non-
smooth problems in our future work. We compare our algorithm with standard
ones in the TV-λ1 minimization problem and the MR image reconstruction. The
results show that our algorithm can reach better reconstruction results with less
computational cost.
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Noisy Brain, SNR = 20.4391 Samlpling pattern Min energy, SNR=9.8788dB

By Chartrand, p = 0.5,λ = 0.002, β
SNR = 14.2263dB, Cputime=32.82s

By Chartrand, p = 1,λ = 0.002, β
SNR = 14.1887dB, Cputime=43.63s

By HQA, p = 0.5,λ
SNR = 14.4792dB, Cputime=21.42s

Fig. 11. The figure shows the reconstruction for the 224 × 224 real brain image. Top
(left): the noisy brain image with noise level σ = 5, which is generated with the
Matlab command: “imnoise(x,∈ gaussian∈, 0, σ2)”; Top (middle): the 40 radial lines
on the white pixels (16.97 % sampling); Top (right): the backprojection reconstruction
with 40 views, which is poor; Bottom (left): the reconstruction from 40 views by p-
shrinkage algorithm with p = 1; Bottom (middle): the reconstruction by the p-shrinkage
algorithm with p = 1/2; Bottom (right): the reconstruction by HQA with p = 1/2.
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Abstract. Recently, many variational models using high order deriva-
tives have been proposed to accomplish advanced tasks in image process-
ing. Even though these models are effective in fulfilling those tasks, it
is very challenging to minimize the associated high order functionals.
In [33], we focused on a recently proposed mean curvature based image
denoising model and developed an efficient algorithm to minimize it using
augmented Lagrangian method, where minimizers of the original high
order functional can be obtained by solving several low order functionals.
Specifically, these low order functionals either have closed form solutions
or can be solved using FFT. Since FFT yields exact solutions to the asso-
ciated equations, in this work, we consider to use only approximations to
replace these exact solutions in order to reduce the computational cost.
We thus employ the Gauss-Seidel method to solve those equations and
observe that the new strategy produces almost the same results as the
previous one but needs less computational time, and the reduction of the
computational time becomes salient for images of large sizes.

1 Introduction

Image denoising is to remove noise while keeping meaningful vision information
such as object edges and boundaries. It is a crucial step in image processing with
a wide range of applications in medical image analysis, video monitoring, and
others. During the last three decades, numerous models have been proposed to
deal with this problem [3,4,7,19–21,23–25,28]. One of the most popular varia-
tional models was proposed by Rudin, Osher, and Fatemi in their seminal work
(ROF model) [25], where the cleaned image corresponds to the minimizer of the
following functional

E(u) = λ

∫
Ω

|⊂u| +
∫

Ω

(f − u)2, (1)
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where f : Γ → R is a given noisy image defined on Γ (always a rectangle in
R

2) and λ > 0 is a positive tuning parameter controlling how much noise will
be removed. The remarkable feature of the ROF model lies in its effectiveness
in preserving object edges while removing noise. This is due to the total vari-
ation based regularizer. In fact, the total variation has been widely employed
in accomplishing other image tasks such as deblurring, segmentation, and regis-
tration. However, as pointed out in [6], the ROF model has several unfavorable
features. The main caveat is the stair case effect, that is, the resulting clean
image would present blocks even though the desired image could be smooth,
such as human face. Other undesirable properties include corner smearing and
loss of image contrast. To remedy these drawbacks, quite a few high order vari-
ational models have been proposed [1,2,9,16–18,31]. Despite of the effectiveness
of these models in removing the staircase effect, it is often a challenging issue
to minimize the corresponding functionals. Note that the models contain sec-
ond order derivatives, the related Euler-Lagrange equations are fourth-order,
which raises a nontrivial problem of developing effective and efficient algorithms
to solve them. Indeed, as more and more high order models were used in image
processing [5,7,8,12–15,22,27,30,32], it is an imperative need to explore efficient
numerical algorithms for these models.

Recently, augmented Lagrangian methods have been successfully employed
in the minimization of nondifferentiable or high order functionals [26,29]. For
instance, the minimization of the ROF model suffers from the presence of its
nonlinear and nondifferentiable term. In [29], the authors proposed an efficient
and accurate algorithm using augmented Lagrangian method to minimize the
ROF functional. In [26], the technique was extended to functionals related to
Euler’s elastica with applications in image denoising, inpainting, and zooming
[1,2,8,17,18], where the original minimization problem was converted to several
subproblems of low order functionals. Therefore, augmented Lagrangian method
becomes a suitable technique to handle curvature related functionals.

Inspired by these works, in [33], we constructed an augmented Lagrangian
method based fast algorithm for the mean curvature based image denoising
model [31], whose functional can be expressed as follows:

E(u) = λ

∫ ∣∣∣∣∣⊂ ·
(

⊂u√
1 + |⊂u|2

)∣∣∣∣∣ +
1
2

∫
(f − u)2, (2)

where λ is a tuning parameter and the term ⊂ ·
(

∈u∈
1+|∈u|2

)
is the mean cur-

vature of the surface π(x, y, z) = u(x, y) − z = 0 (see [10]). The model tries
to fit the given noisy image surface (x, y, f(x, y)) with a surface (x, y, u(x, y))
that bears small magnitude of mean curvature. As demonstrated in [31], the
model is able to sweep noise while keeping object edges, and it also ameliorates
the staircase effect. More importantly, the model is also capable of preserving
image contrasts as well as geometry of object shapes, especially object corners.
As detailed in [33], by using augmented Lagrangian method, the original mini-
mization problem was reformulated as a constrained optimization, and with the
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specially designed constraints, the pursuit of saddle points of the optimization
problem amounts to minimizing several functionals alternatively, some of which
have closed form solutions while the other ones can be solved using FFT. Note
that FFT yields exact solutions to those equations, in this work, we want to
check whether these exact solutions in each iteration can be replaced by some
approximations in order to further reduce the computational cost.

This paper is organized as follows. In Sect. 2, we present a short review of the
mean curvature denoising model and recall the augmented Lagrangian method
developed for this model [33]. Section 3 presents the details of the minimization
of the associated subproblems. In Sect. 4, numerical results obtained using the
two methods as well as the efficiency will be compared, which is then followed
by a conclusion in Sect. 5.

2 The Image Denoising Model and the Augmented
Lagrangian Method

In this section, we first review the mean curvature based image denoising model
and then sketch the augmented Lagrangian method developed for this model [33].

2.1 The Mean Curvature Based Image Denoising Model

For a given image f : Γ → R defined on a domain Γ ⊂ R
2, one can regard it as a

surface (x, y, f(x, y)) in R
3. The denoising task amounts to finding a piecewisely

smooth surface that approximates that noisy surface while also keeping its sharp
gradients, since these sharp transitions determine important vision clues such as
edges and corners. To single out those piecewisely smooth surfaces, one needs to
choose an appropriate regularizer. In [31], the L1-norm of mean curvature of an
image surface was employed as the regularizer.

Specifically, let u : Γ → R be a function. Its image surface is just the zero
level set of the function π(x, y, z) = u(x, y)− z. Then the mean curvature of this

surface can be expressed as ⊂·
(

∈φ
|∈φ|

)
= ⊂·

(
∈u∈

1+|∈u|2

)
, denoted by ∂u. Using

the L1-norm of mean curvature as the regularizer, the mean curvature denoising
model can be written as the minimization of the following functional:

E(u) = λ

∫
|∂u| +

1
2

∫
(f − u)2, (3)

which gives the Eq. (2).
Due to the non-differentiable term in this functional, numerically, one often

considers its regularized version [22,32]

E(u) = λ

∫
χ(∂u) +

1
2

∫
(f − u)2, (4)

with

χ(x) =
{

x2, |x| ◦ 1
|x|, |x| > 1,

(5)
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and derives the following fourth order Euler-Lagrange equation:

λ⊂ · [
1√

1 + |⊂u|2 (I − P)⊂χ∗(∂u)] − (f − u) = 0, (6)

where I,P : R
2 → R

2 with I(x) = x and P(x) =
(
x · ∈u∈

1+|∈u|2

)
∈u∈

1+|∈u|2 .

This equation is often solved by considering the steady state of the following
time-dependent one:

ψu

ψt
= −λ⊂ ·

[
1√

1 + |⊂u|2 (I − P)⊂χ∗(∂u)

]
+ (f − u), (7)

with time t being an evolution parameter.
The above modification surely affects the outcome of the model. However, as

shown later, by using augmented Lagrangian method, the functional (2) can
be exactly treated. This is one of the most important merits of augmented
Lagrangian method, which has been shown in the treatment of the non-differenti-
able total variation norm of the ROF model in [29].

2.2 Augmented Lagrangian Method

In [33], following a similar idea for treating Euler’s elastica based functionals
[26], we converted the minimization of functional (Eq. 2) to be the following
constrained problem;

minu,q,n,p

[
λ

∫
Ω

|q| +
1
2

∫
(f − u)2

]
,

with q = ⊂ · n, n =
p
|p| , p = ∪⊂u, 1∃, (8)

and developed the associated augmented Lagrangian functional:

L(u, q,p,n,m; ∂1, λ2, ∂3, λ4) = ∂

∫
|q| +

1

2

∫
(f − u)2

+ r1

∫
(|p| − p · m) +

∫
∂1(|p| − p · m)

+
r2
2

∫
|p − ∈≤u, 1∇|2 +

∫
λ2 · (p − ∈≤u, 1∇)

+
r3
2

∫
(q − Γxn1 − Γyn2)

2 +

∫
∂3(q − Γxn1 − Γyn2)

+
r4
2

∫
|n − m|2 +

∫
λ4 · (n − m) + γR(m), (9)

where n,m,p ≤ R
3 are auxiliary vectors and λ1, λ3 ≤ R, λ2,λ4 ≤ R

3 are
Lagrange multipliers. Note that in this Lagrangian functional, we used p =
∪⊂u, 1∃ instead of p = ⊂u as in [26]. This substitution was chosen purposely to
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treat the mean curvature term since it is nonhomogeneous in u. Just as in [26],
the introduction of the variable m is to relax the variable n that is supposed to
connect with the variable p in terms of n = p/|p|, and the variable m is required
to lie in the set R = {m ≤ L2(Γ) : |m| ◦ 1 a.e. in Γ} through the characteristic
function ϕR(·) defined as follows:

ϕR(m) =
{

0, m ≤ R;
+∀, otherwise,

so that the term |p| − p · m is always non-negative. The benefit of this
non-negativeness is that the L2 penalization is unnecessary and we just use
|p| − p · m as a penalization, which simplifies the associated subproblems when
finding saddle points of the above Lagrangian functional (Eq. 9).

Note that saddle points of the functional (9) correspond to minimizers of the
constrained minimization problem (8), and equivalently, minimizers of the mean
curvature model (2), one just needs to find saddle points of (9). To this end, as
in [26], we apply an iterative algorithm. Specifically, for each variable in (9), we
fix all the other variables and seek a critical point of the induced functional to
update this variable. Once all the variables are updated, the Lagrange multipliers
will then be advanced accordingly. Then we repeat this process until the variables
converge to steady state.

To find saddle points of the functional (9), we consider the following sub-
problems and need to obtain minimizers for all of them.

κ1(u) =
1
2

∫
(f − u)2 +

r2
2

∫
|p − ∪⊂u, 1∃|2 +

∫
λ2 · (p − ∪⊂u, 1∃), (10)

κ2(q) = λ

∫
|q| +

r3
2

∫
(q − ψxn1 − ψyn2)2 +

∫
λ3(q − ψxn1 − ψyn2), (11)

κ3(p) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r2
2

∫
|p − ∪⊂u, 1∃|2

+
∫

λ2 · (p − ∪⊂u, 1∃), (12)

κ4(n) =
r3
2

∫
(q − ψxn1 − ψyn2)2 +

∫
λ3(q − ψxn1 − ψyn2) +

r4
2

∫
|n − m|2

+
∫

λ4 · (n − m), (13)

κ5(m) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r4
2

∫
|n − m|2

+
∫

λ4 · (n − m) + ϕR(m). (14)

The functionals κ2(q), κ3(p), and κ5(m) have closed-form solutions for their
minimizers, while the minimizers of the functionals κ1(u) and κ4(n) are deter-
mined by the associated Euler-Lagrange equations. Specifically, as discussed
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in [33], the minimizers of κ2(q), κ3(p), and κ5(m) read

Argminqκ2(q) = max
{

0, 1 − λ

r3|q̃|
}

q̃, q̃ = ψxn1 + ψyn2 − λ3

r3
, (15)

Argminpκ3(p) = max
{

0, 1 − r1+λ1

r2|p̃|
}
p̃, p̃ = ∪⊂u, 1∃ − λ2

r2
+

(r1+λ1)m
r2

,(16)

Argminmκ5(m) =
{
m̃, |m̃| ◦ 1;
m̃/|m̃|, |m̃| > 1.

m̃ = n +
λ4

r4
+

(r1+λ1)p
r4

, (17)

and the Euler-Lagrange equations associated with κ1(u) and κ4(n) are given as
follows:

− r2Δu + u = f − ψx(r2p1 + λ21) − ψy(r2p2 + λ22), (18)

and

− r3ψx(ψxn1 + ψyn2) + r4n1 = r4m1 − λ41 − (r3q + λ3)x,

−r3ψy(ψxn1 + ψyn2) + r4n2 = r4m2 − λ42 − (r3q + λ3)y,

n3 = m3 − λ43/r4, (19)

where p = ∪p1, p2, p3∃, m = ∪m1,m2,m3∃, n = ∪n1, n2, n3∃, λ2 = ∪λ21, λ22, λ23∃,
and λ4 = ∪λ41, λ42, λ43∃. To update the variables u and n, one needs to solve
these Euler-Lagrange equations. In the subsequent section, we discuss how to
solve them using Gauss-Seidel method. Indeed, in [33], we employed FFT and
thus got the exact numerical solutions of the two equations for each iteration.
This is often expensive but may be unnecessary since it is enough to have some
good approximations of u and n for each iteration. To this end, in this work,
we apply the Gauss-Seidel method for the two equations. The later experiments
demonstrate that this numerical method yield very similar results but with much
less computational cost, especially for large size images. A related work can also
be found in [11].

Besides the above variables, the Lagrange multipliers λ1,λ2, λ3,λ4 also need
updates for each iteration:

λnew
1 = λold

1 + r1(|p| − p · m),
λnew
2 = λold

2 + r2(p − ∪⊂u, 1∃),
λnew
3 = λold

3 + r3(q − ψxn1 − ψyn2),
λnew
4 = λold

4 + r4(n − m), (20)

where λold
1 denotes the value of λ1 at the previous iteration while λnew

1 represents
that of the current one.

3 Numerical Implementation

In this section, we present the details of solving Eqs. (18) and (19) using one
sweeping of the Gauss-Seidel method as well as updating the variables q, p, and
m for each iteration.



110 W. Zu et al.

As discussed in [33], we emphasize that the spatial mesh size is needed when
considering the discretization of derivatives. This is because the mean curvature
is not homogeneous in u, which is one of the most important features that
distinguishes this mean curvature denoising model from other ones such as the
ROF model [25] and the Euler’s elastica based model [1,2].

Let Γ = {(i, j)|1 ◦ i ◦ M, 1 ◦ j ◦ N} be the discretized image domain and
each point (i, j) is called a pixel point. All the variables are defined on these pixel
points. We then introduce the discrete backward and forward differential oper-
ators with periodic boundary condition and the spatial mesh size h as follows:

ψ−
1 u(i, j) =

{
(u(i, j) − u(i − 1, j))/h, 1 < i ◦ M ;
(u(1, j) − u(M, j))/h, i = 1.

ψ+
1 u(i, j) =

{
(u(i + 1, j) − u(i, j))/h, 1 ◦ i < M − 1;
(u(1, j) − u(M, j))/h, i = M.

ψ−
2 u(i, j) =

{
(u(i, j) − u(i, j − 1))/h, 1 < j ◦ N ;
(u(i, 1) − u(i,N))/h, j = 1.

ψ+
2 u(i, j) =

{
(u(i, j + 1) − u(i, j))/h, 1 ◦ j < N ;
(u(i, 1) − u(i,N))/h, j = N.

