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1

3D Object Reconstruction and Recognition Techniques

Based on Digital Holography

Yann Frauel,1 Enrique Tajahuerce,2 Osamu Matoba,3

Albertina Castro,4 and Bahram Javidi5

1IIMAS, Universidad Nacional Aut�oonoma de M�eexico, Mexico
2Departament de Ciencies Experimentals, Universitat Jaume I, Spain
3Department of Computer and System Engineering, Kobe University, Japan
4Instituto Nacional de Astrof���sica, �OOptica y Electr�oonica, Mexico
5Department of Electrical and Computer Engineering, University of Connecticut, USA

1.0 Introduction

Optical techniques and algorithms have proven to be particularly suitable to
the realization of fast and efficient security and information processing sys-
tems.15,16,21,32 Recent advances in electrooptical devices and components have
allowed researchers to take advantage of the properties of free-space optics such
as massive parallelism and high space-bandwidth product.1,7 One of the most
promising applications of optical processing is the recognition of objects or
images. In particular, the properties of coherent light allow an instant compu-
tation of Fourier transforms with a single lens.10 This explains why optical
correlation techniques have been widely studied for pattern recogni-
tion.13,14,26,31,33 However, these techniques have been developed in order to
deal with two-dimensional (2D) images and they cannot be applied easily to
three-dimensional (3D) objects.

The first problem of 3D object recognition is that one has to acquire the
depth information of an object or a scene. This can be done using various
methods.9,17 The easiest one consists in taking several conventional pictures of
an object from different viewpoints or with different viewing angles. These
pictures can be recorded by several cameras or by a single moving camera.25,28

They can also be taken with a microlens array as in the case of integral
photography.20,23,24 These techniques only provide indirect information about
the depth through changes of parallax. Another method to find the depth
information involves the projection of fringes onto the object and the analysis
of their deformation.5 This analysis introduces some additional complexity.
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Amore direct technique is to use a rangefinder system to measure the 3D shape
of the object.12 However, this measurement has to be done point by point.

On the contrary, holography is a more natural technique since it is an
extension of the photographic technique to 3D objects. A hologram records {
in one single acquisition { the complete 3D information of a scene because it
records the phase information of the optical beam along with its magnitude.4

Moreover, an interesting approach consists in using digital holography to ac-
quire these data.11,29 In this case, the holograms are recorded by a CCD camera
and the 3D object can be reconstructed numerically in a computer. This tech-
nique avoids the analog recording of the hologram and the corresponding chem-
ical or physical development. Since the information is directly available in digital
form, it can be used to reconstruct the object in a computer and to compute
digital correlations. In this contribution, we will first describe the technique
of phase-shift digital holography that we use for recording the information
about the 3D objects. We will describe the methods used to reconstruct the
diffraction volume of the object from digital holograms. Then we will show how
it is possible { with some limitations { to achieve 3D object recognition by direct
correlation of digital holograms. Next, we will describe amodified technique that
allows us to obtain a shift-invariant recognition. Finally, we will explain how to
extend the technique to perform a 3D recognition in the presence of distortions of
the object such as out-of-plane rotation or longitudinal shift.

1.1 Phase-shift Digital Holography

1.1.1 Recording of the Hologram

1.1.1.1 Experimental Setup

Our optical setup (Fig. 1.1) uses a linearly polarized argon laser tuned to
515 nm. Its beam is split into a reference path and an object path. On both
paths, the beams are expanded and spatially filtered in order to obtain two
uniform plane waves. The reference beam passes through a quarter- and a half-
wave plates whose axes are either parallel or orthogonal to the polarization of
the beam. Depending on the relative orientations of the fast and slow axes of
each plate, it is possible to achieve a phase retardation of 0, p=2, p, or 3p=2.
The object beam illuminates the 3D object, which then scatters light in the
direction of the camera. This scattered light is added coherently to the phase-
modulated reference beam and the interference pattern is detected by a CCD
camera. This geometry is similar to a Mach-Zehnder interferometer.

1.1.1.2 Recording of a Digital Hologram

Let us call O(x, y, z) the complex amplitude of the beam scattered by the
object at location (x, y, z). This complex field contains both the magnitude and
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the phase of the optical wave. The complex amplitude of the object beam in the
plane of the CCD sensor is a sum of spherical waves emitted by all the points of
the 3D object. Assuming that this plane is located at z ¼ 0, and in the Fresnel
approximation, this sum can be written as follows:

O(x, y, 0) ¼ i

l

ððð
Object

O(x 0, y 0, z 0)
1

z 0 exp �i
2p

l
z 0

� �
�

� exp �ip
(x � x 0)2 þ (y � y 0)2

lz 0

 !
dx 0dy 0dz 0:

(1)

We can also express this complex amplitude in the form

O(x, y, 0) ¼ AO(x, y) exp [iwO(x, y)] (2)

where AO(x, y) and wO(x, y) are the magnitude and the phase of the object
wave in the plane of the camera. Similarly, the complex amplitude of the
reference wave in the same plane can be written as

RDw(x, y, 0) ¼ AR(x,y) exp i wR(x,y)þ Dwð Þ½ � (3)

where Dw is the phase retardation introduced by the two waveplates.
The intensity interferogram recorded by the camera is given by

IDw(x, y) ¼ jO(x, y, 0)þ RDw(x, y, 0)j2

¼ jO(x, y,0)j2 þ jRDw(x, y, 0)j2þ
þO(x, y, 0)RDw

�(x, y, 0)þO�(x, y, 0)RDw(x, y, 0):

(4)

3D
object

BS

Ar
laser

λ/2 λ/4

M1 M4

M2

M3

L
SF

d

CCD

BS

RP1 RP2

SF
L x

yz

Figure 1.1. Experimental setup{M mirror, BS beamsplitter, SF spatial filter, L lens,
RP retardation plate.
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This interferogram is also called a digital hologram. Indeed, if it is illuminated
by the reference wave RDw(x, y, 0), the third term provides a reconstruction of
the original object beam. However, the three other terms give undesirable
information. In conventional holographic techniques, the hologram is usually
recorded with a sufficient angle between the reference and the object beams. In
this way, the readout of the hologram angularly separates the different terms. In
the case of digital holography, the relatively large size of the pixels of available
CCD cameras (typically 10mm) limits the spatial resolution of the interferogram
and therefore imposes that the two beams be almost parallel to each other.
During readout, all the beams overlap which prevents the separation of the
reconstructed object beam from the unwanted beams.

1.1.1.3 Phase-shift Technique

In order to avoid the problem of overlapping of the terms, we need to extract
the value of the object amplitude O(x, y, 0) from the interferogram. This is not
possible with only one interferogram but it is possible if we record several
interferograms with different values of the phase retardation of the reference
beam Dw.2,34 As mentioned before, we use the values 0, p=2, p, or 3p=2. Using
Eqs. (2) and (3) in Eq. (4) we obtain

IDw(x, y) ¼ A2
O(x, y)þ A2

R(x, y) þ
þ 2AO(x, y)AR(x, y) cos wO(x, y)� wR(x, y)� Dw½ �:

(5)

In our case, the reference beam is actually a plane wave that is orthogonally
incident onto the camera sensor. Consequently, its magnitude AR(x, y) and
phase wR(x, y) are constant over the sensor and can be replaced with 1 and 0
respectively without loss of generality. We can then rewrite Eq. (5) for the four
values of phase retardation:

I0 ¼ A2
O(x, y)þ 1þ 2AO(x, y) cos (wO(x, y))

Ip ¼ A2
O(x, y)þ 1� 2AO(x, y) cos (wO(x, y))

Ip=2 ¼ A2
O(x, y)þ 1þ 2AO(x, y) sin (wO(x, y))

I3p=2 ¼ A2
O(x, y)þ 1� 2AO(x, y) sin (wO(x, y)):

8>>><
>>>:

(6)

It is then easy to show that the magnitude of the object wave can be found by

AO(x, y) ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I0 � Ip)

2 þ (Ip=2 � I3p=2)
2

q
(7)

and its phase by

wO(x, y) ¼ Arctan
I0 � Ip

Ip=2 � I3p=2

� �
(8)
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1.1.2 Reconstruction of Views of the Object

The phase-shift technique described in the previous paragraph provides the
object wave O(x, y, 0) as defined in Eq. (2). By extension, we give the name of
digital hologram to this object wave. Indeed, it allows us to reconstruct the 3D
object without parasitic images. This reconstruction is made possible by nu-
merically computing the reversed propagation of the light from the plane of the
camera (where the so-called hologram is located) to a plane in the middle of
the object. This method actually provides an accurate view of the parts of the
object that are in the chosen plane only. The areas that stand in different
planes will be blurred. This allows us to get information about the depth of the
object by focusing specifically in various planes. However, the depth resolution
(‘‘focus depth’’) is typically much lower than the lateral resolution. If the depth
of the object is less than this focus depth, it is possible to see clearly the whole
object by reconstructing a view in the median plane of the object. In this case
we will call this plane ‘‘the plane of the object.’’

The simulated propagation is computed by using the Fresnel{Kirchhoff
integral:

O(x, y, d) ¼ O(x, y, 0) � hd(x, y) (9)

where

hd(x, y) ¼
i

ld
exp �i

2p

l
d

� �
exp �ip

(x2 þ y2)

ld

� �
(10)

is the point-spread function of the free space, l denotes the wavelength of the
beam and the symbol * stands for the 2D convolution.

One efficient way of computing Eq. (9) is to use fast Fourier transforms in
order to compute the convolution:

O(x, y, d) ¼ FT�1fFT [O(x, y, 0)]:FT [hd(x, y)]g (11)

Of course, we only know a sampled version of O(x, y, 0). In this case, it can
be shown22 that, aside from the computation speed, the formula used in Eq.
(11) has another advantage: it keeps the same sampling step for the origin and
the destination planes. This is particularly useful for object recognition because
it means that no change in scale is introduced when the distance of the object is
modified.

A property of holography is that each point of the hologram records light
coming from the whole object. It is thus possible to reconstruct a view of the
object by using only a partial window extracted from the hologram. Of course,
this method yields a loss of information. In the case of Eq. (11), the sampling
step remains constant while the number of pixels is reduced. Hence, this
window extraction in the hologram results in a window extraction in the
reconstruction plane. In other words, only a part of the object field is obtained.
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This technique is therefore usable only when the size of the object is less than the
size of the window. In this case, it is possible to reconstruct different perspectives
of the object by using different windows of the hologram (Fig. 1.2). However, the
application of Eq. (9) simulates a propagation orthogonally to the hologram, so
that each window provides a reconstruction of a different part of the object plane
(Fig. 1.2a). In order to have all the reconstructed perspectives centered at the
same point, we need to multiply each window by a linear phase factor. This
multiplication is equivalent to reading the holographic window with a tilted
plane wave (Fig. 1.2b). In mathematical terms, in Eq. (9) we replace O(x, y, 0)
with Wa, b(x, y) exp [� i2p (ax þ by)=ld], where Wa, b(x, y) is the window
centered at the coordinates (a, b) in the hologram. The angle of view with
respect to the orthogonal axis is then (a=d, b=d).

(a) Object

Hologram
Reconstruction

plane

Reconstruction
plane

Simulated propagation

(b) Object

Hologram
Simulated propagation

Linear phase factor

Figure 1.2. Reconstruction using windows in the hologram: (a) Without phase factor,
(b) With a linear phase factor to recenter the reconstructed view.
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1.1.3 Enhancement of the Reconstructed Images

Since the digital holograms are recorded with coherent light, they are marred
by a speckle pattern. This spatially random noise pattern is caused by the
interference of the light emitted by every point of the rough surface of the
object. The speckle phenomenon occurs in the hologram but also in any
reconstruction plane, including the plane(s) of the object. This noise affects
both the amplitude and the phase of the beam. It is not only bothering for the
visual aspect of the reconstructed images but also for the recognition applica-
tions. Indeed, these high-frequency spatial variations { especially in the phase {
dramatically reduce the correlation lengths in every direction and therefore
strongly reduce the tolerance to distortions and displacements of the objects.
This means that an object can only be recognized if it is replaced exactly in its
original position. Moreover, another object, even though its global structure is
identical to the one of the reference object, is likely to have a different micro-
structure and therefore not to be recognized.

In order to improve the correlation results, we have to get rid of the phase of
the complex field and to keep the amplitude information only. We then remove
the remaining amplitude speckle in two steps. First, we replace each block of
8� 8 pixels of the image with its average amplitude. The size of the recon-
structed image is therefore reduced by a factor 8 in both directions. This also
allows us to reduce the computation time. However, some amplitude variations
remain after this process and we remove them by performing a median filtering
over 7� 7 pixels. Namely, for each pixel we classify the values of the 49 closest
neighbors in an ascending order and we keep the 25th value. Figure 1.3 presents
reconstructed images of a die both before and after removing the speckle
pattern. The levels have been scaled to enhance the contrast.

(a) (b)

Figure 1.3. Image of a die reconstructed from a digital hologram- (a) before and
(b) after filtering the speckle pattern.
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1.3 Correlation of Holograms

1.3.1 Object Recognition

As can be seen in Eq. (1), the hologram contains the 3D information about the
object. Therefore, it is possible to compare two 3D objects by correlating their
holograms directly, without the need to reconstruct views of the objects. We
use a matched filter approach. The filter is the digital hologram of the reference
object OR(x, y, 0). This filter is compared to the digital hologram of the object
to be tested OT (x, y, 0) through a digital correlation:

CorRT ¼ OR(x, y, 0)�OT (x, y, 0) (12)

where the symbol � stands for the correlation operation. This correlation can
be efficiently computed by using Fourier transforms:

CorRT ¼ FT�1 FT OR(x, y, 0):FT
�[OT (x, y, 0)]½ �f g (13)

As mentioned previously, due to the speckle pattern, this correlation is very
sensitive to displacements of the object and can thus be used to detect very
small changes in the location or in the shape of an object.

We conducted a 3D object recognition experiment using two models of cars
with an approximate size of 25� 25� 45mm. They were located at a distance
d ¼ 865mm from the CCD detector. The digital holograms contain 256� 256
pixels. In Fig. 1.4 are presented the reconstructions of the objects obtained
using Eq. (9). In Fig. 1.5a we show a plot of the autocorrelation of the object in
Fig. 1.4a performed by autocorrelating its digital hologram. Figure 1.5b shows
the crosscorrelation of the 3D object in Fig. 1.4a with that in Fig. 1.4b
obtained by crosscorrelation of the digital holograms. Both plots are normal-

(a) (b)

Figure 1.4. Reconstructed images of (a) the reference object and (b) the input object.
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ized to the same value. As a comparison, we present in Fig. 1.6 the conventional
2D autocorrelation and crosscorrelation, using the objects of Fig. 1.4 as 2D
intensity images. It can be seen that the 3D correlation with the holograms is
much more discriminant and sensitive to displacements of the object.

1.3.2 Measurement of Small Rotations

Instead of using the entire holograms, it is also possible to measure the correl-
ation of sub-windows of the holograms properly modified by a linear phase
factor. This is equivalent to comparing different perspectives of the objects and
therefore allows us to evaluate small rotations of the reference object.

In order to illustrate this property, we use as a reference the hologram
corresponding to the object shown in Fig. 1.4a. We take as an input a
hologram of the same object slightly rotated. Both holograms have
2028� 2044 pixels. We then compare 256� 256 pixel windows in these holo-
grams. In the reference one, the window is centered, whereas on the input one
the window is moved across the hologram. Figure 1.7a presents the maximum
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Figure 1.5. (a) Autocorrelation and (b) cross-correlation of the digital holograms of
the objects represented in Fig. 1.1.4.
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Figure 1.6. Conventional 2D correlation of the objects in Fig. 1.4 taken as 2D intensity
images: (a) Autocorrelation and (b) cross correlation.
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value of the correlation plane versus the displacement (a,b) of the latter
window. A peak is obtained for a ¼ �12 and b ¼ �2, which corresponds to
an angle of view (0.0078,0.0018). Figure 1.7b shows the correlation plane for
this particular perspective of the 3D object.

1.4 Shift-invariant 3D Object Recognition

1.4.1 Principle

The problem with the technique described in the previous section is that the
recognition can only take place when the input object is almost in the same
location and with the same orientation as the reference object. In this section
we describe a different technique that is able to deal with translations and
limited rotations of the objects.

Once the holograms have been obtained, we use Eq. (9) to calculate the
complex wavefronts generated by the 3D objects in a set of planes parallel to
the output plane within the Fresnel approximation. As mentioned in Section
1.1.3, we keep only the amplitude information while dismissing the phase
information. In contrast with the technique described in the previous section,
instead of using the digital holograms directly, we first evaluate the amplitude
distribution of the objects in the 3D object space. This approach allows us to
apply 3D correlation techniques to the 3D amplitude distribution generated by
the objects. As described in Section 1.1.2, it is also possible to reproduce the
amplitude distribution in planes tilted with respect to the output plane by
using partial information from the digital holograms. Therefore, not only the
three Cartesian coordinates of the reference in the 3D input space but also the
relative out-of-plane rotation of the target with respect to the reference can be
obtained. Also, by filtering the phase information, we achieve a system less
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Figure 1.7. Correlation of the hologram windows corresponding to the object in
Fig. 1.1.4a, and a rotated version of the same object- (a) Correlation peak versus
displacement of the window and (b) Correlation plane for the displacement giving the
maximum peak.
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sensitive to noise and fast fluctuations of the complex distribution produced by
the rough surfaces of the objects. With this new method we are able to achieve
full 3D shift invariance.

As explained in Section 1.1.2, the digital holograms allow us to reconstruct
the light field at any plane orthogonal to the output plane, including those
planes containing the 3D objects, as shown in Fig. 1.8. This permits us to
reconstruct the 3D light distribution generated by the scene in a volume with a
depth limited only by the Fresnel approximation. In each reconstruction plane
at a distance d given by Eq. (9), regions of the 3D object such that z ¼ d result
focused, but other areas of the object appear defocused in the same plane. The
set of different 2D distributions with variable propagation distances d consti-
tutes a 3D function that contains information about the location of 3D objects
in the 3D scene under consideration. Similar 3D objects will generate similar 3D
light distributions in volumes located at the same relative distance from the
object. Therefore, it is possible to show that this 3D transformation represents
a linear shift-invariant operation. Thus, application of correlation techniques to
the resulting 3D distribution provides information about the presence and
position of the reference 3D object in the 3D input scene.

Actually some preliminary operations are performed before evaluating the
correlation in order to improve the efficiency of the technique. First, the
filtering operations described in Section 1.1.3 are applied to the reconstructed
complex amplitudes. Second, in order to reduce the computation time,
instead of computing a 3D correlation between the two 3D functions generated
from the digital holograms, we only consider as reference function the
2D distribution corresponding to the reconstruction in the median plane of

y
x

d

3D
scene

y
x

Digital
hologram

Hologram
window

Reconstruction
planes

z

Figure 1.8. Reconstruction of the amplitude distribution in different planes from the
Fresnel digital hologram of a 3D object.
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the reference object. In this way, this 2D reference function can be sequentially
correlated in the computer with the different 2D functions that characterize the
3D input scene by computing simple 2D correlations. Finally, in order to
increase the discrimination capability, we use a phase-only filter to perform
the correlation.13 The filter is constructed using only the phase of the complex
conjugate of the Fourier transform of the reference function. The result, after
computing the correlation for different 2D reconstructions of the irradiance
distribution associated to the input, constitutes a 3D correlation volume. By
analyzing the correlation peaks in this volume it is possible to determine the
3D position of the reference in the input scene.

1.4.2 Experimental Results

An experiment was performed to detect the presence and 3D position of a 3D
reference in an input scene. The reference object was a die with a lateral size
equal to 4.6 mm. The center of the die was located at a distance d1 ¼ 345mm
from the camera sensor. In Fig. 1.9(a) a picture of the irradiance distribution at
this distance d1 is shown corresponding to the location of the reference object.
It was obtained by applying Eq. (11) to the digital hologram.

As input scene, we use two similar dice located at different distances. One
was located at the same position than the reference, the other had its center
located at a different axial distance from the output plane and was displaced
transversally and rotated a small angle around the vertical axis. The 3D
amplitude distribution generated by the input scene was obtained by recording
a digital hologram and using Eq. (11) to generate a set of 2D distributions
with different propagation distances d. This set of 2D functions constitutes the
3D distribution to be used in the recognition step. We show the irradiance
distribution generated by the 3D input scene at only two planes, those corre-

(a) (b) (c)

Figure 1.9. Computer reconstructions of the 3D reference object and the 3D input
scene for two focusing distances: (a) reference object, (b) input objects for z ¼ 315mm,
and (c) for z ¼ 345mm.
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sponding to distances z ¼ 315mm and z ¼ 345mm in Fig. 1.9(b) and 1.9(c),
respectively. The 2D distributions in Fig. 1.9 are just three elements of the set
of 2D functions characterizing the 3D reference and input scene.

In Fig. 1.10, we show a plot of the correlation between the reference and two
different 2D sections of the 3D input amplitude distribution. We selected the
same reconstructions depicted in Fig. 1.9, which give us two local maxima of
the correlation. Figure 1.10(a) corresponds to the correlation between the
reference in Fig. 1.9(a) with the 2D amplitude distribution in Fig. 1.9(b),
while Fig. 1.10(b) shows the result obtained by correlation of the distributions
in Fig. 1.9(a) and 1.9(c). Both plots, normalized to the same value, show a clear
maximum at the locations of the 3D reference. The maximum in Fig. 1.10(a) is
lower than that in Fig. 1.10(b) due to the small rotation of the reference. It can
be shown that the height of this correlation peak can be increased by recon-
structing the amplitude distribution generated by the 3D input scene at planes
tilted with respect to the output plane. This can be done by using partial
windows in the corresponding Fresnel digital hologram, as was explained in
Section 1.1.2 (Fig. 1.2). The locations of the maxima determine the transversal
locations of the objects in the input scene with respect to the original position of
the reference. The distances z for which we obtain the maximum values of the
correlation peak, z ¼ 315mm and z ¼ 345mm, determine the axial position of
the two objects. With the information obtained, it is possible to localize the 3D
reference in the 3D input space. In this way, we see that one of the objects is
located at the same position than the original reference object. The second one,
similar to the reference but displaced and rotated, is located at 3D coordinates
given by (�7:72, �3:35, �30)mm with respect to the original position of the
reference.
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Figure 1.10. Correlation of the irradiance distribution associated to the reference
with that of the input scene for different distances: (a) Correlation of the
distribution in Fig. 1.9(a) with that in Fig. 1.9(b) and (b) correlation of Fig. 1.9(a)
with Fig. 1.9(c).
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1.5 Distortion-tolerant 3D Object Recognition

In the previous section, it has been mentioned that the recognition can tolerate
slight out-of-plane rotations of the object. However, this tolerance is limited to
very small angles, typically less than 18. In this section, we show how it is possible
to make the 3D recognition really robust to distortions by using nonlinear
composite filters.3,17 Such a filter is a combination of several matched filters
corresponding to various distortions of the 3D reference object. As an example,
we demonstrate tolerance to out-of-plane rotations and longitudinal shifts. The
same approach could be generalized, for instance to achieve tolerance to in-plane
rotation or scaling. We also describe how to complement the composite filters
with a neural network in order to further enhance the distortion tolerance.

1.5.1 Composite Correlation Filters

First of all, we need to dismiss the phase information and to improve the
quality of the reconstructed views of the object by ridding them of the speckle
noise as described in section 1.1.3. In the previous section, we performed a
nonlinear correlation by using a phase-only filter. Now we use a more general
case of nonlinear correlation called kth law.14 Specifically, we compute the
Fourier transforms of the filtered images and raise their Fourier amplitudes
to the kth power while retaining their Fourier phase. The case k ¼ 1 corres-
ponds to a linear correlation; the case k ¼ 0 corresponds to the phase-only filter
we utilized in the previous section. For the rest of this chapter, we will use
k ¼ 0:1, which is not a phase-only filter but is still a strongly nonlinear correl-
ation and is therefore highly discriminant.

As previously, our reference object is a die. Our holograms have
2028� 2044 pixels but we only use 1024� 1024 pixels windows in order to
reconstruct the views of the objects. Here we want to achieve rotation toler-
ance. Therefore, we record 19 holograms of the reference die with several out-of-
plane rotations. For each new hologram, the die is rotated roughly 0.58 around
the axis, which is orthogonal to Fig. 1.1. The overall rotation angle is around 98.
Although we only use out-of-plane rotation around the vertical axis, our
approach is easy to generalize to any axis of rotation. For every hologram, we
reconstruct the corresponding image in the plane of the object. These 19 images
are our nontraining true targets (Images #1{19). In order to study the robust-
ness of the object recognition, we also record holograms of the die with a very
different illumination (Image #20) and in a different 3D position (Image #21).
For this latter case, we will present the correlation in the best focus plane.
Finally, we need several false targets to test the discrimination of our filter.
Hence, we use seven various objects (Images #22{28) which are completely
different from the die.

First, we synthesize a nonlinear filter with only one view of the reference die
(the ‘‘training’’ image). This view is reconstructed from the same hologram we
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used for reconstructing Image #10, but with a different window. Figure 1.11
presents the values of the correlation peaks for all the images. It can be seen
that { except for the one that is very close to the training image { the true
targets are barely distinguished from the false targets.

In order to improve the recognition range, we construct a synthetic dis-
criminant function filter3,17 with several reconstructed views of our reference
object. Specifically, we normalize the energy of these views and combine them
linearly in the Fourier domain in such a way that the resulting composite filter
produces the same output peak for each training image.8 Since we want to
achieve rotation tolerance, we have to include in the training images different
perspectives of the die. We therefore use three different holograms for recon-
structing the views. These holograms are the ones corresponding to Images #3,
#10, and #16. They were recorded with the die rotated �38, 08, and þ38,
respectively, compared to the orientation for the previous filter. With each of
these holograms, we use three different windows: one centered window and one
laterally shifted window in both directions. These windows allow us to recon-
struct views of the die with a regular angle change of 0.68. We thus have
3� 3 ¼ 9 different views of the reference object with which we make our
composite filter. Figure 1.12 shows the results of the correlations with the
test images. The filter has been designed in order to obtain an output peak of
1 for the training targets. For the nontraining images, we obtain obviously an
output lower than 1. However, it can be seen that it is easy to discriminate true
targets from false targets by using a threshold, for instance at 0.2. When
comparing Figs. 1.11 and 1.12, it is clear that using a composite filter enhances
the recognition of the out-of-plane rotated object.

As we mentioned before, even when testing an object that is similar to the
reference, we only get a high output peak when the reconstruction plane is
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Figure 1.11. Correlation results obtained with various test objects. Filter made from
one single view.
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the plane of the object. In some cases it is useful to lower the sensitivity to
longitudinal shifts along the z-axis. This allows a reduction of the number of
reconstructions that have to be computed in order to recognize the object.
Therefore, we design a new composite filter, which includes defocused images of
the reference object. Namely, we use again the hologram corresponding
to Image #10 and also the same three reconstruction windows as above.
However, for each window, in addition to reconstructing the image of the
object in the focus plane, we also reconstruct views with a defocus of
�20mm, �10mm, 10mm, and 20 mm. We finally obtain 3� 5 ¼ 15 images
with which we make the composite filter. We then test the filter with the
hologram corresponding to Image #21. The evolution of the output peak
value versus longitudinal shift along the z-axis can be seen in Fig. 1.13 for
both this new filter and a filter made with the three focused images only. It
appears that the new filter is less sensitive to longitudinal shift in the recon-
struction of the image. Indeed, the recognition of the die is achieved over a
wider range of longitudinal shifts along the z-axis. Moreover, Fig. 1.14 gives
the correlation values for all the test images. It appears that the performance of
this filter is comparable to the one made with three different holograms
(Fig. 1.12), but this time we only need one single hologram to construct the
filter.

1.5.2 Neural Network

As we have seen above, the rotation tolerance obtained with a composite filter
is significantly greater than with a simple filter. Yet, it remains limited to a few
degrees. A natural idea to enlarge the tolerance angle would be to add more
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Figure 1.12. Correlation results obtained with various test objects. Filter made from 9
views based on 3 different holograms.
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Figure 1.13. Value of the output peak versus longitudinal shift along the z-axis.
Comparison between a filter made with focused images (‘‘regular filter’’) and a filter
including defocused images (‘‘longitudinal shift tolerant filter’’).
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Figure 1.14. Correlation results obtained with various test objects. Filter made from
15 focused and defocused views based on one single hologram.
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images during the construction of the composite filter. However this would
actually blur the filter and lower its discrimination. Therefore, in order to
generalize the recognition of the object to any arbitrary rotation and, in
addition, to estimate the out-of-plane orientation of the object, we can think
of using a bank of composite filters.

In the previous subsection, we have seen that a single composite filter is able
to recognize an object within a 108 rotation angle. In order to be able to deal
with a 3608 rotation of the object, we record 36 holograms of the die with a 108
rotation step. Each of these holograms is used to construct a composite filter
following the technique described above for the longitudinal shift tolerant filter.
We thus construct 36 rotation-tolerant composite filters that allow us to
recognize the die with any rotation angle.6 However, it is difficult to estimate
the die’s orientation because of the similarity of its shape after rotation of 908.
For instance, Figure 1.15 provides the values of the correlation peaks for the 36
filters when presenting a die in a particular position. It can be seen that, besides
the correct filter (filter #15), other filters tend to give a significant correlation
peak, especially filters #6, #24, and #33, which correspond to rotations of
�908, þ908, and þ1808, respectively. Because of this, and as the height of the
correlation peak varies with different input holograms, it is difficult to deter-
mine a threshold value in order to decide whether one particular filter gives a
correct detection or not. As a test, we use twenty holograms of the die with
various orientations and also seven false targets. Figure 1.16 (a) shows the
recognition error rates (non detections and false alarms) versus the threshold
applied to all the filters. The minimum error rate is around 5%.
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Figure 1.15. Values of the correlation peaks for all of the filters when presented with
the die in the orientation corresponding to filter #15.
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In order to improve the classification, we feed the output of the filter bank
to a neural network composed of 36 linear neurons.6 Our aim is that these
neurons correspond to the different orientations of the die (with a 108 step) and
that each particular neuron will respond only when the presented image has the
correct orientation. In order to determine the weights of this layer, we provide
144 training images with the corresponding desired results. The training images
are views of the die reconstructed from the same 36 holograms we used for

(a) 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold value

E
rr

or
 r

at
e

Non detection
False alarm

(b) −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold value

E
rr

or
 r

at
e

Non detection
False alarm

Figure 1.16. Error rates for the recognition and orientation estimation of a die with a
3608 rotation: (a) using a bank of composite filters and (b) using a bank of filters and a
neural net.
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making the composite filters. We actually construct four images from each
hologram using windows that are different from the ones we used for the com-
posite filters. The responses we desire for these input images are ‘‘1’’ for the
output neuron corresponding to the correct orientation and ‘‘0’’ for the other
neurons. We can compute the values of the correlation peaks provided by the
filters for every image. This gives us the training input vectors for the second
layer. Knowing these training vectors and the desired outputs, we can directly
compute the weights and the biases that minimize themean square error.27 Once
the network is designed, we present as inputs the same 27 reconstructed test
images we used when testing the first layer. Figure 1.16 (b) shows the error rates
of the classification versus the threshold value. The minimum error is now less
than 1%.We are thus able to recognize and find the orientation of the object with
any rotation.

1.6 Conclusion

In this chapter, we have described how to use digital holograms to reconstruct
various views of a 3D object and how to utilize either the holograms themselves
or the reconstructed views in order to perform 3D recognition.

The reconstruction technique is based on a numerical computation of the
Fresnel diffraction from the digital hologram. The distance of propagation can

b

b

b

b

Reconstructed
image

Bank of
composite filters

Correlation
plane Linear

neurons

Generalized neuron

Figure 1.17. Two-layer neural network for recognition and orientation estimation of
a die. b denotes bias.
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be chosen arbitrarily and it is thus possible to reconstruct a whole diffraction
volume. Moreover, by selecting partial windows of the hologram for the recon-
struction, small changes in the angle of view can be obtained. Proper filtering
methods allow the removal of the speckle noise on the reconstructed images.

Concerning the 3D recognition, we have first described a technique in which
the recognition is carried out by a digital matched filter method applied directly
to the holographic information. This technique can measure accurately very
small orientation changes of the 3D object. However, because of its high sensi-
tivity, it is unable to deal with larger rotations or translations of the object.

Therefore, we have described a different technique in order to achieve full
shift-invariance and to reduce the sensitivity to noise generated by the rough
surfaces of the 3D objects. In this second approach, the correlation operation is
no longer applied to the holograms but rather to the 3D irradiance distribu-
tions generated by the reference and input objects in the object space. These 3D
irradiance distributions are generated from single digital holograms. The
method allows one to perform 3D correlations in order to recognize the presence
and 3D position of the reference in the 3D input scene. In a first experiment, the
method has been simplified by evaluating only 2D correlations between 2D
sections of the light distributions generated by the 3D reference and the 3D
input scene.

Finally, we have extended the previous technique to achieve distortion-
tolerance in the recognition process. We have described how to construct non-
linear composite filters to take into account distortions of the reference object.
These composite filters are made with several views of the object obtained from
one or several digital holograms. As an example, we have demonstrated some
tolerance to out-of-plane rotation and to longitudinal shift along the z-axis. We
have also complemented the composite filters with a neural network in order to
improve the rotation tolerance even more. With this combination of tech-
niques, we have been able to achieve a full 3608 rotation tolerance. These
same techniques can be applied to other kinds of distortions.

The presented experimental results have proven the benefits of applying
digital holography to 3D object reconstruction and recognition. Digital holo-
grams can either be used directly to perform 3D recognition, or they can serve
for digitally reconstructing the 3D irradiance distributions in the object space.
These distributions can then also be used for 3D recognition. In this latter case,
it is possible to achieve a shift-invariant and distortion-tolerant recognition.

References

[1] An X, Psaltis D, and Burr GW. (1999). ‘‘Thermal fixing of 10,000 holograms in
LiNbO3: Fe.’’ Appl. Opt., 38:386{393.

[2] Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, and Brangac-
cio DJ. (1974). ‘‘Digital wavefront measuring interferometer for testing optical
surfaces and lenses.’’ Appl. Opt., 13:2693{2703.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap01 Final Proof page 21 27.10.2005 10:40am

1 3D Object Reconstruction and Recognition Techniques 21



[3] Casasent D. (1984). ‘‘Unified synthetic discriminant function computational for-
mulation.’’ Appl. Opt., 23:1620{1627.

[4] Caulfield HJ. (1979). Handbook of Optical Holography. Academic, London.
[5] Esteve-Taboada JJ, Mas D, and Garc���a J. (1999). ‘‘Three-dimensional object

recognition by Fourier transform profilometry.’’ Appl. Opt., 38:4760{4765.
[6] Frauel Y and Javidi B. (2001). ‘‘Neural network for three-dimensional object

recognition based on digital holography.’’ Opt. Lett., 26:1478{1480.
[7] Frauel Y, Pauliat G, Villing A, and Roosen G. (2001). ‘‘High-capacity photore-

fractive neural network implementing a Kohonen topological map.’’ Appl. Opt.,
40:5162{5169.

[8] Frauel Y, Tajahuerce E, Castro M-A, and Javidi B. (2001). ‘‘Distortion-tolerant
3D object recognition using digital holography.’’ Appl. Opt., 40:3887{3893.

[9] Frauel Y, Tajahuerce E, Matoba O, Castro A, and Javidi B. (2004). ‘‘Comparison
of passive ranging integral imaging and active imaging digital holography for
three-dimensional object recognition.’’ Appl. Opt., 43:452{462.

[10] Goodman JW. (1968). Introduction to Fourier Optics. McGraw-Hill, New York.
[11] Goodman JW and Lawrence RW. (1967). ‘‘Digital image formation from electron-

ically detected holograms.’’ Appl. Phys. Lett., 11:77{79.
[12] Guerrero-Bermudez J, Meneses J, and Gualdr�oon O. (2000). ‘‘Object recognition

using three-dimensional correlation of range images.’’ Opt. Eng., 39:2828{2831.
[13] Horner JL and Gianino PD. (1984). ‘‘Phase-only matched filtering.’’ Appl. Opt.,

23:812{816.
[14] Javidi B. (1989). ‘‘Nonlinear joint power spectrum based optical correlation.’’

Appl. Opt., 28:2358{2367.
[15] Javidi B, ed. (2002). Image Recognition and Classification: Algorithms, Systems,

and Applications. Marcel-Dekker, New York.
[16] Javidi B and Horner JL. (1994). Real-time Optical Information Processing. Aca-

demic, Orlando.
[17] Javidi B and Okano F, eds. (2002). Three-Dimensional Television, Video, and

Display Technologies. Springer-Verlag, Berlin.
[18] Javidi B and Painchaud D. (1996). ‘‘Distortion-invariant pattern recognition with

Fourier-plane nonlinear filters.’’ Appl. Opt., 35:318{331.
[19] Javidi B and Tajahuerce E. (2000). ‘‘Three-dimensional object recognition using

digital holography.’’ Opt. Lett., 25:610{612.
[20] Lippmann G. (1908). ‘‘La photographie int�eegrale.’’ Comptes-rendus de l’Acad�eemie

des Sciences, 146:446{451.
[21] MacAulay AD. (1991). Optical Computers Architectures. John Wiley, New York.
[22] MasD,Garcia J, FerreiraC,BernardoLM, andMarinhoF. (1999). ‘‘Fast algorithms

for free-space diffraction patterns calculation.’’Opt. Commun., 164:233{245.
[23] Matoba O, Tajahuerce E, and Javidi B. (2001). ‘‘Real-time three-dimensional

object recognition with multiple perspectives imaging.’’ Appl. Opt., 20:3318{3325.
[24] Okoshi T. (1971). Three-dimensional Imaging Techniques. Academic, New York.
[25] Pu A, Denkewalter R, and Psaltis D. (1997). ‘‘Real-time vehicle navigation using a

holographic memory.’’ Opt. Eng., 36:2737{2746.
[26] Refr�eegi�eer Ph, Laude V, and Javidi B. (1994). ‘‘Nonlinear joint transform correl-

ation: An optimum solution for adaptive image discrimination and input noise
robustness.’’ Opt. Lett., 19:405{407.

[27] Ritter H, Martinetz T, and Schulten K. (1992). Neural Computation and Self-
organizing Maps. Addison-Wesley, New York.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap01 Final Proof page 22 27.10.2005 10:40am

22 Y. Frauel et al.



[28] Rosen J. (1998). ‘‘Three-dimensional joint transform correlator.’’ Appl. Opt.,
37:7538{7544.

[29] Schnars U and Ju€pter W. (1994). ‘‘Direct recording of holograms by a CCD target
and numerical reconstruction.’’ Appl. Opt., 33:179{181.

[30] Tajahuerce E, Matoba O, and Javidi B. (2001). ‘‘Shift-invariant three-dimensional
object recognition by means of digital holography.’’ Appl. Opt., 40:3877{3886.

[31] VanderLugt AB. (1964). ‘‘Signal detection by complex spatial filtering.’’ IEEE
Trans. Inf. Theory IT, 10:139{145.

[32] VanderLugt AB. (1992). Optical Signal Processing. John Wiley, New York.
[33] Weaver CS and Goodman JW. (1966). ‘‘A technique for optically convolving two

functions.’’ Appl. Opt., 5:1248{1249.
[34] Yamaguchi I and Zhang T. (1997). ‘‘Phase-shifting digital holography.’’ Opt.

Lett., 22:1268{1270.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap01 Final Proof page 23 27.10.2005 10:40am

1 3D Object Reconstruction and Recognition Techniques 23



2

Compression of Encrypted Digital Holograms Using

Artificial Neural Networks

Alison E Shortt1, Thomas J Naughton1, and Bahram Javidi2

1Department of Computer Science, National University of Ireland, Maynooth, County
Kildare, Ireland tom.naughton@may.ie
2Department of Electrical and Computer Engineering University of Connecticut,
260 Glenbrook Road, U-2157 Storrs, CT 06269-2157, USA bahram@engr.uconn.edu

2.0 Introduction

An important aspect of security and defense is information gathering, dissem-
ination, processing, and analysis. Central to this is the encryption and decryp-
tion of messages for storage and transmission. Although public key
cryptosystems are the state of the art currently, there is a place for private
key systems in cases where hardware implementation permits very high
throughputs. Optical implementation is one such candidate that promises
huge throughputs.1{22 Optics has some very promising scalability advantages
over purely electronic systems as, in principle, the size of the key can be
increased without increasing the encryption or decryption time. Furthermore,
optics is perfectly suited to scenarios where message distortion in the encryp-
tion/decryption process is permissible in order to increase efficiency. In such
scenarios, the secure transmission of image information, for example, compres-
sion and encryption/decryption, go hand in hand.

Digital holography,23{31 and particularly phase-shift interferometry
(PSI),29{31 can record high quality representations of both the amplitude and
phase of complex-valued optical wavefronts, and has been proposed for three-
dimensional (3D) object recognition and 3D display applications32{38. Re-
cently, digital holography has been used in the encryption of two-dimensional
images12{14 and 3D objects.20{22

In this chapter, the complex-valued encrypted holographic pixels are quant-
ized nonuniformly using an unsupervised artificial neural network (unsuper-
vised ANN) to achieve lossy data compression. Two important differences
between digital hologram compression and conventional image compression39,
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are that our holograms store 3D information in complex-valued pixels, and
their inherent speckle content which gives the holograms a white-noise appear-
ance. Holographic speckle is difficult to remove since it actually carries 3D
information. Its presence causes lossless data compression techniques to per-
form badly, therefore, lossy compression techniques are necessary for effective
compression of 3D digital holograms.36

Quantization in holograms,40,41 and compression of real-valued42 and com-
plex-valued21,36,37,43 digital holograms has received some attention to date.
Some studies have also been performed on the decrypted-domain effects of
perturbations, including quantization, in the encrypted domain.44,45 This intro-
duces a third reason why compression of digital holograms differs from com-
pression of digital images; a change locally in a digital hologram will, in theory,
affect the whole reconstructed object. Furthermore, when gauging the errors
introduced by lossy compression, we are not directly interested in the defects in
the hologram itself, only how compression noise affects the quality of recon-
structions of the compressed 3D object.

We used PSI to create our in-line digital holograms.32,34 These holograms
were encrypted by perturbing the Fresnel diffraction of the 3D objects with a
random phase mask. We simulated this encryption step in software.22 The
dimensions of each encrypted hologram are 1024� 1024 pixels. Encrypted
digital holograms have been successfully quantized previously. We extend
these results21 by choosing nonuniform distributions of quantization values.
We describe these nonuniform quantization techniques and present experimen-
tal results to justify our final choice of a Kohonen competitive neural network.
We consider each complex value as a vector of length two and use the unsuper-
vised ANN to locate the most suitable clusters in the encrypted digital holo-
gram data. We then quantize our encrypted holograms with the centers of these
clusters. We use a reconstructed-object-plane RMS metric to quantify the
quality of our decompressed and decrypted holograms.

The structure of the chapter is as follows. In Section 2.1, we outline how
we perform encryption of the Fresnel propagation of 3D objects using a
random phase mask, and how the complex wavefront is subsequently captured
using PSI. In Section 2.2, the decryption and reconstruction steps are
explained. In Section 2.3, we examine the amenability of encrypted digital
holograms to lossless compression using four well-known techniques. In
Section 2.4 we discuss two types of Kohonen ANN that we used to quantize
our 3D digital hologram data. We assess the performance of the nonuniform
quantization techniques in Section 2.5 and find one that best suits our holo-
gram data. We then apply this lossy technique of quantization to the real and
imaginary encrypted components of each holographic pixel in Section 2.6.
In this section too, we quantify quantization error by measuring deform-
ation in the decrypted and reconstructed 3D object intensities, and finally
conclude in Section 2.7.
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2.1 Digital Hologram Encryption

The encrypted complex-valued holograms can be captured using an optical
setup (shown in Fig. 2.1) based on a Mach-Zehnder interferometer architec-
ture. 32,34 A linearly polarized Argon ion (514.5 nm) laser beam is divided into
object and reference beams, both of which are spatially filtered and expanded.
The first beam illuminates the 3D object placed at an approximate distance
d1 þ d2 ¼ 350mm from a 10-bit 2028� 2044 pixel Kodak Megaplus CCD
camera. A random phase mask is placed a distance d1 from the 3D object.
Due to free-space propagation, and under the Fresnel approximation,46,47 the
signal at the detector plane HE(x, y) is given by the superposition integral

HE(x, y) ¼
�i

ld2
exp i

2p

l
d2

� �Z Z 1

�1
exp [iF(x 0, y0)]

� AM(x
0, y0) exp [ifM(x

0, y0)]

� exp i
p

ld2
[(x � x 0)2 þ (y � y0)2]

� �
dx 0dy0

, (1)

where AM and fM are the amplitude and phase, respectively, of the signal in the
plane of, but immediately before, the random phase mask F. HE(x, y) will have
both its amplitude and phase modulated by the mask and will have a dynamic
range suitable for capture by a CCD camera. The reference beam passes
through half-wave plate RP1 and quarter-wave plate RP2. This linearly polar-
ized beam can be phase-modulated by rotating the two retardation plates.
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Figure 2.1. Experimental setup for three-dimensional object encryption using phase-
shift digital holography: BE, beam expander; BS, beam splitter; M, mirror; RP, retard-
ation plate; P, phase mask.
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Through permutation of the fast and slow axes of the plates we can achieve
phase shifts of 0,�p=2,�p, and�3p=2. The reference beam combines with the
light diffracted from the object and forms an interference pattern in the plane
of the camera. At each of the four phase shifts we record an interferogram.
Using these four real-valued images, the complex camera-plane wavefront can
be approximated to good accuracy using PSI.32,34

In this system, the encryption key is (F, x, y, d2, l, ex, ey, d1), consisting of
the random phase mask, its position in 3D space, the wavelength of the
illumination, the dimensions of the detector elements (for a pixilated
device), and the distance between the mask and the notional center of the
object, respectively. This key is also exactly the decryption key: a means of
decrypting and reconstructing an arbitrary view of the 3D object encoded in
the hologram.

2.2 Decryption and Reconstruction

The decryption and reconstruction of the digital hologram can be carried out
optically or digitally. The hologram is propagated a distance d2 to plane P and
decrypted by multiplying it with the phase mask. It is reconstructed through
further Fresnel propagation to focus in any chosen plane in the range d1 � D.

A decrypted digital hologram contains sufficient amplitude and phase infor-
mation to reconstruct the complex fieldU (x, y, z) in a plane in the object beam at
any distance z from the camera. Like traditional holography,47 different angles of
view of the object can be reconstructed using different windowed subsets of the
hologram. These views are obtained by multiplying the decrypted and recon-
structed object by a suitable linear phase factor32 within the angular range of the
hologram. The number of possible viewing angles is dependent on the ratio of the
window size to the full CCD sensor dimensions. Our CCD sensor is approxi-
mately 18:5mm� 18:5mm and so a 1024� 1024 pixel window has a maximum
lateral shift of 9 mm across the face of the CCD sensor.34 So the range of viewing
angles that are possible with an object placed d ¼ 350mm from the camera is
�0:74 deg. Smaller windows will permit a larger range of viewing angles at the
expense of image quality at each viewpoint.

The intensity images of two of the objects used for the experiments in this
chapter are shown in Fig. 2.2. These images were reconstructed from digital
holograms that were created using a similar setup to that shown in Fig. 2.1,
without the phase mask positioned in plane P.32,34 Both objects are approxi-
mately 5mm� 5mm� 5mm in size and were positioned 323 mm (for the die)
and 390 mm (for the bolt) from the camera. We use our reconstructions later in
the chapter to quantify lossy compression errors.

By digitally encrypting the holograms that were captured without a ran-
dom phase mask,22 we achieve added flexibility and security,22 while still
accommodating the possibility for a real-time optical reconstruction.16,37,48

Figure 2.3 shows the 1024� 1024 pixel phase mask used in our experiments.
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It contains values chosen with uniform probability from the range [0, 2p) using
a pseudo-random number generator. The position of the phase mask is illus-
trated in Fig. 2.1 and the ratio of the distances d1 : d2 is 35 : 65. In Fig. 2.4 we
show the amplitude and phase of the bolt hologram before encryption, and
after encryption as described by (1). In Fig. 2.5 we show the results of recon-
structing an encrypted digital hologram with and without the phase mask used
in the encryption step.

2.3 Lossless Compression of Encrypted
Digital Holograms

In order to motivate the need for lossy compression techniques, the digital
holograms were treated as binary data streams and compressed using the

(a) (b)

Figure 2.2. Objects used in the study: (a) die, (b) bolt.

Figure 2.3. Example of a random phase mask used in the study.
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lossless data compression techniques of Huffman,49 Lempel{Ziv (LZ77),50 Lem-
pel-Ziv{Welch (LZW),51 and Burrows{Wheeler (BW).52 Huffman coding,49 an
entropy-based technique, is one of the oldest and most widely used compression
methods. Each symbol in the input is replaced by a codeword, with more
frequent symbols assigned shorter codewords. The LZ77 algorithm50 takes
advantage of repeated substrings in the input data and replaces variable length
strings with a pointer to the previous occurrence of that string. The LZW51

improves upon LZ77 by maintaining a lookup table of variable sized codewords
and is also less biased towards local redundancy. Finally, the BW technique52

uses a sorting operation to transform its input into a format that can be
compressed very effectively using standard techniques (in our particular imple-
mentation, Huffman coding).

(a) (b)

(c) (d)

Figure 2.4. The bolt hologram before and after encryption: (a) amplitude, and (b)
phase of the original hologram, and (c) amplitude, and (d) phase of the encrypted
hologram.
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The two digital holograms used in the experiments have dimensions of
1024� 1024 pixels, with each pixel storing 8 bytes of amplitude information
and 8 bytes of phase information. This amounts to a file size of 16384kB where
1 kB ¼ 210 bytes. In a previous study of unencrypted digital holograms,36

lossless techniques have been shown to achieve compression ratios in the
range [1.0, 6.66] where compression ratio is calculated by dividing a hologram’s
uncompressed size by its compressed size.

The two holograms were encrypted with the phase mask shown in Fig. 2.3.
For these experiments, unencrypted holograms of the 3D objects were captured
optically32,34 and the encryption steps described in (1) were simulated in
software.22 The four lossless compression techniques were applied to each
hologram and the results are shown in Table 2.1. The poor compression ratios

(a) (b)

(c) (d)

Figure 2.5. Reconstruction of the die hologram (a) without the phase mask, and (b)
with the phase mask, and reconstruction of the bolt hologram (c) without the phase
mask, and (d) with the phase mask.
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testify to the lack of redundancy or structure in the encrypted hologram data,
even compared to unencrypted digital holograms. The random phase mask,
combined with Fresnel propagation, is very effective at removing apparent
structure from the hologram data. With LZW, the compressed sizes were
even larger than the uncompressed. In these cases a compression ratio of 1.0
(indicating zero compression) is reported. These results illustrate the urgent
need to explore lossy compression techniques suitable for encrypted digital
holograms. One such lossy technique that has been successfully applied to 3D
digital holograms is quantization.21,36,37,43

2.4 ANNs Suitable for Nonuniform Quantization

Artificial Neural Network clustering algorithms have been successfully used for
vector quantization and image compression53,54 in the past. We use the Koho-
nen competitive network55 (also known as a vector quantization network) and
the self-organizing map (SOM)55 for quantizing our digital holograms.

The Kohonen competitive neural network55 consists of two layers, an input
layer and a competitive layer. Weight vectors, connecting the input neurons to
the output neurons, are initially set to the midpoint of the range of input values.
An unsupervised learning strategy allows these weight vectors to learn to cluster
the input data naturally without any a priori information. An input vector is
randomly chosen and presented to the network. The neuron whose weight vector
is closest to the input vector wins the competition. The winning neuron has its
weight vectors updated in order to draw it closer to the input vector and the
weight vectors of all other neurons are unchanged. This is known as hard
competition.

Kohonen desired a characteristic known as equiprobability for his competi-
tive network, whereby an input vector chosen at random from the training set
would have equal probability of being close to any of the weight vectors.56 It
was Desieno57 who proposed a conscience mechanism that not only enforced
equiprobability but also fixed the over-clustering problem (the problem of
combining a number of diverse clusters into one large cluster) and alleviated
the dead neuron problem (where neurons that are positioned far away from the
input data may never influence clustering) that were present in the original
competitive network. By monitoring the success of all neurons, conscience

Table 2.1. Lossless compression of encrypted digital holograms; c.r., compression ratio.

Size LZ77 LZW Huff. BW LZ77 LZW Huff. BW
Hologram (kB) (kB) (kB) (kB) (kB) c.r c.r. c.r. c.r.

die 4097 3918 5296 3914 4003 1.05 1.00 1.05 1.02
bolt 4097 3918 5297 3915 4003 1.05 1.00 1.05 1.02
Averages: 1.05 1.00 1.05 1.02
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creates a fatigue effect55 on neurons that are winning a lot in order to give
others a chance. This encourages neurons to spread out into undersampled
areas of the input space. This network also has a learning rate associated with it
that controls the amount by which the winning weight vectors are updated
during learning. Training ceases when the maximum number of epochs is
reached, performance has minimized the goal, or the maximum amount of
time has been exceeded.

The SOM,55 based on earlier work by a number of researchers,58,59 updates
the winning neuron’s weights and the weights of neurons located in the neigh-
borhood of the winner. This is known as soft competition. The neighboring
weight vectors are updated to a lesser degree depending on how far away from
the winning neuron they are. Experimentation has shown that the best results
are obtained when the neighborhood is large initially and shrinks monotonically
over time.55 This results in a rough global ordering of the input data initially and
as the neighborhood shrinks this ordering becomes finely tuned. The SOM
network also has a two-layer structure. The competitive layer consists of a
grid, usually 2D, of connected neurons. This grid stretches and mutates its
shape to arrange its neurons to successfully represent the patterns in the input
data. The number of neurons in the grid affects quality of results and training
time; more neurons give improved accuracy but increase training time.

During the ordering learning phase of the SOM, the neighborhoods are
defined, i.e., neurons arrange themselves so that neurons that are sensitive to
similar inputs will be located close together. The learning rate is initially high
to allow self-organization. In the tuning phase, the weight vectors are expected
to spread out relatively evenly over the input space, while retaining their
topological ordering that was found during the ordering phase. This tuning
phase generally performs between 10 and 100 times as many steps as the
ordering phase.55 The learning rate should be kept small as the neighborhood
will also be small at this stage. The distance function most often used for the
SOM is Euclidean distance.

Both the Kohonen competitive and the SOM neural networks are given an
initial number of cluster centers and will use as many as required to successfully
cluster the input data. A maximum number of epochs is also allocated. Both
networks learn the distribution of the input data. In addition to this, SOM
learns and preserves the structure of the input space; neighboring neurons
represent similar input data and densely populated regions are mapped to
larger regions in the output space. In the next section we discuss the results
we obtained from evaluating these neural network quantization techniques
with our digital hologram data.

2.5 Evaluation of Nonuniform Quantization Techniques

Uniform quantization is the optimal choice when the data values are uniformly
distributed. Since our hologram data consists of unevenly distributed complex
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values [see Fig. 2.6(a)], nonuniform quantization techniques are more suitable.
Methods for clustering data include discriminant analysis60 the k-means algo-
rithm,61{64 competitive neural networks,55 SOMs,55 and support vector ma-
chines.65 We applied some of these nonuniform quantization techniques to our
original (unencrypted) hologram data and found that the Kohonen competitive
neural network performed best.

Initially we looked at the popular k-means clustering algorithm,61{64 which
is suitable for clustering large amounts of data. This algorithm clusters the data
by observing similarity. It is an iterative process operating on a fixed number of
k clusters (codebook vectors) that attempts to minimize some distance metric
between the input vectors (unquantized data) and code-book vectors. In our
tests, an input vector of 2048 complex-valued pixels was chosen randomly from
the digital hologram. We dealt with empty clusters by repositioning their
centers to the data vector that was furthest from it. For the initial codebook
we chose k initial cluster centroid positions randomly from the input. The
distance measure that we used was the sum of the Euclidean distances, which
sets each centroid to the mean of the points in its cluster. Figure 2.6(c) shows
the distribution of clusters relative to the hologram data, compared to uniform
quantization Fig. 2.6(b). One advantage of k-means nonuniform quantization
over uniform is that no codebook vectors are wasted on unpopulated regions.
This is quite visible in Fig. 2.6(b) where only 29 of the 49 uniform clusters are
actually used.

Our subsequent experiments involved the use of unsupervised ANN tech-
niques (Kohonen competitive and SOM) to quantize hologram data, with
k-means used to compare performance. The ANNs were given an initial number
of centers before training. Training was then performed for a fixed number of
epochs, during which time each network used as many centers as it needed to
cluster the input data. Generally, only a subset of the centers would be used, in
contrast to k-means where all of the centers are utilized. For the initial code-
book all initial cluster centroid positions are set to the midpoint of the input
data and these continue to spread out over the input data as training proceeds.
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Figure 2.6. Scatter plots of the complex-valued data in the die hologram: (a) before
quantization, (b) uniformly quantized with 3 bits per dimension (49 clusters), (c)
nonuniformly quantized (k-means) with 49 clusters.
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The distance that the codebook vector is moved depends on the learning rate.
As explained in Section 2.4, the Kohonen competitive network has both a
learning rate and a conscience learning rate, while the SOM has an ordering
learning rate and a tuning learning rate.

We performed extensive tests in order to determine the most appropriate
ANN parameters for our data. The first set of experiments sought to determine
how many training epochs would be required. A 32� 32 pixel window of the die
hologram was used. For training durations from 2 epochs to 2000 epochs, and
for numbers of clusters from 9 to 81, the networks were trained with the
hologram window. The trained networks were then used to quantize the full
1024� 1024 pixel hologram and the resulting reconstructions U 0 by numerical
propagation were compared with reconstructions U0 from original (unquan-
tized) versions of the holograms in terms of normalized rms (NRMS) difference
between their intensities, defined as

D ¼
XNx�1

m¼0

XNy�1

n¼0

jU0(m,n)j2 � jU 0(m, n)j2
n o2

"

�
XNx�1

m¼0

XNy�1

n¼0

jU0(m, n)j2
n o2

 !�1
3
5
1=2

,

(2)

where (m, n) are discrete spatial coordinates in the reconstruction plane, andNy

and Nx are the height and width of the reconstructions, respectively. In order to
lessen the effects of speckle noise we examine only intensity in the reconstruction
plane and apply a mean filtering operation prior to calculating NRMS. The
results for both networks can be seen in Fig. 2.7. Since, for both types of
network, in the order of 103 epochs produced only marginally better perform-
ance than 102 epochs, we chose 200 epochs as our default training duration.
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Figure 2.7. Results of experiment using a 32� 32 pixel window of the die hologram to
determine the required number of epochs for digital hologram compression: (a) Kohonen
competitive network, and (b) SOM.
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Appropriate learning rates had to be chosen for the ANNs. For these
experiments, 128� 128 pixel windows from each of the two holograms were
used. For several learning rates, and for several numbers of clusters, the
networks were trained on the hologram windows. After each training cycle of
200 epochs, the hologram was quantized using the network and the error in the
hologram reconstruction measured. The results are shown in Fig. 2.8. For the
Kohonen competitive network, the learning rate of 0.1 was deemed the most
appropriate. For the SOM, the combination of an ordering phase learning rate
of 0.9 and a tuning phase learning rate of 0.1 was favored. For the SOM, the
following additional parameter settings were chosen. A topology was chosen
that creates a set of neurons that form a hexagonal pattern. We used
(
ffiffiffi
n

p
�

ffiffiffi
n

p
) as the dimensions of the ith layer, where n was the number of

clusters. We employed 1000 ordering phase steps, and set a tuning phase
neighborhood distance equal to 1.
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Figure 2.8. Results from experiment to determine required learning rates: Kohonen
competitive network with 128� 128 pixel window of (a) die hologram, and (b) bolt
hologram; and SOM with 128� 128 pixel window of (c) die hologram, and (d) bolt
hologram. lr: learning rate.
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The Kohonen competitive network also has a conscience learning rate
parameter. Experiments were performed to determine the appropriate value
for this parameter, the results of which are shown in Fig. 2.9. It was found that
all nonzero conscience learning rates were unsuitable for our white-noise-like
digital hologram data. In these experiments, the number of neurons was set to
be equal to the required number of clusters.

Having determined the appropriate parameters to get the best possible
performance out of the two neural networks for our particular holographic
data, we applied both networks to the compression of larger, 256� 256 pixel,
windows of both digital holograms. Figure 2.10 shows the distribution of
clusters for both the Kohonen competitive network and the SOM, for the die
hologram and with 49 clusters. The Kohonen competitive network seems to
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Figure 2.9. Results of experiment to determine the appropriate conscience learning
rate for the Kohonen competitive network, with 128� 128 pixel windows of (a) die
hologram, and (b) bolt hologram.
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Figure 2.10. Scatter plots of the nonuniformly quantized complex-valued data in the die
hologram, quantized with (a) Kohonen competitive, and (b) SOM, both with 49 clusters.
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allocate its clusters for greater coverage of the hologram data [recall Fig. 2.6(a)]
than the SOM.

The resulting NRMS reconstruction errors [calculated using (2)] for various
numbers of clusters are compared in Fig. 2.11. Fewer numbers of clusters corres-
ponds to a higher compression ratio. In our experiments, the following learning
rates were chosen. For the Kohonen competitive network, a learning rate of 0.1
was used. For the SOM, the combination of an ordering phase learning rate of 0.9
and a tuning phase learning rate of 0.1 was applied. The training for each
network was set at 200 epochs. For comparison purposes, Fig. 2.11 also includes
the NRMS error for uniform quantization and nonuniform k-means quantiza-
tion. The k-means algorithm acts as an appropriate benchmark for comparison
with the neural network results. For both holograms, k-means clearly performs
better than the SOM, which itself is only slightly better than uniform quantiza-
tion. The Kohonen competitive network consistently beat the other techniques
over all trials. Having identified the Kohonen competitive network as being the
more appropriate unsupervised ANN for digital hologram compression, we next
apply it to larger encrypted digital holograms.

2.6 Quantization of Encrypted Digital Holograms

A uniform quantization technique was used to investigate the loss in recon-
struction quality due to quantization in encrypted holograms, and to compara-
tively evaluate the quality of the results obtained using the Kohonen
competitive neural network. The uniform quantization technique linearly
rescaled the encrypted holograms to the square in the complex plane [�1 � i,
1 þ i] without changing their aspect ratio in the complex plane. The real and
imaginary components of each holographic pixel were then quantized. Quant-
ization levels were chosen to be symmetrical about zero; as a result b bits
encode (2b � 1) levels. For example, 2 bits encode levels f�1, 0, 1g, 3 bits
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Figure 2.11. NRMS difference in the reconstructed objects plotted against number of
clusters: (a) die hologram, and (b) bolt hologram.
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encode levels f�1,�2/3,�1/3, 0, 1/3, 2/3, 1g, and so on. The combined rescale
and quantization operation is defined for individual pixels as

H 0(x, y) ¼ round[H(x, y)� s�1 � b]� b�1 (3)

and was applied to each pixel (x, y) in the encrypted hologram H, where

s ¼ maxfjmin [Im(H)]j,jmax [Im(H)]j,
jmin [Re(H)]j, jmax [Re(H)]jg,

(4)

and where b ¼ 2(b�1) � 1. Here, b represents the number of bits per real and
imaginary value, max ( � ) returns the maximum scalar in its argument(s), and
round (a) is defined as baþ 0:5c. After quantization, each real and imaginary
value will be in the range [�1, 1].

Nonuniform quantization was then employed to quantize the encrypted
hologram data. The Kohonen competitive neural network was trained on a
128� 128 pixel window of encrypted digital hologram data. We used the
resulting centers to quantize the full 1024� 1024 pixel encrypted digital holo-
gram. Figure 2.12(a) shows a scatter plot of the unquantized 128� 128 pixel
window of the die hologram that was used to train the ANN. Figure 2.12(b)
shows the cluster positions found by the ANN (equivalently, this is a scatter
plot of the quantized encrypted data). Figure 2.12(c) shows a scatter plot of the
full 1024� 1024 pixel hologram that the clusters from Fig. 2.12(b) were applied
to. Figures 2.12(d){(f) show equivalent scatter plots for the bolt hologram.
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Figure 2.12. Scatter plots of the complex-valued encrypted data in the die hologram: (a)
128� 128 window before quantization, (b) 128� 128 window nonuniform quantization
(Kohonencompetitive), (c)1024� 1024windowbeforequantization;andof thedata inthe
bolt hologram: (d) 128� 128 window before quantization, (e) 128� 128 window nonuni-
form quantization (Kohonen competitive), (f) 1024� 1024 window before quantization.
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Figure 2.13 shows reconstructed object intensities for both objects for
selected quantization resolutions. Figure 2.14 shows plots of NRMS difference
against number of bits of encrypted holographic data for both uniform quant-
ization and Kohonen competitive quantization. Note from Fig. 2.13 that
quantization at 4 bits (with 5� 5 pixel mean filtering) reveals little visible
loss in reconstruction quality, and (from Fig. 2.14) small NRMS errors of 0.02
and 0.01 for the die and bolt, respectively. Figure 2.14 illustrates the consist-
ently lower NRMS error achieved by Kohonen competitive nonuniform quant-
ization over uniform quantization on our encrypted digital holograms. Further
evidence of this performance gain achieved with nonuniform quantization is
shown in Fig. 2.15 where we see the improved quality in the reconstructed
objects using nonuniform quantization compared with uniform quantization.
Reductions from 8 bytes to 4 bits, 3 bits, and 2 bits correspond to compression
ratios of 16, 21, and 32, respectively.

Ideally, the cluster centers from one hologram could be stored in a lookup
table and applied with reasonable results to the quantization of subsequent
holograms. (The JPEG algorithm uses a hard-coded lookup table of cosine-
domain quantization values arrived at through performance evaluation over a

(a) (b) (c)

(d) (e) (f)

Figure 2.13. Reconstructed objects (with 5� 5 pixel mean filtering) from encrypted
digital holograms nonuniformly quantized (Kohonen competitive) with various numbers
of bits of information in each real and imaginary value: die hologram (a) 4 bits, (b) 3
bits, (c) 2 bits; and bolt hologram (d) 4 bits, (e) 3 bits, (f) 2 bits.
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database of sample input images.) We have found that the set of cluster
centers we obtained from the Kohonen competitive neural network is very
effective when applied in the quantization of a different hologram. This is
illustrated in Fig. 2.16, where it can be seen that quantizing the die hologram
using the centers obtained by applying Kohonen to the bolt hologram results in
comparably low NRMS errors compared to those obtained when applying the
centers produced specifically for the die hologram. By using the centers
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Figure 2.14. NRMS intensity difference in decrypted and reconstructed 3D object
images plotted against quantization level: (a) die, and (b) bolt.
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Figure 2.15. Reconstructions from encrypted digital hologram data with uniform
quantization (upper row) and Kohonen competitive nonuniform quantization (lower
row): (a),(b),(e),(f) 2 bits per real and imaginary value, and (c),(d),(g),(h) 3 bits per real
and imaginary value. Mean filtering (5� 5 pixel) was applied in each case.
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obtained from the Kohonen competitive network to quantize other encrypted
holograms, we have the improved performance of nonuniform quantization
combined with the speed advantage of uniform quantization.

2.7 Conclusions

This chapter outlines an optical encryption technique, based on phase-shift
digital holography, that is suitable for secure 3D object storage and transmis-
sion applications. This technique takes advantage of both the massive paral-
lelism inherent in optical systems and the flexibility offered by digital
electronics/software. Both the amplitude and phase of the hologram is
encrypted by a phase-only perturbation of the Fresnel diffraction from the
3D object. Therefore, a phase mask is only required for this encryption scheme.
Decryption and reconstruction of particular views of the 3D object can be
performed optically or electronically. If the incorrect phase mask result is
used, the reconstruction will be an unintelligible wavefront. The level of en-
cryption can be increased by the use of multiple keys at different locations.
Following encryption the hologram data is in a form suitable for digital elec-
tronic storage, transmission, or manipulation.

Lossless and lossy compression techniques were applied to the digital holo-
gram data. Lossless techniques, such as LZ77, LZW, Huffman, and BW,
perform very poorly on digital hologram data due to its white noise character-
istics. We find that the encrypted digital holograms are compressed even less
effectively. We evaluated two ANN-based nonuniform quantization techniques
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Figure 2.16. NRMS intensity difference in the decrypted and reconstructed 3D objects
plotted against quantization level, with uniform quantization and nonuniform quant-
ization (Kohonen competitive): (a) for die hologram, where nonoptimized means using
the Kohonen centers from bolt hologram, and (b) for bolt hologram, where nonopti-
mized means using the Kohonen centers from die hologram.
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and found that the Kohonen competitive neural network performed best with
our digital hologram data. We achieved reduced NRMS error and increased
compression ratios using this technique. The Kohonen network was also shown
to outperform the popular k-means clustering algorithm. We found that as few
as 2 bits in each real and imaginary value (corresponding to a compression ratio
of 32) results in good quality decompressed and decrypted 3D object recon-
structions. Nonuniform quantization not only performs significant compression
itself, it will also reduce the number of symbols (for Huffman) and introduce
structure into the bit stream (for LZ77 and LZW) to allow them to perform
further compression.
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3.0 Introduction

Homeland security involves a wide number of technologies involving different
scientific disciplines from biology to chemistry, physics, and numerous fields of
engineering. New advancements in each field could help existing technologies
meet stricter requirements in security, and progress in one or more scientific
disciplines may lead to completely new instruments that may address emerging
needs that had no previous solutions. Many aspects of security involve imaging,
which involves many types of radiation from X-rays to microwaves. Imaging
can generally be divided into two main categories based upon the type of
radiation used: incoherent or coherent. In the optical spectrum, the special
properties of coherent light, which is generated most efficiently by lasers, are
used to allow special types of imaging such as holography that are only found in
the realm of synthetic aperture radar.

This chapter describes the state-of-the-art of the interferometric imaging
method called Digital Holography (DH). Special emphasis will be given to the
recent advances and to achievements resulting from research efforts in different
applications. Most of the recent results can have important direct or indirect
impact on Homeland Security. The aim of the chapter is to furnish people with
an up-to-date overview of the most recent advances in the imaging capabilities
of digital holography to relate these applications to Homeland Security. New
developments in coherent imaging can have significant applications for object
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recognition, ranging, and 3D scene reconstruction. The fact that DH is a
coherent imaging technique is very important for obtaining nanometer scale
resolution (i.e., a fraction of the wavelength used for recording the hologram)
for quantitative measurement of object 3D profiles and comparing a copy to a
master object.

Applications in microscopy are very important because they can have an
impact in fingerprint recognition and applications to forensics. Biological sam-
ple visualization and study can be performed accurately and in a new way by
means of Digital Holography. The chapter will not only describe recent ad-
vances but will present examples of applications in digital holography and will
show how these results open a new perspective for improvements in the field of
optical coherent microscopy and imaging. Although the applications reported
do not involve specific security themes, the recent improvements of this coher-
ent technique may be applied in the fields of biology, imaging, etc. where
microscopy is required and thus they are certain to have an impact in Home-
land Security.

3.1 Digital Holography

Dennis Gabor invented holography in 1948 as a method for recording and
reconstructing both the amplitude and the phase of an optical wavefront,1

with the objective of improving electron microscope images. Holography re-
quires the use of coherent light, which is split into two waves by a beam splitter.
One wave illuminates the object and is reflected, scattered from it, or possibly
transmitted through it. The second wave is called the reference beam and it
interferes with the light from the object in the plane of a recording medium,
which traditionally was a photographic plate. The hologram (from the Greek
words ‘holos’ meaning ‘whole’ or ‘entire’ and ‘graphein’ meaning ‘to write’)
contains information about the entire 3D distribution of the optical wave field
in the form of an interferometric fringe pattern. The object is reconstructed by
illuminating the recorded hologram with a replica of the original recording
reference wave.

Holography, through the discovery of holographic interferometry,2{4 has
become a very useful metrological tool in experimental mechanics, biology,
fluid dynamics, and nondestructive inspection. One of the main limitations of
holography and its related approaches has been the inconvenient chemical
procedures connected with photographic recording media. That limitation
has been largely overcome for application in metrology by the advent of digital
speckle holographic methods.5 However, most speckle methods, as they have
been developed, are not truly holographic since they are not used to reconstruct
the object field but rather phase difference between two or more fields from the
object under investigation.

The idea of using a computer for reconstructing a hologram was first
proposed by Goodman and Laurence and by Kronrod et al.6,7 The development
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of computer technology and solid-state image sensors made it possible to record
holograms directly on charge coupled device (CCD) cameras.8,9 This important
step enabled full digital recording and reconstruction of holograms without the
use of photographic media, and is commonly referred to as digital holography
(DH). Replacing the photographic film with a CCD TV camera requires that
conventional recording techniques be modified to meet the limitations of these
devices, but it does not change the basic purpose of holography which is the
reconstruction of the object field from the recorded interference pattern. In-
deed, the key step is to calculate quantities related to the object investigation
such as the vectorial displacement field due to surface deformation, object
shape, refractive index changes in transparent media, particle tracking, and
microscopy just to cite a few examples of current research. In these applica-
tions, a modification of the state of the object under investigation leads to
a modification of the light field scattered, reflected or transmitted by it and to a
change of the digitally recorded interference pattern.

In DH, the reconstruction of the object field is performed numerically from
the direct recording of the digitized numerical hologram. Since the informa-
tion of the interfering waves is stored in the form of matrices, the numerical
reconstruction process enables full digital processing of the holograms and
it offers more possibilities than conventional optical reconstruction. Both
amplitude and phase of the reconstructed complex field can be computed.
Digital processing allows for subtraction of background noise and for the
elimination of the zero-order diffraction term.10 The parameters governing
the reconstruction algorithm can be selected to control and optimize the
spatial resolution of the reconstructed object field, thus compensating for
lack of spatial resolution of digital cameras in comparison to holographic
quality photographic plates. The limitation imposed by the low spatial reso-
lution of CCD camera array compared to that of photographic materials has
been widely discussed and various configurations of DH have been proposed
and applied in various fields of science and engineering11 and refs. therein.
Furthermore, recent efforts toward developing new optoelectronic devices,
such as solid-state pyroelectric sensors for infrared, make it also possible to
extend the potential of DH to metrological applications with other than
visible light sources.12

3.2 Theory and Principle of Operation
of Digital Holography

The principle of the optical recording and reconstruction in classical holog-
raphy can be understood from the setups shown in Fig. 3.1. The reference beam
R and object beam O interfere at the plane of the holographic plate with an
angle u between them as shown in Fig. 3.1a. This angle is necessary so that the
reconstructed image, shown in Fig. 3.1b, will be angularly separated from the
zero-order diffraction and the second image, the so-called twin or conjugate
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image. These three diffraction orders propagate at different directions and can
be observed separately|a significant improvement over the original in-line
configuration developed by Gabor where the zero-order, the real, and the
conjugate image overlap.13

The intensity distribution I (x, y) across the x-y holographic recording
plane can be written as the modulus squared of O(x, y)þ R(x, y), namely

I (x, y) ¼ jO(x, y)þ R(x, y)j2

¼ jR(x, y)j2 þ jO(x, y)j2 þ R�(x, y)O(x, y)þ R(x, y)O�(x, y) (1)

where the symbol * denotes the complex conjugate, O(x, y) ¼ jO(x, y)j
exp [ifo(x, y)] is the complex amplitude of the object wave with real amplitude
jO(x, y)j and phase fo(x, y) and R(x, y) ¼ jR(x, y)j exp [ifR(x, y)] is the com-
plex amplitude of the reference wave with real amplitude jR(x, y)j and phase
fR(x, y).

For the reconstruction of the recorded hologram, the interference pattern
I(x, y) is illuminated by the reference wave R(x, y), and we have

R(x, y)I (x, y) ¼ R(x, y)jR(x, y)j2 þ R(x, y)jO(x, y)j2

þ jR(x, y)j2O(x, y)þ R2(x, y)O�(x, y)
(2)

The first term on the right side of this equation is proportional to reference
wave field, and the second one is a spatially varying ‘‘halo’’ surrounding the
first term. These two terms constitute the zero-order diffraction (sometimes
called the DC term by analogy to electrical current) and the autocorrelation of
the object field with itself. The third term represents, apart from a constant
factor, an exact replica of the original wavefront O(x, y) ¼ jO(x, y)j
exp (ifo(x, y) ) and it is usually a virtual image referred to simply as the
image of the object. The last term is another copy, the so-called twin, or

reference beam

R
R

object beam

hologram plate

(a) (b)

o

θ

+1 diffraction order

hologram plate

Reconstructing
reference beam

virtual image

zero-th diffraction order

-1 diffraction order

real image

Figure 3.1. Optical configuration for recording (a) for reconstruction and (b) of off-
axis holograms.
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conjugate, image of the original object wave and it usually appears as a real
image.

In photographic holography, the hologram acts as an amplitude transmit-
tance structure that diffracts the reconstructed field from the reference field. In
DH, the field at the object plane j � h is calculated from the optical field
R(x, y)h(x, y) at the hologram plane using the scalar diffraction theory of the
Fresnel approximation of the Rayleigh{Sommerfield diffraction integral.14 The
reconstructed diffracted field Q(j, h) in the reconstruction plane j � h at
distance d from the hologram plane can be written in the paraxial approxima-
tion (PA) as

Q(j, h) ¼ 1

ild
exp i

2p

ld

� �ð1
�1

ð1
�1

R(x, y)I (x, y)

exp i
p

ld
(j � x)2 þ (h� y)2
h ih i

dxdy

(3)

Equation (3) provides a numerical reconstruction from the digitized hologram
in the paraxial approximation where the x and y values and the corresponding j
and h values in the reconstructed plane are small compared to the distance d
(see Fig. 3.2).

Once the complex field Q(j, h) has been calculated at distance d, the
intensity I (x, y;d) and phase distribution f(x, y;d) of the reconstructed
image can be determined by the following:

I (x, y;d) ¼ jQ(x, y)j2 4(a)

f(x, y;d) ¼ arctan
Im[Q(x, y)]

Re[Q(x, y)]
4(b)

Hologram planc
(CCD)

Reconstructed
image plane

R(x,y)

O(x,y)

d

y
x x

η

Figure 3.2. Optical set-up in off-axis digital holography.
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If the signs of the numerator and denominator are accounted for, Eq. (4b)
provides phase values wrapped in the interval [� p, p]. (This is commonly
denoted as the arctan2 function.) Well-known unwrapping procedures can be
employed to convert the phase modulo -2p into a continuous phase distribution
in order to obtain a smooth phase image.15

3.2.1 Reconstruction Methods

Different techniques can be adopted for implementing the reconstruction of
digital holograms. The following is a description of the main adopted methods.

