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INTRODUCTION

Quantum theory is connected especially with the names Planck, Bohr, Heisen-
berg, Pauli, and Dirac. The quantum revolution describes our deepest in-
sight, so far, into the physical structure of nature. It is comparable only with
the Copernican revolution, switching from a finally oriented anthropocentric
description of physical phenomena to one using general laws with initial or
boundary conditions, connected with the names Kepler, Galileo, and Newton,
or with the change from tangible mass points as basic structures to Faraday’s
and Maxwell’s field concepts and, shortly before quantum theory, with the
relativization of space and time by the lonely genius Einstein.

In retrospect, the label “quantum” or, as adjective, “quantal,” is too weak
to characterize the extent of the revolution involved in abandoning the classical
theory as a basic epistemological framework for physics. The word “quantal”
— in contrast to the assumed classical “continuous” (“natura non facit saltus”)
— was motivated by the finite jumps and the discreteness as seen, for example,
in the photoelectric effect or in the spectral lines for atoms or in the discrete
split of atomic rays in Stern-Gerlach experiments.

One has to distinguish in quantum theory between two kinds of “jumps”:
First, the quantum structure relies on the noncommutativity of operations,
e.g., of the not commuting position-momentum operator pair [ip, x| = h, with
a nontrivial quantum 7 (Planck’s constant) or of the not anticommuting con-
jugate operator pair of an electron-positron field {¥ (%), ¥ ()} = hy 5 (% — 7).
Second, there are the jumps, characterized by integers. These jumps, as seen
in the atomic spectral lines, were the starting point of quantum theory. How-
ever, after the dust has settled, they cannot be addressed as the revolutionary
characteristics of quantum theory: Integers characterize compact operation
groups. Take a circle, say a closed rubber string, cut it, wind it around your
wrist, and glue both ends together again; the number of possible windings is
always an integer. Does rubber band winding characterize quantum theory?
The rubber band stands for the circle, parametrizing the compact Lie group
U(1) = expiR or the isomorphic group SO(2) with the rotations around
one space axis. The irreducible representations of the circle (1-dimensional
torus), as realized by the different rubber band windings and thus of all com-
pact Lie groups involving higher-dimensional tori, come with integer winding
numbers, “quantum numbers” in the narrow sense. Since bound waves in
quantum mechanics are related to compact representations of the noncompact
time translation group R, they give rise to integer-related discrete (rational)
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quantum jumps. The same situation occurs for spin, which is related to the
3-dimensional position rotations, parametrizable by the compact volume of a
sphere. However, in addition to these discrete jumps (integer winding num-
bers z € Z) continuous quantum numbers can also occur, e.g., real energies
E € R or momenta ¢ € R3, or, apparently, the particle masses m? € R, from
a continuous spectrum as eigenvalues or invariants for representations of time
and space translations. Continuous numbers require operations with noncom-
pact action groups, whereas compact groups come with rational (“quantum”)
numbers.

At the core of quantum theory is the relativization of the ontic structures
in contrast to the absolute ontology in classical theories, e.g., of the position
of mass points or of the spin direction of particles. The appropriate charac-
terization “quantum relativity” alludes to the relativity of time and space. A
quantum description starts from practic stuctures, e.g., from translations or
rotations. Quantum theory describes operations with the dynamics itself an
operation. Quantum theory is operation theory. A classical ontology requires a
projection of the nonabelian operational framework to an abelian substructure.
In a classical description, objects are primary with interactions between them
as a secondary structure. In a quantum description the hierarchy is reversed:
objects arise as eigenvectors of operations.

Appropriate questions in quantum theory ask for operations: What is the
operational meaning of spin and mass of a particle? Invariants for rotations and
spacetime translations. What is the operational meaning of a Coulomb and
Yukawa potential? Representation distributions, 2-sphere spreads of position
translations. What is the operational meaning of a gauge coupling constant?
The relative normalization of the gauge-transformation-inducing operational
Lie algebra in the Lorentz Lie algebra. What is the operational meaning of
a Feynman propagator? Matrix elements of spacetime translation representa-
tions, unitary for on-shell contributions.

And one may ask even about quite specific structures: What is the opera-
tional meaning of cosines and exponentials, of Bessel and Macdonald functions,
or of Laguerre polynomials, etc.? Representation coefficients of specific oper-
ations. With respect to a formulation of physics by special functions arising
as solutions of “special differential equations,” e.g., equations of motion in
time and space, there is a unified view, initiated by Wigner and elaborated
in exhaustive encyclopedic detail by Vilenkin, who writes in the introduction
of his subject-related book, “a really unified view on the theory of the basic
classes of special functions ... was established by employing the considerations
that belong to a field of mathematics seemingly quite far from the subject
under consideration, the theory of representations of Lie groups.” Essentially
all physically relevant special functions arise as coefficients of Lie group rep-
resentations. Therefore in the following, Lie operations are of paramount im-
portance.

Weyl was the first to connect with each other, basically and in a system-
atic form, “The theory of groups and quantum mechanics” in his like-named
book. Wigner especially proceeded to extend the group—theoretic method in
mathematical detail to relativistic quantum theory.
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There was always a symmetry strain in physical theories: The Greeks
started with the association of the five Platonic solids with the four basic
elements: fire, water, earth, and air; the fifth polyhedron, the dodecahedron,
with pentagonal sides, called quintessence, was taken as the all-encompassing
cosmos. The idea was revived by Kepler in his Mysterium Cosmographicum to
understand the six planets known in his time as regularly circling on the simul-
taneous in- and out-spheres between the five Platonic solids, nested one within
the other. It is fascinating to realize how Kepler’s fantastic ideas, completely
wrong and without any reasonable contact with any physical dynamics, hit
upon an apparently immensely important basic structure in nature: The five
Platonic solids have as their sides regular triangles, squares, and pentagons.
Exactly these two-dimensional symmetric Euclidean polygons characterize the
symmetry operations related to simple Lie groups as classified by E. Cartan.
The four main series of symmetry operations can be related, via the charac-
terizing weight and root diagrams, to regular squares and triangles lumped
together in higher and higher dimensions (details in the chapters “Simple Lie
Operations” and “Rational Quantum Numbers”). All the semisimple symme-
tries we use in fundamental theories of particles and their interactions can be
associated with those operational structures. Every particle physics student
today knows the quark triangles as weight diagrams for the color operations
SU(3). The squares as weight diagrams for orthogonal symmetries show up,
for instance, in the electron occupation numbers (twice a square) of the atomic
shells, 2 = 2x 12, 8 = 2x 2%, 18 = 2 x 3?2, etc., originating in the nonrelativistic
framework from the orthogonal group SO(4) desribing rotation and perihelion
conservation.

The main mistake of Kepler (forgive me) was, with our knowledge today, to
look for the symmetry of the objects, not for the symmetries of the dynamical
law; he was no quantum theorist. The possibility in quantum field theories
to have less symmetric state vectors or objects as a result of operations with
a larger symmetry plays an important role in reconciling the asymetry of the
world as we see it with basic symmetric operations.

The quantum concepts as a unifying picture for the basic physical laws, at
least without any experimental contradiction thus far, are not “anschaulich.”
Particles have no positions in the naive classical sense. To call them basically
“pointlike” does not make sense. All this makes our physical intuition very
difficult. The classical physical concepts dissolve like Dali’s clock in the desert.
Let me quote from the last public talk of Heisenberg in Munich, 1975 (my
translation):

“It is unavoidable that we use a language originating from classical phi-
losophy. We ask, What does the proton consist of? Is the quantum of light
elementary or composite? etc. However, all these questions are incorrectly
posed since the words “divide” and “consist of” have lost almost all their
meaning. Therefore it should be our task to adjust our language, our think-
ing, i.e., our scientific philosophy to this new situation that has been created by
experiments. Unfortunately, that is very difficult. Therefore, there creep into
particle physics, again and again, wrong questions and wrong conceptions....

We have to come to terms with the fact that experimental knowledge
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from very small and very large distances no longer provides us with an “an-
schauliches Bild,” and we have to learn to live there without “Anschauung.” In
this case we realize that the antinomy of the infinitely small for the elementary
particles is resolved in a very subtle way, in a way which neither Immanuel
Kant nor the Greek philosophers could have imagined, the word “to divide”
loses its sense.

If one wants to compare the insights of today’s particle physics with any
earlier philosophy, it could be only the philosophy of Plato, since the particles
of today’s physics are representations of symmetry groups — that is what quan-
tum theory teaches us — and hence the particles resemble the regular Platonic
polyhedra.”

Physical properties are registered in experiments, i.e., they describe a re-
lation with an observer. They are mathematically formulated as eigenvalues
of operations, e.g., energy and momentum or the spin in the direction of a
magnetic field. Different ontic (asymptotic) structures as projections of one
practic structure (interaction) are determined by an experimental setup that
distinguishes one of possibly many eigenvector bases for the operations under
consideration. Behind different setups there are the characterizing invariants,
e.g., the mass of a particle for the Lorentz transformation-dependent energy-
momenta, as measured in different spacetime frames, or its spin as measured in
one space direction, which is determined, e.g., in a Stern-Gerlach experiment
by the spatial inhomogeneity of a magnetic field. An experimental setup is
related, mathematically, to a diagonalization of a set of operations. Since a set
of diagonalizable matrices is simultaneously diagonalizable if and only if its el-
ements commute with each other, an ontic interpretation of a set of operations
depends on the experimenter’s decision, concretized in the chosen apparatus,
to distinguish a subset of simultaneously diagonalizable matrices. In general,
there exist many different inequivalent diagonalizable subsets. Mathematically,
this is a relatively simple theorem; its physical interpretation and coordination
with our daily life experience, relying on an absolute ontic description existing
and remaining without an ongoing measurement, is difficult and counterintu-
itive. An operator is not exhaustively described by the property (eigenvalue)
of one object (particle, bound state vector, eigenvector) and even more for a
set with more than one operator.

A transition from operations to particle- or state-related experimental num-
bers has to do with a maximal diagonalization of linear transformations as
introduced for the characterization of Lie groups by E. Cartan. In this sense,
an experimental test of quantum operations can be maximal, but because of
the basic noncommutativity, it is never complete.

A vector is not a collection (row or column) of some numbers; this is a
representation of the vector in a chosen basis, physically implemented by a
given experimental apparatus. Not only for a mathematician, perhaps even
more for a physicist, the distinction and choice of a basis has to be justified
and the imposed restrictions have to be discussed carefully.

The ontic interpretation of one operator, e.g., acting on a two-dimensional
10

-1

vector space and diagonalizable as the matrix [* = (0

) displaying its or-
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thonormal eigenvectors by the two columns with their property (eigenvalues)

{#£1}, may prevent the ontic interpretation of a second operator via simulta-

: 01 . .
neous eigenvalues, e.g., of [} = <1 0); one eigenvector basis may not be usable

twice. However, that’s not all. Since there exist nondiagonalizable operators,

in the simplest case of an operator on a complex two-dimensional vector space

with a basis representation n = (8 é) (triangular Jordan structures), quan-

tum theory involves even operations without ontic particle interpretation at all,
i.e., without eigenvector bases. Such nondiagonalizable operations really oc-
cur, e.g., in connection with the quantum gauge field describing the Coulomb
interaction as one degree of freedom in the four-component electromagnetic
field (potential) that has only two degrees of freedom with an ontic particle
interpretation, the left and right circularly polarized photons.

In quantum theories a clear distinction has to be made between the full op-
erational interaction language and the restricted projections to objects. Phys-
ical objects, e.g., bound state vectors or elementary particles, as seen in ex-
periments are eigenvectors with respect to transformation groups. Particles
are eigenvectors with respect to space and time translations, rotations, and
electromagnetic transformations that are formalized with the real Lie groups
R, SU(2), and U(1) and give rise to the properties mass, spin, and electro-
magnetic charge number and, at least until now, nothing more. The bound
waves of the nonrelativistic hydrogen atom are eigenvectors for the operation
groups R and SO(4) with the time translations and the space rotations with
perihelial transformations respectively, giving rise to the properties energy and
the space rotations-related quantum numbers. Interactions are characterizable
by groups that in general are larger than the asymptotic symmetry groups that
determine the object’s properties. Elementary interactions implement internal
(“chargelike”) transformation groups as used in the standard model, i.e., hy-
percharge U(1), isospin SU(2), and color SU(3), in addition to the external
spacetime translations R* and the orthochronous Lorentz group SOyq(1, 3) or,
more precisely, its twofold cover SL(C?). The projective transition from the
operations characterizing the interactions to those for the objects involves a
dramatic operation group reduction, e.g., in the standard model for electroweak
and strong interactions

for interactions SL(C?* xR* } X [ U(l)o (SU(Q) x SU(?’)) ]

external: Poincaré internal: hyperisospin-color

— [SU(2) x RY] x U(1) for massive particles

The interaction operation groups, e.g., isospin SU(2) for the nuclear inter-
actions, which vanish as symmetries for asymptotic objects, e.g., for proton
and neutron with different masses, may leave their traces in multiplicities, e.g.,
in the two nucleons arising from an isospin doublet. Sometimes not only the
symmetries may vanish, but even the related nontrivial multiplicities, as pro-
posed for the color SU(3) interaction symmetry leaving asymptotically only
SU(3)-singlets (color confinement, not proved yet).
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There was a development in geometry culminating in the “Erlanger Pro-
gramm” (1872) of Felix Klein that can serve as an analogue for the operational
point of view to characterize quantum physics. A geometry, according to Klein,
can be characterized by a Lie group G acting on an analytic manifold M, in
the irreducible case on the equivalence classes in the homogeneous space G/H
with a subgroup H C G as fixgroup (“little group”) or on a vector space. An
example is the spherical geometry with the rotation group SO(3) acting on the
2-sphere Q% = SO(3)/SO(2) that parametrizes the axial rotation subgroups,
or the Euclidean geometry SO(3) X R* with the rotation group acting on
3-space or the pseudo-Euclidean Poincaré geometry SOq(1,3) X R* with the
Lorentz group acting on spacetime where the Minkowski translations R* can be
looked on as the tangent space of the homogeneous space GL(C?)/U(2), or the
special and general linear affine geometries SL(R™) X R” and GL(R") X R". In
a Klein space G e M only concepts compatible with or even invariant under the
operation group GG make sense. For example, for general linear geometry, the
invariant concepts “parallelity” and “dimension”, in addition “volume” for the
special linear geometry, in addition the concepts “causal order” and “length”
for Poincaré geometry, and in addition “angle” and “distance” for orthogonal
geometry. The decreasing group chain Gy D G5 D --- is reflected in the in-
creasing number of invariants for the space acted on: To characterize smaller
subgroups one has to invoke more and more properties. In a physical inter-
pretation of Klein’s program the acting groups are the interaction governing
groups like SO(4) for the periodic system of the atoms in nonrelativistic me-
chanics or the internal hypercharge-isospin-color group U(1)o[SU(2) x SU(3)]
for interactions in the standard model. The vector spaces with the interac-
tion group representations, characterized by invariants, e.g., mass and spin
or hyperisospin and electromagnetic charge number, contain, after symmetry
reduction, the bound state vectors or the particles.

It is not the purpose of this book to teach quantum theory to the begin-
ner; it is not an introduction, but intended for the graduate student with a
good knowledge of, on the one hand, the conventional presentations of nonrel-
ativistic quantum mechanics and canonical quantum field theory, and, on the
other hand, some knowledge of groups and Lie algebras, their algebraic and
topological structures and their representations. Parts of it have been used for
lectures on “Algebraic Methods in Quantum Mechanics,” on “Introduction to
Quantum Field Theory,” on the “Standard Model of Strong and Electroweak
Interactions,” and on “Time, Space, and Spacetime in Quantum Mechanics
and Quantum Field Theory.” My motivation and aim is to understand and
to explain quantum physics as far as possible by operational structures: why
we apply them, which structures are unavoidable, which ones are immanent
already in the mathematical framework used, and which structures seem artif-
ically complicated and should be looked at with some suspicion. I work with
the prejudice that fundamental physical structures are simple, not trivial, to
understand and to formulate and esthetically beautiful, in some sense defin-
able not only by personal taste. Relevant questions, worked with, but not
necessarily satisfactorily answered, are of the kind, What follows from the real
Lie structure of the complex represented operations? For example, the Hilbert
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space formulation with probability amplitudes. Is there a connection between
the causal order of time and spacetime and the probability interpretation of
quantum experiments and the positivity of energy? What is the operational
origin of the Yukawa and Coulomb interaction? Which transformations are
represented by a Feynman propagator, by its “on-shell” and its “off-shell”
contributions? Are the divergences of the canonical quantum field theories
related to a misrepresentation of the operations involved? What causes the di-
chotomy between internal compact and external spacetime-related operations
that are also noncompact? Where does the gauge structure come from?

And the deepest question is, What is the common conceptual basic root
branching into the phenomenological concepts interaction, spacetime, and
matter? Wigner’s classification of particles as unitary representations of the
Poincaré group can be taken as an indication that it is impossible to think
about spacetime and matter separately. One step to further this program is to
show that scattering states and interaction-bound states arise from operation
group representations.

Mathematically elegant formulations in physics may leave us with an empty
taste: Answers to all the questions above are physically satisfactory only if
they lead also to experimentally testable numbers. Mathematics alone is not
enough: The richness of mathematical forms, even esthetically appealing sim-
ple structures, seems to be inexhaustible. To paraphrase a word of Kant:
Physical theories without experimental numbers are empty. The determina-
tion of one number, e.g., of a gauge coupling constant, may justify a huge
theoretical building. However, also this is true: Numbers without a theo-
retical understanding are blind; think of numerologists. To take up the first
sentence of this paragraph: Mathematically ugly formulations in physics leave
us with a bad taste.

The mathematical level is not undergraduate; I have tried to use the best
mathematical tools at my disposal. A. Knapp, one of the mathematical experts
in the field of “Representation theory of semisimple Lie groups”, writes in
the preface of the like-named textbook (about 800 pages), “The subject of
semisimple Lie groups is especially troublesome in this respect” (learning by
logical progression). “It has a reputation for being both beautiful and difficult,
and many mathematicians seem to want to know something about it. But it
seems impossible to penetrate. A thorough logical-progression approach might
require ten thousand pages.” The application of these beautiful tools in physics
would presuppose their understanding, although, I hope at least, not with the
completeness and depth necessary for mathematicians. I shall try to assist this
understanding by sections with mathematical tools. In the beginning, it is not
necessary to master all the concepts mentioned there. The pragmatic “battle
tested physical approach to mathematics” carries rather far. But in the end, a
pedestrian mathematical attitude with some knowledge of the rotation group
is not enough. Mathematical simplicity does not coincide with conceptual
triviality. The relevant simple concepts are, in most cases, very deep.

In the historical development of physics the causal equations of motion,
introduced by Newton for time development, were derived later with extremal
and variational principles from Lagrangians and Hamiltonians, which, in turn,
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could be characterized, for important cases, by their invariance or transforma-
tion properties with respect to operation groups. In this book I will go the
historical route in the opposite direction: In contrast to the familiar procedure
starting with equations of motion, I start with operational structures. The
equations of motion do not play the basic role. They are a Lie parameter-
related formulation of the local behavior with respect to the operation group
involved as expressed for a Lie group by the action of its Lie algebra (tan-
gent space translations). Time and space for the interpretation of a physical
dynamics with the conventional equations of motion are a very important,
but from the operational point of view only one example of, tangent space-
related structures. Therefore the time and spacetime dependence of operators
or eigenvectors and equations of motion reflects properties of acting groups
and Lie algebras or, to include also semigroups and symmetric spaces with
their tangent translations, of acting Lie operations. Equations of motion are
a powerful method to diagonalize, to find eigenvalues and invariants of the
operations involved.

To illustrate this reversed procedure in the simple example of a harmonic
oscillator, time operations or causality as the starting point is formalized, qual-
itatively and quantitatively, by the additive ordered group R. The Lie group R
has its irreducible complex representations in the compact group U(1) acting
on 1-dimensional vector spaces. The represented time translations define time
orbits in the representation space, especially the irreducible orbits of a dual
eigenvector basis (u(t),u*(t)) for the two C-isomorphic dual representation
spaces with imaginary time action eigenvalues +iw € iR:

Ratv—>eﬂ“’t€U(1):>{u

The Lie algebra (time translation) action can be expressed by first-order dif-
ferential equations for the representation orbits

(4 F iw)(u,w)(t) = 0.

The Lagrangian L yields another formulation of the time translation action on
dual eigenvectors

iL =iLy—iHy = w*%4u — iwuu*
with the kinetic term Ly implementing the duality of the basic pair (u, u*) and
the Hamiltonian Hy as product of the basic space identity uu* and eigenvalue
(frequency) w the represented time translation (Lie algebra) basis. The dual
irreducible representation characteristic invariant |w| sets the intrinsic time
unit.
The representation connected U(1)-conjugation of the irreducible complex

spaces with the time orbits implements the time reflection ¢ & —tandu & u*
and allows the definition of Hermitian orbits, called position-momentum (x, p).
It thus becomes possible to interpret the time orbits in position and momentum
space, e.g., by an oscillating spring or a pendulum. The position-momentum
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orbits arise from real self-dual representations of the time operations in the
group SO(2), as Lie group isomorphic to U(1):

X = gu% x(t)\ __ [ coswt 2sinwt ) [ x(
Zp _ :> p(t) — su) wt cos wt p

f\@
L= pdtx w(ﬁ“’ + % )7

where £ is the characteristic length in the dual position-momentum pair, de-
2
fined by the SO(2)-metric (éo ;2) and defining together with the frequency w

two phenomenological units, the inert mass M = —1; and the spring constant

wl

k = . The usual starting point, the classical Lagrangian L = p%x - (% +
k";), encapsulating the self-dual irreducible real representations of the time
operations, comes at the end of the procedure.

In quantum mechanics, much more in quantum field theory, the definition
of an operator Lagrangian with explicit spacetime derivatives is in general
rather difficult, if not impossible. The dual pair structure, classically encoded
in the kinetic Lagrangian, e.g., in iLy = u* dtu formulates the quantization
[u*,u] = 1 or, for a Hermitian-anti-Hermitian pair iLy = zpdtx, the Born-
Heisenberg relation [ip,x] = 1. The time translations are realized by the
adjoint action (quantum commutator) with a Hamiltonian

{u,u*} _ p2 x2 [iH07 u] = diua [iHﬂv U*] = d
=+ kS = . .
2 2M { [ZHO7X] = EX7 [ZHO) p] - C;l:p

The time derivative % can be considered to be a shorthand notation, familiar
from the classical derivative, for the adjoint-action-induced Lie algebra trans-
formation. From this point of view the first-order time differential equations
for dual pairs, e.g., for position-momentum (x,p), or the second-order equa-
tions for one Hermitian combination, e.g., for position x, are a consequence of
the quantum-implemented linear Lie algebra action, i.e., of % = [H, |.

The conjugation group U(1) with the represented time operation by phase
transformations R 5 ¢ — e*™*! € U(1) endows the one-dimensional represen-
tation with a scalar product and a Hilbert space structure that allows Born’s
“probability amplitudes” for the ontological interpretation of the operations
via experiments. The spectrum of the position operator x € specx is used
for Schrédinger wave functions x —— t(x), which are orbits (representation
coefficients) of position translations.

Also, for quantum field theory the classically oriented approach relying on
differential equations of first and second orders, e.g., Dirac and Klein-Gordon
equations, will not be in the foreground. Representations for external space-
time and internal unitary groups and their actions as seen, for example, in the
standard model are more basic for the understanding as their projections to as-
ymptotic particle state vectors, as used for experimental tests. An illustration
of the method used in this book may be given, for instance, by a Dirac field
W for a massive spinor particle. Here the unitarily represented group is the
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Poincaré group SL(C?) X R*, induced by representations of a direct product
subgroup SU(2) x R* involving spin SU(2) as double cover of position rota-
tions SO(3) and spacetime translations to define the embedded particle, e.g.,
the electron-positron, with its spin invariant % from a rational spectrum and
its mass m? from a continuous spectrum. The Fock expectation value (...) of
the commutator, with Dirac matrices {7*}x—01.2.3,

(T (0). o+ y))) = (T8 (0) = [ @ (g + m)d(m? — ),

is a matrix element of a Hilbert representation of spacetime translations. The
projection to time translation representation matrix elements e can be
obtained by position integration

cosmxg isinmzg

R > xp— [ d®z 5(¥, ¥])(z) =1, ® (“mm” C"“’“O).
The corresponding position projections by time integration is trivial:
J dxo (¥, ¥])(z) = 0.

This is in contrast to the position projection of the time-ordered quantiza-
tion anticommutator arising in the Feynman propagator. Here one obtains a
Yukawa potential and force as noncompact representation coefficients e=™? of
position translations, distributed with the Kepler factor % on the 2-spheres in
3-dimensional position space

N o& 1+mr —mr
R? 5 &+ [dxg e(z0)y0{¥, ¥}(z) = ("'mf; f‘igllliﬂ> B

[dedy &2 = <22

2mr m

Spacetime cannot be thought of without interactions. Spacetime is perceived
by its operational representations, which are given by and act on what we
call quantum fields, which may or may not have particles as projections in a
Hilbert space.

A customary approach to quantum structures uses ad hoc Hilbert spaces
with square integrable position space functions at a very early stage. The op-
erational approach puts the Hilbert spaces in a representational perspective.
As each Lie group defines its representations, so each Lie group with real oper-
ations defines its complex Hilbert spaces on which it acts. The Hilbert spaces
of nonrelativistic quantum mechanics are defined, as shown in the Stone-von
Neumann theorem, by the Heisenberg Lie algebra, whose three real operations
are characterized by the Lie bracket [x, p] = I. Those historically first Hilbert
spaces in quantum theory are not appropriate for all operation groups. They
are not suited for fermionic quantum structures and not used in quantum field
theory. Already quantum—mechanical scattering theory is formulated more ap-
propriately in the Hilbert spaces defined by the Euclidean group SO(3) X R?
of rotations acting on position translations. The Hilbert space for a free rel-
ativistic particle is defined, as shown by Wigner, by a representation of the
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Poincaré group SOg(1,3) X R% Or there are Hilbert spaces for the Lorentz
groups SOg(1,2) and SOq(1,3) for two or three position dimensions whose
elements cannot be formulated with square integrable functions, as shown by
Bargmann and Gel’fand and Naimark.

To understand the strength and appropriateness of the operational point of
view it is useful to learn, to test, and to apply it in the well-established areas
of nonrelativistic quantum mechanics and relativistic quantum field theory.
Therefore, the first volume of the book deals essentially, after an introductory
presentation of time and space translations, with the time and space-related
finite-dimensional representation structures, with compact Lie operations, and,
as a nonrelativistic application, with an operationally oriented formulation of
the always fascinating Kepler problem.

Here arise already continuous eigenvalues and invariants for noncompact
operations, which, in the context of relativistic quantum field theory with the
noncompact nonabelian Lorentz group, are looked at more closely in the first
part of the second volume. The representation structure of free particle fields,
massive and massless, and its implementation in the familiar formalism are
given. This part ends with an application of those structures to the standard
model of elementary particles. Perturbation theory with its normalization-
regularization procedure will not be discussed.

The second part of the second volume works with the — mathematically
rather demanding — harmonic analysis of noncompact nonabelian Lie groups
and their homogeneous spaces, e.g., the Lorentz and Poincaré group or the
causal spacetime cone, to understand the spacetime representations in Feyn-
man propagators and their shortcomings. One has to face the question whether
the concepts of “virtual particles” (“off-shell”) with the so-called energy-time
uncertainty and the virtual particle-exchange in an “anschauliche” description
of interactions, as suggested by Feynman diagrams, are not of the same dan-
gerous quality as the point-particle and position-orbit concepts for electrons
inside atoms to understand their spectral lines.

In the end, an attempt is made to proceed from the Wigner classification of
the particles as vectors acted on with irreducible unitary Poincaré group repre-
sentations, i.e., from a classification of tangent structures, to the constitution
of these tangent structures. An operational spacetime model is proposed in
the form of a nonlinear symmetric space whose spectrum includes as invariants
particle masses and, especially, gauge coupling constants as normalization of
its irreducible representations. Since this is an extremely difficult problem,
such an attempt should be seen not as a solution, but as one proposal for a
direction on the way to a solution.

Perhaps it is necessary to mention that essentially up to parts of the last
two chapters in the second volume, the material in the following is general
as concerns the results. I do not propose new theories. The aim is, on an
operational basis, to understand more deeply what we are working with in
quantum theory. The appropriate language and the conceptional presentation
may not be so familiar.
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MATHEMATICAL TOOLS

The basic mathematics used in the following is strongly influenced by the
Bourbaki school. The concepts, the notation, and the names I use may be
unfamiliar to many physicists. They are the usual ones in the mathematical
literature and, as I found after getting used to them, also appropriate for
physics. Sometimes the abstract structural concepts of mathematics are easier
to probe more deeply than the ad hoc coined concepts in physics.

The structural formulation helps, as far as possible, to separate the specific
problems in physics from the mathematical-logical ones. With respect to the
structure of Lie groups and their representations, especially for the noncompact
and nonabelian operations, I have learned much, especially from the books of
Folland, Gel’fand, Helgason, Kirillov, Knapp, and Vilenkin, which are highly
recommended.

In general, each chapter starts with the more physically oriented sections,
which, after a summary, are followed (not always) by more mathematically
oriented ones dealing with the concepts used before. Sometimes, especially
in later chapters, a distinction between “mathematical” and “physical” would
look too arbitrary.

Presumably, one cannot learn the mathematics only from what is given
in the mathematical sections: they may already require much mathematical
experience. As I know from personal experience, there is “no free mathemati-
cal lunch.” The mathematical sections are intended to place the mathematical
manipulations in physics in their structural context. They should define, intro-
duce, and make familiar to some degree with or remind of the structures used,
give a coarse orientation, and stimulate a deeper study of the mathematical
literature, which is given with all important references, also in journals, in the
books quoted above.

It is not the purpose of this book to prove mathematical theorems that
can be found in mathematical textbooks. One “opens up” for the mathe-
matical tools if one really needs them in physics. Then, many proofs become
unnecessary if one dives deeply enough into the structures. The mathemat-
ical structures are treated eclectically, reflecting my personal taste and my
limited abilities and avoiding cumbersome complications. Nevertheless, I am
sure, that there will be mistakes I have overlooked and subtleties, even major
ones, that I have not taken into account. The representation is by no means
hierarchical and complete; some basic concepts are tacitly assumed as familiar
and other basic concepts are briefly explained. Mathematical formulas are not
always easy to read. Since, however, mathematics is the language of science,
it will not be assumed to be necessary to express each formula before or after
in everyday language.

The operation concept is clearly formalized in the language of categories
and functors, which will be used only superficially, mnemotechnically, and for
notational purposes. The notation kat denotes a category in which the objects
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are sets, e.g., the categories

13

sets: set
monoids: mon
groups: grp
abelian groups: abgrp
rings: rng
modules over a ring R: @R

vector spaces over K (abelian field): vecy

algebras over K: ag,
associative algebras over K: aag,.
Lie algebras over K: lag .
differentiable manifolds over K: dif
Lie groups over K: Igrp,.
topological spaces: top
measure spaces: mes

Elements in the categories used are morphisms (A 7, B) € kat (map-
pings, arrows). An object pair (A, B) of a category kat has the set of mor-
phisms kat(A, B) = {A — B}, compatible with the category characterizing
structure and associatively composable. Morphisms are called endomorphisms

kat(A, A) for A = B, the isomorphisms keolt (A, B) are called automorphisms

kat (A, A) for A = B with id the identity.
Isomorphies hold in a category; therefore they should be qualified, e.g.,

Vec;

L = R for a real vector space isomorphy of a Lie algebra. For a simpler
notation, such qualifications are omitted; they should be obvious from the
context.

Starting with operations as basic structures, one may use the identity oper-
ation id4 as the neutral operation in the nontrivially acting ones (“constancy
in change”) to define an object A. The sloppy notation f € kat and A € kat
is used for morphisms and objects.

The categories above can be arranged with the inclusion order

topC mes C set

U U
dif mon
U U

lgrp, C grp DO abgrp O mod; O vecy

U

U ag, Olag,
U
rng D aag,

Isomorphic objects of a category define classes as objects in the associated
equivalence category. Categories may have additional properties. For example,
they are morphism stable if the morphisms are objects of the same category
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kat(A, B) € kat, e.g., set(S,T) € set, vecg(V,W) € vecy, linear mappings
constitute a vector space.

As basic operational structures, set and vector space endomorphisms (arrow
monoids and arrow algebras) as well as set and vector space automorphism
groups (permutation groups and linear groups) deserve special symbols

set(S,5) =A(S) ecmon, set (S S) =G(S) € grp,
veck(V,V) = AL(V) €aag, ., veck (V,V) =GL(V) € grp.

Co- and contravariant functors are mappings for categories kat'?

A F(A) F(A)
F :kat' — kat®, l — l F(f) Or — T]—‘(f)
B F(B) F(B)

o . F(fog)=F(f)oF(g), covariant,
with idray) = F(ida) { F(fog)=F(g)oF(f), contravariant.

For example, a Lie group G has a unique Lie algebra, denoted by log GG, with
the covariant logarithm functor

log : lgrp, — lag,, G +—— logG.

A functor may have additional properties, e.g., additive if direct sums of
vector spaces are involved F(V; @ V;) = F(Vi) @ F(V3) or exponential F
for (tensor) products F(Vy & V2) = F(Vi) ® F(Va).

Mappings can inherit structures of their domains, e.g., a vector space can
arise from a set with mappings into a field K as expressed in the covariant free
functor (linear extension or span functor)

S K
KU : set — vecy, le K
T K(T)

The vector space K% = {Zass} contains the finite linear K-combinations

finite
of set elements (or the mappings o : S — K with finite support); it has S as

canonical basis. For K(/) the set mapping is linearily extended.

Important functors arise with universal extensions (structures): Given a
structure expressed with the category kat there may be objects with more
structure in a subcategory ukat C kat, e.g., algebras in vector spaces ag, C
vec, or abelian groups in abelian semigroups with cancellation rule or com-
plete Hausdorff spaces in uniform (e.g., metric) spaces.

A universal extension functor € from a category in a more structured sub-
category

& : kat — ukat
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is the solution of a universal problem if for any A € kat there exists a more
structured “universal” object £(A) € ukat and a natural injection ¢ that
factorizes any kat-morphisms f to a ukat-object U with a unique ukat-mor-
phism f as shown in the commutative diagram?

5 £(A)

A fekat, g | 7. &m0 feukat
U

Se—

—
idy

f=fou kat(A U)=ukat(E(A),U).

If £ exists, the object £(A) is unique up to ukat-isomorphisms. The induced
functor £ is covariant: take U = £(B) with B € kat. With a unique f the
corresponding morphism sets are set-isomorphic (equal cardinality).

An example is the linear extension functor above,

S - K®
S,e, [ € set, fl lf, K®)V, f € vecy,
Vv — VvV
idy

or the tensor algebra functor (multilinear extension functor)

Q :vecy —raag, , V— QV.

Also, the numbers, denoted by

natural: N, = {k,k+1,...}, N=N; DN,

integer: Z, rational: Q, algebraic: A,

number fields K € {R, C} with real R and complex C,
positive (negative): Zy = £Ny = £|Z|, Ry = +|R],

are examples of natural structures and basic operations. They start from an
additive semigroup N with cancellation rule, extended to and embedded natu-
rally into Z, which formalizes binary operations on N. Since Z forms an abelian
multiplicative monoid with cancellation rule it is extendable, analogously, to
Q formalizing binary Q- or quartic N-operations. QQ allows the natural Cauchy
completion to the reals R, which formalizes approximation operations

N Z v Q-+ R.

Good guesses to look for universal extensions are self-relations in the set
products, e.g., N x N for Z or Z x Z for Q or the countably infinite relations
(Cauchy series) Q™ for R.

LIf not stated otherwise, all such diagrams are commutative.
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LORENTZ OPERATIONS

Spacetime translations are characterized by a causality (order) compatible
“metric” with indefinite (1, 3)-signature, defining or defined by Lorentz trans-
formations (chapter “Spacetime Translations”). In the complex formulation of
quantum structures the noncompact Lorentz group also has to be represented
in a unitary group - because of the unbounded group volume necessarily in-
definite unitary for finite-dimensional nontrivial representations.

If the rotation group SO(3) for position translations S = R?® with the
spin Lie algebra! A 2 (4R)3 and its Lie group SU(2) is represented by actions
on complex vector spaces with canonical conjugation (chapter “Antistructures:
The Real in the Complex”), it is embedded into representations of the doubled
Lie algebra A — A{ & iA{ = Ay ) = RO This involves an embedding for
the Cartan subalgebras iR — iR & R = Cg and their groups SO(2) —
SO(2) x SOy(1,1) = SO(C3). The subindex R in Cg denotes a real structure
represented in the complex, i.e., with a conjugation. For a less-cumbersome
notation, it will be omitted in the following, only real Lie operations will be
considered.

The doubled Lie algebra A 1) is the Lie algebra of the Lorentz group
whose defining representation space gives a model for Minkowski spacetime
M = R*. The noncompact Lorentz structures arise by complexification of
the compact spin structures SO(3) < SO(C?). The classes of the real 6-
dimensional Lie group SL(C?) = exp A(1,1) with respect to its center constitute
the orthochronous Lorentz group SOq(1,3) = SL(C?)/I(2) = SO(C?). The
orientation manifold of spin groups in a Lorentz group is parametrizable by
the real 3-dimensional noncompact symmetric boost space, the hyperboloid
V3~ SL(C?%)/SU(2) 2 SO(1,3)/SO(3). In such a complexification approach
the causal order of Minkowski spacetime as SL(C?)-representation space comes
as a surprise. The connection between complexification and causality (order)
is considered in more detail in the chapter “Spacetime as Unitary Operation
Classes.”

In this chapter all finite-dimensional irreducible SL(C?)-representations are
given. They arise by a doubling of the irreducible SU(2)-representations start-
ing from the Weyl doubling of the fundamental Pauli spinor representation.
For those finite-dimensional representations, the integer winding numbers Z

MIn this chapter a Lie algebra structure of a vector space is defined up to linear equivalence.

17
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as eigenvalues for compact spin SU(2) are paired with integers Z for the
noncompact boosts SL(C?)/SU(2). The relevant unitary group for the com-
plex finite-dimensional SL(C?)-representations is the indefinite anticonjuga-
tion group U(2,2).

Definite unitary, i.e., Hilbert space representations of the group SL(C?)
are, if faithful, necessarily infinite-dimensional; the noncompact boosts have
eigenvalues from a continuous spectrum. They will be discussed in the chapter
“Harmonic Analysis.”

1.1 Spacetime Lie Algebras

1.1.1 Lorentz Lie Algebra

The operational structure for spacetime translations can be introduced as
canonical complexification of the spin operations for position translations.

The Lie algebra A @& A = RS, doubling the spin Lie algebra A§, has as
Lie brackets in a doubled orthogonal basis

basis of A @ iA§: {l%b* =il* | a=1,23}, 19,00 = —eobepe,
[ba7 bb] — +€abclc.

[la, lb] _ —Eabclc,

The Lorentz Lie algebra A 1) & RS is the, up to linear equivalence, unique
Lie algebra with the neutral signature (3,3) for the Killing form. It allows
Cartan decompositions A1) & A7 @© iA{ into a compact 3-dimensional Lie
subalgebra and a noncompact 3-dimensional vector subspace. It is simple
with rank 2, i.e., its eigenvectors are characterized by two eigenvalues. From
the A{-Casimir element —‘%bla ® [°, the inverse definite Killing form for the
angular momenta, the complexification leads to two invariant power-2 tensors,
the inverses of the two signature (3,3) invariant forms for the Lorentz Lie
algebra:

L(Aqy) == ol 1 al),

1,1
L(Apy) =-%lret=—20 el —l2al), 1t ="

where, I (Aq1y) as the inverse Killing form of Ay, is called the Killing-
Casimir element, 1_(Agu,y) the chiral Casimir element. They generate all
invariants for Lorentz transformations, i.e., the center of the enveloping algebra
E(A@)-

As Af is isomorphic to the angular momentum Lie algebra log SO(3) of
the rotation group, so A ;) is isomorphic to log SO(C?) or to the Lorentz Lie
algebra log SOy (1, 3) with angular momenta and boosts, in orthogonal bases

Agy = log SO(C?) >~  1ogS0,(1,3),

) ) 0 | &1 2 s
0 —(ps +ih3) g2 +ith —
Pl + 1hb" = ( 3+ iv3 0 ~(p1 +w1)> g( :ﬁ; 0 —ea v ) ;
0

_ : . ®s3 —¢1
(w2 +ih2) o1+t ¥ | -2 o 0

~ € 1pe a ~ eaef e ebed 10 _ 1ba
" =2 [, 017]) =[Sm0, el = 1
pe =2 1e0 — _10a7 [ba’ bb} o~ [laO lbO] lab7
ab =1,2,3, [b, 18] =2 10, £etged) — cbedn™ADn™A _ _ cabepe,

2
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In alog SOy (1, 3)-basis, the Killing and chiral Casimir elements look as follows:

I.(logSO0(1,3)) = —Lgjmgenl™ ® V* = —11; @ ¥*,
I_(logSOy(1,3)) = 1€jrmnl™ ® I,
ja k? cr = 07 1a2737 €0123 = _1;

i.e., the chiral Casimir element is related to the 4-dimensional volume forms
of Minkowski spacetime. Examples are the invariant for the square of the
electrodynamic field strength tensor Fj,F7* and the product with its dual
F 175 The occurrence of the Lorentz “metric” g with signature (1,3) in the
framework of A 1) will be discussed below.

1.1.2 Poincaré Lie Algebra

The real 6-dimensional Lorentz group together with the four spacetime trans-
lations on which they act defines the real 10-dimensional Poincaré Lie algebra:

basis of logSOy(1,3) & R*: {¥* p’|j, k=0,1,2,3},
[ljk7 lnm} — g]nlkm _ gknljm _ gjmlkn + gkmljn7 [p]7pk:] — O7

) ) ) 1e pO] =0 [la pb] — _eabcpc
1]]«:7 n] _ qinnk _ Jkngg — { [ a7 ) " av . )
V%, p"] = ¢’"p" — g™"p e po] — —pt. [be pt — —getp’.

It is useful to consider the Poincaré operations in a larger context with
subgroups and supergroups:

SO(3) XR3 SOp(1,3) XR*

SO(3) T T contractions

800(1,3) < 800(1,4),500(2,3)

The nonsemisimple Euclidean and Poincaré Lie algebra and the simple Lie
algebras of their group expansion have all real rank 2 (number of indepen-
dent invariants),? all these noncompact operations embed the compact rank-1
angular momenta log SO(3).

With the compact and noncompact factor in SO(C?) = SO(2) x SOy(1,1)
the three Cartan subalgebra types of the de Sitter group SOg(1,4) and anti-de
Sitter group SOy(2,3) come from SO(2) x SO(2), SO(2) x SOy(1,1), and
SO(1,1) x SOg(1,1). Hence the Cartan subalgebras for the Poincaré Lie
algebra

0 | w1 P2 Y3 || To
( log SO(1,3) || B4 ) 5 il DR A
— o 1) "

p2  —p1 0O z3
0] 0 0 0 o

2SOO(p,q) with p4+ ¢ = 2r or p+ q = 1+ 2r has r independent invariants, related to the block-
diagonalization with SO(2)" x SO¢(1,1)™, n +m = r (axial rotations or boosts), and, for odd 1+ 2r, one
additional 1.
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can be characterized as follows: For trivial translations, i.e., for the Lorentz Lie
algebra, the Cartan Lie algebra log SO(C?) generates axial rotations around
and boosts along one position axis, e.g., {1>,b?}. For nontrivial translations
one Cartan subalgebra type comprises time translations and rotations around
one position axis, e.g., {p%,1*} and one type position translations and com-
muting boosts, e.g., {p', b3}:

logSO(2) @ logSO(1,1) for 3,13 #0,
log SO(2 o R for @3, z9 # 0,
logSO(1,1) @ R for 43,21 # 0.

The one rotation invariant in the angular momenta enveloping algebra gives

rise to two invariants in the Poincaré enveloping algebra (notation e.g., p? =

p* @ p%, b X B = eb” @ pP):

R* % SOq(1,3)
_l-)*2’ lﬁ p2 :p87527 sZ

SO(3) i i

SOo(1,3)

@xib2o>r-p, | — SO014),50023)

The 3-dimensional spin vector 14 = %bclbc is embedded into the Pauli- Lubanski
vector oL .,
Sj = %Gjmkllklpm = <1ﬁ, lp() + b x ﬁ), Sjpj = 0,
~§* =Ppj — (Ip)’ + b5 — (bp)* +2(I x b)Bpo.
The two Poincaré invariants are the power-2 translation-invariant p? with the
values for “mass” taken from a continuous spectrum and the power-4 rotation
invariant S? with the values for “spin” from a discrete spectrum for a nonneg-
ative translation invariant. The corresponding eigenvalues are momentum and
helicity, i.e., the spin component in the momentum direction (replacing l3 for

SO(3))

—
"Ul

(p27 SQ) Wlth (137 | )

holt

1.2 Left- and Right-Handed Weyl Spinors

The embedding of the spin group into the Lorentz group by complexification
goes with the embedding of the fundamental Pauli spinor representation into
Weyl spinors and Dirac spinors that have nontrivial boost properties.
Without the antihermiticity restriction | = —I* for the spin Lie algebra Af,
the Lorentz Lie algebra A ) is definable by all traceless C*-endomorphisms

Aag) = {l € AL(C?) | trl =0} = R,

considered, with a Euclidean conjugation [ <> [*, as a real Lie algebra. The
Pauli representation of the complex SL(C?)-Lie algebra A; = C? on spinors
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C? gives rise to two representations A{ & (+iAf), conjugate to each other.
The fundamental Weyl representations act on a complex quartet of 2-dimen-
sional vector spaces (V, VT, V, VT) =~ C? (chapter “Antistructures: The Real
in the Complex”). The following notation for dual bases and antibases is used
(1 stands for “left” and r for “right”):

eV, eVl eV, eV A=1,2
<r]§,lA> = ("4 1) = 0.

The left-handed Weyl spinors, self-dual with the C2-volume forms (spinor
“metric”), are denoted by V-elements:

7 _ izB A X
Anyy — AL(V),, D) =1, [ =178 "},

7 _ _1=2B14 x
b =—503 " ®@ryg,
dual . —T =0 o ] oot — 6'§ = EACEQGDB,
ual representation:
P OV — VT 1A s AP,

The antirepresentation, also self-dual, acts on the right-handed Weyl spinors
—T

V.

= %ﬁ rp® IXAa

= +158 rp @14,

S e~

Ay — ALV )y, DONI() == 1%, {

_ZAT = e[oll] le) ZAO 6[0‘1}71
dual representation: ol T _ ’ A
OV SV, rp s egal®A

= §BCz

With respect to the Euclidean U(2)-conjugation ﬁ 726pa, ie.,

o = d*, the following index notation is used:
n V' A= rB(SBA, inV: lfl =1Bd,,, <l]X-3,rA> = 51‘3,
leading to the notation for the antirepresentation
T_izB A ox 7 L 1=2B A o1x
D[O‘l] . l = §O'A~TI' ® IB, b — +5O’A 'I' X IB’
OV SV, o — eABIE.
This Weyl notation with dotted and undotted indices keeps track of the two
types of fundamental representations also in representation products.
The anticonjugation connects left- and right-handed Weyl representations:
x:V—V, 1A|—>1XA=5ABIE,
VT SV o1y = 8,575
The Killing and the chiral invariant have conjugated values for the left-
and right-handed Weyl spinors

IJ[:‘O] (Aay) = %idv, I[EIO}(A(LD) - +giidV’
I(AGy) = 2idpr,  T(Aqy) = —Ziidpr.
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The product of spin axis and boost direction % [b=+1 (parallel and antipar-
allel) motivates the names “left-handed” and “right-handed.”

Exponentation of A 1y gives the Lie group of the special linear automor-
phisms

exp A1) = SL(C?) = {X € GL(C?) | det A = 1} € lgrp,
in both fundamental representations with a local Lie algebra parametrization

SL((CQ) — SL(V), D[llol(/\) =\ =\a, B’)E 4 g X ei‘i_ﬁ,
—T 25

SL(CY) — SV ). DOO) = 4 = @, ) o 1 = e,

R3-vectors are written as Hermitian traceless (3 x 3) matrices, e.g., @ = q,0°.

1.3 Finite-Dimensional Representations
of the Lorentz Operations

Each complex finite-dimensional representation of the Lie algebra A(; ;) and the
Lie group SL(C?) is semisimple. With rank 2 the finite-dimensional irreducible
representations are characterized® by two natural numbers 2L,2R = 0,1, ...
with (14 2L)(1 + 2R) the dimensionality of the representation

SL(C?) — SL(W), X +~— DELRE(})

’ o~ C(A+2L)(1+2R)
Ay — AL(W)y, 1 +~—— DRL2E(]) on W=C '

They can be obtained, up to equivalence, by the tensor product of totally
symmetric tensor powers:

2L 2R R
DRERR(N) = \/a@ \/ A,
D[2L|2R](l) — DQL(Z) ® idw, + idw, ® DQR(U

from the two fundamental Weyl representations

)

DTN =\
=1 =id-f, PP =

oid—3 D)) — N =\ x o giatd
DII0(7) [

1R

L = Jp, R = Jr may be called “left and right spin,” respectively. There is,
however, only one spin. Sometimes, as for spin SU(2), representations with
(half)integer sum L + R are called (spinor) vector representations.

With the SU(2)-representations in the “left-” and “right-"handed part an
SL(C?)-representation shows its spin content in the decomposition into SU(2)-
representations

3Again7 both notations, integer [2L|2R] or possibly half-integer [L|R], have advantages and disadvan-
tages.
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L+R

) = PSsu(2): DR~ B DY

J=|L—R|

(Spinor) vector representations contain only (half)integer spin J.

The canonical conjugation x, restricted to the 2 x 2 matrices, is the trans-
position with canonical number conjugation and may be written as A* = \*.
The difference between the two conjugations * (definite) and x (indefinite)
can be formulated in U(2,2), i.e., in 4 x 4 matrices as used for Dirac matrices
(below).

The irreducible representations are self-dual with the products of the spinor
“metrics”

D[QL\QR]()\) o~ l)[2L|2R](>\71)T7 D[2L|2R] (l) o~ _D[ZL\QR](Z)T
2L R

2
with P2 =\ [ 0 \ [ (1,
Spinor (vector) representations are symplectic (orthogonal) self-dual:

Sp(CH+2D)(+2R)Y [ 4+ R = 1 :
D[QL\QR] [SL((CZ)] g { S%((C 14+2L (1+2R))) L + R = 87 S

The represented Casimir elements are the sum and difference of the Casimir
elements for the “left” and “right” SU(2)-representation

TP A ) = [(57) + (5)idw, 124G ) = il('5Y) -

2 2

(1+R)] ldW

2

A tensor product of finite-dimensional irreducible SL(C?)-representations
has the Clebsch-Gordan decomposition

Li+Ls Ri+Ro
DRL12R1] ) DI2L2[2Rs] o~ @ @ DI2LI2R]
L=|L1—Lo]| R=|R1—Rz]|

With the discrete group 1(2) = {+1,} as its center, the adjoint group is
isomorphic to the orthochronous Lorentz group

Int SL(C2) = SL(C2)/I(2) = SO(1, 3).

The centrality of the representation, called twoality, characterizes the repre-
sentation of the center I(2):

1
(2L + 2R)mod2 { Ofor L+ R—=01.....
D[2L|2R](_12) — (_]—W> (L+R).

The equivalence classes of the complex finite-dimensional irreducible A 1)-
and SL(C?)-representations define the discrete SL(C?)-representation cone
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with abelian composition V (the “largest” representation in the product re-
presentation) and the trivial representation as neutral element [0]0]:

irrep 4, SL(C?) = {[2L|2R]}
irrep SU(2) x irrep SU(2) = Ny x Ny,
2L1[2R1] V [2L2[2Ro] = [2(L1 + L2)[2(Ry + Ro)].

1l

The two Weyl representations are a cone basis.

In the polar decomposition, the simply connected real 6-dimensional Lie
group SL(C?) is parametrizable by the points of a full 3-sphere for SU(2) = (3
times a 3-hyperboloid for the noncompact boost manifold }* = SL(C?)/SU(2):

A(l,l) = A(f (&) ZA? = (lR)g D R3,
SL(C?) = SU(2)0S0y(1,1) o SU(2)
. B~ {(deR|l|a| <}
SL(C?) =03 x)? ” =0h
() = {y3g {7 emy.

Instead of the left-right spin oriented notation a compact-noncompact Car-
tan subgroup SO(2) x SOy(1, 1) notation can be chosen:

J =L+ R,

NOXN09[2L‘2R]g(2J,2D>€NOXZWIth { D =L—R,

where J is the maximal spin. The invariant D, related to the noncompact
boosts, is integer-valued for the finite-dimensional representations and takes
continuous values for the infinite-dimensional representations (chapter “Har-
monic Analysis”).

The representation cone carries the anticonjugation

[2L!2R] _ [2R’2L]X . D[QL\QR]()\) DI2RI2L] (5\) fD[2L\2R](l) D[QR\QL](Z)
(2J;2D) = (2J;-2D)*,

leading to two types of indefinite unitary complex finite-dimensional represen-
tations, either irreducible or complex decomposable:

[2J|2J], J=0,%1,...,

DR

2L|2R] @ [2R|2L], L #R.

The two types start nontrivially with the real 4-dimensional Minkowski rep-
resentation [1|1] with SO¢(1,3) C SU(L,3) and the complex 4-dimensional
Dirac representation [1|0] & [0[1] in SU(2,2).

The equivalence classes of the finite-dimensional real irreducible represen-
tations of the locally isomorphic orthochronous Lorentz group SOg(1,3) =
SO(C?) = SL(C?)/I(2) are given by the “even” subcone of the SL(C?)-repre-
sentations. The complex irreducible vector representations [2L|2R] with even
sum 2L + 2R € 2Nj (integer spins) give rise to two types of real irreducible
SOy (1, 3)-representations

irrep 4,S00(1,3) = {[2J]2J]|2J=0,1,...}

W {[2L|2R] ® [2R]2L]|L+R=1,2,..., L # R}.
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The representation spaces with complex dimension (1+2J)? and 2(1+2L)(1+
2R) are decomposable into symmetric and antisymmetric real vector subspace,
real isomorphic to each other. The two fundamental representations of the
rank-2 group SOq(1, 3) are the defining Minkowski representation [1|1] (real
dimension 4) and the adjoint representation [2|0] @& [0]2] with real dimension
6= (;1), which can be obtained as an antisymmetric product

2101 @ [0]2] = [1[1] A [1]1].

A prominent example is the electromagnetic field strength {F7*}?, _ as anti-
symmetric derivative F7* = 37 A% — 9* A7 of the potential {A7}5_.

The SOq(1, 3)-representations of type [2J|2J] are isomorphic to totally
symmetric products of Minkowski representations [1|1]. They have a trivial
noncompact invariant

[2J]2J] 22 (47, 0).

The Lorentz group is represented in indefinite orthogonal groups of R(*2/ )

with the definite subspaces for even or odd angular momenta in the SO(3)-
subrepresentations

2J
DR2J12J] o~ @DQL _ @ DL @ @ DQL’ (1 +2J)2 _ (24—22J) + (1+22J)7
L=0 L=0,2,... L=1,3,...
SOo((*)). (7)), 2J=0,2,...,
SOo((*}), (*7)), 27=1,3,....

2 2

DRIRISO(1,3)] C {

The complex representation spaces have an eigenvector basis of a real 2-
dimensional Cartan subalgebra, e.g., of RI?> & Rb* with the Lie group

SO(C?) = SO(2) x SOy(1,1) =2 {elis=)7" | ay, f; € R} C SL(C2).

For the simple Lie group SL(C?) there arise only self-dual U(1) x D(1) re-
presentations in SO(2) > (EQJSOS 67231(13) and SOg(1,1) 3 (67?3 622[;3) with
integer weights (+27; +2d) € Z x Z.

The Cartan subalgebra eigenvalues (weights) of a representation can be
given either with the “left-right” spin components (on an R2-rectangle),

weights [2L[2R] = {[2/[2r] | = —L,-L+1,...,L, r = —R,..., R},

or with the SO(2) x SOq(1, 1)-weights (27;2d), arising from the spin pair by
a rotation
[2012r] = (25;2d), j=1l+7r, d=1—r,

e.g., for the two Weyl representations

weights [110] = (1] [—101}) = (1), (-15-1),
weights 01 i@;he[o“])} = {(1;-1), (1))
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and for the 4-dimensional Minkowski representation

. :{[1’1]7 [1|71L [71‘1]7 [71|71]}7
weights “'”{ = {(0:2), (2:0), (~2;0), (0:~2)},
e~ 2Ps 0 0 0 cosh 13 0 0 sinh 13 o N
0 e2ies 0 0 ~ 0 cosps  sins 0 ¢ =2a,
0 0 e—2iag 0 - 0 —sings  cos 3 0 T — 25

sinh 13 0 0 cosh i3

The discrete SL(C?)-weight module shows two winding numbers,

weights; SL(C?) ={[2l|2r]} =Z X Z
= weights SU(2) x weights SU(2)
= weights U(1) x weights U(1),

with the conjugation
[2r[20% = [21]2r] = (2j;2d) = (2j; —2d)*.
It contains the SOy (1, 3)-weight submodule

weights ,SO(1,3) = {[21|2r] | [+ r € Z} 2 Z x Z.

The representation cones are given by the dominant weights, i.e., they are
the positive cones of the weight modules.

1.4 Spacetime Translations
as Spinor Transformations

The sum of the two inequivalent Weyl representations of the Lorentz group

acting on the antidoubling Viou, =V @ VT =~ C* is the decomposable Dirac
representation in the real 32-dimensional Dirac algebra

. _
AL(Vdoub) - (VVT%‘?/T VVT%VV> = <1P3:(L\§§/T) Ai%ix) =Cv.
The x-unitary group of AL(C?) is U(2,2).

In addition to the self-dual antialgebras in the diagonal with the image of
the two Weyl representations one has two vector spaces in the skew-diagonal,
dual to each other and invariant with respect to the anticonjugation. They are
stable under the adjoint SL(C?)-action:

0 A

-1
ALVaow) — (3 3) o AL(Vaow) 0 (5 5)
{ A— D) = @ M = A = A%,

, _
SL(C®) — SL(V @ V), Alle ) = A1) @A)~
{ A— A=A"1T =A@\,

SL(C?) — SL(V' & V"), Arere) = Ar) ® Ar)”
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and contain real 4-dimensional vector spaces, symmetric for the anticonjuga-
tion and dual to each other:

P(V) =Ce®M, M ={zeP(V)
P(V)T =CoM?, MT ={peP(V)T

These real vector spaces are the Cartan representation of Minkowski space-
time and its dual energy-momentum space by Weyl spinor transformations

CoM={V —V}, CoMT={V 7V}

T3 X1 — 1T
T1 +ix2 —x3

The Pauli representation & = ( ) € S = R3 of position transla-

tions is embedded into the Cartan representation (;0 AT, :m) eM~R?
1+ix2  xo—x3

of Minkowski spacetime: The decomposition of Ml with respect to spin Af-
images contains a trivial A{-representation o1y € T = R with the time trans-
lations (Clebsch-Gordan projection with 51‘%) in addition to the Pauli repre-
sentation of the position translations (Clebsch-Gordan projection with Eg).
Explicitly: By the Fierz recoupling of the product of four spinors

7C 2A .

AC A s¢ Fiers 0G6345G68 1 e A 1 j o = \CA
(1® 1), =05 07 = 2572 =5(0))5 (0)); = 3(07 ®65)55

one obtains two sets with four 2 x 2 matrices, dual to each other:

Sylvester- Weyl matrices: { ?j = (12, g)’
g; = (15,0).
The Sylvester-Weyl matrices contain Clebsch-Gordan coefficients for the spin
decomposition of Minkowski spacetime.

The Fierz recoupling describes a basis transformation from bispinor bases
of the dual spaces P(V) (spacetime translations) and P(V)? (energy-momenta)
to vector bases

(G4

Mol = b pi, Cory=25X,

2

They are symmetric with respect to the anticonjugation and dual to each other:

(P @t | 0129),
PV — v, PI= ()= () 7)),
{X; = (68" @r5|j=0,1,2,3},
X; V-V X=X = () ),

dual: (X;,P¥) =4 trX; 0Pk =6k = Ltro*s;.

vector basis of C Q@ M : {

vector basis of C @ M7 : {

The Weyl matrices {07}?_; and {7;}7_, are dual bases for spacetime transla-
tions and energy-momentum space

—T ) o
% —>‘/, M > :xjo_j:<zo+z3 1 zz2>’

T1 +ir2 T — X3
—T . . 0 43 1_ 2
vV M s =pie = (W1 hTh),

pt+ip® p’—p



28 1. LORENTZ OPERATIONS

The SO(3)-rotations of the position translations via the adjoint SU(2)-
action & — wodou* are embedded into the SOy (1, 3)-Lorentz transformations
of Minkowski spacetime:

SL(C*) xM — M, o"r— Xo*X\* = Afod = AF = Ltr Ao* N5,
SL(C?) x M7 — M7, &;— Ag;\* = (AY)kay.

The components in the Cartan representation of Minkowski spacetime,

(;0:2‘:;32 2]__2;?) = (2o + x3)7t + (w0 — 23)7 + (21 — ix2)0T + (21 + Q7)™

. 3 14,2
Wlth ,n.i — 12§0 ) O.:t _c ina ;

are an SO(2) x SOy(1, 1)-eigenvector basis

ias+p3s3)o® zo +x3 T — T —iag+P3)od _ 2P (zo + x3) %8 (1 — ixa)
eliaz+B3)0” o (zlo+”;2 ;OiZj) o e(—tas+P3)o” — (8_21-(13(;14_{;2) 8_253(;0_$§)>.
The conjugate adjoint group of the full linear group GL(C?) is given by
the classes with respect to the unitary center subgroup U(1):

Int ,GL(C?) = GL(C?)/U(1,) = D(1,) x SL(C?)/I(2) = D(1) x SOy(1,3).

It involves a dilation group in addition to the Lorentz group. The spacetime
translations are isomorphic to the symmetric vector subspace of the GL(C?)-
Lie algebra, whereas the antisymmetric subspace is the Lie algebra of the
unitary group U(2) (chapter “Spacetime as Unitary Operation Classes”):

R®= logGL(C?) =logGL(C*)_ @ logGL(C?); € lag,,
. 3 —+ s — 1 xo + x: xr1 — 1T
z=iy+w _5<’710+;:2 Yylo—’zs>+(xf+i;2 xlo—ws,z)’
(iIR)*= log GL(C?*)- =1logU(1) @ logSU(2) ZiR @ Af € lag,,
R*> logGL(C?), ¥R @ iAS~T & S € vecy.
The dilation Poincaré group is the conjugate adjoint affine group of the full
linear group GL(C?), considered as real 8-dimensional Lie group

Int ,GL(C?) X log GL(C?), = [D(1) x SOy(1,3)] X R*.
The 4 x 4-Dirac representation of the dilation-Lorentz group in U(2,2)
acts on translations by inner automorphisms. It gives in the nontrivial sub-

matrix the conjugate adjoint action on the translations in the Cartan 2 x 2
representation

9.9=g" eD(1) xSLE): (5 0)(5 1) (5 2)_1 = (6 ).

The adjoint action of the Lie algebra representation in log U(2, 2),

i@ — Bola — B 0 B 0 =z _ (0 [i& ] — {Bol2 + G, z}
0 id+fol2+4)\0 0)] — o 0 ’
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has as nontrivial contributions the conjugate adjoint action with commutators
and anticommutators for the U(2)-anti-Hermitian and Hermitian (2 x 2) ma-
trices which represent the three compact rotation and the four noncompact
dilation and boost generators respectively.

The Lorentz “metric” with its characteristic signature (1,3) is the product
of both spinor “metrics”:

g=el: M — M7, MN1e1¥)=—0l=1(1x) g {10,

It contains the negative definite product —13 for the position translations

e g 3 )
(UJ)CEDB - gj (Uk)B> for 07 = (12, &),
eCepp = LM pa(09)5, Cepp = L(01)49"(6))S.
Hence A = DI(X) € SOy(1,3) is orthogonal self-dual.

The Sylvester-Weyl matrices (19, 5) are a basis for the Cartan spacetime re-
presentation. All translation bases are related to each other by tetrads o) —s
hjo* with h €GL(R*)/O(1,3) (orientation manifold of the Lorentz group).
General Weyl bases of spacetime translations and energy-momenta M, M use
Hermitian 2 x 2 matrices

1
general Weyl matrices: {07,5;}3_, { (Zaj)* S
= y k) = Ok,

Flok 4+ 5kl = 2¢7%1,,

with oy = grio?, 67 = g%, = L " ;
k 9kij0°, g k O_JO_IC 4 O_ko_] —_ 29]k12;

e.g., the Sylvester-Weyl matrices above or the

j o~ (12403 12 15—03
o)~ ( 0, ), N 0 0 1
3 3 g = | = 0 —-12 0.
G~ (12+a’ 0_1,2 1—0o ) ’ 1 0 0
] — \/5 ) ) \/5 )

Witt- Weyl matrices: {

. . . + 1 :i:LTs
The lightlike subspaces are spanned by the projectors 7= = =237,

The Lorentz square g of the translations is the determinant
g(a,z) = detz, g(a,y) = ety detomy),
The spectrum of a translation z defines its two Cartan coordinates &; 5 by the
sum and difference of time translations and the length of position translations

r = (““”’.’”3 o im), detz =22 — 2, tra = 2x,
r1 +ix2  TO — T3
£ —¢trz+detx =0,
specx = {¢ | det(z — ¢idy) = 0}, Sl =detx, {+ & = tra,

&,& = 1o £ V2.

The signs or the triviality of the Cartan coordinates determine the spacetime
order with the properties “timelike,” “lightlike” and “spacelike,”

(+,+) and (—,—) strictly future and past timelike,
. _ (+,0),(0,+) and (—,0),(0,—) future and past lightlike,
5111 (617 52) - (0,0 trivial,
(+,—), (=, +) strictly spacelike.
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The order is Lorentz-compatible:

<= z =2a* and specx C R,
AL(C?*) 32 =0 <~ x=2za"and detz >0, trz >0
< 1z =so0s" with s € AL(C?),
ANESL(C?) = Xozxo)l =zo0z"=0withz=M\os.

Here, the positivity of s o s* for elements of the C*-algebra AL(C?) (chapter
“Spacetime as Unitary Operation Classes”) is used.

1.4.1 Weyl Spinors with Minkowski Notation

With the local isomorphism SL(C?) ~ SOy(1,3) the Weyl representations of
the Lorentz symmetry can be written with two sets of six Lorentz generators,
i.e., 2 x 2 matrices {07%, 69%}, 10123

, , igh_ghgi o~ ki 53 ok _ ki
O.jk:_o,k]:_aa4ao’ O.jk::_o.k]:_(ra 007
o) = (12,0’) = 5']',
Sylvester basis: § 0% = *¢Lg¢ = 5,
O.aO — —%O’a — —&“0,
with the identities
i Im __ i ~lm A
SE€KIMO " = +0jk, 5€km0O " = —0jk,
0123 _ 1 _
e =1= —€p123-

In this notation the Lorentz Lie algebra elements are

. ok
2(icty F )0 = aa€?[0?, 0] F 2B,0% = wi &jk’
)

Wap = 26"q, = €y, (rotations),

wji = —wg; € R, Sylvester basis: { oo = 26, = 1 (boosts),

with the two Weyl spinor representations

ik __ jk\B 1A X CA jk\B _ jk\C
v - (07")4 1 ‘ ®k1"37 Ek ({73 )AGBD " _(Ulj )D;
D[l‘o] . {0,_7 O.nm] — g]no. m —g ngim _ gjmo. n +g myjn
A ’_ lekljk ~ lekojk 7
(w) =e2 >~ e2 ,

ik _ (4ik\B A X CA(Ajk\B, .. _ _(~ik\C
1 4f(a )Arl®lB’ € (a )AEBD* (& >D,’
D[0|1] . [&]k7&nm] — g]n&km _ gkna_jm _ gymé_kn + gkmocgn,

and the two Casimir elements

ojkojk = —I—Sjejklmaj&kalc'rm =31,

Ak i < k<l _
007" = =35€umo’o oo™ =3 1,.
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The involutory Fierz recouplings of the Pauli spinor representations give the
Fierz recouplings for the Weyl spinor representations with one Fierz-symmetric
and one Fierz-antisymmetric linear combination:

: — = A .
ok ® oIk AC T) ac -3 —3)\7) 47 S+T —(S+T1)

1

The recoupling matrix (_23
2

) with square 1, has eigenvalues {£1}.

B[00

1.5 Minkowski Clifford Algebras

The Clifford algebra (chapter “Quantum Algebras”) for Minkowski spacetime
M =2 R* is constituted by the equivalence classes in the tensor algebra ® M

with respect to the equality of the tensor square of a spacetime translation to
its Lorentz square g. It has real dimension 2* = 16:

. » r®r =g(r,x), reM,

in CLIFF(1,3) = R™ : %{ej, ek} = gk = ((1) _(13) for M-basis {ej};’-’:o.
The Minkowski Clifford algebra comes with an adjoint action of the Lorentz

Lie algebra CLAG(M, g) = R® with basis {{’*}, 10123 given by the transla-

tion commutators

pk _ [ [F, "] =gt —gtred, '
1 : [l]k,lnm] — ggnlkm _ gknl]m _ g]mlkn _|_gkmljn.

The ten elements {7 e/} with the Clifford product induced commutator do
not represent the Poincaré Lie algebra since the commutators [/, €*] do not
vanish.

The even subalgebra of the Clifford algebra contains Lorentz scalars and
2-tensors. Geometrically: numbers, 2-dimensional areas and 4-dimensional
volumes; the odd subspace contains Lorentz vectors. Geometrically: vectors
and 3-dimensional volumes (axial vectors):

CLIFF(1,3) = CLIFF(1,3), & CLIFF(1,3); & RI*6H @ R+,
basis of CLIFF(1,3)o: {1, 1% e5= el @ ek @ e™ @ e},
basis of CLIFF(1,3); : {¢?, ¢/ @ e5}.

With the imaginary roots of the minimal polynomial p..(X) = X?+1, i.e.,
es ® es = —1, the chiral projectors

__ 1zie
P =57,

can be constructed only in the complexified Clifford algebra C® CLIFF(1,3) =
C1e,

The two possible Minkowski Clifford algebras are isomorphic to endomor-
phism algebras, 4 x 4 matrices with real entries

CLIFF(3,1) = R(4 x 4)
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and 2 x 2 matrices with entries from the quaternionic field
CLIFF(1,3) ® H(2 x 2), H= {aply +ia} X R*
representable by endomorphisms in the Dirac algebra (next section)

CLIFF(1,3) — C(4 x 4), €& 7
= (1765;ljk;6j7€j & 65) | — (1477_577jk7’7j77]_"y5)7
{77, 7*} = 29714

1.6 Dirac Spinors and Dirac Algebra

The direct sum of both Weyl spinor representations acting on the antidoubling
Vioub defines the complex 4-dimensional Dirac representation [1|0] & [0|1] of
SL(C?) with the anticonjugation x induced U(2,2)-unitarity. Dirac spinors
have as dual bases

basis of Viguy =V @ VA {pk& | P2 = (112,0), 3% =(0,r?)},

. Y7 ~U " A rX A 0

basis Oivdzub =Vl e V=C': {Yg|vi,= ( 10’2>, V34 = (11{2)}3

dual: <¢K7 7/1M> = 5%)

. T K _ (1A A 0§48\ (r
X-‘/doub—)‘/douba 1/} *(1 7r)’—>(5AB 0 1§ .

The Euclidean U(2)-conjugation for 2 x 2 matrices A < \*, used in the com-
plex quartet with the chiral basis, is part of the indefinite U(2, 2)-conjugation
(anticonjugation) x for 4 x 4 matrices. It combines the U(4)-conjugation *

with the linear transformation (102 102>:

X * * *
chiral basis: (;‘ ’;) = (102 102) (2 ﬁ) (102 102) = (;* f@)
The Lorentz cover group SL(C?) is represented as an SU(2, 2)-subgroup in the
Dirac algebra AL(Vjou,) = C16:

log SOy(1, 3) =2 log SL(C?) — log SU(2,2) = log SO(2,4).

Explicitly,

A0 ' zwiro’yB 0 oS
A\ — )\doub = <O ;\) — (lA,I'A) ® <(e . )a (e;wjké_jk)3> (l?)
A

B
= (Adoub>% wK ®@M = e%ijLJ"’ o 6%wj,wjk7

0 1 0 1 M0 -1
>\L>i<oub = <12 02) )\:loub (12 02> = <0 )\*> = )\doub'
The x-antisymmetric basis {L/*}; ;_0123 for the Lorentz Lie algebra

L% Vigw — Vaown, ¥ =VF @ VF = (v MyK @9,
. oik .
ij = < 0 §?k> = _i{,yj’,ykL

[,yjk7,ynm] — gjn,ykm _ gkn,yjm _ gjm,ykn 4 gkm,yjn’
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is combinable by Dirac matrices as a sum of the Weyl matrices:

Vj : Vdoub — Vdoub> Vj = Z(PJ @ XJ) = Z(’W)%WK ®$jw,
i (0 o {77,7%) =29 14, try? =0, tradyk = 4g't,
T (”j 0)’ { V5,9 = g7t — gt
The Lorentz action for the Dirac matrices arises by inner SU(2, 2)-automorph-
isms
’Yk [ — )\doub'ykAgoub = Aéf’yj

Inner automorphisms % +—— g o ¥ o g71 with ¢ € GL(C*) lead from
the chiral representation of Dirac matrices above to other forms, e.g., to the
time-diagonal representation (v, 5y) = (8, fd) with diagonal 7y:

(7%9) = (<102 102>v (—Oa g)) — (Vg»VU) = ((102 _22>;<_05 g>>7

chiral time-diagonal
1 1, 1
Y& =wy oy* owy! withwy = % (7122 1;)

The time-diagonal representation was originally introduced by Dirac.
The time-diagonal-associated U(2,2)-conjugation combines the Euclidean
U(4)-conjugation with a signature (2,2) matrix:

X * . s
time-diagonal basis: (2 ﬁ) = (102 _012) (’p\ f) (102 _012) = <—/\u T’f).

In the Dirac representation the Killing-Casimir element is proportional to
the unit matrix 14,

ij o ij = _3]:7 'ij’ij = _3147 o
I: Vdoub E— Vdoub7 I= idVdoub - 1dV % ldVT = ¢K 02 ’(J}Kv

and the chiral Casimir element to the volume element s, diagonal for chiral
Dirac matrices

J: V:ioub E— ‘/doub7 J= ldV @ (_ idVT) = 2(75)% wK X wM>
| B=le
s = F€ikmn V™Y ¢ {5 =0, [WF ] =0,
%ijman" =YYk, trys =0,

L 1. 0 ‘ . _ 0 -1\ .. .
chiral iys = (02 712) > iY5y = Wy 0 iy 0wy = (712 02> time-diagonal.

Hence one can construct the projectors from the Dirac representation to the
two irreducible Weyl representations

Pp=P=1tn p —px= Ll ppx=(, P2=7P,

2

i s R A
<

) K = 37 47
0 o 14—iys ~, 0 0
0 G)» 2 1i=\s o)

1a+iys o,
2 Vi =
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The difference of the Weyl matrices gives the axial vectors

Aj : V;ioub — V_;ioulm Aj = ZPJ @ (_ZXJ) - (VJ75)%¢K ®$ZW?

iy = <f *5”), {715:77} =0, try?y =0.

A Lorentz group representation adapted basis of the complex 16-dimensional
Dirac algebra AL(Vgous) or of the real 16-dimensional Lie algebra log U(2, 2)
is given by the decomposition of the tensor product of two Dirac represen-
tations into two scalar representations, the adjoint tensor representation and
two vector representations, 16 =14+ 146+ 4 + 4:

2
®<Du|o1 @ D[Oll]) _ 9 x DOl g {Dmm @ D[W]} & 2x i,
log U(2,2)-basis:  {il,J} W {L*} W {VI AT}

The Fierz recoupling has two Fierz-symmetric and three Fierz-antisymmetric
linear combinations as eigenvectors:

141 ®14 MN s MN %1 *ﬁ *1% % % s\ VM
75 8% p Fierz i 1§ 1 1 P
Yik ® = = -3 3 -1 0 o0 t
ey . WA
V57 @57 ) g atKL 1 1 tO 3 -3 4 KL
sS—p— < s—p— &
S*p+* —(s—pp+6L)
pv«%a Fierz ’U+2[L
= s+p+ =2 — s+p+ =
sp - —(sp— )
v—a —(v—a)

As a reflection the recoupling matrix has square 15 and eigenvalues {£1}.

1.7 Reflections for Position and Time

Time and position translations have linear reflections (chapter “Spacetime
Translations”)

O(1) 2 1(2), O(3)=1(2) x SO(3) I(2) = {+£1,}.

t e —t T -
embedded in a spacetime reflection Klein group in the Lorentz group

0(1,3) =1(2) xSO(1,3) =1(2) X [I(2) x SO(1,3)].

The central spacetime reflection x & _ris compatible with O(1,3). There
are as many position reflections P with associated time reflection T as there are
decompositions into time and position translations. {P,T} are only rotation,
not boost invariant:

0(1,3)/800(1,3) = ]1(2) X ]1(2) = {]_4713} X {j:]_4} — {Z|Z14,P,T},
P&0(1,3)/S0(1,3), L, [-1, T P

T=—-P, detP=—1=detT, -1, 1, P T

P.SO(L,3)] # {0},[P.O(3)] = {0} plr 1 1
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Spinors are acted on with the simply connected covering groups SU(2)
(rotations) and SL(C?) (Lorentz transformations)

SO(3) = SU(2)/I(2), SOy(1,3) = SL(C?)/1(2).

The time and position reflections are not contained in the orthochronous
Lorentz group. Therefore, the Klein groups I(2) x I(2) in O(1,3) used for
spacetime reflections have to be implemented, on the spinor level, differently.
The twoality group I(2) = {1} for the SO(3)-classes in SU(2) and the
SOy(1, 3)-classes in SL(C?) has nothing to do with the reflection Klein group.

For spacetime translations in the Cartan representation zo + & (with zg
for x915) as Weyl spinor product [1|1] = [1|0] ® [0|1] the reflections can be
constructed as products of spinor reflections, i.e., from bi- and sesquilinear
forms of spinor spaces.

The general structure: A vector space reflection (chapter “Spacetime Trans-
lations” ), which can be linear or antilinear for complex spaces, is a represen-
tation of the reflection group I(2) = {£1} with an involution —1 — R:

I2)xV —V, —lev=Rv=10" R2v=1"=u.

It is either faithful or trivial. The vector space is decomposed into the reflection
invariants V., the eigenspace with R-eigenvalue r = +1 for a linear reflection
and with the Hermitian elements for an antilinear R = *, and the eigenvectors
V_ with eigenvalue r = —1 and the anti-Hermitian vectors V_ = iV, for R = x:

V=V, e V., Vi={v=+*|veVi={vts*|veV}

An [(2)-action on two vector spaces defines the reflection for the tensor prod-
uct:

H(Z) X (‘/1 (024 ‘/2) — ‘/1 &® ‘/2, R1®2(1)1 ® 1)2) = (Rl."l)l) ® (RQ.’UQ).

1.7.1 Linear Spinor Reflections

All spinors (Pauli, Weyl, and Dirac) are linear self-dual with the C?-volume
form (spinor “metric”).

The defining SU(2)-representation [1] acts on Pauli spinors V' = C2. They
have an, up to a scalar factor unique, SL(C?)-invariant antisymmetric bilinear
form that defines an isomorphism with the dual space V7, in this context
called Pauli spinor reflection:

o _ e
Vv — VvV u :eza, UZ’LLlT:em,
€ €, u =¢elodoe,
vl ., yT —3 =e'todlog,
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Equally, the two fundamental SU(2)-embedding representations of SL(C?),
the left- and right-handed Weyl representations [1|0], [0|1] acting on Vi, Vg =
C? with the dual representations on VZ R, are self-dual with the Lorentz com-

patible Weyl spinor reflections

A A
VL — VL VR — VR
d7 T
Vi — v Vi — Vi
A A
A eid— _" 5\ =\ = ei&Jrﬁ’
A=\"1T e(’“”B)T7 ’ A = )\* = lmid- H)T,
[1]0] & (1o}, Vv e VLT7 e €A?rl§’)

1.7.2 Spinor Conjugations

All spinors (Pauli, Weyl, Dirac) are complex vectors, acted on by a real group,

defined by a conjugation.
The definition of SU(2) requires a Fuclidean conjugation *, for Pauli spinors

’LL_I*,

Q| &

*
)

QI &

* *

vl — y7T

u

1] &1, VeZs VT uf o §48us.

The SL(C?)-embeddings define antilinear isomorphisms between the left-
and right-handed Weyl spinors, compatible only with the spin group action,
not with the boosts SL(C?)/SU(2):

ur

VL I VL
l l oy up =Ny = ug = Aj_, = €9 € SU(2),
VLT — VLT
72L
Vi == VI, 14 e 5451,

[1|0] - [0‘1]7 Vi * Vg7 I‘A JEN 5/}31;;
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For Weyl spinors there is the anticonjugation x in the complex quartet; it
is Lorentz compatible:

A
VL —>VL

Xl lx,ngwg
VL I VL
X

Vi s VE, A e 581

1|0] <= [01], o . i
ol O] Vi —— VI, 4« 5447,

The difference between positive U(2)-conjugation x and indefinite U(2,2)-
conjugation X is visible in the Dirac algebra, e.g., with the (4 x 4)-Dirac

T* ,LL*

p* )\*:

. (12 0 i (0 of . i (0 o ik _ (7% 0
VY5 = (0 _12)a /y]_<gfj 0)7 2’757]_<_(}j 0)7 ’7] _(0 &Ik |

(147 7;,757 ’}/]7 i"Y5’Yj7 ,y]k:)X = (145 _i’y57 "Yj; i’Ys’Yj> _7jk)

X
. . . . A
matrices in the chiral representation where ( ) ﬁ) =

1.7.3 C,P, T from Spinor Reflections

The three spinor reflections (dual isomorphisms) — linear reflections e, Euclid-
ean U(2)-conjugation . and U(2, 2)-anticonjugation x — implement, in prod-
uct representations, the reflections of spacetime translations.

In the following table the reflection properties of spinors and their scalar
and vector products are given, first for Pauli spinors

[ dual reflection [ for spinors | for products [ compatible |
€ * *
S . uu* < uu
linear u < eu Wt o —usu* SU(2)
& uu* > uu*
e u < u* = - SU(2)
antilinear ucu < ucu
and then for Weyl spinors
‘ reflection H for spinors ‘ for products compatible
€L,R X X X
Phnd iy 1 —er Ir —Ir Py
linear, dual el lo71* — r&irX SL(C%)
Ir* 1%
X x . ) 2
L b= 1691% o 1g71% (SLSC ) SLOCQ ) C SU(2,2)
antilinear, anti r <r rEITX e reirX ()
& R Ir*  —Ir*
o " SU(2
antilinear, dual r 1 1(12,3)1% < r(1lg,d)r> &)
Fakided 1 <1 Ir*  «rlX
. L SU(2
linear, antidual X X 1(12,3)1*  © r(1z,d)r @
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From the Weyl spinors one obtains the reflections for Dirac spinors ¢ €
Viowb = Vi @& Vi = C* - in the chiral representation:

€doub

. AB ry
X © Vaoub — V;ijc;ub’ ,(/)K = (]A,rA) — <5£B ' ) <11>§>7

X ox: Vioub — VZioub; 1/)K = (lAvrA) — (IB7rB) (5(1‘ 6[?)’
P — 7.
The linear self-duality ¢ = (1,1) — (er*, el*) = €qoup?0 ™ defines the Majorana

reflected Dirac spinor. A Majorana spinor identifies both Dirac spinors ¢ =
€doub® ™. The reflections in the Dirac algebra are

! v [14] ] ¥ | sy A
€aoub ©Y" 0oy =1 | 1a| 5] ¥ |~y |
X =A™F 1y | —ivs | e
. 0 B _ 0 Oa
v = 7T 1, Y5 (jya) Ws( 771 ) (jvab)
. 0 . _ A0 _~0Oa
= L] = (*77‘1) s ( K ) ( - )

The e-reflection for angular momentum vectors id for Pauli spinors is embedded
in the ey, z-reflection for the boosts and angular momenta (c7%, 57%) for Weyl
spinors.

Altogether, the antilinear U(2)-conjugation of Weyl spinors implements
the reflection of time translations T, the linear product of U(2)-Euclidean
and U(2,2)-anticonjugation the reflection of position translations P and the
volume-form-induced linear spinor “metric” the particle-antiparticle reflection
C. One has a group [(2) x I(2) x I(2), generated by three reflections, wherein
the two conjugations implement a Klein reflection group

1 X ZToP =T Xo*x=P
X =ZToP 1 P T and 1 GL,RgC
* =T P 1 ToP 6L7R%C 1 ’
X ox =P T ToP 1
1(2) x I(2) 1(2)

[P,T]=0, [C,P]=0, [C,T]=0.
The reflections have the invariances

[x and C,SL(C?)] = {0}, [T and P,SL(C?)] # {0},
[T and P,SU(2)] = {0}.
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The relation between angular momentum invariant and position reflection
eigenvalue in (pseudo)scalars and (axial)vectors is generalized to define polar
and axial rotation group representations

_N\L
O(3)-representation with L = 0,1,2,---: p= { (=1)7, = polar,

(=)L) axial.

1.8 Dirac Equation

The Dirac equation describes the energy-momentum parametrization for the
spinor representations of the boost hyperboloid SL(C?)/SU(2).

With the spacetime translations R* related to the tangent space of the
boost classes D(1) x SOy(1,3)/SO(3), the momenta can be chosen as Lie
parameters for the boosts. The connection of the three noncompact Lie para-
meters [ of SL(C2)/SU(2) with the characteristic momentum (velocity) of a
boost SOy (1,3)/SO(3),

_qgfqﬁil
m2 — m?2

26 = w*‘%artanhlqj %:g, qgo = /m?+ ¢,

b

allows the parametrization of the Weyl representations (m > 0)

s(i) - jﬁ ew 1 coshﬁ:F smhﬁ qa+m [1 F ]
() = s(8) = of : i

®

involving the hyperbolic functions with tanh 23 = L%]:

2 _ 32 X _  [aotm : _  [a-—m _ _ld
%= 3%, coshfB= /%" sinhg3= /%", tanhﬂ—qo+m

2

The boost representatives are determined up to SU(2), they are chosen to
be Hermitian s(-) = s*(£) €SL(C?)/SU(2), i.e., the absolute values in the
polar decomposition of SL(C?).

The combination of the Minkowski representation by the two Weyl spinor
representations [1]1] 2 [1]0] ® [0]1],

s(£

gives the explicit momentum parametrization of the Lorentz boosts

JohaTI (L) = AL )bod, 3(L)oks™ () = ML),

3

q

exp (s |

&

) _ i(g‘i s 2 ) — A(L) €S0,(1,3)/SO(3).

q0+m

From the relation for the time component

aAl g’ A
AR =2, V[ st =2 =a | [ ss() =s(2)
1, =90 G(4)g—1(2L) — e _ g Lg(Ly =3(L)
0p = 12 = 0o, SHS (a) = T m°\m m/’
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one obtains the Dirac equation, which expresses the momentum dependence
of the Weyl representations of the Lorentz boosts
)

@ (0 o5 (s(E) _ (sGE)
m\s; o0 0 s2y) T L0
-q)
(2L —14)sd0un(L) =0.
With a Fourier transformation, it can be written in the more familiar conven-
tional form

s\co
3

(Z"/Jaj —|—m>\I/(I) = f gqg@lqzsdoub m)\I/(q”qO:\/m
= [ d*q 9(9)0(¢* — m*)e"™ sqoun(;5) ¥ (q)-

The (four columns of the) Dirac representation sgoun(;L) of the Lorentz
boosts are the solutions of the Dirac equation, given in chiral and time-diagonal
Dirac matrices

1,— 1 0
sdou(35) = SToun (i) = q‘;j?( e 12+q0+m> € SU(2,2),
su(L) =sp(L) = wy o saoun (L) o wy'
- ngnm< 2 qo;m) € SU(2,2).
qo0+m

The U(2, 2)-unitarity, in a chiral and time-diagonal basis, of the Dirac equation
solutions expresses their indefinite orthonormality and their completeness:

0 1 0 1
) 15 O2> Séoub(%) (12 02) )
1, 0 1, 0
) = (0 L) L)
A basis {u?,u*4} 4_;» of the representation space Vgou, = C* with time-

diagonal Dirac matrices is related by wy' to a basis {1414} 41 » with chiral
Dirac matrices

SdOUb( )Sé(oub(%) =1 with S(>i<oub(

9
su(D)si(8) = Lowith s

Sl 3l

uA_uxA
Y o1 (1 -\ (vt _ (5
A V2 \12 15 ux4 | — uAfux4 -
V2

These structures are relevant for relativistic Dirac particle quantum fields
(chapter “Massive Particle Quantum Fields”).