For Eq. (18), a detailed discussion on how to solve it using FFT can be found
in [33], and we here employ one sweeping of the Gauss-Seidel method and get(

1 +
4r2
h2

)
unew(i, j) =

g(i, j) +
r2
h2

[unew(i − 1, j) + uold(i + 1, j) + unew(i, j − 1) + uold(i, j + 1)], (21)

where unew(i, j) denotes the updated value of u and g(i, j) represents the value
of the right-hand side of Eq. (18) at the pixel point (i, j). In the experiments, we
just use one sweeping of the Gauss-Seidel method. Moreover, periodic condition
is imposed. This boundary condition is often employed for the image denoising
problem. In fact, this condition won’t affect too much the result obtained by
the denoising model under consideration since it is able to preserve jumps and
image contrasts.

Similarly, for Eq. (19), one gets the following(
r4 +

2r3
h2

)
nnew
1 (i, j) = g1(i, j) +

r3
h2

[nnew
1 (i − 1, j) + nold

1 (i + 1, j)], (22)
(

r4 +
2r3
h2

)
nnew
2 (i, j) = g2(i, j) +

r3
h2

[nnew
2 (i, j − 1) + nold

2 (i, j + 1)], (23)

where g1 and g2 denote the right-hand side of Eq. (19).
We then discuss the update of the variables q, p, m as well as the Lagrange

multipliers. As q is a scalar defined on the pixel point (i, j), based on the formu-
lation (15), one gets

q(i, j) = max
{

0, 1 − λ

r3|q̃(i, j)|
}

q̃(i, j),

with q̃i,j = ψ−
1 n1(i, j) + ψ−

2 n2(i, j) − λ3/r3.
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As for the variable p, we first calculate the three components of p̃, the length
of p̃, and then the updated p. Specifically,

p̃(i, j) = ∪ψ+
1 u, ψ+

2 u, 1∃(i, j) − ∪λ21, λ22, λ23∃ + (r1 + λ1)∪m1,m2,m3∃
r2

(i, j),

and based on the formulation (16)

p(i, j) = max
{

0, 1 − r1 + λ1(i, j)
r2|p̃(i, j)|

}
p̃(i, j).

Similarly, we calculate

m̃(i, j) = n(i, j) +
λ4(i, j)

r4
+

(r1 + λ1(i, j))p(i, j)
r4

,

and get the new m(i, j) using the formulation (17).
Moreover, based on the formulations (20), we may update all the Lagrange

multipliers:

λnew
1 (i, j) = λold

1 (i, j) + r1(|p|(i, j) − p(i, j) · m(i, j)),

with |p|(i, j) =
√

p21(i, j) + p22(i, j) + p23(i, j), and

λnew
21 (i, j) = λold

21 (i, j) + r2(p1(i, j) − ψ−
1 u(i, j)),

λnew
22 (i, j) = λold

22 (i, j) + r2(p2(i, j) − ψ−
2 u(i, j)),

λnew
23 (i, j) = λold

23 (i, j) + r2(p3(i, j) − 1),
λnew
3 (i, j) = λold

3 (i, j) + r3(q(i, j) − ψ−
1 n1(i, j) − ψ−

2 n2(i, j)),
λnew
41 (i, j) = λold

41 (i, j) + r4(n1(i, j) − m1(i, j)),
λnew
42 (i, j) = λold

42 (i, j) + r4(n2(i, j) − m2(i, j)),
λnew
43 (i, j) = λold

43 (i, j) + r4(n3(i, j) − m3(i, j)).

4 Numerical Experiments

In this section, we present numerical experiments to compare the results obtained
using Gauss-Seidel method and FFT respectively and also to illustrate the effi-
ciency of the proposed algorithm.

For each experiment, as in [33], we monitor the following relative residuals
in order to check whether the iteration converges to a saddle point:

(Rk
1 , R

k
2 , R

k
3 , R

k
4) =

1
|Γ| (≈R̃k

1≈L1 , ≈R̃k
2≈L1 , ≈R̃k

3≈L1 , ≈R̃k
4≈L1), (24)

with

R̃k
1 = |pk| − pk · mk,

R̃k
2 = pk − ∪⊂uk, 1∃,

R̃k
3 = qk − ψxnk

1 − ψynk
2 ,

R̃k
4 = nk − mk,
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and |Γ| is the domain area. We use these relative residuals (24) as the stopping
criterion, that is, for a given threshold ξr, once Rk

i < ξr for i = 1, ..., 4 and some
k, the iteration process will be terminated. To determine the convergence of the
iteration process, we also check the relative errors of Lagrange multipliers:

(Lk
1 , L

k
2 , L

k
3 , L

k
4)

=

(
≈λk

1 − λk−1
1 ≈L1

≈λk−1
1 ≈L1

,
≈λk

2 − λk−1
2 ≈L1

≈λk−1
2 ≈L1

,
≈λk

3 − λk−1
3 ≈L1

≈λk−1
3 ≈L1

,
≈λk

4 − λk−1
4 ≈L1

≈λk−1
4 ≈L1

)
, (25)

and the relative error of the solution uk

≈uk − uk−1≈L1

≈uk−1≈L1
. (26)

We also observe how the energy (2) is evolving during the iteration by track-
ing the amount E(uk). For the presentation purpose, all the above quantities are
shown in log-scale. Moreover, to illustrate what signals are removed as noise, we
present the associated residual image f −u, besides the given noisy image f and
the cleaned one u.

To compare the results using FFT and Gauss-Seidel method respectively,
we calculate the quantity ≈uGS − uFFT ≈L1/|Γ| and also present the iteration
numbers needed for a given threshold ξr for these two methods.

Two numerical experiments are considered to test the effectiveness of the
proposed algorithm. The first example is a synthetic image inside which there are
several shapes with straight or curvy edges as well as sharp corners; the second
one is the real image “Lenna”. The original noisy images, denoised images, and
their differences f − u are presented in Fig. 4. The results for the synthetic
image demonstrate that besides removing noise and keeping edges, the model
also preserves sharp corners and image contrasts, which can be visualized from
the difference image in which there is almost no meaningful signals. For the real
image “Lenna”, the noise part is effectively removed while edges are kept. An
important feature worthy of emphasizing is the improvement of the staircase
effect. The cleaned image, especially at the face and shoulder, illustrates that
the model produces smooth patches instead of blocky ones.

Figure 4 lists the plots of the relative residuals (Eq. 24), relative errors of the
Lagrange multipliers (Eq. 25), relative error of the iterative uk (Eq. 26), and the
energy E(uk) versus iterations for the synthetic image “shape”. The first row

Table 1. The comparison of the iteration numbers needed for ρr = 2.5 × 10−3 using
Gauss-Seidel and FFT respectively and the difference quantity ≥uGS − uFFT ≥L1/|Λ|.

Image Size Number of Number of ≥uGS − uFFT ≥L1/|Λ|
iterations (GS) iterations (FFT)

Figure 4-(a) 256 × 256 334 314 0.035
Figure 4-(b) 256 × 256 761 754 0.134
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Table 2. The image sizes, the SNRs, the iteration numbers needed for the given thresh-
old ρr, and the computational times using Gauss-Seidel and FFT for the experiments.

Image Size SNR ρr Number Time (sec) Time (sec)
of iterations using GS using FFT

Figure 4-(a) 256 × 256 10.75 2.5 × 10−3 334 16.30 20.81
Figure 4-(b) 256 × 256 13.65 2.5 × 10−3 761 37.70 47.82
Figure 4-(a) 256 × 400 10.70 4.0 × 10−3 786 65.05 84.80
Figure 4-(b) 256 × 320 8.97 2.0 × 10−3 466 33.38 41.71
Figure 4-(c) 320 × 320 11.88 4.0 × 10−3 700 57.56 75.02

(a)

(b)

Fig. 1. The denoising results for a synthetic image and a real image “Lenna”. The
noisy, denoised, and residual images are listed from the first row to the third row
respectively. For the synthetic image, we set the spatial step size h = 5.0, and choose
∂ = 2 × 103, r1 = 40, r2 = 40, r3 = 105, r4 = 2.0 × 105, and ρr = 2.5 × 10−3. For
the real image, we set the spatial step size h = 5.0, choose ∂ = 103, r1 = 40, r2 = 40,
r3 = 105, r4 = 105, and ρr = 2.5 × 10−3.

presents the plots obtained using Gauss-Seidel method while the second row
shows those ones obtained using FFT. Firstly, these plots demonstrate the con-
vergence of iteration and therefore a saddle point of the augmented Lagrangian
functional (9) and thus a minimizer of the functional (2) is achieved for each
case. Secondly, the plots also illustrate the efficiency of the proposed augmented
Lagrangian method. In general, it only needs a few hundred of iterations to
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Fig. 2. The first row lists the plots of relative residuals (a1), relative errors in Lagrange
multipliers (b1), relative error in uk (c1), and energy (d1) versus iterations for the
example “shape” using Gauss-Seidel method; the second row presents the correspond-
ing plots when using FFT. The plot (e) shows the difference between the two cleaned
images uGS and uFFT .

approach minimizers with reasonable accuracy. In fact, in the experiments, for
each iteration, one needs to use two times of Gauss-Seidel sweeping and three
times of the application of closed-form solutions. Thirdly, the plots in these two
rows present almost no difference for each corresponding quantity versus itera-
tion, indicating that the substitution of FFT with one sweeping of Gauss-Seidel
for solving the equations of u and n is feasible. To further compare these two
methods, we present in the third row with the difference uGS − uFFT , each of
which is obtained with the same iteration number. This plot illustrates that the
two cleaned images only differ in small magnitudes around some parts on the
edges of the shapes.
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Fig. 3. The first row lists the plots of relative residuals (a1), relative errors in Lagrange
multipliers (b1), relative error in uk (c1), and energy (d1) versus iterations for the
example “Lenna” using Gauss-Seidel method; the second row presents the correspond-
ing plots when using FFT. The plot (e) shows the difference between the two cleaned
images uGS and uFFT .

Besides these, the iteration numbers needed for the stopping threshold and
the difference quantity ≈uGS −uFFT ≈L1/|Γ| are also compared for the two meth-
ods in Table 1. From this table, when the threshold ξr is achieved, less iterations
are needed using FFT than Gauss-Seidel method, which is reasonable since FFT
gives exact solutions to those equations. However, as shown in Table 2, this
cannot save too much the computational cost for the utilization of FFT.

Figure 4 presents the comparison of the two methods for the example “Lenna”.
In summary, these two examples demonstrate that replacing FFT by Gauss-
Seidel method won’t affect the final results considerably and thus this replace-
ment is applicable when using the mean curvature denoising model.
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(a)

(b)

(c)

Fig. 4. The denoising results for real images. Each row presents the original image, the
cleaned one, and the difference image from the left to the right.

In Fig. 4, we consider more experiments for real images using Gauss-Seidel
method. These examples again demonstrate the features of the mean curvature
based denoising model, including the amelioration of the staircase effect and the
preservation of image contrasts. To show the efficiency of the proposed algorithm
as well as the comparison of the Gauss-Seidel method and FFT that are used for
solving Eqs. (18) and (19), we present in Table 2 for all the experiments with the
image sizes, the SNRs, the numbers of total iteration needed to satisfy the given
threshold ξr, and the computational times using Gauss-Seidel and FFT respec-
tively. From this table, when compared with FFT, the utilization of Gauss-Seidel
method reduces the computational cost, and the larger the image size, the more
this reduction will be. Here, we omit the comparison of the proposed algorithm
with the standard gradient descent method that is used to solve Eq. (7), which
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can found in [33]. Moreover, all computations were done using Matlab R2011a
on an Intel Core I5 machine (Figs. 1, 2 and 3).

5 Conclusion

Recently, the augmented Lagrangian method has been successfully used to mini-
mize the classical ROF functional [29] and Euler’s elastica based functionals [26].
In [33], inspired by the idea in [26], we developed a special technique to treat the
mean curvature based image denoising model [31] using augmented Lagrangian
method, and thus converted the original challenging minimization problem to be
several tractable ones, some of which have closed form solutions while the other
of which can be solved using FFT. In this work, we consider to use Gauss-Seidel
method to substitute FFT for solving those equations in order to further reduce
the computational cost. The numerical experiments demonstrate that the sub-
stitution is feasible and saves considerable computational effort especially for
images of large sizes.
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Abstract. A novel class of variational models with nonconvex ∂q-norm-
type regularizations (0 < q < 1) is considered, which typically out-
performs popular models with convex regularizations in restoring sparse
images. Due to the fact that the objective function is nonconvex and non-
Lipschitz, such models are very challenging from an analytical as well as
numerical point of view. In this work a smoothing descent method with
provable convergence properties is proposed for computing stationary
points of the underlying variational problem. Numerical experiments are
reported to illustrate the effectiveness of the new method.

1 Introduction

In signal or image recovery from sparse data, it has been observed that models
based on nonconvex regularization typically outperform convex ones. In partic-
ular, variational models relying on λq-norm-type regularization with q ⊂ (0, 1)
are of interest [3,9,16]. Due to the particular choice of q, the associated func-
tional →v→q

q :=
∑

i |vi|q turns out to be nonconvex, nondifferentiable and not even
locally Lipschitz continuous, and it is not a norm in the usual sense. These prop-
erties imply several challenges from an analytical as well as numerical point of
view in the treatment of such problems. In fact, analytically generalized deriv-
ative concepts are challenged [7] and, thus, the first-order optimality descrip-
tion becomes an issue. Concerning the numerical solution of general nonsmooth
minimization problems, we mention that while convex problems are rather well
understood [13,14,19] nonconvex ones are still challenging [1,14]. For nonconvex
and non-locally-Lipschitz problems, the literature on methods based on gen-
eralized derivatives is rather scarce. However, taking the particular format of
the underlying nonsmoothness into account and possibly applying tailored (van-
ishing) smoothing concepts, in [4,6,9,12,15,16] solvers of the associated mini-
mization problems in sparse signal or image recovery were developed recently.
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In view of these references, we note that [6,15] requires conditions for the success-
ful analysis which ultimately rule out the λq-norm-type regularization, [9] needs
a sparsity assumption, and [4] provides a method based on Bergman iterations
and specific shrinkage-procedures, but does not include a convergence analysis.
In [12] a regularized nonsmooth Newton technique is proposed which relies on
some kind of local smoothing.

Motivated by smoothing methods (see for example [6]), in this work, for solv-
ing the problem (1) below, we present a descent algorithm combining a Huber-
type smoothing (which we call Huberization in the sequel) with elements of the
nonsmooth Newton solver from [12]. In fact, the smoothing method provides a
mechanism which allows us to drive the Huber-type smoothing of the λq-norm to
zero, thus, genuinely approaching, along a subsequence, a stationary point of the
λq-norm-type problem. From the gradient of the Huberized objective, a suitable
descent direction for that objective is computed by the so-called R-regularized
nonsmooth Newton method [12]. By this procedure, a variable-metric-type scal-
ing is applied to the steepest descent direction, thus, improving the convergence
behavior of the overall method. Moreover, convergence of the algorithmic scheme
towards a stationary point of (1) is established.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
nonconvex TVq-model in finite dimension and establish the existence of a solu-
tion and the necessary optimality condition. A smoothing descent method and
its convergence analysis are presented in Sect. 3. Finally, the proposed method
is implemented for various image processing tasks and the results are reported
in Sect. 4.

2 Nonconvex TVq-Model

The nonconvex TVq-model considered in this paper is formulated as follows:

min
u∈R|Ω|

f(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∈u)ij |2 +

Γ

q
|(∈u)ij |q +

1
2
|(Ku − z)ij |2

)
. (1)

Here, π is a two-dimensional discrete image domain with |π| being the number
of pixels in π, u ⊂ R

|Ω| represents the digital image which is to be reconstructed
from observed data z ⊂ R

|Ω|, ∈ ⊂ R
2|Ω|×|Ω| is the gradient operator, |(∈u)ij |

denotes the Euclidean norm of (∈u)ij in R
2, K ⊂ R

|Ω|×|Ω| is a continuous linear
operator (which, for instance, might describe blurring), and Γ > 0, 0 < q <
1, 0 < μ � Γ are user-chosen regularization parameters. In particular, if q = 1
and μ = 0, then (1) corresponds to the conventional (convex) total variation
(TV-) model according to Rudin, Osher and Fatemi [18].

Throughout this paper, we shall assume that

Ker∈ ◦ KerK = {0}. (2)

Under the condition (2), the existence of a solution of (1) is guaranteed by the
following theorem. Its proof can be found in [12].
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Theorem 1 (Existence of Solution). There exists a global minimizer for the
variational problem (1).

Note that due to the presence of the power-q term the objective f in (1) is not
even locally Lipschitz continuous. This causes difficulties when using the Clarke
generalized gradient of f [7] for describing stationarity of a point u. However,
distinguishing smooth and nonsmooth regions of f through the norm of the
gradient of u, stationary points of (1) can still be characterized by the following
Euler-Lagrange-type system:

{
−μ∂u + K∗(Ku − z) + Γ∈∗(|∈u|q−2∈u) = 0, if (∈u)ij ∪= 0;
∈u = 0, otherwise.