3.2.1.1 Fresnel Transformation Method (FTM)

The convolution integral given by Eq. (3) can be manipulated to obtain the
reconstructed diffracted field Q(j, h) as a Fresnel transformation of the holo-
gram function. The result is

Q(j, h)¼ 1

ild
exp i

2p

l
d

� �
exp i

p

ld
(j2 þh2)

h i

�
ð1
�1

ð1
�1

R(x, y)I (x, y) exp i
p

ld
(x2 þ y2)

h i
exp �i

2p

ld
(jx þ yh)

� �
dxdy

(5)

Equation (5) shows that the reconstruction field is determined essentially
by the 2D Fourier transformation of the multiplication of the hologram
I(x, y) by the reference wave R(x, y) and the quadratic (or chirp) phase function

w(x, y) ¼ exp i
p

ld
(x2 þ y2)

h i
(5a)

Equation (5) can be written in terms of the Fourier integral

Q(vj, vh) ¼
1

ild
exp i

2p

l
d

� �
exp [ipld(v2j þ v2h)]J þ1[R(x, y)I (x, y)w(x, y)](vj, vh)

(6)

where the direct (þ1) or inverse (�1) continuous 2D Fourier transformations of
the function f(x,y) are defined, respectively, by

J�1[f (x, y)](vj, vh) ¼
1

2p

ð1
�1

ð1
�1

f (x, y) exp [mi2p(vjx þ vhy)]dxdy (7)

In Eq. (7) vj and vh are the spatial frequencies corresponding to the spatial
variables j and h in the reconstruction plane and they are related to the
reconstruction wavelength l and to the reconstruction distance d by the
following relations

vj ¼
j

ld
vh ¼ h

ld
(8)
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With off-axis geometry, the object wave and the reference wave arrive at the
hologram plane from separate directions and, according to the above equations,
the different terms of the numerically reconstructed wavefront propagate
along different directions, owing to their different spatial frequencies. In fact,
if Eq. (2) is substituted into Eq. (5), it is clear that the reconstruction of
the zero-order term, the virtual, and the real image are essentially governed
by the frequency content of the respective spectra at the reconstruction
distance d, which ultimately imposes restrictions on the spatial bandwidth
of the object and reference beam. If the reference field is given by
R(x, y) ¼

ffiffiffiffiffi
IR

p
exp [i(kxx þ kyy)] where IR ¼ R(x,y)j j2 is the intensity of the

reference field and k ¼ (kx ,ky,kz) is the corresponding wave vector, the three
terms are separated in the Fourier domain corresponding to the reconstruction
plane j � h at distance d. The zero-order is located around the origin while the
image and the twin image are symmetrically centered on (kx=2p, ky=2p) and
(�kx=2p, �ky=2p), respectively.

To achieve a good quality reconstruction in DH, the sampling theorem
(Nyquist criterion) has to be fulfilled across the whole CCD array.16 This
criterion requires at least two pixels per fringe period and this implies that
the maximum interference angle amax between the spherical wavelet from each
point of the object and the reference wave field is determined by the pixel size
Dx according to the relation

amax ¼
l

2Dx
(9)

Relationship (9) expresses the fact that for recording a hologram by a CCD
array with pixel spacing Dx at least two pixels per fringe are needed. For
example, in case of a camera with pixel size Dx ¼ 9mm, the maximum inter-
ference angle is amax � 1:7	 for l ¼ 532 nm.

Mathematically, the 2D spatial sampling I (nDx, mDy) of the hologram
I(x,y) on a rectangular raster ofN �M points can be described by the following
relation

I (nDx, mDy) ¼ I (x,y)rect
x

NDx
,

y

MDy

� �XN
n¼1

XM
m¼1

d(x � nDx, y �mDy) (10)

where d(x, y) is the 2D Dirac-delta function, n and m are integer numbers,
NDx �MDy is the area of the digitized hologram, and rect(x,y) is equal
to unity if the coordinate point (x,y) is inside the area of the digitized
hologram, and is zero elsewhere. Dx and Dy in Eq.(10) are the distances
between the neighboring pixels on the CCD array in the horizontal and vertical
directions, respectively. If the whole CCD array has a finite width given by
NDx �MDy, where N and M are the pixel numbers in each direction, the
discrete representation of the Fresnel reconstruction integral given by Eq. (5)
can be written as
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Q(rDnj, sDnh) ¼
1

ild
exp i

2p

l
d

� �
exp [ipld(r2Dn2j þ s2Dn2h)]

� DxDy
XN=2�1

n¼�N=2

XM=2�1

m¼�M=2

I (nDx, mDy)R(nDx, mDy)w(nDx, mDy)

exp �i2p
rn

N
þ sm

M

� 	h i
(11)

Equation (11) allows computation of a matrix of N �M complex numbers
corresponding to the reconstructed field via the discrete 2D fast Fourier trans-
form algorithm. According to the theory of discrete Fourier transform, the
sampling frequency intervals are Dvj ¼ 1=NDx and Dvh ¼ 1=MDy which, to-
gether with relations (8) allow determination of the dimensions Dj � Dh of the
reconstruction pixel, namely

Dj ¼ ld

NDx
, Dh ¼ ld

MDy
(12)

According to Eq. (12) the pixel width in the reconstructed plane is different
from those of the digitized hologram and it is scaled inversely to the aperture of
the optical system, i.e. to the side length S ¼ NDx of the hologram (limiting the
analysis to the x-direction for the sake of simplicity). This result is in agreement
with the theory of diffraction, which predicts that at a distance d from the
hologram plane the developed diffraction pattern is characterized by the diam-
eter ld=S of its Airy disk (or speckle diameter). Therefore, the resolution of the
reconstructed image (amplitude or phase image) is the diffraction limit of the
imaging system through the automatic scaling imposed by the Fresnel trans-
form.

If the spatial frequencies of the hologram I(x,y) are smaller than those in the
quadratic phase factor w(x,y), the main problem in calculating Eq. (11) is
adequately sampling the exponential function w(x,y) inside the integral and
of the global phase factor exp [ipld(r2Dv2j þ s2Dv2h)] multiplying the expression
in Eq. (11). Assuming the sampling of w(x,y) in the Nyquist limit, it is easy to
obtain the approximate condition (limiting our analysis to one dimension only)
that determines the range of distances d where the discrete Fresnel reconstruc-
tion algorithm (cfr. Eq (11)) gives good results, namely

d 
 dc ¼
NDx2

l
(13)

The same argument can be applied to the global phase factor
exp [ipld(r2Dv2j þ s2Dv2h)], which may vary too rapidly with increasing spatial
distance d, and this gives the condition d � dc. A good reconstruction of both
the amplitude and phase image is accomplished only for the equality d ¼ dc,
while, for only an amplitude reconstruction, the less restrictive condition
d 
 dc must hold. In fact, in this case the global phase factor is unessential
for evaluating intensity distribution and the intensity profiles have less vari-
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ation than the corresponding phase. Note that the size Djc of the reconstruc-
tion pixel at distance d ¼ dc in the Nyquist limit coincides with pixel size of the
sampled hologram (i.e., Djc ¼ ldc=NDx ¼ Dx). As an example, for N ¼ 512
pixel, l ¼ 632 nm and pixel size Dx ¼ Dy ¼ 11mm, the Fresnel method is valid
for distances greater than 98mm, for N ¼ 1024 pixel, l ¼ 532 nm and
Dx ¼ Dy ¼ 6:7mm, the distance has to be greater than 86.4 mm.

From Eq. (12) we can easily deduce that the lateral extension SI ¼ NDj of
the numerical reconstruction increases linearly with reconstruction distance d
according to the scaling law

S1 ¼
ldN

S
(14)

where N and the lateral length S ¼ NDx of the hologram are input parameters
in the reconstruction process. Nevertheless, this result is only compatible with
condition given by Eq. (13), derived from the appropriate sampling of
a reconstructed amplitude image. This means that maintaining the number N
as a constant may lead to badly sampled reconstructed image if the reconstruc-
tion distance does not satisfy the above requirements, and, after Fresnel
diffraction, the external part of the reconstructed hologram may extend beyond
the matrix and appear on the opposite side of the matrix due to aliasing. This
problem can be avoided by padding the recorded hologram with zeros around
its border.

3.2.1.2 Convolution Transformation Method

An alternative numerical reconstruction of holograms is through the calcula-
tion of the propagated angular spectrum, the so called ‘‘convolution approach’’
to DH. In this case, the reconstructed field in the paraxial approximation can
be written in the following form

Q(nj, nh) ¼
1

2p
exp i

2p

l
d

� �

J�1 exp ipld(n2j þ n2h)
h i

Jþ1 R(x, y)h(x, y)½ �
h o

(nj, nh)
n (15)

where the Fourier transform of the chirp function w(x,y) given by Eq. (4) has
been used, namely

Jþ1[w(x, y)](vj, vh) ¼ idl exp [� ipld(v2j þ v2h)] (16)

It can be shown that when the angular spectrum is used, the use of two
Fourier transforms for computing Eq. (15), once for taking the Fourier trans-
form of the hologram (multiplied by the reference wave) and another time for
taking the inverse Fourier transform, leads to a cancellation of the scale factor
between the input and output field to obtain that the pixel size of the recon-
structed image is equal to that of the sampled hologram (i.e., Dj ¼ Dx and)
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Dh ¼ Dy and the actual size of both the input hologram and reconstructed
image is identical (SI ¼ S).

We point out that, although Eqs. (6) and (15) are formally equivalent, the
different use of the DFT algorithm to perform the calculation of the same
diffraction integral, makes the convolution-based algorithm valid for near
distances d � dc. Both methods overlap at distance d ¼ dc. Clearly this method
is computationally more expensive than the direct evaluation of the Fresnel
integral, since it requires two Fourier transforms (one direct and one inverse)
but it is advantageous for keeping constant the length scales of the recon-
structed images for all distances satisfying the near-field approximation.

From the discrete complex values of the reconstructed field, the intensity
I (r ,s;d) and phase distribution f(r,s;d) of the reconstructed image can be
determined by the discrete version of Eqs. (4a) and (4b), namely

I (r ,s;d) ¼ Q(rDj,sDh)j j2 (17a)

f(r ,s;d) ¼ arctan
Im[Q(rDj,sDh)]

Re[Q(rDj,sDh)]
(17b)

3.2.2 Performance and Limitations of Digital Holography

In the previous section, it was noted that in order to separate the various
diffraction components in the reconstruction plane, an offset angle u is intro-
duced in the off-axis setup. This offset angle must be greater than the minimum
value umin ¼ sin�1 (3Bl), where B is the highest spatial frequency of the object.
For an object with dimensions Lj � Lh located at distance d from the holo-
gram-recording plane, the x-y bandwidth of the object in the hologram plane is
confined to a rectangle with dimensions

2Bx � 2By ¼
Lj

ld
� Lh

ld
(18)

According to Eq. (8), this is the bandwidth of the numerically reconstructed
object after application of the Fresnel-based reconstruction algorithm for back-
ward propagation from hologram plane to object plane. If the object is
offset along the j axis at distance b from the optical axis of the system then the
minimum angle umin is determined by the corresponding bandwidth of the object
in the hologram plane (i.e. 2Bx ¼ Lj=2ldmin:off�axis) and is approximately given
by umin ¼ 3Lj=2dmin:off�axis, where dmin:off�axis is theminimum recording distance
of the object of lateral size Lj in the off-axis setup. Therefore, the offset angle u
has to comply with the requirement 3Lj=2dmin:off�axis�u�amax

where amax is the
maximum interference angle given by Eq. (9).17{20 Consequently, the offset
distance b ¼ umindmin:off�axis has to be determined in order to conform to the
limitation imposed by the minimum recording angle umin. For a given object size
Lj at an offset distance b, as amax increases, the minimum allowable recording
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distance dmin:off�axis must decrease accordingly. In fact, the result for an off-axis
system is that dmin:off�axis ¼ (LCCD þ Lj þ 2b)=2amax. For a sensor size
LCCD ¼ NDx, the above relations lead to the requirement that the minimum
allowable recording distance increases linearly with object size Lj, namely
dmin:off�axis ¼ (LCCD þ 4Lj)=2amax or, equivalently, in terms of the pixel number
N of the sensor array and of the pixel width Dx

dmin:off�axis ¼
Dx

l
(NDx þ 4Lj) (19a)

The above analysis has to be slightly modified for an in-line setup (b ¼ 0). In
this case it can be assumed that the center of the object of lateral size Lj and
CCD array are both located on the optical axis of the system. The minimum
allowable recording distance is obtained from the maximum interference angle
amax according to the relation dmin:in�line ¼ (LCCD þ Lj)=2amax where amax still
has to fulfill the condition given by Eq. (9). The result in terms of the pixel
number N of the sensor array and of the pixel width Dx, is

dmin:in�line ¼
Dx

l
(NDx þ Lj) (19b)

Equations 14 (a) and (b) show that in both the in-line and off-axis cases the
minimum recording distance increase linearly with object size and that

dmin:off�axis ¼ dmin:in�line þ 3
Dx

l
Lj (20)

Equation (20) indicates a shorter recording distance in the in-line setup
compared to dmin:off�axis in the off-axis arrangement, which leads to a more
compact setup and more efficient use of the pixel area of the recording sensor
array. In general, a shorter recording distance helps to achieve higher resolution
in DH, since, according to Eq (12), the width ldmin=NDx of the reconstruction
pixel is minimum at the distance dmin.

3.2.3 Phase Shifting

An alternative approach to DH employs phase shifting to suppress both the
zero-order term and the twin image,21{23 which makes practical in-line record-
ing where the three numerically reconstructed components are not angularly
separated. When the phase shift algorithm is applied to DH, three or more
holograms are recorded with a shift in phase between the object field and the
reference field, and these may be combined to obtain the object field amplitude
O(x,y)j j and phase fo(x,y) at the recording plane. Many phase-shifting algo-
rithms have been proposed, and it is impossible to discuss them all here, but we
will give an example of application of the four-step quadrature-phase shifting
algorithm in which four holograms are recorded with 908 increments of phase
shift between them.
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Figure 3.3 shows a reconstruction of a digital hologram recorded with off-
axis geometry. The experimental setup was a Mach-Zehnder interferometer.
The linearly polarized collimated beam from a diode-pumped, frequency-
doubled NdYVO4 laser (wavelength l ¼ 0:532mm) was divided by the beam
splitter into the object beam and a reference beam. The object consisted in a
photographic transparency of the two words ‘‘CNR INOA’’ set at distance
d ¼ 175mm from a CCD camera with pixel size Dx ¼ Dy ¼ 6:7mm. The
object beam illuminated the photographic plate, and the reference wave
interfered with the object at small angle ( � 0:58), as required by the sampling
theorem. The digital hologram was recorded as an array of
N �M ¼ 1024� 1024 8-bit encoded numbers, and it is shown in Fig. 3.3a.
The contrast of the interference fringes has been maximized by changing the
transmittance of a neutral density filter inserted in the reference arm. The
numerical intensity of the reconstruction at a distance d ¼ �175mm from the
hologram plane and is shown in Fig. 3.3b, where the entire area of the
reconstructed image is presented. The reconstructed image of Fig. 3.3b
shows clearly the zero order diffraction term corresponding to the bright,
square component at the center of the reconstructed image. The square
occupies N 2Dj2=dl of the N pixels in the j direction. This term is disturbing
because it covers part of the reconstructed image, and several methods have
been developed to suppress it.10,24,25

To apply a phase shifting algorithm, the reference beam is reflected at a
piezoelectric transducer mirror and the reference phase is shifted between
recordings. In the case of the four-step algorithm incremental steps of p=2 are
introduced, and the complex amplitude O(x,y) of the object at the hologram
plane is determined from the intensity distribution values of four holograms by
the following formula

O(x, y)¼ 1

4R�(x, y)

I (x, y;a¼ 0)� I (x, y;a¼p)þ i I x, y;a¼p

2

� 	
� I x, y;a¼ 3p

2

� �� �� � (21)

where a ¼ 0,p=2,p and 3p=2 are the phase shifts. The reconstruction at
distance d from the hologram plane is performed by the Fresnel transform of
the derived complex amplitude O(x,y), namely

Q(j, h)¼ 1

ild
exp i

2p

l
d

� �
exp i

p

ld
(j2þh2)

h i

�
ð1
�1

ð1
�1

O(x, y)exp i
p

ld
(x2þ y2)

h i
exp �i

2p

ld
(jxþ yh)

� �
dxdy

(22)
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Figure 3.3d shows the amplitude of the numerically reconstructed image
after application of the four-step algorithm. The central bright square and
the twin image have been substantially suppressed leaving the image of the
object visible in the upper right.

In this example the reference wave has been modeled by R(x,y) ¼ 1 which
represents a collimated unit amplitude wave impinging normally at the CCD
recording plane. For phase imaging, the digital reference in the reconstruction
algorithm should match as closely as possible the experimental reference wave;
otherwise a set of fringes will be superposed on the reconstructed phase image.
Alternately, the reconstruction integral can be postmultiplied by a phase
correcting factor, which does not alter the amplitude image but can compen-
sate for spurious interference fringes.
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Figure 3.3. Numerical reconstruction of the photographic target in the off-axis digital
holography: (a) original recorded off-axis hologram; (b) reconstructed amplitude-con-
trast at a distance d ¼ 175mm; (c) suppression of the zero-order diffraction term; (d)
reconstruction of the photographic target by the four-step algorithm.23
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3.2.4 Digital Holographic Interferometry

The fringe pattern that results from the interference of the reference beam and
an object beam carries phase information of the object under test and any
change in its state gives rise to a corresponding modification of that phase
information. If the complex fields Q(j,h;s1) and Q(j,h;s2) are the numerical
reconstructions of two holograms recorded at different states s1 and s2 of the
object, the corresponding phase change Df(j,h;s2 � s1) is given by

Df(j,h;s2 � s1) ¼ Arg[Q(j,h;s2)]�Arg[Q(j,h;s1)] (23)

or an alternate form,

Df(j,h;s2 � s1) ¼
Re[Q(j,h;s2)]Im[Q(j,h;s1)]� Re[Q(j,h;s2)]Im[Q(j,h;s1)]

Re[Q(j,h;s2)]Re[Q(j,h;s1)]þ Im[Q(j,h;s2)]Im[Q(j,h;s1)]
(24)

In the case of deformation measurement, s1 and s2 are states of deformation
of the object under investigation and the calculated interference phase provides
information about the displacement of the surface of an opaque object or the
full optical path variation that may occur in a transparent object. By using the
above Eq. (24) it is possible to obtain the full-field phase map corresponding to
the well known technique of Holographic Interferometry which is well known in
classical holography.3,4 Digital Holographic Interferometry has been used to
measure deformations of both large and very small objects, to investigate the
refractive index changes, and to compare the shape of objects, etc.17,18,26{32

3.2.5 Compensation of Aberrations

The possibility of managing phase in DH method is very attractive because
aberrations can be removed by adopting a procedure analogous to classical
Holographic Interferometry using Eq. (24). Compensation of aberrations is
necessary to remove the defocus aberration introduced by the microscope
objective when quantitative phase determination is used in microscopic app-
lications of metrology.33,34 Moreover, it could be used to correct spherical
aberrations introduced by high numerical aperture objective lenses employed
in digital holographic microscopy where the paraxial approximation implicit in
the Fresnel treatment often fails. In this case, the aberrations introduced by a
lens can be corrected numerically by introducing a compensating phase factor
into the phase of the reconstructed object beam.23,33{39 This is equivalent to
introducing an ad hoc extra phase factor multiplying the Fresnel integral which
accounts for the wavefront curvature and which is sensitive to the geometrical
parameters of the recording geometry. Alternately, a suitable modification of
the quadratic phase factor w x, yð Þ inside the Fresnel integral can be exploited.
Given that the chirp factor w x, yð Þ itself can be regarded as a compensating
factor to obtain the refocused image of the object, modifications of w x, yð Þ can
accommodate and compensate for aberrations that might alter the refocusing
process.
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Obviously, the main difficulty of these approaches is the need for accurate
knowledge of the focal lengths of the optical components used for imaging
the object and of the lens-to-object and lens-to-CCD distances as well as
knowledge of the relevant aberrations introduced by the recording setup.
An alternative approach that does not require fine digital adjusting of the
compensating parameters makes use of two recordings. The first hologram is
made of the object under investigation and the second hologram is made of a
flat reference surface in proximity of the object. This procedure works like
double exposure holography in Holographic Interferometry, as discussed pre-
viously. The phase change between the two exposures can be numerically
calculated by Eq. (23). In fact, the second hologram allows the recording of
just the wavefront containing all the aberrations introduced by the optical
components, including the defocus aberration introduced by the microscope
objective.

3.3 Digital Holographic Microscope

DH is ideal for retrieving the phase distribution of the object wave field for
quantitative phase imaging in microscopy, which means that the recon-
structed phase distribution can be directly used for metrological applications
and, in particular, for surface profilometry. The reconstruction process, in
fact, is uniquely flexible because focusing can be adjusted while other aberra-
tions can be removed. Moreover, phase distributions that cannot be observed
in optical reconstruction of photographic holography are easily computed and
displayed quantitatively. Actually, there are other 3D imaging methods based
on interferometry that allow the measurement of minute displacements and
surface profiles. Methods like holographic interferometry, fringe projection,
and speckle metrology can provide full-field noncontact information about
coordinates, deformations, strains, stresses, and vibrations. However, an im-
portant advantage of DH, in comparison with interference microscopy, is that
the curvature introduced on the object beam by the microscope objective lens
need not be compensated by the very same curvature introduced on the
reference beam. In fact, in interference microscopy this problem is solved
experimentally by inserting the same microscope objective in the reference
arm, at an equal distance from the exit of the interferometer. For example, the
Linnick interferometer requires that if any change has to be made in the
object arm, then the same change must be precisely reproduced in the refer-
ence arm in such a way that the interference occurs between equally deformed
wavefronts. As a consequence, the experimental configuration requires a very
high degree of precision. By contrast, DH allows the direct calculation of the
full-field map of the object through the calculation of the complex wavefront
from a single exposure. As a consequence, both the acquisition time and the
sensitivity to thermal and mechanical stability are reduced. Several applica-
tions have been demonstrated by using DHM.17,18,26,40{44
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In a DHM configuration, high magnification ratios are obtained by insert-
ing an imaging system that magnifies the size of the object, however, the image
of the object need not be imaged directly on the CCD array. The image of the
object may lie in a plane behind or in front of the sensitive array. Refocusing by
a digital holographic microscope relies on the possibility of obtaining the
complex optical field at any plane along the propagation of the object beam,
and in case of a 3D object, different parts of the object at different distances can
be focused separately. The DHM can be used to obtain the profile map of an
opaque object, and in this case a DHM a reflection configuration has to be
adopted, as shown in Fig. 3.4. The height distribution h j, h;dð Þ of the object at
distance d from the hologram plane is the information to be retrieved. The
height distribution is related to the reconstructed phase distribution f j,h;dð Þ
by the simple relationship

h(j,h;d) ¼ l

4p
f(j,h;d) (25)

As previously described, the values of the measured phase are restricted in the
interval �p,p½ � and ambiguities arising from height differences greater than
l=2 can be resolved by phase-unwrapping methods.

One important factor in DHM is the accuracy of the focal resolution of the
image plane, dd. As digital holography refocuses in a way that is similar to that
of a conventional optical microscope, dd is the geometrical depth of focus of the

BS

Laser
M

M

BE

BS

C
C

D

MO

Sample

Figure 3.4. Experimental set-up for recording digital holograms; BS { beam splitter;
M { mirror; MO { microscope objective; BE { Beam expander.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap03 Final Proof page 62 27.10.2005 10:41am

62 P. Ferraro et al.



imaging system defined as the defocus distance that enlarges the point image to
a confusion disk with a diameter equal to sampling distance across the object.
The sampling distance, or equivalently the spatial resolution RS imposed by
the sampling process across the CCD array is RS ¼ Dx=M where M is the
magnification of the lens interposed between the sample and the recording
plane. In terms of the spatial resolution and of the numerical aperture N.A.
of the imaging lens, the depth of focus dd is given by

dd ¼ Dx

M 2N :A:
(26)

Focal resolution better than a micrometer can be obtained for magnification
M 
 10 and N :A: � 0:25.

Figure 3.4 shows a possible setup for a digital holographic microscope. The
setup consists basically of a Mach-Zehnder interferometer for reflection im-
aging; however, for transparent objects an alternate transmitting configuration
can be arranged. In the reference arm, a beam expander is introduced in order
to produce a plane wave. In the object arm, in order to illuminate the sample
with a collimated beam, a combination of a beam expander, a lens with a long
focal length, and a microscope objective is used. This imaging system obtains a
magnified image of the object that is used for the hologram creation. In order to
control the intensities in both the arms, a combination of a neutral density
filter, a half-wave plate, and a polarizing beam splitter is used. The advantage
of a Mach-Zehnder configuration is that it allows the recording of off-axis
holograms with very small angles between the directions of propagation of
the object and reference waves. This feature is important when low-resolution
media are used as image acquisition systems. Finally, a CCD camera acquires
an image of the hologram. Resolution better than 10 nm has been demon-
strated for step-height measurement with a DHM in direct measurements of
profiles of minute steps.

In the following section, two examples are described of DH applications as a
tool for topographic characterization of microstructures.

3.3.1 Inspecting Microstructure by DHM

When a DHM is used to investigate small objects having mirror-like surfaces,
the digital hologram recorded by the camera consists of an interferometric
pattern made of circular fringes. Such fringes are due to the interference of
the parabolic phase factor (the object beam) superimposed onto the character-
istic phase distribution of the object wavefront and plane wavefront of the
reference beam. The parabolic phase factor accounts for the wavefront curva-
ture introduced by the imaging lens, the microscope objective. When the phase
is retrieved by the numerical reconstruction of the digital hologram, the
phase information about the object under investigation is hindered by
the parabolic phase factor. Different approaches can be adopted to remove
the disturbing parabolic phase factor in the reconstructed image plane.34,40
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For example, Fig. 3.5a shows one digital hologram acquired for an etched
periodically poled Lithium Niobate structure.41 Figure 3.5b presents the dens-
ity plot of the corresponding phase map reconstructed at a distance
d ¼ 100mm from the hologram. In this case the correction of the curvature
phase introduced by the microscope objective is accomplished by exploiting the
mirror-like surface of the Lithium Niobate sample.

In the hologram reported in Fig. 3.5(a) it is possible to recognize an area
that contains only circular fringes because the surface of the Lithium Niobate
substrate acts as a plane mirror surface and the fringe pattern is only due to the
curvature introduced by the microscope objective lens. The remaining area in
the hologram contains information about the object under investigation super-
imposed on the circular fringes due to the imaging lens. Assuming that the
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Figure 3.5. (a) Digital hologram acquired for a etched PPLN structure;(b) density
plot of the corresponding digitally reconstructed phase map at a distance d ¼ 100mm
and corresponding linear profile along a line; (c) 3D plot of the depth profile obtained
from the phase map by converting the data into units of length.41
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phase calculated for the first area is only due to wavefront curvature introduced
by the microscope objective, its distribution can be recovered by performing a
nonlinear fit of the unwrapped values. The correction wavefront phase can be
written as

Fcorr x, yð Þ ¼ 2p

l

x2 þ y2

2R

� �
(27)

where R is the radius of curvature of the correction wavefront (i.e.,
its defocus radius). In Fig. 3.5(b), it is evident that this approach allows
complete removal of the curvature introduced by the microscope objective.
Figure 3.5(c) shows the 3D plot of the numerically reconstructed phase-map
and provides a full field 3D image of the microstructure. The data have
been converted into units of length on the z-axis by the formula
h ¼ lw(x,y)=4p given by Eq. (25). Another example of noncontacting, whole-
field measurement of surface shape with high resolution is shown in Fig. 3.6. In
this case, a MicroElectro{Mechanical-System (MEMS) silicon structure is
inspected. Figure 3.6a shows a recorded hologram of two polysilicon cantilevers
realized on a silicon substrate by means of a silicon oxide sacrificial layer. The
two micromachined beams are 130mm and 60mm long, respectively, and 20mm
wide.

In order to correct the curvature phase introduced by the microscope
objective, the wafer is translated slightly in a transverse direction. An add-
itional hologram (Fig. 3.6b) of the substrate surface is recorded and used as
reference. This approach is possible because the micromachined parts have
been realized on a flat silicon substrate and the area around the micromachined
structure offers a very good mirror-like surface. Thus, the reference hologram is
obtained through the interference of the object field scattered by the reference
flat surface near the MEMS and the reference beam. In this way, the
reference hologram only comprises the effect of the wavefront curvature intro-
duced by the imaging microscope objective. Both holograms are numerically
reconstructed at distance d ¼ 100mm. Therefore, in the reconstructed image
plane, it is possible to calculate the phase difference and, as consequence, to
calculate the wrapped phase map (Fig. 3.6c) of the object cleared of the
wavefront curvature introduced by the imaging microscope objective. Finally,
as shown in Fig. 3.6d, the quantitative surface profile of the MEMS can be
obtained applying a standard unwrapping procedure.

The possibility to obtain accurate quantitative information about the sur-
face profiles of MEMS structures without contact appears crucial to the study
of the shapes of microobjects. Figure 3.7 shows an example of the profile of an
array of silicon MEMS structures obtained by DHM.

From the previous examples, it is evident that DH is a suitable method for
inspection and quantitative evaluation of microstructure surface morphology
and hence for influencing microstructure fabrication, functionality, and reli-
ability.
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3.3.2 Digital Holographic Microscopy for Real-time Acquisition

With the experimental setup reported in Fig. 3.4, a sequence of holograms of
the same object can be digitized and numerically reconstructed to investigate
an evolving phenomenon.45 DH has also been demonstrated for performing
interferometric measurements of moving objects.42 The corresponding sequence
of numerically reconstructed amplitude and/or phase images can be used to
build a video animation to show the behavior of the sample at different instants
while it is experiencing deformations, movements, and/or any modification
related to optical path changes. In conventional interference microscopy, it is
necessary to hold constant all the different reconstructed parameters such as
distance between the microscope objective and both the object and the CCD
array plane to avoid longitudinal movements that cause focal change. By
contrast, with DHM it is possible to refocus reconstructed images if a change
has occurred in the above parameters. In fact, a sequence of images can be
recovered by performing reconstructions at different distances analogous to
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Figure 3.6. (a) Hologram of the polysilicon micro cantilever beams; (b) hologram
recorded on a reference surface in proximity of the micro-machined beams; (c) Phase
image, wrapped mod. 2p, of the polysilicon beams reconstructed at distance
d ¼ 100mm; (d) unwrapped phase with out-of-plane deformation and dimensions ex-
pressed in microns.34
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mechanical translation of the microscope objective in conventional microscopy.
However, when a long sequence of holograms has been recorded with unpre-
dictable variation in the image plane, such numerical methods can be very
time-consuming.

It might be expected that a change in the reconstructed distance would
make it impossible to compare two reconstructed images directly since they will
have different sizes owing to the different width of their reconstruction pixels
(RP) when a Fresnel transform method is adopted. In fact, observing the
relationship between the RP and the reconstructed distance d as given by Eq.
(12) it is evident that the RP increases with the reconstruction distance so that
the size of the image, in terms of number of pixels, is reduced for longer
distances. Nevertheless, direct subtraction of unwrapped phase-maps from
two holograms at two different distances can give quantitative information
on the deformation of the sample.32,46 The next sections will show how it is
possible to use DH to control parameters in the reconstructed images to correct
focusing and image size. Moreover, the same approaches can also be used to
control the image resolution. The proposed methods add much more flexibility
for DH and increase applications of the technique.

3.3.3 Focus Tracking During Dynamic Recording of Digital
Holograms in DHM

Refocusing by DH relies on use of the Fresnel equation previously described
to calculate the reconstruction at arbitrary focal planes. In DHM, high
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Figure 3.7. Profiles of MEMS: dimensions expressed in microns.44
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magnifications are obtained by using a very short focal length microscope
objective lens. If the sample experiences even a very small displacement along
the optical axis, a very large change occurs in the distance to the imaging plane
and the focus can be lost as depicted in Fig. 3.8. If the distance from the lens to
the object is q, p is the distance of the image plane from the lens, and f is the
focal length, the following relationships can be written:

p ¼ Mq
1

q
þ 1

p
¼ 1

f
) @p

@q
¼ � f 2

q � fð Þ2
¼ � f 2

f 1þ 1
M


 �
� f


 �2 ¼ �M 2 (28)

where M is magnification of the imaging system. Any axial displacement Dq of
the sample results in a shift of the phase detected at time t given by

Dw tð Þ ¼ 4p
Dq

l
(29)

and in a translation of the imaging plane in front of the CCD given by

Dp ¼ �M 2Dq (30)

For example, with an imaging system of a magnification M ¼ 40, a sample
displacement of 10 nm, translates the image plane by Dp ¼ 16�m.

Displacement of the object may occur for different reasons and may be dealt
with in some cases; however, it is unavoidable in thermal characterization of
objects. Temperature changes can cause unpredictable expansion or contrac-
tion of the object under study and/or its mechanical support, and the tedious
search for new focal planes can be intolerable, especially if there is the need to
visualize the phenomena in anything approximating real-time. To overcome
this problem it is possible to detect the axial displacement of the object by
measuring the phase-shift of the hologram fringes. In fact, with reference to the
configuration reported in Fig. 3.8, axial displacement of the object caused a
shift in the fringe pattern of the hologram. By recording the phase-shift in a
small flat portion of the object, it was possible to determine the displacement
and the incremental change of the distance to be used in the numerical recon-
struction for each recorded hologram.

Object planes
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∆p = −M 2∆q

∆ p
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Figure 3.8. Out-of-focus caused by a longitudinal displacement of the imaged object.
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The effectiveness of the method was demonstrated in a quasireal-time
inspection of silicon MEMS structures subjected to a thermal load. Different
types of silicon MEMS were investigated that had out-of-plane deformation
due to the residual stress induced by the micrifabrication process by the
fabrication process; in particular the results about a cantilever (50� 50mm)
are described in the following. The silicon wafer was mounted on a metal plate
and held by a vacuum chuck. The metal plate was mounted on a translation
stage in close proximity to a microscope objective with focal length
f ¼ 15:36mm and N :A: ¼ 0:16. The sample was heated in the range of
23{1208C, by a remote-controlled heating element. Axial displacement was
due to the overall thermal expansion of the metallic plate and the translation
stage. An initial hologram was recorded before raising the temperature, and
numerical reconstruction for a well-focused image was found at an initial
distance of 100 mm with estimated magnification M ¼ 40. While heating the
sample, the phase-shift of the fringes was determined in quasireal-time by
measuring the average intensity change in a group of 4� 4 pixels. Figure. 3.9
shows the recorded intensity signal.

This signal was analyzed by applying a Fourier-transform method, and for
each point recorded the wrapped and unwrapped phase was calculated. The
displacementDpwas calculated fromEqs. (29) and (30) and is shown in Fig. 3.10
as a function of the sampled point. The numerical reconstruction distance for
each hologram was continuously updated. As shown, the final hologram recon-
struction distance differs from the initial distance by about 40 mm. Figures
3.11 (a, b, and c) show the amplitude and phase reconstructions for the canti-
lever from three different holograms of the recorded sequence, corresponding to
three different temperatures. The reconstructions were performed automatically
by applying the focus tracking procedure. Figure 3.11a shows the reconstruction
of the first hologram at d ¼ 100mm; Figure 3.11b shows that of the second
hologram at d ¼ 117:3mm, while Fig. 3.11c shows that of the third hologram at
d ¼ 140:8mm. In the phase-map image, the wrapped phase observed on the
cantilever indicates that an intrinsic out-of-plane deformation is present. As
expected, the reconstructions in Fig. 3.11 are all in focus.
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Figure 3.9. Phase shift of hologram fringes recorded in real time.42
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Thus, by applying the focus-tracking method, the corrected reconstruction
distance can be evaluated for each acquired hologram and well-focused ampli-
tude and phase images can be obtained.

3.3.4 Controlling Image Size

As shown in previous section in Fig. 3.11, the size of the reconstructed object
decreases with larger reconstruction distance. Thus, although well-focused
images were obtained, it was not possible to compare two of them directly
since they had different sizes owing to the different width of the Reconstruction
Pixel (RP). Similar difficulties arise in MultiWavelength{DH (MWDH) used
for color display and for applications in metrology. For each wavelength in
MWDH, the width of the RP increases with the reconstruction wavelength for
a fixed reconstruction distance. Consequently, holograms recorded with differ-
ent wavelengths produce images with different sizes when numerically recon-
structed by means of the Fresnel Transform Method. Color DH display requires
simultaneous reconstruction of images recorded with different wavelengths
(colors) and the resulting reconstructed images must be perfectly superimposed
to get a correct color display.47,48 This is prevented by the differing image sizes,
and this also prevents phase comparison required for holographic interferom-
etry.46,49

To avoid the above-mentioned problems, the convolution approach could
be employed where the RP remains constant and equal to the size of the pixel of
the CCD array, however, for a large reconstruction distance this approach does
not work properly. Consequently, it is necessary to use a resizing operation on
the reconstructed images50 at end of the reconstruction process or a scaling
operation on the hologram. Recently, a cascaded algorithm for reconstruction
of the digital holograms with a variable zooming factor has been proposed.51

Nevertheless, it is possible to control the image size of the reconstructed images

500 1000 2000 300025001500
Points

0

5

10

20

30

40

35

25

15∆p
 (

m
m

)

Figure 3.10. Displacement of the sample measured in real time by analyzing the phase
shift of hologram fringes.42
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by exploiting the FTM itself,52 since the size is controlled through enlargement
of the number of the pixels of the recorded digital holograms. From Eq. (12) it
is clear that the RP size also depends on the lateral number of the pixels N and
M. So, the image size can be controlled changing the RP by using a larger
number of pixels in the reconstruction process. N and M can be augmented by
padding the matrix of the hologram with zeros in both the horizontal and
vertical directions such that

N2 ¼ N1 d2=d1ð Þ
M2 ¼ M1 d2=d1ð Þ

(31)

getting

a

b

c

Figure 3.11. In focus amplitude and phase-map for the cantilever beam from three
holograms recorded at three different distances of the same sequence, obtained applying
the focus-tracking procedure.42
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Dj1 ¼ Dj2 ¼
d1l

N1Dx
¼ d2l

N2Dx

Dh1 ¼ Dh2 ¼
d1l

M1Dx
¼ d2l

M2Dx

(32)

where N1(N2) andM1(M2) are the number of pixels of the hologram recorded at
the distance d1(d2) with d1 < d2. Thus, in order to obtain two reconstructed
images with the same size, the N1xM1 matrix of the hologram recorded at
distance d2 has to be padded with (N2 � N1) zeros along the ‘‘x’’ direction
and with (M2 �M1) zeros along the ‘‘y’’ direction. In a similar way in MWDH,
if one hologram has been recorded with wavelength l1 and a second with l2,
where l1 < l2, at the same distance, then the number of pixels of that holo-
gram may be changed such that

N2 ¼ N1 l2=l1ð Þ
M2 ¼ M1 l2=l1ð Þ

(33)

in order to obtain the same width for the RP:

Dj1 ¼ Dj2 ¼
dl1
N1Dx

¼ dl2
N2Dx

Dh1 ¼ Dh2 ¼
dl1
M1Dx

¼ dl2
M2Dx

(34)

The effectiveness of this method was demonstrated both on the cantilevers
illustrated in previous section and on a Ronchi grating.53

In Fig. 3.12, the three reconstructed phase images illustrated in Fig. 3.11 are
reported with a different view, and, as expected, it is evident that the image

CCD
Plane

d'0

x
y

z

without controlling

d'1
d'2

Figure 3.12. Wrapped image phases reconstructed at different distances without
application of padding operation.52
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size, in terms of pixels, is reduced since the three images were reconstructed at
different distances from the hologram.

The hologram reconstructed at distance d0 ¼ 100mm had 512� 512 pixels.
In order to obtain reconstructed images with the same size the holograms
reconstructed at distances d1 ¼ 117:3mm and d2 ¼ 140:8mm have been pad-
ded with zeros up to 614 � 614 pixels and 718� 718 pixels, respectively. The
reconstructed phase images obtained applying the padding procedure are
shown in Fig. 3.13, where it is clear that the image size is independent of the
reconstruction distance so that on these reconstructed images direct phase
subtraction can be performed and phase difference can be obtained.

In particular, an example of direct phase subtraction is shown in Fig. 3.14.
Where Fig. 3.14a is the unwrapped phase image of the hologram recorded at
distance d1; Fig. 3.14b is the unwrapped phase image of the MEMS at
d2 ¼ 139:5mm without zero padding whereas Fig. 3.14c is the unwrapped
phase of the MEMS at d2 obtained by the padding operation. Finally,
Fig. 3.14d shows the difference between the unwrapped phase maps with
equal size indicating the small deformation caused by thermal load.

An example of amplitude reconstruction size control is reported in Fig. 3.15.
Figure 3.15a shows portion of the reconstruction along the longitudinal axis
(Z-axis) for a Ronchi grating without the padding operation. The initial
distance of reconstruction was d1 ¼ 295mm while the final was d2 ¼ 695mm
and the initial number of pixels for the first reconstruction was
N1 ¼ M1 ¼ 1024. In the figure, the Talbot effect noticeable along the Z-axis
is due to the dependence of the RP on the reconstruction distance d, since the
period of the grating decreases for longer distances. Figure 3.15b shows the
results of the same reconstruction when the padding operation is applied, and

CCD
Plane

d'0

x
y

z

with controlling

d'1
d'2

Figure 3.13. Wrapped image phases reconstructed at different distances with appli-
cation of padding operation.52
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the final reconstruction was performed with padding of zeros up to
N2 ¼ M2 ¼ 2412. From Fig. 3.15b it can be noted that the size of the grating
has been kept constant.

In order to demonstrate that size can also be controlled in MWDH appli-
cations, holograms of a double Ronchi grating, with periods of 5.0 lines/mm
and 3.5 lines/mm, were recorded with the two different wavelengths of
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Figure 3.14. Unwrapped phase of MEMS at different distance with padding operation
and phase map subtraction between reconstructions at different distances.52
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Figure 3.15. Ronchi grating reconstructed at different distances: (a) pitch of the grating
decreases for longer distances; (b) size is kept unchanged with padding operation.53
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l1 ¼ 532 nm and l2 ¼ 632:8 nm, respectively. All holograms were initially
recorded with N1 ¼ M1 ¼ 1024. Figures 3.16a and b show the reconstructed
amplitude of the grating at l2, respectively, without and with padding oper-
ation applied to the hologram. Figure 3.16c shows the amplitude image recon-
struction at l1 (green). The red hologram (that at l2) was reconstructed
(Fig. 3.16b) according to Eq. (37) after adding a number of zeros around the
hologram such that N2 ¼ M2 ¼ 1218 to obtain an image having equal size in
respect to that of Fig. 3.16c.

The RGB combination of red and green images gives perfect superimpos-
ition and the new color (yellow) in Fig. 3.16d. From these examples it is clear
that by means of a simple padding of the recorded digital holograms with zeros,
it is possible to control the size of the reconstructed images independent of
distance and wavelength.

3.3.5 Controlling Image Resolution

In DHM it is usual to put the object in the Fresnel region of the image sensor,
because use of a single Fourier transform for numerical reconstruction reduces
the calculation time by half. This limits resolution, however, because light
passing through an object that contains high-spatial frequency components is
diffracted at large angles. This limitation is particularly severe when high
resolution with visible wavelength light is desired. In fact, elementary pixel
width of CCD sensors is at least of several microns, leading to spatial cut-off
frequencies lower than 100mm�1. Consequently, standard CCD sensors limit
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Figure 3.16. MWDH, reconstruction of the red hologram (a) without padding and (b)
with padding; (c) reconstruction of the green hologram; (d) superimposition of red and
green images (b) and (c).52
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incident beams to being quasi-parallel so that only small objects placed at a
large distance from the sensor can be recorded with digital holography. So, in
most cases, the specimen is magnified during the hologram recording to obtain
adequate resolution, but this operation simultaneously magnifies the coherent
speckle noise.54 In order to improve the resolution of digital holography, a kind
of space{time digital holography method was proposed.55 By this method it is
possible to produce an image free of speckle noise, but its scanning system
makes the related setup and experimental procedure complicated. For improv-
ing the resolution, a combination of multiple holograms recorded at different
camera positions to give a large digital hologram has been proposed.56 In this
case the CCD camera was mounted upon a translation stage and a series of
hologram exposures were recorded as the camera was moved to different
positions in a rectangular raster.

In Fig. 3.17 the texture of the radiator of the model car is resolved. In
particular, an increase of the resolution by a factor of 2.5 with respect to the
size of the CCD sensor can be expected.

Another approach to improve resolution using a single acquisition has been
proposed in which a diffraction grating is used to record digital holograms with
a wider solid angle. In this approach more object waves reach the CCD
camera.57 In fact, a grating is placed in front of the specimen, so that the
light incident upon the grating is split into three beams. One of these beams will
propagate along the original direction, and the other two beams will diverge
from the original direction. The ray diagrams of the object waves are schemat-
ically shown in Fig. 3.18 and, for simplicity, only a point object is described.

Due to the diffraction of the grating placed between the object and the CCD
camera, three beams (O0, O1, and O2) reach the area of the hologram and can
be digitally recorded. The presence of the grating increases the numerical
aperture of the holographic system and consequently, the resolving power is
higher. Recovery of the resolution lost intrinsically by the reconstruction FTM
has been recently proposed.58 In fact, if paraxial approximation can be applied,

(a) (b)

Figure 3.17. Reconstruction of the object section from (a) a single hologram and (b)
from nine holograms.56
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the FTM can be used in the reconstruction process. However, when the image
reconstruction is performed by FTM, the spatial frequencies displayable in
reconstructed images are band limited by the size of the reconstruction pixel,
which represents the sampling gauge in the image plane. From Eq. (12) it is
clear that the reconstruction pixel, and consequently resolution, depends on the
wavelength, the distance, number of the pixels N of the sensor array, and their
physical size. In other words, spatial frequencies higher then the Nyquist limit,
in the image reconstruction plane, are under-sampled and reconstructed incor-
rectly. Depending on the objects, under-sampling can affect the correctness of
reconstructed phase map. Thus, the resolution can be improved through arti-
ficial enlargement of the number of the pixels in recorded digital holograms.
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Figure 3.18. Ray diagram of the object waves when a grating is placed between
the object and the CCD camera: of the object wave (a) without grating in set-up and
(b) with a grating in set-up.57
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The effectiveness of the method has been demonstrated for the characterization
of MEMS structure that grows too rapidly as shown in Fig. 3.19.

In fact, in this case the shape of the MEMS induces an undersampling for a
fixed distance, wavelength, number, and size of pixels of the CCD, and the
resulting profile can be incorrectly reconstructed. Thus, to reconstruct correctly
the profile of a structure deformed by a large amount, it is necessary to improve
resolution in the imaging plane. Figure 3.20 shows the phase map reconstructed
by the digital hologram from a 1024 � 1024 pixels hologram recorded at distance
d ¼ 200mm. In this picture some small under-sampling occurs at the extremity

Figure 3.19. SEM picture of MEMS with a large amount of deformation.58
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Figure 3.20. Wrapped phase maps of the MEMS: (a) from the original hologram with
1024� 1024 pixels shown in the bottom; (b) from a selected central portion of 512� 512
pixels; (c) from the previous hologram with 512� 512 pixel but padded with zeros up to
1024� 1024
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of the corner. The plot of the unwrappedphase along the diagonal direction of the
square is shown superimposed in the same Fig. 3.20a. This profile is correctly
retrievedup to about 100 radians, andwemay safely assume that the profile up to
this value is the actual true profile of the MEMS along that line.

Figure 3.20b shows that cropping from the original hologram a central
portion of 512� 512 pixels causes substantial under-sampling of the wrapped
phase in the reconstruction. The phase map up to the original value of 100
radians is completely recovered if zero padding up to 1024 � 1024 pixel is
preformed, even if the field of view is reduced. In order to obtain the complete
correct profile of the MEMS, the 1024� 1024 pixel hologram has been padded
with zeros up to 2048� 2048, and the resulting phase map is shown in Fig. 3.21.
From the plot of the unwrapped phase along the central line of the MEMS in
Fig. 3.21 it is clear that the padding operation allows the recovery of the correct
phase map. In fact, in this case a correct profile of the MEMS is obtained along
the whole length of the structure. Fig. 3.22(a) shows the 3D profile of theMEMS
obtained by the central portion of 512 � 512 pixel hologram; Fig. 3.22 (b)
is obtained by the same hologram of Fig. 3.22 (a) but padded with zeros up to
1024 � 1024 pixels; Fig. 3.22 (c) is obtained by the same hologram of Fig. 3.22
(a) but padded with zeros up to 2048 � 2048 pixels.

It is important to note that real content of information in Fig. 3.21a is exactly
the same as that producing the phase map of Fig. 3.22b with only a padding
operationmaking the difference. Nevertheless, the profile of theMEMS is almost
completely correctly recovered. That means the required information about
phase map can be extracted even from a reduced hologram.
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Figure 3.21. Close-up of the wrapped phase map of: (a) the hologram of Fig. 3.7a but
padded to 2048� 2048 pixels (padded digital hologram reconstructed shown on the
left); (b) the hologram of Fig. 3.7c but padded to 2048� 2048 pixels (padded hologram
shown on the left).
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Figure 3.22. Profile of the MEMS obtained by: (a) central portion of 512� 512 pixel
hologram; (b) same hologram of (a) but padded with zeros up to 1024� 1024pixels; (c)
padded up to 2048� 2048 pixels.
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3.4. Conclusions

This chapter has reported a detailed description and discussion of the
recent advances and improvements in the novel interferometric technique
of Digital Holography. Numerous examples have been shown of applications
in microscopy for inspection, characterization, and investigation of dif-
ferent materials and processes. It is believed that the progress achieved in
the reconstruction methods will find useful applications in different areas of
homeland security, and we hope they can provide inspiration for further
investigations for conceptual developments of new methods and systems useful
in this field.
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Hybrid Optical Encryption of a 3D Object

by Use of a Digital Holographic Technique

Takanori Nomura

Department of Opto-Mechatronics, Wakayama University, 930 Sakaedani, Wakayama
640{8510, JAPAN nom@sys.wakayama-u.ac.jp

An encryption method of a three dimensional (3D) object based on phase
modulation of an object wave is proposed. The phase of the object wave is
modulated by a virtual optical random phase mask using a digital holographic
technique. The keys of an encryption step are both a phase distribution and a
position of the virtual optical phase mask. If either of them is not correct, the
three dimensional (3D) object cannot be decrypted. Owing to a characteristic
of a hologram, some parallax of a reconstructed three dimensional (3D) object
can be seen. Experimental results are presented to confirm the proposed
method.

4.0 Introduction

Optical information technologies for security and encryption systems,1{9 have
been studied. Most of them are aimed at encryption of 2D information such as
images. An encryption of a three dimensional (3D) object has been proposed by
using digital holography.5 An object is encrypted by use of random phase
distribution of the reference wave. In the system, only phase distribution of
the reference wave is needed to decrypt. If the phase distribution comes out, the
encryption will end in failure. Here, more secure encryption method of a three
dimensional (3D) object is proposed by use of phase modulation of an object
wave. The encryption is accomplished by a combination of a real optical system
and a virtual optical system. Therefore, the method is called hybrid optical
encryption. In Section 4.1, the principle of encryption and decryption method
of the proposed system is described. In Section 4.2, optical experimental results
of three dimensional (3D) object encryption are shown to confirm the proposed
system.
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4.1 Hybrid Encryption System of a 3D Object

An encryption step and a decryption step of a proposed hybrid encryption
system are described here.

4.1.1 Encryption

The scheme of the proposed encryption system is shown in Fig. 4.1. Referring to
Fig. 4.1, the hybrid encryption system is described in detail. In the figure,
nonencrypted wave and encrypted wave are indicated by solid arrows and
dashed arrows, respectively. Let U(xo) denote a wavefront of a three dimen-
sional (3D) object to be encrypted. One-dimensional notation is used for
simplicity. Let U(xc) denote a wavefront of U(xo) at a CCD after propagation
of a distance zc. The relation of U(xo) and U(xc) may be written as

U(xc) ¼ Pr [U(xo);zc], (1)

where Pr[U ,z] denotes the operation to make a wavefront U propagate at a
distance of z. The object wave which comes from the 3D object is recorded
electrically as a digital hologram using a phase-shifting digital holography.10

Then the hologram is encrypted using a virtual optical system. The wave-
front is propagated in opposite direction from the CCD to a plane (z ¼ zm)
where a virtual phase mask (VPM) is placed. The wavefrontU(xm) at the VPM
may be written using the same notation as

U(xm) ¼ Pr[U(xc);zm � zc]: (2)

3D object
U(xo)

xo

U(xc)

yc ymyo yo

xoxc xm

yc

xc

zczmzc
z

0

(a)

CCD

U(xn) U'(xm)

U'(xc)

U(xc)VPM

z
0

(b)

CCD

Figure 4.1. Scheme of an encryption step of a hybrid optical encryption of a 3D object
using a digital holographic technique: (a) recording a digital hologram of 3D object and
(b) encrypting a 3D object as an encrypted digital hologram using a virtual optical
system.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap04 Final Proof page 86 27.10.2005 11:15am

86 Takanori Nomura



The calculation of a diffraction integral in a virtual optical system is described
in Appendix. For encryption, the product of the wavefront and the VPM which
has a phase distribution denoted by exp [ia(xm)] is calculated. The phase
distribution is assumed to be uniformly random. The encrypted wave front
U 0(xm) is obtained as follows:

U 0(xm) ¼ U(xm) exp [ia(xm)]: (3)

Finally, the wavefront is propagated in right direction from the VPM to the
CCD. The encrypted wavefront at the CCD is written as

U 0(xc) ¼ Pr [U 0(xm);zc � zm]: (4)

This hologram U 0(xc) may be called an encrypted digital hologram. This
hologram is suitable for storage and transmission because of digital data. The
data might be compressed by use of digital hologram compression.11{13 Figure
4.2 shows an equivalent optical system of the above-mentioned encryption step.
In the system, the VPM can be placed behind the CCD, because the encryption
is performed by a virtual optical system.

4.1.2 Decryption

To decrypt, a virtual optical system shown in Fig. 4.3, is used. The encrypted
digital hologram is propagated from the CCD to the VPM placed at z ¼ zm. A
wavefront at the VPM written by

V 0(xm) ¼ Pr [U 0(xc);zm � zc]

¼ Pr [Pr [U 0(xm);zc � zm];zm � zc]

¼ U 0(xm),

(5)

is obtained. Next, the product of the wavefront V 0(xm) and a complex conju-
gate of a phase distribution of the VPM is calculated. The product V (xm) is
written as follows:

CCD

3D object U(xo) U(xm) U'(xm) U'(xc)

VPMyo

xm

zm zc
z

ycym

xcxo

0

Figure 4.2. Equivalent optical system of an encryption step.
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V (xm) ¼ V 0(xm) exp [� ia(xm)]

¼ U (xm) exp [ia(zm)] exp [� ia(xm)]

¼ U (xm)

: (6)

Finally, by applying the diffraction integral the VPM to the original position
where the object was placed, the wavefront of the original three dimensional
(3D) object can be obtained. The wavefront at the position can be written as

V (xo) ¼ Pr [V (xm);� zm]

¼ Pr [U(xm);� zm]

¼ U(xo)

: (7)

From this equation, it is found that the encrypted hologram can be
decrypted correctly. Note that both the information of phase distribution and
is position of the VPM are needed to decrypt the encrypted hologram.

4.2 Encryption and Decryption Experiments

To confirm the proposed hybrid encryption system, optical experimental re-
sults are shown. Figure 4.4 shows the experimental setup to record a digital
hologram of 3D objects.

4.2.1 An Experimental System

A He{Ne laser (wavelength, 632.8 nm) is used as a coherent light source. It is
collimated by a beam expander consisting of an objective lens, a spatial filter,
and lens with a focal length of 250 mm. The reference beam is phase-shifted by
a moving mirror driven by a computer-controlled PZT stage. The digital
hologram is captured by a CCD camera with 1280 by 960 pixels and 8 bits of

CCD

Decrypted
3D object

V(xo) V(xm) V'(xm) U'(xm)

VPM

yo

xo

ym

xm

zm

yc

xc

zc
z0

Figure 4.3. Scheme of a decryption step of a hybrid optical encryption of a 3D object
using a digital holographic technique.
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gray levels. The size of a pixel of the CCD is 4:65mm by 4:65mm. Two dice are
used as 3D objects. They are as large as 10mm� 10mm� 10mm each. The
distance from the dice to the CCD are 180 mm and 270 mm, respectively.

4.2.2 Recording Digital Hologram

The digital hologram obtained by using phase-shifting technique is shown in Fig.
4.5. Following each figure of a digital hologram is a part of its original digital
hologram. They are the portions extracted 320 by 240 pixels from the center of
original 1280 by 960 pixels. In Fig. 4.5(a), the amplitude distribution is normal-
ized by themaximum amplitude. Black andwhite denote 0 andmaximum value,
respectively. In Fig. 4.5(b), the phase distribution is normalized by �p denoted
by black to p denoted by white. The same normalization is applied to the
following figures. Figure 4.5 corresponds to U(xc) given by Eq. (1).

4.2.3 Encryption

For encryption, the wavefront at a VPM is calculated using a computational
diffraction integral described in Appendix. In this experiment, it is assumed

Beam expander
Lens

3D
object

PZT stage

Mirror
Beam spliter

CCD camera

Laser

Figure 4.4. Optical setup for recording a digital hologram of 3D objects.

(b)(a)

Figure 4.5. A nonencrypted digital hologram of 3D objects at the CCD: (a) amplitude
distribution and (b) phase distribution.
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that the distance from the CCD to the VPM is 30 mm. The wavefront shown in
Fig. 4.6 corresponds to U(xm) given by Eq. (2). Then it is multiplied by the
VPM shown in Fig. 4.7, which has uniform amplitude distribution and a
uniformly random phase distribution corresponding to exp [ia(xm)]. After
multiplying, the encryption wavefront U 0(xm) of 3D objects is obtained. It is
given by Eq. (3) at the VPM shown in Fig. 4.8.

By applying Fresnel diffraction integral to the encrypted digital hologram
U 0(xm) from the VPM to the CCD, the encrypted digital hologram of a 3D
object at the CCD is obtained. It is shown in Fig. 4.9 corresponding to U 0(xc)
given by Eq. (4). This encrypted digital hologram is suitable for electrical
storage and transmission because of digital data.

4.2.4 Decryption

To decrypt the encrypted digital hologram, the diffraction integral based on
the algorithm mentioned in Section 4.1 is applied. With correct position
and phase distribution of the VPM, the decrypted 3D objects are shown in

(a) (b)

Figure 4.6. A nonencrypted wavefront of 3D objects at a virtual phase mask plane: (a)
amplitude distribution and (b) phase distribution.

Figure 4.7. A nonencrypted wavefront of 3D objects at a virtual phase mask plane:
(a) amplitude distribution and (b) phase distribution.
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Fig. 4.10(a). Figure 4.10(b) shows the decrypted 3D objects using no informa-
tion of the VPM. Figures 4.10(c) and (d) are the decrypted 3D objects if either
position or phase distribution is wrong. In Fig. 4.10(c), the distance from the
CCD to the VPM is set to 31 mm. In Fig. 4.10(d), to decrypt a VPM, which has
a phase distribution independent from the VPM, encryption process is used.
The reconstructed objects from an original digital hologram are shown in Fig.
4.10(e). From these experimental results, if only both information of position
and phase distribution of the VPM are correct, it is found that the encrypted
digital hologram can be decrypted.

If a characteristic of holography is used, parallax of the 3D objects can be
seen. After the example of Tajahuerce and Javidi,5 different perspectives of the
decrypted dice are shown. Figure 4.11 show three parallax and different focused
objects calculated from decrypted hologram V (xm) at the VPM. Figures
4.11(a), (b), and (c) are obtained from left half, center, and right half region
of the decrypted hologram with different distance from the hologram. A differ-
ent aspect in the figures can be seen.

(a) (b)

Figure 4.8. The encrypted wavefront of 3D objects at the virtual phase mask plane:
(a) amplitude distribution and (b) phase distribution.

(a) (b)

Figure 4.9. The encrypted digital hologram of 3D objects at the CCD: (a) amplitude
distribution and (b) phase distribution.
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4.3 Conclusions

A hybrid optical encryption of a 3D object by using a combination of a real
optical system and a virtual optical system has been proposed. The encryption
was performed by a phase modulation of the object wave in a virtual optical
system. Experimental results including encryption, decryption, and parallax
images confirm the proposed system.

The author wishes to thank Dr. Yoshiharu Morimoto, Ms. Kaoru Uota, and
Mr. Isao Takahashi for their valuable comments and experimental supports.

(a) (b)

(d) (e)

(c)

Figure 4.10. The decrypted 3D objects using (a) both correct position and phase
distribution, (b) no information, (c) wrong position and correct phase distribution,
and (d) correct position and wrong phase distribution, of a virtual phase mask. (e)
The reconstruct 3D object from a nonencrypted digital hologram.

(a) (c)(b)

Figure 4.11. The decrypted 3D objects which have a different aspect. (a) Front
focused reconstructed objects from left half region, (b) middle focused reconstructed
objects from center region, and (c) back focused reconstructed image from right half
region, of the decrypted digital holograms, respectively.
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4.4 Appendix

The computational calculation methods of wave propagation used in the en-
cryption system are described. Using Fresnel{Kirchhoff diffraction theory 14, 15,

the field at (x2, y2) at the distance of z from the object f (x1, y1) is written as

f (x2, y2) ¼
i

l

ZZ 1

�1

f (x1, y1)

[z2 þ (x2 � x1)
2 þ (y2 � y1)

2]1=2

� exp �i
2p

l
[z2 þ (x2 � x1)

2 þ (y2 � y1)
2]1=2

� �
dx1dy1, (8)

where l denotes a wavelength of an illuminating light. In this case the inclin-
ation factor is regarded as unity, because it is a paraxial region. If the distance
between the object f (x1, y1) and the field (x2, y2) is in the region of the Fresnel
diffraction, the field at (x2, y2) at the distance of z from the object f (x1, y1) is
written as

f (x2, y2) ¼
i

lz
exp (� i2pz

l
)

�
ZZ 1

�1
f (x1, y1) exp � ip

lz
[(x2 � x1)

2 þ (y2 � y1)
2]

� �
dx1dy1, (9)

using Fresnel diffraction integral.5, 15{19 Then the both equations for numerical
calculation are rewritten. Equation (8) can be written as

f (x2, y2) ¼ FFT�1 FFT [f (x1, y1)] � FFT
exp [sign(z)i 2pl (z2 þ x21 þ y21)

1=2]

(z2 þ x21 þ y21)
1=2

" #" #
,

(10)

where

sign(x) ¼ 1 x 
0
�1 x < 0

n
: (11)

And FFT�1 and FFT denote inverse fast Fourier transform and fast Fourier
transform operations, respectively. Here the constant phase at (x2, y2) plane is
neglected. If f (x1, y1) has the resolution Dx1 and Dy1, the resolution of f (x2, y2)
is denoted by

Dx2 ¼ Dx1, (12)

Dy2 ¼ Dy1: (13)

On the other hand, Eq. (9) can be written as

f (x2, y2) ¼ exp
ip(x22 þ y22)

lz

� �
FFT f (x1, y1) exp

ip

lz
(x21 þ y21)g�:

�
(14)
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Here the constant phase at (x2, y2) plane is also neglected. If f (x1, y1) has the
resolution Dx1 and Dy1, the resolution of f (x2, y2) is denoted by

Dx2 ¼
lz

Lx
, (15)

Dy2 ¼
lz

Ly
: (16)

The choice of the above-mentioned Eqs. (10) and (14) can be decided based on
the following inequalities shown as

z � L2
x

lM
, (17)

z �
L2
y

lN
, (18)

where Lx and Ly denote size of the field of (x1, y1), respectively, and M and N
denote pixel size of the field of (x1, y1). If the inequalities are satisfied, the
expression described in Eq. (10) is used; if not, Eq. (14) is used.

As the distance between CCD and VPM in the experiments is 30 mm, the
distance satisfies the inequalities. As the distance between a 3D object and
VPM is more than 150 mm, the distance does not satisfy. So, Eq. (10) is used
for calculating wavefront between VPM and CCD, and Eq. (14) for between
VPM to a 3D object.
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5.0 Introduction

Object recognition technique plays a significant role in Homeland Security.
It has broad applications, such as automated target recognition (ATR) and
surveillance system, to identify unknown vehicles or hidden equipment. Grow-
ing numbers of three-dimensional (3D) optical and imaging techniques have
been researched for this purpose, presenting many challenges and benefits.1{13

The acquisition of 3D information is one challenge to be handled. There
are several approaches to analyze a 3D scene according to its acquisition
methods. The 3D correlation1 has been presented for 3D object recognition.
Two-dimensional (2D) correlation technique combined with Fourier transform
profilometry has been proposed.2 In a hologram, we can sense the 3D information
of objects as the complex amplitude.5{8,13 Images reconstructed at different
planeswere correlatedwith the reference image to find the bestmatchingposition
and angle as well as the object itself.6,7 Three-dimensional images were recon-
structed at various orientations, and neural network technique was applied to
recognize the 3D reference object.8

Another challenge is increased data size. In general, the 3D image is high
dimensional. Each frame of holographic data may consist of millions of pixels.
Therefore, 3D object recognition techniques are computationally demanding.
The high-dimensional complexity also causes the difficulties in distinguishing
one pattern itself from another, which is called ‘‘curse of dimensionality’’.14

In this chapter, 3Dobjects that are sensed by digital interferometry are classi-
fied. A 3D object can be reconstructed at different planes from a single hologram.
The feature extraction, dimensionality reduction projections, and statistical
pattern classification to computer-reconstructedholographic images are applied.
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We use Gabor-based wavelets to extract distinguished features from 3D
objects while reducing their dimensionality. Gabor-based wavelets are selective
in terms of spatial frequency and bandwidth as well as spatial location.15{17

These have been used for various purposes in pattern recognition and image
compression.

We adopt Fisher linear discriminant (FLD) combined with principal com-
ponent analysis (PCA) to classify the feature vectors extracted from 3D ob-
jects.18{21 Both are optimal projection methods to reduce the dimension of a
vector according to some criteria. In the PCA, feature vectors are mapped into
a vector space spanned by eigenvector bases. This projection is optimal in
terms of mean square error. Fisher linear discriminant projects vectors onto a
low-dimensional subspace, thereby maximizing the ratio of the between-class
scatter to the within-class scatter.

Another advantage of dimension reduction lies in the flexible selection of
decision rules. When large-dimensional data are considered, it is impractical to
use decision rules based on statistical analysis. However, in this chapter, we
employ statistical distance (Mahalanobis distance) measure20,21 that is equiva-
lent to maximum likelihood (ML) decision rule if we assume Gaussian prob-
ability density function (PDF) with equal covariances between classes.

In the following sections, various components of the 3D classification sys-
tem have been reviewed. The computational holographic imaging is presented
in Section 3. Gabor scheme and feature vector extraction are described in
Section 4. Principal component analysis and FLD are presented in Section 5.
The statistical decision rule is presented in Section 6. Experimental and simu-
lation results are shown in Section 7, and conclusion follows in Section 8.

5.1 System Description

Figure 5.1 shows a block diagram of the 3D object classification. The overall
system consists of several subsystems for sensing and computational process-
ing. First, we sense and reconstruct holographic images of 3D objects. During
training procedures, we extract feature vectors from reconstructed holographic
images by Gabor-based wavelets. The computations of the PCA and FLD
matrices as well as sample means and covariances follow in the next step.
During test procedures, PCA and FLD matrices are applied to feature vectors
of test images. Statistical decision rule determines the class of the test images.
In the following sections, various components of the 3D classification system
have been described and experimental results are presented.

5.2 Computational Holographic Imaging

We use phase-shift interferometry to sense the 3D information of an
object.6{8,22 We use a CCD camera in Fresnel diffraction region to measure
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the amplitude and the phase information of a 3D object in the scene [see
Fig. 5.2(a)]: L is refractive lens; D is diaphragm; BS1 and BS2 are beam
splitters; M is plane mirror; and RP1 and RP2 are two wave retardation plates
with retardation of l=2 and l=4, respectively.5 Computer reconstruction of the
3D object can be performed using discrete inverse Fresnel transformation. Let
Ho(m

0, n0) be the discrete complex amplitude of the Fresnel pattern, where m’
and n’ are discrete coordinates in the hologram plane. Varying the longitudinal
depth between the output plane and the reconstruction plane produces differ-
ent image planes of the 3D object into focus.

We can reconstructmany 2D complex-valued images rather than 3D discrete
volume itself by generating slices of the 3D object in 2D planes. On the other
hand, we can also reconstruct different perspectives of the 3D object. In this
work, we concentrate on images reconstructed at different longitudinal depths
only. The discrete Fresnel transformation for the reconstruction becomes:5

Uo(m,n,d) ¼ exp
ip

ld
(Dx2m2 þ Dy2n2)

� �
�
XNx�1

m0¼0

XNy�1

n0¼0

Ho(m
0,n0) exp

ip

ld
(Dx

02m
02 þ Dy

02n
02)

� �

� exp �i2p
mm0

Nx
� nn0

Ny

� �� � (1)

8>>>>>>><
>>>>>>>:

;

9>>>>>>>=
>>>>>>>;

Computational reconstruction Training procedure

3D object 1

3D object j

3D object c

Testing procedure
Output

WP WF

v

v y

y z

z

Feature
extraction

Feature
extraction

PCA FLD

Statistical
distance

decision rule

U j
o(m,n,d)

U c
o(m,n,d)

U1
o(m,n,d)

∧
mj

z,∑
j
zz, j=1,...,c

z = Wt
Fyy = Wt

pV

∧
j = j,j = 1,..., c

Holographic
images

Holographic
images

Holographic
images

Figure 5.1. Three-dimensional object classification,Uj
o(m, n, d) is the computationally

reconstructed holographic image at depth dwhen the object class is j; (m, n) is 2D discrete
coordinates at the image plane; c is the number of classes; v is feature vector extracted
from Gabor-based wavelets; y is feature vector after PCA projection; z is feature vector
after PCA{FLDprojection;WP andWF are PCAandFLDmatrix, respectively;mj

z is the
sample mean of the class j; and ŜS

j
zz is the sample covariance of the class j.
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where Uo(m, n, d) is the 3D reconstructed image with depth d ; l is the
wavelength of the incident light; m and n are discrete coordinates at the
image plane; Nx and Ny are the numbers of pixels in the hologram window in
x and y directions; Dx 0 and Dy0 are the spatial resolutions of the CCD detector;
and Dx and Dy are the resolutions of the object plane. Figure 5.2(b) shows the
process of reconstruction at specific longitudinal depths.

In the experiments two toy cars are used to obtain computationally recon-
structed holographic images. Each toy car is approximately 2:5 cm� 2:5 cm
� 4:5 cm. Each hologram represents one object (car) class. For each hologram,
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Figure 5.2. Optical sensing system for 3D object: (a) phase-shift interferometry to
detect the Fresnel diffraction pattern, (b) hologram reconstruction at specific longitu-
dinal depths.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap05 Final Proof page 100 27.10.2005 10:42am

100 Sekwon Yeom and Bahram Javidi



100 images are reconstructed at different longitudinal depths. The range of the
reconstruction depth is from �922.5 to �823.5 mm. One hundred images are
reconstructed at every millimeter. Figures 5.3 and 5.4 show examples of recon-
structed image intensity.

The proposed technique is substantially different from conventional 2D
imaging by a camera. In that case, the imaging is achieved according to the
Lens law for an image of a single image plane. To obtain the images at different
longitudinal planes, the focal length of the camera has to be changed according
to the Lens law and the object distance from the lens. This should be repeated
during the training as well as inspecting the input scene that can be impractical
for a large depth of 3D object field. In the proposed technique, after the initial
exposure, the Fresnel fields of the scene are recorded. The reconstruction is
achieved through inverse Fresnel transformation. Thus, there is no need for
adjusting the imaging setup or changing the focal length of the lens. Instead,
the inverse Fresnel transformation reconstructs the 3D object of different
longitudinal depths by selecting the distance from the detector array. Thus,
we can detect multiple objects at different longitudinal depth locations from
the detector array.

(c) (d)

(b)(a)

Figure 5.3. Reconstructed images of the class 1 at different longitudinal depths:
(a) d¼ 922:5mm, (b) d¼ � 882:5mm, (c) d¼ � 842:5mm, and (d) d¼ � 23:5mm.
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5.3 Gabor-Based Wavelet and Feature
Vector Extraction

In this section, feature vector extraction using Gabor-based wavelets and
experimental results are discussed. To extract features from training and test
data we apply Gabor scheme to the intensity of reconstructed holographic
images. The Gabor-based wavelets act as bandpass filters with special selection
of passband width according to its Gaussian envelope and carrier frequency of
the complex plane wave.15,16 The 2D impulse response (or kernel) of Gabor-
based wavelets is:

g(x) ¼ kj j2

s2
exp � kj j2 xj j2

2s2

 !
exp (jk � x)� exp �s2

2

� �� �
, (2)

where x is a position vector, k is a wave number vector, and s is the standard
deviation of Gaussian envelope. By changing the magnitude and direction of the
vector k, we can scale and rotate the Gabor kernel to make self-similar forms.
The size of the Gaussian envelope is the same in x and y directions, which is
proportional to

ffiffiffi
2

p
s kj j. The second term in the square brackets, exp (� s2=2)

subtracts the DC value so it has zero mean response.17 The frequency response
of g(x), G(k’) is given by

(d)

(b)
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Figure 5.4. Reconstructed images of the class 2 at different longitudinal depths:
(a) d ¼ � 922:5mm, (b) d¼ � 882:5mm, (c) d ¼ �42:5mm, and (d) d ¼ � 823:5mm.
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G(k0) ¼ 2p exp � s2

2 kj j2
k0 � kj j2

" #
� exp � s2

2 kj j2
( k0j j2þ kj j2)

" #( )
(3)

We can define a discrete version of the Gabor kernel as guv(m, n) at k ¼ kuv

and x ¼ (m, n), where m and n are discrete coordinates in 2D space in the x
and y directions, respectively. Sampling of k is done as kuv ¼ k0u[ cosfv sinfv]

t ,
k0u ¼ k0=d

u�1, and fv ¼ [(v � 1)=V ]p, u ¼ 1, . . . , U and v ¼ 1, . . . , V , where
k0u is the magnitude of the wave number vector; fv is the azimuth angle of the
wave number vector; k0 is the maximum carrier frequency of the Gabor kernels;
d is the spacing factor in the frequency domain; u and v are the indexes of the
Gabor kernels; U and V are the total numbers of decompositions along the
tangential and radial axes, respectively; and t stands for the matrix transpose.

The carrier frequency of bandpass filter is determined by k and spatial and
orientation frequency bandwidths depend on the inverse of the Gaussian en-
velope and the direction of the plane wave in the spatial domain. The symbol s
also determines the ratio of window width to the wavelength. It is noted that
the number of plane wave oscillations is approximately s

ffiffiffi
2

p
=p in the Gaussian

window. Such complex amplitude enables the Gabor kernel to work as the
bandpass filter. Sampling parameters (k0, d, U , V ) as well as s should be
chosen carefully. If d is 2, resolution level is half octave; and if it is

ffiffiffi
2

p
the

resolution level becomes one octave.
A feature vector of the image is computed by a set of Gabor kernels. Let

huv(m, n) be the output of filtered input image Id(m, n) ¼ UO(m, n, d)j j by
the Gabor kernel guv(m, n); huv(m, n) is also called ‘‘Gabor coefficient’’
and the magnitude of the Gabor coefficient is called ‘‘Gabor jet.’’ One Gabor
jet vector is composed of a set of the Gabor jets: v(m, n) ¼ { huv(m, n)j j;
u ¼ 1, . . . , U , v ¼ 1, . . . , Vg. Figures 5.5{5.9 show the selected Gabor jets
of the reconstructed image of the hologram in Fig. 5.4(c). The parameters are
set up at s ¼ p, k0 ¼ p=2, d ¼ 2, U ¼ 5, and V ¼ 6. There is no optimal way
to choose these parameters, but several values are widely used heuristically.
The Gabor jets illustrate some characteristics of the reconstructed 3D object as
shown in Figs. 5.5{5.9. The Gabor-based wavelet has strong response to the
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Figure 5.5. Gabor jets for the object in Fig. 5.4(c) when u ¼ 1, (a) v ¼ 1, (b) v ¼ 3,
and (c) v ¼ 5.
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edges if the wave number vector k is perpendicular to the direction of edges.
In addition, local features are well presented in high-frequency bandwidth
(small u) with higher precision. Conversely, global features are maintained in
low-frequency bandwidth (large u) with lower precision. The speckle noise is
always present in the hologram due to the coherent imaging system. The
speckle noise produces degradations for the high-frequency bandwidth Gabor
kernels as shown in Fig. 5.5. This effect makes the high-frequency bandwidth
kernels unsuitable for recognition and classification.

5.4 PCA{FLD Projections

In this section, we discuss the PCA and FLD projections applied to the
Gabor jet vectors extracted from computer-reconstructed holographic data
and present experimental results. The PCA is a projection method to re-
present d-dimensional vectors in the subspace of l dimension (l � d). For a
real d-dimension vector v, the mean vector is mv ¼ E(v), and the covariance
matrix is �vv ¼ E(v� mv)(v� mv)

t . The basis vectors in the PCA space are
given by orthonormal eigenvectors of its positive definite covariance matrix;
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Figure 5.6. Gabor jets for the object in Fig. 5.4(c) when u ¼ 2, (a) v ¼ 1, (b) v ¼ 3,
and (c) v ¼ 5.
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Figure 5.7. Gabor jets for the object in Fig. 5.4(c) when u ¼ 3, (a) v ¼ 1, (b) v ¼ 3,
and (c) v ¼ 5.
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that is, �vvE ¼ EL where E is an eigenvector matrix and L is the eigenvalue
matrix of the covariance matrix. The column vectors of E are normalized
eigenvectors ei’s, i.e., E ¼ [e1, . . . , ed ], and the diagonal components of L are
eigenvalues li’s, i.e., L ¼ diag(l1, . . . , ld). A new vector y after the PCA
projection of v is y ¼ Wt

Pv ¼ Etv where E is the eigenvector matrix of the
covariance matrix �vv.

The PCA diagonalizes the covariance matrix of y, i.e.,
�yy ¼ E(y� my)(y� my)

t ¼ L where my ¼ E(y). If we choose l coefficients
from y ¼ [y(1), . . . , y(l)]t the PCA subspace is spanned by corresponding l
eigenvectors. It is a well-known property of the PCA that by choosing eigen-
vectors of the largest l eigenvalues, the projected vector minimizes the mean
square errors, J(v̂v) ¼ E k v� v̂v k2¼

Pd
i¼lþ1 li when v̂v ¼ mx þWp(y� my).