1.9 Polynomials with Lorentz Group Action

The polynomials in the vectors of any finite-dimensional representation space
carry the Lorentz Lie algebra action via derivatives (chapter “Spin, Rotations,
and Position”). The fundamental Weyl and Minkowski representations are of
special interest.
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1.9.1 Weyl Spinor Polynomials

All finite-dimensional irreducible representations DERERE! for the Lie algebra
A(1,1) can be realized by derivations of Weyl spinor polynomials in two complex
indeterminates with conjugation from a basis {14, 1’ } 41 » of the spinor spaces

V,V =2 C%
1 1>< \/C2 (vc2)x

The dual-product-induced derivations

(rg, lA) =04 =0pl" withdp = 8%,
15, v =65 =04 with 94 = s
give the Lie algebra representing derivations
. I lge = 1381405 + 15074],
Aqgy = A] @© 4] der C[1,1%], ST fder T304
oy =4j © idj — derClL 1 { b b = 3581105 +150°7),

with a represented Cartan subalgebra log SO(2) & log SO(1,1):

haer = (00)4[110p + 1504, he (1112 1 15) = (+1, =12, —1f', +13),
daer = (00)B[1405 — 150°4], de (11,12,15,15) = (+1', =12, +15, —15).

The totally symmetric tensor powers of the Weyl spinors as irreducible re-
presentation spaces are isomorphic to the polynomials, homogeneous of degree
[2L|2R] in 1 and 1*:

21 2R
basis of C[l,1%]2F2F] =~ \/ C’® \/ C? = cU+2L)(1+2R)
{(HEHAR) LA B (1) B | l=-L,...,L, r=—R,... R}

The monomials in the given basis are Cartan subalgebra eigenvectors with

weights (27;2d) = (2(I +r); 2(l — r)).

1.9.2 Harmonic Spacetime Translation Polynomials

All finite-dimensional irreducible SOg(1, 3)-representations of indefinite uni-
tary type DI2/127) for the Lie algebra A 1y can be realized by derivations of
complex Minkowski spacetime polynomials, i.e., by derivations of polynomials
in four indeterminates {z*}3_, from a basis of V@V = C® M =~ C*

7]~ \/C' = C® R[]

They contain the real polynomials of the spacetime translations. A Cartan
basis of the complexified Minkowski space C ® M is given by

xo+xg3 w1 —dwe) _ (&4 x—\ _ [mo+rcosh re *sinf
x1+ize xo—x3 )~ \axy &-) T re'® sin 6 xg —rcosb |’



42 1. LORENTZ OPERATIONS

with Lebesque measure of the spacetime translations

[die = [duy [Pz, [dz= [ rdr[dPw, [dw= 0277 dy f_lldcos 0.

Since the Lorentz-invariant degree-2 polynomial, i.e., the translation square

detr = 2 = gpaiah = €,6 — a0 = (2°)2 — 72
vanishes for lightlike translations, the position directions \/% € O? for the
SO(3)-spherical harmonics have no analogue in the noncompact group
SOy(1,3).
Polar-hyperbolic coordinates can be used only for nonlightlike translations
|z%| > 0, in the general case with s = 1,2,... position dimensions

7[e(2o) cosh b + £ sinh )]
timelike 22 = 72 > 0,
Ty + T =
) p(sinh ) + %cosh ¥)
SOy(1,s) x R spacelike 22 = —p? < 0,

[O(Eze)I(2?)d or =+ [FFrdr [ sinh® ™ dy [ d* o,
[O(@?)d" oz = [73dr [[7sinh® " ¢dy [ dw,
JO(=z?)d" e = [ pidp [7_cosh® " ppdy [ d*w.

The integration over the future and past lightcone can be parametrized as
follows:

lightlike 2% = 0: @ + @ = V(L) |Z| + Z,
Tp)o(x Sy = r7odr | T w.
9(+ ) 2 d1+ d°z 1 000 2d d 1

oz — 2

In the representation of the Lorentz Lie algebra by derivations, using the
duality 227 = 67,

Any 21ogS0y(1,3) — der Clz], 1% — giiw, 2 — ghia; 2

ozF B
a Cartan subalgebra log SO(2) @& logSOy(1,1) is spanned by
hder :.’lf+%—x7% :>h.(§:t>x:|:) = (07:l:1)7
d der :f+%—£7% jd.(gi;xﬂﬁ = (:I:LO)

The spacetime polynomials with the Lorentz action are decomposable into
homogeneous polynomials of degree N =0,1,...:

N N 3+N)

\/D[”” : Aqpy — AL(Clz]Y), Clz]V = \/C4 ~ (%),

A Cartan subalgebra eigenvector basis of the degree-N polynomials with
weights (27;2d) is given by

{af el 9gPHIEP | N = 2(J + D), 2J,2D €Ny, |j| <J, |d] <D}
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Only the complex polynomials have a basis with eigenvectors of a Cartan
subalgebra.

Homogeneity of spacetime polynomials does not entail irreducibility: The
degree-N polynomials for 22 # 0 are decomposable into irreducible represen-
tation spaces:

N & DWW M) = > (@+20? N=02,...,
\/D[lm _ 2J=0,2,..., 2J=0,2,...,N
&y DWW, (MM = > (1+2))?% N=13,...,
2J=1,3,...,.N 2J=1,3,...,.N

with z°" = (2%)" powers as factors. They have even or odd integers 2.J for
even and odd degree N respectively:

Clz]® =C, Clz]'=CoM=C?,

Clz]¥ = 22C[aV2? @ cov? =), N=23, ...,

{ zNC @ 2N e ... @ CON' N=02...,
2NUICt @ NCY @ ... @ COHNP N =1,3,....

Spacetime translation polynomial bases for the irreducible representation
spaces are given with the Lorentz “metric” as follows:

N =0:{1},
N=1:{a/|j=0,1,2,3},
N =2 :{z7z"}

.7)2 ]
{2} @ {xjx 4gjk2};’ , .
{z x]} S?) {$]$ x —%(gﬂk l+g]l k-l—gkl:)ﬂ)},

11

N =3 :{z/zFa!}

The highest-order polynomials are the harmonic SO¢(1, 3)-polynomials

Po(x)

P'(z) € {a'}
2 DN _ )
0*P"(z) =0 for P2x) € {ainh — %ngk},

1.10 Summary

By compact-noncompact doubling (canonical complexification with the anti-
conjugation U(2,2)) the representations of the spin Lie algebra AS = R? are
embedded into representations of the simple real rank-2 Lie algebra A ;) =
A @ iAS. Tts real 6-dimensional simply connected Lie group SL(C?), embed-
ding the spin group SU(2), covers twofold the orthochronous Lorentz group
SOy(1,3) = SL(C?)/1(2) = SO(C?).

All finite-dimensional representations of A1) and SL(C?) arise by dou-
bling from spin representations and are equivalent to products of right- and
left-handed Weyl spinors that are the symplectically self-dual fundamental



44 1. LORENTZ OPERATIONS

representations, antidual to each other and doubling the Pauli spin represen-
tation. The defining vector representation of A ;) leads to the Cartan repre-
sentation of Minkowski spacetime M = R* as 2 x 2 Weyl spinor transformations
with the orthogonal Lorentz “metric” as product of the symplectic spinor “met-
rics.” The dilation Poincaré group [D(1) x SO(1,3)] X R?* is the conjugate
adjoint affine group of the full group GL(C?). Minkowski spacetime is the real
noncompact part log GL(C?), = R* of the full Lie algebra log GL(C?) = R®
The three reflections for Weyl spinors — the linear spinor “metric” ¢ and the
antilinear U(2, 2)-anticonjugation x, both SL(C?)-compatible, together with
the only SU(2)-compatible antilinear Euclidean U(2)-conjugation x — define
the particle-antiparticle reflection C = e (linear) and the reflections for time
and space translations, T = * (antilinear) and P = X o x (linear).

i SL(C?) =expA(1,1 [ S0y(1,3) = SL(C?)/1(2) |
. . oy weights ;,SO0(1,3) 3 [2L|2R]
weight module weights 5, SL(C?) =Z X Z forltrez
representation . 2\ irrep 5,S00(1, 3) > [2L|2R]
cone irrep , SL(C7) 2 No x No for L+ R=0,1,...
(<c<1+2L><1+21?>) either  [2.J]2J]
3 .
. [2L|2R] = with 2J=0,1,...
representations DJ C Li)\l)%e SO C(21+2L)(1+2R)) or [2L|2R] ® [2R|2L]
D—L-R J=0,1,... with L#R, L+R=1,2,...
2L 2R
2L\2R] (\) = \/A@\/)\
logSOp(1,3) 2 b+1
ie = - — {id — B >~ 6
Lie algebra Ay ={i@d—-p} =R biil=2 0 aﬁbac
By —€*Caq
left Weyl X = e =8 [1]0] =D D
fundamental right Weyl A=A"1* [o[1] Minkowski
representations Dirac spinors A @ 5\, [1]0] & [0]1] ANA, [2]0] @ [0]2]
adjoint
~ (1 0
0 1 o 7(“ —13>
fundamental € (_1 0) Lorentz “metric”
“metric” . B 7 N (13 0 )
spinor “metric nAn=rK =
0 -—13
Killing form

finite-dimensional SL(C?)-representations and weights

IAEV X =PoT I;;EV

N - — -

id—p —(d+B)T
e=Clx=T *=TJle=C

X T AT
r, €V X =PoT 4 eV

R AT — L -
—(id—p) a4+ g

quartet of Weyl spinors
with log SL(C?)-representations
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MATHEMATICAL TOOLS

1.11 Doubled Lie Algebra

The doubling (canonical complexification) Laow, = Lr @ iLg = (éi) € bjR
of a real Lie algebra Ly (chapter “Simple Lie Operations”) has as Lie bracket,
suggested by 2 = —1,

[l 4 ik, Iy + ko] = <[11, lo] — [k1, k‘ﬂ) + i([lﬁ, lo] + [l k?})a
() ()]~ Gt
k1) \ ko - [lz, ]ﬁ] + [l] s kz] ?
[Lr, Lr] C Lg, [iLg,iLg] C Lg, [Lr,iLg] C iLg.
The linear reflection is nontrivial only for Lg:
% Laouwp — Laown, ([ +ik)" = —l+ik, [l,k|*=[k* "],
Lgous 18 a real twin vector space with exchange vector space isomorphism
[la7 lb] — Ezblc)
Lg = ilLg, [=il, bases:{l%}, = {il*}, [il%,il"] = —el°,

[i1%,1°] = e%bile.

The Killing form « of Lg can be doubled in two ways, even or odd with
respect to the linear reflection

/fi( ) ) ¢ Laoub X Lo — R,

~ 2K 0
Ky = (0 —25)7 Koy

E k)= 2/@([, k) = —ky(il, k),
Koy (

k(1

k(L

l,ik) =

l] + Zk’l, ZQ + Z]CQ) = l€+( ll + ikl, —lg + ’ik’z),
k) =0=r_(il,ik),

Lik) = k_(il, k) = (1, k),

,(ll + Zk’l, lg + Zk‘g) = —li,(—ll + ikl, —lg + Zk’g)

For nondegenerate « there are the invariant tensors in the enveloping algebra:
in E(LR) . Habla X lb,
in E(Laowy) : "22(1°@ 1" —il® @ il’), Kapl® @ il
Each complex representation of the real Lie algebra D : Lg — AL(V)
can be extended to two representations of its doubling Lqoup:

Di : Ldoub — _AL(V')7 ,Di(l + ’Lk‘) = D(l) + ZD(k’),

+

D
Liowy, — AL(V) l+ik +—— D) +iD(k)

- Lo 1 |

Liowy — AL(V) —I+ik — D()* —iD(k)*
D_
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1.12 Conjugate-Adjoint Representations

A group G with reflection (conjugation) x defines the doubled group

Gaowr = G x G ={(91,32) | 12 € G} egrp, g=g "
The restriction of inner Ggoup-automorphisms leads to the group realization
by conjugate bijections,
Int,: G — G(G), Int.g:G— G, Int.g(a)=gag™' = gag*,
Int ,g; o Int .go = Int,g1g2, (Int,g)~! = Int.g.

For a unitary element u € U(G,*) = {u € G| @ = u} € grp the conjugate
bijection is an inner automorphism, Int,u = Intwu. The kernel, a normal
subgroup, contains the unitary subgroup of the center

U(centr G, *) C kern Int, = {h | hgh* = g for all g € G},
Int .G = G/ kern Int ,.

The symmetric domain
D(G,*)={d € G| d = d} € set
is stable and defines the conjugate adjoint symmetric space

G QD(G,*) = Int .G >?D(G7 %), (g,d) — gdg* = (gdg*)*.

Analogous structures hold for the conjugate bijections of a unital algebra
with conjugation

l€ A€ xaag,, Ad.:A° — G(A),
Ad,g: A— A, ar— gag*.

A complex Lie group G and its Lie algebra with conjugation have a unitary
real Lie subgroup U(G, *) € lgrp,, with antisymmetric real Lie subalgebra and
a symmetric real submanifold D(G, x) € difp with symmetric real tangent
space:

logG  =logG_ & logGy,
log G zlogU(G,*):{lelogG|l*:—l}€laigR,
log G, =ilogG_ ={z €logG | z* = +x} € vecy.
If the conjugate adjoint representation of the group G can be defined also

on its Lie algebra (this is not always the case, e.g., not for G = SL(C%) with
unitary SU(2)-subgroup and symmetric boost domain SL(C%)/SU(2)),

G xlogG — logG, Ad.(g9)(l)=golog",

then one can define the conjugate adjoint affine group and Lie algebra on the
real tangent space of the symmetric domain

Ad,G X logGy, log Ad,G & logG,.
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SPACETIME AS UNITARY
OPERATION CLASSES

In quantum theory, time and position are really parametrized operations acting
on complex vector spaces. The causal homogeneous manifolds that will be
discussed in this chapter are n?>-dimensional generalizations of 1-dimensional
time and 4-dimensional spacetime. They are constituted by classes of compact
unitary transformations in complex linear ones as suggested by the Cartan
presentation of Minkowski spacetime by Hermitian (2 x 2) matrices (chapter
“Lorentz Operations”). The description of these causal manifolds with real
rank n clarifies the structures of 4-dimensional spacetime with real rank 2 as
the physically most important case.

From a mathematical point of view, the first sections of this chapter con-
tain, in physical terms, a reformulation of familiar structures of the stellar
algebras (C*-algebras) AL(C™) with n x n matrices acting on C"-isomorphic
Hilbert spaces (chapter “Quantum Probability”). If spacetime translations
constitute a real vector subspace in complex linear transformations z : C* —
C", x = z*, they are, from the outset, recognizable as binary relations in the
sense of Leibniz, for Minkowski spacetime n = 2 as binary spinor relations.

The polar decomposition of the full linear group GL(C"™) into the group
U(n) with the phases and the symmetric space D(n) with the absolute val-
ues — the uniquely defined positive cone in the stellar algebra of all complex
(n x n) matrices — is proposed to establish the dichotomy of compact internal
(“chargelike”) and noncompact external (“spacetimelike”) degrees of freedom
respectively as used in quantum field theories for n = 2 leading to the compact
hyperisospin group U(2) (chapter “Gauge Interactions”) and the noncompact
nonlinear spacetime D(2) with tangent Minkowski translations R?.

2.1 Spacetime Translations

Cartan’s parametrization of the spacetime translations (real 4-dimensional
Minkowski vector space) uses the Hermitian complex 2 x 2 matrices (chapter

47
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“Lorentz Operations”). Together with the time translations (real numbers)

t=t € Cg(1) =iR @ R, n=1,
x = — .
(zrm 2 =) =0 €Cr@=(R) ® R, n=2
they should be used as illustrations for general n.

The complex n x n matrices z € C(n) = AL(C") constitute, with the
U(n)-conjugation *, a stellar algebra (C*-algebra) as endomorphisms of a C"-
isomorphic Hilbert space. They are decomposable into two isomorphic vector
spaces of real dimension n?:

2=4iy+z€Ca(n) =iR(n) & R(n)=R™.

The vector subspace R(n) is called the matriz parametrization of the spacetime
translations with n € N the real rank of spacetime.

A basis for Cg(n) is given by generalized Weyl matrices

z = zjo(n)l = A A A=1,...,nwith {o(n)’ ?igl = {1,,0(n)*}"
where 1, is the unit matrix and o(n)® for n > 2 are (n? — 1) generalized
Hermitian traceless Pauli matrices, i.e., three Pauli matrices & for n = 2,
eight Gell-Mann matrices o(3)* = A* for n = 3, etc. (chapter “Simple Lie
Operations”).

The determinant defines the abelian projection on the complex numbers (%
monoid morphism):

det : Cg(n) — Cg, detz* = detz.

By polarization, i.e., by an appropriate combination of (z; &+ 2o & -+ - £ z,)",
one obtains a totally symmetric x-compatible multilinear form, generalizing
the well-known bilinear form of the Minkowski translations R(2):

n: Cg(n) x---xCg(n) — C,

(21, 2n) > N(21, ..., 2n) =€
n=1: n(z)=detz =z

(z1422)%—(21—22)*

n=2: nlan,z)=ETEm2E ey gl = (1,3).

A

A n
ey e d e )

The trace and the traceless parts of a translation are called a time transla-
tion and a position translation respectively. The position translation Z denotes
a traceless (n X n) matrix and, in this connection, xy = zo1,:

trCr(n) =itrR(n) & trR(n), trR(n) =R,
Cr(n)o ={z€Cr(n)| trz=0} =iR(n)o ® R(n)y, R(n)y = R™ 1,
r =x;o(n)! =xol, + x,0(n)* = x9 + .

A spacetime decomposition into time and position translation subspaces is
incompatible with the determinant, since in general, det(z+y) # det x4+ det y
for n > 2.
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z € Cg(n) is unitarily diagonalizable if and only if it is normal. Then
functions of z are defined via its spectrum:

zoz" =20z = f(2) =u(z)o f(diagz) o u(z)*, u(z) € SU(n).

Both the Hermitian translations # € R(n) and the anti-Hermitian vectors
57 € iR(n) are diagonalizable, not, however, each matrix z € Cg(n) for n > 2.
All spacetime translations are unitarily equivalent to a real diagonal matrix:

z €R(n) = specx = {¢| det(z —£1,) =0} CR,
n=1: x€R(1), specx = {t},
n=2: xe€R(2), specx = {xo+tr}.

&0

0 &

The n real spectral values diagxz = < ) are called Cartan spacetime

. 0 gn
coordinates. The unique stellar algebra order uses the spectrum

x>0 < x=a"1ie,z€R(n), and specx >0
<= There exists z € Cg(n) with x = 2* 0 2.

The Cartan coordinates can change under dilation-Lorentz transformations
x+—— gozo g with g € GL(C}). Positivity or triviality of spectral values is
invariant, g o z* o z 0 g* = 27 0 z; with z; = z o g*. The stellar norm topology
via the largest eigenvalue of the square z* o z (spectral radius),

| 2 [|= max{|¢| | £ € spec 2* o 2},

is the order topology on the spacetime translations R(n) with a “diamond”
(double cone) basis for n = 2 (chapter “Spacetime Translations”).

The stellar order generalizes the familiar natural orders of the time and
of the spacetime translations. With a nontrivial positive causal vector ¢ > 0
positivity is expressible by positive ¢-projected products (n causal projections)

zeRMn): 20 < 2zl =nx,...,z,c,....,c) >0forr=1,...,n

The idempotent characteristic function of a causal translation uses the spectral
values

|
E:

n

zeR(n): V() 9(&) = [[9@r), c=o,

e(x) x) = (=), e(@)?=9(z)+I(-x),
r=0 <= z=¢(x)z,

I
=

with the Minkowski translations as example:

d(@)  =I(wo + 1)z — 1) = V(30)9(2?),
z €R(2): €(x) . = €(zo)d(z 2() o (( x)? o =3(2?),
T = < T =€(2g
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The vector space of all spacetime translations R(n) is the union of the
positive and of the negative causal cone and the spacelike submanifold:

R(Tl) :R( )causUR( )p051tion7 R( )caust( )p051t10n :{0}7
R(n)caus _R( )+ UR( )caus’ R( )+ mR( )caus = {0}7

R(n)fus = {z € R(n) | specz > 0} = —R(n),

caus caus”

The positive causal cone is the disjoint union

R(n)caub = {0} & R(n ):Tme WR(n )hght

of the trivial translation (vertex of the cone), the strictly positive timelike
translations (open cone), whose spectrum does not contain 0,
IR(n)tlme = {'Z. € R caus | 0 ¢ spec .CIZ'}

and the strictly positive lightlike translations (skin of the tipless cone), where
0 is a spectral value

R( )llght {I € R caus I x 7é 0 0e spec :E}

Spacetime translations have a positive causal and a causal projection:

) forn =1,
R(n) — R(n)isy @ — 9(2)w = { I(zo)0(2?)x for n =2,
t forn =1,

R(n) — R(n)eas, o+ €(z)’r = { d(zH)z for n = 2.

The causal projection coincides for the abelian case n = 1 with the eigentime
projection that is the causal projection on the real numbers R(1) = R:

R(n) — R, z+— e(x)‘ det zn

ot forn =1,
T e(zo)d(x?)| V2| for n = 2.

All translations can be written as a sum of a strictly positive and a strictly
negative timelike translation

R = {$+ +x_ | Ty, —T— € R( )tlme}

In the case of the 1-dimensional time translations R(1) = R the position
translations are trivial, R(1)position = {0}. The nontrivial spacelike manifold

for n > 2 is the disjoint union of (n — 1) manifolds with m strictly positive and

n —m strictly negative Cartan coordinates <16" 712%) € R(m, n —m)position:

n—1
n > 2: R(n)position \ {0} - H’J R(m7 n— m)position~
m=1
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In the 1-dimensional case there is no light, R(1 )hght = (). For n > 2 the
strictly positive (strictly negative) lightlike manifold is the disjoint union of
(n — 1) manifolds with exactly m strictly positive (negative) and n —m trivial

Cartan coordinates (iém ‘ ) € R(m’o)ﬂ:ght:

07L—77L
n—1
n2= 2: R(TL light — UR m, O hght
m=1

The linear forms R(n)T of the spacetime translations are called the fre-
quency (energy) space for n = 1 and the energy-momentum space for n > 2.
The double trace with one “open slot” describes an isomorphism between trans-
lations and energy-momenta:

R(n) — R(n)", qr—g¢=trgo---,
dual product: R(n)?

R(n)"-basis: {5(n);

dual: § tro(n)!

2.2 Nonlinear Spacetime

The complex (n x n) matrices C(n) = AL(C") with commutator define the
complex rank-n Lie algebra of the Lie group GL(C") and, with U(n)-conju-
gation as real 2n2-dimensional vector space Cg(n), the rank-2n Lie algebra of
the real group GL(Cg). The antisymmetric vector subspace iR(n) in Cg(n)
defines the imaginary rank-n Lie algebra of the unitary group U(n):

C(n) =logGL(C"), GL(C") =expC(n),

iR(n) ® R(n) =logGL(CY), GL(CY) = expliR(n) & R(n))
R(n) =logUn),  Uln) =expiR(n),
iR(n)y =logSU(n), SU(n) =expiR(n)o.

From now on in this chapter, the subindex in Cg is omitted for notational
convenience, in the following C =R & R.

The vector space with the spacetime translations R(n) is isomorphic to the
classes of the unitary Lie algebra in the full real Lie algebra. Its exponent is
isomorphic to the corresponding homogeneous space, the real n2-dimensional
manifold with the right orbits U(n)g of the unitary group U(n) in the full
group GL(C"):

R(n) =log GL(C")/logU(n), D(n) =expR(n)=U(n)\GL(C"),
R(n)y =logSL(C")/logSU(n), SD(n) =expR(n)y = SU(n)\SL(C").

One could equally take the left orbits with corresponding changes, e.g., for the
action of the external group.
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D(n) is the n-bein manifold GL(C"), all linear automorphisms, up to the
positive unitary operations U(n), it will be called nonlinear spacetime (mani-
fold). 1t has the direct manifold factor SD(n), the nonlinear position (Sylvester
or boost manifold), trivial only for the abelian case n = 1. The causal manifold
D(n) is the strictly positive cone of the uniquely ordered C*-algebra C(n).

Also the name scalar product or U(n) (orientation) manifold is justified for
D(n): It parametrizes all possible scalar products of a complex C"-isomorphic
Hilbert space, e.g., with basis {®4}%_;:

@l . (@l[en)

D(n)={d=g"og= | g € GL(CM)}.
( )

@0ty ... (@n]on)

The groups involved have the centrum, the phase correlations, and the
adjoint groups

centr GL(C") = C¢°, centr U(n) = U(1),
C°nNSL(C") =1(n), U(1,) NnSU(n) =1I(n),
Int GL(C™) = SL(C")/I(n), IntU(n) = SU(n)/I(n)

There is another chain of causal spacetime manifolds, characterized by the
orthogonal structures

s=0: D(1), s>1: D(1) x SO(s)\SOy(1,s)

with s > 0 the position dimension. This chain of orthogonal groups acting
on real spaces with dimensions 1 4 s meets the D(n)-chain only for the two
spacetime dimensions 1 + s = n? = 1,4. The orthogonal structures have an
invariant bilinear form for all dimensions with s > 1. D(1) has real rank 1; all
the other causal orthogonal manifolds with s > 1 have real rank 2.

For n = 2 one has as isomorphisms with the orthochronous Lorentz group
SOy(1,3) and the rotation group SO(3):

GL(C?)/C° 2 SL(C?)/I(2) = S0y(1,3),
U2)/U(1) ~SU@)/I2)  =SO(@),
D(2) ~U(2)\GL(C?) ~D(1,) x SO(3)\SOy(L,3).

If one visualizes real 4-dimensional nonlinear spacetime D(2) as the open fu-
ture cone R(2){: _in the Minkowski translations R(2), this cone can be fo-
liated! with the hyperboloids J* as nonlinear positions, each isomorphic to
SD(2) = SO(3)\ SO¢(1,3). The D(1) causal group acts on the manifold
by a “hyperbolic hopping,” whereas the orthochronous group SOy(1, 1)-action
on the individual hyperboloids can be described as a “hyperbolic stretching.”
The total semiorder is the “foliation order” of the future hyperboloids. The
Minkowski translations R(2) as tangent structure of the spacetime manifold
D(2) can be visualized by means of a 3-dimensional tangent space of a time-
like hyperboloid SO(3)\ SOy(1,3) and the tangent line of “blowing up” or
“shrinking” this hyperboloid with D(1).

I Take the 3-dimensional projection with hyperboloids SO(2)\SO¢(1,2) and 2-dimensional tangent planes.
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2.3 Spacetime and Hyperisospin

The elements of the real 2n?-dimensional group GL(C") have a unique stel-
lar polar decomposition into unitary phase (first factor) and strictly positive
absolute value (second factor) and, for the elements of the stellar algebra
C(n) = AL(C"), into an anti-Hermitian Lie algebra element and a Hermitian
spacetime translation (both with generalized Weyl matrices as bases)

geGL(C") = g=U(g)elgl, U(g)=U""g). lgl=+g"0g>0,

g= o, y=yr), = io(n))
z2€C(n)= z=iv+ux, v =7, x:a:*:%.

There is the corresponding “left” decomposition (below) with exchanged order:
absolute value space D(n) times phase group U(n). Given a matrix g, the
Hermitian product ¢* o ¢ can by unitarily diagonalized, which gives, with the
positive square roots of the diagonal elements, the absolute value matrix |g|:

grog=e"=uodiag(g*og)ou* =|g|=wuo/diag(g*og)ou
= U(g) =golg|™"

The factorization of the group into compact internal group U(n) and non-
compact ezternal symmetric spacetime D(n) and the associated Lie algebra
decomposition into unitary Lie algebra and tangent spacetime translations

GL(C") =U(n)oD(n), C(n) =iR(n) & R(n),
SL(C") =S8SU(n)oSD(n), C(n)y =iR(n)y & R(n)o,

induces also a unique factorization of the adjoint group, the generalized Lorentz
group, into compact adjoint subgroup, the rotation group for n = 2, and posi-
tion (boost) manifold

SL(C")/I(n) > A = Oy o |A] € SU(n)/I(n) o SD(n),
Al = [A]" = VAT o A = Ryyjo\/diag (AT 0o A) o Ry, Rja € SU(n)/I(n),
e.g., SOp(1,3) =S0O(3)0oSD(2).

In general, for n > 2, the polar decomposition of conjugated group elements
have a different absolute value with equal eigenvalues:

g=Uolgl, g¢=U*0|g*| =|g*|=Uclg|oU*
= spec|g| = spec |g*|.

Hence the right and left orbit decompositions have equal phase, but, in general,
different absolute values:

GL(C") =U(n)oD(n), g=Uec|gr|, |gal=1l9] =lgI" =g oy,
GL(C") =D(n)oU(n), g=lgeloU, ol =lg" =Ilg"I" =Vgog,

3 7
|9L| — %L = 37 0 ¥R 0 e 27,

In addition to the stellar polar decomposition there is the Cartan polar
decomposition (diagonalization) for both factors, nontrivial for n > 2: The
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unitary diagonalization transformations — different, in general, for internal
and external factors — are determined up to diagonal phases?

lg| € D(n), z € R(n), U € U(n), iy € logU(n) are diagonalizable

O
Uiy,

eg., gl = u‘g‘ o d1ag|g
€SU(n)/SO(2)"!

with  ujg = u,, up = u%v
The diagonal matrix for a spacetime element contains n strictly positive

spectral values {e¥"}"_,
ev1 0 ... 0
. ev2 ..
9| € D(n) :  diagg| = (0 o )
0 0 ... e¥n

In a nontrivial position (boost) manifold SD(n) the group D(1) comes in self-
dual decomposable representations, isomorphic to the orthochronous group
SOo(l, 1)

coshep sinhep) ~, [e? 0
800(171) 2 (sinhw coshw) = (O e’“‘”)'

The Cartan subgroups of GL(C") and SL(C"™) with rank 2n and 2(n — 1)
are isomorphic to (C®)™ and (C°)"~! respectively. The real ranks n and n — 1
of the manifolds D(n) and SD(n) with the Cartan subgroups above has to be

n n) in

seen in analogy to the imaginary ranks n and n — 1 for U(n) and SU(n)

the Cartan factorizations:
SOo( ,1)""1oSU(n),
SO(2)" 1o SU(n)/SO(2)" !

GL(C") =2 D(1)oU(1) 0 SU( )o
)"t oSU(n)/SO(2)"*

U(n) 2 U(1) o SU(n), SU(n) =
D(n) = D(1) x SD(n), SD(n) = SOy(1,

For U(n) there is the central correlation for phase group and special group
U(1,) NSU(n) 2 1I(n).
In the tangent space (Lie algebra for U(n)), one has the corresponding

Cartan translations
lo, n n ~ n n—
The relativistic case GL(C?) = U(2) o D(2) uses two polar coordinates
for the 2-sphere SU(2)/SO(2) in addition to two Cartan coordinates, e.g., for

spacetime translations z € R(2):
o+ T3 T —ix2 _ z : *( T : _ [xo+T 0
<z1+iz2 zofz;;) —u(,,)odlagxou(,), d1ag:v-< 0 1077>a
w(E) = cos§ e ®sing) _  frge( 1 Iﬁ+§2 €SU(2)/S0O(2)
r e'? sin g cos g 2r 17117;:2 ’

2The double-element symbol denotes a class representative u €G/H <= u € gH € G/H
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The two Cartan coordinates in diagx are expressible by a D(1)-factor multi-
plying a boost SOy(1,1) for time- and spacelike translations:

22>0, =0 = diagz=V2? ¢, e ,/;gf:, tanh ]1;\ =,
. 317 7 e
% <0, = diagz = vV—a2e” g3, eVl = \/ e, tanh [y = %0,

. 2r 0
2?=0, >0 = dlag:r:(o 0).

=
|

2.3.1 Internal and External Action Groups

The polar decomposition of the automorphisms GL(C™) = U(n) o D(n) into
internal group U(n) (phases) and external spacetime D(n) (absolute values,
right U(n)-orbits, no group for n > 2) comes with corresponding groups,
called internal and external action groups. The internal-external doubling
of the action group has its origin in the independent left and right group
multiplication G > k —— g1kg, . This two-sided regular realization of the
doubled group G x G is extensively used in the theory of group representations
(chapter “Harmonic Analysis”).

The internal action group is U(n), for n = 2 called the hyperisospin group.
The adjoint action on its Lie algebra iR(n),

U(n) x logU(n) — logU(n), iy wo iyou*,

is faithful for Int U(n) = U(n)/U(1,) = SU(n)/I(n). For example, for n =
2, the hyperisospin action on the hyperisospin gauge fields (chapter “Gauge
Interactions”) defines the adjoint semidirect group IntU(2) X log U(2) &
SO(3) x R* with a trivial adjoint action of the hypercharge group U(1). The
internal group action respects the Lie algebra decomposition iR(n) 3 4y =
5(70 +7) into abelian and simple parts and can be exponentiated for the inner
automorphisms of U(n):

U(n) x U(n) — U(n), expiyr— uoexpiyou* =exp(uofyour).

The spacetime manifold D(n) has as external action group the full linear
group GL(C™), via right conjugate multiplication

D(n) x GL(C") — D(n), d=|d| — |dog".

The external group is the product of the causal group with a phase group and
the generalized Lorentz covering group

GL(C") =D(1,) x [U(1,) o SL(C™)].
The spacetime translations are acted on by the generalized Poincaré group

D(1) X R, forn =1,

GL(C")/U(1,) XR(n) = { [D(14) x SOy(1,3)] XR4, for n =2,
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with the defining representation of the generalized Lorentz group SL(C™)/I(n):

. _ R(n) — R(n) T+ goxog
_ 1% ny . ) )
9.9=9"" € GL(C"): {R(n>T_>R<n>T, g goqo g’

For time, n = 1, the causal transformations (dilations) act on the time transla-
tions. In the relativistic case, n = 2, one has the action of the causal (dilation)
Lorentz group. In contrast to the corresponding transition from internal Lie
algebra log U(n) to group U(n), the exponentiation from linear spacetime to
nonlinear spacetime (for n > 2 no group) is incompatible with the action of
the group GL(C"):

gEGL(CY) : [d] =¥ |e¥ o "], but ¢ — 07",

The exponentiation does not respect the decomposition R(n) > x = zg + &
into time and position translations, in contrast to the adjoint action for the
internal U(n)-degrees of freedom. Nonlinear spacetime can be parametrized
by the translations of the open forward cone:

~R(n)fe ={zeR(n) | specz > 0} = {d(z)z | z € R(n)},
D) =R(2m = {9ro)d(s2)z | + € RE)}.

Then the action of the external dilation-Lorentz group on nonlinear spacetime
can be written as an action on the translations:

GL(C") x D(n) — D(n), (g,9(x)x)+— god(x)z o g*.

The future cone parametrization with translation parameters is related to
an exponential Lie parametrization, i.e., an orbit parametrization as follows:

Hz)z = J(z)(zo + T) —e¢—e¢06¢—1+¢0+¢+
forn=2: O(o)0(22) (2o + &) = e (cosh |¢)] + L B Y sinh [¢)])
=u()o o+t oulf) = ulE) o e Moy
with 0 =23ttt =2, £ =7

The D(1)-parameter v gives eigentime.

2.4 Orbits and Fixgroups of Hyperisospin

Orbits and fixgroups (“little groups”) of hyperisopin U(2) and the related
transmutators from hyperisospin to electromagnetic transformations are rele-
vant for the symmetry reduction from hyperisospin fields to charged particles
in the electroweak standard model (chapter “Gauge Interactions”).
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2.4.1 Higgs Hilbert Space and Goldstone Manifold

For the internal group U(n)-action, n > 2, the defining representation acts on
the Higgs Hilbert space H. There is only one fixgroup type for all nontrivial
vectors:

PeH=C: U= {ucUln)|u(@) = o};

(®|0) = ) [@4R = [®P > 0= U(n)e=Un—1).

A=1
The nontrivial vector can be used in a basis:
__ ,n _ U(nfl) 0
d=c :>U(n)8n‘f( 5 1),
eg,n=2: U2)={ez00™) | Pauli matrices § = 7,7% a = 1,2, 3},

U)o - e = (70 )y =u0)

1

The fixgroup for n = 2 is a factor of a Cartan torus U(1); x U(1)_, not the
phase group U(12) C U(2) or U(1); C SU(2). U(1), is called an electromag-
netic group in the hyperisospin group (one could equivalently take U(1)_). A
fixgroup U(n—1) is a stabilgroup for an orthogonal Higgs space decomposition
H =~ Ce™ L. C* ! with a 1-dimensional subspace.

With the fixgroup classes, the internal group U(n) = U(1,) o SU(n) gives
as fixgroup orientations the compact Goldstone manifold, for n = 2 the orien-
tation manifold of the electromagnetic group in the hyperisospin group:

g2n71 o U(n)/U(n o 1)’ dimg g?nfl =2n—1,
G' = U()/u(1),.

The Higgs vectors are, as a real manifold, isomorphic to the product of
their absolute values R} > |®| with the orientation manifold

H >~ (Cr =~ R2n o R+ X g2n71.

This decomposition is the unitary analogue to orthogonal polar coordinates
R" =2 R, x Q"' with the sphere Q"' = SO(n)/SO(n — 1). The Goldstone
manifold is parametrizable by the orbit of a nontrivial Higgs vector

U(n)/U(n—1) 2 U(n).® for & # 0.

A Higgs vector can be used for a parametrization of the fundamental repre-
sentation of the fixgroup classes as acting on the Higgs space

U(n)/Un—1)=g>n1> (Ij — v «U(n)/U(n—1)

with v % ( ) (w 1> v(e) = 1,.
2|

Given the Higgs vector ® as nth column, the columns of the matrix v( él

a U(n)-orthonormal basis of the Higgs space. For the start vector e”, there

) are
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arises the unit matrix. This is analogous to a (3 x 3) matrix representation
of axial rotation classes SO(3)/SO(2) with ‘% in the third column (chapter
“Spacetime Translations”). For example, the U(2) matrices, determined up to
an electromagnetic U(1) -transformation, constitute the fundamental Higgs
representation of the Goldstone manifold G, it is parametrizable with the two
complex Higgs vector components

(8) =e@(9) = o) = ( % &) eve/uo).,

The Goldstone translations are representatives of the fix-Lie algebra classes in
the tangent space log U(n), e.g.,

z'(”(;) 8)elogU(2)ez — log U(1),,
0= 2, L o) =T @logU(2)/log U(),

e = BT I — () €UE)/U();, 7= Ftan ],

2.4.2 Electromagnetism-Hyperisospin Transmutators

A representation of a symmetric space has a typical hybrid transformation
behavior - here: A left U(n) action on the Goldstone manifold representation
v(l%) &«U(n)/U(n — 1) gives the representation with the U(n)-transformed
Higgs vector u.® up to a right action with a Wigner element from the fixgroup
U(n — 1). The fixgroup action “goes through”:

veU(n) = u ov(%) = v(u.%) o t(u, %) with t € U(n — 1),
teUmn-1) = tov(%) = v(t.%) ot.

e.g., for the electromagnetic orientation manifold G3

u=ez(0t) e UQ) = uo () = U(u.%) o t(u)

7,3
with t(u) = e~ € U(1)s,
et 0 3 ivoPpl
t= ( 0 1) cU)s = U(t%) = ﬁ( —e 0Py g2 ) :tov(%) ot*.

The two columns in the defining representation of the Goldstone manifold
U(2)/U(1), = G3 for the electromagnetic group orientation on H = C? are
acted on from the left with hyperisospin U(2)-transformations and from the
right with a U(1),-transformation. Therefore they are called transmutators
between the electromagnetic and hyperisospin groups:

U(%) ﬁ( e g ) = %(‘i,fb) with @ = PP,

uov(m) =v(u.g) oe™, uouv(g)? = v(u.%)?




2.4. ORBITS AND FIXGROUPS OF HYPERISOSPIN 59

For a hyperisospinor field, embedding a charged particle, e.g., for the lepton
field of the standard model, embedding the electron (chapter “Gauge Inter-
actions”), this transformation property may be expressed as follows: A hy-
perisopin U(2)-transformation of the lepton field where the electron’s charge
group is defined by U(1); C U(2) gives a U(2)-transformed lepton field with
the embedded electron’s electromagnetic U(1),-property, in general, “rotated”
with respect to the original one.

Transmutators are an important tool in the theory of inducing group G-
representations from a representation of a subgroup H C G (chapter “Har-
monic Analysis”).

The general Goldstone manifold case: A representation of the Goldstone
manifold in the automorphisms of a finite-dimensional vector space V,

U(n)/Un—1)=g* !> |<I>‘ — D(U(m)) e U(v),
where D : U(n) v ~— D(v) € U(V).

The decomposition of V' with respect to fixgroup-stable irreducible subspaces
and representations (square block matrices in U(W*))

n)=Pun-1), v @WL

Dl(t)[ 0 |- 0
U(n—1)5t+— D(t) EBDL ﬁ( e S )
DV

0 0

U(n 1)

gives a corresponding decomposition of the G*"~l-representation into irre-
ducible transmutators from U(n) to U(n — 1). They are rectangular matrices

inWe VT,
dN (v(;3) >,

and have the characteristic hybrid transformation behavior involving the
“large” group U(n) and the fixgroup (“little group”) U(n — 1)

d'(v (%)) VW,

u€Uln) = D(w)o d(v(g) = d(v(owrgp) o D' (1, 37)
with #(u, ;l) € U(n — 1) Wigner transformation,
teUn—-1)= D(t)o dL(v(%)) d“(v(t.3)) o D(1).

Back to the special case n = 2; The irreducible representations of hyper-
isospin U(2) with central correlation SU(2) N U(1y) = {£15} (chapter “Ra-
tional Quantum Numbers”) can be constructed by products of the defining
representations [y|27] = [+3|1] with hypercharge y = 1 and isospin T' = 3

irrep U(2) 5 [+n + T|27] = [£1]0]" ® \/[4]1],
[£1j0] = [£3[1] A [£5]1).
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They show the hypercharge-isospin correlation y = T + n with natural n, i.e.,
(y,T) either both integer or both half-integer.

The decomposition of a U(2)-representation with respect to irreducible
representations of the electromagnetic group U(1); 3 €0 —— ¢*° is charac-
terized by integer charge numbers z € Z:

+n+2T

2) = PU1), : [En+T]2T) =P [2],

i = (0] @ [,
ob { o] =[-1] & [0] & [1]

These U(2)-representations have to be used for Higgs parametrized repre-
sentations of the orientation manifold G* of the electromagnetic group. One
obtains products of the defining representation and its conjugate,

[ |1](|<p\) U(|§|) [— 2’1](|¢>|> v (|$\)

G — U(L+27T), & [En+ TIRT)(Y),

with the examples for the U(1); to U(2) transmutation on C with hypercharge
U(1) nontrivial isospin SU(2)-singlets,

o U
10)(%) =T cu() with [110] = 1],
*6045 * (1)+
[1j0)(%) = 2552 € U(1) with [-1j0] = [-1],
and on C? with hypercharge U(1) trivial isospin SU(2)-triplets. Here the
columns define three transmutators for charge z = —1,0, 1:
[O‘QK%) =3 g tr7® U(|$|)7—bv*(@\)
O* 7P O* TP S DFTO—rFD | PFFP—D* TP
= (mre | vrEhee | Mg ) € S0()

with )2 2 1] & 0] @ [1]

2.5 Orbits and Fixgroups in Spacetime

Orbits and fixgroups (“little groups”) of the Lorentz group SOyg(1,3) and the
related transformations from the Lorentz group to rotation groups are relevant
for the embedding of particles into fields (chapters “Massive Particle Quantum
Fields” and “Massless Quantum Fields”).

2.5.1 Fixgroups of Spacetime Translations

The action of the noncompact external group on the spacetime translations
defines different fixgroup types. The fixgroups

z€R(n): SL(C"), ={s€SL(C") |z =s0z05"}
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are easily determined for diagonal translations x = diagx: They are invariance
groups of sesquilinear forms, for the nondegenerate case I(n)-classes of unitary
SL(C™)-subgroups.

First the fixgroups and stabilgroups of the Minkowski translations R(2):
The fixgroup (“little group”) with respect to the action of the Lorentz group
z € R(2): SOp(1,3), = {A(s) | s € SL(C?), sozos* =z} =SL(C?),/I(2)
has the fix-Lie algebra

log SL(C?), = {l = id + ff € log SL(C?) | Iz + x* = 0}.

It will be given in the Minkowski representation for a Sylvester basis with
a decomposition into time and position and a Cartan basis with SO(2) x
SOy(1, 1)-eigenvectors

0 | 1 P2 Y3
log SO(1,3) 3 ( AR > for (-22-)

P3| P2 —¢1 0

with @ = 2a, ¢ =283

¥3 | v 0 2o + 23
7— | i3z 0 T+ Ty — iy
~ -1 0 —ip3 | v+ for x1 + iz
0 | v 7= | —¥3 o — T3

with . = Brtietlerip)

The fixgroups are isomorphic for all translations of a Lorentz group orbit
and also for those translations that arise by transformation with the centralizer
of SOy(1,3) in GL(R"), given by the causal (dilation) and the reflection group

{g9€ GL(R") | goAog ' =Aforall A € SOy(1,3)} = D(1) x I(2).

Any inner automorphism with g € GL(R?) gives a Lorentz group in the tetrad
manifold GL(R*)/SOq(1,3). To stay with the same Lorentz group, ¢ has to
be an element from the centralizer.

Therefore there exist, in addition to the full fixgroup SL(C?) for z = 0,
three proper fixgroup types for the nontrivial translations

timelike: detz=22>0 = z2 (1) (1)) =1 € R(2)‘j{n1e7
spacelike: <0 = ¥ (1) _01) = 0% € R(2)position;

0 _ 1403 _ _+ +

0)] = "2 =T GR(2)light7
0
1

lightlike: 22=0, 2#0 = z ,
=Ll =g ¢ R(2)1fght-

oSO O+

2
The fixgroup of a nontrivial timelike translation, e.g., of 15, is the compact
rotation group
{s € SL(C?) | sos* = 1,} = SU(2) 3 ¢,
SOy(1,3)1, =SO(3),
0| o0 0 0
0 0 2% -
logSO(3) > ( Cos 0 o )

0
0] 2 —p1 0

22 >0=
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The rotation group is the fixgroup of all associated time translations T = R1,
and the stabilgroup of the corresponding orthogonal Sylvester decomposition
R(2) @ T L S® into time and position translations. It distinguishes in the
Poincaré group the direct product subgroups with timelike translations

S0(1,3) xR* 5 SO(3) x R 3 (O, z) with #2 > 0.

The fizgroup of a spacelike translation, e.g., of o2, is the Lorentz group for
two position dimensions

{s € SL(C?) | soo®os* =03} =SU(1,1) 2 piaso 010l Br0?
SO(1,3),s = S0y(1,2),
S5 s
logSO(1,2) > ( oo |~ s 8 )

0 0 0

22 <0=>

This (1,2)-Lorentz group is the stabilgroup of the corresponding orthogonal
decomposition R(2) = S' | M'*? with 1-dimensional position translations
S! = Ro? and an SOy(1,2)-spacetime. It distinguishes the direct product
subgroups with spacelike translations

S0y(1,3) x R* © S0O((1,2) x R 3 (A, x) with 2% < 0.

For the lightlike translations 2 = 0, x # 0 the situation is more compli-
cated, since the sesquilinear form, e.g., for 7=, is degenerate. The fizgroup of
one lightlike translation, e.g., of ©*, is the noncompact semidirect Euclidean
group in two dimensions where the R2-translations arise from the noncompact
boosts

{s € SL(C?) | sort os* =71} 2 S0O(2) X R?,
5 ertiva)oy eia3a3 — (6103 e~ (Y +i¢2)>,

0 e—tas

SOy(1,3),+ =SO(2) xR?,

9 0 | 1 2 0
=0, r#0= log[SO(2) X R?] > ( Z w3 Y1 )
P2 0

0
0 i ;=1 + iy,
0

The fixgroup for lightlike translations L, = Rz is not a stabilgroup for
a translation decomposition, since no direct L, -complement in R(2) is stable.
It distinguishes the direct product subgroups with lightlike translations

S0y(1,3) X R* D [SO(2) XxR?] x R > (L, x) with 22 =0, x # 0.
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The fixgroup of two linearly independent lightlike translations, e.g., of 7F,
i.e., the fixgroup of all lightlike translations in a decomposition L2 = L, & L_,
is the compact axial rotation group

:)3120, e #0=>

{s € SL(C?) |
SOy(1,3):

logSO(2) > <

sontos* =7t} =80(2) 3 el

— SO(3) N S0y(1,2) = SO(2),
0] o 0 |o
0 ig@g 0 0
0] 0 —ipg |0 )
o] 0 0 |0

3
Y

This fixgroup is the intersection of the time- and spacelike fixgroups. It is a
fixgroup in the fixgroup SO(2) X R?, i.e., the fixgroup for the action of the
axial rotations on trivial boosts.

Hence the manifolds with all nontrivial time-, light-, and spacelike transla-
tions are isomorphic to symmetric spaces with the characteristic fixgroups as

equivalences

[ translations |

fixgroup in SO (1, 3)

isomorphic manifold ‘

=+
]R(Q)t,ime

SU(2)/1(2) = SO(3)

GL(C?)/U(2)
>~ D(1) x SOo(1,3)/SO(3)
~D(1) x V3

+
IR(Q)lip;ht

SO(2) X R?

SO0 (1,3)/SO(2) X R?
=~ D(1) x Q2

R(Q)position \ {0}

SU(1,1)/1(2) = SOo(1,2)

GL(C?)/U(1,1)
2~ D(1) x SO¢(1,3)/S00(1,2)
= D(1) x Y12

For the general case n > 2 the distribution of the spectral values {£1,0} in
a normalized diagonal translation diagx and its invariance group s o diagx o
s* = diagx characterizes the fixgroup. The disjoint decompositions of the
spacelike and lightlike manifold above correspond to the (n — 1) different fix-

groups

translations

[ fixgroup in SL(C™)/I(n) [

isomorphic manifold

(

+ GL(C™)/U(n)
1n € R(iime SU(n)/I(n) R-dimension: n2
+1 0 + - (n—m —m SL(C™)
< Om 0n—m> € R(m70)1ight [U(m) X (Cm(n m)] o SL(Cn m) [U(m) N Cm(n—m)] o SL(Cn—m)
m=1,...,n—1 fix-fixgroup: SU(m)/I(m) R-dimension: m(2n —m
1 0

0 —ln-m

m=1,...,n—1

> € R(m,n — m)position

SU(m,n —m)/I(n)

GL(C™)/U(m,n —m)
R-dimension: n?

For the orthogonal chain SO (1, s) X R'** with s > 1 one has the following
fixgroups: SO(s) for timelike translations, and SOy (1, s—1) for spacelike ones.
The fixgroup for lightlike translations is trivial {1} for s = 1; for s > 2, it
is the Euclidean group SO(s — 1) X R*~! with the forward lightcone V* as

homogeneous space

s>2: SOy(1,5)/SO(s — 1) KR = D(1) x 1 = Ve,
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2.5.2 Transmutators for the Lorentz Group

The action of the Lorentz group SOy(1, 3) & SL(C?)/I(2) on spacetime trans-
lations R(2) and, equivalently, on energy-momenta R(2)7 defines the compact
stabilgroups SO(3) = SU(2)/I(2) and SO(2) for Sylvester and Witt decom-
positions respectively:

L, & L_ 1§
Srieie [ — TLS —  RE),
SO(2) < SO(3) — SO(1,3).

The orientation manifold of the rotation groups in a Lorentz group (3-hyper-
boloid) can be parametrized by an energylike energy-momentum (nontrivial
mass) and the axial rotation groups in a rotation group (2-sphere) by a non-
trivial lightlike one (trivial mass)

SO((1,3)/SO(3) =Y =8S0y(1,3).q with ¢*> =m? >0,
0(3)/80(2) = =80(3).q  with¢® =0, ¢=(|g],q) #0.

The representations of those symmetric spaces give the transmutators from
Lorentz group to rotation groups and from rotation group to axial rotation
groups.

2.5.3 Rotation Groups in a Lorentz Group

A nontrivial mass ¢> = m? > 0 induces via a rest system a Sylvester de-

composition into time and position or energy and momenta. The rotation
group SO(3) as stabilgroup is the, up to isomorphy unique, maximal compact
subgroup of the orthochronous Lorentz group SOy(1, 3).

The representations of the orientation manifold of the rotation groups in a
Lorentz group (special relativity) can be parametrized with the orbit, e.g., of
the energylike vector e® = ml,, m > 0, for a rest system

(i) m 0 *(l)— o q0+q3 qlfiq2 q:(q07®7
S0 m)S 9=\ +i2 w-¢*) Go = \/m? + G2,
5(L) = 3*1*(m), 5(1,0,0,0) = 1,,

s(L) = ¢’ with 23 = q artanhm

The three noncompact momenta % parametrize the fundamental Weyl repre-
sentations of the manifold Y* for special relaitivity (chapter “Lorentz Opera-

tions”)
s(i) = \/m+q° 15 + L]

m+qo+q q' —iq? 3) ESL((CQ)/SU(Q),

2mm+qo ( @ +i?  m+q-—gq

8(2) = /"1, - o] @SL(C?)/SU(2).

2m

m+q

Being SU(2)-irreducible, they are also the fundamental transmutators from
rotation to Lorentz group.
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A “left” Lorentz action on a transmutator s(-Z) gives the transmutator
for the Lorentz-transformed energy-momenta up to a “right” action with the
fixgroup, in this context called Wigner rotation. The rotations “go through”:

A € SL(C?) = Aos(L) =s(AoLoX)ou(A L), wu) L)eSU?2),
s(ho ko) = /Aos(EFoN, u() )= 22
for  g=(m,0): A=s(AoX)owu(\) (polar decompos;‘lcion),
ueSU((2) = uos(L) =s(uolou*)ou.

If used in the context of relativistic particle fields (chapter “Massive Parti-
cle Quantum Fields”), this cooperation of transformations can be expressed
as follows: The Lorentz transformation of a spinning particle with energy-
momentum ¢ leads to the particle with Lorentz transformed energy-momentum
and spinning around the Wigner rotated direction.

All 3-hyperboloid representations (boost representations), i.e., all Lorentz
to rotation transmutators, can be built from the Weyl representations (trans-
mutators)

V? = SL(C?)/SU(2) — SL(CI+2D01+2R)),

4 2L2R)(£) = \/s(L) @ \/5(2),
2LI2R] = P 2
J=|L—R)|

The vector representation [1|1], e.g., acting on the energy-momentum space
itself, gives two irreducible transmutators from Lorentz group to rotation
groups, the first column for spin 0 and the three remaining columns for spin 1
with a, 0 =1,2,3:

(L) = AGH = §trs(L)ols (5)an

(] s ) €800(1,3)/S0(3),

m\ m+qo
i

A(1,0,0,0) =1, A(%)(’[}) - (‘10), A(L)i =12

b m m

The four columns of the matrix A(%)é,a are a general Sylvester basis in the
distinguished Sylvester basis that arises for ¢ = 0 (rest system). Therefore the
follwing relations hold for the metric tensors of SOg(1,3) and SO(3):

A iD= () AGLROPAGLY] = -0 + 25

2.5.4 Axial Rotation Groups in a Rotation Group

There is no rest system for a trivial mass ¢> = m? = 0, q # 0. Here a Witt de-
composition into two fixed 1-dimensional lightlike directions and 2-dimensional
position translations, or, equivalently, into time and position translations with
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one fixed axis, is appropriate. To parametrize the symmetric space representa-
tions and the transmutators associated with a Witt decomposition into three
subspaces where axial position rotations SO(2) remain as stabilgroup, one can
use an energy- and a lightlike vector. The symmetric space representations
are constructible in two stages from SOy(1,3) to SO(3) and from SO(3) to
SO(2), in the fundamental Weyl and Pauli representations:

p*=m?>0: s(£) «SL(C?/SU(2)

@ =0, ¢#0: u() €SU(2)/S0(2) }i”*ﬁ) u(ff) €SL(C?)/S0(2).

Therefore the real 5-dimensional Witt manifold SL(C?)/SO(2) is parametrized
by three noncompact parameters % and two compact ones s

A basis of a fixed light space L, @& L_ is given with two distinguished
vectors (1,0,0,41) (components in a Sylvester basis) from the orbit ¢*> = 0,
q # 0. Any other SO(3)-equivalent basis is defined by two lightlike vectors,
parametrizable by two vectors from the same orbit

((Jo7i(f) do = \‘ﬂ

In the Cartan representation lightlike vectors are projectors

+ _ 1x403
s = 2

. ~ 1o+ L 3 1_ ;2
0 qN\ ot T\x @ 1 lq] £ ¢ +(¢" —ig?)
) =gt = =" _2\ﬂ(i(q1+iq2) LY. )

These fundamental azial rotation projectors can be obtained also with the
dilation factor y/m as limit from the Weyl transmutators

lim,, o v/m(s, 8)(£) = /2] p*(5)-

With the axial rotation fixgroup of the nontrivial position translations, e.g.,
of o3,

SU(2)ys = {r € SU(2 |roa or* =03} =S0(2 )Beiaga3,

the fundamental Pauli representation u(%) of the 2-sphere with the momentum

orientations % =& € Q2 is defined by the condition to transform the distin-

guished third momentum axis into the general momentum direction (chapter
“Spin, Rotations, and Position”)

The Lie parameters @ for this rotation are determined by the momenta, where
@, has to be orthogonal to both ¢3 and ¢:

u(%) = 9L with 2@, = ‘ |arcta “IL‘ iq = ( ql—EiqZ _qla_ti ))
7y _  [lad+dd
u(%) - 2[q1 12 + Z\ﬂ+q3]
— 1 |¢ﬂ+q —q' +ig?
- m( Are| nil ) esu@/so@).
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The two columns of the matrix are the two Pauli transmutators from the
rotation spin group SU(2) to the axial rotation groups U(1) = SO(2)

u(f) = u(@) ® w()-, u(@) = ulf) or* €SUR/U()

A “left” action of the rotation group SU(2) on a transmutator u(%)i is

correlated with the “right” action of the axial group SO(2). The axial group
“goes through”:

b

reSU2) = rou(
0€ S0(2) = ooul

) =u(roort)oolrn, L) with ofr, %)GSO( ),

=

ST
~
I
<
—
QS
(@]

S
(¢]
Q

*
O
Q

All 2-sphere representations, i.e., all transmutators from a rotation group
to its axial rotation subgroups, arise from products of Pauli representations

0? = SU(2)/S0(2) — SU(1 +2J), & — [2J)(;F) = ymgg
R S e A
e.g., the rotation in momentum space R? with a,b=1,2,3 and o, 3 = 1, 2:
21G5) = 0(L), = stru(f)e’u(§)o
| ) eso)so0)

5

0(0,0,1) = 13, O({%)(O) =d, O(Hs =15

with the relations for the SO(3) and SO(2) metric tensors

O(RaadnO(R)hs = (5HT). 0D O = 6% —

2.6 Summary

Spacetime can be represented by the operations of the real 2n2-dimensional
Lie group GL(C"), time for n = 1, relativistic spacetime for n = 2. n is the
real rank, n? the real dimension of spacetime.

GL(C") acting on a C"-isomorphic Hilbert space is the regular group of
the stellar algebra C(n) = AL(C"™) whose unique spectral order defines a
causal structure and topology. GL(C") is the polar product of the unitary
internal group U(n) (compact) and the strictly positive external causal space-
time manifold D(n) = GL(C")/U(n) (noncompact). Correspondingly, the
R2"*-isomorphic tangent space is decomposable into the internal Lie algebra
log U(n) = iR(n) and the spacetime translations R(n) = log GL(C")/log U(n).
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The symmetric space D(n), isomorphic to the unitary operation classes
(unitary relativity), i.e., for n = 2 the orientation manifold of the hyperisospin
group U(2) in the general linear group GL(C?), is taken as model for nonlinear
spacetime. It can be parametrized by the strict future R(n){;,. (open causal
cone) in the spacetime translations.

Spacetime D(n) is acted on by the group GL(C") = D(1,) x [U(1,) o
SL(C™)] (extended Lorentz group for n = 2).

The defining representation of U(n) on a Higgs Hilbert space H = C™ gives
as proper fixgroup type U(n — 1), for n = 2 called the electromagnetic group
U(1)4. It defines the Goldstone manifold U(2)/U(1)., the orientation mani-
fold of the electromagnetic group in the hyperisospin group (electromagnetic
relativity).

The proper fixgroup types of the spacetime translations (energy-momenta)
with the Lorentz group action for n = 2 are SO(3), SOy(1,2), and SO(2) X R?.
They decompose the nontrivial spacetime translations into disjoint strata, the
nontrivial timelike, spacelike, and lightlike translations. Those manifolds are
isomorphic to the symmetric spaces D(1) x Y3, D(1) x Y12 and D(1) x Q2.

MATHEMATICAL TOOLS

2.7 Fixgroups of Representations

A vector space V' with group action G C GL(V) is decomposable into disjoint
G-orbits characterized by fixgroups (chapter “Time Representations”):

VA{0}= |H Gev. = |4 G/G,,.

repr vp repr vp

The trivial translation is an orbit with fixgroup Gy = G. The strata decom-
position collects orbits with isomorphic fixgroups

VA{0} = [ [Gevr]= Y [G/Cur]

repr vR repr vr
with less representatives {vg} C {v,}.

In this way one can associate to a group G the different fixgroup types {Hg =
Gy, }s 1ee., the different irreducible group realizations {G/Hpg}, which are com-
posed in the linear representation space.

2.8 Orbits with Signatures

An orthogonal O(p, q) bilinear form of V= R" n > 1, and a unitary U(p, q)
sesquilinear form of V' = C" gives rise to four orbit types O(p,q) ® v and
U(p, q) ® v with definite signature:
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positive: ((v,v) >0,

negative: ((v,v) < 0, singular: ¢(v,v) =0, v # 0.

trivial: v = 0; strictly {
For pg = 0 there are only the trivial and strictly positive (negative) orbits.
Sylvester decompositions have two definite orthogonal vector subspaces

VERPLIRY, V =CPLCY, (= (lo” fi)

with their stabilgroups mazimal compact subgroups in O(p, q) and U(p, q) re-
spectively and the decomposition of the group dimension d = d. + d,,. into
compact and noncompact dimension:

O(p,q) DO() xO(qg), ("5 = [BO)+ ] + pg
U(p.q) DUp) xU(g), (p+¢?*= P*+¢] + 2pq

The distinction of singular vectors leads to Witt decompositions, being di-
rect sums of two or three subspaces for p = ¢ > 1 and p > g > 1 respectively.
The sum of the two singular subspaces is orthogonal to the definite space. One
has skew-diagonal metrical matrices z:

|4
Vv

R? @ RILRP™4, O(p,q) D O(q,q) x O(p—q),
[C1 @ CYLCY, U(p,q) D Ul(g,q) x U(p—q),

Zq 0
¢ ¢ O o .
0 0 1,4

[l 11

I

2.9 Fix- and Stabil-Lie Algebras

Fixgroup and stabilgroup corresponding concepts can also be given for Lie
algebras.

The fiz-Lie algebra (also invariance Lie algebra) of a vector subspace U C V
with action of a Lie algebra L x V' — V is defined by the trivially acting Lie
algebra elements

UCV: LU:{leLllou:OforallueU}GlaigK.

The Lie-centralizer of a vector subspace W of a Lie algebra L is its invariance
Lie algebra with respect to the adjoint action

WCL: L{,}E:{leLl[l,w}:()foralleW}ElaigK.

The centralizer of the whole Lie algebra is the centrum of L.
The stabil-Lie algebra of a vector subspace U C V consists of those Lie
algebra elements that keep U stable

UCV: L{U}:{ZGLllOU:U}Eth, LUQL{U}.

The Lie-normalizer of a vector subspace W of a Lie algebra L is its stabil-Lie
algebra with respect to the adjoint action:
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WCL: Lig,={leL|[,W]CW}¢clag,.

For an ideal W the full Lie algebra L is the normalizer.
If the vector space V carries an L-invariant quadratic form

. ((v,w) = ((w,v),
C:VxV—7K, { C(lev,w)+ ((v,lew) =0,

then each vector v € V induces a quadratic form of the Lie algebra

veV, ¢(:LxL—K, ((,m)=_(lev,mev)={_,(m,l)
¢ bilinear = (, bilinear,
G bilinear for L € lag,,

V€ vece and ¢ sesquilinear = { (, sesquilinear for L € k"i@

The quadratic form ¢, is trivial for the fix-Lie algebra of Kv and defines a
quadratic form ¢, of the quotient

Go(l,m) =0 for l or m € Lg,,
Zv : L/LKU X L/LKU — K.

2.10 Transmutators as Coset Representations

For a subgroup H C G there are class representatives

G/H — (G/H)wepe € G, kH — k, for kH = k,H,
G= Uk H = (G/H)repr © H.

A natural choice may be given by a polar decomposition. In general, there
is no natural choice. For an exponential parametrization with Lie algebra
coefficients

K?~1logG =logH ® W, W =logG/logH,
logG 31 = aul®+ Bb®, g(a,B) =€ € G,

a representative is given with trivial H-parameters:

G = {g(a, ) | aa, Br € K} = {g(0, ))H | B € K}

with the examples

SL<<CQ> = {eF|a,F R} ={f v,
) —let|deR) = {elmrier) SO@),
<> = {ele0t® | a; e R} = {elCot U(1))}.

Since in general a group subset {g(a, )| s € K} with fixed 3 is not an
H-coset, g(0,3) cannot be thought of as its representative, e.g., e? SU(2) #
{eidtF | @ € R3}.
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The action of the group g € G from left on representatives k, is complicated:
It gives the representative (gk), of the class gk, H for the product up to a right
multiplication with a Wigner fizgroup element which depends on the choice of
the representatives:
G x (G/H)vepr — (G/H)yepr, gkr = (gk),h(ky, )71,
since gk, H = (gk),H,  Wigner element h(k,,g) € H.

The representatives can be chosen is such a way that the fixgroup H-action is
described by inner H-automorphisms

H x (G/H)wepr — (G/H)repr, hky = hk,.h™L.
Then the representatives are the disjoint union of H-orbits

(G/H)repr = H‘J Int H(k’R)

A group representation D : G — GL(V) defines a linear representation
of the classes G/H:

G/H — DIG]/D[H],
gH + D[gH] = D(g) o D[H] = {D(g) o D(h) | h € H}.
The fixgroup D[H] of a vector v € V is isomorphic - as D[G]-set - to the
G-orbit of v:
D|G|, = D[H] = D|G]/D[H] = G e v.
The D[H]-classes can be parametrized with the orbit parameters, i.e., with the
components of the orbit vectors

D[kH] = D(kH o v),

e.g., SOy(1,3)/SO(3) by the Minkowski vectors of a timelike hyperboloid or
SO(3)/SO(2) by the direction vectors of a 2-sphere.
A G-representation gives a linear representation of the representatives

(G/H)repr - GL(V) kyp — D(kr)7
g € G= D(gk,) = D((gk),) o D(h™') with Wigner element h(k,, g).

The set {D(k,) | representatives} cannot be used as a group representation,
since, in general, the product k.k, is no class representative.
A finite-dimensional group representation with (n x n) matrices

G 3k D(k) € GL(V), D(k)iZl="

77777

is decomposable into subgroup H-representations with square (m, x m,) ma-
trices from GL(W"*):

H N N
V@Pw, WK™, S m, =n,
=1 =1

N di(h) | 0 |- 0

H 5 h— D(h) = Pd(h) = [ 0L 0 )
=1 0 0 | dN(h)
d'(h)e=y
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A corresponding representation of the symmetric space G/H,
(G/H)sepr 3 ky — D(k,) € GL(V),

is decomposed correspondingly into transmutators between H e W* and G o V
with rectangular (m, x n) matrices from W*® V7T:

N m1 columns ‘ ms columns ‘ ‘ mpy columns
D(k,) = @DL(kr) = ( DL(ky) \ D2(ky) \ \ DN (k) )’
=1
D (k)=

The transmutators have a G x H-transformation behavior

D*(gk,h=1)1 = D(g)] D*(k,)sd"(h=1)".
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PROPAGATORS

Feynman propagators characterize the spacetime behavior of particles. They
will be introduced as Lorentz compatible relativistic distributions of matrix
elements of time representations. The particle interpretation is discussed in the
chapters “Massive Particle Quantum Fields” and “Massless Quantum Fields.”

Representations of the causal group D(1) = exp R, generated by and iso-
morphic to the time translations R, can be embedded, by position distribu-
tion, into a Lorentz-action-compatible framework. The invariant time opera-
tion eigenvalues (energies, frequencies) are distributed by energy-momentum
(qo, @)-measures (generalized functions) supported by the Lorentz invariant
mass hyperboloid ¢ = m?2. As special relativistic supplement for the com-
pact time representation matrix elements e*1©* € U(1) 2 SO(2), there arise
r = O-regular spherical waves w, |Z] = r, which are representation coeffi-
cients of the Euclidean group SO(3) X R? (chapter “The Kepler Factor”). The
causal time representations e*%! are supplemented by 7 = 0-singular Yukawa
potentials ¢

The relation of relativistic distributions of time representations to repre-
sentations of the Poincaré group SOq(1,3) X R* is discussed in the chapters
“Harmonic Analysis” and “Residual Spacetime Representations.”

3.1 Point Measures for Energies

To prepare the relativistic embedding, the time representation matrix elements
are formulated as Fourier transformed energy measures. The continuous eigen-
values of the irreducible unitary time representations can be embedded as the
real axis m € R into the complex energy plane. The Dirac distributions of the
energies define point supported measures of the complex energy plane. They
can also be written as a loop integration around an energy pole:

1= [dEém—FE)=¢2L_L formeR.

2inr E—m
Here the following notation with Lebesgue measure dF is used:

[dE for [*_dE = [, dE on the real axis,

§ dE for a positive (counterclockwise) loop around all poles.

73



74 3. PROPAGATORS

All distributions (generalized functions) used for propagators are tempered
S'(R?) with the Fourier isomorphism &’(R?) 2 §'(R?).
The Dirac point measure, equivalent to a residue [dE §(E —m)f(E) =
%%, is the real part of a complex generalized function where the principal
value function, denoted by the subscript P, comes as imaginary part:

5(@) = L|: L ] =1 20 2
- 11 2im | a—io a+io T a®+o0°’
a € R, :I:mﬂm—(S(CL):I:””IP <— 1 1[ L .

ap 2 |a—io a+io  a?+40%”

The symbol o in the generalized function prescribes a pole with a real positive
o > 0, an integration on the real axis and, afterward, the limit o — 0.

The complex point measures with a pole in the energy plane are Fourier
transforms of the advanced and retarded time representations

19( th :l:f 2 Eizo m lEt'
The distributional imaginary part determines the time direction, the upper
half-plane pole for ' — 70 leads to support by the future, the lower half-plane
pole E + io to support by the past.
With those measures and functions time representation matrix elements
can be written in different forms, with a closed loop integration, with a Dirac
measure, or with a time-ordered principal value integration:

R— U(l)3em™ =¢§dE_1cPl = [dE §(m— E)e'™
=€(t) %7&: —e'Pt,

The self-dual time representations with the trigonometric functions use an
energy measure self-dually supported by +m:

R — SO(Z) 5 (cosmt isinmt)

with (zciingt) = f ZHEW; COS(M)
= 8 (B (ol — 7
")

Bt — dE _ 1 E el Bt
e E2 m?2 i ngmQ m .

zEt

The causal time representations have as energy measures

(E(lt)) etimtl = (e(lt))(cos mt £ e(mt)isinmt) = [ %(ﬂgl) m&m.

Representations with finite closed integration contours in the complex plane
like ™™ for the group R obey homogeneous dlﬁerentlal ; equations, those with
infinite unclosed contours like sin |mt| for R = R & UR, as ordered double cone
inhomogeneous ones.
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3.2 Relativistically Distributed
Time Representations

For time R-representations the eigenvalue energy E coincides with the rep-
resentation invariant. For Minkowski spacetime R* the Lorentz invariant g¢?
involves the square g5 — ¢* of the eigenvalues (¢;)?_, for all four translation
subgroups R. Hence two different relativistic distributions of time representa-
tions are possible: Since the frequency (energy) comes in an energy-momentum
(vector)
R>E— (¢;)3-0 € R?,

one can distribute time representation cosine and sine either by a Lorentz-
“scalar” or a Lorentz-“vector” cosine paired with a Lorentz-“vector” and
Lorentz-“scalar” sine, respectively:

(sme) = J B em) (3)o(m? — BBt — (S0).
— [dE ¢(E) (i)é(mQ _ BBt (?j(m\m))7

is(m|x)
i C(ml|z) _ iS7 (m|z)
cosmt . isinmt o (iSj(mlw) —umn C(m|z) )7
d —
t\ isinmt =M cosme 8j c;(m|z) . is(m|z)
(is(m|x) =1 cf(m\z)>-

The distribution with a Dirac energy-momentum measure on the mass shell
for a mass m € R,

C(m|z) d* m igx
('LS (mlx)) m) f (277313 <Qj>5(m2 - q2)6 1 ;

defines functions that will occur as Fock state functions for relativistic particle
fields. Their sum can be given as an “exponential” with (4 x 4) Dirac matrices
in the Dirac algebra AL(C*):

e — EXP(im|z) = 1,C(m|x) +iy’'S;(m|z)

= €(m) f (er)3 d(vqg —m)e e
with  §(yqg —m) = (vq +m)d(q> — m?).

The distribution with an ordered Dirac energy-momentum measure
4

(Zé%‘g) = f (§W§3€(CIO)< >6(m —q ) e = 6(1‘0) f iw?zZ)B (%)q Emzequ

defines the distributions that will occur for the relativistic field quantization.
The ordered Lebesgue measure d*qe(qo)9(q?) leads to causal support

(c? %“{g) =0 for 22 < 0.

is(
The two distributions are combinable as a second “exponential” in the Dirac
algebra

e'™ — exp(im|r)

(m|x) + zl4s(m\x)

W
d4 ;
{ ) + '7(] B ) "= 6(1.0) f i”(2‘?r)3 ’YQPl—mequ
vq m
Ygp—m E—m?2"

with
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The crossover sums are a Lorentz scalar and vector with definite energy

ilm C(m|z) £ e(m)is(m|z d* m igx
et — (c]'((m\‘:c))i e((Tn))iS;(nth)) =/ (zﬂ%ﬂ(iqoﬁ(' |)5(m2 —q°)e'.

All these Lorentz compatible distributions of the time representation matrix
elements fulfill a homogeneous Klein-Gordon equation

Cs +mz><<;j<m|z) —0,

cosm is(m|z)
(dt2—|—m2)< tt):of—> p
18Inm (m|z) o
(0% +m?) <iSj(m|x) =0.

The crossover sums with an additional causal order occur as Feynman
propagators for relativistic quantum particle fields and distribute the causal
time representations

1 kil E(sifmllz) | _ ( Clmlz) + e(mao)is(m|a)
(e<t>)€ - ( J-(ﬂ\m\m) = <e<xo>cj<m\x>ie(m)ismm)

=& o 002 (7] )o(m? — g)eiee

_ f +[m)| 1 eiqa:
i7r(27r)3 q4; | ¢*Fio—m? :

Causal support and spacelike contributions go with the real and imaginary
part. With the causal order €(t) — e(xy)d(2?), the Feynman propagators
obey inhomogeneous Klein-Gordon equations

dteii|mt\ — il’|m‘6(t)6ii|mt\7
(d? + m?)etIm™ = 42i|m|d(t)
B OB (ilmllz) = =ilm|E, (ilml o),
(02 + m?)E(&i|m||z) = £2i|m|d(x).

In the following the distributed time representation matrix elements are
considered in more detail, especially with respect to the accompanying position
representation properties, which come in spherical form R 3 z — €"™* € U(1)
and cosmz,sinmz € SO(2), analoguous to the time representations above,
and with the hyperbolic representation matrix elements

—|mz| _ [ dg_|m| —iqz
Roz+—e¢ =) F e

3.3 Fourier Transforms of
Energy-Momentum Distributions

Spacetime translations R? d > 1, analogous energy-momenta as dual vector
space, come with Lebesgue measure, d%z and d%q respectively, invariant under
the action of SL(RY) X R? with the Poincaré group SOg(1, s) X R**, d = 1+s,
s > 0, as subgroup. The measure normalization is not fixed. In the following,
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integrations over the full space have the shorthand notation fRd = [. A
decomposition R =2 R @& R® into time and position translations (analogue
into energy and momenta) is induced by a rest system.

Energy-momenta measures, expressible by generalized mappings and a
Lebesgue measure d'*3q give rise, by Fourier transforms via the translation
representations R > z —— €% € U(1), to distributions on spacetime,
valued in a complex vector space U with Lorentz group action

RS 5 v p(x) = [d'5q " [(q) € U,
A € SOg(1,s) : pA( ) = D(A).M(A_l.:v).

A Dirac energy-momentum integration for one mass gives the SOg(1, s)-
mwvariant measures of the energy-momentum hyperboloid Y*, s =1,2,..., and
of the kinetic energies over the mass threshold:

V¥~ S0(1,s)/SO(s), Q1=S0O(s)/SO(s—1),

dsq _ oo ¢~ 1d 45 1
2qg - S 2qo0 ! f
s w1th =@ +m?,
Jd'q 9(qo)d(g* —m?) = Ly

flfnol dgo |q—15—2fds—1w
with |q] = /q2 — m2.

For energies below the threshold there is the integration measure with imagi-
nary “momentum”

f‘ Im| dgo|Q|*~2 [ d*~'w with |Q| = \/m? — ¢.

Distributions of Minkowski spacetime will be called relativistic distributions
of time and position representations if they are Lorentz invariant integrations
over corresponding representation coefficients:

@) fd e f(qo, o),

px) = iqox 5— Hag —m>)|q° 2 9(q,F)

J dgo o [ d° (19&3 Bler-2a@iel z))

) time R > 29 — f(qo, ZEO),
with

position R® > 7 +—— (g(i)”(lqci)i)f)) J IT e QL

The projection on time and position representation coefficients is defined by
integration over position and time respectively

time projection: i (;IT’)E,u(x) = Lf(m, zo),

position projection: [ %2 (z) = [d*7! ( (@m z))

In an integral for 4-dimensional Minkowski energy-momentum
R'*~R & (Ry x Q?), d'q=dqq®d|q d*w

the integration d*w over the 2-sphere momentum directions Q? = SO(3)/SO(2)
leaves a Cartan coordinate (qo,|q])-dependence. Hence the Poincaré group
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loses its rotations and is reduced to a self-dual dilation group O(1,1) acting
on energy and one momentum dimension:

0(1,3) X R* — O(1,1) x R2

For a 4-dimensional Lorentz scalar integral the integration over the 2-sphere
yields the characteristic derivative —a%, which can be used as Lorentz invari-

i
‘272 of the corresponding integral for 2-dimensional spacetime.

471'
This gives for the two kinds of Fourier transforms of generalized functions in
ordered energy-momentum space the not-ordered and the ordered one:

! iqx 1 1qoTo—1q3T
[ d*q (e(qo)ﬁ(,ﬁ)) (el = ( (@0)9(a2 7(1%))”((13 — ¢2)eloroias
( qo)ﬂ )u(q2)eiqz

The integrals both over the energy gy and the hemisphere-directed momentum
modulus g3 = €(g3)|q] are over all reals foooo The Kepler factor %—proportional
contributions are characteristic for position distributions

fd3q efitifu(q?) — _a% fd% e*iq37”'u(q?2)) — _%%qug e*i%rlu(qg)
4

z=(zo,r) '

with the projection on one axis

dady etilazlr _ eFilazzl
2m r T Filgs| -

Nonscalar integrals arise with derivations % = 21:%

The time antisymmetric integral with d'q €(qo)9(q?) is trivial for spacelike
x as seen for xg = 0, i.e., Fourier transforms of ordered energy-momentum
measures have causal support:

| q eq0)0(a*)n(q*)e' ™™ = [ dq e(ao)9(q)p(g*)e "
=0 for 22 = —1? < 0.

It is useful to tabulate some Fourier transforms for energy-momentum dis-
tributions (P is a polynomial):

N ~ i ~ g 7 iqx
‘ u(g) = J d*zfi(x)e=9® H (z) =/ éTL;z;H(Q)e 4 ‘
u(=a), mla) 1 (=), i(—z)
wlag), a>0; u(g+p), e%u(q) (3 ””u( ) Az +y)
P(ig)p(q), P(iZ)n(a) P(&) u(r (@)fi(x)
1 6(1)
2 T T
9(q?) = @22
e(90)9(q°) ye(x0)d (2°)
3 R
e(90)5(q?) — ez e(0)d(z?)
I'(1+v
# i 5(1—1/)
vER, v#+l,+2,. (4m)* (2 —jo)1-v
T =@+ 5 T» ~ i Pio = it lr oz~ @)
1_q I'(A+v) z
i (@@ Fio) I tv i 521“(2*")
ve ]R v#£—1,42,43... (4m)? (22 —jo)2-v
= q2+w =i + 72l || e = w16
e oz = 4@ + ;Té)z] ‘ ST = 8171[;% —&(z?)]
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The Fourier transformation exchanges with each other Dirac and principal
value contribution. In contrast to a positive definite product, e.g., for energies
o (E? —io0)” = E* with trivial Dirac distribution §(E?) = 0, the imaginary
parts of (¢*> —i0)” with indefinite energy-momenta ¢? = ¢2 — ¢* are nontrivial,
e.g., the Dirac distribution §(¢?). Hence there can be the nontrivial Fourier
transformation on the light cone, e.g., from 6(¢?) to x%

One obtains for simultaneous spacetime and energy-momentum order with
20(£qowo) = 1 £ €(qo)e(w0) = 1 & €(qoo),

+ird(z?) 4+ 1 = fJ (£q020)d' (%)™,
phnm Y = = G,
f ¥(£qo0) 19(612)61‘(;@

7(.%2;1,0)2 = :FZ7T(5,< 2) + (x%)z -

3.4 Scattering Waves (on Shell)

The O(1, s)-invariant Dirac measure, supported by the energy-momenta hy-
perboloid V¥ € R for m? > 0, gives the scalar cosine of spacetime transla-
tions. It is a representation coefficient of the Poincaré group SOg(1,s) x R'**
(chapter “Harmonic Analysis”):

d1+s

m2 _ q2)€iqa: — f (271—)3 2

C(m|z) —fc(l;s m|5(m — ¢*) cos qx

_aq uj’a?
= Im| f QO(Q’T)S o8 qx’qu m| f qo(% condoto qo=/P+m?’

s=0: C(m|z) = cosmuy.

(‘27:)‘5 is a convenient normalization factor. One has the cosine properties and

the invariance

Clmz) = Cm| — 2) = C(—mlz) = GG,
C(m|A.x) = C(m|x), A € O(1,s).

For time translations with s = 0, there is no momentum integration left, and
one has to put §= 0.

In the scalar cosine the energy qq has to surpass the mass threshold m, i.e.,
there is a positive kinetic energy ¢ = g2 — m?. The time representations in
U(1) = SO(2) are paired with standing spherical waves from compact position
translation representations in SO(2), forming together coefficients of Hilbert
space representations of the Poincaré group:

Cimlz) _ f d4q35(m2 _ q2) iqr _ 28x2 f (dgq 5 q _ mZ)eiqx

[m|
_ dqo g0 0 cos |(ﬂ7‘
=20 f( e I(g2 —m?) 7

x=(z0,7)

a=/@
@i=y/@-m®

] o o — iyl
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The full energy-momentum integration gives a function, defined Lebesgue-
almost everywhere in spacetime:

s=1: 2r<mi (—22)2KCo(mlz]) — O(z2)aNo(mlz)), |z| = /]2,
s=3: oam2Cmd = B(—a?)2kCo(mla]) — (22 mNo(mla])].

The functions involved are given explicitly in the next section.

By derivations 0y = Zxk% of the scalar cosine one obtains functions with
nontrivial O(1, s)-behavior, e.g., the vector sine of spacetime translations (for
s = 0 without momentum integration one has to take the component 7 = 0
with ¢ =0),

d1+9

iS, (mlz) = e(m) [ 451g,0(m® — ¢2)e = e(m) [ %59q,5(m? — ¢?)isin g
— d*q . _ d®q —igx [ qotsinqoxo
=<m)J w4 L5 qx‘q —Pm? e(m) | @ © ’ (tfcosqozo ) go=r/m?+

sin |q]r
= E(m) f (;17?'()) Zqozg ﬂ(q —m )( z M) Iﬁ] m for s = 37

1qT

with the transformation properties

Sj(m|z) = =8;(m| - z) = =S;(—m|z) = S;(m|z),
S;(m|A.x) = A¥Si(m|z), A e O(1,s).

C and S; involve spherical Bessel functions, multiplied by the matching
spherical harmonics YZ (o, 0)j.(]7]r) (chapter “The Kepler Factor”).

3.5 Macdonald, Neumann,
and Bessel Functions

Exponential, cosine, and sine in R-representations are embedded in Macdonald,
Neumann, and Bessel functions as R2-representations with an acting orthogo-
nal group (chapter “Residual Spacetime Representations”).

The 2-dimensional Fourier transforms of the energy-momenta hyperboloids
as SOy (1, 1)-orbits can be computed in hyperbolic coordinates (e(qo)qo, q3) =
(cosh ¢, sinh v)),

iqT cos(zo cosh ¢ —ix3 sin
fdQ (e(qo > q - 1 7 - fd?/] (zsm x?) coshd))))e 3sinhy
_ ([ (=a?)2K0o(|z) — I(a?)mNo(|z])
ie(zo)d(a*)nTo(lz) )’
with the real Macdonald, Neumann, and Bessel functions for index 0 and real
argument 0 # £ € R:

2Ko(€) = [ dip e lcoshy = [dy cos({sinhp),
—mNo(€) = [di cos(§coshep) =2 [%dyp e Y — [T dy sin(|¢]sin y),
T Jo(§) = [di sin(|¢|coship).
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The functions arise also for SO(2)-orbits:

d2(] 5 6_265 = % f fr 4 diX CcOS x COSX — 2m de el‘f‘ COSX7
2 - 0 = 0 2m ©
%%e—qu =2K(|Z]) = fdz/} cos(|Z] sinhyp) = [ dip e~lFcoshv,

The Macdonald function with squared dependence of complex argument { € C
can be decomposed together with the embedded C and R-representations e~¢
and €% = cos¢ +isin&:

o0

larg (| < 51 2Ko(C) = [dip e tehv = Z s llog & — 207(1) — 2ip(n))],
€500 2o(—i€) = —TNG(E) +ino(€)
= [dy eIty = [ dy) [cos(€ cosh1p + i sin(|¢] cosh )]

Its expansion involves Euler’s constant —I"(1):

—I"(1) =lim,—[p(n) —logn] =0.5772....

Ko and Ny have a logarithmic singularity for ¢? = 0:
EeR: —log(—§) = —log%—kzﬁr.