(3)

The disjunctive nature of the above system, which is due to the nonsmoothness of
f , causes severe difficulties in the design of solution algorithms. In the following,
we propose a smoothing descent method, which generates a sequence that has
an accumulation point satisfying (3).

3 Smoothing Descent Method

The smoothing descent method proceeds iteratively as follows. In each iteration,
the TVq-objective is smoothed locally around the nondifferentiability by a Huber
function which is controlled through the parameter χ > 0. The Huber function
reads

ψγ(s) :=

{
1
q sq − ( 1

q − 1
2 )χq, if s > χ,

1
2χq−2s2, if 0 ∃ s ∃ χ,

and the associated Huberized version of (1) is given by

min
u∈R|Ω|

fγ(u) :=
∑

(i,j)∈Ω

(
μ

2
|(∈u)ij |2 + Γψγ(|(∈u)ij |) +

1
2
|(Ku − z)ij |2

)
. (4)

The corresponding Huberized Euler-Lagrange equation is

∈fγ(u) = −μ∂u + K∗(Ku − z) + Γ∈∗ (max(|∈u|, χ)q−2∈u
)

= 0. (5)

Here the max-operation is understood in a componentwise sense.
Clearly, the Huberized objective fγ is continuously differentiable and bounded

from below. Therefore, (4) can be solved by well-known standard solvers for
smooth minimization problems; see, e.g., [17]. In this work, however, we utilize
a tailored approach by employing the so-called R-regularized Newton scheme
which was very recently proposed in [12]. In order to globalize the Newton iter-
ation, a backtracking Armijo line search is used which is particularly tuned to
the structure of the problem of interest.
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For completeness, we provide a self-contained introduction of the R-
regularized Newton method in the appendix. Essentially, this method is a gener-
alization of the lagged-diffusivity fixed-point iteration [2,5,20], which alleviates
diffusion nonlinearity by using information from the previous iterate. Moreover,
with the aid of the infeasible Newton technique [11], a sufficient condition can
be derived for obtaining a descent direction in each iteration; see Theorem 5
in the appendix. The descent property is important for the Armijo-based line
search globalization; see [17] and the references therein for a general account of
Armijo’s line search rule.

When (4) is solved with sufficient accuracy, for instance with respect to the
residual norm →fγk(uk+1)→, then the Huber parameter is reduced and the current
solution serves as the initial guess for solving the next Huberized problem. The
resulting overall algorithmic scheme is specified next.

Algorithm 1. Smoothing descent method.
Choose 0 < Γ < 1, 0 < γ < 1, ρ > 0, Λ̄ > 0. Then iterate as follows:

1. Compute a descent direction Φuk for fγk at uk, i.e. ∈fγk(uk)∗Φuk < 0, for the
Huberized problem (4) by the R-regularized Newton method..

2. Perform an Armijo line search, i.e. determine the size ak > 0 such that

fγk(uk + akΦuk) ≤ fγk (uk) + Γak∈fγk (uk)∗Φuk, (6)

and set uk+1 := uk + akΦuk.
3. If ∇∈fγk(uk+1)∇ ≥ ρΛk, then set Λk+1 := Λk; otherwise, set Λk+1 := γΛk.

4. If Λk ≥ Λ̄, then set k := k + 1 and return to step 1; otherwise stop.

In our experiments, we shall always fix the parameters ϕ = 0.1, κ = 0.8, ξ = 0.1.
Next we present the convergence analysis for the smoothing descent method.

For this purpose, we take χ̄ = 0.

Lemma 2. The sequence generated by Algorithm 3 satisfies

lim
k→≤

χk = 0, and lim inf
k→≤

→∈fγk(uk+1)→ = 0.

Proof. Define the index set

K := {k : χk+1 = κχk}. (7)

If K is finite, then there exists some k̄ such that for all k > k̄ we have χk = χk̄

and →∈fγk(uk+1)→ ≤ ξχk̄. This contradicts the fact that the first-order method
with Armijo line search for solving the smooth problem minu fγk̄(u) generates a
sequence (uk) such that lim infk→≤ →∈fγk̄(uk)→ = 0, cf. [10]. Thus, K is infinite
and limk→≤ χk = 0. Moreover, let K = (kl)≤

l=1 with k1 < k2 < ..., then we have
→∈fγkl (ukl+1)→ ∃ ξχkl ∀ 0 as l ∀ ≈. Hence, lim infk→≤ →∈fγk(uk+1)→ = 0.
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Theorem 3. Assume that the sequence (uk) generated by Algorithm 3 is
bounded. Then there exists an accumulation point u∞ of (uk) such that u∞ ⊂ R

|Ω|

satisfies the Euler-Lagrange Eq. (3).

Proof. In view of the result in Lemma 2, there exists a subsequence of (uk),
say (uk◦

), such that limk◦→≤ →∈fγk◦−1(uk◦
)→ = 0. Since (uk◦

) is bounded, by
compactness there exists a subsequence of (uk◦

), say (uk◦◦
), such that (uk◦◦

)
converges to some u∞ as k′′ ∀ ≈. We show that u∞ is a solution to (3). On the
set {(i, j) ⊂ π : (∈u∞)ij = 0}, the conclusion follows automatically. On the set
{(i, j) ⊂ π : (∈u∞)ij ∪= 0}, we have that max(|∈uk◦◦ |, χk◦◦−1) ∀ |∈u∞| > 0 as
k′′ ∀ ≈. Therefore, it follows from

|∈f(u∞)| ∃ |∈fγk◦◦−1(uk◦◦
) − ∈f(u∞)| + |∈fγk◦◦−1(uk◦◦

)| ∀ 0, (8)

that u∞ satisfies (3).

4 Numerical Experiments

In this section, we report on numerical results obtained by our algorithm for
various tasks in TVq-model based image restoration. The experiments are per-
formed under MATLAB R2009b on a 2.66 GHz Intel Core Laptop with 4 GB
RAM.

4.1 Denoising

We first test our algorithm on denoising the “Two Circles” image; see Fig. 1. This
image, shown in plot (a), is degraded by zero-mean white Gaussian noise of 7 %
and 14 % standard deviation respectively; see plots (b) and (c). The parameters
q = 0.75, μ = 0 are used in this example. The restored images of two different
noisy images are given in plots (d) and (e). In the following, we use the data set
in (b) to investigate the numerical behavior of Algorithm 3 in details.

Robustness to Initialization. Note that our algorithm is intended to find
a stationary point of the TVq-model (which is often a local minimizer in our
numerical experiments). It is worthwhile to check the quality of such local solu-
tions. In Fig. 2, we implement the algorithm starting from three different choices
of initializations; see the first row. The corresponding restored images are shown
in the second row, which are visually indistinguishable. The energy values of the
restorations in (e), (f), (g), (h) are equal to 29.4488, 29.4499, 29.4497, 29.4594,
respectively, which also indicates that the restorations have small differences in
quality. We remark that choosing a relatively large initial Huber parameter χ0 in
general strengthens the robustness of the algorithm against poor initializations.

Choice of Stopping Criteria. As the stopping criteria (step 4) of Algorithm 3
depends on χ̄, here we suggest an empirical way based on the histogram for
choosing a proper χ̄ in an a posteriori way. As we know, the TVq-model tends
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(a) (b) (c)

(d) (e)

Fig. 1. Denoising: (a) “Two Circles” image. (b) Corrupted with 7 % Gaussian noise.
(c) Corrupted with 14 % Gaussian noise. (d) Restoration of (b) with θ = 0.05.
(e) Restoration of (c) with θ = 0.12.

to promote a solution with very sparse histogram. This is numerically confirmed
by the histogram plots in Fig. 3. Therefore, it is reasonable to terminate the
algorithm once there is no longer significant change in the sparsity pattern of
the histogram. In our particular example, this suggests that χ̄ = 10−4 is a proper
choice. The same choice of χ̄ will be used in all the following experiments.

Miscellaneous Numerical Behavior. We further demonstrate the numerical
behavior of the algorithm in Fig. 4. All data points in the plots are taken from
those iterations with k ⊂ K; see (7) for the definition of K. As χk decreases, our
algorithm is well behaved in terms of objective value, PSNR, and residual norm.
Qualitatively a similar numerical behavior is observed in the experiments that
follow.

4.2 Deblurring

In Fig. 5 we test our algorithm in the context of deblurring the 256-by-256
phantom image depicted in plot (a). The original image is blurred by a two-
dimensional truncated Gaussian kernel yielding
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(Ku)ij =
∑

|i◦|≤3, |j◦|≤3

exp
(

−|i′|2 + |j′|2
2|γK |2

)
ui−i◦,j−j◦ .

Then white Gaussian noise of zero mean and 0.05 standard deviation is added to
the blurred image; see (b). We apply our algorithm with q = 0.75, Γ = 0.01, μ =
10−6, and u0 = z. In plot (c) the restored image is shown. Its PSNR-value is
27.6672.

4.3 Compressed Sensing

We also apply our algorithm to a k-space compressed sensing problem; see Fig. 6.
The observed data z is constructed as follows: z = SFutrue, where F is the 2D
discrete Fourier transform and S is a 20 % k-space random sampling matrix. We
reconstruct the image by solving our TVq-model with q = 0.75, Γ = 0.001, μ =
10−6, and u0 = 0. The corresponding restored image is shown in (e). This result
is compared with the reconstruction obtained from the inverse Fourier transform
in (c) and the reconstruction obtained from the TV-model in (d) with q = 1, Γ =
0.02, μ = 10−6. In our implementation of the TV-model, Γ is chosen in order to
obtain an image with optimal PSNR. The (convex) TV-model, here as well as in
Sect. 4.4, is solved by a primal-dual Newton method [11] with Huber parameter χ̄.
We remark that many other algorithms in the literature may also work efficiently
in the same context. In the left part of Table 1, we provide the comparison of the
three candidate methods with respect to PSNR and CPU time. It is observed

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Initialization test: (a) Observed image as initial guess. (b) Tikhonov regularized
image as initial guess. (c) Rotated image as initial guess (d) Random initial guess.
(e), (f), (g), and (h) are the restorations from (a), (b), (c), and (d) respectively.
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Fig. 3. Histogram of uk+1 (k ∈ K).
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Fig. 4. Numerical behavior (k ∈ K): (a) TVq-energy f(uk+1). (b) PSNR(uk+1).
(c) Residual norm ∇∈fγk (uk+1)∇.

that the inverse Fourier transform is computationally cheap but only yields a
poor result. The TV method takes about 6 seconds but still cannot recover the
image to fine details. Our TVq method takes about double the CPU time of TV
and provides an almost perfect reconstruction.

4.4 Integral-Geometry Tomography

In Fig. 7, we apply our algorithm to integral-geometry tomography. The given
data z in (b), also known as the sinogram, is constructed by taking the 2D Radon
transform of the underlying image every 15 degrees (out of 180 degrees). The
matrix K in this example is a discrete Radon transform of size 1235-by-4096.
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(a) (b) (c)

Fig. 5. Deblurring: (a) 256-by-256 Phantom. (b) Noisy blurred image; PSNR=21.7276.
(c) Restored image; PSNR=27.6672.

(a) (b)

(c) (d) (e)

Fig. 6. Compressed sensing: (a) 64-by-64 Phantom. (b) 20 % k-space random sampling.
(c) Direct reconstruction by FFT. (d) Reconstruction by TV-model. (e) Reconstruction
by TVq-model.

We utilize our TVq-model with q = 0.75, Γ = 0.001, μ = 10−6, and u0 = 0.
The restoration is shown in plot (e). This result clearly is superior to the one
shown in plot (c), which is obtained by filtered backprojection, and the one
shown in plot (d), which is obtained from the TV-model with q = 1, Γ = 0.02,
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Fig. 7. Integral-geometry tomography: (a) 64-by-64 Phantom. (b) Sinogram. (c) Recon-
struction by filtered backprojection. (d) Reconstruction by TV-model. (e) Reconstruc-
tion by TVq-model.

μ = 10−6. In our implementation of the TV-model, Γ is chosen in order to obtain
an image with optimal PSNR. In the right part of Table 1, we again compare the
three candidate methods with respect to PSNR and CPU time. Similar to the
compression sensing example, the TVq method costs more CPU time than the
other two methods (but still less than double the CPU time of the TV method)
but yields an almost perfect reconstruction.

4.5 Reconstruction of Multi-coil MRI Raw Data

We now extend the methodology to magnetic resonance imaging (MRI), by con-
sidering the following model:

min
u∈R|Ω|

1
2

L∑
l=1

→Klu − zl→2 +
∑

(i,j)∈Ω

Γg

q
|(∈u)ij |q +

∑
(i◦,j◦)∈Ξ

Γw

q
|(Wu)i◦j◦ |q, (9)

with Kl := PF (γlu). Here Γg and Γw are two positive parameters, L is the num-
ber of coils of the MRI machine, (zl) denote the raw data collected by each coil,
(γl) are the given (or precomputed) coil sensitivities, F is the two-dimensional
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Table 1. Comparison with respect to PSNR and CPU time (in seconds).

Compressed sensing Integral-geometry tomography

IFT TV TVq FBP TV TVq

PSNR 13.68 25.74 44.48 PSNR 15.14 23.18 51.26
CPU �1 6.68 12.72 CPU �1 3.82 7.27

discrete Fourier transform, and P represents some given radial projection oper-
ator in the k-space. Moreover, W : R|Ω| ∀ R

|Ξ| is a user-chosen transform, typ-
ically a 2D discrete wavelet transform, and Ξ denotes the wavelet transformed
domain.

Note that in addition to the TVq regularization, we include the λq-norm of
wavelet coefficients in the regularization in order to allow the reconstruction to
be richer than patchwise constant images. Nevertheless, our algorithm presented
in this paper can be extended without agonizing pain to the problem (9).

Indeed, as a straightforward extension of Theorem 1, the solution of (9) exists
provided that Ker∈◦KerW ◦(◦L

l=1KerKl) = {0}. The Euler-Lagrange equation
for (9) appears as



Γg∈∗pg + ΓwW∗pw +
∑L

l=1 K∗
l (Klu − zl) = 0,

(pg)ij = |(∈u)ij |q−2(∈u)ij , if (i, j) ⊂ π ∞ (∈u)ij ∪= 0,

(pw)i◦j◦ = |(Wu)(i◦,j◦)|q−2(Wu)i◦j◦ , if (i′, j′) ⊂ Ξ ∞ (Wu)i◦j◦ ∪= 0.

The associated Huberized problem can be analogously formulated as

min
u∈R|Ω|

1
2

L∑
l=1

→Klu − zl→2 + Γg

∑
(i,j)∈Ω

ψγ(|(∈u)ij |) + Γw

∑
(i◦,j◦)∈Ξ

ψγ(|(Wu)i◦j◦ |),

and the corresponding Huberized Euler-Lagrange equation is given by

Γg∈∗(max(|∈u|, χ)q−2∈u)+ΓwW∗(max(|Wu|, χ)q−2Wu)+
L∑

l=1

K∗
l (Klu−zl)= 0.

We shall not go into further details but remark that the R-regularized method
in the appendix can be used to solve the above smooth problem by treating the
gradient term and the wavelet term independently. Thus, Algorithm 3 can be
implemented.

In this experiment, the MRI data are collected from four coils, i.e. L =
4. We choose q = 0.75, Γg = 10−5, Γw = 2 × 10−5, and W to be the 4th-
order Daubechies wavelet transform [8]. The reconstructed images using various
numbers of radial projections are shown in Fig. 8. Depending on the resolution
(or detail) desired by practitioners, our method helps to reduce the necessary
number of k-space samples and therefore to speed up the overall MRI data
acquisition.
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(a) 96 radial projections. (b) 48 radial projections. (c) 32 radial projections.

(d) 24 radial projections. (e) 16 radial projections. (f) 12 radial projections.

Fig. 8. Reconstruction of four-coil MRI raw data.

Appendix: R-Regularized Newton Method

Here we provide a brief and self-contained description of the R-regularized New-
ton method. The interested readers can find more details in the recent work [12].