The FLD transforms l -dimension vectors onto a subspace of k dimension
(k � l). The FLD maximizes the ratio of determinant of between-class scatter
matrix to determinant of within-class scatter matrix14. Total scatter matrix ST
is defined as ST ¼ SB þ SW ¼

Pnt
i¼1 (yi �m)(yi �m)t where nt is the total

number of data; yi is the training vector; and m is the sample mean vector of
yi. We define between-class scatter matrix as SB and within-class scatter
matrix as SW . Let us denote c as the number of classes and nj as the number
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Figure 5.8. Gabor jets for the object in Fig. 5.4(c) when u ¼ 4, (a) v ¼ 1, (b) v ¼ 3,
and (c) v ¼ 5.
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Figure 5.9. Gabor jets for the object in Fig. 5.4(c) when u ¼ 5, (a) v ¼ 1, (b) v ¼ 3,
and (c) v ¼ 5.
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of training data in the class j. Let the FLD transformation matrix beWF and zi
be a new vector after transformation of yi, USA, i.e., zi ¼ Wi

Fyi. After apply-
ing WF to each scatter matrix, we have

~SSB ¼ Wt
FSBWF ¼

Xc
j¼1

nj( ~mmj � ~mm)( ~mmj � ~mm)t , (4)

~SSW ¼ Wt
FSWWF ¼

Xc
j¼1

Xnj
i¼1

(zji � ~mmj)(z
j
i � ~mmj)

t , (5)

where ~mmj is the sample mean of the class j; zji is the training vector in the class
j after projection; ~mm is the sample mean of all training data after projec-
tion; and t denotes matrix transpose. WF maximizes the cost function,
J(W ) ¼ ~SSB

�� ��= ~SSW
�� �� ¼ WtSBWj j= WtSWWj j when the column vectors of WF

are the eigenvectors of S�1
W SB with the largest nonzero k eigenvalues.14 Note

that k is a reduced dimension that is less than c because the rank of SB is at
most c � 1. In other words, the maximum number of nonzero eigenvalues of
S�1
W SB is c � 1. Therefore, the maximum dimension of the FLD projection for

the c-class problem is c � 1.
We must also consider the constraint by the decision rule. Any sample

covariance or its function for the class j has at most nj � 1 ranks. If we
adopt decision rules based on the statistical distance, the maximum number
of the FLD subspace is also limited by minfnj � 1g, j ¼ 1, . . . , c. Finally, we
get k � minfc � 1, minfnj � 1gg � l.

In the FLD, usually SW is singular because the total number of training data
nt is much less than the dimension of the feature vector d. We can overcome
this problem by applying the PCA first to reduce the dimensionality of the
vector. Reduced dimension of the PCA should be less or equal to nt � c because
the number of independent vectors in SW is at most nt � c. We know that
dimension k in the FLD subspace should satisfy the relation,
k � minfc � 1, minfnj � 1gg � l. So, we can combine them as
k � minfc � 1, minfnj � 1gg � l � nt � c.

The optimal l cannot be decided analytically. Usually, the projected vectors
of smaller eigenvalues include more noise than the vectors corresponding to
larger eigenvalues. However, lower lmay not contain enough energy to properly
represent the characteristics of the object. In this research, l values are cho-
sen heuristically when better results are produced. The FLD combined with
the PCA has two consecutive projections of WP and WF . Final projected
vector in k-dimensional space is z ¼ Wt

F y ¼ Wt
FW

t
Pv with the cost function,

J(WF , WP) ¼ jWt
FW

t
PSBWPWF j=jWt

FW
t
PSWWPWF j.

Figures 5.10{5.14 show basis images of the PCA and FLD subspace at the
selected Gabor jets. The feature vectors contain all the pixels of a single Gabor
jet for illustration. One basis image represents a column vector in the PCA or
PCA{FLD matrix. The dimension of the PCA subspace (l) is set at 3 and the
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dimension of the FLD subspace (k) is 1. Three training data were chosen
randomly for each class. PCA3 is a basis image of the largest eigenvalue and
PCA1 corresponds to a basis image of the smallest eigenvalue.

5.5 Statistical Distance Decision Rule

For the final classification, the discriminant function of the statistical distance
is used according to gj(z) ¼ (z�mj

z)
t(ŜSj

zz)
�1(z�mj

z) where m
j
z is the sample

mean vector of the class j and ŜS
j
zz is the unbiased sample covariance matrix of

the class j. We classify the object z as class ĵj in the following manner:
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Figure 5.10. Basis images for the subspace for 6 randomly chosen training Gabor jets
when u ¼ 1 and v ¼ 1: (a) PCA1, (b) PCA2, (c) PCA3, and (d) FLD.
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Figure 5.11. Basis images for the subspace for 6 randomly chosen training Gabor jets
when u ¼ 2, v ¼ 2: (a) PCA1, (b) PCA2, (c) PCA3, and (d) FLD.
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Figure 5.12. Basis images for the subspace for 6 randomly chosen training Gabor jets
when u ¼ 3, v ¼ 3: (a) PCA1, (b) PCA2, (c) PCA3, and (d) FLD.
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z 2 Cĵj if ĵj ¼ arg j min gj(z), (6)

where Cĵj is the data set of the class ĵj. It is equivalent to ML decision when we
assume Gaussian distribution with the identical covariance. It is also a power-
ful similarity measure while being used for the case of unknown distributions.

5.6 Experimental and Simulation Results

We will present experimental results of object classification using two ap-
proaches: first when geometric features are previously known or extracted
and second when the objects in images are well segmented by the preprocessor.5

The former classification is based on regional feature vectors and the latter on
overall grid feature vectors.

5.6a Regional feature vector

The block diagram of the 3D object classification system is shown in Fig. 5.1.
We use the holograms of 3D objects of two toy cars obtained by phase-
shift holography as described in Section 3. Regional feature vectors are
placed at the positions of two headlights assuming that the positions of
headlights are known. Figure 5.15 illustrates two feature vectors of the car:
jhuv j is the Gabor jet of the input image with the Gabor kernel indexes, u and
v, and v(mrh, nrh) and v(mlh, nlh) are Gabor jet vectors at the positions of
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Figure 5.13. Basis images for the subspace for 6 randomly chosen training Gabor jets
when u ¼ 4, v ¼ 4: (a) PCA1, (b) PCA2, (c) PCA3, and (d) FLD.
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Figure 5.14. Basis images for the subspace for 6 randomly chosen training Gabor jets
when u ¼ 5, v ¼ 5: (a) PCA1, (b) PCA2, (c) PCA3, and (d) FLD.
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the right and left headlight, respectively. The location of each headlight
provides one feature vector that is identical to one Gabor jet vector in
Section 4. The parameters of the Gabor-based wavelet are the same for all
the simulations (s ¼ p, k0 ¼ p=2, d ¼ 2, U ¼ 5, V ¼ 6). Figure 5.16 illus-
trates correct decision rates when the feature vectors of the left headlight
were used.

We perform 1000 runs and average the results. Three training data
were chosen randomly for each class. So, the total number of training data
is 6 at each run, the dimension of the PCA subspace (l) is 2, and the dimension
of the FLD subspace (k) is 1. All image data except for training data were used
for the tests. We adopted the statistical distance decision rule as described in
Section 6. According to Fig. 5.16, correct decision rates of more than 90% are
obtained with a few training data. The overall performance is better for the
second class. It can be interpreted that the car in the second class hasmore salient
features than the car in the first class. (We can recognize this intuitively from
Figs. 5.3 to 5.4.)

Gabor kernels vary from u ¼ 1 to 5 which are the spatial frequency selec-
tions of the Gabor-based wavelet. For each u, Gabor kernels vary from v ¼ 1 to
6, having different orientations in the frequency domain. So, the feature vector
has six components for a fixed u. In Fig. 5.16, u ¼ ALL implies that 30
components of Gabor jets were used. As u is increased, Gabor filtering acts
similar to the low-pass filter of spatial frequencies. When the Gabor filter is
used as a very high spatial frequency filter (u ¼ 1), correct decision
rates decrease due to the speckle noise that can lead to the incorrect classifica-
tions of the label. The simulation shows better results when the feature vectors
corrupted by the speckle noise were not used; that is, when u ¼ 3, 4, or 5 is used
for the classification.

Reconstructed 3D object
Feature vector

Gabor jets|h
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Figure 5.15. Feature vectors from headlights.
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5.6b. Overall grid feature vector

We experiment with the 3D object classification using an overall feature vector
formed at all the nodes of a rectangular grid placed on the object. Assuming
that the 3D objects are segmented in the input scene, we can overlay a grid of a
certain size on the object. The number of nodes is 45; with 9 nodes in the x
direction and 5 nodes in the y direction. One feature vector is composed
of 45 Gabor jet vectors as shown in Fig. 5.17. In this figure, jhuv j is the
Gabor jet of the input image with the Gabor kernel indexes u and v, and
v(m1, n1), v(m 2, n1), . . . , v(m 9, n5) are the Gabor jet vectors at the positions
of nodes in the grid. When the objects are not well segmented or include
deformations or occlusions, we can apply a similarity matching technique,
such as ‘‘dynamic link association.23,24’’

In this experiment, the Gabor jet vector is obtained by using 30 different
Gabor kernels. So, the dimension of the feature vector is 270 when u ranges from
1 to 5 and 1350when u is denoted as ‘‘ALL’’ in Figs. 5.18 and 5.19. The number of
training data is also 3 for each class. We perform 1000 runs and average the
results. Figures 5.18 and 5.19 illustrate the correct decision rates when the
feature vectors of the overall grid technique were used. The dimensions of the
PCA space (l) and the FLD space (k) in Fig. 5.18 are the same as in the
simulation of the regional feature vector. In Fig. 19, the PCA dimension is 4.
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Figure 5.16. Correct decision rate (%) of feature vectors from the left headlight. ALL
implies that 30 components of Gabor jets were used.
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Figure 5.17. Feature vectors at nodes of a grid.
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Figure 5.18. Correct decision rate (%) of feature vectors from the overall grid (l ¼ 2).
ALL implies that 1350 components of Gabor jets were used.
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Note that possible values of l range from 2 to 4. In Fig. 5.19, when n equals
to 1, correct decision rates are less than 90% due to the speckle effects.
The effects of speckle noise for the high frequency Gabor kernels can be obse-
rved for small u. The Gabor kernels of u ¼ 3---5 provide the best result in the
experiments.

5.7 Conclusions

In this research, a 3D object classification technique using a single hologram
has been presented. The PCA{FLD classifier with feature vectors based on
Gabor wavelets has been utilized for this purpose. Training and test data of the
3D objects were obtained by computational holographic imaging. We were able
to classify 3D objects used in the experiments with a few reconstructed planes
of the hologram. The Gabor approach appears to be a good feature extractor
for hologram-based 3D classification. The FLD combined with the PCA proved
to be a very efficient classifier even with a few training data. Substantial
dimensionality reduction was achieved by using the proposed technique for
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Figure 5.19. Correct decision rate (%) of feature vectors from the overall grid (l ¼ 4).
ALL implies that 1350 components of Gabor jets were used.
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3D classification problem using holographic imaging. As a consequence, we
were able to classify different classes of 3D objects using computer-reconstruc-
ted holographic images.
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6.0 Introduction

There are challenges and benefits in three-dimensional (3D) object recogni-
tion. In addition to conventional issues in two-dimensional (2D) object recog-
nition, there have been new challenges facing us with 3D information. One of
the challenges is to reconstruct 3D structure itself. Various techniques have
been developed to constitute 3D structure according to applications and
environments. More accurate acquisition of 3D information on the objects
leads to more successful recognition. Another challenge regarding 3D object
recognition is that it generally places high demands on the computation
and storage of data due to the huge amount of 3D information. Despite
these drawbacks of 3D object recognition, a growing amount of research
represents potential advantages in studying 3D space.1{25

In this chapter, we present distortion-tolerant 3D volume object recogni-
tion. Volume information is reconstructed by an advanced X-ray imaging
technique, called Uniform Simultaneous Algebraic Reconstruction Technique
(USART). It was improved by employing spherical voxel elements for fast
implementation and accurate estimation of voxel density.26,27

The proposed object recognition system is composed of three stages as
shown in Fig. 6.1: feature extraction, feature matching, and decision making.
For feature extraction, the conventional 2D Gabor filtering28{30 is extended
to 3D space in order to analyze volume data. The Gabor feature is a multi-
resolution representation of object structure and energy in spatial frequency
domain. Three-dimensional Gabor filtering extracts salient features according
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to 3D location, spatial frequency, and bandwidth. We also achieve dimension-
ality reduction by sampling Gabor features on 3D volume objects.

Dynamic Link Association (DLA) is a graph-matching technique between a
reference and an unknown input object. Theoretically, the DLA scheme is
tolerant to any distortion, rotation, and scaling of input objects. Since the
main idea of the DLA was proposed in Ref. 31 many efforts have been made to
apply the DLA to realistic problems.32{35 Lades et al.32 propose Elastic Graph
Matching (EGM) to realize the DLA in suboptimal way.

In this chapter, we extend the 2D DLA technique to 3D space and modify it
in a simple and straightforward way. The modified DLA scheme is equipped
with 3D rotation-tolerant property and efficient realization allowing distortion
to some extent. Similar to the conventional model, the modified DLA scheme is
composed of two stages: coarse matching and fine matching. However, during
the coarse matching stage we search for the best-matched orientation as well as
position of the 3D rigid graph, which is placed on the input scene. Rotation-
invariant feature vectors are computed from selected Gabor jets. During the
fine-matching stage, nodes of the graph are elastically moved by searching for
the best-matched positions. We also develop sequential and recursive realiza-
tion for the fine-matching stage.

As the final step, we employ a statistical testing to classify unknown input
objects. It evaluates the statistical significance of each reference after the
feature matching.

The main contributions of this chapter can be summarized as: 1) Applica-
tion of 3D Gabor-based wavelets to volumetric information for feature extrac-
tion and dimensionality reduction; 2) Extension of the 2D DLA method to 3D
DLA with innovations (i.e., rotation and distortion-tolerant properties and
efficient realization); and 3) Proposed volume feature extraction/matching/
recognition technique not limited to presented volume data. (we can apply this
technique to any volumetric information).

In Section 6.1, we briefly summarize the USART and demonstrate the
reconstructed volume data. The 3D Gabor-based wavelets and the 3D DLA
are presented in Sections 6.2 and 6.3, respectively. Statistical testing is
explained in Section 6.4. In Section 6.5, experimental results and performance
analysis are demonstrated. Conclusions follow in Section 6.6.

3D object
reconstruction 3D object recognition

Feature extraction

OutputSignificance
testing

Feature matching

Decision making

Refence
objects

Input
object

X-ray
imaging

X-ray
imaging

3D Gabor
filtering

3D Gabor
filtering

Rigid
graph

matching

Elastic
graph

matching

Figure 6.1. Frameworks of 3D volume object reconstruction and recognition.
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6.1 Three-dimensional Volume Reconstruction
by X-ray Imaging

In this chapter, the 3D volume reconstruction of X-ray imaging is achieved by
the USART. The USART estimates voxel density by combining several X-ray
images, which are projected from different perspective angles. The USART has
been improved by employing spherical voxel elements for fast implementation
and accurate estimation.27 In this section, we briefly revisit the USART tech-
nique using spherical voxel elements and present several volume objects.

6.1.1 Overview of the USART

Figure 6.2 shows the X-ray imaging system.26,27 The system consists of a
scanning X-ray source, a stage, and an X-ray digital imaging device;
Xs, s ¼ 1, . . . , S denotes the position which the X-ray source is electromagnet-
ically scanned to; Is(us, vs) is a gray scale image exposed on the X-ray imaging
device corresponding to Xs;us and vs are coordinates in x and y directions from
the reference point Ps. We image one stationary object from S different views.

y

z

x

X1
Xs

X-ray tube

3D object

Electro-magnetic
X-ray control unit

x−y stage

Image 1 I1 (u1,v1)

Image S

X-ray imaging device

Is (us,vs)

P1

Ps
us

vs

u1

v1

Figure 6.2. X-ray imaging system.
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A fast USART has been implemented by means of the spherical voxel model
instead of conventional cube voxels. Figure 6.3 shows X-ray projection and
reconstruction model of the spherical-voxel USART. Reconstruction process of
the spherical-voxel USART is:

f̂fi(t þ 1) ¼ f̂fi(t)þ
lu
S

XS
s¼1

1

Ds
i

(gsi (t)� hsi (t)), (3)

where f̂fi(t) is a density estimate of the voxel i after t iterations; lu is a relaxation
parameter which controls the convergence of the estimation. We assume an
interpolated ray Vs

i is emitted from the X-ray source s and passes through the
center of the voxel i; gsi (t) is a measured value and hsi (t) is a modeled value of the
Vs

i on the image plane; and Ds
i is the total intersection length of the Vs

i in the
whole reconstruction boundary. The projection of the Vs

i is modeled as:

hsi (t) ¼ d
XP
p¼1

~ff i,sp (t), (4)

where d is the diameter of spherical voxels; ~ff
i,s
p (t) is the density of the sphere p

on the Vs
i after t iterations; ~ff

i,s
p (t) can be computed by the interpolation of

X-ray source
1 S

h1
i

hs
i

f1

f1

fN

Ωl
i Ωs

 i

Spherical
reconstruction

boundary

Reconstrution
region

Figure 6.3. X-ray projection and reconstruction model.
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density estimates of neighbor voxels of the voxel i; and P is the number of
spheres on the Vs

i in the spherical reconstruction boundary. It is noted that the
computation of geometric parameter is not required for the spherical-voxel
USART. It results in great saving of computational time and memory.

6.1.2 Volume Objects Reconstructed by the Spherical
Voxel USART

We present five classes of volume objects reconstructed by the spherical-voxel
USART: pyramid, hemisphere, cone, short screw (screw number 1), and long
screw (screw number 2). X-ray images of pyramid, hemisphere, and cone data
are synthesized from their geometric models. For two screws, experimental
data are obtained. Their geometric models of three classes of objects and real
images of two types of screws are shown in Fig. 6.4.

Eight X-ray images are used for volume reconstruction and the size of
volume data is 60� 60� 60 voxels. Figure 6.5 shows the outer surface and
inner structure of the 3D screw (screw number 1) after one and 30 iterations of
the USART reconstruction. The voxel density is normalized so that the max-
imum value is 100. The outer surface represents the mean value of voxel density
in each object. As shown in Fig. 6.5, the artifact errors decrease as the USART
iteration reconstruction process is increased. The reconstruction error is defined
by the difference between the measured value gsi (t) and the modeled value hsi (t)

50�

1mm

4 mm4 mm

50�

4 mm
(a) (b) (c)

(e)(d)

4 mm

f2 mm

3 mm

f3 mm

Figure 6.4. Object models for synthetic X-ray data: (a) pyramid, (b) hemisphere, (c)
cone and 3D images for experimental X-ray data, (d) screw number 1, and (e) screw
number 2.
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Screw 1 (USART iteration= 1) sliced at x = 30

sliced at z = 30sliced at y = 30
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Figure 6.5. Three-dimensional volume object of screw number 1 and sliced views at
x ¼ 30, y ¼ 30, and z ¼ 30 after USART (a) 1 iteration and (b) 30 iterations.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap06 Final Proof page 120 27.10.2005 10:43am

120 S. Yeom et al.



of the X-ray projection. It was shown that the reconstruction errors approach
steady state levels after 20{30 USART iterations.27

6.2 Three-dimensional Gabor Filtering and Feature
Vector Extraction

In this section, we discuss 3D Gabor-based wavelets and present Gabor jets of
volume objects. We employ 3D Gabor wavelets for feature extraction and data
reduction of volume objects.

6.2.1 Three-dimension Gabor-based Wavelets

The 2D Gabor filter acts as a bandpass filter with the special selection of
passband according to its Gaussian envelope and the carrier frequency of the
complex plane wave.28{30 The 2D Gabor wavelets can be easily extended to 3D
dimensions. The 3D impulse response (or kernel) of the Gabor-based wavelets is:

g(x) ¼ kj j3

s3
exp � kj j2 xj j2

2s2

 !
exp (jk � x)� exp �s2

2

� �� �
(5)

where x is a position vector, k is a wave number vector, and s is the standard
deviation of 3D Gaussian envelope. The size of the Gaussian envelope is the
same in x, y, and z directions, which is proportional to

ffiffiffi
2

p
s=jkj. The second

term in the square brackets, exp (� s2=2) subtracts the DC value so it has zero
mean response30. The frequency response of g(x),G(k0) is given by:

G(k0) ¼ (2p)3=2 exp � s2

2jkj2
jk0 � kj2

" #
� exp � s2

2jkj2
(jk0j2 þ jkj2)

" #( )
(6)

The sampling of k is done by klmn ¼ k0n[ sin ul cosfm sin ul sinfm cos ul ]
t ,

and ul ¼ [(l � 1)]=L]p, and fm ¼ [(m � 1)=M ]p, and k0n ¼ k0=d
n�1 where

l ¼ 1, . . . , L, m ¼ 1, . . . , M , and n ¼ 1, . . . , N ; k0n is the magnitude of the
wave number vector; fm is the azimuth angle; ul is the elevation; d is
the spacing factor in the frequency domain; l, m, and n are the indexes
of the Gabor kernels; L, M, and N are the total numbers of decompositions
along two tangential axes and a radial axis, respectively; and t denotes a matrix
transpose throughout this chapter. The carrier frequency of the bandpass filter is
determined by k. The Gabor-based wavelets are sensitive to the direction
of edges. It has strong response if k is perpendicular to the direction of edges.

6.2.2 Feature Vector Extraction

We can define glmn(x) by sampling k as klmn . Let hlmn(x) be the output of the
filtered input volume V(x) after convolution with glmn(x):
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hlmn(x, y, z) ¼
XLx

x 0¼1

XLy

y 0¼1

XLz

z 0¼1

glmn(x � x 0, y � y0, z � z 0)V (x 0, y0, z 0), (7)

whereLx , Ly, andLz is thesizeofvolumedata inx,y, and zdirections, respectively;
hlmn(x) is also called ‘‘Gabor coefficient’’ and the magnitude of the Gabor coeffi-
cient is called ‘‘Gabor jet’’. OneGabor jet vector is composed of a set of theGabor
jets: v(x)� fjhlmn(x)j; l¼1,..., L, m¼1,..., M, n¼1, . . . , Ng.

6.3 3D Modified Dynamic Link Association (DLA)

In this section, we extend the 2D DLA technique to 3D space for comparison of
two-volume objects. The proposed system is composed of two stages: ‘‘Rigid
Graph Matching (RGM)’’ and ‘‘Elastic Graph Matching (EGM).’’ The EGM is
often referred to as the entire suboptimal system for the DLA in the literature. In
this chapter, we use EGM to refer to only the finematching stage, while we adopt
another term, ‘‘RGM’’ for the coarse matching stage.

6.3.1 Rigid Graph Matching (RGM) with
Rotation-tolerant Property

We employ 3D graphs of regular hexahedron as shown in Figs. 6.6 and 6.7;
however, any arbitrary graph can be used for the 3D DLA technique. Let R and
S be two identical and rigid 3D graphs placed on the reference and unknown
input data, respectively. During the RGM, we search for the best-matched
position and orientation of the graph S with respect to the graph R.

We can describe any rigid motion of the graph S by a translation vector and
a rotation matrix. Let p be a 3D translation vector: p ¼ [pxpypz ]

t and e be a
vector of three Euler angles: e ¼ [wuc]t . Any rigid motion of the graph can be
modeled as:

xiðp; eÞ ¼ A(e) x0
i � x0

c


 �
þ p, i ¼ 1, . . . , K, (8)

where x0
i and x0

c are, respectively, the position of the node i and the center of
the graph which is located at the origin without rotation; K is the total number
of nodes in the graph; and A is a rotation matrix which is determined by e.’’
Any 3D rotation can be defined by a general rotation matrix A ¼ BCD:

D ¼
cosw sinw 0

� sinw cosw 0

0 0 1

2
64

3
75, C ¼

1 0 0

0 cos u sin u

0 � sin u cos u

2
64

3
75,

B ¼
cosc sinc 0

� sinc cosc 0

0 0 1

2
64

3
75,

(9)
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Reference: Pyramid
(USART iteration = 1) - Intial state sliced at x = 30

sliced at y = 30 sliced at z = 30
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Figure 6.6. Results of the experiment in Section 6.5.1. The reference is the pyramid
after 30 USART iterations and the input is the pyramid at the first iteration, which
is distorted severely: (a) reference object, (b) input object at the initial state of RGM,

(Continued)
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(c)
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Figure 6.6. (Cont’d) (c) input object after RGM, and (d) input object after EGM,
(a)(d): sliced views of the object at x ¼ 30, y ¼ 30, and z ¼ 30.
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Reference; Cone
(USART iteration = 30) viewed at x−y plane

viewed at y−z plane viewed at z−x plane
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Figure 6.7. Results of the experiment in Section 6.5.2. The reference is a cone
after 30USARTiterations and the input is a coneafter 30USARTiterationswith rotation.
The input object is rotated with the rotation angle set 5 (w ¼ 30	, u ¼ �608, c ¼ 08):
(a) reference object, (b) input object at the initial state of RGM,

(Continued)
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Figure 6.7. (Cont’d) (c) input object after RGM, and (d) input object after EGM,
(a)(d) objects from four different perspectives.
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where the first rotation (D) is by an angle w about the z-axis; the second one
(C) is by an angle u 2 [0, p] about the x-axis; and the third one (B) is by an
angle c about the z-axis again. All axes are rotated in counterclockwise direc-
tion. It is noted that p corresponds to the position vector of the central node in
the graph S.

We search for the best-matched position and orientation of the graph S by
maximizing a cost function CRGM :

fp̂p, êeg ¼ argmax
p,e

CRGM (p, e), (10)

CRGM (p, e) ¼
XK
i¼1

ci(p, e), (11)

where p̂p and êe are the estimates of the location and orientation of the graph S.
A node cost ci is the cross-correlation coefficient of two function vectors:

ci(p, e) �
hf [vr(xi)],f [vs(xi(p, e))]i

k f [vr(xi)]kk f [vs(xi(p, e))]k
, i ¼ 1, . . . , K , (12)

where vr(xi) and vs(xi) are the Gabor jet vectors defined at xi in the graph R
and xi(p, e) in the graph S, respectively.’’ The rotation-invariant property can
be achieved simply by adding up all the Gabor jets along two tangential axes in
3D frequency domain. Therefore, we define a new feature vector f as:

f(v) ¼
f1(v)

..

.

fN (v)

2
64

3
75, where fn(v) ¼

XL
l¼1

XM
m¼1

vlmn , (13)

where L, M, and N are the total numbers of decompositions for the 3D Gabor
wavelets in two tangential axes and one radial axis in 3D frequency domain.
We combine total L�M orientations of Gabor jets to obtain the rotation-
invariant feature vector.

Ideally, we can maximize CRGM by searching all possible voxel displace-
ments in 3D integer domain and Euler angles in 3D real domain. In the
experiment, we use a predetermined searching interval Dp to reduce computa-
tional burdens. The searching process is performed by p ¼ [pxpypz ]

tDp, where
px ¼ 1, . . . ,Lx=DP , py ¼ 1, . . . , Ly=DP pz ¼ 1, . . . , Lz=DP . The searching pro-
cess for Euler angles is also restricted by a pre-determined searching angle De.
Allowing large computational cost, we may choose the smallest interval Dp ¼ 1
for the searching interval and De ¼ tan�1 (1=Lmin) ffi 1=Lmin for the searching
angle; Lmin ¼ minfLx , Ly, Lzg, where Lx , Ly, and Lz are the size of volume data
in x, y, and z directions, respectively; and 1=Lmin is approximately the lowest
value of the angle when a voxel moves to the nearest neighbor at the end of the
volume data by rotation. In the experiments, we set Dp and De arbitrary values
with consideration of the computational load.

Another consideration is that the Gabor jet vectors are only defined at
integer domain, which is natural for image data. An arbitrary rotation can
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convert the integer vector into real noninteger values. In that case, we simply
apply the 3D Nearest Neighbor interpolation method to overcome this problem
in the experiments.

6.3.2 Elastic Graph Matching (EGM) with Sequential
and Recursive Realization

The graph S has elastic property during the EGM. We change nodes’ positions
independently by maximizing a cost function CEGM:

fx̂xs
1, . . . ,x̂x

s
Kg ¼ arg max

x1,..., xK

CEGM (fxs
1, . . . , x

s
Kg;p̂p, êe), (14)

CEGM �
XK
i¼1

ci(p̂p, êe)� l
X

(i,j)2ER,ES

k Dr
ij � Ds

ij k2

¼ CRGM (p̂p, êe)� l
X

(i,j)2ER,ES

k Dr
ij � Ds

ij k2 ,
(15)

where xr
i is the position vector of the node i in the graph R; xs

i is the position
vector of the node i in the graph S; K is the total number of nodes in the graph;
and p̂p and êe are the estimates of position and orientation during the RGM,
respectively. We define Dr

ij � xr
i � xr

j and Ds
ij � xs

i � xs
j ; (i, j) indicates an

edge composed of the node i and the node j; the node j can be one of the six
nearest neighbors of the node i in the regular hexahedron graph. Let ER and ES

be sets of node pairs in the graph R and the graph S, respectively. Two sets are
composed of one-to-one corresponding nodes and edges. Note that we have
already estimated p̂p and êe during the RGM. The initial location and orienta-
tion of the graph S for the EGM are computed by p̂p and êe. During the EGM, we
relocate all nodes’ positions in the elastic graph S.

The parameter l controls the flexibility of deformation in the graph S.
During the RGM, the rigidity of the graph implies infinite penalty for any
deformation of the graph. However, during the EGM, we reshape the graph
with less constraint. The first part of CEGM is the same as CRGM. The larger the
value of l, the higher the deformation penalty of the graph S. If l is infinite,
CEGM can be maximized when Dr

ij ¼ Ds
ij for all i and j.

We develop a sequential and recursive method to implement the EGM in fast
and effectivemanner.Table 6.1 demonstrates the overall procedures of theEGM.
All steps are presented in one positive dimension; however, they can be easily
extended to 2D and 3D space. We simplify the EGM assuming all Euler angle
estimates are equal to zero during the RGM. Let xi be the initial position of the
node i for the EGM. We assume that there exists a global maximum in Eq. (14)
and it is located in the small region around the initial value for the EGM.

At the first step, we set d and l max, where d is a fixed displacement for nodes
in one dimension and l max is a maximum iteration number. We then compute
the initial CEGM at the next step. At step 3, we re-compute CEGM with a new
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node position xsþi and save the node’s index and position if the new position
provides a larger CEGM. This task is sequentially performed for all nodes in the
graph S. At step 4, we place the recorded nodes into new positions. Finally, we
terminate the procedures according to a termination criterion or iterate steps 2
through 5. In this chapter, ‘‘sequential’’ procedures refer to step 3 and ‘‘iter-
ation’’ is used to represent procedures from step 2 to 5.

We described only positive displacement (d > 0) in one dimension. It is
noted that xs�i ¼ xsi � d should be considered for negative displacement. Thus,
in 3D space, one position vector has 6 possible transitions which are
xs�i ¼ xsi � d, ys�i ¼ ysi � d and zs�i ¼ zsi � d.

Recursively, we repeat the whole procedure of Table 6.1 while reducing d
gradually. We use the term ‘‘recursion’’ to represent the repetition of the whole
procedure in Table 6.1 while reducing d, while ‘‘iteration’’ is used to represent
procedures from the steps 2 through step 5 with a fixed d. Different EGM
recursions are demonstrated in Section 6.7.

6.4 Statistical Significance Testing

At the final stage, we decide the class of input objects by statistical significance
testing used in Refs. 32 and 33. Let Csri denote CEGM which is computed with a
reference object ri and an unknown input object s. We order Csri in descending
sequence, i.e.Csri > Csriþ1

8i 2 f0,1, . . . , Nr � 1gwhereNr is the total number of
references. We decide the input object s to be the same class as the reference r0
if k1,s > t1 or k2,s > t2, where k1,s ¼ (Csr0 � Csr1 )=s and k2,s ¼ (Csr0 �m)=s; r0

Table 6.1. Procedures for the EGM.

Step Procedures

Set 0 < d � de (e.q. d ¼ de=2, de is edge size)
Step 1 Set maximum iteration number lmax

Let l ¼ 0
Let l ¼ l þ 1

Step 2 Let node index i ¼ 0
Compute C0 ¼ CEGM (fxs

1, . . . , x
s
Kg;p̂p, êe)

Let i ¼ i þ 1 and xsþi ¼ xsi þ d
Step 3 Re-compute the EGM cost:

Cþ
i ¼ CEGM (fxs

1, . . . , x
sþ
i , . . . , xs

Kg;p̂p, êe)
Record i and xsþi if Cþ

i > C0

Go to Step 3 until i ¼ K
Step 4 Change xsi ¼ xsi þ d for all the saved nodes ‘‘i’s.’’

Terminate if there is no recorded nodes in Step 4
Step 5 or l 
 lmax

Otherwise, Go to Step 2
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is the reference of the maximumCEGM amongNr references;m is the mean and s
is the standard deviation of the set fCsri ji ¼ 1, . . . ,Nr � 1g; thresholds t1 and t2
are determined heuristically in the experiment.

We also use two parameters for the performance evaluation:

PD ¼ Number of correct decisions(ND)

Total number of input objects(NO)
� 100(%), (16)

PF ¼ Number of wrong decisions(NF)

Total number of input objects(NO)
� 100(%), (17)

where PD indicates the correct decision rate; NO is the number of input data
tested; ND is the number of correct decisions accepted by the statistical signifi-
cance test; PF is the false alarm probability; and NF is the number of wrong
decisions which are falsely accepted.

6.5 Experimental Result and Performance Analysis

We will present two experiments for the 3D object recognition task: one
involves the distortion of input objects and the other their rotation. The former
is an experiment based on input objects, which are reconstructed at all USART
iterations. The latter is based on input objects reconstructed from the rotated
objects at the 30th USART iteration.

The design parameters of the 3D Gabor-based wavelets are the same thro-
ughout this chapter (s ¼ p, k0 ¼ p=2, d ¼ 2, L ¼ 4, M ¼ 3, N ¼ 4). There-
fore, one Gabor jet vector at one node is composed of 48 Gabor jets and the
dimension of the feature vector is 4 in Eq. (13). The 3D graph of a 7� 7� 7 grid
is used for theRGMand a 5� 5� 5 grid for the EGM, and the edge size (de) is set
at 8 voxels. We determine the thresholds t1 ¼ 0:1 and t2 ¼ 0:8 for the first
experiment and t1 ¼ 0:05 and t2 ¼ 0:7 for the second experiment. Those param-
eters are chosen heuristically when better results are obtained. The control
parameter l is set at 10�5; d is set at 4 voxels for the first EGM recursion, 2 for
the second and 1 for the third.

We experiment with five classes of volume objects: pyramid, hemisphere,
cone, and screw number 1 and 2. The performance is analyzed in terms of Mean
Absolute Error (MAE) and the experiments with different EGM recursions and
the control parameter l are also presented.

6.5.1 Distortion-tolerant Object Recognition

In the first experiment, we perform five different tests according to five different
classes of input object sets. Each test has five classes of references and 16 input
volume data for each class. For the reference objects, we choose the reconstructed
volume objects after 30 iterations of the USART. The input data are composed
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of volume data after the reconstruction of odd number iterations and the refer-
ence itself, that is, volume objects after 1, 3, . . . , 29 and 30 USART iterations.

The center of the graph R is placed at a fixed position [30 30 30]t . The
center of the graph S is initially placed at [15 15 15]t . The searching interval Dp

is 5 voxels for all three coordinates in 3D space.
Figure 6.6 shows an example of distortion-tolerant object recognition. The

RGM process turns out to be a robust detection and aligning process for
distorted input objects. We have a finer matching process during the EGM.
In Fig. 6.6, the reference is a pyramid after 30 USART iterations and the input
is a pyramid at the first iteration. As shown in Fig. 6.7 (b){(d), the input object
is severely distorted because of artifact errors. However, we successfully recog-
nize the input object to be in the same class as the reference object. Table 6.2
shows the overall result of the first experiment.

For the input data set of the screw number 1, ND is 15; but NF is zero
because the reference of the maximum CEGM is rejected by the statistical
significance test.

6.5.2 Rotation-tolerant Object Recognition

In the second experiment, we test rotation-tolerant object recognition. We
perform five different tests according to five different classes of input object
sets. Each test has five references and five input volume objects. References are
the same as in the previous experiment in Section 6.5.1. Input data are com-
posed of reconstructed volume from rotated 3D objects. All input objects are
reconstructed with 30 USART iterations. Five different angle sets for rotated
input objects are shown in Table 6.3. For the screw number 1 and 2, we rotate
reconstructed volume objects computationally using the 3D cubic interpolation
according to each rotation angle set.

The graph R and the initial graph S are placed at the same locations as in
the previous experiment. We search the best-matched orientation angle as well
as the best-matched location during the RGM. We set the searching angle for
the rotation De as 158 for all three Euler angles.

Table 6.2. The overall performance of the distortion-tolerant object recognition.

Test Set Pyramid Hemisphere Cone Screw #1 Screw #2

No 16 16 16 16 16
ND 16 15 14 15 15
NF 0 1 2 0 1
PD (%) 100 93.33 86.67 93.33 93.33
PF (%) 0 6.67 13.33 0 6.67
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Figure 6.7 shows examples of the rotation-tolerant object recognition. In
Fig. 6.7, the reference is a cone after 30 USART iterations. The input object is a
cone rotated along the rotation angle set 5 (w ¼ 308, u ¼ �608, c ¼ 08) and
reconstructed at the 30-th iteration. The system successfully classifies the input
object with correct angle estimates. Table 6.4 shows the overall performance of
the rotation-tolerant object recognition. The recognition is performed success-
fully for most of the input data. All estimated angles are correct except for the
rotation angle sets 3  5 of the hemisphere.

6.5.3 Performance Analysis

There are many factors affecting the performance of the 3D volume object
recognition. We analyze the performance according to the similarity between
references and input objects. The analysis is only concentrated on distortion-
tolerant object recognition. Mean Absolute Error (MAE) is employed for our
similarity measure. It is a matching criterion often used in motion-estimation
process in image compression.36 We define the MAE between the reference and
the input volume with the location estimate p̂p ¼ [p̂px p̂py p̂pz ]Dp:

MAE ¼ 1

LxLyLz

XLx

x¼1

XLy

y¼1

XLz

z¼1

� VS(x � p̂pxDp, y � p̂pyDp, z � p̂pzDp)� VR(x, y, z)
�� ��, (18)

where VR is the reference and VS is the input volume; Lx , Ly, and Lz are the size
of volume data in x, y, and z direction, respectively.

Table 6.3. Five rotation angle sets for rotated objects.

Rotation angle w(8) u(8) c(8)

Set 1 30 0 0
Set 2 45 0 0
Set 3 30 �30 0
Set 4 30 �45 0
Set 5 30 �60 0

Table 6.4. The overall performance of the rotation-tolerant object recognition.

Test Set Pyramid Hemisphere Cone Screw #1 Screw #2

No 5 5 5 5 5
ND 4 4 5 5 5
NF 1 1 0 0 0
PD(%) 80 80 100 100 100
PF (%) 20 20 0 0 0
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Figure 6.8(a) shows MAE when the class of input objects is the cone. MAE
is computed for five reference objects. Figure 6.8(b) shows CEGM. The x-axis
shows the number of the USART iterations of input objects. Figure 6.9(a) and
(b) showMAE and CEGM when the input class is the screw number 1. As shown
in Figs. 6.8 and 6.9, MAE is smaller when the reference is identified as being of
the same class as the input object. It also decreases as the number of the
USART iterations increases. When MAE is similar among different reference
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Figure 6.8. Performance analyses from the experiment in Section 6.5.1. The input is
the cone after 1, 3, . . . , 29 and 30 USART iterations. The reference image is composed of
five objects after 30 USART iterations. Horizontal axis shows the USART iteration
number of input object: (a) MAE and (b) CEGM.
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objects, the recognition process has difficulty obtaining correct results Also,
when MAE is too large (i.e. similarity is too low) between the input and the
true reference, the recognition can fail, providing the highest CEGM from a
wrong reference object.

We investigate the effects of the recursive EGM process. The EGM recursion
was one (d ¼ 4) in Fig. 6.8(b). Figure 6.10(a) shows the results of two EGM
recursions (d ¼ 4, and 2). Figure 6.10(b) shows the results of three EGM recur-
sions (d ¼ 4, 2, and 1). Figure 6.8(b), 11(a), and 11(b) show thatCEGM becomes
larger with more recursions although the overall shapes of CEGM are similar.
Figure 6.11(a) and (b) show the effect of different l’s. Figure 6.8(b) shows the
results of l ¼ 10�5. Figure 6.11(a) and (b) are the results of l ¼ 10�4 and
l ¼ 10�6, respectively. Large l implies higher penalty for the graph deformation.
A larger lmay provide better results, preservingwith less graph deformation but
the total cost is proven to become smaller as shown in Fig. 6.11(a).

6.6 Conclusions

In this chapter, we have presented 3D distortion-tolerant volume recognition
using 3D modified DLA technique based on 3D Gabor feature vectors. Rota-
tion-invariant features are extracted and constructed by the 3D Gabor wave-
lets. The 3D Gabor-based wavelets extract localized features of objects
according to 3D spatial frequency and bandwidth, as well as location. The
modified 3D DLA proves to be a reliable recognition technique, which is
tolerant to rotation and distortion. The performance is analyzed in terms of
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the MAE. The effects of different EGM recursions and the control parameter l
are also presented.

The scope of applications of presented recognition technique is very broad.
It can be applied to any 3D volumetric information for alignment, registration,
classification, and identification task.

Some tasks are left for future works. The consideration of noninteger
positioning of nodes would be desirable for certain applications such as nonrigid
objects rotated or facial expressions. We can utilize advanced statistical clas-
sification methods such as linear discriminant analysis with a pool of training
data. More testing with various data and different parameters would be helpful
for constructing more powerful recognition system.
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Abstract: We address three-dimensional (3D) visualization and recognition of micro-
organisms using single-exposure online (SEOL) digital holography. A coherent 3D
microscope-based Mach-Zehnder interferometer records a single online Fresnel digital
hologram of microorganisms. Three-dimensional microscopic images are reconstructed
numerically at different depths by an inverse Fresnel transformation. For recognition,
microbiological objects are segmented by processing the background diffraction field.
Gabor-based wavelets extract feature vectors with multi-oriented and multi-scaled
Gabor kernels. We apply a rigid graph matching (RGM) algorithm to localize
predefined shape features of biological samples. Preliminary experimental and simula-
tion results using sphacelaria alga and Tribonema aequale alga microorganisms
are presented. To the best of our knowledge, this is the first report on 3D visual-
ization and recognition of microorganisms using on-line digital holography with single-
exposure.

7.0 Introduction

Optical information systems have proven to be very useful in the design of two-
dimensional (2D) pattern recognition systems.1{6 Recently, interest in 3D
optical information systems has increased because of its vast potential in
applications such as object recognition, image encryption as well as 3D dis-
play.4,5 Digital holography is attractive for visualization and acquisition of 3D
information for these various applications.7{13
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In this chapter, we address real-time 3D imaging and shape-based recogni-
tion of microorganisms.14 The automatic recognition of living organisms is
accompanied by various challenges. Firstly, they are not rigid objects, they
vary in size and shape, and they can move, grow, and reproduce themselves
depending on growth conditions.15 In particular, bacteria and algae are very
tiny and they have relatively simple morphological traits for image intensity-
based recognition and identification. They may occur as a single cell or form an
association of various complexities according to the environmental conditions.
Therefore, special consideration on the morphological and physiological char-
acteristics of algae and bacteria should be preceded to enhance the recognition
system.

The applications of 3D imaging and recognition systems are very broad. It
may be used to diagnose an infection caused by specific bacteria or detect
biological weapons for security and defense. Identification and quantification
of microorganisms are important in wastewater treatment. Monitoring of
plankton in the ocean may be another application of the microorganism im-
aging and recognition system.

Earlier, various researches had been performed to recognize specific 2D
shapes of microorganisms based on image intensity. The recognition and iden-
tification of tuberculosis bacteria16 and Vibrio cholerae17 have been studied
based on their colors and 2D shapes. In18, bacteria in a wastewater treatment
plant are identified by morphological descriptors. The aggregation of strepto-
myces is classified into different phases by measuring the aggregation size and
reaction time.19 In20, plankton recognition is performed using pre-selected
geometrical features. More research on image analysis and recognition of
microorganism can be found in.21

Our research focuses on a new approach to provide real-time 3D visualiza-
tion, monitoring, and recognition of microorganisms using SEOL digital hol-
ography. Off-axis digital holography has been extensively studied in recent
years because it requires only a single exposure in separating the original
image from the undesired DC and conjugate images. However, off-axis digital
holography has a number of drawbacks. Only a fraction of the space-bandwidth
product of the photo sensor is used to reconstruct the 3D image, which results
in substantially reduced quality of visualization and compromises resolution.
As a result, it reduces the accuracy of object recognition. In addition, the angle
between the object beam and reference beam during the holographic synthesis
is a function of the reconstructed image size, which creates problems in mon-
itoring dynamic scenes containing objects with varying dimensions. Phase-
shifting or on-line digital holography has been proposed to avoid these prob-
lems. This technique requires multiple interferogram recordings with phase
shifts in the reference beam. The multiple exposures are used to remove the
DC and the conjugate images in the interferogram. The Fresnel diffraction field
of the 3D object is obtained. However, this procedure is not suitable for
dynamic events such as moving 3D microorganism and is sensitive to external
noise factors such as environmental vibration and fluctuation. Recently, the
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SEOL digital holography for 3D object recognition was presented to solve these
problems associated with phase-shifting digital holography.22,23 The SEOL
holography can be used for dynamic events because it requires only a single
exposure. The additional benefit of our SEOL digital holography for monitor-
ing of a 3D dynamic time varying scene is that various slices of the 3D
microorganism and the 3D scene can be digitally reconstructed and numerically
focused without mechanical focusing as is required by conventional microscopy.
One important benefit of the proposed technique is that microorganism 3D
images are recorded in both magnitude and phase, which may provide better
classification of algae or bacteria.

In this chapter, we visualize and recognize two filamentous microorganisms
(sphacelaria alga and Tribonema aequale alga) using SEOL digital holography.
Assuming that the microorganisms are individually segmented or they are
sparsely aggregated, we identify two different microbiological objects with
their morphological traits.

The frameworks of our system are composed of several stages as shown
in Fig. 7.1. At the first stage, the SEOL digital holography performs 3D
imaging of micro objects. Utilizing a Mach-Zehnder interferometer, the system
opto{electronically records the complex amplitude distribution generated by
the Fresnel diffraction at a single plane. The 3D information of the wave
transmitted from the microorganisms can be reconstructed from the hologram
at an arbitrary depth plane. Reconstructed images are resized and objects of
interest are segmented at the next stage. We segment foreground objects using
the histogram analysis. Gabor-based wavelets extract salient features by de-
composing them in the spatial frequency domain.24,25

The RGM is a feature matching technique to identify reference shapes.
During the RGM, we search similar shapes with that of the reference data by
measuring similarity and difference between feature vectors. The feature vec-
tors are defined at the nodes of two identical graphs on the reference and the
input images, respectively. The RGM combined with Gabor-based wavelets has
proven to be a robust template matching technique that is invariant to shift,
rotation, and distortion.26

SEOL
digital hologram

Computational
reconstruction

Segmentation and
feature extraction

Graph matching

Reference database

Decision by the
matching results

Unkown
microbiological

sample

Visualization Recognition

Figure 7.1. Frameworks of the 3D visualization and recognition of microbiological
objects.
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In our database, two reference graphs are predetermined in order to repre-
sent unique shape features of the microorganisms. After the graph matching,
the number of detection and the value of feature vectors can be used for further
training processes with a pool of training data.27 In this paper, we present
experimental and simulation results as a preliminary step toward a generic and
human aided 3D image-based recognition system of microorganisms.

The proposed work is beneficial in a number of ways: 1) the microorganisms
are analyzed in 3D topology and coordinates; 2) single-exposure online compu-
tational holographic sensor allows optimization of the space bandwidth prod-
uct for detection as well as robustness to environmental variations during
sensing process; 3) multiple exposures are not required and moving bacteria
can be sensed within the time constant of the detector; 4) complex amplitude of
reconstructed holographic images are decomposed in the spatial frequency
domain by Gabor-based wavelets to extract distinguishable features; and 5) a
pattern-matching technique measures the similarity of 3D geometrical shapes
between a reference microorganism and an unknown sample.

In Section 7.1, we present principles of SEOL digital holography and its
advantages. The segmentation and Gabor-based wavelets are presented in
Sections 7.2 and 7.3, respectively. The graph matching technique is described
in Section 7.5. In Section 7.5, experimental and simulation results are demon-
strated. The conclusions follow in Section 7.6.

7.1 Single Exposure Online (SEOL) Digital Holography

In the following, we present the SEOL technique and its advantages over the
conventional methods. The 3D optical monitoring system using the SEOL
digital holographic recording setup is depicted in Fig. 7.2. Polarized light
from an Argon laser with a center wavelength of 514.5 nm, is expanded by
use of a spatial filter and a collimating lens to provide spatial coherence. A beam
splitter divides the expanded beam into object and reference beams. The object
beam illuminates the microorganism sample and the microscope objective

Ar Laser

SF

Sample
MO

BS2 CCDM2

M1DL BS1

Figure 7.2. Experimental setup for recording an online digital hologram of a micro-
scopic 3D biological object: Ar, Argon laser; SF, Spatial filter; L, lens; D, diaphragm;
BS1, BS2, beam splitter; M1, M2, mirror; MO, microscope objective; CCD, charge
coupled device array.
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produces a magnified image positioned at the image plane of the microscope
[see Fig. 7.3]. The reference beam forms an on-axis interference pattern to-
gether with the light diffracted by the microorganism sample, which is recorded
by the CCD camera. Our system uses no optical components for the phase
retardation in the reference beam, which the phase-shifting digital holography
technique requires. Also, only a single exposure is recorded in our system. In the
following, we describe both on-axis phase-shifting digital holography and
SEOL.

We start by describing on-axis phase-shifting digital holography.12 The
hologram recorded on the CCD can be represented as follows:

Hp(x,y) ¼ [AH (x,y)]
2 þ A2

R þ 2AH (x,y)AR � cos [FH (x,y)� wR � Dwp] (1)

where AH (x,y) and FH (x,y) are the amplitude and phase, respectively, of the
Fresnel complex-amplitude distribution of the micro objects at the recording
plane generated by the object beam; AR is the amplitude of the reference
distribution; wR denotes the constant phase of the reference beam; and Dwp,
where the subscript p is an integer from 1 to 4, denoting the four possible phase
shifts required for on-axis phase-shifting digital holography. The desired bio-
logical object Fresnel wave function, AH (x,y) and FH (x,y) can be obtained
by use of the four interference patterns with different phase shifts
Dwp ¼ 0, p=2, p and 3p=2.

In this chapter, phase-shifting on-axis digital holography with double
exposure, and SEOL digital holography are implemented to obtain experimen-
tal results for the visualization and recognition of 3D biological objects. The
SEOL results are compared with multiple expose phase-shifting digital holo-
graphic results. The double-exposure method requires 1) two interference
patterns that have a p=2 phase difference, 2) the information about a reference

Hologram plane

Image plane

Sample

MO

y�

x�

x

y

Figure 7.3. Coordinate system for digital hologram and image reconstruction of 3D
microorganisms.
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beam, and 3) information about the diffracted biological object beam inten-
sity. The complex amplitude of the microscopic 3D biological object wave at
the hologram plane from the double-exposure method is represented by:

Uh(x,y) ¼ AH (x,y)� cos [FH (x,y)]þ jAH (x,y)� sin [FH (x,y)]

¼ fH1(x,y)�AH (x,y)
2 � A2

Rg=(2AR)þ jfH2(x,y)� AH (x,y)
2

� A2
Rg=(� 2AR) (2)

where H1(x,y) and H2(x,y) can be obtained from Eq. (1). We assume that the
recording between two holograms is uniform and reference beam is plane wave.
The former assumption requires stable recording environment and stationary
objects.

The SEOL digital holography is suitable for recording dynamic fast
events.21 It needs to record only one hologram to gain information about the
complex amplitude of the 3D biological object. The information about the wave
front of a 3D biological object contained in the SEOL digital hologram is
represented by the following term:

Uh0(x,y) ¼ 2AH (x,y)AR � cos (FH (x,y)� wR)

¼ H1(x,y)� jAH (x,y)j2 � A2
R (3)

In Eq. (3), H1(x,y) can be obtained from Eq. (1). To remove DC terms in Eq.
(3), the reference beam intensity jARj2 is removed by a one-time measurement
in the experiment. The object beam intensity jAH (x, y)j2 can be considerably
reduced by use of signal processing (for example, an averaging technique). Even
though SEOL digital holography originally contains a conjugate image, we can
utilize the conjugate image in the interferogram in recognition experiments
since it has information about the biological object. Thus, the 3D biological
object wave function Uh0(x, y) including a conjugate component in Eq. (3) can
be obtained by use of SEOL digital holography. In this paper, we show that the
index Uh0(x, y) in Eq. (3) obtained by a SEOL hologram can be used for 3D
biological object recognition and 3D image formation. The results will be
compared with that of index Uh(x, y) in Eq. (2) obtained by on-line phase-
shifting holography that requires multiple recordings. The microscopic 3D
biological object can be restored by Fresnel propagation of Uh0(x, y), which is
the biological object wave information in the hologram plane. We can numer-
ically reconstruct 3D section images on any parallel plane perpendicular to the
optical axis by computing the following Fresnel transformation with a 2D FFT
algorithm:

Uo0(m
0, n0) ¼ exp [� j

p

ld
(DX2m02 þ DY 2n02)]�

XNx

m¼1

XNy

n¼1

Uh0(m, n) exp

[� j
p

ld
(Dx2m2 þ Dy2n2)] exp [j2p(

mm0

Nx
þ nn0

Ny
)]

(4)
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where Uo0(m
0, n0) and (DX , DY ) are the reconstructed complex amplitude

distribution and resolution at the plane in the biological object beam, respect-
ively; Uh0(m, n) and (Dx, Dy) are the object wave function including a con-
jugate component and resolution at the hologram plane, respectively; and d
represents the distance between the image plane and hologram plane.

7.2 Segmentation

In the following, we present the segmentation of digitally reconstructed holo-
graphic images. Since the coherent light is scattered by the semi-transparent
objects, the intensity in the object region becomes lower than the background
diffraction field. Therefore, for recognition, it is more efficient to filter out un-
necessary background from computationally reconstructed holographic images.

In this chapter, the threshold for the segmentation is obtained by using
histogram analysis. The segmented image (o) is defined as:

o(m, n) ¼ o0(m, n) if o0(m, n) < Is
0 otherwise

�
(5)

where o0(m, n) is the intensity of the holographic image; and m and n are 2D
discrete coordinates in x and y directions, respectively. The threshold Is is
decided from the histogram analysis and the maximum intensity rate:

Is ¼ min [tkmin
, rmax �max (o0)] (6)

where rmax is the maximum intensity rate of coherent light after scattering by
the microorganisms. The threshold tkmin

is a minimum value satisfying the
following equation:

Ps �
1

NT

Xkmin

i¼1

h(ti) (7)

where Ps is a predetermined probability; NT is the number of pixels; h(ti) is the
histogram, i.e., the number of pixels of which intensity is between ti�1 and ti; ti
is the ith quantized intensity level; and kmin is the minimum number of pixels
that satisfies Eq. (7). For the experiments, the total number of intensity levels
is set at 256. Ps and rmax can be decided according to prior knowledge of the
spatial distribution and transmittance of the microorganisms.

7.3 Gabor-based Wavelets and Feature
Vector Extraction

In this section, we provide a brief review of Gabor-based wavelets and present
feature vectors.Gabor-basedwavelets are composed ofmulti-oriented andmulti-
scaled Gaussian-form kernels, which are suitable for local spectral analysis.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap07 Final Proof page 145 27.10.2005 10:43am

7 3D Imaging and Recognition of Microorganism 145



7.3.1 Gabor-based Wavelets

The Gabor-based wavelets have the form of a Gaussian envelope modulated by
the complex sinusoidal functions. The impulse response (or kernel) of the
Gabor-based wavelet is:

g(x) ¼ jkj2

s2
exp � jkj2jxj2

2s2

 !
exp (jk � x)� exp �s2

2

� �� �
(8)

where x is a position vector, k is a wave number vector, and s is the standard
deviation of the Gaussian envelope. By changing the magnitude and direction
of the vector k, we can scale and rotate the Gabor kernel to make self-similar
forms.

We can define a discrete version of the Gabor kernel as guv(m, n) at k ¼ kuv

and x ¼ (m, n), where m and n are discrete coordinates in 2D space in
x and y directions, respectively. Sampling of k is done as kuv ¼ k0u
[ cosFv sinFv ]

t , k0u ¼ k0=d
u�1, and Fv ¼ [(v � 1)=V ]p, u ¼ 1, . . . , U and

v ¼ 1, . . . ,V , where k0u is the magnitude of the wave number vector; Fv is
the azimuth angle of the wave number vector; k0 is the maximum carrier
frequency of the Gabor kernels; d is the spacing factor in the frequency domain;
u and v are the indexes of the Gabor kernels; U and V are the total numbers of
decompositions along the radial and tangential axes, respectively; and t stands
for the matrix transpose.

The Gaussian-envelope in the Gabor filter achieves the minimum space-
bandwidth product.23 Therefore, it is suitable to extract local features with
high frequency bandwidth (small u) kernels and global features with low
frequency bandwidth (large u) kernels. It is noted that the Gabor-based wave-
let has strong response to the edges if the wave number vector k is perpendicu-
lar to the direction of edges.

7.3.2 Feature Vector Extraction

Let huv(m,n) be the filtered output of the image o(m,n) after it is convolved
with the Gabor kernel guv(m,n):

huv(m, n) ¼
XNm

m0¼1

XNn

n0¼1

guv(m �m0, n � n0)o(m0, n0) (9)

where o(m,n) is the normalized image between 0 and 1 after the segmentation;
and Nm and Nn are the size of reconstructed images in x and y directions,
respectively. huv(m,n) is also called the ‘‘Gabor coefficient.’’

A feature vector defined at a pixel (m, n) is composed of a set of the Gabor
coefficients and the segmented image. The rotation-invariant property can be
achieved simply by adding up all the Gabor coefficients along the tangential
axes in the frequency domain. Therefore, we define a rotation-invariant feature
vector v as:
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v(m, n) ¼ o(m,n)
XV
v¼1

h1v(m,n) � � �
XV
v¼1

hUv(m, n)

" #t
(10)

Therefore, the dimension of a feature vector v is U þ 1. In the experiments,
we use only real parts of the feature vector since they are more suitable
to recognize filamentous structures. There is no optimal way to choose the
parameters for the Gabor kernels, but several values are widely used heur-
istically depending on the applications. The parameters are set up at
s ¼ p, k0 ¼ p=2,d ¼ 2

ffiffiffi
2

p
, U ¼ 3, V ¼ 6 in this paper.

7.4 Rigid Graph Matching (RGM)

In this section, we present the RGM technique. Originally, the RGM is part of a
dynamic link association (DLA) to allow elastic deformation of the graph.25

However, we only adopt the RGM part for our microscopic analysis. The RGM
realizes a robust template-matching between two graphs which is tolerant to
translation, rotation, and distortion caused by noisy data.

The graph is defined as a set of nodes associated in the local area. Let R and
S be two identical and rigid graphs placed on the reference (or) object and
unknown input image (os), respectively. The location of the reference graph R
is pre-determined by the translation vector pr and the clockwise rotation angle
ur . A position vector of the node k in the graph R is:

xr
k ¼ A(ur)(x

o
k � xo

c)þ pr , k ¼ 1, . . . , K (11)

where xo
k and xo

c are, respectively, the position of the node k and the center of
the graph which is located at the origin without rotation; K is the total number
of nodes in the graph and A is a rotation matrix.

Assuming the graph R covers a designated shape of the representing char-
acteristic in the reference microorganism, we search the similar local shape by
translating and rotating the graph S on unknown input images. We describe
any rigid motion of the graph S by translation vector p and clock wise rotation
angle u:

xs
k(u,p) ¼ A(u)(xo

k � xo
c)þ p,k ¼ 1, . . . , K (13)

Where xs
k is a position vector of the node k in the graphs S. The transformation

in Eq. (13) allows robustness in detection of rotated and shifted reference
objects.

A similarity function between the graph R and S is defined as:

Grs ¼
1

K

XK
k¼1

gk(u, p), (14)

where the similarity at one node is the normalized inner product of two feature
vectors:
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gk(u, p) �
hv[xr

k ], v[x
s
k(u,p)]i

kv[xr
k ]jjjjv[xs

k(u, p)]k
, k ¼ 1, . . . ,K : (15)

In Eq. (15), h�i stands for the inner product of two vectors; and v[xr
k ] and

v[xs
k(u, p)] are feature vectors defined at xr

i and xs
k(u, p), respectively.

We define a difference cost function to improve discrimination capability of
two graphs R and S as:

Crs ¼
1

K

XK
k¼1

ck(u, p), (16)

where the cost at one node is the norm of difference of two feature vectors:

ck(u, p) ¼ kv[xr
k ]� v[xs

k(u, p)]k, k ¼ 1, . . . , K : (17)

To utilize the depth information of the SEOL hologram, we simultaneously
use multiple references. The similarity function Grj s(uj ;p) and the difference
cost Crjs(uj ; p) are measured by the feature vectors between the graph R on the
image orj and the graph S on the image os. The graph R covers the fixed region
in the reference images, ‘‘orj ’’, j ¼ 1, . . . , J ; J is the total number of reference
images reconstructed at different depths.

The graph S is identified with the reference shape that is covered by the
graph R if two conditions are satisfied as follows:

Accept detection at p if Grĵj s
(ûuĵj ; p) > aG and CrĴJ s

(ûuĵj ;p) < aC (18)

ĵj ¼ max
j

[Gr1s(ûu1;p), . . . ,GrJ s(ûuJ ;p)] (19)

where ĵj is the index of the reference image which produces the maximum
similarity between the graph R and the graph S with the translation vector p
and the rotation angle ûuj ; aG and aC are thresholds for the similarity function
and the difference cost, respectively; and ûuj is obtained by searching the best
matching angle to maximize the similarity function:

ûuj ¼ arg max
u

Grj s(u,p) (20)

7.5 Experiments and Simulation Result

We will present experimental results of visualization and recognition of two
filamentous algae (sphacelaria alga and Tribonema aequale alga). First, we
present our 3D imaging of algae using SEOL holography compared with phase-
shifting on-line digital holography. Second, recognition process using feature
extraction and graph matching are presented to localize the predefined shapes
of two different microorganisms.
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7.5.1 3D Imaging with SEOL Digital Holography

In this subsection, we experimentally compare the 3D algae visualization of the
SEOL digital holography with that of the multiple-exposure phase-shifting on-
line digital holography by experiments. In the experiments presented in this
paper, the images are reconstructed from digital holograms with 2048 � 2048
pixels and a pixel size of 9mm� 9mm. The microorganisms are sandwiched
between two transparent cover slips. The diameter of the sample is around
10  50mm. We generate two holograms for the alga samples. The microscopic
3D biological object was placed at a distance 500 mm from the CCD array as
shown in Fig. 7.2. The results of the reconstructed images from the hologram of
the alga samples are shown in Fig. 7.4. Figure 7.4(a) and (b) show sphacelaria’s
2D image and the digital hologram by SEOL digital holography technique,
respectively. Figure 7.4(c) and (d) are sphacelaria’s reconstructed images from
the blurred digital holograms at distance of d ¼ 180mm and 190 mm, respect-
ively, using the SEOL digital holography. Figure 7.4(e) shows the sphacelaria’s
reconstructed image at distance d ¼ 180mm using phase-shifting online digital
holography with two interferograms, and Fig. 7.4(f) is Tribonema aequale’s
reconstructed image at distance d ¼ 180mm using SEOL digital holography.
In the experiments, we use a weak reference beam for the conjugate image,
which overlaps the original image. As shown in Fig. 7.4, we obtained the
sharpest reconstruction at distance d that is between 180 mm and 190 mm
for both holographic methods. The reconstruction results indicate that we
obtain the focused image by use of SEOL digital holography as well as from
the phase-shifting digital holography. We will show that SEOL digital holog-
raphy may be a useful method for 3D biological object recognition. That is
because the conjugate image in the hologram contains information about the
3D biological object. In addition, SEOL digital holography can be performed
without stringent environmental stability requirements.

7.5.2 3D Microorganism Reconstruction and Feature Extraction

To test the recognition performance, we generate eight hologram samples from
sphacelaria and tribonema aequale, respectively. We denote eight sphacelaria
samples as A1, . . . , A8 and eight tribonema aequale samples as B1, . . . , B8. To
test the robustness of the proposed algorithm, we have changed the position of
the CCD during the experiments resulting in different depths for the sharpest
reconstruction image. The samples A1{A3 are reconstructed at 180 mm,
A4{A6 are reconstructed at 200 mm, and A7 and A8 are reconstructed at
300 mm, and all samples of Tribonema aequale (B1{B8) are reconstructed
at 180 mm for the sharpest images.

Computationally reconstructed holographic images are cropped and re-
duced into an image with 256� 256 pixels by the reduction ratio 0.25. The
probability Ps and the maximum intensity rate rmax for the segmentation are
set at 0.25 and 0.45, respectively. We assume that less than 25% of lower
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4. Experimental results for biological samples (sphacelaria and Tribonema
aequale) by use of a 10� microscope objective: (a) sphacelaria’s 2D image, (b) sphace-
laria’s digital hologram by SEOL digital holography, (c) and (d) sphacelaria’s recon-
structed images by use of SEOL digital holography with only single hologram recording
at distance d ¼ 180mm and 190 mm, respectively, (e) sphacelaria’s reconstructed image
at distance 180 mm using phase-shifting digital holography and (f) tribonema aequale’s
reconstructed image at distance d ¼ 180mm using SEOL digital holography.
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intensity region is occupied by microorganisms and the intensity of microor-
ganisms is less than 45% of the background diffraction field. Figures 7.5(a) and
(b) show the reconstructed and segmented image of a sphacelaria sample (A1),
respectively. Figures 7.5(c){(e) show the real parts of Gabor coefficients in
Section 7.3.2 when u ¼ 1, 2, and 3.

To recognize two filamentous objects that have different thicknesses and
distributions, we select two different reference graphs and place them on the
sample A1 and B1. The results of the recognition process are followed in the
next subsections.

7.5.3 Recognition of Sphacelaria Alga

A rectangular grid is selected as a reference graph for sphacelaria, which shows
regular thickness in the reconstructed images. The reference graph is composed
of 25� 3 nodes and the distance between nodes is 4 pixels in x and y directions.
Therefore, the total number of nodes in the graph is 75. The reference graph R
is located in the sample A1 with ps ¼ [81, 75]t and as shown in Fig. 7.6(a). To
utilize the depth information, four reference images are used. They are recon-
structed at d ¼ 170, 180, 190, and 200 mm, respectively. The threshold aG and
aC are set at 0.65 and 1, respectively. Thresholds are selected heuristically to
produce better results.

Considering the computational load, the graph S is translated by every 3
pixels in x and y directions for measuring its similarity and difference with the
graph R. To search the best matching angles, the graph S is rotated by 7.58
from 0 to 1808 at every translated location. When the positions of rotated nodes
are not integers, they are replaced with the nearest neighbor nodes.

Figure 7.6(b) shows one sample (A8) of test images with the RGM process.
The reference shapes are detected 62 times along the filamentous objects.
Figure 7.6(c) shows the number of detections for 16 samples. The detection
number for A1{A8 varies from 31 to 251 showing strong similarity between the
reference image (A1) and test images (A2{A8) of the same microorganism.
There is no detection found in B1{B8. Figure 7.6(d) shows the maximum
similarity and the minimum difference cost for all samples.

7.5.4 Recognition of Tribonema aequale Alga

To recognize Tribonema aequale, a wider rectangular grid is selected to identify
its thin filamentous structure. The reference graph is composed of 20� 3 nodes
and the distance between nodes is 4 pixels in x direction and 8 pixels in y
direction, therefore, the total number of nodes in the graph is 60. The reference
graph R is located in the sample B1 with ps ¼ [142, 171]t and ur ¼ 908 as
shown in Fig. 7.7(a). Four reference images are used which are reconstructed
at d ¼ 170, 180, 190, and 200 mm, respectively. The threshold aG and aC are
set at 0.8 and 0.65, respectively.
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Figure 7.7(b) shows one sample (B2) of test images with the RGM process.
The reference shapes are detected 26 times along the thin filamentous object.
Figure 7.7(b) shows the number of detections for 16 samples. The detection
number for B1{B8 varies from 5 to 47. One false detection is found in the
sample A7. Figure 7.7(d) shows the maximum similarity and the minimum
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Figure 7.5. Computational reconstruction, segmentation, and feature vector extrac-
tion of the sphacelaria sample A1: (a) reconstructed image at d ¼ 180mm, (b) segmen-
ted image, real parts of Gabor coefficients when (c) u ¼ 1, (d) u ¼ 2, and (e) u ¼ 3.
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difference cost for all samples. As a result, we are able to recognize hologram
samples of two different microorganisms by counting the number of detections
of each reference shape.

For real-time application, computational complexity should be considered.
For numerical reconstruction of the holographic image and Gabor filtering, the
computational time of the algorithm is of the same order as the fast Fourier
transformation (FFT) which is O(N) ¼ N log 2N , where N is the total number
of pixels in the holographic image. For the graph matching, the computational
time depends on the shape and size of the graph, the dimension of the feature
vector, searching steps for the translation vector, and the rotation angle. Since
the largest operation is caused by searching the translation vector, that is
O(N) ¼ N2, the proposed system requires quadratic computational complex-
ity. Therefore, real-time processing can be achieved by developing parallel
processing. Real-time operation is possible because SEOL holography requires
a single exposure. Thus, with high-speed electronics, it is possible to have
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Figure 7.6. Recognition of sphacelaria, (a) reference sample A1 with the graph R,
(b) RGM result of one test sample A8, (c) number of detections, (d) maximum similarity
and minimum difference cost, (a) and (b) are presented by contrast reversal for better
visualization.
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real-time detection. This would not be possible with phase-shift holography,
which requires multiple exposures.

7.6 Conclusion

In this chapter, we have presented preliminary results for human aided recog-
nition of microorganisms by examining their simple morphological traits.
Three-dimensional visualization and recognition of microbiological objects by
SEOL digital holography has been described. 3D imaging and recognition with
SEOL digital holography is robust to movement of objects, and to environ-
mental conditions during recording as compared with multiple exposure phase-
shifting digital holography. Feature extraction is performed by segmentation
and Gabor filtering. They are followed by a feature matching technique to
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Figure 7.7. Recognition of Tribonema aequale, (a) reference sample B1 with the graph
R, (b) RGM result of one test sample B2, (c) number of detections, (d) maximum
similarity and minimum difference cost; (a) and (b) are presented by contrast reversal
for better visualization.
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localize specific shape features of two different microorganisms. In this paper,
we only detect the reference shapes in the unknown samples. However, they can
be used for further training procedures. Indeed, several morphological traits
can be combined to recognize different classes of microorganisms more effi-
ciently.

Implementation of a fully automated recognition system of small living
organisms presents many challenges due to their spatial and temporal vari-
ations. Future work should consider 4D imaging (with consideration of time
frames of 3D imaging), which may be a good solution for this task. Also,
advanced segmentation techniques using phase distribution can be considered
for feature extraction and graph matching. The proposed approach may have
great benefits in medicine, environmental monitoring, and defense applications.
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8.0 Introduction

The technique of integral imaging consists in simultaneously capturing in a
single image multiple views of a three-dimensional (3D) scene. The multiple
views are provided by a microlens array: each microlens generates an elemental
image of the scene obtained from a particular point of view depending on its
location with respect to the scene. These views permit the use of the principle of
triangulation to find information about the depth of the scene. The distance of
a point is obtained by measuring the displacement of the point in the various
elemental images.

This technique of integral imaging is derived from the integral photography
scheme proposed by G. Lippmann as early as 1908 to capture and render 3D
images.1 This technique has recently regained popularity because of its cap-
ability to provide 3D auto-stereoscopic displays2{12 and also thanks to improve-
ments in microlens arrays manufacturing techniques. The original and most
common way of reconstructing the 3D scene is by use of an optical setup similar
to the one used for the acquisition of the integral image.1{3 However, integral
images can also be recorded by a high-definition digital camera. In that case,
the 3D information can be retrieved by an appropriate digital processing.13{16

A digital 3D model of the scene can then be reconstructed in a computer using
this retrieved 3D information. Once the digital reconstruction is done, the 3D
model can easily be visualized and processed as a digital object.

An extremely useful application of the 3D information obtained from
integral images is 3D object recognition. The recognition problem has long
been focused on two-dimensional (2D) techniques.17{22 Only recently have
technological advances permitted to take into account the three dimensions
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of the objects. Several techniques have been investigated such as holo-
graphy,23{25 moving camera,26{27 integral imaging,15,16,25 range images28 or
tomography.29 The interest of integral imaging is not to need a laser or other
type of special illumination. Neither does it require any movement of the object
or of the sensor since an integral image captures several 2D perspectives of a 3D
scene in a single step. Since this collection of perspectives contains information
about the scene depth, it is possible to realize a simple 3D recognition by
computing usual 2D correlations between two integral images. This technique
has the advantage of offering the possibility of an all-optical implementation.30

However, it only provides a global recognition and cannot deal with precise
longitudinal segmentation of the 3D objects. Another technique consists in
using two steps: first a digital reconstruction of the 3D scene from an integral
image, and second a digital 3D correlation between reconstructed scenes.15

The first section of this contribution explains the basic principles of integral
imaging and the properties of an integral image. The second section describes
the extraction of the 3D information from an integral image and the recon-
struction of a digital 3D model of the scene. The third section presents the two
previously mentioned techniques of recognition from integral images and dis-
cusses some properties of the resulting 3D recognitions.

8.1 Principle of Integral Imaging

An integral image is a collection of views of a 3D scene obtained through a
microlens array (Figure 8.1). In our experiments, we used a hexagonal micro-
lens array with microlenses of diameter w ¼ 200mm and focal length around
2.3 mm. Each of these microlenses generates an elemental image of the scene
taken from a different point of view. We make the following assumptions:

(1) The depth of focus of the microlenses is sufficient to assume that the images
of all the objects are obtained in the same plane P, independently of their
longitudinal position in the 3D scene.

(2) The elemental images generated by neighbor microlenses do not overlap
each other.

Imaging lens CCD camera Microlens array3D scene

Figure 8.1. Acquisition of an integral image.
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These conditions can always be obtained by placing the objects sufficiently
far away from the microlenses. In this case, all the images are obtained in a
plane P at distance d � f from the array (Figure 8.2). This plane is then
imaged by an additional lens onto a high-definition CCD camera (Figure
8.1). Except for a magnification coefficient { and some amount of aberrations
that we will neglect { the image obtained at the camera is identical to the one
obtained in the imaging plane P of the microlens array. We will therefore
neglect this last imaging step and we will conduct all the calculations in
plane P.

As can be seen in Figure 8.2, the coordinateXp of an object point projected in
plane P by themicrolens number p depends on the original lateral coordinate x of
the object point as well as on its depth z, according to the following formula:

pw� x

z
¼ Xp � pw

d
, (1)

which yields

Xp ¼ pw 1þ d

z

� �
� d

z
x: (2)

A similar formula can be obtained with the coordinate y. This relation is
illustrated in Figure 8.3 for X0(p ¼ 0). The distance between the projections of
a same object point given by two microlenses p and q is:

Xq �Xp ¼ (q � p)w 1þ d

z

� �
: (3)

0

dz

pjj

Xp

P

c

Figure 8.2. Formation of an elemental image by a microlens { Naming convention.
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Thus, the depth of a given object point can be recovered by comparing the
projections through different microlenses. This is the principle of triangulation.
The first step is therefore to acquire an image of plane P, which contains several
elemental images provided by every microlens. In order to improve the quality of
this image, we digitally enhance its contrast. Moreover, as we do not know the
magnification ratio betweenplanePand the camera,we also need to calibrate our
images.Wedo this calibration by illuminating themicrolens arraywith auniform
plane wave produced by a He{Ne laser. We thus obtain an image with focused
spots that provides the locations { in pixels { of the centers of the microlenses.

8.2 Digital Reconstruction of the Three-dimensional
Scene

In this section, we describe the extraction of the depth information from the
collection of 2D elemental images that compose the integral image. We then use
this information to generate a reconstructed 3Dmodel of the scene by computer.

8.2.1 Retrieval of the 3D Scene Depth

It can be seen on Eq. (3) that two elemental images would be in principle
sufficient to determine the depth z of every point. That is what stereoscopical
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Figure 8.3. Displacement of the projected object point versus distance of the object
point for the central microlens.
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techniques attempt to do. However, the main problem is to find the corres-
pondence between the points of different elemental images. Namely, in order
to measure the projected coordinates Xp, we need to know which point in each
elemental image corresponds to the original object point. The correspondences
of the projected points can be determined by comparing several elemental
images. Compared to mere stereoscopic pairs, our integral images have the
advantage of providing not only two but several perspectives of the 3D object.
The feature matching between only two elemental images can be ambiguous.
On the contrary, the redundancy provided by considering several elemental
images helps to determine which points of the different views actually corres-
pond to each other. According to Eq. (3), one particular feature has to appear
at regular locations among the various elemental images. A distinct object
feature, even if it accidentally appears similar to the first elemental image, will
not appear in consistent locations [in terms of Eq. (3)] in all the elemental
images. Thus, the use of several views permits a more accurate identification of
the features, and therefore, a better determination of the depth. Moreover
some elemental images may present noise due to defective pixels of the
detector or noise in the optical system. In this case, using many images
provides redundancy that lowers the effect of noise. On the other hand, the
camera has a fixed number of pixels and increasing the number of elemental
images obviously reduces the resolution of each of them, hence reducing the
lateral resolution of the reconstructed 3D object. Moreover increasing the
number of elemental images increases the computational load for determining
the depth of each point. In our experiment, the size and number of elemental
images were dictated by the available optical components. An example of our
integral images is shown in Figure 8.4. With our particular configuration, we
found out heuristically that using only 7� 7 of the elemental images (marked
in Figure 8.4) was a good trade-off between computation time and accuracy of
the depth estimation. The optimum number of images may vary with the
configuration and components used.