The regular Bessel function Jj is defined also for complex argument

n=0
The functions with integer index L = 0,1,2... arise by derivation:
Ayn
J —=) 1 4 cos
(;? = (= < =) () = (L+fm)!n! - +L) Jo *# - H—C—L
n=0
TQ) = [ e,

jfL(C) = (_1>LJL(C)7 thHO ‘(725? = F(l:—L)’
T = YT, = 3T (e, Tu(e) = [T, e,

Z=—00 Z=—00
2

Jg(@‘) =&u(5) = L+ DEi(5) — Sair(5):

The Neumann and Macdonald functions with integer index L = 1,2, ... have
order-L singularities for ¢ — 0, from derivations of the logarithm 7Ny ({) =

—log (? +

2
‘97

- Z Sl Z;%.log<2—2r'<> (L +n) — p(n)],

N_L(¢) = (—1)LNL(C), hmc—»o(%) TNL(C() = —T'(L).
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The Bessel functions with real index

~ Z C2 Cdch(C) = )\jA(g() ; §~7/\+1(C() )
AER: Al I = = AI\(C) + CT-1(C),
3 =L DI =T () + Tana(C),

are cylinder functions, i.e., solutions of the Bessel differential equation

[(CL)>+ ¢ = M) 2,(0) =0, [§(

m

) + A2 c€l2 +1 ]ZA(C) 0.

IS
.A‘“‘&‘

The Bessel function partners are

Macdonald functions: 2K\(¢) = < LV 1() e B0 _ opc A(Q)
= [dy Cosh)\w e~¢coshv arg (| < Z,
Neumann functions: Ny(() = W
Hankel functions: Hy*(¢) = “7’\7(70 £iNA(() = ej“‘”?‘[l_’?\(g) = —H>\(=0),
CeriC: 2K5\(Q) = eMrimHi(i¢) = e™2m[ida(i¢) — Na(iC)].

The integer index functions arise as limits. All solutions of Bessel’s differential
equation are spanned by {7\, N,}, for noninteger A also by {75}

The hyperbolic Macdonald and the spherical Bessel and Neumann func-
tions are the half-integer index functions. They arise by derivation from the
irreducible C-representation matrix elements:

w1 d B i :
Viterr =(mpa)tet =2 L)L1(1>,

./\%71(0 | L
Vit = (—E)tsin¢ =2 Z>5(€)= (oo Q) = (Smisn

2 4

Jp_1(0)
ﬁé)i% = (=5&)" cos¢ —2”);(41)7
2 4

ji L-1) Q) = (_1>LN:F(L7%)(C)7 KL%(O K_L 2(0,

11m<_>0 (QC()C) = (l—gL)!’ hm(—>0<2C)I+LnL(<) 2(L') )

Jr, nr, and kg are used as 3-position representation coefficients (chapter “The
Kepler Factor”), related to spherical waves and to interactions.

3.6 Yukawa Potential and Force (off Shell)

In ordered spacetime R'** with the orthochronous group SOq(1, s) there exists
the scalar sine of spacetime translations for m € R,

dl+sq

is(mle) = [ Gt c(ao)m(m? — *)e'*” = [ Gt

€(qo)md(m? — ¢?)isin qx

— = d*q
mf e Zsmqm‘qo_\/m =m [ o5 -

e~ jsin qoxg
with the transformation properties

s(m|r) = —s(m| —x) = —s(—mlz) = s(m|z),
s(m|A.x) = s(m|z), A € SOy(1,s).
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It has causal support and involves the lightcone Dirac distribution for 4-dimens-
ional Minkowski spacetime:

s=0: s(m|x) =sinmxo,
s(m|x e(T m2$2
—1p ) e (),
s=3 (m\fﬂ) _ 6(9073) 82 19($2 ( )
2

2 )20 2.2
= 62?) 4 [6(m4x ) ( 2)gl(mx

)l

An €(xp)-multiplied ordered integration d'**ge(qo) with an energy-momen-
tum Dirac measure coincides with an integration with an energy-momentum
principal value P pole function as shown by the identities

e(z0) [ d'+*q e(qo)d™) (m? — @)’ = [ Ct U st N = 0,1,

The causal sine

m|x dai+ ; d'tsq igx
(o) ) = e(ay) [ te(qo)d(m? — gl = [ Aot e

is a relativistic distribution of a causal time representation.

The energy-momentum support of the quantization distribution s(m|x)
with the Dirac measure is the mass shell {q | ¢ = m?} whereas €(zo)s(m|z)
with the principal value has support for all energy-momenta:

dlzt:x ZS(TH& = €(qo)0(q*> —m?) on shell, i.e., ¢> = m?,
d12+7:x e(xﬂ)iw = ﬁ 1+m2 off shell for ¢*> # m?.

The harmonic analysis of both the sine and the ordered sine displays time
representations in U(1) = SO(2) paired with 2-sphere distributions of compact
position translation representations in SO(2) for energies g3 over the threshold
m? (in quantum mechanics scattering waves Fy;, = E — V > 0). For energies
with ¢& below the threshold m? (in quantum mechanics bound waves E —V; <
0) the ordered sine involves Yukawa potentials as 2-sphere distributions of
noncompact position translation representations in SOg(1, 1) with the position
eigenvalue from an imaginary “momentum”

1 \is(mlz) _ [ d* e(@0)d(@® —m?) \ .
< e(xo) ) m - f (27r()13< e'

i qP+n12
ol d2q_(_a0)da” =m?) \ gy
=253 [ G (?) | 2=(z0,r)
oo ( )cos|q\r 0
= —25% [ gz’ [19(93 Hﬂz)(%) +9(m? —qg)< il >]
ql

in |q]r

= f(dqo RIS [ (2 — )(%) +9(m2 — @) <7?W>}

Wit 1 =/~ and Q] = /in? i

The sine gives r = 0O-regular spherical Bessel functions, whereas the ordered
sine contains r = 0-singular spherical Neumann and hyperbolic Macdonald
functions.
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The causal sine obeys an inhomogeneous Klein-Gordon equation. Causal
time representations have the Yukawa potential " « sin |mt| as relativistic
supplement for position translations

E%?fﬁg?% - ;ggﬂ) } s (02 + m?)e(mo) {2 = 26(a).

27r

The causal vector cosine arises by derivation,

. 1+s
cj(mlz) = f 271' G €(00)g;0(m? — ¢*)e'™ = [ 7(;)1% €(q0)q;0(m? — ¢*) cos q
77qu q0 COSQOJ’JO)

qo=+/m?+q?

= [ wamra cos q“"’%: e = [ wy T isinqozo
for s = 3.

|q1= VQO —m?

sin |q]|r

= f g%;?eiqozo G(QO)ﬁ(Qg - m2) (’Lz sm?t?\r rq\'rcos\qh‘)

It has the transformation properties

cj(m|r) = ¢;(m| — z) = ¢;(—m|z) = ¢;(m|z),
c;(m|A.x) = Afcp(m|z), A € SO(1,s).
For time xy = 0 there arises a Dirac measure supported by the position space
origin
c;(m|Z) = 076(%).

The explicit spacetime expressions read

s=0: cj(m|z) = cosmuzy,
=10 gml) = elro)ry Zed(a(=2)
= €(xo)r; B [0(™E —19(23322 E(™5)]

0
j ) )
s=3: C](m|1‘) = @x](i 219 CUQ)go(m T )
x 222
) )]
The harmonic analysis of the €(zg)-multiplied vector cosine for 1 + s = 4

involves Yukawa forces (hyperbolic Macdonald function) with the Coulomb
force for m = 0:

d4 . .
e(xo)cj(m|x) = i f (27;()15 szmz et

cos |q]r

iqo— . — i —-Qlr
= f (217?_()]2 e’qul’O [ (Q(Q) - m2)< Z Cos(\zg\T+rq\r sm\q\7>+ ﬁ(m - qO) (7§%> . r ] .

T

3.7 Feynman Propagators

The scalar Feynman propagators have causally supported imaginary part:

E(+i|m||z) = C(m|z) £ e(mxo)is(m|z) = E(Fi|m]|z)
=/ (21751319 (£q0w0)2|m|d(m? — ¢?)eie®

_ |m| iqr __ d3q —igq% ,%iqo|zo|
:l:f in 27r)g q>Fio— mz € - |m‘ f q0(27'r)3€ €

=/



3.8. SUMMARY 85

They arise as Fourier transforms of an on shell particle Dirac distribution and
a principal value function that contains both on shell particle and off shell
interaction contributions in the decomposition

Zl:l

i q2 $w m?2

=6(¢>—m?) £ L1

im g —m?2"

The harmonic analysis

E(+i|m||x) iqr _ 1 iqx
Im| - :l:f”f(%f q? 110 m2 € izdzz f 27r q?>Fio— m26 |1’:(10J’)

iqoT e 1\(1% e—|1QIr
2% [ szt [9(gZ — m?) *m + id(m® — ) o |

= 44 f (ng‘;? eta0o [19(61(2) _ m2)e¥ir\q‘\r +19( qo) \Qﬂ
on shell |gl=1/q3—m2,  off shell |Q|=i|gl=+/m2?—q3

displays a Yukawa potential (hyperbolic Macdonald functions) from the causally
supported part. The choice of +io (Sommerfeld condition) in m con-
nects the causal time structure with the preorder of position, i.e., with the out-
or ingoing particle waves.

Derivation gives the vector Feynman propagators

E;(£ilmllz) = e(zo)c;(mz) £ e(m)iS;(m|z) = E, (Fijmlle)
— if d q 19 iCono)2qj5(m2 _ qz)e,-qx

X 3 . .
_ iqr __ ddq —igz [€(z0)qo ) ,+igo|wo]
f i 27r)3 q? :Fw m2€ = f qo(27r)3e ( 7 )€

qo=4/m*+q*

involving causal time representations and Yukawa forces.
The two poles of Feynman propagators lie centrally reflected in the complex
energy plane

E(+iml||x), E;(+ilm||z) : poles at gqo = £(y/m? + ¢* + i0),
E(—i|m||x), Ej(—i|m||z) : poles at qo = £(y/m* + ¢* — i

The crossover on shell representations use one pole only:

+ d*
C(m|z) 25‘7(;7? is(m|x) f q 19 :|:q() (m _ q T — e q :tzq;v

=/

= [ 90 ciq0zo 9(dqy) (g2 — m?)Snldr .
f( 2 ( qo) (QO ) |(ﬂ:\/qg—7

2m) r

3.8 Summary

Spacetime translation distributions as Fourier transformed energy-momentum
distributions embed — Lorentz compatibly — time representation matrix ele-
ments. Causally supported distributions in Minkowski spacetime are obtained
from Fourier transformed principal value energy poles. They involve Yukawa
potentials and forces that originate from off-shell imaginary “momenta.”
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C(mla) . ~
<iS_,-(m\x) fd x C(m|z) = cosmag
cosmt
<isinmt> -
3 .
c](m|z)> 2 [ &3z s(m|z) = sinmzo
X =0forz¢ <0 —|m|r —|m|r
<Zs(m|x) [ dzoe(mo)% = _8?' e‘lr\m\ =€ 27r

distribution of time representations

<Z(SJJ((7:LTI‘,|1;))) =e(m) [ (2;“;—)% (Zj) §(m? — g?)eits

C(‘ﬂz) _ j <§Z[§ e190T0 g(qg _ m2)sinl<ﬂ7'
Fock form functions (on shell |§] = {/q3 — m?)
ci(m|z a4 qj iox

(S20mie) = 1 tetan (1) otm® — a2yeres

d* a5 1 i
:e(zo)fﬁ WJL> Welqz

Pl om0 (qo)9(q] — m?) 2210

quantization distributions (on shell)

(crerina) = (B hmlier) = (comsesonisr & o)

a4 |m . a4 \'m| .
==/ m +q; melqm =/ (27,()13 219(:tq0$0)<iqj §(m? — ¢2)eia®

e(zg)s(mlz)  _ [ 440, giqowo 9(g2—m?2) cos |glr+9(m2—g2)e~ Q"
m - J (2m)2 T
=920 dqo_ oiqozo 2 _ p2ysinldr 2 2ye Q"
=252 [ @m0 [9a5 —m*) Tt —90m® — a5 “pg
E(+i|m||x) .y dgq_igowo (g2 —m?)eFilalr L 9(m2_g2)e~1QI
[m| Jo(2m)2 T

Feynman propagators (on shell and off shell |Q| = \/m2 )

MATHEMATICAL TOOLS

3.9 Distributions

Topological vector spaces F € tvecs have as topological duals the vector
subspaces F' C FT (algebraic dual) with the continuous linear forms.
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If the space is given by a test function subspace of the continuous complex-
valued functions of an open real set T C R,
F(T) CC(T)={f:T — C continuous} € xvecg,

the distributions in the topologial dual F'(T') are expressed by integration of
generalized functions with Lebesgue measure

FI(T) x F(T) — = [ p(z) dz f(z).

Distributions are the adequate formulation for disjoint additive mappings
on measurable sets (chapter “The Kepler Factor”). The test function spaces
stand for the measure subrings used there. Distributions have no values for
points, but - in some sense - are characterized by values on open sets.

Properties of and operations with test functions can be rolled over, via the
dual product, to the distributions, e.g.,

conjugation: (m, f) =(p ?)
p positive:  {(u, f) >0 for all f with f(7) CR,.

In this way the derivations of distributions are also defined: (Ou, f) = (u, —0f).
The support of a function f € F(T) is the closure of the set of points with
nontrivial value:

supp f = {z € T'| f(x) # 0}.

A distribution g vanishes on an open subset S C T if (i, f) = 0 for all
functions with supp f € S. The complement CgsT of the largest open S
where p vanishes is called the support of the distribution .

For a continuous linear mapping the transposition, restricted to the topo-
logical dual, is a linear mapping

F € tvece(F(T), Fo(T)) = FT € vecc(FH(T), Fi(T)).

The dual D'(T") = C°(T)" of the complex-valued infinitely continuously
differentiable and compactly supported test functions C°(T'), equipped with
the limiting Fréchet topology, defines the T-distributions. In this “very large”
space there are distribution subspaces, defined as duals of less-restricted test
functions having the “very small” C2°(T') as subspace (more test functions
have fewer distributions and vice versa). For example, the distributions with
compact support D.(T) arise for the infinitely continuously differentiable test
functions (without the support condition) or the Radon measures M(T) =
C.(T) for the compactly supported continuous functions

Cx(T) c C(T) = D'(T) >DUT) =C>(TY,
Cx(T) CC(T) =D(T) > M(T).
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The test functions on RY, rapidly decreasing as expressed with polynomials
P in the variables and derivatives and the Euclidean scalar product r? = #2,

S(RY) = {f € C=(R?) | SUD, cpn

Py (2)Py(2) f(&)| finite for all polynomials},

e.g., for the harmonic Bose oscillators starting from the ground state wave

function fo(Z) ~ e*§ (chapter “Quantum Probability”), equipped with a
topology defined by the corresponding supremum seminorms, give rise to the
tempered (slowly increasing) distributions S'(R?). Since the Hausdorff topol-
ogy of a vector space R? is unique, the tempered distributions can be defined
also for O(1,3)-Minkowski space R*, where the norm x3 + 72, incompatible
with the Lorentz transformations, is used for the topological properties only.
Distributions like 6(¢*> — m?) with ¢*> = ¢2 — ¢* are tempered, however not
with compact support. All functions, e.g., the Fock form functions, and dis-
tributions, e.g., the quantization and Feynman propagator distributions used
above, are tempered distributions &'(R*).

The structure of distributions is locally characterizable by functions and
their derivatives, therefore “generalized functions.” Since in the integral form
[ u(z)dx f(x) derivatives can be rolled over, it is understandable that deriv-
atwes play a decisive role in characterizing distributions by functions: Every
distribution p € D'(T') is locally equal to a finite sum of derivatives of locally
integrable functions. Every Radon measure M(R?Y) with Lebesgue basis d%x
is a finite sum of derivatives (maximally 9°?) of continuous functions, e.g., the
R-Dirac measure §(z) = dd22 l;”‘ The distributions with support at the ori-
gin 0 are finite linear combinations of the derivatives of the R-Dirac measure
diz 6(z) € D,(R?Y). The tempered distributions p € S'(R?) are locally equal
to finite sums of derivatives of continuous functions with the absolute value
growing at infinity more slowly than some polynomial, e.g.,

e = Qiﬁ +imdM(—z) = (=L N log(—x +i0), N =0,1,...
log(—x + i0) log |z| 4+ imd () = Lz(log |z| — 1) + imzd(z)).

Embedding the functions into distributions (generalized functions), the fol-
lowing inclusions hold with the topological duals arising by “central” reflection
at <,

C(T)DCx(T) C C>(T)
N > N
Di(T) < D'(T) > M(T)

and including the topologically self-dual Hilbert spaces L2 (R9) (all functions
and distributions are defined up to sets with trivial Lebesgue measure)

Cr C S C Cc™
N

on R?: N L >3] N
N

D. C S’ c D
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3.10 Fourier Transformation

For test functions and distributions on the real vector space x € R? (transla-
tions) there exist the corresponding structures on the isomorphic dual space
q € R? (energy-momenta), related to each other via the dual product (g, z) =
gz. Functions and distributions on dual spaces can be connected by the U(1)-
representations (C*-functions) of the translations or the energy-momenta:

D*:R?3 g ™ c U(1), (D*|D") = [d'qD*(q)D" (q) = &(z — '),
D9 :RY > g %™ € U(1), (D)D) = [ dxD(z)D? (z) = 5(q — ¢').

The Fourier transform connects with each other the rapidly decreasing test
functions on the translations and the energy-momenta by a topological vector
space isomorphism. The inverse Fourier transform is related to the conjugation
(antilinear):

_ flx) = [d' f(g)e>m,
prr=ie {0 PN
S(R?) = S(RY), Fl~F
C i [ @) = [ i fee
fom =T {fqﬂ) = [ dz F(x)e.

One has the Plancherel theorem for the U(1)-induced scalar product

S(R?) x S(Rd):> C, S(R?) x S(Rfl) — C, )
(glf) = [d?q g(q)f(q) = [ d"z §(x)f(x) = (F.g|F.f) = (Gl f);

S(R?) is dense in the topologically self-dual Hilbert space Lﬁq(Rd):

S C L, c §,

on R?: =
S = qu - [qu]lv

on which the Fourier transform can be extended as an isometry:

- F
L3, (RY) = L7, (RY).

The Fourier transform can be rolled over from functions F5(R?) to dis-
tributions F5(R9) if there exists a test function space F;(R?) whose Fourier
transform is valued in the test function space Fy(R?):

F:F(RY) — Fa(RY) } wit (et f1) = (ne, FL i),
F': F(RY) — F(RY) (fi2, f1) = (p2, f1)-

The transposed Fourier transform is a vector space isomorphism for the
tempered distributions:

pro pla) = [ de flx)e >,
S(RY) = S'(RY, jr—FTji=p{ (1f) =
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The Fourier transform of compactly supported distributions gives C°-
functions in the self-dual relation D, = [C*]"

F : D/ (RY) — C®(RY).

3.11 Measures of Symmetric Spaces

The orbit G e gy of a real Lie group G acting on a vector ¢y € V = R",
n > 1, parametrizes the equivalence classes of the corresponding fixgroup
(closed subgroup)

Geqy=G/H, H=G,.

Lebesgue integration, restricted to the orbit, gives a positive G-invariant mea-
sure of the cosets G/H

for G/H : [d*q d(q e Geqp).

For a bilinear or sesquilinear form with invariance group G (chapter “Space-
time Translations”), the orbit is parametrizable by the vectors with equal form
value,

C:VxV—K, ((¢g.9) =7q¢, G=ULV,(),
Geq={q<cV|qq=qw},
for G/H : [ d"q 6(qq — Qoqo)

For unitary invariance group SU(r, s), acting on C* = R?*" with Lebesque
measure d"z d"z, dz dz = dzx dy, the Dirac measure for a fixed square yields
an invariant measure of the real (2n — 1)-dimensional coset spaces:

for SU(r,s)/SU(r — 1,s): [d"zd"z 6(zz — 1),
for SU(2) : [dzidzidzodz 6(|21* + |22* — 1)
~ 27 dx [T dp [T sin 0d6

i€ 0

. z iX [ e'2 cos &
with (7)) =e'2( T, 2% ).

22 e 'Zsing

For orthogonal group SOy(r, s), acting on R™, there are three proper fixgroup
types with the invariant measures of the real (n — 1)-dimensional symmetric
spaces:

3

[d"q6(@ — g —1) for SOy(r,s)/SOg(r —1,s),
[d"q6(@ — @+ 1) for SOy(r,s)/SOg(r,s — 1),

[d"q6(@ — ) for SOy(r,s)/SOg(r — 1,5 — 1) x R"2,
d*q=d'qd’q, [d'q = [ |g""d|q [dw.

)
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3.11.1 Spherical and Hyperbolic Measures

Measures for spheres ° = SO(1 + 5)/SO(s), s = 1,2..., and hyperboloids
V* = SOy(1,5)/SO(s) can be constructed with the defining representations
of SO(1+s) and SOy(1, s) acting on energy-momenta (imaginary “momenta”
for spheres):

- s. (0] ix
logSO(1+5) & R : (5 logS)é)(s)> )

logSO(1,5) & RV (42 ) ().
q

Positive vectors ¢? > 0 have the fixgroup SO(s) . The representations of the
fixgroup classes are parametrizable by unit vectors. For the hyperboloid with
g0 = ¥(qo)qo > 0, one obtains

(%) = () (Gatsiiem) ©SO(1+5)/S0(s),

q2 =1: 9 cosh ¢ q0 * Qa o
(4] - (50 (S ) =souorsons
Unit vectors ¢> = 1 can be used to parametrize the positive SO(1 + s) and
SOy (1, s)-invariant measures, unique up to a factor. In addition, there are
other parametrizations, both with a finite and infinite range, with a trigono-
metric or hyperbolic “angle” (x,), with imaginary “momenta”, and real
momenta (ip,p) and with imaginary and real Poincaré parameters (iv,v) for
spheres and hyperboloids respectively.
The parametrizations for semi-1-sphere and semi-1-hyperboloid are

1
Ol (© ~ [ cosx _ 1 1\ _ 1 1— o2
iq isiny ) /1+p2 ip oo 1402 2iv _17

2
A
g sinh ) 2 \2), =7 2w ),

From the 1-forms

(NE]

— sin xdx _ (dqo o 1 —pdp o 1 —4vdv

i cos xdx — \idg - 1+p23 idp T (14022 \i2(1 —v?)dv )
sinh ¥ di ~ (daqo o 1 pdp o 1 4vdv

cosh dap — \dq - 1—;1723 dp — (1—v2)2 \ 2(1 +v%)dv )

one obtains the measures

Jd'w —f dX—Zf dX _Qfo\/ﬁ fo

1 —q2
[e o] 1 v
2f 1%%1; 2f 1%&(-1112 :fp 112—:-111; _27'('
Jd _f dz/)—2f0 dy 72f1 2071 fo
qo 1+q

=2fy 2 =2, &%
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The abelian case s = 1 is embedded in the general case with the (s —
1)-sphere and factors ¢*~! with ¢ = |q], where SOq(1,s)/SOq(1,s — 1) =
y(l,sfl) ~ yl % (s—1.

Qs d’w 6(q%+q -1)
for ye c [ ey ] = [2d" g (90 qgfq -1)
Y= 0-s ogg — @ +1)

/‘ ns— 1X dX

_fd81 °°inh5 Ly dp

f cosh*~ 1) dip

The 0-sphere consists of two points:

3

[ dw = |Q°) = card {1, -1} = 2, |Q'| = 2m, \flz? |2| =

s
[ dfw = Q%] = Qﬂlfs) = 2,2m, 4, 202, 82

The hyperboloid Y? parametrization with @ € R? yields F. Klein’s Euclid-
ean model of Lobachevsky’s non-Euclidean plane.

The parametrizations above are generalized with (q,p,v) — (¢,p,7) € R®
for Q° and )*. The momentum p-parametrization is square-root-free for odd
position dimension s = 1,3, ..., the v-parametrization for all s = 1,2, ..., for
the spherical measures

fdsw _ fds 1wf0 1 2 _ _fds 1 fo slldq
_qo q
_fds 1y w% _fds 1wf172§12vs Ldw (1

25
and the hyperbolic measures
ds d=w — = [dF 1, [ 9 ldg
Jiby = a4

2—1

:fd871wf0 Ll‘%ﬁs —fds 1wf 5T ldv ,2)5
[d's =2 [d W OOM =2 [ds- 1wf
NoE 0 T
:2fds—1wf0 % :2fd5*1 01 13‘}52( Z)

and, if possible, with a volume integration

I b ﬁ = fnza 20 ()
fdsy f\/ﬁ fﬂ<1 st :fﬁ’zgldsv(1—262)sv

fdss = 2f§221 \/‘(l;qi_l.
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4

MASSIVE PARTICLE
QUANTUM FIELDS

With the experience of quantum mechanics on the one hand, where time comes
as a real parameter and position as an operator in a Bose quantum algebra
Q_(C?), and special relativity on the other hand, where time and position con-
stitute Minkowski spacetime, one may expect a relativistic quantum structure
with both time and position as operators. However both time and position
x = (t,Z) are used not as operators, but “only” as real parameters for the
translation behavior of relativistic fields. The value space of the fields carries
the quantum degrees of freedom, with the example of a free scalar quantum
field ® for massive neutral particles:

time spacetime
translations translations
teR r €R?
! !
x(t) ®(z)

R — R4

3 uantum field theor
Q(W) — Q(w) 1 Y

quantum mechanics

The quantum algebras come as value spaces for mappings {}? — W} of
the energy-momentum hyperboloids ¢ = m? > 0 for free particles. For each
momentum ¢ and spin J, there is a quantum algebra over a representation
space W D C'*%/ for spin and chargelike operations. In retrospect, quantum
mechanics is characterizable by quantum orbits of time with the quantum
structure implemented by position. The quantum structure of the orbits of
relativistic spacetime is implemented by field degrees of freedom, e.g., by spin,
electromagnetic charge, isospin, etc.

Free particles are characterized by irreducible Hilbert representations of
the Poincaré group SL(C?) X R*. The infinite-dimensional representations for
particles are induced by and embed Hilbert representations of spacetime trans-
lations R* and of position rotations, i.e., of spin SU(2) for massive particles
m? > 0 (for convenience m = |m| throughout this chapter) and of circu-
larity (helicity, polarization) SO(2) for massless particles (chapter “Massless

95
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Quantum Fields”). More mathematical details are discussed in the chapter
“Harmonic Analysis.”

Particles are embedded into quantum fields. The Feynman propagator
for a particle field describes its spacetime behavior. It has two parts which
are analogous to the two wave function types in quantum mechanics (chap-

ter “The Kepler Factor”): For kinetic energy F — V, = VEES 0, there arise

2
sin |g]r

scattering waves —*-, whereas bound waves e~ 19" come with binding energy

E-V, = —%2 < 0. In a Feynman propagator, the scattering part is embedded
into the Fock form function of the quantization opposite commutators. It in-
volves matrix elements of Hilbert representations of the translations R*. This
part describes free particles: on-shell with kinetic energy g2 — m? = ¢ > 0.
The relativistic correspondence to the nonrelativistic bound waves is the €(zg)-
multiplied quantization (anti-) commutator distribution, which contains off-

shell contributions (“virtual particles”), ¢* # m?. The embedded Yukawa

interactions f‘f” and forces are distributions (2-sphere spreads) of represen-
tation coefficients of position with imaginary “momentum” g2 —m? = —Q* < 0
as eigenvalues, the analogue to the nonrelativistic binding energy. These “vir-
tual particle” contributions have small-distance r = 0 singularities; they are

not representation coefficients of the spacetime translations.

In addition to the translation properties, i.e., the invariant mass, and
the energy-momenta eigenvalues, particle fields have homogeneous Lorentz
transformation properties. Massive particle fields come with decompositions
of Minkowski translations into time and position translations, induced by a
rest system of the field embedded particle and determined up to rotations
SO(3) = SU(2)/I(2). The SU(2)-representations determine the spin of the
particle.

Relativistic quantum fields for massive particles have particle degrees of
freedom only. Their Hilbert representations allow a complete probability in-
terpretation. This is in contrast to massless fields (chapter “Massless Quantum
Fields”).

The complex representations of the real-spacetime-related groups are in
unitary groups that contain U(1)-phase groups. An “internal” U(1)-group in
addition to the translations representing U(1) describes particles and antiparti-
cles. For example, the Dirac representation of the Lorentz group in the anticon-
jugation group SL(C?) — U(2, 2) uses the probability-inducing U(14) for the
translations and the additional relative phase in SU(2,2) D U(1,)3 x SL(C?)
for an internal “chargelike” U(1). With the exception of Majorana structures,
all half-integer spin particles have an additional internal U(1)-charge, arising,
e.g., for neutrino-antineutrino as fermion number and for electron-positron as
electromagnetic charge.

For relativistic quantum fields, the Lie algebras of the external Poincaré
group and of the internal operations are implemented by position integrals of
generator distributions, their currents, which are written with the quantization
opposite commutators.

After a review of the U(1)-representations for the time group D(1) = R
in quantum algebras, i.e., of the harmonic Fermi and Bose quantum oscilla-
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tor, and of the quantum representation of an additional particle-antiparticle
U(1)-transformation group, the relativistic distribution of these compact time
translation representations (chapter “Propagators”) is used to define quantum
particle fields with external spacetimelike and internal chargelike degrees of
freedom.

4.1 Quantum Bose and Fermi Oscillators

The irreducible Hilbert representations of time and their self-dual combinations
are described by the harmonic oscillators.

4.1.1 Time Translations and

Particle-Antiparticle Transformations
A C-quartet of complex 1-dimensional vector spaces (W, W, W7, WT) (chapter
“Antistructures; The Real in the Complex”) with dual and antibases is related
to each other by two conjugations: the definite dual space conjugation x for
creation-annihilation and the indefinite antidual conjugation x for particle-

antiparticle:
X

ueWw S oar=wteW
x| I
w=aew? & aeW
Compact time representations with energy (frequency) m € R act on the
antidoubled vector space Wy, = W & WT ~ 2%

time R 2 ¢ — ™™ <(1) ?) e U(1,) Cc U(2).

The antidoubling allows the representation of a particle-antiparticle U(1) with
winding number z € Z:

iz 0

internal U(1) 2 ' — (eo eﬂﬂm) e U(1); c U(1,1).

The Fermi and Bose quantum algebras ¢ = +1 for the complex quartet are
characterized by the (anti-) commutators

in QE(WdOHb) : [U*au]e =1= [a*va]e-

The adjoint action of Hamiltonian and internal charge operator implement
the Lie algebra of R x U(1):

Hy = Hy =mltlotanle

e

Q — Q* — Z[u,u*],egﬁa,a

?

R & logU(1l) — Qe(wdoub)a{
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It determines with d; = % = iad Hy the equations of motion and the time

orbits,

dt< ) zm(:), dt(u a*) = —im(u*,a*),

< ) zmt (Z)7 ) — (u*’ a*)e—imt’
and displays with d;, = —z% = ad @ the internal charge number:

d(l) = (0 %) () datra) =@a) (5 0).

A charge Q-compatible basis allows dual normalization factors ¢, p > 0 for
real and imaginary part,

— luta* —
e_+1:{U+_Z\@’ U=

1
A, = patut , 1A_= Zal/‘?* }:>{A+’U+} =1l= {A*’U*}v

V2 V2
u :lu+a*7 Z.U,:lu_a*7
e=—1: A+ g —i\-/uz‘ A = Zal/g* :>[_Z'A*7U+] =1= [_Z'U*7A+]7
+ =45 -=P 5

which for x-compatible combinations have to be 1 in the Fermi case and inverse
to each other in the Bose case:

P=p=1, e=+1,

(Ag)"=Us < 2= % e=—1.

—N

For the combinations in the Fermi case the notations (r,1) for “real-ima-
ginary”, or “right-left” with a Lorentz group action (below), will be used and
(x,p) for “position-momentum” in the Bose case:

r = u+a ; 1 = u—a*,
€e=+1: * a—&\{g* I = afg* = {I‘*,I‘} =1= {1*71}7
T T V2

X = gqua*’ _Zp = 345 ) . .
e=—1: { * gaﬁ* ik ia\—/?l* } = [Zp*,X] =1= [Zan*]a
o v

Q. <;)] _ () 0. (;})1 _ _Z(;;:)

In the reduced case without antidoubling, i.e., with particle-antiparticle
identity, u = a, and trivial internal charge Q = 0, one has to take only “one
half” of the structure. With Lorentz group representations, the reduced case
is possible only for trivial two-ality, i.e., for integer spin particles.

In the charge-compatible combinations, the Hamiltonian and internal U(1)-
operator look as follows:

H m[],r*];[!‘,l*]{ Q = [lal*]‘;[rvr*]7 € = —|—17
= 2 45 {x,x* = x,ip* —ip,x*
0 mé {p.p }4;42{ X"} »xip }+2{ P, }7 €= —1,
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with the equations of motion

€e=+1: { dir = iml, il = imr, = (d? + m?)(r,r*,1,1*) = 0,

div* = —iml*, dJ* = —imr*
_ . dix = (’mp, dip = _%Xa 2 2 * *\
e=—1: { dxt = Cmpe, dpt = —xe (d7 + m?)(x,x*, p,p*) = 0.

They are derivable by variation from a classical Lagrangian, for Fermi with
anticommuting Grassmann vectors:

e=+1: Lp(r,r* L1 = irdyr* + ild ¥ — m(rl* + Ir),
e=—1: Lp(x,x*,p,p*) = pdix* —xd;p* — m({*’pp* + £xx*).

The kinetic terms in a classical Lagrangian couples and defines dual pairs.
In general, the quantization opposite commutators implement the basic

space endomorphism Lie algebra in the quantum algebra (chapter “Quantum
Algebras”):

1*,1 r*, 1
([[l*,r]] [[r*,r]])7 €= +17

({ip*,x} {X*,X} ) €= 71

{p*,p} {x* —ip}

[u,u*]_, [a,a*]_ and

Examples of generators with internal degrees of freedom in addition to the
internal U(1) are given below.

4.1.2 Fock Forms and Causal Ordering

Harmonic Fermi and Bose oscillators have time orbits. The following shorthand
notation is used for the time dependence of (anti-) commutators and their Fock
forms:

The time-dependent quantization is a U(1)-representation
a*,ale [u*,ale imt(1 0
D(t) = ({a*ﬂje {U*vu]]e> (t) = e t(o 1)7

or, with the Q-compatible combinations, an SO(2)-representation, for the

Fermi case

{L1*}  {r,1*} | {15, 1*}  {r*,1*} cos mt —isinmt 0 0

{L,r*} {r,r*} | {I*,r*} {r*,r*} (t) o —isinmt  cosmt 0 0

{L,1} {r,1} {1, 1} {r*,1} - 0 0 cosmt isinmt |
{L,r} {r,r} {I*,r} {r*,r} 0 0 isinmt  cosmt

and for the Bose case
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ip,x*]  [xx*] | [p*,x*]  [x*,x*] cosmt  £2isinmt 0 0
p,p*] [x,—ip*] | [Pp*,P*] [x*,—ip*] £ = 7z sinmt cosmt 0 0
[ip, x] [x, x] [ip*, %] x*, x] ( ) 0 0 cosmt  €%isinmt
[p.p] [x, —ip] [p*, p] [x*, —ip] 0 0 g sinmt  cosmt

The nontrivial (anti-) commutators can be read off from one quarter of the

matrices, e.g., from (47)

The U(1)-scalar-product-induced Fock state of a quantum algebra (chapter
“Quantum Probability”) defines a scalar product (a|b)r = (a*b),:

@aje (e _ (1 0) _
<<a\u>§ <u\u>§> = <0 1) = dr(0).

It is the ¢ = 0 value for the time-dependent Fock form of the quantization
opposite (anti-) commutator

_ ({a%al-er (v a]-e)p _ imt(1 0
dF(t) - (([a*7u]7€>F <[U*,H]7€>F> (t) = e t(O 1).

The Fock forms of the ()-compatible combinations are given by the time
representation matrix elements:

1)) r* 1)) _ _ ([isinmt cosm
<<<[[1 he i ”F)(t)—dp(t) _ ' ‘

. . r))e [r*,x]) cosmt isinmt )’
e=+1: de(0) = 0 1 D _ [ cosmt isinmt
F( ) —\1 0)> (t) — \isinmt cosmt )’
({i *,x})F <{X*ax}>1«‘ . o isinmt 02 cosmt
. (<{§*,p}>F <{x*,—z'p}>F>(t) =de(®) = Acom isinme )
e=—1L: d (0 2 D o cosmt £2isinmt
F(O) - [iz 0 ) (t) - lesinmt cosmt :

Time representations, time-dependent Fock forms, and the Fock value of
the Hamiltonian matrices mdy(0) are related to each other as follows:

dp(t) = 24D(t) = D(t) o dp(0), imdp(0) = D7(t) o £ D(t).

The Fock value of a time-ordered product connects the time order with the
creation-annihilation order, first creation and only afterward annihilation:

Ot = to){u(t)uta)) £ O(ts — 1) {0 (E2)u(tr))r

B it o imt [ cosmt —e(t)isinmt = e ™
= V()™ £ V(=)™ = { —isinmt + e(t) cosmt = e(t)e” ™M

This distinguishes one sign in the two possibilities =™/l here the minus sign.
The time-ordered product can be written as the sum of the Fock form of
the quantization opposite commutator and the ordered quantization (anti-)
commutator,
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e—z‘m\t\ _ { <[I‘*7 l](t) - E(t){r*v l}(t)>F7 €= +17
L, x} () — (Db X (1), €= —L,

oS 0 — T W) = 41,
e(t)em _{22<{x,zp}() (B, il €= 1.

and for the time representations in SO(2) (¢ =1 for Fermi),

dy 2 . i 2 .
dp(t) — e(t)D(t) = (7 @ )eﬂmlt\ = ( Z%(t) f;(t)>e imlt|

In this section and in the following one has to be aware that the (anti)
commutators are valued in the quantum algebra, e.g., [u*,u]. = 1 € Q.(C?), in
contrast to the number-valued Fock state matrix elements, e.g., ([u*, u]_¢),
1eC.

4.2 Relativistic Distribution of
Time Representations

For relativistic particle fields the Hilbert representations of time, as given for
the harmonic oscillators, are embedded into Lorentz compatible functions and
distributions of spacetime translations (chapter “Propagators”).

The time representation

smt  isinmt LT A 1 A
R>tr— (.CO.“” “mm) = <m ﬂ)zsmmt = (ﬁ ”1"> cosmt
im

isinmt  cosmt 1 P
leads to the quantization distributions with causal support

R 3 z0(2?) — D(m|x) =<ts ck)( |z) =
(8 ) 5 - iy

)zs m|z)

=

As seen below, the minimal embedding (2 x 2) matrix <Zr’§ Z;) with diagonal
Lorentz vectors and skew-diagonal Lorentz scalars has to be modified for more
complicated Lorentz group representations.

The Fock form functions are defined for all translations:

; O
R'S z— d(mle) = (& S )0mle) = (4 )Clmlo)
= %(% i)mé(qQ — m?)el®,

They cannot be written as time and position derivatives of the quantization,
in analogy to the time derivative dp(t) = ;-4 D(t) of the last section. This
relation arises for the time projections which is given by position Fourier trans-
formation
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fd5$ D(m|x) _ <52 cos mzo isin’mzo) _ D(l‘o),

i sin mxg 52 cos mxg

fd31' dF(m|.flT) _ <5gisinmzo cos mxo ) _ dF(J:O)

cos mxq 5gi sin mzq

With the time order related to the creation-annihilation order the relativis-
tic time-ordered products (Feynman propagators) are

de(m|z) — e(zo)D(mlz) = (5* 3 )(=iml)

s
= (7 o )B(=imla)

im

3

(—imlz) = Clmla] — elwo)is(m]z),
Ei(—im|z) = e(xo)ck((]m\x) — iSg(m|x),
J Balde(mlz) - e(z)D(mlz)] = (<G L Yermil

The position projection, given by time integration of the e(xg)-multiplied
quantization distribution gives Yukawa potential and force:

75“1—“ 1+mr
k

on [ dag (wo)D(mla) = (52 g ) = (R ) S

4.3 Quantum Fields for Massive Particles

Particles are acted on with infinite-dimensional irreducible Hilbert representa-
tions of the Poincaré group SL(C?) X R* (Lorentz transformations and trans-
lations), induced by finite-dimensional irreducible Hilbert representations of
the direct product SU(2) x R? of rotation group and translations (chapter
“Harmonic Analysis”). The representations of the massive particle group
SU(2) x R* for each energy-momentum are Lorentz compatibly integrated over
the energy-momentum hyperboloid for one fixed mass. All particle quantum
fields are Lorentz compatibly distributed time orbits and can be considered to
be relativistically embedded Fermi or Bose oscillators, possibly with additional
degrees of freedom (spin, circularity, charge, isospin, etc.).

The definition of relativistic particle fields for the noncompact Poincaré
group involves two complications, the infinite dimensionality of the represen-
tations used (this section) and the embedding of the rotation group in the
Lorentz group (next section). For easier access and an illustration, it is useful
to consult the simplest examples with a massive scalar and vector field below.
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4.3.1 The Hilbert Spaces for Massive Particles

Particles are described by momentum operators in complex quartets, called

W g [T
particle & | antiparticle
creator annihilator
x| 1 *
u*(m?, J; Q)a a(m?, J; q)a
particle S| antiparticle
annihilator creator

for the invariants mass m and spin J
with the eigenvalues momentum ¢ and spin component a.

A notation with (m?, J; ¢, a) involves the two Poincaré group invariants, m? for
translations p? and J for rotations S? (Pauli-Lubanski vector S), and the cor-
responding eigenvalues, momenta ¢ for position translations p and eigenvalue
a for rotations around the momentum %. If obvious from the context, the
Poincaré group invariants are omitted and only the eigenvalues in an (m?, J)-
“multiplet” are explicitly given, e.g., u(m?, J;q)* = u(q)* € W(q) = C'*2/,
The momentum operators are acted on irreducibly by the spin-translation

group

(z,u) € R* x SU(2) : u(])* — D (u)fu(q)’, ¢* =m?
a,b=—J,...,J.

The momenta parametrize the boosts for the rotation group orientations
V3 = S0(1,3)/SO(3) = SL(C?)/SU(2) = R?® with Lorentz invariant mea-
sure of the 3-dimensional energy-momentum hyperboloid with positive energy:

= 3
for Y3(m?) : d3y(%) = 2(1(;1(7;;)37 go = /m? + ¢.
The “huge” infinite-dimensional vector space HW((I) is a direct integral
qeR3
(chapter “The Kepler Factor”), where the integral sums up the “little” vector
spaces for each momentum, e.g., for particle creators:

w: Y — W, w=[dy(L) u(@)w(@). €W =%[dy(T)W(q),
u(@)* € W(g) =W x{q},

where w is a W-valued spin SU(2)-intertwiner on the Lorentz group SL(C?)

or, equivalently, a W-valued mapping of the energy-momentum hyperboloid
V3. The direct integral is the distributive generalization for the basis expansion
n

of a finite-dimensional vector w = E uw,.
q=1
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The measure of the energy-momentum hyperboloid has an associated Dirac
distribution

e ) (40)d(q® — m?) = 5 P 2q0 (L),

A possible constant normalization factor is chosen as 1.
The quantization is induced by the duality distribution of the momentum
operators, given by the asscociated Dirac distribution:

[0 (7, u(@)"]e = [2*(0)", a(@)ale = 02008 (%F)-

The U(1)-scalar product induces the Fock form with the scalar product dis-
tribution

(w(P)an(@)°) = (a*(9)"a(@)a)r
= ([ @)aw(@’]-0)r = (0" ()" a(Dal-e)r = 05200(

q2—7rp) .

The creation operators define a measure-related distributive basis (not
Hilbert space vectors) for a Hilbert space:

im?, J;q,a) = |q, a) —u(m J;9)?|0),
<m27J2;q_.27a2|m2,J1;q_)17a1> =9 15a12q 5(111 Q2)

Jo Y az

Stable particles for different masses m? # m3 have Schur-orthogonal spaces.
The direct integral with wave packets, square integrable on the energy-mo-
mentum hyperboloid pry ¥ )(yB) = L*(Y3) gives vectors in the Fock-Hilbert

space for the particle with invariants (m?, .J):
[m?, Jyw) =% dy(L) w(@)alm?®, J;¢.a) € H(m?, J) = L*(¥*) ® C*/

(m?, Jo; wam?, Jy; we) 5:}21 fd3 ) w2 (q)aw1(q)a
=07, f( 5 Wo(q)a?(q0)0(q*> — m*)w1(q)a-

S
i
m

The distributive completeness allows the sesquilinear decomposition of the unit
operator in (projector on) the particle Hilbert space H(m?, J):

mmﬂ%|Jan=@w% )3(q* — m?)|q,a){q, al

affJ

= @@fd‘* )|, a)(d al,

a=—J

P(m?2, J)oP(m? J) =P(m? J).

4.3.2 Relativistic Quantum Fields

The embedding of the particle momentum operators with SU(2)-action into
fields with Lorentz group representations on finite-dimensional spaces V' C
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WY* with basis {(D*)7} is effected by momentum-parametrized transmutators
D*(q) for fixed mass ¢* = m2, which are discussed in the next section:

D(m)! =®[d*y(L)u(q)*D"(q)i € V C WY, qo = /m*+ ¢,
SL((CQ) S5\ — D()\) € GL(V), D*(m)’ — D(\).D*(m)*.
With the infinite volume of the energy-momentum hyperboloid the transmu-
tators are not square integrable, D*(q)* ¢ L2()3).
The spacetime translation orbits R* 3 z —— ¢ € U(1), ¢* = m?, of
the momentum operators give the embedding particle fields. For a comparison

with the harmonic oscillators as used above in the quantum algebras, they are
=+1

given for Fermi and Bose( _1> with a “right-left” and a “position-momen-
tum”-notation:

()mle) =Ustmle)i = 2,2
(‘. (mlzr) =iU_(mlz)} = Z,2[d%
(&) mle) = As(mla); = Za2fd
(G ) Omle) = iA_(mla); = Z,E[d

19T (F) TG~ 19T g * (7)@
)g (@ JZ/? @ D+(

)

q)7,
elqzu((f)a—c_lqza*(@)a D7 (q)]

a’

=
[}

a

Q)jv
"A’qma(q’)afefiqwu*(tf)a D_(

a(@ute Do [+

S

a

q)j7

3 \*Ql 3 \-Ql Sl 3

AAAA

E
?
with o = /m?+ ¢, AL(m|r); = Us(m|z)’.

S

p

The Lorentz transformation properties for relativistic fields may be different
for the transmutators D' and D~ in the U(1, 1)-symmetric and antisymmetric
combinations respectively. In the Fermi case, the dual normalization factor is
fixed, £2 = 1. For massive particles, the free normalization factor will be
chosen as Z2, = m > 0. The Lorentz transformation behavior of particle fields
combines the Lorentz action on the translations and on the value space

M 5 2 — D*(m|z) € V, D*(m|0) = D*(m),

MM SL(C?) 5 A — A(\) € SO(1, 3)
. . — € o(1,3),
D“"”l lD*(m' " Dy(m|z) = D(\).D(m|A"2).
V — vV
D(X)

In the following, shorthand notation is used for the translation dependence
of (anti-)commutators and their Fock forms:

[A(y)a B(x)]e = [A7 B}E(l‘ - Z/) =€ )
([Ay), B(@)]e)r = ([A; Blo)p(z —y) = €([B, Alo)p(y — ).

Without specification of the Lorentz properties, Fermi fields have the quan-
tization anticommutators and commutator Fock forms;

1*,1 r,1 c is
(3 &)@ = (% 2)emls) =Dk,

(e (1)
(<[1*,r]>F <[r*,r]>F)(“7)

e=+1:

(% &)l = ds(nlo),
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and Bose fields the quantization commutators and anticommutator Fock forms,
ip*,x x*,x 2%
([[5*,;;]] [x[*,—i]p]> () = (;Cs C,is) (ml|z) ~ D(m|z),

. * * ; 2
(G dely, )@ = (e 6)) ko) ~ (o).

The time derivative of mechanics is embedded into the spacetime derivative
dy — 0;. Therefore, the dual pairing for the quantization in mechanics p = d;x
(chapter “Quantum Algebras”) arises as a timelike component of a Lorentz
vector. With the Lorentz vector property of the quantization in the diagonal
of D(m|z) the products of the fields have to contain the following Lorentz
representations:

— Lorentz vectors [1|1] in 1®1*, r®r*,
T Lorentz scalars [0[0] in r®I*, 1®r*,
Lorentz vectors [1|]1] in p ® X*, X ® p*,
e=—1: .
Lorentz scalars [0/0] in  p ® p*, x® x*.

4.4 Lorentz Group Embedding of Spin

Massive particles keep as homogeneous action group the position rotation fix-
group in the Lorentz transformations:

Sylvester: ¢*> =m® >0 = { RIZT LS,

fixgroup SO(3) = SU(2)/1(2).
The fixgroup action on particles induces the Lorentz group action on their
relativistic fields.

The transition from the “little” spin group SU(2) to the “large” group
SL(C?) uses rotation to Lorentz transmutators (chapters “Spacetime as Uni-
tary Operation Classes” and “Harmonic Analysis”). They are energy-momen-
tum parametrized representations of the mass hyperboloids SL(C?)/SU(2) =
V3 which is the fixgroup orientation manifold. The boost representations con-
nect an irreducible spin representation d : SU(2) — SU(W) with a Lorentz
group representation on a finite-dimensional vector space V = C™:

A€SL(C?), D(\):V —V, D)y
In the decomposition of the Lorentz group representation with respect to ir-
reducible spin SU(2)-representations on subspaces W* = C™ with square
matrices d(u)’=h "

a=1,...m,»

y o Gw, Disue = Pd.,

u € SU(QL) sodi(u) s W —>LVVL,
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there has to occur the inducing spin representation d. The SU(2)-decomposi-
tion of a finite-dimensional irreducible SL(C?)-representation reads

L+R

)= PSuU(2): 2L2R = P [2J].

J=|L—R|

The corresponding decomposition of the boost representation, for all (o, ¢) on

a fixed energy-momentum hyperboloid ¢? = m?,

S0y(1,3)/SO(3) 2?5 L +— D(L) @DL

defines the transmutators with rectangular matrices D* (% )iy, as transfor-
mation from the “little” spin representation spaces W* to the “large” Lorentz
group representation space V. The action of the Lorentz group on the trans-
mutator gives the transmutator for the Lorentz transformed energy-momenta

and the represented associated Wigner rotation u = u(X, L) € SU(2):
A€ SL(C?): DD (L)) = D"(Ao L o \)yd'(u)).

The Wigner rotation defines - as SU(2)-transformation - the Lorentz group
action on the spaces W*(q) = W* x {q}, e.g., for a basis {e'(¢)*}.=1 - for

.....

With the Lorentz invariant integration there arise vectors from a finite-
dimensional space with the Lorentz group action as given on the vector space

V.

Now the simplest examples: The fundamental transmutators from Lorentz
group to rotation groups relate to each other the Pauli SU(2)-representation
and the two Weyl SL(C?)-representations; they are the fundamental boost
representations

VIOl = 0 with respect to SU(2),
[L0J(E) =s(E): e(@ = s(L)ge(@,
AC=1,2,

VoI =~ 71 with respect to SU(2),

OI)(L) =8(L): @) — 3(L)de(@),
A0 =1,2.

They are nondecomposable since both the Weyl SL(C?)-representation and
the Pauli SU(2)-representation are irreducible complex 2-dimensional.
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Lorentz vector representation gives rise to two rectangular transmutators
from Lorentz group to rotation groups. The 4-dimensional spaces are de-
composable with respect to rotations SO(3) into a l-dimensional and a 3-
dimensional space for spin 0 and spin 1 respectively:

VI = Wl g W with respect to SO(3), _

LGE) =AGH) =s(GH®@57'GE) - e(@™ = AGE).e(@)™,
§=0,1,2,3, a=1,2,3.

The energy-momenta of a massive particle give projector decompositions of
the identity into SO(3)-nondecomposable projectors

Li=Pule) + Pey(a), o =5k + (6l - 4%), ¢ =m*>0.

m

In general, the embedding of spin J particles into a relativistic field is
not unique since spin J-representations come in all induced irreducible finite-
dimensional Lorentz group representations. The “minimal” Lorentz group
representation for a given spin J has “left and right spin” L and R as “close
as possible” to each other:

J=L+Rand|L-R)| _{ 8 gjpmjjg

5 pinJ=3,35,...,

This gives equal left-right spin for the embedding of integer spin J particles
and the difference % for half-integer spin

minimal: irrep SU(2) — irrep 4, SL(C?),
[J]J] for J=0,1,...,
2] —
T3l — 3] @ [/ =gl o] forJ =55,

2R
with 2L[2R](£) = \/s(£) ® \/35(£L).

The examples J = %, 1 are given above. For half-integer spin the x-symmetric

sum of two conjugated representations has to be used (chapter “Lorentz Sym-

metry” ).

In the quantizations and Fock forms of the particle embedding fields the
unit 15741 of the particle SU(2)-representation space is embedded as a scalar
unit for the Lorentz group or as the timelike part of a Lorentz vector. For
example, for a spin % particle, relevant for a Dirac field, the unit 15 from the

rest system is embedded into Lorentz scalars 6%, 53 and into Lorentz vectors

(ij)f’qj and (&23‘17.
[1] < [1]0] @ [0]1] with s(;L),3(;5) = s~ (%)
ssT1 ss* 1 ola;
= <§s—1 §§—1)(%): (afj 1”2 )

~ 5ab

For a spin-1 particle the metrical tensor 15 is embedded into a Lorentz

tensor:

[2] — [1]1] with s(£) ® §(L) = A(L) = A(L)i6PA(L)] = — + L.

q
m
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4.5 Massive Spin-0 Particle Fields

Scalar fields for massive spin-0 particles embed compact translation represen-
tations with trivial spin. An example is the neutral 7%-meson, considered as
stable.

For Hermitian scalar Bose fields, particles and antiparticles coincide:

3
1}1:>00 @(IL’) — EBquOd?)3 ,.Y [ iqx (d) +€7lqz *((jﬂ
z2=0 : _Zé(x)k = @f 2q0 271' ’qu (d) —lar *(q)] ( )27
e=—1 with ¢g = m2+§2.

A(£)) = 2 is a transmutator embedding an SO(3) scalar representation [0]
into a Lorentz vector representation [1|1]. Scalar fields have the Lorentz be-
havior

A €S0(1,3), ®p(z)=d(A ')
The dual normalization has been chosen in such a way that the limit m — 0
is finite mA(£)) — g (chapter “Massless Quantum Fields”).
Scalar particle fields embed g-indexed harmonic Bose oscillators: The Her-
mitian scalar field is the simplest relativistic distribution of an irreducible time
representation orbit with Euclidean conjugation x

R >t e™ € U(1) with u & u*

as given by the quantum Bose oscillator with position-momentum (x, p)
ertial mass M > 0, and spring constant k>0, i.e., frequency m with m? =
and intrinsic length ¢ with ¢4 = W= L

in-
=k
- M

M mIMZ
imzx 0 —ima, *(0 imt —imt . *
Jdr B(a) = SO (g = peme
i etMmTo(0)—e " tMTou* (0 - imt 7(—imt *
fd3:z: ®(z), = 52; ) : ( ), p(t) = %%
The basic operators are the starting points of the translation orbits
®0) = fzqo wv[ (W+u*(q“)] x(0) = (w5,

B(0) = °f g2 (@ —w (@), p(0) = { A

The field quantization commutator is the vector cosine with the origin-
supported distribution for the equal time quantization:

(W] =1,
lator: 3 P2X](1) = cosmt = b, x| (1)
oscillator: =1fort=0,
[x,x|(t) = isinmt,

(@), w(@)] = 2q6(5E),
(i@, ®](x) = cr(mlz) = Z[®, ®](x)
= 0%5(Z) for g = 0,
scalar field: [®, ®](x) = H2is(mlz) ZS(mIﬂc =2 f %)36 qO)5(q2 . m?)eiqx

— A2 q —iq%;
= f e € 181N goZg
qo0=1/ m2+4?

QO

= 0 for spacelike 22 < 0.
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The quantization commutator has causal support and is not a function
omSta) — ¢(z0)6(22) 4 - - -

m
The anticommutator Fock form contains the Hilbert space scalar product.
It is a function of the spacetime translations (coefficient of a Poincaré group

representation)

oscillator: { ({u",u}), = (W), =1,

({x,x})(t) = cosmt, o
{uw* (@), u(@)}) = ((P)u(q)): = {plg) —2%5(%)7
scalar field: ({2, 2}),(z) = QC(m‘z —72f ;lw()ls(s q* —m?)e'

— A2 q —iqx
e COS qoT
=7 f qo(2m)3 qoTo

go=r/m*+@
The intrinsic length unit for the oscillator is given by the Fock scalar product
2(x|x)p = (2.

The field commutator and the Fock form of the anticommutator involve
on-shell contributions with §(¢? — m?) (“real particles”) with r = O-regular
distributions of compact representation coefficients of position translations

({2(y),® N2 @ _d3qd3p (p1d) i(qz—py) (@1P) —i(qz—py)
( B0 ) ) J ooz ([u*(@ u@]) e +( [o*(@), @1) ]
_ 72]‘ dqo (qo ) igo(zo—yo) sinlql|Z—4

(2m)2 \ e T— .
) (90) |Z—7] |q1= /qg_mz

The coefficients for the Poincaré group SOg(1,3) X R* embed the coefficients
for the Euclidean group SO(3) x R? for scattering waves (chapter “The Kepler
Factor”).

The relativistic distribution of the causal time representations gives the
Feynman propagator

oscillator: ({x,x}(t) — €(t)[x,x](t)), = (*[cosmt — €(t)isinmt]

_ (2e—imlt],
scalar field: <{‘I),‘I>}( )— 6(300)[‘1) q’]( N 72C(m‘$)_€go)is(m‘x)
i fﬁ e = 4Bk
-y f (dq(; elqomoﬂ(qo 2) = T+19(m ~a) 79 = 72\[ qo(2ﬂ—3 eiiqolzo‘iiqu

with |(j| Vg —m? and |Q| = /m? — ¢.

Here on- and off-shell contributions are added:

2 ; 2

T =V —mA) + L a
The principal value distribution with the off-shell contributions does not lead
to Poincaré group representation coefficients. The Yukawa potential and forces
involved are attributed to “virtual particles” with imaginary “momenta” (bind-
ing energy) and r = O-singular distributions of noncompact position represen-
tation coefficients

e(20)[@,®)(x) = [ G- - Fre”

A2 dqo zqoxoﬁ(qo_mZ) cos\cﬂr—i—ﬂ(mZ—qg)e*‘Q'T
=iy [ o€ . .
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The Yukawa potentials < differ by the Kepler factor, with r = 0-singularity,
from the bound waves in quanturn mechanics. The Feynman propagator has
an explicit translation dependence via the order factor €(zg), which is not
implemented by the field.

The free dual normalization factor 72 is introduced in such a way that it
gives the normalization of the pole at the particle mass. Free massive Bose
fields can be renormalized, e.g., with v = 1. For interacting theories v can
be related to the coupling constant of the interaction via ®.

The property to be coefficients of compact translation representations, time
R or spacetime R*, is expressed by homogeneous free equations of motion.
They are derivable from a classical Lagrangian function and Lagrangian den-
sity:

scalar field: aa q, LL(®,®,) =0 = 0'® = 420k,

— 5 )L(@,8,) =0 = 0" = -1

72

Ok

86k<1>

L(x, pdt —2(Pp* + %)
oscillator: ( g> (x,p) =0 = dix = (*mp,
{ (dy ad,p )L(x p)=0 =dp=—-%X%,
L(®, &) @ka 3 - 1(7?®,@" + m? %)
. { @
(

A second order derivative formalism uses

L(x) = (dix)* — mQ"—; = (d? + m?)x =0,
L(®) = (0:@)? — m*E = (0% + m?)® = 0.

The on-shell quantization commutator and Fock value anticommutator
obey homogeneous Klein-Gordon equations (free field equations), the causally
ordered contribution in the Feyman propagator an inhomogenous one. The
“virtual particles” (off-shell) that induce the Yukawa interactions are not free:

(0% + m?) (<{£;I’;,"}](;; ) —0, (82 + m2)e(x0)[®, ®)(x) = 2i72(x).

For different particles and antiparticles with translation R* and internal
charge group U(1) representations

R x U(1) 3 (z,€) — €' (60 _m) € U(1) x U(1)s,

the full complex quartet is necessary. The spinless case gives a non-Hermitian
scalar Bose field

B(x) = °f ks % v [e%u(q) + e7"ma*(q)],

7}1:>00 —i®(z), = 69]”@ %k [eiou(q) — e~ a*(q)],

s= 41 O (r) = °f oy Ve (@) + e alq),

c=—1 | @ = °f gk %l () - era(@),
with g = /m2 + .



112 4. MASSIVE PARTICLE QUANTUM FIELDS

Examples are the charged 7*-mesons, considered as stable. Non-Hermitian
scalar particle fields embed ¢-indexed harmonic Bose oscillators with a charge.
They have as quantization commutators and anticommutator Fock forms

i®r D [N ] . is(m|x iqx
G@;’f@j]] [q>[*,—¢q]>j}>(x) = (—10) ( 5 = f gﬂ)s q)e(q0)d(g* —m?)e'™,

<{i‘I>*,¢I>}>F <{q>*7<p}>lr — - C(m|z _ i
(<{<I>z'f<1>j}>p <{¢*,—i¢j}>p>(fﬁ) = (—i0) S — [ 4 (q)d(q? — m)e'r,

. 8 2 :
with (—i0) = (ot 3, @Z% W)

~

and Feynman propagators
i®r, &+, idr, ®*, %
(@) @) @) = o) (i) &%) @)

iqx

7f 271' q +zo m2€

A Lagrangian density for classical fields reads

* *\ — H* Ak ¥ %3 2H* Bk 20*P
L(®, &, &, ®}) = D10"® + 8,0"0* — (1’010 + m’2).

For scalar particles {u®, a*®, u¥,a,}a=12.. with internal degrees of free-
dom the relativistic embedding is unchanged, one has to insert only additional
indices, e.g., ®«, ®%. If there exists an isomorphism ¢ between dual and anti-

space, the identification of particles and antiparticles is possible:

e=—1: a(@a = Cpu(@’ ¥(2)a = Cas®(a)”.

Two examples: The m-meson triplet (7%, 7%), taken above as example for
Hermitian and non-Hermitian fields, can also be formulated with a triplet rep-
resentation [2] of internal SU(2)-isospin {®*},=123. Here ®* is a Hermitian
scalar field and ®'? are given by the Hermitian combinations (22 2-2
of a non-Hermitian scalar field. And the quartet of K-mesons (K*, K°) and
(?O,K ) with conjugated Pauli doublet representations [+3|1] of internal
U(2)-hyperisospin is embedded into two non-Hermitian relativistic scalar fields
{®*,®*},-12. Here the Cartan subgroup U(1); C U(2) describes the elec-
tromagnetic action, it takes into account the central correlation I(2) of hyper-
charge U(12) and isospin SU(2) (chapter “Rational Quantum Numbers” and
“Gauge Interactions”).

4.6 Massive Spin-1 Particle Fields

For massive spin 1 particles with triplet SU(2)-representation [2], i.e., for
an SO(3)-vector, e.g., the neutral weak Z-boson or the charged weak W=*-
bosons, considered as stable particles, the fixgroup SO(3)-representations are
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embedded by rectangular (3 x4) transmutators from Lorentz group to rotation
groups. One takes the last three columns from the 4 x 4 matrix A(£) with the
decomposition [1]1] = [0] & [2]:

M) = L(0] 5,05 un ) €S04(1,3)/50(3)

with ¢ = \/m
Also, the antisymmetric product representation [1|1] A [1[]1] = [2]|0] & [0]2]
contains an SO(3)-vector, [2|0] = [2]:

ALY C [1|1](%), a=1,2,3; 7=0,1,2,3,

m

spin 1: { ACHEFAG)Y € 201(4) @ [0]2)(2),

7 = (6 A§) = 6F67 — 6]6F (Clebsch-Gordan coefficients).

The SO(3)-units are transmuted into the Lorentz compatible projectors for
spin 1 and spin 0, for the metrical tensors:
»

AGRO™AGER = =1 + L8 AGDEAGR = S5

q
m

For neutral coinciding particles and antiparticles, one has for Bose fields

TJn:>10 Z(z) = @Iqud(izzr)if ~ [e9mu(q)® + e~ 9w u ()] A(%)fp |
coo ) G@Y = gEs %@ - e (@] AGDAGE)

e=—1 Wltth = \/m2+627
with the translation representations
R* 3 2 — €113 € U(13) with u® < u*e.

The direct integrals Z(0)? and G(0)* are SO(3)-intertwiners on SOq(1,3).
Hermitian vector particle fields embed a spin triplet of ¢-indexed harmonic
Bose oscillators:

3 . iy ei7”x0u(0)“+efimx0u*(0)“
[ &Pz Z(x) =0} 5 ,
[ &Pz G(z)k = €00 5 .

Like for the quantum-mechanical 3-dimensional isotropic harmonic oscil-
lator, the translation and spin group for the momentum operators are repre-
sented in U(3) as a subgroup of U(1, 3), which arises by a complex embedding
of the Lorentz group

R* x SO(3) — U(3), U(3) C U(1,3) > SOy(1,3).

The equations of motion for the translation orbits and the Lorentz proper-
ties are as follows:
ROz = IZF — 0T = A2GH,

aijk:—%; j,
= A\J -1 ,\k
A € S0y(1,3) : { Zy(x) = MZA )k,

Ga(z)M¥ = AFANG(A L)

T
a’
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Since the four columns of A(%)f€ are a Sylvester basis, the divergence of the
field vanishes:

AL ALY, =0 < ¢ A(L)] = 0= 0,Z7 = 0.

A classical Lagrangian density reads

L(Zj,ij) _ ngk lmalz +( 2 GJ G7k +m2zj22j),

2y
L(Z7) = Lm(DIZM) (01 Zm) + mZ%.

The quantization commutators and in the anticommutator Fock forms
Tl 7] Zk 77, . o\ [Zt,Z5](x
[ékl7 Gjrvl] [zgc’ _i(;l'm] (I) (_Za) wa

({iGH. 27y, ({ZF,27), (22,
<<{G“,Gjm}>p iy, ) (@) = (o) T

’Y Y
. [ —ietlsiom y26k6]
(_Za) - (afké?"”?“ 7l5k65r o)
can be computed from
(2%, 2] 20 k) akaﬂ' m)
(({Zk7z]}>F (.CIZ') Y (77 + ) C(m]z)

gr)z ( qo))( ki 4 q ' )5(q2 _mQ)eiqac
3 1Zq isinx 1
=7 Gk e T AL 6“”(wsqoz?)A<%>z7

and the Feynman propagators from

j qkqj

({Z*, 27} (x) — e(wo)[ZF, Z7)( =i (d4q v (=t +

q%+io— m2

) .
et

4.7 Massive Spin-% Dirac Particle Fields

To embed Pauli SU(2)-spinors for massive spin-3 particles into SL(C?)-repre-

sentations with the left and right Weyl matrices 07 = (15,7) = &;, one uses

the Weyl transmutators for ¢ = m?%:

() = BRI+ 2L () =5 ) = B L - o)
o k e -~ 5k =
S()37I(E) = B = med, ()l () = ut = e

Hence two dual pairs with left- and right- handed Weyl spinor particle
fields, in chapter “Lorentz Symmetry” with the U(2, 2)-anticonjugation nota-
tion (r,1,r*,1*) = (r,1,r*,1%), of Fermi type are defined:

r(e)! = yVm ®f gy e @C+e g (@)C] §7H(L)E,
S I O @fmﬂs @) — e @] 52
ZZj:l : r*(x)A _\/769/ 2qo zﬂ)3 [_qu *(Q_)C+€qua(®0] 3(%)27
e=+1 | @i =vm® gGhy [w@e - ea@e] $(E)S,

[ with g =+/m?+ ¢
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The product /ms(:L) with Weyl transmutators is finite in the massless limit
m — 0 (chapter “Massless Quantum Fields”).

In the representations of spacetime translations and charge group

R* x U(1) 5 (z,€®) — ¢ (6”‘512 01) € U(14) o U(12); € U(2,2),
the internal charge group U(1) for particle-antiparticles comes as the subgroup
U(13)3. The spacetime translations, charge, and spin group are represented
as subgroups of U(2,2). Dirac spinor particle fields embed spin doublets of
g-indexed harmonic Fermi oscillators, e.g., for the electron-positron
[ &z r(z)t = eimOu(O)A;j%WOa*(O)A

Both dual pairs (r,r*) and (1,1*) have one left-handed field (I,r*) and one
right-handed field (r,1%).

The Weyl represented boosts %, = s(£)ms(L) lead to the Weyl equa-
tions, characterizing the translation orbits

ete.

(G o)At = il (dFO)AP = imrd,
(6%0) 3y, = —imly, (0%0k)5lp = —imry,
The Lorentz transformations are

ry(z) =23 r(ALa)B,

A€ SL(C): { L4 = A4 1A )P,

The quantization anticommutators and the commutator Fock forms are

rt,r4 rt, 14 . is(m|z 4 iqx
(frirly i) @) = (—io) B = [ & (q) elq0)dlq® — m?)e,

1'*,1““F r*.,AF . mlz igx
(([f, A]) ([f IAD )(l‘) _ (—18) C(m\ ) f (261?)13 (q) 5((]2 o mQ)eq 7
e (1519 k

with (—id) = (—i"’“éak m > (q) = ("“B‘Qk m‘?ﬁi).

A s~k A A ~kA
miy —i6" 50k mig Pk

Four-component Dirac spinor fields with chiral Dirac matrices
A 1* .
_ (pA A _ * A E_ (0 o
v —(I‘ 71 )7 ‘II_’VO\II _<r2>7 Y _(516 0>7
3 . - —

Y(z) =yvm®f quTir)g(emu((j), —671”3*@) V200 8500, (),

T d3 — e~ T y*

U(r) = vim °f 5 saom(2) V2wt (i)

involve the Dirac boost representations sqoun(:-) € SU(2,2) and the trans-
formations wy € GL(C*) to the time diagonal basis with the U(1,)-scalar
product (chapter “Lorentz Symmetry”)

s(L 0 1, 1
Sdoub(%) = ( (6") g(%))? wy = %(422 12)
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The boost representation embeds the harmonic Fermi oscillators with spin %
ek
m

into Dirac fields. Its property Sdoub(7E) = Sdoub(;%) is expressed by the

Dirac equation

U(m +iv" o) =0, (m—iy"0)¥ =

Dirac particle fields have as quantization anticommutator

W0} (@) = (L + 22 )is(m|r) = (e + is)(ml) = exp(imlz)
_f 27T3€ )( qu+m)5( 2 m?)ezqm
a3 _iaz [ L2 cos qozo + isin qoxo 12 isingoxo
= Ym f (27?') € “173( 15 isin qoxo %0 COS qoTo — % isinqoxo) ’

and as commutator Fock form

(W), (1) = (Lo +22)Clmla) = (C + ir"Sy)(m|z) = EXP(imlz)

— [ ' (nk 2 2\ ige
— J 4 (g + m)S(g? — mP)ei
= mf d3q _o—iqE i sin gowo + 1L cos goo 12 cosqozo
0 qo(2m)3 12 cosqomo 90§ sin gowo — L cosqoxo)

In contrast to the on-shell compact representation matrix elements of the em-
bedded time translations and Euclidean group:

(([il\'p\l\'l;} > = ’YOI (dqo ( ) ﬁ(q(Q) . mz)eiqoxo

_ gsin|qlr— qrcos qlr # sin |g|r
sm qlr .sin |g]r—|q|rcos|qlr & |
(m QO) ‘ dl 1z ? i ‘7,2 ‘ ;c

S

with the time projections
Jdr 0{@ W) =1 (G ),

J ([ 8), (1) =1y (e ),

there are off-shell contributions in the time-ordered anticommutator with
Yukawa potential and force

o) (T W) =& [ b e

2m)3 —q3 2 +m?

f dqo ZWO[ 19( 5 m2) w: i(erqo)&r\‘ﬂle
,YO ( C]Q l(m_‘rqo)cosiq\r 1o _cos|§’|r+:\2q\sm|qh%'
1+QIr & : _
2 2 e i(mtgo)l2 ) e 1@
_’_/19 m* — ) r T . s
( qO) i(m + qo)12 _1+|TQ\T% r ’

with the position projection

— imlo 14mr & e—mr
J droe(ao) ({2, W} (@), = (a2 207 )



4.8. MASSIVE SPIN—% MAJORANA PARTICLE FIELDS 117

The Feynman propagator reads

(¥.9](2) - c(o0) (T 9)(@)), = EXP(im|z) - c(xy)exp(im|r)
= L[Clm|z) — e(xo)is(mz)] +*[iS(mx) — e(zo)ei(m])

k9 Fgptm i
= (14 +U)E( im|r) = ff( A el
e | 9(gd — m?) LY 4 gt s
D i(m+qo)ly —=ddr ez T
1+1QIr & i(m+qo)la ) e~IQIr
—H?( qO)(z(m+q0)12 —;HQ“@) T :|

. - . . 14490
Its time projection comes with the projectors =57,

J (W, W](2) — e(w0) (¥, W} (2), = (M52 0(x0) + 2570 (—ag) e 0],

(Classical Lagrangian densities for anticommuting Grassmann vectors are

L(r,1) =irgp0"r* + ilopd* 1 — m(rl* + 1Ir*),
L(¥) =iUy0" — mPW,

With their decomposability into Weyl representations, Dirac particle fields
have an additional U(1) degree of freedom, which can be used for internal
operations, e.g., for electromagnetic U(1)-transformations. For more inter-

nal degrees of freedom, o = 1,2..., one has only to write more indices,
1A pAa 1% ry, and ¥ ¥,

4.8 Massive Spin-% Majorana Particle Fields

Majorana particles are massive and have fixgroup SU(2) for spin. So far no
Majorana particles have been found. Neutrinos, if massive, are discussed as
possible candidates.

Since the dual Lorentz group representations acting on the irreducible Weyl
spinors r and I% in a Dirac field are equivalent via the bilinear spinor metric

A€ SL(C?) 1 €apABeP = (A1, eap = —e€pa,

one can consider the case in which the four Weyl fields (r,1*; 1, r*) involve only
one irreducible right- and left-handed Weyl representation: (r, 1)

r(z)* = ie?B1*(z) 5, r*(z); = —il(z)Bey .

Hence one parametrizes massive Majorana fields:

3 ] —iqx; ~ o—
"y ) = m Of 2Pl (@) + e e Pa(q)s] 5 LS,
) 3 i . —iqz =
T_0 g @i =vm O g [—eru(@)Piesc + e (@] s(2)S,

e = +1 with ¢g = /m? + ¢°.
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Spacetime translations R* and spin SU(2) are represented in U(2) for the
momentum operators and as a subgroup of U(1,) o SL(C?) for the relativistic
fields

R* x SU(2) — U(2) C U(1,) o SL(C?).

Majorana particles involve the spinor metric as seen in the time projection

. im0 C —imzg; CBy 0
v [ &z r(z)t = SO A T 08 o

Particles and antiparticles from the Dirac fields now come in the two spin
components
at = —ie"Bipou’ = (0?)AuC.

Therefore the U(1)-degree of freedom U(1); = SO(2) C SU(2) cannot be used
as an additional charge group since it operates as spin subgroup. Particles
coincide with antiparticles. With the left-right field identification the particle-
antiparticle group U(12)3 € SU(2,2), nontrivial for Dirac fields, is trivially
represented for Majorana fields.

If one keeps the Dirac field ¥ language for Majorana fields, the identities
above between left- and right-handed fields lead to

B r r

U= (r,]) (x4 i B, W= (t) = (iEAfrB) = Uy, ¥ = 0.

The only SL(C?)-invariant Lagrangian density reads

L(r) = ir6y0"r* — im(eparr? — rryei4)

4.9 Spacetime Reflections of Spinor Fields

The spacetime reflection of a field ¥ combines the reflection R on the spacetime
translations with the reflection Ry represented on the complex value space V:

RY — R*
v l J@ U(z) & Ry U(R.2).
vV — V
Ry

Therefore the T, P, C-reflections of time and position translations and particle-
antiparticle (chapter “Lorentz Symmetry”) are given for Weyl fields as follows:

antilinear),

(
linear)
l,I‘ x ,f o ( ’

(1,r) (o, 7) ToP —x0,—Z) (antilinear),
T, T) (linear).
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From the reflections of the fundamental Weyl spinor fields one can derive
the reflections for fields with product Lorents group representations.
For left- and right-handed massive particle fermion fields

r(@)! = Vin #f g [ezqwu@%e war(@)) e 0,
o = VAT iy [ - eag] 03,
(o)a = v Of ks [ @+ valic A,
F(a)a =vm ®f gohs 7w (@e - éa(@)c] 795,

the reflections are effected with the boost reflections 5(—

q) = —B(@) by the

reflections of the momentum- and spin-direction-dependent (anti)particle cre-
ation and annihilation operators

— 0Oy, —aa) (=),
€€ —— () (-9),
CEADD N 2 ey g (@)

<—£—> eCA(aA,—uj‘) (q_j

State space vectors |z;q, A), e.g., for electron-positron with charge numbers
z = F1 and third spin component A = :I:%, have the reflection behavior

g+l & (414 +L
clecron (@0 % | g2y, | TUETE Y T
i & 78 14, 2 A ; —¢q, 5/
positron: a(q)12/0) = |+ 1;¢ F %>, F z 2) F _’q £2
| =1, £5) < £[+La=£g).

4.10 Representation Currents

With the embedding of time into spacetime translations, Lie algebras, acting on
relativistic particle fields, come as position integrals over currents. Relativistic
currents involve dual pairs of quantum fields.

4.10.1 Internal Lie Algebra

The representations of a real internal Lie algebra, e.g., L = log U(N),

(D), D

come in a quantum algebra for the complex C'*2/ @ C"-quartets with internal
degrees of freedom {uﬁ,ug,ag,a*ﬁ }gzl as twofold decomposable representa-
tions

()] = eD(I°), 1€ Lelag,, abe=1,...,d,

(17 15)+[r7 rf]
o — e pyapliuslo—lagatloc g ) —F5—, e=+1,
D(l*) =iQ" =D ?B/ — =D g { {X"’,ip?@}+{—ipﬂxg} e— 1
2 ’ - :

They involve the quantization opposite commutators |, |_.
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In the case of relativistic particle quantum fields the quantum represen-
tations with the corresponding expressions in the momentum operators are
integrated directly over the energy—momentum hyperboloid:

1) = _ B (D)7, u* (D s]l-—[a(@) 2" (7)) <
EBI 2q0 2#)3 Q q) ®f 2qo(271' 'Y s 2 .

The adjoint action reads

[D(),u(q)’] = Du(g),  [D(),w"(@),] = =D (q)s,
[D@%),a(9),] = —Da(@)s, [D(7),2"(9)°] = Dha*(q)".

Duality for relativistic fields is expressed by the Lorentz vector quantization
distribution for equal time ¢ (Z|m) = 026(Z) (for Weyl and Dirac fields without
external indices):

scalar: [i®f,,®°)(7) = [i®],®*](Z) = 67606(),
vector: [1Gjy, ZP)(Z) = 05620,00006(),

Weyl, right: {1%,1°}(Z) = 000%(Z),

Weyl, left:  {r?,r7}(Z) = 0959 (),

Dirac: v, v(z) = 0370 (%),

Therefore a represented nonabelian Lie algebra D(I%) in terms of relativib—
tic particle fields is embedded via Lorentz vector field currents {J¢};— 0"1'"2d3
The representation consists of position integrals of the time component (tlme
projection):
D(1*) = [z iJ(z).

The currents for an internal Lie algebra representations for particle fields arise
with the Lorentz vector modification from the quantum-mechanical Lie algebra
representations above

5 {971} 5} +{-i®] @5}

D7 5 scalar,

Wi = D“ﬁi{zﬂ Guyp} vector

2 )
Daﬁw 7)(1[3‘1’”7#‘1’13}7 Weyl, Dirac.

The currents for Dirac fields are decomposable into currents for right- and left-
handed Weyl fields. More explicit examples are given in the chapter “Gauge
Interactions.”

Via the equations of motion the fields ®;, ®;, and G;; may be replaced by
first order derivatives of their dual partners ®, ®*, and Z; respectively.

The currents have the adjoint action (analogue for the vector fields)

[1J(Z)g, @(5)°] = 0p0(y — T)D*@(y)",
[iJ( ]m‘I)* 2/)7] = —000(y — D) DU®* (1)),
[1J ( 7(17) | =0y - DD UE(Y),
[13(2)5, ()] = —0(y— D)DUY(y)s.
The Lie bracket on the current level reads

[13()§, i3 (§)5] = 0(& — )eiI ().
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4.10.2 External Lie Algebra

For particle fields the quantization opposite commutators of the momentum
operators implement the Lie algebra of the direct group U x R* with the
fixgroup U € {SU(2),SO(2)} in the Lorentz group for massive and massless
particles. Thus the representations of the Poincaré Lie algebra log SL(C?) X R*
are obtained by the corresponding transmutators.

First the currents for the homogeneous operations: The Lie algebra of the
rotation fixgroup U is represented in the quantum algebras for the complex

quartets,

1€ 1%, ]+ [rC r%

[ B]g[ 3]7 €=+1,

{x%ipp+{-ip° x}} e—_1
2 ’ - ’

log U 5 14— Do blelna®®lc _ pab {

with representations of the Lie algebra of SU(2) or SO(2),

m>0,a=123: D) =20, 6°8, e, ...,

m=0, a=3: D(%) =0, 10%8, €,

For quantum particle fields it is implemented with the direct integral for the
corresponding momentum operator expressions

W@ u*( —[a 2 (@C
logUs 1t &f pl )(g)e = of pla pop i@ @l bldne @,

with obvious adjoint actions on the momentum operators. The induced Lorentz
Lie algebra representations have currents {J}" }., 5 k=0,1,2,3:

EREEt)

log SL(C?) 5 I —— D(1™") = [ d*z iJ(x)§™

The antisymmetric Lorentz Lie algebra currents in terms of the fields

ZI(Lmn lA,'G
iy — )G Q)Jz H}, vector,
o™ 1 oo™ ] [ ¥ eyl Di
5 = 5 , vl, Dirac,
contain the Lorentz Lie algebra representation ™" = —i['ym, Y = (Ugn &Sm)

for Dirac fields with the chiral projections for the Weyl fields and the Minkowski
representation £™" for vector fields.

Now the currents for the spacetime translations: The time translations are
represented by integrating the Hamiltonians for the momentum operators over
the energy-momentum hyperboloid:

w]oetaatle o ) T+ €= +1,
2 - £2pp* 4 g%XX*v € = _1’
[u (d))u*(é)]—e;r[a(q'),a*@]—e.

R>p’— iHy=1im

— @f 2qo(27r)3ZH0( f 2qo(27r ng

The embedding of all four spacetime translations R* acting on relativistic par-
ticle fields requires a Lorentz tensor. Therefore the translation representations
have four currents that constitute the energy-momentum tensor {Ti}z,jzo:

RS p/— D) = O gihyiP(@) = [ d TG,
— 7 W@ (@] -+ [a(q).27(9)] e
P(q")j 7(]] q q 5 q
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The adjoint action gives the energy-momenta as eigenvalues:

[D(p?), u(q)] ifu(@), [DP),w ()] = —igdu (9,
D(p’),a(q)] = ia(q), [DP’),a"(9)] = —ig’a*(q).

4.10.3 Gauge Construction of Currents

Instead of by applying transmutators, the explicit expression of energy-mo-
mentum tensors for classical relativistic fields will be obtained by a variational
method that is applicable for any Lie algebra, internal or external.

The Lie algebra log G elements, implemented for fields, are position inte-
grals (time projections) of spacetime-dependent currents. A direct construc-
tion of the currents in a classical framework replaces the one global group
transformations by a spacetime-dependent one, i.e., a transformation for each
translation. For example, a unitary internal transformation group for the mo-
mentum operators acts spacetime dependently on the fields:

U=e"eUN), v=r,D(1%,
& — U, 0 [0 +IMU)@U,

Because of the translation-dependence the field derivatives are changed by a
pure gauge (chapters “Spin, Rotations. and Position” and “Gauge Interac-
tions”):

O s Ok £ IMU), 1MU) = (FU)U* = —UFU* = idFny + - -+
(0% — IF(U)]U = 0.

This defines a translation dependent transformation  —— U,(z) of the Lie
algebra, i.e., one obtains a Lie algebra {/*(U(z))} for each translation

I s 1E(U) = (U, (U.)E = i0+ - |
[F(U), 15(U)] = O (U) — PIFU), 1F(1y) = dk1e.

To obtain the currents, one starts from a group G-invariant action [d*z L(z)
with the Lagrangian in terms of relativistic fields, kinetic term and a potential
assumed without spacetime derivatives, e.g.,

(0,@)(0"®*) — m*®@®* —V(®),
L _ ) SN (0Z) + mHEE ~V(Z),

irgROF ™ + ilop 01 — m(rl* + 1Ir*)  —V(r,1),

iUy, 0" — mPW —V(0).

By translation-dependent transformations, the kinetic terms of the U(N)-
invariant Lagrangians are changed, for three examples from above

[0k® + ®1,(U)][0F — IF(U)|®* — m*®P* — V(®),
irs[0F — IF(U)]r* + iloy,[0F — IF(U)|1*

—m(rl* + Ir*) — V(r,1),
W, [0F — IF(U)|T — mOT — V(D)

L— L(l(U)) =
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The classical current is the variation of the Lagrangian with respect to the
spacetime orientation of the Lie algebra at U, = 0:

i®D(1)0,.®* — i(0,®)D(1*)®*,
= I‘@'kD(la)I'* + lO'kD(la)l*
=0 v, D(1)W.

L))

ka—Zd( GA);

The currents for the Lorentz Lie algebra can be derived analogously.

To obtain, with this method, the energy-momentum tensor for the trans-
lation generators p/ —— ©f a0 QW)gzP (@) = [z iT(x)}, one starts from
the transformation of the spacetime fields which is eﬁected by translation-
dependent spacetime derivatives and 1-forms, expressed by a tetrad h & hﬁ
and its inverse h™' = ht:

R* 3 0% — hE(z)o", R* 3 day — b (x)dx,.

Since derivatives are affected, a first order formalism is used:

noro me e e
L(0%) = JIEkmakZm _Q_G%Gﬂ + mz% V(Z),

Zrakak r* +ilogd T —m(rl + Ir) —V(r,1),

iUy, OF U R

The local translation transformation is nontrivial not only for the Lagrangian
density but also for the integration measure

d*z L(9") — det h~'d'z L(R}0").

The energy-momentum tensor is the variation with respect to the tetrad at
the trivial transformation hfj = (513:

<I>k6“<I>
1 m
p _ 0 deth~'L(h.0") _ sk gGﬂekm(‘?“Z
Tk 0 hﬁ h=14 5“L(8) + ira;ﬁ“rf—l— zlak(?“l*,

9 deth=1 — gk
Ohi p—y, '
The Lagrangian density is determined up to spacetime derivatives. The

translation behavior can be generated by different energy-momentum tensors.
The construction uses only the linear dependence in the tetrad.

Analogous to such a construction of the relativistic energy-momentum ten-
sor is the following construction of the Hamiltonian in mechanics (without
explicit time-dependence):

The measure transformation gives the scalar term

L(d,) = pdix — H(x,p), e.g., H(x,p) = & + V(x),

£ h(t )dt = dt L(d;) —  h~"dt L(hd,)
i — h=i(t)dt = dt [pdx — h'H(x,p)],
P = ~L(d) + pdix = H(x, p).
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4.11 Relativistic Scattering

For a relativistic description of scattering phenomena (chapter “The Kepler
Factor”) the scalar products in the scattering matrix and the projectors for
particles have to be considered with their momentum-dependence. This kine-
matic part for the Hilbert space of free particles, considered in the following,
has to be used together with matrix elements of interactions, usually taken
from Lagrangians, e.g., for gauge interactions. The perturbative Dyson ex-
pansion for the scattering matrix is treated in many textbooks.