A regularized-Newton-type structure generically arises in the classical lagged-
diffusivity fixed-point iteration [20]. Let uk be our current iterate in solving the
Huberized problem (4). By introducing a lagged-diffusivity weight

wk := max(|∈uk|, χ)q+r−2,

and a dual variable
p := wk max(|∈u|, χ)−r∈u,

with 0 ∃ r ∃ 2 − q, the reweighted Euler-Lagrange Eq. (5) appears as
⎛−μ∂u + K∗(Ku − z) + Γ∈∗p = 0,

(wk)−1 max(|∈u|, χ)rp = ∈u.
(10)

Given a current approximation (uk, pk), we apply a generalized linearization to
(10) and obtain the generalized Newton system
⎝−μ∂ + K∗K Γ∈∗,

− ⎞Ck(r)∈ D((mk)2−qe)

⎠ ⎝
δuk

δpk

⎠
=
⎝

μ∂uk − K∗(Kuk − z) − Γ∈∗pk

∈uk − (mk)2−qpk

⎠
,



A Smoothing Descent Method for Nonconvex TVq-Models 131

where

mk := max(|∈uk|, χ),

(ηAk)ij :=
⎛

1, if |(∈uk)ij | > χ,
0, otherwise,

⎞Ck(r) := I − rD(ηAk(mk)−qpk)
⎝

D(∈xuk) D(∈yuk)
D(∈xuk) D(∈yuk)

⎠
.

Here D(v) denotes a diagonal matrix with the vector v as diagonal entries. For
v ⊂ R

|Ω| and p = (p1, p2) ⊂ R
2|Ω|, the notation vp is understood as a vector in

R
2|Ω| such that (vp)ij = (vijp

1
ij , vijp

2
ij) for all (i, j) ⊂ π.

After eliminating δpk, we are left with the linear system

⎞Hk(r)δuk = −∈fγ(uk), (11)

where

⎞Hk(r) := −μ∂ + K∗K + Γ∈∗D((mk)q−2e) ⎞Ck(r)∈.

The Newton system (11) can be rewritten as

(Hk + νRk)δuk = −∈fγ(uk), (12)

with ν = 2−q−r, where Hk := ⎞Hk(2−q) is the Hessian from the non-reweighted
primal-dual Newton method [11,20], and

Rk := Γ∈∗D(ηAk(mk)−2pk)
⎝

D(∈xuk) D(∈yuk)
D(∈xuk) D(∈yuk)

⎠
∈.

serves as a regularizer on the Hessian Hk. This coins the name R-regularization
in connection with Newton’s method.

Next we aim to establish a sufficient condition on the R-regularization weight
ν in order to guarantee that ⎞Hk(r) is positive definite and, therefore, δuk is a
descent direction for fγ at uk. For this purpose we invoke an infeasible Newton
technique [11,12].

The infeasible Newton technique involves two modifications in constructing
the system matrix ⎞Hk(r). First, we replace pk by pk

+, where

pk
+ :=

ηAk(mk)q−1pk

max((mk)q−1, |pk|) + (1 − ηAk)pk.

Note that the modified pk
+ satisfies its feasibility condition, i.e.

|(pk
+)ij | ∃ |(∈uk)ij |q−1, whenever |(∈uk)ij | > χ. (13)

Secondly, we replace ⎞Ck(r) by its symmetrization denoted by ⎞Ck
+(r), i.e.

⎞Ck
+(r) :=

⎞Ck(r) + ⎞Ck(r)∗

2
=I − rD(ηAk(mk)−q)·

·
⎝

D((pk
+)x∈xuk) D( 1

2 ((pk
+)x∈yuk + (pk

+)y∈xuk))
D( 1

2 ((pk
+)x∈yuk + (pk

+)y∈xuk)) D((pk
+)y∈yuk)

⎠
.
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Accordingly, the system matrix Hk in (12) is replaced by Hk
+ with

Hk
+ := −μ∂ + K∗K + Γ∈∗D((mk)q−2e) ⎞Ck

+(2 − q)∈,

and the regularizer Rk is replaced by Rk
+ with

Rk
+ :=Γ∈∗D(ηAk(mk)−2)·

·
⎝

D((pk
+)x∈xuk) D( 1

2 ((pk
+)x∈yuk + (pk

+)y∈xuk))
D( 1

2 ((pk
+)x∈yuk + (pk

+)y∈xuk)) D((pk
+)y∈yuk)

⎠
∈.

Lemma 4. Let 0 ∃ r ∃ 1 (or equivalently 1 − q ∃ ν ∃ 2 − q) and the feasibility
condition (13) hold true. Then the matrix ⎞Ck

+(r) is positive semidefinite.

The proof of Lemma 4 is given in [12]. Thus, the positive definiteness of the
R-regularized Hessian Hk

+ + νRk
+ follows immediately from its structure and

Lemma 4.

Theorem 5. Suppose the assumptions of Lemma 4 are satisfied. Then the
R-regularized Hessian Hk

+ + νRk
+ is positive definite.

We remark that our choice of μ is related to Theorem 6. Under the condition
(2), for any positive μ the matrix −μ∂+K∗K is positive definite, and therefore
Theorem 6 follows. However, whenever K is injective the same conclusion holds
with μ = 0. This is why we are allowed to choose μ = 0 in the denoising example
in Sect. 4.1.

Given the result in Theorem 5, the descent direction δuk in the R-regularized
Newton method implemented in step 1 of Algorithm 3 can be now obtained by
solving the linear system

(Hk
+ + νRk

+)δuk = −∈fγ(uk),

with 1 − q ∃ ν ∃ 2 − q. Given δuk, one can compute δpk as

δpk = (mk)q−2(∈uk + ⎞Ck(r)∈δuk) − pk,

and then update uk+1 := uk + akδuk and pk+1 := pk + akδpk with some step
size ak determined by the Armijo line search as in step 2 of Algorithm 3.

In all experiments in Sect. 4, we consistently choose ν = 1 − q. This choice
has the interesting interpretation that we actually relax the TVq-model to a
weighted TV-model (with weight updating in the outer iterations); see [12].

Acknowledgement. The authors would like to thank Dr. Florian Knoll for contribut-
ing his data and codes to our experiments on MRI.
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14. Mäkelä, M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms
with Applications to Optimal Control. World Scientific, River Edge (1992)

15. Nikolova, M., Ng, M.K., Tam, C.-P.: Fast nonconvex nonsmooth minimization
methods for image restoration and reconstruction. IEEE Trans. Image Process.
19, 3073–3088 (2010)

16. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.-K.: Efficient reconstruction of piece-
wise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging
Sci. 1, 2–25 (2008)

17. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York
(2006)

18. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60, 259–268 (1992)

19. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth
function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim.
2, 121–152 (1992)

20. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM
J. Sci. Comput. 17, 227–238 (1996)



A Fast Continuous Max-Flow Approach
to Non-convex Multi-labeling Problems

Egil Bae1(B), Jing Yuan2, Xue-Cheng Tai3, and Yuri Boykov2

1 Department of Mathematics, University of California, Los Angeles, USA
ebae@math.ucla.edu

2 Computer Science Department, Middlesex College,
University of Western Ontario, London, ON, Canada

cn.yuanjing@gmail.com, yuri@csd.uwo.ca
3 Department of Mathematics, University of Bergen, Bergen, Norway

tai@math.uib.no

Abstract. This paper studies continuous image labeling problems with
an arbitrary data term and a total variation regularizer, where the labels
are constrained to a finite set of real numbers. Inspired by Ishikawa’s
multi-layered graph construction for the same labeling problem over a
discrete image domain, we propose a novel continuous max-flow model
and build up its duality to a convex relaxed formulation of image label-
ing under a new variational perspective. Via such continuous max-flow
formulations, we show that exact and global optimizers can be obtained
to the original non-convex labeling problem. We also extend the studies
to problems with continuous-valued labels and introduce a new theory to
this problem. Finally, we show the proposed continuous max-flow models
directly lead to new fast flow-maximization algorithmic schemes which
outperform previous approaches in terms of efficiency. Such continuous
max-flow based algorithms can be validated by convex optimization the-
ories and accelerated by modern parallel computational hardware.

1 Introduction

Many practical problems in image processing and computer vision can be mod-
eled as multilabel problems, where the task is to optimally assign the unknown
variable l, chosen from some finite set {l1, . . . , ln}, at each point of the image
domain λ. It has become an important paradigm to formulate such labeling
problems as the optimization of an energy function/functional which mathemat-
ically encodes all the information needed for the specified imaging and vision
task. Such optimization problems can be formulated by either regarding the
image domain as discrete or continuous.

In the spatially discrete setting, graph cut has become one of the most impor-
tant and efficient techniques to tackle such problems, by computing max-flow
or min-cut on appropriately constructed graphs. Applications of max-flow/min-
cut in computer vision range from image segmentation or labeling [1,2], stereo
[3,4], 3D reconstruction [5] etc. Unfortunately, most minimization problems

A. Bruhn et al. (Eds.): Global Optimization Methods, LNCS 8293, pp. 134–154, 2014.
DOI: 10.1007/978-3-642-54774-4 7, c© Springer-Verlag Berlin Heidelberg 2014
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involving more than two labels are NP-hard, therefore only approximate algo-
rithms are available [1,4]. However, for a particular set of multilabeling problems
with convex interaction penalty, Ishikawa [6] showed that exact solutions can
be computed by max-flow and min-cut. Such energy functions are important
in e.g. stereo reconstruction. Despite the efficiencies of graph-based methods,
their computation results are often comparatively rough and biased by the dis-
crete graph setting, i.e. metrication errors occur. Reducing such visual artifacts
requires either considering more neighbour nodes, which increases memory bur-
den largely, or applying more complex schemes such as high-order potentials [7].

Recently, the variational approach has become more and more popular for
obtaining optimal labelings in the spatially continuous setting, where the prob-
lem is formulated as the minimization of a continuous energy functional. In
contrast to the graph-based model, there are many advantages of the variational
approach: the variational model perfectly avoids metrication errors due to its
crucial rotation invariance; moreover, its reduced continuous numerical scheme
is reliable, tractable, and can be easily implemented and accelerated in many
different ways, e.g. parallel, multigrid or GPU hardwares; last but not least, the
continuous models require far less memory in computation.

The application of variational methods to optimal labelings is often to relax
the combinatorial constraints to a proper convex set. It leads to a constrained
convex minimization problem such that global and exact optimums, in some
special cases, are available. For example, Chan et al. [8] showed that global
and exact binary optimizers can be obtained by thresholding the computation
result of the convex relaxed model; therefore, a sequence of so-called continuous
min-cuts can be obtained. [9,10] generalized Ishikawa’s work [6] to the spatially
continuous setting, where both the image domain and label values are contin-
uous, by representing the optimal labeling function as the discontinuity set of
a binary function in a one-dimensional higher space, i.e. a spatially continuous
min-cut. Such a lifting approach is related to earlier mathematical theories of
calibrations and Cartesian currents [11,12]. Optimal labeling functions could be
obtained by applying the result of Chan et al. in the higher dimensional space,
i.e. first solve the relaxed binary problem and then threshold the result.

Motivations and Contributions

For discrete graphs, it is well known that the minimum cut problem is dual to the
maximum flow problem by the max-flow and min-cut theorem [13]. Actually, the
fastest graph cut algorithms are based on maximizing flow instead of computing
the min-cut directly, e.g. the Ford-Fulkerson algorithm [14] and the push-relabel
algorithm [15]. The minimal ‘cut’ is finally recovered along edges with ’satu-
rated’ flows, i.e. cuts appear at the flow-bottlenecked edges [4,16]. In contrast,
max-flow models and algorithms in the spatially continuous setting have been
much less studied. Some work has appeared that deal with partitioning prob-
lems involving two regions: Strang [17] was the first to formulate max-flow and
min-cut problems over a continuous domain; In [18], edge based max-flow and
min-cut was formulated in which certain interior and exterior points must be
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specified in advance; Yuan et al. [19,20] proposed a direct continuous analogue
of the typical discrete max-flow and min-cut models that are used for solving
binary labeling problems in image processing and computer vision. Max-flow
and min-cut interpretations of recent convex relaxations for Potts model have
been made in [21]. However in these cases there is generally a duality gap and
the original problems can only be solved approximately.

To our knowledge, this is the first work to address continuous max-flow and
min-cut duality for problems where the labeling function can take several discrete
values. Motivated by Ishikawa [6] and Yuan et al. [19], we interpret the problem
as a continuous min-cut problem over a mixed continuous/discrete domain and
build up a novel continuous max-flow model in analogy with Ishikawa’s discrete
graph construction. The max-flow model can be used to produce global solutions
of the original non-convex problem with discrete label values. In particular, it
is shown that the max-flow model is dual to an exact convex relaxation of the
original problem. Strict duality is also established between the max-flow model
and the original problem, by extending the thresholding scheme of [8] from two
to several regions.

A new continuous max-flow based algorithm is proposed. Its efficiency and
convergence can be verified by standard convex optimization theories. The label-
ing function is updated as an unconstrained lagrange multiplier each iteration,
and does not need to be projected back onto any feasible set. Numerical experi-
ments show a significantly faster convergence rate than the primal-dual algorithm
in Pock et al. [9,10] and later [22], especially at high precisions.

A significantly extended version of this paper is available at [23], which con-
tains extensions to other regularizers and more experiments. This conference
paper contains some novelties which are not in [23], such as the discussion on
saturated/unsaturated edges in Sect. 3.5.

2 Preliminaries: Ishikawa’s Work

Ishikawa [6] studied image labeling problems over an image graph which can be
generally formulated as:

min
u∈U

∑
v∈P

Γ(uv, v) + π
∑

(v,w)∈N
g(uv − uw) , (1)

where P denotes a discrete image grid in 2-D or N-D; N ⊂ P ×P is a neighbor-
hood system on P; U = {u : P →∈ L is the set of all feasible labeling functions,
where L = {∂1, ..., ∂n}}. The potential prior g(x) in (1) is assumed to be convex
and Γ is any bounded function, but not necessarily convex. It was shown by [6]
that problems of the form (1) can be exactly optimized by finding the minimal
cut over a specially constructed multi-layered graph G = (V, E), where each layer
corresponds to one label.

We adopt Ishikawa’s notations [6] in this work and study the simplified graph
which uses n − 1 layers instead of n and avoids infinite capacities on the source
edges [24] (see Fig. 1 for a 1-D example). The vertex set V and the edge set E
are defined as follows:
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(a) (b)

Fig. 1. 1D illustration: (a) Legal cut, (b) Illegal cut. Severed edges are depicted as
dotted arrows. The gray curve visualizes the cut. Vertices interior to the curve belongs
to Vs while vertices exterior to the curve belongs to Vt.

V = P × L ∪ {s, t} = {uv,i |v ◦ P ; i = 1, ..., n − 1} ∪ {s, t} (2a)

E = ED ∪ EC ∪ EP (2b)

where the edge set E is composed of three types of edges

– Data edges ED =
⋃

v∈P Ev
D, where

Ev
D = (s, uv,1) ∪ {(uv,i, uv,i+1) | i = 1, . . . , n − 2} ∪ (uv,n−1, t) . (3)

– Penalty edges EP =
⋃

v∈P Ev
C , where

Ev
C = (uv,1, s) ∪ {(uv,i+1, uv,i) ∪ (t, uv,n−1) | i = 1, . . . , n − 2} . (4)

– Regularization edges ER:

ER = {(uv,i, uw,j) | (v, w) ◦ N , i, j = 1, ..., n} . (5)

2.1 Anisotropic Total-Variation Regularization

When a pairwise prior g(uv − uw) = C(v, w) |uv − uw| is given, (1) corresponds
to an anisotropic total-variation regularized image labeling problem, i.e.

min
u∈U

∑
v∈P

Γ(uv, v) + π
∑

(v,w)∈N
C(v, w) |uv − uw| (6)

which is a discrete counterpart of the total-variation regularizer.
Now we define flow configurations over the graph (2a) and (2b) such that its

max-flow corresponds to the minimizer of (6):
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– Capacity of source flows: the directed flow p1(v) along each edge from the
source s to the node uv,1 of the first layer, i.e. the edge (s, uv,1), is constrained
by

p1(v) ∪ Γ(∂1, v) , ∃v ◦ P ; (7)

– Capacity of flows between layers: the directed flow pi(v) along each edge
(uv,i, uv,i+1) from the node uv,i of the i-th layer to the node uv,i+1 of the
i + 1-th layer is constrained by

pi(v) ∪ Γ(∂i, v) , ∃v ◦ P i = 1, ..., n − 2 (8)

– Capacity of sink flows: the directed flow pn(v) along each edge from the node
uv,n−1 of the last layer to the sink t is constrained by

pn(v) ∪ Γ(∂n, v) , ∃v ◦ P ; (9)

– Capacity of spatial flows at each layer: the undirected flow qi(v, w) of each
edge (v, w) ◦ N at the layer i, i = 1, . . . , n − 1, is constrained by

|qi(v, w)| ∪ C(v, w) ; (10)

this corresponds to the well-known anisotropic total-variation regularizer in
case of a 4 nearest neighborhood system N ;

– Conservation of flows: flow conservation means that in-coming flows should be
balanced by out-going flows at any node v ◦ P of each layer i = 1, ..., n−1, i.e.