In order to find the depth of the object points, we use a stereo matching
algorithm that finds the correspondences between points of the various elem-
ental images.13,15 Let us consider one particular point of the central elemental
image { the one corresponding to microlens (0,0). If we fix its depth z arbi-
trarily, we can determine the corresponding points in the other elemental
images according to Eq. (3). We now need to verify that these points are
actual projections of the same object point. This cannot be done by comparing
only one point to another. We need to compare the surroundings of each of
these points. In order to do that, we compute the normalized 2D cross-
correlations between pairs of windows centered on the tested points. The
size of each window is 9� 9 pixels. If I denotes the integral image, the
projection of the inspected object point corresponding to the microlens (p,q)
is I (Xp, Yq). The normalized cross-correlation between the window contained
in the elemental image (p,q) and the one contained in the elemental image
(p’, q’) is:
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C (p, q), (p 0, q 0)½ � ¼

P4
m¼�4

P4
n¼�4

I Xp þm, Yq þ n

 �

I Xp 0 þm,Yq 0 þ n

 �

P4
m¼�4

P4
n¼�4

I 2 Xp þm, Yq þ n

 � P4

m¼�4

P4
n¼�4

I 2 Xp 0 þm, Yq 0 þ n

 �� �1=2 :

(4)

This similarity criterion has the advantage of being independent of the
intensity variations that can occur between two elemental images. We compare
each window with all of its immediate neighbors (horizontally and vertically)
and we add together all the correlation values. This gives us a matching
criterion that we need to maximize:

M (z) ¼
X3
p¼�3

X3
q¼�2

C (p, q � 1), (p,q)½ � þ
X3
q¼�3

X3
p¼�2

C (p� 1, q), (p, q)½ �: (5)

We compute the value of this criterion for a range of assumed depths z. The
depth which yields the highest value for M(z) is the actual depth of the
point under consideration. This procedure is repeated for every point of the
central elementary image in order to obtain the depth of every point in the 3D
scene. Due to the principle of triangulation, for a given setup the longitudinal

Figure 8.4. Example of integral image of a 3D scene. The elemental images marked are
the ones used to determine the scene depth.
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resolution is lower for distant objects than for closer ones (see Figure 8.3). In
addition, longitudinal resolution of the depth estimation is limited by the
resolution of the integral image.16 In our experiments, the accuracy of the z
measurement is about 10 mm. In other words, we are able to reconstruct the
object volume with a voxel depth no smaller than 10 mm. This value of 10 mm
is due to our particular components and distances of the objects.

8.2.2 Correction of the Depth-dependent Magnification Ratio

In the previous subsection, we have described how to compute the z coordinate
of each point of the central elemental image. However, for each of these points,
we only know the projected coordinates X0 and Y0 and we need to find their
actual coordinates x and y in the object space in order to reconstruct a model of
the 3D scene. Knowing their depth z, this can be done using Eq. (2), which
yields:

x ¼ � z

d
X0 and y ¼ � z

d
Y0: (6)

These equations compensate for the well-known fact that distant objects
look smaller than close ones. By using Eq. (6), we can reconstruct their size
independently of their distances from the microlens array. At this stage, we
obtain a 3D reconstruction of the object space and this 3D model can be used to
perform 3D image processing such as correlations.

8.2.3 Example of 3D Reconstruction

In the experiments, we use three planar objects representing three different
geometrical shapes, namely a square, a circle, and a triangle. These shapes are
about 2 mm large and are located between 90 and 120 mm from the microlens
array. The three objects are shown in Figure 8.5(a){(c). These images are the
central elemental images generated by the microlens array. We create two 3D
scenes by placing the square and the circle at various distances from the array.
These scenes can be seen in Figure 8.6(a){(b). We call Scene 1 the scene in
Figure 8.6(a) and Scene 2 the scene in Figure 8.6(b). The elemental images

(a) (b) (c)

Figure 8.5. Isolated planar objects used in the experiments. These views are the
central elemental image of the microlens array.
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obtained with the central microlens of the array are given in Figure 8.7.
Although they look similar, the size of the circle is slightly smaller in Scene 1
[Figure 8.7(a)] than in Scene 2 [Figure 8.7(b)] because in Scene 1 the circle is
located farther away from the square. Figure 8.8 provides a map of the
distances obtained by the matching algorithm for Scene 1 (see Section 8.2.1).
The brighter points correspond to smaller distances of z.

Figure 8.9 illustrates the 3D reconstructions of Scene 1 and Scene 2. The
contrast has been inverted for a better visualization. It can be noticed that, due
to the use of Eq. (6), the circle is now the same size as the square, which was not
the case in Figure 8.7. As mentioned previously, the absolute depth of the
objects is estimated with an accuracy close to 10 mm. The errors can be due to
a wrong estimation value of the distance d between the microlens array and the
projection plane P, or to a poor estimation of the location of the centers of the
microlenses.

(a) (b)

Figure 8.6. Three-dimensional input scenes with the planar objects at various dis-
tances from the detector { (a) Scene 1 { (b) Scene 2.

(a) (b)

Figure 8.7. Elemental images of the 3D input scenes obtained with the central micro-
lens of the array { (a) Scene 1 { (b) Scene 2.
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8.2.4 Digital Visualization of the 3D Scene

The reconstructed 3D model contains the three coordinates of every visible
point of the scene. This data can be used to compute artificial views from any
standpoint, simply by computing projections onto an observation plane. Figure
8.10 illustrates the possibilities of visualization by presenting three artificial

Distanc$ (mm)
 < 85 100 120 140 > 155

Figure 8.8. Depth map of Scene 1 estimated by the stereo matching algorithm.
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Figure 8.9. Three-dimensional models of the reconstructed scenes { (a) Scene 1 { (b)
Scene 2.
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views calculated from different standpoints. Obviously a series of such views
could be combined to generate a movie that would help a viewer to visualize
and understand the original scene.

8.3 Three-dimensional Object Recognition

Integral images are not only useful for 3D visualization. They can also be used
in 3D object recognition problems. The recognition process can be performed
either directly on the raw integral image or on the reconstructed 3D scenes
obtained as described in the previous section. In this section we present both
techniques and we discuss their properties.

8.3.1 Direct Correlation of Integral Images

Since the 3D information is contained in the integral image in the form of
multiple perspectives of the 3D scene, it is possible { to a certain extent { to
compare two 3D objects by computing the 2D correlation between their re-
spective integral images. The advantage of this technique is that it only
requires a classical 2D correlation and can therefore be optically performed in
real-time.30 Figure 8.11 presents parts of two integral images of a die with two
different orientations. Figure 8.11(a) is the reference object and Figure 8.11(b)
is the tested object. Note that one face is kept in common and only the other
face differs. This choice of objects is intended to prove the discrimination of the
system. We use a nonlinear correlation where the joint power spectrum is
binarized.

Figure 8.12(a) shows the autocorrelation of the integral image of the
reference object and Figure 8.12(b) shows the cross-correlation between both
integral images. Both correlations are normalized with the value of the auto-
correlation peak. The cross-correlation peak is 14 times smaller than the
autocorrelation peak, which denotes a successful discrimination of the objects.
The correlation works by comparing every elemental image of the reference
object to every elemental image of the input object. If the input object is similar

(b) (c)(a)

Figure 8.10. Three artificial views of the 3D scene computed from the reconstructed
3D model. (a) 258 azimuth { (b) 408 Azimuth { (c) 558 Azimuth.
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to the reference object, all the correlation peaks, obtained for every pair of
identical elemental images, superimpose to form the global recognition peak.

The effect of a small out-of-plane rotation of the object is to shift laterally
the elemental images. The angle of view previously obtained by one microlens is
now obtained by another microlens. Therefore, the global correlation will find a
shifted correlation peak. The position of this correlation peak therefore gives
information about the rotation angle. The measurable angle depends on both
the size of the microlens array and the distance of the object. It is usually small
(of the order of 18). Note that laterally shifting the object also results in shifting
the elemental images and therefore the correlation peak. A shift of the correl-
ation peak can thus mean either a lateral shift or a rotation of the object.
Another problem of this technique is that it cannot deal with a longitudinal
shift of the object, which results in a radial shift of the elemental images.

8.3.2 Correlation of the Reconstructed 3D Scenes

Another possible 3D recognition technique, that is fully shift-invariant in every
direction, is to base the recognition on the reconstructed 3D scenes obtained as
described in Section 8.2. In this case, we can perform a true 3D correlation
between the reconstructed reference scene and a reconstructed input scene.15

8.3.2.1 Principle

IfA(x,y,z) andB(x,y,z) are two 3D scenes, we define their similarity as the square
modulus of their 3D correlation.We compute it through the Fourier domain:

(a) (b)

Figure 8.11. Parts of integral images of a die with different orientations { (a) is the
reference object { (b) is the input object.
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SAB ¼ A� Bj j2¼ FT�1f ~AA: ~BB�g
�� ��2, (7)

where the symbol � stands for the 3D correlation, ~AA and ~BB are the Fourier
transforms of A and B respectively and FT�1 is the inverse Fourier transform.
Moreover, in order to improve the recognition performance, we can use the kth-
law nonlinear correlation,21 which provides us with the following degree of
similarity:

Sk
AB ¼ A�k Bj j2¼ ¼ FT�1 ~AA

�� ��k exp iw ~AA


 �
: ~BB
�� ��k exp �iw ~BB


 �n o��� ���2, (8)
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Figure 8.12. Direct correlation of the integral images { (a) Autocorrelation of the
reference object { (b) Cross-correlation between the reference and the input objects.
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where ~AA
�� �� and ~BB

�� �� are the modulus of ~AA and ~BB, respectively, and w ~AA and w ~BB are
their arguments. The value of the nonlinear factor k is usually chosen between 0
and 1. The linear similarity described in Eq. (7) is obtained for k ¼ 1. Using a
strong nonlinearity { which means k close to 0 { improves the discrimination
between similar objects. However, in this case, the recognition also becomesmore
sensitive to distortions of the objects. A balance has therefore to be found by
adjusting the parameter k. In the following, we will use the term ‘‘correlation’’ to
designate the similarity criteria defined in Eqs. (7) and (8).

8.3.2.2 Recognition of a 3D Object Using Nonlinear Correlation

In order to study the recognition and discrimination capability of the proposed
system, we first consider the two composite scenes of Section 8.2.3 (Scene 1 and
Scene2)asthe3Dinputstobetested.Thethreesinglegeometricalobjects (square,
triangle, and circle) are used as the 3D reference objects. The 3D correlations
between each input scene and each reference object is computed, which provides
2� 3 ¼ 6correlationvolumes.For eachof these correlations,weobtain twopeaks
that correspond to the two objects present in both input scenes. Thus 2� 6 ¼ 12
peaks are generated ofwhich only four are considered as detection peaks: the ones
corresponding to the square in both scenes when using the square as a reference,
and the ones corresponding to the circle in both scenes when using the circle as a
reference. All the other peaks are undesirable cross-correlation peaks.

We first illustrate the effect of kth-law nonlinear correlation21 on the values
of the correlation peaks as a function of the nonlinear factor k. We determine
the relative values of the different peaks for each particular value of k.
A different normalization factor is applied for every k, so that one of the four
detection peaks is always unity. Figure 8.13 illustrates the normalized peak
values versus k. It is clear from this graph that it is possible to separate
detection peaks from undesirable peaks if k � 0:5. A linear correlation is thus
excluded. It can be seen that the best discrimination is obtained for k ¼ 0:2. For
this value of the nonlinear factor, it is easy to find a threshold that will allow us
to discriminate between detection peaks and undesirable peaks.

In order to confirm these results, we consider the correlations of Scene 1 or
Scene 2 with a reference object (square or circle) that is present in the scene.
For each of these correlations, we obtain two peaks: a detection peak PD and an
undesirable peak PU . We define the discrimination ratio as DR ¼ PD=PU . The
correct recognition can only take place if DR > 1. The plot of this discrimin-
ation ratio versus k is shown in Figure 8.14 for each of the correlations. It is
evident that nonlinear correlation is required to properly detect the 3D objects.

8.3.2.3 Three-dimensional Object Localization

In the experiment described in the previous subsection, a correlation peak was
obtained for each object in the 3D input scene. This peak is obviously three-
dimensional and indicates the 3D location of the object in the input scene
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relative to the location of the object in the reference scene. For instance, Figure
8.15 presents the maximum correlation values at every depth when correlating
Scene 1 with the three reference objects. A nonlinear correlation with k ¼ 0:2 is
used. As mentioned in the previous subsection, the detection peaks are selected
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Figure 8.13. Normalized values of the correlation peaks versus kth-law nonlinearity.
The detection peaks are the ones corresponding to the presented reference object. The
other peaks are undesirable cross-correlations (false alarms).
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by applying a threshold to the output at 0.5. The relative locations Dz of the
remaining peaks indicate the longitudinal depths of the corresponding objects.

Figure 8.16 illustrates the correlation planes with fixed z where the max-
imum peaks for the square reference are generated. This graph demonstrates
that the relative (x, y, z) locations of the objects can be found by the positions
of the peaks. In this example, the peak in Figure 8.16(b) would not be taken
into consideration because it is below the threshold.
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Figure 8.15. Longitudinal locations of the correlation peaks.
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Finally, Figure 8.17 presents the volume representation of the 3D correl-
ation between Scene 1 and both the square reference object [Figure 8.17(a)]
and the circle reference object [Figure 8.17(b)]. The detection peaks are plotted
in 3D. They provide the relative 3D coordinates of the reference objects in the
input scene.

8.3.2.4 Comparison Between 2D and 3D Correlation

In the previous subsections, we achieved 3D detection of elemental objects (a
square and a circle) in complex 3D scenes (Scene 1 and Scene 2). In this
subsection, we compare two complex scenes one to another. Scene 1 and
Scene 2 have different 3D structures. They therefore constitute two different
3D objects. The correlation of these two 3D objects is compared by using
conventional correlation of 2D images and by the proposed 3D correlation.
The 2D correlation is obtained between the images shown in Figure 8.7(a) and
(b), which are the views obtained through the central microlens of the array.
The second comparison method consists in digitally reconstructing the 3D
scenes and computing their 3D correlation as described previously.

The values C1---2 of the cross-correlation peaks for both of these methods is
given in Table 8.1. In both cases (2D or 3D), we use a nonlinear correlation with
k ¼ 0:2. Of course, the correlation values by themselves cannot be compared
because they are not normalized. In order to give a comparison scale, we also
provide the values of the auto-correlations for Scene 1 (C1-1) and Scene 2 (C2-2)
for both the 2D and the 3D methods. Lastly, analogous to what we did in
Subsection 8.3.2.2, we define the discrimination ratio as the ratio between the
value of the auto-correlation and the value of the cross correlation. Table 8.1
presents the values of this ratio with respect to both scenes. It can be seen that
the 3D correlation is roughly three times more discriminant than the 2D
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correlation. This is because it takes into account some additional information
concerning the depth structure of the 3D objects.

8.4 Conclusion

In this contribution we demonstrated the application of integral imaging to the
digital reconstruction and recognition of 3D objects. As we recalled, an integral
image is a collection of perspectives of a 3D scene obtained from different points
of view. It therefore contains 3D information about the scene in the form of
changes in parallax. We explained how to extract the depth information using a
triangulation technique. The correspondence between points in various elem-
ental images was found thanks to a stereo-matching algorithm. We then used
the retrieved depth information to digitally reconstruct a 3D model of the
original scene in a computer. This 3D model can be used to reconstruct
synthetic views of the scene and visualize it from new points of view.

Subsequently, we described the use of integral images for 3D object recog-
nition. The first technique we demonstrated is the direct 2D correlation of
integral images. This method permits a fast 3D recognition but it is not
invariant to longitudinal shifts of the objects. The alternate technique we
proposed is to perform numerical 3D correlations on the reconstructed 3D
models of the scenes. This technique is fully shift-invariant, that is, it is not
affected by a lateral or longitudinal shift of the 3D objects. We presented
nonlinear correlation results using various nonlinearities to investigate the
discrimination capability. It was demonstrated that the proposed technique
might be used to recognize and locate 3D objects in a 3D scene. Although the
depth resolution is presently low (about 10 mm for our experiments), it could
be increased by improving the resolution of the integral images. Finally, we
showed that 3D correlation provides a better discrimination than 2D correl-
ation since it uses the object depth information.
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Table 8.1. Comparison between 2D and 3D correlations for discriminating between
two 3D objects.

C1�2 C1�1 C2�2 C1�1=C1�2 C2�2=C1�2

2D 0.157 1.29 1.33 8.2 8.5
3D 1:74� 109 36:0� 109 47:5� 109 21 27
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Chapter 9

Real-time Remote Identification and Verification of

Objects Using Optical ID Tags

Bahram Javidi

Department of Electrical and Computer Engineering, University of Connecticut,
06269-2157, USA. bahram@engr.uconn.edu

Robust, real-time remote (beyond the range of human vision) identification
and verification of objects has potential widespread implications for security,
identification, and inventory control. It has become increasingly important to
allow only authorized vehicles, into and within a secure distance of installa-
tions. Furthermore, a system capable of identifying vehicles from the air could
provide additional benefits. We describe a wavelength-hopped laser encoding
and decoding system; and a retro-reflective optically phase modulated ID tag
based on optical security technologies,1{8 pattern recognition,9{18 and optical
encoding to yield a secure identification/verification system. The proposed
systems is attractive because of the high number of mathematical possibilities
optics provides for encoding; and the many degrees of freedom and high
bandwidth that optical technologies offer for security and verification. Active
imaging systems, such as the wavelength-hopped laser system could be used in
tandem with the passive imaging retro-reflective phase encoded tag to increase
system flexibility and reliability. The light modulated by the optical tags could
be invisible to the human eye. Combining the high level of data storage of
optically encoded materials with the free space identification possibilities of
active imaging systems offers an attractive combination for remote security,
identification, verification, and location of objects.

A laser tagging system based on optical wavelength tuning [Fig. 9.1(a)] can
be used to produce optical codes which can identify and authenticate moving or
stationary objects at a distance. A commercially available high speed wave-
length tunable laser of 1500{1600 nm with sub nm wavelengths resolution and
tuning speed of 100 nm/second may be utilized to generate large number of
transmitted wavelengths. Tunable laser coupled with a flexible and thin single
mode fiber broadcasts the beam. Alternately, the fiber may guide the laser light
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to a collimating lens such as GRIN attached at the end of the fiber to transmit
the wavelength encoded optical beam to uniformly illuminate the receiver. For
collimated illumination, tracking may be used for alignment between receiver
and transmitter. Also, a slowly diverging beam may be used to have a trade-off
between receiver power and alignment between receiver/transmitter. An elec-
tronic code assigned to authenticate a particular remote object can be used to
produce a specific sequence of output optical waveforms with a unique set of
different wavelengths.

A variety of codes such as spread spectrum sequences can be used as the
electronic wavelength control of the tunable laser. The tunable laser may generate
a large number of wavelengthswhich enable the system to produce a large number
of combinations for a given code length. Multiple fiber optics links can be used to
guide the light to the different areas of the vehicle. The output waveforms can be
broadcast from the vehicle roof for aircraft inspection. The transmitted wave-
lengths encoded optical waveforms are inspected by the receiver in Fig. 9.1(a).

The transmitted optical waveforms are focused onto a fiber by a lens such as
GRIN. The fiber is connected to a wavelength-sensitive optical component such
as a diffraction grating to deflect the received optical beam according to its
wavelength sequence. A photo detector array detects the diffracted light to
reproduce the wavelength-hopped spread spectrum sequence as a function of
time. A correlator will verify the authenticity of the code as a function of its
spectral and temporal contents. Since the receiver has a priori information
about the code sequence, a wavelength tunable filter or interference filter can
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Figure 9.1. (a) Laser tagging based on wavelength division multiplexing. IF is inter-
ference filter.
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be used before the detector to remove scattered light or noise that is not part of
the authentic code sequence. Figure 9.1 (b) illustrates the receiver output for a
sequence of 20 pulses of varying wavelengths spread uniformly between
1400{1600 nm. The code is degraded by zero mean Gaussian noise with vari-
ance of 0.3.

Retroreflective or corner cube reflectors can be used to provide self-
alignment with respect to illuminating probe beam. An optical identification

Receiver

Photodetector
array

Spread spectrum
code

i (t,λ)

Lens

Beam
condenser

Grating

Beam
Expander

CorrelatorOutput

Wavelength
tunable IF

Fiber

λ 1 λ 2 λ 3

Time x(t, l)

l : wavelength

x : location

Figure 9.1. (Continued) (b) Correlation output of the receiver in Fig. 9.1(a) for a
wavelength-hopped sequence of 20 wavelengths in the presence of white noise with
mean/standard deviation of 0/0.3.
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phase code (tag) manufactured with retro-reflective materials can be inspected
with a reader to verify the authenticity of the object (Fig. 9.2). In addition to
storing an identification number, a phase-encoded tag could store such infor-
mation as vehicle image, type, category, model, year, etc. For passive retro-
reflective optical ID tags, a power source is not needed for the tag to function.
The phase masks can be fabricated by micro-optics, embossing techniques or
made of a volume-recording material such as a photopolymer. For high security
applications, the volume recording material is preferred because of difficulty of
unauthorized duplication due to Bragg effect.

The verification system that reads the phase-encoded identification tag can
be a correlator (Fig. 9.3). The optical tag to be verified is imaged onto the input
plane. Active imaging optics may be used for compensating environmental
degradations and/or tag scale changes. The processor used to verify the input
mask can also be used to verify a primary pattern added to the optical tag.

The effects of environmental degradation, variation in the scale and illu-
mination, and noise/clutter suppression can be taken into account in the
recognition process.10 Figure 9.4 illustrates the output for an input optical
phase tag code of 16� 16 pixels noise with a nonlinear correlator designed for
rotationally tolerant recognition of optical codes in the presence of background
noise and additive noise.10 The reference function is displayed in the spatial

Optical code
(not drawn to scale)

Figure 9.2. Tagging based on retro-reflective optical phase tag.
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domain and can be rapidly updated in real-time using spatial light modulators
(SLM).9

It is possible to implement 3D security codes for verification and authentica-
tion. We could use digital holography for recording a 3D primary pattern of
object signature such as the 3D images of a vehicle.9,14 This provides verification
against theft and unauthorized usage of optical tags. The digital holographic
pattern can be encoded on the optical tag. Upon a probe beam, the 3D image of
the primary pattern of the object is produced at the receiver. Figure 9.5 illustrates
the reconstruction of the 3D image of a toy car obtained by phase shift on-line
digital holography.9,14 This 3D optical code combined with the security optical
tag can provide a more effective remote authentication/verification system.

Active optical tags (Fig. 9.3), can be written onto an updatable device by a
variety of SLMs9 such as liquid crystal display. One problem to be addressed in
this case is light efficiency. With the exception of a few devices including
deformable mirror devices and MEMS, light modulators may have low light
efficiency,9 which places additional constraints on the light budget of the
system. Alternately, the optical code may be stored electronically to drive a
modulating element such as MEMS. Retroreflective based modulating devices
will then modulate a probing beam inspected by a receiver.

Laser

BS

BS

Stored optical code

Vehicle to
be verified

Lens

Lens

Detector

Signal processingOptical code
(not drawn to scale)

Output

Imaging
lens

Figure 9.3. Nonlinear joint transform correlator that reads and verifies the optical
tags. BS is beam splitter.
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Chapter 10

An Adaptive Technique for Minimizing Rate of Sensory

Data Transmission in Unmanned Aerial Vehicles
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10.0 Introduction

UnmannedAerialVehicles (UAV)are intended toperformmedium range and/or
long endurance surveillance, reconnaissance, relay, targeting, and potentially,
attack (both lethal and non-lethal) against a wide variety of possible land and
sea-based targets, across the spectrum of conflict1. For this purpose, UAVs are
equippedwith awide range of high-resolution sensors. Transmitting the acquired
data to a command center requires data transmission rate far exceeding what is
currently and in the foreseeable future is going to be available.

One way of dealing with this bottleneck is to be optimally selective in what
information is transmitted. In this chapter we use a number of techniques for
reducing the amount of data that needs to be transmitted (transmission band-
width)5. The techniques include bandwidth reduction by means of mosaicing
operation, static regions of interest (ROI) extraction operation, and dynamic
regions of interest extraction and tracking operation. Further reductions can be
achieved by first classifying both static and dynamic ROIs and by being further
selective in transmitting out only regions (or the regions’ labels and their atti-
tudes) belonging to a limited number of class or classes. Under different UAV
flight patterns, mission scenarios, and sensor parameters different reduction
methods spanning different parameters become more appropriate than others.
We will report in this chapter the application of a genetic algorithm for selecting
an optimum reduction regime and its associated parameters’ values.

Figure 10.1 shows the bandwidth management approach and the different
methods by means of which the transmission bandwidth from UAV to
a command station can be reduced. Depending on the contextual information in
the acquired imagery, transmitting bandwidth can be reduced by transmitting
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the outputs of the following operations 1) mosaicing, 2) region of interest
extraction, 3) object tracking, and 4) automatic object classification.

10.1 Mosaicing

By frame-to-frame image registration and transmission of only non-overlapping
pixel data, substantial reduction in transmission rate can be achieved (as
shown by Fig. 10.2).1 Consider an imaging sensor of angular pixel resolution
u radian, array size L by L pixels, with a frame rate of r frames/sec, directly
pointing downward on a UAV flying at a constant speed V meters/second at a
height of h meters. Assuming flat earth geometry, it can be shown that the ratio
of the area of overlap between succeeding image frames to the total areas is:

Percentage-of-Saving by using Mosaicing Operation

¼ 100(1� V

2Lrh tan u
)PCR (1)

Bandwidth
manager

UAV
parameters

Target
classification

Dynamic
ROI

Static
ROI

Mosaicing

Sensor
parameters

Figure 10.1. Management of transmission bandwidth from a UAV with its command
center.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap10 Final Proof page 186 27.10.2005 3:40pm

186 Firooz Sadjadi



where PCR is the probability of correct registration, defined as the ratio of total
number of pixels that are correctly registered, to the total number of pixels that
are being considered. When PCR is very low there would be little overlap areas
among succeeding frames and consequently the Percent-of-Saving would be
very low.

Figure 10.3 displays plots of variation of this ratio for PCR ¼ 1 as functions
of v, h, and � for two values of r. As can be seen, increasing speed of UAV has a
more dramatic effect on the amount of the bandwidth saving at lower altitudes
than at higher altitudes as can be expected. Moreover, at lower resolutions
more saving at lower altitudes can be achieved than at higher latitudes.

10.2 Static Region of Interest Extraction

If the reason for data transmission is viewing the regions containing objects of
interest (ROI), further reduction in transmission rates can be achieved. Figure
10.4 shows elements of this concept.

Considering each target size region as a cell, each image of a scene can be
viewed to be composed of target cells and clutter cells. Target cells can be
characterized by target density (t) defined as the total area of target cells per
unit ground area. Similarly, clutter density (x) can be defined as the total area
of clutter cells per unit ground area.

. . . . . .

New pixel
Redundant

pixel

frame 1 frame 2 frame 3 frame n

New pixel areas Redundant areas

Figure 10.2. Mosaicing operation exploits pixel redundancies.
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Based on some rules (and there could be many) every pixel is assigned to be
associated with either a target or clutter. False associations generate false
alarms (contribute to prob. of false alarm, Pfa) and correct associations gener-
ate correct detection (contribute to the prob. of detection, Pd). Pd is defined as
the ratio of the total number of target cells that satisfied the rules to the total
number of target cells in the image. Pfa is defined as the ratio of the number of
clutter cells that satisfied the rules, to the total number of clutter cells in the
image. The relationship between Pd and Pfa is best described through the
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receiver operating characteristic (ROC) curve. By selecting the optimum point
on this curve where Pd and Pfa achieve their optimum values, we can establish
the optimum rule quantitatively. The ROI in a single frame is then equal to the
total area of target and clutter cells that satisfy this rule quantitatively.

For the first single frame one has:

ROI ¼ (tPd þ xPfa):Area ¼ 4L2h2(tPd þ xPfa) tan
2 u (2)

By associating each ROI with a geographical position in a global coordinate
system, once an ROI is extracted, its position in the scene will be fixed and in
different frames its retransmission will be avoided.

Then the total saving from ROI operation is:

Percent-of-Saving using ROI Operation ¼ 100(1� V (tPd þ xPfa)

2Lrh tan u
)PCR (3)

Pd is related to Pfa and scene metrics such as target contrast, h, r, etc, and ROI
extraction algorithm internal parameters through the following predictive
models3:

PD ¼ a0 þ a1x1 þ a2x2 þ a3x3 þ a12x1x2 þ a13x1x3 þ a23x2x3 þ a11x
2
1

þ a22x
2
2 þ a33x

2
3 (4)

where, x1 ¼ False Alarm Probability (FA), x2 ¼ Algorithm Internal Param-
eter, and x3 ¼ Image/Scene Metric.

For the special case when the probability density functions of observed
signature, conditioned on being originated from targets and clutter, are both
Gaussian with different means but equal variances one has the following
relationship4:

Pd ¼ Q(Qinv(Pfa)�
ffiffiffi
d

p 2
) (6)

where Q(x) is the complementary cumulative distribution function and
Qinv(x) is the inverse complementary cumulative distribution function:

Q(x) ¼ 1

2
erfc(

xffiffiffi
2

p ); Qinv(x) ¼
ffiffiffi
2

p
erfinv(1� 2x) (7)

d2 is defined as:

d2 ¼ [mean(ROI )�mean(clutter)]2

std(ROI )
(8)

Figure 10.5 shows the plots of the variations of bandwidth savings obtained
using static ROI extraction operation as functions of UAV height and speed for
two different frame rate and resolutions and for some nominal values for
Pfa ¼ 0:1, target area density ¼ 0:25, clutter area density ¼ 0:625. Comparing
these results with those shown in Fig. 10.3 it can be seen that, as expected more
bandwidth saving can be obtained by transmitting static ROIs than by sending
raw data.
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10.3 Dynamic Regions of Interest Exaction and Tracking

For the cases where the targets of interest are moving (see Fig. 10.6), one can
save bandwidth by predicting where the targets of interest will be in the
upcoming frames and avoid their retransmission. By assuming that the total
density of targets, both moving and stationary, is constant, we can conclude
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Figure 10.6. DROI exploits those pixels associated with moving targets.
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that the total numbers of targets entering and leaving the field of view of an
image are identical.

Consider m to be the moving target density, and s to be the stationary target
density. In the previous section, we considered the total target density as t, which
is total area of target cells per unit ground area. By assuming that mþ s ¼ t is
constant, any stationary target that startsmovingwill increasembut at the same
time will reduce s so that t remains unchanged. Moving target set will fit into
one or more of the following categories: 1) tracked into next frame, 2) move
out of field of vision (FOV), 3) stopped, and 4) lost due to tracking algorithm
errors. We will denote the percentage of moving targets that are associated
with each of the above categories by Pt, Po, Ps, and Pl, respectively, where
Pt ¼ 1� Po � Ps � Pl. Then the Saving due to dynamic ROI tracking is:

Percent-of-Saving using Dynamic ROI and Tracking Operation

¼ 100(1� V (Pdmþ Pfax)

2tdwell Lh tan u
)PtPCR

(9)

Pt is related to the projected velocity vector of the UAV and a functional of the
moving target velocities (Eigen velocities). tdwell is the tracking dwell time.

Consider the average velocity of the targets as Vt , then if UAV is moving
with the same speed in the same direction as the moving target (V ¼ Vt) the
target will always be in the FOV and maximum tdwell and consequently
bandwidth reduction can be achieved. The relative velocity of a target with
respect to the UAV can be derived from the following relationship:

Vrel ¼ V� Vt cos r (10)

where, r is the angle between the projected velocity vector of the UAV and the
average velocity vector of moving ground vehicles. Then we have:

tdwell ¼
VLh tan u

Vrel
¼ VLh tan u

jV�Vt cos rj
(11)

Figure 10.7 shows the Percent-of-Saving as functions of UAV speed and height
for two values of sensor resolution and frame rate. In these plots, Pfa ¼ 0:1, the
moving target area density is 0.125, the clutter area density is 0.625, and the
static target area density 0.25. As can be seen, saving improves as UAV
altitude and speed increase. At lower altitudes, however, increasing the UAV
speed diminishes the saving, as is expected.

10.4 Classification of Static and Dynamic
Regions of Interest

Further reduction in bandwidth can be achieved by being selective in trans-
mitting static and dynamic regions of interest. This can be achieved by classi-
fying the regions of interest and then transmitting only the labels for each
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region and its associated attitude information such as position and velocity (see
Fig. 10.8). Furthermore, one can only transmit the labels and attitude infor-
mation for selective classes of targets, thus reducing the bandwidth require-
ment even further.

From the previous sections one can show that the total area of dynamic and
static ROIs in tdwell seconds is:

Troi ¼ Total ROI ¼ 1

Aroi
[Pt(Pdmþ Pfax)(

2VLh tan u

r
)

þ (sPd þ xPfa)(2tdwellVLh tan u)]PCR

(12)

Then the saving would be:

Percent-of-Saving By using Target Classification Operation

¼ 100(1� TroiNbproi

4h2 tdwell L2Nbpp
)

(13)

Nbproi is the number of bits required for transmitting label, and attitude
information, for each ROI. Nbpp is the number of bits per pixel in the sensor.
Aroi is the average area of an ROI.
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Figure 10.7. Variation of bandwidth saving ratio for the case of dynamic ROI ap-
proach for L ¼ 1000.
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Figure 10.9 shows the Percent-of-Saving as functions of UAV speed and
height for two values of sensor resolution and frame rate. In these plots,
Pfa ¼ 0:1, the moving target area density is 0.125, the clutter area density is
0.625, and the static target area density 0.25. As can be seen, saving improves
as UAV altitude and speed increase. At lower altitudes, however, increasing the
UAV speed diminishes the saving, as is expected.

10.5 Genetic Algorithms

Genetic algorithms are population-based random search strategies that emu-
late the concepts from reproduction and natural selection of biological systems
to produce better solutions from previous solutions. Genetic algorithms6,7 are
useful in a wide variety of applications requiring the optimization of a fitness
function. This includes some forms of machine learning. Genetic algorithms
(GA) were developed by John Holland6 and his colleagues at the University of
Michigan. Their activities have led to the development of algorithms and
software that are robust: can learn from their environment and adapt to
the changing conditions. In a biological system the structure that encodes the
prescription on how the organism should be constructed is called a chromo-
some. A set of chromosomes is called a genotype and the resulting organism
is called a phenotype. Each chromosome is composed of individual
structures called genes. Each gene encodes a particular feature of the organism.
Location of the gene in a chromosome or its locus determines what particular

AircraftAircraft

TruckTruck

PeoplePeople

Figure 10.8. Target classification maps the image into a selected set of target labels
and their associated state values.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap10 Final Proof page 193 27.10.2005 3:40pm

10 An Adaptive Technique for Minimizing Rate of Sensory 193



characteristics the gene represents. At a particular locus a gene may represent
any of several different values of the particular characteristic it represents.
These values are called alleles. In the context of genetic algorithm, chromo-
somes are the strings of data, genes are positions on the string, and the alleles
are the values associated with the genes.

In this study, the different UAV bandwidth reduction regimes described in
the previous sections are used as fitness functions. The parameters of the UAV
state and sensor, are used as variables. The output of the GA is the optimum
transmission reduction rate, and the best values for UAV state and sensor
parameters. The results of the implementation of this bandwidth management
approach are presented in the following section.

10.6 Experimental Results

The reductions in needed bandwidths, gained by four sensor processing tech-
niques of 1) Mosaicing, 2) Static ROI transmission, 3) Dynamic ROI transmis-
sion, and 4) Classification output transmission were used as fitness functions in
genetic optimization algorithms to obtain the optimum UAV state and sensor
parameters.
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Figure 10.9. Variation of bandwidth saving ratio for the case of static and dynamic
ROI classification approach for L ¼ 1000.
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In the following experiments the maximum number of generation was set at
100; the probability of cross over was 0.98; the probability of mutation was
0.02. The number of genes was 20. And, finally, the number of individuals was
200.

10.6.1 Optimum UAV and Sensor Parameters by use
of Mosaicing Operation

Figure 10.10 shows the behavior of the genetic algorithm. The top curve (blue)
indicates the maxim reduction values for different generations. The middle
curve (green) shows the median of the fitness function, and the bottom curve
(red) is indicator of the worst fitness values.

Table 10.1 shows the optimum UAV values for the case of Mosaicing
operation. In this exercise the UAV speed was varied between 10 and 100 m/s.
The altitude of UAV was set to vary from 1 to 10 km. The frame size of the
imaging sensor was varied from 100 by 100 to 1000 by 1000 pixels. The frame
rate was between 30 and 100 frames per second. The sensor angular resolution
was set to vary from 0.01 to 0.9. The probability of correct registration value
was varied from 0.8 to 1.0.
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Figure 10.10. The GA output for the Mosaicing operation.
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10.6.2 Optimum UAV and Sensor Parameters When Using Static
ROI Operation

Figure 10.11 shows the behavior of the genetic algorithm. The top curve
indicates the maxim reduction values for different generations. The middle
curve shows the median of the fitness function, and the bottom curve is
indicator of the worst fitness values.

Table 10.2 shows the optimum UAV parameters for using Static ROI
operation. Additionally, this Table includes optimum values for parameters
that are scene related. In situations where scene-related parameters are not
controllable but are known, they can be used as input to the Bandwidth
Manager module. In this exercise, however, we have assumed that these
parameters were controllable and consequently the genetic algorithm generated

Table 10.1. Optimum UAV and sensor parameters when using Mosaicing Operation.

UAV
speed Altitude Frame rate Frame size

Probability of correct
registration

Sensor
resolution

96.742036 5974.7858 35.577970 889.713470 0.99997711 0.56259403
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Figure 10.11. The GA output for the ROI Operation.
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their optimum values along with the UAV related optimum parameter values.
The range of variations for the various UAV related parameters were similar to
those of the previous case (Section 10.6.1). However, for the scene parameters
we assumed the following ranges: Pfa was varied from 0.1 to 1.0; the back-
ground and target mean intensity values were varied from 0 to 255; the
standard deviation of target intensity was varied from 0.1 to 1.0; the target
and clutter densities were varied from 0.1 to 1.0, and, finally the frame rate was
varied from 30 to 100 frames per second.

10.6.3 Optimum UAV and Sensor Parameters When
Using Dynamic ROI Operation

Figure 10.12 shows the behavior of the genetic algorithm. The top curve
indicates the maximum reduction values for different generations. The middle
curve shows the median of the fitness function, and the bottom curve is
indicator of the worst fitness values.

Table 10.3 shows the optimum UAV parameters for using Dynamic ROI
operation. Additionally, this Table includes optimumvalues for parameters that
are scene related. In situations where scene-related parameters are not control-
lable but are known, they can be used as input to the Bandwidth Manager
module. In this exercise, however, we have assumed that these parameters
were controllable and consequently the genetic algorithm generated their opti-
mum values along with the UAV related optimum parameter values. The range
of variations for the various UAV related parameters were similar to those of the
previous case (Section 10.6.2). However, for the scene parameters we assumed
the following ranges: Pfa was varied from 0.1 to 1.0; the background and target
mean intensity values were varied from 0 to 255; the standard deviation of target
intensity was varied from 0.1 to 1.0; the clutter density was varied from 0.1 to
1.0; the frame rate was varied from 30 to 100 frames per second; the moving
target density was varied from 0.1 to 1.0; the angle between the projected UAV
velocity vector on the ground and a moving target was varied from p=10 to
20p=10; the range of Pt was varied from 0.8 to 1.0, and finally, the average speed
of moving targets was varied from 5 to 60 m/s.

Table 10.2. Optimum UAV, sensor, and scene parameters when using static ROI
operation.

PCR 0.99998283
Standard
deviation 0.17932136

V 98.069237 x 0.56081425
t 0.54462914 Frame size 988.21286
Pfa 0.63800701 Frame rate 98.963260
Background mean intensity value 101.01192 Altitude 7687.6504
Target mean intensity value 218.21684 Sensor resolution 0.24630208
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10.6.4 Optimum UAV and Sensor Parameters When Using
Classification of Static and Dynamic ROIs Operation

Figure 10.13 shows the behavior of genetic algorithm. The top curve indicates
the maximum reduction values for different generations. The middle curve
shows the median of the fitness function, and the bottom curve is indicator of
the worst fitness values.

Table 10.3. Optimum UAV, sensor, and scene parameters when using dynamic ROI
operation.

PCR 0.99801616
Standard
deviation 0.46656005

V 28.315256 x 0.14743523
m 0.68511351 Frame size 400.44889
Pfa 0.38460282 Frame rate 80.573702
Background mean intensity value 159.21675 Altitude 4035.7743
Target mean intensity value 92.832176 Sensor resolution 0.29098477
Pt 0.99984512 r 4.4764104
Vt 52.074587
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Figure 10.12. The GA output for the dynamic ROI operation.
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Table 10.4 shows the optimum UAV parameters for using Classification of
Static and Dynamic ROI operation. Additionally, this Table includes optimum
values for parameters that are scene related. In situation where scene-related
parameters are not controllable but are known, they can be used as input to the
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Figure 10.13. The GA output for the classification of static and dynamic ROIs
operation.

Table 10.4. Optimum UAV, sensor, and scene parameters when using classification of
static and dynamic ROI operation.

PCR 0.91026107
Standard
deviation 0.31232129

V 10.601760 x 0.17089192
m 0.85821787 Frame size 971.84407
Pfa 0.76212774 Frame rate 76.467329
Background mean intensity value 23.121491 Altitude 2964.2028
Target mean intensity value 20.410171 Sensor resolution 0.010234261
Pt 0.87927807 r 3.6711248
Vt 45.598531 Aroi 90.696827
t 0.52696946 NBPROI 10.006485
NBPP 25.840257
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Bandwidth Manager module. In this exercise, however, we have assumed that
these parameters were controllable and consequently the genetic algorithm
generated their optimum values along with the UAV related optimum param-
eter values. The range of variations for the various UAV and scene related
parameters were similar to those of the previous case (Section 10.6.3). However,
for the additional scene parameters, specific to this operation we assumed that
NBPP was varied from 8 to 32; NBPROI was varied from 10 to 210; and finally,
Aroi was varied form 5 to 100.

A number of observations can bemade fromTables 10.1{10.4. The variations
of optimum UAV parameters, namely UAV speeds and UAV altitudes, as
functions of various bandwidth reduction regimes are shown in Figs. 10.14 and
10.15. As can be seen, lower optimum speed values and lower optimum altitudes
correspond to the higher level of processing regimes. Figures 10.16{10.18 show
the variations of optimum sensor parameters as functions of various operations
used for bandwidth reduction.They indicate that lowest optimum frame rate and
coarsest angular resolution are suggested for Mosaicing operation. For the Clas-
sification operation, the suggested optimum sensor angular resolution is the
smallest value among all of the operations. Finally. Table 10.5 shows a number
of statistical information regarding the genetic algorithm behavior. The max-
imum fitness values for all the operationswere larger than 99.5%.The generation
numbers at which these maximums reach are tabulated under ‘‘Generation
Number.’’ As can be seen, for the classification operation this maximum value
was reached rather earlier than others. The standard deviations of the fitness
function values are shown to be around 90.49 to 96.59. The ratio of maximum
fitness value to median fitness value, also called pressure, is an indicator of the
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Figure 10.14. Optimum UAV speed obtained for various operations used for band-
width reduction.
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Figure 10.15. Optimum UAV altitude obtained for various operations used for band-
width reduction.
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Figure 10.16. Optimum sensor frame size obtained for various operations. used for
bandwidth reduction.
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Figure 10.17. Optimum sensor angular resolution angle obtained for various oper-
ations used for bandwidth reduction.
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Figure 10.18. Optimum sensor frame rate obtained for various operations used for
bandwidth reduction.
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state of the optimum value. It shows to be closer to 1 for Classification and larger
for the other operations. The processing time seems to be largest for the Classi-
fication operation and smallest for the Mosaicing.

10.7 Conclusions

In this Chapter, we presented a number of techniques for reducing the trans-
mission bandwidth and explored their effectiveness as functions of UAV and
sensor parameters. Then, we maximized these measures of effectiveness by
means of a genetic algorithm. An outcome of the approach is an optimum set
of UAV state, and sensor parameters, that can be used to automatically control
transmission bandwidth. In cases where scene-related parameters could also be
controlled, the study shows that another outcome of the approach is an
optimum set of these controllable scene related metrics.
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Table 10.5. Statistics regarding the genetic algorithm behavior.

BW reduction
methods

Maximum
fitness
value

Generation
number

Standard
deviation of
fitness function

ratio (max.
fitness value
& median
fitness value)

Processing
time (s)

Mosaicing 99.999951 91.000000 95.242104 1.0311572 9.6410000
Static ROI 99.998278 70.000000 95.903984 1.0404425 27.625000
Dynamic ROI 99.690316 91.000000 90.492010 1.0842599 34.734000
Classification 99.997571 56.000000 96.594623 1.0088159 55.797000
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11.0 Introduction

The futureofmodernsecurityanddefense systems lies inmanagingandexploiting
Netted and Distributed systems. The hardware infrastructure for such systems
already exists, and is being further revolutionized by new DoD programs. The
complexity of managing a network of platforms and sensors is enormous. It
requires an organized approach to the uptake, dissemination, and exploitation
of information. This task is commonly referred to as Command & Control,
Communications, Computers, and Intelligence (C4I). Our objective is not to
address the C4I problem, but rather given that a C4I infrastructure exists, we
seek to take advantage of the network and its resources to revisit an old problem:
thatof searchandreconnaissance (surveillance), for thedetectionandrecognition
of threats.

Even though modern missions are increasingly calling for distributed and
netted architectures, the traditional data processing in such systems continues to
be typically single sensor and platform centric. In the past, the approaches to
target detection, recognition, and tracking have been treated as a stand-alone
problem. Thus, the sensing of information has never been guided by the method-
ology for processing it. There has also been no control over the complexity and/or
the quantity of data gathered. Recent efforts seek to integrate sensing and
information processing, and represent a fundamental shift in the data processing
paradigm that is not only designed for a netted system, but fully exploits the
infrastructure to achieve potentially revolutionary performance gains.

Thescenarioof interestmustdefine thearchitecture towhich theprocessmust
be crafted. For instance video cameras abound in civilian life wherever security
is of interest (e.g., in commerce, transportation, education, entertainment, and so
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forth).Theviability of distributed security and surveillance capabilities is further
enabled by the advent of low-cost cameras, computers, and networking technol-
ogy (both wired and wireless). Although the component technologies and the
infrastructure for such systemsalreadyexists today, the challenge is indeveloping
algorithms that work across multiple platforms, and addressing the bandwidth
and communication issues. New paradigms must address these issues to ensure
the overall system architecture and resources have been taken into account to
realize new levels of performance improvements that are critical for mission
success. The main questions to address in network-centric security and defense
systems are:

1. Where should the data be gathered and how should it be combined (i.e., how
should the sensors be tasked and fused)?

2. How much and when should data be gathered (i.e., what is the required
resolution of the data, temporally, spatially, and spectrally)?

3. What is the expected gain in performance (in terms of reduced time, in-
creased bandwidth efficiency, increase in detection probability, reduction in
false alarm rates etc)?

System concepts can encompass both low-resolution ‘‘simple’’ sensors and
high-resolution ‘‘detail-oriented’’ sensors. A large number of relatively low-cost
simple sensors can be deployed over a wide area for low-level monitoring pur-
poses. The outputs of these sensors will be processed by appropriate algorithms
for estimating target phenomenology and driving the sensor control and sched-
uling process. Based on the observed ‘‘events,’’ detail-oriented sensors may be
tasked for detailed analysis of ‘‘interesting’’ regions. It is also feasible that the
results of detailed analysis (based on a network of wide-area sensors) will guide
the deployment and concentration of simple, near-range ground-based sensors in
a region for additional measurements that may be required by the fusion process
to confirm the various hypotheses. It is envisioned that the end-to-end process
will call for continuous interactions effected between the short-range and wide-
area sensors, depending on the specific mission and scenario of interest.

Future netted systems will also allow the possibility of executing missions in
a collaborative manner. For instance, in rapid response situations it is essential
to reduce the timelines between initial target detection and an effective strike
operation. The issue is that targets may move between the time a high-
resolution sensor on an airborne platform has detected it, and the decision to
strike is made and a weapon is launched. The low-level ‘‘disposable’’ sensors in
the vicinity of the designated target can provide useful information about its
activity, and update its location to reduce uncertainty associated with weapon
delivery and other operational timelines.

Some of the key benefits of netted and distributed systems for Security and
Surveillance include:

. Increased Tolerance to Adverse Conditions A heterogeneous mix of
sensors allows the ability to sense under a wide range of conditions and
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measure a broad range of phenomenology. The fusion of these sensing
modalities is also achieved, and the sensors are scheduled and tasked as
needed. This is expected to improve performance under adverse weather, in
difficult terrain, and in the presence of time of day variations, obscuration,
and camouflage.

. Improved ATD/R Performance The overall probabilities of detection
and recognition are anticipated to be greater due to the ability to cue
sensors to predicted locations of targets, and provide alternate means of
detecting targets that are either hidden or not in the field of view of
traditional sensors.

. Efficient Resource Usage: A balance is achieved between the area of
coverage and the bandwidth required to handle the data. Collecting high-
resolution data over wide areas not only creates a bandwidth problem, but
also imposes heavily on throughput and computational requirements. A mix
of sensing resolution allows us to efficiently trade between wide-area sur-
veillance and detailed local area analysis under bandwidth (and through-
put) constraints.

. Improved Strike Capability The impact of delays in operational time-
liness is reduced. Uncertainty is introduced in the position of moving targets
between the time it is detected, the decision to strike is made, and a weapon
is delivered. In the ISP framework, a target of interest can be ‘‘tracked’’
using low-level sensors to reduce the need to allocate high-level sensors for
this task (which may also serve to increase survivability of platforms).

. Adaptive Self-adjusting Properties The approach allows a ‘‘two-
way’’ control of parameter settings between the sensor network and the
algorithms. Parameters internal to the processing algorithms (such as de-
tection thresholds, target clusters and labels, various windows and sample
sizes) will be made available to the sensor network to adjust as appropriate.
Similarly, the algorithms will influence the choice of sensor and network
parameters such as resolution, modality, bit rates, and sensor geometry. It is
also anticipated that the network will be able to automatically label poten-
tial new targets and include them in its database to achieve rapid target
insertion. This ability also reduces the need for exhaustive and time-con-
suming mission planning as the knowledge base of the system can be
updated using ‘‘training on the fly’’ capabilities.

In this chapter, we describe two evolving concepts for information processing
on netted systems. The first exemplifies automatic target detection (ATD) and
seamless tracking across a network of video cameras. We describe how multiple
views are brought together to create a combined view of the world. An overview
is given of the KNIGHT human detection and tracking system1 developed at
the University of Central Florida. The integration of the ATD and tracking
system and the highlights of the networking and communication process are
also discussed. The second example is a collaborative approach to automatic
target recognition (ATR). The paradigm requires multiple sensors (platforms)

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap11 Final Proof page 207 27.10.2005 10:45am

11 Security and Surveillance 207



to configure themselves into specific positions relative to each other and the
target. We describe a metric that characterizes algorithm performance as a
function of sensor position, derive a concept of operation to optimize the
performance metric, and discuss the advantages of the process. Both examples
illustrate the basic concepts and touch on various aspects of processing infor-
mation on a netted system.

11.1 Surveillance Using a Network of Video Cameras

In this section, we discuss how it may be possible to take advantage of multiple
cameras (with overlapping or nonoverlapping fields of view) in order to monitor
activity over a large area. The system must be able to handle both stationary
and moving objects. While motion analysis can be used to detect vehicles and
humans when they are moving, the ATD/R capability is required for detecting
and initiation tracks when they are stationary, and recognizing the detected
objects. The system must be able to detect, track, and hand over moving
objects between cameras in real time. For seamless operation across platforms,
this requires the position of the target in the next field of view (FOV) to be
predicted. Based on an analysis of the location of the detections, and registra-
tion between the camera views, it becomes possible to depict the positions of
the objects and their movements with respect to a site map, thus providing a
global composite view of events. This can serve as a powerful monitoring tool
by providing situational awareness over the site of engagement.

11.1.1 Target Detection in Multiple Views

We first discuss the approach for detecting stationary vehicular objects (inter-
changeably referred to as targets). Various target detection and recognition
methods may be used depending on the sensor type, range to target, resolution,
and other key driving parameters. The objective here is not to build a better
ATD/R capability, but to extend the algorithms to work across multiple
platforms. For convenience, we use the maximum average correlation height
(MACH) Correlation Filtering approach2 for target detection and classifica-
tion. The basic concept of operation using correlation filters is shown in
Fig. 11.1.

Essentially, the input test image is processed by a bank of linear correlation
filters that are optimized to respond to the presence of a target by producing a
peak at the corresponding location in the output image (also known as correl-
ation plane). Since correlation is a shift-invariant operation, the position of the
peak always represents the location of the target, even when it is moving. Each
filter is synthesized using representative training images to exhibit distortion
tolerance over a limited range of orientations and signature variations. Thus
multiple filters are required for every class to accommodate all possible distor-
tions. For example in Fig. 11.1, there are 72 correlation filters for every target
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to cover 18 aspect bins (each 22.5 degrees wide) and four different signature
types (for thermal images these conditions may be hot, cold, day, and night
signatures). A metric known as peak to sidelobe ratio (PSR) is used to measure
the strength of the correlation peaks. The class of the target is declared to be
the same as the filter which yields the highest PSR value.

Figure 11.2 illustrates the concept of networking multiple ‘‘nodes,’’ each
with a camera, processor, and on-board ATD/R capability. The outputs of
each node are received at a central ‘‘command and control’’ point where the
information is combined. For now, we assume that the sensors and the plat-
forms on which they reside are stationary. Since bandwidth is limited, each
node only reports the ATD/R results including pixel position of the detections.
Using knowledge of the camera geometry, the location of the target in the

A test image Output

MACH
filters

image

Peak
detector

Peak
detector

Peak
detector

T72

M35

HMV

18 x 4
PSR tables

Figure 11.1. An input image is processed by a bank of correlation filters to detect and
identify targets. The filter with the highest PSR determines the class of the object, and
the position of the correlation peak indicates its location.

Figure 11.2. Multiple platforms (sensors) are networked to a central computer where
ATD/R information is combined into a common reference frame.
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sensor view can be converted to a common reference frame, and represented as
a point on a site map or an aerial view of the region obtained using an overhead
asset. This is further illustrated in Fig. 11.3, where the image in the top window
serves as the ‘‘site map’’ and the smaller windows at the bottom represent the
three sensor views. The target is detected and recognized in each sensor view,
and its pixel position is reported. This data is collected at a central computer
where the target coordinates are converted to a common reference frame and
fused to depict the location of the target (represented in Fig. 11.3 by the red
square) on the site map or overhead image. When the target moves in the
sensor views, the site map is updated in real time so that the target position can
be seen moving on the site map.

The main advantage of the process illustrated in Fig. 11.3 is that an
updated site map that depicts the combined information from multiple sources
can be a valuable tool for situational awareness. While individual sensors
have only a limited view of the world and may not be able to see around
buildings and other obstructions, the combined information can be ‘‘dialed-
up’’ by any of the nodes. This allows the local platforms to benefit from the
information observed by others in the network. It also allows the command and
control center to have a cohesive picture of the battlefield based on multiple
observations.

Figure 11.3. The views from the 3 separate nodes (shown at the bottom) are processed
locally by an ATD/R, and the position of the target is reported. This data is collected
at a central computer where the target coordinates are converted to a common
reference frame and fused to depict the location of the target on a site map (or overhead
image).
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11.1.2 Target Hand-over and Tracking Across Multiple Platforms

Target tracking is an integral and important part of a surveillance system. We
first provide a brief overview of the KNIGHT tracking system1 designed for
single camera systems, and then describe its extension to tracking across
multiple FOVs. The KNIGHT is a ‘‘smart’’ surveillance system that detects
important changes, events, and activities using computer vision techniques,
flags significant events, and presents a summary in terms of key frames and
textual description of activities to a monitoring officer for final analysis and
response decision. The system is robust to illumination changes and weather
conditions. The KNIGHT has been installed at four locations in the downtown
Orlando area which has Orange Avenue as its primary street, and is currently
being field tested. The system employs single camera, and works in real time.
KNIGHT consists of four main modules, three of which are shown in Fig. 11.4:
object detection and shadow removal, tracking object classification, and activ-
ity detection.

Specifically, we view tracking as a region correspondence problem where
performance is affected by noisy background subtraction, change in the size of
regions, occlusion, and entry/exit of objects. For these reasons traditional
approaches cannot be directly applied to tracking humans. To achieve correct
correspondence, we have developed a solution based on linear velocity, size, and
distance constraints. Furthermore, most of the surveillance systems do not
tackle the problems in tracking caused by shadows. To address this issue, we

Frames

Gradient based
Subtraction

Color based
Subtraction

Foreground
segmentation
and matching

Shadow removal module

Color, motion
and size model 

Occhusion
reasoning

Foreground regions Foreground regions with shadows removed

Fusion of color
and gradient

Object detection module Tracking module

Figure 11.4. An overview of the KNIGHT motion-based detection and tracking
system for humans and vehicles. Additional details can be found at http://www.cs.
ucf.edu/vision/projects/Knight/Knight.html
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employ a shadow detection approach based on similarity of background and
shadow regions.

In addition to tracking moving objects, we believe that motion-based
classification helps to reduce the reliance on the spatial primitives of the objects
and offers a robust but computationally inexpensive way to perform classifica-
tion. We have devised a solution to this problem using temporal templates.
Temporal templates are used for classification of moving objects. A temporal
template is a static vector image in which the value at each point is a function
of motion properties at the corresponding spatial location in the image se-
quence. Motion History and Motion Energy images are examples of temporal
templates, proposed by Bobick and Davis.3 Motion History image is a binary
image with a value of one at every pixel where motion occurred. In Motion
History image, pixel intensity is a function of temporal history, i.e., pixels
where motion occurred recently will, have higher values as compared to other
pixels. These images were used for activity detection. We have defined a
specific Recurrent Motion template to detect repeated motion. Different
types of objects yield very different Recurrent Motion Images (RMIs) and
therefore can easily be classified into different categories on the basis of their
RMI. We have used the RMIs for object classification and also for detecting
carried objects.

11.1.2.1 Tracking Across Multiple Fields of View

To track objects successfully in multiple cameras, one needs to establish cor-
respondence between objects detected and tracked in each camera. Our system
is able to discover spatial relationships between the camera FOVs and use this
information to correspond between different perspective views of the same
person. We employ a novel approach of finding the limits of FOV of a camera
as visible in the other cameras that is very fast compared to conventional
camera calibration-based approaches. Using this information, when a person
is seen in one camera, we are able to predict all the other cameras in which this
person will be visible. Moreover, we apply the FOV constraint to disambiguate
between possible candidates for correspondence.

When tracking is initiated, there is no information provided about the FOV
lines of the cameras. The system can, however, find this information by ob-
serving motion in the environment, as illustrated in Fig. 11.5. Whenever there
is an object entering or exiting one camera, it actually lies on the projection of
the FOV line of this camera in all other ones in which it is visible. Suppose that
there is only one target. Then, when it enters the FOV of a new camera, we find
one constraint on the associated line. Two such constraints will define the line,
and all constraints after that can be used in a least-squares formulation. In an
earlier chapter4, it was demonstrated that the initialization of FOV lines by one
person walking in the environment for about 40 s was sufficient to initialize the
lines. These lines were then used to resolve the correspondence problem be-
tween cameras. However, it is not always possible to have only one target
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moving in the scene. When multiple targets are in the scene and if one crosses
the edge of FOV, all targets in other cameras are picked as being candidates for
the projection of FOV line. Since the false candidates are randomly spread on
both sides of the line whereas the correct candidates are clustered on a single
line, correct correspondences will yield a line in a single orientation, but the
wrong correspondences will yield lines in scattered orientations. We can then
use Hough transform to find the best line in this case. This method needs more
points for a reliable estimate of the lines and therefore takes longer time to set
up correctly. Additional constraints derived from categorization of objects and
their motion may be used to reduce the number of false correspondences, thus
reducing the time it requires to establish the lines.

11.1.3 Network Integration of Tracking and ATD/R

The ability to detect, track, and recognize objects across a network has been
demonstrated across both wired and wireless networks. The concept of a
wireless peer-to-peer ad hoc network is shown in Fig. 11.6. This system was
built and tested using laptop PCs, each equipped with a Synchrotech2
adapter and a wireless card from MeshLAN2. We also tested operations on
a commercially available 802.11b wireless hub. A socket based communication
over TCP/IP was used to network three PCs that acted as ‘‘clients’’ and a
fourth one as the ‘‘server.’’ Network architecture is traditionally split into
layers starting at the top application layer and going progressively down
towards the hardware. The Transmission Control Protocol (TCP) forms the
Transport layer and beneath it the Internet Protocol (IP) forms the Network
layer. The Transport layer looks after assembling whole messages from indi-
vidual packets whatever route they may take and the Network layer looks after
getting individual packets across the network. If data packets are lost then
TCP automatically attempts to retry the operation. It uses a simple acknow-
ledgment interchange to ensure this. Within TCP/IP, the two communicating

Figure 11.5. The automatic calibration of three separate cameras with overlapping
fields of view (FOVs) is shown. The FOV boundary lines are established by observing
where moving objects visible in one camera simultaneously appear at the edge of another
camera’s view. Places where this occur represent points on the boundaries of FOVs of
other cameras that are visible in the current view.
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programs (server and client), allocate sockets and then connection is initiated
by the client program. The server continually listens for connect requests and
then chooses to accept a connection from them. This client{server model is an
appropriate scheme for the distributed network as there are many clients
making connection requests for information from one place (the server).

The particulars of the interactions are as follows. The KNIGHT tracking
system executes locally at each of the clients and the local tracking data is sent
to the server. The server ensures that the tracked entities from the clients are
deconflicted and properly associated, and assigned global labels as described in
Section 3. It is also essential to synchronize the frames processed at the clients
so that the proper temporal correspondence can be made. The global labels are
then received back at the clients and used for consistent labeling and display
purposes. At startup, the server is in a ‘‘training mode’’ to establish the FOV
boundaries based on the entry and exit of moving objects across the different
FOVs. Thereafter, the main purpose of the server is to generate and return
consistent labels for the tracked objects.

The ATR{Tracker interactions occur only at each client, as shown in Fig.
11.7. When a moving object is detected,a a 64� 128 region of the image
containing the tracked object is fed to the ATR for classification, and the result
is used for generating the target call (class label) and confidence associated with
that object, which is then sent to the server. When a new object enters the FOV
of a client the target call sent by the ATR is used as the label. If however the
object is already in track (i.e., it corresponds to an existing object) it gets the

Figure 11.6. Example of an ad hoc peer-to-peer network.

a For now we use the motion-based detection to cue the ATR. The ability to detect stationary

targets using the ATD/R and initiate tracks on them will be incorporated in future versions.
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target call with the highest confidence (including those from previous classifi-
cation results) assigned to the object as its label.

Figure 11.8 illustrates the interaction of the ATR and tracker across a
network using models for a ‘‘Tank’’ and a ‘‘Mini,’’ a relatively smaller vehicle.
The pictures represent snapshots of actual events that occurred during a real-
time test and demonstration of the algorithms. As these objects move from
right to left across the three FOVs, the ATR labels are correctly established
and handed over across the clients via the server. The color of the box contain-
ing the target is set to green if it is recognized to be the Tank, blue when it is the
Mini, and red if it cannot be recognized. In this instance, the Tank is visible and
correctly recognized in the left and middle camera views. The Mini is visible in
all three views, but is too close to the edge in the left camera view to be
recognized. It is however recognized correctly in the middle and right camera
views. It should also be noted that the tracking labels P122 and P123 are
consistently assigned by the server to the Tank and Mini across all three
views. Thus, the KNIGHT video processing system has been extended to
work across multiple platforms, achieving ATD/R, tracking, and handover
between multiple FOVs in real time.

Target call & confidence

KNIGHT ATR module

Figure 11.7 ATR{Tracker interactions occur only at each client. The results of the
ATR including class label and confidence are sent to the server.

Figure 11.8. Snapshots from real-time demonstration show the detection, tracking,
classification, and handover of targets across a network of computers.
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11.2 A Collaborative Approach to Object Recognition

In this section, we discuss a novel method where several sensors and ATRs
collaborate to recognize objects. Such an approach would be suitable for
network-centric application where the sensors and platforms can coordinate
to optimize overall ATR performance. We use correlation pattern recognition
techniques to facilitate the development of the concept, although other algo-
rithms may be easily substituted. Essentially, a self-configuring network is
proposed that positions the sensors optimally with respect to each other
depending on the algorithm and the class of the object to be recognized. We
show how such a network optimizes overall performance, and illustrate the
scheme by means of examples.

11.2.1 Background

Consider a scenario where an object is viewed by multiple sensors from different
angles.b We note that the concept is applicable to any generalized distributed
network of sensors, whether airborne or ground based. The question is how
should the sensors be coordinated to provide the optimum views to recognize a
class of objects? What methodology should the pattern recognition algorithm
exercise on the sensors to optimize overall performance? Some of the funda-
mental issues involved in answering these questions are addressed in this
chapter.

In current approaches, the position of the sensors is not determined by
either the processing algorithm or the object to be recognized. The algorithms
are designed independently of the sensing process, and therefore, overall system
performance is not necessarily optimized. One approach to solving this problem
is to define a metric that characterizes performance as a function of a param-
eter, say viewing geometry, and drive the configuration of the sensors to
optimize the metric. Clearly, the metric and performance characteristics will
be a function of the processing algorithm as well. In this paper, we develop such
a metric for correlation filtering algorithms, and illustrate the concept using
SAR images of targets from the public domain MSTAR data set.

The field of Correlation Filters has been reviewed by Kumar.15 Although
many schemes exist that describe the use of multiple correlation filters, of
particular interest is the concept of the k-tuple SDF5 where a bank of filters
work together to produce a unique code for each class of objects. In this scheme,
the filters are designed to satisfy unique constraints on output produced in
response to training images of a particular class. For instance, consider an 8-
class problem that must be recognized using k ¼ 3 filters, each producing a
binary (1 or 0) output. The possible 3-bit code associated with each class is
shown in Table 11.1.

b For instance, the sensors may be on board multiple UAVs, or the different views may be

collected using a sensor on a single platform.
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Each column of the 3-bit code is treated as the output of a particular filter
in response to the various classes. Thus, if the vector xj

i represents the i-th
training image of the j-th class, then the constraints on the first filter h1 may be
expressed as
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where the symbol � denotes a Kronecker product, u1 is the output constraint
vector based on the first bit of the code, and X is a matrix with the training
image vectors as its columns. It is easy to show that the simplest solution to Eq.
1 that minimizes the output variance due to AWGN is simply

h1 ¼ X(XTX)�1u1 ð2Þ

Similarly, the second and third filters (i.e., h2 and h3) can be designed by
using the appropriate columns of the 3-bit code in Table 11.1 as the output
constraint vector. In general, the filter outputs do not have to be restricted to
binary values. Sudharsanan et al.6 have discussed methods for selecting opti-
mum values for the output vector to minimize overall probability of error.

The main benefit of using multiple ATRs to form a unique code for each
class is 1) a large number of classes can be recognized using relatively few ATRs
and 2) the overall robustness is improved if error correction techniques are
used. Redundancy in the coding scheme helps to reduce the overall probability
of error since several symbols would have to be wrong before one class is
confused for another. The selection of good codes for designing ATRs is a
subject that is worthy of study on its own.

The solution in Eq. 2 is referred to as a projection SDF 5 in the literature. In
this chapter we will employ a different filter design technique known as the

Table 11.1. A simple 3-bit binary
code to represent 8 classes.

Class 3-bit Code

1 000
2 100
3 010
4 110
5 001
6 101
7 011
8 111
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maximum average correlation height (MACH) filter7 to develop a coded clas-
sifier (in fact, any composite filter design technique may be used). The relevant
details of the MACH filter design process will be reviewed in Section 11.2.2.
Although we will consider an architecture reminiscent of the k-tuple SDFs, our
focus is not on the coding scheme, but rather on the development of a concept
of operation so that the probability of error for individual bits of the code is
minimized. This is done in the context of the relative position of the sensors, the
properties of the algorithm used, and the specific targets themselves.

11.2.2 Performance Characteristic Function and Filter Synthesis

For simplicity of discussion, assume that two separate ATRs (that produce a
2-bit code) must be designed to work together to recognize two different classes
denoted by vx and vy. For the purposes of the discussion in this paper, we treat
each ATR to be a MACH type correlation filter, and represent them H1(k,l)
and H2(k,l), respectively. Unless otherwise stated, all quantities are in the
frequency domain. We require that if class vx is present, H1(k,l) should produce
a large positive output which is treated as a ‘‘1’’ if it exceeds a threshold T1.
Similarly, H2(k,l) should produce a large negative output which is treated as a
‘‘0’’ if it less than a threshold T2. Thus, the output code [1 0] should be obtained
whenever vx is present. Conversely, if vy is present, the filters are designed such
that H1(k,l) yields a large negative value while H2(k,l) yeilds a large positive
value which produces the output code [0 1]. The question is, what is the best
angular position for the filters relative to the target and to each other?

As noted in Section 11.2.1, we seek a metric that characterizes performance
as a function of viewing geometry, and then drive the configuration of the sensors
to optimize the performance metric. Towards this end, we define a distance or
separationmetric based on theMACH filter algorithm (a similar function can be
derived for essentially any ATR algorithm). The formula for the MACH filter is
straightforward.7 Let Xi(k,l) represent the 2D Fourier transforms of N training
images of class vx , selected to represent viewing angles of the class 1 object
around u	. Similarly, Yi(k,l) are the 2D Fourier transforms of N training images
of class vy that represent viewing angles of the class 2 object around a	. The
mean and spectral variance for each of the classes are defined as

M u
x (k,l) ¼

1

N

XN
i¼1

Xi(k,l) Su
x (k,l) ¼

XN
i¼1

jXi(k,l)�M u
x (k,l)j

2

Ma
y (k,l) ¼

1

N

XN
i¼1

Yi(k,l) Sa
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jYi(k,l)�M u
y (k,l)j

2

(3)

We will first discuss the design of one of the filters, say H1(k,l), stating that
the design of second filter will follow the same paradigm. The expression for the
first MACH filter that separates a u	 view of class 1 from a a	 view of class 2 is
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H1(k,l) ¼
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In fact, it is easy to show that distance or separation produced by this filter
as function of the angles a and u is given by
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We refer to this function as the MACH separation metric. Our strategy is
to train the filter at the specific viewing angles of each class that maximize
Q(u,a).

We now illustrate by means of an example the characteristic behavior of the
separation metric as a function of the angles a and u. Towards this end, we
use SAR images of a T72 (class-1 object) and BTR (class-2 object) from
the MSTAR public domain data set such as those shown in Fig. 11.9. There
were approximately 230 images of each class that cover all aspect views.
The function Q(u,a) was evaluated for all values of a in increments of 108
while fixing u ¼ 0	. In other words, the zero degree view of the T72 was
compared to all possible views of the BTR. The resulting behavior of Q(0,a)
is shown in Fig. 11.10. The number of images, N, was determined for both
classes by using a 458 window centered on angles being compared. Thus,
the images of the T72 that fall in the range of angles �22:5	 and the images
of the BTR that lie in the range a� 22:5	 were used in the estimation process.
The numerical value of the separation is around 315 when both targets are

Figure 11.9. Typical SAR images of (a) T72 and (b) BTR from the public domain
MSTAR database.
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compared at 08, but increases to around 480 when the BTR is at 1308. This shows
that the 08 view of the T72 is most separable from the 1308 view of the BTR, and
that it is not optimum to compare the targets at the same orientation.

The behavior of Q(u, a) for all possible values of u and a is shown as a 2D
image in Fig. 11.11. The color bar indicates the magnitude of the separation,
red being the greatest and blue being the least. Using a 108 increment and a
range of �22:5	 centered on the angles being compared leads to about 32
samples for each angle (i.e., multiplying the sample indices by 10 yields the
approximate value of a and u).

We see immediately that the two targets are most separable if class-1 (T72)
is at u1 ffi 30	 while class-2 (BTR) is at a1 ¼ 130	. Therefore, these angles are
the orientations at which the class means and spectral variances in Eq. 4 are
estimated to obtain the best choice for H1(k,l). Such a filter will produce the
largest positive values in response to class-1 when it is viewed at u1 ffi 30	

orientation. Similarly, a view of class-2 around a1 ¼ 130	 should induce the
filter to produce the most negative values. The question now arises what is the
best combination of angles for the second filter? This is easily answered by
selecting those values of a and u for which the second largest value of Q(u, a) is
obtained. We see that this occurs when class-1 at u2 ffi 130	 is compared to
class-2 at a2 ¼ 40	. Therefore, images centered on these angles are selected for
synthesizing H2(k,l). To obtain the desired code however, this filter should
produce a negative response to the class 1 and a positive response to class 2
which is easily accomplished by using the formula
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Figure 11.10. The behavior of the MACH separation metric shows that the 08 view of
the T72 is most separable from the view of the BTR at about 1308.
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Although this is the negative of the expression in Eq. 4, it should be noted
that H2(k,l) is not �H1(k,l) since each filter is trained at a different combi-
nation of viewing angles.

11.2.3 Concept of Operation: A Collaborative Formation of ATRs

The basic concept of operation is shown in Fig. 11.12. Consider a scenario
where an object has been detected, and we wish to verify its class. We assume
that ATR-1 and ATR-2 (H1(k,l) and H2(k,l) in our case) are on separate
platforms, each with its own sensor. To drive the relative position of the sensors
in an optimum manner consistent with the metric described in Section 11.2.2,
the platforms must fly in specific formation. Under the hypothesis that the
object belongs to Class-1, ATR-1 should yield a strong positive response (code
bit 1) when the object is viewed from angle u1. Similarly, ATR-2 should
produce a strong negative response (code bit 0) when the object is viewed
from the angle u2. If the orientation of the object is known, both ATR-1 and
ATR-2 can fly to the necessary positions and obtain images at the optimum

Figure 11.11. The separation metric is depicted here as a function of all possible
combinations of the viewing angles of both targets. This 2D array of values characterizes
the separability of the two classes as a function of the angular position of the
sensors. The best separation between the two classes occurs when class-1 (T72) at
u1 ¼ 30	 is compared to class-2 (BTR) at a1 ¼ 130	. The second best separation occurs
at u2 ¼ 130	 and a2 ¼ 40	.
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angles. Otherwise, the two platforms should fly around the object with a
relative angular separation of u1 � u2, checking to see if a strong [1 0] code is
obtained. Similary, to verify the hypothesis that the object belongs to Class-2,
the sensors should group into a new formation with a relative angular separ-
ation of a1 � a2 and fly around the object to see if the code [0 1] is obtained.

Themethod outlined in this paper achieves the process depicted in Fig. 11.13.
Multiple ATRs on separate platforms collaborate to produce unique codes for
different target classes. The process is driven using a metric that characterizes
the dependency of the overall performance on the position of the sensors, relative
to each other and to the specific target. Thus, an optimum configuration of
sensors exists for each class of interest. The overall process treats the relative
position of the sensors as a part of the classification algorithm, and configures the
formation of the platform to optimize class separation.

11.3 Conclusions

In this chapter we discussed the key issues involved in information processing
for security and surveillance application using a distributed and netted system.

Figure 11.12. The sensors can fly towards the object at optimum angles if its orien-
tation is known. Otherwise the sensors may search for the correct 2-bit code by flying
around the object at a relative angular separation of u1 � u2 or a1 � a2, depending on
whether it is believed to belong to Class-1 or Class-2.
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The underlying concepts were illustrated by means of two case studies. In
Section 11.1, we discussed target detection, recognition, and tracking across a
network of stationary platforms with fixed mounted cameras. The approach
illustrated how several existing components such as COTS computers and
networking technology, video trackers, and ATD/R algorithms can be brought
together to address the need for wide-area surveillance in a distributed pro-
cessing environment. The tracking system is able to automatically establish
where the camera FOVs intersect, and use this information to generate con-
sistent labeling of objects across the network. This process was further aug-
mented using a correlation based ATR algorithm to classify the tracked objects
and assign unique labels. The interactions between the ATR and tracking
algorithms were defined, and the algorithms were shown to work across a
network of three client computers and a server using the TCP/IP protocol.
The goal is to eventually evolve the concept of moving and airborne platforms.
Here we envision that initially video data will be wirelessly transmitted to
receiving computers on the ground where the processing will take place. In
the future, it may be advantageous to process imagery aboard the platform and
transmit only the salient results across the network. The greater challenge is to
solve the FOV registration and the relative calibration between cameras for the
moving platform scenario. While we seek a purely image based solution to this
problem, it may be advantageous to explore the potential benefits of using GPS
and other information about the platforms and their positions relative to one
another. In the future, we anticipate that the ability to register the field of
views of cameras on moving platforms may potentially lead to novel simplifi-
cation of the guidance and control required to coordinate the relative behavior
of the platforms.

In Section 11.2, we discussed new evolving paradigms for collaborative
target recognition that require specific configuration of the platforms around
the targets. Such algorithms also heavily enable to automatically calibrate
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Figure 11.13. The overall performance of multiple ATRs is optimized by first obtain-
ing a metric that characterizes performance as a function of sensor properties (angular
position in this case) as well as target types, and then uses this function during operation
to drive the sensors into an optimum configuration.
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multiple moving FOVs to associate and track objects across them. We intro-
duced a method to design a network of collaborative sensors that reconfigure
their position to maximize class separation, and hence maximize overall per-
formance. This was achieved by defining a function Q(u, �) that characterizes
the separation metric as a function of not only the targets, but also the viewing
angles. The proposed approach is general in that such a function can be defined
for any ATR algorithm of choice, not just correlation filters. The approach can
be extended to parameters other than viewing geometry following the same
methodology. Although the approach was described for a Class-2 example, the
process can be extended to any number of classes and sensors. In the general
case, a swarm of N platforms would operate together and fly in specific
formation depending on the class of interest. When only one platform is
available, the proposed approach is still helpful to determine how to sample
the best views of the targets. Work is currently ongoing to conduct a statistical
analysis of the optimality of the proposed approach and to quantify the
advantage over conventional methods using numerical simulations.
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12.0 Introduction

An important problem that arises in three-dimensional (3D) object recogni-
tion is due to the changes in orientation of the object under study. These
changes in orientation introduce distortions in the two-dimensional (2D) pro-
jections, which can impair the recognition task. Consequently, it is essential to
consider these changes in orientation in any 3D object recognition problem.
Furthermore, there are circumstances where it is desirable to know the orien-
tation of the object under study, that could be the case of some industrial
processes where one finished piece should meet another one in a specific
orientation; or in surveillance and security issues where it is important to
know the place a vehicle is heading to or the direction a person is looking at.
The problem of determining the 3D orientation of an object is known as pose
estimation.

Pose estimation by itself is one of the oldest computer vision problems. It is
important for view-invariant face recognition1{3 and robot vision tasks.4 It also
has applications in biomedical5,6 and meteorological imaging6 or photogram-
metry.7 Many approaches for pose estimation involve the knowledge of a set of
reference points8,9 or the detection of features followed by comparison to a
known 3D model.1,3,10 Here, we focus on a different technique where the
reference object is not known through a geometrical model but rather as a
collection of 2D projections obtained from various points of view. The pose is
then estimated from a single unknown 2D view.
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In this chapter we present a technique based on images, linearly weighted
synthetic-discriminant function filters and an artificial neural network.11 The
principle of this technique is to feed an artificial neural network with the
correlation peak values obtained from the correlation between the input scene
and three composite correlation filters. We propose two variations of this
technique, using either linear or nonlinear correlations. We present a study of
the robustness of the proposed technique when the input scene is affected
by noise.

