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Preface and Acknowledgements

This book has its origins in the Australasian Remote Sensing and Photogrammetry
conference series. The theme for the book, Innovations in Remote Sensing and
Photogrammetry, encompasses a broad range of topics in geoinformation and car-
tography presented over 36 papers. These are characterised in four sections: data
fusion techniques and their applications in environmental monitoring; synoptic
monitoring and data processing; terrestrial applications of remote sensing; and
marine applications of remote sensing. Color figures are an important contribution to
many of these papers. Readers are directed to the eBook version of this publication
for access to full color reprints of the relevant papers.

The book begins with an introduction to spatial data visualization, with particu-
lar focus given to attribute uncertainty, as a critical step in enabling users to assess
the suitability of the data for the intended application and to better understand the
potential limitations of their data and subsequent outputs. This is important for
policy-makers and natural resource managers whose decisions depend on spatial
information. Consequences can be severe if data is unknowingly erroneous or mis-
used. This paper provides a setting for the way in which we as spatial data providers
and users need to think about, and share information. In addition it provides a link-
age between this book and the book series, Lecture Notes in Geoinformation and
Cartography, to which it belongs.

The first section begins with a series of papers on remote sensing data fusion
techniques and their applications in environmental monitoring. Data synthesis and
integration is critical to unlocking the full potential of earth observing sensors. In the
context of landcover mapping, Ali et al. explore a method of combing both active
and passive imagery. They conclude more accurate land cover mapping is attain-
able using object-level fusion than using the pixel-level supervised process. Bunting
et al. present a technique that uses textural information, derived from image filters,
to be used alongside hyperspectral data for the classification of broad forest types.
Poon et al. discuss the potential for QuickBird as an effective method of extract-
ing 3D information to be used for high accuracy ground feature determination. Lee
et al. calibrate the ICESat laser data with airborne Lidar to generate new data prod-
ucts providing information about forest height and structure. Finally Sheffield et al.
describe a native woody vegetation ground data collection protocol that attempts to
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integrate the spatial resolution of several remotely sensed datasets and the spatial
variation of vegetation into a common framework.

The second section presents an overview of the use of remote sensing as a syn-
optic monitoring tool. The importance of remote sensing in its capacity to monitor
the Earth, often in near real time, requires advancing our understanding in sensor
technology and in the methods we employ to obtain and use spatial monitoring infor-
mation. The Landsat program and its data archive are reviewed by Arvidson et al.
for its utility in the analysis of global climate and environmental change. Furby
et al. and Wu et al. discuss Landsat alternatives and quantify the effects of using
SPOT 4, CBERS and Landsat 7 SLC-off images instead of the current Landsat 5
images in the context of continuity in climate change monitoring. The potential of
the PALSAR instrument to support the inventory, conservation and management
of wetlands in different areas around the world is evaluated by Lowry et al. and a
new classification procedure for mapping terrestrial carbon within an operational,
satellite based, forest monitoring system is offered by O’Connell et al. Processing
methods are overviewed by Broomhall et al. who propose an aerosol optical depth
retrieval method to facilitate better atmospheric correction of remotely sensed data
particularly at the synoptic resolution level. McAtee et al. present an improved near
real time atmospheric correction for MODIS data and Goessmann et al. propose an
algorithm for the detection of active fires using the MODIS sensor. Grant presents a
paper on operational land surface monitoring, while Griersmith et al. review recent
developments in meteorological remote sensing.

The third section on terrestrial applications of remote sensing provides an
overview of several key application areas; woody vegetation, landcover, wildfire,
agriculture and built environments. The variety presented in this section highlights
the enormous breadth of applications afforded by remote sensing technologies.
Barry et al. explore a remotely sensed technique with the potential for distinguish-
ing eucalypt phenology (seasonal change) from leaf stress. Vescovo et al. assess the
utility of vegetation indices for grassland mapping, whilst Ferwerda et al. assess a
range of commonly used vegetation indices for detecting nitrogen status and crop
growth/production of wheat under a range of nitrogen fertilizer and irrigation treat-
ments. The paper by Handcock et al. asks ‘how remotely-sensed observations of
pastures in an intensively managed dairy system change in relation to intensive
management practices?’ and found the observed spectral response varied with the
length of time since the paddock was grazed. An overview of the Pastures from
Space program is given by Stovold et al. Hall et al. propose an algorithm to be used
in identifying a set of vine pixels with the aim to achieve improved remote viticul-
ture canopy mapping. Hempel et al. use a Generalised Additive Modelling approach
to predict weed occurrence and Eustace et al. present a semi-automated method to
map gully extent and volume using LiDAR. Land use and land cover mapping is
addressed in papers by Schroers et al. and Schmidt et al., and Mauger et al. maps
mineralogy using the three HyMap hyperspectral instruments. In contrast to the
natural environment, Fulton et al. provide a description for the automated recon-
struction of buildings using digital video imagery and photogrammetric techniques.
The issue of remote sensing and wildfire is examined in four papers. Goessmann
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et al. propose an algorithm for the detection of active fires using the MODIS sensor
whilst Martin et al. present two papers on the theme of assessing grassland curing
(or water content) for enhanced wildfire risk mapping. Cook et al. present a narrative
of bushfire remote sensing from experience gained in NSW and the ACT, Australia,
during the years 2001–2003.

The fourth section on marine applications of remote sensing begins with papers
by Kutser et al. and Thankappan et al. which explore benthic mapping methodolo-
gies based on SAR, optical sensors and ancillary datasets. Majewski et al. evaluate
methods for the monitoring the optical properties of marine water bodies, and
Metsamaa et al. evaluate the performance of the new MERIS Level 2 products in
retrieving marine chlorophyll metrics. Radliński et al. uses the diagnostic spectral
features of oil to map oil slicks on the ocean.

In conclusion the editors wish to thank all the authors for their involvement and
for enabling us to compile their work into this book. On behalf of the authors, the
editors would also like to acknowledge and thank the generous contribution made
by the many anonymous reviewers. Without this combined effort, this book would
not have been realized.

Melbourne, Australia Simon Jones
23rd October 2008 Karin Reinke
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Introduction: Visualising Uncertainty
in Environmental Data

K.J. Reinke and S.D. Jones

Abstract The ever-increasing use of spatial data in environmental applications
and studies, coupled with the rapidly growing number of datasets available, the
need for effective tools that enable users to manage issues of uncertainty is vital.
This paper focuses on the visualisation of attribute uncertainty as a critical step in
enabling users to assess the suitability of the data for the intended application and
better understand the potential limitations of their data and subsequent outputs. For
policy-makers and natural resource managers whose decisions depend on spatial
information, the consequences can be severe if that data is erroneous or misused.

This paper explores some of the representation issues that exist with environmen-
tal data and reviews the different ways of describing and visualising uncertainty.
The review progresses from examining standard visual variables through to more
advanced, but common, static techniques such as the third dimension. The purpose
of this paper is to identify and review some common representation and communica-
tion methods available for visualising spatial data uncertainty. Emphasis is directed
to those examples that relate specifically to issues of uncertainty that commonly
occur in environmental information and which have been sourced from imaging
based technologies such as satellite remote sensing. This review is important, since
it is needed to provide the link between attribute uncertainty and its implementation
in software that will correctly communicate its meaning to users. Many methods
exist for presenting spatial data quality and information to users. Traditionally this
has usually been done using paper maps. However, the availability and development
of new digital techniques has increased the ways in which such data can be por-
trayed. Such advances have allowed users to better explore their data and, hence,
foster a better understanding of the problem at hand.
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School of Mathematics and Geospatial Science, RMIT University, Melbourne, VIC, Australia
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Introduction

Describing Uncertainty in Environmental Data

Attribute uncertainty refers specifically to the thematic content of the data and is fun-
damental to any type of environmental information. The thematic domain provides
information about what occurs at different locations in the data. Often the attributes,
which are the relevant properties of entities in the real world, are collected and
organised into themes or layers. An attribute is usually considered to be a textual
or numerical description of a defined location. The method by which environmen-
tal data are collected and/or represented plays an important role in understanding
attribute uncertainty. In some instances, what is to be collected is relatively straight-
forward such as recording the spectral signature from remotely sensed imagery, the
pH of a stream or the number of species per hectare. Yet, in many other situations
it is defining what is to be collected and how these should be organised that is the
source of uncertainty.

Most definitions of attribute uncertainty hinge around the notion of how closely
the attribute data represents the truth, or what is accepted to be truth. In other words,
the attribute in the dataset should correspond to what is found at the same location
in the real world. However, this definition is considered too general when assigning
visualisation techniques. Table 1breaks down attribute uncertainty into five elements
and meanings based on existing spatial data quality standards (ANZLIC 2007) and
previous work by Beard (1997).

Attribute uncertainty in the data can be affected by each of the parameters
described in Table 1. With some parameters, as in the case of resolution, complete-
ness and accuracy, they may be strongly connected particularly in environmental
data sourced from satellite remote sensing. Resolution clearly influences the level
of accuracy and degree of completeness in the data.

The quality indicators and quality measures for attribute accuracy fall into two
general groups, depending on the level of measurement of the attribute (Chrisman
1991). Attributes that use continuous measures (for example, interval/ratio) usu-
ally express accuracy by the standard deviation (σ) or the Root Mean Square Error
(RMSE). Some attributes of this nature, such as elevation, can adopt the same accu-
racy tests used to determine positional accuracy (Chrisman 1991). The other group
of attributes are those with non-quantitative or discrete values, such as categorical
data. For this type of data it is difficult to calculate metric differences, although
fuzzy set theory may give degrees of similarity. Sometimes as Woodcock and Gopal
(2000) and others (e.g. Bordogna et al. 2006) explain, a linguistic rating system
such as absolutely right, good answer, reasonable, understandable but wrong and
absolutely wrong may be used to indicate accuracy. Yet generally the accuracy
measurements assigned to categorical data include Percentage Correctly Classified
(PCC), Overall Accuracy (OA), Kappa (κ), producer′s accuracy and consumer′s
accuracy. Most of these indices are derived from a misclassification matrix (Veregin
and Haragitai 1995) and are useful for assessing overall attribute accuracy (Veregin
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Table 1 An overview of the quality parameters that affect the thematic domain in spatial
information

Parameter Description

Accuracy Attribute accuracy refers to the attribute in the dataset, and how closely the
attribute corresponds to what is considered to be the truth at that location.

Resolution Attribute resolution is dependent on the measurement scale of the attribute. For
categorical data, resolution describes the fineness (or coarseness) of category
definitions. For quantitative data, resolution is the precision of the measurements
discernable in the data.

Consistency Attribute consistency refers to the validity of the relationships between attributes.
Attribute consistency can also describe the appropriateness of the logic
associated with the attribute collection and definition method. Internal attribute
consistency refers to the compliance of values with attribute codes and
definitions and external attribute consistency refers to the logic and repeatability
of attribute definitions and attribution methods.

Completeness Attribute completeness describes the completeness to which the attributes
collected match the intended model. It can include errors of omission where the
attribute list does not account for all attributes, and commission where the
attribute list contains attributes that do not belong. Completeness is affected by
the sampling scheme, and in remote sensing by the atmospheric conditions in the
scene (e.g. cloud cover).

Lineage Attribute lineage provides a description on the attribute content of the data, who
collected the data, the instruments used and the processes applied. Attribute
lineage is not a true quality parameter because it is not an implicit characteristic
of the data.

1998). A measure produced by stochastic simulations (for example, Monte Carlo
method) uses an error model to generate equally possible but simulated outcomes of
the data. The measure is termed ‘realisations of the error model’ (Goodchild 1995)
and is suitable for both continuous and discrete attributes.

Representing Environmental Data as a Source of Uncertainty

Research to date into attribute data uncertainty has concentrated primarily on the
uncertainty generated from conversion between raster and vector structures, the mis-
classification of areal units and the uncertainty resulting from overlaying categorical
datasets. Despite progress in these areas, the visualisation and communication of
attribute uncertainty in environmental data is still of concern. Indeed, some of the
sources of uncertainty stem from inappropriate methods of data representation, an
issue that has been in existence since the creation of maps. The issue is more funda-
mental than the intentional or unintentional misuse of visualisation methods because
it lies within the very nature of data itself. The problem surrounds the lack of com-
monly available categorical representations for entities that are ill-defined and not
uniform in properties or type across that area. The same can also be applied to
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how actual uncertainty measures associated with the data are visualised. The prob-
lem is compounded by human tendencies to generalise and classify the world into
orderly and unnatural arrangements. There are, of course, entities that occur as crisp
boundaries and/or homogenous units, many which can be found in the manufac-
tured world, such as building footprints or road networks. Other discrete features
are artificial constructs that do not exist in reality but exist in the social and digital
realm such as the cadastre of a city, or a national park boundary. However, for those
entities that do not fall naturally within easily defined spatial, temporal or thematic
limits, they pose representational dilemmas.

Broadly, it is possible to define two types of representational uncertainty in envi-
ronmental data of which many examples may be found in Wu et al. (2006), Hunsaker
et al. (2001) and Couclelis (1996). The first may be termed category uncertainty
(Edwards 1994) which is the degree of uniformity or purity of a feature’s properties.
The second may be termed as boundary uncertainty (Edwards 1994) which concerns
the positioning and representation of ill-defined boundaries. Both are a function of
scale (or resolution). If the scale is fine enough, then theoretically, diversity in the
class should not occur and without diversity the cut-off between properties becomes
discrete. However, to work at such a scale is simply impractical. In the same way
that scale can eliminate the problem the reverse is also true. Some natural phenom-
ena continue (for example, coastline) to vary spatially at all scales, as illustrated by
work with fractals (Mandelbrot 1982 and Burrough 1986). It is not uncommon for
diversity in class and boundary definitions to influence and exacerbate the problem
in each other, as they are not always mutually exclusive.

Category Uncertainty

The definition and classification of environmental attributes, and how they are
collected, can sometimes be vague or ambiguous. This issue is one of attribute
accuracy; whether a location in the dataset has been allocated the correct proper-
ties. This is dependent on many factors including the intended use of a map, the
mapping conventions adopted and the nature of the phenomenon itself (Aspinall and
Pearson 1995). There is the underlying philosophical argument tied to scale because
at some scale the meaning of an attribute can fall apart. For example, the concept
of ‘forest’ can become meaningless at a sufficiently large scale. It becomes a case
of not seeing the forest for the trees. Other class identification problems are based
on how the group is defined. Unless stringent criteria are provided for each group,
the allocation of space into each class may differ between people, or classes may
appear ambiguous. It is not unusual for the observers or data collectors to disagree
or produce different interpretations (Edwards 1994).

Categorical map units seldom represent homogenous areas, particularly for the
classic example of soil polygons. It is more typical for an area to exhibit multi-
ple characteristics of differing amounts rather than one uniform characteristic. Such
data are considered to be internally heterogeneous (Aspinall and Pearson 1994).
However, the degree to which the feature describes what is taken to be the truth in
traditional GIS is either a definite yes or no. As an example, the vegetation type
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is either open woodland or it is not. Categorical data suffer the most of all data
types from this type of problem. Depending on the resolution of the classes used
and on the data type, it can impact on the severity of this problem. While more gen-
eral categories are likely to contain less attribute inaccuracy, they are more likely
to be prone to heterogeneity within classes. The reverse also applies that whilst
more specific classes are less prone to heterogeneity, they are more likely to contain
attribute inaccuracy because the chance of correct classification has decreased. As
described previously, there are methods of measuring this (for example, misclassifi-
cation matrix) and whilst the information about the purity of the map or class units
is often recorded in reports (Fisher 1991) it is rarely incorporated or stored with the
digital data.

The question here, therefore, is how to represent this type of information?
Methods are available for identifying the uncertainty in categorical coverages that
arises from the purity of the classification and error models have been developed by
applying stochastic processes to describe class membership and within-class inclu-
sions (Wu et al. 2006, Hunsaker et al. 2001 and Goodchild 1992). Goovaerts (1997)
believes that categorical uncertainty can be addressed using the indicator approach
from geostatistics. But before these methods can become fully general and avail-
able to GIS users, Unwin (1995) believes that it will be necessary to be able to
handle entities that are themselves fuzzy. The portrayal of category uncertainty has
focussed on utilising animation techniques. Fisher (1993) used animation to visu-
alise the uncertainty as multiple realisations were calculated. Little work has been
done evaluating the effectiveness of such displays, and even fewer examples of static
displays of category uncertainty can be found.

Boundary Uncertainty

The representation of feature boundaries attempts to delineate areas of different
kinds. Representation is simple for sharply defined features, but how can the change
between categories that are less exact be adequately represented? Where the tran-
sition zone between classes is abrupt it can be represented by a sharp line but
where the transition zone is smooth, it is much more difficult to represent, par-
ticularly when the transition may not have a linear function of change. This is a
commonly observed phenomenon within the natural world and such locations are
formally described as ecotones or environmental gradients.

Representation of the transition zone depends on the adjacency behaviour or rela-
tionships between classes. For example, the change between Class A and Class B
might be gradual over a small distance but between Class A and Class C, the change
might be over a much larger distance. It could even favour a particular class so the
change occurs more rapidly as Class A is approached. Burrough (1986) describes
the transitions as being characterised by either sharp, large or trend-based changes. It
requires knowledge about the spatial relationships shared between the attributes and
how these can be stored as part of the database. Providing this type of information
would assist in creating appropriate representations such as the use of transiograms
(Li 2007).
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Burrough (1986) defines three kinds of boundaries associated with soil mapping.
These are abrupt boundaries, boundaries that divide a trend and boundaries resulting
from sampling variation. Abrupt boundaries are where large changes in soil prop-
erties occur over short distances. Boundaries that divide a trend are used to group
continuous data into discrete classes, and this is a common trait of choropleth maps.
The final boundary type is created from sampling variation. It results from two simi-
lar observations being classified differently simply because they fall outside a certain
class cut-off. This is a function of the binary nature of maps, which does not allow
for the fuzzy nature characterised by some natural phenomena. In recognition of
this, some researchers (for example, Chen 2002, Edwards and Lowell 1996 and Zhu
1996) have suggested the use of fuzzy logic to better describe boundaries between
polygons.

Typically, boundary uncertainty has been represented by using the epsilon band
and different distribution functions can be used to locate the boundary within the
band (Aspinall and Pearson 1994). Edwards (1994) presents three different modes
of presenting boundary uncertainty generated from a number of independent inter-
pretations. The first provides all interpretations on the one map, the second presents
a solid buffer for the full set of interpretations and the third uses a solid buffer plus
a skeleton of the ‘average’ boundaries (Edwards 1994). Couclelis (1996) lists fuzzy
boundaries, fractal boundaries, multiple boundaries, movable boundaries (anima-
tion), ad hoc boundaries, flashing boundaries, probability surfaces, buffer zones,
bands, colour gradations, aural signals, textual warnings, multiple representations
(multiple windows) as some of the available visualisation methods. However, the
candidate stresses that there is a need for evaluating these types of displays against
the different types of boundary uncertainty before they can be confidently applied.

Visualisation Methods

Methods for Visualising Environmental Uncertainty

The most common form of attribute uncertainty is attribute accuracy. It is the
difference between the thematic value of data compared to that accepted as the
truth or real world at the location at which the attribute was observed. Leitner and
Buttenfield (1997 and 2000) report attribute accuracy to be defined as the discrep-
ancy in categorisation or the probability of misclassification. There are two main
approaches to attribute accuracy: firstly, looking at the actual attribute accuracy mea-
surements, and secondly, how the original values vary according to their attribute
accuracy.

The application of the visual variables (Bertin 1967) to attribute accuracy has
depended on mapping the visual variable to the scale of measurement (after Stevens
1946) for a particular attribute accuracy parameter. From this, it could be proposed
that size and value are useful for portraying quantitative uncertainty values and ori-
entation, shape, hue and texture useful for nominal uncertainty measurements. With
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the exception of texture, MacEachren (1992) proposes the same visual variables of
uncertainty visualisation. Van der Wel et al. (1994) specifically associates hue, size,
texture, value and saturation for the display of attribute accuracy. Jaakkola (1996)
suggests hue for qualitative data and saturation or intensity for quantitative data
based on the theory of graphics. Clapham and Beard (1991) used size to increase
the area of a symbol proportionately to the ratio measurement of the attribute accu-
racy and suggested discrete color variables to be used to represent nominal quality
measurements. Buttenfield (2001) uses a more detailed definition that includes the
data type of the attribute accuracy that links texture and saturation, hue and tex-
ture, and saturation and point gradients to discrete, categorical and continuous data
respectively. Kurtener and Badenko (2001) and MacEachren (1992) employ color
saturation as the most logical visual variable for portraying uncertainty where pure
hue indicates high certainty and unsaturated hue is equated to low certainty. This
is in contrast with Buttenfield and Beard (1994) who found that users had trouble
associating color saturation with quality. With the exception of saturation, it appears
that there is a consensus about the likely mapping of visual variables to attribute
accuracy. However, empirical testing is required to validate these assumptions.

Empirical research has already been initiated in this area (for example, Aerts et al.
2003). In addition, Leitner and Buttenfield (1997 2000) investigated the degree to
which value, saturation and texture when used to portray attribute accuracy influ-
enced the confidence, correctness and timing in a decision making exercise. It was
found that lighter values represented lower attribute accuracy measurement. Almost
as effective in representing attribute accuracy was texture with finer textures being
interpreted as low uncertainty and coarse textures as high uncertainty. It was con-
cluded that these two variables were useful for assisting correct decisions whereas
certainty maps that used saturation, where greater saturation implied greater cer-
tainty, improved decision response times. MacEachren et al. (1998) also found
texture useful when embedded in a choropleth map that used value for representing
attribute data. It was found that users were able to recognise unreliable (ratio) data
and still perform map reading tasks associated with the actual data such as pattern
recognition. This is in contradiction with what is expected from the accepted appli-
cation of the visual variables but the experiment may have been limited to locating
the attribute uncertainty.

Arising from investigations into the visualisation of uncertainty, and made pos-
sible through advancements in computer graphic technologies, MacEachren (1995)
suggests further additions to Bertin’s visual variables. They are essential variations
in focus that MacEachren (1995) terms clarity and are useful methods for creating
graphical ambiguity. It is suggested there are three states of clarity evolving from
initial studies into focus by MacEachren (1992). They include:

• Crispness. This visual variable deals with the sharpness of map features. Details
on the map may be de-focused by the spatial filtering of the edges (that is, contour
crispness), internal fill (fill clarity) or both. The greater the visual fuzziness or
fading of the feature, the greater the associated uncertainty. This can be applied
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to all data types. McGranaghan (1993) believes crispness can portray qualitative,
and most likely, quantitative information.

• Resolution. This visual variable shows change in spatial precision (for exam-
ple, display size or grid size) and is concerned with the geometry of the object
rather than its attributes. It is similar to texture and can produce the impression
of zooming in and out.

• Transparency. This visual variable employs effects that are representative of fog
or cloud. MacEachren et al. identified fog as having intuitive appeal for repre-
senting data reliability by obscuring uncertain map objects with fog. The degree
of visual ambiguity is implied by the amount of fog present. Bastin et al. (1999)
used tiny clouds to surround certain values in graphs to imply vagueness.

Plewe (1997) applied these new visual variables for portraying the uncertainty
surrounding heterogenous classes and uncertain class boundaries. Hansen (1998)
used crispness to qualitatively display the fuzziness between non-discrete feature
boundaries. Plewe (1997) Aspinall and Pearson (1994) and Edwards (1994) used
resolution, specifically line thickness, to portray transitional boundaries between
classes. Both methods suggest uncertainty about the boundary but provide no detail
about the magnitude of that uncertainty or transitions in much the same way as
dashed lines indicate inferred boundaries in geological maps.

Symbol presence or absence (McGranaghan 1993) has also been added to the list
of visual variables. Its usefulness as a communication tool increases when driven
by user interaction or thresholding (Reinke et al. 2006). In a fuzzy context, they
serve as the extreme endpoints for the gradual degrading of features in applications
of clarity. In other words, the object continually fades by varying the saturation of
the background and symbols in the display until the object disappears from view.
Clarke and Teague (2000) observe that fading is particularly suited to attribute
uncertainty. The use of presence/absence as a visualisation technique relies on ani-
mation (McGranaghan 1993) and user interaction. Often the complete benefit of a
single visual variable cannot be realised and it may prove fruitful where the vari-
able is used in conjunction with another variable or display technique. For example,
Leitner and Buttenfield (1997) found color saturation and focus useful for depicting
uncertainty.

The visual variables that make up color are considered to be useful for bivari-
ate mappings of uncertainty and spatial data. Hunter and Goodchild (1996) found
hue (used to portray the data) and saturation (used to portray the uncertainty) to
be a useful combination, usually with strong colors having high quality and pale
colors having low quality. Color ramps that vary continuously or as discrete hues
across transitional zones can also indicate ambiguity at boundaries (McGranaghan
1993). Clarke and Teague (2000) support this, finding brighter colors indicate less
uncertainty. Color guidelines by Brewer (1999) have shown how color in bivariate
mapping can be successfully applied. However, other empirical investigations have
suggested that the use of color characteristics to simultaneously represent the data
and the attribute accuracy generally caused users to have difficulty in distinguishing
between them (MacEachren et al. 1998 and MacEachren 1995).
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Digital imaging technology has enabled color transformations between red,
green, blue (RGB) systems and their hue, value (or intensity) and saturation (HVS),
hue, lightness and saturation (HLS), cyan, magenta and yellow (CMY) components.
Hue is used to convey nominal data, together with value and/or saturation to con-
vey quality information (Van der Wel et al. 1994). The quality information becomes
embedded within the attribute information upon conversion from the HVS compo-
nents back to RGB creating a bivariate map (for example, Jiang et al. 1995). Whilst
Clarke and Teague (1998) and Jiang et al. (1995) both used HVS systems for rep-
resenting uncertainty, the increase in complexity should not be overlooked (Van der
Wel et al. 1994). In contrast, Schweizer and Goodchild (1992) observed no intuitive
association between data quality and value. Once value and saturation have been
re-transformed into the RGB system, there is no concept by the user of uncertainty
as a linear progression

Other types of bivariate mapping exist apart from changing color characteristics.
By applying line thickness to isolines, Beard and Mackaness (1993) were able to
convey both actual data and reliability simultaneously. Another type of bivariate
mapping employed hue to represent the actual data and opacity or size to depict
the uncertainty (Drecki 1999, 2000). The first method uses low opacity to refer to
low reliability and high opacity to refer to high reliability of a classified satellite
image. The second method used the variable size to communicate the classification
accuracy. Each pixel or cell was represented by a single square symbol (of a partic-
ular hue) its size being dependant upon the level of uncertainty. The maximum size
was equal to pixel size and indicated no uncertainty. Smaller squares indicated poor
quality. Thus, an area on the map that was of poor quality would be mostly absent
of color and usually ‘filled-in’ with.

The use of the third dimension is another accepted method for portraying the
magnitude of attribute uncertainty. It is particularly useful because when used in
true 3D it allows the attribute component of the data to be shown in conjunction with
the associated uncertainty. This method is well suited to continuous environmental
data (e.g. temperature) as it allows the attribute component to be draped over the
continuous landscape. Van der Wel et al. (1994) and Fisher (1992) use high z values
to indicate areas that have high levels of uncertainty. Thus, plateaus indicate uniform
accuracy, elevated peaks indicate areas of poor accuracy and low elevation indicate
areas of good accuracy. Kraak (1994) contemplates both the positive and negative
implications of allowing users to interactively exaggerate the uncertainty (x) axis as
is available in many 3D modules of current GIS. Uncertainty relief maps can also
be created using shading effects to achieve realistic 3D visualisations.

The use of perspective is not immune to interpretation problems because of dis-
tortion and obscurity problems associated with displaying a 3D image on a 2D
screen. Thus, users can have trouble gathering useful information from them. To
counteract this researchers (for example, Bastin et al. 1999) use linked plans and
contour maps to preserve all information.

The methods used to visualise attribute accuracy are often a function of scale
or resolution of the data. Visualising attribute accuracy specifically refers to the
resolution of the data, whereas attribute accuracy can vary according the resolution
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of the data. This is because of resolution requirements of the application. As such,
attribute resolution is critical to map users. Attribute accuracy is only affected where
the resolution is lower than the required scale. In such circumstances, this needs
to be visualised appropriately. Attribute resolution refers to the smallest attribute
uni, which can be observed. For discrete attributes, resolution refers to the number
of categories, ranges or ranked classes. For continuous attributes, resolution is the
equivalent of spatial resolution as resolution relates to the smallest unit able to be
observed or represented and the precision of the measuring instrument. For remotely
sensed data, this relates to the spectral and radiometric resolution of the sensor on
board the satellite. In addition, to capture scale or resolution, the display scale will
affect the size of the features (MacEachren 1995).

Traditionally, map scale was reported in one of three ways (Monmonier 1996).
The first as a ratio scale (for example, 1:50,000), the second as a verbal scale (for
example, one centimetre represents one kilometre) and the third as a graphic scale
(for example, scale bars). The most effective method is the graphic scale because
enlarging or reducing the map subsequently results in the graphic scale also being
enlarged or reduced. However, with the advent of digital technologies, ratio and
verbal scales are updated on the fly as the user zooms in or out of the display (for
example, ArcGIS 9). The replacement or addition of a graphic scale would neverthe-
less be considered an improvement because of the ease of understanding they offer
over ratio and verbal scales. This still only considers scale in terms of the display
scale rather than providing information about the capture scale for the data. Source
scale becomes important particularly where multiple datasets are being utilised. In a
display context, ESRI’s ArcGIS 9 product provides user control over the maximum
and minimum scales a dataset may be shown. As a minimum, source scale infor-
mation should be readily available to the user. In a sense, resolution is a part of the
lineage accompanying the data. This merely emphasises the need for lineage to be
an accessible adjunct to the data.

As stated previously, information often consists of multiresolution data. That is,
the resolution of the data is not homogenous. To convey this variation, the pres-
ence/absence variable could be used such that when a user zooms in beyond a certain
scale features visually disappear or appear as provided in the display thresholding
of ArcGIS 9. Similarly, feature resolution or crispness (MacEachren 1995) for dis-
crete objects could also be applied in conjunction with zooming facilities. Other
display techniques could use multi-legends to illustrate the changes in source scale
of the data. Because scale is a ratio, the visual variables of value but less so size
because of the impact on the geometric resolution could be applied to depict differ-
ences in conjunction with a legend. An approach to show spatial variation in source
scale for multinomial or continuous features would be to superimpose a grid where
each grid cell size is representative of the source scale. Johnson (1995) introduced
metapictures for satellite data as thumbnails of the data that communicated sum-
mary information including the resolution of the data. Part of an image is shown at
full resolution as a thumbnail to convey resolution information.