4.11.1 Stable Particle Hilbert Spaces

The momentum operators u(m?,¢) = u(q), etc. for a stable particle build a
direct integral Hilbert space L?(Y3) ® C'*2/ with the Lorentz-invariant non-
renormalizable positive measure of the energy-momentum hyperboloid Y3 (m?):

4 h
J #50(¢0)0(¢* —m?) = [ dPy(L),
g 3 2 20.)
Iy() = (27?)3q2E = ((12:315213’ E= \/’”ﬂi‘f'ff2

One has the distributive orthogonality and completeness with the correspond-
ing projector (all direct sums are orthogonal direct):

M da) = 16a) = (d)|0), u*()[0) =0,
(u *(ﬁb) (@a))e = (Pblda) = :,,nb?E o),
Py (L) (a = P(m?) =P(m?) o P(m?) on L*(V¥) = H(m?);

{|q) | 7 € R*} are not Hilbert space vectors, they constitute a measure-related
distributive basis. The Hilbert space consists of d° y(L ) square integrable mo-
mentum functions (wave packets). Additional spin and chargelike quantum
numbers for compact groups with finite-dimensional irreducible representation
are left out for simplicity. They can be easily included.

From the quantum algebras for Fermi and Bose there arise the distributive
basis for multiparticles, possibly also different particles:

<ﬁma ce 725'1’(713 vy (Tn = nmz (_1>Slgm2E15(m2’%) T 2En5( ;:W)

permutations

For Fermi, sign 7 is the signature of the permutation; for Bose, one has to take
(_1)sign ™ _ _|_1

The product space gives rise to relativistic phase space integrals as convo-
lution products of the particle measures (chapter “Spectrum of Spacetime”)

f (dQﬂ(_Ia f (C;T:])c?) _ mi)&(Ql"t‘"‘;rQVI,_Q)’
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e.g., for two particles with the threshold factor A,

4 4
(1 12)(Q) = [ L0 5<q%—m2>5<w>ﬁ<q2>6<q2 m3)
A(Q2,m3,m3)
Q@ — m) GG,
S g1+ q2)7,
Alsiz;m?,m3) = (s12 = m2)(s12 —m2), { 2 n;ii)mz,

Ala,b,c) =a?+ b+ — ab+ac—|—bc

computable in a rest system @ = (M, 0):

2d 2 1 _
(,Ul * /LQ = fO 473E1(115725 E1 + Fy — M) = 447”%1,32 d(E1d+E2) = = 4%\4
= lg=
(5(E1+E2_M) :0 } :>q2: A(MQ,mf,m%) 9

Eig=/¢*+mi, AN —

with

E E d(E1 +E2)
dq

=q(E1 + E»)

= qs M.

q9=9s 9=9s

4.11.2 Scattering Scalar Products

The scattering operator S = 1 — 27T (chapter “The Kepler Factor”) with the
transition operator 7' is the double limit of the evolution operator involving a
free and an interaction Lagrangian (Hamiltonian) L = L% + Lt

Sty t;) = eiL0t o —iL(t;—t:) il t;

A perturbative Dyson expansion of the interaction with the free time develop-
ment uses the time-ordered exponential of the interaction

S= lim Te W MO 1 9mT = 14 2mi fdt IM(1) +

tity—Foo
. 04 s 1o
Llnt(t) — ezL tLlnte L t.

For nontrivial position, Lagrangian densities are used with limits for interaction
time 7 and interaction volume V = R3:

5= lm Te @ @) — 1 _ 9miT = 1 + 2ni [ d*z L™ (z) +

Scattering matrix elements are transition amplitudes from inital to final
state vectors. Their absolute squares for normalized vectors (i|i) = 1 = (f|f)
give transition probabilities

Pi—lp =Rt = wPly oSt o Py oS, Py =i,
(f1S[2) = {fli) — 2im (f|T1i), ' |
[{FISID1 = [(F10)* =27 Re[GS)(FIT10)] + (2m)*[(FIT 1)
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For orthogonal vectors (f|i) = 0 there remain only the transition matrix ele-
ments. With several final vectors, one obtains the probability with the projec-
tor to the corresponding Hilbert subspace:

final subspace Pjpy = |F)(F| = Z\fa )OSyl 3 (fal fo) = Cavs

a,b=1
n

(il5* o Pipy 0 SJi) = [(FISIDP = Y S | fu)(CT)*{folSTe),

a,b=1

especially simple for orthogonal vectors (f,|fs) = 0ap, €.g., for stable particles.

4.11.3 Momentum Scalar Products

The momentum wave packet Hilbert spaces H(m?) are based on the momen-
tum “eigenvectors” (not Hilbert vectors)

Q) =Gy, @), du(@) = d3y(%) "'dBY(%).

The S-operator has a sesquilinear decomposition with its continuously indexed
momentum scalar products (matrix elements)

S = du(P)dp(Q) |Q)(Q|S|P)(P|
with the product projectors

°fdu(Q)IQ) g@ (mf,...,m3).

For identical particles, Bose or Fermi structures have to be taken into account.
Nontrivial spin has to be summed over as well.

The analogous subspace projectors have to be used for probabilities, e.g.,
for a transition from an initial Hilbert space to a final Hilbert space, both with
all possible momenta:

[(MZ,...,M2|S|m3, ..., m2)|* = [ du(P)du(Q)(P|S|@)(Q|S*| P)

d®p1-+d3pm d3q1-d3qm - - > .
= f @ 3w1211)51 D) sz(pm) f (2w)3n2(§(51)~?215(5n) [Py, - Pl S| - Qn>|2-
Thus one can pick probabilities for different experimental setups, e.g., for an
initial “vector” with definite momenta |P°) = [p?,... p?) (examples below):
[(BY - Pl SIm, 4 md = [du(P) 6(P, P°) du(@Q )<P\5|Q><@|5*|P> B
=/ (27f)3m2El(m)p7;E(ﬁm)5(ﬁ1 — )+ 6B — 55 [ dp(Q)|(P|S|Q)[?

_ 1 d3q1---d3qn, o
= @3B -2E(pY,) f (277)3n2751@1)..q.2E@n) ’<p1, ce ,pm’S|Q1, ey Qn >’

Transition probabilities, computed naively with momentum “eigenvectors”
(not Hilbert vectors), lead to meaningless products of Dirac distributions as
seen already in the trivial term, the scalar product square

(P17) = 2B6(5F), [(AQI® = AE*3(5F) 8(%F).
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This problem does not arise for a correct treatment using Hilbert space vectors
with momentum wave packets. However, it is desirable to have a quantum-
compatible classical point particle language where, e.g., an initial “vector” |p)
with one particle of definite momentum can be used for probabilities. This is
possible by remembering the limits for interaction time and interaction volume:

[Pat=T — [dt, fdeSx_v = [de TV = [d'e,
d4
r —~ /5% ~ o B e

Finite volume normalizations can be introduced to avoid the undefined prod-
ucts of distributions:

5(%) [ dt e”?t, 5(%) = [ &Pz e
SaE) =) [tz o Bt

An energy-momenta diagonality of the S-operator can be made explicit by
extracting a corresponding Dirac distribution

(QIS|P) = (QIP) — 2im(Q|T|P) = (G| P) + &(

e.g., for a constant transition element

(o))

21(Q|T|P) = T° [ d*z &' P~@% = §(£=9)T0.

2

The related probabibility involves the limit of the interaction range, e.g., for
orthogonal initial and final vectors:

(fliy =0: [QISIP)I? = B(FAPITHQ)? = TV §(5

)| THQ)P

4.11.4 Mean Lifetimes and Cross Sections

In the following examples, the transition probability from an initial “vector”
|Das - - - Db) With particles of definite momenta to a final “vector” [m?,...,m?2)
with particles of any momenta is needed:

[(Fas s BT I, . om2) 2 = TV [dp(Q) §(2F52=Q) T2, (Q)[

It is computed with the classical normalization, where a finite interaction vol-
ume V is used for the initial “vector”

@f \/ﬁ’@(ﬂ_)\/t 1p) (P,

’pa,"'apb><pa7"'7pb| m

Such a transition probability occurs in the partial width for the decay of a

particle at rest p = (M, 0) into n partlcles Interaction time and volume drop
TV

out in the combination F9E = W'

Tmz,...,mgl 2 = _ N
Tjyyyy = OTmbemal® — L 1 (@) 8(52)|T0,(0))%, 5= 0.
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The two-particle decay |mf, m3) involves the projector Pjyy = P(mi, m3) and
the product measure with the threshold (relativistic phase space) factor, com-
puted above,

T 8rM3

/A(M2,m?2 m32)
F|M>—>|ml-4'mQ> = ﬁ(M2 ) = ‘T](\]/Im1+m2(0)‘2‘

The total width is the sum over all decay channels P|py.

The flux 4, = % for two incoming classical particles [py, p) contains their
relative velocity vy,. The invariant product of the flux with the energies and
the interaction volume is the square root of the two-particle threshold factor

A:
D2, BV = 2B, Byvay "= 2Eamyva = 2my|pa| = A(Sap, m2,m?).

The transition probability from two initial particles of definite momenta to
final particles of any momenta, divided by interaction time 7" and flux is the
total cross section, with orthogonal vectors (i| f) = 0 and classical two-particle

. . 1
normalization gr—,
otot _ [Papp|T|m3,...;m3)|?
Tr-1n(@Q) =g, .
— pa+pb 2
- / Q2m2m f u’ )‘ abf(Q)’
: TV
with Ta ABiE . —
T@abv 4E.Ey, 2 (QZ mg’mb)

The scattering angle 6.4 for two final particles arises in the relativistic
invariant of the squared energy-momentum difference

tdcd = (g — Qde =mZ +mj + 2(||Gu| cos bea — E.Eq),
1
dtcq |Ge|@al dcosbeq

Hence the differential cross section can be picked from the total one

490 tby—letdy (@ted) _

dteq /A f d,LL - qd)2 - tcd)

X 5(%”1?@(@)?-

4.12 Summary

Relativistic particle quantum fields (canonically quantized fields) are built
with particle and antiparticle creation and annihilation momentum operators
as distributive bases of a direct integral Hilbert space with Lorentz invari-
ant boost (momentum) measure. The infinite-dimensional Hilbert representa-
tions of the Poincaré group SL(C?) X R* are induced by compact representa-
tions of the particle group (direct product of spacetime translations and spin)
R* x SU(2) — U(1 + 2J) for mass m > 0. Transmutators relate the fields,
acted on by finite-dimensional representations of the Lorentz group, to the
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creation and annihilation momentum operators, acted on by the spin group.
The quantization (duality) comes in a Lorentz vector.

The Feynman particle propagator connects, via +io in m, the causal
order with the creation-annihilation order. The propagator contains the Fock
form on-shell functions from 6(¢* — m?) (positive kinetic energy real particles
with induced representations of the Poincaré group) and the €(z()-multiplied
quantization distributions from ql%_%mQ (also off-shell, “virtual particles,” not
Hilbert representations of the Poincaré group), which embeds Yukawa interac-
tions.

Representations of Lie algebras for internal groups and for the external
Poincaré group, induced by representations of the “little” Lie algebras act-
ing on the momentum operators, are position integrals (time projection) of
currents that are constructed with the quantization opposite commutators.

The momentum operators for particles and antiparticles define a momen-
tum dependent algebra via tensor products like u(q) ®a(p) with the momentum
distributed structures of a quantum algebra.

quantization [u* (P)a, u(q)®]e —5b2q05 ) [a*(P)°, a(@)ale

Fock form | ([u*(9)a, u(@)®]—e)p = 822g0(

TF) = ([a*(7)°, a(@a) )

momentum operators

mass m > 0, name
spin J or Bose 0;" field with go = \/m? + §2
circularity £2j3, Fermi and Feynman propagator
charge z
— 3 —_
/=0 scalar o(x) = Y 35k v [€9” @+e a2 (q)]
- _ 42
2=0 e=-1 (8,8} — c(20)[®, @)y (1) = £ [ oy 2 eir
J=1 vector Z(z f 2q0(21r)3 "/A(%)g [eiqmu(@a + e’muz(@]
— Pk
e=—1 4 W2(,n]k+<1’”q )
=0 ({27,2%} — e(20)[27, ZF)),, zJ (g,,()ls qu_m"ézem
J=1 ) W(z) = r(z)?\ _ _ e _d VmET () [T (@) + et ara ()]
B B 1(2)4 ey f SUE 8 oma(e om0
= - Jq )
z==+1 (@, 9] — e(z0){¥, ¥})p(x) = L [ <§W§’s ;ﬁo ™ el
J=13
2 3 ) .
~, Majo:z_m;la r(a)t = O 505y VmdT (DA [ETu(@)C + e i P () p]
Zz = € =

massive particle quantum fields
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5]

MASSLESS QUANTUM
FIELDS

Massless particle use, for their irreducible Hilbert representation of the Poincaré
group, spacetime decompositions into time and position translations with one
distinguished rotational axis. The position axis is fixed by the momentum
direction of the never-resting particle and determined up to axial rotations
SO(2) whose representations determine the circularity (helicity, polarization)
of the particle. Axial rotations act on particle pairs with opposite circularity
+2J € Z. Strictly speaking, massless particles have no SU(2)-spin; they have
SO(2)-polarization or helicity.

An axial rotation fixgroup SO(2) in a noncompact Euclidean fixgroup
with two boosts SO(2) x R? C SOq(1,3) gives additional structures com-
pared with the massive case and a rotation fixgroup in the Lorentz group
SO(3) C SOy(1,3): With the embedding of particles with axial rotation
SO(2) properties into quantum fields with finite-dimensional Lorentz group
representations, there can arise translation representations not only in the
probability group U(1), but also in the noncompact group U(1,1) (indefinite
metric). Massless quantum particle fields can have degrees of freedom with-
out probabilistic particle interpretation, i.e., without state vectors in a Hilbert
space. Nonparticle degrees of freedom in relativistic fields describe genuine in-
teractions, e.g., the Coulomb interaction, which comes in addition to the two
photons in the four components of an electromagnetic vector field.

The spacetime translation development of a mass-zero vector field involves
eigenvectors (particles) and lightcone-related nilvectors. The eigenvector prop-
erty is expressible by a trivial action of the nil-Hamiltonian, which in a quan-
tum theory is equivalent to a trivial action of the nilquadratic Becchi-Rouet-
Stora charge, constructed with the probability interpretation securing Fermi
Fadeev-Popov scalar fields. The classical limit of the BRS-transformation gives
Lie algebra transformations with spacetime-dependent parameters, which re-
place the Fadeev-Popov fields and are familiar as “gauge transformations.”
The translation eigenvectors with trivial BRS-charge are “gauge invariant.”

After a review of indefinite unitary time translations as implemented
in quantum algebras and the definition of a Hilbert space for translation

131
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eigenvectors, the relativistic embedding of massless particles is given with def-
inite and indefinite metric degrees of freedom in their quantum fields.

5.1 Noncompact Time Representations
in Quantum Algebras

The nondecomposable complex 2-dimensional time representations with in-
variant energy (frequency) m and basis-dependent nilconstant v on a com-
plex 2-dimensional vector space are in the noncompact group U(1,1) (chapter
“Time Representations”). They are faithful:

RSt emt (g) Z‘qt> - (; ”c{%)eimt € U(1,1) C GL(C?),
m,v €R, v #£D0.
Dual bases of the representation spaces
bge VC?x2VT 3 g* b

4
dt’

dt(g):i(? ;)@) dt(gx,bx):—z‘(gX,bX)(g ;)7
()0 =em (2 %Y (E), @b - @ be(h ),

Only g and g* are time development eigenvectors, the letters {g, g, G,~} stand
for “good” (eigenvectors) and {b, b, B, 3} for “bad” (nilvectors).

For trivial nilconstant v = 0 there remain two U(1)-representations, which
are compatible with U(1, 1)-conjugation x and U(1)-conjugation x:

. (b,g) = (au),
V:O.{ (b 5

have the equations of motion, with d; = £, and time orbits

><7g><) = (ax’ux) = (u*va*)'

The notation {b, g} will also be used for v = 0 with U(1, 1)-conjugation.
A U(1,1)-symmetric basisof V=V @& VT >=C*

X

_ b4bX __ b—bX _ gte _ g-¢g
b+_ V2 b*_iga g+ = V2 g__iQ’

is acted on by a real time representation
dt(ng?g*abJrvb*) = (g+,g,,b+,b,)h1(m, V)7

0 m 0 v

o -m 0| —v 0 _(m v 0 1

hi(m,v) = 0 0] 0 m —<o m ®(—1 0)
0 0 0
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with noncompact spiraling orbits in SOg(2, 2):
(ng’ & b+’ b*)(t) = (g+> g b+7 b*)ehl(m’y)tv

cosmt sinmt
et (mv)t —sinmt cosmt

—vtsinmt  vtcosmt
. d
—vtcosmt —vtsinmt _ ((1) V‘?”) ® eho(m)t,

0 0 cos mt sin mt
0 0 —sinmt cos mt
_ b®)+bX(t) _ (btivtg)e™i4(bX —ivtgX)e~imt
eg, bi(t) ===5—= el

= b, cosmt — b_sinmt — v(g,tsinmt + g_t cosmt).

h1(0,v)t

Only for m = 0 is the real time representation e decomposable:

di(~g-by) = (~g-b)({ ©).

" v = eebo() )

The characteristic nontrivial (anti-) commutators in the quantum algebra
for Fermi € = +1 and Bose ¢ = —1 are

in Qe((c4) : [bxag}ﬁ =1= [gx7b]e-
The noncompact Hamiltonian

]{1 — H1>< — m[g,bx]—e;[b,gx]—e + I/[g7g;<]7€7 % — Zad Hl

leads to the time representation as time-dependent quantization
[g%,ble [b*,b]c (1 vEN\ imt _ (1 vt im
<[gx,g]e [bx,g]f>(t) - (o 1 )em - (0 1 )6Z "

Both for the Fermi and the Bose cases dual normalization factors o,p > 0
are possible in a U(1, 1)-symmetric formulation:

B, =22 B_ = pbb
Fermi : { " V2, P v ={B;,G;}=1={B_,G_},

G+:%g—\~_/g§ ) G*:%gi_\}g;7
B, =oXb B_=pb . ‘
Bose : {G B lg}r/gix G - lgﬁgx = [—iB_,G;]=1=[-iG_,B,].
+ 7 0 V2 - T 7 iV

To obtain the time-dependent quantization as derivation of an irreducible re-
presentation also in the symmetric formulation, the dual normalization factors

have to be trivial for the Fermi case:
{B_,B_} {B4,B_}
{B_,B+} {B4+,B4} )(t)

{vaB*} {G+aB*}

{G_.B+} {G4.By}
{B*7G*} {B‘F?G*}
{B-,G+} {B4+,Gy}

{G,7G,} {GJrvG*}
{G-,G4+} {G1,Gy}

cos mt L sinmt | —vp?tsinmt vopt cosmt
e=+1: —% sinmt  cosmit ‘ —voptcosmt —vo?tsinmt
= 0 0 ‘ cosmt 2 sinmt
0 0 — £ sinmt cos mt

1 vt cosmt sinmt 1
e dm = = =
(0 " ) (7 sinmt cos mt) for o o L.



134 5. MASSLESS QUANTUM FIELDS

For the Bose parametrization one nontrivial normalization factor is possible:

( [-iG_,By] [G4,By] | [-iB_,By] [By,By]

G B_] [Gy,iB_]| [B.,B] [By,iB ] (t)

G-, G4 [G4,Gy] ‘ [<B_,G4] [B4,Gy]
[G-,G-] (G+,iG_]

[B—!G—] [B+7iG—]

cos mt iZsinmt | —voptsinmt  ivo>tcosmt
e=—1: . ig sinmt Zos mt ivp?tcosmt  —voptsinmt
- 0 0 ‘ cosmt i% sin mt
0 0 i2 sinmt cosmt
o (1 y%) < posmt 02 sinmt) fOI' o — 1 _ é > 0
—\o 1 7z sinmt cosmt T p ’

In the following, the different dual structures for Bose and Fermi are looked
at in more detail.

5.1.1 The Bose Case

A doubled position-momentum notation for the x-symmetric vectors in the
Bose case,

% — b 1bbX _ _
e:—lz{ 2 il\/ix = [ip,x] = 1 = —[ip, %],
‘

S

I):Eg—"_g>< p:

)

S

gives the Hamiltonian

H{p.p}+£2{p,p}
+ vt 1

1 o 2 [
_ piex e {px}
H =m 5

and the equations of motion

{ dix = F(mx+vp),  dip = —ml?p,
dix = —*(mx+vp), dip = Bp
(A + m?)x = —2mwp, (d? +m*)p =0,
(d? + m?)x = —2mup, (2 +m*)p=0
= (d? +m?*)>2(x,p,%,p) = 0.

=

They can be derived from a classical Lagrangian
oo =) - Lo P2 v(1l.2 | p2x2
Lp(x,%,p,D) = pdix — pdiX — m(zpX + £7px) — 5(zp° + £°p?).

The time-dependent quantization reads

[=ip,%x] [P, | [-ix,%X] [x,¥] cosmt £2%isinmt —vtsinmt vl?it cos mt
P, x| [ip, x] [x,x] [ix, x] £ — 7z sinmt cos mt fstcosmt  —vtsinmit

e LOR B 0 st Fismmt
D, P [ip, D] ‘ [x, Pl [ix, p] 0 0 IZ% sinmt cosmt

The Bose parametrization for m = 0 is decomposable into two real 2-dimen-
sional nondecomposable representations with the dual pairs (x,p) and (X, —p),
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reflecting the dynamics of two free mass points:

NONCOMPACT TIME REPRESENTATIONS

. . .. %2 th = L, dtp = 07
LB(X,X;I%p) = pdix — pd;X — (% W)7 { dk = fﬁ dip = 0,
with ﬁ =, ﬁ = vl?,

b | [p.x] x| [ 1|0 0|47
B.x] [ lip,x] [ [ [%x] (t) = 01 37| 0
[=ib,p] | [pp]  [—ix,p] | [Xp] 0j0 1] 0
b,0] | lip,p] [0l | [% D] 0oj[o0 o0 [ 1
5.1.2 The Fermi Case
For the Fermi case the x-symmetric vectors
B = b+b><7 /8 = b'_bX7 3 ~
T { T DT s By =1= {84,
v=8%, 7=8%
are acted on by the Hamiltonian
H, = zmw + iu@.
The equations of motion
dt,}/ = _m’77

i = —(mp+v3), diy =my

(df +m?)B = —2mvy, (di +m®)7 =0,

(df +m®)B = —2mvy, (di +m?)y =0
: (d%+m2)2(57ﬁ777;§/) :07

{ dif3 = mﬁ‘f'l/%
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can be derived from a classical Lagrangian with anticommuting Grassmann

vectors
Lp(B,B,7,%) = ivdi B + i9d, 8 — im(35 + By) — ivy.

The time-dependent anticommutators are

{78y {76} | {88} {ﬂv’ﬁ} cosmt sinmt | —vtsinmt vt cosmt
{;%B} {%B} {ﬂ,ﬁ} {B,B} (t) . —sinmt cosmt | —vtcosmt —vtsinmt
9 {9} ‘ 8,7 {84} - 0 0 ‘ cosmit sinmi
{%7r {89 {87} 0 0 —sinmt cosmt

The Fermi parametrization with dual pairs (v, 3) and (5, 8) is never de-
composable; it needs always four symmetric operators, also for the massless

case m = 0:

dt@ =ry, dt’Y = 07
dtﬁ - —V’77 dﬂ’ - 07

1 0 0 vt

0O 1|—-vt O

0 0 1 0 :
0 0 0 1

LF(ﬁvﬁvaq/?’?) = l/ydtB + Z’?dtﬂ — l'l/’j/’}/7 {

.6}y {v.By | 8,8y {88}
9.6 {08} | {8,8} {6,6} (t) =
{79y {vyr | 8.9 8.9}
7y v | 8.3 {62}




136 5. MASSLESS QUANTUM FIELDS

5.2 Indefinite Metric in Quantum Algebras

The construction of Hilbert spaces from quantum algebras Q.(C*) with indef-
inite unitary time representations R — U(1,1) is not so obvious. A product
Fock space for Q.(C*) with U(1, 1)-conjugation

FOCK,(C?) = FOCK, (C) @ FOCK,(C) = Q.(C)/Q.(CY)(b* + ¢¥)

with the left ideal Q.(C*)(b* + g*) = Q.(C*)b* + Q.(C*)g* carries, induced
by the U(1, 1)-conjugation, an indefinite sesquilinear form

(blg)e = (b*g)p =1, (blb), =0 -
<g|§>p = <gx§>p =1, {glg), =0 } = (g £ blg £ b), = +2.

This prevents a probability interpretation for the full quantum algebra.
To find a probability interpretation also for a noncompact time development
with the time translation representation

Hy = mPEectlEbTloe 4 yoox — ] 4N,

a crucial difference between the Bose and the Fermi quantum algebras has to
be taken into account. The quantum nil-Hamiltonian N whose trivial adjoint
action characterizes time translation eigenvectors

N:ggx [Nag]:()» [Nab]#ov [Nle}:O
is nilquadratic for the Fermi case as well with the quantum algebra product
in Fermi Q,(C"): N? =0 since {g,g} = 2g® = 0.

This is not the case in the Bose quantum algebra, which has no nontrivial zero
divisors, i.e., ab=0=a =0 or b =0,

in Bose Q_(C%): N2 #£0.

5.2.1 The Bose Case

To obtain a nilquadratic operator, which defines eigenvectors also in the Bose
quantum algebra, the Bose structures are doubled by Fermi structures as done
for quantum gauge fields, which are paired with Fadeev-Popov fields (below).
There arises a twin structure in a Zo-graded quantum algebra with both a
Bose sector (upper case letters {G,B}) and a Fermi sector (lower case letters
{g,b}). There are eight basic degrees of freedom:

8) 4 4 : [GX,B]:]W [BxaG]:]-:
Q+(C%) = Q_(C%) ® Q4 (C%) with { {g¥, b} =1, {b*,g}=1,
Hp = mi{B’GX};{G’BX} + vGG*,

H = Hp + Hp, x x
B+F B F {HF :m%_pyggx.
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By mixing basic Bose and Fermi degrees of freedom, a nilquadratic operator
of Fermi type can be constructed, called Becchi-Rouet-Stora operator:

Nprp =gG* 4+ Gg* = [Hpyp, Ngr| =0, Nip=0.

Its graded adjoint action

[Ngr,a] for a Bose,
ad Npr(a) = { {Npr,a} for a Fermi,

[NBF,G] =0, {NBF,g} =0, [NBF,HBJrF} =0,

defines, by a trivial eigenvalue, the unital subalgebra spanned by the time
translation eigenvectors (time eigenalgebra)

INVy,,.Q+(C¥) = {p € Q+(C®) | ad Npp(p) = 0}.

b
With the doubling and a 4-dimensional basic vector space | 5 | one has
G

the block-diagonal Hamiltonian and the block-skew-diagonal BRS-matrix
v | 0 O
hpir IhB@hF:G; 2):< %17?1(3)7
0] 0 m
0 0]o0
_fo n\ _ [ o0 o]0
”BF_<n 0>_<010 )
0 00
The product Fock space has an indefinite metric both for Fermi and Bose:

FOCK, (C*) = FOCK_(C?) ® FOCK, (C2),
with (G £ B|G £ B), = £2, (g£blgLb), =

o olo 3

o OO =

The subspace with the time translation eigenvectors

contains, up to |1), (the class of the algebra unit 1) with (1|1), = 1, only
normless vectors (ghosts), e.g., (glg), = 0 = (G|G),, i.e., its metric is semi-
definite. The associated Hilbert space C|1), contains only the classes of the
scalars.

5.2.2 The Fermi Case

For the Fermi quantum algebra Q, (C*) = C! the trace-induced irreducible
nonabelian form, compatible with the U(1, 1)-conjugation and the quantiza-
tion, is given by (chapter “Quantum Probability” ):

( (1), =
(bg )y =3tr(y V) =35 () =3tr(y o) =3
on Q(C*): (ge*)y =13tr(y o) =0, (b*), =31t (] §)=0,
(g5 bb%), = 3t (0 0) (7 0) = %
= ({g*, by = ({b*.gh)u =1, (g, b)), = ([b*,g]), =0.
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This form is in analogy to the Killing form for semisimple Lie algebras, which
is trivial for the traceless Lie algebra elements, e.g., tr& = 0, but may be
nontrivial for the “double” trace, e.g., %tr 0%? = §?. The induced sesquilinear
quantum algebra form is indefinite:

Q4 (CY) x Q4(CH) — C, (alb)y = (a*b)y,

(blg)y, = (b*g), =%, (blb), =0, -
<gﬂ§>H = <g*§>H =3 (glg)y =0 } = (g £ blg£b), = +1.

The trivial adjoint action of the nil-Hamiltonian defines the unital time
eigenalgebra spanned by the time translation eigenvectors:

N =gg*, INVyQ,(C') ={a € Q(CY)|[N,a] =0} =CY
basis of INVyQ(C?): {1,g,g*%,I,gg*, bg, g*b*, gl Ig* I*}.

The sesquilinear form restricted to the time eigenalgebra (p;|ps), can be non-
trivial only on the unital subalgebra with the grade-0 elements,

INV; vQ+(C*) = {a € Qu(CY) | [I,a] =0 = [N,a]} = C*,
basis of INV; yQ4(C*) : {1,1,gg*, I*}.

It is semidefinite and nontrivial only on the nontrivial scalars:

pip2 ¢ INV;NQL(CY) = (pip2)y =0,
pip2 € INVNQL(CY) <= pipa=ap- 1+l + aogg” + a3l?, a; €C

= <pi<p2>H = a0<1>H'
The associated Hilbert space is given by the left ideal classes:

INVNQ4(C")/INVNQL(CY (g +g¥)
= {[p)u | Nlp)w =0, (plp)y > 0} = {ao[1), | ap € C} = C.

From the basis of INVyQ 4 (C*) only the algebra unit 1 gives a nontrivial norm
vector |1),,. All the other nine nontrivial time translation eigenvectors in the
given basis are ghosts, e.g., (g*g), = (gg*),, = 0, and orthogonal to 1. As for
the doubled Bose case, the associated Hilbert space C|1), contains only the
classes of the scalars.

5.3 Relativistic Distributions of
Noncompact Time Representations

For relativistic fields, the matrix elements of the noncompact time representa-

tions R 3 ¢ —— ™ <(1) Z'f) € U(1,1) are embedded into Lorentz compatible

distributions of spacetime translations.
As to be expected from the residual representation of the characteristic
noncompact coefficients by energy dipoles,

poimt . f dE 1 iBt 4 _ £ dE__ 2mE __ _iFEt
et = Sir (B=m)2€ tsinmt = ,

i B €
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also the embedded causally supported spacetime distributions with the deriva-
tives of the distributions (c;,s) for massive particles m > 0 (chapter “Massive
Quantum Particle Fields”)

D v&D c is
R 52— Dagu(mle) = (3 %) (mlz), Dimlz) = (5 2)(mle),
involve dipoles, in the form of derived Dirac distributions
is dq [(m iqw
(2 mle) = & [ s () elao)d(m? — g)e
dq (m? — ¢2) — 2m28' (¢ — m?)\ igw
= J i) (" g ey e

They embed the characteristic time representation matrix elements xg sin gy
and x cos goxg with go = \/m? + ¢* (“on shell”):

isin gozo — im2sindozo— 00 €OS 90T
. a3
d3q —
wEt amggsonsdea '
—imq sin goo —goTo COS goTo

90

(2ol = J

The additional position-related 2 x 2 contribution &(m|z) will be discussed in
more detail below.
The time projection by position integration displays the noncompact time
representations
f d3 D m‘x) _ d (5? c.osmzo z;)sinm:m ) _ <7§?z0 sin mzg 1To cos.mzo )

dm \ isinmaxg 6]. cos mzo 1T COS MTO 75?10 sin maxg
0 1
— <Z O)aco for m — 0,

[ &Pz &(m|z) =0

The position projection of the e(xo)-multiplied coeficients (“off shell”) by
time integration leads to Yukawa and exponential potential and force:

d g [—00te Limr im J—.
27 [ dwoe(wo) gz D(mlz) = %( Tim T —geme ttme |55
_ o maa il —mr)) gmmr
i(l—mr)  6%mza r

The generalized functions for the massless case
c;(0lz 0 . _ 0 is(z
D(Ol) = (“§" @), JimEDOmlr) = (W0 ),

s (Of) Siay | vides vis(z)
Dyouwn(0]z) = 0 CJ-sx c;(solg;) 0 ’
0 c;(0]z)

have no dipoles and no derived Dirac distributions ¢'(¢?),

is(x) = lim 202 — 4 ()5 (g?) el = a0l 52

m—0 M (27\')
_f \ﬂ(zﬂ)seﬂq”sinlqﬁlxo, »
cj(0lz) = 9ys(x) = [ ) s i€(q0)0(g?)e"” = 250" (a?)
f 7zqzv \(ﬂcoslzﬂaco>
\@](271' g isin|qlzo ) °
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s(z) is not a @’ derivative of ¢;(0|z). The massless dipole is given by

is T () = lim =) fzf re(0)d (42" = 195 a?)
" 7f 7iqz -sin |qlzo— \zﬂzocos\tﬂzo
Itﬂ |q12

The position projection of the e(xo)—multiplied distributions gives Coulomb
potential and force:

[ &z s(x) =9, 27 [ dxoe(zo)s(z) =1
fdsx CJ(O‘ZL‘) = (Sz, 27de:L‘0€(.l’0>Cj(0’:E) = 5;18 % — _5af§’
[z stP(z) =20

5.4 The Hilbert Spaces for Massless Particles

Hilbert representations of the Poincaré group SL(C?) X R* for trivial transl-
ation-invariant m? = 0 are induced from Hilbert representations of SO(2) x R*.
The energy-momentum fixgroup for trivial mass is the Euclidean group in two
dimensions,

qERY ¢?=0, ¢#0=S0¢(1,3), = SO(2) X R?,
where the “translations” R? originate from the boosts that are orthogonal to
the axial rotations, e.g., rotation 1> acting on boosts b (chapter “Spacetime

as Unitary Operation Classes”). The fixgroup in the fixgroup for a trivial
“homogeneous” translation (boost) is the axial group

0 € R? = SO(2), = SO(2).

The Hilbert space structure of massless particles is similar to that of massive
ones (chapter “Particle Quantum Fields”). The momenta in creation and anni-
hilation operators for massless particles with quantization (anti-)commutator

[0 (D)as u(@)")e = 052|q16(52)
parametrize the forward lightcone V?3:
0+#q=1(q,q) € S0u(1,3)/SO(2) x R? = V3 = D(1) x Q2.

The Lorentz invariant measure of the lightcone

4 0o
f(;lT()Is V(g = [dv() =] 2|q1 Qﬂ)d = 2(217r)3 JdPw [y q dg,

integrates the “little” vector spaces W (q) = C*7t0 = (C, C?) for each momen-
tum either with trivial or nontrivial representation a = 0, +L of the axial ro-
tations SO(2) around the momentum direction with invariant L = 0,1,2,...:

w: Vi — W, w=%[d*(]) u(@)"w(])a €®[d*v(7) W(q),
u(@)* € W(q) =W x {q};
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w is a W-valued spin SO(2)-intertwiner on the Lorentz group SL(C?), or,
equivalently, a W-valued mapping of the energy-momentum lightcone.

The U(1)-scalar product induces the Fock form with the scalar product
distribution on the lightcone

(0 (Pan(@))e = ([0 (D)o, 0(@)]-c)e = 522|410(5E).

The creation operators define a measure-related distributive basis (not Hilbert
space vectors):

0, L; ¢ a) = |G, a) = u(0,L;q)"[0),
(0, La; b, 2|0, L Gy, aq) 25535@@2’@15(%)-
The direct integral gives vectors in the Fock-Hilbert space, which contains the

momentum functions square integrable on the forward lightcone multiplied
with (C', C?) for the helicity components:

10, L w) = d*v(q) u(0, L; §)*w(q)al0) € H(0, L) = L, (V?) ® C*~or0
_ {0, Lojwl0, Lyywn) = 6£;fd3 (@) w2(Q)aw1(7)a
= 07 [ 5% wa@)a?(90)8(%) w1 (d)a-

The distributive completeness allows the sesquilinear decomposition of the unit
operator in the particle Hilbert space H (0, L):

P(0,L) 210, L)(0, L] = €D 5-50(00)0(¢*)lq a) (g, al
= P d*v(q) |7.a)(.al.

P(0,L)oP(0,L) =7P(0,L).

5.5 Massless Scalar Bose Particle Fields

The simplest case of a massless scalar field has trivial representation for the
homogeneous groups. The field has particle degrees of freedom only.
A Hermitian scalar particle quantum field with nontrivial mass m > 0,

B(r) = °f 50 Ale () + e (),
®.8](r) =17 [ Sela0)d(q? — m?)ei

—iqx

A2 d>q
=7 fqo(gﬂ—) ZSIDQO*fO} m2+q2’

leads in the limit
m—0, V¥ —g*> ®—p, @ —

to a Hermitian massless scalar field,

=0 plx) = °f 2\@1 z,r g e (CD+6‘“” ()],

=0 9 —ipp(z) = @f 2\@1(% % e'u(q) — e~ u*(q)],
=-1 with g0 = |q].

mh‘g
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The factor % is part of an axial rotation transmutator from a Lorentz vector

to an SO(2)-scalar. For free fields a normalization with g> = 1 can be used.
The equations of motion and a classical Lagrangian density are

D =g
k Mso kP 9" Pk,
L(p, or) = pu0"p — g* 27, {ak% _ 0,
L(p) = 5(8%¢)?, 0%p =

The massless Bose field constitutes the relativistic distribution of a free non-
relativistic mass point:

2 dix = L) ip, X X, X at
L(X7 p) = pth - gpin { ! é\f ([[II; p]] [)([7 71]})]) (t) = <(1) 1%)7
L(x) = 3(dx)?, d?x =

The commutators of the momentum operators

[0 (), w(@)] = 2|716(5F)

give the field commutators

livk, 0] Lo ol
<[89ka¢’j] [907*1’%)( )

cr(0]x) g?is(z)
( ) ( ) ( %is(z) Cj(0|1)>
— [ 22 (@)l e
2 —ic 2
with (q) = (qi@ (91.)7 (—i0) = <76'i@kﬂ j‘a-)'
g j 92 J

Their time projection is a noncompact time representation, the position pro-
jection leads to the Coulomb potential and force

. c(0]z) g%is(z) 50 25z
fd%( ik is(x) cj(o|z)) = <6“ ga;?())a

c,(0|z) g2is(z) —or s ig? 1
2m [ droe xO)( 2hisa) 0l)) = \ Goparimnstart  _pm |5

Massless scalar Bose fields have an interpretation with a U(1)-time devel-
opment of creation and annihilation operators with a Euclidean conjugation

R* — U(1), u & u*

However, the time projection [ d*z ¢(x) of the relativistic massless field is not
defined.

The U(1)-induced Fock value of the anticommutators
(@ (P)u(@)e = {0 (@), w(@D})r = 21716(57)
leads for the fields to

({iok ol o oD (. _ ( Ss0)  ¢°Cla)
<<m,w}>F <{w,—wj}>F)(fE) = (-0 CW)‘(—%C(@ z‘sj<0|x>)
4 .
= [ s (@)d(g®)er,
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which contains the scalar cosine in the limit:

: x 4 iqr
Cle) = lim S = [ 570(a%)e™ = 5z

The time projection of the Fock values is infinite:

R s CcoszTom 1Sy (0lz) 9*Clz)
[ dzC(x) = lim <20 [ g (6 8ic (x) S, (0|z)>

m—0

Il
VoS
=]
° 8
\-_/

The Feynman propagator reads

{0} @) — elzo)lip, Q@) = £ | ot et

5.6 Massless Scalar Fermi Fields
(Fadeev-Popov Fields)

A simple case of a massless field without any particle degrees of freedom is given
by Fadeev-Popov fields. Their “creation-annihilation” operators are not acted
on by a Hilbert representation of the Poincaré group. Fadeev-Popov fields are
massless scalar Fermi fields with Lagrangian and equations of motion

Gkﬂk = g*7",
. ) . . " =0
Lz (8, 3,7, %%) = iv*0, 3 + i7*0k 3 — ig*¥* Vi, "L e
r(B, 0,753 = V0B + V0B 18 e grg ek
8kr3/k :07

~ ~ 2 =
Lo 5) = oo { 50 )

The anticommutators embed the U(1, 1) representations

{ﬁ’“,ﬁ} {v’“,ﬁ} ‘ 8,8y {88}
%8y *.8) | {88 {88} (z)
R 84} %ﬁv} {8,%7}

B

7y A7) ¥} {8,479}
k
= lim,, o (2 g dDmD> (m]z) with D(m|z) = (fs CS,C) (m]z)
ck(0|x) 0 0 g°s(x)
0 ck(0|z) —g%s(x) 0
= 0 ~2%s(@) | I (0l) 0
29" 5(x) 0 0 ¢ (0]z)

The time projection gives a representation for trivial energy in SOq(2, 2).
The four momentum operators in

Zﬂ(l‘) = @f 2@(%)3 g[qu (_j et X(‘f)}a
" . Ble) = °f gk 9 [0 D@ + e D),
€ =41 z'"yk(x) = ®f2|q1 27|—)3 %[zqz b(q) — e b X(@L
v’“(x) = o i e g() + e g (q)],

with go = |4].
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have the quantization

{g*(7),b(@} = {b*(P), 8(@)} = 21710(FP).

The momentum operators are interpretable with a time development in U(1).
However, they have to be used with a U(1, 1)-conjugation x in order to have

symmetric fields (3, 3) = (6%, 6%).
A Fock form with U(1,1)-conjugation is indefinite:

(& @D@)e = ([g"@).b@]) = 21a10(%7)
= *(P)2(@)r = (B*(@), e(D])r = 2/q10(%F).

It leads to the Feynman propagator

{6, 8}(x) = —g% [ sote( Qo qg)e"”a <[Q B)(@))e = —g% [ drhd(g?)e ™,
(18, 8](x) — e(x0){0, B} (x)), = & gigr

q +w

5.7 Polarization (Helicity) in Spacetime

Transmutators connect with each other finite-dimensional axial rotation SO(2)-
representations for massless particles and finite-dimensional Lorentz group
SL(C?)-representations for the embedding quantum fields.

In the decomposition of a finite-dimensional irreducible SL(C?)-represen-
tation into irreducible SO(2)-representations,

L+R L,R
C*) = PSuR) =Pso?2): 2L2R = P /]2 P D
J=|L—R]| r,s=—L,—R

the U(1)-representations come in dual pairs Dy;(e'3) = e?/i3 £2.] € Z. The
U(1)-winding numbers {+2J} (e.g., for Weyl {£1} and for Lorentz vector
{£2,0,0}) for the rotation around the momentum direction % will be called
circularity (polarization, helicity).  Massless particles have no SU(2)-spin;
they have SO(2)-circularity.

The relativistic embedding of the axial rotations around the momentum
direction goes in two steps, SO(2) — SU(2) — SL(C?) (inducing in stages,
chapter “Harmonic Analysis”).

5.7.1 Rotation Group Embedding of Axial Rotations

The fundamental Pauli representation of the 2-sphere with the momentum
directions,

25 4 ay — 1 lal + ¢
Woqq—uly) = \/2|q'1(\q-1+q3>( @+ i
w(0,0,1) = 1o,

mat g ) €SU(2)/S0(2),
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is decomposable into two SU(2)/U(1) axial-to-rotation transmutators for the
opposite winding number parts of the SO(2)-representation in the SU(2)-re-
presentation [1]:

Vil e Wi, @ W_; with respect to SO(2),
HGH) = u(h) @ u()-: e(@* — u(ffie(@ A=12

The adjoint SO(3)/SO(2)-representation is the symmetric product of two

Pauli representations

AE) =05 = bru( D)ot (F)or

6ocﬂ _11_(13 a b :172,3,
= % \Cﬂ_qﬂ\qwq - ) «S0(3)/SO(2) with { 5 —12
It is used in an SO(2)-eigenvector basis {0 = 0% 0% = T} for the

0(3)/SO(2)-transmutation

VR =W, @ W._o, @ W, with respect to SO(2),
(i)i — u(@)AUiU*( )Be<(7)i
(@ — ()0 (L) pe(a)”

The momenta of a massless particle give projector decompositions of the iden-
tity into SO(2)-nondecomposable projectors

_J*ng

13:P0(®+Pi2(®, 5{,1:‘1;?—1—(53—%), q_2>0

For SO(2)-winding numbers +2J, J = 0,1 5, -+, the transmutator to an
SU(2)-representation with maximal winding number £2.J is given by the cor-
responding totally symmetric power of the Pauli representation,

minimal: irrepSO(2) < irrep SU(2),
Dioy < [2J] with [QJ](%) — \/u(i).

The embedding of SO(2)-polarization {+2J} into an SU(2)-representation is
not unique since {£2.J} comes in all induced irreducible SU(2)-representations
(chapter “Harmonic Analysis”).

The transmutators between the compact axial rotations SO(2) and the
spin group SU(2) are square integrable functions L2, (€2?) of the momentum

directions Q% = SU(2)/SO(2).

5.7.2 Lorentz Group Embedding of Axial Rotations

For the massless case, the embedding of spin group representations into finite-
dimensional Lorentz group representations is achieved by a reinterpretation of
the SU(2)-representations [2J](|%) in terms of SL(C?)-representations. u(%)
is a faithful representation of the 2-sphere SU(2)/SO(2). As a representation
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of the 5-dimensional orientation manifold SL(C?)/SO(2) it is trivial for the
3-dimensional boost manifold SL(C?)/SU(2),

SL(C2)/S0(2) = SU(2)/SO(2) x SL(C?)/SU(2) = Q2 x V*.

As for the massive case, a “minimal” embedding representation of the
Lorentz group is determined as follows:
minimal: irrep SU(2) — irrep anSL(C?), [2J] — [2L|2R]o = [2R|2L),
2L L+R =1,
qy — (L) (L)
2L2R]o(:%) = \/u(Z ®\/u @it o _{ (1)’
2

The two fundamental Weyl representations are used for the minimal em-
bedding of an SO(2)-pair with J = +1, e.g., for massless Weyl fields (below)

VY~ W, @ W_; with respect to SO(2)7

1) —u(d): (@ — u(E)He@®, A=12,
VIO =1y, @ W, with respect to SO(.)
D) =) o@* — u(Dde(@*, A=1.2

The Lorentz vector representation embeds an SO(2)-pair with J = =£1

in an SO(2) x SOy(1,1)-eigenvector basis (Cartan representation) {7* =

1o+03 + _ oltio?
Byt = )

, e.g., for massless vector fields (below)

VI 2w @ W, @ W, @ Wy with respect to SO(2),
1[0\ iy @ 7
1IE =0 = (o] ols) ) = 0IGH) & 2IE)
with respect to SO(3),
Vit () 4(0 % ) (@),
2

N

(& +e)(@) — uf ﬂ
(e £ie)(@) — (L) 0w (L) (et +ic?)(@).

A projector decomposition into nondecomposable SO(3)-projectors as used for
massive vector particles, e.g., weak bosons:

Ly = Pi(q) + Py(e), & = q]q’“ (06— L8y, @2 =m2 >0,

q

(S =y

=

is impossible for the massless case. ThlS is a general property: Always, if the
SO(2)-embedding finite-dimensional SL(C?)-representation is decomposable
as an SU(2)-representation, the embedding field for a massless particle also
contains nonparticle degrees of freedom. That is the case for all nontrivial
SOy (1, 3)-representations, i.e., Lorentz vector (below), tensor, etc.

5.8 Massless Weyl Particle Fields

For massless Weyl fields the limit of the Weyl transmutators, used for massive
fields (chapter “Massive Particle Quantum Fields”), leads to helicity projectors

lim \/m (s, 8)(;) = v/2[d] p*(q) with go = |q].

m—0
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The helicity projectors are products of Pauli transmutators to the third mo-
mentum basic vector ¢ = (0,0, |q]), which characterizes the SO(2)-circularity,

iz - : .
pi( 12"2"(1‘ :u(i)lgﬂ:a"su*(l)

q) = a2 i/

From the spin doublets in the massive case there remains one component for
the massless particles, e.g.,

P (@)@ = u(F)tu(q) with u(fi? = u>(§1)$u@c,
1 ldl+4° | —q' +iq? .

qy — ‘

V2dle(i) mT(+
The m — 0 transmutator limit for Dirac fields gives massless Weyl fields, ei-
ther (r,r*) or (1,1*), with a momentum-dependent normalization factor /2|q]:

{ = ¢ zmgﬂgﬁ ()2 (@) + e (@),

ot L@ = o e VAT e (D)) €97 + e (@),

L4 with go = 4],

€= +1 { 1<55)A =°f 2|q1(2ﬂ)3m“ L [qu (@) — e a*(q),
P = ©f sty 0 (£)7 [—ea(@) + e u (@)

Massless Weyl fields have only particle degrees of freedom. Particles and an-
tiparticles rotate in opposite directions around the flight direction:

*
:‘QL
S~—
[

for SO(2) : 2J(u,a) = { 21_1_3 Ell !

The equations of motion and the classical Lagrangian densities are
gt = 0, L(r) = ira*0pr*,
O'kakl = 0, L(l) = ildkakl*.

The massless Weyl field pairs have quantization anticommutators and com-
mutator Fock forms

{ry, et} {rp, 1% oty 0

(bor) tot@ = (T y)en(0la),

(It r e (v 1 )e _ (% o >

<<[1§,rA]>F <[1*B,1A]>F>(x) - ( 0 org) S0l
The time projection gives two trivial time representations. The position pro-
jection leads to a Coulomb force.

5.9 DMassless Vector Bose Fields
(Gauge Fields)

Massless vector fields have, in contrast to massive ones, both particle and
nonparticle degrees of freedom. Therefore, it is useful to describe the quantum



148 5. MASSLESS QUANTUM FIELDS

structure of a massless vector field {A7}3 i—g» m = 0, side by side with and in
contrast to the quantum structure of a massive vector field {Z/}3_;, m > 0.
Massless particles have fixgroup SO(2) (polarization) with a decomposition
of spacetime into time and position with one distinguished polarization axis
(momentum direction), whereas massive particles use a rest-system-induced
decomposition into time and position with fixgroup SO(3) (spin).

Fields for massive spin 1 Bose particles have the classical Lagrangian and
the field equations

L(Z7, G7¥) :%ij "Nl + (Y 2 G’ Gﬂc +m2ZjZZj)7

2y
e{f@’Z’ =ZF — akza = 2GHi,

In the limit of vanishing mass
m—0,v—g* Z—A, G—TF
one obtains the classical Lagrangian for massless vector fields (“gauge fields”)

elr alAr _ QQFk]

L(AJ, Fit) = Lpskedmg A, 4 g2 2 Fs { 5 FF —
k = U.

For free fields a normalization with g = 1 can be used. In interacting gauge
theories ¢? is the gauge coupling constant (chapter “Gauge Interactions”).
The classical Lagrangian has to be modified for a quantum theory with
duality pairs. Since the Lagrangian for a massless vector field does not contain
dual partners for all four components { A7}3 o 1.€., since there is no equation of
motion involving 9 A° or the Lorentz scalar 9;A7 in contrast to 9;Z/ = 0 in the
massive case, the theory of massless vector quantum fields requires a Lorentz
scalar Bose field S (“gauge fizing” field) in addition to the field strength F

L(AJ, %, S) = SFFdRoA,, +SO,AT + g2 Fk — 228,

%alAr = g°FM, ik ajq
{ DAl g OIS =0

with a “gauge fixing” parameter A # 0.

The Lorentz vector field (gauge potential) {A7}5_; ~ {A° A®} has a scalar
and vector potential as rotation group decomposition, [1|]1] = [0] & [2], the

“gauge fixing” field S a trivial representation [0|0] = [0]. The antisymmetric

tensor field (field strength) {F¥}} ., ~ {F*°, F*}, acted on by the adjoint re-
presentation, is decomposable into electric and magnetic field, [0]2] @® [2|0] =
2] @ [2].

In contrast to the commutator of the massive vector field

. k .
(ZF, Z7)(z) =2 [ & (271' s €(@0) (=" + L5)3(q* — m?)e'r
— _2(yh 4 290y istmla)

the massless vector field has the quantization
. 4 . .. .
(A, AT](@) = ¢ [ Lhselgo)(—n — 20q e 3 )3()e
= —g*nMis(x) — vO*PisTP(z)]
with 1 — A = 2.
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Its commutator involves no spin projectors, as does that of the massive field. In
addition to the massless pole structure 7*76(¢?), relevant for the U(1)-time re-
presentations, there occurs the characteristic dipole structure ¢*q?¢'(q?), which
embeds a U(1,1)-time development. There are no dipoles for the particularly
simple “gauge fixing” parameter

A=1, v=0=[A* AJ] = —¢g?nki f ) 36 (q0)d(q?)et=.

All commutators can be computed by derivations of the gauge field commuta-
tor. The nontrivial ones are

([iFkl,Aj] [AF, A ) (I) _ ( —ickk 51 g25k6] > [At,A%)(x)

Lk an() _’Lékas 2

[FELFIN] (AR, —iS] —€ur€rs gz g
- f (2m)3 eklte:b‘.s],r]tbq " _% 6((]0) (q )6 :
u 2

The massless field theory embeds two nonrelativistic free mass points acted
on by noncompact time representations for trivial energy:

. . o V_i_i th :%l dtp:()v
Lp(x,%,p,D) = pdix — pdix oM~ 2MD {dtk :_%, d;p = 0.

The commutators of the quantum mechanical model are embedded into space-

time commutators
[—[}'p,]ic] [[P,fc]] [—[z‘x,]fc] [[fc,g]] 0 b
b, X P, X X, X X, ix .
o w0 =
xpl  [%ip]

i

[—ib,p] [P, P
Bl [p,ip]

1
0
— lim,, .o <I: )(m|x)
. , cI (0| 0 0 vis(z)
. ¢l il?s 0 cI(0lz) | vis(w 0
with D(m|z) = <[%s o )(m\x) = < 0 (4.' : cF é\z)) 0 )
ry 0 0 ck(0]x)

The positions (x,X) as time nilvectors are embedded into the vector field, the
momenta (p,p) as time eigenvectors into the field strengths and the “gauge
fixing” field:

{%,x} — AP ={A° A}

{p,p} — {S,F}, a=1,23.

The two free mass points are used for the two lightlike degrees of freedom
A%+ A3, The time projection of the spacetime commutators, rearranged with
respect to time and position components, displays (4 = 1 + 3) noncompact

time representations of type <(1) iﬁ“), i.e., with trivial energy:

[iS, A% [iF% A% | [A% AY] [A?, A0] -1] 0 0 —g2%\izg
f d%( [iS, A%] [iF%¢ A% | [A% AY [A% A ) _ ( 0 [ 6% §%g%izg 0 )
[S, FbO] [FOG.7 FI)O] [_Aa.7 7inO] [AO, 7in0] 0 0 gab 0 .
[S,S] [FYe S] [A%, —iS] [AC, —iS] 0 0 0 -1
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The position projections can be derived from the modified Coulomb potential
in the projection of the €(zg)-multiplied massless vector field commatator

2im [ droe(o)[AF, Al](z) = g2 + 20656 (60 — 2201,

Now the momentum operators will be given for the massless vector field:
With energy-momenta decomposition ¢ = (|¢], ¢) one obtains with the matrix

sin |qlzo 4 |qlao cos |qlzo | —iq®xo sin |q]zo

kAjs d1p 7iqz —
0" 0is f \(ﬂ 271' t —iqPxo sin |q]zo ‘ 7‘17}(5111\(1‘]9:0 — |qlzo cos |qlxo)

the time representation matrix elements in the vector field commutator

—(1 —v)sin|qlzo ‘ .
—ivq®xo sin |qzo
k . . 3 _ +v|qlzo cos |qlzo
[A 7AJ](J:) - f @(Qq e g [ 5“bsin|(ﬂxo

. b .
—1ivq° o sin |q|zo agb .
? I —v L4 (sin|qlwo — |3l cos|dlwo)

With the transmutator from the rotation group SO(3) to the axial rotations
SO(2) the third momentum axis is used as polarization axis ¢ = (|¢], 0,0, |]):

01 = (o) €50(3)/50(2),
A, AT)() = [ ZElse T 04(%) o [AA](|dl70) 0 Oa(),
;(;‘(ix’; ;:\Qﬂfg 0 —iv|qlzo sin |g]zo
[AA](|qlwo) = g% 0 1, sin [qla 0
—iv|qlwo sin |qlzo 0 &@Zzs;:s\%?o

This is compared with the commutator of a massive vector field with the
transmutator from Lorentz group to rotation groups A(£) €S0y(1,3)/SO(3)
for the three spin components

[Zk Z7)( = f 0 27r)d e~ idE A(%) [ZZ] (qofco) o A( ),
[ZZ}(qOIO) =7 Zé 13 sin gozo ) 2 4 q—Q7
T o 2 a00) = ()

For the massless field the axial rotation trivial contributions (Oth and
3rd components) are transformed into a nonorthogonal lightlike basis with
SOy(1, 1)-eigenvectors

O—lOOT_Ol _ 1 (1 1
Wolg )W =11 o)y W=/5\1 1)

One obtains with the transmutator Ow(%) = 04(%) ow in the new basis

A%, AY](2) = [ Elee ™ O, (L)* [AA](|glw0) Ou(L),

9. v|glaget191%0 0 (1 — v) sin|qlzo
[AA](|qlo) = g% 0 Ty sin [qlo 0 . g =,
(1 —v)sin|qlzo 0 V| qlzoe 1170
0O |1-v

1—v | 0 v

W%xo:O[AA](Iﬂxo) 292< 0 (1] 0
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The 1. and 2. components of the massless field with nontrivial polarization
around the momentum ¢ carry two U(1) time representations with energy
= |g]. They constitute a harmonic U(2)-oscillator

RY — U(1y) 3 el (3 1),

a,B € {1,2}: u(q, o)™ = €lfou(q)”,
R* x SO(2) — U(1,) 0 SU(2) = U(2),

[0* (P, u(@)] = 022|g16(%2),
The 0th and 3rd components have trivial polarization SO(2) and are connected

in a U(1,1) time representations with energy ¢o = |¢] and nilconstant v|q]
involving the “gauge fixing” constant 2v =1 — \:

R4 - U(]., ]_) =) 61’@360—15’5:’(3 iu\?wo)’

j k€ {0,3}: B(q,x9) = e'1[B(q) + iv|qlzoG(q)],
S G(g.zo) = elmG(g), N
[B*(0), G(@)] = [G*(p), B(@)] = 2|q16(%F)-

The massive vector field has three momentum operators for the spin com-
ponents with U(1)-representations of the spacetime translations

noy { 2y = O G A @) + e ()]
e =1 with qg =+/m?2+ ¢, a=1,2,3,

whereas the harmonic analysis of a massless vector field contains four mo-
mentum operators, two with a time representation in U(12) (1st and 2nd
components) and two with a time representations in U(1,1) (Oth and 3rd
components)

" [B() + w|qlzoG(@)] + (1 — v)e 1" G*(q)

m = ‘T etaw ((j')1+e iqT *(‘T)l
J =41 - f Qm 2,,r)3 ﬁ) g( » ety (@2*671q1 u*(§)2 )
a (1 =v)e17G(q) + "% [B*(q) — iw|qlzoG* (§)]
with go = |¢

For a trivial nilconstant v = 0 one has four U(1)-representations, where two
of them have a U(1, 1)-conjugation.

The “gauge fixing” field involves only the eigenvectors of the U(1,1)-time
representation

i8(2) = V2 [ gy [ G@) = e G (@] w0 =1l 0 =0,

2|g1(2m)?

The basic vector spaces Wa(q), Wi(7) = C* at each momentum of the
massless field are spanned by four conjugated pairs of momentum opera-
tors. With the complex spacetime representation, the Lorentz group SOq(1, 3)
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comes in the indefinite unitary group U(1,3). The massless vector fields in-
volve an SO(2)-polarized particle pair (left and right polarized photons) with
Hilbert representations (harmonic U(2)-oscillator) and an SO(2)-trivial pair
with translation representations in an indefinite unitary subgroup and without
particle interpretation,
for A7: R*x SO(2) — U(1,1) x U(2)
U(1,1) x U(2) € U(1,3) D SO(1,3).
This is in contrast to the massive vector field that comes with three creation-
annihilation pairs Wz(q), W2(q) = C3 of particle operators. The massive
SO(3)-spin triplet particles have Hilbert representations (harmonic U(3)-os-
cillator)
for Z7: R*x SO(3) — U(3),
U(3) c U(1,3) D SOy(1,3).

A U(1)-time development with particle interpretation has a Fock state

(*(Pau(@))e = ({u*(Pa, w(@)’})e = 6221010(5F).

A Fock form also for the U(1,1)-time representations leads to an indefinite

metric L
B HC@) = (B @), C@, — 2a0(%2)
= (G*(MB(@). = {GC*@),B(D}). =2l15(%F).
It gives a Fock value for the anticommutator of the massless vector field
({A% AT}), M — 204k 52)5(q%) e,
(2 2 Y)w) =+ f L (o 1 L)5(? — w2,
and hence the Feynman propagator, always to be compared with the massive
vector field structures

(A}, AT} (2) — e(xo)[AF, A](2), = g2 [ 1, [q Tl +2y(q £y ],

. : i M+ ) iqx
<{Zk7Z]}(x)_€($0)[Zkvzj](x)>1«‘ :’72;.[(277)3 q%+io— mz2 e'te.

5.10 Eigenvectors and Nilvectors
in a Gauge Dynamics

The spacetime dependence of a classical gauge transformation with parameter
[ as invariance of the Lagrangian

L(AJ, Fit) = LFikdmg A, + g2EFn
AF— AF 1 akﬁ Fk] — ij,
is drastically reduced for a quantum gauge theory with a duality-completing

scalar field (“gauge fixing” field) S. There remains a transformation with a
“massless” Lie parameter field 3:

L(A/,Fi*,8) = IF*naA,, + SO AF + 2T Fik 228",
AF —— AF 4 8’“6, ij — ka S—S Wlth 826 =0.
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5.10.1 Fadeev-Popov Ghosts in Quantum Mechanics

The “gauge fixing” part of the dynamics with the gauge transformations for a
free gauge field theory

) 0kAk = 92)\8, 8kS == 0,
L(A,S) = SO AF — ¢?2\S AF— AP 44k S S,
akﬁ = 7167 8k7k = 07

is the Lorentz compatible spacetime distribution of the noncompact time de-
velopment for a free mass point:

R dtx - p7 dtp = 07
L(x,p) = pdix — &, X—X+7, p——Dp,
dtﬁ = ’y» dtry = O

The gauge transformation is the relativistic distribution of a position transla-
tion transformation for the free mass point position.

A noncompact time development has eigenvectors and nilvectors. The
subspace built by the eigenvectors has a trivial eigenvalue (nildimension) for
the action of the nilpotent part of the Hamiltonian. In the self-dual space,
spanned by position and momentum, the Hamiltonian matrix of the free mass
point, a linear 2 x 2 transformation, is nilquadratic:

((f), pp= (1) (p, ) = 1.

h=(0 o) = h@) =p, h(p) =0, hoh=0.

Y

X

Hp =

8
Il

[T,
12

In a Bose quantum algebra, the Hamiltonian is not nilquadratic with respect
to the quantum product

ip,x] =1, Hg="% = [iHp,x] =p, [iHg,p]=0 but H> #0.

By introducing additional Fermi degrees of freedom as partners for the Bose
position-momentum pair it is possible to construct nontrivial nilquadratic
quantum operators. To formulate the distinction between eigenvectors and
nilvectors (particle and not particle interpretable) a quantum gauge theory
has a Bose-Fermi twin structure as discussed above. The spinless part of
the gauge Bose field and its “gauge fixing” dual partner are accompanied by
Fadeev-Popov fields as their Fermi counterparts, whose classical limits are the
spacetime-dependent Lie parameters of the gauge group.

The Bose-Fermi twin structure is discussed first in the nonrelativistic quan-
tum-mechanical model: A noncompact time development for the additional
Fermi degrees of freedom needs two dual pairs:

Bose: [ip,x] = 1, Fermi: {4,9} = 1= {3},
Hamiltonian: Hg,r = Hg + Hp = %2 + 7.

The equations of motion are

i3 = [ZHB+F7 ] =7

dix =[iHgyip,x| =p dyy =[iHpyp, ] =0,
Bose: . ’ ’ Fermi o .
{ dtp = [/LHB—FFa p} = 07 dtﬂ [ZHB+F7 ] = -7,

dy =[itHpyr,5] =0.
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They can be derived from a classical Lagrangian (first or second order time
derivatives)

L(x,p,B.7) = pdex — B +iydy3 + i7dy — i,
L(x,0) = 3(dx)*+i(d:3)(dif3).

The nilquadratic Becchi-Rouet-Stora charge Npp implementing the gauge
transformation dx = -y is given by the time development invariant

NBF =Yp = N%F = 07 [HB—i-F;NBF] = 0.

Its linear hybrid adjoint action in a hybrid algebra generated by Bose and
Fermi vectors,

[a,5] = la,b] <= a orb are Bose,
“o = {a,b} <= a and b are Fermi,

defines the BRS-transformations

68 ={iNpr,B} =0,
.. 6’)/ = {iNBFer} = Oa

L RO S N, B} = ip,
6;}/ = {iNBFa fv}/} = O

_ 0x = [iNgp,x] =7,
Bose: {51) = [iNpp,p] =0

With the Fadeev-Popov number operator for the Fermi degrees of freedom

xa L 7 [iF. 8] =8, [iNsr,7]l =-7%,
FMWFM):{ iF, 5] =—08, [iF,y] =7,

[F, Hpr] =0,
the space Q(Hp, r) spanned by the eigenvectors of the Hamiltonian is defined

by trivial eigenvalues both for the BRS-charge Npr and the Fadeev-Popov
number F'

Q(Hp+r) ={a| [F.a] =0 and [Ngp,a] = 0}.

5.10.2 Fadeev-Popov Ghosts for Quantum Gauge Fields

The Lorentz compatible distribution of the nonrelativistic model for the elec-
tromagnetic quantum gauge field,

L(AF.8,0,7) = Fiy2A52At 4 SOAk 4 (B4 — %)
+iY OB + 17 OB — iG> X

kg k
DA — AR = P, gF, I
. ko 2 ‘. Y =Y,
Bose: OrA" =g°)\S,  Fermi: OB = — Ak,

DFyj — S =0,
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uses Fadeev-Popov fields (3, 6,7, %) with the Fermi quantization
[iS, A*)(7) = {8,5*}(@) = {+*, B}(&) = 656(2).

A second order derivative Lagrangian reads

L(A, ) = — 2 (VA% — 9"AT)(0; Ak — Ok A;) + 555 (OAF)? + 5 (95) (0k1).

The hybrid adjoint action of the nilquadratic linear BRS-charge generates
the linear BRS-transformations

5Ak = [ZNBF,Ak} = 92)\(55’)/0,

Bose: oS = [iNpF, S| =0,
0F.; =[iNgp,F;|] =0,
NBF = g2)\fd3$’yo(x)8($), = 553 — [{Z]\fBFJ;T ﬂk}j] =0

2 _
NBF =0 67]6 = {iNBF,ryk} = 07

08 ={iNpp,B} =igAS,
6% = {iNpp,¥*} =0.

Fermi:

The subspace with the particle interpretable degrees of freedom, i.e., with-
out nilvectors, is characterized by trivial BRS-charge and a trivial Faddev-
Popov number

F = [d®*zFo(x), Fi=i(50+ Bw)-

”Gauge invariant” fields are characterizable as translation eigenvectors.

The spinless and “gauge fixing” Bose degrees of freedom and the Fermi
Fadeev-Popov ones display a twin structure. The BRS-current Ny (x) of Fermi
type has its counterpart in the nonderivative part H(x) of the Lagrangian
(Bose type)

Nk = gQA’}/]CS, HB+F = 92)\[%2 + Z’V}/k"}/k]

The dynamics Hpyr in the mass point model arises by BRS-transformation
from an operator K connecting Bose and Fermi degrees of freedom

2 -~
Npr=9p, Hpir =5 +iy7,
Hpip={Npp, K}, K= % + 9x.

Since N3, = 0 the BRS-invariance of the Hamiltonian is obvious:

[NBF7HB+F} = [NBFa {NBFvKH =0.

The corresponding relativistic field operators are the position distributions

K= % +A*, (Hpyr, Npr, K) = [ d®z(H, Ny, K)().
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5.11 Summary

Massless spacetime vector fields (“gauge fields”) {A*}?_ are acted on by the
4-dimensional Minkowski representation of SO (1, 3), like the spacetime trans-
lations. They realize, together with the field strengths {F;} in the real 6-di-
mensional adjoint representation, the two fundamental representations of the
Lorentz group. Duality pairing for a quantum theory requires a scalar field
(“gauge fixing” field) S to complete four (4 = 3 + 1) dual pairs (Fa, A%)3_,
and (S, A").

The translation representations acting on the four components of the gauge
field are in the indefinite unitary group U(1,3) D U(1,1) x U(2) as supgroup
of the indefinite metric Lorentz group SOg(1,3). The Minkowski metric shows
up in the indefinite signature (1,3) metric for the gauge field inner product
space. A projection to a probability interpretable vector subspace with the
two particle degrees of freedom for left and right circularly polarized photons
requires the transition to translation eigenvectors that are determined by a
trivial action of the nilpotent part of the dynamics. To define a nilquadratic
projection (Becchi-Rouet-Stora transformation) in the quantum algebra, the
Bose type gauge fields (A% S) have to be paired with Lorentz scalar fields
(B,7) of Fermi type (Fadeev-Popov fields). They have no particle degrees
of freedom. Translation eigenvectors have trivial Becchi-Rouet-Stora charge;
they are “gauge invariant.”
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6
GAUGE INTERACTIONS

With the work of Weyl and London on gauge theories, Maxwell’s equations
for Faraday’s electromagnetic field concepts proved to be a theory of phase
U(1)-operations that act, compatibly with spacetime translations, on complex
representation spaces. In quantum electrodynamics the electromagnetic U(1)
is implemented by the electromagnetic potential (field) interacting with Dirac
fields for electrons and positrons. The standard model of the electroweak
and strong interactions for lepton and quark quantum fields embeds quantum
electrodynamics into a representation theory for the compact internal action
groups U(1) (hypercharge), SU(2) (isospin) and SU(3) (color), implemented
by twelve gauge fields acting on left- and right-handed Weyl fields and, for
nonabelian groups, on themselves:

electrostatics o electrodynamics
SO(3) X R? S0y(1,3) X R?
o quantum electrodynamics o standard gauge interactions

U(1) x [SO(1,3) xRY U(2 x 3) x [SOy(1,3) X RY|

It is remarkable that each of the incomplete theories shows its own esthetics
and beauty.

All spacetime translations have to take into account the orientation of
the internally acting group, there is no spacetime translation without internal
group action. In quantum field theory, Lorentz compatible distributions of Lie
algebra representations define currents (chapter “Massive Particle Quantum
Fields’). The representation of a Lie algebra on a vector space is a power-
three tensor whose spacetime distribution comes as a product of the current
with the gauge field. Such a power three tensor constitutes a gauge interaction
vertex for a field theory. This is used for the real 12-parametric standard model
Lie symmetry with its (1 4+ 3 + 8) gauge fields.

The internal action groups for hypercharge, isospin, and color come in cen-
trally correlated representations, the eigenvalue of the abelian hypercharge
U(1)-action is related to the center representation of the nonabelian isospin-
color group SU(2) x SU(3). For example, isospin doublets and color triplets

157
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come with hypercharge factors  and

charge . ’

From the 12-parametric internal symmetry operations for interactions there
remains only an electromagnetic U(1)-symmetry for particles. The isospin
SU(2)-symmetry is broken (“bleached”), it leaves its trace in particle mul-
tiplicities. This is in contrast to color SU(3), where experiments show only
trivial color representations for particles which is interpreted as color confine-
ment. A simultaneous diagonalization of the rank 14 1+ 2 = 4 centrally cor-
related symmetry structure of the interaction is possible for a maximal abelian
subgroup that is trivial either for isospin SU(2) or for color SU(3). Taking
a color-trivial maximal diagonalization, the electroweak U(2)-operations re-
quire a projection to an electromagnetic U(1) Cartan subgroup, correlating
hypercharge and isospin, as remaining internal particle symmetry group. In
the standard model, this projection (electroweak symmetry breakdown) is ef-
fected by a ground state, degenerate with the Goldstone manifold U(2)/U(1)
and implemented by a scalar field (Higgs field).

After a short review of classical and quantum electrodynamics, its embed-
ding into the standard model of electroweak and strong interactions is discussed
together with the ground state induced rearrangement of the interactions to
the particle language.

1

3, a doublet-triplet quark with hyper-

6.1 Classical Maxwell Equations

Experiences with amber (electron) and stones from Magnesia (Greek town in
Asia Minor) and experiments have shown the existence of “nonmechanical”
interactions, especially nongravitational ones, which, in today’s language, can-
not be related to Poincaré group, i.e., external, operations. On the “spacetime
screen,” i.e., with each spacetime translation, there also act “internal” oper-
ations. The electric and magnetic interactions were taken as a first hint for
“charge” related operation groups.

In the beginning, it was enough to characterize these properties (eigenval-
ues) by an electric charge @, first measured! in an ad hoc unit, e.g., [Q] = C
(coulomb), introduced for a dimensional grading in addition to units for length,
time and mass, which can be measured with, e.g., the ad hoc human order of
magnitude units [L] = m (meter), [T] = s (second), and [M] = kg (kilogram).
In the course of this chapter an independent charge unit will be replaced by
an [L], [T], [M]-derived unit and two of the remaining “human” units will be
replaced by natural or structurally intrinsic units.

Charges change in time t — Q(t) (time orbits), which leads to the defin-
ition of an electric current I(t):

[ =—d,Q with [[] =<

P

Now the historical transition to a framework with position-dependent fields:
It appeared possible to distribute charge in position with an SO(3)-scalar

I For [a] read “unit of a,”
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volume density p(¢,7) and the current with an SO(3)-vectorial area density

J(t, T):

Q= fvde p with [p] = E%
I= [, d®c] with [J]] =19

From now on, in addition to the time translation group R, the Euclidean
position group SO(3) X R? is assumed as action group. All fields considered in
the following depend on time and position translations R* 5 (¢, Z) — ®(t, T)
(translation orbits) and are valued in, for classical electrodynamics, real vector
spaces.

If the current definition makes sense for all volumes,

0=dQ+1=[,d dp+ [, & J= [,d* 9+ div J),
one obtains the continuity equation which characterizes a conserved current

dp + div J = 0.

Following Faraday, the sources p define a vector field D, called an electric
field (electric displacement). Hence the conserved current leads to a source-free
field 0; D+ J, which can be written as the curl of another vector field H, called
a magnetic field:

divD=p=div (,D+J)=0= 8D+ J=rot H

with [D] = 9, [A] = L
As seen from the units (no length unit), the vector fields are not valued in
position space.

The definitions and assumptions used so far are summarized in the

inhomogeneous Mazwell equations: o div l_), =7
0:D +rot H J

with the displacement current 9, D introduced by Maxwell in the manner given
above.

A dynamical spacetime theory has to give the action of time and posi-
tion translations on all fields involved, i.e., on {p, J_: 5, H }: This is classically
expressed by differential equations with the translation-action-implementing
derivatives gt, 5;

One is working with SO(3)-scalars and vectors, coming with both position
parities, i.e., with eigenvalues p = £1 for the represented position reflection
0(3)/SO(3) 2 1(2) 5 P: ¥ «— —Z. With parity conservation and the parities
of a time and position translation basis {p° p®}, the parities of the three
position areas, the position volume, and the fields involved are given as follows:
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’ H SO(3)-scalar SO(3)-vector ‘
L=0 L=1
-1 scalar axial vector
p=+ 0> 0 pe Apb, H
-1 pseudoscalar polar vectgr B
P p® Ap® A p° p“%aga,J,D

Acted on by the SO(3)-scalar time derivative 0; and the SO(3)-vector position
derivative 8%, a vector field ®, here D and H, gives rise to two vector fields
and one scalar field {6@, rot ®; div (f)

l [L=0] L=1 ]

p=-+1 div D | 0tH, rotD‘
p=—1]divH | 8D, rot H |

Additional L = 2 fields have no invariant coupling to charge p and current J.

So far, equations with space and time translation action for the axial vector
and pseudoscalar fields (parity p = (—1)'*L) are missing, i.e., for one SO(3)-
scalar div H and for two SO(3)-vectors 8H and rot D. If there do not exist
further sources in addition to a charge @), the simplest equations, compatible
with O(3), i.e., with the rotations SO(3) and the position reflection P, re-
quire the still undetermined scalar derivative field to be trivial (no magnetic
monopoles) and equate the two vector derivative fields (law of Faraday and
Lenz)

div H =0,

homogeneous Mazwell equations: { Lo 5
0 H +rot D =0.

The free constant ¢ has the units of velocity squared

rot O] = vot D =

m3

@ B ,
[6%}{] — $2m’ } = [i%}{] ::[02]__ m

One ad hoc unit, e.g., second for time, is traded for the intrinsic

Jundamental unit: ¢ =299 792 459 .

Those “simplest” equations with positive ¢ > 0 for the field theory of a con-
served charge in spacetime have proved to be physically relevant as Maxwell’s
equations for the electromagnetic field strengths {l_j, H } in the vacuum with ¢
the speed of light (electromagnetic wave). To define the dynamics completely
in the case of a nontrivial charge-current, there have to be added dynamical
equations for the space-time behavior of the charge-current {p, J } in addition
to the continuity equation above, i.e., for charged mass points in mechanics
and for charged fields in field theories, which will be done below.

Historically, the velocity of light was found to be related to the product of
the dielectricity and permeability constants of the vacuum, €y and pg respec-

tively
2=
€opo’
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arising in the transformatlons from the electric dlsplacement D and magnetic
field H to the electric field E and magnetic induction B:

div D =p, and div B =0,
H 8t§+rotﬁ =0.

For electromagnetism in materials the introduction of (3 x 3) transformations
e, € GL(R?) with E = =D and B = popH, in the simplest case with
constants €, 1, may be convenient for a phenomenological parametrization.

6.2 The Electromagnetic Gauge Field

The homogeneous Maxwell equations allow, in analogy to the dual position-
momentum pairs (x,p) in mechanics, the definition of dual partners (“posi-
tions” for the field strengths H and D as “momenta”), called, with respect
to position rotations SO(3), scalar and vector potential V' and A with parity
p = +1 and p = —1 respectively:

ot A =H,
A =D

homogeneous equations =
& q { grad V — 8

Those equations are the analogue of the mechanical Md;x = p. The position-
momentum analogue dual pairs are given by the four potentials and the six
field strengths (x;p) ~ (V, A: D, ﬁ)

The potentials are determined up to the derivatives of an SO(3)-scalar field
(t,Z) — ~(t, Z) (gauge transformations):

A +— A+ grad v with [v] = @,
V —V+ C%aﬁ.

The inhomogeneous Maxwell equations, the analogue of the mechanical
d;p = F (force), are second order equations for the electromagnetic potential,
in analogy to the mechanical Md?x = F:

52‘/ - C%atle g = p_7,

(507 — VA — grad (8,V — div A) = J.

inhomogeneous equations = {

They can be rearranged in the form

— (B2 =PV +0x  (BV —div A) =cp,
92— PVA  —grad (O,V —div A) =J.
ct

These second order Maxwell equations with the characteristic derivative com-
bination 9% — 9? display a representation structure for the Lorentz group
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SOy (1,3) with the Minkowski representation [1|1] for the translations, for
derivatives

(ct,®) =uaxp, (ct,—F) =aF=nMz; with[z]=m,
N A T Y

0% — 0% = n;0"07, k=0,1,2,3

and for potentials and charge-current densities

(—=cV,A) = A, with [A] =<,

(cp,J) =Jp with [J] =12

sm2 *

The equations of motion
;07 Ay — OO A; = 07(0; A — OLA;) = Ji
collect the field strengths as follows:

CDa = 8aA0 — 80Aa, a = 1, 2,3,
Ha = 6abcab/élc = 6abcffc = 6aAAb - abf4a-

They constitute an antisymmetric 6-component Lorentz tensor acted on by an
adjoint SOg(1, 3)-representation [2|0] & [0]2] = [1|1] A [1]1]:

0kAj — ajAk = ij = _ij

0 —cD1  —cDy —cDs
. . _ | Dy 0 —Hs3 Hy : _ [@]
FaO = C.Da, Fab = _eabchv ij = | ¢Dy Hs 0 —H; with [F] = om"
cDs —Hs H, 0

Dynamical theories with all the concepts involved have to be character-
ized by representations of the corresponding group with their invariants. In
Newtonian mechanics, the inhomogeneous Galileo group relates to each other
equivalent reference frames for position and time. It is expanded to and sim-
plified by the inhomogeneous Lorentz group (Poincaré group)

o 150 .
[SO(3) XRY X [R* & R] 2> SOy(1,3) X R*,

which relates to each other equivalent spacetime reference frames in special
relativity. Nonrelativistic theories can be recovered in the Inonii-Wigner con-
traction. The contracted boosts SOy(1,3)/SO(3) — R?® (chapter “Spacetime
Translations”),

S0(1,3) =X S0(3) XR?,
A= (Cw CClU}i®ET> H—°>°AOO:< 0) with coshy) = Cy = 2=

7 . " 1 2
Cye s+ 13, — 3

ST

P2

2

are derived with a renormalization with % for the time translations

S0u(1.3): (§) —A(%) = <+cf<”++cc)< )),
SO(3) xR? : (;) HAoo(fg) = (ziat)
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The Lorentz behavior of the electromagnetic field strengths reads (with the
matrix Fab - _Eabch = H3 and Hg’(?z Hxv= —_THg)

= (c0~ _CET) — AToFoA

-D Hj
SO(1,3) : = cDr— Cye(D — 2 4 G 10D
H— Cy(H+7xD+ 15&5@ 1.

The Galileo contraction limit of electrodynamics, i.e., nonrelativistic electro-
dynamics, changes the second homogeneous Maxwell equation

divﬁzp, —8tl3+rotﬁ:ﬁ
div H=0, rot D=0,
[jl—)[j, ﬁ»—>ﬁ+ﬁx5,
pr—p, fr—>f+17p.

SO(3) xR3:

For the Lorentz action group SOg(1,3) with rank 2, there are the two
signature (3, 3) invariants:

— — —

nF = ( 0 Cf’T), det(nF — \1y) = X + (H? — 2D*)\? — (cDH

2
Cﬁ Hg ) .
Both the positive parity Killing invariant

F i FM = 2(F12 - 0252), p=+1

and the negative parity chiral (volume) invariant with the dual field strength
tensor €®'™ Fy, . exchanging cD « H,

0 —H1 —H2 —H3 0 —CB1 —CBQ —CBS
EkjlmF _ | Ha 0 —cD3  cD2 _ 1 [ cB 0 —FE3 Es
Im = | H, cDs3 0 —cDy  cuo | ¢B2 Es3 0 —FE1 |

H3 —CD2 CD1 0 CBg —E2 E1 0
ekﬂmFlkaj = —8cDH, p=—1,

involve the highest action velocity ¢ as relative normalization of the positive
and negative “metric” sector. With the field strengths Fj; being derivatives
of the gauge potential, the homogeneous Maxwell equations are identities for
the derivatives of the dual

8lekjlkaj = 0

The first order Maxwell equations

QJIAT = 0P AT — JIAF = FIk §TFy; = J, with € = 5F61 — 5] ok

T

are gauge invariant with a Lorentz scalar field 4 (representation [0]0])

AR AR 4 Oy, Fyj — Fyj, Jp— Ji.
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They can be derived from the Lagrangian

L(A, F, J) _ ijakAjgajAk + FkJF °J Aka
with the gauge behavior

L(A F,J)— L(A,F,J) — 0*(vJy) + 0% Jy.

A Lagrangian has the unit of an action spacetime density measurable with
Planck’s unit for actions (duality normalization, chapter “Quantum Algebras”)

fundamental unit: h = 1.0545... x 10’34}%—;”2.

One more ad hoc unit can be traded for the fundamental intrinsic unit A, e.g.,
kilogram for mass, leaving two ad hoc units, e.g., meter for length and coulomb
for charge. The unit of the Lagrangian can be expressed also with the charge
unit [Q]:

LA F) = -8 e

s2m? s m

Hence the charge unit is a derived unit

Q) = [5] = kg s = [M][T].

()

The gauge function, the gauge potential, the field strengths, and the current
have the units

bl =B =V,

[A] = k?g = [Vh,
F] =y =W
] =y/ia =il

Summarizing the Lorentz invariant Maxwell dynamics: Imposing Lorentz
symmetry O(1,3) and its representations, a conserved vector current Ji, in the
defining [1]|1]-representation can be written - necessary smoothness assumed,
as a derivative 0; (Lorentz representation [1|1]) of a nonscalar field only with
an antisymmetric tensor field, i.e., in the adjoint representation [2|0] @& [0/2],

8k=]k =0=J, = Oijj.

The derivative of a scalar field J, = 9,® does not have to be conserved. If
the other [1|1]-transforming derivative, constructible from 0, and Fjy, i.e., the
derivative of the dual tensor, is assumed to be trivial, the tensor field is defined,
up to gauge invariance, by the antisymmetric derivative of a vector field in the
defining [1|1]-representation

Elmkjalej =0 < Fik = El]alAT
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6.3 The Charged Relativistic Mass Point

To have the dynamics complete, the translation behavior of the electromagnetic
fields has to be supplemented by that of the charge and current implementing
matter, in the simplest idealization a charged mass point. The relativistic
dynamics of a charged mass point in an electromagnetic field is a hybrid theory:
It uses both mass points as eigentime orbits and fields as spacetime translation
orbits.

The defining relations between the time-dependent position {Xj}3_, as
SOy(1, 3)-vector,

Xy = (ct, X(t), dXp=(cdt,dX)=(1,V)edt, V =X,

dr? = dXpdX* = 2di®* — dX? = 2di2(1 - %), d, =L =

; L dct7
with [Xg] = [7] = m,

dr \/ V2
1- %

and, with the invariant eigentime 7, the momentum {F;}3_, of a mass point
with rest mass m,

Py :m% - \/1m\72 (17%)7 Pkpk :m27 d-P, =0,
2
with [P = [d] = [m] = 1

are expressible by the Lagrangian of a free relativistic mass point

L(X, P) = —P*d. X + B2 with [L(X, P)] = L.

m

With Planck’s unit A and the highest velocity of action ¢, the mass is measured
in inverse length units:

m=%<m, [m]=kg, [m]=<L.

The current for a mass point is proportional to the momentum with charge
number q

Jo@) = Vi [ dXd(z — X) = ¢v/hy/1 - T Bo(z - X (1)),
[d*zJo = qVh, q€R, 9"J, =0.

It involves a Dirac distribution for the pointlike position density Jo(x):

Ji(x) = qVRIi(x), Ju(x) = (1, 5)6(F - X (1)), (] =&

m3

The Lorentz invariant interaction is the line integral along the spacetime
coordinates of the mass point:

qV'h [ dr(d. X)AH(X) = qVh [ dXAMX) = [ dizA¥(x)J,(2).
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From an action as sum of the free actions and the interaction
fd4:): L(AF) v +hfd7'L(X, P) - fd4xAka
— fd4x[ij6kAj;8jAk + ijFkJ] —|—hde[—PdeXk + P, Pk —ﬁd-,—XjAk(X)}

4 2m
one obtains the equations of motion:

A — AR =Fik i, = Jy=qVh [dXpd(z — X),

_h ko AT 9Ak
GLXe =8 4Pt = gd (R - ),
The Lorentz force as effected by the fields strengths at the mass-point coordi-
nates X = (ct, X(t)) arises as a consequence of the Lorentz invariant minimal

coupling A J*,

E_ a kg =y L .
G = XX = gl — (2D 4V« i)

1-v

c

Via the Lorentz force, the amplitudes of electric and magnetic fields (not
valued in position space) can be observed as position valued-amplitudes of a
charged mass point motion.

6.4 Electrodynamics as U(1)-Representation

The “arbitrariness” of the vector potential A*¥ —— A¥ + 9%y can be inter-
preted as a transformation behavior with respect to a real 1-dimensional Lie
group with Lie parameter (z) for each spacetime translation. The symmetry
connected with such a transformation group becomes the cornerstone for un-
derstanding the origin of the electromagnetic interactions which are necessary
for the compatibility of the related “internal” operations with translations. Re-
versing the historical order of the arguments, the local internal transformations
can be used to establish the corresponding gauge interactions. In addition to
reference frames, equivalent with respect to external operations, there are also
internally equivalent reference frames.