12.1 Pose Estimation Using Linear Correlation

In this section we explain the use of linear correlation filters to estimate the
pose of an object. We describe the design of the composite filters and the results
of recognition and pose estimation using linear correlation. Although this is the
easiest and most obvious way of applying the proposed technique, we show that
linear correlation is not satisfactory if object recognition is needed in addition
to pose estimation.

12.1.1 Construction of the Composite Correlation Filter

In order to illustrate the proposed technique, we use images of an F15 airplane
and consider two pose parameters. These are in-plane rotation and out-of-plane
rotation. The out-of-plane rotation is considered as a change of azimuth angle
of the object, while in-plane rotation is a rotation around the optical axis of the
sensor. Figures 12.1(b) and (c) are images with out-of-plane and in-plane
rotation correspondingly with respect to the image of the reference object of
Fig. 12.1(a). The method we present here was originally motivated by the work
of Monroe and Juday.12 The starting idea of this technique is to determine the
pose of an object by comparing the 2D view under study with several views
with known orientations. The comparison can be done through a correlation
measurement.13{15 However, it implies the comparison of the input scene with
any stored view of the reference object and it is therefore both storage and time
consuming. To lessen the problem, several reference views of the object can be
combined into a single synthetic-discriminant function (SDF) filter.16{22 The
filter is constructed by weighting the views in such a way that the value of the
correlation peak varies linearly with the pose parameters. The set of views used
to construct the filter is called construction set. A basic SDF is given by

h ¼ S(St S)�1c, (1)

where the upper t stands for a matrix transposition operation, S represents a
matrix whose columns are the images of the construction set rearranged as
column vectors. The vector c contains the assigned correlation values for every
image of the construction set. We discuss next how to compute these c values.
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We consider the out-of-plane rotation u and the in-plane rotation f of the
reference airplane, both over a 0 degree to 8 degree angle. The construction set
for one linearly weighted composite filter includes nine images corresponding to
rotation angles 0, 4, and 8 degrees in both directions. Each image has 256 � 256
pixels and contains a view of the reference F15 airplane previously extracted
from its background. Figures 12.1(a){(c) show three of the nine images of the
construction set. Figures 12.1(b) and (c), respectively, present an out-of-plane
and an in-plane rotation with respect to Fig. 12.1(a). Figures 12.1(d) and (e)
represent false targets.

In addition to estimating the out-of-plane rotation u and in-plane rotation
f we want to be sure that the presented object is really the reference object. We
therefore define the pose vector p ¼ [u,f,RF]t, where RF is a recognition flag
and should be 1 when the tested object is of the class of the reference object.
Now, since we want to retrieve three parameters, we need to obtain at least
three independent measurements from an image. We therefore construct three
different composite filters h1,h2, and h3 with the same construction set but
different weights.

(a) (b) (c)

(d) (e)

Figure 12.1. Images used for the pose estimation and object recognition: (a) reference
object, an F15 airplane, (b) out-of-plane rotated, and (c) in-plane rotated versions of the
airplane. (a), (b), and (c) are three of the nine images included in the construction set;
(d) and (e) are false targets.
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Namely, we define the relation between the vector containing the correl-
ation values c and the pose vector p to be linear, so that for a particular image
with pose p ¼ [u0,f0,RF0]

t the correlation values c ¼ [c1,c2,c3]
t for each of the

three filters will be given by

c ¼ Tp; (2)

where T is a 3 � 3 transformation matrix. This matrix is fully defined by three
independent (p, c) pairs. We use, for instance, three points of our pose space (0,
0), (0, 8), and (8, 8) and as mentioned before, we add a third column with a
value of 1 to specify that the images belong to the true class; that is,
p1 ¼ [0;0;1]t,p2 ¼ [0;8;1]t, and p3 ¼ [8;8;1]t. We decide that each filter will
give a correlation value of 1 for one of these three points and 0,8 for the other
two points. Explicitly matrix T is found as

T ¼
1 0:8 0:8
0:8 1 0:8
0:8 0:8 1

2
4

3
5 0 0 8

0 8 8
1 1 1

2
4

3
5
�1

: (3)

Once the matrix T is obtained as described above, we compute according to
Eq. (2) the correlation values that we should get for the other images of the
construction set. That is

Cconst ¼ TPconst , (4)

where Pconst is a matrix whose columns are the pose vectors for every image of
the construction set. Each row of the matrix Cconst contains the correlation
values for one of the filters for the nine images of the construction set. As we
can observe from Figs. 12.2(a){(c), each filter has indeed a linear dependency of
the correlation peak value with respect to the two parameters of orientation.

Now, to generate the filter h1 we take the transpose of the first row of Cconst

as the vector c required in Eq. (1). Then h1 is converted back from a vector
form to an image form. Filters h2 and h3 are generated in the same way
now using rows 2 and 3 of matrix Cconst, respectively, as the required vector c
in Eq. (1).

12.1.2 Linear Estimation of the Pose

The aforementioned pose estimation approach expects a linear dependency
between pose parameters and correlation peak even for in-between images
that were not used to construct the filters. Consequently, for our pose domain,
the idea is to reverse the problem. Since we know the linear relation { stored in
the transformation matrix T{ and since we can compute the correlation peak
values { we have constructed the SDF filters { we can therefore retrieve the
pose parameters of an unknown presented image. That is, we compute the
correlation between the presented image with each of the three composite
filters h1,h2, and h3. Then for each filter, we just retain the maximum value
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of the correlation plane as correlation peak value. This value is independent on
the location of the object and thus provides shift invariance. We then combine
the three values obtained with the three filters in a correlation vector. We
create an evaluation set containing images with rotations from 0 to 8 degrees
in steps of one degree in both orientations (see Fig. 12.3). Then we form a
matrix Ceval whose columns are the correlation vectors of every image of the
evaluation set. In this way the pose estimation for the complete set can be
retrieved easily as:

Peval ¼ T�1Ceval , (5)

where the matrix Peval contains in its columns the pose vectors for every
evaluated image. Namely, each column has the estimated out-of-plane, that is
the in-plane rotation and the recognition flag information, respectively. If the
recognition flag is close to 1 then the object is accepted as the true class and the
estimated pose makes sense.

After computing the correlations we store the correlation peak values into
the Ceval matrix. Figure 12.4 shows the relationship between the pose param-
eters (in-plane rotation f and out-of-plane rotation u) and the correlation value
for each of the SDF filter. It can be seen that the variation is not exactly linear
in-between the reference views. Therefore, the pose estimation can be slightly
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Figure 12.2. Defined relationship between correlation peak values and the orientation
parameters: (a) for SDF filter h1, (b) for SDF filter h2, and (c) for SDF filter h3.
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improved by substituting the original conversion matrix T�1 with a matrix F
that minimizes the pose estimation errors. In order to estimate these errors we
first use a training set composed of 41 images with known orientations
(Fig. 12.3). Let us denote by Strain the matrix containing all the training images
and by Ptrain the matrix containing the corresponding known pose parameters.
By correlating Strain with each of the filters, we obtain the correlation peaks
values for the complete training set Ctrain.

Now, we compute the conversion matrix F that achieves a least-square fit,
that is to say it minimizes the square error Ptrain � FCtraink k2. It can be
shown23 that the solution is obtained using the Moore{Penrose pseudoinverse
of Ctrain The final result is

F ¼ PtrainC
T
train CtrainC

T
train


 ��1
(6)
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Figure 12.3. Composition of the three sets of images. The construction set is used to
design the composite filter. The training set is used for the linear least-square fit and for
training the neural network. The evaluation set is used to test the pose estimation.
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and, similar to Eq. (5) the estimated pose parameters are

P̂Peval ¼ FCeval : (7)

Figure 12.5 shows the pose estimation results on the evaluation set that
includes 81 images with rotations from 0 to 8 degrees in steps of one degree in
both u and f (Fig. 12.3). The estimated poses are located at the nodes of the
grid. If the dashed lines were perfectly straight passing all the way through the
dots, then the estimation would be exact. Here the estimation error on the out-
of-plane rotation u has a standard deviation of 0.31 degrees and a maximum of
0.87 degrees. The error for the in-plane rotation f has a standard deviation of
0.20 degrees and a maximum of 0.55 degrees. Let us mention that the above
technique is slightly different from the one presented in12, where the least-
square fit is done for the transformation matrix T rather than for its inverse.
The fitted matrix has then to be inverted to compute the poses. Our technique
is therefore slightly more straightforward. Nevertheless, both methods give
very similar results. Now our proposal is to introduce a neural network to
improve the estimation of the pose.
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Figure 12.4. Real relationship between correlation peak values and orientation param-
eters for: (a) SDF filter h1, (b) SDF filter h2, and (c) SDF filter h3.
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12.1.3 Pose Estimation Using a Two-layer Neural Network

The errors in the pose estimation appear because the relationship between the
pose parameters and the correlation values is not perfectly linear, as shown in
Fig. 12.4. In order to improve the estimation, we now use an artificial neural
network (ANN).

In fact, the pose estimation given in Eq. (7) can already be seen as the
operation of a single-layer ANN where the matrix F contains the weights of
the ANN obtained from training with the correlation values of the training
set. To obtain a better estimation, we need a nonlinear function. We therefore
use a two-layer back propagation neural network24 trained with the Leven-
berg{Marquardt algorithm.25 The hidden layer contains 20 neurons and the
output layer 3, each of which corresponds to one parameter to estimate
(Fig. 12.6). To train the network, the inputs are the maximum correlation
values obtained for the three SDF filters for each image of the training set.
The desired outputs are the corresponding known pose parameters. The
learning stage uses 100 epochs. The number of epochs, as well as the number
of hidden neurons, was found heuristically. Figure 12.7 shows the pose esti-
mation results. It is evident from this figure that the estimation is significantly
improved compared to the previous linear estimation. The results slightly
vary from one training to another because of the random initialization of
the ANN. However, the error for the out-of-plane rotation u typically has a
standard deviation of 0.07 degrees and a maximum of 0.25 degrees. The error
for the in-plane rotation f typically has a standard deviation of 0.05 degrees
and a maximum of 0.15 degrees.
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Figure 12.5. Pose estimation with a linear least-square fit of the correlation values {
Linear correlation.
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12.1.4 The Recognition Issue

We previously mentioned that the estimated orientation angles only make
sense if the presented object is a true target, that is, it belongs to the class of
the reference object. In order to know whether this is the case, we included in
the pose parameters a recognition flag RF that is supposed to be 1 only for
views of the reference object. We thus achieve simultaneously the object
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c3 2
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θestim

φestim

θestim

Recognition
flag, RF

Pestim =
RF

Figure 12.6. The proposed neural network to estimate the pose. A two-layer feed-
forward back propagation neural network. The inputs are the correlation values pro-
vided by the composite filters. The outputs are the pose parameters.
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Figure 12.7. Pose estimation results with a two-layer neural network { Linear corre-
lation.
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recognition and the pose estimation. When retrieving the pose parameters for
the evaluation set with the two-layer ANN presented in the previous subsec-
tion, the estimated value of the recognition flag is comprised between 0.99
and 1.01. This confirms that the images of the evaluation set correspond to
the reference airplane. However, when we present to the system the false
target shown in Fig. 12.1(d), the obtained recognition flag is comprised be-
tween 0.95 and 1.05 in 82% of the cases (result obtained from 5000 trials with
random initializations). For the false target presented in Fig. 12.1(e), the
recognition flag is comprised between 0.95 and 1.05 in 67% of the cases. The
inability of the system to discriminate between the reference object and these
false targets { including a very dissimilar one { shows that the procedure is not
satisfactory. This problem is due to the low discrimination capability of linear
correlation. Therefore, we explore the use of nonlinear correlation for the pose
estimation.

12.2 Pose Estimation Using Nonlinear Correlation

In order to improve the recognition capability of our technique, we replace the
previous linear correlation with a kth-law nonlinear correlation.26,27 As we
show next, the problem is then that the relation between the pose parameters
and the correlation values becomes strongly nonlinear.

12.2.1 Composite Filter Using Fourier Plane Nonlinear Filters

The optimum nonlinear filter is presented in.28,29 For simplicity, we use the
kth-law nonlinearity, which is easily implemented in the Fourier domain, and is
an approximate of the optimum nonlinearity. For every image I, we compute
its 2D Fourier transform ~II . The nonlinear operation consists in raising the
modulus of this Fourier transform to the power of k, while keeping its original
phase. The resulting matrix is

~II (k) ¼ ~II
�� ��k exp iw~II


 �
, (8)

where ~II
�� �� is the modulus of ~II and w~II is its phase. The nonlinear factor k is

comprised between 0 and 1. The nonlinearity is all the more stronger as k
is closer to 0; a value of 1 corresponds to the linear correlation case. If k ¼ 0, the
comparison is performed only on the phase information. The following is similar
to what we explained in the previous section, except that we substitute every
image I of an object with its nonlinearly transformed Fourier transform ~II (k).
Thus, the nonlinear SDF filter is obtained with

~hh(k) ¼ ~SS
(k) ~SS

(k)þ~SS
(k)

� ��1

c (9)
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Here ~SS
(k)

is matrix whose columns contain the construction set images ~II (k)

rearranged as columns vectors. The symbol þ stands for the transpose conju-
gate. This Fourier-plane SDF filter is then converted back to matrix form and
multiplied by the complex conjugate of the nonlinearly transformed Fourier
transform of an unknown image. The result of the multiplication is inverse
Fourier transformed to provide the correlation plane. Provided that the con-
straint vector c is real, it can be shown that { because the kth-law nonlinearity
preserves Hermiticity { all the obtained correlation values are still real. The
correlation result is the value of the maximum correlation peak. The shift
invariance is thus preserved.

12.2.2. Pose Estimation and Recognition of the Object

We first evaluate the linearity of the correlation-pose transformation. In the
same way as in Section 12.2.2, we construct now the nonlinear SDF filters26,27

with the images of the construction set. We choose a medium nonlinear factor:
k ¼ 0:5 and we perform nonlinear correlations between each image of the
complete evaluation set and each nonlinear filter. Figure 12.8 shows the real
relation between the pose parameters (in-plane rotation f and out-of-plane
rotation u) and the correlation peak value for each of the three nonlinear
correlation filters. It is evident that the relation is not linear at all in-between
the reference views that compose the filters.

We can therefore expect that a retrieval of the pose from the correlation
values through a linear relation like Eq. (5) will be incorrect, even with a least-
square fit Eq. (7) that is equivalent to a one-layer neural network. This is
confirmed by Fig. 12.9 that presents the result of such an estimation for
k ¼ 0:5. In the case of nonlinear correlation, it is hence necessary to use a
two-layer neural network to retrieve the pose parameters.

We use an ANN similar to the one used in Section 12.2.3 except that it has
40 hidden neurons. The training stage is stopped when the mean-square error
reaches 3:10�3 (about 100 epochs). Here also the parameters have been found
heuristically. The error for the out-of-plane rotation u typically has a standard
deviation of 0.25 degrees and a maximum of 0.9 degree. The error for the in-
plane rotation f typically has a standard deviation of 0.1 degrees and a
maximum of 0.5 degrees.

Figure 12.10 presents the pose estimation for the entire evaluation set. The
results are less accurate than with a linear correlation but are nevertheless
acceptable. They are about four times more accurate than the ones obtained
with nonlinear correlation by linear fitting.

The reason why we introduced the use of a nonlinear correlation is to get a
better discrimination in the recognition of the object. To test this discrimination,
we study the values of the recognition flag RF provided by the system when
presenting various images. We use a nonlinear factor k ¼ 0:5. In this case, for
the images of reference airplane contained in the evaluation set, we obtain a
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Figure 12.8. Relationship between correlation peak values and orientation parameters
for (a) SDF nonlinear correlation filter hk1, (b) SDF nonlinear correlation filter hk2, and
(c) SDF nonlinear correlation filter hk3.
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recognition flag usuallybetween 0.95 and1.05. For the false target ofFig. 12.1(d),
the value obtained for the recognition flag varies randomly between�10 andþ10
approximately, depending on the random initialization of the network. Accord-
ing to a 5000-trial test, the probability that the recognition flag be between 0.95
and 1.05 is only 7%. Thus, using nonlinear correlations, the probability of wrong
classification of the false target is substantially lower than with the linear
correlation case. Moreover, it can be further reduced to (0:07)2 ¼ 0:5% by
cross-checking the result with a second { independently trained { network. For
the false target of Fig. 12.1(e), which is very similar to the reference object, the
probability that the recognition flag be between 0.95 and 1.05 is 21%. It can be
reduced to 4.5% by cross checking with a second network.

12.2.3 Alternate Technique

If the shift-invariance property is not needed, the pose estimation results can be
improved. This could happen in some industrial processes where the location of
the tested pieces is fixed. Rather than using the maximum correlation value,
the modified technique uses the value of the center of the correlation plane
(corresponding to the inner product between the nonlinearly transformed filter
and the image). Indeed, the design of SDF filters only imposes the value of the
inner product between the image and the filter. In the case of nonlinear
correlation, the maximum correlation peak is not always obtained in the origin
and its value may therefore be different from the expected value. Actually, a
further improvement can be obtained by taking as correlation value the mean
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Figure 12.10. Pose estimation results with a two-layer neural network { Nonlinear
correlations.
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of a small window centered on the center of the correlation plane. We found
that a 5� 5 window gives the best results for our application.

This alternate method supposes that the studied object is exactly located at
the same place as the reference objects. This loss of shift invariance is the price
to pay for the improved pose estimation. Figure 12.11 presents the results
obtained with an ANN having 40 hidden neurons and trained until reaching
an error of 10�3 (about 200 epochs). The error for the out-of-plane rotation u
typically has a standard deviation of 0.06 degrees and a maximum of 0.2
degrees. The error for the in-plane rotation f typically has a standard deviation
of 0.05 degrees and a maximum of 0.15 degrees. Note that this alternate
technique can also be applied to the linear correlation. However, the gain in
accuracy is less noticeable in that case.

12.3 Discussion

12.3.1 Linear Versus Nonlinear Correlation

As we have shown, target recognition and pose estimation can be performed
simultaneously, both with linear and nonlinear correlations. In both cases, the
shift invariance property is achievable. However, there is a trade-off between
discrimination capability and accuracy of the pose estimation. Discrimination
is improved with nonlinear correlation whereas pose estimation is more accur-
ate with linear correlation. We showed that the accuracy of nonlinear
correlation could be improved at the cost of losing the shift invariance
(see Table 12.1). However, this requires that the position of the object be
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Figure 12.11. Pose estimation results with a two-layer neural network taking as
correlation value the mean around the center { not shift invariant nonlinear correlation.
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known with a one-pixel precision and is therefore of little practical interest in
most cases. Actually, the precision achieved with the shift-invariant nonlinear
technique is satisfactory (accuracy of 0.9 degree).

If a greater accuracy is needed, one could separate the recognition stage
from the pose estimation stage. The recognition alone could be performed with
a nonlinear composite filter for high discrimination and the pose estimation of
the recognized target could then be performed with the linear correlation
technique. Note that even if the recognition is performed separately, the
location of the object will not be known with a one-pixel precision so it is still
important that the pose estimation be shift invariant.

12.3.2 Choice of the Construction Set

In the case of nonlinear correlation, the nonlinearity of the response of a com-
posite filter decreases when the angle between the construction images is smaller
(the filter is better constrained). We used an incremental angle of 4 degrees
between our construction images. The linearity, and therefore the pose estima-
tion,might be improved by reducing this angle.On the other hand, the number of
reference images that can be included in a single composite filter without de-
grading its performance is limited. Thus, decreasing the incremental angle
between construction images results in reducing the total angular range covered
by the filter. Since the full pose space is covered by tiling it with several composite
filters, a trade-off has to be made between the total number of tiles and the
accuracy of the pose estimation. In order to keep the total number of filters
reasonably low, it is necessary to use filters constructed with a sufficient

Table 12.1. Comparison among the different variations of the proposed technique.

SI su
(deg) Qmaxerr

(deg) sf
(deg) wmaxerr

(deg) FP

Linear correlation and
one-layer ANN
(least-square fit)

yes 0.31 0.87 0.20 0.55 NC

Linear correlation and
two-layer ANN

yes 0.07 0.25 0.05 0.15 67%

Nonlinear correlation
and one-layer ANN

yes 1.2 3.1 0.30 1.3 NC

Nonlinear correlation
and two-layer ANN

yes 0.25 0.9 0.1 0.5 7%

Nonlinear correlation
mean value around the
correlation peak
(two-layer ANN)

No 0.06 0.2 0.05 0.15 NC

SI means shift-invariance; su and Qmaxerr are standard deviation and maximum error for out-of-

plane rotation; sf and fmaxerr are standard deviation and maximum error for in-plane rotation; FP

is the False Positive rate; NC means Not Calculated
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incremental angle. Our choice of an 8-degree range with an incremental angle of
4 degrees between the construction images is not due to theoretical consider-
ations. It is intended to show that the nonlinear response of the filters can be
compensated by the use of a neural network. The amount of tolerated nonlinear-
ity can be used to reduce the incremental angle between construction images, and
therefore, to reduce the total number of filters. So, the choice of the incremental
angles, the number of construction images and the number of filters should be
adapted to every particular application. The total number of filters could reach a
few hundreds if we want to span the full pose space. However, the advantage of
the correlation technique is that it can be performed optically, including the
nonlinearity.29 The computation time is thus strongly reduced.

12.3.3 Robustness and Limitations

Since our pose estimation relies on the values of the correlation peak, it is
somewhat sensitive to factors that modify this value such as noise. We tested
the influence of several types of distortions applied to the evaluation images.
We use 1) an additive Gaussian white noise with mean 0 and standard devi-
ation 20% of the maximum intensity of the image, 2) a multiplicative Gaussian
white noise with mean 1 and standard deviation 0.2, and 3) a multiplicative
Gaussian noise with mean 1, standard deviation 0.1, and a spatial correlation of
10 pixels to simulate changes in illumination. See Fig. 12.12 for examples of
noisy images. Table 12.2 sums up the results for the shift-invariant pose
estimation using linear correlation and noisy images. It can be seen that these
levels of noise are somewhat acceptable. However, the same experiment for
shift-invariant pose estimation using nonlinear correlation gives unacceptable
results: errors of more than 1 degree in standard deviation and several degrees
as maximum. The nonlinear correlation only tolerates a couple of percents of
noise. The pose estimation with linear correlation is thus more robust than the
one with nonlinear correlation. This again pleads in favor of a separate recog-
nition stage using nonlinear correlation followed by a pose estimation using
linear correlation. For both cases of linear and nonlinear correlation, the pose
estimation cannot be performed when there is a uniform change of illumination
or when a cluttered background is present. The illumination problem might be
solved by normalizing the input images in energy. In addition, the object would
have to be extracted from the background using segmentation techniques.30{32

12.4 Conclusions

In this chapter, we discussed the problem of pose estimation based on images,
correlations and an artificial neural network. We constructed three different
composite correlation filters using views of the reference object with known
orientations. We constructed them in a way that the correlation peak
depends linearly on the pose parameters. However, the interpolation for new

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap12 Final Proof page 240 27.10.2005 10:46am

240 A. Castro et al.



orientations within the pose domain was not always straightforward. We
showed that the linear-dependency assumption does not hold when a nonlinear
correlation is used. Even for a linear correlation, it was only an approximation.
We therefore proposed to improve the pose estimation by feeding the correl-
ation peak values of the three linearly weighted composite filters into a neural
network. This network was previously trained with a set of reference
views. As an illustration, we presented the determination of two rotation angles

(a) (b)

(c) (d)

Figure 12.12. Examples of noisy images: (a) noiseless, (b) additive noise 20%, (c)
multiplicative noise 20%, and (d) illumination noise 10%.

Table 12.2. Error (in degrees) for shift-invariant pose estimation with linear
correlation and a two-layer ANN.

Noise type su
(deg) Qmaxerr

(deg) sf
(deg) wmaxerr

(deg)

Noiseless 0.07 0.25 0.05 0.15
Additive 20% 0.25 0.8 0.15 0.5
Multiplicative 20% 0.2 0.5 0.1 0.4
Illumination 10% 0.4 1.0 0.3 0.7

su andQmaxerr are standard deviation and maximum error for out-of-plane rotation; sf andfmaxerr

are standard deviation and maximum error for in-plane rotation.
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(in- and out-of-plane) from actual pictures of a plane. The best pose estimation
was obtained using a two-layer back propagation neural network. This neural
network improved the pose estimation results in both cases: linear and non-
linear correlations. We showed that nonlinear correlation is needed for a good
discrimination but that linear correlation provides a more robust pose estima-
tion. Thus, it might be profitable to separate the recognition stage from the
pose estimation stage. Even if only linear correlation is considered, our tech-
nique provides a significant enhancement over the simple fitted pose estimation
procedure presented in reference12 As mentioned before, the pose estimation
was performed for out-of-plane rotations and in-plane rotations within an 8-
degree square range. A larger range can be covered by tiling the desired pose
space. It is also possible to estimate more than two distortion parameters by
increasing the number of composite filters.
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Abstract: A robust moving object detection system for an outdoor scene must be
able to handle adverse illumination conditions such as sudden illumination changes
or lack of illumination in a scene. This is of particular importance for scenarios where
active illumination cannot be relied upon. Utilizing infrared and video sensors, we
develop a novel sensor fusion system that automatically adapts to the environmental
changes that affect sensor measurements. The adaptation is done through a co-
operative coevolutionary algorithm that fuses the scene contextual and statistical
information through a physics-based method. The sensor fusion system maintains high
detection rates under a variety of conditions. The results are shown for a full 24-hour
diurnal cycle.

13.0 Introduction

Over the past several decades many approaches have been developed for
moving object detection for indoor and outdoor scenes. Moving object detection
methods fall into two categories: (a) feature-basedmethods,21 and (b) featureless
methods (e.g., image subtraction, optical flow, statistical modeling).2,4,6,8,18,24.
Each of these methods offers advantages that are exploited for different appli-
cations. For example, temporal differencing is simple and may suffice for
indoor type illuminations for slow moving objects, optical flow is useful for a
moving camera platform, and statistical modeling can capture the background
motion.

Some of the shortcomings of the above approaches for moving detection are:

1) None of these approaches address the problem of low light or no light
conditions,

2) No contextual information is used to update the parameters,
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3) Generally, a large number of observations are required before a background
model can be learned effectively, and

4) The algorithms have been applied to a single sensing modality (usually
visible or near infrared) and no results have been shown for extreme condi-
tions, for example, no illumination, sunset, or sunrise condition.

To overcome illumination conditions such as low or no light conditions,
other sensing modalities such as cameras operating in near or long-wave
IR have been utilized.3 However, these sensing modalities could still fail due
to similar conditions in their respective bandwidth. For example, in a long-
wave (thermal infrared) camera, a subject’s temperature could reach that of
the background, thus having limited contrast, which may cause detection
failure.

Multisensor fusion attempts to resolve this problem by incorporating bene-
fits of different sensing modalities. The advantages of multisensor fusion are
improved detection, increased accuracy, reduced ambiguity, robust operation,
and extended coverage. Sensor fusion can be performed at different levels
including signal or pixel level, feature level, and decision level.

This chapter provides a novel sensor fusion system that fuses long-wave
(thermal IR) and visible sensors in a unified manner. By utilizing the IR signal,
we can overcome some of the limitations of the visible cameras and by com-
bining the visible and IR signal we improve the detection under a variety of
conditions. The salient features of our approach are:

a) Consistent data representation: At the image level all sensing modalities are
represented by mixture of Gaussians in a consistent manner.

b) Physical models: Sound physical models are used for each sensing modality
(e.g., visible and IR) to provide prediction for each signal.

c) Evolutionary-based approach for fusion: A cooperative coevolutionary al-
gorithm is developed to systematically fuse and integrate information from
both statistical and physical models into a unified structure for detection.

d) Context-based adaptation: Environmental conditions such as ambient air
temperature, wind velocity, surface emissivity, etc., are directly incorpor-
ated into the detection algorithm and influence the fusion strategies.

Section 13.1 provides the related work and motivation, Section 13.2 presents
the details of the technical approach, Section 13.3 discusses the experimental
results, and finally Section 13.4 provides the conclusions of the chapter.

13.1 Related Work and Motivation

Current multisensor fusion and integration approaches use the following para-
digms:

(a) Statistical Paradigm This paradigm utilizes the statistical properties of
signal at pixel, feature, or decision level. It includes statistical methods

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap13 Final Proof page 246 27.10.2005 11:16am

246 Bir Bhanu and Sohail Nadimi



such as Bayesian, Dempster-Shafer, and Fuzzy approaches. These
approaches have been used extensively for fusion due to their well-
developed mathematics. In Ref.1, Bayesian and Dempster-Shafer multi-
sensor fusion methods are compared for target identification. In Ref.9, a
Bayesian-based method for lane detection is developed. In Refs.15,16, stat-
istics-based techniques have been used for fusing video, near infrared
(NIR), midwave infrared (MWIR), and long-wave infrared (LWIR) signals
for image enhancement. Statistical-based fusion approaches provide a
unified framework and methods that can deal with sensor noise; however,
they require enormous amounts of data and prior knowledge of statistical
properties of the signals.

(b) Artificial Intelligence (AI) Paradigm This paradigm attempts to
fuse the data through methods such as knowledge-based, rule-based, and
information-theoretic methods. Examples of AI-based fusion techniques
are5,20 for image enhancement and target detection, and 7for robotics. This
paradigm has the advantage of incorporating contextual information,
heuristics, and domain knowledge by utilizing well-developed algorithms
in the AI field; however, once designed, addition of new sensing modalities
require a new set of algorithms and/or domain knowledge and heuristics
that are generally provided by external experts for expansion of knowledge
rules.

(c) Data Structure Paradigm This paradigm utilizes various representa-
tions such as graphs, trees, tables, and data structure-specific techniques
such as graph traversal. Terrian19 and Waxman23 provide methods for
fusing FLIR and an image intensifier data for image enhancement. In
Ref.10, an approach is introduced to fuse acoustic and video data for
underwater vehicle tracking. This paradigm works well when the data
can be represented by one of the structures mentioned. The obvious
disadvantage of this paradigm is that once the data structure is defined,
it may not be possible to extend the method to new sensing modalities;
therefore, this paradigm is suitable when all sensing modalities participat-
ing in fusion are known in advance.

(d) Physics Paradigm: This paradigm utilizes the sensor phenomenology to
model the signals, based on the physical aspect of the world. Physical
models describe the relation of object parameters (e.g., surface reflectance,
orientation, roughness, temperature, material density, etc.) to scene
environmental parameters (such as ambient temperature, direction of
illumination, wind velocity, etc.) to predict sensor values.

Pavlidis et al.13 develop an automatic passenger counting system based on
subbands below short wave infrared (SWIR). They measure reflectance of
many objects including human beings; they note that the human skin reflect-
ance spectral map is very similar to that of distilled water; they relate this
phenomenon to the fact that humans are 70% water. In Ref.12, several physical
models have been developed to model the thermal, acoustic, and laser radar
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signals for various segmentation problems. The fusion is viewed as the problem
of relating scene parameters to object parameters. Since IR bands above 3mm
increasingly measure thermal fluctuations, they model a surface based on heat
conductance and use the conservation of energy to model the interaction of
surface and radiation.

Among the four paradigms, AI and data structure-based paradigms are less
suited for dynamic conditions whereas the statistics and physics-based para-
digms are the methods of choice for integrating sensor information that can
change over time. We provide a new sensor fusion technique that combines the
statistical and physics-based fusion paradigms through an evolutionary pro-
cess. We overcome the disadvantage of each of these paradigms by including
suitable sensor models that have enormous generalizing power. This generaliz-
ing power is then used to complement the limited available sensor data that is
required by the statistical methods. The fusion is performed at the pixel level
where the information loss is minimal.

13.2 Technical Approach

The sensor fusion architecture for moving object detection is depicted in
Fig. 13.1. Observations from the sensors along with the external conditions,
which carry the contextual information, are used to build statistical (mixture of
Gaussian) background model. The contextual information is also used to
update values of internal physical models. Physical models include reflectance
models for predicting image intensity values and thermal models for predicting
background surface temperature values. Unlike the previous work that updates

IR-visible

Models
Physics-based
Statistical

Dynamic sensor fusion

Coevolutionary computational
model

Adaptive moving object
detection

Contextual information

Figure 13.1. Sensor fusion architecture.
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the background models solely based on the current observations, we incorp-
orate the physical models into the adaptive loop. The physical models are
integrated with the statistical models through a cooperative coveolutionary
process.14 The cooperative coevolutionary process estimates the best represen-
tation for the background per pixel. This is done through a genetic evolutionary
process that searches for the optimal representation based on the current, and
recent past observations and detection results in addition to the predictions
given by the physical model.

Our representation of mixture of Gaussians (described in Section 13.2.1)
includes Gaussian parameters for the infrared and visible sensors (including
RGB channels). A population of this representation is maintained as a pool of
individuals for the evolutionary process. Once the evolutionary process is
stopped, the best individual represents the background model of that pixel.
In this manner, the contextual information plays an active role in contributing
to the most ideal sensor for a particular condition.

The detection algorithm in Fig. 13.1 requires a model of the background.
This model is estimated by a mixture of Gaussians. Table 13.1 shows this
process. The details are explained in the following subsections.

Table 13.1. Algorithm for learning background model for a pixel.

Evolutionary Adaptive Background Modeling
S¼Training set which includes prediction, observation, and previous classification
results per pixel;

Note: An organism represents a solution.

- - - - - - - - - - - - Cooperative Coevolution Algorithm per Pixel - - - - - - - - - -

Steps
1. Create and initialize 4 subpopulations for each channel
2. Loop
3. For each Sub-population
4. For each individual
5. Build an organism (e.g., combine representative individuals from different

sub-populations)
6. Evaluate the organism using the training set S and Forganism

7. Store the new fitness value for the individual
8. EndFor
9. EndFor
10. Evolve all sub-populations (Selection, Mutation, Crossover)
11. Until stop Condition
12. Return the best organism (best organism or solution is the best individual from

each subpopulation)
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13.2.1 Representation

The probability of a pixel, classified as a background, drawn from a probability
distribution can be estimated by a mixture of density functions. Assuming the
parametric form of the mixture is Gaussian, probability of observing a back-
ground pixel is:

P(X) ¼
Xm
i¼1

Wih(X , mi, Si) ð1Þ

where X is the pixel value, Wi is the weight of the ith Gaussian, m is the
number of Gaussians, and h is the Gaussian form characterized by the mean mi

and covariance Si. Assuming R (Red), G (Green), B (Blue), and T (Tempera-
ture) channels are independent, each pixel is represented by its first order
statistics for each respective channel as follow:

IR ¼ < FitnessR, WR1
, mR1

, sR1
, . . . , WRm

, mRm
, sRm

> ,

IG ¼ < FitnessG, WG1
, mG1

, sG1
, . . . , WGm

, mGm
, sGm

> ,

ð2Þ
IB ¼ < FitnessB, WB1

, mB1
, sB1

, . . . , WBm
, mBm

, sBm
> ,

IT ¼ < FitnessT, WT1
, mT1

, sT1
, . . . , WTm

, mTm
, sTm

>

where Fitness is an evaluation value assigned to the mixture model for a given
channel (see Section 13.2.3). Therefore, background model for a pixel is repre-
sented by concatenating the representations of all the channels, which
represents a solution instance. An evolutionary-based search algorithm (see
Section 13.2.3) is used to search the solution space for an optimal background
representation.

13.2.2 Physical Models

The algorithm shown in Table 13.1 uses the physics-based predictions in its
evaluation phase. Models of bidirectional reflectance distribution functions
(BRDF) and thermal equilibrium based on conservation of energy are used to
predict surface color and temperature in the visible and long-wave IR. The
models are briefly described here.

13.2.2.1 Physical Models of Reflectance

Several reflectance models including the Lambertian, Phong, dichromatic17

and Ward22 models have been developed to describe the reflectance due to
normal, forescatter, and backscatter distributions. We utilize the dichromatic
model:

L(l, êe) ¼ Li(l,êe)þ Lb(l,êe) ¼ mi(êe)ci(l)þmb(êe)cb(l) ð3Þ

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap13 Final Proof page 250 27.10.2005 11:16am

250 Bir Bhanu and Sohail Nadimi



where L is the total reflected intensity, Li and Lb are reflected intensities due to
surface and subsurface respectively, mi and mb are geometric terms, ci and cb
are relative spectral power distribution (SPD) of the surface and subsurface
respectively, and êe is a vector representing incident and reflected light angles
with respect to the surface normal. The dichromatic model is useful in describ-
ing the reflection from inhomogeneous opaque dielectric materials (e.g.,
plastics). It is also useful in describing material colors since the SPD of the
reflected light due to subsurface is decoupled from the geometric terms. To
calculate the invariant body color, the image is segmented into regions with
uniform reflectivity. For each region, pixel values in the RGB space are formed
into a matrix M of size n � 3 where n is the number of rows (pixels) and 3
represents R, G, and B values. Singular value decomposition is then applied to
M and the singular vector corresponding to the largest singular value is selected
as the body color (cb), which is the predicted surface color11.

13.2.2.2 Thermal Physical Model

For predicting surface temperatures in the long-wave IR, the following conser-
vation of energy model is used. Ein ¼ Eout; Eout ¼ Erad þ Ecv þ Ecd, where Ein

is the input energy, Eout the output energy described by three phenomenon Erad

(energy radiated), Ecv (energy convected), and Ecd (energy conducted). Models
for each energy flux are described in details in.11 Briefly the following models
are used to describe each of the above fluxes:

Ein ¼ Edirect þ Eskylight þ Eatm

Edirect ¼ (1089:5=ma)e
(�0:2819ma) ð4Þ

Eatm ¼ E(BB,Ta)f1� [0:261e�7:77�10�4(273�Ta)2]g

where Edirect ¼ direct irradiation due to sun, Eskylight ¼ irradiation due to
sky � (40---70W=m2), Eatm ¼ irradiation due to upper atmosphere, ma ¼ the
number of air masses (ma � secant (Z )), Ta ¼ Air temperature, E(BB, Ta) ¼
radiation of a blackbody at Ta temp, and Z ¼ sun’s Zenith angle.

Erad is estimated based on Stephen{Boltzman law:
Eb ¼ sT 4, where s ¼ 5:669� 10�8 W=m2 Kelvin

4
and the subscript b is for

blackbody which is capable of 100% absorption (or emission) of energy.
The convected heat flux is given by:

Ecv ¼ hcv(Ts � T1) ð5Þ

where hcv is the convective heat transfer function which is a complex phenom-
ena, Ts and T1 are surface and fluid temperatures respectively. For laminar
flow, hcv can be roughly estimated by the following empirical model:

hcv ¼ 1:7 Ts � Taj j1=3 þ (6Va0:8)=L0:2 ð6Þ
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where Va ¼ wind speed; L ¼ characteristic lateral dimension of surface, Ts and
Ta are surface and air temperature, respectively.

The conducted heat flux is described by:

Ecd ¼ A(T2� T1)=(L=k) ð7Þ

where A is the area, T2 { T1 is the differential temperature and L/k is
called the thermal resistance or R-value and is tabulated for many materials.
The above equilibrium model is solved for Ts, which is the predicted tempera-
ture.

13.3.3 Background Model Estimation

As mentioned in Section 13.2.1, a pixel is represented by concatenating mixture
of Gaussian models of all its channels R, G, B, and T. In the mixture model, a
single Gaussian is parameterized by W, m, and s; therefore, finding the best
representation for a pixel with 4 channels represented by m Gaussians in each
channel, requires searching in a 4� 3�m ¼ 12m dimensional space. There are
several search algorithms including brute force (e.g., depth first, breadth first),
gradient methods (e.g., neural networks), heuristic methods (e.g., best first,
beam search, A*), and genetic algorithms (GA).

Brute force methods are computationally expensive. Gradient-based tech-
niques are suboptimal and may converge to local maxima. And, heuristic
methods suffer from the curse of dimensionality. Genetic algorithms search
from a population of individuals, which makes them ideal for parallel architec-
tures. They have the potential to provide the global maximum.

Genetic algorithms are based on evolutionary process, examples of which are
abundant in nature. In a typical GA the solution to a problem is encoded in each
individual representation.A population of these individuals is randomly created.
This population represents the location of individuals in the search space. An
evaluation function (fitness function) that plays the role of the environment,
rating individuals in terms of their fitness, is defined. The fitness function is used
to rank individuals in the population. To continue exploring the search space,
new populations are generated where individuals in the new population are
selected based on the performance of their predecessors. In other words, solutions
that havehigher fitness value (e.g., better representations) are givenmore chance
of being propagated in the next generation. In order to explore this search space
more effectively, randomization is introduced in the selection of the individuals.
There are twomain operators for this randomization, referred to as crossover and
mutation. Crossover is an operationwhere two individuals swap portions of their
representation in random, effectively creating new offspring (solutions) encoding
part of their parents (old solutions). Mutation is an operator that randomly,
usuallywith lowprobability, changes a representation, for example, flipping a bit
in a bit string. By applying the crossover, mutation, and selection operators, the
GA effectively explores the search space in a parallel fashion.
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The Cooperative Coevolution (CC) algorithm utilized here is a recent
evolutionary, GA-like, algorithm14. Like the GA algorithm, the CC algorithm
explores the solution space in a random fashion. As in GA, the CC algorithm
applies the operators crossover, mutation, and selection to generate potential
solutions. However, in CC, the representation of a solution is broken down into
subparts, each of which encodes part of the solution and is evolved separately.
Therefore, subpopulations are generated and maintained in each generation of
the CC algorithm. In this manner, the opportunities for searching and explor-
ing different solution subspaces are increased.

By comparing the algorithms in Fig. 13.2, it is clear that the major differ-
ence between these two models lies in how the evaluation of individuals is
performed. As stated earlier, the evaluation in the GA model is performed on
an individual (as a whole) in a population; on the other hand, in the CC model,
individuals from separate subpopulations must come together to create an
‘‘organism’’ that is viewed as the solution. Hence, in the CC model an individ-
ual cannot provide a meaningful solution to the problem and requires the
cooperation of individuals from other subpopulations.

The success of CC depends on four criteria:

1) Problem decomposition,
2) Interdependability,
3) Credit assignment, and
4) Population diversity.

Our sensor fusion algorithm satisfies all four criteria since

a) our problem is naturally decomposed (color video and IR),
b) our representation (mixture of Gaussians for all the four channels (R, G, B,

and T)) provides interdependencies between subcomponents,
c) the objective or fitness function minimizes the discrepancy between the phy-

sics-based prediction and the actual observations in both IR and video, and
d) population diversity is maintained by roulette wheel selection method.

Procedure GA( )
initialize population
loop
    evaluate individuals
    store best individual

    select mating candidates
    recombine parents and use their
    offspring as the next generation
until stopping condition

return best individual

Procedure CC( )
initialize subpopulations
loop
evaluate organisms (solutions)
store best organism
for each subpopulation
    select mating candidates
    recombine parents and use their
    offspring as the next generation
end for
until stopping condition
return best organism

Figure 13.2. Comparing a typical GA and CC algorithm.
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As mentioned, an important part of the evolutionary algorithm is the evalu-
ation function, referred to as the fitness function. We provide a suitable fitness
function that integrates the statistics collected by the system and the physical
models that are directed by the contextual information (environmental condi-
tions). The cooperative coevolutionary (CC) algorithm is used to select an
optimal representation for a pixel background based on the recent past obser-
vations, classification (background versus foreground) results, and physics-
based predictions.

13.3.3.1 Fitness Function

For each channel, a population of individuals (see Section 13.2.1) is initially
created randomly. These individuals are maintained for both the video chan-
nels (R, G, and B) and the thermal channel (T).

Briefly, the CC algorithm (see Table 13.1 and Fig. 13.3), works as follows:
Initially, four groups of individuals of type IR, IG, IB, and IT are randomly
initialized. Each group is called a subpopulation and each member of a sub-
population is referred to as an individual, which is also assigned a fitness value.
The fitness value (see Fig. 13.3) is a measure of goodness and indicates how well
that individual represents the background for its respective channel.

Individuals are rewarded when they perform well together as a team
and punished when they perform poorly. This is the key concept in cooperative
coevolutionary paradigm. In the example in Fig. 13.3, to evaluate an
individual in the red channel, it is combined with representatives from other
subpopulations (in this case the representative of a subpopulation is an
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Figure 13.3. Example of evaluating an individual in the red channel { Individuals with
highest fitness value in their population from other channels at the previous generation
are combined to form an organism (solution). The result is stored back for the individual
in the red channel.
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individual with the highest fitness value); an organism is then created. The
fitness value of the organism, Forganism, indicates how well the individual (IR in
this example) fits with other channels. In other words, the fitness value indi-
cates the contribution of this individual as part of a whole solution.

The evaluation of the fitness function requires a training set. This training
set is a recent past history, which includes observations, predictions, and
classifications for each pixel and is kept in a QUEUE. To initialize the algo-
rithm, initial n frames of background from all channels R, G, B, and T are
collected and kept in a memory queue. Similarly, a physics-based prediction for
each pixel for each frame is kept in the memory queue. Since the initial n frames
are assumed to be background, the groundtruth at the initialization stage is
known (e.g., all pixels represent background). As a new frame is observed and
pixels classified as either background or foreground, this training set is updated
in a Last In First Out (LIFO) manner.

Pixel classification is the result of detection where a pixel is classified as
background if its value falls within 3s of any of its Gaussians for all the
channels; else, it is considered a foreground.

For each channel, let an individual IY in a population be represented as in
Section 13.2.1 where Y represents a channel, Y 2 fR, G, B, Tg. Let:

YXobj ¼ Observed value of a pixel X at jth frame for channel Y , j ¼ 1 . . . n;
n ¼ size of the window in the past.

YXpj ¼ Predicted value of a pixel X by physics for the jth frame for
channel Y.

P(YX) ¼ The probability distribution function for the pixel X for
channel Y.

We keep a moving window of n previous frames for all the channels. This
window serves as the groundtruth data, G, for training examples. Unlike most
other works that only use the last or current observation (frame) to update the
mixture of Gaussians, we elect to keep a window of frames. Let

Gjfj¼1...ng ¼
1 Background
0 Foreground

�
ð8Þ

where fj ¼ 1 . . . ng represents the last n frames (e.g., G1 ¼ current frame, G2 ¼
previous frame, and so on), and G is used as part of the training set S. Initially
G for the current frame is obtained by using the mixture of Gaussian param-
eters that are obtained at time t � 1. (After the learning process has been
completed for the current frame, G for the current frame is updated based on
the learned parameters of mixture of Gaussians). In order to relate statistics-
based classification and the physics-based predictions, we introduce the follow-
ing function, named credibility function for each channel:

CY ¼ e�a 1

n

Xn
j¼1

Gj

YXobj
� YXPj

��� ���
YXobj

þ YXpj

þ (1�Gj)(1�
YXobj

� YXPj

��� ���
YXobj

þYXpj

2
4

3
5 ð9Þ
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where vectors G, YXob and YXp are defined as before and a controls the rate
of decay of credibility function. As the observed values YXob are closer to
the predicted values YXp for a particular classification G, the value of the
credibility approaches 1. For example, it is easy to verify that in the extreme
case where a pixel is classified as the background pixel in all the previous n
frames, and that the predicted pixel values matched the observed values, the
credibility will be close to 1.

The physics-based prediction predicts color and thermal properties of the
background, therefore, it will be more credible if the observed pixel value is
classified as the background pixel, and the predicted pixel value agrees with the
observed value. Similarly, if the physics predicts a very different value than
observed value and the system has actually classified the pixel as the fore-
ground, then the physics may still be credible. On the other hand, if the
physics-based prediction is very close to that of the observed value but the
system has classified the pixel as foreground, then the physics-based prediction
may not be reliable and a low credibility must be assigned. This process is
depicted in Table 13.2.

The statistical estimation of fitness function based on the recent past
observations for an individual, in channel Y, is given by:

F(IY ) ¼
1

n

Xn
j¼1

GJP(YXobJ
)þ (1�GJ )(1� P(YXobJ

)
h i

ð10Þ

The above function is only based on the statistical properties of the current
and past observations. Given F(IY ) and the credibility function CY for indi-
viduals for all channels R, G, B, and T, then, a fitness function for an organism
(solution) made of both video and IR species (e.g., R, G, B, and T channels) can
be realized as follows:

Forganism( < IR, IG, IB, IT > ) ¼ 1=4[CR F(IR)þ CG F(IG)

þ CB F(IB)þ CT F(IT )]
ð11Þ

The above equation is used for evaluating the organisms formed by the video
and IR signals, in which the individual being evaluated is part of a complete
solution (see Fig. 13.3).

Table 13.2. Credibility table describing the relationship between the predicted and
observed values.

Difference of current observed with predicted by physics

High Low

Classification: Background LOW Credibility HIGH Credibility
Foreground HIGH Credibility LOW Credibility
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The final solution is the organism obtained by selecting the best indi-
vidual (e.g., individual with highest fitness value) from each subpopula-
tion. This solution is used to classify the current pixel as background or
foreground.

The parameter a adjusts the importance of the role the credibility function
plays in the fitness function. a can be adjusted depending on how fast the
credibility function is desired to be influenced by the agreement between the
physics prediction and actual observations.

Figure 13.4 shows how the parameter a affects the rate of change in the
credibility function. For the observed temperature of 285K, if the predictions
are credible but not as close to the observed values, then lower values of alpha
are desired. On the other hand, if tight coupling between physics predictions
and observations is required, higher values for a are desired.

13.4 Experiments

The data was gathered at a typical urban location with the latitude 3385000600N
and longitude 11785404900W , from 15:30:00 on January 21, 2003 till 14:24:00
January 22, 2003. Initially, from 15:30:00 till 17:07:04, data was collected at the
rate of 1 frame every 2 s, then the temporal resolution was changed to approxi-
mately 1 frame per 10 s for the rest of the data collection period. Two cameras,
a FLIR system thermal camera operating at 7�13mm and an Intel Web-cam
operating in the visible range were utilized for data acquisition. The thermal
camera was fully radiometric, which means that the pixel values obtained by
the camera were thermal. The thermal camera included self-calibration that at
specified intervals adjusted to internal thermal noise. The radiation-to-
temperature conversion was done automatically by the camera for the default

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

260 270 280 290 300 310 320

Temperature (k)

C
re

di
bi

lit
y 

va
lu

e
0.1

0.2

0.4

0.8

1

2

8

10

15

20

Figure 13.4. Credibility values for various values of alpha (a) for the thermal channel.
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values of emissivity ¼ 0.92, air and ambient temperatures ¼ 280K, distance to
target ¼ 100m, and humidity ¼ 50%.

The video camera was attached to the top of the thermal camera on a tripod
(see Fig. 13.5). Both cameras were located 20 ft above the ground looking
downward at the scene at an angle of approximately 258. In addition to the
thermal and the video cameras, a completeweather stationwas utilized to obtain
weather data every minute. The weather station included an anemometer,
humidity sensor, wind direction, two temperature sensors, and a barometer
sensor. All sensors and the cameras were controlled by a PC. The data from the
cameras and the weather station were synchronized through a software control.

To avoid temporal registration, both cameras were triggered simultan-
eously and in parallel. For spatial registration between the two cameras affine
transformation was applied. For predicting correct reflectance and thermal
predictions, a split and merge algorithm initially segmented the images for
both cameras and a user initially labeled the segments into five regions, asphalt,
concrete, grass, bush, and unknown. Only statistical properties were utilized for
the unknown surface type.

13.4.1 Physical Model Estimation and Predictions

For surface color estimation, the dichromatic model was utilized. The results
for the four different presegmented surfaces are given in terms of unit vectors in
the RGB space. Due to lack of illumination during the nighttime, the values
were obtained after sunrise and before sunset for various times and are given in
Table 13.3 at an hourly illumination condition. The asphalt and concrete had
similar vectors due to their neutral color attributes. On the other hand, the
chlorophyll in the vegetation such as grass and bush causes the vectors to be
shifted toward green. The higher variation in the reflectance of grass and bush
are contributed by their surface specularity, which is not modeled by our
algorithm.

For surface temperature prediction, the thermal models of Section 13.2.2.2
were used. These predictions were used by the fitness function in Section

Sunrise: East

Sunset: West

Figure 13.5. Position of the cameras with respect to the scene and the direction of the
sun’s path.
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13.3.3.1. Figure 13.6 shows the result of predictions superimposed on actual
measurements by the thermal camera.

As shown, the models were able to track temperature fluctuations for four
different surface types closely except for the dots that appear at certain times
in these plots. These dots indicate occasional camera self-calibration when
the camera shutter is automatically closed. During the self-calibration, the
thermal image is ignored. The average difference between the prediction and
measurement for all surfaces was about 28C with standard deviation of
1.878C.

13.4.2 Detection Results

Moving object detection is performed after an initial background model is built.
Once new thermal and video frames are available, they are registered. The
registered image then contains red, green, blue, and temperature values at each
pixel location. The cooperative coevolutionary algorithm is used to build the

Table 13.3. Surface body color estimation (cb).

Time
Asphalt Concrete

R G B R G B

8:30 .5727 .5726 .5867 .5813 .582 .5687
9:30 .5714 .5716 .5889 .5791 .5797 .5732
10:30 .5773 .5714 .5862 .5824 .5824 .567
11:30 .5669 .5676 .5970 .5737 .5745 .5838
12:30 .5695 .5695 .5927 .5686 .5749 .5884
13:30 .5682 .5680 .5954 .5767 .5753 .5801
14:30 .5741 .5720 .5859 .5681 .5752 .5886
15:30 .5635 .5520 .6025 .5570 .5723 .6019
16:30 .5623 .5684 .6006 .5572 .5802 .594
17:30 .5544 .5668 .6095 .5566 .5813 .5935

Time Grass Bush

R G B R G B

8:30 .6336 .7260 .2672 .5718 .6239 .5327
9:30 .6343 .7189 .2844 .5893 .6240 .5132
10:30 .6369 .7128 .2938 .5662 .6368 .5234
11:30 .6320 .7193 .2883 .5476 .6250 .5563
12:30 .6256 .7376 .2543 .5430 .6370 .5471
13:30 .6249 .7364 .2591 .5749 .6404 .5093
14:30 .6210 .7391 .2611 .5968 .6338 .4921
15:30 .6060 .7505 .2636 .5639 .6421 .5193
16:30 .6040 .7572 .2486 .6567 .6369 .4039
17:30 .6231 .7380 .2590 .6321 .6357 .4431.
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Figure 13.6. Measurement (blue) versus. predicted (red) surface temperature values.
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background model. Each pixel is updated independently. The background
model is periodically updated to track the environmental changes. The follow-
ing parameters were used in the cooperative coevolutionary algorithm to
update the background models: number of species ¼ 4; population size ¼ 60;
crossover ¼ single point; crossover rate ¼ 0.8; mutation rate ¼ 0.01; maximum
number of generations ¼ 60; training data ¼ 20 frames; number of Gaussians
per sensor ¼ 3; a ¼ 0:5.

Once the background model is available for each incoming frame, each pixel
is compared to its corresponding model and if its value is within 3 standard
deviation of any of its Gaussians, it is classified as a background pixel. This
information is kept in a binary image where a detected moving pixel is a binary
1 (white) and a background pixel is 0 (black). These binary frames provide
training data for the next background model update. In the following examples,
in addition to the thermal IR and video frames, detection for each camera and
the fused detection for the registered images are also provided. The following
confusion matrix is given for the results for all the moving objects:

. Example 1. Figure 13.7 shows example frames detected in the afternoon
and early evening hours. During this period, illumination and heat
exchanges are rapid. Depending on the heat stored and reradiated by an
object and the background the object may be observed having very similar
temperatures as the background (IR frames 2408 and 2685) or very different
(IR frames 2422 and 2676). In frame 2408, video signal was much stronger,
providing sharp contrast for the moving objects. Despite the lower perform-
ance of the IR, the objects were recovered by the video. Similarly, in frame
2422, the detection result of the IR was further enhanced by the registered
video as is shown in the fused detected frame. Frames 2676 and 2685 are
obtained during early evening hours. The video camera had a 25-lux min-
imum illumination requirement; therefore, although the scene was not
totally dark, the video signal during the night time was very weak. This
was compensated by the strong IR signal.

. Example 2. Figure 13.8 is an example where the detection algorithm
relied heavily on one sensor, IR. Due to lack of illumination and video
sensor’s low sensitivity, objects could not be detected by video only. A
good example is frame 2726 where a car and a person were in the scene.
These were not observed in the video; however, they were present in the IR
image and were clearly detected in both IR and the fused frame. Frames
2741, 6692, and 6718 indicate that the detection was not influenced by the
video. The lights from the vehicles were visible and detected as part of the
moving object, and the surface reflection from the lights did not affect the
results.

% Moving object correctly detected % Moving object missed
% Background missed % Background correctly detected
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This is due to the fact that the physics-based prediction assigns low
credibility to the video signal; hence, low reflections are not detected as
foreground. In effect this plays a role in deciding how important a camera’s
observations are. If a video pixel gets a low credibility, then its values are
less meaningful; therefore, in order to observe a change, the signal must be
strong (e.g., front head lights of a car). Since the front head lamps of most
vehicles are halogen and radiate heat, they are also observed as part of the
vehicle in the IR image, thus, they are also being detected as part of the
vehicle.

Time
frame #

16:58:03

2408

16:58:34

2422

18:56:11

2676

18:57:43

2685

IR

Video

Registered
video

Detected
(IR only)

[Confusion matrix] .3857       .6143

.0100       .9900

.8493       .1507

.0075       .9925

.8376       .1624

.0067       .9933

.6931       .3069

.0060       .9940

Detected
(Video only)

[Confusion matrix] .9182       .0818

.0161       .9839

.8401       .1599

.0048       .9952

.0760       .9240

.0003       .9997

.0244       .9756

.0002       .9998

Detected
Fused

(IR+Video)

[Confusion matrix]
.9340       .0660

.0585       .9415

.9445       .0555

.0106       .9844

.8825       .1175

.0067       .9933

.6945       .3055

.0061       .9939

Figure 13.7. Example 1: Mixed good and bad IR and video at various times in the
afternoon and early evening.
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. Example 3. Figure 13.9 is an example of dramatic illumination changes
during the early sunrise and early morning hours. During these periods, the
environment changes radically due to the energy of the sun. The sensors
must adapt to these rapid changes. Figure 13.6 shows the thermal changes
on different surfaces that are tracked by the physics-based models. As
shown, the slope of the temperature values changes radically during this
period. However, the physics-based models are able to follow these changes
and provide high credibility values that affect the background models built
by the algorithm. As the illumination reaching the video camera is in-
creased, the detection due to video gets better. This is shown in frames

Time
frame #

19:04:42
2726

19:07:15
2741

06:20:43
6692

06:25:09
6718

IR

video

Registered
video

Detected
(IR only)

Detected
(video only)

Detected
fused
(IR+Video)

Figure 13.8. Example 2. Good to excellent IR signal, bad video signal at night. (Note:
Due to lack of video contrast no groundtruth is obtained.)

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap13 Final Proof page 263 27.10.2005 11:16am

13 Evolutionary Sensor Fusion for Security 263



Time
frame #

06:37:46
6792

06:42:33
6820

06:54:27
6890

IR

Video

Registered
video

Detected
(IR only)

[Confusion matrix]
.8607      .1393

.0047      .9953

.4954      .5046
0      1

.9788      .0212

.0062      .9938

Detected
(Video only)

[Confusion matrix]
.5466      .4534

.0005      .9995

.5174      .4826

.0002      .9998

.6821      .3179

.0022      .9978

Detected
fused
(IR+Video)

[Confusion matrix]
.928      .072

.0063      .9937

.8267      .1733

.0039      .9961

.9952      .0048

.0136      .9864

Figure 13.9. Example 3: Fusion while illumination changes at sunrise.
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6792 and 6820 where the video camera began participating in the detection
process. This is indicated by the increase in the detection performance for
the fused image versus the IR or video only images.

. Example 4. Figure 13.10 is an example of early morning, noon, and early
afternoon hours. As the sun rises, the surfaces are heated up by the incom-
ing energy from the sun, the increase in the surface temperatures ap-
proaches closer to the temperatures of some moving object surfaces.
Depending on the moving object surface temperatures and emissivities,
the contrast in the IR can be radically different. This is obvious between
frames 6954 and 8646 for example. Frame 6954 represents an image in the
morning with a person in the scene. Surface temperatures are still lower
than that of the human body; moreover, human body’s emissivity is high
(0.98) compared to the background surfaces. The human is clearly visible in
the IR image. Although not visible in the video image of frame 6954, the
human is also in that image; this is clearer in the registered image. Both
sensors provide good contrast in this case and the person is clearly detected.

Frames 8646 and 9350 show moving objects later in the day when surfaces
have reached higher temperatures. In this case, it is possible to have a moving
object that may have temperature close to the background surface as is indi-
cated by both these frames. On the other hand, video provides excellent signal
and contrast. Many pixels are missing from the detected IR only, but the final
fused detection recovers most of these missed pixels on moving objects.

13.4.3 Performance Analysis

To compare the performance of the detection algorithm for sensor fusion, we
utilize the Receiver Operating Characteristic (ROC) curves and define the
probability of detection as percentage of moving object pixels that are correctly
detected and probability of false alarm as percent of background pixels that are
classified as moving object. We selected frames representing afternoon, early
morning, and high noon for this analysis. The nighttime was not selected since
no video signal was available at night (6:30 p.m. { 6:30 a.m.) and the detection
algorithm relied only on the IR sensor; this was explained in example 2 above.
The first ROC curve, Fig. 13.11(a), represents an afternoon time. An example
of this is frame 2408 in Fig. 13.7. As is indicated by example 1 frame 2408 and
this ROC curve, the video signal provided a higher performance than the IR
signal. The fusion method provides a higher level of performance than both the
video and the IR.

The ROC curve of Fig. 13.11(b) is an example of early morning hours. This
figure is in contrast to that of Fig. 13.11(a) in the afternoon. In this case, the
detection rates for both the IR and the fused image were high and the video
sensor operated only nominally. This is again due to the fact that a great deal of
energy has been dissipated to the environment throughout the night during
early morning hours, and a large gradient may exist between natural surface
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Time
frame #

07:05:20
6954

11:52:52
8646

13:52:29
9350

IR

Video

Registered
video

Detected
(IR only)

[Confusion matrix]
.9106     .0894

.0001     .9999

.2905     .7095

.0051     .9949

.2379     .7621

.0007     .9993

Detected
(video only)

[Confusion matrix]
.9064     .0938

.0057     .9943

.9333     .0667

.0054     .9946

.5222     .4778

.0034     .9966

Detected
fused
(IR+Video)

[Confusion matrix]
.9343     .0657

.0039     .9961

.9578     .0422

.0177     .9823

.5636     .4364

.0049     .9951

Figure 13.10. Example 4: Mixed IR and good video signal.
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temperatures and those of animated objects with internal sources of energy
such as vehicles and humans. In addition, the video signal, as indicated in
Fig. 13.9, example 3, is rapidly changing due to the illumination changes when
sun is rising in the sky.

The third ROC curve, Fig. 13.11(c), is an example of how fusion can
enhance the detection when both sensors may be operating at lower rates.
This is an example when cooperation between sensors can play a comple-
mentary role. This is due to the fact that different sensors may detect
different parts of an object. So, one expects sensor fusion to do much better
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P
d

P
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P
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0.90
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Video

IR
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0.4
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0.6

0.6
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1.0
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Figure 13.11. ROC curves for various periods of the day: (a) afternoon{evening,
(b) early morning, and (c) morning{noon.
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in detecting more pixels on the object than any one of the sensors alone. This is
observed from frames 8646 and 9340 of example 4 in Fig. 13.10 when for
example, the detected IR and video frames have detected different parts of
the same object.

These ROC curves also indicate that as the time of day changes, the dy-
namic sensor fusion introduced here can automatically adapt to environmental
changes. This adaptation is also in the form of adapting to the best sensor at
the time. The cooperation among sensors can also take on a complementary
role when different cameras are able to detect different parts of an object that
may not be visible to the other. This adaptation is done continuously in a
cooperative manner.

13.5 Conclusions

In this chapter, a novel physics-based sensor fusion technique for moving
object detection was introduced. The sensor fusion architecture integrated
the statistical and phenomenology of the sensors in the visible and
long-wave IR through an evolutionary computational model. Our representa-
tion, mixture of Gaussians, along with the cooperative coevolutionary search
algorithm integrated the contextual information through the physics-based
and statistical models. We showed that our fusion model adapted to various
illumination conditions and is suitable for detection under a variety of envir-
onmental conditions.
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Information is in data. Classifiers cannot make up for inadequate data when
performing recognition tasks. The approach presented here is an attempt
aiming at increasing data for cases where adequate facial image data is not
available, i.e., when only one or a few images of a subject is at hand. Due to
significant natural facial variations, e.g., facial expression, and appearances due
to lighting condition, and head pose (even when dealing with ‘‘frontal view’’),
the use of a collection of images covering these variations and appearances will
be of great help. We show that the expansion of the training set, by careful
construction of synthetic images that capture all or most of the desired appear-
ances can significantly improve the performance, especially when only one (or
several, but very similar) real image(s) of a given individual are available. To
have a better understanding of the issues involved, we address an inherently
simpler problem, i.e., face/identity recognition/verification using only one eye
and its associated eyebrow. Moreover, our experimental results indicate that
the eye is rich in discriminative information, perhaps providing more informa-
tion than what is normally utilized by humans. This wealth of information,
however, can be exploited by machines for close-up images. Finally, we specu-
late that a similar improvement can be achieved when the training set is
enriched with carefully generated synthetic images of the entire face. Issues
concerning synthesis automation are also discussed.

14.0 Introduction

Over the past several years great advances have been made toward solving the
complex problem of face recognition.1,5,6,9{15 However, there are still challenges
to be addressed. Most published studies in face recognition employ either the
entire face (e.g.,11), or several facial features (e.g., eyes, nose, mouth, etc.)
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simultaneously (e.g.,8). Of course, not only every feature possesses a certain
amount of discriminating information, but also the relative positions of features
with respect to others contain valuable discriminating significance. In general,
by using a greater number of features, or a larger facial region, the likelihood of
successful recognition is increased. Nevertheless, to gain a better understanding
of the intricacies of the problem of face recognition, it is informative to study
how accurately a computer can recognize individuals when only certain single
feature, or certain facial regions, are used. For example, both from a theoretical
and a practical point of view, it will be of interest to know how much informa-
tion the eye alone can provide when a machine tries to recognize a person. More
importantly, when dealing with a single feature, one deals with an inherently
less complicated problem. Consequently, it may be simpler to understand the
strengths and the weaknesses of the underlying approach.

In this Chapter, we investigate the capabilities of a face/identity recogni-
tion algorithm when using only one eye and the eyebrow, and particularly the
improvement that can be achieved when synthetic eye images are used to
augment the training set. Furthermore, we will discuss some of the practical
issues that can arise in an automation mode. This Chapter presents further
expansion of the work reported in.4 We note that the problem we are address-
ing, i.e. eye recognition, is very different from iris recognition. Some aspects of
eye recognition problem are discussed in.2

It is assumed that a single (or several, but very similar) close up image(s) of a
person is available for use in the training set. Even in frontal view images, there
will be variations such as head tilt, head rotation, gaze angle, the degree to which
the eye is open, relative position of the eyebrow with respect to the eye, lighting
condition, and certain expressions, etc., which can affect the recognition rate

Figure 14.1. The left two photos show two people after our eyefinder program has
located the center of their irises (bright spots in the eyes). The top right photos show
their cropped-out right eyes after the original photos were rotated and scaled to a
prespecified orientation and size. The bottom row shows the two eyes after intensity
normalization, making their total brightness equal to each other.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap14 Final Proof page 272 27.10.2005 11:17pm

272 B. Kamgar-Parsi et al.



when only one or very similar images of a given person are available.We propose
generating synthetic images so that the training set already includes examples of
the above-mentioned variations and appearances. Although anatomically im-
precise, synthetic images may be adequate for an appearance-based system. We
develop a systemwhich crops one eye and the eyebrow out of a close-up image of a
face. The system will then use the cropped-out window for a recognition task.

14.1 Approach

Synthetic images must be constructed from the available real image. To do so,
we develop a number of operators such that when applied to an image, in sole,
or in combination with others, the desired appearances are approximately
obtained. The operators are applied to an eye and eyebrow, more precisely to
a rectangular window covering an eye and the eyebrow. A relevant question is
whether the process of generating synthetic images must be automated. Of
course, if the system is intended for online learning, construction of the images
must be automated. But, even in the case of off-line learning, a certain degree of
automation can be very helpful.

The eye model The iris is modeled with a circle; the center and the
radius of this circle are determined during the process of locating the eye.
Variations of the eyelids are governed by parabolic models. Normalized grey-
level values in the window containing the eye and the eyebrow constitute the
eye texture model.

14.1.1 Operators

Below is the list of the operators followed by their descriptions. We note that
although the following operators may not produce precise anatomical changes,
they may be adequate for an appearance-based system.

1. Lower eyeBrow (LB): pulls down the eyebrow (without any changes to the
location or the shape of the eye).

2. Raise eyeBrow (RB): pushes up the eyebrow.
3. Tilt eyeBrow (TB): rotates the entire eyebrow around its middle so that

the half closer to nose is lowered.
4. Arch eyeBrow (AB): bends the eyebrow downward while holding its middle

portion fixed (AB is often used together with RB).
5. Lower Upper eyeLid (LUL): pulls down the upper eyelid so that the eye

appears less open.
6. Raise Upper eyeLid (RUL): pushes up the upper eyelid so that the eye

appears more open.
7. Raise Lower eyeLid (RLL): pushes up the lower eyelid so that the eye

appears less open.
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8. Lower Lower eyeLid (LLL): pulls down the lower eyelid so that the eye
appears more open.

9. Turn Face Left (TFL): the face turns to the left without affecting the gaze
angle.

10. Turn Face Right (TFR): the face turns to the right without affecting the
gaze angle.

11. Eye Look Left (ELL): the eye looks to the left with no head rotation.
12. Eye Look Right (ELR): the eye looks to the right with no head rotation.
13. Cast Shadows (CS): creates shadows in the window in certain manners.

14.1.1.1 Notations

wo is the original window covering the eye and the eyebrow, and contains row
rows and col columns. go[i][j] is the gray level value at the pixel on the ith row
and the jth column in wo. The pixel i ¼ 0, j ¼ 0 represents the top corner in wo

which is away from nose.
wl is a larger window. It covers wo in addition to rt rows on top of it, and ru

rows just under it. It covers the same columns as wo does. gl denotes gray level
values in wl . gs denotes gray level values for the synthetic image.

14.1.1.2 Operators 1{4

LB operates on wl to transform go’s into gs’s as follows.

for(j ¼ 0;j < col;j þþ)

for(i ¼ ij ;i >¼ 0;i ��)

gs[i][j] ¼ gl[i þ rt �m][j];

where ij is the row index of a pixel on the jth column below the eyebrow or
between the eye and the eyebrow, depending on j. m is a small positive integer
which decides how far the eyebrow is lowered. Note that, in each column, m
pixels move into wo from wl .

RB has a similar behavior, but m is a small negative integer. Here some
pixels are pushed out of the window, and pixels with new gray level values
(comparable to those between the eye and the eyebrow) are created to enlarge
the area between the eye and the eyebrow. TB is a mixture of LB and RB, and
AB is a variation of LB.

14.1.1.3 Operators 5{8

Opening the eye further usually requires the display of some or all of the
covered portion of the iris. Hence, along with other subtasks, the (entire) iris
must be constructed from the visible portion. We model the iris image with a
circle. Fitting a small circle to quantized points with regression techniques is
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typically unreliable. We use a matched-filter like approach to find the iris,
which we describe below. Let r denote its radius, and ic and jc the row and the
column index of the pixel at its center. To calculate these parameters, we
extract the visible portion of the iris. Let leni denote the length of the iris on
row i. While, jc is calculated from leni’s directly, r and ic will be calculated
through fitting the model to leni’s. Because r is only several pixels long, the
quantization error is significant and attempts should be made to reduce its
impact. While fitting a circle to iris, we allow for 4 levels of quantization. Let f
be the fraction (in the vertical direction) of the lowest iris pixel in column jc
which is actually covered by the iris. We then allow f to take on the values 1,
.75, .5, or .25.

We allow the radius of the model circle rM to vary for several pixels in the
increments of 1/8 pixel. Furthermore, for each value of rM , we allow 4 values
for f (as mentioned above). For each set of rM and f, we move the model circle
along the vertical direction on the extracted iris and calculate the degree of
mismatch between the corresponding segments of the model and the iris. The
model configuration (specified by rM and f ) together with its placement (spe-
cified by ic), which gives rise to the minimum discrepancy, will determine the
values of rM , f, and ic. Once the entire iris is obtained, we can display it to the
desired extent (see Fig. 14.2 for LLL). Operators LUL, RUL, and RLL can be
similarly described.

(a) (b)

Figure 14.2. (a) Different stages showing how the operator Lower Lower eyeLid (LLL)
acts. Top left: the real image.Top right: themodel partial circle fit to the iris and its center,
obtained by the eyefinder program. Bottom left: the iris and the lower part of the eye are
stretched downward. Bottom right, i.e., the outcome of the operatorLLL: the white of the
eye has been pulled in so that the iris agrees with the model partial circle. (b) Cumulative
effect of 3 operators toproduce a synthetic image (stages showinghow individual operators
act have been omited). Top left is the real image. Top right is the image after the
application of the operator RLL (Raise Lower eyeLid). Bottom right is the outcome of
the operatorRUL (RaiseUpper eyeLid) applied to the image on top of it. Bottom left is the
outcome of the operatorRB (Raise eyeBrow) applied to the image to its right. In short, the
bottom left is generated to produce the appearance of an upward head tilt.
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14.1.1.4 Operators 9{10

TFL and TFR operate as follows:

for(i ¼ 0; i < row;i þþ)

for(j ¼ 0, count ¼ 0:0; j < col=(1:0þ 0:05 � angle);countþ ¼ 1:0þ 0:05 � angle)
gs[i][j] ¼ g0[i][count]

That is, these operators subsample the image in the horizontal direction.
This image, since it will be smaller than the original, is then scaled to the
desired size. Note then that an angle with a too great magnitude will cause the
scaled image to be undesirable. These operators create synthetic images of the
subject’s face looking to one side or the other by giving the eye region a
compacted appearance (see Fig. 14.3).

The appeal of these operators is in their simplicity which makes them
dependable and robust. They do not require detail 3D computations and the
possibility of its associated complexities, when accurate 3D information is not
available.

Figure 14.3. The third image from left on the first row is a real image, while the other
eleven images are synthetic. The three synthetic images on the first row were generated
through the application of ELL and ELR, i.e., Eye Look Left and Eye Look Right only.
On the second row, each image has been derived from the image right above it by the
application of a Turn Face operator. The third row is the same as the second row except
that head rotation is more prominent. (Note that the windows shown in these images are
larger than other windows so that they are visually more informative.)
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14.1.1.5 Operator 11{12

Operators ELL and ELR act by translating the iris. The segmented iris is
translated across the line from the end points of the upper eyelid in the
image. The pixels that the iris used to occupy are filled in with the grey values
of the closest ‘‘eye pixel’’ in the original image. The translated iris is then
clipped against the upper eyelid to prevent any peculiar artifacts from arising in
the final image.

This operator is quite straightforward and allows for accurate simulation of
irises in different positions on the eye. Since lower eyelid segmentation cannot
be performed with complete accuracy and consistency in an automated fashion,
it is possible that the iris may overwrite a portion of the lower eyelid. Through
many observations, however, the lack of lower eyelid segmentation has been
shown not to be a significant problem, due to the fact that only a few pixels at
most will be moderately affected. Also, in our experience, good iris segmenta-
tion is not nearly as important as accurate upper eyelid segmentation. (It is
important, however, that the iris is overestimated and not underestimated,
since then pieces of the iris will be left in the synthetic image.)

14.1.1.6 Operator 13

We confine ourselves only to the cases where the shadow is generated by the
subject’s own face. Furthermore, we exclude unusual cases such as the light
source being below the face. Also disregarded is the case where the light source
is to the side of the subject. This is because when a light casts shadows on only
one side of the face, the other side of the face retains the property of uniform
lighting. That is, the nose casts shadow over one of the subject’s eyes, hence the
unaffected eye can be used for recognition. The choice of what operator(s)
would be needed was based on observations of existing databases, in particular
the Yale Face Database B7 and the FERET database. Introducing more
operators and increasing the complexity of the shadow operators may slightly
improve performance, however, the simplicity and generality of the operator
described below offsets the gains.

The cast shadow operator (CS) creates a shadow region from the eyebrow
to a set of computed points, which can be altered with an input parameter.
These points are derived by reflecting all original upper eyelid points across
the line connecting the first and the last upper eyelid points roughly ap-
proximating the eye socket. This operator simulates the situation where a
light source is positioned above the subject. Our algorithm essentially wishes
to estimate the boundary of the eye socket and place all pixels within
that boundary in shadow (see Fig. 14.4 for an example). By using different
parameter values for the lower shadow extant and the intensity of the
shadow itself, it becomes easy to simulate a wide variety of shadows on the
eye region caused by a light source moving back and forth or side to side above
the head.
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14.1.2 Intensity Normalization

To reduce the impact of variations in ambient light, we normalize the inten-
sities in all the windows covering the eye so that they have the same total
brightness. Intensity normalization should be performed so that the quality of
the image is not (significantly) impacted. For details see.3

14.1.2.1 Window Size

We have experimented with different window sizes. We believe that the win-
dow should be picked so as to reduce shading that might be caused by certain
lighting conditions. For example, Fig. 14.4 left, shows a window which is
slightly too large, hence allowing unwanted lighting conditions. Whereas the
window on the right is much better protected. The size of this window is
40� 32 pixels, cropped out of a close-up image with the resolution of
256� 384 pixels.

14.2 Experiments

There are different types of experiments with which one may try to assess the
impact of the generated synthetic images. One way to do so would be to
numerically quantify the improvement that a given synthetic image could
provide. That is, suppose we have two real images of a given subject: in one
image (call it I1) the subject’s face is straight toward the camera, while in the
other one (call it I2) the subject’s head (face) is slightly rotated to the left.
Using I1, we make a synthetic image (call it I3) with a left head rotation. Now,
suppose according to a given metric, the distance between I1 and I2 is d12 and
the distance between I3 and I2 is d23 > d12, then the creation of synthetic image
I3 has resulted in improvement. This is because if I1 is assumed to be in the
training set and I2 in the test set, then, without I3 added to the training set, the

Figure 14.4. The left image is a real image. The right image is an example of Cast
Shadow operator applied to the left image.
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likelihood that I2 is recognized as the subject in question would be smaller. One
could further quantify the improvement by calculating the ratio d23=d12. Of
course, for a meaningful study the number of subjects for which the ratio is
calculated must be large. A difficulty with this type of experiment is that
ideally one would want the real images I1 and I2 to be different only because
of a head rotation and not because of other factors such as expression, lighting
condition, etc. The fact that, often, two images of a subject are different because
of a number of factors, the computed improvement usually underestimates

Figure 14.5. The window size at left is subject to many unwanted lighting conditions.
The slightly smaller window at right is far simpler to handle.