Beard’s (1997) definition of resolution separated discrete and continuous data
into the number of classes and precision of the measuring instruments. It is possible
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to extend this definition to include information about class homogeneity and, in the
case of interpolated continuous values, the number of sites used during the inter-
polation process. Both additional examples can be considered a type of attribute
resolution tied in closely to lineage (and subsequently accuracy). Most of this infor-
mation may be documented within the lineage report; however, information such as
site locations used in the interpolation may be more appropriately communicated
to the user using map form to indicate spatial distribution. For example, Stephan
(1995) provides an additional window to the display that shows the distribution
of sampling stations in conjunction with the interpolated data. Likewise Beard and
Mackaness (1993) showed the location of sample points as a simple method of visu-
alising the reliability of the interpolated values allowing the user to toggle-on and
toggle-off point locations. They further observe that it would be possible to graph-
ically code the sample points according to lineage information providing the user
with even more uncertainty information by which to assess the quality of the output
interpolation.

Attribute resolution involves more than just the geometric scale at which the data
was captured. It is equally as important to describe the details of the classifica-
tions and measurements. Many GIS provide the ability to interactively manipulate
the range and classification of data. In other words, users may adjust the attribute
resolution of data to coarser resolutions or classify continuous data. Increasing user
control in data manipulation suggests that knowledge about the original attribute res-
olution would be useful for making classification decisions. In particular, attribute
resolution, which is linked to class homogeneity, can be vital in assessing the fitness-
for-use of data. Such an example can be found in soil data types where the type of
inclusions and/or rate of change across the boundary that occur about a soil polygon
is of the utmost importance. Attribute resolution is a way of assessing the suitability
of a classification.

A variety of methods have been used to portray boundary and class accuracy
when it is actually resolution that is being represented. Although, the distinction
between resolution and accuracy is usually difficult to make as accuracy is par-
tially a function of scale. There is considerable research dedicated to improving
ways of recording and subsequently representing continuous or heterogeneous data.
The most common approach to date appears to be fuzzy memberships. While this
information can improve the fineness of classes, the attribute resolution information
must still be available to the user. Where traditional discrete categories were rela-
tively easy to report, fuzzy memberships may involve several values at the class or
individual feature level. These are usually available in the form of matrices but alone
do not provide information about their spatial distribution. In this sense, resolution
may be considered internal class resolution (that is, homogeneity) and between class
resolution (that is, boundary uncertainty). Hunter and Goodchild (1996) cite work
whereby the description of homogeneity variation is communicated using variabil-
ity diagrams. The value of these approaches is that resolution is shown implicitly
rather than explicitly. As such the user is simultaneously viewing the data and its
resolution.
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Summary

This paper serves as a review by which to begin classifying visualisation tech-
niques and assigning them to different uncertainty elements found in environmental
data. It was suggested that key elements of attribute uncertainty should include
accuracy, resolution, consistency, completeness and lineage. Although it was gen-
erally found that measures were supplied for attribute accuracy and resolution only.
It also is apparent that the representation of the data itself could be a source of
attribute uncertainty, particularly for features that had poorly defined boundaries
and non-homogenous characteristics. How the data occurs as a natural phenom-
ena, how this is arranged in a spatial framework and the levels of measurement for
the attributes are all important considerations when choosing a representation for
attribute uncertainty.

Different strategies may be used to assign different symbolisation and visuali-
sation techniques to environmental data. Those employed vary depending on the
phenomena being mapped and the level of measurement. Developments in com-
puter graphics have improved ease of use and opened up new ways in which the
traditional visual variables are used, as well as creating new visualisation methods
entirely. This progress, coupled with advances in understanding the human cogni-
tive and perceptual responses to these types of displays, will continue to promote the
emergence of new types of representation of environmental data and information.
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A Comparison of Pixel- and Object-Level Data
Fusion Using Lidar and High-Resolution
Imagery for Enhanced Classification

S.S. Ali, P.M. Dare, and S.D. Jones

Abstract Fusion of multisource data is becoming a widely used procedure due to
the availability of complementary yet dissimilar datasets. The combined use of high
spatial resolution imagery and lidar (light detection and ranging) derived digital sur-
face models (DSM) can reduce interclass confusion in the fusion process. However,
pixel-level data fusion does not take spatial information into account. Pixels from
multisource images are fused depending on their spectral values, regardless of their
neighbour values. Object-level fusion overcomes this shortcoming by segmenting
multisource images into meaningful objects and then performing fusion with the
information imbedded into their topology. This paper compares the results of the
pixel- and object-level fusion of a lidar derived DSM with colour aerial photog-
raphy and multispectral imagery. The comparison is based on the assessment of
the classification accuracy where reference information has been collected through
field survey. Pixel-level fusion of the colour photography and the DSM exhibits bet-
ter results than sole classification of colour photography. The same result is found
for the multispectral imagery and the DSM. Object-level fusion achieves superior
results compared to all pixel-level classification of tested categories. Object-level
fusion of the colour photography and the DSM shows the highest classification
accuracy (91%). Multispectral imagery and the lidar derived DSM achieve 90%
classification accuracy. These results imply that the high spatial resolution of colour
photography has a large influence on the fusion process perhaps greater than the
spectral and radiometric resolution of the multispectral imagery.

Introduction

Airborne remote sensing provides valuable data in various forms and scales for
mapping and monitoring land cover features. Its use has increased dramatically
in recent years due to availability of high-density lidar and high spatial resolution
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digital imagery. Hence, greater attention is now being given to the use of multisource
data fusion and classification. The underlying assumption is that classification accu-
racy should improve if additional features are incorporated (Tso and Mather, 2001).
Image fusion and subsequent classification can be performed at pixel-, object or
feature- and decision-levels (Pohl and van-Genderen, 1998; Schistad-Solberg et al.,
1994). Pixel level fusion operates at the lowest processing level, which refers
the merging of measured physical parameters. This fusion is very sensitive to
geo-referencing and pixel spacing. The main drawback of this fusion is that a multi-
dimensional feature space does not make use of any topological information in the
imagery (Blaschke and Strobl, 2001). In the fusion process it is very likely that
neighbouring pixels of the source images belong to the same land cover class due
to spatial patterns of differing complexity or texture. Thus, the output from pixel-
level processing algorithms may possess some uncertainty (Townshend et al., 2000).
Object-level image fusion overcomes these difficulties by segmenting multisource
images into meaningful multi-pixel objects of various sizes, based on both the spec-
tral and spatial characteristics of groups of pixels. Then the segmented image objects
are classified using expert knowledge within a fuzzy logic and hierarchical decision
tree (Schiewe et al., 2001). In object-level fusion, a set of geo-referenced data from
different sources defines the topology of image objects, and allows these different
types of data to be brought together in a concrete local relation. An advantage of
this process is that image objects can be extracted from one data layer, and subse-
quently in the image analysis step those image objects are able to take into account
the attributes of the other data layers (Baatz and Schape, 2000). The application of
pixel-level fusion and subsequent classification have been showing very unsatisfac-
tory results when applied to high-resolution images (Blaschke et al., 2001; Rego and
Koch, 2003). In high-resolution imagery each pixel is related not to the character of
object or area as a whole, but to the components of the image. As a result, many more
classes are often detected when a classification is performed (Smith et al., 2000).

The overall objective of this research, was to evaluate whether high resolution
airborne optical imagery and/or small footprint lidar data could be used as tools,
either singularly or in combination, for semi-urban landscape feature extraction.
It focused on an agricultural-based semi-urban settlement in southern New South
Wales (NSW), considered typical such settlements across large areas of Australia.
The study aimed specifically to evaluate the results of the pixel- and object-level
fusions used to integrate the information content of the colour aerial photograph
with lidar derived DSM and multispectral imagery with lidar derived DSM. The
comparison of these two approaches draws upon a quantitative assessment of the
quality using statistical, visual and graphical analyses of the results.

Background

Although aerial photography has been used as a mapping tool for a century
(Baltsavias, 1999), the fusion of aerial photography and lidar data has only been
possible in the past few years due to advances in sensor design and data acquisition
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and processing. The following sections therefore provide a brief overview of the
different levels of image fusion as well as the different sensor fusion examples.

Imagery and Lidar Data Fusion

Lidar is a recent development in remote sensing with great potential for creat-
ing highly accurate DSMs. Three-dimensional point clouds describe the range
(distance) of earth surfaces. Lidar provides very accurate position and height infor-
mation, but less direct information on the object’s geometrical shape. High spatial
resolution imagery offers very detailed information on objects, including spectral
reflectance, texture, and shape metrics. Combining these two kinds of comple-
mentary datasets is quite promising for improving land cover mapping (Tao and
Yasuoka, 2002). There have been several attempts to fuse lidar and high-resolution
imagery for mapping land cover in the past. The idea of exploiting the complemen-
tary properties of lidar and aerial imagery was first initiated by Schenk and Csatho
(2002) to extract semantically meaningful information from the aggregated data for
a more complete surface description. Haala and Brenner (1999) combine a lidar
derived DSM with three colour spectral bands of aerial imagery. In this context, the
most problematic task is to separate trees from buildings with low-resolution lidar
data is greatly facilitated by the presence of a near-infrared band. Rottensteiner et al.
(2004) use a lidar derived digital terrain model and the normalised difference vege-
tation index (NDVI) from multispectal image to detect buildings in densely built-up
urban areas.

Pixel- and Object-Level Fusions

The most straightforward approach to deal with the pixel-level image fusion prob-
lem is simply to extend the dimension of the data vectors to include each source.
This approach is known as the stacked-vector method (Tso and Mather, 2001). Each
data vector can be used together as an input to any pixel-based classifier such as
unsupervised or supervised classification. Unsupervised techniques detect clusters
of pixels in feature space and categorize the pixels to the clusters based on the mini-
mum distance criterion. Haala and Brenner (1999) apply unsupervised classification
based on the ISODATA (Iterative Self-Organizing Data Analysis Technique) algo-
rithm to the three bands of a CIR image and a normalised DSM. In this process,
elevation data plays a role in separating different classes but automatic interpre-
tation of the relevant classes is difficult. A rule-based classification scheme was
applied to fuse lidar data and multispectral images (Rottensteiner et al., 2004). In
this scheme Dempster-Shafer theory had been applied to delineate building regions,
combining NDVI and the average relative heights to distinguish buildings from other
objects. Mass (1999) applies a supervised maximum likelihood (ML) classifier on
lidar derived DSM to extract different land cover features.
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Object-level fusion starts with a grouping of neighbouring pixels into meaningful
objects. Fusion is then achieved through utilising different rule-based classifications.
Geneletti and Gorte (2003) developed a sequential application of object-based seg-
mentation and classification for fusing Landsat TM data and aerial photographs. In
this application they used a region-based segmentation technique to segment the
aerial photographs. Then they employed a dedicated set of rules to classify the seg-
mented image with a reference Landsat TM image. Hofmann (2001) put forward
the idea of the object-level approach to detect buildings and roads from high res-
olution satellite imagery using additional elevation information. Object-level data
fusion shows very promising results in recent years. Ali et al. (2005) applied an
automated object-level technique to fuse high-resolution imagery and lidar data. In
this process, a multi-resolution segmentation technique was used to segment multi-
source images, after which a hierarchical decision tree was used to fuse segmented
objects.

In the present study, a comparison of pixel- and object-level data fusion and sub-
sequent classification of lidar and high-resolution imagery is discussed. Comparison
is made using metrics of classification accuracy, and suggestions are made regarding
the best land cover classification of the study site, the town of Mathoura, NSW.

Study Area and Materials

To evaluate the fusions of both optical imagery and the lidar data for classifying
semi-urban structures, an area of 1 × 1 km in southern New South Wales was
selected. The study area is situated in the small town of Mathoura, and comprises the
central portion of the town and contains most typical semi-urban landscape classes.
Buildings in this area have a very distinct shape and their sizes range from very large
to small. This area has a mixture of vegetation, open space and road networks. This
area was selected due to repeated coverage of a large data sets combine with aerial
images and lidar data.

Lidar Data

The lidar data used for this project was acquired by AAMGeoScan (now
AAMHatch) in May 2001. The lidar system used was the ALTM 1225, which
operates with a sampling intensity of 11000 Hz at a wavelength of 1.047 μm.
Approximate flying height of this sensor, was 1100 m and the laser swath width was
800 m. Vertical accuracy was 0.15 m (1σ), the internal precision was 0.05 m, and the
original laser footprint was 22 cm in diameter. The original lidar dataset was pro-
cessed by AAMHatch and provided to the Victorian Department of Sustainability
and Environment (DSE). The provided data were two separate files representing the
first and last return point clouds. The original lidar data had point spacing in the
order of 16 points per m2 and was resampled to a 1 m grid.
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Multispectral Imagery

The multispectral imagery was captured over the study area using an Ultracam-
D with a calibrated focal length of 101.400 mm. Three colour (red, green and
blue) and infrared (IR) band images were collected with a 28.125 μm pixel size.
The radiometric resolution of the images was 16-bit. This enhanced radiomet-
ric range captures detailed information of the land cover features. As a result, in
extreme bright and dark areas we still mange to get redundant information, which
is beyond what is visible in images with lower radiometric resolution (Leberl and
Gruber, 2005).

Colour Imagery

The colour image data, collected by AEROmetrex, was acquired using a Zeiss LMK
152 camera with a calibrated focal length of 152.261 mm. It was captured at an
approximate flying height of 850 m above the ground level equating to an average
scale of 1:5500, which was later scanned at 15 μm to provide a pixel size of 8.25 cm.
The photographic images were orthorectified with the help of accompanying exte-
rior orientation parameters (Xo, Yo, Zo, ω,φ,κ), which were captured using onboard
GPS and IMU sensors.

Fieldwork carried out in the study area in July 2005 and April 2006 allowed
the collection of ground data and the setting of a suitable land cover classes. The
ERDAS Imagine 8.6 was used for image processing and pixel-level fusion, whereas
eCognition Professional version 4.0 was used for the object-level fusion.

Methodology

Following data collection, the optical imagery and the lidar data were fused pri-
marily to extract landscape features of the semi urban area, so that the comparative
fusions could be better evaluated. The proposed comparative study of pixel- and
object-level fusion is based on the use of high-resolution imagery and lidar derived
DSM. The flowchart in Fig. 1, describes the major steps, which were performed
through this data fusion project.

Geometric Corrections

The alignment of the supplied multispectral and colour imagery was not perfect.
The lidar data was considered more stable in positional accuracy due to the avail-
ability of an accuracy report for the lidar mission. But the main constraint was that
the lidar geometry couldn’t be used to align the other images due to the imprecise
shape and size of common visible features in both images. In this context, we used
ground control points to align the optical images. An optimum number of ground
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Fig. 1 The comparative approach of pixel-and object-level data fusion

control points were collected from the study area using differential GPS. The geo-
rectification of multispectral and colour imagery was independent from each other.
Therefore, their accuracy level varied but consistently fell within the desirable limit.
A third order polynomial transformation was applied to rectify the multispectral and
colour imagery. The bilinear interpolation resampling technique was used to bring
all the images to a common spatial resolution of 0.5 m.

Some temporal effects were expected in the data fusion process, due to the dif-
ferences in acquisition time of the images. These were the only available images for
this data fusion project; therefore we had to compromise on this issue. The study
area is a slow growing regional town therefore within this time frame it had not seen
many changes. However, some temporal effects were found, due mainly to moving
objects, which is always a challenge in high-resolution data fusion.

Normalized Digital Surface Model (nDSM) Generation

Lidar first and last return height data were used to generate the normalized digital
surface model for the study area. The last return of the lidar normally represents the
digital terrain model (DTM) and the first return as the digital surface model (DSM).
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A height difference between the DSM and DTM represents the absolute height of
the features. A height threshold was applied to remove any features <2.0 m close
to the terrain surface. This normalized DSM along with multispectral and colour
images was used in the data fusion process.

Pixel-Level Fusion

A pixel-level approach was implemented to fuse the optical imagery and lidar
derived nDSM. Two stacked-vector data sets were created, one nDSM with the
three-band colour image and then the nDSM with the four-band multispectral image.
An independent supervised classification procedure was then applied to them sepa-
rately. First, a set of suitable target classes was established after careful analysis of
the landuse maps and aerial photographs.

In particular the following eight land cover classes were identified: open-
space/road, grey roof, grey roof shadow, colour roof, colour roof shadow, grass,
tree and tree shadow. For each of these classes a set of ground data was collected,
approximating to a stratified random criterion. The ground data plots covered nearly
5% of the total area to be classified. The ground data samples were then split into
two subsets: the training data and the test data. The training data were used to create
a spectral signature for each of the classes. Using the test data, accuracy assessment
was performed on all classified images, calculating the relevant confusion matrix.

The training statistics show (Table 1) that the training areas contain an ade-
quate number of pixels and they are separable in spectral bands and nDSM layer.
This issue is important in supervised classification to avoid the misinterpretation of
land cover features for similar spectral signatures. The degree of interclass spectral
variability for each landscape class has been assessed through the computation of

Table 1 Derivation of training statistics used of 4-band multispectral image and nDSM data for
maximum likelihood classification

Class
Tree
shadow Tree Grass

Color roof
shadow Color roof

Grey roof
shadow Grey roof Roads

Pixel
count

853 1091 2614 164 344 607 4778 10171

Band 1 Mean 478.23 868.21 1325.6 650.78 1574.2 763.47 4152.6 2752.0
SD∗ 140.97 170.65 294.51 165.50 593.44 190.82 1480.4 881.67

Band 2 Mean 286.70 476.46 653.87 347.47 673.33 429.80 2057.5 1246.6
SD∗ 60.97 74.01 86.18 77.60 199.99 91.344 727.89 348.01

Band 3 Mean 312.06 364.22 444.59 370.31 605.23 415.99 1335.2 814.21
SD∗ 32.87 31.24 38.44 69.71 153.62 54.06 457.12 168.07

Band 4 Mean 806.84 2314.9 2335.2 1043.0 2323.8 933.23 2664.8 2014.1
SD∗ 191.04 322.05 276.35 180.83 584.77 181.14 842.61 603.148

nDSM Mean 0.15 5.36 0.07 0.80 3.73 0.32 3.96 0.00
SD∗ 0.86 3.27 0.78 1.82 1.56 1.10 2.07 0.03

∗SD = Standard deviation
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training statistics as measured by spectral profiles. Table 1 summarises the train-
ing statistics of the sample classes. The mean and variance are the indicators of the
spectral independence. The mean and variance of the training features for 4-band
multispectral data indicated that the main groups such as roofs, and trees were bet-
ter distinguished than the minor groups, such as different categories of shadows.
Spectral independence was also examined by analysing spectral signatures for each
of the candidate landcover classes. A scatter plot of the training signatures revealed
that they were spectrally different from each other. Statistics were generated for the
supervised classification of the integrated layers of colour imagery and nDSM data.
The distance between signatures was assessed through both tests on their statistical
separability and computation of contingency matrices (Richards, 1993). The clas-
sification was performed using a maximum likelihood classifier with equal prior
probabilities.

Object-Level Fusion

Object-level data fusion requires the identification of meaningful objects over the
multisource images and classifying them with class attributes. Therefore, the overall
procedure consists of a sequential application of segmentation and classification.
Object-level fusion was implemented on two sets of images, the multispectral image
and nDSM and then the colour image and nDSM.

Image Segmentation

The basic processing units of object-level fusion are segments or image objects, and
not single pixels. In the segmentation process, for each image object a meaningful
statistic is calculated in an increased uncorrelated feature space using shape, texture
and topological features. This information improves the value of the final classifi-
cation and cannot be fulfilled by pixel-level approaches alone (Benz et al., 2004).
Initially image-object primitives are created through multi-resolution segmentation.
These objects are polygons of roughly equal size exhibiting interior homogeneity.
In the segmentation process, the scale parameter determines the maximum allowed
heterogeneity for the resulting image objects. The size of the image objects varies
by modifying the value of the scale parameter. For homogeneity, the relative weight
applies to spectral versus shape criteria to reduce heterogeneity. Here shape, smooth-
ness and compactness criterion are applied in a mixed form to define homogeneity
for the image objects (Table 2).

For multispectral and nDSM data fusion, equal weight was assigned to each of
the multispectral bands. This emphasis was chosen because of the lack of colour
homogeneity visually observed within the same features in the image. On the con-
trary, the lidar derived nDSM layer had more homogeneity in grey level; therefore



A Comparison of Pixel- and Object-Level Data Fusion 11

Table 2 Segmentation parameters for image and nDSM fusion

Parameters MS & nDSM fusion Colour & nDSM

Scale factor 25 25
Shape factor 0.75 0.15
Compactness 0.3 0.6
Smoothness 0.7 0.4

more weight was given to this layer. By visually interpreting different image seg-
mentation results, a scale parameter of 25 was chosen to create local homogeneity
and to keep global heterogeneity. The larger than 25 scale parameter had coarse seg-
ment size roughly equal to 40 pixels per feature. The large segment includes more
detail within a feature and dilutes separability among the features. Therefore, appro-
priate feature extraction was not achieved with this segmentation. The same problem
arose for the smaller than 25 scale parameters. Small segments only include part of
a feature and may highlight noise within a feature. This segmentation behaves like
a pixel-level approach and is not suitable for further fusion. Similarly on a trial and
error basis, a ratio of smoothness to compactness weight was defined. Here, 3:7
was specified (Table 1), emphasizing the discrete, compact nature of building roofs.
A higher smoothness emphasis would be used to define objects observed to have
greater variability between features (Baatz et al., 2004). The compactness weight
made it possible to separate objects that had quite different shapes but not neces-
sarily a great deal of colour contrast, such as building roofs versus roads within the
study area.

Class Hierarchy

The class hierarchy is the frame of object-level fusion used to create the knowledge
base for the data fusion task. It contains all classes and is organized in a hierarchical
structure (Baatz et al., 2004). The class hierarchy passes down class descriptions
from parent classes (Level I) to their child classes (Level II). It reduces the redun-
dancy and complexity in the class descriptions and creates a meaningful grouping
of classes.

Figure 2 illustrates the class hierarchy of the object-level fusion, which was
developed through utilizing similar legend of the pixel-level fusion. Class hierarchy
is defined as an inheritance hierarchy, which refers to the physical relations between
the classes. In Level I, natural, manmade and obscure features are the child class of
whole segments and they become parent classes of vegetation, infrastructure, house
and shadow classes (Fig. 2). Later in Level II, the vegetation class becomes a par-
ent class with grass and tree child classes. Within this class-hierarchy each class is
described either by one or more fuzzy-membership functions, a nearest neighbour
classifier or by a combination of both. Membership functions are determined by the
semantic import model, which is based on the expert knowledge of the features.
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Fig. 2 The class hierarchy for the object-level fusion

A stepwise refinement of the class-hierarchy was achieved using the inheritance
mechanism.

Fusion Based on Spectral Properties

Since the generated image objects hold more spectral information compared to
pixels’ digital numbers, the object-level fusion offers a huge variety of deriva-
tive spectral features (Hofmann, 2001). Brightness and spectral ratios of the image
objects were calculated using all image layers. Textural features were calculated
using standard deviations of layer values, spectral mean values of sub-objects,
and average spectral differences of sub-objects. Contrast information were gener-
ated though spectral differences to neighbouring objects and super-objects. Context
related features included mean spectral differences to a given class.

For the colour imagery, natural and manmade classes were separated by a fuzzy
membership description of the mean and the ratio of the green spectral band. In
contrast, the normalized difference vegetation index (NDVI) was utilised in the
multispectral image.

Colour Surface’ was the sub-class of the manmade class. This class was defined
by the object’s brightness and the ratio of the blue band. ‘Grey Surface’ was defined
by the object’s brightness and the ratio of the red band. Shadow was the subclass of
obscure class and is defined by the brightness. An image object was a shadow if its
brightness was less or equal to 70.
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Fusion Based on nDSM Properties

In object-level data fusion, the nDSM property can be modelled by describing the
difference in elevation to neighbouring objects. In this research, houses and infras-
tructures were discriminated by the mean difference of the nDSM layer. An image
object was represented as road if its mean difference of nDSM was smaller or equal
to 1.2 m. On the contrary, an image object was represented as house if its mean
difference of nDSM was higher than 1.2 m. The vegetation class was further sub-
divided in tree and grass classes. The nDSM layer was utilised to discriminate tree
and grass by their relative height difference.

Fusion Using Contextual Information

As shadows are typically created by elevated features, most of them can be detected
and described by their source features. Additionally, shadow areas can be clas-
sified according to their spectral properties. Pixel-level classification using these
properties showed unsatisfactory results (Dare, 2005). Thus it is useful to classify
shadows by describing their contextual criteria and subsequently by their different
spectral properties. Therefore, depending on the type, shadows may inherit their
spectral properties from an appropriate super-class and then be identified by their
surroundings. The logic applied for this was ‘if an object classified as shadow is
surrounded sufficiently by objects classified as building, it should be classified as
building shadow’. In this process, grey roof shadow was a subclass of shadow and
the inherency was defined by the neighbour-object relation. A shadow object is clas-
sified as a grey roof shadow if its ‘border to neighbour-object relation’ for grey
object is larger or equal to 0.025 m. A shadow object is classed as tree shadow if its
‘border to vegetation neighbour-object’ is larger or equal to 0.02 m.

Accuracy Assessment

The sample design of this project was extremely complex because it involved
the assessment of eight different maps (pixel-level: colour, colour and nDSM,
multispectral, multispectral and nDSM; object-level: colour, colour and nDSM,
multispectral, multispectral and nDSM) and used two types of reference data (the
2006 aerial photos and field visits accomplished in 2005 and 2006). As a result,
trade-offs between statistical rigor and practicality are apparent throughout this
study. Existing aerial photography was used to design much of the sampling, includ-
ing the selection of the appropriate sample unit and the methods used to select the
sample units. Sample design for this project addressed two types of samples: (1)
Samples from the 2006 aerial photo polygons for assessment of multispectral and
fused multispectral and nDSM maps. (2) Samples from existing aerial photo poly-
gons for field data collection and assessment of colour and fused colour and nDSM
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maps. A total of 110 accuracy assessment sites were randomly selected from each
of the classified maps and then collected the reference information from 2006 aerial
photos and field survey data.

Fusions using lidar and optical imagery were evaluated using error matrices
for each of the pixel- and object-level fusion algorithms. Overall fusion accuracy
and the Kappa Coefficient were computed to provide measures of the success of
the fusion process. Comparative values of Kappa were discussed in the following
section and provide a relevant benchmark for comparison.

Results and Discussions

To provide summary information of the different fusion level, their accuracies were
assessed using the field sample data. In the data fusion process, the evaluation of the
results becomes relatively complex due to the involvement of different data sources.
The different aspects of image acquisition of the various sensors have to be consid-
ered as well as the approach of the image fusion itself plays a role. In this analysis,
both visual methods and statistical parameters were selected as the assessment cri-
teria. From visually inspecting the results, the main difference between pixel- and
object-level fusions is the sharpness of the classified feature. This is particularly evi-
dent when observing the open space and the building roofs in the pixel-level fusion.
In the colour image classification results, ‘pepper and salt’ effect was prominent
due to a large misclassification among the feature classes. Including DSM informa-
tion reduced this ‘pepper and salt’ effect but the misclassification of the shadows
was still present. The object-level approach improved the shadow classification by
incorporating contextual information in this process.

In the pixel-level multispectral and nDSM fusion process, the high spectral depth
of the multispectral image played a vital role. It reduced interclass confusion but
the shape of the above ground features were not perfectly delineated due to the
low spatial resolution of the images. Object-level classification of the single source
image exhibited poor classification results for the abrupt spectral changes within
the classes due to the sun illumination factor. From this observation, it can be said
that additional elevation data can improve the classification results for the high-
resolution imagery.

Based on the analysis outlined above, the use of both optical imagery and lidar
data for semi-urban landscape mapping was evaluated. Accuracy assessment was
performed for each of the classified images obtained through the pixel- and object-
level fusion. To ensure consistency, the same sampling technique was employed
for all of the classified images. For each of the classified images, the accuracy was
assessed in an independent manner to reduce the systematic basis and defuse the
temporal effect on the overall accuracy. The accuracy results, presented in Fig. 3,
revealed that in most of the cases the object-level fusion exhibited higher accu-
racy level than the associated pixel-level fusion. Object-level fusion of colour and
DSM data achieved highest (91%) accuracy with kappa value 0.90, which exhibited
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Fig. 3 Summary of the overall accuracy of the pixel- and object-level data fusion

better fusion technique than others. Whereas only colour image classification in this
category had worst (66%) accuracy result.

As the kappa value approaches 1.0, it indicates perfect agreement between fused
and reference maps. Table 3 and Fig. 3, shows the accuracy and kappa statistics
were highly correlated further enhancing confidence of the results. In the pixel-
level approaches, the highest accuracy (80%) was achieved through multispectral
and DSM fusion with high kappa value 77%. On the contrary, object-level fusion
of those images had accuracy 90% with kappa value 88.5%. In general, object-level
fusion performed better than the pixel-level fusion for all combinations except solo
colour image classification.

Fusion results for optical imagery and lidar data are shown in Table 3 indicate that
at the 95% confidence level the standard normal deviate of the Kappa Coefficient
is greater than 1.96 for both lidar and colour imagery fusion and the lidar and mul-
tispectral imagery fusion. A significant difference was detected between pixel- and
object-level fusion algorithms with the object-level fusion providing the superior
results for both cases.

Table 3 Comparison of pixel- and object-level fusion results at 95% confidence

Lidar and colour imagery fusion Lidar and multispectral imagery

Fusion Pixel-level Object-level Pixel-level Object-level

Overall
Accuracy (%)

75.5 91.0 80.0 90.0

Kappa K̂(%) 71.8 89.7 77.0 88.5
vâr(K̂) 0.002837 0.001063 0.002119 0.001216
z 13.4806 27.5094 16.7232 25.366795
zK̂1−K̂2

2.86 1.99
Significance∗ S S

∗NS = not significant, S = significant
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The main contributing factor to the observed difference between the pixel- and
object-level fusions of the optical imagery and lidar data is the failure of the clus-
tering process to recognize some classes. This problem was acute for the Shadow
classes in pixel-level fusion, as it could not distinguish different shadow classes
on the basis of spectral content alone. The object-level approach overcomes this
problem by incorporating contextual information in the fusion process.