There are two locally isomorphic real 1-dimensional Lie groups, the non-
compact simply connected dilation group D(1) and the compact phase group
U(1). Weyl, after a wrong attempt with the dilation group D(1), whence the
name “gauge”, and London initiated the interpretation of electrodynamics as
U(1)-actions, operating Lorentz compatibly with the translations. The elec-
tromagnetic vector current J, is, up to a normalization constant g > 0 and the
square root of Planck’s unit, the position distribution of the Lie algebra repre-
sentation of an electromagnetic group U(1), coming as internal (“chargelike”)
group together with the external (“spacetimelike”) Poincaré group, of which
the gauge function 7(z) is the translation-dependent Lie parameter

Je = gVRy, logU(1) i +——iQ =1 [d*xJo(x),
U(1) 2e" +—— €97 (if defined).
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With J having a position density unit, the charge () and also the Lie parameter
~ has trivial unit 1, replacing the old ﬁ
The simplest example for a U(1)-representation is given by the action on a
non-Hermitian scalar particle field (®,®*) with integer U(1)-winding numbers
+z:
®— P, B P, 2 7.

In a quantum field theory (chapter “Massive Particle Quantum Fields”) (®, ®*)
come with dual partners (®},®;) and commutators in analogy to [ip,x]| = 1,

(i®F, ®](7) = [i®x, *](F) = 005(%) with [®] = L, [®;] = L,

and the U(1)-current

G
i = @B YR = ) 00(7) — —204(7),
Q.9}](7) — —=0;(7)

The electromagnetic interaction is described by the Lagrangian

L(A,F,® &) = F, 24004k | Bl o R AT, 4 BL(®, ®7).

2 4

The constant g and Planck’s unit A will be used to renormalize the gauge
fields, the field strengths, and the current with units of a position density for
a length, an area, and a volume respectively

= L 1 _ 1
A - \/EAA7 F - g\/ﬁF7 J - g\/ﬁJ7
with [] =1, [A] =1, [F] =%, [J =1,

with U(1)-gauge behavior
AR — AF + Oy, Fyy — Fyy,
®— P, &, — P, = T — Ty
The U(1)-gauge invariant Lagrangian

YU LA F,®, ;)

comprises the individual free Lagrangians

L(AF) =F, 2 A0l g it
L(®,&;) = &0 + .00 — &;D" — m2Dd*,

and the interaction
AFJ, = z’zAk(<I><I>z —O*Py).
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The constant g? is the electromagnetic coupling (Sommerfeld’s fine struc-

ture) constant, experimentally given by
2 1 2 1
=~ s 9™ oo

It is the normalization of the gauge fields. All electromagnetic interactions are
quantitatively determined by the value of the gauge coupling constant g and
the representation characteristic integer U(1)-winding numbers involved. For
example, the Coulomb potential between two mass points with integer charge
numbers as U(1)-winding numbers is given by

. 2
%V(Z’) =21 47(:'5' 22, 2172 e 7.
The defining charge U(1)-representation comes with charge number z = —1
attributed to the electron.

Historically and also conveniently for everyday use, the electron charge
number is expressed in a charge unit, e.g., with the coulomb, with the value
e. Thus the winding number z is replaced by a charge @,

2=9eZ= V(D) = K9G

4dme? |7

The historical use of the dielectricity and permeability constant for the vac-
uum leads with the fundamental charge to the fine structure constant parame-
trization

heg® _ 1 _ 2 g2 _ &
2 T e po’ 4m T 4dmeohe”

The unit coulomb, historically motivated by an electrolysis involving silver
atoms,? is defined by an experimentally convenient value for pig = 4 x 10_7mc—k2g
leading to the U(1)-number for one coulomb —< ~ 6 x 105

The field equations for the charged scalar particle fields,

OFAT — TAF = g?FIF, IFy; =Ty,
(0 — izAND —®F, (0" —izAN)®, — —m?®,

contain the covariant derivative, which implements simultaneously the ac-
tion of spacetime translations and internal Lie algebra via the sum of space-
time derivative and U(1)-gauge field, multiplied by the U(1)-eigenvalue. A
covariantly derived particle field keeps a homogeneous U(1)-behavior with
translation-dependent Lie parameters v(z), e.g.,

Ak »—>A’“+8’“7,
® — P,

U(l) : } = (0F —izAF)® — e7(0% — izA*)®.

The electromagnetic interaction can be written with second order deriva-
tives for the gauge and the scalar fields:
L(A) = —ﬁ(@jAk — OFAI)(0; Ak — OLA),
L(® A) = [(Or —i2A)®)][(0F + izAF)®*] — m*®P*.

2The Faraday charge is given with Avogadro’s number by QFaraday — yAvogadrog 965% and
the atomic mass number for silver by Z(Ag) ~ 108.
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The additional factor 2 in the current with first order derivatives

—ERA) = T = i2(0, D — B* O, @) — 2:° A, BD

does not arise in the Lagrangian. This statistical factor is a consequence of
the power-2 gauge field product A*A7 in the Lagrangian.

By the current-gauge field coupling A*J}, the global internal U(1)-invariance
(first kind gauge transformation) ®(z) — ¢*7®(z) is embedded into a lo-
cal invariance (second kind gauge transformation) ®(x) —— ¢*7@®(z) with
translation dependent Lie parameters.

Quantum electrodynamics describes the electromagnetic interaction of char-
ged particles in quantum fields, e.g., of charged spinless pions in ﬁelds (®, D)
or of positrons and electrons with charge number z = +1, spin 7, and mass
m? > 0 in a Dirac field ¥:

Ui 0, U e, 2 e,

{\I:,\I:}(f): +95(7) with [¥] :[\II} :{ %11?],( | .
\Iw,c 3 Q. Y|(Z) =29(2),

o= Q= feae) = {100~ gl

Its Lagrangian includes the free Lagrangian and the electromagnetic interac-
tion

L(A,F) — ARJ, + L(¥), _
with the field equations

(OF — izAF) Uy, = imW¥, (OF +izAF)¥ = —imW.

A pure gauge as derivative of a “sufficiently smooth” Lorentz scalar field
ia(z) € logU(1) or as internal derivative of a translation-dependent group
element €@ € U(1) has trivial field strenghts, i.e., commuting translation
and gauge action

iAF = i0Fa = (8’@6”)6’” = Fik = 9FAT — JTAF = 0.

A pure gauge can be absorbed by a redefinition of the local U(1)-phase prop-
erties of the fields

(0F — iz0%a)® = e*dke~ @,

O P, ar—— a+y = e P — TP,
A sufficiently smooth gauge field on time ¢ — A (¢) can always be written as
a pure gauge

iA = (die*)e™ with a(t) = ["dTA(T).

The analogous procedure for spacetime is dlfferent because of the nontrivial po-
sition degrees of freedom. There arises a path-dependent line integral, familiar
from the classical charged mass point above:

iA* = (9Fem)e™ with a(z) = [0 dX;AI(X).
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6.5 Quantum Gauge Fields

The canonical quantization for a U(1)-gauge field with the field strengths as
dual partner,

[iFkj, A'J(T) = 00080,050(Z) = [iFoa, A")(T) = 030(),
QQFQO — aOAa _ 8&A0

does not involve a dual partner for the field A°(x). In contrast to a theory
with massive vector fields Z* with 9,Z* = 0, the dynamics yields no equation
for the time translation action 9yA°, i.e., it does not determine the Lorentz
scalar 9yA*. The Lorentz scalar dual partner (chapter “Massless Quantum
Fields”) related to the time derivative is the “gauge fizing” field S

[iS, Al|(Z) = §,6(%) = [iS, A%(Z) = §(Z).
A Lagrangian involves a dimensionless “gauge fixing” constant ¢?\ € R:

L(A,F,S.J) =F),LAZ0AL | go Ak 4 g2<F’”'Tij - )\%2) — AFJ,,

OFAT — AR = g’ FIk, ;

aAr =gxs, VT OS =0k

With the introduction of a duality-pairing-completing scalar field S the

translation-dependence of a classical gauge transformation is drastically re-
duced for a quantum gauge theory to a “massless” Lie parameter field:

AF— AF + Oy, Fyj— Fyy, S+— S, J— Jp
with 9%y = 0.

In a quantum gauge theory, the spacetime dependent group parameter is
interpreted as Fadeev-Popov field to be added as Fermi twins to the Bose gauge
field (appendix).

6.6 Representation Currents

Gauge theories connect spacetime translations and internal Lie algebra oper-
ations. With dual bases and Lie bracket,

lag, 5 LERY: (I, =4, [10"] = el

the Lie algebra is represented in endomorphisms of a vector space and its dual
W, W = C" with dual bases (¢g,€7) = 0} = e(e7,¢é5), € = £1 (Fermi and
Bose):

D:L— AL(W), [*+— D(I*) = De’ @ &,
LxW —W, laoeﬁ:Dage"V,

D:L— ALWT), 1*+—— —D(I")" = —Deés @ €,
LxWh — W' 1"ee, = —-D"eg,
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e.g., the Lie algebras of U(1) and SU(n) with the irreducible and defining
representations in a Pauli basis respectively:

logU(1) — AL(C), D(I°) iz, z€Z,
logSU(n) — AL(C"), D(%) =%

Pauli matrices: {r(n)* |a=1,...,n% —1}.
For spacetime fields the Lie algebra representation is given by the charges
19— iQ" =i [ d®xJi(x), [iQ,iQ"] = eiQe.

They are position integrals over the currents, which are defined with the quan-
tization opposite (anti)commutators - exemplified by

l field ‘ quantization ‘ current ‘

scalar i ~ ~ . 3 {®7,i®)3}
(Hermitian) [k, 7)(7) = 63526(‘76) Wi = Da{* #

scalar (@75, 27](7) = [®],25](@) iJa — paB {®7,i®f 5} +H{—i®] @5}

(complex) = 63006(2) kT2 2

vector . . I . 3 {A%,iG] .}
oy | HGL AL = sjopopafstot@) [ aap = ooy BEELL

Weyl . . . 3 (17 o,15]

(M{) {15, V1) = 530°8(2) 3¢ =pef = Tks

Weyl R 05/ . [rYop.r5]

(ight) )@ = 93e%(@) | g =Dy

Dirac {a U E) = 61706(Z iJ¢ = D“‘Bi[qn%’¥ﬂ]

B8 }(I) =957 (z) W = vy )

The adjoint action on the fields reads

Q" @) = DU, [iQ", @] = DV,

The simultaneous external-internal action (covariant derivatives)
(0F68 — DUARDY, (9760 + DI AE)®,

is implemented by gauge vertices (gauge interactions). They are Lorentz com-
patible spacetime distributions of the power-three Lie algebra representation
tensor:

D= [,®D(") = I, ® D¥ & ®¢é,
implemented by A gy E oAb peg BTRY

Gauge vertices with their Fermi twins, the Becchi-Rouet-Stora vertices, are
discussed in the appendix.

6.7 Lie-Algebra-Valued Gauge Fields

Gauge fields go with a Lie algebra and its currents: The number of gauge
fields is given by the Lie algebra dimension L = RY, they transform under the
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adjoint Lie algebra representation (for field strength F® and the currents j°, J?)
and its dual coadjoint representation (for gauge fields A.)

ad : L — AL(L), adl®=e®c®1,  I°— el°,
ad : L — AL(LT), adl® = —e®l, @1°, [, — €l

The gauge field currents are products of the dual pairs (A,, F%):

o= AJFL Qe (FL I I = (5 09),
Q* =[x (j5+Jp) [iQ%, A¥] = —e®Al.

With the adjoint Lie algebra representation the gauge field self-coupling is
nontrivial only for a nonabelian Lie algebra.
In the Lagrangian for the gauge field sector

akAfiajAk F; Fkib 1 ke
— C c c °J a
L(AF) =Fj,~— + g — 3 ALk

the statistical factor § in $AFj takes into account the tensor power 2 of the

gauge field AV A in the interaction. The current arises by gauge field derivation

j al ce
wALALpe  03AL
c 2

kji> OAEL

1 Aksa _ _ab AJTC
Ak =€ = e Ay Fy.

In a second order derivative formulation, there occur derivatives and cubic
gauge field products in the current

ji = Alet(0pAS — ;A% + e ALAS + 61,;0'Af).

For the gauge field normalization there has to exist an invariant nondegen-
erate symmetric bilinear form of the Lie algebra and its dual,

LT < LT — R, I|l) = Kap = Kb, = :I:%éab (Sylvester basis)

e.g., the Killing form for a semisimple Lie algebra like SU(n), n > 2, or a

squared linear form for an abelian Lie algebra like U(1). In the following with

compact gauge group U, the normalization kg, = ,%Qéab is assumed and Lie
U

algebra bases with totally antisymmetric structure constants 249 = —eoe,
The gauge field coupling constant in the field strength square is the normaliza-
tion ratio of the represented internal Lie algebra L = logU and the external
Lorentz Lie algebra log SOg(1,3) with its Killing form n A 7, normalized by

2
K50,(1,3)"
(FIF) = g* dan™ " Fy, ¥y, = g°Fi, Fe,
P = ”%(‘;%1,3).

The Lagrangian for the gauge field sector

6kAJ78jAk7€abAkAj F¢ F)ZJ
— 4 c c” Cc afdp 27 kj
L(A,F) = Fg, : + P
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gives the field equations

OFAI — DAL — PAFA] = g?FIF | OF}, + e AJF;, = 0.

Via the current of a field E : R* — W, e.g., of a lepton or a quark field,
there occur, in a gauge vertex, finite-dimensional faithful “matrix” represen-
tations of the Lie algebra L ¢ W ® W7 (for short D(I*) = %),

gauge vertex for E: AJ(z) l“g E7(2)E} ().

Thus the gauge field and the current can be used as valued in the Lie algebra
and its dual [, € LT ¢ W ® W7 (denoted by underlining):

R —logU, o+ Ala) = Aj()l, v
R4 —><10gU)T7 T (Ejlmikujk)(m):(F?kﬂ]kaj@(x)lm

e.g., for U(2) in the defining Pauli representation

AolotA7 i (Ao+As Ay —iA
logU(Q) A = 14012; = %(AeriAz Alg fA,f)'
For each translation z € R*, there is a transformation of a Lie algebra basis
with the gauge fields the (4 x d) matrix elements (A{l)ﬁ;?”dg

L31%— Al(z)l*=A’(z) € L.

The transformation leads to Lie algebra valued vectors with Lorentz represen-
tation, not necessarily to a Lie algebra basis.

Written with Lie-algebra-valued fields, the Lagrangian and the field equa-
tions involve two products: the Lie algebra dual product (I,,1") = 6? (via the
trace in W®W7) and the invariant bilinear form of the Lie algebra (I,|ly) = dp:

L(AF) = (y;, A =24 4 2R [FY),
akA] _ aJAk _ [Ak’AJ] — ngJk , aJEkj + [A]aEkj] =0.

The action of the Lie group u € U = expL C GL(W) on a field E € W
and, as (co-)adjoint action, on its Lie algebra and its dual leaves the Lagrangian
invariant:

uw: W —1MW, E —uE,

Adu: L — L, I —suolout,
Aj »—>qu3'01¢*1,
Adu: LT — L7, [ —aolou™, u=u'T

) )

- -~ 1
Ejk »—>uoEjkou .
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6.8 Lie Algebras of Spacetime
and Gauge Group

The Lie algebra of the group R* x U with spacetime translations and internal
operations is constituted by spacetime derivations and group U-derivations.

The directed Lie group logarithms, via Lie group parameter derivatives
0" = % with a local (at the group unit) exponential Lie algebra parame-
trization of the group U (chapter “Spin, Rotations, and Position”),

log” : U — log U, u(l) = ™! +— I*(u) = (9"¢)oe! = <fig'aa>

e [ua]+wlan+m AL
at 1eU: [(1) =1,

define, with the Lie-Jacobi isomorphism, a Lie algebra basis {{*(u)} at each
group element:

u, :log U — log U, 1%+ 1%(u) = (w1, (u)§ = (I, (0°u) o u™),

e.g., for hyperisospin U(2),

log U(Q) S l(u) (0 ;01 2 ") o) e—ﬂolzfﬂ?
11, € logU(1) for 0 = a»y ;
_ [5 s1n'y 4 6abc”’/ycl ?YOS’Y + ’Y:z{'Yb(l — %)]%Tb S log SU(2)
for 0 = 01

The Lie bracket at this group element is the antisymmetric derivative

0°1°(u) — 0°1°(u) = [I*(w), I"(w)] = (w.)2 [I,1%] (u.)g.

With the translation-dependence of the Lie-algebra-valued gauge fields,
R* 5 2 — AJ(x) € logU, the Lie parameters for the gauge group U also
have to be parametrized by translations (“there is a U-transformation at each
spacetime point”):

R — U, 2+ U(z) =u(y(z)) = @ U=wuonr.
The spacetime derivatives 0/ = % of the group U define pure gauges,
J

t—logU, z+—U(U(x)), U(U)=("U)oU".

The transition from Lie parameter derivatives (Lie algebra bases) to space-
time derivatives (translation bases) is given by the Jacobi transformation
(aj’}/a)] 0,1 2 3

logU > VF(U) = (37)I%(U) = (v,) (ua)l> = (UL,

e.g, logU(2) 5 (070)512 + (37a) 0™ + €02 557 4 g (1 — =) 70,
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As a (4 x d) matrix, it can be bijective only for Lie algebra dimension smaller
than spacetime dimension d < 4, e.g., for hyperisospin dimg U(2) = 4, not,
however, for color dimg SU(3) = 8,

rankgdv,(r) < min{d,4}.
Also for pure gauges, the Lie bracket is the antisymmetric derivative
OB (U) = FINU) = [IH(U), P (U)] = (U)elle, 19(U.);

or, in a differential geometric language, pure gauges have a trivial curvature.
The group U-action on pure gauges is represented by an affine group

U X logU:

UVeU: U(V)rl(UoV) =3 (UoV)o(UoV)!
=(U)oU 4+ UolI(V)oU™?
— AdUB(V) + B (U).

The Lie-algebra-valued gauge field have the same homogeneous and translative
contributions

Al — AdUAT +1V(U), Al — (AdU)A] + (U.)207 .

The gauge field transformation is also suggested by its expression, analogous
to a pure gauge, with a group element in the exponential path-dependent form

a(z) = [LdXANX): Al = (Fer)oe @ — (U oe2)o (Uoed)™h,

The field strengths transform homogeneously:

8/@Aj _ 8‘]Ak _ [Akaéj] _ QQEjk N UOQZE]'IC o Ufl.

With the gauge vertex A*(1j,4J},) for the interaction there is an invariance
under gauge transformations with translation-dependent group elements: The
covariant derivative has a homogeneous transformation behavior

E+— UE, PE +—— U E=U[0" + I (U)]E,
(0 —ANE +—— U(0" — AY)E.

For quantum gauge interactions the spacetime-dependent U-transforma-
tions with their geometric interpretation in a classical field theory are reduced
to “global” U-transformations and only one nilquadratic BRS-transformation
for which the Fadeev-Popov field are the “quantum-field-valued Lie parame-
ters.” This BRS-transformation has its origin in the nilpotent part of the re-
ducible, but nondecomposable generator for the spacetime translations acting
on relativistic massless fields (chapter “Massless Quantum Fields”). It is dis-
cussed in more detail below. In a quantum theory, the geometric interpreta-
tion of the BRS-transformation as “local” U-transformations remains possible
only for the particle interpretable degrees of freedom, not, however, for the
nonphotonic degrees of freedom of the quantum gauge field A and not for the
Fadeev-Popov degrees of freedom. The nonparticle degrees of freedom are not
acted on with a covariant derivative.
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6.9 Electroweak and Strong
Gauge Interactions

The standard model of the elementary interactions in Minkowski spacetime is a
theory of compatibly represented external and internal operations. It embeds
the electromagnetic interaction for a Dirac electron field (quantum electrody-
namics) into the electroweak and strong gauge interactions of quark and lepton
Weyl fields. The fields involved are acted on by irreducible representations
[2L|2R] of the Lorentz group SL(C?) and irreducible representations of the
hypercharge group U(1) (rational hypercharge number in [y]), of the isospin
group SU(2) (integer or halfinteger isospin in [277), and the color group SU(3)
respectively as given in the following table:

field symbol [ SL(C?) [ U(1) (2)

} [2L|2R] ] \ 277 \ [2C1, QCQ]
left lepton 1 [ [1o] -1 1 0,0]
right lepton e 01] —1 0 0, 0]
left quark q 1|0] z 1 1,0]

right up quark u [0]1] 2 0 [1,0]
right down quark d [0]1] 7% 0] [1,0]
hypercharge gauge [[ Ao [ [1[1] 0 o] [ o0 ]

isospin gauge [ A ‘ [1]1] 0 12] ‘ [0, 0] ‘
color gauge | G [ [11 0 o [ LI
Hge | @ [ o0 [ 1 [ 0 [ 0.0 ]

the fields of the minimal standard model

The electromagnetic U(1) is embedded into the product of the abelian
hypercharge U(1) and the nonabelian isospin-color group SU(2) x SU(3),

U(1) = U(2 x 3) = U(1) 0 [SU(2) x SU(3)] = TLEHE-SUE),

The fields are acted on homogeneously by a direct product of Lorentz and
internal transformations

(1 —uy®sl,  uy € U2),s € SL(C?),
e —u ®Ss.e, u; € U(l),
q —us®s.q, ug€ U(2x3),
u —uz3®su, wuze U3,
U@2x3)xSL(C?):V —V, { d ——u;®sd, wu;eU(@3),
Ay, — AA, A € SL(C?)/1(2),
A — 030 AA, O5€U(2)/U(1),
G — 0s®A.G, OseU3)/U(1),
(@ — u3.D.

With the exception of the Higgs field, the isospin SU(2)-representation is
a subrepresentation of the Lorentz group SL(C?)-representation. This is a
characteristic structure of induced representations that start with the two-sided
regular representation of the doubled group (chapter “Harmonic Analysis”).
Both factors in the internal group U(1g) o [SU(2) x SU(3)] are centrally
correlated, i.e., the representations of hypercharge U(1) are related to the
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representations of the SU(2) x SU(3)-center, the cyclotomic group 1(2) xI(3) =
I(6) (hexality = two-triality, “star of David”). All U(2 x 3)-representations

[y]|2T; 2C1, 2C5] carried by the standard model fields with the isospin and color
multiplicities

dSU(Q) — 1 + 2T, dSU(3) — (]. + 201)(1 + 202)(1 + Ol + Cg)
can be generated by the dual defining representations of U(2 x 3),
u=[%|1;1,0], @=[-3#|[1;0,1],

n m

as seen in the powers /\u ® /\12 (all fermion fields are taken as left-handed)

field U(2x 3) (n,m) [ n—m 6y 6y
H [y||2T;2Cy, 2C5] \ = 6y mod 2 | mod 3 ‘

1 [—11;0,0] (0,3) -3 1 0

e [1]]0;0,0] (6,0) 6 0 0

a [£111;1,0] (1,0) 1 1 1

u* —21]0;0, 1] (0,4) —4 0 -1

d* [£1]0;0,1] (2,0) 2 0 —1
Ao [0[]0; 0, 0] (0,0) 0 0 [ 0 ]
X [0]12;0,0] (1,1) 0 o [ o |
G [0[]0; 1, 1] 1,1) 0 o [ o0 |
[ [ oo [Go[ 8 [ T [ 0 |

The central correlations of the internal symmetries are expressed by the modulo
relations

6y mod 2 =27 mod 2, 6y mod 3 =2(C, —C3) mod 3
y - dsu) - dsu) € Z.

The nongauge fields with the free Lagrangians
left fermions: L(l) = i150%541* +iq’ 0%6rq®¢, a=1,2; c=1,2,3,
right fermions: L(r) = ie*0*oze + iud*o,uc + id*0%0;de,
Higgs: L(®) = ®&; 0"®°* + ®20"®* — @b~ =~ (9+d%)(0,D),

interact with the four gauge fields Ay and A for the electroweak interactions
and the eight gauge fields G for the strong interactions,

AL —0I AL o Fy,;FrI

L(AO) - Fk] 2 _ +gl b4 k‘7
— . 6kAZ—8-jAk—6abAkAJ Fk'Fb]
L(A) =y, ZALRAEAA L
ki _ajck _ ABk (v FBFF

_ pC "G GE—e" GGy 27 kji" B

L(G) =Fy; 5 T3

The indices differentiate between the different Lie algebras in the case of the
field strengths F. The structure constants are taken in a Pauli and Gell-Mann

basis
logSU(2): {i7%%)a=1,2,3, =12}, [57% 57 =€t
logSU(3): {IA®|A=1,...,8; b=1,2,3}, [2AM1IAB] =¢APinC
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The gauge field coupling constants are the normalization ratios of the in-
ternal Lie algebras and the Lorentz Lie algebra

_ ("%(1)7“§U<2)’”§U(3>)
= X .

(

b

K=
o
IS o

Ks0¢(1,3)

The gauge interactions of the matter fields,
L(Aq) + L(A) + L(G) + L(1) + L(r) + L(®) — (ALJ, + AkJe + Gk ),
involve the currents for the nongauge fields
logU(1):  Jy = —%lékl* 6qakq —eoe* + uaku - fdakd*
——(<I>*<I>k — <I><I>*)
logSU(2): J¢ = 15, 51" + q5,5q"
(’L(I)T o — Z(I)kAz d*),
logSU(3): Jf = aondyq* + uoyssu* + dog i d*.

The gauge field strengths equations are given with the corresponding cur-
rents
8ijj + ij x Al = Jk

The spacetime translations of lepton and quark come with internal gauge
field actions

(0% + LAE —iT AM)g;, =0, (0 + iAf)ed, =0,
(0F — LAE —iT- Ak — sz’ﬂ fack =0, (0" —FAf - z—G’“)uak =0,
(0" + IAL — X Gh)do, =0,

as well as the Higgs field
(6k . Z»12A(]§—;-TGA§ )(I) _ (I)k’ (8k lekJrT“Ak )q)k —0.
For the scalar Higgs field the second order Lagrangian reads

L(®,A) = (0" — 700 0)( (0 + itehu ) @)

6.10 Ground State Degeneracy

Obviously, for a dynamics acted on by and invariant under a group U, the in-
dividual solutions, e.g., the classical time orbits in position or the time trans-
lation and rotation eigenvectors in quantum mechanics, do not have to be
U-invariant. The classical elliptic planetary orbits as individual solutions of
the SO(4)-invariant Kepler Hamiltonian (chapter “The Kepler Factor”) are
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not SO(4)-invariant, not even SO(3)-invariant. However, the set of all so-
lutions, characterizable in the classical example by the set of all initial or
boundary conditions, can be decomposed into irreducible U-orbits (equivalent
solutions) with an orbit-characterizing fixgroup. For example, for the classical
Kepler dynamics the fixgroup for ellipses is SO(2) C SO(4) and for hyperbolas
SOo(l, 1) C SOo(l, 3)

In a quantum dynamics, a ground state vector |Q2) is defined as a solution
(eigenvector) with minimal energy M. The ground state vector orbit in all
energy eigenstate vector of the dynamics (Hamiltonian),

{ground state vectors} = U|Q) = U/Ug,

is called degenerate for a proper fixgroup Ug # U, i.e., for a nontrivial orbit
of equivalent ground states (degeneracy manifold) U/Ugq # {1}. Without loss
of generality the actual ground state vector chosen |€2) can be taken at the
unit of the acting group U, i.e., as starting point of the ground state vector
orbit [©2) € U|Q2). By the choice of one special ground state for Ug # U there
arises a symmetry breakdown (rearrangement): Energy eigenvectors, defined
with respect to the chosen ground state, are acted on only by representations
of the ground state fizgroup or invariance group Ugq, i.e., U-representations
D of the dynamics (interactions) are decomposed into subgroup Ugq-repre-

Ugq
sentations for state vectors (particles) D = @dﬂ A transmutation from

the “large” interaction symmetry U to the “littie” ground state and particle
symmetry Ug involves a harmonic analysis of the degeneracy manifold U/Ug
(chapter “Harmonic Analysis”). The eigenvectors (particles) are “stripped” or
“frozen” or “bleached” with respect to the degrees of freedom in U/Uj,.
There are totally symmetric ground states, Ug = U, i.e., lowest-energy
states that transform trivially under the interaction group, e.g., an SO(4)-
scalar for the ground state in the Kepler potential V() = —% or an SU(3)-

52

scalar for the harmonic oscillator V(7) = %-.

The simplest example for a ground state degeneracy Ug # U is given by
a Lagrangian for a mass point with space reflection symmetric potential, i.e.,
with the discrete interaction symmetry group U =1(2) : x < —x,

L(x) = 2(dx)? = V(x), V(x) = L(x? — M?)%, go, M > 0.

The ground state orbit is characterized by two reflection-related potential min-
ima, time-independent:

. V(x) = min = (x?) = (Qx*|Q) = M?,
I(2) :x— =x, { ground state vectors: {|Q) | (x) = (Qx|Q) = £ M} = 1(2).

The ground state fixgroup is the trivial group Ug = {1}. An expansion around
one minimum, e.g., (x) = +M, rearranges the [(2)-representations

x(t) =M +x(t) = L(x) =
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There is no symmetry under x <> —x. After rearrangement with respect to
the chosen ground state there arises, in lowest order, a harmonic oscillator
L0(x) = §(dix)? — 230x = w} = @

m

Embedding the discrete I(2)-symmetric example into a continuous symme-
try with two mass points

2 2 _ . L(Z) = %(dtz)(dtz*) - V(Z>7
X°+y =2"z, z=X+1y, {V(z) :%O(Zz*iMQ)Q‘

The minima of the potential are degenerate with the U(1)-invariance group of
the interaction

V(z) = min = (zz*) = M?,

. iy )
U(1):2z+— ez, { ground state vectors: {|Q) | (z) = e M} = U(1)

The ground state circular orbit parametrizes the degeneracy manifold by the
U(1)-degree of freedom in z. The time-parametrized U(1)-Lie parameter
t — 7(t) is called the Goldstone degree of freedom. Thus the Lagrangian
is rearrangeable:

z=¢"R = L(z) = 2[(dR)* + R*(dy)*] — L(R* — M?).

The choice of one ground state from the U(1)-degenerate minima decomposes
the U(1)-orbit into points. The expansion around one minimum gives, in addi-
tion to the dilation degree of freedom with nontrivial frequency, the Goldstone
degree of freedom, whose trivial frequency reflects the degenerate minima ( “flat
oscillations”):

— L (R2 +2MR)?

R(t) =M+ R(t) = L(z) =

Via the Goldstone degree of freedom, the degeneracy manifold, here the
group U(1) and its tangent space, here the Lie algebra log U(1), have a time
parametrization

R — U(1), t — e = 20

zz* (t)

R —1logU(1l), t — (die")e™ = dyy(d,e)e ™ = idyy.

)

The field-theoretic distribution to spacetime translations R* implements
a U(1)-degenerate ground state by an appropriate potential for a complex
Lorentz scalar field ¢ : R* — C:

L(®
V(@

U(1) : p— ey, V(@

) = 3(0°9)(0;%%) — V(®),

) — %(@@* o MQ)Q,

) = min = (®®*) = M?

d state vectors: {|Q) | (¢) ="M} =2 U(1).

groun
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It leads to the rearrangement of the U(1)-degree of freedom with the Goldstone
field z — ~(z):

® = "R = L(®) = 3[(0"R)* + R*(07)?] — L(R* — M?)*.
Expansion around the chosen ground state gives a massive radial field R for

the dilation degree of freedom and a massless Goldstone field ~:

2 — M2
R(z) = M + R(z) = { Mg T
my = 0.
Via the Goldstone field the ground state manifold and its tangent space,
i.e., the Lie parameters, have a spacetime translation parametrization

R4 U1 iv(z) _ __ o)
- ( )7 Tr—e oo )

R* —logU(1), z+—— (de7)e ™ = dy(d,e)e ™ =idi.

)

If the degeneracy transformations, here U(1), are gauged, there are Lie-algebra-
valued translation dependent fields:

L(®,A) = (0 —iA9)®][(9; +iA;)®*] - V(D)
+Fk.8kAj—8jAk g F;Fki
J 2 4 )
R* — <1ogU(1), u), logU(1)>, T — (z'Aj(x), ¢@), iaj’y(ac)).

The stripping of the local U(1)-property by ¢(*)

L(® A) = 1[("R)*+ R*ZIZ;] — % (R* — M?)?
Jrij orZ 2@ zZ* +92FkJ4F

leads to the gauge-invariant combination of gauge field and a pure gauge which
is given by the derivative Goldstone degree of freedom

logU(1) 2 iZ/ =iAJ + (de™)e" = i(AT — §y) — iZ7.

With respect to the rotation structure of the particle involved, the Goldstone
mode provides the third J;3 = 0-component for a massive SU(2)-spin J = 1
particle field in addition the the two SO(2)-polarization components J; = +1:

R(z) =M+ R(z) = L(®,A) = L(O;R)?+ 272 - LM*R* + -

O*ZI — I Z* o Fy F*I
+ij 3 +g J4

2 _ 2 2 _ 29
= my = goM*, mz=m7g".

In the electroweak standard model (more details below), a potential for a
scalar Higgs field ® with a “large” internal interaction U(2)-symmetry defines
as minimum remaining “little” particle symmetry the electromagnetic fixgroup
U(2)q = U(1),. The ground state degeneracy is given by the electromagnetic
orientation manifold U(2)/U(1); (chapter “Spacetime as Unitary Operation
Classes”).
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6.11 From Interactions to Particles

The interactions in the standard model of elementary particles are invariant
with respect to the external Poincaré group and the internal hypercharge,
isospin and color group,

interaction symmetry: U(2 x 3) x SL(C?) X R*.
—_— Y——
internal external

The symmetries for the particles are
U(l) x SU(2) xR*  massive,
———

particle symmetry: internal external

——N—
U(l) x SO(2) x R*, massless,

where Wigner’s definition for free particles as irreducible Hilbert representa-
tions of the Poincaré group is used (chapter “Harmonic Analysis”). As familiar
from eigenvectors in quantum mechanics, particles are constructed as eigen-
vectors with respect to a maximally diagonalizable subgroup with the corre-
sponding weights the eigenvalues for the operations involved. For example,
eigenvectors for electromagnetic U(1)-operations are characterized by charge
numbers z, spin SU(2)-eigenvectors with respect to an SO(2)-subgroup (third
spin direction) by eigenvalues |.J5| < J for a spin (1 4 2.J)-plet and translation
eigenvectors by momenta ¢ on the hyperboloid for the invariant mass ¢> = m?2.
The state vectors are |z,.J, m?; Js,§) for massive particles and |z, 4.J3; ) for
massless ones.

With Wigner’s particle definition, confined quarks are not particles; they
do not have a mass as invariant for translation eigenvectors.

The word symmetry, in connection with multiplicity, is used in its strict
sense: For example, as particles, proton and neutron may be called an isospin-
induced or isospin-related doublet, but not an isospin-symmetric doublet; with
their different masses there is no SU(2)-symmetry connecting those two par-
ticle vectors. Or, more obviously, the three weak bosons {Z° W*} and the
photon ~ do not constitute an isospin-symmetric triplet-singlet; there is no
isospin symmetry transformation left between them.

The transition from the “large” internal interaction symmetry to the “lit-
tle” internal particle symmetry necessitates a discussion of the problem of
maximal diagonalizable subgroups of the interaction group, which will be
done in the appendix (Cartan tori). The internal symmetry reduction has
two aspects: nontrivial color SU(3)-representations are confined; no nontrivial
color-induced particle multiplets have been seen in the particle regime. Non-
trivial isospin-induced muliplicities remain visible in the case of the hyperchar-
ge-isospin breakdown, which is asymptotically reduced to an electromagnetic
U(1)-symmetry.

6.11.1 Electroweak Symmetry Reduction

With respect to the electroweak action group U(2), the definition of parti-
cles requires the transition from the hyperisospin interaction symmetry to an
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abelian electromagnetic particle subsymmetry. Taking into account the non-
trivial central correlation U(13) NSU(2) = {£1,}, a Cartan subgroup of U(2)

19473

is U(1)y x U(1)_ with e e g U(1)+ (projective generators). For a ground
state fixgroup U(1),, as anticipated in the chosen hypercharge representa-
tion numbers, the electromagnetic charge number is the sum of hypercharge
number and third isospin eigenvalue

2=y + T3

Asymmetric boundary condition are implemented by choosing from a
ground state manifold U(2)/U(1); (Goldstone degrees of freedom) one repre-
sentative and hence violating (stripping, rearranging) the U(2)/U(1) -related
transformations in hyperisospin U(2). The symmetry rearrangement is imple-
mented by an ad hoc scalar field, the Higgs field @ in the defining U(2)-repre-
sentation, with a Higgs potential

V(@) = 2(2*® — M?*)?, gy > 0.
The minima of the potential
V(®) = min = (®*®(2)) = (Q®*®(2)|Q) = M?

give the breakdown characterizing mass unit and, taking the appropriate rep-
resentative, leaves an electromagnetic U(1), (ground state fixgroup) as the
remaining symmetry,

(@(2) = (Q0(2)|) = () = 2570

The U(2)-asymmetric effects in Weinberg’s original “Model of Leptons”

L(@) = [0~ iM0)0)(0, + At Ain)e ] — V(@)
—gc(e@l* + 1d*e*)

come in the particle structure of the U(2)-gauge fields via the covariant deriv-
ative of the Higgs field and in the lepton particles via a Yukawa interaction.
The ground state value of the Higgs field gives the mass contributions

L(@) — M2 tr 12;7-3 (A0122+1i7"“)2 _ Mge(61§ + 126*).

For the lepton fields the U(1) -trivial component (up component in the
isospin doublet, neutrino) remains massless. The electron mass m, for the
massive electron Dirac field ¥, with the down component in the isospin doublet
as left-handed part can replace the Yukawa coupling constant g., both are
theoretically undetermined parameters in the model

massless neutrino: v, = 1! m,, =0,
massive electron: ¥, = (er,er) = (1%,e), m.= Mg..
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In general, a Yukawa coupling for a left-handed isodoublet Q = <gi)

with hypercharge number y and two corresponding right-handed isosinglets
(Ug,Dg) with adapted hypercharge numbers y + % generates a mass term
after the symmetry reduction:

LY'5(®) = —gp(Dr®Q* + Q®*D%) — gv(Ur®*Q* + Q®U%,)

>—(®)
= —mD(DjiDz + DLD;L) — mU(URU*L + ULU;%)
= —mD\IID\IID — mU\IfU\I’U.

&=(®)

Left and right components constitute two massive Dirac fields
\IIU = (UL7UR), \I’D = (DL7DR), mp = ]\49[)7 my = MgU
An SU(2)-index notation for the Yukawa couplings looks as follows:

DRq)Q* = DR(I)a * URQ*Q* = UR‘DEE’@)QQZ.

)

Pairing the left-handed lepton fields 1 = (”L ) not only with a right-handed

er
electron e but also with a right-handed neutrino partner vg, a nontrivial
neutrino mass m, = Mg, is possible. Such a right-handed isosinglet field
vr comes with trivial hypercharge y = 0, i.e., without any internal gauge
interaction (“sterile neutrino”).
The vector-field-related terms in the Higgs field coupling,

M2y = (Aola+AT)? 3oy 179 [(A0)*+(A) 154240 AT
4 4

— N2 (A1)’ H(A2)*+(As—Ao)?
— M 1 2 1 3 0

)

contributes to the free theory of two massive charged vector fields W € {A; 5},

_ OFWI I Wk oF i F¥ | 2 WEW, 2 9ar2

The two neutral vector fields come with the free theory

L(AO A3) — F() 8 A BJAO +F3 6 A] BJ'A§

2
FOFk] FSFJ

The diagonalization from interaction to particle fields, required by the nondi-
agonal mass term, is performed with the Weinberg SO(2)-rotation

2 —qi 3
T+ =S e wih (3 o) (00) = (F).
: 1 1
FodAo+Fs0A; = GOZ+FoA with () =) (%)) = (i7).
g1

sin 6 cos 6 éA

It involves the Weinberg angle § and dual normalizations (, 1) for the coupling
constants k € {g1,¢g2,7,9}. The combination Z = A3 — A, arises as massive
vector field; the massless gauge field A carries the ground state fixgroup U(1).,
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transformations; this defines the particle field normalizations {g,~v} in terms
of the gauge field normalizations and the Weinberg angle:

— _ cosf __ sinf _ 1
Z =A;— A, = pt=3

g2
A =sin?0 As+cos’f Ay = sinf = 2 e

The Weinberg rotation has as analogue in mechanics the rearrangement
of two individual mass point motions 1nto center of mass and relative motion

(chapter “The Kepler Factor”) o + 3

2m1 2m2

reduced mass m. The electromagnetic gauge field A with ¢

2 2
_ D P 3
= -+ o with mass sum M and

o
2’”7 corresponds

to the center of mass coordinate X with free Hamiltonian HO = %7 i.e., the
electromagnetic coupling ¢2 is the normalization analogue to the inverse center
mass ﬁ:
electroweak: (Ao, Ag) — (2, A),
111 1 U(13) o U(1); =U(1); x U‘(]')—a

<92>gz 7279) 1242rr

3
. ) 1,—
eiolat+ys7®)  _ i(vo+7s) 277

. ¢ ' (z1,22) — (2, X),
center of mass: SO(2); x SO(2); =S0(2), x SO(2)_,

(ma, ma|m, M) OB

x et(0—73)

ei@mpitaaps)  — pilz1+w2) % ei(xl_m2)P1;p2

where g%z as orthogonal sides define the electroweak orthogonal triangle, in

1

which the hypotenuse 518 related to Sommerfeld’s fine structure constant

% ~ 137 for the electromagnetic U(1),-gauge field A:
1 1 1
= =5+ 3,
9192 =g, £ =cotf { g 9 93
” v =g+ g,
(L9 9)=
927 g1’y

Multiplication by the area dilation factor vg = g1go gives the similar dual
triangle with the squared lengths (g3, 7|92, v?).

The Weinberg rotation diagonalizes the free theory with two neutral vector
particle fields:

L(Aq, Ag) = i 28080 o g2 Rl NECI
+Gy, oz — dfzk+G2GmGJ Jngzkzk m2 :%MQ.

The electroweak gauge field interactions are rearranged with the neutral
and charged vector particle fields:

Ay =A—sin’0Z A
As —A+00829Z}’ AL F Az = We.

U

In general, one obtains for a left-handed isodoublet Q = DL) with hyperchar-

ge number y and two corresponding right-handed isosinglets (Ug, Dg) with
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hypercharge numbers y + % as interaction with the vector particle fields,

yQoQ* + (y + )UroUj, + (y — 5)DroDjAg + Qo5Q" A
= |(y+ %)‘I’UV‘I’U + (y — %)‘I’DW‘I’D} A
n \PU71—4(y+%)4sin2 9+¢75@U B \IID/_}/1+4(y—%)4sin2 0+MSWD 7
+ UpoD;W_ + D cU; W,
where the parity combinations have been used in Dirac fields ¥y p, e.g., for
\I’U> —
V¥ =UL6,UL 4+ Ugoi Uy,
iWys¥Yy = UL U} — Ugrop U,

This leads for the leptons with y = —3 to

(1161 — ece*) Ay + 1GI1FA
— T 1., 1—4sin? 0+ivs gy
= —\I’e’y\PeA + (EVQO'I/e — \Ile’y#\lle)z
+v.ce;W_ +epor;W.

A “sterile neutrino” remains “sterile,” The quark fields with y = % have the
electroweak interactions

<éq5q* + 2uou* — %dad*) Ao+ qsiqg* A

_ — 8 gin? G4ive = —2 5in2 0+is
- (%‘I’w% - %‘I’w‘l’d)A + (‘I’uvw‘l’u - ‘Pﬂ%ﬂ%)z
+uod;W_ +dou; W

The electroweak model contains many basically unknown parameters, es-
pecially the gauge field normalizations 9%72 and the ground state or electroweak
mass unit M?. The weak breakdown mass can be replaced by the experimen-
tally determined Fermi constant for the four fermion interactions as low energy
limit of the charged weak interaction, i.e., for the propagator

q2 —0: -2 — gT = 33
- 0 GeV
experiment: M ~ 169=5-.

To determine the electroweak orthogonal triangle, one needs one constant in
addition to the experimentally determined fine structure constant, e.g., the
experimentally determined Weinberg angle

(éé!%,g&z) ~ (8.4,2.51.9,10.9),

£ L V9= 0= 2 ~ s
. - ~Y - E— 3
experiment: § . 137 = 7 sin 26 20
sinf ~ 0.23 3= cot®f ~ 3.35,
91
2

9 _ 2my, 1
92 = 2z "~ 35

from which the dual electroweak mass triangle can be computed:

(miy, mimg, m%) = (g3
2

2 2 2 1 1 4 _QIWQ
( | ) ( \,72)2 (\§in29’cos20|1’sin229)q2 J
myy,my|mo, Mz ~ .

,2.4) 378V
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The weak boson masses are in good agreement with the experimental results:

GeV
)

GeV
c 2 -

c

mW~8O TTLZN91

6.11.2 U(2)-Value of the Weinberg Angle

The Weinberg angle involves, via the coupling constants, the normalization
ratio of the hypercharge and isospin operations

2 g3 ”%U(fz)
tan‘ 0 = &4 = 522 ~ (0.3.
g K
2 u(1)

A connection of both groups, e.g., in a larger group, can determine this ratio.

Also, the central correlation of both groups U(2) = w, as seen
in the hypercharge and isospin invariants, relates to each other the Lie alge-
bra normalizations; in lowest order: U(2) is the invariance group of a scalar
product in two dimensions, e.g., for the Higgs representations before fixing a

ground state
Hx H— C, (®¥®P) = M25*? «a,3=1,2.

The scalar product for the defining U(2)-representation induces scalar prod-
ucts on the tensor powers of H and, with the inverse product ~ d,4, of the
dual space H” and its tensor powers. The representation of the gauge fields is
isomorphic to U(2)-representations on the tensor product H @ HT = C* with
the induced scalar product (the overall normalization x? is not determined by
U(2)-symmetry)

[H@ H"]| x [H® H'] — C, (9% ® §%|D° @ B}) = £26°4,5.

The decomposition of the product space H @ HT = C & C3 into SU(2)-
isospin singlet and triplet as used for the hypercharge and isospin gauge fields
leads to the rearrangement of the metric tensor

for U(2): 06,5 = %53 5? + %ﬁl %f

with the relative normalization for U(1) and SU(2)

I{Q

SU@) _
”%(1

~ UWxSUMm) o o
- I(n) ) — &
with generalized Pauli matrices (chapter “Spacetime as Unitary Operation

Classes”) gives as normalization ratio

The analogous rearrangement for the general case U(n)

— — H2 n n
for U(n) : 0°%0,5 = 1469 07+ ﬁT(n)ﬁ F(n)y = :5((1)) = 2(1+n)"
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6.11.3 Transmutation from Hyperisospin
to Electromagnetic Symmetry

The electroweak symmetry “breakdown” (rearrangement) is a transmutation
from a hyperisopin U(2)-compatible framework for the interaction to a for-
mulation with remaining electromagnetic fixgroup U(1) -symmetry for the
particles (chapter “Spacetime as Unitary Operation Classes”):

{teu@) | @)= (5)=t(3)=ua)..

The U(2)/U(1),-isomorphic orbit of the Higgs field in the Hilbert space C?
provides translation-dependent Lie parameters for the fixgroup classes (sym-
metric space):

®(z) = 271 @) )12t “R(z), RY3z+— v (x :iwelogU( ),
R z+— V(z)= v(‘p(i;) = 27+ € U(2).

The representations of the electromagnetic orientation manifold (Goldstone
or ground state manifold) on a vector space W = C'*2T with U(2)-represen-
tation

(U2)/U(1)4)repe = G — U(1+2T), &+— D(u($)), R=|@],
W@ =1(% %) =i eUE)UA),
are products of the fundamental representation. A “left” hyperisospin U(2)

action gives the representation with the U(2)-transformed Higgs vector up to
a “right” action with the electromagnetic fixgroup U(1),:

Y0lo+iFT

u=e"2 e€U@2)= uov(}) = (?@) ()
with t(u) = e*

(1)+-

The G3-representations are decomposable into transmutators from U(2)-vectors
(boldface) to U(1)-vectors with G3>-frozen components (underlined) o = 1,2,

HZ“

@WL W € vecyq,

WsE* = D(V)gEg e P,

vecy(g) 2 W

with EfE® = E* Ee,
WT 5 E: = EXD(V*)2 @

RIe

Mm
h@§

=

especially for the Higgs field, where the dilation degree of freedom R constitutes
the frozen field:
(@5, %) = (VP V)R = Vo (g LomR

2

(eap®’,®%) = R(V;, V) NR(”*T‘*J? =)o V*.

Hence U(2)-invariants have the same form in the frozen fields as in the boldface
unfrozen ones. For example, the Yukawa coupling above with a U(2)-doublet
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fermion field Q, like the left-handed lepton fields, is written with the U(1),-
fields QLQ = V;(172Qa = (UL7 DL)Z

LY®) = —gp(Dr2Q* +Q®'D}) —guv(Ur® Q" + Q@UY%)
= —gDR(DRDE + DLD}(%) —gUR(URUz + ULU}%)

The group element V (z) = (ggx)) U(2)/U(1), defines a gauge transfor-

mation with a translation parametrized Lie algebra element as representative
of the fix-Lie-algebra classes log U(2)/log U(1)

R —logU(2), z+—VU(V(x)), U(V)=(V)o V",
l](v) _ i_(aj.73)12+(8j’7a?[5ab s‘:’y‘ch;bc% 1—€Yos'y+"ra’Yb (1 sm’v)]_rb
— Z(V*){)(%)]-Z';‘(V*)fz(%)Ta

The Lie-algebra-valued gauge fields, in the (2 x 2) Pauli representation

R* — logU(2), z+— A/(x
R*— U(2), x— U(x)
R —logU(2), z+— F(U(z)), F(U)=("U)oU",

) x)lz +A] (x)T
2 )

with the affine U X log U transformation behavior
Al —UoAloU*+1(V)
are stripped of the Higgs-field-provided U(2)/U(1),-degrees of freedom
RY — logU(1),, a+— Al(z), AV =V({V*)+V*0AIoV.

There remains only the electromagnetic U(1),-gauge degree of freedom

A —V*oUoA oU oV +1U(V*ol)
parametrized with spacetime translations

R*> 2+ V(x)*oU(z) € U(1),,

RS> x — U (V(x)* o U(z)) € log U(1),.

The Higgs field derivative
. . . . 277_3
(7 —ANY® =V (0 — AJ)ITR

leads with the ground-state-characterizing mass (R) = M to the mass terms
for the spin-1 particles (weak bosons) in the vector fields related to the three
ground state degrees of freedom U(2)/U(1).

The transition from the quantum fields for the electroweak interactions
to particles uses two transmutations, internal and external: The internal
hyperisospin-to-electromagnetism transmutators parametrize the U(2)/U(1) -
degrees of freedom with the translation-dependent Higgs vectors. The ex-
ternal Lorentz-to-rotation transmutators parametrize the SL(C?)/SU(2) and
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SL(C?)/SO(2)-degrees of freedom for massive and massless particles respec-
tively with momenta. For example, the internal-external freezing of the left-
handed lepton isodoublet field leads, in the up-component, to a massless
(anti)neutrino (u(q),a(q)) and, in the down component, to a massive electron-

positron (u®(q), a%(q)):

ru@-e MA@ o L ((id(@)7)A

l(x)AOl (e%’YL(‘I)(:C))>a @f (;la()ld iq C(*) \/?iqr *C(*)q - 2 Fn = ;
T € ‘u —€ “a

b2 ’ V2 L g2=m2 \/ % (eMD7)E.

If the Higgs field is more than an ad hoc-implementation of the ground state
degeneracy and if there is a Higgs particle with creation operator U(q), it
comes in the dilation degree of freedom of the Higgs field

_i N\ o 3g  e'1TU(g)+e9TU*
Ria) = (e 5+#0)) @o(a) =¢f G U0,

6.12 Reflections in the Standard Model

A relativistic dynamics may be invariant with respect to the C,P, T reflections
(chapter “Lorentz Operations”). A lack of a reflection symmetry I(2) = {1,R}
can have two different reasons: With the reflection R represented on the field
value space V'

R* — R*
¢l J@,muggg.mm@
Vv — V

the interaction may not be R-invariant (breakdown), or there does not even
exist an R-representation on V' (nonimplementation). Both cases occur in the
standard model for quark and lepton fields.

6.12.1 Position Reflection Breakdown

The U(1)-vertex for a Dirac electron-positron field ¥ = (1,r) interacting with
an electromagnetic gauge field A,

—UAPA = —(I*ol + r*61)A,
is invariant under reflection P of position translations:

oo, 7) & (w0, —7), Ay, 7) & () (w0, —2).
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In the standard model of leptons with a left-handed isospin doublet field
1 and a right-handed isospin singlet field e the hyperisospin U(2) vertex with
gauge fields A? and A and internal Pauli matrices reads

— (1ol + e*5e) A’ + 170 1A,

All gauge fields are assumed with the polar vector reflection behavior as given
above. The position reflection P-invariance is broken in the electroweak stan-
dard model both by nonimplementation and by noninvariance of the interac-
tion: One component of the lepton isodoublet, e.g., ef = %l eV, =C?
can be used together with the right-handed isosinglet e = eg as a basis of a
Dirac space ¥, € Vi @ Vi = C* with a representation of P. This is impos-
sible for the unpaired left-handed field v, = %l € Wy, = C?, here P is not
implementable. However, also for the electron left-right pair (er,er) the re-
sulting gauge vertex breaks position reflection invariance via the neutral weak
interactions mediated by the massive vector field Z arising in addition to the

U(1)-electromagnetic gauge field A:

0 3 . = =  1—4sin? i
—etoe, A ;’A —epierA’ = —U AU A — \Ile’yw\llez.

There is no parameter involved whose vanishing could restore a P-invariant
dynamics.

6.12.2 GP-Invariance for Lepton Fields

The linear CP-reflection, involving the spinor “metric” (volume form) for the
particle-antiparticle reflection, relates to each other Weyl pairs

Vi & Vi lA. > 526‘431%,

Vi —— VT, 14 o §4eABry,.
A U(1)-gauge interaction for Weyl fields with terms like

—(zl*ol + zx*or)A, 2, € Z,

is CP-invariant.

The particle-antiparticle reflection C has to be extended by a reflection of
the internal operation space in the case of Weyl spinors with nonabelian inter-
nal degrees of freedom. For isospin SU(2)-doublets, e.g., the lepton isodoublet
1, the internal reflection is given by the, up to a factor unique, SU(2)-invariant
Pauli isospinor reflection, denoted as internal reflection by I = e:

v — U u € SU(2) (isospin),
I I, uo‘ée“ﬁug, a=1,2

ur — yr —7F=clofl o
U
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The linear particle-antiparticle reflection is the product G = IC of external and
internal reflection:

VU & VE@UT, 11 o ePetfry,.
Thus the linear particle-antiparticle reflection GP reads for left-handed Weyl

spinor-isospinors

ViU <SS VvEQUT, 14 o eaﬁ5£eABl%ﬂ, GoP=TIoCoP.
The standard model for leptons, i.e., with internal hypercharge-isospin action,
is acted on by GP; the gauge interaction is GP-invariant.

6.12.3 CP-Problems for Quark Fields

If nontrivial SU(3)-representations, e.g., quark triplets and antitriplets, are
included in the standard model, an extended CP-reflection requires a linear
reflection v between dual representation spaces of color SU(3), i.e., an SU(3)-
invariant bilinear form of the representation space

D(u
v 2 v
l l D :SU(3) — GL(U) (color representation),
K 7yl o D) oy = D(ut) for all u € SU(3).
B gl oD ey =D )
D(u)

The situation for isospin SU(2) and SU(1 + r), r > 2, especially for color
SU(3), is completely different with respect to the existence of such a linear
dual isomorphism v: All irreducible SU(2)-representations [27"] with isospin
T =0, %, 1,... are self-dual, i.e., they have an, up to a scalar factor, unique

2T
invariant bilinear form \/e as product of the spinor “metric” discussed above.
That is not the case for color representations: Some representations are linearly
self-dual; some are not. Dual representations have reflected integer invariants

dual reflection for SU(1 +r): [2CY,...,2C,] < [2C,,...,2C].

Only those SU(1+r)-representations whose weight diagram is central reflection
symmetric in the real r-dimensional weight vector space have an, up to a scalar
factor unique, SU(1+7)-invariant bilinear form, i.e., they are linearly self-dual.
Therefore the self-dual irreducible SU(3)-representations are [2C, 2C]:

Ci=0Cy=C=dimcU = (1“1’20)3: 1,8,27,....
The Killing form & of the octet [1, 1] defines, by totally symmetric products,

20
the related invariant bilinear forms \/ K.
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It is impossible to define a CP-extending duality-induced linear reflection for
the triplet-antitriplet quark spaces U, UT with representations [1,0] and [0, 1]
since there does not exist a color-invariant bilinear form for triplets U = C3.
Or equivalently, there does not exist a (3 x 3) matrix 7 for the reflection
= v lo X o ~ of all eight Gell-Mann matrices, in contrast to the spinor
“metric” (volume form) for all three Pauli matrices —G = ¢ ' 0 37 oe. The
U(3)-scalar product cannot be used for a reflection; it is sesquilinear.

6.13 Summary

The power three tensor of a Lie algebra representation for an internal sym-
metry, Lorentz compatibly embedded into Minkowski spacetime, constitutes a
gauge vertex (gauge dynamics), electrodynamics for the Lie algebra of U(1),
the electroweak-strong standard model for the Lie algebra of U(2 x 3). The
real 12-dimensional standard model interaction symmetry group U(2 x 3)
is constituted by the classes of the hypercharge-isospin-color group U(1) x
SU(2) x SU(3) with respect to the discrete normal subgroup I(6) = I(2) x
I(3) = {e*™ |y = 3,3, 2, 2,1} describing the central correlations between
the abelian hypercharge group U(1) and the nonabelian isospin-color group
SU(2) x SU(3).

In a spacetime field theory, the gauge vertices for a d-dimensional Lie al-
gebra come as products A¥J¢ of the gauge fields {AF}¢_| with the currents
{Jeyd_, | the latter being position distributions of the Lie algebra representa-
tion. One spacetime component of the gauge fields {A2}¢_, represents the Lie
algebra forms, the gauge-fixing fields {S®}2_, as dual partners the Lie algebra.

In a quantum gauge theory, the classical gauge transformations are replaced
by of the nilquadratic Becchi-Rouet-Stora transformations, whose origin lies in
the nonparticle interpretable nilpotent structures of reducible nondecompos-
able time representations. The quantum gauge fields {A*, S, Fi, d_, of Bose
type are supplemented by Fadeev-Popov fields {a, dq, &, £2}2_, of Fermi type.
All those fields in the gauge sector are acted on by the adjoint and coadjoint
internal Lie algebra representations. Only for the particle degrees of freedom
with covariant derivative, the BSR-transformations can be interpreted as gauge
transformations.

The transition from the interaction symmetry to the particle symmetry re-
quires a diagonalization with respect to a maximal abelian subgroup (Cartan
torus). The central correlations in the standard model can be taken into ac-
count by particles either with trivial isospin or with trivial color. As motivated
by experiments, a color confinement is chosen.
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APPENDICES

6.14 Fadeev-Popov Degrees of Freedom

6.14.1 Abelian Fadeev-Popov Fields

An electromagnetic quantum gauge field

L(A.F,S,,8) = F,LA508% 4 gy Ak | g2(Bul? s

) - E 2
itk Oi + i€k Opa — igPAERE,,

ko k
FAT — JIAF = 2Rk, g a = gZM ,
Bose: _ ORA* = g2)\S,  Fermi: a’;i ; _’gQAgk
83ij — S =0, & !
& =0

is accompanied by Fadeev-Popou fields («, &, €k €F) (in chapter “Massless Quan-
tum Fields” denoted by (3, 3,7*,4*)) with the Fermi quantization

{0, ") = 656(7) = {€*, a}(@).

In a classical theory the gauge-fixing field S and all the Fadeev-Popov fields
are set to zero.
The second order derivative Lagrangian reads

L(A, Oé) = —ﬁ(&fAk — OkAJ)(GJAk — akAJ) + ﬁ(@kAk)Q + f%(aka)(akd)

The nilquadratic linear BRS-charge generates the linear BRS-transforma-
tions

N = @\ [ d*x&o(x)S(x), N? =0,
da ={iN,a} =0,

)
koo Kl — 2\sk
0A - [ZN A ] =g )\5050, . 6§k _ {’LN, fk} — 07
Bose: S =[N,S] =0, Fermi: 50 = [iN.a} —ig?\S
0Fy; =[iN,Fy] =0, L WL L T EAS,

={iN,&*} =o.

In contrast to the classical gauge transformation, the BRS-transformation im-
plemented by N is nontrivial only for the spinless component of the gauge
field:

AP — A0+ 9%, A?r— A%, a=1,2,3.

The Fadeev-Popov Fermi quantum field a(z) takes the role of the classical
gauge parameter. The group element is reduced to the absolute and linear
term

€@ =1 4ia(x) for {a(z),a(r)} = 0.
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For an electromagnetic interaction A*J, with additional fields the BRS-
transfomation is effected by a nonlinear BRS-current, involving the U(1)-
current. Also, the nonlinear BRS-charge is nilquadratic:

N = [d®aNo(z), Np= g2 &S +ady, N?=0,
e.g., [N,®] = az®, {N,¥}=azV.

In addition to this nonlinear transformation involving the translation-depe-
ndent Fadeev-Popov quantum fields and replacing the translation-dependent
classical gauge transformations, there remains the “global” U(1)-transforma-
tion

Q = fd?’IJo(ZU), e.g., [Q7¢} = ZQa [Qv\II] = 2V.

The spinless and gauge-fixing Bose degrees of freedom and the Fermi Fadeev-
Popov ones display a twin structure. The BRS-current Ny (z) of Fermi type
has its counterpart in the nonderivative part H(z) of the Lagrangian (Bose
type)

Ni = PAGS +aJy, H= @2\ +igkg] + AFT,,
[iS, A*](%) = {e, " }(&) = {&", a}(@) = d50(2).

The analogue in the mass point model (chapter “Massless Quantum Fields”)
is given by
N =¢p+aQ, H=F5 +iff+xQ,
[ip,x] = {a, &} = {¢,a} = 1.
Here the analogue to the current Jj; built by fields is the U(1)-charge @ built
by some time-dependent charged degrees of freedom. The Bose dynamics H
arises by BRS-transformation from an operator K connecting Bose and Fermi

degrees of freedom
H={N,K}, K= %p + &x.

Since N2 = 0, the BRS-invariance of the Hamiltonian is obvious

[N, H] = [N,{N,K}] = 0.

The corresponding field operators are

K=+ A" (H,N,K)= [ d*(H,No,K)(z).

6.14.2 Nonabelian Fadeev-Popov Fields

For abelian gauge theories the Fadeev-Popov degrees of freedom are used only
to define the asymptotic particle interpretable space. In this case they have
no interaction. In the nonabelian case with the nontrivial current of the gauge
fields the Fadeev-Popov fields also have a nontrivial gauge interaction.
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Like the gauge fields, the Fadeev-Popov fields also have to come in the
adjoint representations of the Lie algebra L for (£,£) and in the dual adjoint
one for (o, ) with the current

iTe = —e(apf + anky),

iJr = a X &+ ax & (index slimmed-down notation),

leading to the full current as sum of Fadeev-Popov field current, gauge field
current, and “nongauge” sector current for the internal Lie algebra action:

i+ Jk + :_i(axgk‘i‘ngk)“‘AkXS—FAjXij—FJk,
Q" = [dPx(T¢+ i + I8 ().

In the gauge field current coupling the contribution A*(A, x S) with the
gauge-fixing field vanishes because of the antisymmetry of the Lie bracket. To
preserve the BRS-symmetry, the corresponding term A*(& x &) has to be
omitted on the Fadeev-Popov sector involving the linear BRS-partner & for
S, ie., 0@ = ig?)\S. Therefore, the dynamically relevant gauge field current
coupling involves not the full current, but

AF(—ia x & + LAT x Fy; + )

with the statistical factor %
Together with the linear terms, the gauge field interaction is given by

H = Aga(5F +ighgl) +Ak|—e(—iands + LAJFY,) + ]
= A8 tifhesy)  +AF[—ia x & + LAT x Fyy + Iy,

H can be constructed as the BRS-transform H = { N, K} with a nilquadratic
BRS-charge N? = 0, which leads to its BRS-invariance [N,H] = 0. The
corresponding expression in the mechanical mass point model

H:%-Figo{—i—x(—iozxgﬁ‘Q)

is a BRS-transform

H= gu(PF +i¢") +x,(iclmé + Q)
H={N,K} with { K= 9 4 cox

N = Jab" P Fog (3Pt + Q%)

which holds also in the spacetime theory with

H = A(%ﬂ‘ i€" o &) + AF[—ia x &, + AT x Fi; + Jyl,
K = dgis+§kAk7
Nk :)\fkoS—i—a[—%axﬁk—i—Ajkaj—i—Jk].

The statistical factors % take care of the power-2 expressions A’;Ai and agp.
It will be shown in the next section that the BRS-charge is nilquadratic,

N = [d*zNy(z), N?=0,
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which ensures the BRS-invariance of the dynamics with the Lagrangian
L(A,F,S,o,&J) = ...0...(kinetic terms) — H
F OSAT-0IANARNAT g Ak 4 FrieF s
J . A 2
+i&p 0% + i€k (OFa + AF A ) —iNEF 0 &,
—A*J,.

The BRS-charge is a scalar with respect to the internal Lie algebra action
(@, N]=0

The classical gauge transformations with translation dependent parameters
{a%(z) | a = 1,...,d} arise in a quantum theory with d “global” charges
{Q*}¢_, and only one BRS-charge N.

The field equations for gauge Bose and Fermi (Fadeev-Popov) sector are

OFAT — JTAF = oFik — Ak A AT
Bose: OAF = NeS,
8ijj—8kS =AJ kaj_iaX§k+Jk7

Fa = NefF —AFnq,
akfk = 07

ha = Nefy,

8k£k = AFx gk.

Fermi:

The fields with a particle asymptotics come with the covariant derivative in
contrast to the spinless gauge field component, the gauge fixing field (A, S),
and the Fadeev-Popov field pair (¢, £¥), which are all fields without particle
asymptotics. These nonparticle fields do not come with a covariant derivative.

The dynamics has to be compared with the BRS-transformations (indices
a = 1,2, 3 for position translations)

SAF = [iN,A*] = Xedkel — ska A A,
Bose: S = [iN,S] =0,

5ij = [ZN, Fk]] = 52(5;0[ X Foa,

ba = {iN,a} =209,

58 = [iN, ¢k} =0

Fermi:

b = {iN,a} =ileS, }
O&k, {iN, &} = 0pi(A) X Frj —ia X & + ).

The gauge field has the BRS-behavior

AF— AR+ 550%, — ea, Al

In the second order formulation for the Fadeev-Popov fields, one has the
equations
L(a, &, A) = iOpct @ (0" + AF A ),
ak(ﬁkoz + AR A Oé) =0, (8k - AkX)akd =0,
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and the dynamically relevant gauge field-current coupling

—iAk(Oé X o@kd) = iA’;egbngabakdd.

6.15 Gauge and BRS-Vertices

A Lie algebra representation in a relativistic theory is distributed by currents,

which are products of dual field pairs, e.g., for quantum electrodynamics as

the electromagnetic current J; = ZM:

D = [ &3z iJ§(z).

A gauge field current coupling is the relativistically compatible distribution
and embedding of a Lie algebra representation with the gauge field {A%}2_,
implementing the dual Lie algebra

o@D = [d*z Al(z) iJ%(z).
A representation of a real Lie algebra L on a vector space V,

D:L— AL(V), I+—D(l) =D()’e’ ® ég,
D(I") = D* = D’ ® ég,
dual bases of V,VT: (&g, ¢7) = 03,
dual bases of L, LT: (l,1¢) = &, structure constants: [I%,1"] = e2¥I°,

defines a power-three tensor
D=1[,0D" =D, @ @ése LT @VaVT
The dual adjoint representation tensor is given by the (1, 2)-tensor

ad =, ® (—adl) =, L* = -2, @ ,o1°c L"® LT ® L.

In the quantum algebra Q.(V), Fermi or Bose ¢ = +1, of the self-dual
vector space V.=V @& V7 the Lie brackets are implemented by commutators

in Q(V): [és, e = 0y,
Do — Dag [e”,é25]_57 [f]')a7 Db} — EngC,

[D%,e’] = D¢, [D%¢,] = —D*e’,

e.g., the adjoint representation of L in the adjoint quantum algebra Q.(L)
with the self-dual Lie algebra space L=L @ L7,

in Qc(L): [I 1) = 6,
L0 = —e®l e, L9 LY = etbLe,
[£o,17] = eble, (L% 1) = —€,.
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One has to distinguish between the Lie bracket [I%,1°] in L, the endomorphism
commutator [£%, £%] in AL(L), coinciding with the commutator in the quan-
tum algebra Q.(L), and the quantization (anti) commutator [I.,!’]. in the
quantum algebra (chapter “Quantum Algebra”).

The representation tensor D is an element of the product quantum algebra
of Lie algebra and representation space; it is invariant under Lie algebra action

D=1, =D, “F= €QuL)®Q(V), [D°D]=0,
ado = ;zam: ablalbr € Qu(L), (£, ad] =

The adjoint tensor involves a statistical factor %

The two cases with Bose or Fermi statistics € = F1 of the quantum algebra
for the Lie algebra L # V have different properties.

The full representation tensor in the case of a Bose quantum algebra for
the Lie algebra,

in Q (L)®Q(V): [I"] =0,
19— L% 4 Do = —ebyje 4 poplliole
representation tensor: I, (3£° + D7) =1,D°,

does not contain the adjoint representation contribution because of the anti-
symmetry of the Lie bracket:

ad _ = %Zaﬁ‘i =0 since ¢® = — and [I,,[,] =0

For the Bose case the representation tensor [,D® is called gauge interaction
vertex.

In the case of a Fermi quantum algebra for the Lie algebra with a basis no-
tation (I,,1%) — (£, a®) the representation tensor contains a nontrivial adjoint
representation contribution,

in QL)@ Q(V): {a" &} =4d,
a’— L5+ D= —e“bg af + Daﬁ ’eﬂ ,
representation tensor: iN = & (3L£% + D).

For the Fermi case the representation tensor N is called gauge BRS-vertex.
Because of the Jacobi-Leibniz property of the Lie bracket it is nilquadratic:

ad? (€a1£1)2 =0, N2=0,
NN} = {508+ D), (AL + DY) B
=& fb[Da D'l +§a[ fb]Db + 38[L%, &1L + 1Ea6[LY, L)
= —Je&, G Lo = a Cdﬁaﬁb&za 4( eblec” + edre)Ea5al” = 0,

where the Jacobi identity for the adjoint representation, the antisymmetry of
the Lie bracket, and the Fermi property {fb, Sa} = 0 have been used.

For the mass point model, momenta-positions and a Fadeev-Popov pair
implement the adjoint Lie algebra representation both in a Bose and Fermi
quantum algebra:

ab XaXb

Bose:  [ip®,x.] = &0, L% = —ePxyip¢, ad_ = ip¢, ad_ =0,
Fermi: {&, a.} =8, L% =—ebq, ad;i=—¢ ba““bfc ad? = 0.

c



200 6. GAUGE INTERACTIONS

Together with matter fields one has the gauge interaction vertex and the
nilquadratic gauge BRS-vertex:

iH = X, (—€ePa + D“gi[ev’é;]*‘ )
IN = ag(—Setan + Do),
K = ¢£ox, + %Pt

H ={N,K},

[N, H] = 0.

In the Lorentz compatible spacetime distribution of the gauge interaction
vertex and the BRS-vertex,

H = Ak(—ebapdy + 5j3 + 1),
N = ag(—yeganf + i + iJ7),
the gauge field A%(x) is the spacetime distribution of the Bose implemented

dual Lie algebra elements x,(t) = I, € L7, the gauge fixing fields S¢(x) for the
Lie algebra elements ip®(t) = [* € L.

time spacetime spacetime
. gauge interaction gauge BRS
Lie algebra (Bose) (Fermi)

general D =1,3D(%) H =A%J¢ N = addf .

representation = Dafﬁa ReTRég = A’gla—k%l* = agloy 51
. . — T AR

adjoint ad =1l ® (—adle)T ad— =3 Audk , ad; = la,J¢

representation = e, @, 1° = —eab A"ZAL Fi; = _Egb%&c

representation tensors and gauge vertices

6.16 Cartan Tori

A Lie algebra has Cartan subalgebras, for semisimple Lie algebras given by
maximal abelian subalgebras. Going from a Lie algebra to its exponent, a
simply connected Lie group, a Cartan subalgebra gives rise to a Cartan sub-
group. A maximal abelian direct product subgroup of a compact group

Ul)»=0U(1) x---x U(1)

ntimes

will be called an n-dimensional Cartan torus, which can be parametrized for
cach direct factor (“circle”) by U(1) = {e* | a € [0,2n[}. Like a Cartan
subalgebra, a Cartan torus is not unique.

If the dimension of a Cartan torus coincides with the rank of the Lie algebra,
the Cartan torus is called complete for the group. There are situations in which
there does exist a Cartan subalgebra, but no complete Cartan torus.
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6.16.1 A Complete Cartan Torus for SU(n)

The Lie algebra logSU(n), n > 2, in the defining complex n-dimensional
representation has a basis for a Cartan subalgebra log U(1)"~! given by the
diagonal matrices

Cartan subalgebra basis: {i7(n)™ ! | m=2,3,...,n}.

It is defined inductively for n > 2 by

_ 2. s_ (o %00 8 _ 1, | 0
eg,n=3: 7(3)°=(_0 -1]0 ), 7(3) _ﬁ<0 — -

The exponent gives a complete Cartan torus of dimension n — 1 (rank of
log SU(n)).

The “maximal” diagonal element, characterized by a nontrivial determi-
nant, generates the center of SU(n) and is normalized to display integer U(1)-
winding numbers

wa = /()7 = (B, detw, = —(n - 1),

U(1)p21 = {e™™ | a € 0,27},
e =en'l, € Ul,) NU) e, = U(L,) NSU(n) 2 I(n),

e.g., Wo=7> w3=+3)\= <102 32>,

with the scalar phase group U(1,) = U(1)1,.

6.16.2 A Complete Cartan Torus for U(n)

Hypercharge and isospin symmetry with central correlation (chapter “Rational
Quantum Numbers”), called hyperisospin

U(W)xSU(2) ~
e =2U(©2),

has a Cartan subalgebra in the defining complex 2-dimensional representation
{ia012 + iOé3’7'3 I ap,3 € [O, 27’(’[} >~ R2,

Its exponent has as factors the scalar and the third component phase group,
which, however, are not direct factors for a torus:

eia012+ia37—3 e U(12) o U(l)g

The parametrization has the following ambiguity for the common center

U(1,) NSU(2) 2 1(2):

(ag, as) = (m,0) = (0,7), €2 =™ = —1, € [(2) = U(1,) N SU(2).
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A Cartan torus of U(2) arises with a projector basis containing two orthogonal
elements

pio T2 i 1257 o U(l)y xU(1)-, atr=ay*as,
Pﬁﬂzl%L, +(2)P-(2) = 0.

For the general case

VXSO0 & (), U(1L,) N SU(n) = I(n),

the exponent of a Cartan subalgebra in the defining complex n-dimensional
representation

{iagl, + ’&'Zam2_17'(n)m271 | ao,m € 10,27} = R"

m=2
gives an abelian group for which the scalar phase factor is correlated with the
center-generating factor

U(1,) o U(1)p2_y, €% € U(1),2_y,
e.g., for U(3): U(1;) o U(1)s, e'*ws ¢ U(1)s.
A Cartan torus comes with the appropriate projectors P4 (n) and parameters
4!

Uty x U ¢ Pria-P-() € U(1, )y x U(1)_,
(n) ln—O-wn7 oy =ap+ Xp2_q

.
( ) a,—ao—(n— )\/@7
Pi(n)P-(n) =0, (wn)* = (n— 1)1, — (n = 2)wy,
Pi(n) = Pir(n ) + Pi-(n),
with the example for n = 3, relevant for hypercolor U(3):

P.3) = (% §). P-3=(% 9)
e = ("7 D).

with

— 1n_Wn

\_/

For the groups U(n) with rank-n Lie algebras there exist complete Cartan
tori.

6.16.3 A Complete Cartan Torus
for the Hydrogen Atom

For the nonrelativistic hydrogen bound-state vectors (chapter “The Kepler
Factor”) an exponentiated Cartan subalgebra of log[SU(2) x SU(2)] with basis
{id ® 13,15 ® iT} in the defining quartet representation

Cartan algebra {iaz0® ® 15 + 1, ® 8373} = R?,

eilas+83) 0 0 0
; 3 33 0 ei(as—PB3) 0 0
ia30 B3 __
€ ®e - 0 0 e—i(az—PB3) 0 € U(1>3 © U(1)37
0 0 0 e—i(az+pB3)

parameters: {ag + (3, az — (s},
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leads to a complete Cartan torus via a basis of orthogonal generators £, for
coordinates 7y.:

plaso® ®3€iﬂ373 = 5"’#516”—53 ceU(1); xU(1)_,
L3} = o8bdler 3 s — () gy = ay £+ B,

L3 = L3 is the third component of the angular momenta log SO(3).

In the general case, two special groups are nontrivially centrally correlat-
able (chapter “Rational Quantum Numbers”) for dimensions with a common
nontrivial factor (not relatively prime)

SUSUe) | (k) € I(n) NI(m), n,m.k > 2.

The exponent of a Cartan Lie subalgebra is centrally correlated by the U(1)’s
generated by w,, ,:

U(1),2-1 0 U(1)a_i-Lie algebra: {iaw, ® 1, + 1, ® ifw,,} = R?,
elown ® eiﬁwm c U(]_)n271 o U(l)m2,1.

The four parameters

eilot0] 0 0 0
iow iBwWm o 0 eila—(m—=1)g] 0 0
et e Bwm o 0 0 e—il(n—-1)a—g] 0 )
0 0 0 e—il(n—1)at(m—-1)p]

parameters: {a+ 3, a — (m—1)8, (n—Da— 03, (n —1)a+ (m —1)3},

are reducible to two parameters only for n = m = 2, e.g., for the hydrogen
symmetry. In this case, an orthogonal Cartan subalgebra basis leads to a
complete Cartan torus.

6.16.4 No Complete Cartan Torus

for Hypercharge-Isospin-Color
The internal interaction symmetry U(2 x 3) = W has as defining
complex 6-dimensional representation for its Lie algebra with rank 4,

log[U(1) x SU(2) x SU(3)] = {icgly @ 13 +ia7 ® 13 + 1, @ ifA} = R12,
Cartan subalgebra: {icpls ® 13 + i3 @ 13 + 15 @ i(Gs\% + B A®)} 2 RY,

with three Pauli matrices 7 (isospin) and eight Gell-Mann matrices X (color)
as used for the left-handed quark isodoublet field in the standard model.

The exponentiated diagonal Cartan algebra has three correlated factors
generated by wy = 7% and wy = V/3\%:

eiao12®13+ia373®13+12®iﬁg>\8 c U(]-G) o U(]_)3 o U(].)g
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The relevant parameter combinations in the four phases that arise,
parameters: {(ag + az) + %, (ap £ ag) — %},

cannot be disentangled with an orthogonal basis for a representation of the
direct product U(1) x U(1) x U(1).

There exists a complete Cartan torus U(1), x U(1)_ parametrized by {ap+
az} for hyperisospin U(2), there exists also a complete Cartan torus U(1),, x
U(1);- x U(1)_ parametrized by {ay + % + fs,a0 — %} for hypercolor
U(3); however, there does not exist a complete Cartan torus U(1)* for faithful
representations of the internal U(2 x 3)-interaction symmetry. The hyperchar-
ge group U(1g) has to go either as U(1;) with isospin U(1)3 or as U(13) with
color U(1)s.

6.16.5 Eigenvector Bases for Correlated Groups

A semisimple Lie algebra, and also log U(n), allows, for any finite-dimensional
representation vector space, a basis of eigenvectors for a Cartan subalgebra.
Eigenvectors of a Cartan subalgebra do not have to remain eigenvectors for
the exponentiated Cartan algebra.

Since a correlation of two Lie groups G; X G5 via a discrete center C' does
not change the Lie algebra

log% =log|G; X G3] =logG; @ log Gy,

there can arise the case in which there exists an eigenvector basis for the Lie
algebra representation space that is not an eigenvector basis for the correlated
group. This is the case for compact groups without a complete Cartan torus,
especially for the internal interaction symmetry group U(2 X 3).

It is impossible to give an eigenvector basis for the internal group U(2 x 3)
in faithful representations, e.g., for the isodoublet color triplet representation
[é| |1;1,0]. It is possible to give either eigenvector bases for the internal quotient
groups U(2 x 3)/SU(3) = U(2) (hyperisospin) or for U(2 x 3)/SU(2) = U(3)
(hypercolor), e.g., for the representations either with the left-handed isodoublet
color singlet lepton or with the right-handed isosinglet color triplet quark. A
quark confinement can be interpreted as the decision, with respect to a particle
classification, for the complete hyperisospin Cartan torus U(1), x U(1)_ C
U(2) and against the complete hypercolor Cartan torus U(1);4+ x U(1),_ X
U(1)- c U(@3).
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7
HARMONIC ANALYSIS

In addition to physical properties that are characterized by a rational num-
ber, such as an integer electromagnetic charge number or a (half)integer spin
(chapter “Rational Quantum Numbers”), particles have properties that seem!
to be taken from a continuous spectrum, especially their masses and the gauge
coupling constants, e.g., the fine structure constant normalizing the electro-
magnetic U(1)-Lie algebra in the spacetime-formulated interaction.

All quantum numbers (invariants and eigenvalues) for compact Lie groups,
including finite groups, are rational and, as well as the finite-dimensionality of
their irreducible representation spaces, ultimately related to integer winding
numbers as powers e — (€)% of the circle group (torus) U(1) = expiR
(chapter “Rational Quantum Numbers”). Lie operations for continuous quan-
tum numbers have to come from a noncompact Lie group, as familiar from the
eigenvalues for the representations of the causal group D(1) = expR 5 e —
(e')y™ € U(1), e.g., the energies m € R for scattering waves. The eigenvalues
for irreducible representations are characterized in the following table display-
ing the twofold dichotomy compact-noncompact and abelian-nonabelian:

[ i compact [ noncompact |
D(1) — U(1)
‘ u@l) — ud) { D(1) — SU(1,1)
abelian et —— e“t B olim+)
Z€eL im+vy€€iR+R
SU®@) = SU(+2J) SL(C?) —»  compact
nonabelian 2J { 5
- 2J = |Z| SL(C?) — noncompact
nz2 v Vu, Z x [iR +R]
Z el

irreducibl . ith example
irreducible group representations wit weights

Throughout this chapter complex vector spaces V € vec. for representa-
tions of locally compact groups, especially of real finite-dimensional Lie groups
G e lgrp]R with positive and G-invariant Haar measure, an indispensible im-
portant tool for continuous groups, are considered. The complex numbers are

LSince experimental numbers come with errors, one can never be sure whether they are from a rational or
a continuous spectrum. Numerologists develop great skills for integer graduations of experimental numbers
by a few units, e.g., for the fine structure constant a ~ 2727~3. With a few exceptions, e.g., Balmer’s
formula, numerologists find dead-end quantitative coincidences without qualitative insights.

207
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used with the canonical conjugation, i.e., as the doubled reals. Complex rep-
resented real Lie group operations have to come as unitary automorphisms,
i.e., with definite or indefinite conjugations. Definite unitary representations
are also called Hilbert representations. Definite and indefinite unitary groups
have a compact and noncompact parameter space respectively. Therefore,
spaces with faithful Hilbert representations of noncompact groups have to be
infinite-dimensional.

rep G denotes the equivalence classes of G-representations with respect to
the intertwining isomorphisms, the classes of the irreducible (Hilbert) repre-
sentations are called the (definite) group dual (also dual group space):

irrep G = G, irrep, G = G,.

The irreducible representations are characterized by the invariants of the group
and its Lie algebra.

To give a first survey: Finite groups, e.g., cyclic or permutation groups,
with the discrete topology are special cases of compact groups, e.g., unitary
groups, which are special cases of locally compact groups, e.g., complex linear
groups

group G:  finite C compact C locally compact

e.g., abelian I(n) <C U(l) C GL(C)
special G(n); C SU(n) C SL(C™)

general G(n) < U(n) C GL(C")

group dual G: finite C countable C continuous

Harmonic analysis is the classification of the irreducible representations of
a group and the decomposition of the group mappings, e.g., physical fields
as spacetime mappings, taken as a “huge” representation vector space, into
irreducible group representation spaces. Especially for noncompact groups,
it connects intimately algebraic with topological and measure structures. It
will be based on the rather straightforward stuctures for finite groups. Finite-
dimensional Hilbert representations build up the representation structure of
finite and compact groups. This is briefly recapitulated in the first part of this
chapter. In contrast to the completely understood and explicitly known repre-
sentations of compact and abelian groups with a general theory, the analogous
situation is much more difficult and complicated for noncompact nonabelian
groups with their individual pecularities. In the following, only an orientation -
sometimes very sloppy - is given without doing justice to the many topological
and measure-related structures, which should be looked at in more detail in
the mathematical literature.

The harmonic analysis of functions on a locally compact group involves, as
dual partner for a Haar measure d°k of the group, a positive and G-invariant
Plancherel measure of the group dual with the characterizing invariants

Haar measure d°k < d“+ D Plancherel measure.

This is exemplified for the rotation group SO(3) with Euler angle parametrized

normalized Haar measure |, dxdedcos 1 the associated Plancherel measure
SO@3)  (4n)?
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oo
Z(l + 2L) for the irreducible representations with the rotation-invariant L
L=0
(angular momentum). Another basically important example is the Plancherel
momentum measure fRn d”% of the irreducible nonfaithful Hilbert represen-
tations x —— e'P* of the noncompact abelian translations with Haar measure
fRn d"zx.

Also, the functions on group classes, i.e., on homogeneous spaces G/H
with a closed subgroup, can be harmonically analyzed with respect to the
G-representations involved. Of physical importance are

spheres: Q° =SO(1+s)/SO(s),
hyperboloids: ~ Y* = SOy(1,s)/SO(s),
affine “planes”: R? =2 SOq(t,s) x R?/SOy(t, s).

For physics, a “prejudice” with respect to finiteness and simplicity tries to
avoid, on a basic level, infinite-dimensional representations and all the related
mathematical complications. In this case, one has to start with a compact,
possibly even finite, operation structure. A conceptual justification has to be
given for such a starting point and a way from the basic compact operations
to the apparently successful noncompact operations for the experimental de-
scription of spacetime. In this way one may use a continuum limit or a group
contraction procedure or, what will be done here, a relativization of com-
pact real Lie group operations U in general complex linear ones GG, formalized
with the symmetric spaces G/U, called U-relativity in G. For a spacetime
parametrization of physical phenomena, one has to face the mathematically
demanding infinite-dimensional Hilbert representations of noncompact non-
abelian groups. Prominent and important examples, discussed below, are the
faithful quantum-mechanical representations of the Heisenberg group H(s)
with s position-momentum pairs, of the Euclidean group SO(3) x R? for non-
relativistic scattering, and of the Lorentz group SL(C?), its extension GL(C?)
and its unitary classes D(2) & GL(C?)/U(2) as model of nonlinear spacetime.
Vectors acted on by irreducible Hilbert representations of the Poincaré group
SL(C?) x R* with causal mass squares m? > 0 as continuous invariant for the
noncompact translations and rational quantum numbers J (spin) or Z (polar-
ization) as invariants for compact rotations are, according to Wigner’s clas-
sification, what one calls elementary particles. The particle Hilbert represen-
tations can be induced from familiar finite-dimensional ones of Poincaré sub-
groups U x R*. Here U € {SU(2),SO(2)} denotes a position rotation group
as the stability group of the decomposition of the spacetime translations R*
in a rest system (with one fixed position direction for massless particles). The
U-representations determine the spin (polarization). The irreducible Hilbert
representations of the Poincaré group connect with each other, Lorentz com-
patibly, the (eigen)time R-representations ¢t — e € U(1) and the Hilbert
representations of the scattering group SO(3) X R?, e.g., 7 W. Their
classification gives the types of all possible representations with their invari-
ants. However, it does not give any information about which of the possible
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representations are used for elementary particles, i.e., which masses really oc-
cur with which spin and charge numbers.