( ∑
w:(w,v)∈N

qi(v, w) −
∑

w:(v,w)∈N
qi(v, w)

) − pi(v) + pi+1(v) = 0 . (11)

Since there is no lower bound on the flows (7)–(9), the flow on the penalty
edges (4) can become arbitrarily large. This implies that each edge in the set Ev

D

which links the source and sink can only be cut once, i.e. illegal cuts as shown
in Fig. 1(b) have infinite cost and are not allowed.

Therefore, the max-flow problem over the graph is to find the largest amount
of flow allowed to pass from the source s to sink t through the n − 1 graph
layers, i.e.

max
p,q

∑
v∈P

p1(v) (12)

subject to the flow constraints (7), (8), (9), (10) and (11).
Due to duality between the max-flow and min-cut problem [13], one can solve

the max-flow problem and then extract a solution to the min-cut problem (6).

3 Multilabeling by Continuous Max-Flow and Min-Cut

Define the feasible set of functions as U = {u : λ →∈ {∂1, ..., ∂n} s.t.
∫

Γ
|≤u| ∪

∀}, where ∂1 < ... < ∂n are real numbers. The continuous counterpart of (1)
can be formulated as

min
u∈U

∫
Γ

Γ(u(x), x) dx +
∫

Γ

C(x)|≤u(x)| dx , (13)
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where Γ : R × λ →∈ R is any bounded function, not necessarily convex. The set
U is a non-convex set of discrete valued labeling functions. This is in contrast
to Pock et al. who considered a convex feasible set of continuous valued label-
ing functions. We show this problem can be regarded as a continuous min-cut
problem by following the ideas of Ishikawa.

We start by rewriting (13) in terms of the upper level sets of u ◦ U

χi(x) =
{

1 , if u(x) > ∂i

0 , if u(x) ∪ ∂i
,∃x ◦ λ i = 1, . . . , n − 1 .

Let χ0(x) = 1 and χn(x) = 0, a.e. x ◦ λ. Clearly, we have

1 = χ0(x) ≈ χ1(x) ≈ χ2(x) ≈ ... ≈ χn−1(x) ≈ χn(x) = 0 a.e. x ◦ λ. (14)

By the coarea formula, we have for any function u ◦ U that

∫
Γ

C(x)|≤u| dx =
n−1∑
i=1

∫
Γ

Ci(x)|≤χi| dx ,

where Ci(x) = (∂i+1−∂i)C(x), i = 1, ..., n−1. In this work, we will mostly focus
on the case where C(x) = π is constant for simplicity.

Therefore, (13) can be equivalently rewritten as

min
{∂i}n−1

i=1 ∈B

n∑
i=1

∫
Γ

(χi−1 − χi) Γ(∂i, x) dx + π

n−1∑
i=1

(∂i+1 − ∂i)
∫

Γ

|≤χi| dx (15)

subject to the constraint (14), where the binary constraint B is defined as

B = {ψ : λ →∈ {0, 1}, s.t.
∫

Γ

|≤ψ| < ∀} (16)

The problem (15) is obviously a nonconvex optimization problem due to the
binary constraints (16).

After solving (15), the labeling function u can be recovered from χi by
u =

∑n
i=1(χi−1 − χi)∂i .

3.1 Primal Model: Continuous Max-Flow

In this section, we build up a max-flow model in continuous settings, which
simulates Ishikawa’s graph configuration. It will be shown that solutions of (15)
and (13) can be obtained by exploring the dual of this maximization problem.

To this end, we place n − 1 image domains λi, i = 1, . . . , n − 1 with λi = λ,
layered in a sequential order between two terminals: the source s and the sink
t. The source s is linked to each image pixel x of the first layer λ1 by an edge
e1(x); the same image pixel x between two sequential image layers λi−1 and λi,
i = 2, . . . , n−1, is linked by the edge ei(x); and the pixel x at the last layer λn−1

is also linked to the sink t by the edge en(x). Define flow functions pi : λ →∈ R
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corresponding to each edge function ei , i = 1, . . . , n. Within each image layer
λi, i = 1, . . . , n−1, the spatial flow functions are given by qi ◦ C∗(λ)N , where
N is the dimension of the image domain.

As a generalization of the discrete constraints (7)–(11), we now give con-
straints on flow functions pi ◦ L1(λ), i = 1, . . . , n, and qi ◦ C∗(λ)N , i =
1, . . . , n − 1

|qi(x)| ∪ Ci(x) for x ◦ λ , i = 1, . . . , n − 1 (17)
pi(x) ∪ Γ(∂i, x) for x ◦ λ , i = 1, . . . , n (18)(
div qi − pi + pi+1

)
(x) = 0 for x ◦ λ , i = 1, . . . , n − 1 (19)

qi · n = 0 on ϕλ , i = 1, . . . , n − 1 . (20)

Therefore, the continuous max-flow model, in analogue with Ishikawa’s discrete
one (12), can be formulated by

sup
p,q

EP (p) =
∫

Γ

p1(x) dx (21)

subject to the constraints (17)–(20). In this work, we call (21) the primal model.
Observe the maximization problem (21) is bounded above by

∫
Γ

Γ(∂1(x), x) dx
due to the constraint (18).

3.2 Primal-Dual Model

By introducing multiplier functions χi(x), i = 1, . . . , n−1, to the linear equality
constraints of flow conservation (19), we have the equivalent primal-dual model
of (21):

inf
∂

sup
p,q

E(p, q;χ) =
∫

Γ

{
p1 +

n−1∑
i=1

χi

(
div qi − pi + pi+1

)}
dx (22)

subject to (17), (18) and (20).
After rearrangement, the above primal-dual formulation (22) can be equiva-

lently written as

inf
∂

sup
p,q

E(p, q;χ) =
n∑

i=1

∫
Γ

(χi−1 − χi)pi dx +
n−1∑
i=1

∫
Γ

χi div qi dx (23)

subject to (17), (18) and (20).

3.3 Dual Model: Continuous Min-Cut

Now we show that optimizing the primal-dual model (23) over all the flow func-
tions p and q leads to the equivalent dual model, i.e. the continuous min-cut
model:

inf
∂

ED(χ) =
n∑

i=1

∫
Γ

(χi−1 − χi)Γ(∂i, x) dx +
n−1∑
i=1

∫
Γ

Ci(x) |≤χi| dx (24)

s.t. 1 = χ0(x) ≈ χ1(x) ≈ . . . ≈ χn−1(x) ≈ χn(x) = 0 , ∃x ◦ λ .



A Fast Continuous Max-Flow Approach for Multi-labeling Problems 141

Optimization of Flow Functions. In this regard, we consider the optimiza-
tion problem

f(v) = sup
w≤C

v · w , (25)

where v, w and C are scalars. When v < 0, w can be arbitrarily large in order
to maximize the value v · w, i.e. f(v) = +∀. Therefore, we must have v ≈ 0 so
as to make the function f(v) meaningful and

{
if v = 0 , then w < C and f(v) reaches its maximum 0
if v > 0 , then w = C and f(v) reaches its maximum v · C

.

Therefore, we have

f(v) =
{

v · C , v ≈ 0 ,
∀ v < 0 . (26)

The function f(v) given in (25) provides us with a prototype to maximize the
flow functions pi(x), i = 1, . . . , n, in the primal-dual model (23).

For each x ◦ λ, consider

fi(x) = sup
pi(x)≤λ(θi,x)

(χi−1(x) − χi(x)) pi(x) , i = 1, . . . , n .

In view of (26), we have

fi(x) =
{

(χi−1(x) − χi(x)) Γ(∂i, x) , χi−1(x) ≈ χi(x)
∀ χi−1(x) < χi(x) , i = 1, . . . , n . (27)

On the other hand, it is well known that for any χi ◦ BV (λ)

sup
qi

∫
Γ

χi(x) div qi(x) dx =
∫

Γ

Ci(x)|≤χi(x)| dx , (28)

when qi is optimized over the set (17) and (20). In view of (27) and (28), max-
imizing (23) over all the flow functions p and q leads directly to the equivalent
dual model (24). The constraints (14) must be satisfied for an optimal ψ, oth-
erwise the energy would be infinite, contradicting boundedness of the max-flow
problem from above.

Note that a solution to the problem (24) exists since (24) is convex, lower
semi-continuous and bounded from below and the constraints (24) are convex.
Regarding existence of a solution to the max-flow problem (21), due to bound-
edness from above a maximizing sequence {pi, qi}∗

i=1 exists to the problem (21).
However, it may not admit a maximizing subsequence w.r.t. qi which converges
to a q≤ ◦ Cα because the supremum may be attained for a discontinuous q≤

which lies in the closure of the set of smooth vector fields C∗(λ)N and not in
the set itself. In this paper we still speak of (p≤, q≤) as a primal-dual solution even
though q≤ may be discontinuous to ease readability. A more formal presentation
can be given if arguments involving (p≤, q≤) are replaced with limi∞∗{pi, qi}∗

i=1

for the maximizing sequence {pi, qi}∗
i=1.
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3.4 Exact and Global Optimums

The functions χi, i = 1 . . . n − 1, of the convex model (24) are relaxed to take
values in the convex set [0, 1], which is in contrast to the binary constraints of
the original nonconvex formulation (15). The following proposition establishes
a primal-dual relationship between the max-flow problem (21) and the origi-
nal non-convex problem (15). By solving the max-flow problem (21) a set of
optimizers to the original binary constrained problem (15) can be obtained by
thresholding each layer function χ≤

i .

Proposition 1. Assume ψ≤ is a minimizer of (24) and let {ti}n−1
i=1 be a sequence

such that 0 < t1 = t2 = ... = tn−1 ∪ 1. Define the level sets

Sti
i = {x : χ≤

i (x) ≈ ti} , i = 1 . . . n − 1 (29)

and let χti
i (x) be the characteristic function of Sti

i , i.e.

χti
i (x) :=

{
1 , χ≤

i (x) ≈ ti
0 , χ≤

i (x) < ti
.

then the set of binary functions χti
i (x), i = 1, . . . , n − 1, is a global optimum of

the original nonconvex multi-labeling problem (15). Furthermore, if (p≤, q≤;χ≤) is
any optimal primal-dual solution of (22), the cut given by χti

i (x), i = 1, . . . , n−1,
has an energy equal to the max flow energy in (21), i.e.

ED(χt) =
∫

Γ

p≤
1(x) dx = EP (p≤).

Proof. Since p≤
i , i = 1, ..., n and q≤

i , χ≤
i , i = 1, ..., n−1 is a global optimum of the

primal-dual problem (22), then p≤
i , q≤

i optimize the dual problem (21) and χ≤
i (x)

optimizes (24).
For simplification reasons, define t0 = 0 such that St0

0 = λ. Since li is
increasing with i we must have

St0
0 ∞ St1

1 ∞ St2
2 ∞ ... ∞ S

tn−1
n−1

Since the variables are optimal, the flow conservation condition (19) must
hold, i.e

div q≤
i (x) − p≤

i (x) + p≤
i+1(x) = 0 , a.e. x ◦ λ, i = 1, ..., n − 1.

The proof is given by induction in Sti
i . For any k ◦ {1, ..., n − 1} define the

function

Ek =
k∑

i=1

∫
S

�i−1
i−1 \S

ti
i

Γ(∂i, x) dx +
∫

S
�k
k

p≤
k+1(x) dx + π

k∑
i=1

L
S

ti
i

where L
S

ti
i

is the length |ϕSti
i \(ϕSti

i ∩ϕλ)|. We will prove Ek = EP (p≤) for any
k ◦ {1, ..., n − 1} and start by considering k = 1. By the formula (27), it follows
that
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p≤
1(x) = Γ(∂1, x), for any point x ◦ λ\St1

1 = St0
0 \St1

1

This, together with the fact that

p≤
1(x) = p≤

2(x) + div q≤
1(x), a.e. x ◦ St1

1

implies that the total max-flow energy defined in (21) can be written

EP (p≤) =
∫

Γ\S
t1
1

Γ(∂1, x) dx +
∫

S
t1
1

(
p≤
2(x) + div q≤

1(x)
)
dx

=
∫

Γ\S
t1
1

Γ(∂1, x) dx +
∫

S
t1
1

p≤
2(x) dx +

∫
S

t1
1

div q≤
1(x) dx

=
∫

S
t0
0 \S

t1
1

Γ(∂1, x) dx +
∫

S
t1
1

p≤
2(x) dx + πL

S
t1
1

= E1

The last term follows because∫
S

�i
i

div q≤
i (x) dx =

∫
Γ

χ≤
i div q≤

i dx = π

∫
Γ

|≤χθi
i | dx = π

∣∣∣ϕSθi
i \(ϕSti

i ∩ ϕλ)
∣∣∣ .

(30)
where the second equality is due to Prop. 4 of [25]. Note that the boundary length
L

S
t1
1

is necessarily finite, otherwise the energy would be infinite, contradicting
boundedness from above.

Assume now that Ek = EP (p≤) for some k ◦ {1, ..., n − 2}, we will show this
implies Ek+1 = EP (p≤)

EP (p≤) = Ek =
k−1∑
i=1

∫
S

�i−1
i−1 \S

ti
i

Γ(ti, x) dx +
∫

S
�k−1
k−1

p≤
k(x) dx + π

k−1∑
i=1

L
S

ti
i

.

By the definition (29) it follows that χk−1(x) − χk(x) > tk−1 − tk = 0 for
all x ◦ Stk−1

k−1 \Stk

k . Therefore, by formula (27), for any point x ◦ Stk−1
k−1 \Stk

k we
must have p≤

k(x) = Γ(∂k, x). Combining this with the fact that

p≤
k(x) = p≤

k+1(x) + div q≤
k(x), a.e. x ◦ λ

the above expression can be written

EP (p≤) = Ek =
k−1∑
i=1

∫
S

�i−1
i−1 \S

ti
i

Γ(ti, x) dx +
∫

S
�k−1
k−1 \S

�k
k

Γ(∂k, x) dx (31)

+
∫

S
�k
k

p≤
k+1(x) dx + L

S
tk
k

+ π

k−1∑
i=1

L
S

ti
i

= Ek+1.

Hence, we can conclude that also En−1 = EP (p≤). By noting from (27) that for
all x ◦ S

tn−1
n−1 we must have p≤

n(x) = Γ(∂n, x), the total max flow energy defined
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in (21) can be written

EP (p≤) = En−1 =
∫

Γ\S
t1
1

Γ(∂1, x) dx +
n−1∑
i=2

∫
S

�i−1
i−1 \S

ti
i

Γ(ti, x) dx (32)

+
∫

S
tn−1
n−1

Γ(∂n, x) dx + π
n−1∑
i=1

L
S

ti
i

By writing this expression in terms of the characteristic functions χti
i of each

region Sti
i , we get

EP (p≤) =
n∑

i=1

∫
Γ

(χθi−1
i−1 (x) − χti

i (x)) Γ(ti, x) dx + π

n−1∑
i=1

∫
Γ

|≤χti
i | dx = ED(χθ)

which is exactly the primal model energy (24) of the set of binary functions χti
i .

Therefore, by duality between the max-flow problem (21) and the convex relaxed
problem (24), χti

i must be a global minimum of the min-cut problem (24) and
therefore also a global minimum of the original problem (15).

3.5 ‘Saturated’/‘Unsaturated’ Edges

In the discrete setting, it is well known that the minimum cut severs edges
that are saturated in the max-flow problem. This section attempts to give a
variational explanation to the phenomena for the continuous max-flow and min-
cut problems studied in this work. Let χ≤

1, ..., χ
≤
n−1 be optimal to the dual problem

(24). Assume that for some x ◦ λ and i ◦ 1, ..., n χi(x) > t > χi+1(x), where t ◦
(0, 1). Thresholding at t will generate the binary solution χ0(x) = ... = χi(x) = 1
and χi+1(x), ..., χn(x) = 0. Therefore the cut generated by the binary function
‘severs’ the edge ei+1(x) between layer i and i+1. Since χi(x) > χi+1(x) it follows
by (27) that the optimal flow function must satisfy p≤

i (x) = Γ(∂i, x), i.e. the edge
ei(x) is saturated. Assume on the contrary that for some x ◦ λ and i ◦ 1, ..., n
p≤

i (x) < Γ(∂i, x). In this case χ≤
i (x) = χ≤

i+1(x), otherwise p≤
i (x) would not be

optimal since increasing p≤
i (x) would also increase the energy. Consequently, for

any threshold level t ◦ (0, 1], χt
i(x) = χt

i+1(x), i.e. the edge ei(x) is not severed
by the cut.