Conclusions

The goal of this study was to compare different data fusion techniques for clas-
sifying high-resolution imagery and lidar derived DSM data. A semi-urban image
subset was analysed using two fusion techniques. Results suggest a more accurate
land cover maps using object-level fusion than are attainable using the pixel-level
supervised process. Shadow objects are particularly susceptible to misclassification
when using only pixel-level spectra. Even so, object-level fusion has proven effec-
tive in correctly identifying the shadows where this is difficult using other methods.
Although a very simple object-level approach was utilised to fuse imagery and lidar
data, significant improvement over pixel-level fusion was obtained.

In this study, object-level fusion was found more flexible than the pixel-level
supervised fusion. The improvement can be achieved with a relatively simple and
unrefined application of the object-level approach. It allows data fusion in more
meaningful ways with highly refined and specialized membership functions, which
in a more complex case would probably lead to further improvements in accuracy.
There is a great potential for further improving object-level fusion quality through
refining the decision rule structure. In contrast, pixel-level supervised fusion offers
very little potential for improvement, other than through a procedure that tries to
imitate the object-level approach, and can be said to have reached the end of its
paradigm.

Acknowledgement This work was supported by the Australian Research Council (ARC) under
Discovery Project DP0450889. The Ultracam-D data set was provided by IFMS Germany
(http://www.arcforest.com/).

References

Tso B, Mather PM (2001) Multisource classification. In: Classification Methods for Remotely
Sensed Data. Taylor & Francis, New York, pp. 271–298.

Schistad-Solberg AH, Jain AK, Taxt T (1994) Multisource classification of remotely sensed data:
fusion of Landsat TM and SAR image. IEEE Transactions on Geosciene and Remote Sensing
32:768–778.

Pohl C, van-Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods
and applications. International Journal of Remote Sensing 19:823–854.

Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing
remote sensing and GIS. In: GIS – Zeitschrift für Geoinformationssysteme 6/2001. Hüthig
GmbH & Co. KG, Heidelberg, pp. 12–17.



A Comparison of Pixel- and Object-Level Data Fusion 17

Townshend JRG, Huang C, Kalluri S, Deferies R, Liang S, Yang K (2000) Beware of per-pixel
characterisation of land cover. International Journal of Remote Sensing 21:839–843.

Schiewe J, Tufte L, Ehlers M (2001) Potential and problems of multi-scale segmentation methods
in remote sensing. In: GIS – Zeitschrift für Geoinformationssysteme 6/2001. pp. 34–39.

Baatz M, Schape A (2000) Multiresolution Segmentation-an optimization approach for high
quality multi-scale image segmentation. In: Strobl J, Blaschke T (eds.) Angewandte Geogr:
Informationsverarbeitung XII. Wichmann, Heidelberg, pp. 12–23.

Rego F, Koch B (2003) Automatic classification of land cover with high resolution data of the
Rio de Janeiro city Brazil comparison between pixel and object classification. In: Carstens J
(ed.) The International archives of the photogrammetry, remote senisng and spatial infoamrion
sciences. Regensburg, Germany.

Blaschke T, Conradi M, Lang S (2001) Multi-scale image analysis for ecological monitoring of
heterogeneous, small structured landscapes. In: SPIE. Toulouse, pp. 35–44.

Smith GM, Fuller RM, Hoffmann A, Wicks T (2000) Parcel-based approaches to the analysis of
remotely sensed data. In: The Remote Sensing Society Conference, Adding value to remotely
sensed data. Remote sensing society, Nottingham, UK.

Baltsavias EP (1999) A comparison between photogrammetry and laser scanning. ISPRS Journal
of Photogrammetry and Remote Sensing 54:83–94.

Tao G, Yasuoka Y (2002) Combining High Resolution Satellite Imagery and Airborne Laser
Scanning Data for Generating bareland DEM in Urban Areas. In: International Workshop on
Visualization and Animation of Landscape. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Science, Kunming, China.

Schenk T, Csatho B (2002) Fusion of Lidar data and aerial imagery for a more complete surface
description. IAPSIS XXXIV:310–317.

Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS Journal
of Photogrammetry and Remote Sensing 54:130–137.

Rottensteiner F, Trinder J, Clode S, Kubik K (2004) Using the Dempster–Shafer method for
the fusion of Lidar data and multi-spectral images for building detection. Information Fusion
6:283–300.

Maas H-G (1999) Fast determination of parametric house models from dense airborne laser scanner
data. IAPRS XXXII(2W1):1–6.

Geneletti D, Gorte BGH (2003) A method for object-oriented land cover classification combin-
ing Landsat TM data and aerial photographs. International Journal of Remote Sensing 24:
1273–1286.

Hofmann P (2001) Detecting buildings and roads from IKONOS data using additional elevation
information. In: GIS – Zeitschrift für Geoinformationssysteme 6/2001. Hüthig GmbH & Co.
KG, Heidelberg, pp. 28–33.

Ali SS, Dare P, Jones S (2005) Automatic classification of land cover features with high resolu-
tion imagery and lidar data: an object-oriented approach. In: SSC2005 Spatial Intelligence,
Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute.
Melbourne, Australia, pp. 512–522.

Leberl F, Gruber M (2005) Ultracam-d: understanding some noteworthy capabilities. In:
Photogrammetric Week 2005. Stuttgart, Germany.

Richards JA (1993) Remote Sensing Digital Image Analysis – An Introduction. Springer-Verlag,
Berlin.

Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-
oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of
Photogrammetry and Remote Sensing 58:239–258.

Baatz M, Benz U, Dehghani S, Heynen M (2004) eCognition User Guide 4. Definiens Imagine
GmbH, Munchen, Germany.

Dare P (2005) Shadow analysis in high-resolution satellite imagery of urban areas.
Photogrammetric Engineering & Remote Sensing 71:169–177.



Combining Texture and Hyperspectral
Information for the Classification of Tree
Species in Australian Savanna Woodlands

Peter Bunting, Wenda He, Reyer Zwiggelaar, and Richard Lucas

Abstract This paper outlines research undertaken to assess the ability of textural
information, from image filters, to be used alongside hyperspectral data for the clas-
sification of broad forest types. The study made use of 2.6 m hyperspectral HyMap
data acquired over the Injune study area, Queensland, Australia, in September 2000.
The HyMap data provided spectral data from the blue to shortwave infrared in
126 wavelengths, all of which were used for classification. A measure of texture
was achieved using a set of 48 image filters including Laplacian of Guassian and
Gaussian smoothing, first and second order derivatives at different scale and where
appropriate different rotations. Analysis took place using an air photo interpreta-
tion to provide regions of interest for areas dominated by Angophora, Callitris, and
Eucalyptus, additionally areas of non-forest were also included. Classification of
the resulting dataset was performed using Multiple Stepwise Discriminant Analysis
where an accuracy of 60% was achieved using the combined reflectance and texture
data compared to accuracies of 55 and 43% using only the reflectance and textural
datasets, respectively.

Introduction

The delineation of woodlands into regions unique in terms of species and structure
composition is important for many applications, including the provision of forest
management units (Leckie et al., 2003), indicators of biodiversity (Bock et al., 2005)
and the interpretation of other remotely sensed data.

The interpretation of aerial imagery is heavily scale dependent, where at high
spatial resolutions interpretation has traditionally required experienced human inter-
preters and is mostly based on structure, context and texture, rather than spectral
qualities (Held et al., 2003). Therefore, a number of studies (Cots-Floch et al.,
2007; Buddenbaum et al., 2005; Coburn and Roberts, 2004; Franklin et al., 2000;
Kushwaha et al., 1994) have started to introduce textural measures alongside the
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spectral values. Franklin et al., 2000, found the addition of textural information,
in the form of homogeneity and entropy calculated through a moving window,
increased the overall classification accuracy of forest stand types by 5–12%, pro-
viding overall accuracy in the order of 60–65%. While, Kushwaha et al., 1994
demonstrated an increase in classification accuracy from 69 to 80% when classi-
fying stand age and levels of degradation when the textural measures entropy and
the inverse difference moment were introduced alongside the spectral data.

Texture is the term used to describe information on the local variability of the
image pixel values. Representation of texture can take a number of forms, one of the
most common are the so called Haralick features (Haralick, 1979; Haralick et al.,
1973) where the statistical properties of the pixels within a moving window are
calculated, representing the homogeneity of the surrounding pixels. Although this
method has demonstrated some success (e.g., Franklin et al., 2000), the results often
vary with scale and application and have, therefore, not been widely adopted within
the field of remote sensing where the pixel values (either reflectance or backscatter)
have tended to be used in isolation. Another representation of texture is that of filter
responses, where through the application of a number of image filters structures
within the scene at different scales and rotations are identified and the composite of
these filter responses forms the texture signature or texton (Leung and Malik, 2001,
Varma, 2004). The texton is identified from the filter responses through a clustering
stage (e.g., K-Means; Varma, 2004; He et al., 2008) where the resulting texton can
be used for segmentation and classification.

Study Site and Datasets

The study was carried out using remote sensing and field data acquired over a
40 × 60 km area near the township of Injune (Lat 25◦ 32′, Long 147◦ 32′),
located within the Southern Brigalow Belt, a biogeographic region of southeast cen-
tral Queensland, Australia (Fig. 1). These woodlands contain forest communities

Fig. 1 The location of the Injune study area, southeast central Queensland, Australia. The shaded
area represents the Southern Brigalow Belt
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existing in varying states of degradation and regeneration as a result of prior distur-
bance (e.g., broad scale clearing, altered fire regimes and spread of exotic species)
and are structurally similar to over 70% of those occurring in Australia. Many
stands are dominated by Callitris glaucophylla, although selective harvesting has
reduced the abundance of larger individuals, therefore, typically forming dense
stands with a large number of small individuals (several trees per m2). Eucalyptus
species are also common across the site with stands dominated by Eucalyptus pop-
ulnea (Poplar Box), Eucalyptus melanophloia (Silver-leaved ironbark), Eucalyptus
microcarpa (Grey Box), Eucalyptus chloroclada (Baradine gum), Angophora leio-
carpa (Smoothed barked apple) and Angophora floribunda (Roughed barked apple).
Additionally, Eremophila mitchelli and a number of Acacia species form dense
understories. While Acacia harpophylla is commonly associated with duplex and
cracking clay soils in the southeast of the study area, it is largely in the form of
regrowth given previous clearing.

During July 2000, Large Scale (1:4000) stereo aerial photography (LSP) were
acquired over a grid of one hundred and fifty 500 × 150 m Primary Sampling
Units (PSUs), with each separated by 4 km in the north-south and east-west direc-
tions (Lucas et al., 2004). Across the site, 1 km wide strips of Hyperspectral
Mapper (HyMap) data were acquired along six of the PSU columns, at 2.6 m
spatial resolution with 126 bands in the VIS, NIR and SWIR parts of the electro-
magnetic spectrum. The HyMap data were subsequently atmospherically corrected
and geo-referenced by HyVista Corporation (who acquired the data) using the
HyCorr atmospheric correction software. The algorithm, developed by CSIRO as an
extension to the ATREM atmospheric correction software (Gao and Goetz, 1990),
retrieves information on atmospheric gases from wavebands operating in the water
absorption regions and uses these to correct the image bands.

Methods

Airphoto Interpretation

Using the LSP, an aerial photography interpreter delineated the extent of broad
forest communities and described each in terms of the dominant species (Tickle
et al., 2006). It was observed that the woodlands were dominated by a number of
broad forest communities that were often texturally different as much as they were
spectrally different. Angophora dominated woodlands were distinct due to the large
size of the trees where the textures presented were very course with large areas of
ground and shadow being present between the crowns (Fig. 2aa). Callitris dom-
inated stands were found to contain relatively smooth textures due to the dense
number of stems and homogenous canopy cover (Fig. 2b). While Eucalypts (e.g.,
Silver-leaved Ironbark and Poplar Box) were often found to be only a few pixels (at
a pixel resolution of 2.6 m) across but with small areas of soil and shadow visible
between the crowns (Fig. 2c).
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Fig. 2 Examples of the broad forest types (a) Angophora, (b) Callitris, and (c) Eucalyptus

Fig. 3 The filter bank used to identify texture

Image Filtering

To identify the textures within the images a filtering technique similar to that of
Varma (2004) was used where a series of image filters (Fig. 3) were applied to
the image and the normalised filter responses were used to characterise the texture.
For this study the Leung-Malik filter bank (Leung and Malik, 2001), consisting
of 48 filters, including 8 Laplacian of Gaussian, 4 Gaussian smoothing filters and
6 Gaussian first and second order derivative filters at 3 scales, was used. For the
Laplacian of Gaussian filters scales of 1,

√
2, 2, 2

√
2, 2, 3

√
2, 6 and 6

√
2 were used

while the Gaussian smoothing used scales of 1,
√

2, 2 and 2
√

2. For the Gaussian
first and second order derivative filters scales of σx, σy, (1,3), (

√
2, 3

√
2) and (2,6)

were used, where each scale was rotated by 0, 30, 60, 90, 120 and 150 degrees.

Remotely Sensed Data and Association to Forest Types

Filtering all 126 wavelengths available from the HyMap sensor would prove imprac-
tical due to the data size (48 × 126 output bands), therefore a subset of 3 bands was
selected. The selected bands were in the blue channel (446.1 nm), on the red edge
(716.2 nm) and the NIR (891.2 nm). These wavelengths were selected as they have
been shown by Bunting and Lucas (2006) to provide the optimum visualisation of
these woodlands for the differentiation of tree crowns and species.

Following the application of image filters to each of the image bands the poly-
gons identified from the LSP by the airphoto interpreter were attributed with the
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mean filter response for each of the 3 input bands along with the mean spectral
response for each of the 126 bands.

Classification

Classification was performed on the data extracted for the LSP polygons using
Multiple (stepwise) Discriminant Analysis (MDA), from within the SPSS software
package. MDA was selected due to its success in the previous studies (Clark et al.,
2005, Lucas et al., 2008), where hyperspectral data from individual crowns, from
high resolution 1 m imagery, were extracted and classified to species, resulting in
accuracies > 70% where 10 species were compared. The algorithm was parame-
terised such that the stepwise method was applied using the Rao’s V metric, with
the probability of F being 0.05 for entry and 0.1 for removal of data bands in the
forward and backward steps (Galvao et al., 2005).

Results

To test the method the polygons identified through the LSP interpretation for 4 of the
6 HyMap strips were select and attributed with the mean reflectance for each of the
HyMap bands and mean filter responses providing 270 variables and 252 samples
of the 4 ground cover types (Table 1).

To generate overall accuracy values for the 4 classes each set of samples was
randomly split into training and testing datasets, using a Bernoulli distribution with
a probability of 0.5. The split was made 25 times where for each split the results of
the classification were recorded and the mean and standard deviations calculated. To
test the significance of the texture and reflectance data the experiments were carried
out individually on the reflectance and texture data as well as the combined data
(Table 2).

Table 1 The number of samples for each ground cover type

Species Number of samples

Angophora (ANG) 10
Callitris (CP-) 82
Eucalyptus (EUC) 130
Non Forest (NF) 30

Table 2 Results for the experiments using both the datasets individual and in combination

Combined Reflectance only Texture only

Training Testing Training Testing Training Testing

Mean 61.79 60.21 60.98 55.31 50.18 43.31
Std Dev 0.67 0.86 1.10 1.04 1.74 1.51
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The results show a modest, 5%, improvement for the testing datasets when the
combined data was used over the reflectance data while a significant, 17%, increase
from the results using only the texture data. Also, by combining the reflectance and
textural data the standard deviation of the classification results have been reduced,
demonstrating a more robust classification, less sensitive to the training and testing
samples used.

Discussion

From these initial results it is clear that the introduction of textural information has
increased the classification accuracy and robustness to a similar extent as previ-
ous studies (e.g., Coburn and Roberts, 2004 and Franklin et al., 2000). The use of
textural information at this scale is viewed as an important additional (Held et al.,
2003) as it more closely corresponds with the methods used by human interpreters
and allows the forestry environment to be more fully understood at this resolution.
Alternative methods (Bunting and Lucas, 2009) have concentrated on the aggre-
gation of high-resolution results, for example delineated tree crowns classified to
species. These methods provide an advantage in that the resulting classification can
be attributed with information from high-resolution analysis (e.g., crown area, num-
ber of individuals) useful for estimating attributes such as biomass and indicators of
biodiversity (e.g., Shannon or Simpson indexes) but require significant effort in the
production of intermediate data products to allow the analysis to take place. While
the method outlined in this paper and those following on from this method, allow
the regions to be directly selected from the imagery without intermediate products.

Limitations of the work mainly centered around the testing and training dataset,
derived from the LSP, as although providing a good overview of the study area to
guide further remote sensing acquisitions and field surveys, as originally intended,
they do not accurately delineate the forest types leading to noise in the training and
testing data. Additionally, the low number of Angophora samples has limited the
reliability of the classification for this forest type which occurs in many parts of
the imagery, although often outside the areas for which the LSP data was available,
forms a very texturally distinct forest type. Therefore, further samples and more for-
est types (e.g., Acacia) and forest structures (e.g., regrowth, burnt) are to be selected
for future study.

Future work on the algorithm will concentrate on data reduction meth-
ods to reduce the complexity of the input data, while allowing further vari-
ables (e.g., max response, min response and standard deviation) to be used
alongside the mean filter responses. In addition, further classification methods
(e.g., K-Means clustering, K-Nearest Neighbor and support vector machines)
will be investigated with the possibility of further increasing the classification
accuracy.
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Conclusions

This research has demonstrated the use of a filter based texture measure in addition
to spectral data for the classification of forest structural types from the 2.6 m HyMap
data where the addition of the textural information contributed to a 5% increase in
overall accuracy and robustness of the selected samples. Moving forward this study
recommends the use of textural measures alongside reflectance data for studies of
this type where large regions (> 1000 pixels) with significant spectral variation are
of interest.

Acknowledgements The authors would like to thank the Queensland Herbarium and in particular
Kerstin Jones for the interpretation of the aerial photography, while the Queensland Department
of Natural Resources and Water and the Australian Research Council (ARC) are also thanked for
their contributions to this research.

References

Bock, M., Xofis, P., Mitchley, J., Rossner, G., and Wissen, M. 2005. Object-oriented methods for
habitat mapping at multiple scales - case studies from northern Germany and Wyde downs, UK.
Journal for Nature Conservation, 131:75–89.

Buddenbaum, H., Schlerf, M., and Hill, J. 2005. Classification of coniferous tree species and age
classes using hyperspectral data and geostatistical methods. International Journal of Remote
Sensing, 26(24):5453–5465.

Bunting, P. and Lucas, R. M. 2006. The delineation of tree crowns in Australian mixed species
forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote
Sensing of Environment, 101(2):230–248.

Bunting, P. and Lucas R.M., 2009. Understanding the forest communities through the clustering of
individual crown. Remote Sensing of Environment, Submitted Feb 2008.

Clark, M. L., Robets, D. A., and Clark, D. B. 2005. Hyperspectral discrimination of tropical rain
forest tree species at leaf to crown scales. Remote Sensing of Environment, 96:375–398.

Coburn, C. A. and Roberts, A. C. B. 2004. A multi-scale texture analysis procedure for improved
forest stand classification. International Journal of Remote Sensing. 25(20): 4287–4308.

Cots-Floch, R., Aitkenhead, M. J., and Martinez-Casasnovas, J. A. 2007. Mapping land cover
from detailed aerial photography data using textural and neural network analysis. International
Journal of Remote Sensing, 28(7):1625–1642.

Franklin, S. E., Hall, J. R., Moskal, L. M., Maudie, A. J., and Lavigne, M. B. 2000. Incorporating
texture into classification of forest species composition from airborne multiplespectral images.
International Journal of Remote Sensing, 21(1):61–79.

Galvao, L. S., Formaggio, A. R., and Tisot, D. A. 2005. Discrimination of sugarcane varieties in
southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94(4):523–534.

Gao, B. C. and Goetz, F. H. A. 1990. Column atmospheric water vapour and vegetation liquid
water retrievals from airborne imaging spectrometer data. Journal of Geophysical Research,
95:3549–3564.

Haralick, R. M., Shaummugam, K., and Dinstein, I. 1973. Texture features for image classification.
IEEE Transactions on Systems, Man and Cybernetics, 3:610–621.

Haralick, R. M. 1979. Statistical and structural approaches to texture. Proceedings of the IEEE,
67:786–804.



26 P. Bunting et al.

He, W., Muhimmah, I., Denton, E.R.E. and Zwiggelaar, R. 2008 Mammographic segmenta-
tion based on texture modelling of Tabar mammographic building blocks. Lecture Notes in
Computer Science. 5116, 17–24.

Held, A., Ticehurst, C., Lymburner, L., and Williams, N. 2003. High resolution mapping of tropical
mangrove ecosystems using hyperspectral and radar remote sensing. International Journal of
Remote Sensing, 24(13):2739–2759.

Kushwaha, S. P. S., Kuntz, S., and Oesten, G. 1994. Application of image texture in forest
classification. International Journal of Remote Sensing, 15(11):2273–2284.

Leckie, D. G., Gougeon, F. A., Walsworth, N., and Paradine, D. 2003. Stand delineation and com-
position estimation using semi-automated individual tree crown analysis. Remote Sensing of
Environment, 85(355–369).

Leung, T. and Malik, J. 2001. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International Journal of Computer Vision, 43(1):29–44.

Lucas, R.M., Maghaddam, M., and Cornin, N. 2004. Microwave scattering from mixed species
woodlands, Central Queensland, Australia. IEEE Transactions on Geoscience and Remote
Sensing, 42(10):2142–2159.

Lucas, R.M., Bunting, P., Paterson, M., and Chisholm, L. 2008. Classification of Australian
forest communities using aerial photography, CASI and HyMap data. Remote Sensing of
Environment.

Tickle, P. K., Lee, A., Lucas, R.M., Austin, J., and Witte, C. 2006. Quantifying Australian forest
and woodland structure and biomass using large scale photography and small footprint LiDAR.
Forest Ecology and Management, 223(1–3):379–394.

Varma, M. 2004. Statistical Approaches to texture classification. PhD thesis, Jesus College,
University of Oxford.



High-Resolution Satellite Imaging in Remote
Regions: A Case Study in Bhutan

J. Poon and C.S. Fraser

Abstract In remote developing countries, such as Bhutan, it is common for exist-
ing maps to be either out-of-date or to not exist. Featuring forest covered peaks and
broad valleys with a 2000 m elevation range, the rugged mountainous and largely
inaccessible landscape is not well suited to traditional topographic surveying and
mapping. It does, however, provide a unique and challenging environment for the
generation of image-based products. This paper demonstrates that even with lim-
ited ground control, satellite imagery has the potential to rectify the situation and
vastly enhance mapping prospects in remote regions. By compensating exterior ori-
entation biases inherent in the recorded sensor orientation data, the attainment of
1:5000 mapping scale ground measurement positions is possible with lowest cost
QuickBird imagery. Two image matching algorithms were applied to produce DSM
data. Firstly, intensity based matching procedure embodied in commercial software,
and secondly a multi-photo, geometrically constrained (MPGC) image matching
approach incorporating a hybrid matching algorithm. A third DSM generated by
radar was also assessed and compared to the optically derived surfaces. The most
accurate DSM generated (MPGC) was used to remove relief displacement, so that
planimetric coordinates can be obtained from a single orthoimage to an accuracy of
better than a metre. The results show that there is potential for QuickBird ‘Basic’ to
be an effective and economically viable method of extracting 3D information to be
used for high accuracy ground feature determination. The implications of using this
imagery for precision geopositioning in remote areas include the generation of more
accurate digital terrain models and cartographic maps and location data for incor-
poration into a GIS, providing useful information for development agencies and the
wider community.

Keywords DSM · High-resolution satellite imagery · QuickBird · SRTM · Accuracy
assessment · Remote regions
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Introduction

It is without doubt that land is a precious resource. A country’s economy relies either
directly or indirectly on land information, and with sufficient land information, we
can better monitor and manage our land resources. Topographic mapping is just
one essential tool that is needed to accomplish this seemingly huge task. Developed
countries with established mapping agencies focus on change detection and map
updating and aided by incessant advances in technology, are spoilt with a range of
data sources – electronic distance measurements, aerial imagery and radar to name
a few, to complete such tasks.

The situation, however, is different in remote areas of the world, such as
Bhutan, where it is common for existing maps to be either out-of-date or not
exist. Therefore, we need to look towards information sources which can pro-
vide low cost and quick-delivery land information products, without compromising
metric accuracy. Opportunities exist for access to low cost height models derived
from Interferometric Synthetic Aperture Radar (InSAR) by way of the NASA/DLR
Shuttle Radar Topography Mission (SRTM), which is freely available online.

Of greater application, high-resolution satellite imagery (HRSI) allows produc-
tion of numerous spatial information products, such as geopositioning, surface
models, orthoimages and visualisations. While HRSI can be costly, particularly
when acquiring stereopairs, it does not assume existing infrastructure, such as
equipment, mobilisation, or complex processing abilities.

Great Britain’s National Mapping Agency (NMA) investigated QuickBird
imagery for updating mid-scale, 1:25,000 and 1:50,000, and large scale 1:10,000,
1:2500 and 1:1250, mapping (Holland et al., 2006). The use of IKONOS imagery
for mapping has been conducted by several European mapping agencies and insti-
tutions in the European Organisation for Experimental Photogrammetric Research
(OEEPE). Findings were that rural regions can benefit from such imagery when
mapping at 1:10,000 and 1:50,000 scales (Holland et al., 2003). Developing coun-
tries similarly consider IKONOS imagery for large scale map revision and conclude
mapping at 1:2000–1:10,000 scales is theoretically feasible (Samadzadegan et al.,
2003). Despite positive reinforcements about the geometric potential of HRSI,
it seems the available technology has not yet made the transition to large scale
topographic mapping in practice.

This paper investigates information sources for topographic mapping in remote
areas, focusing on the application of HRSI in the Bhutan testfield. The testfield
spans approximately 300 km2, featuring forest covered peaks and broad valleys in
the scene’s west, overlooking the capital of Thimphu and extending northwards to
the Dechenchoeling Palace. With an average terrain inclination of 27◦ and ground
elevations from 2000 m and climbing as high as 4200 m, the scene provides a
unique and challenging environment for the generation of image-based spatial infor-
mation products. With limited ground control and lowest cost QuickBird imagery,
we investigate geopositioning, and surface modelling from both commercial and
independent algorithms, generate orthoimagery and explore the use of HRSI for
visualisation.
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QuickBird ‘Basic’ Imagery

The QuickBird satellite orbits the Earth at an altitude of approximately 450 km
and travels at 7 km/s. With a field of view of 2.1◦ and focal length of 9 m, the
pushbroom sensor captures submetre resolution for panchromatic (0.61–0.72 m)
and 2.44–2.88 m multispectral imagery. Within the focal plane are 6 panchromatic
arrays operating with time delay integration and 6 four-linear multispectral arrays
imaging in 11 bits; all CCD lines are staggered (DigitalGlobe, 2006).

The satellite is agile such that oblique pointing is possible to 30◦ off-nadir.
Along- and across-track stereo capability allows collection of same pass stereo
pairs and therefore, the scene content, lighting conditions and satellite geometry
are the same for the two images. After the initial forward image is acquired, the
satellite is steered to point backwards to image the same scene with approximately
90% overlap. A stereo pair covers an approximate area of 21.2 × 21.2 km, totaling
450 km2.

DigitalGlobe’s QuickBird products are provided at varying levels depending on
their positional accuracy and degree of processing. Predictably, as the positioning
accuracy is increased, the price of the product also increases (DigitalGlobe, 2006).
The sensor corrected ‘Basic’ product with the least specified accuracy and lowest
cost has been employed in this investigation.

Geopositioning

To facilitate high-precision geopositioning, a dozen precisely measured ground
control points (GCPs) were acquired by GPS-survey conducted by Bhutan’s
Department of Survey and Land Records. These largely constituted road markings
in the Thimphu region, concentrated in the north-east of the scene.

An initial analysis of the satellite imagery utilising no GCPs and a Rational
Polynomial Coefficient (RPC)-based approach resulted in absolute geoposition-
ing accuracies of approximately 20 m. The positional biases in the DigitalGlobe
generated RPCs are reflected by the large discrepancies, quantified in Table 1.
These inherent biases can be accounted for by using a bias compensation method
which incorporates corrections into the existing RPCs, without the need for addi-
tional correction parameters. A single GCP is all that is needed for this procedure
(Fraser et al., 2006). The provision of GCPs enabled the geopositioning accuracy

Table 1 Geopositioning discrepancies in sensor orientation

RMSE discrepancies at
CKPs [m]

Orientation GCPs CKPs SE SN SH

QuickBird RPCs 0 12 21.4 6.3 0.4
Corrected RPCs 4 12 0.6 0.7 0.4
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to be significantly improved in the bias-compensated RPC bundle adjustments,
where accuracy at 1-pixel level was obtained. Additionally, these bias-corrected
RPCs were to be used as an additional control scenario to supplement the 12
measured GCPs for downstream generation of digital surface models (DSMs) and
orthoimagery.

Height Modelling

DSM Generation

Elevation information and surface topography is important for a diverse range of
applications such as hydrology, geomorphology and infrastructure planning. High
costs associated with acquiring a dense elevation network often translate to lim-
ited and infrequent opportunities of DEM generation in developing countries. For
instance, the existing DEM data for Bhutan is an old 1964 Survey of India scanned
map; the contour interval is 200 m and contour lines are stated as only approxi-
mate. With the aid of optical stereo imagery and radar technologies, updated height
information can be obtained and modelled at relatively low cost.

Two image matching algorithms were applied to produce DSM data from
the optical imagery. The QuickBird along-track stereo pairs produce near simul-
taneous data capture resulting in consistent imaging conditions and reduced
radiometric variation, conducive for image matching and DSM generation. First,
an intensity based matching procedure embodied in Z/I Imaging’s ImageStation
Photogrammetry Suite 4.3 Image Station Automatic Elevations (ISAE) was applied;
and second, a multi-photo, geometrically constrained (MPGC) image matching
method incorporating a hybrid matching algorithm was used. A third approach to
generating elevation information and an alternative to image matching, is utilising
height models derived from low cost NASA/DLR SRTM InSAR DEMs.

ISAE

ISAE’s commercially available automatic height generator uses bilinear finite ele-
ments to calculate differences in parallax of matched points within the limits of
a user specified parallax bound and epipolar line distance. Matches are considered
reliable once successful with similarity measures of correlation coefficient and inter-
est value. A more detailed description of the ISAE mathematical model can be found
in Z/I Imaging Corporation (2004).