7.1 Representations on Group Functions

7.1.1 Group Function Vector Spaces

All group representations involve complex group functions (also equivalence
classes of functions or generalized functions). They inherit from the complex
numbers as value space the vector space structure as well as a conjugation that
combines the canonical number conjugation with the group inversion

C(G)=CY= {f:GI—z(C}G*ﬂC,
fef, (k)= f(E).

The canonical number conjugation is definite with U(1)-invariant scalar prod-
uct (a|a) = |af* > 0. The additional G-inherited product structure (group
algebra with convolution) will be discussed below. Functions on a group trans-
port group-specific properties into the numbers as value space, e.g., cyclicity
into function periodicity U(1) 3 ¢ — f(a) = f(a + 27). For the noncom-
pact group D(1) any function e* — f(a) belongs to CP1) = CF,

The finite support functions constitute a direct vector space sum (chapter
“Time Representations”) with the group elements {k | k € G} as canonical
basis:

C¢2CY = @kz@ >f= @kf(k;) (canonical expansion) , kC = C.

keG keG

For a finite group C'®) = C%. For infinite cardinality, C'®) is a proper subspace:
e.g., the representation U(1) 3 €'® — % is not an element of C(V(M),

For any locally compact group the direct sum is replaced by a direct integral
(chapter “The Kepler Factor”) with Haar measure (counting measure for a
finite group with discrete topology)

[ dk,
notation: [, d%k = Z for finite groups.
keG
The group functions are expanded as direct integral with the group elements
{k | k € G} as Haar-measure-related distributive basis and the function values
as coeflicients,

C(@) = Hk;@ =%[dk kC > f =%[dk kf(k)(canonical expansion),
keG

dime C¢ = card G.

There exist left- and right-invariant Haar measures, dpk = dpgk and drk =
drkg™!, both unique up to a scalar factor. The involutive measure conjugation
defines antimeasures via inverse conjugation:

e i [dk k) = [ dk Ak,
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It involves the modular G-representation G > k —— A(k) € D(1) in the
dilation group, relating to each other left and right Haar measures:

dpk < A(I{Jil)deil.

Only with a normal subgroup N and classes G/N = D(1) can a group be not
unimodular. For a connected Lie group the modular function is the determi-
nant of the adjoint representation Ad : G — GL(L) on its Lie algebra,

for k=el: A(k) = det Adk = det ! = etradl,

Compact and connected semisimple Lie groups are unimodular, A(k) = 1 for
all k € G.

If properties are taken almost everywhere with respect to Haar measure,
there are these important spaces, especially for infinite, but locally compact
groups: The Radon measure algebra M(G) = C.(G)" with the measures as
Haar-measure-based generalized functions, the Lebesgue spaces LP(G), 1 < p <
oo, where the Lebesque function algebra L'(G) with the absolute integrable,
and the Lebesgue function algebra dual L*°(G) with the essentially bounded
and the self-dual Hilbert space L*(G) with the square integrable function classes
are of basic importance (more below).

7.1.2 Regular Representations

The right and left reqular representations of a group G and the two-sided
reqular representation of the squared group G x G (group and “isogroup”) are
given by actions on the vector space C(G) with the group functions, often re-
stricted to L?(G). They are defined by the left and right inverse multiplication,
Ly(k) = hk and R,(k) = kg™

LluR!]
G — G nf(k) = f(h'k),
/| [t Sk) = (ko).
C — C for all h,g,k € G,
idg

G x G — GL(CY), (h,g) — Ryo Ly with R, 0 Ly(f) = nf,,
nfa =S dk kf(h~"kg) ==[dk hkg™ f (k).

With the regular representations the whole graph of f is transformed, e.g., for
U(1) or D(1) the translation f,(a) = f(a+ 7).

Left- and right-invariant Haar measures have to be taken for the left and
right actions. The related modifications are unnecessary for unimodular groups.

The isomorphism between left and right, e.g., left and right regular repre-
sentation, left and right cosets, and the related squared structure with the inner
automorphisms k —— gkg~! for the diagonal group G = A(G) C G x G >
(9,9), will show up at many points in the following.
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7.1.3 Representation Matrix Elements (Coefficients)

The matrix elements of any representation (representation coefficients) of a
locally compact group D : G — GL(V') on a complex vector space, finite- or
infinite-dimensional, are group functions

veViweVT: DY:G—C, Dj=%dk kD(k) € C(G),
DY, = (w, D)0} = (D(k").w,0)
=(w,kev)=(k"tew,v)
“two point function” = (ky e w, ki e v) for all ky o with k = ky ',

They are complex group orbits and can be harmonically analyzed with re-
spect to the irreducible Hilbert representations. Such a Hilbert representation
analysis may be even possible for functions that arise as matrix elements of
finite-dimensional indefinite unitary representations of a noncompact locally
compact group.

An example of nonabelian group functions is given by the finite-dimensional
irreducible (iso)spin SU(2)-representations with Euler angles u = (x, ¢, 0)
(chapter “Spin, Rotations, and Position”),

SUD) 5 u <;; e sn?g) — 2J(u \/u € SU(1 +2.),
2 2

ie'"2 sing e "2 cosd
2J=0,1,...,
et (X+9) cog? % iei® Sln?@ _e—i(x—%) gin2 g
i Sing pp— T
e.g., 2(u)y = ietx =" cos 0 e € SU(3),
—et(x—9) gin2 % je— i L\/n; e~ t(XT9) cog? %

2J(u)g =it F2 J(2)e » = cos, a,be{ J,.. T},

_1\J—b “—
2J(2)¢ = ( 12)J = a),g:), g 2) 2 (d%) (1 —2)72(1 + 2)7*+.

(1+z Yz

All representation coefficients are in L?(SU(2)). There are coefficients that
do not depend on all group parameters, e.g., the middle column and line in
2(u), which depend only on 2-sphere parameters (¢, 6) and (x,#), i.e., they
contain functions L*(02?) on the axial rotation classes Q2* = SU(2)/SO(2).
The central, only #-dependents, elements are functions L?(Q') on the left-right
classes SO(2)\ SO(3)/SO(2) & Q! with the Legendre polynomials 2L(z)) =
PL(z) for L=0,1,....

All matrix element functions for a representation D constitute the matriz
function space Cp(G), a vector subspace of all functions, stable under both
right and left group actions:

G x Cp(G) x G — Cp(G), Cp(G) € vecy o

Ly % Rg
—

lD;‘,‘g, (g7 kh)%, = D(k)"e.

gew

&2
Q— @

—
ide
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Therefore, dual representations are embedded via the “column-functions” and
the “line-functions” into the right and left regular representations respectively

Cp(G) ={Dy|veV, weV"}
>~V VT e vecqyq, D®D— RxL.

The matrix function spaces coincide for equivalent representations

fIV/—>‘/, D/:ffloDof:>(CD/(G>9D/u—Df G(CD(G)

£6)

Representations have as conjugation the antidual involution

D < D, D(k);, < D(k); = D(k~1);

w?

e.g., the left-right Weyl representations SL(C?) > i th s § = @B A
representation is definite unitary for D = D.

7.2 Harmonic Analysis of Finite Groups

A finite group with discrete topology is compact. It is considered with the
invariant counting measure (cardinality). The group functions contain the
group
finite N € grp: N C CV = @“C}C
keN

A bra-ket notation with | } (“braced” ket) is used in this section for the
group functions with the left-right regular N x N-action. CV inherits the
group product as convolution (direct sum notation for vectors and usual sum
for numbers):

(CN,x) € xaag, product: |fi}=|fa} = EPIk}(fi * f2) (k).
k
where (fix fo)(k) = > fulky) falks)}, ,,with 6 = { é ﬁgi z L gj

(k1,k2)ENXN

The group algebra CV, unital with conjugation, coincides with all Lebesgue
function spaces and with the group C*-algebra

CN = LP(N) = C*(N), 1<p.

C" inherits the scalar product of the numbers, the canonical basis is a Hilbert

basis
{flg} = Zf . (KK} = 0"

The group N is the disjoint union of its conjugacy classes (inner automor-
phism orbits) with fixgroups N,™:

N = |H Int N(kz), IntN(k)={gkg™'|g€ G} = N/N/.
Z=1
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The complex span of the conjugacy classes with gInt N(k)g~! = Int N(k)
are full matrix subalgebras in the decomposition of the group algebra C¥
(Maschke-Burnside-Wedderburn theorem, chapter “Time Representations”):
They are the minimal two-sided ideals and characterize the irreducible repre-
sentation spaces of the group-“isogroup” N x N or of the group algebra C.
For example, the permutation group G(4) has five irreducible representations
(Young ideals),

1x1| 0 | © 0 0 1
n e.g. 0 [3x3| O© 0 0
CcN :@C(dzxdz) = 0 0 |2x2] 0 0 N<5>7
- 0 0 0 [3x3] 0O o1
z=1 0 0 0 ] 0 |ix1
cardN = d3, for CE®W: 1+9+4+9+1 =4l=24.
Z=1

The group is represented by finite unitary groups,

N — P expC(dz x dz) C U(card N), expC(dy x dz) C U(dy).

Z=1

The columns LZ™ in a simple ideal are minimal left ideals and characterize
the irreducible group representations Z : N — U(dy) for left action:

(C(dz X dz) =V;® VZT = L%ﬂn X R?in, Vy = Cdz,
group dual: N =N, 2{Z=1,...,n}.

The rows RZ™ are acted on by irreducible right multiplications. The equiva-
lence reflects the equivalent left-right action Int g = L, x R, in the construction
of the conjugacy classes.

There are two different kinds of Hilbert spaces with three different types of
bases: In addition to the Hilbert bases of the irreducible representation spaces
of the group N (“angled” kets | ) with “angled” scalar product),

11

!/
Hilbert basis of V; = C¥ : {|a) | a=1,...,dz}, { (d|a)

’
0%,
idy, la

)al,

there are two kinds of Hilbert bases of the group algebra (“braced” kets | }),
the canonical basis with the group elements and harmonic bases (representa-
tion bases) for the orthogonal simple ideals C(dz x dz):

. N canonical: {|k} | k€ N}, {K'|k} = 6",
Hilbert bases of C*: { harmonic: {v/dy|Z¢} | Z:a,b}, B
Hilbert basis of V; @ VI« {/dz|Z¢}}, |1Z8} = ZIb){a|, {Z¢] = |a){(b]Z.

With the scalar product all direct sums are orthogonal @& = L. Schur’s
orthonormality relations for the harmonic bases, i.e., for the coefficients of the
irreducible group representation classes, sum over the group

{29128y = 2'(k)y Z(k)g = £677'6° 6y with Z(k)g = (0| Z(k).a).

b dy
keN
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This defines the Schur scalar product on the group dual (“braced” scalar prod-
uct)

Nx N+ C1, {22} =>"Z'(k)Z(k) = £ 677 Va,va,-
keN

The products are Plancherel-normalized with multiplicity factors é
tation dimensions) (more below at “Compact Groups”).

Bases with group elements and representation bases are related to each
other by unitary Fourier transformation F € U(card N): the group elements
(canonical basis) have a harmonic expansion, a harmonic basis has a canonical
expansion (2 since the identity is bilinear and the ket-bra notation sesquilin-

ear),

(represen-

. - b
idor = IHA = DoAZHZ K} @dzz 520},
Z=1

keN = = b
F: C¥=PIk}C =EPC(ds x dz) 12} @Z o[k}

Pt (22 = 2k = (BlZ(R)a).

The decomposition of the identity relates to each other the Haar measure of the
group and the Plancherel measure of the group dual, both counting measures:

dz is the number of irreducible representation spaces Vz = V' (columns or
rows, each with dimension dyz) in one irreducible (dz x dz) matrix subalgebra,

N —N, Z+——dy.

Consequently, the two-sided regular representation and hence any group
function has two decompositions - the canonical expansion into group elements
and the harmonic expansion (Fourier analysis) into irreducible representa-
tions, called harmonic matrices with the harmonic (Fourier) coefficients as
entries. The isometry is Plancherel’s theorem:

1} = @Ik} (k) = PdAf(2)}y = DI 2} (2);

keEN
function values: f(k) = {k|f} = ZdZZg‘(k)f(Z
7=
harmonic coefficients: f(2)¢ = {Z¢|f} = ZZ;}(k)f(k)
hEN
Plancherel unitarity: {f|f} =>_f(k)f(k Zdz f(2)ef(z
keEN

The tilde f < f for the Fourier transformation is customary, but not really
necessary. There is only one function |f}, with different expansions in the

canonical basis f(k) = {k|f} and harmonic bases f(Z) = {Z|f}.
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The simplest nontrivial example is the transposition group G(2) = {|e}, |a}}
with harmonic basis {‘e}:}la}, e} \/§|a}} used for the symmetric-antisymmetric re-

presentation decomposition of functions with two variables:

CS® 5|1} = f(e)le} @ fla)la}=|f(+)} @& |f(-)}
with [f(£)} = feEf@ 2o

ekl e} L1
ata) =F(1). F=3%( 1) cve.

The group product defines the convolution product, which is in the canon-
ical basis the matrix product for the harmonic matrices, with the algebra
automorphism:

et o fix foZ) = Fi(2) o u(2)
e with ¢ = {Z|f, * fo} {Z\fl} {Z\fQ}
1*J2=J1° )2 forall Z =

7.3 Algebras and Vector Spaces
for Locally Compact Groups

Two products are important for the (generalized) group functions 1 =®[dg gu(g)
of a locally compact group. ;From the group, they inherit the group multipli-
cation g1go = g € G as convolution product (where defined):

fi1 % u2 =[¥dg g (9)] * [®fdg gua(g)] = ®[dg g(pn * p2)(9),
w1 * pa(g) = fd91d92 Ml(gl) 5(91929_1),“2(92) = fdgl Ml(gl)ﬂ2(9f19)~

The associative convolution is abelian if and only if the group multiplication
is abelian, e.g., for energy-momenta ¢ € R? with Lebesgue measure dg,

(1 * p2)(q) = [daqr dgapn(qr) 0(qr + g2 — q) pa(ge)
= fd(h M1 Q1)M2(q - (11) = fdQQ ,U1(q - Q2)M2(QQ)~

From the complex number multiplication, the group functions inherit the
abelian pointwise product (where defined), important for product represen-
tations

pa - pa(g) = pa(g)pa(g)-

With respect to the convolution and pointwise product the Lebesque Ba-
nach spaces LP(G), 1 < p < oo, with classes of Haar-measure-almost-everywhere
defined functions, are related to each other as follows

LP(G)* L'(G) C L(G) with L+ 1 —

1
l<prs<oo: {LP(G)LT(G) CL*G) with I+1-1=0.

They are left-right modules for the Lebesgue function algebra L'(G), which is
a convolution algebra, and for the essentially bounded group functions L>(G),
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which constitute a unital algebra with the pointwise product. The convolutive
L'(G)-action is linear and continuous with a norm smaller than || f ||;. The
action on L?(G) is unitary, i.e., a Hilbert representation.

The Lebesgue spaces are left-right convolution modules even for the Radon
measure algebra M(G), a unital convolution Banach algebra,

M(G) * M(G) = M(G),
1<p<oo: M(G)x*LF(G)*x M(G) = L*(G).

The Radon measures, Haar measure with Radon distributions w(g)dg, embed
the group by Dirac measures. 0, is the convolution unit:

G 2 kv 0 € M(G) with 0,(9) = d(gk™),
Ok ¥ 0 = Ok, 0e =9,
Wx 0, = 0¢ %= .

The normalizations of Dirac distributions and Haar measure go in parallel,

5k7 fék dg f f(k)

In general, the group elements are not L*(G)-elements. However, as a replace-
ment, there exist approximations of group elements. Especially, a group unit
approximation be is given by a series of group functions with support shrink-
ing to e € G, e.g., by characteristic functions on compact e-neighborhoods
{k — ’LC((Ck)) | e € C compact}.

M(G) contains the function algebra L'(G) as a two-sided ideal. It consti-
tutes the dual of the compactly supported continuous functions C.(G), which
are dense in all LP(G), 1 < p < co. The involutive convolution algebra C.(G)
is a subspace of the bounded continuous functions Cy(G), which can be con-
sidered as a closed, in general proper, subspace of the essentially bounded
functions

LYG) S M(G) DG,
C(G) CG(G) < L*(G).

All the (generalized) function vector spaces and algebras considered have
an involution

poe i, () = Algulg™), for RY: u(q) = p(—q),
(f1 % po) = fig * fiy.

With a group representation D : G — GL(V') there is the representation
of the group algebras in the endomorphism algebra AL(V). It defines the
harmonic D-components D(u) = {D|u} of a function or a Radon distribution

D(p) = i(D) = [dg D(g)m(g),
A(G) = C(G), M(G), D(6,) = idy, D(d,) = D(g),
D: A(G) — AL(V), u— D(n). D(gi o) = Diyu) o Dlpa)

= 1 * fo(D) = (D) o fia(D).
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There is a unique correpondence between Hilbert representations of the group
G and conjugation-compatible representations of the Lebesgue function alge-
bra L'(G) that are nondegenerate, i.e., L'(G) e v =0 < v = 0.

The essentially bounded functions L>(G) constitute the dual space for the
Lebesgue function algebra L'(G):

PG) =L'(G), ;+;=1 1<pr<co,
duality: LYG) = L>(G),
C.(GY = M(G).

In the following, the Radon measure convolution algebra M(G) with the
Lebesgue function algebra L!(G) as ideal, and the essentially bounded function
pointwise product algebra L>°(G), the dual of L!(G), play the most important
roles. These spaces with two-sided convolutive action of M(G) and L'(G) and
pointwise action of L=(G) will be used for the group G and its dual G:

[« [Z2M0) [ M) [L=@) ] [ [LHG) [M(G) [L=(G) ]
Q) [ G | LG [ L@ JA(E) - - [ LU |
M(G) || L'(G) | M(G) [ L=(G) M(G) - - M(G) |
Q) | @) [ 2@ [ = I=@) [ TG [M@) | I®(@) |

convolution product pointwise product
pi * pi2(g) pia - pi2(g)
from group product for product representations

The Lebesgue function algebra L'(G) is injected into its universal envelop-
ing stellar algebra (chapter “Quantum Probability”), the stellar group algebra:
(group C*-algebra)

v LY(G) — C*(G) € saag,..

It can be considered as a convolutive subalgebra, dense in C*(G). A represen-
tation of L'(G) in a stellar algebra S, i.e., S C AL(H) with a Hilbert space
H, is extendable to C*(G).

Every Radon distribution of an open subset 7' C R" is a finite sum of
derivatives of order N < n of locally essentially bounded functions [7] M(T) C
{anONL>(T)}, e.g., the Dirac distributions as derivation of the step and sign
functions 9, e € L>(R):

7.4 Harmonic Analysis of Compact Groups

Harmonic analysis with respect to irreducible representations of a compact
group in general takes up the concepts of finite groups as a subclass of compact
groups.
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A compact group U has unique normalized Haar measure [ du =1, e.g.,

N
SU( )9 U X?@» fSU fdgu_j‘Q;ﬂ_ dx f27r do fl dcosQ

Its representations are, up to equivalence, in definite unitary groups, U —
U(V), i.e., on Hilbert spaces V. The representation coefficients are continuous
functions with compact support. The Lebesgue function algebra for a compact
group is maximal. All spaces LP(U) are not only convolution modules, but even
subalgebras of L'(U)

LNU)DLP(U)D LYU) D L>®U) for 1 <p<g< 0 » .
= [P(U) * IP(U) — L2(U) ., LP(U) € »naag,..

According to Weyl, all U-representations are semisimple Hilbert represen-
tations with the simple ones finite-dimensional:

simple for compact group: U — U(dy) C C(dy x dy),
group dual: U=U, 2{Z}C 7.

Not only for finite, but for compact groups in general, the irreducible U-re-
presentation spaces are characterized by the minimal left and right ideals C97,
arising as columns and rows with multiplicity dz in full matrix algebras C(dz x
dz). The set of irreducible representation classes (group dual) is isomorphic
to winding numbers, e.g., to Z for U(1) or to the cone Nj for a semisimple
compact rank-r Lie group.

The Peter-Weyl theorem generalizes the Maschke-Burnside-Wedderburn
theorem for finite groups: The direct sum of the finite-dimensional matrix
algebras for all irreducible representation classes is dense in all function spaces
LP(U) and in the stellar algebra C*(U), with respect to their possibly different
topologies

P C(dz x dz) dense in LP(U) and C*(U).

zZeU
It exhausts the Hilbert space of the square integrable group functions; with
SU(2) as example,

1x1 0 0
dense e.g. 0 2%X2 | ... 0
2 Pcldz xdz) = T for SU(2),
Ze0 0 0 |[...[(@+20)yx(O+2J)
dime L2(U) = Y dj = Y (1+2])2 =X,
ZeU 2J=0

In Schur’s orthonormality relations for the harmonic components the “braced”
scalar products come as group integrals, which are Plancherel-normalized with
the representation dimensions

Hilbert basis of L*(U): {Vdz|Zg} | a,b=1,...,dz, Z € U},
U x U—>C1, {Z/|Z} = 1 (SZZ 1dZ><dZ7
Z(u) (wlZ() v), |0}, € Vg,
{20122} = [du Z'(u)y Z(u)y = 2677 (v'[v){w|w),

{Z'0128y = [du Z'(w)y Z(w)g = 077 6 .

g
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All direct sums are orthogonal @ = 1. For example, for the irreducible
U(1)- and SU(Z)—representations
irrepU(1) 2 Z: Z(a)=e?, [T 271(0)Z(a) = {2]|2'} = 677,

irrep SU(2) = Ny : fd3u 20" ()4 2] (u)f = {2J’ |2J2} = 1+2J5JJ'5% o

one has explicitely Schur’s orthonormality, illustrated with the doublet and
triplet SU(2)-representation coefficients

x+e i X—¢

fd5 let"2" cos & \2 |ieﬂx2 sin%|2
xto

lie® N sme\2 le™ "= cos & |2

3 ’ig cos § L _yxse .ogxte 0
[ dPu L2 ) (ie7 2 sing, e 2 cos§)
2 smi
‘EL(X+¢) cos? g‘Q ‘ieigp si\;§9|2 |_ e—v.(x ©) bln2 9 2 111
fdgu \ieix—si%?\Q | cos 02 \ze"xbi;;\z = %(1 1 1>7
| — etx=¢) gin2 %\2 \ie*“"—si;‘;ﬁ le=#(x+#) cos? 9 2 111
e iH®) og2 O o o
 iysing 2 . _ix—e i xte
[dPu| —iex T ) (ie7 2 sin g, e cosd) = (0 o).
—e~ i (x=%) gin2 % 0 0

In addition to this group-integration-orthonormality of the representation co-
efficients in L*(U) (“braced” scalar product) there is the U(d,) orthonormality
(“angled” scalar product) for Hilbert bases of the finite-dimensional irreducible
representation spaces, e.g., the two and three columns (rows), are orthonormal
for each group element:

la) € V1 (a]b) = 6% = Z(u)§ Z(u)®* = &y for all u € U.

For finite groups, both kinds of Hilbert bases of the group algebra CU, the
canonical one and the harmonic ones, are finite. For compact groups in gen-
eral, e.g., for U(n), the group elements are a Haar-measure-related distributive
basis; the harmonic Hilbert bases remain discrete. The Fourier expansion (de-
composition of the two-sided regular U x U-representation, harmonic analysis)
with a discrete harmonic basis {V/dz|Z{} | a.b = 1,....dz, Z € U} is de-
scribed by the orthogonal Peter-Weyl decomposition of a square integrable
function in L2(U) = *f du ]u} C:

|} =Cfdu |u}f(u) = EDds| F(2)} = @Dds| Z5}F(2)!,

zZeU ZeU ~
function values: f(u) = {ulf} = ZdzZ(u)Z‘f(Z b
~ ZeU
harmonic coefficients: f(Z2)? = {Z°|f} = [du Z(u af(u),
Plancherel unitarity: {f|f} = [, du Flu) Z dz f(2)3f(Z)
ZEU+

The canonical distributive basis {|u} | w € U}, which is a Hilbert basis only
for a finite group, has a harmonic expansion and vice versa:

u} =Pzl 28 Z (),

idpey 2% du [ul{u dz|Z:3{ 28 a A b
) = du [u}{u] = 92 | Zai{Zal = |72} :@fdubIU}Z(u)ba
Z(w)g = {u| 22} = (a|Z(u)b)
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It involves the normalized Haar measure of the group and the Plancherel mea-
sure of the group dual (invariants of the irreducible representations), which
counts the multiplicity of irreducible group U-representation vector spaces,
with either left or right U-action, in an irreducible algebra L?(U)-representation
with left-right U x U-action.

Examples are the Fourier series for square integrable U(1)- and SU(2)-
functions:

I/} =% %o} fla g’;!z}f
CCURE SN S
f(z)y ={z|f} :j?fi 92 e 7 f(a),
If} =%fdPu u} f(u) = @D+ 272753 F(27)),
L*(SU(2)) : flu) ={ulft=> @1+ zfiJ(U)Zf(QJ)Z,
F@I) = (25} = ] dou ST (),

The irreducible representations decompose the Haar measure associate
Dirac measure of the group. It is the generalization of the orthogonality
{k|l} = 6" for the canonical finite group basis to the canonical distributive
basis of the continuous group:

wveU: f(u) = [dv{ulv}f(v) Zdzfdv tr[Z(u) o Z(v7Y)]f(v),

ZeU
{ulv} = d(vu~ ng tr Z(v -,
zeU
= Zdz tr Z(u), do(e) = ZdQZ (if defined),
zeU zeU

in the examples

U(1): §(%5L) =) elZemBZ ()= eloZ

Zel Zel
SU(2) : Sou™) =) (1+2])tr2J(v) 0 2J(u?),
2JeN
S(X)I(£)5(=%0) =D (1+2J)tr2J(x, ¢, cosb).
2JeN

The convolution of square integrable functions is the multiplication of the
harmonic matrices in the Fourier algebra automorphism:

L2(U) < LX(U), f < f with m — Fiobh,
for all Z: {Z] f1 * } ={Z|fi} o {Z|f2}
e UM): (hixf)a) = F(Z)f(Z)e?.

Zel
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7.5 Hilbert Representations and
Scalar-Product-Inducing Functions

7.5.1 Cyclic Hilbert Representations

A group G determines, via its (closed) subgroups, its action spaces. With-
out linear structure: An irreducible G-realization acts on classes G/H with
a fixgroup H C G. Any set with G-realization is decomposable into irre-
ducible orbits G e x = G/G,. Now with linearity: Any vector in a Hilbert
space V with a real Lie group G-representation defines by the closed span of
its orbit G e v =2 G/G, a cyclic G-Hilbert space C(G*v) C V. With a cyclic
vector for V', the representation is called cyclic too. A G-invariant subspace
and its orthogonal decompose the Hilbert space V. =W @ W+. Therefore,
any Hilbert representation is decomposable into a direct sum of cyclic Hilbert
representations.

7.5.2 Discrete Hilbert Representations

A locally compact Lie group has at most a countable set of Hilbert repre-
sentations that have square integrable coefficients. Because of their discrete
invariants, such representations are called discrete representations, all for a
compact group where all coefficients are square integrable, e.g. for U(1). D(1)
has no discrete representations. A nontrivial noncompact group example is
the countable set of discrete SU(1, 1)-representations that are induced by rep-
resentations of a compact Cartan subgroup SO(2) with their discrete winding
numbers, and the not discrete SU(1, 1)-representations from the Cartan sub-
group SOq(1,1).

All Hilbert spaces for representations of a locally compact group can be
constructed as equivalence classes |L'(G)) of the Lebesgue function algebra
LY (@) (more below). For noncompact groups, they do not have to be consti-
tuted by square integrable group functions. However, discrete representations
act on square integrable Hilbert spaces. Group representations coefficients for
square integrable Hilbert spaces do not have to be square integrable:

DY € L*(G)
discrete

[v) € [L*(G))
Diy(9) = (v|D(g)|w) :

. /
Dy ¢ L*(G) N [ € 23G)

7.5.3 Inner Products of Representation Spaces

The dual product combined with the U(1)-conjugation defines a sesquilinear
form on dual Lebesgue spaces. It is the L*°(G)-valued convolution at the
neutral element e € G,

+ =1, 1<p,s<oo: LP(G) XL**(G)LLOO(G)L(C
U b = [ db fyR)1(R) = fy = file) = [dkadky fo(ki") O(kuks) folks),
(ol fs) = [ dk fo(R)fs(k) = fo* file ) = [ dkydky fo(ky") 0(kiks) fu(k2).
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A Hilbert metric for the Lebesque function algebra L'(G) of a locally compact
group is defined by chosing from its dual L*°(G), the essentially bounded
Lebesgue functions,

fdk‘ldk}g 1)0(kikak ™) f (K2),
{d, f) fdkd ) (k) = (f)a,

a function from the convex cone d € L*(G),: The functions of positive
type (scalar-product-inducing functions) are defined by the property to give
a positive linear form of the Lebesgue function algebra (chapter “Quantum
Probability”)

LNG) — C, (f*fla= [dkidky f(k1) d(ky ks) f(ka) > 0.

Positive-type functions and measures (below) are a very useful tool to charac-
terize and to work with Hilbert representations.

A diagonal matrix element of a Hilbert representation D with any vector
|v) € H gives a positive-type function D} € L>(G):

Dy(k) = (vlkev): (fx fipy = [ dkidkof(ki){vlky ks 0 0) f (ko)
= fdkldk’z f(kl)kl ® U|f(k’2)k‘2 ® U)
=Il [ dkf(R)kev|?,

L®(G) % LNG) — L®(G) — C, {d*f( —

e.g, R>tr— ™ € U(1l). Compact group examples are the three diagonal
elements in the SO(3)-matrix above

! (x+%¥) cos? g ie“’% —e~i(x—%) gin? g
SU(2) 3 u(x, p,0) — dex g cos 0 jemix=nd € SO(3).
—_et(x—¥) gin2? g ie*ﬂp% e~ 1(x+¢) cog2 g

Representation properties and, for quantum theory, probability normalization
are related to each other:

unit G 3 e — d,(e) = (v|D(e)|v) = (v|v).

A positive-type function defines a semiscalar product via the d-convolution
at the group unit

LY(G) = L=(G) =« LY(G) — L=(G),
LNG) x LNG) —C, (fIf')a = [ dkidky f(k1) d(k; 'k2) f'(k2)
= (fx [a=fxdx[(e),
(LY al - <IEd ool £ Ml

Therefore, the Lebesgue function algebra is a pre-Hilbert space with the repre-
sentation of the group and its algebra by left multiplication, also on the scalar
product space |L'(G))4 with the d-nontrivial right classes:

LYG) — [LYG))a, | r— [f)a
heG: D(h):|LY(G))a — [LY(G))a; D(h ) f1a = |nf)a
freLiG): D) |LNG))a — [LYG))a, D) f)a=1f"* fla-
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The representations are extendable on the Hilbert space H = |L(G))g.

For this representation D there can be shown to exist a cyclic vector |c)
that gives back the positive-type function started with. Therefore, all positive-
type functions are cyclic matriz elements, i.e., diagonal representation matrix
elements (group orbits) of a cyclic vector:

- D(f)le) = 1f)a, cyclic,
ley € [LYG))a - d(k) = (c|k e c), positive-type function,
(Ailfa)a = ([ dkif(ki)ki o c| [ dkof(k2)ks @ c).

For unital L}(G) D G 3 e, e.g., for a finite group, the class of the unit is a
cyclic vector. In general, the class of a unit approximation b leads to a cyclic
vector. The norm of the positive-type function is the norm squared of the
cyclic vector and the function value at the group unit:

|d(k)| <[ ¢ [*= d(e).

Functions of positive type are, almost everywhere, bounded group func-

tions L®(G) 4+ & Cy(G)+. They do not have to be positive functions. They are
the continuous generalization of scalar products d >~ 0 for finite-dimensional
spaces (chapter “Spacetime Translations”), which can by characterized, equiv-
alently, by positive matrices, i.e., hermiticity d = d* and positive spectral
values specd C R,, or by a factorization (unit diagonalization) d = £* o .
In the case of positive-type functions, positive finite matrices for sequilinear
forms can be built with any number of group elements:

de L>(G)y < d(k; k)P, = 0for {k; € G}7_, and n = 1,2, .

2,7=1
Using two elements, there follow the conjugation invariance d = d and the
absolute value restriction by the value at the neutral element:

n=1: d(e) >0,
de) d k) =d(k-
o= (i 48) =o= i) S,

The spectrum positivity for matrices specd C Ry can be generalized to the
positivity of the coeflients in a harmonic analysis of the positive-type function
(more below).

The trivial function G > g — d;(g) = 1 characterizes the trivial group
representation. Conjugate functions d « d characterize dual representations,
a real function d = d a self-dual representation.

With Gel'fand and Raikov [9], there is a surjection of the functions of
positive type to the equivalence classes of cyclic Hilbert representations of a
locally compact group:

L>(G)y — rep (G (cyclic) D G4
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A square integrable function leads to a positive-type function
L2(G) 3 € ExE € I¥(G),

In the Hilbert spaces {|L1(G))q | d € L(G),} the spaces with square inte-
grable group functions are dlbtlnglﬂbhed by this sort of positive-type functions:
If and only if a positive-type function is “diagonalizable,” i.e., a convolution
product d = £ * ¢ with a square integrable one ¢ € L%(G), can the Hilbert
space for the d-associated representation D be constructed with square inte-
grable function classes & x L'(G) C L*(G):

A LY(G) 3 f — fe=Ex f € I*(G),
d=Exéwith € € LAG) = { ([1fa=(FExx1)(e) = (fex fO(e),
(Pl D €lf) = (DI,

A Hilbert product for square integrable functions replaces in d(kj'ky) —
§(k;'ky) the positive-type function for L'(G) by the Dirac distribution for
L*(G). This can be taken as a generalization of the factorization of pos-
itive matrices (diagonalization of sesquilinear forms) d = &£* o1 o £ with
d(v,w) = ({v|€.w).

The sesquilinear form with a positive-type function d € L*(G); can be

extended to the Radon distributions, M(G) %« L*(G) * M(G) C L*(G),

M(G) x M(G) — C, (w|w')g = [ dkidky w(ki)d(ky  ko)w' (ko).

The Hilbert spaces |C.(G)), contain classes of functions from the convo-
lution algebra with compact-support functions. They are constructed analo-
gously by a scalar product inducing Radon distribution of positive type:

wEM(G)+: ClG) X CG) — C, (fIf ) =f % flu=frw[(e)
J dkadks f(ky)w (ki ko) £ (2).
Positive-type functions yield only cyclic representations; positive-type mea-

sures yield more general representations. For example, the Dirac distribution
at the unit &, leads to L*(G) = |C.(G))s.

7.5.4 Irreducible Hilbert Representations

An irreducible G-Hilbert space is cyclic, but not the other way around. For
example, for the decomposable representations U(1) 3 €' — €93® or R

t — €%t the vector |c) = <(1)) € V = C?is cyclic. A cyclic vector C@*l9) has a
characteristic fixgroup H o |c) = {|c)}. For G = D(1) there is only the trivial
fixgroup {1} for nontrivial cyclic representations.

The continuous functions of positive type are a convex cone. The extremal
continuous normalized functions of positive type d(e) = 1, called pure states,
give the equivalence classes of the irreducible Hilbert representations. The
extremal positive-type functions have no nontrivial decomposition with cone
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vectors, they are the “corners” in the cone L*°(G),. Any Hilbert representa-
tion is decomposable into an orthogonal direct integral of irreducible Hilbert
representations. For a compact group, the direct integral is a direct sum. A
positive-type function and the related cyclic Hilbert space may be decompos-
able with Plancherel measure and a positive distribution d of the group dual
as (distributive) normalization coefficients into a direct integral of extremal
positive-type functions, pure states with pure cyclic vectors:

G3k+—d(k) = [ dD d(D)D(k), d="°[s dD d(D) D

There is a surjection of the pure states to the irreducible Hilbert represen-
tation classes, which is a bijection for abelian groups:

d(e) =1, L=(G); > d (extremal) — D € irrep ,G = G.

The Gel’fand-Raikov theorem guarantees “enough” irreducible Hilbert re-
presentations of G: For different group elements k; o € G there exists a sepa-
rating irreducible representation, i.e., D(ky) # D(ks).

7.6 Harmonic Analysis of Noncompact Groups

For a locally compact noncompact group the group dual also has continuous
contributions:

group: finite - compact C locally compact
e.g., G(n) C U(n) C GL(C™)

canonical “bases” {k]|keN} {fulueU} {k|keG}
. C . C .
card G finite continuous continuous

harmonic “bases”: [ {Z% | Z,a, b}

| Zab}| _ [(ZEZaby| _ [(OF[Doas)
card G4 finite

countable continuous

The harmonic analysis for locally compact noncompact nonabelian groups
in general is difficult (Harish-Chandra theory): As suggested by the possible
occurrence of not square integrable Hilbert spaces, the harmonic analysis has
to be formulated with care. The square integrable functions from the Lebesgue
function algebra L'"™?(G) = L'(G) N L*(G) generate the convolution algebra
L(G). The Fourier transform (harmonic analysis) of these functions can be
decomposed with a direct Plancherel integral into components from G x G-
irreducible subalgebras:

L(G) 3 |fy =", dk [k} f(k) =", dD |D}F(D),
fk) = Je, dD {KID}f(D), {k|D} = D(k),
= Jdk {DIk}f(k),  {DIk} = D(k) = D(k™")*,

{1/} = [dk|f(K)]> = [dD t f(D)f(D),
idra) =Y dk [k}{k| =4, dD [DHD|.
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The support of the Plancherel measure may exclude irreducible Hilbert repre-
sentations (nonamenable groups), that is the case for noncompact semisimple
groups, as visible, e.g., in the supplementary representations of the Lorentz
group with nontrivial positive-type function Hilbert space, i.e., with not square
integrable functions (below).

7.6.1 Flat Spacetime and Interaction-Free States

A basically important and not so difficult example is that of the translation
representations. They characterize interaction-free states with time transla-
tions for the harmonic oscillator, position translations for free nonrelativistic
scattering, and relativistic spacetime translations for free particles.

For the translation group, the energy-momenta characterize the group
dual with the equivalence classes of the irreducible Hilbert representations.
The harmonic analysis (Fourier integrals) for the noncompact abelian group
D(1)" = R" (translations) with definite dual group irrep ,R" = R" ((energy-
Jmomenta) for the 1-dimensional irreducible representations |[p} = {z +—
eP*} (for p # 0 faithful only for the U(1)-classes) is formulated in the lan-
guage above:

D@3} = Y o)f@) = L )
idp@ny = Y dw oz = fd"E [pHpl,
canonical harmonic

canonical distributive basis: {|z} | reR"}, {ylz} =d(z—y),
{Ip} [P e R"}, {alp} = 0(5),
distributive Schur orthogonality,
functions values: f(z) = {z|f} = [d"LZ ¢ f(p)
with e = {z[p}, e = {pl|z},
harmonic coefficients: f(p) = {p|f} = [ d"x e f(x),
Plancherel unitarity: {f|f} = [d"z |f(z)]> = [d"Z |f(p)*.

The [ d"z-associate Plancherel measure [ d"Z- is Lebesgue.

According to a theorem of Lebesgue, the Fourier transformation of the con-
volution algebra L'(R™) is an injective algebra morphism, with a dense range,
but not surjective, into the continuous functions Cy(R™) vanishing at infinity.
Co is a Banach space with the norm || f [|= sup ez~ | f(¢)| and a subspace of
L. The Fourier transformation can be extended to the Radon measure alge-
bra with values in the bounded continuous functions C,(R"). Positive Radon
measures and the continuous functions of positive type are bijective (Bochner’s
theorem [2]):

harmonic distributive basis: {

—_~—

Lp(R?) CL'(R"), 14+1=1,1<p<2, oco>r>2
with || f |, <|| f l, (Hausdorff-Young inequality),

Fourier: LT(TI_{;) = Cy(R™) dense in Co(R™),
—_—~— - ar -
MR, = Cy(R"), E LR,

M(R?) = Cy(R™) = complex span of Cy(R")...
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The convolution and pointwise product for the three representation-relevant
spaces is exchanged in the Fourier spaces with the harmonic components

[« TL'®RY [M®ERY) [GER ] [ TL'®) [MEY[GEM ]
LI®R™) [ L'®R™) [ LIR™) [ Co(R™) G =R [LEY) - - LT([R™)
MER™) || L'(R™) | M(R™) | Co(R™) M(R™) - - M(R™)
Co(R™) || Co(R™) | Cy(R™) - GR™) | L'R™Y) | MR™) | Cp(R™)

fi1 * pro() fi1 - p2(z)
1 Fourier I

[ TG [GE) [ME ] [« TG®RY) [GRY) [ ME |
Co®™) [[ &™) [ Co®™) [MEY | v — e [C@®) [ - — [Co® |
Co(®) [ Co(®) [ 6@ [ME) | —F GEY [ — — [C(E™) |
MER™) [ MER™) | M(R™) - ME®™) [ Co®™) [ Cp(R™) | M(R™) |

fi1 - fi2(p) fi1 * fiz(p)
from group product for product representations

The continuous translation functions of positive type are surjective to the
positive energy-momentum Radon measures, which give all cyclic translation
representations

Cy(R™); =2 M(R™), — repR" (cyclic).
The Hilbert-product-inducing functions

(R 3d > de MR, d(x) = [ d(p)t: e

(Qﬂ.)n

can be transformed into an integration of the pointwise product of the harmonic
components with a representation-characteristic positive energy-momentum

measure d(p) (lzi:fn :

L'R™ § LNR™) — € ™8 (R ¢ Co(RM) — C

e = Jdodas Je)d(@s =) f (@) = f s f/(0)
= [dw) gt [ ) ['(0) = gy (f - d) * f2(0).

The extremal states for the irreducible translation representations on 1-
dimensional Hilbert spaces are the Dirac measures §, € M(R"), supported
by the invariant eigenvalue

R" 5 2+ dy(x) = e?* = [d"q §(q — p)e's™, d, € C(R"),.
A cyclic Hilbert representation of translations R™ may be decomposable into

a direct integral of irreducible R"-representations. A simple example is given
by the cyclic self-dual translation representation, decomposable into dual pure
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states as used in the harmonic oscillator:
RSt dy2(t) =2cosmt = [dp 2|p|o(p*> —m?)e?', dp2 € Co(R),
d

d(t) = d.(t) +d_(t), { o
de(t) =e*™ = [dp 6(pF m)e™, dy =d_,
o) = () == ey = 25(L) = des
{f1f}a = [dp2plo(p* — m?)|f(p)|?
= fm)PP + [f(=m)]* = {fIf}+ + {fIf}-

Other examples are irreducible Hilbert representations for a tangent group
G XR", e.g., SOy(t,s) X R**. With the adjoint and codajoint group actions
G X R" of a group on its (dual) Lie algebra logG = R" = (log G)T, affine
groups are of more general interest (below and chapter “Residual Spacetime
Representations”).

7.7 Induced Group Representations

Harmonic analysis for a locally compact group G can be generalized to and
rearranged for the harmonic analysis of its homogeneous (symmetric) spaces,
i.e., of cosets H\ G with closed subgroups H: Harmonic analysis of complex
valued G-functions is the decomposition of the two-sided regular squared group
G x G-representation with respect to G x G-irreducible subalgebras, e.g., the
decomposition into full matrix algebras for a compact group. Harmonic analy-
sis of H \ G-mappings into a vector space W with a given H-representation
is the decomposition with respect to G-irreducible representation vector sub-

spaces, the remaining action from right H\ G % G, all with the same given
H-representation.

Explicit group G-representations, especially for noncompact G, can be in-
duced from subgroup H-representations. Without linear structure: The theory
of group G-realizations, all up to equivalence, relies on the fact that a group
has both left and right multiplication. The irreducible realizations are the right
multiplications on the left® quotients H\G (H-orbits, H-classes) with the sub-
groups {H C G} as fixgroups. The theory of induced group representations
formulates the realization analogous theorem with linearity as additional struc-
ture. Now all possible representations of the subgroup H have to be taken into
account: Fach representation of each subgroup induces a G-representation

G
ind% : 4 l — Jindg(d).
GL(W) GL(ind§ (W))

The G-representation ind$(d) with its vector space ind% (W) will be con-
structed in the following.

2Obviously, everything in the following can be done by interchanging left and right.
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For induced group representations, left and right action do not have to be
equivalent. The “quadratic” matrix algebras V ® V7T with two-sided G x G-
action, e.g., C(dz x dz) for compact groups are decomposed into “rectangular”
vector spaces W @ VT (transmutators) with left-right H x G-action.

7.7.1 Subgroup Intertwiners on a Group

With a subgroup H-representation d : H — GL(WW) the group mappings
W(G) = WY come with an H-action:

¢ = ¢ HxW(G) W(G)
. X — , W pw
heh: w l l’””’ with pw(k) = d(h).w(h k).
d(h

Like the group functions C(G), the mappings W (G) also take into account the
G-structures, e.g., periodicity w(a + 27) = w(a) for the compact degrees of
freedom.

Those mappings that are compatible with the H-orbit structure constitute
the vector subspace with the H-intertwiners on G for the representation d;
they are the invariants for the H-action

w = yw € sety(G,W) = INVZW(G) = Wy(G) = WG,
w(hk) =d(h).w(k) forall h e H, k € G.

An H-intertwiner w on G maps the H-equivalence classes in the group, i.e.,
the left orbits Hk € H\G, into the H-orbits H e w(k) in the vector space, i.e.,
into the equivalence classes W/d[H]: Intertwiners give W-valued mappings on
symmetric spaces H \ G.

In analogy to the canonical projection of the group to the H-classes G >
k — Hk > H\G, all H-interwiners can be obtained by the projection of
W(G) to the H-orbits, effected by integration with Haar measure of H:

WCs fr—HefsWHC (Hef)(k)= [,dhyf(k)= [, dhd(h)f(hk),
w(H o f)(k) = d(l).(H o f)(W~'k) = [, dh d(I'h) f((W'h)"'k) = (H e f)(k).

Trivial H-representations lead to the class functions C\¢, involving the
Lebesgue functions LP(H \ G) on the homogeneous space with the subgroup
classes

CE D CHC W& D WHE,

In the case of the trivial group H = {e} with the H-orbits consisting of one
element, one has all mappings set., (G, W) = W(G).

For the H-intertwiners on G the group function algebra, the “huge” vector
space C(G) with the left-right regular G x G-action, is rearranged by collecting
the 1-dimensional vector subspaces kC into “larger” W-isomorphic subspaces
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W (HE) for each class, which are directly integrated with a measure of the
H-orbits:

Wit(G) =2 yodu(HE) W(HE), W(HK)=W x {HE} =W =C™,
dime W = dime W - card H\ G.

If there exists a G-invariant positive H\G-measure, it is unique up to a factor.
For a compact group H there exists always one, for any closed H a quasi-
imvariant measure, which transforms with a positive continuous function:

G-invariant: du(Hkg) = du(HE),
G quasi-invariant: du(Hkg) = f(Hk,g)du(Hk) with f(Hk,g) >0,
notation: 69f[j,\Gdu(lLIk) =%ldHk.

Unless both the dimension of W and the index of H in G are finite, e.g.,
for the full group We(G) = W, the intertwiner space Wy (G) is infinite-
dimensional. With a basis {|a)}r, for W and {|Hk,a)}!", for W(HEk) an

H-intertwiner on G can be expanded with a measure-related distributive basis
and the function values as coefficients (bra-ket notation),

WHE 5wy =%[dHEk |Hk,a)w(Hk), (canonical expansion),
generalizing C% > |f) =%[dk |k)f(k),

W 3 |w) :EB |lt;a) wt, for card H\G = n,

=1

or as a (dim¢ W x card H \ G)-“matrix” with H \ G-indexed, possibly over-
countably infinitely many columns of length m:

w(Hk1)1 w(Hk2)1 ... w(Hk:)1 ...
WHE S w) = (“’(7’?”2 v :::)}m—dimcw
w(Hk1)m w(HE2)m ... w(Hkr)m ..

card H\G times
e.g, CE2|f) X (fk) flha) ... flhe) ...)

card G times, k,€G

The column w(HE) arises with a “width” (multiplicity, measure) dHk.

7.7.2 Examples for Symmetric Space Mappings

In the following examples for H-intertwiners on a group G the classes Hk €
H\ G are parametrized by vectors from G-spaces with fixgroup H.

An example, relevant for scattering structures, are the intertwiners
C*(92, L), which map the orbits of an axial rotation subgroup SO(2) in all
rotations SO(3), i.e., the 2-sphere 2, into SO(2)-orbits in W = C?, acted on
by an SO(2)-representation with winding numbers (polarization) L = 0,1, ...
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and left or right polarization h = +£1:

so@3) 2% so@)
O(2)\SO(3) =?* — C?,
W | J'W G=1 —uw(@),
C2 N C2 ql
O*(x)

w) =% dPw |&, hyw(@), €% d*w |&)C2.

The 2-sphere is parametrizable by the momenta directions in R3 = R, x Q2.
Relevant for internal transformations are the intertwiners C(G3, Z), which
map electromagnetic U(1)-Cartan group orbits in hyperisospin U(2), i.e., the
Goldstone manifold G2, into U(1)-orbits in W = C, acted on by an irreducible
representation with winding (electromagnetic charge) numbers Z € Z:

U@ 25 ue)
U(1):\U(@2) =G> —C,
o2 l l o) ei(=7312+97) »—>1U('7)7
C — C
(1)
jw) = d*y M)w(F) €fd*y 7)C

The Goldstone manifold is parametrizable by three Goldstone degrees of free-
dom in the Higgs vectors @ in C? 2R, x G>.

Relevant for massive particles are the intertwiners C'*2/()3), which map
the orbits of a rest-system-defined spin subgroup SU(2) in the Lorentz group
SL(C?), i.e., the energy-momentum hyperboloid J® into spin orbits in a repre-
sentation space W = C'*2/ acted on by an irreducible SU(2)-representation
for spin 2J =0,1,...:

SL(C?) =% SL(C?)
o) o),

C1+2J Cl-‘r?J
2J (u)

)y =@ °q o d’q 1427 _a@f 3 1427
[T Aw(@a €% 4L [T =2fdy [y)CH,
3y — a4 w0 _  [1 4 &
&’y = 9’ 772 =1+ m?
The boost classes J* can be parametrized by momenta or with hyberbolic
coordinates.
The compact-noncompact polar decomposition GL(C") = U(n)oD(n) for
n = 1,2 gives rise to intertwiners C(Ry, Z) and C'***(R%, y), which map the
orbits of the compact subgroups U(1) C GL(C) and hyperisospin U(2) in the
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extended Lorentz group GL(C?) into U(1)- and U(2)-orbits in representation
spaces C and C'*2T respectively:

GL(C), GL(C?) — GL(C), GL(C?)
|w) |w),
C C1+2T _ C (Cl+2T
’ dZ V12T (y) ’

k= ( )|k| € GL(C™),
UMW\GL(C) =R, —C, o
U(2)\GL(C?)) ~RY — @1+2T, || (|&]).

The classes D(1) and D(2) can be parametrized by the (space)time translations
of the future cone or with Lie parameters:

R, >t =¢¥, foodt —fd%
RY 52 = e (coshy) + Lsinh)), fR4 f;z = [dypy d*y.

38

With distributive bases {|t)} for W = C and {|z, a)} for W = C'*2T the U(n)-
intertwiners on D(n) have the canonical expansion with a GL(C")-invariant
positive measure of the future cone:

oo % 1) €®fdy |¢)C, n=1,
oy = MY di E \a: oc)w(x)a €[ dipy d’y g, ¥, G)CHH, n =2

7.7.3 Inducing and Reducing Representations

The subgroup H-intertwiners W (orbit mappings) constitute the vector
space acted on by the G-representation, induced by the H-representation d :
H — GL(W) and defined by right multiplication, left over from the two-
sided regular G' x G-representation. Induced representations are right regular
representations on vector space H-orbits:

¢ X ¢
o l indS (W) = WHEG  ind%(d) = RY,
76 w | WP RE WG s WG ) — fu,),
w — W

=%dHk |Hk,a)w(Hk)q,
lwy) = |w) e g =%[dHk |Hk,a)w(Hkg),.

The induced G-representation structures come as direct integrals with the
invariant H \ G-measure over the W-isomorphic spaces with the inducing H-
representations.
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The right regular G-representation is induced from the trivial {e}-represen-
tation ind?e}(id(c) =R and ind?e}(C) = CY. For the full group We(G) = W
with card G\G = 1 the induced G-representation is equivalent to the inducing
G-representation, ind%(D) = D and ind&(W) = W.

Equivalent H-representations induce equivalent G-representations. The
covariant representation-inducing functor relates to each other the representa-
tion classes

HCG: ind :repH = [vecy] — [vecy] =repG,

H G
d l — R,
GL(W) GL(WHG)

The functor is universal; the symmetric space mappings W are defined up to
G-isomorphy. Any H-intertwiner f : W — V into a G-representation vector
space can be factorized with the embedding W > |w) — [t(w)) € WHE by
the mappings with constant coefficients for each class,

H\G — W, Hk+— |w) = |a)w,, [(w))=2[dHk |Hk,a)w,,

and a unique G-intertwiner f,

W WG
l l 5 Wi, f € vecy,
/ fo WHE Vv f € vecg.
V — Vv

idy

With a decomposable H-representation, the induced G-representation is
also decomposable, i.e., the functor is additive:

W @ WQ)H\G:WE\G ® WQH\G.

Inducing is compatible with direct products:

: G1xG2 ~ 3 G : G2
indj 7 = indyy) X indj?.

A subgroup representation is reduced from a group representation, denoted
by HeW C GeV if HC G and W C V (always up to isomorphism, e.g., a
W-isomorphic subspace of V'), and conversely the group representation GeV 2
H oW is induced from the subgroup representation. The expression “induced”
is justified: For a proper Lie subgroup H C G, the infinite-dimensional G-re-
presentation, induced from a finite-dimensional H-representation, contains all
H o WV extending finite-dimensional representations G e V.
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Reduction is “inverse” to induction with the additive covariant representa-
tion-reducing functor

GDH: red§ :repG = [vec;] — [vecy]=repH,

G H
D | — | @, -
GL(V) GL(®, W)

In general, the reduction of an induced representation R¢|y leads to more H-
representations than the original one d (Frobenius’s multiplicity; more below):

redH o 1ndH idyep #-

Each G-subrepresentation in R¢ contains an H-representation equivalent to
the inducing representation d:

HCG: RCR! < R[G].V Dd[H].W.

7.7.4 Projection to Subgroup Representations

For a closed Lie subgroup H C G and Haar measures, the (generalized) G-
functions can be projected [5] to (generalized) G/H-functions by integration
over the subgroup (where defined):

w(k) »—>qu fHdh,uhk)
e.g., 05(k) —— d,( = [ dh o(hkg™).

Under certain conditions, related to unimodularity [5], there is the integral
decomposition with respect to the subgroup with suitably normalized invariant
measures,

Sl (k) = [y dHE p(HE) = [ dH [,y dh u(hk).

With a group factorization (Cartan or Iwasawa) there exist correspond-
ing measure decompositions, where in general the modularities of group and
subgroup have to be taken into account:

fGL(CZ) d*g f d u fD(Q
2) dtu = [T 0‘0 fsu(2) d u,
Jodk = [, dh fH\G dHk e.g., fSU(2) BPu = f_% dx [o d°w,
fD(Q) dd =[5 dio fy3 &y,
e dPy = [psinh® ¢ dy [o, dPw.

Other examples are (semi)direct product groups G = L x H with normal
subgroups H and subgroups L = H\ G: For example, translation representa-
tions are projected to representations of translation subgroups by integrations
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over the translation group R, which gives the Dirac measure g of the trivial
additive group {0},

R {0} [ % =og) ~ iy 21,

R — Rnflc . f (;lfra)ck eipy+iqac — [6(q)]keipy ~ eipy.
Representations of Euclidean groups can be projected to lower-dimensional
ones, e.g., for 3-dimensional position translations with the chain of positive-
type functions for the subgroups jo —— Jo —— cos,

SO(3) xR* — SO(2) xR?: [ :30 (Pr) = [d= [ 49 57 — p?)eia?
7]%;177q6 PQ) mzﬁjﬂpﬂ),
— R [5G do(Pr) = gp [ 52 D(1PT)
= 2P2 cos Pxy.

Particle representations of the Poincaré group have nontrivial projections for
time translations and trivial ones for the Euclidean group with momentum
q7=0,

S0y(1,3) xR* — R: g 6(¢? — m?)eie = ﬁcosmxo,
SOy(1,3) xR* — SO(3) XxR3: [dxy [ d*q 6(q* — m?)e'®® = 0.

The decomposition with respect to time representations shows the positive-
type functions (spherical Bessel function) of irreducible representations of the
Euclidean group for nontrivial momenta ¢* = g2 — m? > 0:

SO((1,3) XR* D [SO(3) XR¥ x R,
% 5(q2 _ m2)eiqz — f|:| qu @COS qoTo-

r

7.7.5 Induced Positive-Type Measures

The embedding of a positive-type Radon distribution of a closed subgroup of
a locally compact group G O H defines a positive-type Radon G-distribution
[3]:

M(H)+ Swy— wg € M(G)+

with (we, f) = (wn, fla) = [;wn(h)dhf(h) for f € C(G).

For non-unimodular groups the embedded measure has to be multiplied by

Ag(h)
Ap(h)
regular Hilbert representation of the subgroup, then wg characterizes the class

[R9] of the induced Hilbert representation The induced scalar product comes
from:

LI €CAG) s (Mo = * Fli)an = Jgdk [y dh J(R)wr(h) [ (hk)
= Jing @HE [y, gy dhadhy f(hak)wp (hy ho) f'(hak).

with the modular functions. If wy characterizes the class [d] of the
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Examples are given by the functions of a (semi)direct poduct group:
G=LXH: (fIfVYos = [, dl [y, ;dhidhy f(I,hy) wi(hi hs) f(L, ha),

in the simplest case for the abelian product group R*** and their Fourier
transforms, e.g., for time and position translations with (X, z) — (xg,Z) and

(@,9) = (q0,9):

G=RF @& R*: (f|f)er,. —fdefdsccldst (X, z) w f(xg—lj) (X, z2)
= [ &9 [ &4 [(Q.q) &:(9) F(Q.0).

The regular representation of a subgroup with wy = &, on L?(H) induces

the regular representation of the full group on L?(G). The G-intertwiners |U f)
with f € C.(G) are valued in the H-space C.(H)

Ly
G — G !Uf><) fr € C(H),
fec.(q@), wn l l v,  fe(h) = f(hk),
(@) — C6) R fk Jrg

= ind$(Ry) = Re.

Groups can be mapped to their representation classes as @& -additive semi-
groups with the covariant functor

H rep H
- l — J{ indg.
G rep G

The morphism set for the groups used here involves only, if existent, the inclu-
sion {H — G}; otherwise it is empty (). The functor properties: Representa-
tion inducing is compatible with subgroup order; inducing can be performed
in stages (transitivity):

. H .
indy = idyep o,
subgroups K € H C G = ind% o ind% = ind%.

For example, a polarization representation can induce a spin representation
can induce a Lorentz group representation:

SO(2) c SU((2) c SL(C?),
polarization spin “left-right spin

2J 2L 2R
st o Vo VsoVs

|Z| J>Z L+R>J

”
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7.8 Harmonic Analysis of Symmetric Spaces

In general, the G-representation on WH\ is reducible, i.e., there are subspaces
of H-intertwiners on G that are stable under G-action. It will be assumed
that a decomposition of an induced G-representation, i.e., a harmonic analysis
of symmetric space mappings W™ is possible with finite-dimensional trans-
mutators H ¢ W < G e IV (next subsection) from the H-space W with bases
{|Hk,a) |a = 1,...,m} for W(HE) to irreducible G-spaces V with bases
{ID;j)|j=1,...,n}. Those subspaces arise with multiplicities np.

Such a decomposition of W7\ into irreducible Hilbert spaces Vp is possible
for compact groups G with Frobenius’s theorem (below). For noncompact
groups, finite-dimensional irreducible spaces Vp do not have to be Hilbert
spaces, i.e., the representations on them can be indefinite unitary.

The intertwiners have the expansions

WHC s w o @weWHE,

canonical expansion harmonic expansion
WHE 5wy =°f , dHk |Hk,a)w(HK), = @ np|Dsj) @(D),,
dCDeG
W-mapping values: w(Hk), = (Hk,alw) = Z npD(HEk)! w(D);,
dCDeG

harmonic coefficients: @(D); = (D;jlw) = [dHk D(HE)? w(Hk),.

The decomposition of the identity with dual distributive bases looks as follows:

idyme =[dHk idw = @ npidy,
dCDeG
~S[dHk |Hk,a)(Hk,a] = O np|D:j)(D;jl.
dCDeG

The sum goes over all G-representations D on spaces Vp that are suprepre-
sentations of d:

WHE DV, 5 |D; j) =®[dHk |Hk,a)D(HE)] for all G e Vp, D H e W.

—Lyeeey

W (HE) and the G-spaces Vp:

idyme = @ np ©fdHk |Hk,a) D(HE), (D; jl,
dCDe@

D(HE), = (Hk,a|Dsj), D(HR) = (D;j|Hk,a).

In the harmonic analysis of group functions C“, both the canonical basis
|k) € G and the harmonic bases |D) € rep G have a two-sided (from left and
right) G-action G e (Vp ® V) e G, whence for W in general, there are
different one-sided actions: H ¢ W (from left) and V) ¢ G (from right).
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7.8.1 Transmutators for Induced Representations

An explicit description of a finite-dimensional extension-reduction structure
HelW C GeV for induced G-representations is given by transmutators (chapter
“Spacetime as Unitary Operation Classes”). They were used in the chapters
“Massive Particle Quantum Fields” and “Massless Quantum Fields” to induce
a Lorentz group action G = SL(C?) on fields from a stabilgroup action H €
{SO(2),SU(2)} on particles and in the chapter “Gauge Interactions” to reduce
the hyperisospin G = U(2) action on fields to an electromagnetic H = U(1)
action on particles.

For the classes Hk € H\ G, orbit representatives can be chosen, e.g., a
polar decomposition k£ = u(k)|k| € U(n) o D(n) = GL(C"); in general there
is no natural choice:

H\G — (H\G)repr € G, Hk+— k, with Hk = Hk,,
(H\G)repr = {kr € G| coset representatives},
G = |4 Hk = Ho(H\G)epr.

repr kr

The right G-realization on the left H-orbits
Ry : H\G — H\G, Hk — Hkg

has H-isomorphic fixgroups {g € G | Hk = Hkg} = kHk™'. The G-action
may look complicated for the chosen representatives: It hits the chosen rep-
resentative (kg), up to a transformation with a Wigner element h(k,,g) € H
from the subgroup which depends on the acting element and the representatives
chosen:

Ry (H\G)mpr - (H\G)mph k, +—— kpg = h(kg),
with h = h(k,,q) = k.g(kg). ' € H.

A G-representation

(o]
o

1

G 3 k+— D(k) € GL(V), V=C" 2 s,

is decomposable into subgroup H-representations with square (m, x m,) ma-
trices, e.g., as 8 =2+14+3+ 2:

N N
H
Ve@w, HeW'CW', W'=Cm™, Y m,=n,
=1 =1
e ¢/ 0|0 O O|O O
e e¢|0|0 O O|O0 O
N g 0O O|e|O0O O OO O N
H3h— D) =@dh) = | § olo|s o )0 0 | € EDGLW).
=1 0 0|0O|e e |0 O =1
0 0\0 0 0 0‘. .
0O 0[0O|0 O O|e e
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The representation of the symmetric space H\ G,
(H\G)repr 2 kr — D(k,) e GL(V) C V@ VT,

is correspondingly decomposable into transmutators from HeW* to GeV with
rectangular (m, X n) matrices from W* ® V7.

n columns A S
L] L] L] e L] L] L] o
N DY(k;) | m1 lines g e o o o o o o o
_ L _ D?(k,) | ma lines ~ e o o o o o o o
Dt (k)
- r - ... e - e o o o o o o o ’
=1 DV (ky) | my lines e o o o o o o o
o o o o o o o o
L] L[] L] [ ] L] [ ] L] °

(H\G)repe 3 ky +— D"(k,) = |1;a) D*(k, )i (D; j| € W' @ V.

The transmutators are (m, x n)- dimensional vector spaces with H x G-re-
presentations. They have a G-action from the right and an H-action from the
left:

(H\Glropr == (H\Ghor  Di(k) = Dk, 9) = D'k o Dl
D D, = d'(h(g. k) o D((kg),). g € G.
WVl — WreoVT D%hk,) = dL(h) o DL(]{? ), h e

For the examples above, the spin SU(2)-representations on SO(2)-inter-
twiners {w : SU(2) — C?}, induced from an SO(2)-representation with
polarization £7 € Z, Z # 0, have to contain an SO(2)-representation with
polarization Z. Therefore, the minimal induced spin J is half the polarization
|Z]:

|Z]
g >

0 — SU(1 +2J), ﬁM\/u

For the hyperisospin U(2)-representations on U(1)-intertwiners {w : U(2) —
C}, induced from a U(1)-representation with charge number Z € Z, the min-
imal induced isospin 7" is half the charge |Z|:

_.L"'Dl

2T
G — U +2T), & — (), T=4.
The Lorentz SL(C?)-representations on SU(2)-intertwiners {w : SL(C?) —
C'27}induced from an SU(2)-representation with spin J, have to contain a
spin representation with J:

2L
V3 s SL(C(1+2L)(1+2R ), L \/ \/ ), L+R>J.

m
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7.8.2 Lebesgue Spaces for Induced Representations

The Lebesgue spaces LP(G) for the complex group function classes are general-
izable to the H-intertwiners, i.e., to the classes of mappings from the symmetric
space H\G with G-invariant positive measure into a finite-dimensional Hilbert
space W 2 C" with scalar product (a|b) = §%:

WHE 5 \w)y =®[dHE |Hk, a)w(Hk)q,
w) € (G W) s | 10 b= Ung dHE [0(HRP) < o0,
’ with [w(HE)|? = w(HE)qw(HE),.

Again, there are Hilbert spaces with square integrable mappings L?. The
convolution Lebesgue group algebra L'(G, A) of mappings, valued in a C*-
algebra A, has Hilbert products with a positive-type mapping L*(G, A)..

For square integrability with the G-invariant scalar product for the inter-
twiners

WHE x WG — C, (wolw) = [ dHEk wo(Hk)qw; (HE),,

the bases for each coset element are, in general, not a basis with Hilbert vectors,
only a distributive basis with the measure-related Dirac distribution, orthogonal
and positive (chapter “The Kepler Factor”), as scalar product distribution and
the corresponding completeness,

B (HK',b|Hk,a) = 0"6(Hk, HK'),
{|Hk,a) | Hk € H\G, a=1,...,m}, { \Hk,a)(Hk,a| = idpaimem,

where fH\G dHEk §(Hk, HK')(Hk|w) = (HEK'|w).

This leads to generalizations of Schur’s orthonormality for representation co-
efficients.

G-subrepresentations of the intertwiners involve transmutators as W-valued
functions:

WHE DV 5 |D;j) =%[dHk |Hk,a)D(HE)?.

The finite-dimensional transmutators are Hilbert representation spaces only
for compact groups. There, they are complete for the harmonic analysis of
the Hilbert spaces with square integrable functions L?(G/H). For noncompact
groups G, the irreducible finite-dimensional spaces Vp do not have to be Hilbert
spaces, and the transmutators do not have to be square integrable:

(D(HK)|D(HE)"Y = [ dHk D(HE),D(HE)".

7.9 Induced Representations of Compact
Groups

The compact group U-representation, induced from an irreducible, i.e., finite-
dimensional subgroup K-representation, is decomposable into irreducible ones.
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The matrix elelements in finite-dimensional rectangular transmutators are
square integrable. They are complete for the harmonic analysis of the group
U and its homogeneous spaces U/K, i.e., they exhaust, in orthogonal direct
Peter-Weyl decompositions with Schur orthogonality, all square integrable in-
duced representations:

dense
compact : LX(U/K,Wy) 2 Enp Wa@ V.
D2d
There occur all G-representations D (countably many) which contain the in-
ducing K-representation. There is Frobenius’s reciprocity theorem for the
number np of d-induced U-representations D (below). With a basis |a) € W,
and |D; j) € Vp one obtains the harmonic D-components w(D);:

) s (U/K)y — W [0) =% 10, dtr [, 0wl )u = @] Ds jy( D),
D2d
w(tr)a = {up, alw), w(D); = (D; jlw),
|D]> :$f (U/K)» du, |ura >D(UT)J
gur a @an gu’r‘)av g c U
D2d

with

e.g., the harmonic analysis of functions

) ’D] f du, |u,)D(u r)6>
U/K) Di)f by s i
LU/K) 3 17) = Droloh D) wi { f(D), — (Dsgifh

7.9.1 Frobenius Reciprocity

Frobenius’s reciprocity theorem for the K-intertwiners L*(U/K,W,) general-
izes the theorems related to the left-right action-induced square structure of
the group algebras, i.e., the Maschke-Burnside-Wedderburn theorem for the
group algebra CU in the case of finite groups and the Peter-Weyl theorem for
the square integrable functions L*(U) in the case of compact groups, now in-
cluding the K-representation space Wy = C™: It states that the number np of
equivalent irreducible U-representations of class [D] induced on L*(U/K, W)
equals the number n, of equivalent K-representations of class [d] in this [D]:
Therefore a K-representation class in the induced U-representations comes al-
ways as a square matrix of K-representations: irreducible K-representations
induce K x K-representations

U: L*U/KWy) = Vp @ ... @ Vp @ ---,

np times
Wa
. 53]
K VD = ng times P ey
D
Wa

np = Ng,
Wy Wy

LU/ K, Wa) 2 (::: '::) =Wt oW

Waq cee Wy

U compact =
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With the universality of the inducing functor, one has for irreducible represen-
tations of compact groups the multiplicities given by the intertwining dimen-
sions

ng = dimg vecg (Wy, Vp) = dimge vecy (L*(U/ K, Wy), Vp) = np.

The Maschke-Burnside-Wedderburn-Peter-Weyl square structure is a spe-
cial case: For the induced regular representation the space L?(U), i.e., Wy = C,
contains all irreducible U-representation spaces with the multiplicity equal to
its dimension, np = dim¢ Vp. The left-right isomorphism leads to a direct
sum of full matrix algebras. Frobenius reciprocity gives the generalization of
the harmonic analysis of the square integrable group U functions L?*(U), now
for the Wy-valued symmetric space mappings L?(U/K, W). The direct sum of
matrix algebras is rearranged: In each full matrix subalgebra V;, @ VI c L?(U)
the irreducible U-representation space V;, = C% contains ng times the irre-
ducible K-space Wy, whence also V;I', which leads to the square substructure

LXU)D VL, @ VE D Wi @ Wi C LUK, W,) C LA(U).

7.9.2 Examples of Frobenius Reciprocity

The Peter-Weyl decomposition of the SO(3)-functions

2 som = | ) = Y0+ 2mprwhfeny
HsoE) = @C CETN fw) = (b, 20 = ful2rt),

208} =%fdu Ju} 2L(u)} € Vi, @ VT,

is the reservoir to be used for the SO(3)-representations, induced from SO(2)-
representations. Those SO(3)-representations act on mappings of the 2-sphere
into an SO(2)-representation space W.

The defining SO(3)-representation L = 1 is decomposable for trivial SO(2)-
action, i.e., for y = 0, into three axial-to-rotation transmutators:

SO(3) 3 2(u)} = (¢"2}(@), 2(@), 2" (&) = 80(2) 0 80(3)/80(2),

€'? cos? g ie“’% —e'¥ gin?
@.25,2)@) = e | wd | o2 ] €S0(3)/50(2).
—e i sin? % i~ % e~ cos? %

The functions L?(0?) have trivial SO(2)-representations on the scalars C.
All irreducible complex SO(3)-representations have exactly one trivial SO(2)-
representation: the “middle” column in the (14+2L) x (14+2L) algebra. There-
fore (Frobenius) they arise exactly once in the harmonic analysis of the 2-sphere
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functions:

idpaqey 2O dPw|@) (3] = @|2Lb (2L,
SO(3

@CHQL Z2L 2L b’

|ﬂﬁ ) =S |5) 2L(E) € Vi,

with the spherical harmonics as transmutators, the middle column |2L8) =

. 1_‘$LYL starting with %Yl. They are the minimal left ideal types in the
Peter-Weyl decomposition.

For the mappings {|w) : Q? — C?} with the nontrivial SO(2)-repre-
sentation on C? = C? by €@’¢ — ¢°% | = 1,2,... the value space is
decomposable with two irreducibles (polarization directions), e*# on C* = C.
Therefore, each nontrivial SO(3)-representation comes for C* and C~ with
transmutators 2L%, for L > [ and h = £1:

idaeczy 2O dPw|@, hi)(@, A

= @IMZDQL%I,

ZQL b (2L,
|2L%,) :®fd2w |5, hl) 2L(D)8, € V.

0(3)
L2(Q2,C?) g 2 x @CH—QL

For [ = 1 it starts with the left and right columns in the defining representation
for x = 0.
The Peter-Weyl decomposition of SU(2)-functions

SU(2
LZ(SU(Q)) %5 ) @ C1+2 g Cl1+27
2J=0,1,...
is the reservoir for SU(2)-representations induced from SO(2)-representations.
For the nontrivial irreducible representations SO(2) 3 7’3 — €3 € U(1)
on C and for the decomposable ones €’3 — ¢No°3 on C2, one obtains
the decomposition into all extending irreducible SU(2)-representations with
half-integer spin, once and twice respectively:

SU(2)

|Z|=1,2,---: L*(Q%*Cy) = @ C+2/,
o J=1Zl 12 1y, .
SU(2
N=1,2---: L*Q%C%) = 2x b .
J=8. 5+,

The Peter-Weyl decomposition of functions L?(SO(4)) gives all irreducible
representations [2.J1]2J3] with integer J; 4+ J5. The harmonic analysis of func-
tions L%*(Q2%) on the 3-sphere Q3 =~ SO(4)/SO(3) (SO(3)-intertwiners on
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SO(4)) involves - in the decomposition - only those irreducible SO(4)-repre-
sentations that contain a trivial SO(3)-representation, i.e., J; = Jy. They
occur as often as they contain a trivial SO(3)-representation, i.e., once:

SO(3) Ji+J2
[2J12.J)] = @ [2L], L*( Qd @(C 1+27)(142J)

L=|Jy—Ja| 2J=0

The Peter-Weyl decomposition for SU(3)-functions

12(SU@) 2 C @ C(3x3) & CBx3) @ C6x6) & C(6x6)
& CEx8) & -

—

is the reservoir for the SU(3)-representation, e.g., induced by a doublet SU(2)-
Pauli representation [1] on W = C?. The induced SU(3)-representation on
the SU(2)-intertwiners is decomposed into irreducible SU(3)-representations
[N1, No] as follows: All SU(3)-representations with SU(2)-doublets arise and
only those, i.e., Ny + Ny > 1. No singlet [0,0] (it has no SU(2)-doublet),
one triplet [1,0], and one antitriplet [0, 1] (since both triplet and antitriplet
have one SU(2)-doublet), equally one sextet [2, 0] and one antisextet [0, 2], two
octets [1,1] (since an octet has two SU(2)-doublets), etc.:

u(3) - _
CCe C*o C8 @ CS

L2(SU(3)/SU(2), C?) =
® [C® o CY o

(SU(2)-doublets) > C* @ C* @ C* @ C?
c2 ¢
@ ((CZ (C2) @ ttt .

With [1] = [1]* for the SU(2)-representation conjugated SU(3)-representa-
tions, [N1, NoJ* = [Na, V1] have to arise with equal multiplicity.

7.10 Representations of Affine Groups

As pioneered by Wigner for the Poincaré group, representations of affine sub-
groups G x R", like Euclidean or Poincaré groups

SO(1+ s) X RI*s, SOy(1, s) X Rt (g1, 21) (g2, T2) = (9192, 1 + 91.72),

are inducible from those of direct product subgroups. An inducing procedure
indg for the homogeneous group uses a parametrization of H\G by eigenvalues
(characters, energy-momenta) of the translations.

The irreducible 1-dimensional unitary translation representations consti-
tute the group dual

X9 R — U(1), x"(x) = e'eo),
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The translation eigenvalues (energies, momenta) carry the dual action of the
homogeneous group (§.¢,z) = (q,g.x), which defines the semidirect group
G X R"™ with fixgroups of the translation eigenvalues:

Gy={he€G|hqg=q}.

A translation representation x* can be used in the phase group for the
corresponding fixgroup representations d : G, — U(W),

G, X R — uw), d4(h,z) d(h)ei<q’””>,
diq<(h17 Il) o (hg, Ig)) = d(h1h2>6i<q’zl+hl'z2>
= d(hyhy)ei(@m) githaa,e2)
= d"(hy, 1) 0 d(hy, x2),

since the two subgroup factors are “decoupled” in a direct product acting on
the translation eigenvalues

1[Gy X R = d[Gy] x X"[R"],

e.g., for the Poincaré group SOq(1,3) x R* with nontrivial character ¢ = (m, 0)
having the rotation fixgroup SO(3),

SO(3) x R — SO(3) x R* 3 (0, z) — 2J(0)e'".

A G-action on a translation eigenvalue gives the orbit with isomorphic
fixgroup H for all elements G.q = H\G. The intertwiners are acted on by the
homogeneous group G:

G x WHG — WHE |w) — |w) e g = nedHq |q, a)w(g.q)a-

The representation Hilbert space is constituted by the (energy-)momentum
functions L?(H\G) (wave packets), supported by the orbit that is characterized
by the translation invariant.

It has been shown that the G X R™-Hilbert representation induced from
an irreducible Hilbert representation of the subgroup H x R® — U(W) is irre-
ducible too. The inequivalent irreducible Hilbert representations irrep, G XR™,
induced by translation eigenvalues, are given with their G-orbit decomposition

R" = |4 G,\G,
repr qr

i.e., with one representative of each orbit, and all irreducible Hilbert represen-
tations of the fixgroup for this representative,

H—J {dx X" | d € irrep, G,,, ¢ € R"™} 2, irrep, [G X R"].
repr qr

It has also been shown that all irreducible Hilbert representations are inducable
if there exist representatives {¢.} that constitute a Borel set in all translation
eigenvalues R™.
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Irreducible G X R™ Hilbert representations are cyclic translation represen-
tations with positive Radon measures of the (energy-)momenta. The coeffi-
cients depend only on the translation parametrizable classes v € G X R"/G,
in general not a group. Matrix elements with nontrivial G-behavior arise by
translation derivations %.

7.10.1 Hilbert Spaces for Heisenberg Groups

The Heisenberg groups have classical and quantum representations. In the
Heisenberg group H(1) as semidirect product, in a indefinite unitary faithful
representation

t

i )

1

X . o ~ (0 1
the homogeneous group e’ € R with the position X = (0 0) acts on the

o3

1
H(1) =R X R? — SL(R?) > ( 0
0

abelian normal subgroup R? with momentum P 2 ((1)) and the central action

operator [X,P] =12 (é),

miw—w ()= ()

I generates the invariants.
The position action on the dual space (I, ¢) € R?

<(h,q),(;)>:m+qx, (m)(g ‘1‘”) = (h,z — Iip)

has two types of fixgroups with corresponding orbits: The fixgroups are char-
acterized either by trivial or by nontrivial eigenvalue i € R:

h=0: (0,q) has full fixgroup R and point orbit {(0,q)}
h#0: (h,q) has trivial fixgroup {0} and line orbit (A, R)

11

{1},
R.

Correspondingly, the representations
irrep (H(1) = {h| h e R}

come in two types (Stone-von Neumann theorem): The first type with trivial
representations of the central action operator I € centr H(1), i.e., with invari-
ant h = 0, leads to classical unfaithful representations of the Heisenberg group
with commuting position and momentum, i.e., of the abelian adjoint Heisen-
berg group Int H(1) = H(1)/ centr H(1) = R2. The Hilbert representations of
R? are in U(1).

The second type with trivial fixgroup and a nontrivial I-eigenvalue A in-
duces the quantum representations of the Heisenberg group. There is a con-
tinuum of invariants of 0 # A € R. Different action quanta i # A’ define in-
equivalent representations with I —— ¢A1. These irreducible faithful H(1)-re-
presentations integrate over irreducible representations R 3 x —— ¢%® € U(1)
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for all momentum eigenvalues on the orbit line ¢ € R with orthogonal and
positive scalar product distribution:

Of92|h; q)(h;q] = idr2 )
h#0: {|hq)|qeR} with (hid'|hiq) = o(%55),
|hiq) > e |h q).

The Hilbert spaces consist of the square integrable momentum functions f €
L*(R) (Wave packets) They are isomorphic to the square integrable position
functions f(z) = [dq f(q)e™*:

s £y =C[5¢ I(@)|hia) -
= ([0 f) =[5 Pl@)fa) = [dv f(x)f(x).

The action of the Lie algebra position or momentum operator is given by the
derivatives X —— ihdiq and P — —ih% respectively.

A harmonic analysis of functions on the Heisenberg group H(s) uses the
classical Fourier components |0; f) with trivial Plancherel measure and the
quantum components |4; f) with Plancherel measure [3] ||*dh for the invariant
values of I which characterize the irreducible quantum representations.

7.10.2 Scattering Representations of Euclidean Groups

The irreducible Hilbert representations of the Euclidean group SO(s) x R* for
s> 2, in a real (s + 1)-dimensional indefinite unitary faithful representation

SO(s) XR* = {(%“%) | e Re},

are induced from representations of the direct product subgroups that are
related to the two translation character types (trivial and nontrivial)

SO(s) || 0 SO(—1)
0 1)’

|0

[1

0 io

7=0 P =0Q*>0

irrep SO(s) Wirrep, [SO(s —1) x R?] LN irrep, [SO(s) X R].

The coefficients for Hilbert representations of general SO(s) X R?® are given in
the chapter “Residual Spacetime Representations.”

The framework of nonrelativistic scattering is the representation theory
of the Euclidean group SU(2) x R? (chapter “The Kepler Factor”). The
irreducible Hilbert spaces induced by a trivial or faithful representation SO(2)
on W=C" n=2-—4§;=1,2, have a measure-related distributive basis:

for J=0: {|Q%0;&,h)|T e Q? h=0},
for J=12,1,--: {\QszhleQZh—:tl}

By abuse of language, since not a Hilbert vector, an element |Q? J;&J, h) of
the distributive basis is called a scattering “eigenstate” with momentum ¢
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ranslation eigenvalues) of square ()* > 0 (translation invariant) and direction
translation eigenval f 2 > 0 (translation invariant) and directi
@ = @ and rotation invariant .J with SO(2)-eigenvalue h. The distributive

basis is acted on by the inducing SO(2) x R3-representation
(e, %) 0 |Q% J;&, h) = eMXem99F|Q2 T, h).

The momentum direction on the sphere & € Q% = SU(2)/SO(2) is the axis
for the fixgroup SO(2) rotations. The scalar product distribution involves the
positive and orthogonal Dirac distribution on the 2-sphere,

2 (Q% J; 3 W|Q? J; 3, h) = Gpwdnd (& — &) with §(&) = =2-6(0)(),
o 1Q2, T3 INQ T3l iy = idrony m= 1.2,

The Hilbert space consists of 2-sphere square integrable momentum wave
packets L*(Q? C"),

Q% Jrw) =[G w(@lQ, J: @, h),
Q% Jwe| Q% J;wy) = dw w2( 5)nw1 (&)

The transformation behavior of the Hilbert vectors is built by that of the
distributive basis.

All this can be seen as a distributive generalization of the finite-dimensional
case, e.g., from one basic vector with irreducible translation dependence |Q) —
e'@%|Q) for the Hilbert space C|Q) to a distributive basis {|Q?, J; &, h)} for the
infinite-dimensional representation space L?(2%,C"). There is a pure vector
for the irreducible representation, integrating the distributive basis:

w e L(02,C") : { :

(@ T L by =[42|Q% J;&, h) € L*(Q2,C"),
<Q27J;17h/‘Q27J;17h> = 5hh/'
The coefficient for translation representations R 3 z —— (Q[e'??|Q) = '%*
(function of positive type) has the analogous coefficient for the SU(2) X R3-re-

presentations, which is a function of positive type for an irreducible SU(2) xR?
and for a cyclic R3-representation

7 — fid%]dz”? (Q?, J; @q, hao| cos GT|Q?, J; &Gy, hy) = 5h1h2f—d:: cos QT
3
5h1h2 Qdﬂ—gg(s( QQ) —iqr 5 Bk ané?r.

For nontrivial rotation properties, there are two fundamental Pauli trans-
mutators from the fixgroup with the axial rotations around & to the full rota-
tion group:

w( D) — /m( L
(Q) 2Q qQ:qqs

w(d) o 0 o u*(J)

- ¥ sin g

COSs 5 2

Tt ) €su)/so),

_q1—1iq2 [
Q+a3 cos 3
e
=
Ww.

The induced SU(2) X R3-representations involve the Wigner axial rotations

SU(2) XR? 3 (r, %) — (o(r, &), ¥) € SO(2) x R?,
Wigner element o(r, @) = u(r e &)* or o u(w) € SO(2),
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2J
acting on the distributive basis which is transmuted by 2J (&) = \/u(u‘i) into
an SU(2)-basis:

2J(@)E|Q% ;B R, a=—J—J+1,...,J.

The square integrable transmutators 2.J;, € L?(2?,C") lead to position fields
® with SU(2) X R3-action, e.g., scalar and Pauli spinor fields:

®(Q2,0|7) eaf e RO 1% >+61Q“—’E (@ zii
B(Q° 31 =%/ u(); :‘j“”j ) (0],
(D*(Q %’f) _@f (@7, hH‘eQ 7 Q2,55 7h>u*(ﬁ)g.
Their Hilbert product with Schur-orthonormalized spherical harmonics yf =
i* 1+2LYbL’

(@(75)|@(71)) = jos (QITN)y}” (@) = {7]Q7, 273 b}, I=1 -1,
{7102 0} = [ 5 8@ Qe = [y T,
{(FQ% 10} = [ £5 L6(F — Q¥ T = [ dPw u(@) 0 03 =2 0w (@),

gives coefficients of infinite-dimensional irreducible representations |Q?, L} of
SO(3) xR3. They are matching products of spherical harmonics with spherical
Bessel functions that depend on the symmetric space SO(3) X R?/SO(3) = R?:

Fr— {7IQ% L;b} = ju(@Qr)yf (@) = Zip)f € C,

{f‘Q270} = le;w)elQWI — 312??7«
=0:7 = Jo(@r), )
B A R [oc Y i e P  iZdgjo(Qr)

Representation coefficients with nontrivial rotation properties can be obtained
by derivatives %.

There is the distributive Schur orthogonality for the representation coef-
ficients: Hilbert spaces for different rotation- or translation-invariant {Q?, J}

are orthogonal:

J e {Q? L VZH#Q%, L b}
= Jo. r¥dr [ @ ju(Q'r) v (@)yy (@)j(@Qr)
= 2” 5(@ Q/)1+12L5LL (11+2L)bb’7
e.g., fd3xf ;lwcqgl(s —12 Q/Q uj’if 2d7r%5 QZ)e—icﬁ‘
=om [ §46(F — Q)o(F - Q°) = Z20(Q - Q).
The decomposition of the identity for the square integrable SO(3)-compatible

R3-functions with the orthogonal canonical and a harmonic basis (distributive
completeness)

e} L
i sogy <0, 2 |7 =252 D +20) D 10 LibHQ? Li)
L=0 b=—L
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displays the Plancherel measure of the irreducible representation classes
o0

42N " (1+2L)
L=0

and describes the harmonic Fourier-Bessel analysis

OO

[e%) L
(@} =f@) = [7LRy (1+20) > LD anE FEQ?),
L=0 b=—L

{Q% Liblf} = FHQY) = [7r%dr [ dPw ES0D)] f(2).