Figure 14.6. The same eye of the same person cropped out of his photos taken over a
one-year period under different lighting conditions. Some of the full-face photos from
which these eyes were cropped out are shown on the right.
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the true effectiveness of the operator in question. We conducted this type of
evaluation for operatorsTFL andTFR in conjunction withELL andELR, i.e.,
head rotation combined with iris translation (see Experiment I).

A different type of experiment was conducted to evaluate the impact
of operators collectively on the recognition rate. For this study, we pick a
single image (call it I0) of a given subject. Ideally, in I0, the subject looks straight
into the camerawith no head rotation or tilt, has a neutral expression, and has no
shadows on the face (though quite often in our reported experiments this was not
the case). We would then embed this image in a pool of some 100 images of other
people, and use other available real images of the same subject as test images to
see if their best match in the pool of 100 images (or so) is I0 (correct recognition)
or not (incorrect recognition). We then add several synthetic images, all derived
from I0, to the pool, and find out howmany of the test images find I0 or one of its
derived synthetic images as the closest match (correct recognition) and how
many do not (incorrect recognition). Higher (correct) recognition rate once

Figure 14.7. Top left is a real image. The other five are synthetic images which were
automatically generated from the top left image.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap14 Final Proof page 280 27.10.2005 11:17pm

280 B. Kamgar-Parsi et al.



synthetic images are used would reflect the usefulness of synthetic images (see
Experiment II).

14.2.1 Experiment I

We tested the head rotation and iris translation operators on 110 images
from the FERET database with the subject’s head and eyes turned approxi-
mately 158 to their right. We chose this set of images because it would allow for
better testing of both the head rotation and iris translation operators in
tandem. We applied the aforementioned operators to the FERET image,
where the head was not rotated and the subject was looking at the camera
(although this was not precisely true in all cases). We then compared the
synthetic images produced with the operators with the corresponding segmen-
ted eye region in the FERET image for that subject. We appropriately rotated
and scaled the eye regions of each image so that the eyes were in approximately
the same position.

Since all of the subjects did not necessarily turn their head exactly 158 and
by no means had a gaze direction at that same angle, it was necessary to find
the best synthetic image for each individual for comparison to the original
segmented eye region. Thus we did a search (among synthetic images) from
head rotation of 5{258, as well as iris translation from �25	 to 258 (58 apart).
We found the best match using the standard Euclidean metric.

Results The original (without synthetic images) error on the average was
66.06 (with standard deviation of 60.18). With the synthetic images the aver-
age error reduced to 54.82 (with standard deviation of 51.96). This indicates an
average of 17% improvement. We note that these results were obtained in the
presense of other variations such as smile, raised eyebrow, etc. Such variations
reduce the calculated improvement, hence the significance of the synthetic
images are underrepresented.

14.2.1.1 Experiment II

Images used in the experiments were mostly from the FERET database, i.e.,
close-up frontal view images. However, because our FERET images provided
no more than two images per person, we also included six ‘‘local’’ subjects from
the Naval Research Laboratory and the Michigan State University, each
providing 10 images taken in the same style as FERET images. Windows
covering an eye and the eyebrow were cropped out automatically as follows.
First, the two eyes were located using the eye locator program that we have
developed. Next, the image was rotated, scaled, and translated so that the two
eyes were located on prespecified pixels. Next, the window was cropped out and
its intensity was normalized in the manner described earlier. The size of these
images (or windows) was 40� 32 pixels. Images were compared by calculating
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the sum of square differences of the gray-level values at corresponding pixels.
We used this similarity measure because it is perhaps the most straightforward
and commonly used similarity measure. Evaluation of the merits of different
similarity measures is beyond the scope of this work.

14.2.2 Test 1: Real Images Only

We used 70 FERET subjects each providing 2 and 6 nonFERET subjects each
providing 10 images. The test set had a total of 124 images, composed of 70
FERET images and 54 nonFERET images. The 70 FERET images belonged to
70 different subjects, whereas nonFERET images belonged to six subjects (each
contributing 9 images). The training set was composed of 91 images, including
1 image, say S0, of a test subject. For each image in the test set, its closest
match (in the training set) was determined. If the closest match in the training
set was S0, i.e., if it belonged to the test subject, the answer would be regarded
as correct; otherwise wrong. Of the 70 FERET test images, 59 (84%) of them
found the correct match. Of the 54 nonFERET test images, 40 (74%) found the
correct match.

14.2.3 Test 2: Real and Synthetic Images

We used S0 and generated 8 synthetic images of S0. These 8 synthetic images
were generated as follows: Two CS operators were applied to the real image
(causing two different synthetic lighting conditions). Operators LB and LLL in
combination were applied creating the appearance of looking up into the
camera (downward head tilt). Operators RLL, RUL, and RB in combination
were applied creating the appearance of upward head tilt. See Fig. 14.2b.
Operators RLL and LUL in combination were applied creating squint and
possibly a slight smile. Operator CS was then applied to the above three
synthetic images. These eight ‘‘derivatives’’ of S0 were then added to the
training set, while the same test set was used. If S0 or one of its derivatives
was the closest match, the answer was considered correct; otherwise wrong. We
obtained correct answer for all of the FERET and nonFERET test images. The
results are summarized in Table 14.1. We mention that we did not obtain error-
free results when the generated synthetic images were fewer than eight. Results
are further discussed in the Section 14.3.

14.3 Discussion

In general, humans do not need to closely examine people’s eyes in order to
recognize them. Furthermore, it is not an easy task for humans to recognize a
given person in a photo if the presented photo displays only the eye and the
eyebrow of the person. But, would this imply that the eye does not possess

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap14 Final Proof page 282 27.10.2005 11:17pm

282 B. Kamgar-Parsi et al.



unique and sufficient recognition information? Having so many recognition
cues in their possession, humans have not had the need to specialize in recog-
nition through the eye alone. Our experimental results are preliminary, never-
theless, they suggest that the eye is rich in discriminatory information|more
than is normally utilized by humans. This wealth of information, however, can
be exploited by machines.

Variations in the appearance of the eye and its associated eyebrow are
caused by many factors, including head tilt, head rotation, gaze angle, the
extent to which the eye is open, relative position of the eyebrow with respect to
the eye, lighting condition, and certain expressions, etc. A versatile recognition
system would have already seen examples of such variations. But, real images
often do not provide an adequate number of these examples. Even if several
photos of a given subject are available, they may not represent the entire space
of possible eye/eyebrow variations. Furthermore, some of the real images may
be too similar to each other and thus redundant. Synthetic images, on the other

Figure 14.8. Some photos of a subject in nonFERET set A. Rotation, scaling, and
intensity normalization will make (almost) identical eye images cropped out of these
photos. That is, for images of this subject correct recognition did not require synthetic
images (unlike the subject in Fig. 14.4).

Table 14.1. Summary of experimental results. For each subject eight synthetic images
were produced.

Real images RealþSynthetic
Image source Image collection info Error (percentage) Error

FERET 11 (16%) 0
nonFERET set A Images collected

within a few days
2 (7%) 0

nonFERET set B Images collected
over many months

12 (44%) 0
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hand-can enrich the training set so that it includes the desired variations. This
has been indicated by our experimental results.

In Experiment I, we numerically quantified the improvement that a given
synthetic image could provide. That is, suppose we had two real images of a
given subject: in one image, I1, the subject’s face was straight toward the
camera, while in the other one, I2, the subject’s face was slightly turned to
the left. Using I1 we made a synthetic image I3 with a left head rotation. Now,
suppose according to a given metric, the distance between I1 and I2 was d12 and
the distance between I3 and I2 d23. The ratio d23=d12 would represent the
improvement due to the created synthetic image, I3.

In Experiment II, we evaluated the collective impact of synthetic images
created to deal with a variety of facial variations/appearances on the recogni-
tion rate. As indicated in Table 14.1, for the nonFERET set A, i.e., for subjects
whose images were taken within a few days, we obtained relatively good results
even without synthetic images, while for set B subjects, synthetic images were
greatly needed. The reason for such wide differences among these subjects
appears to be as follows. The problem is much easier when images of the subject
of interest are taken on the same day (or a few days apart), and under similar
lighting conditions. Under such conditions, different images of the same subject
can be so similar to each other that (small) variations in their eyes or eyebrows
may not cause sufficient recognition difficulty and there would not be much
need for synthetic images. However, when images are taken on different days,
perhaps months apart, under considerably different conditions, then there will
be large differences among them. Thus, variations such as head tilt, expression,
etc., would add to the lack of similarity, resulting in incorrect recognition when
only available real images are used. In these difficult cases, synthetic images,
alleviating the differences in pose, expression, or lighting condition, are very
helpful. Many, if not most, real life scenarios fall into the latter category where
synthetic images can be of major help. Finally, we speculate that a similar
improvement may be achieved when solving face recognition problem, i.e.,
when the training set is enriched with carefully generated synthetic images of
the entire face.
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Summary: In this chapter, linear signal or target detection algorithms are extended to
nonlinear versions by using kernel-based methods. In kernel-based methods, learning is
implicitly performed in a high-dimensional feature space where high order correlation or
nonlinearity within the data are exploited. Nonlinear realization is mainly pursued to
reduce data complexity in a high-dimensional feature space and consequently provide
simpler decision rules for data discrimination.

A well-known anomaly detector, RX-algorithm, is extended to its nonlinear
(kernel) version. Similarly, the conventional matched filter detector and the
subspace matched filter detector are extended to their corresponding nonlinear
versions using the ideas of kernel learning theory. Performance of all these
linear methods and their kernel versions are compared on several hyperspectral
images. Experimental results show that the kernel-based detection algorithms
outperform the linear detection algorithms.

15.0 Introduction

Hyperspectral imagery can be used in reconnaissance and surveillance applica-
tions where objects of interest are detected and identified. This chapter describes
techniques that are used to detect and identify military targets, camouflaged
objects, and surface mines. Hyperspectral imagery provides a significant
information about the spectral characteristics of the materials in the scene
that can be used for anomaly and target detection.1{9

Typically, a hyperspectral spectrometer provides hundreds of narrow con-
tiguous bands which can be exploited to detect and identify certain types of
materials in the image. Hyperspectral sensors that exploit the reflective (or
emissive) properties of objects can collect data in the visible and short-wave
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infrared (IR) regions (or the midwave and long-wave IR regions) of the spec-
trum. Collection of this data allows the algorithm to detect and identify targets
of interest in a hyperspectral scene by exploiting the spectral signature of the
materials.

The process of detecting and identifying a target in hyperspectral imagery
consists of two stages. The first stage is an anomaly detector, which identifies
spectral anomalies or a localized spectral difference. The second stage is to
identify whether or not the anomaly is a target or a natural clutter. This stage
can be achieved if the spectral signature of the target is known, which can be
obtained from a spectral library or using an spectral subspace match filter
designed from a set of training data.1,5

Almost all the anomaly and target detectors are based on a linear process
that exploit the first- and second-order correlation of the data to identify
anomalies or targets. For example, a well-known spectral anomaly detection
algorithm was developed in3 called RX-algorithm, which is now considered as
a benchmark anomaly detector. RX-algorithm is based on exploiting the dif-
ference between the spectral signature of an input pixel with its surrounding
neighbors.8,10{13 This distance comparison is very similar to the Mahalanobis
distance measure which is done by comparing the corresponding wavelengths
(spectral bands) of two measurements normalized by the covariance matrix of
background statistics. The convention RX’s distance measure does not take
into account the higher order relationships (higher order correlation) between
the spectral bands at different wavelengths. The nonlinear relationships
between different spectral bands within the target or clutter spectral signature
needs to be exploited in order to better distinguish between target and back-
ground. Similarly, most of the target detection algorithms are based on linear
matched (subspace) filters where the spectral characteristics of a target or
a target subspace representing target information are assumed to be known.
In spectral matched filtering14{16 a linear (subspace) mixing model is assumed
where the target spectral signature is used in conjunction with the covariance
matrix of the background data to identify a specific target. In matched sub-
space filtering,6,17 a subspace linear mixture model is used for target detection
where the target and background signatures are represented by their corre-
sponding linear subspaces. Both matched filtering and matched subspace filter-
ing are based on linear mixture models that ignore the higher order correlation
between the spectral bands.

In this chapter, RX-algorithm, matched filter, and matched subspace
filtering techniques are extended to their corresponding nonlinear versions
using kernels and their properties.18{20 For example, a nonlinear version of
RX-algorithm is formulated by transforming each spectral pixel into a high-
dimensional feature space (could be potentially infinite dimension) by a non-
linear mapping function. The spectral pixel in the feature space now consists of
possibly the original spectral bands and a nonlinear combination of the spectral
bands of the original spectral signature. This way, the higher order correlation
between spectral bands could be exploited by RX-algorithm. However, the
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nonlinear RX-algorithm cannot be implemented directly due to the high
dimensionality of the feature space. But an efficient kernel-based nonlinear
version of the RX-algorithm can be implemented by using kernel functions.
Similarly, a nonlinear matched filter is implemented by defining a mixture
model in the feature space which is equivalent to a nonlinear mixture model
in the input space. It is then shown that the matched filter in the feature space
can be efficiently implemented in terms of kernel functions. In fact, using kernel
functions no explicit knowledge of the actual nonlinear mapping is necessary
which means the actual algorithm is not computed explicitly in the feature
space. This property is the major advantage of the kernel-based methods that
reduce a nonlinear algorithm to a linear one in some high-dimensional feature
space. In this chapter, it is also shown that a matched subspace detector can be
extended to its corresponding nonlinear version using kernel-based methods.

The kernel methods have emerged as new nonlinear-based learning tech-
niques that implicitly exploit the dot product of feature vectors generated by the
nonlinear mapping of the input vectors using kernel representations. The impli-
cit exploitation of nonlinear features through kernels provides crucial informa-
tion about a given data which, in general, the learning methods based on linear
models cannot achieve. In kernel methods, the learning is performed in a high-
dimensional feature space where the complexity of the given data can be possibly
reduced, subsequently generating simpler decision rules and improving general-
ization performance. Kernel-based versions of a number of feature extraction or
pattern recognition algorithms have recently been proposed.21{26

This chapter is organized as follows. In Section 15.1 kernel feature space is
defined. RX-algorithm and its nonlinear version (kernel RX-algorithm) is
described in Section 15.2. In Section 15.3 linear matched filter and kernel
matched filters are described. Similarly, in Section 15.4 linear subspace
matched filter and its kernel version are reviewed. In Section 15.5, experimental
results are provided comparing linear algorithm with their corresponding ker-
nel version. Finally, conclusion is given in Section 15.6.

15.1 Kernel Feature Space and Kernel Methods

In this section, an introduction to kernel feature map and kernel learning is
provided, which is used in the following sections to convert several linear target
detection algorithms into their corresponding nonlinear versions which can
then easily be implemented in terms of kernel functions. Suppose the
input hyperspectral data is represented by the data space (X � RJ ) and
F be a nonlinear feature space associated with X by a nonlinear mapping
function F

F:X ! F ,

x 7! F(x),
(1)
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where x is an input vector in X which is mapped into a potentially much higher
dimensional feature space. Now any linear algorithm can be remodeled in this
high-dimensional feature space by replacing the original input data x with the
mapped data F(x). Kernel-based learning algorithms use an effective kernel
trick (Eq. 2) to implement dot products in feature space in terms of kernel
functions.19 The kernel representation for the dot products in F , known as
kernel trick, is expressed as

k(xi, xj) ¼ < F(xi),F(xj) >

¼ F(xi) �F(xj)
(2)

where k is a positive definite kernel, such as a Mercer kernel.19

Implementing any linear algorithm (i.e., matched filter) in the feature space
is equivalent to performing a nonlinear version of that algorithm (i.e., nonlinear
matched filter) in the original data space. However, due to the high dimension-
ality of feature space F , it is computationally not feasible to implement the
algorithm in the feature space. Using the kernel trick it allows us to implicitly
compute the dot products in F without mapping the input vectors into F ;
therefore, in the kernel learning methods, the mapping F does not need to be
identified. However, an appropriate kernel has to be defined which has a non-
linear mapping associated with it. Two commonly used kernels are the Gauss-
ian Radial Bases Function kernel (RBF kernel): k(x, y) ¼ exp ( �kx�yk2

c ) and
Polynomial kernel: ( (x � y)þ u)d . See19 for detailed information about the
properties of kernels and kernel-based learning.

15.2 Introduction to RX-Algorithm and Kernel
RX-algorithm

15.2.1 RX Algorithm

Reed and Yu in3 developed a generalized likelihood ratio test (GLRT),
so-called RX anomaly detection, for multidimensional image data assuming
that the spectrum of the received signal (spectral pixel) and the covariance of
the background clutter are unknown. In the conventional RX algorithm,
a nonstationary local mean is subtracted from each spectral pixel. The local
mean m is obtained by sliding a double concentric window (a small inner
window centered within a larger outer window) over every spectral pixel
in the image, and the mean of the spectral pixels falling within the outer
window. The size of the inner window is assumed to be the size of the typical
target of interest in the image. The residual signal after mean subtraction is
assumed to approximate a zero-mean pixel-to-pixel independent Gaussian
random process.

Let each input spectral signal consisting of J spectral bands be denoted by
x(n) ¼ (x1(n), x2(n), . . . , xJ (n) )

T . Define Xb to be a J � N matrix of the
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N reference background clutter pixels (or pixels in the outer window). Each
observation spectral pixel is represented as a column in the sample matrix Xb

Xb ¼ [x(1)x(2) . . .x(N)]: (3)

The two competing hypotheses that the RX algorithm must distinguish are
given by

H0: x ¼ n, Target absent

H1: x ¼ asþ n, Target present
(4)

where a ¼ 0 under H0 and a > 0 under H1, respectively. n is a vector that
represents the background clutter noise process, and s is the spectral signature
of the signal (target) given by s ¼ (s1, s2, . . . , sJ )

T . The target signature s and
background covariance Cb are assumed to be unknown. The model assumes
that the data arises from two normal PDFs with the same covariance matrix
but different means. Under H0 the data (background clutter) is modeled as
N (0, Cb) and under H1 it is modeled as N (s, Cb). The background covariance
Cb is estimated from the reference background clutter data. The estimated
background covariance ĈCb is given by

ĈCb ¼
1

N

XN
i¼ 1

(x(i)� m̂mb)(x(i)� m̂mb)
T , (5)

where m̂mb is the estimated background clutter sample mean given by

m̂mb ¼
1

N

XN
i¼ 1

x(i): (6)

Assuming a single pixel target r as the observation test vector, the results of
RX-algorithm is given by

RX(r) ¼ (r� m̂mb)
T N

N þ 1
ĈCb þ

1

N þ 1

�

(r� m̂mb)(r� m̂mb)
T

��1

(r� m̂mb)
H1

0
H0

h,
(7)

where h is a threshold of the test. As N ! 1, RX algorithm converges to

RX(r) ¼ (r� m̂mb)
T ĈC�1

b (r� m̂mb): (8)

Equation (8) is the RX expression that is implemented in this chapter.

15.2.2 Kernel RX-algorithm

In this subsection, we first remodel the RX-algorithm in the feature space by
assuming that the input data has already been mapped into a high-dimensional
feature space via a nonlinear mapping F. The two hypotheses in the feature
space are now
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H0F : F(x) ¼ F(n), Target absent

H1F :F(x) ¼ aF(s)þF(n): Target present
(9)

The corresponding RX-algorithm in the feature space is now represented as

RX(F(r) ) ¼ (F(r)�F(m̂mb) )
TĈC�1

bF(F(r)�F(m̂mb)), (10)

where ĈCbF and m̂mb are the estimated covariance and mean of the background
clutter pixels in the feature space, respectively. The estimated covariance
matrix for the mapped data F(Xb) ¼ XbF :¼ [F(x(1) )F(x(2)) . . .F(x(N) )]
is given by

ĈCbF ¼ 1

N

XN
i¼ 1

(F(x(i))�F(m̂mb) )(F(x(i))�F(m̂mb))
T , (11)

where F(m̂mb) is the estimated background clutter sample mean given by

F(m̂mb) ¼
1

N

XN
m¼ 1

F(x(n)): (12)

The RX-algorithm given by Eq. (10) is now in the feature space which
cannot be implemented explicitly due to the nonlinear mapping F that pro-
duces a data space of high dimensionality. In order to avoid implementing the
Eq. 10 directly we need to kernelize it by using the kernel trick introduced in
Section 15.1.

The estimated background covariance matrix can be represented by its
eigenvector decomposition or so-called spectral decomposition27 given by

ĈCbF ¼ VFLbV
T
F, (13)

where Lb is a diagonal matrix consisting of the eigenvalues and VF is a matrix
whose columns are the eigenvectors of ĈCbF in the feature space:

VF ¼ [v1
F, v

2
F, . . . , vN

F ], (14)

where N is the maximum number of the eigenvectors with nonzero eigenvalues.
As shown in Appendix I the inverse of the estimated background covariance

matrix can also be written in terms of its eigenvectors and eigenvalues as

ĈC�1
bF

¼ VFL
�1
b VT

F: (15)

Each eigenvector vj
f in the feature space, as shown in Appendix I, can be

expressed as a linear combination of the input vectors F(xi) in the feature
space

vj
F ¼

XN
i¼ 1

bj
iF(xi) ¼ XbFb

j (16)

where bj ¼ (bj
1, b

j
2, . . . , bj

N )
T and for all the eigenvectors
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VF ¼ XbFB, (17)

where B ¼ (b1, b2, . . . , bN )T are the eigenvectors of the kernel matrix (Gram
matrix) K(XbF , XbF) normalized by their corresponding eigenvalues as shown
in the Appendix I.

Substituting Eq. (17) into (15) yields

ĈC�1
bF

¼ XbFBL�1
b BTXT

bF
: (18)

Inserting Eq. (18) into (10) it can be rewritten as

RX(F(r) ) ¼ (F(r)�F(m̂mb) )
TXbFBL�1

b BTXT
bF
(F(r)�F(m̂mb)): (19)

The dot product term F(r)TXbF in the feature space can be represented in
terms of the kernel function

F(r)TXbF ¼ (k(x(1), r) k(x(2),r) . . . , k(x(N),r))

¼ K(r, Xb)
T

¼ KT
r :

(20)

Similarly F(m̂mb)
TXbF ,

F(m̂mb)
TXbF ¼ (k(x(1), m̂mb) k(x(2), m̂mb) . . . , k(x(N), m̂mb))

¼ K(m̂mb, Xb)
T

¼ KT
m̂mb
:

(21)

The above transformations in Eqs. (20) and (21) are referred to as the empirical
kernel map.

Also using the properties of the Kernel PCA, as shown in Appendix I, we
have the relationship

K̂K�2
b ¼ BL�1BT , (22)

where we denote the centered kernel (Gram) matrix K̂Kb ¼ (K� 1MK�
K1N þ 1NK1N ) where (1N )ij ¼ 1=N is an N � N matrix and K ¼
K(Xb, Xb) ¼ (K)ij an N � N kernel matrix whose entries K(xi, xj) are the
dot products< F(xi), F(xj) >. Substituting Eqs. (20), (21), and (22), into Eq.
(19) and replacing XbF with XbF �F(m̂mb) in Eqs. (20) and (21) (due to center-
ing) the kernelized version of the RX-algorithm is given by

RX(K(r) ) ¼ (K̂K(Xb, r)� K̂K(Xb, m̂mb) )
TK̂K�2

b (K̂K(Xb,r)� K̂K(Xb, m̂mb))

¼ (K̂Kr � K̂Km̂mb
)TK̂K�2

b (K̂Kr � K̂Km̂mb
)

(23)

where K̂KT
r ¼ KT

r �
PN

i¼ 1 K(xi,r) and K̂KT
m̂mb

¼ KT
m̂mb

�
PN

i¼ 1 K(xi, m̂mb), respect-
ively. The expression in Eq. (23) can now be implemented with no knowledge of
the mapping function F. The only requirement is a good choice for the kernel
function k.
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15.3 Linear-matched Filter and Kernel-matched Filter

15.3.1 Linear-matched Filter

In this section, we introduce the concept of linear spectral matched filter. The
constrained least squares approach is used to derive the linear-matched filter.
Let the input spectral signal x be x ¼ [x(1), x(2), . . . , x(J)]T consisting of J
spectral bands. We can model each spectral observation as a linear combination
of the target spectral signature and noise

x ¼ asþ n, (24)

where a is an attenuation constant (target abundance measure); when a ¼ 0 no
target is present and when a > 0 target is present. Vector s ¼ [s(1), s(2),
. . . , s(J)]T contains the spectral signature of the target and vector n contains
the added background clutter noise.

We can design a linear-matched filter w ¼ [w(1), w(2), . . . , w(J)]T such
that the desired target signal s is passed through while the average filter output
energy is minimized. Let us define X to be a J �N matrix of the N mean-
removed reference pixels (centered) obtained from the input image. Let each
centered observation spectral pixel to be represented as a column in the sample
matrix X

X ¼ [x1 x2 . . . xN ]: (25)

The output of the filter for the input xi is given by

yi ¼ wTxi ¼ xT
i w (26)

The average output power of the filter for the reference data X is given by

1

N

XN
i¼1

y2i ¼ wT 1

N

XN
i¼1

xix
T
i

 !
w ¼ wTCw (27)

where C is the covariance matrix of the reference data. This constrained filter
design is equivalent to a constrained least squares minimization problem, as
was shown in,28{30 which is given by

min
w

fwTCwgsubject to sTw ¼ 1: (28)

The solution to this quadratic minimization problem was shown in31 and was
called Constrained Energy Minimization (CEM) filter given by

w ¼ C�1s

sTC�1s
: (29)

The covariance matrix C is usually estimated from the input image. Now
the estimated covariance matrix ĈC for the mean-removed reference data is
given by
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ĈC ¼ XXT : (30)

The output of the linear-matched filter for a test input r, given the estimated
covariance matrix is given by

y(r) ¼ wTr ¼ sTĈC�1r

sTĈC�1s
: (31)

In15,32 it was shown that using the generalized likelihood ratio test (GLRT),
the same expression for the linear-matched filter in Eq. (31) can be obtained

âa ¼ sTC�1r

sTC�1s
: (32)

where âa represents the maximum likelihood estimate of the abundance measure
a and when the estimated covariance matrix C ¼ ĈC is used in Eq. (32) this
filter is referred to as the adaptive matched filter.15 The CFAR behavior of this
filter is given by

a ¼ jsT ĈC�1rj2

sT ĈC�1s
: (33)

which is proportional to the estimated squared magnitude of the output
matched filter referred in16 as the signal-to-noise (SNR).

15.3.2 Kernel-matched Filter

Consider the linear model of the input data in a kernel feature space which is
equivalent to a nonlinear model in the input space

F(x) ¼ aFF(s)þ nF, (34)

where F is the nonlinear mapping that maps the input data into a kernel
feature space, aF is an attenuation constant (abundance measure), the high-
dimensional vector F(s) contains the spectral signature of the target in the
feature space, and vector nF contains the added noise in the feature space.

Using the constrained least squares approach that was explained in the
previous section, it can easily be shown that the equivalent matched filter wF

in the feature space is given by

wF ¼ ĈC�1
F F(s)

F(s)T ĈC�1
F F(s)

, (35)

where ĈCF is the estimated covariance of pixels in the feature space. The
estimated covariance is given by

ĈCF ¼ XFX
T
F (36)

assuming the sample mean has already been removed from each sample (cen-
tered), where XF ¼ [F(x1)F(x2) . . .F(xN )] is a matrix whose columns are the

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap15 Final Proof page 295 27.10.2005 11:05am

15 Hyperspectral Target Detection Based on Kernels 295



mapped input reference data in the feature space. The matched filter in the
feature space in Eq. (35) is equivalent to a nonlinear matched filter in the input
space and its output for the input F(r) is given by

y ¼ wT
FF(r) ¼ F(s)TĈC�1

F F(r)

F(s)TĈC�1
F F(s)

: (37)

The corresponding CFAR-matched filter in the feature space is given by

y ¼ wT
FF(r) ¼ jF(s)TĈC�1

F F(r)j2

F(s)TĈC�1
F F(s)

: (38)

Due to the high dimensionality of the feature space the expressions in Eqs. (37)
and (38) are not tractable. Therefore, we cannot directly implement them in
the feature space. We need to convert these expressions in terms of the dot
products of the input vectors in the feature space and then use the kernel trick
to convert the dot products in the feature space in terms of the kernel function.
We refer to this process as kernelizing the matched filter expression, and the
resulting nonlinear matched filter is called the kernel-matched filter.

It was shown in subsection 15.2.2 that the inverse of the estimated back-
ground covariance matrix can be written as

ĈC�1
F ¼ XFBL�1BTXT

F (39)

Inserting Eq. (39) into Eq. (37) it can be rewritten as

yF ¼ F(s)TXFBL�1BTXT
FF(r)

F(s)TXFBL�1BTXT
FF(s)

: (40)

The dot product term F(s)TXF in the feature space can be represented in
terms of the kernel function

F(s)TXF ¼ (k(x1, s), k(x2, s), . . . , k(xN , s))

¼ K(X, s)T ¼ KT
s :

(41)

Similarly,

F(r)TXF ¼ (k(x1, r), k(x2, r), . . . , k(xN , r))

¼ K(X, r)T ¼ KT
r :

(42)

Also using the properties of the Kernel PCA as shown in Appendix I, we have
the relationship

K�2 ¼ BL�1BT : (43)

We denote K ¼ K(X, X) ¼ (K)ij an N �N Gram kernel matrix whose
entries are the dot products < F(xi), F(xj) >. Substituting Eqs. (41),
(42), and (43) into Eq. (40), the kernelized version of the matched filter is
given by
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y(Kr) ¼
K(X, s)TK�2K(X, r)

K(X, s)TK�2K(X, s)
¼ KT

s K
�2Kr

KT
s K

�2Ks

: (44)

In the derivation of the kernel-matched filter, we assumed that the data
has been already centered in the feature space by removing the sample
mean. However, the sample mean cannot be directly removed in the feature
space due to the high dimensionality of F . That is, the expression for the
kernel-matched filter needs to be derived in terms of the original uncentered
input data. Therefore, the kernel matrix K̂K needs to be properly centered.19

The effect of centering on the kernel-matched filter can be seen by replacing
the uncentered XF with the centered XF � mF (where mF is the mean of
the reference input data) in the estimation of the covariance matrix expression
in Eqs. (36) as well as 41 and 42 for the empirical kernel mapping of the
target and input data, respectively. The resulting centered K̂K is shown in19 to
be given by

K̂K ¼ (K� 1NK�K1N þ 1NK1N ), (45)

where (1N )ij ¼ 1=N . The properly centered kernel-matched filter output is now
given by

y(Kr) ¼
K̂KT

s K̂K
�2K̂Kr

K̂KT
s K̂K

�2K̂Ks

, (46)

where K̂KT
s ¼ KT

s �
PN

i¼1 K(xi,s) and K̂KT
r ¼ KT

s �
PN

i¼1 K(xi,r) which is
obtained by replacing XF with XF � mF in 41, and 42, respectively.

15.4 Linear Subspace-matched Filter and Kernel
Subspace-matched Filter

15.4.1 Linear Subspace-matched Filter

In order to jointly address the two main issues of subpixel target detection {
the spectral variability and spectral mixing { especially, in airborne hyperspec-
tral sensor applications, a linear subspace spectral mixing model has been
used in which both target and background spectra are assumed to lie in two
respective subspaces. The target pixel vectors are expressed as a linear
combination of the target spectral signature and background spectral signa-
ture, which are represented by subspace target spectra and subspace back-
ground spectra, respectively. The detection is based on a hypothesis test
in which two competing hypotheses (H0 and H1) are tested for an input
spectrum to decide which hypothesis is best related to the input spectrum.
The hyperspectral target detection problem in a J-dimensional input space is
expressed as
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H0:y ¼ Bz þ n, Target absent

H1:y ¼ TuþBz þ n ¼ [TB]
u

z

� �
þ n, Target present

(47)

where T and B represent orthogonal matrices whose J-dimensional column
vectors span the target and background subspaces, respectively; u and z are
unknown vectors whose entries are coefficients that account for the abundances
of the corresponding column vectors of T and B, respectively; n represents
Gaussian random noise (n 2 RJ) distributed as N (0, s2I); and [T B] is a
concatenated matrix of T and B. The numbers of the column vectors of T
and B, Nt and Nb, respectively, are usually smaller than J(Nt , Nb < J). In this
detection scenario, if y is from a target region it is represented by the hypoth-
esis H1 and is labeled as target. If no target spectra are involved in the input
spectrum y, it is classified as background.

The matrices T and B spanning the target and background subspaces
< T > and < B >, respectively, are formed by first calculating the covar-
iance matrices of target and background sample spectra and then taking only
the significant eigenvectors of the covariance matrices in order to form
the column vectors of the corresponding matrices. The numbers of the eigen-
vectors to be included in T and B, Nt and Nb, respectively, are set such
that they represent most of the energy of the original target and background
subspaces.

15.4.2 GLRT for Target Detection

Given the linear subspace detection model and the two hypotheses about how
the input vector is generated, as shown in Eq. (47), the likelihood ratio test
(LRT) is used to predict whether the input vector y includes the target and is
defined by

l(y) ¼ p1(yjH1)

p0(yjH0)

H1

_
H 0

h, (48)

where p0(yjH0) and p1(yjH1) represent the class conditional probability dens-
ities of y given the hypotheses H0 and H1, respectively, and h is a threshold of
the test. p0(yjH0) and p1(yjH1) can be expressed as Gaussian probability
densities N (Bz, s2I) and N (TuþBz,s2I), respectively, since ni is assumed
to be Gaussian random noise. The LRT is derived from the Neyman{Pearson
criterion where the probability detection PD is maximized while the probability
of false alarm PF is kept a constant.33 l(y) is compared to h to make a final
decision about which hypothesis best relates to y.

The LRT includes the unknown parameters z and u that need to be
estimated using the maximum likelihood principle. The generalized likelihood
ratio test is directly obtained from l(y) by replacing the unknown parameters
with their maximum likelihood estimates (MLEs) ẑz and ûu6.
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l̂l(y) ¼
max

z
p1(yjH1)

max
(z, u)

p0(yjH0)

¼ ŝs2
1

ŝs2
0

� ��P=2

expf� 1

2ŝs2
1

kn̂n1k2 þ
1

2ŝs2
0

kn̂n0k2g
H0

_
H 1

h:

(49)

n̂ni, the MLEs of ni, for both the hypotheses H0 and H1 can be estimated using
the least squares approximation where projection of the input vector onto a
subspace is performed to provide the least squares solution to the linear sub-
space model Eq. (47) (Note that least squares of the additive noise model is
equivalent to maximum likelihood estimation of the conditional likelihood ratio
such as l(y)34:

n̂n0 ¼ y�Bẑz0 ¼ (I�PB)y,

n̂n1 ¼ y�Tûu1 �Bz1 ¼ (I�PTB)y,
(50)

where PB ¼ B(BTB)�1BT ¼ BBT is a projection matrix associated with the
Nb-dimensional background subspace < B > ;PTB is a projection matrix asso-
ciatedwith the (Nb þ Nt)-dimensional target and background subspace< TB >

PTB ¼ [T B][ [T B]T[T B] ]�1[TB]T: (51)

The columns of the matrix [T B] are not orthogonal, but they are linearly
independent meaning that [T B] is a full-rank matrix. It can be easily found
that the projection matrices PB and PTB hold the following properties35:

PT
TB ¼ PTB, P

T
B ¼ PB, (52)

P2
TB ¼ PTB,P

2
B ¼ PB: (53)

Therefore, using the properties of the projection matrices given in Eqs. (52) and
(53), the energy of the noise signals can be written as

kn̂n1k2 ¼ (y�PTBy)
T (y�PTBy)

¼ yTy� yTPTBy� yTPTB
Tyþ yTPTB

TPTBy

¼ yTy� 2yTPTByþ yTPTBy ¼ yT (I�PTB)y:

(54)

Similarly,

kn̂n0k2 ¼ (y�PBy)
T (y�PBy) ¼ yT (I�PB)y: (55)

Since ni is distributed as N (0, s2
i I), then ŝs2

i is equal to 1
J kn̂nik26. Finally, the

GLRT is obtained by taking (J/2)-root6 after substituting Eqs. (54) and (55)
and ŝs2

i ¼ 1
J kn̂nik2 into Eq. (49):

L2(y) ¼ (l̂l(y) )2=J ¼ kn̂n0k2

kn̂n1k2
¼ yT (I�PB)y

yT (I�PTB)y

H1

_
H 0

h: (56)

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap15 Final Proof page 299 27.10.2005 11:05am

15 Hyperspectral Target Detection Based on Kernels 299



15.4.3 Nonlinear Models in Feature Space Based on Subspaces

In this subsection, the nonlinear hyperspectral detection problem based on the
target and background subspaces is described in the feature space F as

H0F :F(y) ¼ BFzF þ nF, Target absent

H1F :F(y) ¼ TFuF þBFzF þ nF ¼ [TFBF]
uF

zF

� �
þ nF, Target present

(57)

where TF and BF represent full-rank matrices whose column vectors span
target and background subspaces < BF > and < TF > in F , respectively. In
general, any sets of basis vectors that span the corresponding subspace can be
used as the column vectors of TF and BF. In the proposed method we use the
significant eigenvectors of the target and background covariance matrices (CTF

and CBF
) in F as the the column vectors of TF and BF, respectively. CTF

and
CBF

are based on the centered target and background sample sets (ZT and
ZB), respectively:

CBF
¼ 1

M

XM
i¼1

F(yi)F(yi)
T , for yi 2 ZB,

CTF
¼ 1

N

XN
i¼1

F(yi)F(yi)
T , for yi 2 ZT,

where N and M represent the number of training samples in ZT and ZB,
respectively. We now derive the GLRT of the nonlinear hyperspectral detection
problem described by the model in (57):

L2(F(y) ) ¼ kn̂n0Fk
2

kn̂n1Fk
2
¼ F(y)T (PIF �PBF

)F(y)

F(y)T (PIF �PTFBF
)F(y),

(58)

where PIF represents an identity projection operator in F ; PBF
¼

BF(B
T
FBF)

�1BT
F ¼ BFB

T
F is a background projection matrix; and PTFBF

is a
joint target-and-background projection matrix in F

PTFBF
¼ [TFBF][[TFBF]

T [TFBF]]
�1[TFBF]

T

¼ [TFBF]
TT

FTF TT
FBF

BT
FTF BT

FBF

" #�1
TT

F

BT
F

" #
: (59)

Note 58 can not be implemented explicitly due to potential infinite dimension-
ality of F, therefore, 58 has to be kernelized in order to obtain an expression in
terms of the kernel function k.
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15.4.4 Kernelizing MSD in Feature Space

To kernelize Eq. 58, first consider its numerator,

kn̂n0Fk ¼ F(y)T (PIF �PBF)F(y)

¼ F(y)TPIFF(y)�F(y)TBFB
T
FF(y): (60)

Using Eq. 74, BF and TF can be written as

BF ¼ [eb
1eb

2 . . . eb
Nb ] ¼ FZB

B, (61)

TF ¼ [et
1et

2 . . . et
Nt ] ¼ FZT

T , (62)

where eb
i and et

j are the significant eigenvectors of CBF
and CTF

, respect-
ively; FZB

¼ [F(y1)F(y2) . . .F(yM )],yi 2 ZB and FZT
¼ [F(y1)F(y2) . . .

F(yN )], yi 2 ZT; the column vectors of B and T represent only the significant
eigenvectors (b1, b2, . . . , bNb) and (a1, a2, . . . , aNt) of the background ker-
nel matrix K(ZB, ZB) ¼ (K)ij ¼ k(yi, yj), yi, yj 2 ZB and the target kernel
matrix K(ZT, ZT) ¼ (K)ij ¼ k(yi, yj), yi, yj 2 ZT, respectively.

Using Eq. (61), the projection of F(y) onto BF becomes

BT
FF(y) ¼ [e1b e2b . . . eb

Nb ]TF(y) ¼

b1TFT
ZB
F(y)

b2T

FT
ZB
F(y)

_

bbTFT
ZB
F(y)

2
666664

3
777775

¼ BTK(ZB, y),

(63)

and, similarly, using Eq. (62), the projection onto TF is

TT
FF(y) ¼ [et

1et
2 . . . et

Nt ]TF(y) ¼

a1TFT
ZT
F(y)

a2TFT
ZT
F(y)

_

aNt
T
FT

ZT
F(y)

2
666664

3
777775

¼ T TK(ZT, y),

(64)

where K(ZB, y) and K(ZT, y) are column vectors whose entries are k(xi, y)
for xi 2 ZB and xi 2 ZT, respectively. Now using Eq. (64), F(y)TBFB

T
FF(y)

can be written as

F(y)TBFB
T
FF(y) ¼ K(ZB,y)

TBBTK(ZB,y): (65)

The projection onto the identity operator F(y)TPIFF(y) also needs to be
kernelized. PIF is defined as PIF :¼ VFV

T
F, where VF ¼ [eq

1 eq
2 . . . ] is a

matrix whose columns are all the eigenvectors with l 6¼ 0 that are in the span
of F(yi), yi 2 ZT [ ZB. From (Eq. 74), VF can be expressed as
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VF ¼ [eq
1 eq

2 . . . eq
Nbt ] ¼ FZTB

D, (66)

where FZTB
¼ FZT

[FZB
and D is a matrix whose columns are the eigenvec-

tors (k1, k2, . . . , kNbt) of the kernel matrix K(ZTB, ZTB) ¼ (K)ij ¼
k(yi, yj),yi, yj 2 ZT [ ZB with nonzero eigenvalues, normalized by the square
root of their associated eigenvalues. Using PIF ¼ VFV

T
F and (Eq. 66)

F(y)TPIF F(y) ¼ F(y)TFZTB
DDTFT

ZTB
F(y)

¼ K(ZTB, y)
TDDTK(ZTB, y),

(67)

where K(ZTB,y) is a concatenated vector [K(ZT, y)
TK(ZB, y)

T ]T . The ker-
nelized numerator of Eq. (58) is now given by

kn̂n0Kk ¼ K(ZTB,y)
TDDTK(ZTB,y)�K(ZB,y)

TBBTK(ZB,y), (68)

We now kernalize F(y)TPTFBF
F(y) in the denominator of Eq. (58) to com-

plete the kernelization process. Using Eqs. (59), (61), and (62)

F(y)TPTFBF
F(y) ¼ F(y)T [TF BF]

TT
FTF TT

FBF

BT
FTF BT

FBF

" #�1
TT

F

BT
F

" #
F(y)

¼ [K(ZT , y)
TT K(ZB, y)

TB] T TK(ZT, ZT)T T TK(ZT, ZB)B
BTK(ZB, ZT)T BTK(ZB, ZB)B

" #�1

� T TK(ZT, y)

BTK(ZB, y)

" #
:

(69)

Finally, substituting Eqs. (65), (68), and (69) into (58), the kernelized GLRT
is given by

L2K ¼ K(ZTB,y)
TDDTK(ZTB,y)�K(ZB,y)

TBBTK(ZB,y)

K(ZTB,y)
TDDTK(ZTB,y)� [K(ZT,y)

TT K(ZB,y)
TB] L�1

1
T TK(ZT,y)
BTK(ZB,y)

� � , (70)

where L1 ¼ T TK(ZT, ZT)T T TK(ZT, ZB)B
BTK(ZB, ZT)T BTK(ZB, ZB)B

� �
:

15.5 Experimental Results

15.5.1 Simulation Results for Kernel RX-algorithm

The centered kernel matrix K̂Kb can be estimated either globally or locally. The
global estimation must be performed prior to detection and normally needs a
large amount of data samples to successfully represent all the background types
present in a given data set. In this chapter, to globally estimate K̂Kb, we need to
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use all the spectral vectors in a given test image. A well-known data clustering
algorithm, k-means36, is used on all the spectral vectors in order to generate a
significantly less number of spectral vectors (centroids) from which K̂Kb is
estimated. By using a small number of distinct background spectral vectors a
manageable kernel matrix is generated where a more efficient kernel RX-
algorithm is now implemented.

For local estimation of K̂Kb we use local background samples, which are from
the neighboring area of the pixel being tested. For each test pixel location, a
dual concentric rectangular window is used to separate a local area into two
regions { the inner-window region (IWR) and the outer-window region
(OWR), as shown in Fig. 15.1; the local kernel matrix and the background
covariance matrix are calculated from the pixel vectors in the OWR. The dual
concentric windows naturally divide the local area into the potential target
region { the IWR { and the background region { the OWR { whose local
statistics in the original and nonlinear feature domain are compared using the
conventional RX- and kernel RX-algorithms, respectively. The size of the IWR
is set to enclose targets to be detected whose approximate size is based on prior
knowledge of the range, field of view (FOV), and the dimension of the biggest
target in the given data set. Similarly, the size of the OWR is set to include
sufficient statistics from the neighboring background.

We apply both the kernel RX- and conventional RX-algorithms to two
HYDICE images, the Forest Radiance I (FR-I) image and the Desert Radiance
II (DR-II) image, as shown in Fig. 15.2. FR-I includes total 14 targets and DR-
II contains six targets along the road; all the targets are military vehicles.
A HYDICE imaging sensor generates 210 bands across the whole spectral
range (0:4---2:5mm), but we only use 150 bands by discarding water
absorption and low signal to noise ratio (SNR) bands; the bands used are
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X X  X  X  X  X  X  X  X  X  X  X 
X X  X  X  X  X  X  X  X  X  X  X 
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Inner region

Hyperspectral images

Figure 15.1. Example of the dual concentric windows in the hyperspectral images.
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the 23rd{101st, 109th{136th, and 152nd{194th. Gaussian RBF kernel,
k(x, y) ¼ exp ( �kx�yk2

c ), was used to implement the kernel-RX algorithm; the
value of c was set to 40. The sizes of the IWR and OWR used for the local
kernel and covariance matrix estimations were 5� 5 and 15� 15 pixel areas,
respectively. For the global kernel matrix estimation, the number of the repre-
sentative spectral vectors obtained from the k-means procedure was set to 600.

We first used the local dual-window for the local covariance and kernel
matrix estimations for the conventional RX- and kernel RX-algorithms, re-
spectively, and performance between the two algorithms was compared. We
also estimated the global kernel matrix and the performance between the kernel
RX-algorithms implemented with the local and global kernel matrices was
compared.

Figures 15.3 and 15.4 show the anomaly detection results of both the kernel
RX and the conventional RX using the local dual window applied to the FR-I
and DR-II images, respectively. The kernel RX detected most of the targets
with a few false alarms while the conventional RX generated much more false
alarms and missed some targets; especially, in the case of FR-I the conventional
RX missed seven successive targets from the left.

The receiver operating characteristics (ROC) curves representing detection
probability Pd versus false alarm rates Nf , were also generated to provide
quantitative performance comparison for the FR-I and DR-II images between
the two algorithms based on the local dual window, as shown in Figs. 15.5 and
15.6, respectively. For ROC curves generation, based on the ground truth
information for the HYDICE images, we obtain the coordinates of all the
rectangular target regions. Every target pixel inside the target regions is then
considered as a target candidate to be detected. Pd and Nf are defined as

(b)

(a)

Figure 15.2. Sample band images (48th) from HYDICE images: (a) the Forest
Radiance I image and (b) the Desert Radiance II image.
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Pd :¼
Nhit

Nt
and Nf :¼

Nmiss

Ntot
, (71)

where Nhit represents the number of target pixels detected given a certain
threshold; Nt represents the total number of target pixels in the images; Nmiss

represents the number of background pixels detected; and Ntot represents the
total number of pixels in the images.Pd becomes one only when all the individual
target pixels within a target are detected; perfect detection is, therefore, difficult
to achieve and the values of Pd for both the kernel RX and conventional RX are
usually less than one. For both the FR-I and DR-II images the kernel RX showed
significantly improved performance over the conventional RX.

We also generated the global kernel matrix and the performance of the
kernel RX using the local and global kernel matrices, and compared in terms of
ROC curves, as shown in Figs. 15.3 and 15.8. The global method provided
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Figure 15.3. Detection results for the Forest Radiance I image using kernel RX and
conventional RX; (a) Kernel RX, (b) 3D plot of (a), (c) RX, and (d) 3D plot of (c).
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slightly improved performance over the local method for the HYDICE images
that were tested.

15.5.2 Simulation Results for the Kernel-matched Filter

We implemented both the proposed kernel-matched filter detector (KMFD)
described in Eq. (46) and the conventional-matched filter detector (MFD)
described in (Eq. 33) to detect targets of interest (military vehicles) in the
HYDICE images. We implemented KMFD with four different kernel functions,
each kernel function being associated with its corresponding feature space.

The four different kernels used were 1) the Gaussian RBF kernel, exp ( �kx�yk2
30 ),
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Figure 15.4. Detection results for the Desert Radiance II image using kernel RX and
conventional RX; (a) Kernel RX, (b) 3D plot of (a), (c) RX, and (d) 3D plot of (c).
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Figure 15.5. ROC curves obtained by the kernel RX and RX based on the local dual
window for the Forest Radiance I image.
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Figure 15.6. ROC curves obtained by the kernel RX and RX based on the local dual
window for the Desert Radiance II image.
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Figure 15.7. ROC curves obtained by the kernel RX using the local and global kernel
matrices for the Forest Radiance I image.
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Figure 15.8. ROC curves obtained by the kernel RX using the local and global kernel
matrices for the Desert Radiance II image.
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2) inverse multiquadric kernel: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�yk2þ1

p , 3) spectral angle-based kernel, x�y
kxkkyk,

and 4) 5th order polynomial kernel, ((x � y)þ 1)5.
All the pixel vectors in a test image are first normalized by a constant,

which is a maximum value obtained from all the spectral components of the
spectral vectors in the corresponding test image, so that the entries of the
normalized pixel vectors fit into the interval of spectral values between zero
and one. The rescaling of pixel vectors was mainly performed to effectively
utilize the dynamic range of the Gaussian RBF kernel. The rescaling does not
affect the performance of KMFDs or MFD when the other three kernel func-
tions are used.

Figures 15.9 and 15.10 show the detection results for the DR- II and FR-I
images using KMFD with the four different globally estimated kernels and
MFD with the globally estimated covariance matrix, respectively. The corre-
sponding ROC curves for the detection results in Figs. 15.9 and 15.11 are
shown in Figs. 15.11 and 15.12, respectively. For DR-II, as shown in Fig.
15.11, KMFD with any type of kernels could detect all the targets at a very
low false alarm rate (Nf � 3� 10�4), while conventional MFD detected all the
targets at a much higher false alarm rate (Nf � 3� 10�3).

For the FR-I image the background ismuchmore complex than that of DR-I.
It includes the tree area where most irregular illumination effects occur; the long
shadowy transition and the region filled mostly with grass. KMFD using any
kernels except the polynomial kernel still showed improved detection results over
the conventional MFD, as shown in Fig. 15.10 and the ROC plots in Fig. 15.12.

Locally estimated kernel and covariance matrices using the dual concentric
window were also used to implement KMFD (with the Gaussian RBF kernel)
and MFD, respectively. The detection results for DR-II and FR-I are shown in
Fig. 15.13 and 15.14, respectively. The Gaussian RBF kernel was chosen
because it was the kernel (along with the inverse multiquadric kernel) that
showed consistent performance for both DR-II and FR-I when the global kernel
estimation was used. The ROC curves for the detection results in Fig. 15.13 and
15.14 are shown in Fig. 15.15 and 15.16, respectively.

MFD with the locally estimated covariance matrix produced, in general,
flattened detection values in the background regions compared to MFD with
the globally estimated covariance matrix. However, it suppressed some of the
targets detected by the global MFD, lowering detection performance. KMFD
with the locally estimated Gaussian RBF kernel matrix effectively produced
lower filter output values in the background regions, particularly, in the tree
and transition areas, significantly reducing potential false alarms, while still
generating higher target values than those of the background.

15.5.3 Simulation Results for the Kernel-matched Subspace Filter

We compare the detection performance between the MSD in Eq.(56) defined in
the original input domain and the KMSD Eq.(70) using the two test HYDICE
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(a)

(b)

(c)

(d)

(e)

Figure 15.9. Detection results for the Desert Radiance II image using the kernel-
matched filter detectors (KMFD) and the matched filter detector (MFD), with globally
estimated kernels and covariance matrices, respectively. (a) KMFD with the Gaussian
RBF kernel, (b) KMFD with the inverse multiquadric kernel, (c) KMFD with the
spectral angle-based kernel, (d) KMFD with the polynomial kernel, and (e) MFD in
the original input domain.
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(a)

(b)

(c)

(d)

(e)

Figure 15.10. Detection results for the Forest Radiance I image using the kernel-
matched filter detector (KMFDs) and the matched filter detector (MFD), with globally
estimated kernels and covariance matrices, respectively. (a) KMFD with the Gaussian
RBF kernel, (b) KMFD with the inverse multiquadric kernel, (c) KMFD with the
spectral angle-based kernel, (d) KMFD with the polynomial kernel, and (e) MFD in
the original input domain.
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Figure 15.11. ROC curves obtained from the detection results for the Desert Radiance
II image shown in Fig. 15.9.
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Figure 15.12. ROC curves obtained from the detection results for the Forest Radiance
I image shown in Fig. 15.10.
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images. The Gaussian RBF kernel, k(x,y) ¼ exp ( �kx�yk2
c ), was used to imple-

ment the kernel-based detectors; the value of c was set to 40.
Figures 15.17{15.20 show the detection results including the ROC curves

generated by applying KMSD and MSD to both the DR-II and FR-I test
images. In implementing KMSD and MSD, the background samples were
obtained from outside the test images to estimate the background subspace.
Due to a lack of available target samples (the test images include all the targets,
military vehicles, present in the given data sets), the target samples were

(a)

(b)

Figure 15.13. Detection results for the Desert Radiance II image using KMFD and
MFD with locally estimated Gaussian RBF kernel and covariance matrices, respect-
ively: (a) KMFD with the Gaussian RBF kernel and (b) MFD.

(a)

(b)

Figure 15.14. Detection results for the Forest Radiance I image using KMFD and
MFD with locally estimated Gaussian RBF kernel and covariance matrices, respect-
ively: (a) KMFD with the Gaussian RBF kernel and (b) MFD.
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Figure 15.15. ROC curves obtained from the detection results for the Desert Radiance
II image shown in Fig. 15.13.
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Figure 15.16. ROC curves obtained from the detection results for the Forest Radiance
I image shown in Fig. 15.14.
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collected from one of the targets in each HYDICE test set: the right most
target in the DR-II image and the left most target in the FR-I image, as shown
in Fig. 15.2.

For the DR-II image, KMSD detected the majority of the target pixels with
high contrast in GLRT values with respect to those of the background while
MSD found a relatively small number of the target pixels with low contrast,
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Figure 15.17. Detection results for the Desert Radiance II image using the kernel-
matched subspace detector (KMSD) and the matched subspace detector (MSD): (a)
KMSD, (b) 3D plot of (a), (c) MSD, and (d) 3D plot of (c).
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especially, for the first four targets from the left, as shown in Fig. 15.17. The
ROC curves in Fig. 15.19 also showed the superiority of KMSD over MSD for
the DR-II image.

Both KMSD and MSD were also applied to the FR-I image and the
detection results were shown in Fig. 15.18 and the corresponding ROC plots
in Fig. 15.20. The targets in the FR-I image are relatively difficult to detect
mainly because the target spectral variability is in a wider range than that of
the DR-II image; some targets show considerably different spectral character-
istics than those of the target samples; and some targets are heavily shadowed.
Nevertheless, KMSD detected, at least, a small portion of the target pixels for
every target region in the images, while MSD missed some of the targets (6th,
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Figure 15.18. Detection results for the Forest Radiance I image using KMSD and
MSD: (a) KMSD, (b) 3D plot of (a), (c) MSD, and (d) 3D plot of (c).
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Figure 15.19. ROC curves obtained by KMSD and MSD for the Desert Radiance II
image.
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Figure 15.20. ROC curves obtained by KMSD and MSD for the Forest Radiance I
image.
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7th, and 12th through 14th from the left), as shown in Fig. 15.18. While most of
the target GLRT values generated by KMSD are distributed within a relatively
narrow range, MSD produced significantly lower GLRT values for the missed
targets than those of the other targets, as shown in Fig. 15.5; this is mainly
because the missed targets show low reflectivity over the whole spectral range
making them similar to shadow areas. It can be said that even though KMSD
was trained with a relatively small number of target samples, it provides better
generalization than MSD in representing various unseen targets in the given
database. In conclusion, for the FR-I image KMSD provided improved overall
detection performance over MSD; note that the performance of KMSD at the
low false alarm rates was noticeably better than other rates. Given the experi-
mental results based on our limited hyperspectral data set, it can be said that if
the target subspace is properly estimated to represent the target spectral
variability, KMSD is expected, in general, to perform better than MSD.

15.6 Conclusions

We have extended the conventional RX-algorithm, matched filter detector,
and matched subspace detector in the original input space to a nonlinear
feature space by kernelizing the corresponding nonlinear expressions for the
three algorithms. The detection results show that the kernel-based nonlinear
detection methods are quite suitable for identifying underlying structures of
complex data such as hyperspectral data, thus they are more powerful in
discriminating targets of interest.

For example, kernel RX showed superior detection performance over the
conventional RX algorithm given the two HYDICE images tested; kernel RX
produced a lot fewer false alarms and detected most of the targets. This is
mainly because the high order correlations between the spectral bands are
exploited by the kernel RX algorithm. KMFD, the kernel counterpart of
MFD, was implemented with several different kernels, each with different
characteristics. In general, KMFD with almost all the kernels showed a superior
detection performance when compared to the conventional MFD for the
HYDICE images tested in this chapter. Kernel-matched subspace detectors
were applied to hyperspectral subpixel target detection, and the detection
performance was compared to the original matched subspace detectors. The
detection results based on the given HYDICE images confirmed that the
kernel-based learning, which was implicitly performed in the nonlinear feature
space, was a powerful approach to understand the underlying structures of the
given data set and representing unseen targets based on the limited training
samples.

In this chapter, only a small number of HYDICE images were tested for the
performance comparison between kernel RX and conventional RX, and also for
the performance of kernel RX associated with the local and global kernel matrix
estimations. However, a large hyperspectral database needs to be used to

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap15 Final Proof page 318 27.10.2005 11:05am

318 Heesung Kwon and Nasser M. Nasrabadi



generate more general as well as accurate comparison between the two algo-
rithms and the local and global estimations in the future.
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15.8 Appendix I. (Kernel PCA)

In this Appendix we will represent derivation of Kernel PCA and its properties
providing the relationship between the covariance matrix and the correspond-
ing Gram matrix. Our goal is to prove Eqs. 18 and 43. To drive the Kernel
PCA, consider the estimated background clutter covariance matrix in the
feature space and assume that the input data has been normalized (centered)
to have zero mean. The estimated covariance matrix in the feature space is
given by

ĈCF ¼ 1

N
XFX

T
F: (72)

The PCA eigenvectors are computed by solving the eigenvalue problem

lvF ¼ ĈCFvF

¼ 1

N

XN
i¼1

F(xi)F(xi)
TvF

¼ 1

N

XN
i¼1

< F(xi),vF > F(xi):

(73)

where vF is an eigenvector in F with a corresponding nonzero eigenvalue l.
Equation (73) indicates that each eigenvector vF with corresponding l 6¼ 0 are
spanned by F(x1), . . . ,F(xN ) { i.e.,

vF ¼
XN
i¼1

biF(xi) ¼ XFb, (74)

where XF ¼ [F(x1)F(x2) . . . F(xN )] and b ¼ (b1, b2, . . . ,bN )
T . Substituting

Eqs. (74) into (73) and multiplying with F(xn)
T , n ¼ 1, . . . ,N , yields
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l
XN
i¼1

bi < F(xn), F(xi) >

¼ 1

N

XN
i¼1

biF(xn)F(xi)F(xi)
T
XN
i¼1

F(xi)

¼ 1

N

XN
i¼1

bi < F(xn),
XN
j¼1

F(xj) < F(xj), F(xi) >> ,

for all n ¼ 1, . . . ,N

(75)

We denote by K ¼ K(X, X) ¼ (K)ij the N � N kernel matrix whose entries
are the dot products < F(xi),F(xj) >. Equation (73) can be rewritten as

Nlb ¼ Kb, (76)

where b turns out to be the eigenvectors with nonzero eigenvalues of the kernel
matrix K. Note that each b needs to be normalized by the square root of its
corresponding eigenvalue.

From the definition of PCA in the feature space Eq. 73 and the Kernel PCA
in Eq. 76 we can now write the eigenvector decomposition of the estimated
covariance matrix as

ĈCF ¼ VF LVT
F, (77)

where VF ¼ [v1
F v2

F . . . vN
F ] and L is a diagonal matrix with its diagonal

elements being the eigenvalues of ĈCF. Similarly, the kernel matrix eigen de-
composition is given by

K ¼ BVBT , (78)

where B ¼ [b1 b2 . . . bN ] are the eigenvectors of the kernel matrix and V is a
diagonalmatrixwithdiagonal values equal to the eigenvalues of thekernelmatrix
K. Using inverse matrix properties of invertible matrices the inverse background
covariance matrix ĈC

�1

F and inverse Gram matrixK�1 can be also written as

ĈC
�1

F ¼ VF L�1VT
F (79)

and

K�1 ¼ BV�1BT , (80)

respectively. The eigenvalues of the covariance matrix in the feature space and
the eigenvalues of the kernel matrix are related by

L ¼ 1

N
V: (81)

Substituting Eqs. 81 into 80, we obtain the relationship

K�1 ¼ 1

N
BL�1BT , (82)
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where N is a constant representing the total number of background clutter
samples which can be ignored.

In the derivation of the kernel PCA we assumed that the data has already
been centered in the feature space by removing the sample mean. However, the
sample mean cannot be directly removed in the feature space due to the high
dimensionality of F . That is the kernel PCA needs to be derived in terms of the
original uncentered input data. Therefore, the kernel matrix K̂K needs to be
properly centered.19 The effect of centering on the kernel PCA can be seen by
replacing the uncenteredXF with the centeredXF � mF (where mF is the mean
of the reference input data) in the estimation of the covariance matrix expres-
sion in Eq. 72. The resulting centered K̂K is shown in19 to be given by

K̂K ¼ (K� 1NK�K1N þ 1NK1N ), (83)

where (1N )ij ¼ 1=N . In the above Eqs. 78, 80, and 82 the kernel matrixK needs
to be replaced by the centered kernel matrix K̂K.

References

[1] Manolakis D and Shaw G. (2000). ‘‘Detection algorithms for hyperspectral im-
aging applications.’’ IEEE Signal Process. Mag., 19(1):29{43.

[2] Harsanyi JC and Chang C-I. (1994). ‘‘Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach.’’ IEEE
Trans. Geosci. Remote Sensing, 32(4):779{785.

[3] Reed IS and Yu X. (1990). ‘‘Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution.’’ IEEE Trans. Acoustics, Speech
Signal Process., 38(10):1760{1770.

[4] Chang C-I, Zhao X-L, Althouse MLG, and Pan JJ. (1998). ‘‘Least squares sub-
space projection approach to mixed pixel classification for hyperspectral images.’’
IEEE Trans. Geosci. Remote Sensing, 36(3):898{912.

[5] Healey G and Slater D. (1999). ‘‘Models and methods for automated material
identification in hyperspectral imagery acquired under unknown illumination and
atmospheric conditions.’’ IEEE Trans. Geosci. Remote Sensing, 37(6):2706{2717.

[6] Scharf LL and Friedlander B. (1994). ‘‘Matched subspace detectors.’’ IEEE Trans.
Signal Process., 42(8):2146{2157.

[7] Schweizer SM and Moura JMF. (2001). ‘‘Efficient detection in hyperspectral
imagery.’’ IEEE Trans. Image Process., 10:584{597.

[8] Stein DWJ, Beaven SG, Hoff LE, Winter EM, Schaum AP, and Stocker AD.
(2002). ‘‘Anomaly detection from hyperspectral imagery.’’ IEEE Signal Process.
Mag., 19:58{69.

[9] Kwon H, Der SZ, and Nasrabadi NM. (2001). ‘‘An adaptive unsupervised segmen-
tation algorithm based on iterative spectral dissimilarity measure for hyperspectral
imagery.’’ in: Proc. SPIE, 4310:144{152.

[10] Stein DWJ. (2001). ‘‘Stochastic compositional models applied to subpixel analysis
of hyperspectral imagery.’’ in: Proc. SPIE, 4480:49{56.

[11] Kwon H. Der SZ, and Nasrabadi NM. (2003). ‘‘Adaptive anomaly detection using
subspace separation for hyperspectral images.’’ Opt. Eng. 42(11):3342{3351.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap15 Final Proof page 321 27.10.2005 11:05am

15 Hyperspectral Target Detection Based on Kernels 321



[12] Chang C-I and Chiang S-S. (2002). ‘‘Anomaly detection and classification for
hyperspectral imagery.’’ IEEE Trans. Geosci. Remote Sensing, 40(6):1314{1325.

[13] Yu X and Reed IS. (1993). ‘‘Comparative performance analysis of adaptive multi-
spectral detectors.’’ IEEE Trans. Signal Process., 41(8):2639{2656.

[14] Manolakis D, Shaw G, and Keshava N. (2000). ‘‘Comparative analysis of hyper-
spectral adaptive matched filter detector.’’ in: Proc. SPIE, 4049:2{17.

[15] Robey FC, Fuhrmann DR and Kelly EJ. (1992). ‘‘A CFAR adaptive matched
filter detector.’’ IEEE Trans. Aerospace and Elect. Syst., 28(1):208{216.

[16] Kraut S, Scharf LL, and McWhorter T. (2001). ‘‘Adaptive subspace detectors.’’
IEEE Trans. Signal Process., 49(1):208{216.

[17] Thai B and Healey G. (2002). ‘‘Invariant subpixel material detection in hyper-
spectral imagery.’’ IEEE Trans. Geosci. Remote Sensing, 40(3):599{608.

[18] Vapnik VN. (1999). The nature of statistical learning theory. Springer.
[19] Scho€lkopf B and Smola AJ. (2002). Learning with Kernels. MIT.
[20] Mu€ller KR, Mika S, Ra€tsch G, Tsuda K, and Scho€lkopf B. (2001). ‘‘An introduction

to kernel-based learning algorithms.’’ IEEE Trans. Neural Networks, (2):181{202.
[21] Lu J, Plataniotis KN, and Venetsanopoulos AN. (2003). ‘‘Face recognition using

kernel direct discriminant analysis algorithm.’’ IEEE Trans. Neural Networks,
14(1):117{126.

[22] Paclik P, Pekalska E, and Duin RPW. (2001). ‘‘A generalized kernel approach to
dissimilarity-based classification.’’ J. Mach. Learning, 2:175{211.

[23] Ruiz A and Lopez-de Teruel E. (2001). ‘‘Nonlinear kernel-based statistical patten
analysis.’’ IEEE Trans. Neural Networks, 12:16{32.

[24] Scho€lkopf B, Smola AJ, and Mu€ller K-R. (1999). ‘‘Kernel principal component
analysis.’’ Neural Comput. (10):1299{1319.

[25] Baudat G and Anouar F. (2000). ‘‘Generalized discriminant analysis using a kernel
approach.’’ Neural Comput. (12):2385{2404.

[26] Girolami M. (2002). ‘‘Mercer kernel-based clustering in feature space.’’ IEEE
Trans. Neural Networks, 13(3):780{784.

[27] Joliffe IT. (1986). Principal Component Analysis. Springer-Verlag.
[28] Scharf LL. (1991). Statistical Signal Processing. Addison-Wesley.
[29] Chang C-I and Heinz DC. (2000). ‘‘Constrained subpixel target detection for re-

motely sensed imagery.’’ IEEE Trans. Geosci. Remote Sensing, 38(3):1144{1159.
[30] Settle JJ. (1996). ‘‘On the relationship between spectral unmixing and subspace

projection.’’ IEEE Trans. Geosci. Remote Sensing, 34(4):1045{1046.
[31] Harsanyi JC. (1993). ‘‘Detection and Classification of Subpixel Spectral Signatures

in Hyperspectral Image Sequences.’’ Ph.D. dissertation, Dept. Elect. Eng., Univ. of
Maryland, Baltimore County.

[32] Kraut S and Scharf LL. (1999). ‘‘The CFAR adaptive subspace detector is a scale
invariant-invariant GLRT.’’ IEEE Trans. Signal Process., 47(9):2538{2541.

[33] Van Trees HL. (1968). Detection, Estimation, and Modulation Theory. Wiley.
[34] Hastie T, Tibshirani R, and Friedman J. (2001). The Elements of Statistical

Learning. Springer.
[35] Strang G. (1986). Linear algebra and its applications. Harcourt Brace.
[36] Jain AK, Murty MN, and Flynn PJ. (1999). ‘‘Data clustering: A review.’’ ACM

Comput. Surveys, 31(3):264{323.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap15 Final Proof page 322 27.10.2005 11:05am

322 Heesung Kwon and Nasser M. Nasrabadi



16

Detecting 3D Location and Shape of Distorted 3D

Objects Using LADAR Trained Optimum

Nonlinear Filters

Seung-Hyun Hong and Bahram Javidi

Department of Electrical and Computer Engineering, University of Connecticut, 06269-2157,
USA. shhong@engr.uconn.edu bahram@engr.uconn.edu

16.0 Introduction

Correlation approach1{14 has been widely used in many pattern recognition
problems. To be distortion tolerant1,8{12, the filter must recognize the target
viewed from various angles, perspectives, scales, and illuminations. Therefore, a
training data set of reference targets is needed. Many composite filters have
been proposed to perform distortion-tolerant pattern recognition.

Optimum nonlinear distortion-tolerant filter is obtained by optimizing1,10,12

the filter’s discrimination capability and noise robustness. In this chapter, we
introduce a novel optimum nonlinear distortion-tolerant filter to detect targets
placed in nonoverlapping (disjoint) background noise. The filter maintains
fixed output peaks for the members of the true class training target set. The
nonlinear filter is derived to minimize the mean of the output energy in
the presence of disjoint background noise and additive overlapping noise. The
output energy in response to the input scene that may include the false class
objects is minimized, which improves discrimination. The filter is applied to the
recognition of 3D objects using LADAR13{16 range data.

A range camera is a device that can acquire a 2D image of distance
measurements, as measured from a plane or a single point on the camera. In
a LADAR range image, the distance to the 3D object is recorded over a
quantized range. For display purposes, the distances are often coded in gray
scale, such that the darker pixels represent closer object pixels to the sensor.
A range image may also be displayed using a random color for each quantized
distance. Therefore, LADAR camera measures range information and encodes
in the form of a 2D image. It is possible to apply 2D correlation filters for
recognition of objects based on range data to detect the target. Also a 2D
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encoded range image can be preprocessed using rendering technique to have a
better detection performance. The preprocessed image is still a 2D image.
However, to detect the 3D location of a target from a sensor, 3D data process-
ing is needed. We present a mapping technique to show how 2D encoded
LADAR range image can be converted into 3D space to produce a binary 3D
profile. Three-dimensional filtering is applied to this data to detect the object
and its 3D coordinates.

This chapter is organized as follows. In Section 16.1, we introduce a novel
optimum distortion tolerant nonlinear filter with disjoint background noise by
setting up and solving the minimization problem. In Section 16.2, converting a
2D LADAR image into a 3D binary profile image is described. In Section 16.3,
we carry out the performance tests of the 3D optimum filter using LADAR
data. The conclusions are presented in Section 16.4. In Appendix A, the
derivation of the mean squared absolute value of the noise in Fourier domain
is shown.

16.1 Analysis

For simplicity one-dimensional discrete notations are used throughout our
analysis. Let ri(t) denote one of the distorted reference targets where
i ¼ 1, 2, . . . , T ;T is the size of reference target set. The input image s(t) is

s(t) ¼
XT
i¼1

viri(t � ti)þ nb(t) w(t)�
XT
i¼1

viwri(t � ti)

" #
þ na(t)w(t), (1)

where vi is a binary random variable that takes a value of 0 or 1. vi indicates
whether the target ri(t) is present in the scene or not. For simplicity in the
analysis, the probabilities that vi takes a value 0 or 1 are the same for all i, that
is, p(vi ¼ 1) ¼ 1=T , p(vi ¼ 0) ¼ 1� 1=T . If ri(t) is one of the reference targets,
nb(t) is the nonoverlapping background noise with mean mb, na(t) the overlap-
ping additive noise with mean ma, w(t) the window function for entire input
scene, wri(t) the window function for the reference target ri(t), and ti a
uniformly distributed random location of the target in the input scene, whose
probability density function (pdf) is f (ti) ¼ w(ti)=d (d is the area of the region
of support of the input scene). nb(t) and na(t) are wide-sense stationary random
processes and statistically independent of each other. The output of the shift
invariant filter is

o(t) ¼
XM�1

t¼0

h(t � t)�s(t), (2)

where h(t) is the impulse response of the distortion-tolerant filter, * denotes
complex conjugate, andM is the number of sample points. The filter is designed
so that when the input to the filter is one of the reference targets (ri(t)), then
the output of the filter is
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oi(0) ¼
XM�1

t¼0

h(t)�ri(t) ¼ Ci (3)

where Ci is a positive real constant. Adopting discrete notations for simplicity,
Eq. (3) can be stated in a Fourier domain expression as:

XM�1

k¼0

H(k)�Ri(k) ¼ MCi, (4)

where H(k) and Ri(k) are the discrete Fourier transforms of h(t) and ri(t),
respectively. Equation (4) is the constraint imposed on the filter. To obtain
noise robustness, we minimize the output energy due to the disjoint back-
ground noise and additive noise. We can define the noise including disjoint
background noise and additive noise as n(t) ¼ nb(t) w(t)�

PT
i¼1

n
viwri(t � ti)g

þna(t)w(t). The mean of the output energy due to the input noise as a Fourier
domain expression is:

E
1

M

XM�1

k¼0

jH(k)j2jN(k)j2
" #

¼ 1

M

XM�1

k¼0

jH(k)j2EjN(k)j2, (5)

where E is the expectation operator, and N(k) is the Fourier transform of n(t).
The expected value of the absolute squared of the noise Fourier transform is
expressed as:

EjN(k)j2 ¼ 1

MT

XT
i¼1

F0
b(k)� jW (k)j2 þ jWri(k)j2 � 2

jW (k)j2

d
Re(Wri(k))

( ) !

þ 1

M
F0

a(k)� jW (k)j2 þ 1

T

XT
i¼1

m2
b

jW (k)j2 þ jWri(k)j2

�2 jW (k)j2
d Re(Wri(k) )

( )

þ2mambjW (k)j2Re 1�Wri(k)
d

n o
0
BBB@

1
CCCA

þm2
ajW (k)j2

(6)

whereF0
b(k) is the power spectrum of the zero-mean stationary random process

n0
b (t), and F0

a(k) is the power spectrum of the zero-mean stationary random
process n0

a(t). W(k) and Wri(k) are the discrete Fourier transforms of w(t) and
wri(t), respectively. � denotes a convolution operator and Re(.) denotes real
value. In Appendix A, Eq. (6) is derived. To obtain the discrimination capabil-
ity, the output energy due to the input scene is minimized. The output energy
due to the input scene as a Fourier domain expression is

1

M

XM�1

k¼0

jH(k)j2jS(k)j2, (7)
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where S(k) is the Fourier transform of s(t). Thus, we minimize a linear com-
bination of the output energy due to the input noise and the output energy due
to the input scene under the filter constraint:

wn

M

XM�1

k¼0

jH(k)j2EjN(k)j2 þ wd

M

XM�1

k¼0

jH (k)j2jS(k)j2, (8)

where wn and wd are the positive weights of the noise robustness capability and
discrimination capability, respectively. Let ak þ jbk be the kth element of
H(k), cik þ jdik be the kth element of Ri(k), and D(k) ¼ wnEjN(k)j2 þ wd

�
jS(k)j2Þ=M . With these notations, our constraint can be written as follows,

XM�1

k¼0

H(k)�Ri(k) ¼
XM�1

k¼0

ak � jbkð Þ cik þ jdikð Þ

¼
XM�1

k¼0

(akcik þ bkdik)þ j(akdik � bkcik)½ � ¼ MCi

(9)

Since MCi is a real constant, we can separate the real and imaginary parts, and
obtain the following set of real constraints

XM�1

k¼0

(akcik þ bkdik) ¼ MCi for i ¼ 1,2, . . . , T (10a)

XM�1

k¼0

(akdik � bkcik) ¼ 0 for i ¼ 1,2, . . . , T : (10b)

Thus, the problem is to minimize

wn

M

XM�1

k¼0

jH(k)j2EjN(k)j2 þ wd

M

XM�1

k¼0

jH(k)j2jS(k)j2 ¼
XM�1

k¼0

a2k þ b2k

 �

D(k) (11)

under the 2T constraints given by Eqs. (10a) and (10b). We use the Lagrange
multiplier to solve this minimization problem. Let the function to be minimized
with the Lagrange multipliers be

J �
XM�1

k¼0

a2k þ b2k

 �

D(k)þ
XT
i¼1

l1i MCi �
XM�1

k¼0

akcik �
XM�1

k¼0

bkdik

 !