Initially, it was anticipated that the bias-corrected RPCs would be used to orient
the images to 1-pixel level accuracy. Unfortunately, this was not possible on the
ImageStation due to Z/I Imaging QuickBird modules relying only on ephemeris,
attitude and image metadata files, omitting the RPB files in triangulation. Without
adaptive matching, the finest allowable post-spacing generated from the QuickBird
scene was 15 m.
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MPGC

The second image matching approach, MPGC, extracts matching candidates using
a geometrically constrained cross-correlation method (Gruen, 1985). The proce-
dure incorporates feature point matching, edge extraction and relational matching,
where successfully matched features are further refined with a modified MPGC
allowing potentially sub-pixel accuracy. Greater discussion of this process is pro-
vided in Zhang and Gruen (2006). The MPGC procedure allowed support from
bias-corrected RPCs which ensured optimal object space accuracy and a DSM was
generated with 5 m post-spacing.

SRTM

In February 2000, SRTM captured near-global height information by single-pass
InSAR on two antenna pairs supporting C- and X-band wavelengths. The fixed
antenna receiving shorter wavelength X-band pulses has a higher relative accuracy,
+/- 16 m absolute vertical and +/– 6 m relative vertical accuracy (Rabus et al., 2003),
although a narrower swath width of 50 km in comparison to the C-band data. C-
band terrain model data is freely available over the internet at a 3 arcsec resolution
world wide, and X-band data is available at 1 arcsec post spacings, although due
to US Government restrictions, areas outside North America must be requested.
The advantage of SRTM data over satellite imagery is that irrespective of time and
seasonality, InSAR can acquire height information.

Here we concern ourselves with the X-band data for Bhutan, which was pro-
cessed by DLR (Knöpfle et al., 1998) and made available for this study. As the
X-band is a high energy wavelength, these height models represent the surface of
the terrain (as opposed to ‘bare earth’), similar to that of optical space imagery. The
1 arcsec resolution in this region translates to a DSM of 28 m post-spacing.

Accuracy Assessment

Given that orientation with bias-corrected RPCs can yield accuracy at the 1-pixel
level, these RPCs were used as an additional control scenario to generate 33 CKPs
from stereo measurements to supplement the 12 GPS-measured GCPs.

As a preliminary accuracy assessment of the DSMs, elevation comparisons were
computed between the GPS- and stereo-derived CKPs and bilinearly interpolated
heights for each of the DSMs. While the MPGC DSM had height discrepancies just
under 2 m at the CKPs, the SRTM DSM had height discrepancies slightly over 13 m.
The overall accuracy was reflected in the RMSE values, where the MPGC DSM had
a height discrepancy of less than a metre, the ISAE image matching DSM a RMSE
of 4 m, and the SRTM an error of 6 m. Averages of the discrepancies show that there
is a mean shift in the ISAE and SRTM DSMs; the ISAE 1.5 m shifted below the true
surface, and SRTM 3 m above the surface. Examining the MPGC DSM, there is no
mean shift and the height discrepancy is pixel-level at the CKPs.

A statistical overview is given in Table 2; however, with only 40 or so CKPs over
a 300 km2 scene, these figures are unlikely to be representative of the entire test
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Table 2 DSM Height discrepancies at GPS and stereo CKPs

Height discrepancy at CKPs
DSM and
post spacing Data source Reference CKPs RMSE [m] Mean [m] Abs Max [m]

ISAE 15 m Image matching GPS 12 1.2 −0.3 1.9
MPGC 5 m Image matching GPS 12 0.5 −0.2 0.9
SRTM 28 m InSAR GPS 12 5.4 4.9 7.4
ISAE 15 m Image matching GPS + Stereo 43 3.7 −1.5 10.8
MPGC 5 m Image matching GPS + Stereo 45 0.7 −0.2 1.7
SRTM 28 m InSAR GPS + Stereo 38 6.2 3.1 13.3

region. In order to obtain a more representative overall heighting accuracy based
on surface extraction results over a greater number of sample points and through
variable relief and slope, the most accurate DSM available, the 5 m MPGC DSM,
was utilised as a reference surface.

A comparison between the heights obtained in the ISAE matching method and
bilinearly interpolated values in the reference MPGC DSM revealed a heighting
RMSE of 10 m from over 1 million CKPs.

Although these divergences are partly attributed to sensor orientation differences
and the image matching algorithms, it must be noted that blunders originating from
image saturation were not excluded from assessment. There was no consideration
given to the normal process of manual review and post-processing of the generated
DSMs, although differences in height values over 25 m, which accounted for 18%
of the offsets, were treated as blunders and disregarded in the analysis.

The same comparison procedure was carried out between the SRTM DSM and
the reference MPGC DSM and summarized in Table 3. This resulted in a heighting
RMSE of 13 m, where a third of the height discrepancies were deemed as blunders.
This is not surprising, as the DLR height error map for the InSAR DSM indicated
that well over half the test field was in error of 50–90 m.

The DSM evaluation assumes that errors are solely attributable to the source, i.e.
aspects of the image matching or the InSAR acquisition; however, there are also
other factors to consider when comparing multi-resolution DSMs, where interpo-
lation errors may play a significant role. The differences in post spacing and its
effect on modelling the surface can be seen when examining cross-section pro-
files, as shown in Fig. 1. Surface discontinuities are preserved in the MPGC 5 m

Table 3 DSM height discrepancies with MPGC 5 m reference

Height discrepancy at CKPs
DSM and
post-spacing CKPs Blunders (%) RMSE (m) Mean (m)

ISAE 15 m 1,061,433 18 9.8 0.7
SRTM 28 m 246,009 32 12.7 1.0
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Fig. 1 DSM height
discrepancies with MPGC
reference
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Fig. 2 Influence of slope on (a) ISAE and (b) SRTM height discrepancies with MPGC reference

post spacing DSM, whereas the ISAE 15 m DSM smoothed and generalised sur-
face topography. Errors are most noticeable in the SRTM 28 m DSM in regions of
variable relief, most likely due to the effects of radar foreshortening and layover sus-
ceptible in mountainous regions. There is a clear indication that slope plays a role
in higher RMSE values, as shown in Fig. 2. As the terrain inclination increases, the
height discrepancy also increases for both image matching and InSAR acquisition
methods.

Data Integration: Orthorectification,
Pansharpening and Visualisation

The QuickBird ‘Basic’ imagery has limited image processing, confined to correc-
tions for radiometric and internal sensor geometry and optical and scan distortions.
The panchromatic and the multispectral images are both in the satellite reference
frame and preprocessing is required for geometric integration of all channels. In
their raw form, the QuickBird pan and multispectral images are offset north and
south to one another. As no georeferencing is applied, image-to-image registration
must first be carried out before pansharpening can proceed.

The most accurate DSM generated (MPGC) was used to remove relief displace-
ment, so that planimetric coordinates could be obtained from a single orthoimage
to an accuracy of better than a metre. The metric results of this process are summa-
rized in Table 4. The results show that high accuracy ground feature determination
is possible with lowest cost QuickBird imagery.

Visual representation of the terrain can improve understanding of the landscape
and has benefits in communicating information to a wider audience. The multispec-
tral imagery was fused with the single band imagery to generate a pansharpened
orthoimage and further, draped over the metrically accurate DSM, as shown in
Fig. 3.
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Table 4 Planimetric accuracy achieved with Orthoimagery

RMSE discrepancies at CKPs

Ortho imagery CKPs SE [m] SN [m]

Resampled to 1 m 44 1.00 0.80

Fig. 3 Visualisation –
orthorectified pansharpened
image draped over DSM

Concluding Remarks

In remote areas such as Bhutan, it is common for existing maps to be either out-
of-date or to not exist. Although picturesque, the rugged mountainous and largely
inaccessible landscape is not well suited to traditional topographic surveying and
mapping (e.g. there is only one airport in the country and only a few passenger
aircraft). It has been shown here, that even with limited ground control, satel-
lite imagery has the potential to rectify the situation and vastly enhance mapping
prospects in such an environment.

By compensating exterior orientation biases inherent in the recorded sensor
orientation data, the attainment of 1:5000 mapping scale ground measurement accu-
racy is possible with lowest cost QuickBird imagery. While low cost alternative data
sources such as SRTM are available, the InSAR acquisition may not be suited to an
undulating environment with an average terrain inclination of 27◦, such as those
experienced in Bhutan.

It has been shown that there is potential for QuickBird ‘Basic’ to be an effec-
tive and economically viable method of extracting 3D information to be used
for high accuracy ground feature determination. The implications of using this
imagery for precision geopositioning include the generation of more accurate digi-
tal terrain models and cartographic maps and location data for incorporation into
a GIS, providing useful information for the wider community, especially in the
case of a developing country with very limited resources for 3D spatial information
generation.
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A New Dataset for Forest Height Across
Australia: Pilot Project to Calibrate ICESat
Laser Data with Airborne LiDAR

Alex Lee, Peter Scarth, and Adam Gerrand

Abstract To better quantify and monitor the extent, structure and biomass of
Australian forests, accurate cover and height information is required, yet only a
small proportion of Australia’s forests have reliable height information. The use
of airborne laser survey using Light Detection and Ranging (LiDAR) data has
rapidly developed and has demonstrated its effectiveness and high accuracy for
forests height measurement. However it is expensive and data is not yet widely
available for many areas. A recent source of height data is now available from the
NASA ICESat satellite. The ICESat laser pulses give approximately 70 m diameter
footprints, spaced at 170-m intervals along the Earth′s surface. Tracks are spaced
about 50 km wide, and since 2003 over 2 million points across Australia have been
imaged. These could provide significant potential for improving vegetation structure
assessment, and monitoring both natural and human induced change. A pilot project
utilised three sites where coincident airborne LiDAR was available; in NE Victoria,
south-central Queensland, and along the Brisbane River (Queensland). Ground ele-
vation correspondence gave a mean difference < 2 m (ICESat higher than LiDAR),
with woodlands recording a difference of 0.16 m. For forest structural attributes,
ICESat gave reliable estimates (i.e. within 2 m for height and 10% for cover) in some
cases, but the results were dependant on the density and height of the forest, and
terrain slope within the footprint, thus making the extraction inconsistent between
structural metrics. In sparser forests, ICESat tends to report foliage projective cover,
whereas in dense forests, crown cover equivalent values are recorded. An apparent
threshold of improved accuracy when cover was higher than 30% was observed.
Further research is required to better define the thresholds where ICESat does not
produce reliable results. Whilst ICESat appears to be unsuited to continental appli-
cation for national reporting of both height and cover until further calibration across
a greater range of forest environments is undertaken, however ongoing research
efforts to improve the calibration are showing promise.
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Introduction

To effectively respond to a changing climate, there is a need to improve forest and
vegetation assessment methods, particularly as the dynamics (direction and mag-
nitude) of potential change need to be identified as well as the current stock. In
addition, such information is required by governments, industry, private landholders
and the public to detect trends in commercial, biodiversity and greenhouse values,
assess the performance of management practices and public policies, guide sus-
tainable development, and forecast the future condition of these ecosystems (Henry
et al. 2002, Brack 2007).

Undertaking comprehensive, consistent, and accurate assessments within
Australia represents a significant challenge for two main reasons. First, Australia has
an estimated 164 million hectares (ha) of native forests and woodlands, which are
widely distributed, and generally located around the outer margins of the continent.
Second, around 70% of these forests are under private management, with less than
10% in commercial public forest estates where traditionally the best information
was collected. In the areas under private management, the information available on
structure and condition is especially limited (National Forest Inventory (NFI) 2003).
The development of efficient and cost-effective methods, such as that described for
the proposed Continental Forest Monitoring Framework (CFMF) (Norman et al.
2003, Wood et al. 2006) from which this essential information may be retrieved, is
therefore critical if national and international obligations are to be better fulfilled
(Thackway et al. 2007).

The use of airborne laser survey using small footprint multiple (discrete) return
and large footprint full waveform Light Detection and Ranging (LiDAR) data has
rapidly developed, and has demonstrated an effectiveness and high accuracy for
forest structure measurements (Reutebuch et al. 2005). Small footprint LiDAR
is an active sensor that uses a laser beam in the near infrared spectral range
directed towards the ground. For forest assessment purposes, small footprint LiDAR
provides a commercially available, highly precise, point dataset of terrain and
vegetation, and the high accuracies now makes it possible to ‘image’ and locate
individual tree crowns (Suarez et al. 2005).

However, to date the extent of LiDAR use in Australia has been restricted to
a small number of research sites (Lee and Lucas 2007). Therefore for nationwide
sampling of forest height, satellite based measurements are currently the only feasi-
ble alternative. Whilst there are no satellite based laser altimetry systems presently
dedicated to vegetation assessment, this limitation is being addressed to some extent
by spaceborne LIDAR platforms used for monitoring changes in global ice volume.
One such system is the Geoscience Laser Altimeter System (GLAS) on the current
NASA Ice, Cloud, and land Elevation Satellite (ICESat). The full-waveform laser
with an approximate ellipsoid footprint of 70 m diameter (variable between 50 m
diameter circle to 60 × 120 m ellipse), which samples approximately every 170 m
along track, and has a 183 day repeat cycle path. Investigations into forest height
extraction have been initiated, and are currently ongoing (Lefsky et al. 2005a, Sun
et al. 2008).
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Research Design

The ICESat laser sensors provide a possible solution to the current lack of a height
data source that is consistently collected across Australia. Therefore, to investigate
the potential for ICESat data to meet this requirement, ICESat data were summa-
rized and analysed in a number of steps, as described below. The full assessment is
reported in (Lee et al. 2006).

1. The available data (version r26) were summarized across Australia to examine
how the forest estate was represented, when compared to current NFI estimates.
The main collection periods available in the r26 version were Oct-Nov 2003,
March 2004, and Nov 2005.

2. Ground elevation comparisons were made from 132 footprints at three different
locations where airborne LiDAR were available, with two sites in Queensland,
and one site in NE Victoria utilising the CFMF pilot project data (Wood
et al. 2006).

3. Vegetation assessment comparisons were made using CFMF data from NE
Victoria. Here a total of 27 overlap locations within the LiDAR transects were
found (Fig. 1). The locations span a wide range of broad ecological zones
(ecozones), from floodplains, rolling foothills, to montane and subalpine sites.
From the overlap sites, a total of 76 footprints were selected that were within
the LiDAR swath and included forest. A detailed case study was undertaken

Fig. 1 ICESat transects (light diagonal points) with the airborne LiDAR transects (north–south &
east–west lines) and numbered overlap locations across CFMF pilot region in NE Victoria. Darker
areas are native forest; lighter areas are cropping and grazing. The image spans approximately
225 km across (east–west) and 170 km high (north–south)
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with a subset of three footprints at one location that spanned a ridge, mid-slope
and gully.

4. Subsequent to the r26 version analyses, the next version (r28) of ICESat
data became available. This data were summarised at a continental scale and
compared to the r26 results and current NFI data.

Analysis Methods

Detailed spatial comparisons of elevation and forest structure between ICESat and
airborne LiDAR first calculated the approximate ICESat footprint size and shape,
which were used to select the equivalent airborne LiDAR data. Then terrain and
vegetation information were extracted from the LiDAR data from within the esti-
mated footprint area (Lee et al. 2006). The footprint shape and size were accurately
calculated, such that the selection of the associated airborne LiDAR data was as
precise as possible. Standard elliptical formulae were utilised to model the bound-
ing area of the ICESat footprint, using the parameters of azimuth, eccentricity
and the major and minor axes (see Lee et al. 2006 for formulae and parameter
description).

Different laser sensors on the satellite have been used since 2000, which has
resulted in different footprint shapes being observed. Figure 2 illustrates one loca-
tion with three footprints from different dates. The yellow crosses indicate the
respective footprint centres, and the labels are the Julian day (number of days) since
the sensor began recording (from 12 p.m., January 1st, 2000). The smallest (and
most recent) footprint (purple) is approximately 50 m in diameter.

Fig. 2 Examples of airborne
LiDAR selected within three
ICESat footprints from
different dates
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The following parameters were extracted from the full waveform curve for
comparison:

• Canopy cover (0–100%);
• Centroid height (distance from centre of the ground pulse to the centre of the

highest vegetation pulse);
• Fit_height (the third parameter (ßÀ) in the weibull distribution used to fit

the cumulative vegetation profile, calculated as (ßfÀ[1]∗expß-fÀ[2]∗(height_ß/
fÀ[ßÀ[4)));

• Veg_height (height on the curve where the cumulative FPC greater than 2 m
crosses 95%);

• Height at 10% FPC (height where the cumulative FPC greater than 2 m crosses
10% (for r28 data only).

The forest structural attributes derived from the airborne LiDAR for compari-
son were:

• Maximum vegetation height (m);
• Predominant vegetation height, (m);
• Percent vegetation foliage cover (0.5 m+ height) (0–100%);
• Percent forest foliage cover (2 m+ height) (0–100%);
• Percent crown cover (0–100%).

See Lee et al. (2006) and Lee and Lucas (2007) for a detailed description of all
the attributes.

Results

Initial Continental Summary

For the r26 version of the ICESat data, there were a total of 1,906,792 footprints
across Australia, from which approximately 39.4% had height ≥ 2 m, and cover
≥10% (i.e. forest) (Table 1). This contrasts with the NFI continental forest estimate
of approximately 21.4%. In terms of structure class comparisons between ICESat
and NFI, both medium and tall classes are within 3%, however all other height
and cover classes differ by between 5.7 and 31.6%. The comparison in cover class
estimates is especially disparate.

Ground Elevation Comparisons

For the North East Victorian sites, elevation extracted was within 2–3 m of airborne
LiDAR data on average, within a mean range of ± 5 m (n = 94). For sites in central
Queensland woodlands, the mean difference was approximately 20 cm, within a
range of ± 2 m (n = 18). For the Brisbane river (south east Queensland) sites, the
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Table 1 GLA v26 continental summary for height (centroid height) and cover, including the NFI
estimate (2003–2007)

Cover (%)
% of records
Height (m) 0–10 10–30 30–70 70–100 ICESat total NFI %

0–2 48.0 2.2 8.9 0.0 59.1 78.8
2–10 1.4 3.6 20.8 1.7 27.4 4.6
10–30 0.1 0.6 7.8 4.4 12.9 15.7c

30+ 0.0 0.0 0.3 0.3 0.6 1.1
ICESat total 49.5 6.4 37.7 6.3 100.0 100.0
NFI % 78.8 14.6a 6.1b 0.6 100.0

For NFI totals: aincludes 1.3% unknown cover; bincludes 0.2% plantations; cincludes 4.9%
unknown height

mean difference was within 1–2 m, with a mean range of ± 5 m (n = 20). A more
detailed description of the results is provided in (Lee et al. 2006).

Vegetation Comparisons in NE Victoria

Across all ecozones, ICESat FPC correspondence with LiDAR foliage-branch
cover was very poor (r2 = 0.12, RSE = 18.26%, y = 0.28115x + 20.486),
and crown cover (r2 = 0.14, RSE = 29.83%, y = 0.5114x + 32.406). When
applying an arbitrary quality or utility assessment, ICESat gave a good result for
foliage cover (i.e. within 10% cover) for 33% of footprints, whilst 41% gave
poor results (i.e. a difference of greater than 20% cover). When examined by
ecozone, 40% were good, and 20–40% were poor for floodplains and montane
footprints. For footprints found in foothills sites, 21% were good whilst 50%
were poor.

Forest height values extracted from ICESat had poor correspondence to the
LiDAR heights, with r2 values for the three different height parameters ranging from
0.2 to 0.45. The best initial correspondence was between ICESat parameter ‘veg_ht’
and LiDAR elevation range (r2 = 0.45, RSE = 13.47 m; Fig. 3-left). ICESat gave
a good result (i.e. within 5 m) for predominant canopy height for 54% of foot-
prints, whereas 28% of footprints had a height difference greater than 10 m (i.e.
poor). When assessed by ecozone, floodplains and montane footprints recorded 40%
that were good, with 40% poor. For foothills sites, 75% were good and 10% were
poor. The ICESat parameter ‘centroid_ht’ related best to LiDAR predominant height
(r2 = 0.26, RSE = 8.13 m; (Fig. 3–right)). When the comparison was further sub-
divided by ecozone, it is apparent that the floodplain sites have a higher number of
poor comparison sites. The foothills and montane sites have most occurring within
5 m of the 1:1 line. There are some larger outliers where ICESat tends to report a
lower height than the LiDAR, but further investigation is required to determine the
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Fig. 3 (left) ICESat waveform ‘veg_ht’ versus LiDAR elevation range. (right) ICESat ‘cen-
troid_ht’ related best to LiDAR predominant height

cause of the disparity. Additionally, it was noted from the results that ICESat data
tended to give either a good result for height and poor for cover or vice versa.

ICESat Comparison Case Study in NE Victoria

The case study site examined three footprints (Fig. 4) in detail to assess the potential
effects of slope, terrain position, and vegetation density on the extraction of ICESat
height and cover attributes. In the riparian footprint, a close correspondence was
observed for both ICESat ‘Fit_ht’ with LiDAR maximum height (~1 m difference),
and ICESat ‘Centroid_ht’ with LiDAR predominant height (~2 m difference). This
contrasts with the mid-slope and ridge top footprints, which recorded poorer height
correspondences overall (differences in excess of 5 m). The exception was for mid-
slope ICESat ‘Fit_ht’ and LiDAR maximum height, where the difference was <
1 m. The poorer correspondences observed for height and cover in the mid-slope
and ridge top footprints were attributed to a combination of higher slope and rel-
atively sparse vegetation within the respective footprints. The ICESat waveforms
were extracted and compared to the airborne LiDAR return data for height and
cover, and to compare between the apparent vertical profiles (Table 2).

For forest cover estimation at the case study site, the ridge-top footprint correctly
estimates foliage-branch cover, whereas the riparian footprint correctly estimates
crown cover. In the case study example the riparian stand has a higher LiDAR
foliage-branch cover (43%), and the ICESat value extracted is closer to LiDAR
crown cover (~70%), whereas the ridge-top LiDAR foliage-branch cover is lower
(28%), with the corresponding ICESat cover value being similar to LiDAR foliage-
branch cover. The mid-slope ICESat footprint cover estimate is much higher than
either LiDAR foliage-branch cover or crown cover, with the combination of steeper
slope (up to 13◦) and lack of tree cover (LiDAR crown cover = 8%) as potential
factors in the difference observed. See (Lee et al. 2006) for tabular results.



44 A. Lee et al.

Fig. 4 Airborne LiDAR with three ICESat footprints displayed on a 1 m LiDAR derived DEM.
(Upper) planimetric view showing footprints in relation to other vegetation, as represented by
LiDAR returns. (Lower) LiDAR returns only within the ICESat footprints displayed in 3D
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Table 3 GLA v28 continental summary with NFI estimates (2003–2007)

Cover (%)
% of records
Height (m) 0–10 10–30 30–70 70–100 ICESat total NFI %

0–2 80.8 0.0 0.0 0.0 80.8 78.8
2–10 0.4 0.1 1.1 0.0 1.7 4.6
10–30 1.9 1.5 8.7 2.3 14.3 15.7c

30+ 0.1 0.2 1.9 1.0 3.2 1.1
ICESat total 83.1 1.8 11.8 3.3 100.0 100.0
NFI % 78.8 14.6a 6.1b 0.6 100.0

NFI totals: aincludes 1.3% unknown cover; bincludes 0.2% plantations; cincludes 4.9% unknown
height

Updated Continental Summary

For the r28 version of the ICESat data, there were a total of 2,579,278 records across
Australia, from which approximately 16.9% were classed as forest, that is had height
and cover attributes that were greater than or equal to 2 m and 10% respectively. The
r28 data was significantly improved for national assessment when compared to the
r26 version. The overall estimate of forest area is much closer to the NFI estimate
(21.4%), differing by 4.5% (Table 3). The comparisons in height classes with NFI
estimates are reasonably close, i.e. within 3%. The cover class comparisons are
more variable, with large differences between the respective woodland and open
forest class comparisons. This may reflect a threshold or limitation in the ability
of ICESat to adequately resolve areas of scattered trees within the footprint area,
particularly when cover is less than 20–30%.

Histograms of the height and cover distribution are shown in Fig. 5, and include
the NFI structure class boundaries. Figure 6 illustrates the spatial distribution of
ICESat footprints across the continent. Overall, the forest footprints appear in the
same locations as have been mapped by the NFI, i.e. predominantly on the coastal
margins of the eastern, south western and northern areas of the continent. Of note is
the apparent forest recorded in northwest Western Australia and central Australia.
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Fig. 5 ICESat GLA14r28 forest height and cover class distribution for Australia
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Fig. 6 ICESat GLA14r28 distribution across Australia (2006). Dark points are estimated forest (2
m+ height and 10%+ cover). Footprint point size representation is not to scale

Discussion

In terms of national level reporting and monitoring, the r28 version of ICESat
shows promise for height assessment, though the cover estimates need improve-
ment. The use of histograms for cover and height illustrate the advantage of the
continuous measurement available with ICESat over the categorical classes used by
the NFI. This provides an improved understanding of the actual distribution (assum-
ing ICESat is an accurate sample) of forest height across the continent. However,
improvements are required and currently ongoing. For example, with forest height
the lowest value from the full waveform curve is 5.8 m (‘height at 10% FPC’ param-
eter). Therefore, to better match the NFI forest threshold of 2 m, more research is
required to see if vegetation less than 5.8 m but greater than 2 m can be resolved
from the waveform curves when using this parameter. This is especially relevant in
the mallee and arid regions where much of the vegetation would be in the 2–5 m
height range, and which is likely to be missed with the current parameter attribute
extraction settings.

The three-footprint case study highlights several issues that combine to cause
difficulties for attribute extraction and calibration. The case study has identified that
ICESat (version r26) can extract attributes for height and cover that are similar to
the LiDAR derived estimates, however the consistency of the extraction is variable.
Issues that need to be further investigated, before consistent continental applica-
tion can be undertaken, include an assessment of cloud cover at time of footprint
collection (either with ICESat categorical attribute, or MODIS cloud opacity/depth
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value for example), to determine if exclusion or additional calibration functions
are required. This would assist in determining if there is any impact of smoke, high
cloud, haze, and fog/mist on the ICESat response, especially in riparian areas, where
these conditions may occur more frequently. Hazy conditions may result in greater
scattering of the laser pulse, so resulting in less sensitivity to the vegetation, and
incorrect assessment of height and cover.

Additionally, laser interactions with vegetation need more detailed investigation,
as very sparse or clumped vegetation can violate many large footprint-processing
assumptions, potentially resulting in incorrect results (Harding et al. 2001). Tall,
dense, multi-layered forests can also present issues, especially when combined with
steep slopes. Therefore likely error thresholds for height, cover, and strata need to
be further investigated. This could include developing initial linear regression func-
tions to improve height or cover using a range of ICESat attributes (e.g. elevation,
slope, reflectance, intensity, footprint area, height, cover, time of day) to improve
the attribute estimation. A combination of decision tree and/or series of calibration
steps or functions stratified by ecozone will be required to optimise the extraction
of height and cover from ICESat for all the major vegetation types across Australia.

Conclusions

Based on the comparisons undertaken for ground elevation, ICESat appears to be
an effective calibration tool for continental terrain model validation. Whilst initial
comparisons between ICESat and LiDAR forest structural metrics were variable
and appeared to be dependant on the density of the forest and terrain slope within
the footprint, ICESat did appear to extract reasonable estimates when compared to
the LiDAR (especially with height), with an apparent threshold of improved accu-
racy when foliage-branch cover was higher than 30%. The differences observed
in the case study were comparable (in terms of RSE for height) with those found
in other pilot studies (e.g. Harding and Carabajal 2005, Sun et al. 2008), although
more comparison sites are required to generate improved correlations and reliable
continental application. It is encouraging to note the large improvement in national
level statistics for forest structure with the r28 version over the r26 version, when
compared to current National Forest Inventory estimates. This is especially so con-
sidering that height information is not consistently collected over the continent, and
that not all forest area have been explicitly mapped or attributed with height and
cover estimates.

References

Brack, C. L., 2007. National forest inventories and biodiversity monitoring in Australia. Plant
Biosystems, 141:104–112.

Harding, D. J., Lefsky, M. A., Parker, G. G. and Blair, J. B., 2001. Laser altimeter canopy height
profiles – Methods and validation for closed-canopy, broadleaf forests. Remote Sensing of
Environment, 76:283–297.



50 A. Lee et al.

Harding, D. J. and Carabajal, C. C., 2005. ICESat waveform measurements of within-footprint
topographic relief and vegetation vertical structure. Geophysical Research Letters, 32:L21S10.

Henry, B. K., Danaher, T., McKeon, G. M. and Burrows, W., 2002. A review of the potential role
of greenhouse gas abatement in native vegetation management in Queensland’s rangelands.
Rangeland Journal 24:112–132.

Lee, A. C. and Lucas, R. M., 2007. A LiDAR-derived Canopy Density Model for Tree Stem and
Crown Mapping in Australian Forests. Remote Sensing of Environment, 111:493–518.

Lee, A. C., Scarth, P. and Gerrand, A., 2006. ICESAT and airborne LiDAR calibration pilot project.
BRS internal technical report. Bureau of Rural Sciences, Canberra.

Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo,
F., Hunter, M. O., de Oliveira, R. J. and de Camargo, P. B., 2005a. Estimates of forest canopy
height and aboveground biomass using ICESat. Geophysics Research Letters, 32:L22S02.

National Forest Inventory (NFI), 2003. Australia’s State of the Forests Report, 2003. Canberra,
Bureau of Rural Sciences.

Norman, P., Wood, M. S. and Lee, A. C., 2003. A Continental Forest Monitoring Framework for
Australia – Background, concept and rationale. Canberra, National Forest Inventory, Bureau
of Rural Sciences.

Reutebuch, S. E., Andersen, H.-E. and McGaughey, R. J., 2005. Light Detection and Ranging
(LIDAR): An Emerging Tool for Multiple Resource Inventory. Journal of Forestry, 103:
286–292.

Suarez, J. C., Ontiveros, C., Smith, S. and Snape, S., 2005. Use of airborne LiDAR and aerial
photography in the estimation of individual tree heights in forestry. Computers & Geosciences,
31:253–262.

Sun, G., Ranson, K. J., Kimes, D. S., Blair, J. B. and Kovacs, K., 2008. Forest vertical struc-
ture from GLAS: An evaluation using LVIS and SRTM data. Remote Sensing of Environment,
112:107–117.

Thackway, R., Lee, A., Donohue, R., Keenan, R. J. and Wood, M., 2007. Vegetation information
for improved natural resource management in Australia. Landscape and Urban Planning, 79:
127–136.