Similar interpretations of the spatial flow can be made by using the identity∫
Γ

χ div q dx =
∫

Γ

q · ≤χ dx (33)

If for some x ◦ λ and a neighborhood Nκ(x) = {y ◦ λ : ||y − x|| < κ},
|q≤

i (y)| < π for all y ◦ Nκ(x), we say the spatial flow is unsaturated in Nκ(x).
Then χi is constant in Nκ(x). Consequently, for any threshold t ◦ (0, 1], χt

i(y) is
either identically 0 or 1 in Nκ(x) and the cut will not sever the spatial domain
Nκ(x) at the i-th layer. Assume ≤χi �= 0 in some domain S ⊂ λ, then by
(33) |q≤

i (x)| = |π≤χ≤
i /|≤χ≤

i || = π a.e. x ◦ S. Consequently, for any threshold
t ◦ (0, 1], |q≤

i | = π whenever ≤χt
i �= 0 in the distributional sense.
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3.6 Extension to Continuous Labelings

Assume now that the feasible label values are constrained to the continuous
interval [∂min, ∂max]. As the number of labels goes to the limit of infinity, the
max-flow problem (21) with the flow constraints (17)–(19) turns into

sup
p,q

∫
Γ

p(∂min, x) dx (34)

s.t. p(∂, x) ∪ Γ(∂, x) , |q(∂, x)| ∪ π, ∃x ◦ λ, ∃∂ ◦ [∂min, ∂max] (35)
divx q(∂, x) + ϕθ p(∂, x) = 0 , a.e. x ◦ λ, ∂ ◦ [∂min, ∂max]. (36)

where ∂ ◦ [∂min, ∂max] is the set of all feasible continuous-valued labels. The
flow functions p(x) and q(x) are defined in the one dimensional higher space
[∂min, ∂max]×λ. By carrying out similar steps as in the last section, the following
dual problem can be derived

Proposition 2. The max-flow model (34) with continuous label-values is dual /
equivalent to the following min-cut model over [∂min, ∂max] × λ:

min
∂(θ,x)∈[0,1]

∫ θmax

θmin

∫
Γ

{
π |≤xχ| − Γ(∂, x)ϕθ χ(∂, x)

}
dxd∂

+
∫

Γ

(1 − χ(∂min, x))Γ(∂min, x) + χ(∂max, x)Γ(∂max, x) dx (37)

subject to

ϕθ χ(∂, x) ∪ 0 , χ(∂min, x) ∪ 1 , χ(∂max, x) ≈ 0 , ∃x ◦ λ, ∃∂ ◦ [∂min, ∂max].
(38)

The proof can be found in [23].
The labeling function u(x) can finally be reconstructed from the binary func-

tion χ(∂, x) by u(x) = ∂min +
∫ θmax

θmin
χ(∂, x) d∂ .

In [9], Pock et al. gave a similar formulation of continuous labeling problems,
as the search for a binary function defined over [∂min, ∂max]×λ, which minimizes

min
∂(θ,x)∈{0,1}

∫ θmax

θmin

∫
Γ

{
π |≤xχ| + Γ(∂, x) |ϕθχ(∂, x)| } dxd∂ . (39)

subject to
χ(∂min, x) = 1 , χ(∂max, x) = 0 , x ◦ λ (40)

In order to solve this non-convex binary problem, the convex relaxation of [8]
was adopted by minimizing over χ(x, ∂) ◦ [0, 1]. By applying the thresholding
result of [8], binary optimizers could be obtained by thresholding the computed
result.

Some differences can be observed between our formulation (37), (38) and
the formulation (39), (40): The constraint ϕθχ(∂, x) ∪ 0 is not forced explicitly
in [9]. However, it turns out the presence of the absolute value of the term



146 E. Bae et al.

Γ(∂, x) |ϕθχ(∂, x)| forces this constraint to hold. Observe that if Γ(∂, x) < 0 is
negative, the formulation of (39) is non-convex, and can therefore not be solved
globally. This is in contrast to our formulation (37), which is convex also in this
case. The functional (39) could be made convex by adding a sufficiently large
number to the data term at every x ◦ λ. In the more recent work of Pock et al.
[10], a more strict derivation resulted in a little different formulation. In this
formulation, the integrand of the energy functional is infinite if ϕθχ(∂, x) ∪ 0,
hence this constraint is forced to hold. Their derivations rely heavily on results
from the theory of calibrations [12] and cartesian currents [26,27]. Label values
ranged over the whole real line R was assumed, which required to impose limits
at infinity: limθ �∞+∗ χ(∂, x) = 0 and limθ �∞−∗ χ(∂, x) = 1.

We eventually stick to a finite label value set in practice. After discretization,
the label space also becomes discrete in [10]. However, it has not been proven
if all properties, such at the thresholding scheme and monotonicity constraint
hold exactly after discretization. In contrast, these properties were proved to
hold exactly for our model with discrete label values developed in Sect. 3.

Last but not the least, a primal-dual algorithm was proposed in [10], which
consists of iteratively taking ascent steps over the dual variables p and q and
descent step over the primal variable χ, followed by projections of all the variables
onto the nearest points of the feasible sets iteratively until convergence.

4 Algorithms

4.1 Multiplier-Based Max-Flow Algorithm

In this section, it is assumed that the image domain λ is discrete and the dif-
ferential operators are discretized, such that the optimization problems become
finite dimensional. We stick to the continuous notation, using

∫
,≤ and ÷ to ease

readability. As stated in the previous section, the energy formulation of (22) is
just the Lagrangian function of (21) and χi, i = 1, . . . , n − 1, are the multiplier
functions. To this end, we define its respective augmented Lagrangian function
as

Lc(p, q, χ) :=
∫

Γ

p1 +
n−1∑
i=1

χi(div pi +pi+1 −pi)− c

2
|div pi +pi+1 −pi|2 dx, (44)

where c > 0.
We propose an algorithm for the continuous maximal flow problem (21) based

on the augmented Lagrangian method [29] , see Algorithm 3.6. Algorithm 3.6
is an example of an alternating direction method of multipliers, where (44) is
maximized alternatively with respect to each variable pi, q, followed by an updat-
ing of the Lagrange multipliers χi, i = 1, . . . , n − 1 at each iteration. For the
two-label case, a similar flow-maximization scheme for the continuous min-cut
problem was proposed in [19,20].
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm
Choose some starting values for p1, q1 and λ1, let k, i = 1 and start k−th iteration,
which contains the following steps, until convergence:

– For each layer i = 1 . . . n solve
• Optimize pi by fixing other variables

p̃k+1
i := arg max

pi(x)∗α(γi,x) ∀x∈Φ
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j<i , qk

j≥i), λ
k)

:= arg max
pi(x)∗α(γi,x)

− c

2

∥∥∥pi + div qk+1
i−1 − pk+1

i−1 − λk
i−1/c

∥∥∥2

− c

2

∥∥∥pi − (pk
i+1 + div qk

i ) + λk
i /c
∥∥∥2

which can be explicitly computed at each point x ∈ Ω; At the first and last
layer, i = 1 and i = n − 1 the update formulas are a little different and are
given in (42) and (43) below.

• Optimize qi, by introducing the new value of pk+1
i and fixing other variables

qk+1
i := arg max

‖q‖∞∗α
Lc((p̃

k+1
i∗j , pk

i>j), (q
k+1
j<i , qi, q

k
j>i), λ

k)

:= arg max
‖q‖∞∗α

− c

2

∥∥∥div qi + pk
i+1 − p̃k+1

i − λk
i /c
∥∥∥2 , (41)

which can either be solved iteratively by the projected-gradient algorithm [28],
or approximately by one linearized step (45);

• Optimize pi again, by introducing the new values of qk+1
i and fixing others

pk+1
i := arg max

pi(x)∗α(γi,x) ∀x∈Φ
Lc((p

k+1
j<i , pi, p

k
j>i), (q

k+1
j∗i , qk

j>i), λ
k) ,

which can be explicitly computed at each point x ∈ Ω;
– Update multipliers λi, i = 1, . . . , n − 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;

– Set k ← k + 1 and repeat until convergence.

At the first and last layer i = 1 and i = n the update formulas for p1 and pn are:

pk+1
1 := arg max

p1(x)∗α(γ1,x)
Lc(p1, p

k
2 , ..., pk

n, qk+1, λk)

:= arg max
p1(x)∗α(γ1,x)

∫
Φ

p1 dx − c

2

∥∥∥p1 − (pk
2 + div qk+1

1 ) + λk
1/c
∥∥∥2 , (42)

and

pk+1
n := arg max

pn(x)∗α(γn,x)
Lc(p

k+1
1 , ..., pk+1

n−1, pn, qk+1, λk)

:= arg max
pn(x)∗α(γ1,x)

− c

2

∥∥∥pn + div qk+1
n−1 − pk+1

n−1 − λk
n−1/c

∥∥∥2 . (43)

Both can be computed explicitly;
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Instead of solving the sub-problem (41) iteratively by the projected-gradient
algorithm [28], an inexact solution can be obtained by the linearization:

qk+1
i = ξγ

(
qk
i + c≤(div qk

i + pk
i+1 − pk+1

i − χk
i /c).

)
(45)

where ξγ is the projection onto the convex set Cγ = {q |⇒q⇒∗ ∪ π}. There are
extended convergence results for such a linearization for closely related prob-
lems [30].

5 Numerical Experiments

In this work, we focus on applications to image segmentation and stereo recon-
struction. Comparisons are made to the discrete approach [6] and the primal-dual
algorithm of [9].

(a) (b) (c) (d)

Fig. 2. (a) Ground truth, (b) input, (c) Rescaled labeling function before threshold,
(d) Rescaled labeling function after thresholding each λi at 0.5.

(a) (b) (c) (d)

Fig. 3. (a) Input image damaged by impulse noise; (b) reconstructed labeling function
with non-convex data term (47) before threshold, (c) labeling function after threshold-
ing each λi at 0.5, (d) reconstructed labeling function with convex data term (46) and
β = 1.
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(a) (b) (c)

Fig. 4. (a) Input, (b) Labeling function before threshold (c) Labeling function after
thresholding each λi at 0.5.

In case of image segmentation we assume ∂i = i, i = 1, ..., n and n is the
number of regions. Γ(i, x) is the data cost of assigning pixel x to region i. One
possibility is

Γ(i, x) = |I(x) − ci|φ , i = 1, ..., n (46)

where I is the input image and ci is the average intensity value of region i. They
are assumed to be fixed in this work. Such a data term is convex for γ ≈ 1
and non-convex for γ < 1. Results with γ = 2 are shown in Figs. 2, 4. We
also demonstrate image segmentation with a non-convex data term in Fig. 3.
The ground truth image from Fig. 2(a) has been damaged by impulse noise in
Fig. 3(a). More specifically, 70% of the pixels have been randomly selected and
given a random number between 0 and 255 (max gray value). For this type of
noise, the convex data terms does not perform well, as shown in Fig. 3(d) where
we have selected (46) with γ = 1. Instead the following non-convex data term
can be used

Γ(i, x) :=
{

0 , if i = argmink |I(x) − ck|
1 , else . (47)

In the stereo application we are given two color images IL and IR of a scene taken
from horizontally slightly different viewpoints and would like to reconstruct the
depth map u. The quality of the matching between IL and IR for a depth value
u is measured by using the following Γ in the data term of (13)

Γ(u, x) =
3∑

j=1

|Ij
L(x) − Ij

R(x + (u, 0)T )|. (48)

Here Ij(x) denotes the jth component of the color vector I(x). The above data
term (48) is obviously highly non-convex. The results on a standard example
are shown in Fig. 5, where comparison are also given [10] and graph cut with
a neighborhood system of 4 and 8. Graph cut produces a single non-unique
solution which is shown in Fig. 5(f) and (g) with 4 and 8 neighbors respectively.
As we see, such solutions suffer from metrication artifacts because of the discrete
grid bias.
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(a) input left (b) ground truth

(c) Pock et al. (d) graph cut 4 neighbors

(e) graph cut 8 neighbors (f) proposed after threshold

Fig. 5. Stereo depth estimation.

Iteration counts for all experiments are presented in Table 1 and CPU times
are shown in Table 2. The two variants of Algorithm 1 are evaluated against the
primal-dual method of Pock et al. [10]. The relative energy precision at iteration
i is given by

δ =
Ei − E≤

E≤ , (49)

where Ei is the energy at iteration i and E≤ is the final energy. A good esti-
mate of E≤ is obtained by using a huge amount of iterations of each method and
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Table 1. Iteration counts for each experiment. Number of iterations to reach an energy
precision of 10−3 and 10−4 are shown. PD = Primal-dual. Proposed 1 stands for Algo-
rithm 1 where the subproblem is solved by 5 iterations of Chambolle’s algorithm each
outer iteration (indicated by the number in the parenthesis). Proposed 2 stands for
Algorithm 1 with the subproblems solved inexactly in one step through the lineariza-
tion (45).

Energy precision ε < 10−3 Energy precision ε < 10−4

PD [10] Proposed 1 Proposed 2 PD [10] Proposed 1 Proposed 2

Brain 280 50 (× 5) 110 430 65 (× 5) 280
Figure 2 295 35 (× 5) 115 640 65 (× 5) 290
Stereo 4055 550 (× 5) 1070 14305 920 (× 5) 3905

Table 2. CPU time in seconds for each experiment for reaching an energy precision
of 10−3 and 10−4. PD = Primal-dual. Proposed 1 stands for Algorithm 1 where the
subproblem is solved by 5 iterations of Chambolle’s algorithm each outer iteration
(indicated by the number in the parenthesis). Proposed 2 stands for Algorithm 1 with
the subproblems solved inexactly in one step through the linearization (45).

Energy precision ε < 10−3 Energy precision ε < 10−4

PD [10] Proposed 1 Proposed 2 PD [10] Proposed 1 Proposed 2

Brain 86 68 38 132 89 96
Figure 2 1.34 0.64 0.47 2.61 1.18 1.32
Stereo 2027 1214 598 7153 2029 2182

each experiment. The table shows how many iterations are required to reach
an energy precision of 10−3 and 10−4. Our algorithms are implemented with
a mimetic finite difference spatial discretization [31,32]. In order to make the
comparison as accurate as possible, the primal-dual algorithm [10] is also imple-
mented with such a mimetic finite difference discretization, although a slightly
different forward scheme for the gradient and backward scheme for the diver-
gence was used in [10].

The first variant of Algorithm 3.6 solves the subproblem (41) iteratively by
Chambolle’s algorithm [28]. Since the previous solution is available as a good
initialization, not many iterations of this algorithm is required. In our experi-
ments, 5 inner iterations was used for each step. Increasing the number of inner
iterations beyond 5 did not seem to have any impact on the convergence rate in
our experience.

The primal-dual method of [10] avoids the inner problem, but as we see
requires significantly more iterations to reach the same energy precisions. Our
algorithm also requires less total number of iterations (inner times outer iter-
ations). The difference becomes progressively clearer with higher energy pre-
cision. For the stereo example, which is by far most difficult computationally,
our approach reached an energy precision of κ < 10−5 after 1310 iterations,
κ < 10−6 after 1635 iterations and κ < 10−7 after 2340 iteration. The primal-dual
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Table 3. Iteration counts for stereo experiment. Number of iterations to reach an
energy precision of 10−4, 10−5 and 10−6 are shown. PD = Primal-dual.

Energy prec. ε < 10−4 Energy prec. ε < 10−5 Energy prec. ε < 10−6

PD [10] Proposed 1 PD [10] Proposed 1 PD [10] Proposed 1

Stereo 14305 920 (× 5) > 30000 1310 (× 5) > 30000 1635 (× 5)

algorithm [10] failed to ever reach an energy precision of 10−5 or lower within
our predetermined number of maximum iterations (30000). We believe this dif-
ference is due to the fact that our approach avoids the iterative projections of
the labeling function and hence progresses in the exact steepest descent direction
every iteration.

The second variant of the Algorithm 1 instead computes an inexact solution
to (41) through the linearization (45) and hence avoids the inner iterations. How-
ever, the penalty parameter c must be set lower to maintain convergence, hence
more outer iterations are required. Overall it converges a little faster than the first
variant and outperforms the primal-dual algorithm [10] for all the experiments.