þ
XT
i¼1

l2i 0�
XM�1

k¼0

akdik þ
XM�1

k¼0

bkcik

 !
(12)

We must find ak , bk and l1i, l2i that satisfy Eqs. (10a) and (10b), and the
following two equations, which are the derivatives of J with respect to ak , bk
and set to zeros,
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@J

@ak
¼ 2akD(k)�

XT
i¼1

l1icik �
XT
i¼1

l2idik ¼ 0 (13a)

@J

@bk
¼ 2bkD(k)�

XT
i¼1

l1idik þ
XT
i¼1

l2icik ¼ 0: (13b)

Note that the second derivatives of J are @2J
@ak@al

¼ @2J
@bk@bl

¼ 2D(k)dkl , where dkl is

Kronecker delta, i.e., d kl ¼
1, k ¼ l
0, k 6¼ l

�
. Therefore, J has a minimum value

with respect to ak and bk . Solving Eqs. (13a) and (13b), we obtain values for ak
and bk that minimize J and satisfy the required constraints,

ak ¼

PT
i¼1

(l1icik þ l2idik)

2D(k)
(14a)

bk ¼

PT
i¼1

l1idik � l2icikð Þ

2D(k)
, (14b)

where l1i, l2i must satisfy the constraints. In order to obtain l1i, l2i, we
substitute ak and bk given by Eqs. (14a) and (14b) into Eqs. (10a) and (10b),
and obtain

XM�1

k¼0

1

2D(k)

XT
i¼1

l1i(cikcpk þ dikdpk)þ l2i dikcpk � cikdpk

 � �

¼ MCp for p ¼ 1, 2, . . . , T (15a)

XM�1

k¼0

1

2D(k)

XT
i¼1

l1i cikdpk � dikcpk

 �

þ l2i dikdpk þ cikcpk

 � �

¼ 0

for p ¼ 1, 2, . . . , T

(15b)

We introduce the following additional notations to complete the derivation,

l1 � l11 l12 . . . l1T½ �t

l2 � l21 l22 . . . l2T½ �t

C � C1 C2 . . . CT½ �t

Ax,y �
XM�1

k¼0

Re[Rx(k)]Re[Ry(k)]þ Im[Rx(k)]Im[Ry(k)]

2D(k)
¼
XM�1

k¼0

cxkcyk þ dxkdyk
2D(k)

Bx,y �
XM�1

k¼0

Im[Rx(k)]Re[Ry(k)]� Re[Rx(k)]Im[Ry(k)]

2D(k)
¼
XM�1

k¼0

dxkcyk � cxkdyk
2D(k)
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where superscript t is the matrix transpose, and Re(.), Im(.) denote the real
and imaginary parts, respectively. Let A and B be T � T matrices whose
elements at (x, y) are Ax,y and Bx,y, respectively. Equations (15a) and (15b)
can be written as

lt
1Aþ lt

2B ¼ MCt (16a)

�lt
1Bþ lt

2A ¼ 0t : (16b)

Solving Eqs. (16a) and (16b), we obtain,

lt
1 ¼ MCt AþBA�1B


 ��1
(17a)

lt
2 ¼ MCt AþBA�1B


 ��1
BA�1: (17b)

Using Eqs. (13a) and (13b), we obtain the kth element of the distortion-
tolerant filter H(k),

ak þ jbk ¼
1

2D(k)

XT
i¼1

[l1i(cik þ jdik)þ l2i(dik � jcik)]

¼ 1

2D(k)

XT
i¼1

(l1i � jl2i)(cik þ jdik)

(18)

For simplicity we have chosen both wn and wd in D(k) as M/2. Therefore, the
optimum nonlinear distortion-tolerant filter H(k) is

H(k) ¼
XT
i¼1

(l1i � jl2i)Ri(k)=

1
MT

PT
i¼1

F0
b(k)� jW (k)j2 þ jWri(k)j2 � 2 jW (k)j2

d Re[Wri(k)]
n o� 	

þ 1
M F0

a(k)� jW (k)j2 þ 1
T

PT
i¼1

m2
b

jW (k)j2 þ Wri(k)j j2

�2 W (k)j j2
d Re[Wri(k)]

( )

þ2mamb W (k)j j2Re 1� Wri(k)
d

h i
0
BBB@

1
CCCA

þm2
a W (k)j j2þ S(k)j j2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(19)

l1i and l2i are obtained in Eqs. (17a) and (17b).

16.2 Converting the 2D Encoded LADAR Image
to 3D Binary Space

With a LADAR range camera, it is possible to rapidly capture true 3D data.
Basically, the LADAR acquires survey shots that cover a field of view from the
viewpoint of the LADAR sensor location. Range is determined based on either
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time of flight or the phase shift of the signal reflected from the objects in the
field of view. Substantial LADAR development work has been undertaken for
applications involving battlefield assessment and for autonomous vehicle navi-
gation. Real-time applications based on LADAR sensor data have recently
become possible owing to advances both in imaging sensor acquisition rate
and computer processing speed.

Acquired LADAR range image has distance information from a sensor and
it is encoded and recorded in 2D data form. In other words, each pixel in
LADAR range image represents the distance from a LADAR sensor to a
point on the object. Therefore, pixels that have the equal distance from a
LADAR sensor have the same gray scale values. We can form L contours
from an M � N 2D LADAR range image, where M and N are the pixel sizes
of the LADAR range image, respectively, and L is the size of digitized distance
information of range image. We can convert this M � N 2D LADAR range
image into a 3D M �N � L binary space. Each 2D contour image of size
M �N forms one level of equal distance from the sensor, and the pixel value
of that contour on that particular depth level is marked as ‘1’ and the rest of the
pixels on that particular level are marked as ‘0’s. This is done for entire L
contour range images. This set of 2D binary contour images form a 3D binary
space representing a profile of the object. Therefore, each depth level represents
a different distance from a range sensor. Illustration of the conversion process is
shown in Fig. 16.1.

Original 
LADAR image

Depth 5 image Depth 4 image Depth 3 image

Depth 1 imageDepth 2 image

Figure 16.1. Illustration of converting 2D encoded LADAR image to 3D binary space.
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16.3 Computer Simulations

The 3D correlation can be done by inverse 3D Fourier transform of multipli-
cation of two 3D Fourier transformed functions. We set up two simulations.
First, the filter is single-target trained to test the performance of the 3D
optimum nonlinear filter with a disjoint background noise model. Then, the
filter is trained with multiple training targets with different out-of-plane per-
spectives (azimuth and elevation) to detect the true class training and true
class nontraining target sets in the input LADAR range image. For both of the
simulations, we have no additive noise. Therefore, the variance of the noise is
zero throughout the simulations. Instead, a real LADAR range image was used
as an input image. The input LADAR range image has false objects (tanks) to
test the detection performance of the 3D optimum nonlinear distortion-tolerant
filter.

16.3.1 Test of the Optimum Nonlinear Filter
Using LADAR Data

We use a synthetically generated LADAR M60 tank image as the reference
target. The distance is 900 m, elevation is 708, and azimuth is 308. Target size is
55� 25 pixels. We show the correlation outputs at the target depth level and
two adjacent levels. To make sure that the peak at the target depth level is
dominant over all the output peaks, we find depth level that has the next
highest peak.

Figure 16.2 shows the 2D encoded reference target range image. This 2D
range LADAR image is converted to a 3D binary profile, and the 3D optimum
nonlinear filter is trained with it. The size of the converted 3D binary profile of
target range image is 55� 25� 2 pixels. Figure 16.3 is the 2D-encoded input
LADAR range image. Size of the converted 3D input binary profile is
128� 128� 104 pixels. A target is located in the right bottom corner at the
depth level of 25 in the input scene. The converted 3D LADAR binary profile of
Fig. 16.2 is applied to the 3D nonlinear optimum filter without the background
noise model (see Ref.12, which can be extended to 3D). The filter outputs at the

Figure 16.2. 2D encoded LADAR range image used as a training target.
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depth level of 25, 24, and 26 are shown in Figs. 16.4(a){16.4(c). We can observe
that the output peak is dominant only at the location of the target and at the
depth level of the target. However, the peak is not sharp, because the used
target image is relatively small and it has only two depth levels.

Figures 16.5(a), (b), and (c) are the outputs of the 3D optimum nonlinear
distortion-tolerant filter in Eq. (19) at the depth level of 25, 24, and 26,
respectively. Again, only Fig. 16.5(a) shows a dominant and very sharp peak
at the location of the target depth level. Difference between Figs. 16.5(a), (b),
and (c) and Figs. 16.4(a), (b), and (c) can be observed clearly. We have better
discrimination performance to detect the target LADAR range image of
Fig. 16.2 with the optimum nonlinear filter with the background noise model.
In both cases, the second highest peak appears at the adjacent depth levels of
the target levels.

Figure 16.3. 2D encoded input LADAR range image with a training target at the right
bottom corner.

(a) (b) (c)

Figure 16.4. Optimum nonlinear filter outputs without the background noise model at
the location of the training target. The input LADAR range image in Fig. 16.3 is applied
to the filter in Ref.12 (a) Correlation output without the background noise model at the
target depth level of 25. (b) Correlation output without the background noise model at
the target depth level of 24. (c) Correlation output without the background noise model
at the target depth level of 26.
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16.3.2 Test of Optimum Nonlinear Distortion Tolerant Composite
Filter Using LADAR Data

We use a synthetically generated LADAR M60 tank image in Section 16.3.1 as
the reference target. Figure 16.6 shows nine of the 2D encoded true class target
LADAR range images. These 2D LADAR range images are converted to 3D
binary profiles, and they are trained to the 3D optimum nonlinear filter. The
sizes of converted 3D binary profiles are 52� 24� 2,55� 23� 2, 55� 22� 2,
52� 26� 2,55� 25� 2,55� 24� 2,51� 29� 2,55� 27� 2, and 55� 25� 2.
They have different perspectives. Azimuth varies from 608 to 808 for every 108,
and elevation varies from 208 to 408 for every 108. Figure 16.7 is the 2D encoded
input LADAR range image. Size of the converted 3D binary profile of the input
image is 128� 128� 104. The input image has a true class training target and
a true class nontraining target. A training target is located at the right bottom

(a) (b) (c)

Figure 16.5. Optimum nonlinear filter outputs with the background noise model at
the location of the training target. The input LADAR range image in Fig. 16.3 is applied
to the filter in Eq. (19). (a) Correlation output of the optimum nonlinear filter with the
background noise model at the target depth level of 25. (b) Correlation output of the
optimum nonlinear filter with the background noise model at the target depth level of
24. (c) Correlation output of the optimum nonlinear filter with the background noise
model at the target depth level of 26.

Figure 16.6. Nine 2D encoded LADAR images of true class training target set.
Azimuth and elevation of true class training targets are 608, 708, 808 and 208, 308, and
408, respectively, and the distance of the targets from the LADAR range sensor is 900 m.
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corner at the depth level of 25 in the input scene. The distance, elevation, and
the azimuth of the training target with respect to the LADAR range sensor are
900 m, 708, 308, respectively. A true class nontraining target is located at the
right upper corner at the depth level of 74. The distance of the true class
nontraining target is 1000 m, elevation is 758, and azimuth is 358. Because
the true class nontraining target is farther from the LADAR range sensor than
the training targets are, its size (41� 19 pixels) is smaller than those of the
training targets.

The converted 3D binary space of the true class nontraining target LADAR
range image has two depth levels. Therefore, the true class nontraining target
used in the test is distorted in terms of out-of-plane rotation (in azimuth and
elevation) and scale, which makes it very challenging to detect the true class
nontraining target. Figures 16.8(a), (b), and (c) are the outputs of the 3D
optimum nonlinear distortion-tolerant filter in Eq. (19) at the depth level of 25,
24, and 26, respectively. Only at the target depth level [Fig. 16.8(a)] a domi-
nant and very sharp peak appears. Figures 16.9(a), (b), and (c) are the outputs
of the 3D optimum nonlinear filter at the depth level of 74, 73, and 75,
respectively. Figure 16.9(a) shows a dominant peak at the location of a true
class nontraining target. Though the true class nontraining target is distorted
in perspective (azimuth and elevation) and the scale, the output peak is sharp.
The maximum 3D correlation output peak appears at the depth level of 25, on
which a training target exists, and the second highest peak appears at the
depth level of 74, on which a true class nontraining target exists. Third height
peak appears at the adjacent depth level of the training target, which is at
depth level of 26. Therefore, we can easily threshold the output level to detect
the 3D location of the training and distorted true class nontraining targets.

Figure 16.7. 2D encoded input LADAR image with training target at bottom right-
hand corner and a true class nontraining target at upper right corner. The distance,
elevation, and the azimuth of the training target are 900 m, 708,and 308, respectively.
The distance, elevation, and the azimuth of the true class nontraining target with
respect to the LADAR range sensor are 1000 m, 758, and 358, respectively.
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16.4 Conclusion

We have presented a 3D optimum nonlinear distortion-tolerant filter with
disjoint background noise model to detect the 3D target location. The non-
linear filter is derived to minimize the mean of the output energy in the
presence of disjoint background noise and additive noise, and the output energy
due to the input scene that may include false objects, while maintaining a fixed
output peak for the members of the true class target training set. This filter is
applied to 3D LADAR range image, which was reconstructed from the 2D
encoded LADAR range image. Computer simulations are presented to illus-
trate the filter’s enhanced performance due to the consideration of disjoint
background noise model compared to the optimum nonlinear filter without the
background noise model. A distortion-tolerant filter is designed using a set of
out-of-plane rotated targets. The proposed optimum nonlinear filter is able to
detect the 3D coordinates of both true class training target set and true class
nontraining target set.

(a) (b) (c)

Figure 16.8. Optimum nonlinear filter outputs with the background noise model at
the location of the training target. The input LADAR range image in Fig. 16.7 is applied
to the filter in Eq. (19). (a) Correlation output of the optimum nonlinear filter with the
background noise model at the target depth level of 25. (b) Correlation output of the
optimum nonlinear filter with the background noise model at the target depth level of
24. (c) Correlation output of the optimum nonlinear filter with the background noise
model at the target depth level of 26.

(a) (b) (c)

Figure 16.9. Optimum nonlinear filter outputs with the background noise model at
the location of the true class nontraining target. The input LADAR range image in
Fig. 16.7 is applied to the filter in Eq. (19). (a) Correlation output of the optimum
nonlinear filter with the background noise model at the target depth level of 74. (b)
Correlation output of the optimum nonlinear filter with the background noise model at
the target depth level of 73. (c) Correlation output of the optimum nonlinear filter with
the background noise model at the target depth level of 75.
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The filter outputs are obtained to detect the target location as well as
the target distance from the input LADAR range image. For the LADAR
images used in our simulations, 3D optimum nonlinear distortion-tolerant filter
with the background noise model detects the 3D location of LADAR range
targets very well, even when the target is relatively small compared with
background.
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Appendix A

In this appendix, we derive Eq. (6). The input image is

s(t) ¼
XT
i¼1

viri(t � ti)þ nb(t) w(t)�
XT
i¼1

viwri(t � ti)

" #
þ na(t)w(t), (A1)

where vi is a binary random variable that takes a value of 0 or 1. vi indicates
whether the target ri(t) is present in the scene or not. For simplicity in the
analysis, the probabilities that vi takes a value 0 or 1 are equal for all i, that is,
p(vi ¼ 1) ¼ 1=T ,p(vi ¼ 0) ¼ 1� 1=T , and we assume that only one of the
training targets appears in the input scene at one time. We make following
assumptions.

The disjoint background noise is represented by nb(t) [w(t)�
PT

i¼1 viwri

(t � ti)], where nb(t) is the wide-sense stationary random process with mean
mb (nb(t) ¼ n0

b (t)þmb, n
0
b (t) is zero-mean wide-sense stationary random pro-

cess), and w(t) and wri(t) are window functions of the entire input scene and
the training target ri(t), respectively. ti is the uniformly distributed random
location in the input scene, whose pdf is f (ti) ¼ w(ti)=d, where d is the area of
the input scene (d ¼ W (0) ¼

P
t
w (t)) � Rn0

b
(t) and F0

b(k) are the autocorrela-

tion and the power spectrum of n0
b (t), respectively.

The detector or sensor noise is represented by na(t)w(t), where na(t) is
wide-sense stationary random process with mean ma(na(t) ¼ n0

a(t)þma,n
0
a(t)

is zero-mean wide-sense stationary random process). Rn0
a
(t) and F0

a(k) are the
autocorrelation and the power spectrum of n0

a(t), respectively.
The random variables nb(t), na(t),vi, and ti are statistically independent of

each other.
Equation (A1) can be rewritten as

s(t) ¼
XT
i¼1

vi ri(t � ti)þ nb(t)[w(t)� wri(t � ti)]þ na(t)w(t)f g

�
XT
i¼1

vi � 1

 !
fna(t)w(t)þ nb(t)w(t)g

(A2)

Since the second term in Eq. (A2) is zero with probability of 1, it can be
omitted. Therefore,

s(t) ¼
XT
i¼1

vifri(t � ti)þ nb(t)[w(t)� wri(t � ti)]þ na(t)w(t)g (A3)

We define ni(t) as ni(t) ¼ nb(t)wci(t)þ na(t)w(t), where wci(t) is the comple-
mentary window function of the training target wci(t) ¼ w(t)� wri(t � ti))ð .
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The other notations used in this appendix are as follows. � denotes a
convolution operator, E[.] an expectation operator, F[.] a discrete Fourier
transform operator, and the capital letters stand for the discrete Fourier
transforms of each corresponding lower cases. The absolute value square
of the discrete Fourier transform of the complementary window of each
target is

Wci(k)j j2 ¼ W (k)�Wri(k) exp
�j2pkti

M

� �����
����
2

¼ W (k)j j2þ Wri(k)j j2�2Re W (k) exp
j2pkti
M

� �
W �

ri(k)

� � (A4)

The expected values of exponential of the random location is

Eti exp
�j2pkti

M

� �� �
¼ W (k)

d
(A5a)

and

Eti exp
j2pkti
M

� �� �
¼ W (k)�

d
(A5b)

There are four statistically independent random variables, i.e., random
location of the target, additive noise, disjoint background noise, and the
probability of the appearance of the targets in the input scene. The expected
value of the absolute squared of the noise Fourier transform is,

EjN(k)j2 ¼ EviEtiEnaEnb

XT
i¼1

viNi(k)

�����
�����
2

¼ 1

T

XT
i¼1

EtiEnjNi(k)j2, (A6)

where we define En ¼ EnaEnb . The expected value of absolute squared of the
discrete Fourier transformed noise is,

EnjNi(k)j2 ¼ En F
(nb(t)wci(t)þ na(t)w(t) )
�(nb(� t)wci(� t)þ na(� t)w(� t) )

� �� �
(A7)

With the zero-mean noise notations, Eq. (A7) becomes

EnjNi(k)j2 ¼ En[F{ n0
b (t)þmb


 �
wci(t)

� �
� n0

b (�t)þmb


 �
wci(�t)

� �
þ n0

b (t)þmb


 �
wci(t)

� �
� n0

a(�t)þma


 �
w(�t)

� �
þ n0

a(t)þma


 �
w(t)

� �
� n0

b (�t)þmb


 �
wci(�t)

� �
þ n0

a(t)þma


 �
w(t)

� �
� n0

a(�t)þma


 �
w(�t)

� �
]

(A8)

Since nb(t), na(t) are statistically independent of each other, Eq. (A8) be-
comes
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EnjNi(k)j2 ¼ F Rn0
b
(t)� [wci(t)� wci(�t)]

n o
þ F Rn0

a
(t)� [w(t)� w(�t)]

n o
þm2

b jWci(k)j2 þm2
ajW (k)j2

þ 2mambRe Wci(k)W
�(k)f g

(A9)

After performing discrete Fourier transform, Eq. (A9) is

EnjNi(k)j2 ¼
1

M
F0

b(k)�
jW (k)j2 þ jWri(k)j2

�2Re W (k) exp j2pkti
M


 �
W �

ri(k)

 �

( )

þ 1

M
F0

a(k)� jW (k)j2 þm2
ajW (k)j2

þm2
b

jW (k)j2 þ jWri(k)j2

�2Re W (k) exp
j2pkti
M

� �
W �

ri(k)

� �
8><
>:

9>=
>;

þ 2mambRe jW (k)j2 �Wri(k)W
�(k) exp

�j2pkti
M

� �� �

(A10)

Therefore, taking an expectation operation of EnjNi(k)j2 with respect to ti is

EtiEnjNi(k)j2 ¼
1

M
F0

b(k)� jW (k)j2 þ jWri(k)j2 � 2
jW (k)j2

d
Re(Wri(k) )

( )

þ 1

M
F0

a(k)� jW (k)j2 þm2
ajW (k)j2

þm2
b jW (k)j2 þ jWri(k)j2 � 2

jW (k)j2

d
Re(Wri(k) )

( )

þ 2mambjW (k)j2Re 1�Wri(k)

d

� �
(A11)

Therefore, the expected value of the absolute squared of the noise Fourier
transform becomes

EjN(k)j2 ¼ 1

MT

XT
i¼1

F0
b(k)�

jW (k)j2 þ jWri(k)j2

�2 jW (k)j2
d Re(Wri(k) )

( ) !

þ 1

M
F0

a(k)� jW (k)j2

þ 1

T

XT
i¼1

m2
b jW (k)j2 þ jWri(k)j2 � 2 jW (k)j2

d Re(Wri(k) )
n o

þ2mambjW (k)j2Re 1� Wri(k)
2d

n o
0
B@

1
CA

þm2
ajW (k)j2
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17.0 Introduction

Throughout the chapters of this book a variety of concepts and demonstrations
of optical systems for security applications are presented. Several of these
concepts are based on optical correlator or spatial filtering systems. In this
chapter we supplement these contributions by focusing on the realization of the
necessary optical or optoelectronical systems in compact integrated microop-
tical systems. To this end we specifically address the concept of planar inte-
grated free-space optics (PIFSO). We start in Section 17.1 by introducing the
basics of PIFSO mainly focussing on design considerations necessary for planar
integrated imaging systems. In Section 17.2, we address the planar integration
of optical correlators working on discrete input arrays, e.g., for optical inter-
connections. In Sections 17.3 and 17.4, planar integrated optical correlators
and phase contrast systems are investigated for security applications. A sum-
mary and conclusions of the chapter are presented in Section 17.5.

17.1 Planar Integrated Free-space Optics (PIFSO)

17.1.1 Basic Concept

Miniaturization, a dominant trend in the fabrication of integrated circuits, is
also a key factor in optics. There, a strong tendency can be observed from
macro-optical components and systems based on discrete mounting techniques

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap17 Final Proof page 339 27.10.2005 11:09am



toward microoptical systems technologies. The interest in miniaturization and
integration is motivated by several reasons: firstly, small size and light weight
are a must for many applications. This is the case, for example, for any mobile
application for obvious reasons, and/or if the optics is part of a highly inte-
grated overall system. The latter case is valid, for example, for optical inter-
connection, i.e., data communications inside a computer. Besides the reasons
just stated, cost is also usually an important driving force for systems integra-
tion. In conventional optomechanics, a significant part of the cost goes into the
mounts, the alignment, and the packaging. These expenses can be significantly
reduced by integration.

The key to integration is the technological development in the area of
microfabrication techniques since the 1970s. Footed on the basic lithographic
process, a variety of techniques for the fabrication of microoptical elements
have been developed.1 Diffractive and refractive elements can be implemented,
to be used in transmission or reflection. Microfabrication techniques allow one
the realization of the optics in practically any kind of material: glass, polymers,
and semiconductors. Finally, precise replication techniques have become avail-
able as a means for low cost and mass production.

One can distinguish between three main approaches to the integration of
free-space optical systems: the stacked approach due to Iga et al.2, the planar
approach due to Jahns and Huang3 and the micromechanics approach based on
the use of Silicon micromaching, demonstrated by Wu.4 Here, we will discuss
the basic concept of PIFSO and its applications to imaging and spatial filtering.
The PIFSO is based on the motivation to make as much use as possible of
existing lithographic fabrication and packaging technologies, as they are well
known from the fabrication of electronic integrated circuits. Hence, a (‘‘pla-
nar’’) layout results which is suitable for batch processing, replication, 2D and
surface mounting. This is schematically represented by Fig. 17.1.

Modulators

Reflective microlens

Detectors

Diffractive
beamsplitter

Reflective
coatings

Light
sources

Figure 17.1. Schematic representation of planar-integrated free-space optics (PIFSO).
Charactistic for this concept are the 2D layout of the microoptical elements on a
transparent substrate and the light propagation along a folded optical axis inside the
substrate.
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The optical elements are placed on one or both surfaces of a thick and
transparent substrate (for example, SiO2, plastic, or Si). They are batch
fabricated by lithographic techniques such as etching, milling, etc. (see Ref.1)
with submicron precision. The elements may be diffractive and/or refractive
and/or reflective. Except for input and output to the substrate, the light signal
travels inside the substrate along a zigzag line which represents a tilted and
folded optical axis. The tilt angle may range between a few degrees up to more
than 458. The substrate thickness is on the order of a few millimeters. Hence, it
is important to note that despite the light propagation inside a substrate
similar to waveguide optics, it is not confined to waveguide dimensions. Rather,
the propagation is characterized by a laterally homogeneous medium, as it is
typical for free-space optics. In order to keep the light inside the substrate,
reflective coatings of the elements are required, either metallic or dielectric or, if
the tilt angle of the optical axis is large enough, total internal reflection can be
used.

Due to the elimination of mechanical mounts and supporting structures, the
volume (and thus weight) of a PIFSO system is considerably reduced in
comparison with a conventional optomechanical system. The substrate serves
a threefold purpose: as a monolithic block for integration of the passive optics,
as a propagation medium for the light signal(s), and as an ‘‘open platform’’ for
the integration of devices. Due to the monolithic integration, the passive optics
is ‘‘perfectly’’ aligned with lithographic precision. Since the light travels mostly
inside the substrate, it is protected against disturbing influences like dust and
humidity. These features strongly enhance the aspect of applicability under
various environmental influences. The 2D layout of PIFSO systems supports
the integration of a variety of devices using surface-mounting techniques, like,
for example, flip-chip bonding. Chips with light sources (such as arrays of
vertical cavity surface-emitting laser diodes), detectors, modulators (like liquid
crystal devices), etc., can be integrated to build up complex and highly func-
tional systems.

Practical aspects of hybrid integration, in general, include issues like thermal
and mechanical stress to the bonds, capsuling in order to cover sensitive surfaces
for processing and for operation. Experimental systems built of fused silica
substrates and optoelectronic chips as well as fiber mounts have been demon-
strated.5 Further work in this area dealing with specific aspects of materials,
packaging and thermal management are described in.6{8 An overview of the
technological aspects of PIFSO systems is given in.9 Here, we want to focus on
the optical design since it is relevant for the implementation of the spatial
filtering systems that will be described in the latter sections of this chapter.

17.1.2 Design Considerations

One inherent property of PIFSO systems is the propagation of light signals
along an oblique optical axis. Planes that represent optical signals and elements
are not perpendicular to the optical axis (Fig. 17.2). It has been shown from the
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investigation of self-imaging in planar optics that, for free-space propagation of
signals along an oblique optical axis, aberrations occur that are not present in
systems with Cartesian symmetry.10 Even if these aberrations can be neglected
for a specific application, the paraxial behavior of the system depends on the
orientation of the axis. Therefore, previous investigations of planar optical
systems often contain a derivation of the parabolic approximation, which usu-
ally is the starting point for an analysis of conventional optical systems. In other
words, compared with conventional optical systems, in which a well-established
theory of components and systems can be used, the design of planar optics
requires more theoretical efforts. Therefore, a paraxial theory of planar optical
systems has been established.11 The results can be used as tools for the analysis of
planar systems, similar to the paraxial theory of conventional optical systems.
We will present here briefly the results of these considerations (Section 17.1.2).
These results are applicable in general, nomatter if the input signal is continuous
or discrete. In Section 17.1.2, we will discuss a specific design approach for
discrete input signals. For such special situations, one can find suitable ways of
engineering the systems design to minimize aberration. A specific approach that
has been shown to be very useful in this regard is the concept of ‘‘hybrid
imaging.’’12,13 Hybrid imaging represents a combination of conventional 4f-
imaging system with ‘‘microchannel imaging.’’ It has been shown that this
approach allows one to efficiently implement imaging systems for a large number
of discrete channels,14 and that it can also be conveniently applied to the
implementation of discrete correlators, as we shall discuss in Section 17.2.

17.1.2.1 Paraxial Theory of PIFSO Imaging Systems

We consider a simple optical imaging system in PIFSO configuration and its
unfolded version (Figs. 17.3a and b). In this case paraxial propagation means
that we consider a potentially large tilt angle q of the optical axis, but a small

f/cosδ

I
F

O
F’

L’2

L1

L2

O’
f

(a) (b)

I L1 L2F O

Figure 17.2. 4f-imaging systems with (a) untilted and (b) tilted optical axis. By
folding the optical axis, one arrives at the PIFSO concept. I: input plane; L1 and L2:
lenses; F: filter plane; O: output or image plane. The characters with a prime denote the
corresponding planes in the folded setup.
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numerical aperture represented by the angle u. The separation between the
different planes is denoted as Dz and the focal length of the lens as f where
Dz ¼ 2f .

As in the case of a conventional optical imaging system, the complex
amplitude u(x, y, z þ Dz) in a specific z-plane can be derived by a convolution
operation:

u(x, y, z þ Dz) ¼
Z

u0(j, h, z)h(x � j, y � h, Dz)djdh (1)

Here, h(x � j, y � h, Dz) is the point spread function of the tilted optical
system. It can be derived as

h(x � j, y � h, Dz) � 1

il

exp [i 2pl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p cosq (2)

By using a coordinate transformation (x 0 ¼ x � Dz tanq and y 0 ¼ y) and a
Taylor’s series expansion, one can derive the impulse response for the coordin-
ates centered around the tilted optical axis:

h(x 0, y 0,Dz) � cos2 q

ilDz
exp i

2p

l

Dz

cosq

� �
exp

ip cosq

lDz
(x

02 cos2 q� y
02)

� �
(3)

With the help of the parabolic approximation of light propagation it is
straightforward to calculate the transmission function L(x 0, y 0) of an ideal
parabolic lens for PIFSO systems. The wave emitted from a point source
located in the front focal point of a positive lens is converted into a plane
wave propagating parallel to the optical axis z 0. Neglecting constant factors,
one obtains:

h(x 0, y 0)L(x 0, y 0) ¼ 1 (4)

x

z

y IL O

O

zD

Mirrors

x’=x

y’ z

2zD 2zD

x’=x-2zDtanϑ 

x’=x-zDtanϑ

L
z’

y’

(a) (b)

Ι

θ
ϑ

Figure 17.3. (a) Planar Intergrate Free-space Optics (PIFSO) imaging system, here a
simple 2f-2f-imaging setup is considered. (b) Unfolded version with a tilt angle q of the
optical axis.
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from which follows:

L(x 0, y 0) � exp � ip cosq

l
(x

02 cos2 q� y
02)

� �
: (5)

This expression describes an astigmatic lens which is elongated along the x-axis
to compensate for the inherent astigmatism of the propagation along the tilted
optical axis. The lines of equal phase represent ellipses with an eccentricity that
is given by the factor cos2 q.

It is of interest to determine the space-bandwidth product (SBP) of a
PIFSO system designed with lenses according to Eq. 5. The SBP denotes the
number of channels that can be transmitted with a certain image quality,
satisfying, for example, the Rayleigh criterion. Two factors have to be consid-
ered in order to determine the SBP: the first is the optical performance or, in
other words, the aberrations that occur. Second, the 2D layout with elements
side by side imposes certain geometrical constraints (Fig. 17.4). After a double
pass through the substrate, the lateral offset of the light beam (given as
2zD tanq, with zD as the substrate thickness) must be sufficiently large. As
can be understood from the Figure, the aperture of the imaging lens, Ax , must
not become arbitrarily small, otherwise diffraction blur would become domin-
ant. On the other hand, for increasing tilt angle q, aberrations increase. Hence,
there exists an optimal angle for the tilt of the optical axis in order to optimize
the SBP, which was shown to be quite large (> 508) in.11 There, an expression
for the SBP of a simple integrated imaging system is also derived:

SBP ¼ zD
l

sin2 q
� 	2

(6)

This expression represents an upper bound for the number of optical channels
that can be transmitted. It is interesting to note, that Eq. 6 is quite similar to
the well-known expression that gives the number of modes in an optical multi-
mode waveguide. If we insert numerical values into Eq. 6 (for example with
zD ¼ 1000l and q ¼ 308), we obtain: SBP ¼ 5002. Such values can actually be

zD

Dx Ax

dx

2zDtanJ

d

Figure 17.4. Geometrical constraints of PIFSO imaging system.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap17 Final Proof page 344 27.10.2005 11:09am

344 S. Sinzinger et al.



achieved, as we will show in the next section, which means that PIFSO systems
can actually be used for the implementation of practical systems.

17.1.2.2 Imaging Systems for Discrete Objects

The considerations presented in Section 17.1.2 apply to continuous input
objects. For certain applications, however, the input objects are discrete. A
typical and important case where discrete input signals occur is the area of
optical interconnection for datacom and telecommunications. In this case the
input objects are, for example, arrays of light sources (laser diodes or light
emitting diodes), modulators or optical fibers. Output devices may be detector
arrays, modulators, or arrays of waveguides. Since the coupling efficiency of the
optical setup is an important parameter, it is necessary that the geometry of
the image matches the array geometry of the detecting device array. This has
to be warranted for large array dimensions. In other words, optical intercon-
nection tasks often require the distortion-free imaging of a large field of discrete
sources.

In a conventional imaging setup (such as discussed above), the field size is
related with the magnitude of the aberrations. In particular, for microoptics
with its usually small apertures, it is virtually impossible to achieve high
resolution without distortion over a large optical field. Therefore, alternative
imaging concepts have to be considered. Two of them will be discussed here.

The first straightforward approach to the imaging of discrete objects is
shown in Fig. 17.5. The simple idea is to use arrays of microlenses (for collima-
tion at the input and focusing at the output side) so that for every source a
separate optical channel is provided. Obviously, the requirements of a large
field is fulfilled by extending the array to the desired size. The image is at the

2w0 2winc

Input plane Output plane
∆z’

2w’0 2w’0~f/#

∆z’’

 

High resolution islands

(a) (b)

dlens

Figure 17.5. Microchannel imaging: (a) optical setup with two microlens arrays. Each
data channel consists of an individual imaging system. The beamlets are represented by
isophotes, i.e. the 1/e-boundaries of the assumed Gaussian intensity profile. (b) Input
field consisting of individual spots.
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same time free of distortion. This concept of ‘‘microchannel imaging’’ has been
demonstrated for various situations and using different microoptical technolo-
gies.15{17 One additional interesting feature is that it can also be applied to the
implementation of space-variant interconnection patterns.

A specific problem of this approach, however, is that there is a direct trade-
off between the transmission distance, Dz, and the pitch, d. The transmission
distance is limited by crosstalk, which, in turn, is caused by diffraction at the
individual apertures. It is a straightforward calculation to show that the
maximum transmission distance is given approximately as

Dzmax ¼
d2
lens

l
(7)

For practical values of dlens ¼ 100mmand l ¼ 1mm, we obtain:Dzmax ¼ 10mm.
In order to achieve larger transmission distances and maintain (to some

extent) the advantages of microchannel imaging, the concept of ‘‘hybrid im-
aging’’ has been suggested. The term ‘‘hybrid’’ refers to the combination of
conventional imaging (using, for example, a 4f-system) with microchannel
imaging. The basic setup is shown in Figure 17.6.

Here, the imaging task is split up between the lenslets in the two arrays and
the central imaging lenses in the 4f setup. The lenslets in array A1 precollimate
the optical beams, the lenslets of A2 are used to focus to a small spot size. The
collimation by the lenslets in A1 will, of course, not be achieved perfectly due to
diffraction at the lenslets, however, it reduces the numerical aperture (NA) of
the beamlets. The 4f setup forms an image of array L1 onto array A2. Note,
that this task does not require very high resolution, since the lenslet diameter
will, in general, be one order of magnitude larger than the spot diameter at the
output. This is one of the main features of the hybrid imaging setup: the
reduced NA of the input beams also reduces the requirements to the NA of

Imaging lenses

Microlens arrays

Input plane Output plane

A1 A2

L1 L2

f f

FFFF

dlens

D

Figure 17.6. Hybrid imaging system: Combination of conventional imaging with
microchannel imaging.
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the 4f setup. This, in turn, means that aberrations are reduced, too. Hence, it
becomes possible to image large fields, larger than with conventional designs. A
simple analysis of the properties of the hybrid imaging systems shows that
hybrid imaging is particularly advantageous for very dilute arrays (i.e., where
the size of the sources is much smaller than the diameter of the lenslets).

The hybrid imaging concept was successfully used in combination with the
lens design considerations of Section 17.1.2 for PIFSO imaging systems14,18 and
discrete correlation.19 The latter work will be described in the next section.

17.2 Optical Correlation with PIFSO Systems

Spatial filtering or correlation is a well-established technique for optical signal
processing. Correlation can be performed on a 2D complex optical amplitude
distribution s(x 0,y 0) in an optical 4f-system (so-called VanderLugt correlator;
Fig. 17.7). To this end, the input distribution is Fourier transformed optically
to generate the spatial frequency spectrum in the filter or Fourier plane
(nx , ny).

20 In this plane an arbitrary complex filter function F(nx , ny) can be
applied through spatial filtering with a complex transmission function. In the
output plane o(x,y) of the system the correlation integral between the input
distribution s(x 0,y 0) and the Fourier transform of the filter function F(nx , ny)
is observed:

o(x, y) ¼
Z Z

s(x 0, y 0)f (x � x 0, y � y 0)dx 0dy 0 (8)

Thus, if the Filter function is, e.g., ‘‘matched’’ to the spectrum S(nx , ny) of the
input distribution, i.e.,

F(nx , ny) ¼ S�(� nx , � ny) (9)

the so-called autocorrelation peak results:Z Z
s(x 0, y 0)s�(x 0 � x, y 0 � y)dx 0dy 0 ¼ d(x, y): (10)

Object: s(x’, y’) 

x’

y’

Filter:  F (nx,ny)

nx

ny

Correlation:
o(x, y)

f f f f
x

y

Figure 17.7. Optical correlation with a 4f setup (VanderLugt correlator).
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This simple example illustrates the potential of matched filtering or feature
extraction though analog optical spatial filtering. More complex filters can be
applied for a variety of applications such as real-time processing of synthetic
aperture radar images, associative memories, and neural networks. A large
variety of optical systems for similar applications have been demonstrated in
laboratory experiments. Due to difficult environmental conditions, such as poor
and varying lighting conditions, analog optical image processing techniques
are, however, still only used in niche applications. In other application areas
such as optical interconnections or homeland security, the environmental
conditions can be controlled with relatively high precision. Thus optical cor-
relation approaches become interesting for these areas.

17.2.1 Discrete Correlation for Interconnection

Optical correlation on discrete input/output arrays is an important technique
which can be applied, e.g. for address decoding in optical communication
systems in context with optical data buses. In principle this is the extension
of the concept of code division multiple access to spatially multiplexed data
channels.21 To this end each pulse in the data stream is encoded with a spatially
encoded address code. In spatially multiplexed optical communication systems
this data code contains the information about the location of the receiver of the
particular piece of data. Fast and parallel switching between the various
receiver channels can be achieved through optical correlators.

For spatially multiplexed optical communication systems generally arrays
of active light sources (such as vertical cavity surface emitting laser diodes
(VCSELs)) or VCSEL-based smart pixel arrays are used. Due to their poten-
tially high modulation speed and good signal-to-noise ratio VCSEL arrays have
advantages over passive modulator arrays. Since the individual sources of a
VCSEL array are mutually incoherent, for applications in optical interconnec-
tions we have to deal with mutually incoherent light signals which are to be
correlated. The architecture of the VanderLugt correlator can also be used in
combination with such mutually incoherent light sources. In this case the
output signal is generated as an incoherent superposition of the shifted copies
of the filter point spread function:

o(x 0,y 0) ¼
X
i,j

jsi,j j2jf �(� x � xi,� y � yj)j2 (11)

jsi,j j2 represent the intensities of the individual sources and
fi,j ¼ jf �(� x � xi,� y � yj)j2 are the diffraction intensities of the filter function.

17.2.2 Planar Integration of Discrete Optical Correlators

Several implementations of planar integrated joint transform correlators have
been suggested in the literature.22{24 Due to the need for coherent input and
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output signals these architectures are, however, not useful for application with
smart pixel arrays. Compact realizations of discrete optical correlators based
on the concept of PIFSO have been demonstrated by Eckert et al.19,25 For a
compact realization it is possible to reduce the length of the correlator system
by adopting the so-called ‘‘light pipe’’ configuration (Fig. 17.8). To this end, an
additional set of field lenses (L1 and L2) is used immediately behind/in front of
the input/output planes. For spatially incoherent source arrays, these field
lenses, which correct for phase errors, can principally be omitted since the
intensities rather than amplitudes of the diffraction orders are correlated (Eq.
11). However, they are also used to improve the uniformity of the illumination
of the Fourier transforming lenses.

Due to the symmetry such a configuration can be folded, according to the
concept of PIFSO, to result in a very compact systems. Figure 17.9 shows two
possible configurations. In Fig. 17.9a) we additionally made use of the fact that
the input channels in the smart pixel arrays are not densely packed so that
input and output signals can be interlaced. For the correlator system this
means that only a small shift between the input and the output plane is
necessary for a separation between the input and output. The necessary lateral

fl F Of

Illumination

L1 L2L3 L4

Figure 17.8. Optical system for correlation based on the ‘‘light pipe’’ configuration:
L1,L4: field lenses; L2,L3: transforming lenses; I, O: input/output planes.
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Emitter

I/O LF

Mirror

f
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Mirror
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f
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Figure 17.9. Folded versions of the ‘‘light pipe’’ correlator for incoherent input signals:
a) on-axis configuration for interlaced I/O signals (and b) off-axis configuration.
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shift can be integrated in the filter design. No further optimization of the
optical system is necessary. It is, however, also possible to adjust the design
in order to achieve full separation between input and output array. In this case
the optical system needs to be optimized for good performance along the
oblique optical axis as described in Section 17.1.

17.2.3 Experimental Demonstration of Integrated
Optical Correlators

17.2.3.1 On-axis Integrated Correlators

Both versions of integrated microoptical correlator systems shown in Fig. 17.9
have been realized and demonstrated experimentally. To this end we exploited
the potential of diffractive microoptics, i.e., specifically the possibility, to
integrate complex optical functionality in single diffractive elements. Figure
17.10 shows the schematic of the on-axis system which has been fabricated
lithographically. In this case a single complex diffractive optical element (DOE)
is used to perform the correlation on the discrete smart pixel array aligned at
the opposite surface of the transparent substrate. We used a fused silica
substrate with a thickness of 6 mm. A comparison with Fig. 17.9 a) shows
that the complex DOE combines the functionality of the beam splitter as well
as the reflective lenses.

For such an implementation most of the design effort is focussed on the
complex DOE.25 Since it combines the functionality of the diffractive correl-
ation filter as well as the Fourier lenses specific care is necessary in order to
avoid errors due to undersampling of the phase profile. The numerical aperture
of the lens elements depends on the pixel size and extension of the smart pixel
array used for signal input/output. The spatial frequency nL required to
implement the diffractive lens element with a specific numerical aperture NA is:

Py

P

Mask Substrate DOE Mirror

α

A
a

f

Figure 17.10. Compact realization of the on-axis correlator using a complex diffractive
optical.
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nL ¼ 2
NA

ln
(12)

where n is the refractive index of the substrate at the design wavelength l.
Since the DOE at the same time performs as correlation filter the complex-

ity is significantly increased compared to the pure lens element. The maximum
spatial frequency nF of the filter element is determined by the coordinates of
the pixels at the edge of the I/O array:

nF ¼ Max(xo, yo)

lf
(13)

An upper bound of the spatial frequency nmax which occurs in the complex
DOE can thus be found from:

nmax ¼ nL þ nF (14)

From the sampling theorem we find an upper bound of the pixel size in the
DOE:

a � 1

2nmax
(15)

Due to the Gaussian illumination of the DOE the periods at the edge of the lens
element are illuminated with significantly less intensity and contribute less to
the optical power of the lens. The total efficiency as well as noise and cross talk
in the system is therefore reduced. Thus, the introduction of an undersampling
factor s is justified25 so that the minimum feature size in the complex DOE can
be calculated from:

a � 1

2s nmax
(16)

For the experimental demonstrations an I/O plane with 8� 8 pixels and a pixel
pitch of px ¼ py ¼ 65mm has been assumed. The correlation filter was designed
to generate a 5� 5 pattern using a modified iterative algorithm according to
Gerchberg-Saxton26,27. For the experimental realization one period of the filter
function, consisting of 32� 32 pixels was replicated to form a DOE with
640� 640 pixels and a pixel size of 1:25mm. The phase profile of this quantized
DOE was added to the phase profile of a quantized and pixelated lens element
of equal extension in order to form the phase profile of the complex DOE for the
integrated correlator system. Figure 17.11 a) shows a grey level image of the
resulting element. A value of 66% was theoretically calculated for the diffrac-
tion efficiency with a noise level of less than 0.5%. In the experiment this value
could not be reached due to significant fabrication problems. The measured
value for the diffraction efficiency was 47%. The complex DOE was fabricated
on a fused silica glass substrate (thickness 6 mm) to form a compact integrated
correlator system. The correlation experiments show decent performance of the
integrated correlator system25.
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17.2.3.2 Off-axis Integrated Correlators

Two different architectures of VanderLugt correlators integrated in PIFSO
have been demonstrated. Figure 17.12 shows the schematic of an integrated
correlator system based on the light pipe configuration shown in Fig. 17.8. Such
a system has been fabricated lithographically in a quartz substrate (thickness:
t ¼ 8mm). In order to avoid alignment errors all alignment sensitive elements
are fabricated on the same surface of the substrate. Due to the oblique optical
axis the system needs to be specifically corrected for aberrations. To this end,

λ(µm) 195130650−65−130−195
−2%
0%
2%
4%
6%
8%

(b)

(a)

(c)

Figure 17.11. a) Grey level representation of the complex diffractive optical element
consisting of 640� 640 pixels. The filter in the functionality of the Fourier lenses as well
as the correlation filter; b) point spread function of the integrated optical correlator:
CCD image (inverted and overexposed to show the noise orders); and c) line scans
through the intensities showing the good signal-to-noise ratio.
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Figure 17.12. (a) Schematic of an integrated correlator in the off-axis configuration
and (b) psf of the system.
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the focal length of the lens elements was corrected by a factor of cosa and
cos3 a in x- and y-direction, respectively11,23, where a is the tilt angle with
respect to the surface normal. In this case a relatively small angle of a ¼ 2:93	

was sufficient to avoid an overlap of the I/O planes after a zig-zag propagation.
The diffractive combination element (CE) again combines the functionality of
the Fourier lenses and the correlation filter in one single element. In our
experiment it consists of 819� 817 pixels with approximately (1:42mm)2.
Due to the astigmatic correction, however, neither the individual pixels nor
the overall element are exactly quadratic. Six periods of a periodic diffractive
optical element (96 pixels/period), which was designed to generate the correl-
ation filter, were superposed with the diffractive lens structure (NA � 0.038) to
form the CE. Figure 17.12 shows the point-spread function of the integrated
correlator. Good contrast and low background noise indicate the good quality
of the correlator system. In order to improve the quality of the focussing of the
individual diffraction spots the correlator system can be integrated with micro-
lens arrays. The configuration as well as the psf of such a correlator following
the idea of hybrid imaging is shown in Fig. 17.13.

17.3 Planar Optically Integrated Correlators
for Security Applications

Security applications are an important application area for which optical
correlators can be extremely useful. Similar to the application in optical inter-
connects well-defined illumination conditions are helpful for the potential
application of optical correlator systems in this field. Since the introduction
on the MasterCard

TM
in the early 1970s optical security features have had

enormous success. Today protection holograms, kinegrams
TM
, or diffractive

identification devices can be found on a huge variety of products, from bank-
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f   f2/2

Figure 17.13. (a) Schematic of an hybrid integrated correlator using microlens array
to achieve tight focussing of the diffraction orders and (b) psf of the system showing the
good contrast and quality of the focus spots.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap17 Final Proof page 353 27.10.2005 11:10am

17 Planar Microoptical Systems for Correlation and Security Applications 353



notes to entrance tickets etc.28 Due to the proliferation of the know-how and
technology necessary for the fabrication of those devices the level of protection
is constantly decreasing. In order to keep a high level of security it will therefore
be necessary to encode and verify increasingly complex information in such
devices. For example serial numbers or also biometric data could be encoded in
the optical security features. Optical correlators can then become very useful
for readout and verification of this information. In this case a potential inte-
gration of the optical systems will be crucial for the successful application in
real-world systems.

The schematic configuration of an integrated optical correlator for verifi-
cation, e.g., of kinegrams

TM
is shown in Figure 17.14 a).29 The optical system

represents a folded 4f configuration. A plane illumination wave is coupled into
the system and after the first zig-zag propagation is modulated by a phase
grating representing the decryption key. In the configuration shown in the
figure this phase grating is imaged via a folded 4f imaging system onto
the kinegram

TM
to be verified. After an additional Fourier transformation the

correlation between the kinegram
TM

pattern and the decryption key appears in
the output plane. Thus, in this configuration the correlation is performed in the
spatial domain and is consequently sensitive to positioning errors. The
same configuration could conceptually be implemented for correlation in
the Fourier domain, which would result in shift invariant correlation. Due
to the high level of integration a variety of correlator systems could in principle
be implemented simultaneously without additional fabrication cost. Such

Correlation planeKinegram
TM

Microlenses ‘Key’, filter Glass substrate

Fourier plane

Coupling grating

a

Laser beam

(a)

(b)

Figure 17.14. (a) Schematic of the planar integrated optical correlator for kinegram
TM

verification; and (b) Photograph of the system fabricated lithographically.
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multiplexed correlation systems could, e.g., be useful in order to reduce problems
with the system’s sensitivity to relative rotations between the decryption filter
and the kinegram.

Figure 17.14 b) shows the planar optical realization of the system described
above. All optical components have been fabricated lithographically as multiple
phase level diffractive optical elements. The coherent planewave is coupled into the
planar substract (thickness: 12 mm) through a diffraction grating (binary; period:
2:13mm) to propagate inside the substrate at an angle of 11.778. Along the zig-zag
path between the reflection-coated substrat surfaces the wavefront is modulated by
the decryption key and imaged by the diffractive lenses onto the kinegram

TM
aligned

above the area between lenses 2 and 3 where no reflection coating is applied. The
Fourier transforming lenses are implemented as 4 phase level diffractive lenses and
optimized for imaging along the oblique optical axis as described previously. The
decryption key for our demonstration experiments was formed by a 4 phase level
DOE with a period of 330mm and a pixel size of app. 10mm. The grating was
optimized to generate the ‘‘DM’’ sign shown in Fig. 17.15a. A secondDOEwith the
EURO sign (Fig. 17.16b) as diffraction pattern was used as forged kinegram for our
experiment. Figure 17.16 shows the result of our correlation experiments.When the
‘‘real’’ kinegram, i.e., the ‘‘DM’’ DOE, was aligned above the integrated system, a
strong autocorrelation peak was measured in the output plane (Fig. 17.16b). This
peak shows intensity values seven times as high as the maximum peaks in cross
correlation which appears in the output if the wrong DOE is aligned above the
system (Fig. 17.16a). Thus, a verification of the kinegram can be performed by a
simple thresholding operation. This clearly demonstrates the potential of those
planar integrated systems for kinegram verification.

17.4 Generalized Phase Contrast Method for Phase-only
Optical Cryptography

Cryptography entails recording or transmission of concealed information where
only the application of a correct key enables the comprehension of the original

Figure 17.15. Diffraction patterns of the optical phase elements used for the demon-
stration experiment: (a) diffraction pattern of the integrated decryption key and the
‘‘real’’ kinegram

TM
and (b) diffraction pattern of the forged kinegram

TM
.
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information. The art of cryptography dates back to ancient times where secret
information was transmitted in terms of symbols and sketches. Through the
years, cryptography has evolved and the medium by which it has been imple-
mented changed depending on the state of science of a particular era. In the
Renaissance period, secured information was believed to be transmitted by
incorporating hidden symbolisms in the paintings of famous painters. Now,
the current state of technology rests on specialized electronic data processing
machines and computers.

Rapid technological advancements have exploited light as a medium for
data transport and storage. Using light to encode digital information has
proven as a highly efficient technology that has radically revolutionized mod-
ern-day data communications. Hence, it is a natural course to incorporate
optical cryptographic techniques into contemporary optical data communica-
tion and storage systems. Moreover, as pointed out in the previous section,
optical cryptographic methods can be future solutions to problems related to
intellectual property protection, product authentication, falsified bankcards,
identification cards, and other similar predicaments.

Cryptographic techniques based on the use of light exploit the coherent
nature of a laser beam. These techniques have been shown to yield efficiently
ciphered information in addition to fast decryption via parallel optical process-
ing.30 Javidi et al. have proposed various optical cryptographic schemes involv-
ing the use of phase masks for: (1) encrypting amplitude information based
on the double-phase encoding scheme31,32; (2) encryption of phase-encoded
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Figure 17.16. Experimental results of the correlation experiment: a) intensity distri-
bution and line scan of the crosscorrelation; b) results of autocorrelation.
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information33; and (3) holographic storage of encrypted information.34 These
schemes require the recording of encrypted masks containing both amplitude
and phase information.

Optical cryptography can also be achieved by operating on a single lossless
parameter that allows for full optical reversibility: the phase35 or polariza-
tion36{38 of a coherent light carrier. Phase-only cryptography is based on the
direct superposition of a phase mask containing the original data and an
encrypting phase key and vice versa.39{41 This encryption process also implies
that all operating light fields in general have at least a full 2p-phase cycle of
modulation. Since the optical phase is undetectable by the eye or by standard
light-capturing devices, an encrypted phase array is invisible in addition to its
incomprehensible format. Upon decryption, visualizing an invisibly decrypted
field can be achieved by an efficient conversion of the field into a high-contrast
intensity image. The phase contrast technique proposed by Nobel Laureate
Frits Zernike42 can only view phase images correctly which have less than p=3
phase modulation. Since a decrypted phase can have a much larger phase
stroke, a phase-only cryptographic approach relies heavily on an optimized
visualization of the decrypted phase information. This can be accomplished by
the Generalized Phase Contrast (GPC) method,43{45 which allows for the full
visualization of phase patterns with large phase strokes in addition to making
full utilization of all of the light power within a designated area.

This section describes the fundamentals of phase-only optical cryptography
and the visualization of decrypted information using the GPC method. This
section also explores the feasibility of implementing the GPC method in a
miniaturized device by using planar-integrated free-space optics (PIFSO).46,47

Such miniaturized and robust GPC systems are significantly better suited for
real-world applications in optical cryptography and even provide a direct
interface to micro-opto{electro-mechanical devices.

17.4.1 Phase-only Optical Cryptography

Phase-only optical cryptography entails the encryption of a 2D phase distribu-
tion O(x, y) of an original amplitude image, o(x, y), with a random phase
pattern, R(x, y) to yield an encrypted field, E(x, y), given by:

E(x, y) ¼ O(x, y)R(x, y) ¼ exp [i2p(o(x, y)þ r(x, y))], (17)

where o(x, y) and r(x, y) are 2Dmatrices with element values normalized within
the interval [0; 1]. To decrypt the field O(x, y), E(x, y) ¼ exp [i2pe(x, y)] is
applied with a decrypting key generated using the complex conjugate of the
encrypting phase, R�(x, y), given by:

O(x, y) ¼ E(x, y)R�(x, y) ¼ exp [i2p(e(x, y)� r(x, y))]: (18)

Figure 17.17 illustrates the encryption and decryption procedure showing the
patterns of O(x, y), R(x, y), E(x, y), and R�(x, y). The matrices in this case
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represent phase-encoded information which is visually incomprehensible. How-
ever, for clarity of the illustration, in Fig. 17.17, the fields are shown as grey
level patterns. The grey and white pixels indicate the relative phase shifts
rather than the amplitudes of the light fields.

The geometry of the system for implementing this phase-only optical en-
cryption is shown in Fig. 17.17b. A plane-polarized wavefront is incident on the
original phase image to set the field O(x, y). Aligning the field O(x, y) with
R(x, y) results in the encrypted field E(x, y). The encrypted information can,
in principle, be transmitted or stored optically into appropriate recording
devices. Phase-only optical decryption is achieved by aligning the decrypting
key, R�(x, y), to reproduce the field O(x, y), which is maintained to have
phase-only modulation and is therefore indiscernible to the naked eye.

17.4.2 The Generalized Phase Contrast (GPC) Method

The GPC method plays a vital role in phase-only optical cryptography as it is
used to visualize the phase encoded fields. The fundamental concept of the GPC
method can be traced back to Zernike’s phase contrast method, which describes
the conversion and direct mapping of a weak incident phase perturbation into an
intensity distribution with good contrast. This is achieved by the interference of
a phase shifted on-axis low-frequency component with directly transmitted
spatial varying terms essentially containing the spatial phase information. In
Zernike’s approach, the incident field with a weak phase distribution can be
represented by a truncated Taylor expansion. In this case the low-frequency
term is assumed to be constant and real valued, while the spatially varying terms
are approximated by the second term of the Taylor expansion. Due to the
unbalanced interference of low- and high-spatial frequency terms, this approach
does not provide optimized output intensities of arbitrary phase distributions.

Storage

Transmission

DecryptionEncryption

(a)

(b)

E(x,y) R'(x,y)

R'(x,y)

0(x,y)

0(x,y)

E(x,y)

E(x,y)

R(x,y)

R(x,y)

0(x,y)

0(x,y)

Laser light

Figure 17.17. Phase-only optical cryptography.
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The GPCmethod resolves this limitation by using a more elaborate analytic
model of the process. This enhanced approach allows an analytic determination
of the exact working parameters where any variation in the incident phase, weak
or strong, yields visible information by optimized light throughput.

The GPC method is based on the spatial filtering architecture illustrated in
Fig. 17.18. It consists of a 4f-imaging setup with a phase contrast filter (PCF) in
the Fourier plane between the two lenses. The output intensity distribution is
produced from the input phase pattern by the on-axis phase-filtering operation
in the spatial frequency domain. The first lens performs a spatial Fourier trans-
form, so that directly propagating light is focused onto this onaxis filtering region
whereas spatially varying phase information generates light scattered to loca-
tions outside this central region. By application of the phase filter, the input
phase distribution is converted into an intensity pattern in the back focal plane of
the second lens. The GPC method works best in cases where there is a large
separation between the on-axis, low spatial frequency light, and the higher
spatial frequencies in the Fourier plane. Moreover, if the spatial average value
of the incident phase-modulated wavefront is carefully matched to the relative
phase shift of the PCF, an essentially lossless phase-to-intensity mapping of the
input light can be achieved. To understand the phase-to-intensity conversion via
the GPC method, we analyze the relationship between the decrypted phase
values and the output intensity. The expression for the intensity at the output
I (x 0, y 0) of the optical setup shown in Fig. 17.18 can be expressed as45.

I (x 0, y 0) ¼ jei ~ff(x 0, y 0)circ(
r 0

Dr
)þ g(r 0)j�aaj(eiu � 1)j2 (19)

with

�aa ¼ A�1

Z Z
A

eif(x,y)dxdy ¼ jajeif�aa

~ff(x 0, y 0) ¼ f(x, y)� f�aa

r 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

02 þ y
02

p
(20)

Aperture

Phase pattern

Laser
light

Lens PCF Lens
Output

θ=π

φ (x,y) ⏐(x', y')

Figure 17.18. Phase-only optical cryptography.
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The object dependent term, �aa, is the spatial average of the input wavefront
with absolute value j�aaj and phase f�aa. While in Zernike’s approach this term
is equal to one, it is described as a complex term j�aajeif�aa in the framework of
the GPC analysis. The input phase pattern, f(x, y), corresponding to the
decrypted phase is here truncated with a circular aperture area A ¼ p(Dr)2.
The intensity at the output also depends on the zero-order phase shift u of the
filter and the spatial profile g(r 0) of the synthetic reference wave (SRW). This
SRW is generated by diffraction at the phase-step in the on-axis region of the
filter. The interference between the on-axis term carrying the filter parameters
and the unfiltered phase information generates the intensity distribution at the
output described by Eq. 19.

The output of the GPC system is strongly influenced by the parameter
h ¼ R1

R2
which relates the radius of the PCF (R1) to the radius of the mainlobe of

the Airy function (R2 ¼ 0:61 lf
Dr). R2 results from the spatial Fourier transform,

by the first lens with focal length f, of an incident monochromatic light source
with wavelength l truncated with a circular input aperture of radius Dr . For
h-values smaller than 0.63 (and operating within the central region of the
image plane), the higher order spatial terms are insignificant and the SRW
can be expressed45 as:

K ¼ g(r 0 ¼ 0) ¼ 1� J0(1:22ph): (21)

Hence, Eq. 19 can further be simplified to give:

I (x 0, y 0) ¼ jei ~ff(x 0, y 0) þK jaj(eiu�1)j2: (22)

For phase visualization of decrypted phase patterns which are not assured to be
regular, fine tuning of h in the region [0:4� 0:63] and correspondingly K within
[0.5{1] provides an efficient operating regime with minimum loss. Moreover,
setting u ¼ f ¼ p yields optimized and a nearly loss-less conversion of an input
binary phase to its corresponding intensity pattern at the output.

17.4.3 Miniaturization of the GPC Method Via Planar
Integrated Microoptics

We applied the concept of PIFSO for the miniaturization and integration of the
optical spatial filtering system necessary to implement GPC imaging according
to Fig. 17.18. The 4f-imaging setup is implemented with two diffractive
microlenses (L1 and L2) aligned on the surfaces of a glass substrate (thickness:
12 mm) as shown in Fig. 17.19 (top view). Figure 17.19 (side view) shows the
folded beam path of the integrated system. A perpendicularly incident wave-
front is coupled into the substrate through a binary phase grating. The coup-
ling gratings are fabricated with a period of 2:13mm resulting in a deflection
angle of 11.778 inside the substrate for the design wavelength l ¼ 633 nm. The
distance from the coupling grating to L1 is equivalent to the focal length
indicating that the object plane is located at the surface of the input grating.
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L1 focuses the beam to the spatial Fourier plane where a reflection coated PCF
is fabricated on the substrate to perform a p-phase shift of the on-axis region of
the focused light. The filter is designed for operation at l ¼ 633 nm and is
etched as a hole with radius R1 ¼ 2:5mm into the substrate. Figure 17.20 shows
an atomic force microscope image of the PCF. An anisotropic etching process is
used to form a steep-edged cylindrical hole. After the PCF, the reverse Fourier
transform is performed in the second half of the symmetric system. For opti-
mized imaging behaviour along the tilted optical axis, the microlenses are
slightly elliptic in shape and have different focal lengths (fx ¼ 25:58mm and
fy ¼ 24:51mm) in the two perpendicular lateral directions with f-numbers
f = � 5.

The diffractive implementation of the integrated GPC imaging systems
causes some practical problems. The quality of finite aperture diffractive optics
affects the resolution as well as the size of the image field. The use of DOEs,
although favored for practical reasons, such as compactness and compatibility
with standard photolithography techniques, influences the efficiency and spa-
tial resolution of the optical system because of discrete phase quantization.
Furthermore, undesired higher diffraction orders can cause disturbing interfer-
ence. However, for phase-only cryptography, the relevance of these undesired
factors, such as low-light throughput, is not so high. Phase-only cryptography
basically requires efficient visualization of the decrypted spatial phase modu-
lation. Hence, a virtually lossless light propagation provided by the GPC
method compensates for the inherently low throughput of planar-integrated
microoptical devices.
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Figure 17.19. Miniaturized GPC system.
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17.4.4 Miniaturized GPC System for Phase-only Optical Decryption

The performance of the planar-optically integrated GPC (PO{GPC) system
for phase-only optical decryption is tested with the experimental system shown
in Fig. 17.21. The external macrooptical system is composed of three imaging
steps. In the first step the decrypting key is imaged onto the phase mask with
the information to be encrypted. The second imaging step is for coupling the
decrypted field to the input grating of the integrated system. The third imaging
step after the GPC, is for magnifying the intensity distribution to the output to
the CCD camera. The decrypting key information is encoded using a phase-

28
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8

500 nm

µm µm

Figure 17.20. Phase contrast filter fabricated on an integrated planar-optical device.
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Figure 17.21. System for testing phase-only optical decryption using the miniaturized
GPC method.
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only spatial light modulator (SLM), which is illuminated by an expanded
He{Ne laser beam (l ¼ 633 nm). The SLM is a parallel-aligned nematic liquid
crystal type (Hamamatsu Photonics), which can modulate a phase range of at
least 2p at l ¼ 633 nm. The SLM is optically addressed by an XGA-resolution
(768� 768 pixels) liquid crystal projector element and controlled from the
video output of a computer. Lenses L1 and L2 project the phase image of the
decrypting key to the encrypted phase pattern facilitating phase-only optical
decryption. The decrypted phase pattern is scaled and directed to the
PO{GPC system via lenses L3 and L4. The truncating circular aperture placed
just after the decrypting key governs the central spot size of the beam at
the filtering region at the Fourier plane.45 Lenses L5 and L6 project the
image of the resulting intensity distribution at the output of the PO{GPC
system to the CCD camera. The encrypted phase mask is fabricated as a
photoresist pattern on an optical flat where the phase-shifting pixels of 0 and
p constitute the 17� 9-pixel 2D phase key. The size of each pixel is approxi-
mately 176� 333mm.

Figure 17.22 shows the successful decryption of a 17� 9 pixel phase pattern
using the setup shown in Fig. 17.21. The embedded information consists of
4 5� 3 pixel letters depicting the word ‘‘RIS.’’ The decrypting key encoded at
the SLM is imaged through the macro-optical setup (lenses L1 to L4) and
visualized using the PO{GPC system as a high contrast intensity pattern as
shown in Fig. 17.22a. Inserting the phase mask with the encrypted information
after the first 4f-lens setup (L1 and L2) while the SLM is turned off (to set no
phase modulation of the decrypting key) visualizes the encrypted information
as a contrasted intensity pattern at the output as shown in Fig. 17.22b. As the
SLM is operated to encode the decrypting key, Fig. 17.22c shows the high-
contrast image resulting from the phase-only decryption and subsequent visu-
alization of the originally phase-encrypted information. It is important to note
that the high diffraction orders caused by the binary coupling gratings46 do not
affect the intensity pattern in the field of view of the output. The use of a larger
PCF on the planar-integrated microoptics, results in better contrast images,
however, with a slightly smaller input aperture diameter. The details of this
optimization have been discussed in a previous work.47 The low quality of

(b)(a) (c)

Figure 17.22. Performance of the phase-only optical decryption using the miniatur-
ized GPC method.
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visualization is due to tilt and alignment errors for both the encrypted and the
key patterns. A slight tilt of the decrypting phase mask will result in uneven
phase visualization as shown in Fig. 17.22b. Such error propagates through the
decryption process results in poor visualization of some of the pixels in Fig.
17.22c.

It should be noted that the pixels of the phase mask are relatively large and
cannot truly be used as basis for demonstrating the imaging limitations of the
integrated system. The imaging performance of the planar-optical device can
resolve feature sizes smaller than 10mm.29 Theoretically, the resolution of the
PO{GPC system can be estimated depending on the operating numerical
aperture (NA � 0:28) to resolve features as small as 2:3mm. Considering
aberrations, it is safe to assume that the miniaturized GPC system can handle
decryption and visualization of a phase-encrypted information with 300� 300
pixels having pixel sizes of 5mm. This assumption, however, only covers the
imaging performance of the PO{GPC system. A further limitation on the
number of pixels can be attributed to the current state of technology of SLMs.

The current ‘‘proof-of-principle’’ experimental setup consists of an external
macro-optical setup necessary to scale both the encrypted and the key patterns
to the appropriate sizes for imaging using the PO{GPC system. To include the
entire optical setup into a fully integrated microoptical system, both the
encrypted and the key patterns have to be fabricated at the appropriate
scale. Implementing the system into a fully integrated planar-optical device
will ease up alignment and tilt problems, which are common difficulties encoun-
tered when using discrete optical components.

Figure 17.23 shows the intended implementation of thewhole opto-electronic
setup in PIFSO using a two-stage 4f-lens setup. An image of a phase-encrypted
pattern is projected on the decrypting phase key pattern using the first
imaging step. An encrypted phase-only pattern recorded on a bankcard, a
passport, a currency note, etc., can be instantly verified for authenticity by
subjecting it to this planar integrated system. The phase-only key can be
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Figure 17.23. Fully integrated phase-only optical decrypting system.
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dynamically encoded on a compact, electronically controlled Liquid Crystal on
Silicon (LCOS) SLM.Moreover, the functionalities of the encrypted pattern and
the key pattern can be interchanged such that the phase key can be written on a
static phase mask to decrypt a dynamic stream of opto-electronic data. The
successful decryption of the encrypted data is only achieved when both the
encrypted pattern and the key pattern are correctly aligned. An initial calibra-
tion cycle by a nonmechanical alignment of the two phase-only patterns can be
achieved by an automated electronic scrolling of the pattern encoded on the
LCOS{SLM. The decrypted phase data is then converted into an intensity
pattern using theGPCmethod via the second 4f-setupwith aPCF at the Fourier
plane. The intensity pattern at the output can subsequently be recorded using a
detector array and then transformed to a second medium of transmission.

17.5 Conclusions

In this chapter we focussed on the potential of microoptically integrated
systems for security applications. Adopting the concept of planar-integrated
free-space optics we demonstrated a variety of systems architectures of optical
correlators which are usefull for this area of applications. The experiments with
microoptical systems clearly show that optical systems for applications
in homeland security can be miniaturized and integrated to extremely compact
and rugged devices with state-of-the-art microoptics and lithographic techno-
logy. Especially the planar interfaces of PIFSO offer the chance for hybrid
integration of a variety of devices such as opto-electronics or micromechanics.
Thus, in combination with further technological improvement, the door seems
to be open for real-world applications.
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18.0 Introduction

It has been suggested that by changing the refractive index and/or thickness of
a resonant waveguide grating, its resonance frequency can be changed, or
tuned1. This idea has clear applications for biosensors as the buildup of the
attaching biolayer can be monitored in real time, without use of chemical
fluorescent tags, by following the corresponding resonance wavelength shift
with a spectrometer2,3. Thus, the association rate between the analyte and its
designated receptor can be quantified; in fact, the characteristics of the entire
binding cycle, involving association, disassociation, and regeneration can be
registered4. Similarly, small variations in the refractive indices of the surround-
ing media, or in any of the waveguide grating layers, can be measured; for
example, in Ref.5 results for resonance switching using a variation of the
grating dielectric constant were presented. A new class of highly sensitive
bio- and chemical sensors is thus enabled. This sensor technology is broadly
applicable to medical diagnostics, drug development, industrial process control,
genomics, environmental monitoring, and homeland security.

The sensors described in this chapter are based on resonating periodic
waveguides that produce sharp resonance spectra on broadside illumination
with an optical source1{19. The guided-mode resonance occurs when the illu-
minating wave is phase matched to a leaky waveguide mode by an appropriate
periodic layer. Subwavelength structures (period L smaller than the incident
wavelength l) admit only the zeroth propagating diffraction orders thus pro-
moting efficient energy exchange between the transmitted and reflected zero-
order waves as illustrated in Fig. 18.1.

For such a device, a peak in the reflection spectrum occurs at a particular
wavelength, angle, and polarization, when the incident electromagnetic wave
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couples to the leaky mode. As the coupling range is typically small, these
resonating elements exhibit high parametric sensitivity rendering them ex-
tremely responsive to small amounts of trace chemicals or biological molecules.
The theoretically predicted high reflection efficiencies and narrow spectral lines
have been verified experimentally15. These resonant elements are simple in
design requiring only a few layers one of which being a high-quality, scatter-
free subwavelength periodic layer. Suggested applications include optical fil-
ters5, modulators19, mirrors for vertical-cavity lasers20, and sensors.1{3,8,21

The general utility of the guided-mode resonance effect for optical sensing
applications has been known for some time.1,5 Experimental implementation
and testing has been conducted with resonance elements deposited on bulk
substrates.2,3,8,21 The spectral characteristics of the sensor including center
wavelength, line width, and sideband response depend on the physical
parameters of the device such as grating period, fill factor, refractive indices,
and thicknesses of the grating and homogeneous layers as well as on the
refractive indices of the substrate and cover media. Variation in any of these
parameters provides a spectral shift of the reflection peak and the attendant
transmission notch.

In general, for spectral filtering applications, the most stable guided-mode
resonance filter is sought to prevent an unwanted resonance shift due to
small parameter fluctuations. In contrast, for spectroscopic sensing applica-
tions, it is desired to promote this resonance sensitivity by creating a device
that responds well to small parametric changes. To further broaden the applic-
ability of this technology, a resonant biosensor can be integrated on the tip of
an optical fiber. The incident wave and the resonant information-bearing
reflected wave thus propagate transversely confined in a fiber waveguide.
In principle, the fiber-tip resonant sensor functions like the bulk sensor with
free-space input light; the main differences lie in fabrication methods and
applicability.
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Figure 18.1. A single-layer waveguide grating: (a) low spatial frequency admits mul-
tiple diffracted orders and (b) subwavelength grating period admits only zero-order
waves (cover refractive index nC , fiber refractive index nF , d grating thickness, grating
high refractive index nH , grating low refractive index nL, angle of incidence u, grating
period L, fill factor f ).
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18.1 Resonant Sensor Modeling

The sensor spectral response can be computed using rigorous coupled-wave
analysis (RCWA) assuming plane waves incident on structures with infinite
dimensions in the plane of the grating.22 Therefore, employing the RCWA
method, we have written efficient computer codes to solve the general multi-
layer diffraction problem underlying resonant sensors. Furthermore, increased
efficiency and flexibility in design is achieved with a genetic algorithm search
and optimization method integrated with the RCWA code.23 This inverse
approach allows specification of the desired resonant sensor characteristics to
conversely obtain the corresponding layer-system parameters. With these com-
putation tools, sensors can be designed to exhibit specific sensitivity, reso-
lution, and operational dynamic range. Diffractive elements recorded on
optical fiber tips possess a finite number of grating periods. However, since
our experiments involve multimode fibers with large core diameters (diameter
DF > 1000l) the plane-wave model may be used to a good approximation for
this work.

Numerous experimental configurations can be envisioned to make use of the
waveguide grating resonance in a sensing application. A possible sensor test
setup is depicted in Fig. 18.2. By capturing the reflection spectrum from the
guided-mode resonance sensor, the response can be monitored remotely and
in real time. Since dielectric materials are used in the fabrication of resonant
sensors, there are many potential configurations available. A single-layer
resonant waveguide grating sensor is illustrated in Fig. 18.3. This sensor can be
optimized to enhance sensitivity to specific parameters, such as refractive index
of a solution or gas, and/or solid phase deposits on the sensor surface.
In this research, refractive index and thickness values are chosen tomodel typical
bioselective agents. Biochemical recognition reactions, such as antigen-
antibody, enzyme-substrate, or ligand-receptor reactions allow selective sensing
of complex biologicalmolecules such as proteins, viruses, or drugs.24 For antigen/

Broadband
source

OSA

Coupler

Reference signal
photodiode

Reflected signal
from fiber sensor

WGG
on fiber tip

Figure 18.2. Schematic of a test setup to measure the spectral reflectance from a fiber-
tip guided-mode resonance device (OSA: optical spectrum analyzer; WGG: waveguide
grating).
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antibodyreactions,thesensorsurface isactivatedbychemicallyattachinga layerof
antibodies via a linkage layer bound to the substrate (Fig. 18.3). The antibodies
will bindonlyto itsmatchedantigen. In this embodiment, theantigen is theanalyte
to be detected. As a monolayer of antigen accumulates on the grating surface, the
refractive index and thickness change can bemonitored. The rate ofmass accumu-
lation can be used, for example, to quantify concentrations of a specific drug in
fluids or tissue. Typical attached biolayer thickness ranges from 1 nm for small
molecules to greater than 50 nm for viruses.

The spectral response for a single-layer sensor designed for use in a liquid
environment is indicated in Fig. 18.4. This sensor can be fabricated with
Si3N4 and patterned by plasma etching to create the diffractive layer. One-
dimensional resonant waveguide grating structures have separate reflectance
peaks for TE (electric vector normal to the page in Fig. 18.1) and TM polarized
incident waves.5,6 In this case, two peaks are available for each sensing meas-
urement. This feature can be exploited to resolve both thickness and refractive
index changes simultaneously if both are varying; alternatively, it is useful for
improving the accuracy of the measurement.

The calculation shows that this design can resolve an average refractive
index change of 3� 10�5 refractive index units (RIU) assuming a spectrometer
resolution of 0.01 nm. A nearly linear wavelength shift is maintained (Fig. 18.5)
for a wide refractive index change of the medium in contact with the grating
structure (nC ¼ nL ¼ 1:3� 1:8), making this a versatile sensor with a large
dynamic range. The sensitivity of a biosensor is defined as the measured
response (such as peak wavelength shift) for a particular amount of material
that is detected [24]. This indicates the maximum achievable sensitivity
to the analyte under detection. Sensor ressolution includes realistic component
limitations such spectroscopic equipment resolution, power meter accracy,
bioselective agent response and peak shape or linewidth. Linewidth is
the full width at half maximum (FWHM) of the reflected peak response.
This property affects the accuracy of spectroscopic sensors as a narrow line
typically permits improved resolution of wavelength shifts; resonant waveguide

nC

Waveguide grating (nL, nH)

Deposited material nD

Transmitted
wave

Detected solution/gas

d

Antigen
Antibody

Chemical link layer

Grating surface

D

Λ

Incident
wave

Reflected
wave

Figure 18.3. Generic single-layer fiber-tip reflection filter diagram used in sensor
design. Refractive index of cover region is the same as that of the grating, nL ¼ nC .
An analyte-receptor example is shown in the inset for thickness sensing applications.
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Figure 18.4. Refractive index sensing in water. Calculated TE and TM polarization
spectral response of a fiber-tip reflection sensor using a Si3N4 diffractive element.
The peak wavelengths shift as the refractive index of the detected liquid varies from
1.33 to 1.35. The sensor layout is depicted in Fig. 18.3. Physical parameters
of the waveguide grating are as follows: grating period L ¼ 530 nm, fill factor
f ¼ 0:5, thickness d ¼ 470 nm, refractive index of the grating layer nH ¼ 2:0
(Si3N4),nL ¼ nC ¼ 1:33 and 1:35. The refractive index of the optical fiber nF ¼ 1:45.
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Figure 18.5. Calculated TE polarization resonance wavelength shift for large dynamic
range sensing. The fiber-tip structure described in Fig. 18.4 has an average resonance
peak shift of 338.7 nm per refractive index unit (RIU), from nC ¼ 1:3 to 1.8.
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grating sensors typically have narrow line widths. Figure 18.6 illustrates the
resonance line width changes for the Si3N4 design associated with output liquid
indexvariation.While the average refractive index of thewaveguide grating layer
increases over the detection range, the grating modulation is simultaneously
decreasing. Amaximum resonance line width is reached around nL ¼ nC ¼ 1:53.

By monitoring the reflected power at a fixed wavelength, an intensity mode
of detection can, in principle, be used within a reduced dynamic range
(Fig. 18.7). Small changes in the reflected intensity are calibrated to a specific
refractive index or thickness change. For the sensor in Fig. 18.4, calculated
refractive index changes of 1:9� 10�5 RIU (nL ¼ 1:3287� 1:3297) can be
resolved by intensity mode detection. This assumes an optoelectronic system
that can resolve changes in optical power to 1%. To further optimize this mode
of detection, the sensor could be designed with an increased line width to
improve the dynamic range of the sensor. Additionally, the line shape can be
made asymmetrical by selecting appropriate thin film and waveguide thickness
values. An asymmetrical line shape offers practical benefits since it can be used
to eliminate the ambiguity caused by the same intensity value being measured
for two different values of the parameter to be measured. Besides the spectral-
shift mode, and the intensity mode of operation, a resonant waveguide grating
based sensor can operate in a polarization mode. In general, the TE and TM
peaks of a resonant structure occur at different wavelengths. By design, the two
peaks can be made to coincide resulting in a polarization insensitive waveguide
grating. However, changes in refractive index or thickness of the layers of this
polarization insensitive structure would shift the TE and TM peaks apart. A
polarization-mode waveguide grating sensor could operate with a light source
with an appropriate wavelength and a polarizer on the return path of the
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Figure 18.6. Calculated TE polarization peak line width changes over the refractive
index detection range. Physical parameters are described in Fig. 18.4.
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signal. Changes in refractive index or thickness that would occur in a particular
sensing application would produce varying levels of reflected intensity in each
state of polarization.