Wood, M. S., Keightley, E. K., Lee, A. C. and Norman, P., 2006. Continental Forest Monitoring
Framework, Technical Report – Design and Pilot Study. Canberra, National Forest Inventory,
Bureau of Rural Sciences.



Linking Biological Survey Information
to Remote Sensing Datasets: A Case Study

K.J. Sheffield, S.D. Jones, J.G. Ferwerda, P. Gibbons, and A. Zerger

Abstract Remote sensing is widely used as a tool to map and monitor environmen-
tal attributes, such as vegetation. This paper describes a native vegetation ground
data collection protocol that attempts to integrate the spatial resolution of several
remotely sensed datasets and the spatial variation of vegetation into a framework. A
particular challenge of this study was to use pre-existing vegetation survey method-
ology and adapt this for use with a number of remote sensing satellite systems.
The spatial properties of remotely sensed data were explored by calculating textural
measures for images at progressively coarser spatial resolutions, allowing sources
of remotely sensed data for this project to be evaluated, with respect to spatial scale.
This study forms part of a larger project which investigates the potential use of
remotely sensed data in the development of a vegetation assessment framework,
providing linkages between variables at site, landscape, and regional scales.

Introduction

This paper presents an overview of the approach taken to develop a vegetation
ground data collection protocol that provides relevant ground information for use
with SPOT 5 and Ikonos imagery, and integrates currently operational ground-based
methods for assessing vegetation attributes at a site scale. This case study takes
established knowledge and techniques from remote sensing and ecological disci-
plines, and provides an applied example of how data requirements for two purposes
can be integrated within the one approach. This work employs known concepts and
issues relating to the collection of ground data for remote sensing studies and pro-
vides a practical application of this theory in the context of vegetation assessment
for biodiversity conservation in south-eastern Australia.
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Multi-Spectral Remote Sensing of Vegetation

Imagery from multi-spectral satellite remote sensing platforms is frequently used
for vegetation assessment. Remote sensing based vegetation measures range
from highly detailed fine scale assessments, to regional and global applications
(Thomlinson et al. 1999, Defries et al. 2000, Huang et al. 2001, Armston et al. 2004,
Johansen et al. 2007). Satellite remotely sensed data provide an efficient method to
measure stands of vegetation in a timely manner, particularly over larger tracts of
vegetation (Coops and Culvenor 2000, Zawadzki et al. 2005).

The spectral response of vegetation is characterised by lower reflectance in the
visible portion of the electromagnetic spectrum, and high reflectance of near infra-
red wavelengths. Key factors that affect the spectral reflectance characteristics of
vegetation include leaf size and orientation, physical structure of the plant, species
distribution, vegetation density, and the influence of other land covers (Bannari et al.
1995, Armitage et al. 2000, Nagendra 2001). The temporal influence on vegetation
spectral response is also a key consideration as vegetation phenology (and conse-
quently spectral reflectance) varies seasonally and at different plant growth stages
(Jensen 2000, Nagendra 2001, McCoy 2005).

A common approach to the assessment of vegetation using multi-spectral
remotely sensed data is the use of vegetation indices. Vegetation indices are radio-
metric functions that provide information about vegetation reflectance and biomass.
Many different vegetation indices have been developed to provide information on
a range of vegetation characteristics such as vegetation cover, leaf density or leaf
water content. The Normalized Difference Vegetation Index (NDVI) is widely used
to derive estimates of vegetation cover (Bannari et al. 1995, Defries et al. 2000,
North 2002, Jiang et al. 2005, Carreiras et al. 2006, Liu et al. 2007). Other routinely
used vegetation indices include the Soil Adjusted Vegetation Index (SAVI) and the
Enhanced Vegetation Index (EVI) (Huete 1988, Bannari et al. 1995, Nagler et al.
2001, Huete et al. 2002).

The assessment of vegetation using multi-spectral remotely sensed data requires
some form of ground data with which to compare products derived from remotely
sensed data. The collection of ground or reference data for remote sensing studies is
a well established, but often under-resourced process. There are, however, numerous
issues that require consideration to produce a well-designed and flexible field that
will allow appropriate ground data to be collected for a given study.

Ground Data Collection Issues

Ground data quality issues are an important consideration in any study involv-
ing geographic information, including remotely sensed data. Ground data, and
specifically spatial data, quality elements identified within existing geographic data
guidelines include what are termed the ‘Big 5’ issues: (1) positional accuracy, (2)
attribute accuracy, (3) logical consistency, (4) data completeness, and (5) data lin-
eage (Hunter et al. 2003a, Morrison 2005, Comber et al. 2006, Reinke and Jones



Linking Biological Survey Information to Remote Sensing Datasets 53
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Fig. 1 A summary of ground data quality issues considered in the development of this ground
data sampling approach, based on issues identified in Guptill and Morrison (1995), Aspinall and
Pearson (1996), Brogaard and Ólafsdóttir (1997), and Reinke and Jones (2006)

2006). While some issues are generic to all spatial data, such as lineage and attribute
accuracy, others, such as spatial scale, temporal resolution, and site homogeneity,
are particularly relevant to remote sensing applications.

Consideration of these data quality issues is required to improve the ability
of existing vegetation field surveys to accommodate the needs of remote sensing
applications (McCoy 2005, Reinke and Jones 2006), thus addressing the compat-
ibility between remotely sensed data analysis and ground data requirements. Poor
compatibility between ground data and remote sensing data will greatly impinge
data analysis, and may undermine any identified relationships between the data
(Congalton 1991, Defries et al. 2000, Liang 2004, Reinke and Jones 2006). Data
quality issues that were considered in this study are summarised in Fig. 1.

Spatial scale and spatial resolution are key elements of remotely sensed data.
The spatial resolution of a sensor is an important feature, as it determines the detail
of the information that can be extracted from an image (Marceau et al. 1994). The
spatial resolution of remotely sensed data is often considered as the pixel size of the
imagery or in terms of the sensor’s ground sample area. Collection of ground data
that corresponds with the spatial resolution of remotely sensed data enhances the
utility of ground data, and is a key challenge for remote sensing studies (Brogaard
and Ólafsdóttir 1997, McCoy 2005, Reinke and Jones 2006).
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The spatial structure of remotely sensed data changes with image scale and res-
olution (Milne and Cohen 1999), which emphasises the need to carefully select
appropriate remotely sensed data for specific studies, and is also an important con-
sideration when collecting ground data for remote sensing projects. Semivariograms
can be used to represent the spatial structure of remotely sensed imagery, and have
been used to guide the selection of appropriate spatial resolutions for individual
studies (Woodcock and Strahler 1987, Curran 1988, Woodcock et al. 1988a). This
type of analysis can be particularly helpful when multiple spatial scales are con-
sidered simultaneously within a single study. Multi-scale analysis is becoming an
increasingly important challenge, as recognition of the scale-dependent nature of
ecological variation increases (White and Walker 1997, Hay et al. 2002, Fischer
et al. 2004). Reconciling these considerations with remote sensing data requirements
is a recognised issue.

In terms of temporal resolution, the synchronicity between ground and remotely
sensed data acquisition is a key consideration. Where vegetation is the feature of
interest in a study, temporal resolution is particularly important, as vegetation is a
dynamic feature that varies temporally as well as spatially (White and Walker 1997,
Landres et al. 1999, Jensen 2000, Nagendra 2001). The methods used to record
ground data are a key issue given the variability of methods available to measure
any given attribute. The use of continuous variables allows greater flexibility for
future use of the data than variables recorded as categorical attributes, and allows
the data to be manipulated for different purposes (Fassnacht et al. 2006, Reinke
and Jones 2006). The methods used to record data also influence the accuracy and
precision of the data, which can be an important consideration if it is then used to
validate remotely sensed data.

A requirement of ground data for use in remote sensing applications is a known
spatial relationship to the remotely sensed data. An important consideration of
ground data collection planning is the estimation of potential positional inaccu-
racy sources and compensating for this within the ground sampling strategy (Treitz
et al. 1992, Stehman and Czaplewski 1998, Means et al. 1999, McCoy 2005). To
reduce the impact of positional errors on the estimate of variables from remotely
sensed data, sampling strategies based on pixel clusters are often used in remote
sensing studies. This strategy negates the need to locate single pixels accurately
within an image.

The use of pixel clusters as sampling units can also assist in sampling the interior
of an area, reducing the potential of sampling mixed pixels rather than homogenous
ground areas. Incorporating a buffer around ground data collection sites also ensures
a full pixel is sampled, rather than the edges of pixels (Thomlinson et al. 1999).
Sampling in homogenous areas is advantageous since a given variable is evenly
mixed, or distributed uniformly across an area (McCoy 2005).

Generally, for remote sensing studies, ground data collection sites are located
within homogenous areas (Nusser and Klaas 2003, Armston et al. 2004, Gallo et al.
2005, Reinke and Jones 2006). While spatial heterogeneity of vegetation attributes
is considered important from an ecological perspective (Turner 2005), homogenous
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areas are often of more interest in terms of ground data collection for remote
sensing studies. Large homogenous areas are less likely to be negatively affected
by positional inaccuracy (Means et al. 1999, McCoy 2005).

There are many other data issues that influence the use of spatial data and the col-
lection of ground data for remote sensing applications. In addition to those issues
reviewed above, other important considerations include data lineage, data complete-
ness, logical consistency, and the provision of appropriate metadata (Brassel et al.
1995, Hunter et al. 2003b, Lee et al. 2003, Reinke and Jones 2006).

Study Area

The case study was undertaken in southern New South Wales (NSW), Australia
(Fig. 2). The study area covers approximately 120 km2, and is located in the Murray
Catchment Management Authority (CMA) area. The study area is dominated by
agricultural land uses, predominately dryland grazing and cropping, with some areas
of forestry plantations, remnant native vegetation and National Park.

The landscape has largely been cleared for agriculture, and consequently most
remaining native vegetation is located along roadsides, in traveling stock reserves,
along watercourses, and in small remnants on private land. The dominant vegetation
types found in the area are Grassy Box Woodlands, Riverine Woodland Forest and
Dry Foothill Forest (Murray CMA 2006). Dominant tree species found in this land-
scape include White Box (Eucalyptus albens), Western Grey Box (E. microcarpa),
Yellow Box (E. melliodora), Blakely’s Red Gum (E. blakelyi), and Silver Wattle
(Acacia dealbata).

Fig. 2 Location and extent of study area within the Murray Catchment Management Authority
area in southern New South Wales, Australia
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Remotely Sensed Data

The choice of remotely sensed imagery used for this study was limited to two oper-
ational multi-spectral platforms: Ikonos and SPOT 5. These data were selected due
to their availability and general use within the study area. Details of the spatial and
spectral resolutions of the sensors are given in Table 1.

Table 1 Spatial and spectral (panchromatic (Pan) and multi-spectral (MS)) details of remote
sensing platforms used in this study

Platform Mode Spatial resolution Spectral resolution

Ikonos Pan 1 m 0.45–0.90 μm
MS 4 m 0.45–0.52 μm

0.51–0.60 μm
0.63–0.70 μm
0.76–0.85 μm

SPOT 5 Pan 2.5 m 0.48–0.71 μm
MS 10 m 0.50–0.59 μm

0.61–0.68 μm
0.78–0.89 μm

20 m 1.58–1.75 μm

Development of a Vegetation Ground Data Collection Protocol

The ability of remotely sensed data to provide measures of vegetation at landscape
and regional scales that are consistent with those measured at a stand-level strongly
depends on the sampling scheme used to collect ground data (Reinke and Jones
2006). The process outlined below was used to develop a vegetation ground data
collection protocol that provides ground data relevant for use with SPOT 5 and
Ikonos imagery, while integrating methods for assessing vegetation attributes at a
site scale that are currently used within the study area. The development of this
protocol considered three key areas:

1. Definition of an appropriate sampling unit, based of the spatial resolution of
remotely sensed data,

2. Determination of a methodology to sample a suite of vegetation attributes within
the defined sampling unit at an appropriate spatial scale, and

3. Consideration of key ground data collection issues considered relevant to
this study.

Determining Field Site Dimensions

The field site structure was based on the spatial resolution of the imagery used
in this project. Semivariograms and Moran’s I spatial autocorrelation measured
were used to examine the underlying spatial properties of the remotely sensed data.
Semivariograms are a visual tool used to represent the spatial structure of remotely
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Fig. 3 Average and individual band semivariograms for Ikonos imagery (excluding urban areas)
derived from global image semivariance calculations

sensed data, relating semivariance to distance (Curran 1988, Woodcock et al. 1988a,
Tso and Mather 2001). Semivariograms derived from Ikonos imagery (both individ-
ual bands and an image average) are shown in Fig. 3. As vegetation was the primary
interest in this study, urban land cover was excluded from the analysis.

Information regarding the spatial structure of remotely sensed data can be
inferred from a number of semivariogram features. The sill is the value at which
the maximum semivariance value is reached (Curran 1988, Woodcock et al. 1988a,
Merino de Miguel 2000), and represents the amount of variation explained by the
nugget effect and the spatial structure of the imagery (Zawadzki et al. 2005). The
distance at which the sill is reached is known as the range (Woodcock et al. 1988b),
and represents the spatial resolution above which image objects are considered spa-
tially independent (Woodcock et al. 1988a). The range is related to the size of image
objects as these contribute to the spatial structure of the image, and spatial depen-
dence of pixel values (Woodcock et al. 1988a, Merino de Miguel 2000, Song and
Woodcock 2002, Zawadzki et al. 2005).

Inspection of semivariograms derived from both Ikonos and SPOT 5 imagery,
determined that a sill was approached at distances (range) of approximately 50 m.
For all semivariograms, there was an initial rapid increase in semivariance below a
distance of approximately 50 m, after which semivariance increased at a more grad-
ual rate, suggesting larger variation in image object sizes at distances below 50 m
(Woodcock et al. 1988b, Merino de Miguel 2000). A similar analysis was conducted
using Moran’s I, a measure of spatial autocorrelation (Emerson et al. 2005). The
results of this analysis supported the conclusions established using semivariance
values for the two images.
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The ground data sampling protocol was therefore designed to target areas below
50 × 50 m, facilitating an analysis of spatial scale issues at distances where there
is greater variability in image object size. A previous study conducted within the
study area found that 34% of remnant native vegetation occurred in patches of less
than 1 ha (Gibbons and Boak 2002), suggesting that using a field site of 50 m2

was capable of capturing both information in small vegetation remnants within the
landscape and variation within larger vegetation remnants.

Due to the variable spatial resolution of the two sources of remotely sensed data,
a nested sampling approach was used, following established ground data collection
protocols such as the BigFoot calibration and validation program (Campbell et al.
1999). Pixel clusters, rather than individual pixels, were used to construct the nested
field site design. The use of pixel clusters as sampling units is a common approach
in remote sensing studies (Stehman and Czaplewski 1998, Lefsky et al. 1999, Means
et al. 1999, Golevitch et al. 2002, Nusser and Klaas 2003).

Pixel clusters of 3 × 3 and 5 × 5 from both sensors were used to construct
the nested field site design, which incorporated cluster dimensions ranging from
12 to 50 m2. The use of pixel clusters to sample remotely sensed data addresses
two key spatial data issues identified previously: (1) the need to sample homoge-
nous areas, and (2) the need to allow for potential positional inaccuracies. To
ensure field sites were located in homogenous areas of vegetation and to reduce
the potential influence of edge areas, the field sites a 20 m buffer was incorporated
around sites.

Sampling Vegetation Variables Within the Field Site

Within the nested spatial arrangement of the field site, plots and transects were
established to collect ground data measurements. The layout of plots and transects
is shown in Fig. 4. This sampling design enabled assessment of vegetation at dis-
tances smaller than 50 m, corresponding to key spatial areas identified from the
image semivariograms. Across each site, replicate areas were assessed to obtain a
mean estimation of vegetation attributes within a given spatial area. Pilot studies
were conducted to determine appropriate sampling intensities within the study area.

GPS Point

20m × 20m quadrat20m × 50m quadrat

50m transectFig. 4 Plot and transect
arrangement used to sample
vegetation attributes within a
nested field site arrangement
based on clusters of image
pixels (adapted from Gibbons
et al. 2005)
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The structure and layout of each plot assessment is based on the BioMetric
vegetation condition site assessment methodology (Gibbons et al. 2005). This
approach to assessing stand-level vegetation attributes is widely used through-
out NSW, Australia. Designing the ground data collection protocol for use with
remotely sensed data, while also facilitating integration with existing vegetation
survey work in the study area helps to explore how the two disciplines (ecology
and remote sensing) can be incorporated into an effective vegetation assess-
ment framework, an important area of work for natural resource management
(Lee et al. 2003).

Vegetation attributes were measured using quantitative continuous measure-
ments. Attribute measurement is a key ground data collection issue identified
previously. The use of quantitative continuous measurements does not impose arti-
ficial restrictions on the data, allowing greater flexibility in the use and further
analysis of that data (McCoy 2005, Fassnacht et al. 2006, Reinke and Jones 2006).
By collecting ground data in this manner, the data could be re-scaled and com-
piled to yield information at different spatial scales and within different pixel cluster
areas.

Conclusions

While the low cost, repeatability and synoptic overview provided by remotely
sensed data means that it is a widely used technology to map and monitor envi-
ronmental variables, linking these data with in-situ (or on-ground) observations is
often difficult. This forms a central challenge of this work, through the design of
a flexible ground data collection approach that is capable of providing ground data
suitable for a suite of remotely sensed data.

A ground data collection protocol is presented that allows for: (1) the spatial
resolution of the imagery utilized; and, (2) the spatial variation of the attribute being
measured. An understanding of the spatial structure of remotely sensed data and the
effect that spatial resolution has on classification and analysis of remotely sensed
data has a significant influence on analysis results (Marceau et al. 1994). While the
concepts behind this protocol are not new, it provides an example of how issues
specific to re-mote sensing can be integrated in the design of a multi-purpose field
cam-paign.

Identification of appropriate spatial resolutions for analyzing vegetation has
important consequences for the choice and use of remotely sensed data. Outcomes
from this project will be used to guide appropriate analysis and data use in the devel-
opment of a vegetation assessment framework, which aims to provide data across a
range of spatial scales (such as site, landscape and regional areas) incorporating a
number of remotely sensed data sources.
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Characterizing the Landsat Global Long-Term
Data Record

T. Arvidson, S.N. Goward, and D.L. Williams

Abstract The effects of global climate change are fast becoming politically, soci-
ologically, and personally important: increasing storm frequency and intensity,
lengthening cycles of drought and flood, expanding desertification and soil saliniza-
tion. A vital asset in the analysis of climate change on a global basis is the 36-year
record of Landsat imagery. In recognition of its increasing importance, a detailed
analysis of the Landsat observation coverage within the US archive was commis-
sioned. Results to date indicate some unexpected gaps in the US-held archive.
Fortunately, throughout the Landsat program, data have been downlinked routinely
to International Cooperator (IC) ground stations for archival, processing, and distri-
bution. These IC data could be combined with the current US holdings to build a
nearly global, annual observation record over this 36-year period. Today, we have
inadequate information as to which scenes are available from which IC archives.
Our best estimate is that there are over four million digital scenes in the IC archives,
compared with the two million scenes held in the US archive. This vast pool of
Landsat observations needs to be accurately documented, via metadata, to deter-
mine the existence of complementary scenes and to characterize the potential scope
of the global Landsat observation record. Of course, knowing the extent and com-
pleteness of the data record is but the first step. It will be necessary to assure that
the data record is easy to use, internally consistent in terms of calibration and data
format, and fully accessible in order to fully realize its potential.

Introduction

Global climate change is rapidly becoming a common discussion point in the gen-
eral populace, a rising concern for the scientific community, and a priority for policy
and decision makers. Studies of the impact of climate change are conducted at many
levels – global, regional, and local. Remotely sensed data at a moderate resolu-
tion – between 10 and 120 m (Green 2006) – play a critical role in addressing these
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concerns. As the only systematic global archive of land scenes at a moderate resolu-
tion, the Landsat archive is key to the study of the changes being recognized in our
global climate system.

Landsat has primarily been managed as a survey mission, concentrating on
achieving global coverage at least annually. Thus a considerable archive of data has
been gathered for the purpose of being available if needed in the future, as opposed
to being acquired in response to a specific request. The exception to this is a period
of commercialization ushered in by the Land Remote Sensing Commercialization
Act of 1984 (Public Law 98–365) and ended by the 1992 Land Remote Sensing
Policy Act (Public Law 102–555) (Green 2006). The commercial operator, EOSAT
(later Space Imaging), concentrated on acquisitions based on user requests – data
for which they had a buyer.

Additionally, Landsat data characteristics and calibration are generally well
understood, enabling the goal of continuity from one spacecraft and sensor to
the next. This also enables use of Landsat data with other sensor data. Recently,
Geoscience Australia has studied, through a pilot project over Gwydir Catchment in
Northern New South Wales, the value of Landsat archive data processed to consis-
tent quality surface reflectance products, combined with Moderate Resolution Image
Spectroradiometer (MODIS) time series data, to derive land cover information for
tackling national issues such as water management, environmental responses to cli-
mate change, as well as provide data for national environment reporting. In this
study, Lymburner et al. (2008) used MODIS data – 250 m spatial resolution and
daily revisit frequency – with Landsat data – 30 m spatial resolution and 16-day
revisit frequency – to identify irrigated versus rainfed crops, fallow periods, the
number of crops per year, productivity, and yield trends from year-to-year. This type
of information would support the accounting of water usage, interactions between
surface water bodies and ground water, water allocation, and other water-related
issues.

The first Landsat satellite was launched in 1972 and there has been continuous
Landsat presence in orbit since then. Landsat 5 and Landsat 7 are currently opera-
tional, respectively adding a total of 6,000 and 9,000 scenes per month to the US
archive.

An application of the Landsat long-term record is the National Carbon
Accounting System (NCAS) of the Department of Climate Change in Australia
(Australian Greenhouse Office 2005), which verifies compliance with the Kyoto
Protocol. The NCAS monitors land clearing and revegetation and is vital to
Australia’s National Greenhouse Gas Inventory reporting. Using continental
Landsat imagery maps with geometric and radiometric consistency, 15 sequences
of land cover change from 1972 to 2004 have been generated and used to identify
the sinks and sources of greenhouse gases and catalog those caused by human activ-
ity, including: fires, farming, land conservation, and forest management (Caccetta
et al. 2007).

Given the importance of the 36-year Landsat archive to the science commu-
nity, the US National Satellite Land Remote Sensing Data Archive (NSLRSDA)
Advisory Committee commissioned an analysis of the state of the US Landsat
holdings. This paper reports on the results-to-date of that analysis.



Characterizing the Landsat Global Long-Term Data Record 67

US Archive Status

Since 1972, the US has been accumulating Multispectral Scanner (MSS, from
Landsats 1–5), Thematic Mapper (TM, from Landsats 4–5), and Enhanced Thematic
Mapper Plus (ETM+, from Landsat 7) data in the US archive (Table 1). The archive
is housed at the US Geological Survey’s (USGS) Center for Earth Observation and
Science (EROS) in Sioux Falls, South Dakota.

Table 1 US archive holdings by sensor (as of 31 August 2008)

Date range Sensor source No. of scenes

1972–1992 Multispectral scanner 649,423
1982–present Thematic mapper 760,437
1999–present Enhanced thematic mapper plus 840,364

Total 2,250,224

EROS personnel are constantly assessing the physical state of the archive,
refreshing the archive media, and recovering data from deteriorating media. For
example, another 20,000 TM scenes were recently located during a transcription of
tapes sent to the EROS by EOSAT.

In response to the NSLRSDA commission, we used metadata generated during
the archival process to produce graphic representations of the annual and sea-
sonal coverage for each Landsat sensor type in the archive. An example of each
is shown in Figs. 1, 2, 3, 4, and 5. The full set of coverage graphics can be found at
http://edc.usgs.gov/archive/nslrsda/geoCov.html. An updated set of annual and sea-
sonal coverage maps is in preparation at EROS, this time on a sensor/satellite/year
basis rather than sensor/year. Additional statistics on the number of marketable

Fig. 1 MSS 1975 annual coverage in US archive. Dark gray tiles represent images that are ‘unus-
able’, with <5 quality rating (Goward et al. 2006) and > 30% cloud cover. Light gray tiles represent
images having ≥5 quality rating and cloud cover ≤30%
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Fig. 2 MSS December 1974–February 1975 winter season

Fig. 3 MSS March–May 1975 spring season

scenes, the number of scenes with 30% cloud cover or less, and the depth of the
archive will be provided for each map. These updated maps should be available
in 2009.

Our subsequent analysis of the annual and seasonal maps revealed surprises. The
global coverage was neither as consistent nor complete as we had expected. We went
through historical documentation and interviewed Landsat personnel to discover
why this was so. Table 2 summarizes the predominant reasons we have found for
coverage gaps. Further details can be found in Goward et al. 2006. There are some
gaps we have not yet been able to explain; for example, we suspect that, at times,
data was routed directly to another government agency and never entered the EROS
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Fig. 4 MSS June–August 1975 summer season

Fig. 5 MSS September–November 1975 autumn season

Table 2 Reasons for gaps in the US archive global coverage

Category Examples

Program management Commercialization period with limited 4/5 coverage
Spacecraft problems Ku-band failures on 4 and 5

Power problems on 4
Recorder problems on 1–3

Sensor problems MSS line start problems on 1–3
Scan-line corrector failure on 7

Communication constraints Late launch of TDRS-West, preventing western hemisphere
coverage from 1982–1988

Acquisition priorities Reef campaign in 1981–1982
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archives. Having discovered the extent of the gaps, our next concern is identifying
data that might fill these gaps – perhaps from the international archives.

International Archive Status

From the onset of the Landsat program, participation of ground stations sponsored
by other countries has been an important part of the mission, enhancing the global
nature of the Landsat archive. This network of International Cooperator (IC) stations
has been active since 1972, some since the beginning, others off and on, and some
for short campaign periods only. The current complement of full-time US and IC
stations is shown in Fig. 6. Those stations that operate on a campaign basis are not
shown in that figure.

The IC stations are operated under a Memorandum of Understanding between the
IC Government agency and the US operating agency for Landsat – currently this is
the USGS. Some ICs comprise more than one station. The ICs are responsible for
acquisition, archive, product generation, and distribution of the Landsat data that
is downlinked to their stations. Each IC station receives a direct downlink of the
land scenes within its acquisition circle at every viewing opportunity, subject to
any scheduling constraints such as duty cycle or engineering activities. Thus there
is a deep archive at each IC station from which gaps in the US holdings over their
geographical areas could be filled. The requirements placed on the ICs, based on the
MOU, include adherence to the Landsat data policies and retention of the Landsat
data in an archive. If they make the decision to retire the archive, the IC must give
the US first refusal on incorporating the IC archive holdings into the US archive.

Today for Landsat 7 and soon for Landsat 5, each IC must return metadata to the
EROS detailing data entered into their archive. In the past, this policy was not as
consistently applied nor was there consistent willingness on the part of the ICs to

Fig. 6 Current network of Landsat stations
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Table 3 Estimates of scenes held at IC archives (as of 31 March 2007)

Countries involved Years active Holdings (scenes)

Australia, Brazil, Canada, China, Europe, Indonesia,
Japan, South Africa, Thailand

≥ 20 4,205,038

Argentina, Ecuador, India, Pakistan, Saudi Arabia,
South Korea, Taiwan

< 20 260,224

Antarctica, Dubai, Gabon, Iran, Kenya, Kyrgyzstan,
Mongolia

Short-term 21,042

23 countries, 30 stations 4,486,304

submit the metadata. Therefore, we do not have a clear picture as to what historical
data are in the IC archives around the world. Based on the metadata that has been
submitted over the years, we can estimate that there are two to three times more
data in the IC archives than we have in the US archive (see Table 3). We have
started efforts to remedy this lack of knowledge of the IC holdings; newly reported
holdings numbers have raised the total to over 4.5 million scenes, with more stations
yet to report.

Achieving a Global Archive

We have identified several steps toward achieving a more complete global Landsat
archive that is useful and supportive of global climate change studies. These steps
concentrate on the identification of IC holdings, establishing the status (or ‘state of
health’) of the archived data, enabling access to the data through the implementation
of standards, and enhancing utility of the data through improved calibration.

Metadata

The USGS and ICs have agreed upon a consistent metadata definition for
Landsats 1–7, for all three sensors. The Landsat Metadata Definition Document
(USGS/EROS 2008) describes a metadata format that is applicable to Landsats 1–5
and 7, as well as future Landsats. Once implemented at each IC, the ICs will sub-
mit to EROS metadata for the full set of Landsat holdings in their archives. This
will be a gradual process in some cases, where older MSS data sets have yet to be
incorporated into an online digital archive system. The US will ingest the metadata
and establish a more complete global catalog of Landsat holdings. Each IC is being
encouraged to submit the associated browse imagery with the new metadata.

Archive Maintenance

Maintaining an archive of digital data requires constant attention, and hence con-
stant financial support. Data on older media need to be transcribed onto newer
media. As time passes, this becomes more difficult to accomplish for data sets still
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residing on wideband video tapes. Deterioration of the tape itself and scarcity of
tape drives with which to read the tapes compound the problems. It is vital that
we assure that archives are being maintained and media are being refreshed. The
Landsat Ground Station Operators Working Group is compiling a list of tape drives
and hardware experts available at each IC. The hope is that an IC with tape media
issues may find a working tape drive at another station or an expert to assist with the
repair of non-operational equipment.

Access Standards

Online catalog data and browse images ensure archive accessibility to researchers.
For Landsat 7, an exchange product standard has been established and has proven
its worth when data exchange has been necessary among the stations. This standard
is currently being extended to Landsat 5; subsequent application to Landsats 1–
4 should be the next step. An important part of the exchange product standard is
USGS validation of the format generated by each station to assure compliance with
the standard.

Data Utility

Once we have identified the global archive extent and enabled archive maintenance
and data exchange, we need to address data utility. Calibration of the Landsat 7
data set is excellent (Markham et al. 2004) and efforts are underway to improve
the calibration of Landsat 5 TM through cross-calibration with Landsat 7 ETM+
(Teillet et al. 2001). We have just started to address the calibration of the MSS. There
are known artifacts and problems, and very little documentation on the calibration
history of the sensor, but we are hopeful. Early results suggest that the MSS sensors
were very stable over time (Helder, personal communications). Efforts are underway
to gather whatever information might be available from the ICs on MSS algorithms
and ancillary data sets.