7.10.3 Particle Representations of Poincaré Groups

For inducing representations of the rank-2 Poincaré group SOy (1,3) X R?*, in
a real 5-dimensional indefinite unitary faithful representation

80y(1,3) X R = { (S22 | g e RY,

there are four types of spacetime translation characters (energy-momenta) with
fixgroups in the Lorentz group:

: SO¢(1,2) [0 ]| 0 1] 0 |m 1 0 o]+
(%),( 0 llHQ), <ols0(3)“o) 8800(2)1‘612 o
0 JofT 0] 0 1 R

q:0 q2:_Q2<O q 0 q2:0 q;éO

For the first two types one has to know the representations of the noncompact
Lorentz groups SOq(1,3) ~ SL(C?) (given by Naimark and sketched below)
and SOy(1,2) ~ SU(1,1) = SL(R?) (given by Bargmann). The fixgroup for
lightlike energy-momenta is a semidirect product SO(2) X R? with boosts R2.
The Hilbert representations of the 2-dimensional Euclidean group are induced
with fixgroups SO(2) and {1} as given above:

1] 0o [o] +la 1[0 0| g
2o 0[so@ o] o I
for SO(2) x R?: o o (1= | 010 [ 1] 4
of o JoJl 1 0] 0TJoO 1
Q=0 Q#0

Therefore, the irreducible Poincaré group Hilbert representations are in-
duced as follows:

irrep, SOy(1,3)
W irrep, [800(1,2) x RY]
W irrep, [SO(3) x R?]
W irrep, [SO(2) x R Wirrep, [R* x RY] - d, irrep, [SOy(1,3) x RY.
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With respect to the characteristic two invariants, rational and continuous, the
representations of the Cartan Lie algebras are relevant.

Minkowski (“linear”) spacetime and noninteracting (“free”) matter are
“unified” by Wigner’s definition: Massive and massless particle fields are spin
SU(2) and axial rotation SO(2)-intertwiners, constructed with SL(C?)/SU(2)
and SL(C?)/SO(2)-transmutators, and acted on by irreducible Hilbert repre-
sentations of the Poincaré group.

As seen from experiments, stable particles use only representations with
causal translation-invariant ¢> = m* > 0 which come with a nontrivial com-
pact stabilgroup for rotation properties. To include half-integer spin, “double
valued” representations of the Lorentz group SOg(1,3) = SL(C?)/I(2) are
admitted, i.e., particles are induced representations of SL(C?) x R*. With
complex representation spaces, a nontrivial particle-antiparticle number can
be included by U(1)-representations

irrep, [U(1) x SU(2) x Rﬂ Wirrep, [U(1) x SO(2) x R?]
o, irrep, [U(1) x SL(C?) x R*).

Free particle fields, in the following only for massive particles m > 0,
embed Lorentz compatibly representations of time translations R and of the
Euclidean scattering group SU(2) X R? in Poincaré group representations. The
Hilbert space with U(1) x SL(C?) x R*-representation, induced by a Hilbert
representation of the charge-spin-translation group on W = C!*2/

U(1) x SU(2) x R* 3 (e, u, z) — €7°2.] (u)e'™ € U(1 + 2J) with ¢* = m?,

consists of intertwiners that map the spin orbits in the Lorentz group into
SU(2)-orbits in a representation space W. The space W(q) = W x {g} for
each momentum of the energy-momentum hyperboloid is spanned by creation
operators:

distributive basis: {|m? J, Z;q,a) | € R?, a=1,...,1+2J},
w(@)|0) = |m?, J, Z; ¢, a) = |m*, J, Z;y, a).

The elements of the distributive basis |m?, J, Z; ¢, a) (not Hilbert vectors) are
called “eigenstates” for an (anti)particle with the invariants U(1)-charge Z,
mass m, spin J, and eigenvalue momentum ¢ and third spin direction a. Hy-
perbolic coordinates y, appropriate for the Lorentz group action, are equivalent
to the more familiar momentum coordinates ¢

cosh ¢

Y3y =@ = (£any) = m(79").
o(y) = méw (@), fd3y = [ sinh*¢ d1/)fd2 w,

HP)e' s = e (qo) \qux ﬁ(q2) COS ¢ = COS |q\ym
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The Hilbert product distribution comes with the Dirac distribution on the
energy-momentum hyperboloid (the U(1)-invariant Z is omitted)

* 1.a a1 md *( 7 = \ai
(ug,u) = 053 — (W (%) a,w(31)") s
<m ‘] q27a2|m27 J7 Ljia (11> = 53;47Tq0 5(q_’1 - (72)
= (m?, J;y2,a2|m?, Jiy1,a1) = 604w (y1 — y2)

with the completeness

d3q

i |m?, T3 a)(m?, J; q. al

o m?, Ty, a)(m?, J;y,al
lsz (¥3,C1+27) = 11+2J idLQ(yB).

HZ ||

Hilbert spaces with different U(1)-charge Z # Z', e.g., for particle-antiparticle,
translation- or rotation-invariant, are orthogonal.

The representation space is the Hilbert space of the square integrable
mappings on the energy-momentum 3-hyperboloid V3. The Hilbert vectors
|m?, J;w) use an expansion with the hyperbolic “directions” for the distribu-
tive basis (canonical expansion with ¢-indexed Fock spaces)

|m?, J; w) fﬁrqqo w(q)alm?, J; q, a)
:® iy ( )a’m27J;Y7a>a
<m27J; w2ym27‘]; UJ1> = f4oir(;]0 w2(®awl(q)a

= f ¥)aw1(¥)a-

The spacetime translation action on the Hilbert vectors is built by that on the
distributive basis.

The normalization of the integral of the distributive basis goes with the
hyperboloid volume, i.e., it is not an element of L?(Y?, C1*2/),

w e L3, ClH27)

Im2, J; 1, a) —@fd3y|m2 J- y.a) ¢ (", <c1+2f)
(m? J;1,alm?, J;1,b) fdy—éabf )o(q* —1).

The integral of the scalar product distribution is a scalar SOg(1,3) x R*-re-
presentation coefficient, not square integrable,

d’yyd® 2 7. ! 2 7. &y oq
(y417r)2y2 (m vJaYQaaﬂCOquC\m J Y17a1> = bara, | T COSTRYE
_ d*q iqr —0(@?)mN_1(|z])+9(=x>)2K1 (|z|)
= barar | T20(q Ve = 40, oI )

Particle fields (chapter “Particle Quantum Fields”) use transmutators (boost
representations) that relate to each other irreducible spin and finite-dimensional
Lorentz group representations

U(2) v q DL j _®f47rqo q)aDL( ) GVCWyS
= @DW:{D;( )} =D (m?)*D(N)] for A € SL(C?).

The transmutators are not L?()3 C'*27) square integrable. Transmutators
pair the spin group representation Hilbert spaces with the minimal Lorentz re-
presentation spaces SU(2) oW C SL(C?) eV, e.g., 1, A(L), s(L) for the scalar



254 7. HARMONIC ANALYSIS

®, vector Z, and Dirac spinor (’;) fields V@ WT 2 C® C,C* ® C?,C? ® C?

respectively, all with mass m > 0 and a transmutator notation

u(é’)-\*}g*(ﬂ

[ E 2 )

, v W@ (@D ALy

7 AJ = AL

ATORER B (G5 TN R

r s 47rq0 u(q) +E2L (@) s(l)g

: A m

lc SC u(q')Afa*(q‘)A §(l)c
V53 sim)a

W @ WT = Wdoub: Wdoub S WT

dou

. uEI/V,u*EWT,aEWT,a*EW
with
L= W,

The Lorentz group action is accompanied by a Wigner rotation

AeSL(C?): u(XL)=s(AL)ToXos(L)eSU(?2).

The particle fields are Lorentz irreducible spacetime translation orbits

ST (@) eI a" ()

E iqz (qjaJr@q'qz “(@)° ;
VAl AJ € ulg) ve "ulg) A(%)
C (l’) = C 2|£L' @f iqx A \/57““ % (A
r 471'q0 e u(q) " te a™ (q) S(l)c‘ ’
1¢ ¢ ) V2 SUm/A
19Ty (A —e— 19T 5 ()4 g(i)c
/3 m)A

D 2’$ _@qu elazy q—*)aDL( )

4mqo

mmDﬂ2m = D(m?|A= . 2)  D(\).

For a spacetime field, the canonical boost expansion @f 4@ for the induced
SL(C?)-representation is simultaneously the harmonic expansion (Fourier
analysis) with respect to the translation representations.

The Hilbert product of the fields give coefficients of infinite-dimensional
representations of SOg(1,3) X R*, which depend on the symmetric space
SOy(1,3) X R*/SOy(1,3) = R* (chapter “Propagators”):

({@(x2), @(x1)}) = {x|m?, [0]0]}

d3y
T COS My,

_ d 2\ igr __ COS (pg € “ﬁ‘
= [ dm 0(q% — m?)e'T = f47rm go €08 Qo0 '

q0
f,:Ode# cos qoo Jo(|q]T)

a

Representation coefficients with nontrivial Lorentz properties arise by deriva-
tives 5. Schur’s orthogonality is established up to the divergent V3-measure;

the coefﬁmentb are not square integrable, e.g.,
J e {m, [ol0)|z}H{alm?, 0[0]} = Fz6(m — m') [ d'q 3(¢* — 1).

The quantum algebra is the tensor algebra QWY * modulo the quantization
via the duality distributions of the basic momentum operators

[ug, u’]e = 02 % [0 (P W()'] = 62470 (T — 7).
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The quantization opposite (anti-) commutators implement the Lie algebra with
the basic space endomorphisms AL(W) = W @ W7 for the finite-dimensional
case and AL(WY*) for the infinite-dimensional one. The Lie algebra of the
charge-Poincaré group is represented in the Lie algebra of the definite unitary
automorphism group

log[U(1) x SL(C?)] & R* — log U(WY?)
induced from U(1) x SU(2) x R* representations as follows:

w nd Ao, oy M
bufl e ¢ §¢ b 1nd @47“10 ‘Dbfu (@)a] c b
[ 2 vu]: f47rq0 (ﬁ) ] u(ﬁ) .

This has been used for the implementation of Poincaré Lie algebras in the
chapter “Massive Particle Quantum Fields.”

7.11 Group Representations
on Homogeneous Functions

In general, the regular representation of a group on its functions is decompos-
able. Homogeneous functions of integer degree (harmonic polynomials) con-
stitute finite-dimensional Hilbert representation spaces for compact groups.
Finite dimensions, integer winding numbers, integer powers, and the degrees
of polynomials are related to each other and characteristic for irreducible repre-

sentations of compact groups as familiar from SU(2) with dimensions 1 + 2.J
2J

and powers \/u or with the structure of the harmonic polynomials. Simple Lie
algebras have fundamental representations as Ng-basis of the finite-dimensional
irreducible representation cone, e.g., the Pauli representation for log SU(2)
and the two Weyl representations for log SL(C?). The finite-dimensional ir-
reducible representations act on the totally symmetric tensor products of the
fundamental representations (chapters “Spin, Rotations, and Position” and
“Lorentz Operations”). If a group G acts on a vector space V = C? with basis
{e’}, the group acts on all tensor powers with the symmetry classes as invariant
subspaces. The totally symmetric powers are isomorphic to the polynomials,
homogeneous of degree n, with the monomials as basis:

k
\/V > Clel,...,el" 3 p(et, ... et) = Z Qg (€M) -+ (ed)ne

n1,..sNd

with ny +--- 4+ ng =n = dimc¢ \/V d+k 1) = degp,

veC = p(yel,...,ve") =~"ple,....e?), neN

The polynomials with integer degree, related to integer invariants, can be
generalized to homogeneous functions of complex degree, related to continuous
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complex invariants. Such an extension can be used for the infinite-dimensional
representations of nonabelian noncompact groups. The homogeneity powers,
characterizing irreducible representation spaces, give the invariants and eigen-
values of Cartan subgroup representations, integer Z for U(1) and SO(2), and
continuous complex iR @& R for D(1) and SOy(1,1).

7.11.1 Homogeneous Functions on SL(C?)-Spinors

The finite-dimensional representations of

SL(C?) = {s = e+ = ( ) | dets =1} = SU(2) x SL(C?)/SU(2)

act on polynomials, homogeneous in a left und right Weyl spinor basis as
indeterminates (chapter “Lorentz Operations”)

2L 2R
p(zl, Z2)[2L|2R] e \/CQ ® \/C2.

They can be written as double homogeneous polynomials with the indetermi-
nates (2!, 2%) having a conjugation.

As shown by Gel'fand and Naimark and sketched superficially in the fol-
lowing, to obtain Hilbert SL(C?)-representations, the polynomials have to be
generalized to homogeneous functions, not necessarily with integer powers for
the representations of the noncompact degree of freedom SQg(1,1) C V? =
SL(C?)/SU(2). The representation spaces are subspaces of the vector space
C(C?) = {f : C* — C| continuous} with functions on a spinor space C?
with the defining SL(C?)-representation. The function space is acted on by
the right regular representation

2 2 fo(242%) = f((z 2%)s),
R N a1
C — C C? (C((C2) € vecSL(Cg)

ide

d) = (az' + 22, bz + dz2?),

The function space C(C?) is highly reducible. The irreducible SL(C?)-re-
presentations are induced and characterized by the irreducible representations
of a Cartan subgroup SO(C?) = SO(2) x SOy(1,1) = U(1) x D(1) = GL(C),

u=¢e" € U(l), d=e* € D(1), v=ude GL(C),
e = with [l - [B152),

acting on vector subspaces by the functions homogeneous with respect to the
action of U(1) x D(1),

Cle', 22 el = {f € C(C) | f(yz!,72") =997179%7 f(2),2%), Gz € C)
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The functions use integer winding numbers 25 (spin j) for the compact group
SO(2) and a complex boost eigenvalue ¢ for the noncompact group SOy(1,1).
The Cartan subgroup weights

(27,0) € specSO(2) x specSOy(1,1) =Z x C,
SO(2) € SU(2), SOy(1,1) C SL(C?)/SU(2)

are the powers in its representations,
U(1) x D(1) 3y = eloth s la2i+05,

The continuous complex [(; — 1|¢> — 1]-homogeneity generalizes the polynomial
[2]|2r]-homogeneity for finite-dimensional representations.
Since the [¢; — 1|¢2 — 1]-homogeneous functions have the orbit properties

¢
f(2,22) = EEE2 (2 ),

the group SL(C?) acts on the corresponding vector space containing the “start
functions” that depend only on one complex variable F'(z) = f(z,1) in the
following way:

s+ [24,0](s), Fr—[2j,0](s)(F) = F,

Fy(z) = (bz+d)" 1 (bz + d)= F(32E5) = (B22) bz + d)° P (35),

involving the linear fractional transformation of the closed complex plane

Co:r— e, det (0 4) =1

7.11.2 Principal and Supplementary
SL(C?)-Representations

In the irreducible SL(C?)-representations a Cartan subgroup comes with a
power for both real subgroups,

SO(C?) 5 eliath)o® , lio2j+80)0° (95 §) € Z x C.

The finite-dimensional representations (chapter “Lorentz Operations”) are
characterized by an integer § = 2d € Z where d and spin j have an integer
sum, i.e., both are integer or both are half-integer. In this case, the spin-boost
pair can be replaced by a left-right winding number pair:

(24,0) =(24,2d) € Z X Z and j +d € Z,
[Gl¢e] = [d +jld = j] = [21|2r].

For the unitary irreducible SL(C?)-representations a Cartan subgroup has
to be represented in one of the two unitary group types in 2-dimensions:

SO((CZ) 5 eliatp)o® |, o(ia2j+p6)0? c {
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The U(2)-unitary SO(C?)-representations have to satisfy

[(ia2j + B0)o3]* = (—ia2j + 35)o® = —(ia2j + B6)o®
27 € 7,
{ §=—0 =1iQ €iR.

This induces the principal series

e(ia+ﬂ)03 NN (ei(042:']+ﬁQ) eii(a;)j«i»ﬁQ)) c 80(2) C SU(Q),

characterized by an integer winding number 25 and an imaginary boost eigen-
value i@,
weights @YSL(C?) = {(24,iQ)} = Z x iR.

The equivalence classes of the irreducible representations take into account
the self-duality of SO(C?), i.e., (j,Q) = —(4,Q). This leads to two principal

series:
irrep ®SL(C?) = irrep,*”SL(C?) =~ Ny x R, 5 (2J,Q2).

The principal representations act on an L2-Hilbert space with product

F s [24,iQ)(s)(F) : (F|F) = [ dzdz F(2)F(2), { ;j;ii%; dy.

The indefinite unitary group U(1,1) with conjugation X,
GO =066 )-62
) —\1 0J/\~r ¢ 1 0)  \wv a)
gives as condition for the boost eigenvalue and for the spin winding number
[(ia2] + B)o’]* = —(—ia2j + 30)0® = —(ia2j + 3)c®
2j = —2j=0€Z
d=0=r€eR

This induces the supplementary series

pliatB)o® (efj @_Om) € S0,(1,1) © SU(1, 1),

characterized by trivial spin and a real boost eigenvalue k,
weights "VSL(C?) = {(0,x)} = {0} x R,
and for the irreducible representation classes with the self-duality of SOg(1, 1),

irrep "VSL(C?) = {0} x R~ 3 (0, —#2).
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For a certain range of the boost eigenvalue, the supplementary represen-
tations act on a Hilbert space whose scalar product involves a positive-type
function:

F —[0,k](s)(F) with 0 < % < 1,
<F|F> = <F* F>d = —ﬁfdzldéldzgd?g F(Zl) m F(ZQ),

unitary representation weightsSL(C?) = ZxiRwW{0} xR
SO(C?) — SU(2) : (2,0) 2 2
(principal, Hilbert) irrep; ™" SL(C?) No xR+ 3 (24,Q%)
SO(C?) — SU(1,1)
(supplementary, partly Hilbert)

R

irrep (WDSL(C2) = {0} x R~ 3 (0, —«2)

unitary SL(C?)-representations

7.11.3 Continuous Quantum Numbers

To generalize the SL(C?)-structures: The irreducible SL(C'*")-representa-
tions, 7 > 1, are characterizable by the representations of a Cartan subgroup
SO(C?)" with 7 integer SO(2)-winding numbers and r SOq(1, 1)-weights as
homogeneity powers, expressible by 1 + r numbers with trivial sum (traceless
Lie algebra):

(Zo, .- Zei00, -0, )0 € (Z x C) with Y Z =0=") 6.

k=0 k=0

The unitary irreducible representations represent a Cartan subgroup with
self-dual 1-dimensional subgroups in the possible 1 + r types of unitary sub-
groups:

SL(C*") © SO(C*" — SU(1 + s,r — s) C SL(C!'*),
s=r,...,0.
For the principal series one has an SU(1 + r)-representation of a Cartan

subgroup:

weights "TOSL(CY) = {(Zo, ..., Zr,iQq, ... ,iQ))o} = (Z x iR)".

The supplementary series involve some equal SO(2)-winding number pairs
(Z,7) and the same number of corresponding “mixed” SOg(1, 1)-weight pairs

(1Q + k,iQ — K), e.g., one pair
(Z,Z,Zs,...,2,iQ + K,iQ — k,iQ,, ..., iQ,), € weights "VSL(C!")
with 27+ Zy =0and 2Q + > Qi =0,

k=2 k=2
weights "VSL(C'*") = (Z x iR)"! x ({0} x R).
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For r > 2 there exist nontrivial degenerate principal representations with
SU(1 + s)-unitarity, s = 1,...,7 — 1, for the represented Cartan subgroup.

Altogether, one obtains with respect to the different unitary signatures
one principal nondegenerate series, r supplementary ones, and r — 1 principal
degenerate series:

SU(1 + s, — s)-unitary

s = r: principal nondegenerate weights 1T97=9)SL(C*") = (Z x iR)® x R"~*
s=r—1,...,0: supplementary
SU(1 + s)-unitary . (145,0) Itr ~ s
s=1,...,7—1: principal degenerate weights SL(CT) = (Zx1R)
‘ “ general ‘ finite-dimensional ‘
general (Z x C)" [ (Z x 7)"
SU(1+s,7—s) || (ZxiR)S x R"—$ A
unitary s=0,...,7 s=0

weights of irreducible SL(C!*")-representations

With respect to the irreducible representation classes one has to take into
account equivalences.

7.12 Harmonic Analysis of Hyperboloids

The infinite-dimensional Hilbert representations of the Lorentz groups are used
for the harmonic analysis of functions on the nonabelian hyperboloids [6]:

§=2,3,---: Y= S0q(1,5)/SO(s).
With the Cartan decomposition
SO(1,s) = SO(s) 0 SOg(1,1) o SO(s)

the hyperboloids have real rank 1 and imaginary rank R for s = 2R, 1+2R with
Cartan tori SO(2)#. The minimal nonabelian cases s = 2,3 are characteristic
for the even- and odd-dimensional nonabelian hyperboloids.

The harmonic analysis of the maximal noncompact abelian group R =2
SOy(1,1) = V! can be formulated with hyperbolic concepts: Cartan spacetime
R? embeds both the hyperbolas Y' and all their tangents log SOq(1,1) =
R. With the forward-backward momenta e|p|, ¢ = +1 € QU as invariant
linear forms (eigenvalues), the defining SOy(1, 1)-representation is the Lorentz
product gy with a lightlike energy-momentum ¢, i.e., ¢*> = 0, normalized with
the momentum invariant [p),

= Inl

Yisy= (Z?;Efﬁ), q=|p| (1) € Ry x Q0 e = cosh) + esinhep = &,
The harmonic analysis with the irreducible Hilbert representations

) ) ilp]
VIS yr— e?? = eilplev = (%) , p=c¢lp|
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looks in this parametrization as follows, with forward and backward separation:
o dp ( ay ilp| ~ 1 ay —ilp|
Fw) = J2(2) " Fw) < Fo) = [ @) (8) 7 rw).

The Y'-measure has the corresponding parametrization [ dY*(v) = [° dy.
The Lorentz compatible formalism with the powers of the defining SOy(1, 1)
representations (e )Pl = (%)”p‘ as irreducible representations is generalizable
to the nonabelian cases V*, s > 2, with SOy (1, s)-invariant products: With }*
and its tangent spaces R® embedded in R'**, the harmonic analysis of the Y*-
functions use the tangent space forms p' € R®* (momenta). The future lightcone

Vi with {0} in R is isomorphic to the Y*-tangent space

logys 2V RS R, x QL

The momenta p can be embedded as 1-dimensional lightlike energy-momenta:

COoS. S S 1
R*™ DY 5y = <%Si:hw¢) o RITOVESe =1 <ﬁ>
=0

y2 =1 q2 )
cosh 1
e.g., R3 D) yQ >y = <sinh¢cost9> «— R+ x O =~ Vg 2q = ‘]ﬂ <1>
sinh 1) sin 0 0

The hyperboloid Y* (nonlinear s-dimensional position) embeds hyperbolas.
The normalized rotation SO(s)-invariant product contains the defining repre-
sentations of hyperbolas SO(1,1) in Y*, related to each other by rotations
SO(s) and indexed by an Q'-orientation angle . It is the nonabelian extension
of the abelian exponent:

s=1: {&=cosht +esinhi = e, €= *£1,

L@y ; — o2 oY 4 ain28 o — PT
s>2: ‘m—coshi/)Jrcosﬁsmhw =cos” 5 e¥ +s8in" 5 e7¥, COSQ—Iﬁlr.

The minimal nonabelian case }? is characteristic since the eigenvalues ¢ can
always be written in this 2-component form. The additional degrees of freedom
are spherical. The defining )!-representations for the characteristic case )?
are related to each other by axial rotations SO(2). |p] is the invariant.

It is useful to compare with the compact spheres Q2 = SO(1 + 5)/SO(s):
There is the L?*()*)-analogous treatment for the harmonic analysis [11] of the
square integrable functions L?(Q%). With the hyperboloid-sphere transition

P iy to

1. 2 1~ = cos X 0~ = _ 1
s=1: REDON' 50 = (ismx ~ NxQ">q¢ =L{, ),
- " 1 =
s22: R¥o0aa= () « R&37 =1(3), L=I)
one uses embedded subgroups SO(2):
s=1: £ =cosy+iesiny = elex, €= +1,
s§>2: L —cosy+icosfsiny =cos?d X +sin®f e, cosf = LI,
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The functions for the rotated hyperbolas and circles are diagonal matrix
elements of the nonabelian groups in a corresponding Cartan and Euler para-
metrization:

cosh v + cos 0 sinh ¢ —isin @ sinh v _

SOO(LQ) ~ SU(LI) E] isin @ sinh ¢ coshw—cosé‘sinhw) = 1)06031/1 OU*v
cos X + i cos 0 sin x sin 6 sin x o ;

SO(3) ~ SU(2) = —sin@sin x cosx—icosesinx) =wvoe7Xo ’U*v

60'3’/’ € SO()(l, 1), _ io? cos? ising
dosx c80(2), V¢ 7T (i 2f) e so0).

<

isin g
The irreducible representations for the noncompact nonabelian subgroups
SOy(1,2) have an imaginary power i|p] with the invariant |p] = m:
5>2: cosh 4 cosfsinh) — (cosh ) + cos @ sinh )P = (%)“ﬂ.

Therefore, the hyperboloid functions L?()*) have the harmonic analysis

COS cos 6 sin il
fdys —)( h t)+cos 0 hiﬂ) 1f<“)

(cosh p+cos 6 smh V)

—> f ]7) fdys co&.thrcos@smhw) L‘Tf('[/)).

(cosh th-+cos @ sinh )~ 2

The irreducible representations are normalized with a length factor (ﬁ) " for

the corresponding sphere Q1.

The invariant for spheres are integer powers L = 0,1,2,... (angular mo-
menta):
=1: €X' =cosy+iesiny +—— elX = (%)L,
s>2: cosx+icosfsiny +— (cosy +icosfsiny)t = (4)".

There is an expression for the harmonic analysis of L?(£2%), analogous to that
for L?()®), now with discrete L-summation.

The circle-integration of the integer powers of the diagonal matrix elements
for SO(3) gives the Legendre polynomials with integer index (invariant). They
constitute a Hilbert basis of L?(SO(2)) = L?*(—1,1) (chapter “Quantum Prob-
ability” ):

L=0,1,---: PE(cosy) f cosx—l—zcos&smx)
2pL CcOos
‘ P2 51n>>§dcll)x = 513)( dci( SlnX d - _L(l + L)PL7

RS ¢ — PE() with (1 g?)dPL = —L(1+ L)P*,

J5 % PEE) PY(€) = phror, D (1+2L)PH(E) PH(E) = 8(59).
L=0

Their hyperbolic partners arising as circle-integrated complex powers of
the diagonal matrix elements for SOq(1,2) are the Legendre functions with
continuous complex index (invariant) p:

uweC: PH(coshy) = Qﬂ @ (Coshz/J + 005951nh )M

d?PH cosh dP# _ _
@W? T sinhe dp smhw v smhz/; = (1 +p)Pr, ¢ >0,

R 3 ¢ = P¥(() with (¢* - 1)dP“ = pu(1+ p)Pr.
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The Legendre functions for p = im — %, called cone functions, are coefficients
of the irreducible principal SL(IR?)-representations. They can be used as or-
thonormal distributive basis for the Hilbert space L?(SOq(1,1) = L*(1, c0)

floo dC Pim %(g) sz:m’flé (C) = mtar71Th7rm6<m o m/)’
fooo mtanhwmdm pim— E(C) P—zm—§(<-/) — 5(( _ C/)

There occurs the Plancherel measure 211°(m?)dm for the invariants m? = p?
of the arising irreducible SOg(1, s)-representations, different for even and odd
space dimensions s = 2R, 1 + 2R:

SV @) = fy7 31 m?) dm [ o

s

R—-1
F(R*%)Q X mQtaI;r};:m (1+ (2k 1) 7),
:1
o zm+— . S_2R 7 76, .
‘ F(zm) -
I(R)? x m? H1+m—2,
= 1+2R— 3,5,7,.

It is computed with the properties of the I'-function

peC: T(p)=T(u), T(WId-pn =55, TP =
R-1

miWH(l + 7(2,3“1)2), s=92R=246,. .

smhﬂ'uH 3:1+2R:3,5,7,

)F(iu-&-%l) 2

L(*34)

The harmonic analysis of the functions on }? = SL(R?)/SO(2) employs
the principal series representations of the group SL(R?) ~ SOq(1,2). The
Plancherel measure 7 tanh7m dm = 75 Coshwm dcoshmm contains a hyper-
bolic function. Also, the harmonic analysis of the functions on the hyperboloid
(nonlinear 3-dimensional position) }* = SL(C?)/SU(2) employs the princi-
pal series representations of the Lorentz group SL(C?) ~ SQOq(1,3). The
Plancherel measure m; dm contains the dilation structure.

The additional product factor HkRz_ll in the Plancherel measures is nontriv-
ial for additional tori SO(2)%~!. The full products are self-dual hyperbolic
functions, the noncompact partners of the self-dual spherical cosine cosmm

and sine 2™ (product theorem of Weierstrass [1])
coshmm = H (1+ Qk 1) 5), Smhrm — H(1—|— %,2)
k=1 k=1

In the Plancherel measures there arise the “R-tails” [[, p.
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MATHEMATICAL TOOLS

7.13 Convolutions
The Cartesian product ®;0®, of two disjoint additive mappings (chapter “The

Kepler Factor”) into a unital algebra ®; : S; — A, i = 1,2, e.g., the numbers
A =K, formulated with generalized mappings (distributions, measures)

®: S — A Q; = dp(x;) ®i(w;),
@1 0@2 . Sl X 82 — A, q)l O(DQ = dul(l'l)dﬂg<fl?2) ‘1)1(931) 0@2(1’2),

can be transformed by a measurable mapping h € mes(S; x Sz, S),
h: Sl X SQ — S,

into a disjoint additive mapping on S, the h-image, called the h-convoluted
mapping (distribution, measure), the convolution product

@1 *p @2 S — A, (I>1 *p, (I)Q( ) ((I)l o (I)Q)( ) @1 o Qg(hil[XD
fh 1[X]CS1 xSz dm(%l)dm(x?) ®1(21) 0 Ba(x2),
Dy %, '1>2 = dp(x) (P1 x, ®o) (),
((I)l *p, @2) fSlXSQ d,ul(xl)dug(xg)él(xl) 0@2($2)5(h($1, 1'2), $)

Analogous definitions apply for products with more factors. The mapping h,
if obvious, will be omitted.

The existence of the convolution product depends on the properties of
the generalized mappings ® and the composition function h, which has to be
discussed carefully.

Of importance is the convolution of mappings (distributions, measures) of
a locally compact group and a symmetric space G x S — S, h(k,y) =k ey
where the group (unimodular) carries a Haar measure d“k and the G-set a
left-invariant measure d°(k o y) = dy,

(e *®s)(¥) = [ous A%k d°y ®g(k) o ®s(y) (ke y,x)
= [, d% ®¢(k) o Ps(k' @),

especially for a group acting on a vector space G x V. — V| k ey = D(k).y,
or a group acting on a coset G x G/H — G/H, key = kgH, e.g., the group
acting on itself with the group law G x G — G,

(@1 %®5)(9) = [r. %1 ks @ (k1) 0 Bo(ka) S(kiks, g)
—f dCk @, (k) o ®y(k~1g)
= fG Ak @1 (gk1) o By (k).
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7.14 Abelian Convolution
of Functions and Distributions

In the following, complex functions or distributions on the abelian group R?
with Haar-Lebesgue measures are denoted by qu(Rd, C) = L*, etc.
Continuous functions with compact support C. are closed under the asso-
ciative abelian convolution for the additive group ¢ € R%:
C.e *aag . : C.xC. — C,,

(frxf)(@) = [dadgfi(q) 0(a + g —q) fa(q2)-

C. is dense in all Lebesgue spaces LP. The continuously differentiable functions
are stable under L'-convolution:

L' € xnaag ., LP,C" € ~mod,,.

For functions and distributions

L*>C.oC* Cc § C €=
N N N
D.c & ¢ DoM>L!

the convolution is defined if one factor comes with compact support,

Cr* x= D — (=,
D. % (C>*,S8,~,D.S. D) — (C>x8C*D.,S D).

The distributions with compact support constitute a commutative unital al-
gebra with convolution product * and the Dirac distribution ¢, as unit. CZ° is
a nonunital subalgebra. All spaces involved are stable under convolution with
D! and thus corresponding modules

lDé e *aag(c7 (030757 COO? Dé? 8/7 Dl) 6 LMDéa

unit oy = dq 0(q).

Distributions with support in a cone, stable under addition ¢; + ¢o, are a
convolution algebra,
D'(R%) € *aag ..

The convolution of two functions can be rolled over to the convolution of
one reflected function with a distribution wherever defined,

(1, fxg) = (f- * p, g) with f_(q) = f(—q).

The tempered distributions &', like Feynman particle propagators for Min-
kowski space, do not constitute a convolution algebra. To find their convo-
lutors, one starts from the Fourier compatibility between multiplication e and
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convolution *: The product of Fourier transforms is the Fourier transform of
the convolution product, wherever defined:

VW —U, FYOFW —FU, el =pxv.

The multiplication, where one partner has to be a function, goes pointwise for
two functions and by dual rollover for distributions:

(fog)(z)=f(z)g(x), (fepn,g)= ufeg).

For functions S rapidly decreasing at infinity and the slowly increasing
(tempered) distributions S" with the Fourier isomorphisms

(scrr=pycs) ey (scrr=pycs),

the multiplication operators S, in C*,

S.0(S,S8,.,8)—(S,S.,8)
S. € xaag, ., (S,S.,S’) € modg, unital with multiplication e,

are given by the slowly increasing (tempered) functions (increase at infinity is
limited by polynomials). By Fourier transformation, they are related bijec-
tively to the rapidly decreasing distributions S.,

¥ /
Y
Se =S,
which are called convolution operators, since

S!k * (878178/) — (878478/)7
Sl e *aag ., (S,8.,8') € modg, unital with convolution .

S is a nonunital subalgebra. The Fourier transform is an algebra isomorphism
from the unital multiplication algebra S, to the unital convolution algebra S,

F caage (S.,S!), feg=Ff+g.

S! can be locally characterized, rather complicatedly, by finite sums of
derivatives of continuous functions rapidly decreasing at infinity. For any in-
teger n there is such a sum with the derivatives depending on n. In addition
there is a related fall-off property.

Multiplication functions and convolution distributions (not topologically
dual) are related to the other functions and distributions as follows:

C c § ¢ & cC Cc™
N N N N
D.c S c 8§ c 7D
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With S'e S — S, and &' * S — S, multiplication and convolution
for the dual pair with the rapidly decreasing functions and slowly increasing
distributions are related to each other in the commutative diagram with the
Fourier isomorphisms

S’IS iR T (M(fl?)aIf(l")) — (e f)(x I: (2)f(x)
xS — S ((a), F(@) — (a*f)a)=ref(q)

Therefore the dual product can be obtained either by integration of the z-
dependent product or by the convolution product value for ¢ = 0:

(u f = fdw e*““”(u (@)

mﬂf)<@ } w) (@) = [ G e fla),
7fdw )f(x) = fi* f(0) = [ dg ji(—q)f(q)-

7.15 Parabolic Subgroups

The induction of representations of affine groups is a good introduction to
the more general parabolic induction for representations of a semisimple Lie
group G (also for reductive Lie group with suitable interpretations), especially
for noncompact ones. The abelian subgroups, i.e., the maximal compact Car-
tan tori (expiR)™ and, especially, the maximal noncompact Cartan planes
(expR)™e, with their irreducible Hilbert representations e'® —— eZ* 7, € 7"
and e —— €% g € R"=, respectively, are the subgroups for the inducing
procedure.

With an Iwasawa factorization (chapter “Spin, Rotations, and Position”)
G = Ko Ao N into maximal compact K and triagonal A o A with maximal
noncompact abelian A one can define a minimal parabolic subgroup S = M o
Ao N by extension of A with its centralizer Zg(A) = M. Explicit examples
for Lorentz groups in three and four dimensions are

SO¢(1,2) ~ SL(R?*) =SO(2)o [I(2)0SO(1,1)0 €,
SOy(1,3) ~ SL(C?) =SU(2)0[SO(2)0S0O(1,1)0¢e"].

A minimal parabolic subgroup is used in the Bruhat decomposition into
double cosets S\ G/S.

A parabolic subgroup of G is a closed subgroup containing a minimal par-
abolic subgroup &. A parabolic subgroup has the Langlands factorization
(decomposition)

S=MoAoN, logS=logM @& logA @& logN (as vector space)
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with the properties for the mutually orthogonal Lie subalgebras:

noncompact abelian: log A, nilpotent: log NV,
A-centralizer: logM @ log A= {l €logG | [l,log A] = {0}},
N-normalizing: [logM @ log A,log N] C log N.

The adjoint action of log A decomposes the nilpotent log NV into an orthogonal
sum of common eigenspaces. One can visualize parabolic subgroups as block-
triagonal, e.g., in G = SL(R"):

ojlo o oflX X
olo o oflX X
of[X X X|[3 3
olX X X|3 3
o X X X|3
X3 3 3|33

with M o A block-diagonal x and N with diagonal 1 and entries n strictly
above and to the right of the blocks.
One has with a parabolic subgroup an

Iwazawa-Langlands factorization G =Ko S =K oMo Ao N.

In comparing parabolic subgroups with affine groups H X R™, M o A are
the anlaogue to the direct product subgroups Hy x R™ with fixgroups Hyp.
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8

RESIDUAL SPACETIME
REPRESENTATIONS

In Feynman propagators (chapter “Propagators”) with energy-momentum
poles ﬁm, the Fourier transform of the real part, i.e., of the distribution
5(¢* —m?), supported by the energy-momentum hyperboloid (“on-shell”), rep-
resents free particles with real momenta ¢ = ¢ —m? > 0 by coefficients of the
translatlons in the Poincaré group, e.g., e“ﬂ’tbin 4" The imaginary momenta
@ — —@? < 0 in the principal value “off bhell” dlbtrlbutlon > leads
to interactions, e.g., to Yukawa interactions in elqot%. Spacetlme interac-
tions are supported by the causal bicone. The harmonic analysis of the future
cone D(2) = GL(C?%)/U(2) (unitary relativity) as a nonlinear homogeneous
spacetime model, i.e., of the mappings WP® of the full linear group, constant
on U(2), into U(2)-representation spaces W = C'*2/involves the representa-
tions of the acting extended Lorentz group GL(C?), which have to be used for
spacetime interactions. Free particle fields are not complete for the harmonic
analysis of nonlinear spacetime, genuine interaction fields are necessary [4, 14].
Interactions cannot be expanded completely with free particles.
Representations of linear and nonlinear spacetime embed time and posi-
tion representations. Representation coefficients of 3-dimensional hyperbolic
position Y? as symmetric space for Lorentz operations SOg(1, 3) can be writ-
ten with Fourier transformed 3-sphere momentum measures (chapter “The
Kepler Factor”) as seen in Hilbert-space-valued Schrodinger-bound state func-

tions, e.g., for the hydrogen ground state e~ ™" = % (621732)2 —i4%  These
representations of nonlinear position }* with a dipole singularity sphere for
imaginary momenta ¢> = —m? have to be embedded into causally supported
representation coefficients of nonlinear spacetime D(2) = D(1) x Y. The em-
bedding energy-momentum distributions do not describe free particles: The
Lorentz invariant mass for the representation of the position degree of freedom
comes ab a singularity in a higher-order pole, starting with a dipole distribu-
tion @ S 2)2, as required by Lorentz compatible embedding of the 3-sphere
d3q 2|Q)
(#+Q%)?
Multipole energy-momentum distributions lead, via their Fourier trans-
forms with appropriate integration contours, to residual representations of

measures with energy-dependent invariant Q% = m? — ¢2.

271
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symmetric spaces. Representations of time (harmonic oscillator), of position
(scattering and bound waves), of spacetime translations (on-shell part of Feyn-
man propagators), and of nonlinear spacetime (spheres, hyperboloids, multi-
pole interactions) will be formulated in the language of residual representations
with their characterizing invariant singularities.

8.1 Linear and Nonlinear Spacetime

Minkowski translations R* with position translations R? contain as substruc-
ture Cartan translations R? with time and 1-dimensional position translations
R (chapter “Spacetime as Unitary Operation Classes”). Cartan and Minkowski
translations are parametrizable by Hermitian (2 x 2) matrices, diagonal for
Cartan spacetime,

. 04 .3 12
teR — a4 0323eR? — z=2"4+7= (;1:;;2 fco_fg) € R
/! /!

weER — 7 eR?

A group D(1) = expR acts both on the time and the 1-dimensional position
translations. For Cartan translations, it is rearranged from D(1) x D(1) to
D(15) x SO¢(1,1) with the rotation free orthochronous Lorentz group (self-
dual dilations). Together with the position rotations SO(3), it is embedded
into the D(14)-extended Poincaré group,

D(1) xR — [D(1) x SOy(1,1)] XR? — [D(1) x SO(1,3)] x R%.

/! /
D(1) xR — [D(1) x SO(3)] XR?

Spacetime has an order structure: Time future is embedded into Cartan
and Minkowski future,

Ry ot =9()t — 9(a?)0(2°)(2 + o32°) =2z € R3,
— Y229 (a"+7) =zeR:.

The futures are used as noncompact spaces (open cones without “skin”), i.e.,
without the strict presence x = 0 and without lightlike translations for non-
trivial position s =1, 3,

reRM = 2250, s=0,1,3.

Time future is the causal group D(1) = exp R,
R, >t =e% e D(1) =2 GL(C)/U(1).
Cartan future is the direct product of causal group and abelian Lorentz group,

z =¥t € R2 =2 D(1) x SOp(1,1).
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The action of the full linear group, called the extended Lorentz group, on
Minkowski translations

GL(C*) xR* — R* gex=gozog*

leaves the future invariant. The future has an orbit parametrization with Lie
algebra coefficients:

x =PtV = u(%) o e¥0tosv o u(%)* € R} = GL(C?)/U(2),

- e =22 € D(1),
b eV = A\/ e s SOO(L 1)’ W_).’ =1, % = %

ToFTr

It involves two rotation degrees of freedom for the 2-sphere ? = SU(2)/SO(2),

7; _ cos ¢ ie~ 1% gin & _ 1 r -+ x: —iz1 —
u(y) = (no cos ¢ ) = Vﬁ(m, o ) €SU(2)/SO(2).

The future of Minkowski spacetime R is an orbit of D(1) x SOq(1, s).
One- and four-dimensional future are the first two entries in the symmetric
space chain GL(C")/U(n), n = 1,2,..., which are the manifolds of the uni-
tary groups in the general linear group, canonically parametrized in the polar
decomposition g = uo|g| with the real n?-dimensional ordered absolute values
x=lgl =g og € R’f of the general linear group. They are the positive
cone of the ordered C*-algebras with the complex n x n matrices (chapter
“Spacetime as Unitary Operation Classes”).

Nonlinear spacetimes are symmetric spaces, in general not vector spaces.
They are parametrizable by the future of its tangent linear spacetime. At each
point, the tangent space of nonlinear spacetime is a full translation space:

logD(1), 5 =0,
RI*s =~ ¢ logD(1) @ logSOg(1,1), s=1,
log GL(C?)/U(2), s=3.

The Lie algebra coefficients (1, 1/7) € R x R? are related to tangent time
and position as follows:

T=x0+T :ed’”(costhrgsinhw) =14+ +---,
Ty % |Z] = e¥otlVl,

Nonlinear Minkowski spacetime contains many familiar homogeneous sub-
spaces in the manifold decomposition
D(2) 2 D(1) x SL(C?)/SU(2).
One-dimensional future D(1) is multiplied by the 3-dimensional Lobachevsky
space, i.e., by the 3-hyperboloid (nonlinear position),

2

4 =¥ € PP = SL(C?)/SU(2) = S0(1,3)/S0(3),
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~

which contains 2-dimensional non-Euclidean planes (2-hyperboloids) )2
SO((1,2)/SO(2) and 1-dimensional hyperboloids (abelian Lorentz groups)
V= S0(1,1).

Harmonic analysis of the tangent groups for linear spacetime

R — SOy(1,1) XR? — 8S0((1,2) xR?® — S0q(1,3) x R*
/ B / B /
R — SO(2) xR? — SO(3) xR?

involves the irreducible Hilbert representations for free scattering waves and

free particles (Wigner), i.e., of the functions on affine groups (tangent groups)

SO(s) x R* (Euclidean groups) and SOq(1,s) x R'** (Poincaré groups).
Harmonic analysis of nonlinear spacetime

D(1) — D1)xY' — D(1)x)* — D(2)=D(1)x)?
/! /! /!
SOy(1,1) — > B

embeds the harmonic analysis of the flat, spherical, and hyperbolic symmetric
subspaces.

8.2 Residual Representations

The method of residual representations with (energy-)momentum distributions
is intended to generalize, especially to nonabelian noncompact operations, the
cyclic Hilbert representations of translations via positive (energy-)momentum
measures. It uses the Fourier transformed Radon measures M(R™) which are
essentially bounded function L>°(R™). The form of residual representation
leads to a generalization of the Feynman propagators as used in canonical
quantum field theory.

The goal of the residual representation method is to translate the rele-
vant representation structures of homogeneous spaces (real Lie groups) and its
tangent translations (Lie algebras) — invariants, normalizations, product repre-
sentations, etc. — into the language of rational complex (energy-)momentum
functions with its poles, residues, and convolution products.

8.2.1 Residual Representations of Symmetric Spaces

Harmonic analysis of a symmetric space G/H with real Lie groups G O H
analyzes complex G/ H-mappings with respect to irreducible G-representations
with the related invariants. The eigenvalues (weights) of the group G-represen-
tations are a subset of the linear Lie algebra forms (log G)”. For translations
all linear forms are weights, the (energy-)momenta. For simple groups, the
weights constitute a subset of the weight space W7 (linear forms of a Cartan Lie
algebra W) with the dimension the Lie algebra rank, dimg W’ = rankg log G.
The weights are discrete for a compact group. The Lie algebra is acted on by
the adjoint representation of the group in the affine group G' X log G, its forms
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by the coadjoint (dual) one. Invariants are multilinear Lie algebra forms, e.g.,
linear for abelian groups or the bilinear Killing form for semisimple groups.

The tangent spaces of G/H are isomorphic to the corresponding Lie algebra
classes, denoted by log G/H = log G/log H with dimglog G/H = dimg G —
dimg H. It inherits the adjoint action of the group G, the linear forms the
coadjoint one.

Now the definition of residual representations: (Generalized) functions (re-
presentation coefficients) of a symmetric space G/H,

12 (G H)uupe — C. v p(a),

are assumed to be parametrizable by vectors x € V' (translations) of an orbit
in a real vector space with fixgroup H,

reEGerg2G/H, GexgCV XR"

e.g., a group G by its Lie algebra log G (canonical coordinates) such as SU(2) =
{e9% | # € R3} or the hyperboloid SOy(1,3)/SO(3) = {z € R* | 2% = 2 >
0, 7o > 0} by the vectors of a timelike orbit. With the dual space ¢ € VT = R"
(by abuse of language called (energy-)momenta, also in the general case), e.g.,
the dual Lie algebra, the representations of G/H are characterizable by G-
invariants {Iy, ..., Ir}, with rational values for a compact group and rational
or continuous values for a noncompact group. The invariants are given by
g-polynomials and can be built by multilinear invariants, ¢ = m for an abelian
group, quadratic invariants ¢?> = £m?, e.g., Killing form invariants.

If there exists a distribution of the (energy-)momenta, especially a Radon
measure [i € M(R"), whose Fourier transformation gives functions g of the
symmetric space and if the generalized function [i comes as a quotient of two
polynomials, where the invariant zeros of the denominator polynomial Q(q)
characterize a G-representation

iilg) = 54 with Q(g)-factors {(q —m)", (¢* £ m?)", (¢ £ m*)"}, m € R,

then p is called a residual representation of G/H.

A representation of a symmetric space G/H contains representations of
subspaces K, e.g., of subgroups SO(2) C SU(2) or SOy (1,1) C SL(C?)/SU(2).
A residual G/ H-representation with canonical tangent space parameters x =

(2,21 ) has a projection to a residual K-representation by integration | d" *z
logG/H ~ Rn—s
log K ’

over the complementary space

d" Sz |

K—C, zg+— M(xKa 0) = f (27‘-)71—5/"&(1') = deQK ﬂ(QK, O)BiQKxK.

The integration picks up the Fourier components for trivial tangent space forms
(energy-momenta) ¢, = 0 of loligf/(H. |

A Fourier integral involves irreducible representations z —— €'* of the
underlying translations x € V' = R". With that, residual representations with
positive distributions fi of the (energy-)momenta (characters) ¢ € VT give

cyclic translation representation coefficients.
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With velocities and actions measured in units (¢, i) all energy and momen-
tum invariants can be measured in mass units. Nontrivial invariants m # 0 can
be used as intrinsic units by a rescaling of translations x —— I:TI and (energy-)
momenta ¢ — |m|q to obtain dimensionless Lie parameters and eigenvalues.
To include the trivial case m = 0, invariants will be kept in most cases, and
somewhat inconsequentially, in the dimensional form.

8.2.2 Spherical, Hyperbolic,
Feynman, and Causal Distributions

(Energy-)momentum measures are used in the definition of free particle re-
presentations. The Lebesgue measure % is the Plancherel measure for the
irreducible translation representations R® > x —— € € U(1) and Haar
measure d"z. For irreducible representations of affine groups G x R” it is
modified by Dirac distributions of (energy-)momenta on homogeneous spaces
G/H. They describe interaction-free structures with cyclic translation repre-
sentations.

For the circle one has different parametrizations, e.g.,

3 N
Q' 5 () for semi-circle: (*X)? = 1 N 1 (1=
iq | © o \dsinx ) o« \/@ ip oo 1+v2 | 2w 1

2

Therefore, the Euclidean group relevant measure (chapter “Propagators”) for
the momentum direction sphere, i.e., for the compact classes of orthogonal
groups SO(1+ 5)/SO(s) = Q°, has the parametrizations, also for s = 0 where
applicable,

Q| = [d'w = [d'"™5q 26(q3 +¢* — 1) = foﬂ siny)*ldy [dw = [ LHS,

(*+1) 2
polar decomp081t10n q = |q|&d with |¢|* = ¢& + ¢*, & € Q°,
_ 2 _ 72 _ s—1 LGHR) 1-2RL(2R)
Wlth |QS| F?—lfs) 2 27T 47T 27T 1] = S T =2 T(R)

For noncompact classes of orthogonal groups there is the Poincaré-group-
relevant measure of the one-shell positive energylike hyperboloid SOy(1, s)/
SO(s) = Y*® whose parametrizations can be obtained with the spherical-
hyperbolic transition (iq, iy, ip,iv) — (q, ¥, p, V),

Jdy = [d"q 20(q0)8(a5 — = [y (sinb )ty [ e = [ L
“polar” decomposition: ¢ = |q|y with |q|2 =q@ -7, ye ).

Finally, there is the measure of the momentumlike hyperboloid, the non-
compact classes of noncompact groups SOg(1,5)/SOg(1,s — 1) = Ys—1:

[dis = [dq 20(¢3 — F+1) = 2fﬂ>1 = [T (coshy)* " dy [ d*tw
“polar” decomposition: ¢ = |g|s with \q\Q = —qo + 2, s € Y,
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The Dirac “on-shell” and the principal value (with ¢3) “off-shell” distribu-
tions are imaginary and real part of the (anti-) Feynman distributions

log(q® Fio — p?) =log|¢® — p?| Fimd(p® — ¢*)

% =—(— 9q 2)1+N10g<q Fio— MZ)
= (_ai(ﬁ)Nq%Fiz_uz = (q (l—gl\BrN ilﬂ-é(N)( q2>

for 2 € R andN—O,l,....

Feynman distributions are possible for any signature O(¢, s) with positive or
negative invariant 2.

Characteristic for and compatible only with the orthochronous Lorentz
group SOy(1,s) are the advanced (future) and retarded (past) causal ener-
gy-momentum distributions with positive invariant m? only. They are distin-
guished by their energy ¢y behavior:

log |¢* — m?| F ime(qo)V(m® — ¢?)

log((q F i0)* —m?)

oty = — (=) NV log((q Fi0)* —m?)
= (~50) o = @ £ ime(@)d™ (m? — )

for m* >0 and (¢ Fi0)*> = (q F i0)? — ¢

8.2.3 Residual Distributions

In this subsection all coefficients for noncompact operations are given [13] that
will be relevant for the spacetime representations in the following. They can be
obtained as residues in the form of Fourier transformed measures and involve
Bessel, Neumann, and Macdonald functions (chapter “Propagators”).
The causal structure of the reals and its unitary representations occur in
the Fourier transformed causal measures,
m,v e R: [y A=) pigr — () <

(g—io—m)'=¥

Here and in the following the integrals hold wherever the I'-functions are de-
fined.

The scalar distributions for the definite orthogonal groups in general di-
mension with real and imaginary singularities on spheres Q*~! with ¢ = 1
give Macdonald functions K, and Hankel (Bessel with Neumann) functions

HL2 = T, £iN,

d®q F(%:”) eiqz — L'(v)
3 ()3 ()
O(s), s=1,2,3,..., dq TGV igs _ 2Ku(r) _ m(idy—Ny)(ir)
r=VI ) Ve R; w2 (q2+1)%7u (%)V (g)” ’
j‘ dq F(%_”)' iqT (1T — )(7") 2[Cy (—ir)
71'% (6‘2*1071)%7,1 (é)u (%)D
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The angle integration is different for even and odd dimensions,

s 2 2 f ‘QS 2| N’ qu fo S— 1dq M f() bll’lX s QdX ezqrcosx
_ Iy 1“@Mu k (1 —cos® x)Mdy €7°%X, s =24 2R
— [ q?P2Rdg p(g?) [ (1 = A)RAC e, s=3+2R,

The integrals can be obtained by 2-sphere spread from the values for R = 0.
All (half)i d =2rd,

2 T o dr’
4m

N
(— dg) (e", cosr, sinr),

di
R, 5r r— @urd shu)r) _ ;+%:N:o,1,2,...7
(z2)” -
2 (—2%) (2Kalr), 7). wNo(r),
47
v=N=0,1,2/....

The half-integer index functions start from the exponentials. The noncompact
and compact self-dual representations of the reals come with imaginary and
real poles in the complex plane,

d , e~ ", poles at ¢ = *1,
O(l) : f?q q2—i10i1€zqm = { i

7€', poles at ¢ = +1,

They involve the positive-type function for the basic self-dual spherical repre-
sentation R 3 z —— cosx and the basic self-dual hyperbolic one R > © ——
—lz|
e~ 1,
The integer index functions begin with 2-dimensional (energy-)momentum
integrals, which integrate over the R-representation coeflicients,

),
),

( djr quJr Pl — 2KCo(7) _ fdd} e=reoshy
fd2 % 10 1 zqgc — _7_[_[/\/’0 —Zjo _ fd@/} ezrcoshw

0(2) : fdw = e = —wNy(r) = [dy cos(rcoshi)),

[ dq (3 — 1) = rnTy(r) = [di sin(r cosh))

= 7 _dx cos(rcosy),

( ii Foe € = 0(@?)2K0(|2]) — () [No + il

O(1,1) : e = 0(=a?)2Ko(|2]) — ()N — i) (||
|z = /]| fd2€l 5 (¢* - 1)6“” = 9(=2?)2Ko(|z]) — I(@?)7No(|2]),

— [ T = 9@)nTo(|e]).

T gp—1

For v > 0, only the Bessel functions are regular at r = 0,

(20 =3 E og = —20'(1) - 20(k)
k=0
p(0) =0, p(k) =14+45+...+5, k=12,
—I"(1) —hmk_,oo[ (k) — logk] = 0.5772... (Euler’s constant),
k
Jo(r) _Z((k')z)
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The half-integer index functions for v > 0 arise by derivation with respect

to the group parameter from the rotation free case with R-representations for
v = —%, starting with v = %, whereas the integer index functions start from

v = 0 which requires a finite integration of R-representations:

/! 231% :fl ¢ cosCr:—d%cosr for v = 1,
cosr 4

1.
2 N T To(r —f e cos(r for v = 0.

for v =—

The Bessel, Neumann and Macdonald functions with half-integer index, e.g.
{cos, sin, exp}, are used for odd dimensions, e.g. for the groups D(1),SO(1 +
2R),S0¢(1,2R), R = 1,2,.... The corresponding functions with integer in-
dex, e.g. {nJy, Ny, 2K}, are used for even dimensions, e.g. for the groups

D(1) x SOy(1,2R — 1),SO(2 + 2R),

3
SOy (t,s) with t + s = { Zi% :;i% :;;—2}2 _ ’Z’g’
As familiar from the local isomorphisms SU(2) ~ SO(3) and SL(R?) ~
SOy(1,2), on the one hand, and SL(C?) ~ SOq(1,3) ~ SO(C?) (as real
Lie groups), on the other hand, the difference between odd and even dimen-
sions is also related [7] to the transition from real R to complex C =R & iR
(doubled reals).

By analytic continuation one obtains for indefinite orthogonal groups

f dd({i F(%fy) eiqz _ I(v) -
O(t, s) : w3 (ghio)2 ™ iy
t>1, s>1,
d=t+s=23.., ¢ pdle TG e _ 2Knle) IC)inte (o)
|z = /]2, isn¥ (¢2—iot1)2 Y 51"
2 =2 =2
¢ =T — Iy, 2
£ —6) mz (—2).

For integer N = 1,2,..., there arise, via the phase of the logarithm, 2% = 0
supported Dirac distributions
2

log(—2? —i0) = log|z?| — imd(z?),

X
k
(‘52;) 9(22) =o0-D(—2) k=12,

The residual normalizations for positive and negative invariants a are

a_, i
O(t,s), t+s=d=1,2,..., a€R: dlg TG T(w)

isﬂ'% (q2—io+a)%7y (a—io)=¥
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Orthogonally invariant distributions are embedded in hyperbolically invari-
ant ones, e.g., for (1, s)-spacetime with the general Lorentz groups

g T(5-v) ez — _ TW)
d d _ - Uy
isT2 (g2—io)2 ¥ 22440
4
g TG ige :ﬁ(mm,,(|z|>719(712MW,VW,U](M)
isnd (@2—io+1) 8 1zl
O(1,s),
iy =),
N=12 ...,
fﬂ “’"F(*—V) piar  — 9(=2?)2Ky (je)) —d@)m Ny —iT—v](z])
isﬂ'% (g2 71071) v |51
+6,, mz ﬂi)

With respect to hyperbolic differential equations with SOg(1, s), Huygens prin-
ciple with spherical SO(s)-boundary conditions holds for odd dimensions 1+s,
not, however, for even spacetime dimensions [5].

Now special cases to be used below: For v = —= there are no singularities:
i A
f‘ @) 1+s a = -,
q
i ezqz —e 7
O(S) . f ‘Q ‘ (_2+1)1+b )
eldT  — el
f IQS (2 —io— 1)1_*—S ’
d1+sq 2 iqr __ 2 . 2
St (quio)QJer € = —|ZE|[19(LU ) + Zﬁ(—fb )]7
d'*sq 2 iqr __ 2\ ,—|z 2\ ,—i|z
O(1,s) : fiS‘Ql-%—s‘ (q2_io+1)%€ = J(z%)e | ‘Jrﬁ(_x Je let,
d'tsq 2 iqr _

ismm 73 € iﬁ(—x2)e—lwl + 2‘19(:62>ei|:p\.

| (q2—i0—1)"2
For v = 0 there is a logarithmic singularity in Ky and Nj:

O( ) f |Qq 1‘ (ﬂ+1)sequ :2/C0(7"),
J Rty 2™ = Ny — iRl(r),

i0o—1)2

(q

dig 2 it —(22)2K(|z]) — O(—a?)m[NG + i) (||,
0(1 S) . 11‘4—5‘ (®—io+1) >
’ d 2 eitr —(—22)2Ko(|x]) — O(a?)[No — i) (|a]).

Q|Q| (q®—io—1) 2

The Fourier transformed simple poles are used for representations of the
affine groups SO(s) X R* and SOy(1,s) X R'** (more below):

[ d°q 1 igt  _
< =
2 @

r(*z%)

(%)8—27
2Ry
dq 1 igE _ ° 2@
O(s) : 3 P+l (g)sﬁ}z ’
T[N g—o —iTs—2](r
fdssq L gt _ Wiga —iTs2](r)
3 Pio1 =z

(3) 2
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( ditsg 1 iqr F(%l)
1+s 5 € = =T
- o
ez 224io0
4
1+s : I(@?)2K s—1 (|2)) =9 (=a?) 7N _s—1 +iT_ s—1](|])
d i A L pigr  — P 7 2
jsm 3> 4 —iotl EHen
. N 1 k—1 x?
O(L,s) : —55;2127r§ et I,
k=1
ditsg 1L i _ 19(—962)2’Cs;1(|m\) —0(a?)m [N _szl- —iJ s 1](|90\)
I+s 1 - s—l
i 5 42—l \g\
k 1 T
+00 (=%)-

The lightcone-supported Dirac distributions arise for even-dimensional space-
time with nonflat position, i.e., for (1,s) = (1,3),(1,5),....

The one-dimensional pole integrals are spread to odd dimensions starting
with 1+ s = 3 and a singularity at |z| = 0:

dq 1 2
[ 5o =2
d&q 1 _igx 0 —r _
O(S) f w2 2+1 - 8%6 - 2 r )
dq 1 gt 0 ;i e
w2 g2 10716 8§Z€ =2 r?
( _f@ 1 eiqz — 2"9(-'52)_“9(_-’”2)
w2 g2—io x| )
. @ 1 iqx d(a?)e” "1 - 19( a?)ie”*I"!
O(la 2) : - f 2 g —zo—‘,—le =2 ’
eiax 9(a?)etl”] —119( x2)e” ‘I|
— f 1 =9
w2 g2 —io— ¢ |z|

The dipoles in three dimensions are without singularity:

d3q 1 iqT
2 qQ 74qfl7 — _7,.7
. q 1 Wqr . T
0(3) : St =,
a3 q 1 WqT __ ar
< e e ie’r,

—f%@;wm = |al[9(a?) — i9(~a?))

(v
O(1,2): | —J Sammee™ =0(@)e F +9(=a?)e ",
2

— [ S e’ = i0(@?)el 4 i (—a?)e .

2—j0—1)2

The 2-dimensional integrals are spread to even dimensions, starting with
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14+s=4
fJ 1 i _ 4
2 52 = 72 "
dq¢ 1 igg _ a K (r
O4): f?qq”breq = - (r) —7% 3
| S e ™ = aﬂwo—wo}( r) =—TMoAl,
\ 2
( ;l; q? izoelqw = inio’
0(L.3) 7f alf D" e W 0N T ) 2
s : 2 g2 —io+ % )
4 ; —z2 z|)—9(z2) 7 [N_1—iT_1](|z . z
Bl = A AT | (2,

Dipoles for four spacetime dimensions lead to maximally logarithmic singular-
ities.

8.3 Residual Representations of the Reals

The simplest case of residual representations is for time and 1-dimensional
position with energy and momentum distributions respectively. The repre-
sentations yield, for a linear invariant, matrix elements of the real 1-dimen-
sional compact and noncompact groups U(1) = expiR and D(1) = expR
respectively and, for dual invariants, of their self-dual spherical and hyperbolic
doublings SO(2) and SOy (1, 1) respectively.

8.3.1 Rational Complex Representation Functions

An irreducible R-representation is the residue of a rational complex energy
function, or, equivalently, a Fourier transformed Dirac distribution supported
by the linear invariant energy m € R:

Rt — ™ = %q—lmzqt quéq m)“”EU()
This gives the prototype of a residual representation. The integral § circles
the singularity in the mathematically positive direction.

For the abelian group D(1) = R, where the dimension coincides with the
rank and where the eigenvalues ¢ are the group invariants m, the transition
to the residual form is a trivial transcription to the singularity ¢ = m. This
will be different for nonabelian groups with dimension strictly larger than the
rank, e.g., for the rotations SO(3), with dimension 3 and rank 1, with the
invariant a square ¢> = m? of the three R3-eigenvalues ¢.

In the Fourier transformations of the future and past distributions the real-
imaginary decomposition into Dirac and prlnmpal value distributions goes with
the order function decomposition J(£t) = HEE( in the functions on future R
and past R_,

causal: Ry 3 9(£t)t — £ [ et = Y(Lt)e™.

q:Fw m
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All those distributions originate from the same representation functions
with one pole in the compactified complex plane:

Caq»—>ﬁ€@, m € R.

The position ¢ = m of the singularity is related to the continuous invariant.
The Fourier transforms with different contours around the pole represent via
Y¥(+£t) the causal structure of the reals.

A representation distribution with nontrivial residue can be normalized,

R30r—1= %q}m —resmqlm (m|m).

The residual normalization gives, simultaneously, both the normalization of
the unit ¢ = 0 representation ¢ — ¢™ (pure state) and the scalar product of
the normalized eigenvector (pure cyclic vector) |m).

8.3.2 Compact and Noncompact Dual Invariants

Poles at dual compact representation invariants ¢> = m? can be combined
from linear poles at ¢ = 4|m/|, the invariants for the dual irreducible subrepre-
sentations.

The Fourier transforms of the causal and (anti-)Feynman energy distribu-
tions are functions on the cones, the bicone, and the group with SO(2) matrix
elements:

q
causal: Ry 3> 9(£t)t — £ [ mglo)le)eri‘ﬁ = ﬁ(itﬂ(z‘g?;%t):
(7)
. i 1 ilm
bicone: Ry WR_>t+—— + [ Wﬁe 2 = iﬁ(t)) etilmil
group: Rot— [dg (lzll) 5(g* —m?)et = zZ?;ITntlt>

The normalization for ¢ = 0 uses different matrix elements for the causal
residues with two poles with equal imaginary part and for the Feynman residues
with two poles with opposite imaginary part:

2
causal: C3qr— 705 € C, X filml 27,7rq = Zresi\m\ s = 2,
2 dg 2
Feynman: C>3g+r— qgljfr‘lz eC, * filfﬂl 213“1 TTLQ = ICSt|m| 2 |m|2 =1
The functions with noncompact dual representation invariants ¢ = —m?

give, as Fourier transformed Q!'-measure, noncompact matrix elements of faith-
ful cyclic D(1)-representations, not irreducible:

SO(1,1) XR35>z qu ALl giae

ol o
— z iqr _ ,—|mz|
- f 217r q—i|m| q+i\m\]e =¢ :

The representation-relevant residues are taken at imaginary “momenta” ¢ =
+i|m| in the complex momentum plane:

C3qr— -2 ¢C, fillml dg _Aml - yegymm = 1.

q%+m? 2w g24+m?2 Im| g2 m2
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8.4 Residual Representations of Tangent
Groups

Cyclic Hilbert representations of the abelian translations are used for affine
groups G X R™. The representation collects, via direct integrals over the orbits
of the homogeneous group, the translation representations with Dirac distribu-
tions of the (energy-)momentum eigenvalues. This will be given for Euclidean
and Poincaré groups with their orthogonal homogeneous groups. Physically
relevant examples for the Hilbert spaces with square integrable functions on
momentum spheres (nonrelativistic scattering) and energy-momentum hyper-
boloids (free particles) have been given in the chapter “Harmonic Analysis.”

8.4.1 Euclidean Groups

The irreducible infinite-dimensional Hilbert representations of the Euclidean
groups SO(s) X R®, s > 1, are, for nontrivial translation invariant and s > 2,
inducible with fixgroup SO(s — 1) (chapter “Harmonic Analysis”). The scalar
representation coefficients for the Euclidean spaces SO(s) x R*/SO(s) = R,

m?>0: R 27T+ D(m?*?) = [d°q 5(3# — m*)e @

_ \m\;” [ dsw emimlaT — W [ & w cos|m|ST,

use the Fourier transformed measure of the momentum direction sphere & =
% € Q*!. The scalar representation coefficient can be normalized as a positive
%unction for a cyclic translation representation where the momentum sphere

has the invariant |m| as intrinsic unit:

state: d*(m?r?) = [ \m\i% 2|m|6(@ — m?)e "

= [ 5= cos|m|@F, d*(0) =1, || =

[N

us

(

2
NN

(NI

For s > 3, the scalar representation coefficients arise by a 2-sphere spread
via derivations —d%,

4

TTs—2 (1)
DH(r) =~ D730) = i
4 27

and embed the self-dual R-representation matrix element
R >z +— D'(r?) = [dq 6(¢*> — 1)e 4" = cosr.

For odd-dimensional spaces with SO(1 + 2R), they involve half-integer-index
(spherical) Bessel functions, whereas integer-index Bessel functions are used
for even-dimensional spaces with SO(2R), both with rank R

, R
o 221 7{?}@ = (—%) cosT, fors=1+4+2R=1,3,...,
D*(r*) = Fjﬂ " T\ R-1
iy =l <— dz) 7 Jo(r), fors=2R=24,....

(3=
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The integrals sum over the embedded R-representation coefficients

D*(r?) = [ dx cos(rcosx) =mJo(r),
D3(r?) = 7Tf_11 d¢ cos(r¢)  =2mjo(r) = —d% COST.

an
SO(s)-nontrivial degrees of freedom R* = R, x Q! use derivations

(" ~ (i), L=0,1,..., £=22 =270

8.4.2 Poincaré Groups

The irreducible Hilbert representations of the Poincaré group SOg(1, s) X R'**,
s > 1, for positive translation—invariant, e.g., massive particle representations
for m? > 0, are inducible with fixgroup SO(s) (chapter “Harmonic Analy-
sis”). They come as the Fourier transformed infinite measure of the energy-
momentum hyperboloid with the directions as eigenvalues % =tye i =
SOy(1,5)/SO(s). The scalar representation coefficients for the hyperbolic

spaces SO(1,s) X R*/S0y(1,s) = R read with |z| = /|22,

m2>0: RIts S —s D(l’s)(mQxQ) _ fdl-l—sq 5(q2 _ m?)eiqaﬂ
Il [ dy cos|mlyz,
— l'2 . — x 1‘2 — x
D(g2) = 4 plis-dga) — Z N g (I s o).

x
dﬂ | 27

| T

The hyperbolic invariant |m| is used as intrinsic unit in the coefficient, renor-
malized with the (s — 1) spherical degrees of freedom

dits f\m\sdlﬁ;s iy 20(q* —m?)e't” = f% 2 cos |mlyz.

It is not finite for x = 0.
The representation coefficients embed time and 1-position representations

R>t |—>qu5 2 —1)e"" = cost,
R5z o [ L gmitr ¢l

T q2+1

for s > 2 as 2-sphere spreads. For odd dimension and SOy(1,2R), they in-
volve half-integer index functions, hyperbolic Macdonald and spherical Bessel
functions

D(1:2) (12) - 97 —9(x?) sin |a:|\—719 z2)e —Im\7

R
D2R) (22) = (822> [0(2?) cos |z| + I(—z?)e™ 1]
%7 R 2
d(x?)(—1)"*mr z|)+9(—x)2K T
- D Ty (e o) R_%(lI)for1+s:1+2R:3,5,....

1
||
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For even spacetime dimension and SOg(1,2R — 1) they start with the rank
R =1 Poincaré group by integrating R-representation coefficients on a hyper-
bola:
DN (2?) = fdz/J 2) cos(|z| cosh w) + I (—?)e Izl cosh ]
= —d(z )m\fo(|xy) +9(=2%)2Ko(|2]).

A 2-sphere spread gives the Hilbert representation of the rank-2 Poincaré group
with Minkowski translations and, in general, the integer index functions

DR (g) = (2 )R*[_19<x2>wvo<|x|> + 0(—22) 2K |

81
19(3;21) WNR 1(‘z|)+19( $2)2’CR71(IxD fOI“ 1 + S = 2R = 2 4 e

|R1

‘21r

SOy(1, s)-nontrivial coefficients use derivations

(Q)F ~ (—zdaz)L,L:O,l,..., = zxaxz

8.5 Residual Representations of Position

Self-dual spherical SO(2)-coefficients of translation representations are positive-
type functions in L>°(R), with Dirac measures in M(R)

R >t 2coswt = [ dg 2|q]0(q? — w?)e'.

Bound waves and interactions are characterizable by self-dual hyperbolic
SOy (1, 1)-coefficients that are square integrable functions in L>(R), N L?(R)
and have a rational function as positive Radon measure,

—-1Qz _ dg Q| —iqz
Ro>z+——e =) TEigee

The spherical and hyperbolic invariants come from a real and “imaginary”
momentum pair as poles in the complex momentum plane, i.e., from ¢ = tw
and ¢ = +1|Q)| respectively. In contrast to the hyperbolic state, the spherical
state is decomposable as a direct sum.

The 1-dimensional quantum-mechanical example is given by the Schrodinger
functions of the harmonic oscillator. They are position representation Coefﬁ-
cients with the representation invariant the inverse intrinsic length Q% = 24 =
kM. Here the hyperbolic state z — e~19% with positive definite coordinate
shows up in a reparametrization with the square of the usual position parame-

ter z = % (chapter “The Kepler Factor”):

2

(P2 4+ Z1(x) = Eg(x) = do(a) = e 22 = 197l with 2B =1,

In contrast to scattering waves, bound waves for nonabelian position groups
use higher-order momentum poles, where the order depends on the position
space dimension. This will be exemplified by the nonrelativistic hydrogen atom

bound waves, which represent the noncompact nonabelian group SOy(1, 3) and
start with momentum dipoles.
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8.5.1 The Multipoles of the Hydrogen Atom

The hyberbolic structure of a nonrelativistic dynamics with the Coulomb-
Kepler potential % and the invariance of the Lenz-Runge “perihelion” vector
has been exploited quantum-mechanically by Fock [4]. With the additional
rotation invariance the bound state vectors come in irreducible k%-dimensional
representations of the group SO(4) = %’ centrally correlating two
SU(2)’s, with the integer invariant k =1+2J =1,2,....

The measure of the 3-sphere as the manifold of the orientations of the
rotation group SO(3) in the invariance group SO(4) has a momentum para-

metrization by a dipole (chapter “The Kepler Factor”),

3~ 1 1 3 4 3 — [ 13, — 2d% 9.2
0% = S0(4)/SO(3), m(q) €O CR = 0] = [ dw = [ 200, = 2n2,
Q3-integration of the pure translation states R? 3 ¥ —— e~ € U(1), i.e., the
Fourier transformed Q%-measure, gives the hydrogen ground state function as
a scalar representation coefficient of 3-position space:

V32 800(1,3)/80(3) = SL(C?)/SU(2) 5 7' +— [ L lzme™ = 7lQ,
In the bound waves, 3-position space is represented as a 3-hyperboloid with a
continuous invariant ? for the imaginary “momenta” ¢> = —Q? on a 2-sphere
02 and a discrete rotation invariant 2.J € N.

The bound waves are matrix elements of infinite-dimensional cyclic princi-
pal SL(C?)-representations, where,with the Cartan subgroups SO(2)xSQy(1, 1),
the irreducible ones are characterized by one integer and one continous in-
variant. In the language of induced representations, the bound waves of
the hydrogen atom are rotation SO(3)-intertwiners on the group SOy(1,3)
(Y3-functions) with values in Hilbert spaces with SO(3)-representations in
(1 + 2J)*dimensional SO(4)-representations.

For the nonrelativistic hydrogen atom, the rotation dependence &' is effected
by momentum derivation of the Q3-measure,

2 —T dq 4§ —iqz _ 0 1
el = [ Hdye ' with why = —Gmer
The 3-vector factor H—ﬂ is uniquely supplemented to a normalized 4-vector on

the 3-sphere, a parametrization of the sphere

1 (@#—-1\ _ [ cosx \ _ (po) _ 3 4 .2 =2 _
it ("ar') = (i) = (B) =pe @ R g7 =1

The totally symmetric traceless products of the normalized 4-vector build the
higher-order Q3-harmonics Y ?%2/)(p) ~ (p)?/.

The Kepler bound waves in (1 + 2.J)*multiplets come with 2.J-dependent
multipoles:

@ -1
V2 ¥ [ L iy ()T with { S =iz (')
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As illustration, the & = 2 bound state quartet with tripole vector and Laguerre
polynomials

and the £ = 3 bound state nonet with quadrupole tensor

32 _ P 3(L=1)2 -
O=1. [Lg_1 O P o = [ A o —iTQT
=3 72 (1+@)2 \ .. PP —J 2 ar@)d iq 5
3pQp—13p 37® 7 — 133>

1-2Qr + 29072  3L3(20r)
= e et @ = 9 1ri2qn) |.
2 2 = —
CatPEay 1)) & (13 - T @ HLY(2Qr)

8.5.2 Residual Representations of Hyperbolic Positions

Distributions of s-dimensional momenta ¢ € R® with the action of the rotation
group SO(s) are used for representations[6, 11] of the hyperboloids Y* and
spheres 2°. For s = 1, “flat” and “hyberbolic” are isomorphic. The residual
representations of nonabelian noncompact hyperboloids and compact spheres
with s > 2 have to embed the nontrivial representations of the abelian groups
with continuous and integer dual invariants respectively:

SO¢(1,1) =Y 52 +— % qQL%eiqz =e Imel ;2 >0,

SO(2) = Q' 3e & [X @%ei” =eFlmalm|=1,2,....
The pole invariants {#i|m|} and {&|m|} on the discrete sphere Q° = {£1}
are embedded, for the nonabelian case, into singularity spheres °~! that arise
in the Cartan factorization

SOy(1,5)/SO(s)
SO(1+ s)/SO(s)

111

V' = S0y(1,1) 0 QY
0~ S0(2)0 0L

The rank of the orthogonal groups gives the real (noncompact) rank 1 for
the odd-dimensional hyperboloids, i.e., one continuous noncompact invariant,

rankgSOy(t,s) = Rfort+s=2Rand t+s =2R+1,
rankgSOy(1,2R — 1) — rankgSO(2R — 1) =1,
rankgSOq(1,2R) — rankgSO(2R) = 0.

Odd-dimensional hyperboloids and spheres, * and Q° with s = 2R — 1, will
be considered as a generalization of the minimal and characteristic nonabelian
case s = 3 with nontrivial rotations for the nonrelativistic hydrogen atom
above.

The coefficients of residual representations of hyperboloids Y2#~! use the
Fourier transformed measure of the momentum sphere Q?#~! with singularity
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sphere 282 for imaginary “momenta” as eigenvalues with continuous non-

compact invariant ¢© = m2 < 0. SO(2R)-multiplets arise via the sphere
parametrization 42+ 2( ‘m‘q ) e O2B-1 - R2R with an = Fgrfji)7

for Y?R-1 R=1,2,.

d?fi-1q Qm\ —igT _ —|mr
N 2RI 1| @rmHEC =e )
— »
T f d?R-1q  2R|m| 3 —m? oIl R—1—|m|r o—Imlr
02— 1\ @Fm) TR\ 2im|7 = # :

Each state {# —— e 1™} € L>®°(SOy(1,2R — 1)), with m? > 0, character-
izes an infinite-dimensional Hilbert space with a faithful cyclic representation
of SOy(1,2R—1) as familiar for R = 2 from the principal series representations
of the Lorentz group SOg(1,3). The positive type-function defines the Hilbert
product:

distributive basis: {]mQ;q} | 7€ RZR—l}’

scalar product distribution: (m?; ¢'|m?; ¢) = ?TZ‘?)R |Q28=Y5(7— ),
Hilbert vectors: |m?; f) = f“ﬁfR T] H@Im* ),

dQR 1

(m?; flm?; f) = [ ot F(@) omesw f1(@)-

There is a representation of each abelian noncompact subgroup in the Cartan
decomposition Y2F~1 = SOy (1,1) o Q272 with the action on a distributive
basis and hence on the Hilbert vectors:

SOy(1, 1)-representations for all & € Q2F~2; =97 | 7097 = =107 ¢ (1),
action of all SOg(1,1): |m?q) —— e '%®|m?; ),
cyclic vector: |m?1) = [ |C£2RR 11| Im?; q)

with f% (m2; § e~ m2; §) = e~Imir

The scalar product is written with the positive-type function, e.g., for 3-
dimensional position R = 2 with intrinsic unit

f‘f f;lﬂ q—> -2+12f (D —fd3:1:1d2x2 f($2) *|f179?2|f~/<f1)
with f(q) = [ dz f(Z)e'.

It can be brought in the form of square integrability L?(IR®) by absorption of
the square root,

W@ = FEF@ = (1) = [ s 9@ (@) = [ d $(@) ().

Therefore, all infinite-dimensional Hilbert spaces for different continuous
invariants m? > 0 are subspaces of one Hilbert space L*(Y?%#~1) with Y2R-1 =~
R2%-1 States with different invariants are not orthogonal, i.e., , they have a
nontrivial Schur scalar product

m?2| ym2 — —|milr .—|malr _ I'(2R
{dmi|dm3} = [ d?B-lg emlmlremlmalr — | Q2R Q\W-

Flma 7T
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The orthogonality of the Y3-representation coefficients with different invariant
m? = a +2 e in the hydrogen atom is a consequence of the different rotation
invariants J.

The corresponding matrix elements of representations of odd-dimensional
spheres are obtained by real-imaginary transition. They involve Feynman dis-
tributions with supporting singularity sphere Q22 for real momenta with
integer compact invariant ¢ = m?, |m|=1,2,...,

for 2R-1. . if o 1 Im| ~pe T = 6:|:z|m|r’
T — SR_1 | | (¢?Fio—m?)
R=1,2,... o m|0 BV (m? — @)e " = cos |mlr.

The irreducible representation spaces are finite dimensional, e.g., for R = 2
isomorphic to C'*2X. The irreducible spaces for different discrete invariants,
e.g., L =0,1,..., are Schur-orthogonal subspaces of the infinite-dimensional
Hilbert space L*(Q2F-1).

The residual normalization for complex representation functions

RXQQR—l(_)CXngflgq‘:’(ﬂ%Hﬁeﬁ, peC

has to take into account the sphere degrees of freedom in C x Q2% e.g., for

2R—1
Yy,

TS +i|m| (qﬁm)R =/ il\i;I:Rilll\ (qﬁl;n;! §:ﬁ:z|m| ;i% =1
The higher-order ¢?>-power is compensated by the ¢?>-power of the measure.
Nonscalar functions have trivial residue.

The tangent translations for the nonabelian Lie algebras log SO(1,2R — 1)
for the hyperboloids and log SO(2R) for the spheres are represented by Yukawa
potentials and spherical waves (half-integer index Macdonald and Hankel func-
tions respectively), which arise by 2-sphere spread of the states

— 2R—-1 . d*h-1g 2 —igr e*lm\T
R = 2, 3, ey fOI' y A IJEQ2R—1| ((j‘2+m2)R—16 7 =2 ’
OR—1 . o 2 —igt e:tt|m\
for Q A :sz iJ2F- 1‘ (qﬂziio—mz)Rfle =2"=——

8.6 Residual Representations
of Causal Spacetime

Faithful Hilbert representations of unitary relativity GL(C?)/U(2) are infinite-
dimensional. The hyperisospin U(2)-induced representations of the extended
Lorentz group GL(C?) are subrepresentations of the two-sided regular repre-
sentation of GL(C?) x GL(C?). The two-sided dichotomous action group is
realized in the electroweak standard model (chapter “Gauge Interactions”) by
external and internal transformations, faithful for SL(C?) x U(2) acting on
the left-handed isodoublet lepton field, for SOg(1,3) x SO(3) on the isospin
gauge vector field, for SL(C?) x U(1) on the right-handed isosinglet lepton
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field, and for SOy (1, 3) x {1} on the hypercharge gauge vector field. With the
notable exception of the Higgs field, all isospin SU(2)-representations of the
standard model fields are isomorphic to subrepresentations of their Lorentz
group SL(C?)-representations.

The manifold of unitary relativity is parametrizable by the future cone of
linear spacetime. It is called causal spacetime

GL(C?)/U(2) = D(1) x SOy(1,3)/SO(3) = D' = R! .

The acting product group D(1) x SOq(1, 3) contains, in addition to the Lorentz
group, a dilation group D(1), which, in a relativistic framework, is related to
the causal group for strictly positive “ecigentime” y/9(zo)d(2?)2x? € D(1).

The induced GL(C?)-representations act on mappings w : ]Ri — W that
relate future spacetime points to hyperisospin U(2)-orbits in a vector space
W. The complex functions of the causal cone

R 3z = ¥(zo)d(z?)x — I(zp)d(2?) f(z) € C,

are the coefficients of unitary relativity with all representations of GL(C?)
that contain trivial hyperisospin U(2)-representations.

8.6.1 Harmonic Analysis of the Causal Cartan Plane

Causal spacetime D* has real rank 2 as dimension of a Cartan plane D? =
D(1) x SOg(1, 1) as maximal noncompact abelian group, which is the diagonal
part in its Cartan decomposition

x1 +ixs  x0 — T3 0 o —T

D4 5S¢ = (zo+z3 T1 —1x2 :u(g) o <m0+7' 0 ) ou*(%‘)’
Q> I— (%) eSU(_2),

ToiT 0

(’“’o” °_) = x%vﬂ?(h“ >€D(1)><SOO(1,1).
N

The parametrization of the group by future cone translations differs from
the exponential Lie algebra parametrization, D(1) > e¥0 = ¥(xg)xo. The
neutral group element of D? distinguishes a hyberboloid that can be used to
introduce an intrinsic length or mass scale |m| for translations z with a length
dimension

¥ =1holy + Y303, tanhipy = 22,
D296¢:m£:> 1/}0 :10g|m£‘, |x’ :\/@27
Py =0 <= m?a®=1.

The irreducible unitary representations of the product group are:

D(1) x SOy(1,1) — U(1),

e¥ola+isos 120 + 0323 s et(qovotass) — |x|iqo<;gii§ )iqa
with (qo, g3) € R
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The characteristic function and the defining translation parametrization of
the causal Cartan line and plane can be written with advanced energy-mo-
mentum measures with a pole at a trivial invariant ¢ = 0 and ¢ = 0:

I(xg) = dgo _ 1 _ igoxo 7
for D(1) &£ SO¢(1,1) : 2im go—io
M) o(1,1) { Hag)zg = — [ = 1w ¢id0z0
9 1‘2 s = — & a’q 1 ezqz
for D(1) x SO,(1,1): { " (H0V) [ e
( )19(%‘ )$7T = 2r [(q 10)2]26
with 2? = 2§ — 23, (¢ —140)* = (qo —i0)* — ¢3.

The Fourier transform of an energy-momentum function holomorphic in the
lower complex energy qq plane is valued in the future cone, i.e., supported by
causal line and plane. In the Lorentz compatible translation parametrization,
the harmonic analysis of the Cartan plane uses SOg(1, 1)-invariants ¢> = m?
as energy-momentum singularities:

62l;10 1 elaoTo  — 19(&:0)6””””0,

7 qo—io—m

D(1) 2S0,(1,1) : f o me”[’xo = ¥(xg) cos mxy,
dg: Wezqoxo — 19(1,0) sm::a:o ,

d%q % iqx =9 9 9
D(l) X Soo(l,l) : { e 21 —(g—i0)2+m’ € ( ) ( )Wj()(‘me

2iq

S Crre ™ = V(wo)d(@?)ar Jo(|mal).

The line D(1) has rank 1 with one representation characterizing invariant
pole in self-dual form ¢?> = m?. The two continuous invariants for the rank-2
causal plane are implemented, in a residual representation, by two poles in the
complex energy-momentum plane

D(1) x SOy(1,1) 3 I()d(2?)x — [ L1 B P 1 o
Below, the product of the two energy-momentum poles will be related to the
product structure of the represented group. The two poles can be taken as
the endpoints of a finite SOy (1, 1)-invariant singularity line ¢* € {¢m?2 + (1 —
¢)m?2 | ¢ € [0, 1]}, which gives the Fourier transformation of energy-momentum
logarithms,

d?q 2iq z T 2iq iqx
21 [=(g—i0)2+m2][—(g—i0)2+mj] ! f fo QdC[ (a— w>2+<m?5+(1 om2p €

q (g—io) mO iqm
7xf27rm mz)long m26

f f dM? %q pide
m3 —(g—io)? +M2]2

= 9(z0)V(x >:cf";5 D7 Jo(| M)

= 9(xo)0(2?)2 -2 ”Jo(\mow\)—wjo(\mm)

2 2
de mg—mg
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In the not-Lorentz compatible direct product form the residual representa-
tions of the group for Cartan spacetime read

D(1) x SOy(1,1) 3 (F(xo)xg, x3) — f dt(zgiqg =T Z(ij(?—io)2+mg] ei(q0T0—gss)

e—Imrz3

= J(xg) cos mox ]

8.6.2 Harmonic Analysis of Causal Spacetimes

A causal Cartan plane is a maximal noncompact abelian group in the product
of the causal group for eigentime and the Lorentz group for general nontrivial
position dimension:

D(1) x SOy(1,1) C D(1) x SOy(1,5), s=12,....