Comparison to discrete graph cut [33] is more complicated. Our algorithms
are implemented in matlab, in contrast to the optimized c++ discrete max-
flow implementation of [33]. Our algorithm consists mainly of floating point
matrix and vector arithmetic and is therefore highly suited for massive parallel
implementation on GPU. Traditional max-flow algorithms have a much more
serial nature, which makes them more dependent on an efficient serial CPU. In
the near future, hardware improvements are also expected to be largely of the
parallel aspect. Hence, we see our work as more suited for the current and future
generation of hardware.

6 Conclusions

In this paper we proposed and investigated a novel max-flow formulation of
multilabelings in the continuous setting. It is a direct mapping of Ishikawa’s
graph-based configuration to the continuous setting. We proved the maximiza-
tion problem is dual to an equivalent min-cut formulation by variational analysis.
In addition, we proposed a new and reliable multiplier-based max-flow algorithm
with convergence that can verified by optimization theories, which was demon-
strated to significantly outperform eariler approaches. Due to its continuous
formulation, the algorithm can easily be speeded up by a multigrid or parallel
implementation, in contrast to graph-based methods. The memory requirement
is also not as strict.
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A Fast Continuous Max-Flow Approach for Multi-labeling Problems 153

References

1. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

2. Appleton, B., Talbot, H.: Globally optimal surfaces by continuous maximal flows.
In: DICTA, pp. 987–996 (2003)

3. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In:
Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III.
LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)

4. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 65–81 (2004)

5. Lempitsky, V., Boykov, Y.: Global optimization for shape fitting. In: CVPR (2007)
6. Ishikawa, H.: Exact optimization for markov random fields with convex priors.

IEEE Trans. Pattern Anal. Mach. Intell. 25, 1333–1336 (2003)
7. Kohli, P., Kumar, M.P., Torr, P.H.: p3 and beyond: move making algorithms for

solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1645–
1656 (2009)
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Abstract. Tsubame 2.0 is currently one of the largest installed GPU
clusters and number 5 in the Top 500 list ranking the fastest supercom-
puters in the world. In order to make use of Tsubame, there is a need
to adapt existing software design concepts to multi-GPU environments.
We have developed a modular and easily extensible software framework
called waLBerla that covers a wide range of applications ranging from
particulate flows over free surface flows to nano fluids coupled with tem-
perature simulations and medical imaging. In this article we report on
our experiences to extend waLBerla in order to support geometric multi-
grid algorithms for the numerical solution of partial differential equations
(PDEs) on multi-GPU clusters. We discuss the software and performance
engineering concepts necessary to integrate efficient compute kernels into
our waLBerla framework and show first weak and strong scaling results
on Tsubame for up to 1029 GPUs for our multigrid solver.

Keywords: GPGPU · CUDA · Parallel multigrid solver · waLBerla ·
Tsubame 2.0

1 Introduction

Many imaging applications exhibit high memory and compute power require-
ments, either due to the large amount of data being processed or runtime restric-
tions e.g. for real-time imaging. Graphics processing units (GPUs) typically offer
hundreds of specialized compute units operating on dedicated memory and reach
outstanding compute and memory performance in this way. Therefore, they are
more and more used for compute-intensive applications also in imaging. GPUs
are best suitable for massively-data parallel algorithms, inadequate problems,
that e. g. require a high degree of synchronization or provide only limited par-
allelism, are left to the host CPU. For high performance computing (HPC) het-
erogeneous multi-GPU clusters are built up consisting of thousands of GPUs. In
the Top 500 list1 from November 2011 of the fastest machines world-wide there
were three of these multi-GPU clusters in the Top 5.
1 http://www.top500.org, Nov. 2011.

A. Bruhn et al. (Eds.): Global Optimization Methods, LNCS 8293, pp. 155–173, 2014.
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However, in order to achieve good performance on these clusters, software
development has to adapt to the new needs of the massively parallel hardware.
As a starting point, GPU vendors offer proprietary environments for general
purpose GPU computing. NVIDIA, e. g., provides the possibility to write single-
source programs that execute kernels written in a subset of C and C++ on their
Compute Unified Device Architecture (CUDA) [1]. An alternative would have
been to use the Open Compute Language (OpenCL)2. Within OpenCL one can
write code that runs in principle on many different hardware platforms, e. g. Intel
CPUs, ATI/AMD or NVIDIA GPUs, and even the ICM Cell processor, but to
achieve optimal performance the implementation has to be adapted to the spe-
cific features of the hardware. Since we are exclusively working on NVIDIA GPUs
in this article and we found no considerable difference in the kernel performance
if we tune OpenCL towards NVIDIA GPUs, we have done our implementations
in CUDA. Both CUDA and OpenCL are low-level languages. To make code
development more efficient, one either has to provide wrappers for high-level
languages like e.g. OpenMP [2] and PyCUDA [3] or easy to use frameworks,
where we follow the latter approach.

Our contributions in this article are specifically that

– we discuss the concepts necessary to integrate efficient GPU compute kernels
for a geometric multigrid solver into our software framework waLBerla that
is discussed in more detail in Sect. 3,

– and then show first weak and strong scaling results of our solver on Tsubame
2.0 located in Japan.

While waLBerla was at first developed for simulating fluid flow using the
Lattice Boltzmann method on 3D structured domains, it is now also capable of
solving elliptic PDEs like Poisson’s equation numerically via multigrid.

One possible imaging application for our multigrid solver is high dynamic
range (HDR) compression. HDR tries to allow a wide dynamic range of lumi-
nance between the lightest and darkest areas within an image. Often, HDR
compression is only one step within the image acquisition pipeline and there are
hard time constraints that have to be met in practical applications. In [4] one
finds a state-of-the-art HDR compression algorithm in the gradient space that
can be accelerated by our multigrid solver. In general, for gradient space imaging
one has to transform an input image I : Ω ⊂→ R defined in the domain Ω ∈ R

3

to gradient space and back. While the forward transformation to gradient space
is fast by using simple finite differences to obtain the image gradient ∇I, the
backward transformation requires the solution of Poisson’s equation

Δu = f in Ω (1a)
u = 0 on ∂Ω (1b)

typically assuming homogeneous Dirichlet boundary conditions. Here,

f = div (Φ∇I) , (2)
2 http://www.khronos.org/opencl/, Mai 2012.

http://www.khronos.org/opencl/
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where Φ∇I are compressed dynamic range image derivatives and Φ : R3 ⊂→ R is a
position-dependent attenuating function (see [4] for more details). The solution
u : Ω ⊂→ R is the HDR compressed image.

Most of the overall runtime for HDR compression is spent in the numerical
solution of (1a, 1b), where we can apply a parallel, geometric multigrid solver.

Besides HDR compression there are a variety of applications in imaging and
computer vision, where multigrid methods are used. Especially for variational
models the arising Euler-Lagrange equations are often treated via efficient multi-
grid solvers. In this way, applications ranging from image denoising, image in-
painting, and image segmentation to optical flow and image registration are
found (see [5] for more details about different multigrid methods and for further
references).

There exists already also a variety of other implementations of different multi-
grid algorithms on GPU like in [6,7], conjugate gradients (CG) and multigrid
on NVIDIA GeForce FX [8], mixed-precision multigrid solvers [9], finite element
multigrid solvers on GPU clusters [10,11], or algebraic multigrid [12]. Parallel
multigrid methods on GPUs are incorporated in software packages like Open-
Current [13] or PETSc [14], and GPU multigrid is also used in imaging, e.g. for
nonlinear denoising or variational optical flow (see e.g. [15–17]).

In previous work, we have run a multi-GPU Lattice Boltzmann simulation
on Tsubame [18] and highly scalable multigrid solvers on CPU clusters [19–
21]. Furthermore, we optimized a 2D multigrid solver on GPU to do real-time
HDR compression [22] for a series of X-ray images. In addition to that, we show
weak and strong scaling results on an IBM Bluegene/P up to nearly 300.000
cores and an Intel CPU cluster in [23], where we used a 3D multigrid solver on a
block-structured tetrahedral finite element mesh. Now we integrate a multi-GPU
geometric multigrid solver in waLBerla. An alternative is to implement a finite
element based multigrid solver on GPU for gradient space imaging [24], however,
it is computationally more expensive than our finite difference based solver on a
regular grid. Note that our multigrid solver scales also on CPU-clusters [25] and
works also for more general elliptic PDEs with variable coefficients [26].

The paper is organized as follows: In Sect. 2 we briefly describe the multi-
grid algorithm and its parallelization on GPUs. Section 3 summarizes the MPI-
parallel waLBerla framework that easily enables us to extend our code to
multi-GPUs. The hardware details of the Tsubame 2.0 cluster and a simple
performance model for our multigrid solver to estimate the runtime of our soft-
ware are introduced in Sect. 4. In Sect. 5 we present weak and strong scaling
results on Tsubame 2.0 before concluding the paper in Sect. 6.

2 Parallel Multigrid

2.1 Multigrid Algorithm

Multigrid is not a single algorithm, but a general approach to solve problems
by using several levels or resolutions [27,28]. We restrict ourselves to geometric
multigrid (MG) in this article that identifies each level with a (structured) grid.
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Typically, multigrid is used as an iterative solver for large linear systems of
equations that have a certain structure, e.g. that arise from the discretization of
PDEs and lead to sparse and symmetric positive definite system matrices. The
main advantage of multigrid solvers compared to other solvers like CG is that
multigrid can reach an asymptotically optimal complexity of O(N), where N is
the number of unknowns or grid points in the system. For good introductions
and a comprehensive overview on multigrid methods, we, e.g., refer to [29,30],
for details on efficient multigrid implementations see [31–33].

We assume that we want to solve the PDE (1a, 1b) with solution u : R3 → R,
right hand side (RHS) f : R

3 → R, and Dirichlet boundary conditions on a
rectangular domain Ω ∈ R

3. Equation (1a, 1b) is discretized by finite differences
on a structured grid. This results in a linear system

Ahuh = fh ,
∑

j∈Ωh

ah
iju

h
j = fh

i , i ◦ Ωh (3)

with system matrix Ah ◦ R
N×N , unknown vector uh ◦ R

N and right hand side
(RHS) vector fh ◦ R

N on a discrete grid Ωh with mesh size h.
In order to solve the above linear system, we note that during the iteration

the algebraic error eh = uh
∗ − uh is defined to be the difference between the

exact solution uh
∗ of Eq. (3) and the approximate solution uh. With the residual

equation rh = fh − Ahuh we obtain there so-called error equation

Aheh = rh. (4)

The multigrid idea is now based on two principles:

Smoothing Property: Classical iterative solvers like red-black Gauß-Seidel
(RBGS) are able to smooth the error after very few steps. That means the high
frequency components of the error are removed well by these methods. But they
have little effect on the low frequency components. Therefore, the convergence
rate of classical iterative methods is good in the first few steps and decreases
considerably afterward.

Coarse Grid Principle: A smooth function on a fine grid can be approximated
satisfactorily on a grid with less discretization points, whereas oscillating func-
tions would disappear. Furthermore, a procedure on a coarse grid is less expen-
sive than on a fine grid. The idea is now to approximate the low frequency error
components on a coarse grid.

Multigrid combines these two principles into one iterative solver. The
smoother reduces the high frequency error components first, and then the low
frequency error components are approximated on coarser grids, interpolated back
to the finer grids and eliminated there. In other words, on the finest grid Eq. (1a,
1b) first is solved approximately by a few smoothing steps and then an approx-
imation to the error equation is computed on the coarser grids. This leads to
recursive algorithms which traverse between fine and coarse grids in a grid hier-
archy. Two successive grid levels Ωh and ΩH typically have fine mesh size h and
coarse mesh size H = 2h.
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One multigrid iteration, here the so-called V-cycle, is summarized in Algo-
rithm 1. Note that in general the operator Ah has to be computed on each
grid level. This is either done by rediscretization of the PDE or by Galerkin
coarsening, where AH = RAhP .

Algorithm 1 Recursive V-cycle: u
(k+1)
h = Vh(u(k)

h , Ah, fh, ν1, ν2)

1: if coarsest level then
2: solve Ahuh = fh exactly or by several CG iterations
3: else
4: ū

(k)
h = Sν1

h (u
(k)
h , Ah, fh) {presmoothing}

5: rh = fh − Ahū
(k)
h {compute residual}

6: rH = Rrh {restrict residual}
7: eH = VH(0, AH , rH , ν1, ν2) {recursion}
8: eh = PeH {interpolate error}
9: ũ

(k)
h = ū

(k)
h + eh {coarse grid correction}

10: u
(k+1)
h = Sν2

h (ũ
(k)
h , Ah, fh) {postsmoothing}

11: end if

In our node-based multigrid solver we use the following components:

– A ω-RBGS (or red-black SOR) smoother Sν1
h ,Sν2

h with ν1 pre- and ν2

postsmoothing steps.
– The restriction operator R from fine to coarse grid is full weighting.
– We apply a trilinear interpolation operator P for the error.
– The coarse grid problem is solved by a sufficient number of CG iterations.
– The discretization of the Laplacian was done via the standard 7-point stencil

(cf. Eq. (1a, 1b)), on coarser grids we rediscretize the Laplacian.

Note that the required number of CG iterations on the coarsest grid is pro-
portional to the diameter of the computational domain (see e.g. [23,34]) and
thus increases linearly with growing diameter.

2.2 GPU Implementation

To implement the multigrid algorithm on GPU we have to parallelize it and write
kernels for smoothing, computation of the residual, restriction, and interpolation
together with coarse grid correction. In the following, we choose the ω-RBGS
kernel as an example and discuss it in more detail. Algorithm 2 shows the source
code of a straightforward, unoptimized CUDA RBGS kernel. Here, the solution
and rhs fields are stored in global GPU memory. Due to the splitting in red
and black points within the RBGS to enable parallelization, only every second
solution value is written back, whereas the whole solution vector is processed.
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Possible optimizations are e.g. to split the red and black points into separate
arrays in memory, or blocking techniques (see [22] for a detailed performance
analysis in 2D). Additionally, the thread block size depends on the number of
grid points in x-direction. Best performance can be achieved for larger thread
block sizes, e.g. 256 or 512, therefore the kernel becomes inefficient for a smaller
number of grid points in x-direction and 2D thread blocks become necessary.

For multi-GPU, the distributed memory parallelization is simply done by
decomposing each grid into several smaller sub-grids and introducing a layer of
ghost cells between them. Now the sub-grids can be distributed to different MPI
processes and only the ghost cells have to be communicated to neighboring sub-
grids. The function calling the kernel handles the ghost cell exchange. Buffers
are sent to neighboring processes via communication routines provided by the
waLBerla framework introduced in the next section. Within Algorithm 1 one
has to exchange the ghost layer of the solution resp. the error after smoothing
and interpolation (steps 4, 8, and 10), the ghost layer of the residual after step
5. On the coarsest level we have only a few grid points left per sub-grid and thus
we transfer the whole RHS from GPU to CPU and do the parallel CG iterations
on CPU. After that, the solution is transfered back from CPU to GPU.

3 Walberla

WaLBerla is a massively parallel software framework developed for HPC appli-
cations on block-structured domains [35]. It has been successfully used in many
multi-physics simulation tasks ranging from free surface flows [36] to particulate
flows [37] and fluctuating lattice Boltzmann [38] for nano fluids.
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Fig. 1. Patches and Blocks in waLBerla [39].

The main design goals of the waLBerla framework are to provide excellent
application performance across a wide range of computing platforms and the
easy integration of new algorithms. The current version waLBerla 2.0 is capa-
ble of running heterogeneous simulations on CPUs and GPUs with static load
balancing [39].

3.1 Patch, Block, and Sweep Concept

A fundamental design concept of waLBerla is to rely on block-structured grids,
what we call our Patch and Block data structure. We restrict ourselves to block-
structured grids in order to support efficient massively parallel simulations.

In our case a Patch denotes a cuboid describing a region in the simulation
that is discretized with the same resolution (see Fig. 1) . This Patch is further
subdivided into a Cartesian grid of Blocks consisting of cells. The actual simula-
tion data is located on these cells. In parallel one or more Blocks can be assigned
to each process in order to support load balancing strategies. Furthermore, we
may specify for each Block, on which hardware it is executed. Of course, this
requires also to be able to choose different implementations that run on a certain
Block, what is realized by our functionality management.

The functionality management in waLBerla 2.0 controls the program flow.
It allows to select different functionality (e.g. kernels, communication functions)
for different granularities, e.g. for the whole simulation, for individual processes,
and for individual Blocks.
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Fig. 2. Sweep concept in waLBerla [39].