Conclusions

Our analysis of the US-held Landsat archive has highlighted the importance of the
IC-held assets in forming a more robust global Landsat archive with minimal cov-
erage gaps. A standardized metadata format is essential to building a catalog of the
Landsat archives held at IC stations, and this standard is now being implemented by
the ICs.

The deterioration of the global Landsat archive is a major concern. Financial and
technical support must be found within the Landsat stations, including that of the
US, to maintain, document, and rescue, as necessary, the Landsat archives around
the world.
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Identifying and stabilizing the archives needs to be followed by enhancing the
usability of the entire scope of archives, so that researchers can work as seamlessly
as possible, from Landsat 1 MSS to Landsat 7 ETM+ data and the future Landsat
Data Continuity Mission (Landsat 8) observations. Achieving this goal requires
continual updating of data set calibration to maximize radiometric consistency,
devising corrections for known image artifacts and sensor effects, and generation
of orthorectified products at regular intervals – for example, every 2–3 years.

Knowing the extent and completeness of the data record is but the first step.
Assuring that the data record is easy to use, internally consistent in terms of calibra-
tion and data format, and fully accessible is the ultimate requirement to arrive at a
truly global and productive Landsat archive.
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Evaluation of Alternative Sensors
for a Landsat-Based Monitoring Program

S.L. Furby and X. Wu

Abstract In Australia, Landsat imagery is currently used in a number of regional
and national monitoring projects to provide maps of the extent and change in area
of perennial vegetation. They provide basic information for conservation, land man-
agement and for modelling carbon flux and water use. With the looming gap in
Landsat data continuity it is timely to consider the issues involved in using data from
other sensors to continue these monitoring programs. In the context of the Australian
Department of Climate Change Land Cover Change Program, this paper describes
the issues and quantifies the effects of using Spot 4 and Landsat 7 SLC-off images
instead of the current Landsat 5 images. The data pre-processing issues inves-
tigated include ortho-rectification, calibration and terrain illumination correction.
Overlapping sets of images from three different geographic regions were processed
to assess logistical and technical issues. The ability to discriminate between classes
of interest is considered in the context of the forest monitoring. The accuracy of the
change products from mixed-sensor time series analysis is also discussed. Both the
accuracy of the products from each step in the processing and the cost in terms of
processing time and complexity are reviewed.

Introduction

In Australia, Landsat imagery is currently used in a number of regional and national
monitoring projects. However, the future of Landsat imagery is not assured. Both
Landsat 5 and Landsat 7 are estimated to run out of fuel around 2010. The Scan
Line Corrector (SLC) failed on Landsat 7 in 2003 and only SLC-off products are
now available. Landsat 5 has had problems with its Solar Array Drive which have
affected data availability in 2006. A replacement Landsat or Landsat-like sensor
from the Landsat Data Continuity Mission does not yet have a launch date, and so
is unlikely before 2012.
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With the looming gap in Landsat data continuity it is timely to consider the issues
involved in using data from other sensors to continue these monitoring programs.
This paper describes the issues and quantifies the effects of using Spot 4 and Landsat
7 SLC-off images in the Land Cover Change Program (LCCP) of the Australian
Department of Climate Change (DCC) (http://www.climatechange.gov.au/ncas),
instead of the current Landsat 5 images. Landsat 7 SLC-off images were also used
in the 2006 update of the Land Monitor II Perennial Vegetation Monitoring pro-
gram (http://www.landmonitor.wa.gov.au). Experiences with the Land Monitor data
are also included in this paper. Other Landsat-like data that are being evaluated are
from the China-Brazil Earth Resources Satellites (CBERS) (Wu et al. 2006) and the
Indian Remote Sensing satellites (IRS) (Furby and Wu 2007).

All aspects of the forest cover mapping program are considered; including scene
selection, ortho-rectification, calibration, mosaicking and thresholding to produce
forest cover maps. Unless indicated otherwise in the text, all processing was per-
formed according to the standard methodology for the LCCP (Furby 2002, 2006).
Full details of the results summarised here can be found in Furby and Wu 2006 and
Furby et al. 2006.

Test Areas

Overlapping sets of images from three different geographic regions were processed
to assess logistical and technical issues. The test areas are in New South Wales
(NSW), Tasmania (Tas) and Western Australia (WA) as shown in Fig. 1. Specific
scenes are listed in Tables 1 and 2.

The NSW test area (red in Fig. 1) was selected to include a black soil stratifi-
cation zone so that forest/non-forest discrimination can be evaluated in one of the
most challenging environments encountered in Australia. It also includes a region

NSW

Tas

WA

Fig. 1 Approximate location
of the test areas
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Table 1 SPOT 4 images

Path/Row Date Cloud Inc. angle

WA
317/416 26/01/2006 Partly −13.8
318/416 05/02/2006 Clear +3.2
319/416 21/01/2006 Clear −13.8
319/415 10/02/2006 Clear +13.4

Tas
384/434 06/01/2006 Little cloud +7.7
385/434 06/01/2006 Some cloud +10.7
386/434 17/02/2006 Some cloud −26.5
387/434 06/01/2006 Clear −13.1

NSW
387/410 22/12/2005 Hazy −1.2
388/410 10/03/2006 Clear −30.4
389/410 01/02/2006 Little cloud +25.8
390/410 22/12/2005 Little cloud −24.4

Table 2 Landsat 7 ETM+ SLC-off images

Path/Row Date Cloud Purpose

NSW
89/81 15/03/2006 Clear Primary
89/81 31/03/2006 5% Fill
90/81 07/04/2006 Clear Primary
90/81 10/02/2006 40% Fill

Tas
90/89 23/04/2006 55% Primary
90/89 07/04/2006 50% Fill
91/89 24/01/2006 40% Primary

WA (LCCP)
111/83 21/01/2006 25% Primary
111/83 06/02/2006 25% Fill
112/83 17/03/2006 Clear Primary
112/83 13/02/2006 25% Fill

WA (Land Monitor)
113/82–84 03/03/2006 10% Primary
113/82–84 19/03/2006 10% Fill

with significant terrain effects to allow evaluation of registration, bi-directional
reflectance distribution function (BRDF) and terrain illumination correction issues
in an ‘extreme’ environment. The Tas test area (yellow) was selected to include
mountainous areas as well as an agricultural environment where discrimination
between cropped paddocks and plantations can be difficult. The WA test area (blue)
was chosen to include a significant region of new plantations as well as some of the
wheat belt tree cover that is close to the 20% canopy cover cut-off used in the forest
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definition. This test area is relatively flat. Additional imagery for WA was available
from the Land Monitor project.

Image Data and Scene Selection

Images from the SPOT 4 satellite have been acquired in archive mode since approx-
imately December 2005. Acquisitions from the most recent SPOT satellite, SPOT
5, must be pre-ordered, making the SPOT 4 archive a more practical alternative
to Landsat TM data when circumstances preclude ordering data in advance of the
required acquisition interval.

Unlike the Landsat series of satellites, the SPOT satellites can point to the left
and right of nadir. The SPOT 4 overpasses which have been archived have a variety
of pointing angles. Variation in acquisition angle results in shifts in scene location
and varying BRDF effects. In some cases there are gaps between nominally adjacent
images in the archive. Near-nadir acquisition cloud-free imagery is desirable and,
for this evaluation, an east-west row of four scenes was considered ideal. In prac-
tice scene selection against these criteria from the existing archive proved difficult.
The image archive was searched for several path/rows surrounding those eventually
selected to obtain the best possible sequences of test data. For the broader areas
searched, most archived images had extensive cloud cover and/or significant miss-
ing data. Generally there was at most one suitable image, not a choice of dates.
Operationally, scene selection specifications would need to consider these issues.
The images selected for this study are listed in the Table 1. Due to their smaller spa-
tial extent, at least six SPOT 4 images are required to cover the extent of a Landsat
TM image.

To evaluate the Landsat SLC-off data both individual path-oriented images and
the composite products produced by the Australian Centre for Remote Sensing
(ACRES) were obtained to allow investigation of the compositing process as well
as issues with using the individual scenes directly. The composite product is created
by merging multiple Landsat 7 SLC-off images to fill the gaps in any one image.
The standard scene selection criteria were applied to select the ‘primary’, or main,
image for each path/row. The criteria for selecting the ‘fill’ image were closeness to
the primary image acquisition date and low cloud cover. A slightly increased cloud
cover was considered better than a longer time between acquisitions.

At least two images are required for each path/row, a primary image and at least
one fill image. Although some gaps remain after compositing two images, three
relatively cloud-free images were very rare due to extensive cloud cover during the
2006 summer. In Tasmania only one relatively cloud-free image for path 91 row 81
could be obtained. The images used are listed in Table 2. The ACRES composites
were formed using the same primary and fill images. The composites were provided
as ACRES standard ortho-rectified products.

Table 3 shows the remaining ‘gap’ area after compositing for the NSW test area.
As discussed in section (Mosaicking Issues), cloud is masked from the individual
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Table 3 Proportion of Landsat 7 image area filled by compositing

Image Date Percentage of 89/91
composite

Percentage of 90/81
composite

89/81 15/03/2006 78.82 0.52
89/81 31/03/2006 11.79 0
90/81 07/04/2006 2.29 80.72
90/81 10/02/2006 1.07 18.10

images before compositing. The percentage of the composite remaining unfilled
includes cloud-masked areas. Cloud is a minor component in the filled NSW data
but a major component in the other test areas; hence the results are presented for
NSW only. In the overlap region between adjacent paths, data from all four images
are included in the composite. The 89/81 images are an example where the gaps
are largely coincident in the two images. This would represent a near ‘worst case’
scenario when only two images are used. The 90/81 images are an example from
the opposite extreme. Even with a higher proportion of cloud in the ‘fill’ image, the
coverage is almost complete.

At the time of writing this paper, a new Landsat 7 SLC-off ‘interpolated’ product
was being released by the United States Geological Survey. The product is created
from a single Landsat 7 SLC-off image. The gaps are filled by interpolation from
the adjacent data in the same ‘region’. Regions are identified by segmentation of an
earlier complete Landsat 5 or Landsat 7 image. This product is not suitable for our
application as the size of the missing data is larger than the area of change that we
need to be able to detect (0.2 hectares). The interpolated product is suitable only
when the area of change to be detected is larger than the amount of data missing.
Hence examples of this product were not sought for evaluation.

Landsat 5 TM imagery was acquired for the test areas for comparison. The
images are listed in Table 4.

Table 4 Landsat 5 TM image dates

Path/Row Date Cloud

89/81 08/04/2006 10% cloud
90/81 14/03/2006 Mostly clear
111/83 08/04/2006 30% cloud
112/83 14/03/2006 Mostly clear
90/89 26/02/2006 40% cloud

Raw Image Quality Issues

With the exception of the missing data, the image quality of the individual Landsat 7
SLC-off path-oriented image products is as expected for Landsat TM data. The gaps
are approximately one swathe wide at the edge of the images and disappear towards
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the centre of the image. Along the edges of the gaps there are occasional pixels for
which the data for only some of the image bands are missing, e.g., bands 1, 2 and 3
may contain zeros, while bands 4, 5 and 7 contain non-zero data. In the composites
from ACRES, these pixels end up having intensity values from both images. In the
composites we formed, such pixels were excluded.

The raw SPOT 4 images appeared noisier than path level Landsat TM images.
The images appear to have some geometric patterns. The variation in intensity val-
ues within the forest is generally small compared to the differences between forest
and non-forest cover. There should be little overall effect on forest/not forest dis-
crimination, but there may be some effects at the edge of forest blocks and in
areas with forest density around the 20% canopy cover cut-off. It should be noted,
however, that this noise effect is not obvious visually in the ortho-rectified image
data.

The order of the image bands in the supplied imagery was XS3, XS2, XS1, SWIR
(i.e. 3, 2, 1, 4). The image bands were reordered prior to processing.

Ortho-rectification Issues

The individual path-oriented Landsat 7 SLC-off images were ortho-rectified using
the standard processing sequence for Landsat 7 imagery. The satellite orbital model
(Toutin, 1994) in the PCI OrthoEngine TM software was used for ortho-rectification,
however an issue was encountered with the resampling algorithm. The algorithm
places a zero in the output image any time its resampling window includes a zero
from the input image. Effectively all gaps in the SLC-off images are grown by the
size of the resampling window (8 pixels square for the 8 pt sin/x kernel used) caus-
ing an unacceptable loss of data. Within PCI, the only options are to use alternative
resampling algorithms with smaller resampling windows such as cubic convolution
or nearest neighbour. The alternative considered was to ‘fill’ the gaps with data that
will produce a sensible resampled pixel value. The gaps were filled by interpolat-
ing the data above and below the gap. An indicator image tracking the location of
the interpolated data was created. The image with the interpolated data was ortho-
rectified in PCI using the usual resampling algorithm. The indicator image was
ortho-rectified separately using the same ground control points (GCPs) and near-
est neighbour resampling. The indicator image is then used to mask the extra data
from the ortho-rectified overpass image.

The interpolation strategy provided the best ortho-rectified imagery. Equivalent
registration accuracy was obtained as for unaffected Landsat 7 imagery. The modi-
fied procedures are all automated rather than manual, providing only a very minor
‘per image’ increment to the ortho-rectification effort.

In order to composite (merge) two or more images, they must be registered to
each other. To create their Landsat 7 SLC-off composite product ACRES ortho-
rectifies each image, applying their normal processing sequence using standard GCP
chips with known coordinates. (The images are ortho-rectified to an ACRES base



Evaluation of Alternative Sensors for a Landsat-Based Monitoring Program 81

Fig. 2 Comparison of SPOT 4 and Landsat TM image bands

rather than the LCCP base, the correspondence of which has not been systematically
investigated.) In the test data, for some areas the registration to the LCCP base is
good, but in other areas, such as the 89/81 composite image in NSW, a clear shift
between the two images of up to two pixels (50 m) can be seen. The LCCP base and
images registered to it match the terrain features in the NSW state digital elevation
model (DEM). The position of ridges and valley floors in the ACRES composite are
displaced from the DEM leading to artefacts in the terrain illumination correction.

In one of the ACRES Landsat 7 SLC-off composite image supplied for the Land
Monitor project there was a displacement of between 8 and 12 pixels (200–300 m)
between the two images being composited. ACRES investigated the problem and
reported that it was caused by the failure to automatically locate sufficient GCPs.
A combination of the missing data and cloud cover meant that GCPs were not cor-
rectly located. As a result of the review of all composite imagery provided, ACRES
reprocessed the 91/89 imagery to correct a similar but much smaller deficiency.

These registration issues require that if Landsat 7 SLC-off data is going to be used
in the LCCP, the individual images must obtained rather than the ACRES composite,
even though it means more processing.

The SPOT 4 images were initially ortho-rectified using the standard procedures
applied to the Landsat data used in the LCCP, i.e. using the merged Australian Land
Information Group (AUSLIG) 3 and 9 second DEMs.

Landsat TM band 7 is typically used in the correlation matching calculations to
locate Master GCP features in the overlap images. As an equivalent spectral band is
not available in the SPOT imagery (see Fig. 2), matching SPOT band 4 to Landsat
TM band 5 and SPOT band 2 to Landsat TM band 3 were both evaluated. Equivalent
results both in numbers of GCPs matched and GCP locations were obtained.

Twenty seven GCPs spread uniformly across the image area are considered suf-
ficient to adequately register the Landsat images. The Master GCP files typically
deliver between sixty and one hundred well matched GCPs for each (single) Landsat
TM image. However, the SPOT images cover only about one sixth of a Landsat TM
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image. Only ten to fifteen well matched GCPs were obtained over the test images.
Comparisons showed that better registration to the base was obtained by adding
GCPs so that a minimum of twenty five to thirty GCPs were used in the model fit.
Operationally, during the first epoch for which SPOT imagery is used the Master
GCP and Master Check GCP files will need to be revised for most areas, requiring
a small ‘per image’ increase in effort for the ortho-rectification processing.

The biggest issue encountered during the ortho-rectification process was poor
registration in areas of terrain, particularly for images with large incidence angles.
The effect was largest for the NSW images. Even with extra GCPs, errors up to
100 m in the registration in some valleys could not be corrected. Using the NSW
state DEM in place of the usual merged AUSLIG DEM produced an image with
improved registration. Many problem regions were resolved completely using the
higher-resolution DEM and the remaining shifts were limited to around 25 m. These
results are consistent with the SPOT Image Technical Information (SPOT Image,
2008) that states that ortho-rectification locational accuracy is 15–30 m depending
on DEM quality. Smaller shifts were observed in the Tasmanian images using the
AUSLIG DEM (no more that 25–50 m). Again the registration was visibly improved
by using a higher resolution DEM. Testing with the NSW images showed that the
results using the NASA Shuttle Radar Topography Mission-DEM were almost iden-
tical to those from the state DEMs. It appears that the ortho-rectification is more
sensitive to terrain issues and that the registration of SPOT 4 imagery to the base
may not be quite as good as can be obtained for Landsat imagery.

Calibration

The standard calibration process consists of three distinct steps:

1. top-of-atmosphere and BRDF corrections (Danaher et al. 2001);
2. invariant target atmospheric check/correction (Furby and Campbell 2001); and
3. terrain-illumination correction (Wu et al. 2004), if required.

Each of these steps is discussed for both image types. In addition, a calibration
step is part of the process for creating the ACRES Landsat 7 SLC-off products. The
effect of this calibration on the composite image is also discussed.

There are no issues in applying the top-of-atmosphere and BRDF corrections
to the individual ortho-rectified Landsat 7 SLC-off images. The invariant target
check/correction is hampered by some of the targets being located in gaps in the
SLC-off images. Over these test areas the number of targets in gaps was sufficient
to compromise the gain and offsets calculated. Typically more targets in one of the
dark, mid-range or bright intensity ranges were omitted than the others causing the
targets to be unbalanced. Targets had to be manually updated for each image sepa-
rately, not just for each path/row, which would add a substantial ‘per image’ amount
to the calibration effort.

However, particularly with Landsat 7 imagery, the invariant target calculations
are performed as a check of the processing rather than an automatic correction.
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Corrections are applied only in very rare circumstances when very seasonally atypi-
cal images are used and it can be clearly demonstrated that the image is more similar
to adjacent images with the correction than without it. The invariant target correction
was not needed for any of the test imagery. Potentially this step could be omitted
for the primary Landsat 7 SLC-off imagery with no consequences for threshold-
ing accuracy. Systematically subsampled pixels from the overlapping image area
were used to estimate a whole-scene correction of the fill image(s) directly to the
primary image rather than trying to calibrate image each to the calibration base
independently.

In the standard processing sequence terrain illumination correction is performed
after the images have been mosaicked into map sheet units. Image date boundaries
are used to derive and apply an individual correction to each constituent image as
the individual sun-angles differ. The coefficients for each correction are estimated
from the image data using a woody cover mask. If the Landsat 7 SLC-off images
are composited before terrain illumination correction there are two few woody pix-
els remaining from the ‘fill’ image for reliable coefficient estimation. Instead, the
corrections must be calculated and applied before the images are composited, i.e.
before the mosaicking stage. This change to the processing order does not change
the overall level of effort involved.

ACRES perform a calibration of the fill image to the primary image as part of
their compositing process. As the images are merged, a local calibration is per-
formed for each fill pixel. A local gain and offset is estimated to calibrate the
intensity values for the ‘fill’ image to the intensity values in the primary image using
data in a small local window centred on the pixel being inserted. The result in all of
the images provided by ACRES is a seamless visual product. Numerical processing
of such images is valid only if ground cover reflectances have not changed between
the two images. However, even with images acquired sixteen days apart it is rarely
true that there is no change anywhere in the image.

In the extreme, clear pixels in the fill image are ‘calibrated’ to look like the cloud
in the primary image. Cloud-covered pixels in a fill image are also ‘calibrated’ to the
underlying cover in the primary image. The Land Monitor images were acquired 16
days apart. The earlier image, acquired shortly after significant rains, shows residual
effects of flooding. In the later image much of the surface water is gone and the wet-
ness and greenness of many paddocks has changed. The ACRES composite image
is visually pleasing, but for mapping and monitoring land cover change it is of con-
cern that water in the fill image appears like dry land in the final merged image.
Other undesirable changes are likely to be present, although perhaps not always as
obvious.

The top-of-atmosphere/BRDF correction software relies on reading satellite gain
and offset and sun-angle information from ancillary ‘report’ files normally provided
with path-oriented image data. These files were not part of the composite product.

For this evaluation the composite images were corrected as if they were a sin-
gle image using report files from the individual primary image; however the values
used were incorrect for the fill image. There were no complications in perform-
ing the invariant target check, but again no correction was deemed necessary. The
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terrain illumination correction was performed on the composite image (again using
parameters from the primary image only) in a straightforward manner, but a com-
parison of the corrected individual images with the composite for the 89/81 image
in NSW highlighted a consequence of the registration issues noted earlier. Terrain
effects remain in the corrected composite image. This is not actually due to any
inherent fault in the terrain illumination correction process, simply that the image
is slightly displaced from the DEM. Incorrect slopes and aspects are applied near
apparent ridgelines and streamlines in the image data.

The intensity values in the SPOT 4 images are observed to have a much greater
dynamic range than Landsat data (2–3 times in the visible bands). A new calibration
strategy is required to avoid compressing the intensity range of the SPOT image
data, with subsequent loss of discrimination, if it were adopted operationally. For
the tests conducted here the data were rescaled to the full 0–255 data range at each
step in the calibration process.

The viewing geometry of the SPOT 4 images is such that new BRDF kernels
as well as coefficients may well be required. The BRDF kernels used for Landsat
data are not the optimal choices for SPOT 4 data due to the viewing geometry dif-
ferences (SPOT 4 has a wider field of view compared to Landsat and, usually, a
non-zero satellite incidence angle). The test data were insufficient for testing the
validity of the current kernels and coefficients. The current Landsat kernels were
applied and coefficients were estimated scene-by-scene by matching directly to the
Landsat calibration base image using sites in forested areas. This approach is a short-
term solution for the study areas, but is not recommended for large scale operational
processing.

As with the Master GCPs, the invariant targets are distributed over the Landsat
TM scene area (and rarely uniformly). There are too few, if any, targets located in
most of the SPOT 4 test images. New targets were selected for all of the test images;
however most of the good bright pseudo-invariant targets are saturated in the first
two SPOT 4 image bands. A common gain and offset (usually estimated from pooled
data) was used to align the data for each test area with the (scaled) base.

If SPOT 4 imagery is to be used operationally, a much more detailed investigation
of calibration issues needs to be conducted using significantly more image data than
considered here, of the order of a good portion of at least one state. However, once
this research establishes the appropriate corrections and parameters, the operational
processing effort will only increase by the ‘per image’ amount necessary for the
selection of new invariant targets.

Mosaicking

For the individual Landsat 7 SLC-off ‘path’ images, mosaicking can be considered
to consist of two activities:

• compositing two or more images from the same path/row (to fill the
gaps); and

• mosaicking images from adjoining path/rows to form map sheet units.
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Operationally, both activities would be performed simultaneously. Overlay order
(primary and fill images) would be stipulated for the compositing activity; otherwise
the standard overlay order rules apply.

Although not part of the mosaicking stage of the current LCCP processing
sequence, it is more efficient to cloud mask Landsat 7 SLC-off images before com-
positing/mosaicking rather than as the first step in the thresholding process. In the
individual image each cloud or patch of cloud is digitised as a single polygon. After
compositing, many cloud-affected areas will appear as stripes in the composited
image. Either separate polygons are required for every stripe or stripes of clear data
will be masked. This will result in additional mosaicking effort, but the extra effort
will be matched by a reduction of effort during the thresholding stage.

Vector image date boundaries are created during the current mosaicking
sequence. The vector polygons allow separate thresholds to be applied to each image
date and the tracking of the image acquisition dates of each change area during the
carbon modelling phase of the DCC program. Vector polygons are simple and effi-
cient when there is only a single image per path/row, but are inefficient for tracking
the areas of primary and fill images in a composite. Raster images are more efficient
and are easily created during the mosaicking process.

No difficulties arise in the mosaickng stage of the processing for SPOT 4 or
ACRES Landsat 7 SLC-off composite imagery.

Thresholding Issues

Due to the local calibration issues identified for the ACRES Landsat 7 SLC-off
composite products, they were not considered in the thresholding evaluation.

The standard thresholding procedures were applied to the mosaicked individual
Landsat 7 SLC-off images to derive a single-date forest cover probability image. For
each stratification sub-zone, image matching was applied to derive thresholds inde-
pendently for the mosaicked image and the individual primary and fill images that
form the mosaic for this evaluation. The final thresholds produced by the matching
program for each input image for a particular sub-zone varied slightly, particularly
between the values estimated from the full ‘fill’ image compared to the primary
image or the mosaic (about 80% primary image). However, the resulting probability
images were virtually identical. All of the fill images are visually very similar to
their primary image for the NSW test area and separate thresholds were not needed
within a composite image. Larger differences are apparent in the WA test area, how-
ever only one sub-zone showed some slight stripes in the probability image formed
from the mosaic. Even then the difference in probability between the ‘stripes’ was
slight and the subsequent multi-temporal processing corrected the problem so that
the effect is not observed in the outputs.

The wet/dry image pair from the Land Monitor project provided the best oppor-
tunity to evaluate the thresholding process when the individual Landsat 7 SLC-off
images forming the mosaic are very different. Thresholds were estimated separately
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for each sub-zone for the individual images and the mosaic image. Stripes were
observed in the forest cover probability image derived from the mosaic. Most of the
stripes are commission errors with the wetter image stripes being assigned a higher
probability of forest cover using thresholds derived from the mostly dry mosaic
image. When thresholds are derived directly from the wet image, the commission
errors are reduced and fewer stripes appear in the probability mosaic. Image pairs
(or triples) where such stripes occur in the composites will be identified at the cali-
bration stage in the LCCP processing. It is recommended that the individual images
are provided for thresholding in such situations and the probabilities are mosaicked.
Operationally, this should be a rare occurrence.

For the NSW and Tasmanian test areas, each set of indices for discriminating
between forest and non-forest cover in each stratification zone includes at least one
index using Landsat TM bands 1 or 7. As is shown in the comparison of SPOT 4 and
Landsat TM image bands in Fig. 2, there are no SPOT equivalents to these image
bands. New indices were derived from the SPOT data for such stratification zones
using the standard discrimination analysis procedures.

As well as deriving the required SPOT indices for each zone, TM-equivalent
indices were compared to new optimal SPOT-specific indices to determine whether
better indices could be derived. For some zones, TM-equivalent indices remained
optimal. In other zones, small increases in discrimination were observed for SPOT
indices. The improvements tended to involve masking non-forest paddocks which
were spectrally different from forest rather than separating spectrally similar forest
and non-forest regions.

Image matching was applied to derive thresholds. Matching was successful for
all but one sub-zone in NSW. Manual thresholds were used for this sub-zone in
the ‘black soil’ stratification zone. Discriminating between forest and non-forest
cover is observed to be very difficult in this zone, regardless of the source of the
image data. More omission and commission errors are made in black soil zones
than are typically observed in other zones. The overall correspondence with the
base forest cover probability image was broadly as would be expected from Landsat
data. The same levels of omission and commission errors appear in the black
soil sub-zones, although the particular cover types causing confusion were a little
different.

Landsat TM bands 1 and 7 are not used in the indices for the WA test area. The
overall correspondence with the base forest cover probability image was broadly as
would be expected from Landsat data, suggesting that deriving new indices is not
essential. Using the SPOT 4 imagery one sub-zone showed slightly higher probabili-
ties on some non-forest cover than expected, however the multi-temporal processing
corrected the probabilities.

If SPOT 4 data is to be used operationally, new indices will have to be derived
for many stratification zones. Thresholds are derived for each sub-zone created by
the intersection of the image date and stratification zone boundaries. Once indices
have been established, the overall thresholding effort is increased compared to
Landsat data as there are approximately six SPOT 4 images for every Landsat
TM image.
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Comparison of Time Series Results

Forest cover probability images were created for the 2006 epoch using Landsat 7
SLC-off, SPOT 4 and Landsat 5 data. Each of the forest cover probability images
was added to the existing sequence of probability images from 1972 to 2005
for multi-temporal processing using standard error rates tables (Caccetta 1997).
Forest extent and change maps were created from the outputs of the multi-temporal
processing according to the usual procedures.

Figure 3 compares the forest cover products and imagery for a region in the
black soil stratification zone in the NSW test area. Forest cover extent maps derived
from Landsat 5, Landsat 7 SLC-off and SPOT 4 are displayed together in red, green
and blue respectively in the top right of Fig. 3. Where these products coincide, the
display appears white (forest) or black (non-forest). Colours indicate that the area
is labelled as forest by only one or two of the products. In particular, yellow shows
where the products from Landsat 5 and Landsat 7 SLC-off images are identical, but
the product from the SPOT 4 images differs. Red, green or blue indicate that the area
is labelled as forest in only the Landsat 5, Landsat 7 or SPOT 4 product respectively.
The image in the bottom right of Fig. 3 compares the 2005–2006 clearing layers
from the three products. Again the Landsat 5 derived product is in red, Landsat 7
SLC-off in green and SPOT 4 in blue.

The extensive yellow regions in Fig. 3 show the results from the Landsat 5 and
Landsat 7 SLC-off images are consistent but differ from SPOT 4 results. These
areas are mapped as ‘cleared’ in the change products derived from SPOT 4 (blue
regions in the bottom-right image in Fig. 3). Green regions can be observed in the

Fig. 3 Top Left: 2006
Landsat 5 TM image, bands
3, 5, 4 in BGR. Bottom Left:
2006 SPOT 4 image, bands 2,
4, 3 in BGR. Top Right:
Overlay of forest extent maps
for 2006 for Landsat 5 (red),
Landsat 7 (green) and SPOT
4 (blue). Bottom Right:
Overlay of 2005–2006
clearing maps for Landsat 5
(red), Landsat 7 (green) and
SPOT 4 (blue)
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Table 5 Forest extent comparison for the NSW test area

Epoch Landsat 5 forest
extent (ha)

Landsat 7 forest
extent (ha)

SPOT 4 forest
extent (ha)

2000 901,612.9 901,554.2 901,303.5
2002 903,661.7 903,371.4 903,129.6
2004 905,869.4 905,343.1 904,437.8
2005 912,433.2 912,809.1 909,352.4
2006 914,660.2 916,070.6 910,981.1

Table 6 Area of vegetation loss (clearing layer) comparison for the NSW test area

Interval Landsat 5 clearing (ha) Landsat 7 clearing (ha) SPOT 4 clearing (ha)

2000–2002 11,961.8 12,230.8 11,922.4
2002–2004 9223.0 8992.2 9054.2
2004–2005 11,597.5 12,210.6 12,388.1
2005–2006 7270.3 6633.9 9970.6

combined forest cover image in Fig. 3. These tend to be narrow linear features or
along the edge of regions mapped as forest in the Landsat 5 product. As has been
observed with the Landsat 7 data used in the 2000 and 2002 epochs, forest/non-
forest discrimination is slightly better in Landsat 7 than Landsat 5 imagery allowing
such features to be mapped. They cannot be excluded without under-estimating the
extent of forest cover compared to Landsat 5. The same trends were observed in the
other test areas.