The Cartan decomposition [5] (G = KAK) of the generalized Lorentz group
uses a maximal compact subgroup and a maximal noncompact abelian sub-
group:

S()()(].7 S) = SO(S) ] SO()(]., ]_) o SO(S)

As familiar from Cartan’s B and D-series, the orthogonal groups come in two
basically different types, those for odd and those for even dimensions. The
causal scalar functions and the defining tangent vector parametrizations with
I(z) = 9(x)9(z?) have the harmonic analysis with R'**-characters and an
advanced energy-momentum measure (¢ — i0)? = (go — i0)* — ¢*

1+2R ; .
19 (m> f |(§21+2R| (q—io) 2]1+R (llq) 6“11,
l+s=1+2R=1,3,...,
d2R 1 iqx
f 2R (g 10)2]R<72i‘1R >e )

(q—i0)?

l+s=2R=24,....

SO(1,s) : 9z ( )

The spherical degrees of freedom show up in the order of the pole and in the
normalization of the integration d***q with measures of the n-dimensional unit

27r 2
F( 1+n .

mensioned sphere QHS = Q28 i used in contrast to even dimensions 2R with
O2R=1 for the position degrees of freedom. The causal spacetime coefficients
with one invariant are

dl1+2Rg 1 iq iqx cosm|:c|
f |Ql+2R|[ (— Z0)2_,'_,”2]1“% 1 e 0(-1’) slnm\l\ )

m

1 .
f ‘Qd;;: 1‘[ q— io)2+m2]R (72?#1%)6’“12J 79(.%')( )'/Tj() ‘mx’

(g—i0)2+m?2

spheres |Q"] = : for odd spacetime dimensions 1 + 2R, the equally di-

The classes of even-dimensional Lorentz groups with respect to their max-
imal compact rotation groups constitute a hyperboloid Y?£-! (rotation rel-
ativity) as position manifold in causal spacetime manifolds with the causal
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group D(1) (“eigentime”). A causal manifold can be Lorentz compatibly pa-
rametrized by the open future cone of corresponding flat Poincaré spacetime
SO(1,2R — 1) X R?1:

D(1) x SOo(1,2R — 1)/SO(2R — 1) = DR — D(1) x Y2A-1
~ R = {z € R*® | z = J(2)z}.

Even-dimensional spacetime D?¥ with two continuous invariants for a Cartan
plane D? (real rank 2) is represented as the Fourier transformed product of two
energy-momentum distributions, one with a simple pole and the other with a
pole of order R =1,2

2R d2R 2q iqx
D i@ — ] T Ty +m21i[<q0zg>21—mo1e
d 2iqR(1
= f Q2R 1‘ fO dC (@—i0)2+Cm3+(1— g)m2]1+R€

. dZR 1 C)R 1
xf JQ2R-T1] fO dg[ (g— 20)2+Cm0+(1 Cm,Q]R6

The simple pole embeds the representations of time translations D(1) = R,
the order-R pole those of the Lorentz group SOg(1,2R — 1) for hyperbolic
position Y2#-1 = R2E-L (more below). Together with R — 1 discrete invariants
(imaginary rank) of the orthogonal group SO(2R — 1) for a Cartan torus
SO(2)%~! the acting group has rank 1+ R.

Unitary relativity D* = D(1) x Y* as the minimal nonabelian case with
three space dimensions s 3 has real rank 2 and imaginary rank 1. The
GL(R*)-invariant measure = w)z i has a dipole [4]. The D*-representation
coefficients with two invariants are:

GL(C)/UR) =R} 3 0@ — [ b rmrtbr o™
_ dq (g—i0)>—mg mg—m3
- —.T)f 272 (m2—m2)2 [IOg (q—io)2—mg + (q— zo)Q—m2
= 9(z)2 ) 3 mJo(Imoz))—mJo(Imez]) _ 7Jo(|mxz|)

o (mi-miP m3—m?

iqx

le

=
4

8.7 Time and Position
Subgroup Representations

A group representation represents all subgroups. The projections of repre-
sentations of unitary relativity GL(C?)/U(2), i.e., of causal spacetime D* =
D(1) x ¥* and D(1) x SOq(1,3), to those of the factors causal group for
eigentime and hyperbolic position lead respectively to representations for free
states und to interactions. Free particles are related to representations of
the causal group D(1) = R (translations), Lorentz compatibly embedded in
representations of causal spacetime D*, whereas interactions are related to
embedded representations of hyperbolic position }3, a symmetric space of the
Lorentz group SOq(1,3). In the future cone, the action of the causal group
D(1) may be called ‘hyperbolic hopping’, from hyperboloid to hyperboloid,
and the action of the dilative Lorentz group SOg(1, 1) ‘hyperbolic stretching’,
inside one hyperboloid.
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8.7.1 Projection to and Embedding of
Particles and Interactions

The representation coefficients of the acting product group for even-dimensio-
nal causal spacetime D*?, R =1,2,...

D(l) X yZR—l — fz)QR7

with D(1) @ R, Y?F~1 2> S0(1,2R —1)/SO(2R — 1) @ R*%-1
are the convolution product of a causally embedded coefficient dfnfé for the
Lorentz group SOg(1,2R — 1) with a bounded function |J(r)| < J(0) =1

and a Lorentz compatibly embedded Radon measure w,,2 for the causal group
(eigentime) D(1)

1
d* (x) 1 “(a—i0)2+m2]F
m k) d?Bq 2 ;
<2wm2<x> ) ~ (G | o@rdulimal) = f ot (i e
d 2iq

R
* W,,2(T — <ot
e * 2 () v [~(g=i0)?+m?]TFF

with the explicit form of the Radon distribution for N =0,1,...,

(2 )N (22) Fo(lma]) = $ RGN R 2y 4 (a2) (-2,

P P
4 k=—N

) To(|ma).

»A‘&

The pointwise multiplied harmonic components come with a pole of order R,
1 and R+ 1.

The Lorentz compatible (generalized) functions on causal spacetime can
be projected to (generalized) functions on time translations and on hyperbolic
position,

[z 9(x)p(z) for D(1),

for D ﬂ(m)u(x)%{ Jdzo O(x)pu(x) for YR,

The time projections by integration over position, i.e., for trivial momenta
q=0,

.z:-“’

2R—1|j2R—1,, 1
forD(1): [ & R%ldz: <IF(R( %) )ﬁ(x)w%(|mx|)

é 1 9 \R—1sinmag
dgo [ T=(q0—i0)2+m2]F 1q0T0 — F(R>(*am2) m
- f < IR — € - 19(3?0) 2 cos mxo

—(ao—i0)2+m?

contain in the lower component a positive-type function cos € L>*°(R), for
time translations with real invariants |qo| = £|m/|,

d 2% ;
D(l) > 19(370)170 — 219(1‘0) COS Mg QZEW@WOJCO
d \R d 2
= Wl () () D(a)nmal) = By s
which can be used for free particles as translation invariant ¢> = m? in a

Poincaré group representation. For R > 2, the upper component displays
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matrix elements of indefinite unitary faithful translation representations [3]
(halfinteger index spherical Bessel functions [13]),

(_ 82)R lsmma:o ( o) )R 2 sinmaxo— m:cocosmxo
om
.T

72 2m3
( )R 1€1nt t— |m|x0

The projections on the position hyperboloid with the SOq(1,2R — 1)-
coefficients by integration over time, i.e., for trivial energy gy = 0,

o4
e—Imlr
dzlel (@ ngﬂ)R e~iTE — ) 2l -
iq 4 _ ’
N 7o PR ) P ml (= ) 1 5

give, in the upper component, a positive-type function exp € L>*(Y*-1), for
hyperbolic position with an imaginary invariant |g] = %i|m|,

1
ﬂﬂy”1¢‘W@<ﬂmx%V§ﬂWWﬁﬂmﬂ)

2R—1 —~ = e~ Imlr _ [ d*E1g —igT
Yy > i’ 2] f |QQ§ 1| 4z+m yEE
d*Bq 1 i
— V(x)rTo(Imz]) = f ‘921? T [“(q— i0)2+m2]Requ-

The lower component involves generalized Yukawa forces (halfinteger index
hyperbolic Macdonald functions [13]), i.e., exponential forces e(x)e™™l for
Cartan spacetime R = 1 and Yukawa fOl“CEb proper £ z Hlm‘r e~ ™I for Minkowski
spacetime R = 2 Wlth the inverse invariant of the SOo(l 1)-representations as
characteristic range

\m\’
\m|T _ _
|m|x( )R 1( azz)R 1e = |m |3 ( )R 2( agﬂ)R 2 21";1‘7?126 |mr
= PR )

The harmonic components of cyclic representations of nonlinear 3-dimen-
sional position as hyperboloid }* 2 SOy(1, 3)/SO(3) are positive momentum
measures with dipoles R = 2. The Y3-functions arise as bound state wave
functions of the nonrelativistic hydrogen atom, e.g., the positive-type function
- ‘iZq @ Jlrl)2 €' as Schrodinger function for the ground state.
The imaginary eigenvalues in the dipole

r'—e

m for the representation

of hyperbolic position }? in unitary relativity D* cannot be used for transla-
tions. The mass ¢ = —m? for ¢2 = 0 characterizes an interaction, not a free
particle.

The projections of representations of Cartan spacetime D? on representa-

tions of the causal group D(1) and of position V! are

. . 2 '
time: RJr > ﬂ(t)t ? f f 2im[—(q— z?)) 2+m?] (q—iO)Z—mg e
mot myt
- izt
. . d 2 '
position: SOg(1,1) R > z+— f / Yin[—(q— z?)) 21m2] (q— w)q m2 et

—ﬁﬁ( )aV (I21).
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The position projection displays exponential interactions

=l | = | _ _
V(|Z|) _ e|,::|z e \TZ;(T 7 6?2|V(|Z|) —e mez| _ e \moz\.

Correspondingly, 4-dimensional spacetime with a dipole for the Lorentz
scalar future measure is projected to representation coefficients of time future
and of 3-dimensional hyperbolic position:

o 2q
time: Ry > 19( )t — f 8n2 f 2im?[—(q—i0)2+mZ]? (g—io)2—m3 et
_ 2 cosmgt cos Myt metsinmyt
19( >m0 m2 m3—m2 + 2m2 )’
.. . 3 2q iqr
position: YVoi— f f D] w)z+mz]z (aio)2—m2 ©

—Wraﬂ@U

There arise Yukawa and exponential interactions

Vi) = S = S = it (L fmg el
—Imolr _e—Im«| 2
‘/3(7,> _ %‘/1(7') _ e morre m|r + mﬁm:n‘ e \mn|r.

An exponential interaction is the 2-sphere spread of a 1-dimensional position
representation %e_’" = — 8‘22 (14r)e~" with an r-proportional contribution from
T

a dipole.
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9
SPECTRUM OF SPACETIME

In Wigner’s classification, linear spacetime and free particles originate from
one operational concept and its representations, from an affine subgroup with
Lorentz transformations acting on translations. Why the free particles have
the characteristic invariants, i.e., the observed masses m?, spins J, and, for
the additional internal U(1)-operations, charge numbers z, is not explained
by classifying the irreducible Hilbert representations of the Poincaré group.
The actual spectrum of matter (m? 2J,z) € R, x N x Z together with the
normalization of particles and the coupling constants of interactions has to
be understood by additional structures, e.g., by representations of a nonlinear
spacetime model.

The multilinear algebra structure of quantum operations involves typical
ensembles of representations (“towers of bound states”), which are products
of one basic representation, defining the relevant operation group. Charac-
teristic examples are the free states of translations, which are familiar from
the equidistant linear spectrum of the harmonic oscillator; representations
of time translations R = D(1); and the bound states of the nonrelativis-
tic hydrogen atom as representations of hyperbolic 3-dimensional position
V3 2 S0(1,3)/SO(3) = R? with the inverse squared energy spectrum.

A pointwise product of positive-type functions d € L>*(G), of a real Lie
group is a positive-type function for the product representation,

dy - da(g) = (a1]D1(g)|ar)(az| D2(g)laz) = (a1, a2l D1 ® Dy(g)lay, az).

For the harmonic components, one has to use the convolution d; * ds.

The characters (representation classes, dual group) as eigenvalues of the
additive group R%—energies for time translations R and momenta for position
translations R®—give rise to convolution algebras of the corresponding dis-
tributions (functions, measures). Nonlinear spacetime D(2) = GL(C?)/U(2)
as a homogeneous space of the extended Lorentz group GL(C?) with tan-
gent Minkowski translations € R* can be represented by residues of Fourier
transformed energy-momentum ¢ € R* functions (chapter “Residual Space-
time Representations”). The representation-characterizing invariants arise as
poles in the complex energy and momentum plane.

Product representations come with the product of representation coeffi-
cients, i.e., in a residual formulation with the convolution * of (energy—)mo-

299
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mentum distributions. The convolution itself picks up a residue,

* ~ 6(q1 + g2 — q) ~ T€Sq, 4 gp=g-

The convolution adds (energy—)momenta of singularity manifolds as imaginary
and real eigenvalues for compact and noncompact representation invariants.
The Radon (energy—)momentum measures are a convolution algebra, which
reflects the pointwise multiplication property of the essentially bounded func-
tion classes:

M(R™) x+ M(R") € M(R™), L*(R")- L®(R") C L=(R").

In the Feynman integrals of special relativistic quantum field theory as con-
volutions of energy—momentum distributions, the on-shell parts for translation
representations give product representation coefficients of the Poincaré group,
i.e., energy—momentum distributions for free states (multiparticle measures,
below). The off-shell interaction contributions are not convolutable. This is
the origin of the “divergence” problem in quantum field theories with inter-
actions. With respect to Poincaré group representations, the convolution of
Feynman propagators makes no sense.

In this chapter the convolution structure of time, position, and spacetime
representations is considered. In the end an attempt is made to determine,
from eigenvalue equations, the spectrum of spacetime D(2) = R} = D(1) x )?,
i.e., invariant masses and normalizations of energy-momentum poles for the re-
presentations of the causal group, Lorentz compatibly embedded into nonlinear
Minkowski spacetime. Perhaps one can characterize this as an attempt to
find a Lorentz compatible solution of the bound state problem in a potential
V3(r) with exponential and Yukawa contributions which has been given above
(chapter “Residual Spacetime Representations”) as the projection of the repre-
sentation of nonlinear spacetime to representations of hyperbolic 3-position.

Only some illustrations of an explicit calculation are given for the deter-
mination of the particle properties as spectrum of a homogeneous spacetime
model. If the proposal for the solution of such a difficult problem really goes
in the right direction, both the qualitative foundations and the concrete real-
ization require more work.

9.1 Convolutions for Abelian Groups

Product representations of translations R™ with sum and difference of the
energy—momentum invariants arise as the pointwise product of positive-type
functions L>°(R™), or the convolution of positive energy-momentum Radon
measures M (R") .

The simplest case is given for 1-dimensional translations, e.g., for time
translations ¢ € R with an addition of the energy invariants in the irreducible
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and self-dual representation,

eimit . gimat  _ gimyt,
Co(R)+ - Co(R)+ = Co(R)+ 2cosmqt - 2cosmot = 2cosmyt+ 2cosm_t
with m4 = mq £ mo,
) ) ) (g —ma) *6(q —ma) = d(q —my)
M(R); * M(R) = M(R); { 2|q|d(¢* — m3)  2(q|0(q* — m3)
= 2|q|0(¢> — m%) +2|q|d(¢* — m?).

9.1.1 Convolutions with Linear Invariants

The residual product for the two causal function algebras, conjugate and or-
thogonal to each other, and the Dirac convolution algebra is summarized with
the residually normalized representation functions and the integration con-
tours:

[ causal time D(1) and energies R |

T )
19( th -+ f qt (*,9) = (£57=,49 F i0) causal, orthogonal
2 q¥zo me - 11
g—my g—mp — g—my
0(g —ma) * 6(q — m2) = 6(g — m4)

The normalization factor for the residual product is the 1-sphere measure as
used in the residue,

f;g =res, 5 = |Q—11‘6(q1+qQ —q).

There is the more general convolution

F(1+V1) i F(1+ll2) _ F(1+I/1+l/2)
(g=m)1 7 (g—m2)TTr2 T [g-my])ttritrzy

which generalizes the integer-power derivatives (-2 B )N for nontrivial nildimen-
sions N =1,2,... to real powers v € R wherever the I'-functions are defined.

9.1.2 Convolutions with Self-Dual Invariants
The causal distributions with compact dual invariants

L
im (qFio)2—m?

= |m|6(¢> —m?) £ L =41

iTqp —m2

] T

2 ( q:Fw q$w+\m| )

keep the property of constituting orthogonal convolution algebras, conjugate
to each other:

[ causal time D(1) and energies R \

iqt (i, %) = (£5= 5= (g F i0)?) causal, orthogonal

2q 1 2 _ 2q 2q
3,2 % 3 3= 3 = 1+ 33
q ml q m2 q 'm+ q m”

V(£t)2cosmt = £ f

q$w (qrio)Z—m2 €
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Since the Feynman energy distributions combine advanced and retarded
distributions,

1__|m 2 _ o 2y4 1 ml 1, 1 1
:l:’L‘ﬂ'QQZFiOme _‘m‘é(q m)iiﬂqgfmz7j:2i7'r(q:|:io—\m\ qiio+\m\)’

they constitute convolution algebras, conjugate to each other, however not
orthogonal, etilmitl . g=ilmatl o (),

| bicone time Ry WR_ and energies R |

) 1
eiz\mt\ + f _Am[ e et | (x,¢%) = (£5=,4* T i0o) Feynman, not orthogonal
im g*Fio—m 2jma| 1 2Ima| _ 2my]

The faithful Hilbert representations of Y' & SOg(1,1) & R (1-dimensional
abelian position) with Fourier transformed 2'-measures and noncompact dual
invariants constitute a convolution algebra,

[ position YT and “momenta” R |

. 1
e—lmzl — [da_Iml  —igz Q' =27m, % = X ‘
p q2+m2 . 27
2lmy| L 2[ma| _ 2Im4]
PimI ¥ PimI = @il

9.2 Convolutions for Position Representations

Residual representations of Euclidean, spherical, and hyperbolic spaces are
characterized by singularity spheres with real momenta (imaginary eigenval-
ues) for scattering structures and imaginary “momenta” (real eigenvalues) for
bound structures. The convolution of the related “momentum” functions re-
flect pointwise multiplications of Bessel, Neumann, and Macdonald functions,

s - Ts—2(r)
d%q 0(q* = e = (ﬁ)‘iz ) Euclidean,
)y 2
2
4’q i gz _ iwH ) w M=) .
f (@ wa 1)§)v - ( o T spherical,
dg LGV —igz Kulr) _
(@+1)3 " = (g) hyperbolic.

9.2.1 Convolutions for Euclidean Scattering

Interaction-free product structures convolute Dirac distributions for cyclic trans-
lation representations. In contrast to the convolution of Dirac distributions for
self-dual invariants with basic spherically self-dual 2-dimensional representa-
tions,
abelian R: 2P 6(q® — P?) x 2P0(q* — P})
=2P_6(¢* — P?) +2P.6(¢* — P?)
with P1,2>0, Pi:‘PlilZP2|,

the convolution of Dirac distributions for the infinite-dimensional representa-
tions of the Euclidean groups, s > 2, with the sphere radii as momentum
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invariants ¢2 = P? > 0 leads to position translation representations with the
momentum sphere radii between the invariants, P? < ¢% < P7,

SO(s) xR*: 6(q® — P?)
§=2,3,....

5(7% — P2) = 19292 — @2)9(¢ — P?).

_x
202 lal

The convolution product is normalized with the (s — 2)-sphere. There arises
a momentum-dependent normalization factor |@|, which contains the charac-
teristic two-particle convolution function,

A2
It is symmetric in the three invariants involved:
Ala,b,c) = a* +b* + * — 2(ab+ ac+ be) = (a + b — ¢)* — 4ab.

The minimal cases s = 2,3 are characteristic for even- and odd-dimensional
position, for scattering representations in three dimensions:

Cb(R3)+ . Cb(RS)+ — Cb(Rs)—t- . sianlr X SianT _ cosP.g;;osP+r’
MR, « MR, = M(R?); 3 — P?) £ o(¢ — PY)
= L(PES )0 - )

The square of a representation is a normalized positive-type function,

(SPry = desabr - 5(g2 — P) = 8(q — P?) = 0P — 3.

Tl

x
4m

9.2.2 Convolutions for Hyperboloids

Cyclic representations of the general Lorentz group SOg(1,2R — 1) for the
hyperboloid Y?£~1 = SO (1,2R — 1)/SO(2R — 1) with real rank 1 and non-
compact invariant ¢2 = —m? < 0 are characterized by continuous functions of
positive type Cp(V?#71), C LY,

d?flg  2m| o —igE _ —|mr

2R—1 2R—-1 7
N =R ST f [PF1] (@1m2)EC

Nontrivial properties for the maximal compact group, the rotations SO(2R —
1), R > 2, arise by derivations a% ~ —iq. These Lorentz group represen-
tations start from the characteristic hyperbolic exponentials for the maximal

noncompact abelian subgroup with imaginary singularities ¢ = +im,

SOy(1,1) 2R3z +—— [ % qzlﬂlﬁ_iqm = e~ Imal,
The representations are faithful and cyclic, but not irreducible. They are
square integrable and not Schur-orthogonal for different invariants m? # ma3.
Product representations e~ ™" . e=lm2lr — e=Im+l" conyolute the positive
momentum measures. The measure of the associated compact unit sphere
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0281 s used for the residual normalization (more on the normalization be-

low). The representations of 3-dimensional hyperbolic position }* use the
Fourier transformed 23-measure, familiar from the nonrelativistic hydrogen
Schrodinger functions. The radii of the “momentum” spheres as invariants are
added up in the convolution

position V3 = S0y(1,3)/SO(3)
and “momenta” R? with SO(3)

3 PRI

—|mlr _ [ d*¢___|m] —igT ; 3

el = [ e @ =2n?, 1 =%
3] ;”; 2mal  _ _ 2lme]
(@+m)2 ~ (@P+m3)? — (@+mi)?

In general, the representations of odd-dimensional hyperboloids Y~1 come
with Fourier transformed Q2% !-measures and imaginary singularity sphere
O28-2 for the “momentum” eigenvalues. The sphere measures can be obtained
by invariant momentum derivatives

(=) s = T(R) e, R=1,2,....

GhE Zimz

Product representations arise by the convolution with the sphere volume as
residual normalization

67\m|r d?F-1q _ 2|m| e*id‘f
[QzF1] 1| @rmE .

position Y?F-1~80(1,2R—-1)/SO(2R—-1), R=1,2,...
and “momenta” R2%~1 with SO(2R — 1)
on R 2R—1 «

2R—-1 _
2 ‘ T(R)’ * = PRI

DLy _2lmi] 2B-1 .o 2lma| (0 yLi4+Ly__2mal

(aq') 1 @+mhF ( ) PrmHE (gq-) (@+m? )R

for L=0,1,...

The convolution may involve tensor products for SO(2R — 1)-representations.
In general, nontrivial O(t,s)-properties are effected by the convolution-
compatible (energy—)momentum derivatives

8%1229@%% ®q 1t+9+q®q262,
aq®aq = (Lis +q® q 25 )28%2, L

which, acting on multipoles, raise the pole order,

_o_ IR _ 29 T(1+R)
9 (P+p)F T (¢P+p?) T

9.2.3 Convolutions for Spheres

The representations of odd-dimensional spheres use a singularity sphere Q2%-2

with real momentum eigenvalues in the convolutions

+ilm|r _ d2f—1q 2|m| —iqE
€ :l:f i|Q2R— 1\ G2 Fio— m2)R6 .

sphere Q?F—1 >~ SO(2R)/SORR—-1), R=1,2,.
and momenta R2~1 with SO(2R — 1)

2R—1

|Q2R-1] = F(R'), Tx P == m,q F i0) not orthogonal ‘
9 2lmq| 2R-1 9 2lma|  _ 8 NLy1+L 2|my |
(G Gt 5 () e = (G AL

for L=0,1,...




9.3. CONVOLUTION OF SINGULARITY HYPERBOLOIDS 305

9.2.4 Residual Normalization

Above, the abelian convolutions * 2 §(q; 4+ g2 —¢q) of the R"-Lebesgue measures
d™q of energies and momenta are “rationalized” with respect to the product
representations of a noncompact Cartan line in such a way that the compact
spherical degrees do not show up (no 7’s). The normalization results from
spheres in the definition of higher-dimensional residues with a characteristic
difference for odd- and even-dimensional spaces.

Since the convolution with a Dirac distribution amounts to a residue f(q) =
Jdpé(p—q)flp) = iﬁ’r i p;, the convolution normalization for the time re-
presentation coefficients is given by the normalization of the residue for the
irreducible D(1)-representation coefficient with real pole ¢ = m

~1 . iqro imxo.
D': ;= from [42 o €10 = (o)

27 is the length of the circle Q! = U(1), the compact representation image of
D(1). It normalizes the energy Plancherel measure 22 for the time translation
Haar measure dt.

The convolution normalization for SOg(1, 1) is determined by the residual
normalization in the faithful cyclic representation coefficient whose self-duality
causes the factor 2 for the two imaginary poles ¢ = +i|m)|,

AR 7= from f% qilr”;;llze’iqm = e~ Imal,
In general for odd-dimensional hyperboloids, the residual normalization of the
rotation scalar functions of positive type uses the measures of the compact
partner spheres,

= 2R—1 2R—1 -
2R—1 . — d*"lq _ 2im|  —igE _ -
y : * = e from J Tl e iqT — o=Imir,
The momentum eigenvalues lie on a sphere {7 € R?#1 | @ = —m?} = 0282,

For the nonabelian case R > 2, the sphere normahzatlon |9211? = F(R differs

from the “flat” normalization Iﬂl\ZR*I = L for self-dually represented

translations R?#~1 — SO(2)2#-1,

(2m)

9.3 Convolution of Singularity Hyperboloids

The convolution via the integration prescription [ d4q,d?q26(q1+g2—q) involves
the Dirac distribution for the linear combination of real (energy—)momenta.
This does not determine completely the complex integration contour for dis-
tributions with squared invariants in more than 1 dimension (singularity sur-
faces),

O(t,s), t+s>2: qeR™ ¢FZ-—m?>=0, m*eR.
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(energy—)momenta eigenvalues {¢ € R?| ¢*> — m? = 0} constitute, for the
nontrivial case, a 1-dimensional invariant manifold, either a circle Q' or a two-
branch hyperbola Y} W Y and R W R. This is in contrast to dual invariants,
where the 0-dimensional invariance manifold {¢g € R | ¢* — m? = 0} consists
of discrete points.

The convolution can be performed by joining (interpolating) first the invari-
ant-determining denominator polynomials of the (energy—)momentum distri-
butions where the singularity orders are added,

Pv1)-T(vg) _ 1 1 Vl 1“{”19* L1+t
W = fo dé - "fo dCro(Cr+ -+ G — ) e k+<kRk)1Vl+ s
l/jER, I/j#o,*l,*,...,
e.g., for the fundamental distribution for nonlinear spacetime with two contin-

uous real invariants

2 . ¢R-1
T = i d 4 o o

The product of two distributions with real invariants m? € R,

F(1+V1)
—m

14 (M GPT (24 v trs)
X @t = by 4020(G + G = Vi g
can be written with center of mass (energy—)momentum ¢ and relative
(energy—)momentum p,

@1 +q =g,
G+ 63 = (p+ 9529)? + (1Gg® with O —q =2p,
dlqidiqy = diq d%p.

For two equal-type Feynman distributions m the product inherits this
Feynman type both for the center of mass and the relative (energy—)momentum
distributions,

q? 4 io with ¢3 +io = (1¢3 + (g3 + io.

That is different for two equal type causal distributions — Wwith

1
(qFio)>—

(g Fi0)? = (qo — 10)* — @, for SO(1,s) and positive invariants m? > 0:
The product gives an equal-type causal distribution for center of mass energy—
momenta ¢, but with an indefinite (; —(; = 2¢; —1 € [—1, 1], both an advanced

and a retarded distribution for the relative energy—momenta p,

. G1at + G265 £ 2i0(Crq) + C2q3)
+i0)? = e . .
(41,2 ) { =(p+ 741242 q)? £ 2i0€e(¢1 — G)p° + GG £ iog”.

For a complete definition of the convolution of causal distributions the pre-
scription (g1 + g2 — q) for the real part is supplemented by the prescription
to use, for the imaginary part, the equal-type causal distribution also for the
relative energy—momenta.



9.4. CONVOLUTIONS FOR SPACETIME 307

Summarizing: The convolution for O(t, s)-distributions on R ¢t +s > 2,
for two equal-type distributions with real invariants is defined to yield the same
distribution type:

I(1411) T(1+4v2)

= (! d 12T (2411 4v2)
(gi—mi)t * (3—m3)1F72 = fO dC1,25(Cl Sk 1) fd p(P2+ClC21(12f41m2+C2m§)2+"1+”2

o d 1 RT3 v +)
=572 [ d(i90(G 4+ G —1 12~ 2 =
Jo dCi20(Ci+ G )(414242+<1m;+<2mg)ir’”"ﬁvz’

with equal type Q% +io, Q> —io, (Q —i0)?, (Q +i0)?,
for all Q € {Q17qQ7Q7p}'

Advanced and retarded measures for the orthochronous group SOg(1, s)
are convolution-orthogonal to each other. This is in contrast to the conjugated
Feynman measures

O(t,s), t>1, m>>0: (Fpe, Fr,) = £ 5t = §,2 £ P2,

m2 i q2Fio—m?

which in general are not convolution-orthogonal to each other. ;From their
individual convolution,

F o 2%xF > .
<F*; *F*; — 61*2 :l: ZP1*2,
my m3
one obtains the Dirac and principal value contribution

1 % * _
O = 5(Fnz x Froz + me * Fm§> = 02 * Oy — Pz % P,

_ 1 . * * _ . . P
Pro = E(me * Fmg - Fm% * Fmg) - 6mf * Pmé + me * (5m§'

9.4 Convolutions for Spacetime

Residual spacetime representations are characterized by energy—momentum
singularity hyperboloids.

The convolution of energy-momentum Feynman distributions for (d =
1 + s)-dimensional spacetime reflects pointwise multiplications of Hankel and
Macdonald functions

N
evTr(d—y : I(—22)2K,, (|z|)+9(x? iTFHCU T .
diq PG igr _ 927)2K0( I):rlu( JimH -, (=) +511/\727TZ(Nik)!5(k71)(_§).

d d
isr¥ (qP—io—1)37Y I3
(¢ ) 1

The on-shell Dirac distribution (real part) with the Neumann functions gives
coefficents of Poincaré group representations:

d . I(—2%)2K g9 (|2])=9(@*)7N_ 4o (|2])
[ -5 6(¢* — 1)l = =z =
2 Ehea

Particle propagators have poles, for even-dimensional spacetimes SOy (1, 2R —
1) X R?" (Cartan, Minkowski, ... for 2R =2,4,...),

e (2 )R’lw(fﬁ)moqx\) +9(2?)irHy) (|2))).

it q%2—io—1
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Feynman integrals in perturbation theory involve convolutions of energy-
momentum distributions for pointwise products of spacetime distributions. In
general, they do not make sense since &'(R%) is not a convolution algebra. For
Minkowski spacetime, there arise undefined products (“divergences”) of gen-
eralized functions from the energy—momentum principal value for the causally

(2?) +

[6(¢° = m}) + 5 ] 10(¢° = m3) + 5 2]

i g —m? iT qp—m3

S S R e S COR]

supported off-shell par

The convolution of energy-momentum distributions adds the spacetime
translation eigenvalues to the eigenvalue ¢ of the product representation, e.g.,
for scalar multipole distributions

1 D(14nq) coox L (1+”k)
i (q2$z‘o—m%)1+”1 i (g2 Fio—m )H"k
k
S S F(1+
= (ﬁ:#)k fd1+ d1+ qk5 qu — q W.

j=1

The convoluted distributions have to be all of the same type, either all Feynman
q? —io or all anti-Feynman ¢? + io.

Two distributions in Cartan spacetime have the product

for R? : :I:l(q;;gl% 11%

%) i
fo dCl 26 Cl + (o — 1) 112 T (241 1)

i [p :on+<1<2q —CimE—(omZ Pt

The convolution is the residue with respect to the relative energy—momentum
p = 452 dependence,

2. dgl I'(24v) _ I'(14v)
for R*: &+ i (p?Fiot+a)2tY T (Fiota)ltv”

The result depends on the center of mass energy—momentum g = ¢; + go:

2. 1 I'(1+v1) 1 T'(1+v2)
for R : j: (q%2Fio— m2)1+”1 * im (q2Fio—m32)1tv2

f dC C”l(lfc)'/QF(l‘FVl‘H/z)
0 =0 g™Fio)— cmi— (- QmaF71 772

Here and in the following the convolutions exist only for pole orders where the
involved I'-functions are defined. Elsewhere, there arise “divergences.”

The convolution of two energy—momentum distributions in Minkowski space-
time,

4. 1 D(2+1) 1 T(24v2)
for R® : ¢ﬁm ﬂ?Wl 1
GG N (At )
fO dCl 25 Cl + CQ - 1) “1.2 [p2$ZO+C1Czq 7C1m1 sz2]4+ul+u27

leads with .
d I'(34+v I'(1+v
for R*: F m—g(p2¢§oia))3+y = (q:i(EJrZ)l)Jru
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to the same characteristic integral as for Cartan spacetime:

4. 1 T@+n) 1 ['(24v2)
for R* : T (q2Fio— m2)2+"1 +ie (q2Fio—m32)%tv2

_ CH”l(l O 2T (24v1+v9)
= Tz Jo W ettt

9.4.1 Convolutions for Free Particles

The Fourier transformed principal part of a Feynman distribution for an or-
thochronous group SOg(1,s) can be written as an order function times an
on-shell part:

Ojm|+0—m|
Omz = 2
1 1 - . ;
Finz = ;- iz = Om2 + P2 : Pz ~ie(zo)€me,
Olm| =0 |m|
€2 =
m 2 .

In the principal value convolution contribution of two Feynman propagators
for spacetime R the order function drops out €(z)? = 1:

mi) = V(+qo)d(¢* — m3)
+ 9(=00)3(q> — m3) * (—q0)o(g* — m3)|
£ L[0lg? —mi) « gl gk +0(a — ).

(e P —my dp— 2

S I WS B —2[ 9(4+q0)5 (¢

im g2 Fio— m i g2 :on m

The principal value square is also an on-shell convolution only. The convolu-
tion of translation representation coefficients from the real part of the propaga-
tor (free particles) gives corresponding coefficients for product representations
(product of free particles):

Oo = %(me * Pz + F;L% * F;%) = 02 * Oppg — P2 # P

— Oy 1*0mg | F0— |y [*0—jmy|

= 6mf * 5mé + emf * emg 2

The set with all (1+s)-dimensional “filled up” forward (backward) energy—
momentum hyperboloids is an additive cone. Therefore, the distributions sup-
ported by positive and negative energy-momentum are convolution algebras,
however, not orthogonal to each other:

{g = I} +{q = [mal} = {q = Im[}
With G| ~ 2|m|9(£q)d(q? — m?) € D'(RLY*) € aag . (convolution product).

The convolution for abelian time with self-dual invariants miQ >0,

abelian R :  |mq|9(%q0)d(q* — m?) x |m2|19(:|:q0)5(q2 —m3)
= |my |[0(%4q0)d(qg —m3),

is embedded into the convolution of nonabelian hyperboloids for product rep-
resentations of the translations (the real part 1.0 for simple pole Feynman
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propagators). With the hyberboloid “radii” as energy—momentum invariants
2 2
¢ =m">0,

SO(1,s) XR™ . 9(£q)6(¢> —m?) T I(Fq0)d(q* — m3)

— |Q‘|;’219(:|:qo)19(q2 —m2), s=1,23,...,

they involve the two-particle threshold factor

Q* =5 D) = Al mi,md) = (¢ = m)(@ = m2).

For nontrivial position, the convolution (phase space integral) of s-dimensional
on-shell hyperboloids (particle measures) does not lead to s-dimensional on-
shell hyperboloids 6(¢*> — m?2). It leads to translation representations with
energy-momenta over the free particle threshold at the mass sum ¢* > m?,
Le., ¢ = ¢ —m?% >0, with my = |my| & |mo|. Here, the energy is enough to
produce two free particles with masses m; o and momentum (q; + ¢»)* > 0.

The minimal cases s = 1, 2 are characteristic for even- and odd-dimensional
spacetime. The Poincaré group SOy(1,3) X R* is the minimal case with rota-
tions:

M(R4)+ * M<R4)+ = M(R4>+ : 0(qo)d(q> — mi) ye ¥(q0)d(g* — m3)

2_m2 V(a2 —m2
=/ W(g0)d(gE - m2)

form? =m2=m?: = qzj]fﬁmg I(qo)I(q* — 4m?).

Such convolutions arise, e.g., as the nondivergent on-shell contribution in the
quantum electrodynamical vacuum polarization by electron-positron pairs.

9.4.2 Off-Shell Convolution Contributions

Energy-momentum convolutions combine the points on the hyperbolic-spherical
singularity surfaces for particle-interaction structures, determined by the in-
variants. The characteristic new feature is the on-shell off-shell convolution,
i.e., of compact with noncompact invariants. The convolution contribution in
the mixed terms is not for product representations of the spacetime transla-
tions,

_ 1 _ I * _
Pl = 2l(Fm% * Fm% me * Fmg) = 5m% * Pm% + Pm% * (5m§

The divergences in Minkowski space arise from the mixed terms (mathemati-
cally meaningless),

R4
0(q* —mi) * e ~ r - 0(a®) +

Only for trivial position does the principal value part also add the invariant

poles,

- 6 m *5 m 75— m *6— me
s=0: P1*2N2€(t)|1‘ \2|2|1| |2|NPmi'
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The characteristic effect of a convolution of noncompact with compact invari-
ant comes in the principal value part for nontrivial position degrees of freedom:
o(g* —m?) ~  I(g® —m?),
Le o~ U@ -m?) + d(=¢+m?)

qp—m?
U U
compact (free) + noncompact.
imt —|mz|
e e

The denominator polynomial in the convolution square above has two energy-
momentum-dependent zeros,

—P(¢) = C(1 = ¢)¢* = ¢mi — (1 = O)mj = =¢*[C = G (¢*)][¢ — Galg?)],
Ci2(q®) = P /A

= %

with my = |my| £ |mal,

which are either both real or complex conjugate to each other according to the
sign of the discriminant A(g?) (two-particle threshold factor):

WA(?) = I(¢* —m3) +9(m> —¢*),
I(=Alg?) = H(m?2 — ¢2)id(g? —m2).

Furthermore, real zeros, in the case of A(q?) > 0, are in the integration (-
interval [0,1] only for energy—momenta over the threshold ¥(¢* — m?),

Ga(m?) =t € (0.1,

Cl,2<m3) = |m:\|il|i,LQ| ¢ [0,1],

and graphically

A(g?) >0 A(?) <0 A(g®) 20
R 3 (1,2(¢%) ¢ 0,1] G(g?) =C(@®) ¢R Cr2(q?) €[0,1]
° ° — ¢ —_— q2
0 m? m2

Therefore, the convolution of two energy—momentum pole distributions con-
tains as relevant contribution

1 1
fo dg ¢(1-0)(g®Fio)—CmF—(1-{)m3

= Jo 4 | ctmamciragm £ (1 = O = (md — (1= Om3)|

INGR] m3 —m’ =(¢*)

- [ﬁ(A(qQ))log‘Z(qQ);Qvﬁ(qz) +9(—A(g?) arctan 2V 50 W)]

2im 2 .2
A(qQ)ﬁ(q m+)

v}

with A(¢®) = (¢? = mi)(¢? —m?), B(¢*) = (¢* —m3) + (¢ —m?).
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The convolution product depends on the two variables {¢* — m2,¢* — m2}.
The spacetime original convolution of compact with noncompact invariants
shows up for energy-momenta under the threshold ¥(m? — ¢?), illustrated in
one more example:

1 2 ;2 .
Iy ¢ i = q%[log|qm2 | £imd(q* —m?)|.

In the convolution of distributions of odd-dimensional spaces, e.g., for en-
ergy q € R, the integral compensates the m?-pole from the discriminant,

for R: —ml g2y Imel - — 1y fmame|
orR: e R e = X S e emira o
— __m4]
- qQZFiofma_
. 1 _ 4 d? P(¢)
with 257 = ~wmnee @

9.4.3 Residual Products for Spacetime

The convolution product for even-dimensional causal spacetimes D*? = D(1) x
V-1 with real rank 2 involves convolutions for the causal group (eigen-
time) D(1) = R and for the Lorentz group for hyperbolic position }2?#-1 =
SOy(1,2R —1)/SO(2R — 1).

The convolutions of Cartan energy-momentum pole distributions are

spacetime D? = D(1) x YT
with SO¢(1,1), |Q' =27

2 5 [ (F3=,(@TFi0)?), causal, orthogonal
(*7(1 )— (¥ *
2

7o q? Fio), Feynman, not orthogonal

1 1 = [ldc 1
—g?2+m? ~ —g2+mZ — J0 "> —¢((1-0)q?+¢mI+(1-¢)mZ

The different factor 2 for Feynman and causal measures originates from the
different residual structure in the complex plane: for causal measures both
poles are in the same half plane, for Feynman measures one in the upper and
one in the lower half plane.

In contrast to the factors for time and position, both odd-dimensional with
real rank 1, the convolutions for minimal 2-dimensional Cartan spacetime with
rank 2 do not produce invariant pole singularities (0-dimensional) for product
representations. The residual products of even-dimensional spaces display pole
distributions only before the finite (-integration over an invariant line singu-
larity (1-dimensional). The pole distributions can be written with spectral
functions, e.g., for one vanishing mass,

1 1 __ [o° dM? 1
fo dg —(q2+m2 fm2 M2 —¢2+M2
fl dC —C _ foo dM? M?2—m? 1
0 —(Z+m?  — Jm2 MZ M2  —g2+M2?*
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After (-integration, there arise logarithms and no energy—momentum poles.
The logarithm is typical for a finite integration [1], e.g., for a function holo-
morphic on the integration curve (where defined):

=g { fﬁoo dz f(z)
=0T e dz f(2)

—2_res[f(z)log(z — B)],
2imy resf(z),

J5 dz f(z) = Yores[f(2)

with the sum of all residues in the closed complex plane, cut along the inte-
gration curve, here,

2
1 log(1—-15)
fo qu2+m Zres[ 2+ 2 log C ] == qf )
(177 ) log(1— L) -1
f ¢ 7<q +m =Y res—r>— Cq +m2 log — s m2

In the second case there is a nontrivial residue at the holomorphic point { = co.
The corresponding structures for Minkowski spacetime as minimal case
with nontrivial rotation degrees of freedom are as follows:

spacetime D* = D(2) = D(1) x I3
with SO¢(1,3), |Q%] = 2n2

4 5 (:FW7 (¢ Fi0)?), causal, orthogonal
(0% = (Ij,q :F i0), Feynman, not orthogonal
9 1 4 2 — _0_ [1 d¢ 1 .
997 —q2+m7 Era ﬁf 892 JO "> —¢(1-0)q2+(mi+(1-()m3
_ 1 4 _ 1 ca=¢
T et <fqz+m§)2 = Jo L 0P+ e+ a=0m3P

In general, one obtains the even-dimensional spacetime D?¥ distributions
of energy—momenta by relativistically compatible 2-sphere spread. Measures
for higher-dimensional spacetimes are obtained by derivation of order R — 1,
the rank of the maximal compact group SO(2R — 1),

R=1,2,...: (5%)F!

1 _ 1
I'(R) \ 0¢? —q2+m? T (—¢2+m?2)i

with the convolution

spacetime D2 = D(1) x Y?E-1 R=1,2,...

with SOo(1,2R — 1), [Q2E- 1| = :)

(25 2y (¥1‘92R 1I ,(qFi0)?), causal, orthogonal
)= (jFW’ g¢* Fio), Feynman, not orthogonal

oL, 1 2R 9.4p _ (ONLi+Ls 1 [ 0 \R—1 1 1
)" Trmnr * 6" Carmpr = @) w62 o K i gerentra—am?

With the remaining finite 1-dimensional integration fol d¢, the residual nor-
malization for even-dimensional spacetime D?*f with a Cartan plane uses the
volume of the odd-dimensional unit sphere Q2! the compact partner of the
embedded position hyperboloid Y2#-1

2R 2R .
¥ = — ey from / |32321| [_(q_i0)12+m2]Re7lqz = J(x)nTo(Jmx]).
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Coefficients of nontrivial representations of the Lorentz group SOg(1, 2R —

1) are effected by energy—momentum derivatives <3%)L ,L=1,2,..., with the

examples, wherever the I'-functions are defined for v € R,

I'(R (R

S iy g = () ()
f dC CR 1+V1(1 C R 1+V2F(R+l/1+l/z)

= Jo S a0 remiAA—OmI Fratez 0

T R * I'(R
by o = 2() ()

o ¢RAv(1-O) B2 (14 R4v1 +10)
2q fO dC 1 C 2+Cm?+(1 C) 2]1+1R+31+u2a

2q I'(1+R * 2q I'(1+R+v
Cremt T T e 28®m 7)o, ) (42).

The convolution of Feynman propagators in 4-dimensional flat spacetime

R =2 eg, w——— % ———— as arising in perturbation expansions for

q“+io—m7 q“+i0—m3

flat spacetime quantum field theories, is not defined. This shows up in the

singularities of the I'-functions. The divergent parts qu 7 ¥ o L and
P~ P2

5(q* —m?) * ﬁ involve the off-shell interaction contribution. They are not
P 2

coefficients of translation product representations like the meaningful on-shell
convolution above 6(¢? —m?) * §(qg*> —m3).

9.5 Tangent Structures for Spacetime

The dual of a Lie algebra L = log G = R", i.e., its linear forms L?, is easier
accessible than the group dual G, which in general is no group, but, e.g., a cone
or a direct sum of cones. LT contains all eigenvalues of the Lie algebra action.
Multilinear forms of the eigenvalues give the invariants that characterize the
group dual. The Lie group acts on itself G x G — G by left and right
multiplication, on its Lie algebra G x L — L, and on the linear forms G x
LT — L7 by adoint and coadjoint action respectively.

9.5.1 Differential Operators and Lie Algebra Kernels

In a representation framework, bound state vectors (particles) and interactions
have a close connection, expressible with the transition from Lie group repre-
sentation coefficients, by derivation, to those of Lie algebra representations.
This derivative transition is illustrated for 3-dimensional position, where a
third-order derivative of the ground state wave function & —— e™" of the
nonrelativistic hydrogen atom, a positive-type L>(R?)-function, leads via the
Yukawa potential to the Yukawa force,
Lo = &5 = e

As will be discussed below, it is group—theoretically interpretable that the
pointwise product % -e~™" of the Coulomb potential with a bound state wave
function gives a Yukawa potential.
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The invariant differential operators [5] of functions on a group L*(G) =
LY(G) and on its symmetric spaces G/H are related to the center of the
enveloping algebra for the Lie algebra logG. For semisimple Lie groups the
Killing form related Laplace-Beltrami operator with its eigenfunctions and
eigendistributions plays the essential role.

The “inverses” of invariant derivatives D with respect to the Dirac distribu-
tion Dy~! = §y define fundamental kernels y~!, familiar from Green functions
(distributions) of differential equations of motion [7]. The image of group func-
tions d € G under the linear transformation ~v~1.d with a fundamental kernel
gives the associated G-module with the Lie algebra kernels, denoted by log G,
and called, for physics, G-induced interactions

v e M(G), L®(G)2G —logG =~""-G C M(G).

It is a submodule of the Radon distribution M(G) - L>(G) € M(G) with the
convolution and pointwise product for functions and Fourier transforms in the
parametrization by tangent translations

[+ [[logG[d] . [~ sG] ¢ ] . s
logG [[logG [ G | g logG [[ = [logG | , logg = - g
g g -] G |[lgG [ G
1 Fourier I
[ Twed o] . [ Iw=el ] S
logG [[logG [ G | g logG [ — [logG | , logG=7""%G
g G [-] G [logG| ¢
from group product for product representations

For time, position, and spacetime the “inverse derivative” distributions
have poles at the trivial invariant and the Fourier transforms:

R : 1 .
N=0,1,... } %%6”” = J(x)(ix)",
SO(2R . 1) : I(R—1—N)
R=1,2,..., [ % @FTY ) —igg TN 3 (1)
TWV+y) 2}5%)) 2\ Hlmren Py 2z )
) 1 ,
L - ,
CEZN 2%

) P2Rg | —remr—=~ | . )
SOy(1,2R - 1) : f 2n1§ T4y | € =T (z0) w(%ﬁ
“(0—io) 211 R
[—(g—i0)2]F—N

9.5.2 Fundamental Interactions of Spacetime

The abelian time group D(1) = R is isomorphic to the additive group structure
of its Lie algebra. This is reflected by the coincidence of the fundamental kernel
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for the causal group with the trivial group representation. The fundamental

kernel inverting the invariant derivative dio acts as identity; the abelian causal

group induces only trivial interactions

7_1(:100) :19($0)7 dzoﬁ( ) 6(1’0),
19(.1’0>19(5(;0)6imx0 — 19(1'0) imzg _ [ dq 1 igzo

2im g—io—m

q—1

T * T — T
q—io 2im -
N S _* —
g—i0—mq 247 g—t0—mo - g—io—my

[ L« D! =log D’ ]

qg—io—m g—io—m
1 1

The inverse of the invariant derivative d—i is the sign function as funda-
mental kernel for 1-dimensional position, acting on the selfdual representation
coefficients of the hyperboloid SOg(1,1) = R,

-1 _ @)  de@) _
’7 (iC) - 92 dr 2 - 5(1:)7
e(x) e—\mx\ — [ dq iq e—zqac
2 21 q2+m? '
‘ lP * Y1 =log P! ‘
i EN 2iq _ _Im]
gp 27 g24mZ T ¢24+m?
2iq ko 2iq _ o 2|my]|
q2+7n§ 2m q2+m§ - q2+7n3_
2iq x 2|ma| _ 2iq
q2+m,§ 27 q2+m§ L12+7n'+2
. .. i _ _ig
with the principal value = e

For hyperbolic position V%71 = SQq(1,2R — 1)/SO(2R — 1) with non-
abelian degrees of freedom R > 2 and nontrivial Cartan torus SO(2)%71 the
fundamental kernel (interaction) as inverse of the invariant generalized Lapla-
cian (52)R ! is the Coulomb potential . 1. The action on the functions of positive
type & — e~ ™" gives Yukawa potentlals as position kernels,

R>2: 47 (&) =1 — (@) 17{ = B 0(@); R=2: —0°1 = 4md(),
dZR 1

—|m|r —
| f [Q2F- 1| (q‘2+m2)R T€

—iqx

[ e * P =13 R=23,.

1 2R-1 2|m| _ 1
(@F-1 (@ +m*E (@ rmHE-1
1 2R-1 2|ma| _ 1
(@+mP =T (@+mDT (@Z+m)F=1
__2ig__ 2R-1 2|my] _ 2
(Z+mHE (@+m3)F (@4mP"

Causal spacetime D?F = D(1) x Y?£~1 with real rank 2 has two funda-
mental kernels, the Lorentz compatibly embedded kernels of the causal group

(eigentime) and of hyperbolic position. Both are future lightcone supported
Dirac distributions,

2R
f % q qw)'z@“]z = F(R)%Wﬂ(gfﬂ)dmil)(_%)’
d2R >

R>2: [ e T ZO)Q]R 1" = (R — 1)md(20)d(%),

2\R—1 d*Rq d?Rq iqe _ (2m)%R
a f |Q2E— 1|[ (q— 10)2]R 16 af i Q2R—T1] (g— wze - |QzR—1|5(‘T>'
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The time and position projections lead back to the embedded kernels, i.e., to
the characteristic function ¥(zo) for time and for R =
and for R > 2 to the Coulomb potential %,

QQR 1 dQR 11;
PR [ ety o (2.
fd:ro i|Q2R=1] (g—io0)? zo) r2(r2)R

i |Q2R—1] g2R=1, R . 9(zo) L2R3
. T (2m)2R qu — T0)FroE—9)
R 2 2: f(Qdago f [Q2R-1| [—(g—i0)2]E— 1€ - Fl(ZR 2.

T

—
2r?

The spacetime kernels are computed with the following convolutions:

| & * DU ot * D =10gD?F, R=13,... |

q 1 _ 1-9f1q
—q? O CEE MR T jo W et
q 2R 1 = [Lac (1-0"q
—¢%+m3? CZ+mdFE 0™ —¢A=0¢*+{mI+(1-¢)m3
R>2: 1 e 1 d i
CEerT f et =l X W
1 2R 1 = [la im2a-_gfi-t
(—?+mPHR-T (g2 +m3)E 0 [—<<1—<)q2+4m%+<1—OmS]R*l

9.5.3 Feynman Propagators

A Feynman propagator for flat spacetime, e.g., for a massive scalar field,
<{¢(y)’ @(JL‘)} + iG(:L’O - yo)l[(p(y) T f d4 2+zo m2 eiq(miy%

is a combination of a representation coefficient ({®(y), ®(x)}) of the Poincaré
group SOy(1,3) X R? for particles and an embedded kernel e(xo—yq)i[®@(y), ()]
of hyperbolic position for interactions. The Fourier transformed energy-mo-
mentum distributions in Feynman propagators give spacetime functions (Mac-
donald Ky and Neumann Nj) for the real part (on-shell) and Radon distribu-
tions with Bessel functions J, for the imaginary part (off-shell),

L f Ry e = () (-a)2K () — D(a2)m(NG + i) ()]

0%
R—1 ,
— <a£22> fdw [79(_1.2)67|m|cosh1/1 + ﬁ(xZ)efz\z\coshw].
=
The projection of a Feynman propagator +5——— to time and position

T g2 +io—m?
by position and time integration, respectively, displays a translation repre-

sentation coefficient cosma only for the on-shell part §(¢> — m?), whereas

the principal value off-shell part . ——— with causal support in spacetime is
position-projected to the exponentlal potentlal e~ ™" for 2-dimensional space-
time and to the Yukawa potential &—— ~" for 4-dimensional spacetime,
J2R-1, _ [ 990 1 iq0T0
f T2m)2R—1 ) 2R 1 1 _ j i g24io— 1€
< (} (%J:() ) fd 42+7Z.0_161q13 — ( j dzr.c 12 1 —igw
im G2+1

e(zo) sinzg
coszo\ HTo -
_< 0 ) Z<(_88T‘2)R e T).
47
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The off-shell contributions are no coefficients of Poincaré group representa-
tions,

[ER L cite — je(xy) [ d®Rg e(go)3(g? — 1)ci

qg—1 -
= (%) VarT(lal).
2 . Vi
(02 + 1) [ £00 Loeir = —LO5(y),
P

The advanced and retarded energy-momentum distributions are off-shell:

d?Bq 1 qr d*Rq 1 iqr
27 (q$i0)2716 - 19(:&‘/1:0) f ™ ql2)716

= +i(xxo) [ d*Fq e(qo)d(q® — 1)e"".

9.5.4 Duality for Group Representation
and Fundamental Kernel
In residual representations the characterizing invariants of time D(1) and of

hyperbolic position Y21 both with real rank 1, arise as singularities of the
harmonic components,

q_ii_m for D,
jm(q) - q22+;i12 for 3~;1’
% fOI' yZR_l, R Z 2.

The invariants are the intrinsic units for energy and momentum. The de-
nominator energy-momentum polynomials define eigenvalue equations for the
invariants:

In(@) ¢ +m? =0, self-dual.

1 { g—m =0, linear,

Since the invariants of product representations of even-dimensional causal
spacetimes with real rank 2 do not arise as pole structures in the convolution
products, there has to be found a spacetime generalizable equivalent formu-
lation for the characterization and determination of the invariants. Such a
formulation uses the energy-momentum functions for the tangent Lie algebra
kernels associated to the group representations,

G 2 du(q) — 4" * dw(q) € logG.

The harmonic components of the fundamental kernels can be normalized with
the representation invariant (intrinsic unit) to a dimensionless “inverse deriv-
ative,”

quw for D' — log D,
¥ Hq) = qlzqﬁ2 for Y' — log V',

(%Z)R’1 for Y2E-1 — Jog Y2R-1 R > 2.
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The invariants of group and fundamental kernel coincide, m = M, if their
representation coefficients are dual to each other as seen in the dual product,
which can be written as the convolution at trivial energy and momenta ¢ = 0,

L= (v dn) =771 % du(0),

]51 . -M ko 1 _ _-M
! qlfi(‘) 2im q—io—m q‘]\/}o ‘m
1 . iq| M * 2iq _ m q=0
Y 2 +02 o >+m? — +m? =1 for M? = m2.
PRR-L. (M2yR-1 2R-1 2|m| _ (Rt
R (@+m*)* (@+m?) Rt

9.5.5 The Relative Time-Position Normalization
of Causal Spacetime

The representations of even-dimensional spacetime as a product of homoge-
neous spaces for time and hyperbolic position D?# = D(1) x Y?£-1,

~ 2R m i
D3 )(a)r — [ B o)ty et = 2k w,a(n),
can be considered as Lorentz-compatibly embedded representations of the
causal group (eigentime) D(1). The factor representing the Lorentz group
SOy(1,2R — 1) is the Bessel function, a metric-inducing function of positive
type,
2R .
[ &% (q) ‘QZR I e = J(@)rTo(|maz|) = &2 ().
The dimensionless hyperbolic energy-momentum measure with one position
characterizing invariant m?2 is the derivative of a logarithm:

~ 2R 2R I'(R 2R .
dilz%( )mdzﬁ 2,@? m = ?Rq (%)Rlog[—(q —i0)* +mZ].

R
In the hyperbolic convolution product 2*»»@ , defined with the hyperbolic
~ R
measure dif”(q)meql‘, the right factor is multiplied with the representation of
hyperbolic position

2}1}% ~ 2R dZR()_ .

)
PRI (g—io) +m]®

The hyperbolic convolution describes, in a Lorentz compatible abedding, the
action of the Lie algebra kernels of the causal group D(1) on the group D(1)-
representations,
2R 2R _ 2R -
Yor *x D' = Fag * D, Tor Fx @ = Tag * [di? - W]
Fourier |

_1 2R - _1 2R
721%1! K M(R?ﬁ-R): '72R L (RQR) 72}% w W :72R {d22 * wl.
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For 2R-dimensional causal spacetime, the duality condition between the
embedded D(1)-representation and the embedded fundamental D(1)-kernel
with intrinsic unit |mo|,

1
72}%( ) = q\";ol for D2R log DQR

determines the ratio x> of the invariants. The dual product of the em-
bedded D(1)-Radon dlstrlbutlons is defined by the embedded metric inducing

function of hyperbolic position. For duality, it has to give the unit

Q|mo\ 2R 2g|mo|

<72_1%’wm3>di§ = (Yo, 25 *w mg) = 1E e _m[z)

1 g=0
= —=llogp k2 = 19p.

The hyperbolic convolution in the duality condition

q 2B 9q g 2R 1 2q_q (1-&)7~1(—2¢R)

2 g1 T 2 t AT 1 . de T
- dCf dé_ 1 C R 1 1 g)R 1
- dq ®q fo 0 cq2+£+ 1-€)r?

Q

is computed with

¢ AR e W_o_ 1
q2—m3 (—g>+m2)I+R ¢?-mj g (—a?+mp)®

_ 1 (1-0)
=894 Jo dg—C(l—c)q2+<m%+<1—<)m§'

The duality condition can also be formulated as a normalization condition

for the D(1)-representing Lorentz scalar Radon measure with the harmonic
~ 2
components d,,2(q) = qf_%,
0

R=—logpr® = [d8(q)-nt L (d

i|Q2E-1] (g—io)2—m?

_ ¢R-t 1 Lam? 1-M2\R-1
- fO dclfqlfl#) T 1-k? fn2 M?2 ( 1—k2 )
R-1

—r2)k - _k2)k—R
= ~rmallog it 4+ 3 B = Y e —

k=1 k=R

2) 2R
mg/d-y

Functions like the “R-tail” of the logarithm logy k? are typical for the nor-
malization of hyperbolic representations, e.g., the Plancherel measure of the
irreducible representations for the harmonic analysis [6] of functions on non-
abelian odd-dimensional hyperboloids LQ(JJZR 1) R =2,3,..., which is given

by m% = m? for R = 2 and by m% = m*[[1—7(1 + kg) forR>3Wherethe
full product is the hyperbolic Macdonald function [T~ (1 + ?) = sinhmm

The invariant ratio 2 is the most important characteristic number for the
residual representations of even-dimensional causal spacetime D?® with real
rank 2. It relates the two Lorentz invariants to each other as intrinsic units
for the embedded representations of the causal group (eigentime) D(1) with
qo = +|myg| (translation—invariant m?) and position Y**~! with |q] = +i|m,|
(interaction—invariant m?).
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For abelian Cartan spacetime D? with one time and one position dimension

D(1) @ R & P! the invariants are equal: The advanced energy-momentum
measure is a dipole = +3:LI,|2:;L((:]|2—77L3) — — (_qQQqJ‘r”;lQ)Q. For nonabelian spacetime

R = 2,3,... the integration dji‘;f = dlog M2 comes with a nontrivial factor

(L2 R- from the Cartan torus SO(2)%~1. The logarithm of the mass ratio

goes with the rank —logk? ~ 1+ R =3,4,...,

log x? =rl=1, R:
(logr? +1—k?) = r2~ed3~ = R

20.17

—R = logp, K? :{ - ”2

=R -

For unitary relativity D* & GL(C?)U(2), the ratio x* = :1—%5 of the interaction
0

invariant to the translation invariant determines the coupling constants of the

lightcone—-supported massless gauge fields [9)].

9.6 Translation Invariants as Particle Masses

The time D(1) = R invariants of the powers of one defining representation of
causal spacetime D* = D(1) x Y3 = Ri are proposed to determine the mass
spectrum of relativistic particles. Since the causal spacetime group GL(C?)
has real rank 2, i.e., two characterizing continuous invariants {m%,mi}, the
invariants for the products are related to both the embedded causal group
D(1) and Lorentz group SOg(1, 3)-representations of 3-position }3.

In contrast to the linear spacing for the time D(1)-invariants (harmonic
oscillator),

D(l) gRBtl—)eimt:qu 5(q_m)eiqt,_)( zmt) GLOO(R) N
{¢g=Ey=km|k=01,2,..1},

and the “squared spacing” for the continuous SOy(1, 3)-invariants as visible in
the bound waves of 3-position J® (nonrelativistic hydrogen atom and periodic
system of atoms),

o _ 3 e _ P
V3 & I = [ e o (1) € LX),

{sz:ﬁ:_kgm2|k:1+zj,J_o 11,2},

’ 929+ 9

both groups with real rank 1 and one continuous invariant, there is no such
simple regularity for the masses of spacetime particles. The simple energy-
momentum pole structure in the products for causal group and hyperbolic
position is a peculiarity of real rank 1.

9.6.1 Eigenvalues from Causal Group Kernels

For the causal group D(1), the convolution powers of the energy distribution
for the defining representation with intrinsic unit ¢ = gm

~ 1 ~ ~ 1 1

dlg) = =, (" =d x d % - d with (¥,q) = (3=,¢ — i0),
(1+k;rtimes
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are acted on by the fundamental kernel,

7t +D = log D' with v~! = —1

q7

1 _ ~
1>'< 1 _ 1 _ xk

— 1 1 \x14+k _ —
T @ =T = eam =7 @

The eigenvalue of a D(1)-product representation (d)**(q) = qi—k is given by

the eigenvalue is not given by the

the singularity ¢ = k with the eigenvalue equation

tangent kernels and log D!-functions W’
singularity ¢ = 14k of %, but by the condition that, there, the residue arising

by the convolution is equal to 1,

A1k () g) =3 g) = 1= g =k = 0,+1,£2, ...

At the eigenvalue g = k, the fundamental kernel is in duality with the repre-
sentation measure.

9.6.2 Mass Zero as Spacetime Translation Invariant

To obtain the D(1)-eigenvalue equations as embedded in even-dimensional
causal spacetime D?%., the convolution powers of the energy-momentum distri-
bution for the defining spacetime representation with intrinsic unit ¢ = m2q?
are convoluted with the embedded fundamental kernel for D(1) to yield the
D(1)-kernels of the spacetime tangent module:

-1 2R

Q
[

b %, DU =q5 DR C log DR
- 2R ‘
with Y,5(q) = & (x,¢%) = (- o (4 —i0)?),
2R *K,14+k 2R *14+k
q% * <q2231) =34 % (m qul) _7§R(Q)

The translation invariants ¢> are given by those energy-momenta where fun-
damental kernel and spacetime representation are in duality, i.e., where the
tangent residues are projectors,

ﬁ/éﬂR(q) =1= ZL PL’
with a decomposition into nondecomposable projectors on the right—hand side.

The simplest nontrivial eigenvalue equation,

2R N 1 R 1 1
ql'z *i q2231 = fng(q) 8q ® fO d€ fO dg%

= Pirar(q®, %) + Porga(q®, £7),

is decomposed with two projectors

_ ®
Py =1y — T4,

5 ®q=1op +2¢ @ qgls = P+ Po(1 +2¢° %), {730 _ e

The ¢*-dependent residual functions for the two related eigenvalue equations

T%R(q27 52) = 17 T(Q)R(q27 52) =1
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arise by integrations over singularities:

1 (2 _ a=oFta-F !
TZR(q 7"£ fo df fo C —£q2+C(1—rK2)+r2
o sz dM? 1 Q2 R— 1(17]»12)1?,—1
fO (q2)R fmz 1 Kk2)R —Q%+M?

2—1
O Z)R(/*€2 1)R fO dz fO 22 e teati—
Mr(d? K%)= (1+2¢°32%)r3p(d®, %) o
2 1-M -
( QR)TZR(q K ) + 2(1 v R ! f 2 (1d]\g2)1? ( —q2+3\42 .

The duality condition above for the embedded D(1)-representation and its
fundamental kernel, leading to the determination of the ratio for interaction
and translation invariant, can be read as an eigenvalue solution at ¢> = 0, i.e.,
for Poincaré group representations with mass zero,

q2 =0= T%R(O7 ’%2) = rgR(Oa ’%2) =1

With a positive residual normalization the transversal components with prop-
jector Py can be related to the nontrivially polarized particle modes in the
massless gauge fields [9].

9.6.3 Eigenvalue Equations with Logarithmic Residues

The real rank 2 of even-dimensional spacetimes leads to integrations over sin-
gularity lines with characteristic logarithmic residues, which involve a real and
an imaginary part. They have their origin in the integration for a finite path
with two endpoints [1], e.g., where defined:

d 5— 5—
;z_zg = res[-=5 L 51log 2 g] log =5 = log ’ﬁ
1 ofode 1 _
2w f zfts - r68276 =1

This leads to complicated looking formulas in contrast to the odd-dimensional
integrations without generic logarithms for real rank 1 time and hyperbolic
positions.

The logarithmic residues involve integer powers z{f)g with logarithms and
the harmonic series p(k),

% logz—( )1+kz}€°,g7 k=0,1,...,
) 0) =0,

sz)g = z*[log z — (k)] with { ;‘jékg :1+“'+%:1 Ty

20 3l

The residual functions are computed systematically via integration by parts,

kq _ko
f M dzg zf}t-zz+’y foal P dzn 221 2228182(21 + 2+ 7)101%
— z’f 25 (z1 + 25 + ’y)log + kyky [ dzl’gzkl ! 52 l(zl + 22+ 7 )iog

—211k2 2dzg2h Nz, + 2 + 7)1Og - 522/{1 M dz T 2y 4 2y + 7)110g-
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An underlining denotes the prescription to take the difference at the integration
limits,

With the parameters

Y :1_q2,

o+ =1,

17 o - 22
2 Yo=K q-,

C¥1+062+7 :&27

ar=¢, ap=kK>—1, oy +ay=q¢> + K> —

the resdidual functions above for abelian 2-dimensional Cartan spacetime re-

dy\2,1 .
quire two integrations for £ = (:1)%z\ -
1,2 2] _ 1 foie 1

7“2((] K ) T oaian fO le’Q z1tz2+y
(it zm e (artaa )i H(Dige— (@1 ) — (a2 )],
N < araz N 20611042 2\1 1 2 2)\1
_ fqz sz fl dm? 1 _ (K )log+(1_q )log_(l)log_(,‘i —4q )log
“Jo ¢ Je21k2TQrrm? T 2(k2-1)
— | _ a=a®)10g(1=4*)— (52— ¢?) log(n? —¢*)+r? log x*
- q2(1—ﬁ52) bl

o2 2y _ 1 dM2 1 12 .2 2 1—¢?

7"2((] Xt ) - _rz(q H +2f2 1-r2 —¢>+M2 — —7“2((] y K )+ 1—r2 IOg K2—q2
— | (+a®)10g(1-¢?)— (x2+4?) log(r? —g?)+r? log v

q?(1-r?) §
with the special cases
10,2 _ 1 2
ri(@1) = —log(l - ¢?),
10,2 2 2
r2(¢*,0) = (1 —¢%) —log(—q%).
2R—1

2R-dimensional spacetime requires up to 2R-integrations for £ = (%)QR (;Eg o
e.g. for 4-dimensional Minkowski spacetime:

1 2 2 _ 0‘12 2122
ry(q°, k%) | = dz1 2 tzaty
(a1 -i-a2+~/)log a12 (z1+224+7)i,
- [e5Ne D) f le 26182 3!0(%&%
(a1+z2+7)P, a1 (z1+a2+7)E,
—Q fO dz?a? Qa?ag ) _q2 fO d’zl’al Z(J%q%
_ (a1+a2+'y)110g + (al+Oz2+’7)ﬁ,g+(“/)fog*(a1+”/)fog*(0‘2+’7)ﬁ,g
o SIa%ag
+a1(oqJrv)ﬁ)g+oz2(azzJr“/)?og7(oz1+ozz)(oz1+ozzJr"y)ﬁ,g
2(1%04%
¢ dQ? [l A (1-Q%)(1-M?)
= 0 (q2)2 (1-r2)2  —Q2+1M?2
N ) e ) 0 A 0 PR ) P i
T ¢ (s?-1) 31(¢?)?(x2—1)2 2(¢?)? (k2 —1)?

— 1—q2 310 l—q2 +q2 1-k2 1—2&2—q2 - 3—2&2—q2 K2—q2 2log NQ—qZ +n2 3&2—2K1—6q2+3q2m2 log 2
g
3!((12)2(1 N2)2
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It is needed for x? < ¢*:

2 2 1 —O2\(1_ 12
r1(¢*,0) :fq dQ fo da QQQ)S:ij)

3 2 o
— | = Q)log(l q)+ q (dq)lﬁg(q)7

6(q2)2
042 - 2(1-¢*)(1-M?)
ry(¢*,0)| = =3ri(¢*0) +2f0 M 2( q2+M2)
_ 1(,2 (- q 1-¢?
= —3r;(q 70) +2 Og q -2 Z
_ 1 1— 172 1 3 log(1 12 3—q%) log(—q2
= (q)log 2q2q (qi(qf(Q) q%_,'_(Q);g(q).

9.7 Normalization of
Translation Representations

Starting from a generating fundamental representation, the residue of a prod-
uct representation defines its normalization. For spacetime, the determina-
tion of the residues requires the transition from inverse derivative energy—
momentum distributions (kernels) to the associated distributions for the rep-
resentations of the spacetime translations.

The exponential from the Lie algebra R (time translations) to the group
expR = D(1) can be reformulated in the language of residual representations
with energy functions by a geometric series

oo oo

imt (imt)s _ £ dg 1 igt _ ﬂlz m\k igt.
€ - k! T J 2irq— m€ 2im q (q) e

k=0 k=0

where —% is the inverse derivative energy function for the representation func-

tion ——.
q—m

9.7.1 Geometric Transformation
and Mittag-Lefler Sum

Translation representations are characterized by (energy—)momentum distri-
butions with simple poles. Meromorphic complex functions have only pole
singularities. In the compactified complex plane C they constitute the field of
rational functions. The representation distributions for one dimension (pole
functions) have negative degree:

el pPm ng™ -
(C > q— p(Q) = pkggg = C;%:?&Zii,c;k;k € Ca g, Y5 € (C7 Vi 7é 07 k S n.

The geometric transformations for D(1) (time) with z = £,

1 _ =~
=7 o

are elements of the broken rational (conformal) bijective transformations of
the closed complex plane

_ g
CSC}—>bC+d€C
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with real coefficients as a group isomorphic to

g= (¢ }) € SL(R?) 2 SU(L,1) ~ SO,(1,2).
The group transforms circles and lines into circles and lines (as a set, not
individually). Upper and lower half-planes x+io remain stable. The eigenvalue
4 =1 becomes a pole:

(‘2 Z)=(é ’11): 7— =, (1,0)— (0,0).

With one fixpoint 4 = 0 the transformation is parabolic, i.e., an element of

the R-isomorphic subgroup ((1) l{)

The geometric transformation will be generalized in order to associate func-
tions with pole singularities to the complex eigenvalue functions 7(z) for space-
time, i

¥(2) — 25
An eigenvalue zy € {z | 7(z) = 1} gives a pole. If the zero zy is simple with 5
holomorphic there, it defines, by geometric transformation of its Taylor series,
a Laurent series [1] and a residue

~ ~ - z—2z0)F ~
H(z) = 1+ (2= 20)7(20) +_EFLF0(z),
k=2

e = ren(zo) +37 (2 = 20 ai(z0),
k=0

res(zg) = —

7' (20)

Each eigenvalue {zj | 7(2x) = 1} has its own principal part. Their sum, called
a Mittag-Leffler sum, replaces the simple pole for D(1):

) oy =Y g
2k
1
z—1"

1
generalizing 1 —— —=r =
z

1

Therefore, one obtains for an eigenvalue function for spacetime D*# and
its projectors at the invariant solutions

(@) =7+ d(¢*) = 1= ¢* € {m?}

the transition to complex representation functions Go, assumed with simple
poles,

G — logG — Go, J>—>ﬁ(q2)»—> 3(¢?) :ZMJF‘_.

2—m?

m2
The residue is the negative inverse of the derivative of the energy—momentum
tangent function at the invariant

) = 1+ (g2 — ) G () + -+ = res(m?) = —
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The simple poles can be used for the representation of the Poincaré group
SO(1,2R — 1) X R?E. The residue gives the normalization of the associated
representation

on-shell part of i% = res(m?)d(q* — m?).

9.7.2 Gauge-Coupling Constants

as Residues at Mass Zero
In the residual product of the fundamental spacetime representation with the
dual inverse derivative

2R p
* m % =[lar+q®q 2%] T%R(q2,/<;2),

Qb

the residual normalization res(0, x?) for the massless solution ri,(0, k%) = 1 is
given by the inverse of the negative derivative of the eigenvalue function there:

1 _ orl 9 . 1 1 2(171\/[2)12—1
T res(0,52) 055(075 ) = Wﬁizdﬂ/f T;‘
= marm a2 + (R —1)logg w7
2
= LU with — Llogg a® = 1.

One has the numerical values for Cartan and Minkowski spacetime

o9K2 = 9 R=1
—I'GS(O,H;2) = { 6K2 7 6 1 ’
o~ @5~y =2

With the geometric transformation the Laurent series gives an energy-mo-
mentum distribution for a spacetime translation representation with invariant
zero and residual normalization. With appropriate integration contour, it can
be used as propagator for a mass-zero spacetime vector field with coupling
constant —res(0, £?):

SOy(1,2R — 1) X R?2 : on-shell part of %%&H% = n;eres(0, £2)(q?).
This vector field has, in addition to an SOg(1,1)-related pair with neutral
signature, 2R — 2 particle-interpretable degrees of freedom (chapter “Mass-
less Quantum Fields”), which are related to the spherical degrees of freedom
O2F=2 c D2 and the compact fixgroup SO(2R — 2) in the massless particle
fixgroup SO(2R —2) x R?%~2, Those degrees of freedom have a positive scalar
product:

(,1 0 {0 0 1 o
5 ) ~ (0 1ms 0] for SOH(1,2R — 1) X R,
ik = (_01 (1)) = (? (1)> for SOy(1,1) x R?,

~1 0 ~ 0 0 1 .y

<0 13> =10 12 0 for SOy(1,3) x R™.

—
o
(=)
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The particle-interpretable degrees of freedom start with rank 2 Minkowski
spacetime. There, the two degrees of freedom with a positive scalar product
have left and right polarization for the axial SO(2)-rotations.

If adjoint representations of compact internal degrees of freedom, e.g., of
U(2) hypercharge-isospin, are included, the accordingly normalized residues of
the arising mass-zero solutions in 4-dimensional spacetime may be compared
with the coupling constants in the propagators of massless gauge fields as in
the standard model of electroweak interactions (chapter “Gauge Interactions”)

U(2) x [SO(1,3) XRY: =82S with G2 € (2, 62]9%,72) ~ (25, 2 1o5s 19)-

q?>+io

Without the introduction of the internal degrees of freedom only the order
of magnitude of the normalizations G? can be compared with the residues
above for the simple massless poles from representations of spacetime D(2) =

GL(C*)/U(2),
for logD(2) 2 R*: G? & —res(0,K%) ~ 3.

MATHEMATICAL TOOLS

9.8 Divergences in Feynman Integrals

The following convolution products are valid only where the I'-functions are
defined:

SOy(1,3) x R*

I'(2+n) 2q I'(3+n)
(@—m2)2Tn (@—m2)3Tn

L7 | 24157 (4%
i 7¢) | L ©a [T(d)
a7 | & @ q ()

b RulH| * =

b~

)
[

-
N

4 .
(*7 q2) = (:FZ‘QS‘ q + ZO) (:FZ;Q,QQ F ZO) Feynman,
=¢, @®Q—14+2q®qaq N5]+2q3qkaq

The integrals for natural n = 0,1, ...,

B = fy dafBeben = (50" log(1 — ).

i ) = faclaiin =3kt - s - £

) = Iy i = )+ % (1~ )
SR =R - )
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can be determined with derivatives

O = (=) log(—2),
log(—2) = ()" s llog(—2) — ¢(n)],

d z“’" 1

#Mog(—2) = i llog(—2) — w7

Convergent integrals have to vanish for ¢> — oo. The integrals are log-
arithmically divergent with log¢? for I'(0) and quadratically divergent with
q* for T'(—1), which exemplifies the general divergences with (¢?)" for I'(—n).
Such integrals make no sense. The divergent integrals can be “obtained” up
to ¢?-polynomials by deriving with respect to the invariant ¢ and then taking
appropriate values for n. This limit, in turn, can be written as a ¢?-derivation

1 n n
% f() dg% = - fo dC gchi;L 2)+n7
1
forn — —1: - f() df 2C—m?2 = _3(22 fo dC lOg(QQC - m2)7
fo d¢ (1-=QrQ@+n) _ fo d(C (1=QT(3+n)

(@2C—m2)T+n q2C— m2)3+n )
2
forn — —2: —>f0dCC 172 e fodggl—g)log(QZC—mQ)
= (52)% Jy d¢ (1 = O)(¢*¢ — m?)[log(¢?¢ — m?) — 1],
I'(24n 2I'(3+n
g2 fO dCﬁ = _fO dC(q§( m+3+“’
forn —-2: — deCq _m2: deQCIOg (¢*C — m?).
For polynomials of finite degree one may try to connect the unknown co-
efficients with experimental numbers.
If the divergent convolutions with negative n arise as part of a well-defined
convolution (no “divergences”), one can combine integrals with compatible
regularizations:

ol teg & = — [, d¢log(g*¢ — m?),

S e & =2 @q [ dC(1- O —m?)log(¢*¢ — m?) — 1],
T e & =2 @q ) dC (¢~ 1)log(’¢ — m?),

e e o =4 ®q [)dC (=0 log(g*¢ —m?).

From this the higher-order poles, including the convergent convolutions, can
be computed by m?2-derivations, as seen in the transition from the second to
the third integral. For m? = 0 the third integral coincides with the fourth one
up to a constant, which is irrelevant on the logarithmic divergence level.
The remaining integrals with the massless pole convolution characteristic
logarithm log(q?¢ — m?) can be combined from
(m*,¢*)" = [y d¢ (m* — ()" log(¢°¢ —m?)

_ (m 7(12)1+7L 2)1+n + (m2 14+n log( )7(m2iq2)1+n log(qumQ)
A T ’

_2\n
(07q2)n :%( 1+n+10gQ) n:0715"'7

with the lowest powers

14m m? log(—m?2)— (m2fq)log(¢12*m2) n=0,

(m2, )" = —2m?+q® | mllog(=m?)—(m -2 og(?—m?)

) - )
73m4+3q2m274(q2)2 mS log(—m Qg*q )3 log(¢*—m?) =9
9 + 3¢2 , =4,
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used in the integrals above:

_ fol d¢log(q?¢C —m?) = —(m?,¢®)° =1 — m? log(—mQ)—(rf;z—qz)log(qZ—mz)7
n1247 2 n12__ 2 7n2, 2\1__ m12’ 2\2
Jihd¢ (1= ¢)(g%¢ — m2)[log(q%¢ — m? > -1 = () + (m? —q?)(m?.)' — 2 ¢°)

N

N

_ 11q2—|—12m _m! Jr m*(m2—3¢?) log(

—m?)— (=) og(g?—m?

)

N ey
G (C = ) log(qP i) = =it
2 + m?(m?—2¢%) log(—m?)—(m?—q*)? log(q* —m?)
2 2(q2)2

3

W
o

q

—m?2 m2.g2)1
A=) loglq*¢ —m?) = g )
1 + e + —m* log(—m?)+(m 2—&(—q ))(m —q?) log(q®>— ).
q?

For the first integral the ¢®-linear and constant terms are irrelevant, for the
second and third one the constant terms.
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advanced (retarded) distributions, 74
affine groups, representations, 246
anticonjugation for Weyl spinors, 36

Becchi-Rouet-Stora
charge, 154
operator, 137
transformations, 194
Bessel functions, 80, 277
Bose-Fermi twin structure, 153
BRS-vertex, 199
Bruhat decomposition, 267

canonical basis for group functions, 210
Cartan spacetime, 291
Cartan tori, 200
Casimir element
Lorentz Lie algebra, 18
category, 12
causal manifold, 52
causal oerdering, 99
causal spacetime, 290
causal support, 75
charge number, 165
chiral projectors, 31
circularity, 144
conserved current, 159
continuous spectrum, 207
convolution, 216, 264, 306
coset representatives, 71
cosets, left and right, 229
covariant derivative, 168
creation, annihilation operator, 103
cross section, total, differential, 128
currents, 120, 170
cyclic space, vector, 222

dipoles, 149
Dirac algebra, 26
Dirac equation, 40, 116
Dirac equation, solutions, 40
Dirac matrices, 33
Dirac spinor fields, 115
Dirac spinors, 26
distributions, 86
multiplication operators for, 266
rapidly decreasing, 266
structure, 88
tempered, 266
distributions of time representations, 101
distributive basis for group functions, 210

eigentime, 165

eigentime projection, 50
electric current, 158
electromagnetic group, 57

electroweak and strong gauge interactions, 176

electroweak triangle, 185
energy distributions, 73
energy-momentum tensor, 121

energy-momentum fixgroups, 61
essentially bounded functions, 211
Euclidean

group representations, 284
Euclidean group

representations, 248
external transformations, 53

Fadeev-Popov fields, 143, 155, 194
Feynman integrals, 307, 328
Feynman propagators, 84
Fierz recoupling

Lorentz group, 27
fix-Lie algebras of representations, 69
fixgroups of representations, 68
Fock form functions, 101
Fock states, 100
Fourier analysis (expansion), 215
Fourier transformation, 265
Frobenius’ reciprocity, 242
function of positive type, 223
functor, 12

covariant, contravariant, 14

free, 14

universal extension, 14

gauge construction of currents, 122
gauge fixing field, 148, 170
gauge interactions, 171
gauge transformations, 161
gauge vertices, 171
generalized functions, 87
Goldstone manifold, 57
ground state
degenerate, 179

Haar measure, 208
Hankel functions, 82
harmonic analysis (expansion), 215, 238
harmonic group function bases, 214
harmonic Lorentz group polynomials, 43
harmonic representation components, 217
Heisenberg

group representations, 247
helicity, 131, 144
Higgs Hilbert space, 57
Higgs transmutators, 59
Hilbert space

metric, 223
Hilbert spaces

for massless particles, 140
Hilbert spaces for massive particles, 103
hyperbolic position, 288
hyperboloids, harmonic analysis, 260
hyperisospin, 53

In6nii-Wigner contraction, 162
indefinite metric, 136
interaction symmetry, 182
internal transformations, 53
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intertwiner, 230 pure state, 226
kernels of spacetime, 314 quantization distributions, 101
Klein-Gordon equation, 76 quantization opposite commutators, 99
quantum Bose and Fermi oscillators, 97
Langlands decomposition, 267 quantum fields for massive particles, 102
Lebesgue function algebra, 211, 216 quantum gauge fields, 170
Lebesgue spaces, 211
Legendre functions, 262 Radon measures, 87, 211, 217
lifetimes, 127 rapidly decreasing functions, 87
little groups, 68 refelctions for spacetime fields, 118
Lorentz reflections in the standard model, 190
group, 18, 19 regular representations, 211
group, adjoint represnatation, 25 relativistic mass point, 165
group, finite-dimensional representations, 22 representation
group, generalized, 53 cyclic, 222
group, Minkowski represnatation, 25 discrete, 222
Lie Algebra, 19 induced, 229
Lie Algebra, 18 matrix element, 212
principal group representations, 258 on homogeneous functions, 256
supplementary group representations, 258 reduced, 234
Lorentz force, 166 regular, 211

residual representations, 74, 274
Macdonald functions, 80, 277

magnetic field, 159 scalar fields, 109
Majorana fields, 117 scalar-product-inducing functions, 223
massless scalar field, 141 scattering representations, 248
massless vector field, 148 scattering, relativistic, 124
massless Weyl fields, 146 scatttering angle, 128
Maxwell equations, 158 Schur orthonormality, 214, 219
measure conjugation, 210 sigularity spheres, hyperboloids, 302
measures of homogeneous spaces, 90 Sommerfeld’s fine structure constant, 168
measures of hyperboloids, 92 spacetime
measures of spheres, 92 bispinor bases, 27
Minkowski spacetime polynomials, 41 C*-algebra, 48
momentum operators, 103 Cartan coordinates, 29, 49
morphism, 13 Cartan representation, 27
auto-, 13 Clifford Algebras, 31
endo-, 13 fixgroups, 61
iso-, 13 Lie algebras, 18
multipoles, 287 nonlinear, 52
real rank, 48
Neumann functions, 80, 277 reflection group, 35
noncompact Lie group, 207 translations, 47
noncompact time representations, 132 standard model, 176
numbers state, 225
natural structures, 15 support, 87
symmetry breakdown (rearrangement), 179
off shell, 83
on shell, 83 tangent groups, 284
tempered distributions, 88
parabolic subgroup, 267 test functions, 86
particle masses, 321 theorem of
particle normalizations, 325 Bochner, 227
particle symmetry, 182 Gelfand and Raikov, 226
particle, antiparticle, 103 Peter and Weyl, 219
particle-antiparticle reflection, 38 Plancherel, 89, 215
Pauli spinor reflection, 35 Stone and von Neumann, 247
Pauli transmutators, 66 time ordered product, 100
Pauli-Lubanski vector, 20, 103 translations
Plancherel measure, 208 causal, 50
Poincaré lightlike, 50
group representations, 252, 285 spacelike, 50
Lie Algebra, 19 spacetime, 47
polarization, 131, 144 timelike, 50
position transmutator, 240
nonlinear, 52 transmutators, 72, 239
product particle measures, 124 hyperisopsin to electromagnetism, 58
propagators Lorentz to rotation groups, 64
on shell, 79 Lorentz to spin group, 104

pure gauge, 122, 169, 174 rotations to axial rotations, 66
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unitary relativity, 209
vector fields, 112

Weinberg angle, 187

Weyl equations, 115

Weyl matrices, 27

Weyl representations, 21
Weyl spinor reflections, 36
Weyl spinor fields, 115

Weyl spinor polynomials, 41

Weyl spinors, left and right, 21
Weyl transmutators, 64

width, partial, 127

‘Wigner element, 239

Wigner fixgroup element, 58, 71
Wigner rotation, 65, 107

Wigner’s particle classification, 209

Yukawa potential, 84
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