While resonant sensors can monitor tiny refractive index changes, they can
also be used to detect thickness changes at the sensor surface, as shown in
Fig. 18.8. For thickness detection, the degree of resonant central wavelength
shift is attributed to three parameter changes: the increase in grating thickness,
the refractive index of the attached layer, and a change in grating fill factor. The
grating fill factor can contribute significantly to the resonance shift. In Fig. 18.8,
peak shifts are shown both without a fill factor change (Df ¼ 0) and with a fill
factor change (Df 6¼ 0). When material is attached only to the top and bottom
surface of the grating, the fill factor stays constant. In this case the resonance
peak shifts an average of 0.004 nm per angstrom of added material (Fig. 18.9).
Alternatively, when the addedmaterial coats the entire grating surface including
the sidewalls (Df 6¼ 0), the sensitivity is increased by 400% to an average of
0.016 nm shift per angstrom. Average thickness changes of 0.7 angstroms can
be resolved, with spectrometric equipment resolution of 0.01 nm. Figure 18.10
illustrates the resonance line width changes over the sensed thickness range. This
line width increase occurs similarly for both cases without a fill factor change and
with a fill factor change due to the relatively small index difference between the
cover index nC ¼ 1:33 and the added material index nD ¼ 1:4 in this example.

Resonant sensors canbedesignedtooperatewithinanyparticularwavelength
range of interest. The materials should be chosen to exhibit low optical losses at
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Figure 18.7. Calculated reflectance response for a fixed incident wavelength
(linc: ¼ 804 nm, TE polarization) due to a refractive index variation in nC for the
fiber-tip device described in Fig. 18.4.
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material deposited at the sensor surface for (Df 6¼ 0). Sensitivity is reduced to 0.004 nm/
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the central wavelength of the sensor. Thus, a thickness detection sensor for use
in an air environment is described in Fig. 18.11 for operation around 1550 nm.
Peak shifts are illustrated both without a fill factor change (Df ¼ 0) and with a
fill factor change (Df 6¼ 0). As shown in Figs. 18.12 and 18.13, when the added
layers cause a fill factor increase (Df 6¼ 0), the sensitivity increases in a rela-
tively linear manner over the detection range, while the line width increase is
exponential. The resonance peak shifts an average of 0.07 nm per angstrom of
added material deposited at the surface for this case. When the fill factor does
not change (Df ¼ 0) with the addition of material, the sensitivity and line
width increases are minimal with average sensitivity reduced to 0.004 nm per
angstrom. Due to the high index modulation in this design, average thickness
changes of 0.15 angstroms can be resolved, with spectrometric equipment
resolution of 0.01 nm. This sensor might be used for the detection of airborne
contaminants, such as those that may be encountered in homeland security
applications.

18.2 Sensor Fabrication

Practical implementation of fiber-tip waveguide grating sensors entails fiber
preparation, thin-film deposition, and diffraction grating fabrication. A clea-
ving tool is used to obtain a flat, optical quality endface. A thin layer of
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Figure 18.10. Calculation of the TE polarization resonance line width over the depo-
sited thickness detection range. The line width increases as the added layer thickness
increases. Physical parameters are described in Fig. 18.8.
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Figure 18.11. Thickness sensing in air. Calculated TE polarization spectral response of
a reflection sensor designed to operate in the 1550 nm wavelength range. Peak shifts are
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Physical parameters are as follows: grating periodL ¼ 907 nm, fill factor f ¼ 0:5 (without
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1600140012001000800

Added thickness (angstrom)

S
en

si
tiv

ity
 (

nm
/a

ng
st

ro
m

)

6004002000
0.00

0.02

0.04

0.06

0.08

0.10

∆f = 0

∆f ≠ 0
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to 0.01 nm/angstrom when the fill factor stays constant (Df ¼ 0).
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photoresist is deposited on the fiber endface so that diffraction gratings can be
recorded using a UV Arþ laser interferometer (Fig. 18.14). Exposure and
development times are optimized by iterations. Figure 18.15 (a) shows the
diffraction pattern emerging from a large-period fiber-tip grating under
white-light illumination. A scanning electron micrograph of a diffraction grat-
ing with 800 nm period on a fiber-tip with a 100mm core diameter is depicted in
Fig. 18.15(b). On coupling a He{Ne laser beam (l ¼ 633 nm) into the fiber, this
device produces + 1 diffracted orders containing 50% of the total output
power. With similar methods, gratings with periods of 530 nm were recorded
on fiber endfaces with 6:7mm core diameters. The + 1 transmitted diffraction
orders were measured to contain 10% of the total power coupled out of the
fiber at a wavelength of 442 nm (He{Cd laser).

To fabricate the sensors, deposition of dielectric thin films is required to
create a waveguide grating device. In this work, films of Si3N4 are deposited by
sputtering on clean, uncoated optical fiber endfaces. The fibers are mounted in
the chamber along with a reference substrate to monitor thickness deposition.
The test substrate thickness, refractive index, absorption, index grading, and
surface roughness of the deposited film are measured using a spectroscopic
ellipsometer. A layer of photoresist is deposited on the coated fiber endfaces
and on a reference substrate and a submicron diffraction grating is recorded
on each.
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Figure 18.13. Calculation of the TE polarization resonance line width over the depos-
ited thickness detection range. The line width increases significantly as the added layer
thickness increases for (Df 6¼ 0). When the fill factor is constant (Df ¼ 0), changes in the
resonance line width are minimal over the detection range. Physical parameters are
described in Fig. 18.11.
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The reference element is tested first to determine performance of the sensor
design in a bulk format before continuing to the fiber-tip device. The resulting
two-layer waveguide grating device is shown in Fig. 18.16 and is used to deter-
mine the sensitivity of the guided-mode resonance peak to a refractive index
change in the cover medium. The calculated spectral response is depicted in
Fig. 18.16; it is comparable with the experimentally obtained results in Fig. 18.17
with particularly good agreement found in the resonancewavelength. The device
is tested using a tunable Ti{sapphire laser (l ¼ 730� 900 nm) at normal
incidence in air; and after immersion in a reservoir of water. The transmission
notch is shown to shift approximately 10 nm for a cover refractive index change
from nC ¼ 1:0 to nC ¼ 1:33. Decreased efficiency in the water environment is
partially due to scattering from bubbles formed in the water reservoir.

To investigate the resonance peak response after layering biomaterials on the
surface of a resonant waveguide grating sensor, experiments are performed with
Bovine SerumAlbumin (BSA). A two-layer resonant device is fabricated using a
SiO2 grating layer on a HfO2 waveguide by methods described in reference.25

Optical
fiber

Mirror

Spatial filter

Photoresist on fiber endface

Ar+ laser
λ = 365 nm

Figure 18.14. Single beam UV laser interference system to record the grating pattern.

(a) (b)

X 800    10 µm
⎯⎯⎯

Figure 18.15. (a) Output intensity pattern of a multimode optical fiber with 1:2mm
period grating recorded on the endface using a white-light testing source. The color
spectrum associated with the �1 diffracted orders was clearly visible during the experi-
ment. (b) Scanning electron micrograph of an 800 nm period photoresist grating
recorded on a multimode fiber endface.
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Figure 18.16. Calculated TE polarization spectral shift for the two-layer GMR sensor
shown in the inset. The physical parameters of the waveguide grating are as follows:
grating period L ¼ 510 nm, fill factor f ¼ 0:5, d1 ¼ 300 nm, d2 ¼ 200 nm nH ¼ 1:62
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Figure 18.17. Experimentally determined spectral shift for the device described in
Fig. 18.16. Testing is performed with a tunable Ti:sapphire laser with TE polarization at
normal incidence in air, and immersed in water. A transmission notch shift of 10 nm
results as the cover index changes from 1.0 to 1.33. Line width in air ¼ 5:8 nm, line width
in water ¼ 4:5 nm.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap18 Final Proof page 379 27.10.2005 11:11am

18 Optical Waveguide-mode Resonant Biosensors 379

Incident
wave

d1

d2 n2
nS

nC

nC

nH nL



Thecleangrating surface is first chemicallymodifiedwithaminegroupsby treating
with a 3% solution of aminopropyltrimethoxysilane (Sigma) in methanol. Figure
18.18depicts theTEpolarization spectral responseof the silanated resonant sensor
in air. A solution of BSA, (100 mg/ml, Sigma) is then rinsed over the surface of the
sensor for 60 s, and subsequently rinsed in PBS for 90 s. After allowing to drip dry
for 1 min, a spectral peak shift of 6.4 nm is measured due to the BSA layer
deposited on the surface (38 nm thick) as shown inFig. 18.19. Typical biomater-
ials have minimal absorption in the near-IR wavelength range.
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Figure 18.18. Calculated and measured spectral response for a two-layer resonant
sensor device coated with a reactive silane layer. Grating parameters are: cover index
nc ¼ 1:0, grating index n1H ¼ 1:453(SiO2), n2 ¼ 1:977(HfO2), substrate index
ns ¼ 1:453(SiO2), d1 ¼ 110 nm, d2 ¼ 202 nm, fill factor f ¼ 0:58, L ¼ 448:5 nm.
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Figure 18.19. Calculated and measured spectral response from the sensor described in
Fig. 18.18 for an attached bovine serum albumin layer 38 nm thick.
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Final experiments apply the setup depicted in Fig. 18.20. Spectral meas-
urements made with the tunable laser coupled into the fiber as shown indicate a
split guided-mode resonance notch of 18% in the transmitted power, meas-
ured at the output of the optical fiber. The resonance split occurs as the fiber
was cut at a small angle. Figure 18.21 illustrates preliminary measured results;
the slow variation in transmitted power is due to variation in input coupling
efficiency across the testing wavelength range. The low resonance efficiency is
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Power
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Optical fiber
waveguide grating
sample

Figure 18.20. Test setup used to measure the spectral response of a fiber-tip
waveguide grating.
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Figure 18.21. Calculated and measured transmission data for a fiber-tip guided-
mode resonance device with the following parameters: grating period L ¼ 520:2 nm,
d1 ¼ 200 nm, d2 ¼ 380 nm, nL ¼ nC ¼ 1:0 (air), nH ¼ 1:62 (photoresist), n2 ¼ 2:05
(Si3N4), nF ¼ 1:453 (fiber), u ¼ 0:11	, fill factor f ¼ 0:3. A split TM-polarization
resonance notch of 18% is detected at lres ¼ 761:1nm.
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attributed, in large measure, to scattering due to imperfect fiber cleaves and to
rough silicon nitride films. Improved fabrication processes and designs will
ameliorate these problems.

18.3 Conclusions

Resonant waveguide grating bio- and chemical sensors in bulk or integrated
fiber format are potentially useful for high-resolution sensing as discussed in
this chapter. This sensor is realized by utilizing a fundamental resonance effect
that occurs in waveguide gratings where slight changes in refractive index or
thickness provide a detectable shift of the central wavelength associated with
the reflection peak or transmission notch. Integrated fiber-tip biosensors have
numerous potential applications in clinical diagnostics, surgical tools, food
industry, environmental monitoring, and industrial sensing; real-time, remote
operation can be implemented.

Numerous results illustrating the application of the guided-mode resonance
effect for refractive index and thickness sensing are presented in this chapter.
Using numerical computational methods, it is possible to design resonant
sensors with high sensitivity for a particular thickness and/or refractive index
range. The sensors can be designed to have a large operational range, while
maintaining high sensitivity over the full sensing range. The sensitivity is
enhanced by stationing the resonant leaky mode in a layer near the region of
molecular attachment or index change. The sensor design examples presented
possess a sensor refractive index spectral resolution of 3� 10�5 RIU for a
refractive index range of n ¼ 1:3 to n ¼ 1:8, and average thickness resolutions
as low as 0.7 angstroms in water, and 0.15 angstroms in air (assuming spectro-
scopic resolution of 0.01 nm). Experimental results presented include a bulk
sensor in air and water and preliminary data with a fiber-tip probe.

The fiber-tip resonant sensors under study are fabricated with low-loss
dielectric materials such that bulk absorption losses are not a physical limita-
tion; however, care must be taken to minimize creation of scattering centers in
the process of fabrication. The sensors typically have narrow, well-defined
resonance shapes that can provide accurate, high-resolution measurements.
Separate resonance locations for TE and TM polarizations are available for
detection; thus, accuracy and reliability are enhanced. Using simultaneous TE
and TM sensing, both thickness and refractive index are found. This can be
used to detect the background density of a solution during an analyte-receptor
biolayer attachment. Furthermore, the binding rate between an analyte and its
matching receptor is directly monitored, with no fluorescent/absorbance tags
or special microwell plates required for operation. Since the sensing element is
located on the fiber tip, highly accurate proximity sensing is possible with
minimal sample volume. Other sensor designs might include the use of biopo-
lymers in the fabrication. For example, stimuli-responsive hydrogels can be
integrated in the sensor to detect small changes in pH, temperature, pressure,
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and antigen/antibody reactions. These biopolymers undergo abrupt changes in
refractive index and thickness in direct response to external stimuli such as
pH26, temperature26, pressure27, and the presence of a specific antigen.28 Op-
tical fiber sensor arrays can be readily implemented to simultaneously detect
multiple analytes, such as DNA sequences, or repeat sampling to increase
detection precision.

Acknowledgments

This work was supported in part by the Texas Advanced Technology Program
under grant number 003656{042.

References

[1] Magnusson R and Wang SS. (1993). ‘‘Optical guided-mode resonance filter.’’ US
patent number 5,216,680.

[2] Wawro D, Tibuleac S, Magnusson R, and Liu H. (2000). ‘‘Optical fiber endface
biosensor based on resonances in dielectric waveguide gratings.’’ in: Biomedical
Diagnostic, Guidance, and Surgical-Assist Systems II, Proc. SPIE, 3911:86{94.

[3] Tibuleac S, Wawro D, and Magnusson R. (1999). ‘‘Resonant diffractive structures
integrating waveguide gratings on optical fiber endfaces,’’ in: Proc. 1999 IEEE
LEOS 12th Annual Meeting, San Francisco, CA. 2:874{875.

[4] Cooper M. (2002). Nature Reviews. Drug Discovery, 1:515{528.
[5] Wang SS and Magnusson R. (1993). ‘‘Theory and applications of guided-mode

resonance filters.’’ Appl. Opt., 32(14):2606{2613.
[6] Magnusson R andWang SS. (1992). ‘‘New principle for optical filters.’’ Appl. Phys.

Lett., 61(9):1022{1024.
[7] Norton S, Morris GM, and Erdogan T. (1998). ‘‘Experimental investigation of

resonant-grating filter line shapes in comparison with theoretical models.’’ J. Opt.
Soc. Am. A., 15(2):464{472.

[8] Kikuta H, Maegawa N, Mizutani A, Iwata K, and Toyota H. (2001). ‘‘Refractive
index sensor with a guided-mode resonant grating filter.’’ Optical Engineering for
Sensing and Nanotechnology, Proc. SPIE, 4416:219{22.

[9] Shin D, Tibuleac S, Maldonado TA, and Magnusson R. (1998). ‘‘Thin-film optical
filters with diffractive elements and waveguides.’’ Opt. Eng., 37(9):2634{2646.

[10] Magnusson R, Shin D, and Liu ZS. (1998). ‘‘Guided-mode resonance Brewster
filter.’’ Opt. Lett., 23(8):612{614.

[11] Brundrett D, Glytsis E, and Gaylord TK. (1998). ‘‘Normal-incidence guided-mode
resonant grating filters: Design and experimental demonstration.’’ Opt. Lett.,
23(9):700{702.

[12] Rosenblatt D, Sharon A, and Friesem AA. (1997). ‘‘Resonant grating waveguide
structures.’’ IEEE J. Quanton Electron., 33(11):2038{2059.

[13] Tamir T and Zhang S. (1997). ‘‘Resonant scattering by multilayered dielectric
gratings.’’ J. Opt. Soc. Am. A., 14(7):1607{1616.

[14] Avrutsky IA, Svakhin AS, and Sychugov VA. (1989). ‘‘Interference phenomena in
waveguides with two corrugated boundaries.’’ J. Mod. Opt., 36(10):1303{1320.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap18 Final Proof page 383 27.10.2005 11:11am

18 Optical Waveguide-mode Resonant Biosensors 383



[15] Liu ZS, Tibuleac S, Shin D, Young PP, and Magnusson R. (1998). ‘‘High-efficiency
guided-mode resonance filter.’’ Opt. Lett., 23(19):1556{1558.

[16] Peng S and Morris GM. (1996). ‘‘Experimental demonstration of resonant anom-
alies in diffraction from two-dimensional gratings.’’ Opt. Lett., 21(8):549{551.

[17] Gale MT, Knop K, and Morf RH. (1990). ‘‘Zero-order diffractive microstructures
for security applications.’’ Optical Security and Anticounterfeiting Systems, Proc.
SPIE, 1210:83{89.

[18] Mashev L and Popov E. (1985). ‘‘Zero-order anomaly of dielectric coated grat-
ings,’’ Opt. Commun., 55(6):377{380.

[19] Sharon A, Rosenblatt D, Friesem AA, Weber HG, Engel H, and Steingrueber R.
(1996). ‘‘Light modulation with resonant grating-waveguide structures.’’ Opt.
Lett., 21(19):1564{1566.

[20] Magnusson R, Young PP, and Shin D. (2000). ‘‘Vertical-cavity laser and laser
array incorporating guided-mode resonance effects and method for making the
same.’’ US patent number 6,154,480.

[21] Cunningham B, Li P, Lin B, and Pepper J. (2002). ‘‘Colorimetric resonant reflec-
tion as a direct biochemical assay technique.’’ Sens. Actuators B.,
81(2{3):316{328.

[22] Gaylord TK and Moharam MG. (1985). ‘‘Analysis and applications of optical
diffraction by gratings.’’ Proc. IEEE, 73(5):894{937.

[23] Tibuleac S, Magnusson R, Maldonado TA, Shin D, and Zuffada C. (1997). ‘‘Direct
and inverse techniques of guided-mode resonance filter designs,’’ in: Proc. 1997
IEEE AP-S Int. Symp., Montreal, Canada. 4:2380{2383.

[24] Cunningham A. (1998). Introduction to Bioanalytical Sensors. Wiley, New York.
[25] Priambodo PS, Maldonado TA, and Magnusson R. (2003). ‘‘Fabrication and

characterization of high-quality waveguide-mode resonant optical filters.’’ App.
Phys. Lett., 83:3248{3250.

[26] Okano T. (1998). Biorelated Polymers and Gels: Controlled Release and Applica-
tions in Biomedical Engineering. Academic, San Diego.

[27] Harmon M, Jakob T, Knoll W, and Frank C. (2002). ‘‘A surface plasmon reson-
ance study of volume phase transitions in N-isopropylacrylamide gel films.’’
Macromolecules, 35(15):5999{6004.

[28] Miyata T, Asami N, and Uragami T. (1999). ‘‘A reversibly antigen-responsive
hydrogel.’’ Nature, 399:766{769.

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap18 Final Proof page 384 27.10.2005 11:11am

384 D. Wawro et al.



Chapter 19
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Abstract: Optical variable devices (OVDs), such as holograms, are now common in
the field of document security. Up until now mass-produced embossed holograms or
other types of mass-produced OVDs are used not only for banknotes but also for
personalized documents, such as passports, ID cards, travel documents, driving licenses,
credit cards, etc. This means that identical OVDs are used on documents issued
to individuals. Today, there is need for a higher degree of security on such documents
and this chapter covers new techniques to make improved mass-produced or personal-
ized OVDs.
The introduction of volume holography offers a possibility to apply monochrome

and full color reflection holograms in the field of document security. A presentation
of the technique and recording materials used for volume and color holography
is provided. Another technique, interferential photography or Lippmann photography,
represents a new type of OVD, which belongs to the interference security image
structures. In this type of photography, color is recorded in a photosensitive film
as a black-and-white interference structure. The technique offers additional advantages
over holographic labels for unique security applications. The application of the
Lippmann OVD for document security and counterfeit-resistant purposes is presented
here.

19.0 Introduction

Holography has been used for protecting security documents for more than 20
years. The first application was for protecting credit cards starting with the
VISA card. The hologram type used in the beginning and until today has been
the transmission ‘‘rainbow’’ or Benton hologram.1 The advantage of this
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hologram type is that it can be mass-produced by an embossing technique.
After the introduction of high-quality color photocopiers and scanners, many
countries started using embossed holograms or kinegrams attached to bank-
notes to make banknotes more difficult to fake.

The hologram is an example of an OVD in which the image appear-
ance (content and/or color) changes when illumination and observation
direction varies. This feature makes it impossible to copy such a device by
a photocopier or computer scanner. Although not possible to copy in such a
way, there are many places around the world where embossed holograms
can be illegally copied or regenerated and then attached to fake security
documents. At a recent conference, Dr. Bilorus of the National Bank of
Ukraine, stated that some high quality counterfeit e 200 banknotes had been
intercepted.9 The embossed hologram on these banknotes was exceptionally
good and almost impossible to distinguish from the genuine one. He concluded
that the embossed hologram could no longer provide banknotes with protection
from counterfeiting and a new technology was required to replace it.

This demonstrates why there is a need to find improved techniques to make
security documents more difficult to counterfeit. Improvements in the origin-
ation technique for embossed holograms have been achieved by the introduc-
tion of e-beam lithography. In this technology the beam is used to record the
microrelief on a special medium sensitive to electrons. It is possible to obtain
very high image resolution (a few tens of nanometers) with this technique. The
equipment for e-beam technology is very expensive, which will add to the
security of the production process. OVDs based on e-beam technology can
contain microcripts that are not possible to record with the optical mastering
techniques.

A book edited by Ruud van Renesse is an excellent source for information
on optical document security including OVDs.13 Recent patents on holograms
and OVDs issued between 1999 and 2003 are listed in a database from Hon-
norat Researches & Services.7

There is interest in finding more secure OVDs particularly for personalized
documents, such as passports. By introducing volume holograms, there are
possibilities to make a new type of holographic OVD. A volume hologram has
the recorded interference pattern located within the light-sensitive emulsion
and cannot be mass-produced by conventional embossing methods. In addition,
a volume reflection hologram can be recorded with red, green, and blue laser
wavelengths, which can create full-color holograms. More sophisticated equip-
ment and recording materials are needed for producing such holograms, which
make them more secure. They are also more suitable for producing personalized
OVDs compared to embossed holograms which require an expensive mastering
process.
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19.1 Hologram Recording

To record a hologram, a micropattern caused by interference between the
object beam and the reference beam is recorded in a light-sensitive high-
resolution material. The quality of a holographic image depends on a number
of factors, such as, the geometry and stability of the recording setup, the
coherence of the laser light, the reference and object beam ratio, the type of
hologram produced, the size of the object and its distance from the recording
material, the recording material and the emulsion substrate used, the process-
ing technique applied, as well as the reconstruction conditions. A material must
comply with certain requirements to be suitable for the recording of holo-
grams.2 The most important of these concerns is the resolving power of the
material. The recording material must be able to resolve the highest spatial
frequencies of the interference pattern created by the maximal angle u between
the reference and the object beams in the recording setup (Fig. 19.1). If l is the
wavelength of the laser light used for the recording of a hologram, n the
refractive index of the emulsion, then the closest separation de between the
fringes in the interference pattern created by the angle u between the reference
and the object beams in the recording setup is

de ¼
l

2n sin (u=2)
: (1)

For high-quality holograms the resolution limit of the material must be higher
than the minimum value obtained according to the above formula. One
example of the resolving power needed in a practical situation using an emulsion
with a refractive index of n ¼ 1:62 is the following: A ruby laser with the

Objective beam
(wavelength λ)

EmulsionRefractive index n

Glassde

Reference beam
(wavelength λ)

θ

Figure 19.1. Demand on resolution for recording a hologram.
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wavelength l ¼ 694 nm and a recording geometry with the maximum angle
u ¼ 25	 between the beams are used. This gives de  1mm, which corresponds
to v ¼ 1=d ¼ 1000 lines/mm; this is the minimum resolving power required.
Close to its resolution limit the material will exhibit a low Modulation Transfer
Function (MTF) and will thus make a low-quality hologram with poor fringe
contrast and low signal-to-noise ratio. For a reflection hologram recorded in blue
light (l ¼ 400 nm) with an angle of 1808 between the beams, a minimum
resolving power of 7600 lines/mm is needed.

This shows that the demand on the holographic recording setup as well as
the recording material is much higher when recording reflection holograms. For
color holograms at least three laser wavelengths are needed for the recording
making them more difficult to manufacture.

19.2 Plane and Volume Holograms

There are many ways of categorizing holograms. One valid criteria is the
thickness of the recording layer (as compared to the interference fringe spacing
within the layer), i.e., the layer coated on the material substrate. Holograms
can thus be classified into ‘‘thin’’ or ‘‘thick’’ (sometimes also called ‘‘plane’’ or
‘‘volume’’ holograms, respectively). To distinguish between the two types, the
Q-parameter is normally used; it is defined in the following way:

Q ¼ 2pld=(nL2) (2)

where l is the wavelength of the illuminating light, d the thickness of the layer,
n the refractive index of the emulsion, and L the spacing between the recorded
fringes. A hologram is considered thick if Q 9 10, and thin when Q#1. Holo-
grams with Q-values between 1 and 10 are sometimes treated as thin and at
other times as thick.

The complex amplitude transmittance, Ta(x), of a holographic recording
material can be written in a general manner as

Ta ¼ �ta(x) � exp [� a(x)d ] ffi exp [� iwt(x)] ¼ �ta(x) � exp [� a(x)d ]
ffi exp [i2pnd=l(x)], (3)

where a is the absorption constant of the material, d the thickness, n the
refractive index of the material, and l the wavelength of the laser light. The
amplitude transmittance Ta is the square root of transmittance T.

Ta ¼ %T ¼ 10�D=2: (4)

In a phase hologram (a ¼ 0, � ta(x)� ¼ 1) either n or d changes with the
exposure. For the phase hologram (simple grating) the phase factor is

wt ¼ (2p=l) nd, Dwt ¼ (2p=l)[dDn þ (n � 1)Dd]: (5)
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If the hologram is thin, d:0: Phase variations are then caused by surface relief
variations only

Dwt ¼ (2p=l)(n � 1)Dd: (6)

The masters for embossed holograms are recoded in transmission holograms
of the thin type, where the recorded interference fringes generate a relief pattern.
The recording material for the master is a photoresist plate. For mass-produc-
tion, the recorded relief pattern (converted into nickel shims) is embossed into
plastic foil. Since the hologram is of the transmission type it needs to be provided
with a reflecting layer to illuminate and observe it from the same side (important
for most security documents). In this way, the transmission hologram is acting
as a reflection hologram. This fact explains why most embossed holograms on
security documents have a mirror-like appearance.

If on the other hand a hologram is thick (volume hologram) and is supposed
to have negligible surface relief (Dd ¼ 0), phase variations are caused by index
variations only

Dwt ¼ (2p=l)dDn: (7)

This type of hologram can be used to make OVDs, which can be recorded as
a reflection hologram. Therefore, there is no need to use reflection foil behind
this type of hologram on security documents.

The recording material for such security holograms is most often of the
photopolymer type. Monochrome reflection volume holograms can be recorded
in photopolymer film sensitized to a particular laser wavelength, most often a
blue or green wavelength.

19.3 Holograms Suitable for Improved OVDs

Up until today, the transmission rainbow hologram has been the main type
used for producing OVDs. The mass-produced mirror-backed embossed OVD
has been used for banknotes and personalized security documents. Improve-
ments over the years have occurred by more complex masters, the introduction
of Dot-Matrix technique, and recently direct e-beam lithography.

In this section, OVDs based on volume phase holograms of the reflection
type are discussed. The advantage of such OVDs is that they are more suitable
for personalized documents. However, if cost-effective mass-production tech-
niques can be developed it may also be possible to apply them to banknotes and
other similar documents where identical security devices are required. Most
likely the first application of volume holograms will be for personalized docu-
ments such as passports, ID cards etc. A higher cost of the security device may
be acceptable here compared to the mass-produced embossed OVDs used for
banknotes.
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19.3.1 Monochrome Volume Holograms of the Reflection Type

A monochrome reflection hologram is recorded with a single laser wavelength
with the object beam entering from one side of the holographic recording
material and the reference beam from the opposite side. This requires a very
stable setup when CW lasers are used for the recording. If a pulsed laser is
employed almost any type of object can be recorded since no particular stabil-
ity is required. For the recording of such holograms both silver halide emulsions
as well as photopolymer materials have been used. There are a very few
manufacturers of monochrome silver halide materials in the market today. In
regard to photopolymer materials, E.I. du Pont de Nemours & Co. (DuPont) is
the main commercial producer of such materials. Xetos AG in Germany has
started to manufacture a photopolymer material for volume holography. The
application of this material is for the document security market.

Monochrome volume holograms have been around for a long time but only
recently been introduced in the document security field. In the past, Polaroid
produced MIRAGE holograms for journal covers, product packages, tickets for
sport events, baseball cards, etc. These holograms were produced on Polaroid’s
own photopolymer materials.

Dai Nippon Printing Co. Ltd. (DNP) in Japan has introduced the SECURE
IMAGE

TM
LABEL, which is of the monochrome Lippmann-type reflection

hologram shown in Fig. 19.2. It can contain a high-quality 3D image on a
black background. For the document market DNP has introduced this original
design and quality that make it difficult to duplicate and easier to authenticate.
Only a few manufacturers in the world can handle the mass production of this
type of hologram, as it requires advanced and difficult replicating techniques.
These holograms are recorded in DuPont photopolymer materials, which are

Figure 19.2. SECURE IMAGE
TM

from DAI Nippon.
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under complete distribution control. The SECURE IMAGE
TM

demonstrates its
efficiency in anticounterfeiting by utilizing a combination of reuse{protection
techniques such as ‘‘broken seal’’ or ‘‘self-destructing labels.’’

In addition, DNP proposes the use of this type of OVD as an effective
measure of brand protection to prevent and eliminate the increasingly sophis-
ticated copying, counterfeiting, and pirating of high-end products. In cooper-
ation with Nippon Paint Company, DNP developed a new photopolymer
transfer foil (SECURE IMAGE

TM
FOIL), which makes it possible to transfer

photopolymer volume holograms by a heat-transfer method for mass produc-
tion. Another DNP development is the Virtugram1 technique where computer-
generated security holograms are recorded in photopolymer materials.

Germany introduced a new passport, which has a transparent volume reflec-
tion hologram laminated over the page with biographical data. The hologram is
a unique 2D monochrome hologram recorded of the normal photograph on the
passport. This is an important improvement over earlier passport protection
with identical mass-produced embossed holograms attached to all passports.

A new German personal identification card (ID card) was introduced in
2004. The new ID cards (Identigrams) have enhanced security features in-
tended to hinder fraud and to enable computerized identification of cardhold-
ers. They are covered with a film-like layer containing multiple holograms. The
holograms, among them a second photo of the cardholder, the federal eagle,
and a capital letter ‘‘D’’ the size of a quarter, become visible when the card is
tilted in the light. Moreover, the name of the cardholder and the ID number
appear as iridescent, 3D figures on the lower edge of the document.

The new hologram technology was created in cooperation with the German
federal ministries of the interior and of justice. The process of creating the
holograms requires sophisticated equipment and expertise, making the IDs
virtually impossible to copy or counterfeit, according to federal sources. The
old IDs that carry only the photograph and the signature of the bearer, were
too easily misused, according to the German authorities. In light of new global
terrorism threats, identification procedures are more critical than ever, espe-
cially at borders and airports. The German government’s ID project was
underway long before the events of September 11.

In addition to improved OVD features on security documents many coun-
tries are considering other new security measures. Among them are the listing
or encoding of biometric characteristics, i.e., distinguishing biological traits,
such as an electronic ‘‘print’’ of a cardholder’s finger, hand, iris, or voice that
can be recognized using computer-aided technologies on the passport or ID.
Several German companies specialize in the manufacture of such identification
technologies, now used in private industries requiring rigorous scrutiny of
personnel, such as nuclear power plants.

DuPont Authentication Systems (DAS), a joint venture between DuPont
and Keystone Technologies/Label Systems, Inc. in the USA, manufactures
advanced security techniques based on DuPont’s photopolymers. The Izon

TM

technology sets a new standard for overt authentication security devices with
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its full parallax deep 3D imaging. Authentication and identification security
products using Izon

TM
allow the viewer to literally look around the sides of the

object in the image as if it were real, delivering instant visual verification of the
authenticity of the document or product being inspected. Since Izon

TM
material

and technology is only provided by DAS and is maintained within a rigorously
monitored secured supply chain, the verification is extremely reliable. Izon

TM

products are available in a variety of constructions, including permanent or
tamper-evident security labels and tamper-resistant seals, and as component
elements. DAS can also provide Izon

TM
tamper-evident labels that reveal a 3D

image at one angle of view and becomes completely transparent at another. An
example of a product protected with the Izon

TM
technology is ADM’s holographic

label on its boxed processor (Processor-In-a-Box, or PIB) packaging. The label,
shown in Fig. 19.3, provides customers an easy, effective way to authenticate
AMD PIB products. The gold-green label consists of a 3D, full-parallax view
surrounding the AMD logo, which shows dots arranged in a pattern: from one
dot to two dots, three dots, and four dots as it is viewed from different angles.

19.3.2 Color Volume Holograms of the Reflection Type

Color reflection holograms can be recorded using red, green, and blue (RGB)
laser wavelengths3. For a Denisyuk-type or single-beam reflection hologram the
different laser beams pass through the same beam expander and spatial filter.
The setup for recording such a hologram is shown in Fig. 19.4. The object is
illuminated through the recording holographic plate. The light reflected from
the object constitutes the object beam of the hologram. The reference beam is
formed by the three expanded laser beams. This ‘‘white’’ laser beam illuminates
both the holographic plate and the object itself through the plate. Each of the
three primary laser wavelengths forms its individual interference pattern in the
emulsion, all of which are recorded simultaneously during the exposure. In this

Figure 19.3. The IZON label for AMD’s PIB products.
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way, three holographic images (a red, a green, and a blue image) are superim-
posed upon one another in the emulsion.

Three laser wavelengths are employed for the recording, for example:
476 nm, provided by an argon ion laser, 532 nm, provided by a CW fre-
quency-doubled Nd{YAG laser, and 647 nm, provided by a krypton laser.
Two dichroic filters are used for combining the three laser beams. The
‘‘white’’ laser beam goes through a spatial filter, illuminating the object
through the holographic plate. By using the dichroic filter beam combination
technique it is possible to perform simultaneous exposure recording, which
makes it possible to control independently the RGB ratio and the overall
exposure energy in the emulsion. The RGB ratio can be varied by individually
changing the output power of the lasers, while the overall exposure energy is
controlled solely by the exposure time. The recording materials needed to
record such holograms have to be panchromatic and of very high resolution.
There are two types of materials in the market that can be used.

19.3.2.1 Silver Halide Materials

To be able to record high-quality color reflection holograms it is necessary to use
extremely low light-scattering recordingmaterials,e.g., ultrafine-grain silver hal-
ide emulsions (grain size about 10 nm). Currently, the only producer of a com-
mercial holographic panchromatic ultrafine-grain silver halide material is the
Micron branch of the Slavich photographic company located outside Moscow.15

19.3.2.2 Photopolymer Materials

The color holography photopolymer material from DuPont is another alter-
native recording material for color holograms.11,12 In particular, this type of

Krypton ion laser (647 nm)

cw Nd: YAG laser (532 nm)

Argon ion laser (476 nm)

Holographic plate
Spatial filterShutter

White laser
beam

Beam
combiner

Beam
combiner

Mirror

Mirror

Mirror

Mirror

Object behind the 
plate positioned

upside down

Figure 19.4. Setup for recording a volume color hologram of the reflection type.
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material is suitable for mass production of color holograms. It has special
advantages of easy handling and dry processing (only UV-curing and baking).
The DuPont color photopolymer material has a coated film layer thickness of
about 20mm. However, the panchromatic polymer material is only supplied to
specially selected and approved hologram producers because of its application
in the field of document security. To obtain the right color balance, the RGB
sensitivity depends on the particular material, but typically red sensitivity is
lower than green and blue sensitivities. It is difficult to obtain high red-sensi-
tivity of photopolymer materials. Simultaneous exposure is the best recording
technique for photopolymer materials. Holograms can be recorded manually,
but in order to produce large quantities of color holograms, a special machine is
required. For hologram replication the scanning technique can provide the
highest production rate. In this case, three scanning laser lines are needed.
The output power in the scanning lines can be adjusted in such a way that all
three simultaneously can scan the film.

As the first company in the world, Dai Nippon (DNP) introduced the
TRUE IMAGE1 LABEL, which is a full-color Lippmann-type reflection holo-
gram.8,14 It can contain a color 3D image on a black background. DNP has
developed a mass-replication technique for these hologram labels. The holo-
grams are recorded in DuPont panchromatic photopolymer materials. An
example is shown in Fig. 19.5.

Figure 19.5. TRUE IMAGE1 from DAI Nippon.
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19.4 A New Type of OVD Based on Lippmann
Photography

The new type of OVD presented here is based on an old photographic technique
known as interferential photography or Lippmann photography.10 Gabriel
Lippmann was awarded the Nobel Physics Prize for his invention in 1908.
This type of photography was the first technique that could record color
photographs directly in the camera. Although the technique was unparalleled
at the time, it also had several limitations: the camera needed a special type of
isochromatic film, the image could not be copied, and the color image switched
between negative and positive, depending on the viewing direction. Oddly
enough, these limitations actually underline the strengths of the photographic
security feature described below.

A modern Lippmann photograph may be categorized as a new type of
OVD.5 It can be applied to individually issued security documents, such as
ID cards, passports, credit cards, driving licenses, and other documents that
require a high degree of security. Although a Lippmann photograph is similar
to a hologram, it allows a unique recording of each document to be made,
thus offering a higher level of security than mass-produced holograms. The
recording of Lippmann photographs requires a special type of photosensitive
recording material, which is in contact with a reflecting layer. Use can be made
of modern panchromatic photopolymer materials for holography or ultrahigh-
resolution silver halide emulsions, which, once recorded and processed, may be
laminated to the security document. Special equipment is needed to record the
image. Lippmann photographs are nearly impossible to copy and certainly
cannot be reproduced by means of conventional photography or with the use
of color photocopiers. In addition, there is no interest in copying an existing
Lippmann OVD on a document since it is unique to that document only.

19.4.1 Brief Description of the Recording Technique

To record a Lippmann photograph on photopolymer material, the photosensi-
tive layer has to be rather thin (in the order of a few micrometers only).
Moreover, the light-sensitive layer must be coated onto a flexible transparent
base, and a special type of reflecting foil has to be laminated to the photosensi-
tive polymer layer (it should be noted that contact between the two must be
perfect). Experimental photopolymer materials have been manufactured by
DuPont to prove the concept of recording Lippmann photographs in modern
photopolymer materials.4 The polymer film, which, as indicated, is laminated
to the reflecting foil can only be exposed in a special camera. Once the docu-
ment has been recorded, the reflecting foil is detached from the photopolymer
film, which is developed with the assistance of strong white light, or UV light.
The brightness of the image is subsequently increased by heat-treating the film.
The development of the DuPont type of photopolymer film does not involve

JAVIDI: Optical Imaging Sensors and Systems for Homeland Security chap19 Final Proof page 395 27.10.2005 11:12am

19 Improved Optical Document Security Techniques 395



any liquid agents, and the entire process is therefore ‘‘dry.’’ As a result the
technology can easily be incorporated in machines that record and process
Lippmann security labels. Once processed, the transparent photopolymer
label is laminated to the security document.

As the processed polymer film contains no dyes or fading chemicals, the
film’s archival stability is expected to be very high. The Lippmann OVD simply
consists of a piece of plastic material onto which the information is recorded as
an optical phase structure (refractive index variations within the photopolymer
layer).

Figure 19.6 depicts a sample US passport having a Lippmann OVD at-
tached in the upper right corner. Figure 19.7a shows a close-up of the Lipp-
mann OVD in color, when observed perpendicular to the passport page. In
Fig. 19.7b, the Lippmann OVD appears as a negative when viewed at an angle.
Figure 19.7c illustrates the color shift when the OVD is illuminated and
observed at oblique angles.

19.4.2 Advantages of the Lippmann OVD

Lippmann photography offers a new type of optical security device that is
unique, and can be individually produced for each security document issued.
A Lippmann OVD offers the following advantages:

. Equipment capable of automatically recording and processing Lippmann
OVDs can be manufactured for use by issuers and manufacturers of security
documents.

. The recording process is uncomplicated and does not require a specially-
equipped laboratory.

Figure 19.6. Passport with a Lippmann OVD attached in the upper right corner.
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(a)

Figure 19.7a. Lippmann OVD in color.

(b)

Figure 19.7b. Lippmann OVD as a negative.

(c)

Figure 19.7c. Lippmann OVD illuminated and observed under oblique angles.
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. Access to the photosensitive film used for recording purposes (for example
the special photopolymer film), can be strictly controlled by the film’s
manufacturer. Only approved manufacturers and issuing authorities can
order the requisite material from the film manufacturer (e.g., like currency
printers ordering banknote paper).

. The Lippmann OVD has a very high archival stability.

. The Lippmann OVD is Bragg sensitive. In other words, it changes color,
depending on the angle of illumination and observation. It also switches
between a positive and negative image. These features are extremely im-
portant because the effects are easily to discern when inspecting the Lipp-
mann OVD.

. The Lippmann OVD cannot be copied by means of conventional color
photography. Neither can it be reproduced using color photocopiers or
scanners.

. Since the resolution of the Lippmann OVD is extremely high, a reduced
image of, for example, the biographical data page, can be laminated to the
security document (occupying only a small area of it). In such instances, the
information recorded in the high-resolution Lippmann image may need to
be magnified before detailed inspection can take place.

Lippmann OVDs can be used to make passports more secure and counterfeit
resistant. In this case a Lippmann OVD can be recorded of the biographical
data page, and could include specific bearer-related information, including the
bearer’s signature, and a reproduction of the bearer’s (conventional color)
photograph. The reduced Lippmann image is laminated to the page, in an
appropriate position. The color shift displaced by the Lippmann OVD indicates
that it is a genuine Lippmann photograph, as opposed to a conventional
photograph. In addition, all information recorded in the OVD may be com-
pared to the corresponding information in the document itself. Lippmann
OVD-protected documents are extremely difficult to tamper with. The most
important advantage is that there really is no point in trying to copy a
Lippmann OVD; it is unique to a particular document and cannot be applied
to other documents. Although the authenticity of a Lippmann OVD can be
easily discerned with the naked eye, it is also possible to develop automatic
inspection equipment capable of checking the iridescence of the image or
comparing the information recorded in the document to the information
‘‘stored’’ in the Lippmann OVD.

The application of Lippmann photography to security documents is pro-
tected by a US patent6 and European patents are pending. Although DuPont
has expressed an interest in developing and manufacturing the special photo-
polymer film needed to create Lippmann OVDs, there is still a requirement for
parties capable of designing and developing the requisite recording and pro-
cessing equipment. Moreover, additional work is needed to improve the quality
of the recording material used for Lippmann OVDs.
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19.5 Conclusion

Today, there is worldwide interest in improving document security in general.
In England, as in many other countries, where OVDs have been introduced to
protect banknotes, use is often made of kinegrams (similar to an embossed
hologram). Even though personalized documents, such as the new UK pass-
port, also contain OVDs, identical holograms are used in all passports. The
same applies to credit cards, which despite being personalized carry identical
holograms. As described above, Germany recently introduced a new type of
passport and ID card that contain individually-made volume holograms. There
is no doubt that the need to make personalized documents more difficult to fake
can only be catered for by personalizing the security features they contain.

The worldwide market for document security is large and growing rapidly.
There are many personalized documents that would benefit from a higher
degree of security, including drivers’ licenses, travel documents (Schengen
Visa), corporate ID cards, ID cards for pilots, people working in nuclear
power plants, military personnel, police officers, custom inspectors, etc. All
are potential candidates for more secure ID documents.

As far as Lippmann OVDs are concerned, the way forward is to introduce a
complete recording/processing system that may be used to manufacture the
requisite Lippmann OVDs in-house. Today, mass-produced, embossed
holograms and other types of OVDs (e.g., kinegrams) are made by different
holographic manufacturers, which deliver their products to the issuing parties
for inclusion in the various security documents. Since the Lippmann OVD is
unique to a particular document, there is no need to produce them in advance.
There is, therefore, a distinct requirement for special recording/processing
equipment that can be sold or leased to issuing authorities or companies. The
special machine that is similar to a photocopier enables issuers to record the
Lippmann OVD when the document is prepared. As a consequence, the issuer
has full control over the issuing process and the security that surrounds it.
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All-optical implementation, 156
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correlation plane, 206
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Batch
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337
processing, 336
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expander, 27, 62, 88
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Bidirectional reflectance distribution
functions (BRDF), physical
models, 248

Binary random variable, 320
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Biometric data, 350
Bovine Serum Albumin (BSA), 374
Bragg effect, 178
Burrows-Wheeler (BW), 30, 32, 42
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BW, see Burrows-Wheeler (BW)
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Camera geometry, 207{208
Cameraplane, 28
Camouflaged objects, 283
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Cartesian coordinates, 10
Cast shadows, 270
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camera, high-definition, 49, 76,

141, 157
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recording plane, 59
sensors, 3, 75
TV, 49

CFAR, 291{292
Chromosome, 191{192
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operation, 190, 198, 201
output transmission, 192
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Coarse matching stage, 120
Coarsest angular resolution, 198
Code sequence, authentic, 176{177
Codebook vector, 34
Coherent imaging applications
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object recognition, 48
ranging, 48

Coherent light, 1, 7, 47, 88, 143
Coherent speckle noise, 76
Collimated illumination, 176
Collimating lens, 176
Color holograms, 383
Color reflection holograms recording,

388{389
Color reflection holograms recording,

materials used
photopolymer materials, 389{390
silver halide materials, 389
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correlation, 236{237

Complex conjugate, 50
Complex optical field, 62
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Computational load, 149
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Computer simulations, using LADAR
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test of optimum nonlinear filter,

326{328
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Concatenated
matrix, 294
vector, 298

Conditional likelihood ratio, 295
Confusion disk, 63
Constrained least squares, 290{291
Constraint vector, 215
Construction set, 224
Controlling
image resolution, 75{80
image size, 70{75

Conventional
optical microscope, 62
matched filter detector (MFD), 302,

305, 306f{307f, 309f, 314
RX algorithms, 299

Convolution, 5
operator, 321, 333
transformation method, 55

Cooperative Coevolution (CC) algorithm
credit assignment, 251
interdependability, 251

population diversity, 251
problem decomposition, 251

Cooperative coevolutionary paradigm,
252

Corner cube reflectors, see Retroreflective
reflectors

Correct recognition, 276, 279f
Correlation filtering approach
classification, 206
target detection, 206

Correlation of holograms
measurement of small rotations, 9{10
object recognition, 8{9

Correlation
approach, 319
credibility function, 253{254
filter, 206
lengths, 7
measurement, 224
pattern recognition technique, 214
plane, 227, 233, 235{236

Cross-correlation
of integral image, 164
peak, 164, 167, 170

Cryptographic techniques using light, 352
Cryptography, 352
Cryptosystems, 25

D
Data
space, 285{286, 288
vector, 34

Decryption, 25{26, 28, 42
and reconstruction, 28{29

Defocus aberration, 61
Deformable mirror devices, 179
Detection probability, 300, 303f{304f
DFT algorithm, 56
DHM, see Digital holographic microscope
Dichroic filters, 389
Dichromatic model, 249
Dielectric materials, 249
Dielectric thin films, deposition of, 373
Diffraction, 342
integral, 87
limit, 54

Diffractive
microoptics, 346
optical element (DOE), 346
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Digital hologram, 4, 8, 10{13, 91
compression, 25{26
encryption, 27{28

Digital holographic interferometry
classical holography, 60
deformation measurement, 60
optical path, 60
refractive index, 60

Digital holographic
microscope, 61, 63
microscopy, 60, 66

Digital Holography (DH), 138, 179, 181f
compensation of aberrations, 60{61
convolution approach, 55{56, 70
performance and limitations, 56{57
reconstruction methods, 52{56
theory and principle of operation,

49{52
Digital Holography, reconstruction

methods
convolution transformation method,

55{56
Fresnel Transformation Method

(FTM), 52{55
Digital
3D model, 155
camera, high-definition, 155
data, 90
processing, 49

Digitally reconstructed holographic
image segmentation, 143

Discrete Fourier transform operator, 333
Discrete mounting techniques, 335
Discrimination capability, 322
Display applications, 25{26, 34, 38
Distortion
tolerance, 14, 206
free imaging, see Optical

interconnection tasks
Distortion-tolerant
filter, 320
object recognition, 128{129
tolerant, 113

Double exposure holography, 61
Dual concentric windows, 299, 299f
DuPont Authentication Systems (DAS),

387
DuPont photopolymer materials, 385
color, 390

Dynamic Link Association (DLA), 114,
145

3D Modified, 120, 125{126
coarse matching stage, 114
fine matching stage, 114

Dynamic sensor fusion, 265

E
e-beam lithography, 382
Eigenvalues, 288{289, 298, 316
Elastic Graph Matching (EGM), 114
with sequential and recursive

realization, 126{127
Electrical storage, 90
Electron microscope images, 48
Electrooptical devices, 1
Elemental image, 155{161, 160f{162f,

164{165
central, 161

Embossed holograms, 384
Embossing techniques, 178
Emissivity of the human body, 262
Empirical kernel map, 289, 293
Encryption and decryption experiments
decryption, 91{92
encryption, 89{90
experimental system, 88{89
recording digital hologram, 89

Encryption, 25{31, 42, 85{92
wavefront, 90

Environmental degradation effects, 178
Equiprobability, 32
Etching, see Batch fabrication by

lithographic techniques
Euler angles, 120
Evaluation of nonuniform quantization

techniques, 33{38
Expectation operator, 333
External noise factors
environmental fluctuation, 138
environmental vibration, 138

Eye locator program, 277
Eye model
location of eye, 269
normalized greylevel values, 269
variations of eyelids, 269

Eye
finder program, 268f, 271f
lid segmentation, 273
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pixel, 273
recognition, 268
region, 272{273, 277
socket, 273

F
Face/identity recognition
algorithm, 268
/verification of, 267{268, 280

False alarm probability, 128
Fast Fourier transformation (FFT), 151
Fatigue effect, 33
Feature vector, 139
extraction, 119{120, 143{145

FERET
Cast shadow operator (CS), 273, 274f
database, 273, 377
image, 277{278, 279t
subjects, 278

FFT algorithm, 142
Field of view (FOV), 189, 206, 210, 299
Filamentous
microorganisms, 139
structures, 145

Filter, generic single-layer fiber-tip
reflection, 366f

Filtering applications, spectral, 364
Fine matching stage, 120
First-order correlation, 284
Fitness function, 191{196, 198, 201t
thermal channel, 252
video channels, 252

Flat earth geometry, 184
Flip-chip bonding, 337
FLIR system thermal camera, 255
Focal resolution, 62
Focus tracking during dynamic

recording of digital holograms in,
67{70

Fourier
domain expression, 321
lenses, 346, 349

Fourier transform, 1, 5, 8, 12, 14, 343
discrete, 321, 334
inverse, 166
noise, 321, 333
reverse, 357
spatial, 355

Fourier transformation, 350

lenses, 345, 351
Frame rate, 184, 187, 189, 191, 195, 198,

194t{197t, 200f
Free-space optics, properties of, 1
high space-bandwidth product, 1
massive parallelism, 1

Fresnel diffraction
field, 138
integral, 90

Fresnel
approximation, 10{11
diffraction, 20, 26, 42, 55
integral, 60
propagation, 26, 28, 32, 142
reconstruction algorithm, 54
region, 76
transform, 54
transformation, 142
Transformation Method (FTM), 52{55
treatment, 60

Fresnel{Kirchhoff integral, 5
Fringe projection, 61
FTM, see Fresnel, Transformation

Method (FTM)
Full-face photos, 275f
Full-rank matrix, 295
Future netted system
effective strike operation, 204
initial target detection, 204

G
Gabor filter, Gaussian-envelope in, 144
Gabor filtering
2D, 113
3D, 113

Gabor
3D, 114
based wavelets, 114, 143{144
coefficient, 120, 144
feature, 113
filter, 144
jets, 114, 119, 120
kernels, 119, 137, 144{145

Gabor-based wavelets, 144
impulse response (or kernel), 144

Gaussian
envelope, 119, 144
form kernels, 143
illumination, 347
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Gaussian (continued)
models, 250
parameters, 253
probability density, 294
Radial Bases Function kernel (RBF

kernel), 286
random noise, 294
random process, 286
RBF kernel, 300, 302, 305, 306f{310f,

309
white noise, 238

Gaze
angle, 268, 270, 279
direction, 277

Generalized
likelihood ratio test (GLRT), 286, 291,

294{296, 298, 311, 314
phase contrast method, see GPC

method
Generation number, 198, 201t
Genes, 191{193
Genetic
algorithm (GA), 183, 191{196, 198, 201,

201t
evolutionary process, 247
optimization algorithms, 192

Genotype, 191
Gerchberg-Saxton, modified iterative

algorithm of, 347
German personal identification card, 387
Global
coordinate system, 187
label, 212
recognition peak, 165

GMR sensor, TE polarization spectral
shift for the two-layer, calculation
of, 375f

GPC method, 353{356
using planar integrated microoptics,

miniaturization of, 356{357
Gram
kernel matrix, 299
matrix, 289, 315{316

Grating
fill factor of resonant sensor,
calculation of, 369, 370f

thickness of resonant sensor,
calculation of, 369, 370f

Gray scale, 319, 325

GRIN lens, 176
Groundtruth data, 253
Guided-mode resonance effect, 363
application of, in optical sensing, 364

H
Half-wave plate, 63
Head rotation, 242f, 268, 270, 274{277,

279{280
Head tilt, 268, 279{280
downward, 278
upward, 271f, 278

Height distribution, 62
He-Ne laser, 158
High
dimensional feature space, 283, 285{287
frequency spatial variations, 7
order correlation, 283, 314
resolution sensors, 183

Histogram analysis, 139, 143
Hologram recording, 383{384
digital, 2{4
experimental setup for, 2
materials for, 385
phase-shift technique, 4

Hologram, 2, 7{11, 14{16, 18{19
CCD camera, 2
for improved OVDs, 385
fringes, 68
interference pattern, 2
Mach-Zehnder interferometer, 2
plane, 56
recording on charge coupled device

(CCD) cameras, 49
window extraction in, 5{6

Holograms, types of, 381
volume holograms, 382
volume reflection holograms, 382

Holographic image, 151
quality of, 383

Holographic
interferometry, 48, 61, 70
sensor, computational, 140
speckle, 26

Holography as a metrological tool, 48
Holography, 1{2, 156, 381
limitations, 48
property, 5

Homeland security, 47, 344
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Hough transform, 211
Huffman coding, 30
Human aided recognition of

microorganisms, 140{152
recognition of Sphacelaria Alga, 149
recognition of Tribonema aequale Alga,

149{152
Hybrid encryption system, 86
decryption, 87, 90
encryption, 86, 89

Hybrid imaging, 338, 342{343
Hybrid integration, practical aspects of
capsuling for processing and operation,

337
thermal and mechanical stress to the

bonds, 337
Hybrid optical encryption, 85
of a 3D object, 92{93

HYDICE
images, 299{300, 300f, 302, 314
imaging sensor, 299
test set, 311

Hydrogels, use of, 378{379
Hyperspectral imagery, 283
Hypothesis test, 293

I
Identigrams, 387
Illumination effects, 305
Image
acquisition systems, 63
compression, 25{26
encryption, 137

Imaging
sensor acquisition rate, 325
systems for discrete objects, design

considerations of, 341{343
Imaging, based on radiation
coherent, 47
incoherent, 47

Incorrect recognition, 276
Incremental angle, 238
In-line digital holograms, 26
Inner-window region (IWR), 299{300
Input irradiance distribution, 12
Input
parameter, 273
pixel, 284
vector, 34

Inspecting microstructure by, 63{66
Integral imaging technique, 155, 171
principle of, 156{158

Integral photography, 1
scheme, see Integral imaging technique

Integrated
circuits, fabrication of, see

Miniaturization
fiber-tip biosensors, potential

applications of, 378
optical correlators, planar, security

application of, 349{351
Integrated optical correlators,

experimental demonstration of
off-axis integrated correlators,

348{349
on-axis integrated correlators, 346{348

Intel Web-cam, 255
Intensity
distribution, 54
normalization, 268f, 274, 279f
profiles, 54

Interference
angle, 56
filter, 176, 177f
fringes, 59
microscopy, 66
pattern, 49, 50, 141

Interferogram, 3{4, 28, 142
Interferometric
fringe pattern, 48
measurements, 66

Inverse multiquadric kernel, 305,
306f{308f

Iris
recognition, 268
segmentation, 273
translation, 276{277

Isolated planar objects, 161f
ISP framework, 205
Izon

TM
technology, 387{388

J
Joint power spectrum, 164

K
Kernel feature map and kernel learning
input hyperspectral data, 285
kernel functions, 285
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Kernel feature map and kernel learning
(continued)

linear target detection algorithm, 285
Mercer kernel, 285
nonlinear mapping function, 285

Kernel RX-algorithm, 299{300
background clutter pixels, 288
covariance matrix, 288
eigenvector decomposition, 288{289
nonlinear mapping, 287

Kernel
based methods, 283, 285
matched filter detector (KMFD), 302,

305, 306f{307f, 309f, 314
Kernel-matched filter, 290{293, 302
attenuation constant, 291
CFAR-matched filter, 292
equivalent matched filter, 291
high dimensional vector, 291
kernel feature space, 291
nonlinear matched filter, 292
kernel function, 292

Key benefits of netted and distributed
systems for security, surveillance

adaptive self-adjusting properties, 205
efficient resource usage, 205
improved ATD/R performance,

205{206
improved strike capability, 205
increased tolerance, 204

Kinegrams
TM
, 349{351

k-means clustering algorithm, 34
KMSD, 305, 309, 311f{313f, 311{312, 314
KNIGHT

human detection, 205
video processing system, 213

KNIGHT tracking system, 212
activity detection, 209
object detection, 209
shadow removal, 209
tracking object classification, 209

Kodak Megaplus CCD camera, 27
Kohonen competitive network, 32{34,

37{43
Kronecker
delta, 323
product, 215

kth law, 14
nonlinear correlation effect, 167

kth-law nonlinear correlation for pose
estimation

2D Fourier transform, 232
Fourier-plane SDF filter, 233
Fourier domain, 232
maximum correlation peak, 233
nonlinear factor k, 232
shift invariance, 233

k-tuple SDF, 214

L
LADAR image, 2D encoded, convertion

of, 324{325
LADAR

autonomous vehicle navigation, 325
battlefield assessment, 325
camera measures, 319
range data, 319
range image, 319, 326, 328f
range sensor, 328f
sensor location, 324

Lagrange multiplier, 322
Laser tagging by wavelength division

multiplexing, 177f
Last In First Out (LIFO), 253
Lateral resolution, 5
Least squares approximation, 295
Lempel
Ziv (LZ77), 30, 32, 42{43
Ziv-Welch (LZW), 30, 32, 42{43

Levenberg-Marquardt algorithm
artificial neural network (ANN), 230
single-layer ANN, 230
standard deviation, 230
two-layer back propagation neural

network, 230, 231f
Light field, 11
Light pipe
configuration, 345
correlator, 345f

Light source, 273
Lighting condition, 267{268, 274{275,

278{280, 275f
Likelihood ratio test (LRT)
Gaussian probability density, 294
Gaussian random noise, 294
Neyman-Pearson criterion, 294
maximum likelihood estimates (MLEs),

294
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Linear
algorithm, 285{286
correlation, 224
dependency assumption, 239
dependency, 226, 239
discriminant analysis, 133
estimation, 226, 230
matched (subspace) filters, 284{285,

290{291
mixture model, 284
phase factor, 6, 8
(subspace) mixing model, 284
weighted composite filter, 225, 240

Linear correlation for pose estimation
column vectors, 224, 227
composite correlation filter, 223{224
correlation peak value, 226{227
correlation value, 224, 226{227
F15 airplane, 224{225, 225f
in-plane rotation, 225
matrix transposition operation, 224
out-of-plane rotation, 225
pose parameters, 224
pose vector, 224, 226
recognition flag, 225
synthetic-discriminant function (SDF)

filter, 224
transformation matrix, 226

Linear-matched filter, 290{291
attenuation constant, 290
Constrained Energy Minimization

(CEM), 290
covariance matrix, 290
noise, 290
target spectral signature, 290

Linnick interferometer, 61
Lippmann OVD holograms, use in

passports, 395
Lippmann OVD
advantages of, 392, 394
kinegrams, 395
photosensitive film, 394
recording technique, 391{392

Liquid crystal display, 179
Liquid Crystal on Silicon (LCOS) SLM,

361
Lithium niobate structure, 64
Lithographic fabrication, 336
Local

kernel matrix, 299
spectral analysis, 143

Localized spectral difference, 284
Longitudinal shift, 2
Lossy compression of encrypted digital

holograms, 29{32
Lower shadow extant, 273
Low-level disposable sensor, 204
LZ77 algorithm, 30
LZ77, see Lempel-Ziv (LZ77)
LZW, see Lempel-Ziv-Welch (LZW)

M
MACH separation metric, 217
Mach-Zehnder
configuration, 63
interferometer, 27, 58{59, 63, 139

Mahalanobis distance measure, 284
Mapping technique, 320
MasterCard

TM
, 349

Matched subspace filtering techniques,
284

Maximum average correlation height
(MACH), 206, 216

Maximum likelihood
estimates (MLEs), 294{295
principle, 294

Mean Absolute Error (MAE), 128,
130

Median
fitness value, 198, 201t
plane, 5

Micro-electro-mechanical-system
(MEMS), 65, 179

structures, surface profiles of, 65
Metric, 274, 277, 280
Microchannel imaging, 338, 341f, 342
MEMS, see Micro-electro-mechanical-

system (MEMS)
Microfabrication
process, 69
techniques, 336

Microlens array, 1, 155, 156f, 157{158,
161{162, 165, 341

Micromachined beams, 65
Microoptical
systems, 335
technologies, 342

Micro-optics, 178
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Microscopic applications, 60
Microstructures
circular fringes, 63
fabrication, 65
functionality, 65
inspecting by DHM, 63
reliability, 65
surface morphology, 65
topographic characterization, 63

Military vehicles, 299, 302, 309
Milling, see Batch fabrication by

lithographic techniques
Miniaturization, 335
problem, 320

MIRAGE holograms, 385
Mixture of Gaussians, representation of,

247{248
Mode of detection, 368
Modulation speed, 344
Monochrome reflection hologram

of reflection type, recording of,
386

Moore-Penrose pseudoinverse, 228
Morphological traits, 138
Mosaicing operation, 183{184, 193, 198,

185f, 193f, 194t
Motion-based classification, 210
Moving object detection
advantages, 243
shortcomings, 243{244

Moving object detection, categories of
feature-based methods, 243
featureless methods, 243

Moving target density, 189, 195
MSD, 312, 313f, 314
MSTAR data set, 214, 217
Multidimensional image data, 286
Multiple
exposures, 138
fiber optics links, 176
interferogram recordings, 138

Multisensor fusion and integration
approaches, paradigms used

Artificial Intelligence (AI), 245{246
data structure, 245{246
physics, 245{246
statistical, 245{246

Multisensor fusion, advantages, 244
Multiwavelength DH (MWDH), 70

N
Natural clutter, 284
NBPP, 197t, 198
NBPROI, 197t, 198
Near-field approximation, 56
Negative response (code bit 0), 218
Network architecture
Internet Protocol (IP), 211
Transmission Control Protocol (TCP),

211
Network integration of tracking and

ATD/R
hoc network, 211
synchrotech adapter, 211
wireless card from MeshLAN, 211
wireless peer-to-peer, 211

Network-centric application, 214
Neural network, 14, 16, 19{21, 230
Neutral
density filter, 63
expression, 276

Neyman-Pearson criterion, 294
Noise robustness capability, 322
Noise/clutter suppression, 178
NonFERET, 278, 279t, 279f, 280
Nonlinear
correlation, 14, 232
mixture model, 285

Non-overlapping pixel data, 184
Nonstationary local mean, 286
Normalized rms (NRMS), 35, 38
NRMS, see Normalized rms (NRMS)
Numerical reconstruction, 49
Nyquist limit, 54{55

O
Object beam, 62
Object recognition system, 8, 25, 113
2D, 113
3D, 113
an experiment, 8{9

Optical information
systems, 137
technologies, 85

Optical
axis, 142
codes, 175, 178, 180f
coherent microscopy and imaging, 48
communication systems, 344
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correlation on discrete input/output
arrays, 344

correlation techniques, 1
correlator systems, 335
cryptography, 353
field, 51
ID tags, 175, 178
identification phase code, 177{178
implementation, 25
interconnection tasks, 341
multimode waveguide, 340
processing, application of, 1
security technologies, 175
setup,coupling efficiency of, 341
signal processing, see Spatial filtering
system aperture, 54
waveforms, 176
wavefront, 48

Optimum nonlinear distortion-tolerant
filter, 319, 324

3D, 326{327, 329
Optimum
parameter values, 195, 198
reduction regime, 183
rule quantity, 187

Optoelectronic devices, 49
Optoelectronical systems, 335
Optomechanical system, 337
Optomechanics, 336
Orthogonal matrices, 294
Outer-window region (OWR), 299{300
OVD, 382
based on Lippmann photography, 391
based on volume phase holograms of the

reflection type, 385

P
Panchromatic polymer material, 390
Parabolic
approximation, 338
phase factor, 63

Parallax, 85, 91
Paraxial approximation (PA), 51
Pattern recognition
problems, 319
systems, 137

Pavlidis et al., automatic passenger
counting system, 245

Peak response of a biosensor, 366

Peak to sidelobe ratio (PSR), 207
Percent-of-Saving, 185, 187, 189{191
Performance Analysis, receiver operating

characteristic (ROC) curves, 262,
265

Performance characteristic function and
filter synthesis

ATR algorithm, 216
2D Fourier transforms, 216
MACHfilter algorithm, 216
mean and spectral variance, 216

Phase shifting, 57{59, 138
algorithm, 57{58
technique, 4{5, 89

Phase
contrast filter (PCF), 355
distribution, 61
map, 64
masks, fabrication of, 178

Phase-only optical decryption, 354
miniaturized GPC system for, 358{361

Phase-only
cryptography, 353, 357
filter, 12

Phase-shift
digital holography, 27
holography, 152
interferometry (PSI), 25{26, 28

Phase-unwrapping methods, 62
Phenotype, 191
Photo
detector array, 176
sensor, 138

Photographic holography, 51, 61
Photographic
materials, 49
media, 49
plate, 48, 58
transparency, 58

Photopolymer, 178
Physical Models of Reflectance, 248{249
Dichromatic, 248
Lambertian, 248
Phong, 248
Ward, 248

Piezoelectric transducer mirror, 58
PIFSO imaging systems
optical correlation of, 343{349
paraxial theory of, 338{341
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PIFSO imaging systems (continued)
space-bandwidth product (SBP),

calculation of, 340
transmission function of ideal parabolic

lens, calculation of, 339
Pixel, 4{5, 7{10, 13{14
vectors, 293, 299, 305

Planar integrated free-space optics
(PIFSO), 335{336

basic concept, 335{337
design considerations, 337{343

Planar
integrated imaging systems, 335
integration of discrete optical

correlators, 344{345
integrated free-space optics (PIFSO),

353, 356
Plane
and volume holograms, 383
wave, 141
wave model, 365

Polarized light, 140
Polarizing beam splitter, 63
Polynomial kernel, 286, 305, 306f{308f
Polysilicon cantilevers, 65
Potential infinite dimensionality, 296
Potentially infinite dimension, 284
PPLN structure, 64
Pressure, 198
Principle of triangulation, 158, 160, 171
Probability
density, 294
function (pdf), 320
of observing a background pixel, 248

Processor-In-a-Box (PIB), 388
Projection matrix, 295{296
Propagation distances, 12
PZT stage, 88

Q
Quantization of encrypted digital

holograms, 38{42

R
Range
camera, 319
images, 156
finder system, 2

Raster, 76

Rayleigh
criterion, 340
Sommerfield diffraction integral, 51

RCWA code, 365
Real
optical system, 92
time acquisition, 66

Receiver operating characteristic (ROC),
187

Recognition of object by pose estimation
construction set, 233
nonlinear filter, 233
optimum nonlinear filter, 232
recognition flag RF, 232
two-layer ANN, 232

Recognition task of
facial image data, 267
frontal view, 267
head pose, 267
images, 268, 277
natural facial variations, 267

Recognition
rate, 268, 276, 280
system, 279

Reconstructed 3D scenes, correlation of
comparison between 2D and 3D

correlation, 170{171
principle, 165{167
recognition of a 3D object using

nonlinear correlation, 167
three-dimensional object localization,

167{170
Reconstructed
holographic images, 140
images, enhancement of, 7, 70

Reconstruction
algorithm, 49
pixels (RP), 67, 70

Recording
distance, 56
environment, 142
geometry, 60
medium, 48
plane, 58
sensor array, pixel area of, 57

Recurrent Motion Images (RMIs), 210
Recursive method, 126
Reference wave, 48
Reflective coatings, 337
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Refractive index
of the attached layer, calculation of,

369, 370f
sensing in water, calculation of,

366f{368f
units (RIU), 366

Region of Interest Extraction, 184{185
Regions of Interest (ROI)
clutter density, 185, 187
dynamic, 183, 188{190, 192, 195, 200f
dynamic ROI transmission, 192
extraction operation, 183, 185
operating characteristic (ROC) curve

of, 187
static ROI transmission, 192
target area density, 185, 187, 189

Regression techniques, 270
Relaxation parameter, 116
Remote authentication/verification

system, 179
Replication techniques as a means for
low cost, 336
mass production, 336

Resonance switching phenomenon, 363
Resonant waveguide grating sensors,

366
application of, 371

Resonant
central wavelength shift, calculation of,

369{371
device, two-layer, fabrication of, 374
sensor functions, fiber-tip, 364
sensor modeling, 365{371
sensor, silanated, TE polarization

spectral response of, 376f
Retroreflective
optical ID tags, 175, 178
reflective reflectors, 177

RGB combination, 75
RGM, 139
process, 150

Rigid Graph Matching (RGM), 120, 137,
145{146

with Rotation-tolerant Property, 120,
125{126

Rigorous coupled-wave analysis (RCWA),
365

ROI extraction algorithm
algorithm internal parameter, 187

complementary cumulative distribution
function, 187

false alarm probability, 187
Image/Scene Metric, 187
inverse complementary cumulative

distribution function, 187
Ronchi grating, 73{74
Rotation
tolerance, 14{15
invariant property, 144
tolerant object recognition, 129{130
tolerant property, 114

RX anomaly detection, 286
RX-algorithm
background clutter data, 287
background clutter noise process, 287
background covariance, 287
Gaussian random process, 286
Generalized Likelihood Ratio Test

(GLRT), 286
spectral pixel, 286

S
Sacrificial layer, 65
SAR images
BTR (class-2 object), 217{218
of target, 214
T72 (class-1 object), 217{218

SBP, see Space-bandwidth product (SBP)
Scalar diffraction theory, 51
Scene-related parameters, 194{195,

197{198, 201
Seamless tracking across network,

205{206
Search algorithms
brute force: depth first, breadth first,

250
genetic algorithms (GA), 250
gradient methods: neural networks, 250
heuristic methods: best first, beam

search, A*, 250
Second-order correlation, 284
SECURE IMAGE

TM

FOIL, 387
LABEL, 385{386

Segmentation techniques, 238
Self-configuring network, 214
Self-organizing map (SOM), 32{38
SEM, 78
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Semi-transparent objects, 143
Sensing modalities, 244
Sensor fusion architecture, physical

models
reflectance models, 246, 246f
thermal models, 246, 246f

Sensor fusion system, advantages
context-based adaptation, 244
evolutionary-based approach for fusion,

244
physical models, 244

Sensor fusion system, features of, 244
consistent data representation, 244

Sensor network and algorithm,
parameters settings between

bit rates, 205
modality, 205
resolution, 205
sensor geometry, 205

Sensor
angular resolution, 193, 198, 200f
fabrication, 371{378
fusion system, 243
high-resolution detail-oriented sensor,

204
low-resolution simple sensor, 204
polarization-mode waveguide-grating,

368
processing techniques, 192
resolution, 189, 191, 194t{197t, 200f
spectral characteristics of, 364
technology, 363

SEOL digital holography, 138
Sequential method, 126
Shift invariant
filter, 320
linear, 11

Shift-invariant 3D object recognition
experimental results, 10{12
principle, 12{13

Short wave infrared (SWIR), 245
Signal to noise ratio (SNR), 291, 299, 344
Silicon substrate, 65
Similarity function, 146
Single-exposure online (SEOL) digital

holography, 137, 140{143
benefits, 139, 142
stages, 139

Single-layer waveguide grating, 364f

Site map, 208
SNR, see Signal to noise ratio (SNR)
Soft competition, 33
Solid-state pyroelectric sensors, for

infrared, 49
SOM, see Self-organizing map (SOM)
Space-bandwidth product (SBP), 138, 340
Spatial
coherence, 140, 238
filter, 88
frequency spectrum, 343
light modulator (SLM), 179, 359
registration, 256
resolution, 4, 63

Spatial filtering, 343
architecture, see Generalized phase

contrast (GPC) method
systems, 335, 337

Speckle
diameter, 54
methods, 48
metrology, 61
noise, 14, 21, 35

Spectral bands
angle-based kernel, 305, 306f{308f
anomaly detection algorithm, 284
bands, 284, 286, 290, 314
decomposition, 288
library, 284
matched filtering, 284
pixel, 284, 286{287, 290
signature, 284, 287, 290{291, 293
subspace, 284
values, 305
variability, 293, 312, 314

Spectral
power distribution (SPD), 249
sensitivity to deposited material,

calculation of, 372f
Spectroscopic
ellipsometer, 373
sensing applications, 364

Spectrum, 284, 286, 293{294
Spherical
aberrations, 60
reconstruction boundary, 117
voxel elements, 113
voxel USART, 117

Stages, 139
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Standard
deviation, 195, 198, 195t{197t, 201t,

277
Euclidean metric, 277

Stationary
objects, 142
target density, 189

Statistical
based fusion approaches, 245
methods, 245
significance test, 127{128
testing, 114

Stereo matching algorithm, 159,
163f, 171

Stereoscopical techniques, 158{159
Subpixel target detection, 293, 314
Surface
mines, 283
profilometry, 61
temperatures, 262

Surveillance applications, 283
Synthetic discriminant function

filter, 15
Synthetic reference wave (SRW), 356

T
Talbot effect, 73
Target detection in multiple views
range to target, 206
resolution, 206
sensor type, 206
various target detection and recognition

methods, 206
Target detection, 319
algorithms, 283{285

Target tracking
KNIGHT tracking system, 209
multiple FOVs, 209
surveillance system, 209

Target
abundance measure, 290
classification operation, 190
detectors, 284
phenomenology, 204
spectra, 293{294

Taylor
expansion, 354
series, 339

Temporal registration, 256

Temporal templates
motion energy images, 210
Motion History, 210

Terrian and Waxman, methods by, 245
Thermal Physical Model, 249{250
blackbody, 249
conduction, 249
convection, 249
convective heat transfer function, 249
heat flux, 249
laminar flow, 249
radiation, 249
Stephen{Boltzman law, 249
thermal resistance, 250

Thermal
camera, 256
expansion, 69

Thick holograms, 383
Thin holograms, 383{384
Three-dimensional object recognition, 223
correlation of the reconstructed 3D

scenes, 165{171
direct correlation of integral images,

164{165
Three-dimensional scene, digital

reconstruction of
correction of the depth-dependent

magnification ratio, 161
digital visualization of the 3D scene,

163{164
example of 3D reconstruction, 161{163
retrieval of the 3D scene, 158{161

Time of flight, 325
Tolerance angle, 16, 18
Tolerance to
displacements, 7
distortions, 7
in-plane rotation, 14
longitudinal shifts, 14
out-of-plane rotations, 14
scaling, 14

Tomography, 156
Total internal reflection, 337
Tracking operation, 183, 189
moving target velocities (Eigen

velocities), 189
tracking dwell time, 189

Tracking, 176
Training set, 267{269, 274, 278, 280
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Transmission bandwidth, 183, 184f, 201
Transmission distance, 342
Transversal locations, 13
Tree area, 305
TRUE IMAGE1 LABEL, 390
Tunable laser, high speed wavelength, 175
Tunable Ti{sapphire laser, 374
Turn Face operator, 272f
Twin or conjugate image, 49{50
Two-dimensional (2D) projections, 223
Two-layer waveguide-grating device, 374

U
Uniform lighting, 273
Uniform Simultaneous Algebraic

Reconstruction Technique
(USART), 113

iterations, 128
implemention by the spherical voxel

model, 116{117
Unmanned Aerial Vehicles (UAV),

183{185, 184f, 187, 189, 191{198,
201,

altitude, 189, 191, 193, 198, 199f
flight patterns, 183
long endurance surveillance, 183
mission scenarios, 183
sensor parameters, 183, 184f

UV Arþ laser interferometer, 373

V
Vacuum chuck, 69
VanderLugt correlator, 343{344, 348
VCSEL arrays, 344
Vector quantization network, see

Kohonen competitive network
Velocity vector, 189, 195
average, 189
projected, 189

Vertical cavity surface emitting laser
diodes (VCSELs), 344

Video
animation, 66

image, 50
optical phase mask, 85
optical system, 86
phase mask (VPM), 86

Virtugram1 technique, 387
Visualization and recognition of

filamentous algae, experimental
results, 146

Volume object recognition, performance
analysis, 130{132

Volume objects reconstructed by the
spherical-voxel USART, 117

classes, 117
Voxel density, 113, 115

W
Wavefront curvature, 60, 65
Waveguide optics, 337
Wavelength tunable filter, 175{176
Wavelength-hopped
laser coding and decoding

system, 175
spread spectrum sequence, 176

Weather station
anemometer, 255
barometer sensor, 255
humidity sensor, 255
temperature sensors, 255
wind direction, 255

Weight vectors, 32
Wide-sense stationary random processes,

320, 332
Window Size, 274, 275f

X
X-ray imaging technique, 113

Y
Yale Face Database B, 273

Z
Zernike’s phase contrast method, 354
Zero-mean stationary random process, 321
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