Tables 5, 6, and 7 show the area of forest and change for the NSW test area
calculated from the three products for the more recent epochs. The observation that
the 2006 forest extent is similar for the two Landsat products is confirmed, with the
forest extent slightly larger from the Landsat 7 product. The SPOT 4 product shows
a different 2006 forest extent and both higher clearing and revegetation rates in the
2005–2006 interval. Most of the extra revegetation in the SPOT 4 product appears
along the edges of forest areas, particularly in the more mountainous regions. Some
of it seems due to the registration not being quite as good when extreme satellite
pointing angles are combined with mountainous terrain.

It should be noted that all regions of land cover change observed in the test area
were detected in all three products. The regions in which the SPOT and Landsat

Table 7 Area of vegetation gain (revegetation layer) comparison for the NSW test area

Interval Landsat 5 regrowth (ha) Landsat 7 regrowth (ha) SPOT 4 regrowth (ha)

2000–2002 14,010.6 14,048.0 13,748.4
2002–2004 11,440.6 10,964.0 10,362.4
2004–2005 18,161.3 19,676.7 17,302.8
2005–2006 9497.4 9895.4 11,599.3
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products differ tend to be edge pixels, narrow features and the least dense forest
cover. It is only possible to say which is most consistent rather than most accurate for
the areas that differ. For change detection, consistency is an important consideration.

One consequence of using Landsat 7 SLC-off imagery should be noted. There
was extensive cloud cover in the Western Australian test area. As cloud was masked,
some stripes of missing data remain in the mosaicked image. The multi-temporal
processing infers the cover in such gaps using the data from the surrounding epochs.
In the case of the 2006 epoch, the cover is assumed to be unchanged from 2005. In
this test area stripes of missing data appear within areas of forest that were cleared
between 2005 and 2006. Above and below the missing data, the cover is correctly
mapped as non-forest and hence as cleared in the 2005–2006 clearing map. In the
gap, the cover is extrapolated from the 2005 forest cover and is not mapped as
change, resulting in stripes in the forest extent and change maps.

Conclusions

The SPOT 4 images cannot be as accurately registered to the rectification base as the
Landsat 7 SLC-off images, particularly in mountainous areas when the images have
large incidence angles. Calibration of the SPOT 4 imagery requires further study.
New BRDF kernels will need to be derived as well as new model coefficients. Once
appropriate methodologies have been established the operational registration and
calibration processing effort should only increase by a small ‘per image’ amount for
both SPOT 4 and Landsat 7 SLC-off imagery. However, at least six Spot images and
two (or occasionally three) Landsat 7 SLC-off images are required for every current
Landsat path/row.

Using Landsat 7 SLC-off imagery will require a reordering of the mosaicking,
terrain illumination correction and cloud masking steps in the processing, however
the overall effort is not increased. No changes are required when using SPOT 4
imagery.

New indices will have to be derived for many stratification zones when using
SPOT 4 imagery. This may take up to two weeks of effort for each of thirty seven
1:1,000,000 map sheets. Ideally indices are derived by considering two or more
image dates to ensure they are robust through time rather than tailored to particular
conditions in a single image. All indices derived for the first epoch using SPOT
4 data should be reviewed when a second epoch is available. Once indices have
been established, the overall thresholding effort is increased compared to Landsat
TM data, in the worst case by the number of extra scenes required for complete
coverage.

For the Landsat 7 SLC-off data, if there is no significant change between the
images being composited, the thresholding can be performed treating each com-
posite as a single path/row image. In the event that differences have been flagged
between images to be composited, thresholds should be derived from the individual
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images and the probability images mosaicked. There may be a slight increase in
thresholding effort.

The forest cover extent and change products from SPOT 4 are not as consistent
with prior results as those obtained from Landsat 5 or Landsat 7 SLC-off data. The
mapped forest extent is smaller and the rates of change correspondingly larger in all
of these test areas.

Of these two alternatives, the Landsat 7 SLC-off data would be preferred as a
replacement to Landsat 5 as it provides greater consistency and less overall increase
in processing effort. However, as noted in the introduction, the Landsat 7 satellite is
unlikely to be available to bridge the full gap until a new Landsat sensor is launched.
Investigations into the data from other sensors are ongoing.

Acknowledgements This work was supported by DCC Land Cover Change program.

References

Caccetta PA (1997) Remote Sensing, Geographical Information Systems (GIS) and Bayesian
Knowledge-Based Methods for Monitoring Land Condition. PhD Thesis, Curtin University
of Technology, Australia.

Danaher T, Wu X and Campbell NA (2001) Bidirectional Reflectance Distribution Function
Approaches to Radiometric Calibration of Landsat TM Imagery. IGARSS 2001 Conference
proceedings, Sydney, Australia, July 2001.

Furby SL (2002) Land Cover Change: Specification for Remote Sensing Analysis. Australian
Greenhouse Office Technical Report 9.

Furby SL (2006) Documentation for the 2005 Update of the Forest Cover Mapping for
the Australian Greenhouse Office Land Use Change Program, CSIRO Mathematical and
Information Sciences Technical Report 06/43.

Furby SL and Campbell NA (2001) Calibrating images from different dates to ‘like value’ digital
counts. Remote Sensing of Environment, 77:186–196.

Furby SL and Wu X (2006) Evaluation of Landsat 7 SLC-off Image Data for Forest Cover
Mapping. CSIRO Mathematical and Information Sciences Technical Report 06/154.

Furby SL and Wu X (2007) Evaluation of IRS P6 LISS-III and AWiFS Image Data for Forest
Cover Mapping. CSIRO Mathematical and Information Sciences Technical Report 06/199.

Furby SL, Wu X and O’Connell J (2006) Evaluation of SPOT 4 Image Data for Forest Cover
Mapping. CSIRO Mathematical and Information Sciences Technical Report 06/155.

SPOT Image (2008) SPOT Image Technical Information [Internet documents cited April 2008].
Available from http://www.spotimage.fr/web/en/224-technical-information.php.

Toutin Th (1994) Rigorous geometric processing of airborne and spaceborne data. Proceedings of
EUROPTO Symposium on Image and Signal Processing for Remote Sensing, Rome, Italy, Vol
SPIE 2315, 825–832.

Wu X, Furby SL and Wallace J F (2004) An Approach for Terrain Illumination Correction. The
12th Australasian Remote Sensing and Photogrammetry Conference Proceedings, Fremantle,
Western Australia, 18–22 October

Wu X, Guo J, Wallace J, Furby SL and Caccetta P (2006) Evaluation of CBERS Image Data:
Geometric and Radiometric Aspects. Proceedings of the 13 Australasian Remote Sensing and
Photogrammetry Conference, Canberra, Australia.



Evaluation of CBERS Image Data:
Geometric and Radiometric Aspects

X. Wu, J. Guo, J. Wallace, S.L. Furby, and P. Caccetta

Abstract In Australia, Landsat imagery is currently used in a number of regional
and national monitoring projects. However, the future of Landsat imagery is not
assured. Both Landsat 5 and Landsat 7 are estimated to run out of fuel around 2010.
With the looming gap in Landsat data continuity it is timely to consider the issues
involved in using data from other sensors to continue these monitoring programs.
In the context of the Australian Greenhouse Office (AGO) Land Cover Change
Program (LCCP) (http://www.climatechange.gov.au/ncas), this paper describes the
issues on CBERS geometric and radiometric aspects, and quantifies the effects of
using CBERS images to produce forest cover maps. Other alternatives to Landsat
data that are being considered by AGO are SPOT 4 and Landsat 7 SLC-off images
(Furby and Wu 2006a) and the Indian Remote Sensing satellites (IRS) (Furby
and Wu 2006b).

Introduction

Most important aspects of the forest cover mapping program were considered during
various evaluation stages, including ortho-rectification, radiometric calibration and
thresholding to produce forest cover maps. Unless indicated otherwise in the text,
all processing was performed according to the standard methodology for the Land
Cover Change Program as described in (Furby 2002, 2006).

The structure of this paper is organized as follows: Section ‘CBERS Background’
gives a brief introduction of CBERS series. Section ‘CBERS Image Datasets’
describes the CBERS datasets obtained and used for evaluation. In sections
‘CBERS Otho-Rectification’ and ‘CBERS Radiometric Calibration’, various
aspects and problems of geometric rectification and radiometric calibration of
CBERS data will be discussed, a new approach for CBERS radiometric cali-
bration is described and results are presented. Results of thresholding to pro-
duce forest cover maps are given in section ‘Thresholding Issues’. Finally,
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section ‘Conclusion’ presents some findings and recommendations for using
CBERS data for monitoring the extent and change in area of perennial vegeta-
tion.

CBERS Background

China has joined forces with the Brazilian government to develop a series of earth-
observing satellites launched by Long March rockets from China. Their program
goes by the name of CBERS (China-Brazil Earth Resources Satellites); CBERS
series is called ZY—1 (ZY is abbreviated from Zi Yuan, which means resources)
series in China. CBERS 01, the first in CBERS series, was launched on October 14,
1999 and CBERS 02 was launched on October 21, 2003. CBERS 02 is still opera-
tional, although exceeding its design life. A replacement satellite, called CBERS
02B, has been launched on September 27, 2007. CBERS 03 and 04 are to be
launched in the near future. The CBERS series demonstrates China’s capability of
developing earth resources satellite and satellite application products. The more than
280,000 images received are concentrated mainly over China and Brazil, and are not
generally available to other nations.

CBERS 02 is technically identical to CBERS 01. The first two CBERS satel-
lites carry on-board a multi-sensor payload with different spatial resolutions. The
three sensors are: (1) Wide Field Imager (WFI) (900 km swath; 258 m resolu-
tion; 2 bands); (2) Infrared MSS (IRMSS) (120 km swath; 78 m resolution; 4
bands including thermal); and (3) Charge Coupled Device (CCD) (120 km swath;
19.5 m resolution; 5 bands). Figure 1 shows the detailed sensor comparison between
CBERS and Landsat TM.

Fig. 1 Sensor bandwidth comparison between CBERS and Landsat TM
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CBERS Image Datasets

CBERS Guangzhou Dataset

A CBERS scene was provided by CRESDA (unless indicated otherwise in the text,
CBERS refer to CBERS 02 CCD image). This dataset covers the surrounding area
of Guangzhou, China, and contains 5-band images from CCD sensor and 4-band
image from IRMSS sensor. Figures 2 and 3 show the composed images from CCD
and IRMSS sensors, respectively.

Fig. 2 CBERS scene of path
372 row 74, acquired on
December 1, 2004,
Guangzhou, China. The scene
data contains 5 CCD bands;
however the above picture
only shows bands 4, 3 and 2,
represented by red, green and
blue colours, respectively

Fig. 3 CBERS scene of path
372 row 74, acquired on
December 1, 2004,
Guangzhou, China. The scene
data contains 4 IRMSS bands;
however, the above picture
only shows bands 3, 2 and 1,
represented by red, green and
blue colours, respectively



94 X. Wu et al.

CBERS QLD Dataset

In late 2004, CRESDA planned a special mission to acquire some CBERS data
for Australia. To our knowledge, the CBERS 02 scene of path 319 row 128
(Fraser Island, Queensland), provided by CRESDA, was the first CBERS dataset
for Australia. It was acquired on December 3, 2004 (see Fig. 4). Due to the on-
board data storage limitations, the scene only contains CCD bands 4, 3 and 2.
Unfortunately, this scene was heavily covered by clouds at the acquisition time and
therefore was not considered for our evaluation purpose.

Fig. 4 CBERS scene of path
319 row 128 (Fraser Island,
Queensland), acquired on
December 3, 2004. The scene
contains CCD bands 4, 3 and
2 (represented by red, green
and blue colours,
respectively)

CBERS WA Dataset

1. In January 2005, through negotiation with CSIRO, CRESDA planned the second
mission to acquire some CBERS data in Western Australia, for part of the region
covered by the Land Monitor project (http://www.landmonitor.wa.gov.au). Four
consecutive CBERS scenes from row 132 to row 135 in path 358 were
acquired on February 7, 2005. Due to the on-board data storage issue, this
dataset only contains CCD bands 4, 3 and 2 (represented by red, green
and blue colours in Fig. 5, respectively). The row 132 and row 133 scenes
are nearly cloud-free (shown in Fig. 5) while row 134 and row 135 were
heavily covered by clouds and therefore were not considered for evaluation
purpose.
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Fig. 5 CBERS WA dataset
(combined two scenes of row
132 and row 133 at path 358),
acquired on February 7, 2005,
in the Land Monitor project
region, Western Australia.
The scene contains CCD
bands 4, 3 and 2 (represented
by red, green and blue
colours, respectively)

CBERS Ortho-Rectification

CBERS WA Dataset

The CBERS WA dataset provided by CRESDA is map-oriented (images have been
rotated to align with the map grid) which makes it difficult to apply orbital mod-
elling techniques in order to establish the rigorous geometric relationship between
provided images and the ground truth. Therefore the Rational Polynomial Function
(RPF) (Grodecki 2001) model was used for ortho-rectification instead of using the
rigorous orbital modelling method.

The 2005 Land Monitor data was used as the base image to collect the ground
control points (GCP) and match to the CBERS images. The base image used was
mosaicked mainly from two Landsat 5 TM scenes: Mullewa (path 113, row 80) and
Moora (path 113, row 81). By a coincidence, these two Landsat TM scenes were
acquired on February 9, 2005, only 2 days after the CBERS scenes. The Digital
Elevation Model (DEM) from the Land Monitor project was used for image ortho-
rectification.
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Table 1 RMS errors of RPF model fitting for CBERS scenes (unit: pixel, CCD pixel size is
19.5 m)

CBESR scene GCP RMS X (m) RMS Y (m)

Mullewa 104 21 12
Moora 113 21 10

More than 100 well distributed GCPs were collected for each CBERS scene and
the RPF model fitting results for each scene show a good agreement. The RMS (root
mean squares) errors are less than 25 m for both the easting and northing directions
(Table 1).

Statistical analysis between the ortho-rectified CBERS image and the Landsat
5 TM base image was carried out using correlation matching to locate 29 check
GCPs in these two images. RMS errors for best 90% of 29 check GCPs with cor-
relation coefficients larger than 0.85 are 23 m in the easting direction and 11 m in
the northing direction, which is less than one pixel of the Landsat 5 TM base image.
This is of the same order of magnitude as obtained for Landsat TM to Landsat TM
ortho-rectifications.

A visual inspection was conducted by manually checking overlays of the two
images (TM image Band 4 as the red channel and CBERS band 4 as the green
channel). The yellow colour should be dominant if both images are matched per-
fectly, while red or green colour indicates there are some misalignments between
ortho-rectified CBERS and TM base images. The misalignment is less than one
pixel (25 m) over most of the area. Figure 6(a), (b) and (c) show the good alignment

(a) (b)

(c) (d)

Fig. 6 Four zoomed areas on
the composed image (TM
image Band 4 as the red
channel and CBERS band 4
as the green channel). (a), (b)
and (c) show the good
alignment on the composed
image in three enlarged areas
(see boxes A, B and C in
Fig. 5), while (d) shows the
mis-registration of around
two pixels
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on the composed image in three enlarged areas (see boxes A, B and C in Fig. 5).
However, the misalignment in some areas exceeds the limits set by both Land
Monitor and AGO projects (normally less than 25 m). For example, Fig. 6(d) shows
the mis-registration is around two pixels (50 m).

Further improvement could be made if the path-oriented (orbital) images are
provided and the rigorous orbital model techniques are applied.

CBERS Guangzhou Dataset

The purpose of CBERS Guangzhou dataset evaluation is to investigate the alignment
issue of CBERS data between its CCD bands and its IRMSS bands. Registration
process was carried out in two steps:

1. The CCD image was registered and ortho-rectified to a reference image, and
2. The IRMSS image was registered and ortho-rectified to the ortho-rectified

CCD image.

The reference image in Step 1 is an ortho-rectified Landsat 7 ETM+ image
which was downloaded from the Global Land Cover Facility (GLCF) web-
site (http://glcf.umiacs.umd.edu/data/). The reference image was acquired on
September 14, 2000 and can be identified by path 122 and row 44. The DEM
used for ortho-rectification is the Shuttle Radar Topography Mission (SRTM)
DEM (http://seamless.usgs.gov/) with post-processing applied by the authors. Both
datasets are freely available.

The CBERS Guangzhou dataset provided by CRESDA is also map-oriented
which makes it difficult to apply orbital modelling techniques. RPF model was used
for ortho-rectification.

Forty-one well distributed GCPs were collected from the CCD image and
matched to the reference image. Fifty three well distributed GCPs were collected
from the IRMSS image and matched to the ortho-rectified CCD image. The RPF
model fitting residual errors for both CCD and IRMSS images are listed in Table 2.

Statistical analysis between the ortho-rectified CCD image and the ortho-rectified
IRMSS image was carried out using correlation matching to locate 63 check GCPs
in these two images. RMS errors for best 90% of 63 check GCPs with correla-
tion coefficients larger than 0.85 are 42 m in the easting direction and 37 m in the
northing direction, which is about two third of an IRMSS pixel size.

Table 2 RMS errors of RPF model fitting for CBERS sensors (unit: pixel, CCD pixel size is
19.5 m, IRMSS pixel size is 78 m)

CBESR sensor GCP RMS X (m) RMS Y (m)

CCD 41 33 25
IRMSS 53 31 23
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Fig. 7 Zoomed area on the
composed image (CCD image
Band 3 as the red channel and
IRMSS band 2 as the green
channel. IRMSS image pixel
resolution was resampled
from 75 into 25 m)

Visual inspection confirms the statistical analysis results in majority of areas.
Figure 7 shows a zoomed region on the composed image (CCD and IRMSS com-
bined image). However, it is unknown how this amount of shift affects forest cover
maps if the combined data (CCD with IRMSS) is tried.

CBERS Radiometric Calibration

The standard calibration process for both the Land Monitor project and AGO LCCP
consists of three distinct steps:

• top-of-atmosphere and Bi-directional Reflectance Distribution Function (BRDF)
corrections;

• invariant target atmospheric check/correction; and
• terrain-illumination correction, if required.

CRESDA provides the necessary parameters for applying the top-of-atmosphere
corrections to the CBERS images using the current procedure with slight modifica-
tions. However, a new approach is required in applying the BRDF corrections to the
CBERS images.

CBERS WA dataset was chosen for radiometric calibration evaluation. Terrain-
illumination correction is not applied to the South West region of WA in either the
Land Monitor project or the AGO LCCP as the area is relatively flat. Only top-of-
atmosphere and BRDF corrections were applied for CBERS WA dataset.



Evaluation of CBERS Image Data: Geometric and Radiometric Aspects 99

CBERS Radiometric Calibration Approach

Given a base image (ortho-rectified and radiometrically calibrated) and an ortho-
rectified CBERS image, a new BRDF calibration model is proposed from an early
model developed by Wu (2006). Assuming there are enough overlapping regions
between the base image and a CBERS image, the BRDF calibration model can be
written as:

v = a0 + k1a1 + k2a2 − (s · g − gb) (5.1)
where

k1, k2 are the two BRDF kernels for the CBERS image, which can be calculated
once necessary kernel parameters are provided,

a0 is the offset and a1, a2 are the kernel coefficients for the CBERS image,
g is the CBERS image’s band value, s is the scaling factor of g, gb is the base

image’s corresponding band value, and
v is the fitting residuals for observation.

Some commonly used BRDF kernels considered are Ross Thick, Ross Thin,
Roujean, Li Sparse and Li Dense. Image geometric view angles need to be calcu-
lated in order to apply these BRDF kernels. Most BRDF kernels are the functions of
image geometric view angles related to the centres of the imaging sensor and solar
direction (Vermote et al. 1994). A detailed description of the relationship between
image and space, and the procedures to calculate image view angles are provided
by Wu (2006).

Once enough samples (usually in the order of tens of thousands) are collected,
this model can be fitted in different ways such as the least squares techniques. A
robust S-estimate technique was employed to estimate the kernel coefficients and
the scaling factor (Campbell et al. 1998).

It is worth mentioning that though this model is applied to CBERS images, it
can be easily modified to applicable to other satellite images and aerial images. For
example, SPOT 4 images were BRDF calibrated to Landsat TM base images using
this model (Furby and Wu 2006a).

The practical approach consists of three consecutive steps as follows:

1. Due to the nature of CBERS CCD sensor imaging (push-broom scanning),
each scanline has its own solar zenith and azimuth angles and view zenith and
azimuth angles. These angles are accurately calculated using the photogrammet-
ric method which utilises: (i) satellite positions at different scanlines; (ii) each
pixel’s location (longitude and latitude) and; (iii) time, date and orbital data;

2. Several kernel models (one kernel mode or a combination of two kernels mode)
can be chosen and modelled using samples taken within the vegetation and bush
areas. The linear coefficients of these models are estimated using a robust S-
estimate technique (Campbell et al. 1998); and

3. CBERS images are then corrected using the kernel coefficients.
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CBERS Calibration Results

In the CBERS BRDF calibration experiment, the forest/non-forest masks are avail-
able and the samples are collected within the forest areas only. Roujean and Li Dense
were chosen as the two kernels. Histogram comparison shows there are significant
improvements (matched to the base image) after applying BRDF calibration to the
CBERS image (Fig. 8). However, there is more work required to assess the BRDF
calibration, more adjacent CBERS images are required to further analyse the BRDF
calibration model for CBERS data.

Fig. 8 Histograms of the subtracted image (the base image is subtracted by the CBERS image)
before and after applying the BRDF calibration to the CBERS WA dataset. The first row shows the
histograms of the subtracted image before applying the BRDF calibration to the CBERS image.
The second row shows the histograms of the subtracted image after applying the BRDF calibration
to the CBERS image. Subtracted bands 4, 3 and 2 (Landsat TM equivalent) are represented by red,
green and blue colours, respectively

Thresholding Issues

CBERS WA Dataset

Forest cover probability images were created using the index-threshold methods of
AGO LCCP (Furby 2002). The index derivation is based on discriminant analysis
procedures applied to training sites selected from existing forest cover masks. Here
these were applied to the TM image (6 bands), the CBERS image in which only
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Fig. 9 Top Left: Landsat 5
TM image, bands 4, 3, 2 in
RGB. Top Right: CBERS
image, bands 4, 3, 2 in RGB
(equivalent to TM bands
432). Bottom row: Overlay of
forest extent maps for
Landsat 5 TM (red) and
CBERS (green)

3 bands are available and to the 3 CBERS-equivalent bands from the TM image.
After conducting the same AGO classification procedure, as expected, reduction of
TM bands from 6 to 3 reduces overall discrimination and discrimination forest vs
non-forest ‘contrasts’. LCCP indices for this region include Landsat TM band 5 or 7
for this reason. Site ordination plots showed similar patterns for CBERS and equiv-
alent 3-band TM data; forest and non-forest sites are generally separable, but some
sites which are well separated using 6 TM bands, are in an ‘overlap region’ using
the three bands. These evidences are mainly based on expert’s photo-interpretation
using forest cover probability images. Despite its nominal 19.5 m resolution, the
CBERS image is ‘blurry’ in comparison with the same Landsat bands (Fig. 9),
indicating a coarser effective resolution.

Figure 9 compares the forest cover products and imagery for a small sample
in the CBERS WA dataset area, produced derived common indices and comparable
thresholds. This area was chosen as it is relatively challenging, having thin perennial
vegetation (below the LCCP threshold) and fine spatial features. Forest cover extent
maps derived from Landsat 5 TM and CBERS are displayed together in green and
red respectively in the bottom row of Fig. 9. Where these products coincide, the
display appears yellow (forest) or black (non-forest). Red and green shows where
the CBERS and 3-band TM derived forest maps disagree. The red areas appear
largely to be a result of the coarser effective resolution of CBERS.
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Conclusions

This paper explores some potentials of using CBERS data, mainly from the geo-
metric rectification and radiometric calibration aspects. The preliminary results
from experiments using the CBERS WA and Guangzhou datasets are encouraging.
However, there are more aspects need to be investigated for the CBERS data if it is
to be used in Land Monitoring project and AGO LCCP.

The CBERS WA dataset demonstrates that map-oriented CBERS CCD images
can be registered to the base image (Landsat 5 TM), with apparently satisfactory
RMS error. However, in some areas, mis-registration error is greater than Land
Monitor or LCCP standards. It is likely that orbital models applied to path-oriented
image CBERS data will improve the registration, and this should be investigated. In
conjunction with the proposed BRDF calibrated model, CBERS WA dataset can be
radiometrically calibrated to the Landsat 5 TM base, and the thresholding analysis
shows that the forest cover map derived using limited CBERS bands is comparable
to the forest cover map derived using Landsat 5 TM equivalent bands. The coarser
effective spatial resolution would create some issues if CBERS products are used to
extend existing Landsat TM monitoring programs.

The registration results from the CBERS Guangzhou dataset show that it is pos-
sible to register the CBERS CCD image and its companion IRMSS image (both
IRMSS and CCD images were acquired simultaneously). The misalignment errors
are 42 m in the easting direction and 37 m in the northing direction, which is about
two thirds of an IRMSS pixel size.

During both CBERS WA and Guangzhou datasets ortho-rectification exper-
iments, only the RPF model was applied due to the CBERS images pro-
vided being map-oriented. Further improvement could be expected if the path-
oriented images are provided and the rigorous orbital model techniques are
applied.

In the context of monitoring programs, accurate registration is critical. IRMSS
data was not available for the Australian study area, and the potential and effect of
its additional spectral bands have not yet been evaluated. This should be carried out
following examination of results from orbital modelling registration.

The following areas are recommended for CBERS further investigation:

• Evaluate more CBERS images from ortho-rectification and terrain illumination
aspects, particularly in mountainous areas,

• further study the issues surrounding the fusion between CCD and IRMSS
data, including the forest cover maps derived from combined CCD and
IRMSS bands,

• Apply the rigorous orbital model techniques to CBERS path-oriented images
from CCD and IRMSS,

• further study on the proposed BRDF calibration model, especially the optimal
kernel’s choice, and

• The accuracy of the change products from ‘mixed’ sensor time series analysis
(e.g. CBERS and Landsat TM).
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Mapping and Monitoring Wetlands
Around the World Using ALOS PALSAR:
The ALOS Kyoto and Carbon Initiative
Wetlands Products
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Abstract Climate change and the conservation of the environment are extremely
significant and topical global issues. The ALOS Kyoto and Carbon (K&C)
Initiative is a global, multi-disciplinary research initiative of the Japanese Aerospace
Exploration Agency (JAXA), aiming to produce remote sensing products which
can support international conservation conventions, carbon cycle science, and
conservation of the environment. The objective of the Initiative is to define,
develop and validate products derived primarily from the PALSAR (Phased Array
L-Band Synthetic Aperture Radar) sensor on-board the ALOS (Advanced Land
Observing Satellite). The ALOS-PALSAR instrument provides a range of enhance-
ments, including full polarimetry, variable off-nadir viewing, ScanSAR mode, and
improved radiometric and geometric performance, compared to the earlier Japan
Earth Resources Satellite (JERS-1) SAR. Data are being developed on a thematic
basis, relating to global biomes, including forest, desert and wetlands. In this paper,
which is a summary of the wetlands parts of the ALOS K&C Science Plan, we
describe a range of tools and products that are being developed to utilize the
advantages of the PALSAR instrument to support the inventory, conservation and
management of wetlands in different areas around the world. These include prod-
ucts which will specifically enhance information on the extent and characteristics of
global wetlands; and products for seasonal monitoring of tropical/sub-tropical wet-
lands; mapping and monitoring of key wetland types, including mangroves, peat
swamp forests, and lakes, including northern Australia and south-east Asia. We
highlight and compare the relative strengths of the PALSAR sensor, such as the
ability to detect wetland environments in areas of the world which are regularly
obscured by clouds, smoke or dense vegetation, with other SAR and optical sen-
sors. Importantly this information will be used to support the Ramsar Convention
on wetlands, and other conservation initiatives aimed at protecting and enhancing
wetland management.
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Introduction

The Kyoto and Carbon (K&C) Initiative was initiated by the Japanese Aerospace
Exploration Agency (JAXA) Earth Observation Research and Applications Center
(EORC) in 2000 (Rosenqvist et al. 2003), and is based on the conviction that Earth
Observation technology has the potential to play a more significant role than it does
today, in supporting international conservation Conventions, Carbon cycle science
and natural Conservation (referred to hereafter as CCC), with information that can-
not be obtained in a feasible manner by any other means. It is recognised that close
integration with in situ information and analytical models is fundamental in this
context.

The objective of the K&C Initiative is to define, develop and validate products
derived primarily from the PALSAR (Phased Array L-Band Synthetic Aperture
Radar) sensor on-board the ALOS (Advanced Land Observing Satellite). The
ALOS-PALSAR instrument provides a range of enhancements, including full
polarimetry, variable off-nadir viewing, ScanSAR mode, and improved radiometric
and geometric performance, compared to the earlier Japan Earth Resources Satellite
(JERS-1) SAR. Specifically, the K&C Initiative aims to support the CCC through
the provision of (1) systematic global observations and consistent data archives, and
(2) derived and verified thematic products.

Thematically, the Initiative is structured around three main thematic areas
(Forest, Wetlands and Desert and Water) that each relate uniquely to one or more of
the CCC drivers of the project.

The Forest Theme is focused to support the UNFCCC Kyoto Protocol and the
part of the carbon research community concerned with CO2 fluxes from terrestrial
sinks and sources. Key areas considered include land cover (forest) mapping, forest
change mapping and biomass and structure.

The Wetlands Theme aims to serve information needs posed by the Ramsar
Wetlands Convention and the Convention on Biological Diversity, as well as the
significance of wetlands as sources of tropospheric carbon. Key areas considered
include regional wetland inventories, seasonal inundation monitoring and specific
inventories of mangroves and peat swamp forests.

The Desert and Water Theme addresses issues relevant to water supply and land
degradation in arid and semi-arid areas. Key areas considered include freshwater
supply and desertification.