When the simulation runs, all tasks are broken down into several basic steps,
so-called Sweeps. A Sweep consists of two parts as shown in Fig. 2: a communi-
cation step fulfilling the boundary conditions for parallel simulations by nearest
neighbor communication and a communication independent work step travers-
ing the process-local Blocks and performing operations on all cells. The work
step usually consists of a kernel call, which is realized for instance by a function
object or a function pointer. As for each work step there may exist a list of
possible (hardware dependent) kernels, the executed kernel is selected by our
functionality management.

3.2 MPI Parallelization

The parallelization of waLBerla can be broken down into three steps:

1. a data extraction step,
2. a MPI communication step, and
3. a data insertion step.

During the data extraction step, the data that has to be communicated is copied
from the simulation data structures of the corresponding Blocks. Therefore, we
distinguish between process-local communication for Blocks lying on the same
and MPI communication for those on different processes.

Local communication directly copies from the sending Block to the receiv-
ing Block, whereas for the MPI communication the data has first to be copied
into buffers. For each process to which data has to be sent, one buffer is allo-
cated. Thus, all messages from Blocks on the same process to another process
are serialized. To extract the data to be communicated from the simulation
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Fig. 3. Communication concept within WaLBerla [39]. Depicted is a process having
two Blocks. Communication between the process-local Blocks is realized by swapping
of the corresponding buffers, whereas MPI communication involves PCIe transfers of
the GPU buffers. GPU-GPU copy operations are required to extract and insert data
from the data fields to and from the buffers.

data, extraction function objects are used that are again selected via the func-
tionality management. The data insertion step is similar to the data extrac-
tion, besides that we traverse the block messages in the communication buffers
instead of the Blocks.

3.3 Multi-GPU Implementation

For parallel simulations on GPUs, the boundary data of the GPU has first to
be copied by a PCIe transfer to the CPU and then be communicated via MPI
routines. Therefore, we need buffers on GPU and CPU in order to achieve fast
PCIe transfers. In addition, on-GPU copy kernels are added to fill these buffers.
The whole communication concept is depicted in Fig. 3.

The only difference between parallel CPU and GPU implementation is that
we need to adapt the extraction and insertion functions. For the local communi-
cation they simply swap the GPU buffers, whereas for the MPI communication
we copy the data directly from the GPU buffers into the MPI buffers and vice
versa. To support heterogeneous simulations on GPUs and CPUs, we execute
different kernels on CPU and GPU and also define a common interface for the
communication buffers, so that an abstraction from the hardware is possible.
Additionally, the work load of the CPU and the GPU processes can be balanced
e.g. by allocating several Blocks on each GPU and only one on each CPU-only
process. In addition to that it is also possible to divide a Block into several
Sub-Blocks of different sizes to enable load balancing on heterogeneous compute
nodes containing e.g. GPUs and CPUs.
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Table 1. Specifications of the Tsubame 2.0 cluster.

Compute Nodes 1408
Processor Intel Xeon X5670
GPU NVIDIA Tesla M2050
GPUs per Compute Node 3
LINPACKa Performance 1192 TFLOPS
Power Consumption 1398.61 KW
Flops per Watt 852.27 FLOPS/W
Network Type Fat Tree
Interconnect QDR Infiniband
ahttp://www.netlib.org/linpack

4 Hardware and Performance Model

4.1 Tsubame 2.0

We perform all numerical tests in this article on Tsubame 2.03 that is currently
(Nov. 2011) number 5 in the TOP 500 list. The detailed hardware specifications
of this multi-GPU cluster are listed in Table 1.

All 1408 compute nodes are equipped with three NVIDIA Tesla M2050
GPU accelerators each having 3 GB of GPU memory. NVIDIA Tesla M2050
has a floating-point performance (single precision) of 1030 GFLOP/s and 515
GFLOP/s (double precision) coming from 448 CUDA streaming processors capa-
ble of doing 2 floating point operations per cycle and a processor frequency of
575 MHz. Thus, most of Tsubame’s 2.4 PFlops peak performance comes from
its 4224 GPUs. The GPU memory frequency is 1550 MHz with DDR5 (factor
2) RAM and a 384 Bit memory bus what results in 148 GB/s peak memory
bandwidth.

4.2 Performance Model

Next we derive a very simple performance model for our multigrid solver in
order to identify performance bottlenecks and to estimate the overall runtime
for a given problem size on Tsubame 2.0. In general, we can split the runtime t
into the time for the compute kernels, e.g. for the smoother, restriction or inter-
polation, and the time for communicating data between neighboring processes,
mainly exchanging ghost layers after smoothing, residual, and interpolation. An
important decision is, if one overlaps computation and communication. If we do
not overlap them, the runtime is just the sum

t = tkernel + tbuffer + tPCI + tMPI (5)

of runtime of all kernels tkernel, the time for copying data from ghost layers to
send and receive buffers tbuffer, the time for PCIe transfers tPCI, and the time
for MPI communication tMPI.
3 http://www.gsic.titech.ac.jp/en/tsubame2, Nov. 2011.

http://www.netlib.org/linpack
http://www.gsic.titech.ac.jp/en/tsubame2
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In order to enable overlapping, we have to split the kernels into inner ker-
nels and outer kernels, where the latter are just processing the points lying
near boundary layers. After the outer kernels are finished and the GPU buffers
are filled, we can communicate the ghost layers via several CUDA streams and
asynchronous PCIe transfers. In parallel run the inner kernels, i.e.

t = to,kernel + tbuffer + max(ti,kernel, tPCI + tMPI). (6)

Kernel Performance. First we take a closer look at the kernel performance on
a single GPU. From previous work we already know that our multigrid algorithm
is bounded by memory bandwidth (this also can be easily checked e.g. by a
profiler). For the most time consuming part, the smoother, where we basically
do a sparse matrix (stencil) vector product, we have to load per grid point one
value of the right hand side, seven values of the solution, and we store one value
of the solution. The loads of the solution can be partly cached (at least three rows
in one grid plane), such that we can assume to require only one load per plane
in the solution array, i.e. instead of seven we have three loads. Since we do not
split the red and black points of the solution into separate arrays in memory,
we assume that we must load and store the full array twice, once within the
update iteration of the red and once of the black points. Table 2 summarizes the
estimated load and store instructions for the different multigrid components. We
denote the number of grid points on the finest grid l = 0 by N = N0. On the
coarser grids we have Nl = Nl−1

8 grid points in 3D. Thus, the overall number of
grid points on L−1 grid levels is roughly Nmg = N0 ·(1+ 1

8 +. . .+ 1
8L ) ∪ N0 ·1.14.

Table 2. Number of load and store instructions for different multigrid components per
(fine) grid point. Additionally we list the required number of ghost layer exchanges in
the multi-GPU case.

Component Loads Stores Ghost layer exchanges

Smoothing 2 · (3 + 1) = 8 2 2
Residual 3 + 1 = 4 1 1
Restriction 3 1

8
0

ProlongationAdd 1 + 3
8

1 1

Table 3. Memory bandwidths on Tsubame 2.0 for data transfers within one GPU
(DDR5), between two GPUs on one compute node (PCIe), and between two compute
nodes (Infiniband).

Theoretical Attainable
Memory Bandwidth Memory Bandwidth
[GB/s] [GB/s]

DDR5 148 95
PCIe 8 6 (shared by 3 GPUs)
Infiniband (bidirectional) 5 5
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Since we know that our multigrid solver is bandwidth limited we can estimate
the kernel time and communication time from the maximum attainable memory
and network bandwidth that we measured in Table 3 via standard streaming
benchmarks. Note that we neglect the fact that the PCIe bandwidth for GPU
to CPU resp. GPU to CPU transfers differs and that the bandwidth depends on
the message size, i.e. for smaller message sizes the bandwidth is much lower and
the latency dominates.

As an example one ω-RBGS iteration for problem size N = 5122 × 256
takes 60.5 ms what corresponds to approximately 89 GB/s memory bandwidth
on one GPU. All our numerical tests run with double floating-point precision.
Our performance model with data from Tables 2 and 3 estimates

tRBGS =
8 · N · 10
95GB/s

∪ 56.5ms . (7)

Thus, our model is quite accurate for the RBGS smoother. However, this holds
only for larger problem sizes. In order to show the dependency of our smoother
on the problem size we depict the runtimes and bandwidth of one ω-RBGS
iteration with varying sizes in Fig. 4.

For smaller problems, the GPU overhead e.g. for CUDA kernel calls becomes
visible and there is not enough work to be done in parallel and thus most of the
compute cores idle.

For one multigrid V(2,2)-cycle with 6 grid levels we measure 364 ms on
one GPU (corresponding to approximately 85 GB/s memory bandwidth), our
performance model predicts 325 ms.

In order to give more insight in the runtime behavior of the different parts of
the multigrid solver, Fig. 5 shows the portions of predicted and measured runtime
spent in different components of a V(2,2)-cycle on one GPU. The problem size
shrinks by a factor of 8 for each grid level, thus one expects the coarse grid
(this includes all the previous components on all coarser grids plus solving the

Fig. 4. Single GPU ω-RBGS runtime and bandwidth for different problem sizes.
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(a) (b)

Fig. 5. Runtime percentage for different components predicted by our performance
model (a) and measured (b) on one GPU (problem size 5122 × 256).

problem on the coarsest grid with CG iterations) to require about 1/8 of the
runtime. The measurement lies a little bit higher especially for GPUs, because
the smaller sizes are not very efficient on GPU as seen before.

Summarizing, our predictions on one GPU are quite accurate and the model
error is typically below 10 %.

For overlapping computation and communication we split the smoother ker-
nel into an inner and outer kernel. This increases the runtime e.g. for one ω-
RBGS iteration for problem size 5122 × 256 by approximately 6 % on one GPU.
Therefore, we assume ti,kernel = tkernel and to,kernel = 0.06·tkernel in the following.
A simple bandwidth based runtime estimate for to,kernel is not feasible because of
the relatively small number of boundary points and the non-contiguous memory
accesses for four of the six boundary layers.

Communication Time. The same problems as for to,kernel we also have when
trying to estimate tbuffer for the multi-GPU case. Thus, we also fall back to
measured times here that depend on the number of neighboring processes. In
worst case, six ghost layers have to be copied into and from buffers. From this
we measure tbuffer ∪ 0.05 · tkernel. tPCI and tMPI we are able to predict using
information about the number of ghost layer exchanges from Table 2 and the
bandwidths from Table 3. Note that within one smoothing iteration we have two
ghost layer exchanges, one after updating the red points and one after updating
the black points. The PCIe transfer time is the sum of the transfer from GPU to
CPU and back (if more than one of the three GPUs on a compute node is used
the attainable PCIe bandwidth is shared and thus reduces to 3 resp. 2 GB/s).
We neglect that the MPI communication time differs from within one node and
between two nodes.

For problem size N = 5122 ×256 the number of ghost points on the six bound-
ary planes is 5122 + 4 · 256 · 512, i.e. the surface to volume ratio is 1 : 64. On the
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coarser grids the ratio goes down to 1 : 2 on grid level 6. In this setting we mea-
sure 89 ms on 48 GPUs for one ω-RBGS iteration on the finest grid level, if we do
not overlap computation and communication. Our communication model predicts
tPCI = 16.8 ms and tMPI = 3.4 ms, i.e. tRBGS = 56.5 + 16.8 + 3.4 + 5 = 81.7 ms.

To estimate the overall time for overlapping computation and communica-
tion, we observe that the sum tPCI + tMPI is much lower than the time for an
inner smoothing kernel, therefore the communication time should not be visible
for the parallel smoother, i.e. t = to,kernel + tbuffer + ti,kernel.

5 Scaling Experiments

Next we check the achievable parallel efficiency and speedup of our multigrid
multi-GPU implementation on Tsubame 2.0. Baseline is the performance on
one GPU.

We distinguish two types of experiments: Weak scaling relates to experiments
were the problem size is increased linearly with the number of involved GPUs,
whereas the term strong scaling implies that we have a constant global problem
size and vary only the number of processes. Assuming a perfect parallelization,
we expect the runtime to be constant in weak scaling experiments, while we
expect the runtime to be reciprocally proportional to the number of parallel
processes in strong scaling experiments. To estimate the quality of our paral-
lelization we compute speedup Sp = t1

tp
and parallel efficiency Ep = Sp

p given the
runtimes t1 and tp on one and on p GPUs.

We measure the runtime of one V(2,2)-cycle (i.e. V-cycles with two ω-RBGS
iterations for pre- and postsmoothing each) on six grid levels with parameters
from Sect. 2, if not stated otherwise. On the coarsest grid between 15 and 20
CG iterations are performed. All our experiments are done with double floating
point accuracy.

5.1 Weak Scaling

Figure 6 shows the weak scaling behavior of the code for problem size 5122 ×
256 for non-overlapping communication and computation and when overlapping
communication and computation within the smoother. Here, we measure the
time spent to do pre- and postsmoothing (step 4 and 10 in Algorithm 1) on
the finest grid level (Smoother fine), the time spent to solve the problem on all
coarser grid levels (Coarser Grids), and the overall time for one V(2,2)-cycle. In
addition to that the efficiency for one V-cycle is shown. In contrast to nearly
perfect weak scaling also on large CPU clusters (cf. [23]) the overall parallel
efficiency drops to 35 % in the first case and to 42 % in the second case on 1029
GPUs, what was the maximum number of GPUs available for us on Tsubame
2.0. This has mainly two reasons: first the effect of additional intra-node memory
transfers of ghost layers between CPU and GPU via the PCIe bus when using
GPUs, and second the CG iterations on the coarsest grid that are done on CPU
and require a global all-to-all communication. Overlapping of computation and
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(a)

(b)

Fig. 6. Weak scaling behavior and parallel efficiency for non-overlapping communica-
tion (a) and overlapping communication in the smoother (b) from one to 1029 GPUs
on Tsubame performing one multigrid V(2,2)-cycle.

communication within the smoother improves the parallel efficiency and the
overall runtime on 1029 GPUs is about 870 ms in this case, where 40 % of the
time are spent within the smoother and about 30 % on the coarsest grid doing
CG iterations.

5.2 Strong Scaling

Next, we scale the number of involved processing units, but leave the total
problem size, i.e. the number of grid points, constant. In this subsection we do
not overlap communication and computation. Figure 7 shows the runtimes for
5122 × 256 solved on up to 16 GPUs. The maximal speedup is just 2.3 achieved
on 8 GPUs, which is a result of different factors: on the one hand the problems
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Fig. 7. Strong scaling and speedups for one V(2,2)-cycle with 512 × 2562 grid points
per GPU.

Table 4. Runtimes of one V(2,2)-cycle for varying problem sizes and 5 or 6 grid levels
on 1029 GPUs

Unknowns (in million) No. of levels Runtime in ms

69055 6 1025
34528 6 583
17264 6 322
8632 5 461
4316 5 261
2158 5 171
1079 5 127
539 5 125
270 5 130

for small size mentioned when discussing the single-node performance and on
the other hand the communication overhead addressed within the weak scaling
experiments.

Table 4 shows runtime results for different problem sizes on 1029 GPUs in
order to determine the optimal problem size on this number of GPUs. For the
largest run taking 1025 ms our performance model predicts only 445 ms with
a ratio computation to communication of 2.7 : 1, the model error is mainly
caused by the coarse grid solver. The minimal runtime on 1029 GPUs we find for
539 million grid points, here one V(2,2)-cycle takes 125 ms and communications
dominates computation roughly 4 : 1 due to our performance model.

6 Conclusions and Future Work

We have implemented a geometric multigrid solver on GPU and integrated it into
the waLBerla framework. First results show acceptable scalability on Tsubame
2.0 up to 1029 GPUs.
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One of the next steps is a performance optimization of our code. On one
GPU, one obvious improvement would be to use an optimized data layout by
splitting the red and black grid points into two separate arrays in memory.
In the multi-GPU case we next implement overlapping communication also for
the remaining multigrid components besides the smoother. We will also further
investigate the CG coarse grid solver and possible alternative parallel (direct)
solvers. It is possible to refine the performance model, e.g. to take into account
different bandwidths for each grid level like in [22] or to model the performance
of the CG solver as done in [23]. The next major change in waLBerla will be to
support local grid refinement within the computational domain. Besides adaptive
multigrid methods this allows us to reduce the number of processes on coarser
grids to achieve a better scalability.

Acknowledgment. We are grateful to have the opportunity to test our multigrid
solver on Tsubame 2.0.
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