In this paper, we explain the significance of PALSAR data for wetland applica-
tions, and highlight the specific products developed for wetland applications in the
ALOS K&C Science Plan (Rosenqvist et al. 2008), as they apply to the Asia-Pacific
region (including Australia).

PALSAR

The PALSAR sensor is an enhanced version of the Synthetic Aperture Radar
on JERS-1 (L-band; HH-polarisation; 35◦off-nadir angle). PALSAR is a fully
polarimetric instrument, operating at L-band with 1270 MHz (23.6 cm) centre
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Fig. 1 PALSAR observation characteristics

frequency, and 28 MHz, alternatively 14 MHz, bandwidth. The antenna consists
of 80 transmit/receive (T/R) modules on four panel segments, with a total size of
3.1 by 8.9 m.

PALSAR features four main modes of operations (Fig. 1):

• Fine resolution beam mode
• Polarimetric mode
• ScanSAR mode
• Direct transmission mode

The Fine resolution Beam (FB) mode, features 18 beam selections between 9.9
and 50.8◦ off-nadir angle, each with 4 alternative polarisations: single polarisation
HH or VV, and dual polarisation HH+HV or VV+VH. The bandwidth is 28 MHz in
single polarisation and 14 MHz in the dual polarisation mode. The data recording
rate in FB mode is 240 Mbps, thus requiring data downlink via the DRTS.

Out of the 72 alternative FB modes available, two have been selected for oper-
ational use: [HH pol.; 34.3◦ off-nadir] and [HH+HV pol.; 34.3◦ off-nadir]. These
modes yield 70 km swath width and 10×10 and 10×20 m ground resolution in HH
and HH+HV polarisation, respectively. The 34.3◦ off-nadir angle corresponds to an
incidence angle range of 36.6 and 40.9◦ from near- to far range. PALSAR is oper-
ated in near zero-Doppler yaw steering mode to improve processing efficiency and
geometric accuracy.

The Polarimetric mode provides the full quad-pol (HH+HV+VH+VV) scatter-
ing matrix with 12 alternative off-nadir angles between 9.7 and 26.2◦. The default
off-nadir angle for polarimetric acquisitions is 21.5◦ (22.8–25.2◦ incidence range),
resulting in 30 km swath width and 30×10 m ground resolution.



108 J. Lowry et al.

The wide-swath ScanSAR mode is available at single polarisation (HH or VV)
and can be operated with 3, 4 or 5 sub-beams transmitted in either short (14 MHz
bandwidth) or long bursts (28 MHz). Out of the 12 ScanSAR modes available, the
short-burst, HH polarisation, 5-beam mode has been selected for operations. It fea-
tures a 360 km swath width with an incidence angle range varying from 18.0 to 43.0◦
(the off-nadir angles for each of the 5 beams are 20.1, 26.1, 30.6, 34.1 and 36.5◦).

Wetland Theme

The increasing recognition of the importance of wetland ecosystems to both the
economic and environmental health of human communities has stimulated renewed
interest in mapping the distribution of wetlands around the world (Darras et al. 1999,
Finlayson and Rea 1999). However, the broad definition of what constitutes a wet-
land and disagreements on definition have led to a wide range of mapping techniques
and inconsistencies in their application. Indeed, one of the major handicaps fac-
ing wetland inventory is the lack of a universally understood classification system
to describe wetland environments (Finlayson and van der Valk 1995). As a result,
estimates of wetland extent vary widely. The establishment of globally acceptable
definitions of wetlands and wetland types is therefore fundamental if appropriate
mapping techniques are to be implemented. Furthermore, the provision of a spa-
tially consistent data source to which the mapping techniques can be applied is also
fundamental. Remote sensing does provide such a dataset but even so, standard-
ising procedures for mapping regionally, let alone globally, remains a significant
challenge.

Remote sensing data have, for some time, provided opportunities for identifying,
describing and mapping the distribution of wetlands at a range of scales from local to
global and certainly recent advances in remote sensing instruments and spatial anal-
ysis techniques have only increased their potential (Phinn et al. 1999, Sahagian and
Melack 1996). However, few studies have been undertaken with the explicit aim of
presenting the spatial distribution of wetlands on a global or even continental scale.
Further, the methods by which wetland environments are identified or classified
from existing global datasets vary considerably (Sahagian and Melack 1996, Darras
et al. 1999) and the results of mapping are often inconsistent. For example, Lowry
and Finlayson (2004) analysed ten different datasets representing wetland distri-
bution across northern Australian and found considerable differences in the areal
estimates of wetland extent. Mapping has proved difficult in many areas because of
the lack of temporally and spatially consistent datasets and also because many areas
are inaccessible, remote or temporally dynamic. The accuracy of many of these
approaches has rarely been tested (Sahagian and Melack 1996) with many assess-
ments relating to specific environments, without providing an overall indication of
the areal extent of all wetlands types in the area of interest.

The Wetlands Theme of the K&C Initiative focuses on the provision of remote
sensing datasets that can be used to assist the global mapping and monitoring of
wetlands and identifying and quantifying the threats to which these are exposed.
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Specifically, it aims to develop a suite of products which may be used to improve
the understanding of carbon cycle science, assist the implementation of conservation
and management strategies and support national and international obligations to
multi-national conventions.

In terms of carbon cycles, the boreal wetlands, tropical peat swamps, paddy rice
and mangroves are of particular relevance. Specifically, boreal wetlands and tropical
peat swamps contain significant amount of carbon which may be released as a result
of climate change and anthropogenic activities (e.g., deforestation and disturbance)
(e.g. Weller and Holmgren 1993, Shaver et al. 1990, Chapin et al. 1995). Significant
amounts of methane are released through rice cultivation practices. The clearance
of mangroves is another significant (but poorly recognised) means by which carbon
may be released into the environment. Mangrove forests often contain more carbon
per unit area than tropical forests.

The most basic requirement for modelling regional to global methane or car-
bon dioxide emissions from wetlands is a digital wetlands map with appropriate
scale and classification scheme. While several global wetlands datasets exist (e.g.,
Matthews and Fung 1987, Lehner and Döll 2004) these datasets possess a num-
ber of limitations, reflecting the methods/processes used to generate these datasets.
Specifically, these have been compiled from a variety of map sources generated
using a range of methods and to varying degrees of accuracy. Many of these sources
use class names (e.g., swamp, fen and bog) that may overlap or vary in meaning
and seasonal and permanent wetlands may not be distinguished. For these reasons,
such classification schemes cannot usually be directly incorporated into physical
models. Working groups of the International Geosphere-Biosphere Program (IGBP)
(Sahagian and Melack 1996) have addressed this concern and concluded that there
is a need to characterize wetlands in terms of their functional characteristics rather
than based on traditional regional terminology or on criteria such as phytosociology.

Wetland ecosystems fulfil a vital role in maintaining the ecological and economic
health of many regions. As well as providing a wealth of resources or services,
including products used for fuel, construction, fishing, paper, medicines, textiles
and leather, and food items, these ecosystems also influence ground water recharge,
retain nutrients and sediment and stabilise shorelines (Saenger 1994, Blasco et al.
1996, Finlayson and D’Cruz 2005). Mangrove ecosystems, for example, are an inte-
grated component of the coastal environment in that they are important contributors
to primary production (Bandaranayake 1994), act as nursery sites for many commer-
cial fish and crustacean species and are a seasonal base for many migratory species
(Finlayson and D’Cruz 2005). The Sumatra tsunami disaster in December 2004 fur-
thermore made evident the importance of mangroves as protective buffers to reduce
the impacts from natural hazards. From a conservation perspective, wetland habitats
contain many of the world’s most endangered species of fauna and flora, many of
which are unique, or endemic to specific wetland habitats.

Long-term preservation and sustainable use of these resources is therefore crit-
ical for the economic and social well being of current and future generations. Key
requirements include the establishment of regional and temporal datasets of wetland
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Table 1 Community information needs and wetland theme products (Groups I to IV)

Carbon cycle Conservation Conventions

Global areas of basic
wetland
physiognomic types

Establishing baseline
datasets of wetland
extent and
characteristics

Global wetlands mapping in support of
Ramsar database

Seasonal changes in
inundated area:
effect on CH4 and
CO2 emissions

Identify areas subject to
disturbance and
quantify rates of
change

Capability for periodic updating of wetlands
mapping for disturbance monitoring

Freeze-thaw dynamics
of boreal region

Inventory and
monitoring of critical
habitat for fish,
amphibians, birds,
and mammals

Wetlands products to assist Ramsar
signatories in completing national
inventories

Assessment of carbon
stocks in wetland
vegetation

Mapping to support
location of
bioreserves

Seasonal inundation monitoring for
Ramsar-supported wetland management
projects

Effects of water
management on
methane emissions
from paddy rice

Identification of
wetlands performing
critical ecosystem
services

Ensure accessibility of information to
contracted parties

Group I Group II Group III Group IV
Global Wetland Extent

and Properties
– Tropical
– Temperate
– Boreal

Seasonal monitoring of
major wetland regions
–Tropical
– Temperate
– Boreal

Mapping and
Assessment of
Major Wetland
Functional Types
– Mangroves
– Tropical Peatlands
– Paddy Rice
– Lakes

Product
dissemination
– Dissemination

Plan

extent and condition which incorporate an understanding of the inundation dynam-
ics of an area and spatially quantifiable measures of both anthropogenic and natural
pressures and threats to wetland communities.

The requirement for wetland information range from the reporting requirements
of signatory members of international conventions such as the Ramsar convention,
to the requirements of government and non-government organisations involved in
the conservation of wetlands and study of the carbon cycle. The key requirements of
these organisations, and the products that will be developed to address these issues
are summarised in Table 1.

Application of ALOS-PALSAR to Wetland Applications

Over the past few decades, numerous studies have established the theoretical basis
and practical application of mapping wetland extent, vegetation structure, and
inundation status using active microwave SAR systems (Hess et al. 1995, Costa



Mapping and Monitoring Wetlands Around the World Using ALOS PALSAR 111

et al. 2002, Costa 2004). All SAR instruments share the advantages of day-night
operability (as active sensors), cloud penetration, and the ability to calibrate without
performing atmospheric corrections. The longer L-band (∼23.5 cm) SAR wave-
length, and to a certain extent also C-band (∼5.5 cm), have the ability to penetrate
vegetation canopies to various degrees depending on vegetation density and height,
dielectric constant (primarily a function of water content), and SAR incidence angle.
Variations in backscattering allow discrimination among non-vegetated areas (very
low to low returns), herbaceous vegetation (low to moderate returns), and forest
(moderate to high returns), and to some degree among different forest structures
and regrowth stages. Where water is present beneath a forest canopy, enhanced
returns caused by specular “double bounce” scattering between water surface and
tree trunks makes it possible to distinguish between flooded and non-flooded forest.

Wetland Theme Products

As identified in the preceding sections, carbon cycle, conservation, and multi-
national conventions have a range of information requirements relating to wetland
inventory, mapping and monitoring. To address these issues and requirements,
three key components of the wetlands theme have been identified, through which
product development will be undertaken using ALOS PALSAR data (alone, or in
conjunction with complementary datasets) (Table 2).

Table 2 Components and products of the wetlands theme

Component Product

I. Global wetland extent and properties 1. Tropical wetland extent and properties
2. Boreal wetland extent and properties

II. Seasonal monitoring of major wetland
regions

3. Seasonal monitoring of major
tropical/sub-tropical wetlands

4. Wetland extent, flood inundation patterns
and vegetation change in the Greater
Mekong River Basin

5. Seasonal dynamics of the Pantanal
ecosystem

6. Seasonal monitoring of major boreal
wetlands

III. Mapping and monitoring of key wetland
types

7. Global mangrove extent and properties
8. Tropical peat lands extent and properties
9. Pan-Asian mapping and monitoring of rice

paddies
10. Global lakes census

Selected examples of the proposed products for each component, as they relate
to the Asia-Pacific region and northern Australia are described below. More infor-
mation on each product may be found in the Kyoto and Carbon Initiative Science
Plan (Rosenqvist et al. 2008).
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Tropical Wetland Extent and Properties

It is estimated that wetlands emit about 20% of the methane entering the atmosphere
each year, but large uncertainties exist owing to lack of accurate estimates of total
wetland area. Since the global warming potential of methane as a greenhouse gas
is 4–35 times that of carbon dioxide, improved knowledge of wetland extent and
properties are a high priority in order to understand the global methane budget and
to predict how changes in climate could alter net emissions of methane. Further,
wetland ecosystems in tropical regions of the world are experiencing increasing
pressures and disturbances, including clearance and conversion, rising sea levels,
extreme climate events, and sediment deposition. These degrade ecosystem services
provided by these ecosystems, such as erosion control, fisheries conservation, and
wildlife habitat. However, many tropical regions lack regional baseline information
on the temporal extent, distribution and character of wetlands which could be used
to conserve and protect wetlands. The K&C Initiative is aiming to produce maps
of wetland extent, that could be used to document, monitor, and understand the
regional biodiversity, habitats, vegetation and ecological dynamics of the tropical
wetlands. River basins in South America (the Amazon, Orinoco and Parana basins)
and northern Australia, have been selected for developing these products in the first
instance. An example of an output product is shown in Fig. 2.

Fig. 2 Classified high-water
JERS-1 mosaic for the
Cabaliana floodplain along
the Solimões river,
Amazonas, Brazil. Classes
are open water (blue), flooded
forest (white), flooded
herbaceous (floating
meadows; magenta), flooded
woodland (tan), non-flooded
forest (green), and
non-wetland (black). and (S)
shrubland. (Courtesy of L.
Hess)

Wetland Extent, Inundation Patterns and Vegetation
Change in the Greater Mekong River Basin

Within the K&C Initiative, PALSAR observations in ScanSAR mode will be
undertaken over a large number of selected river basins of global significance –
including the Amazon, Orinocco, Paraguay, Paraná, Yukon, Mackenzie, Congo,
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Niger, Zambesi, Okavango, Darling, Mekong, Irrawaddy, Yangtze, Yellow river, Ob,
Lena and Yenisey – on a 46-day repeat basis 8–9 times during 1-year time windows,
to enable flood duration mapping of unprecedented extents and details. The timing
of the acquisition windows vary between the areas, as they have been individually
adapted to fully capture the local inundation seasonality.

The need for adequate monitoring and management of environmental resources
in order to meet the food, water and energy needs of the population of the
Greater Mekong Basin as well as to minimise the deleterious impacts of eco-
nomic development on the environment are major challenges facing all member
governments (Thailand, Lao PDR, Cambodia and Vietnam) who are signatories
to the “Agreement on the Cooperation for the Sustainable Development of the
Mekong River Basin” signed in 1995, and for international agencies working to pro-
mote sustainable development, utilisation, management and conservation of water
related resources in the Mekong River including the United Nations Development
Program (UNDP), United Nations Environment Program (UNEP), Mekong River
Commission (MRC) and the Ramsar Convention on Wetlands.

PALSAR data will be used specifically to produce maps of wetland distribution,
flood extent and seasonal water recession patterns, and maps of spatial changes in
land cover including that of critical wetlands, natural forests, agricultural land, and
human settlements for the Greater Mekong River Basin.

These will be used to determine the spatial pattern of vegetation classes in fresh-
water wetlands and the associated sequence of floodplain draining and drying that
accompanies flood events. This is an important first step in assessing the hydro-
logic, geomorphic and ecological processes operating in flooded ecosystems. It is
also a necessary pre-requisite to the formulation of management plans relating to
the sustainable use, conservation and rehabilitation of such environments. PALSAR
derived data products from this study will then be integrated with SRTM and other
topographic data to produce flood height maps for use in identifying flood prone
areas and for predicting the magnitude of flood inundation events for selected study
sites within the Mekong Basin. These products will also be used to investigate and
understand the flood dynamics and hydrologic exchange mechanisms within the
Mekong River network, adjacent floodplains and wetlands (Fig. 3).

Global Mangrove Extent and Properties

Mangroves are a floristically diverse assemblage of salt-tolerant plants, widespread
throughout the tropics and subtropics, and also extending to more temperate zones
in both the northern and southern hemispheres (32◦ N and 38◦ S respectively).
They are most extensive in the tropics, where more than 10 million hectares occur,
although their combined area represents less than 3% of the world’s tropical for-
est (Spalding et al. 1997). Mangroves are an important component of coastal
ecosystems and are recognized as important contributors to primary production and
nutrient cycling in estuarine systems (Bandaranayake 1994), as providing nursery
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Fig. 3 Composite change image (left) derived from the January, April and August (1997) JERS-1
images (above). The changing level of irrigation water stored up-slope under scrubland vegeta-
tion (F) leading to higher backscatter is clearly evident in all images. Other landcover types are
(B) bare ground (G), rice fields (R) and (S) shrubland. (Courtesy of A. Milne. Image copyright
JAXA/METI)

grounds for many commercial fish and crustacean species and as a seasonal base for
a variety of migratory species. As mangroves occur at the land-sea interface, they
also create shoreline buffer zones that protect the coast from erosion and flooding
and contribute to groundwater recharge, nutrient and sediment retention and shore-
line stabilisation (Blasco et al. 1994, Saenger 1994). Products will include datasets
derived from JERS-1 SAR and ALOS PALSAR and will be used to map and monitor
the changing extent of mangrove communities subject to both natural and anthro-
pogenic change (including cyclones, tsunami damage, sea level rise, and changing
sediment patterns). The key focus areas will include northern Australia, Indonesia,
South America, and west Africa. Figure 4 illustrates a potential application.

Tropical Peat Swamp Forests and Properties

Thick deposits of peat underneath peat swamp forests are among the world′s largest
reservoirs of carbon. Although they occupy only about 0.3% of the global land sur-
face, they could contain as much as 20% of the global soil carbon stock. More than
half of this area is located in Indonesia (MacDicken 2002, Rieley and Setiadi 1997).
Peat systems appear fragile and sensitive to hydrological disturbance. Drainage
through canalisation has frequently severely disrupted water table level dynamics,
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Fig. 4 Conversion of coastal mangroves for firewood and aquaculture in Perak, Malaysia, as
observed using a multi-annual time series of JERS-1 SAR data (R:1992; G:1995; B:1998).
Clearings which occurred between 1992–1995 and 1995–1998 appear in green and blue, respec-
tively, regenerating areas since 1992 in orange. Image reproduced from Rosenqvist et al. 2007.
Image copyright JAXA/METI

causing the peat layers to dry out and trees to collapse over large areas. Besides
resulting in CO2 emissions due to oxidisation this process makes them particularly
vulnerable to fire, especially during ‘El-Niño’ years. In addition to their significance
to the carbon cycle, peat swamps are particularly significant to the conservation and
maintenance of species diversity. For example, of the 57 mammal and 237 bird
species recorded in peat swamp forests to date, 51 and 27% respectively are listed
as globally threatened species (Sebastian 2002). The relationship between spatial
and temporal dynamics of peat swamp forest hydrology, carbon content and forest
health needs further study. Such understanding would not only support the conser-
vation of peat swamp forest, but also the rehabilitation of degraded peat areas, which
may significantly reduce carbon emission and fire risk.

Temporal dynamics in flooding intensity can be related to the hydrology of
ombrogeneous peat swamp forests and, indirectly, to peat depth. The blue areas
visible in the multi-temporal JERS-1 SAR image in Fig. 5-B(Mawas, Indonesia) are
flooded parts of the relatively flat tops of a complex of two peat domes, with a river
originating from a central depression (red spot). In the lower left corner a blue arch
shows the relative flat and wet fringe of a dry peat dome.

In the humid tropical regions optical remote sensing systems largely fail because
of persistent cloud cover. Conversely, spaceborne radar observation is not hindered
by adverse atmospheric conditions (such as clouds, smoke and haze) and can be
made frequently and repetitively, including during the wet season. Moreover, radar
signals are sensitive to forest structure and biomass level (Hoekman and Quiñones
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Fig. 5 A: Peat depth map derived from flooding dynamics, visible on JERS-1 time series, and peat
depth sampling. In this 300,000 ha section of Mawas, Central Kalimantan, peat depth varies from
2–15 m. (Courtesy of D. Hoekman). B: JERS-1 Multi-temporal composite of a peat dome, Mawas,
Central Kalimantan; (Red 940907; Green 950712; Blue 960104). (Image copyright JAXA/METI)

Table 3 Benefits of using ALOS PALSAR for mapping and monitoring peat swamp environments

All weather observation capability

High temporal capture – good for monitoring disturbance
Assessment of hydrological cycles
Ability to monitor biomass, and forest structure (and thus

health/condition of wetlands)
Ability to assess susceptibility to forest fires

2000, 2002, Le Toan 2002). This offers unique opportunities for applications such
as peat swamp forest health and fire susceptibility monitoring as well as fast illegal
logging response monitoring. The advantages of ALOS PALSAR for mapping and
monitoring peat swamps are summarised in Table 3.

ALOS PALSAR will be used to produce maps of tropical peat swamp forests in
Indonesia, focussing on the islands of Borneo, Sumatra and New Guinea, derived
from a complete annual cycle of 8 consecutive PALSAR ScanSAR observations,
showing location, vegetation type, inundation characteristics, degree of disturbance
and estimated peat depth (Fig. 5). These will be used to assist with peat swamp forest
management, protection, risk assessment (assessment of excessive drainage condi-
tions), hydrological modelling, restoration, more accurate and updated assessment
of carbon stocks.
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Pan-Asian Mapping and Monitoring of Rice Paddies

Demand for rice in Asia is projected to increase by 70% over the next 30 years
(IRRI 2002, Hossain 1997). At the same time, population increase and intensifi-
cation of economic development will lead to significant land use conversion (e.g.,
Seto et al. 2000). Paddy rice cropland distributions and management intensity (fer-
tilizer use, cultivars, water management, multi-cropping) will have to change over
the coming decades. As water resources become scarcer (Vörösmarty et al. 2000),
rapidly expanding urban areas will compete with agriculture for available water. In
Asia, agriculture currently accounts for 86% of total annual water withdrawal (IRRI
2002). Urban demand for water will generally have greater financial and political
resources than agricultural demand for water, and for some regions water availabil-
ity to agriculture may decline significantly over the next few decades. Rising water
costs will force all agriculture to improve its water-use efficiency. As this occurs,
the practice of midseason draining of rice paddies, which requires less water than
continual flooding, is likely to increase throughout many parts of Asia.

In order to assess regional rice production and methane emission in conjunc-
tion with in situ, climatic data and ecological modelling, a range of K&C products
are being developed (Fig. 6). These include algorithms for regional mapping and

A.

B.

C.

D.

Fig. 6 A – Location of algorithm development sites in India, Thailand, Vietnam and China. B
– Multi-temporal JERS data for mapping rice paddy extent and cropping cycles in Vijayawada,
India. Map of early (red areas) and late (orange) Kharif rice. C – Mapping of regional irrigated
paddy fields in the Jiangsu province, China, as examplified by the results using multi-temporal
ENVISAT ASAR WideSwath data. D – The paddy field map is based on the temporal change of
the SAR backscatter. (Courtesy of B. Salas. Image copyright JAXA/METI)
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monitoring of rice production with PALSAR Scansar; a regional map of irrigated
paddy field (single crop and multiple crop per year) derived from multi-temporal
PALSAR Scansar data; algorithms for mapping rice paddy inundation dynamics
with multi-temporal PALSAR Scansar data; and maps of inundation periods will
be developed using multi-temporal PALSAR Scansar data. The key areas for these
products include China, India, Mainland South-East Asia, and Luzon Philippines.

Conclusions

In summary, L-band SAR systems are the single best option for fine spatial -
resolution remote sensing of wetland extent and characteristics over large regions
because they operate regardless of cloud cover, can distinguish basic vegetation
structure, and provide superior canopy penetration and water surface discrimina-
tion relative to C-band. A dual-polarisation L-band system such as ALOS PALSAR
will furthermore provide improved accuracy in discriminating between rough water
surfaces and bare ground, and improved mapping of vegetation structural charac-
teristics. The characteristics of the PALSAR sensor combine to provide products
which can be utilised to assist with the assessment and monitoring of the diverse
range of wetland environments found in the Asia-Pacific region.
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Testing of Alternate Classification Procedures
Within an Operational, Satellite Based,
Forest Monitoring System

Jared O’Connell and Peter Caccetta

Abstract In Australia, continental mapping and monitoring of the extent and
change in perennial vegetation using Landsat satellite imagery is routinely per-
formed as part of the National Carbon Accounting System - Land Cover Change
Project (NCAS-LCCP). Since its original inception, the methods within the opera-
tional LCCP system have been progressively developed by the CSIRO Mathematical
and Information Sciences division in collaboration with the Australian Greenhouse
Office (AGO). Under a framework of contracts and Quality Assurance (QA) pro-
cedures, commercial companies apply these methods to the growing archive of
Landsat images to produce time-series continental coverages of the presence and
absence of perennial vegetation cover at a pixel resolution of 25 m. The raw
data archive currently consists of approximately 5000 Landsat images having an
approximate data volume of 2 × 1012 bytes (2 terabytes), which is transformed
into information products having similar data volumes. Given the above operat-
ing environment, accuracy, interpretability (for outsourcing and QA), computational
efficiency, the ability to incorporate ‘better’ algorithms, and reliability when applied
through space and time, are important aspects for consideration during methodology
development. In this paper, we examine the potential benefits and costs associ-
ated with using several popular classification techniques within (as subcomponents)
the operational classifier. Our key criteria for benefit/cost comparisons are classifi-
cation accuracy versus computational requirements and interpretability. Our main
findings are: that the current operational subcomponent is within 2.5% on average
of the benchmark (the classification obtained with the most sophisticated tech-
nique used); adopting the benchmark may allow the earlier identification of new
plantations, at the expense of an order of magnitude computation; the choice of
method for the subcomponent has less effect than choices made elsewhere in the
process.
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Background

In Australia, time-series remotely sensed Landsat TM data is routinely used for
mapping and monitoring the change in extent of woody perennial vegetation. The
satellite imagery and ground information is used to form multi-temporal classifica-
tions of presence/absence of woody cover, typically for state-based management and
reporting of clearing. More recently, there has been increased interest from land use
changes associated with agriculture and forestry which are a significant component
of Australia’s carbon budget. To quantify the amount, the NCAS-LCCP has devel-
oped the capability for continental monitoring of land cover changes using Landsat
data. The project uses some 5000 Landsat MSS, TM and ETM+ images to map the
presence/absence of perennial vegetation at 25 m resolution for fifteen time periods
since 1972, and is being expanded to quantify the extent and changes in other land
cover classes such as sparse perennial and urban environments.

For monitoring of forest presence/absence, the current operational system
includes the following components:

1. registration of time-series Landsat data to a common spatial reference,
2. calibration of Landsat data to a common spectral reference,
3. (if required) processing of the calibrated data to adjust for viewing geometry

including differential terrain illumination,
4. stratification of the data into ‘zones’, where landcover types within a zone have

similar spectral properties,
5. processing of the calibrated data to remove ‘corrupted’ data, which include

dropouts, data affected by fire, smoke and cloud,
6. analysis of ground and satellite spectral data to determine a single-date classifier

and its parameters,
7. specification of a joint model for multi-temporal classification
8. validation of the classifications to quantify their accuracy.

In this paper, we compare the operational classifier used in step 6 (described
in section, referred to as ‘Matching, Random Forests and Other Classifiers’) to
several popular techniques; Random Forests (RF), CART (Breiman et al., 1984),
Linear Discriminant Analysis (LDA) (Ripley, 1996) and logistic regression (LR)
(McCullagh and Nelder, 1983). R (R Development Core Team, 2004) imple-
mentations of each classifier (excluding Matching) were used. Random Forests
is considered a ‘state of the art’ classifier, on a par with other techniques such
as Neural Networks and Support Vector Machines (SVM) (Breiman, 2001). We
view the classification accuracy obtained from Random Forests as an upper bound
on the accuracies possible in step 6, a benchmark to compare other methods to.
We consider the difference between this upper bound and our current technique
as a guide for possible benefit (improved classification accuracy) versus costs
(computational requirements, interpretability) associated with more sophisticated
classification methods.

In the section ‘Methodology’, we give a description of our current single date
classifier for estimating land-cover change as well as a brief overview of the Random
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Forests algorithm, the data analysed and our rationale for comparison. In section
‘Results’ we present comparisons of single date classifications and also their effect
on accuracy when incorporated into the spatial-temporal model from step 8. Section
‘Discussion and Conclusion’ provides some discussion and possible further work in
this area.

Methodology

Matching, Random Forests and Other Classifiers

The operational classifier (Fig. 1, left) used in step 6 is constructed in two steps;

1. the derivation of linear combinations of spectral bands, ‘indices’, that give the
‘best’ separation of classes using Canonical Variate Analysis (Campbell and
Atchley, 1981). Typically two or three indices are used.

2. specification of decision boundaries (thresholds) on these indices to map the
spectral space into classes (here forest or non-forest)

Following (Caccetta and Bryant, 2002), we assume a reference or ‘base’ image is
already available to be used as our response variable. Given a new image to classify,
we estimate thresholds by minimising the objective function,

∑n

i=1

∣∣p̂i − pi
∣∣

where pi are the class probabilities for pixel i from the base image and p̂i are the esti-
mated probabilities for the new image. This function is minimised using the Simplex
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Fig. 1 Left. A typical ‘matching’ example. Certain (solid) and uncertain (dashed) boundaries
applied to two linear thresholds. Right. Comparison of residuals for RF and Matching. Black
is SH56, red is SI50 and green is SI56. Circles are Matching results and triangles are RF. RF
generally outperforms Matching by a small amount
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algorithm (Nelder and Mead, 1965). The nature of this model is conducive to man-
ual fine tuning, a user can simply adjust the thresholds in the case of a poor fitting
model. Poor fits do occur operationally with some frequency. There were several
reasons why this relatively simple classifier was chosen for operational work;

• Initial pilot studies demonstrated that forest/non-forest classes were typically
separable using two or three linear discriminants (Wallace and Furby, 1994).

• The nature of the classifier allows for manual intervention in the fitting of models
(via image processing software).

• The simplicity of the classifier meant we were confident in its ability to
extrapolate well.

• Computational issues, a typical training region may be of the order of 2000 ×
2000 = 4,000,000 observations (pixels) and it is useful in an operational setting
to perform classification on desktop PC’s.

We compared Matching with Random Forests, a tree ensemble classifier which
we describe briefly. Many decision trees are grown, each tree ‘votes’ for a class,
the class with the majority vote is the predicted value. Each tree is grown using
a bootstrap sample with a random selection of predictor variables used to choose
a split at each node. The primary advantages of using Random Forests over other
sophisticated classifiers are that they can handle large data sets and require minimal
fine tuning, which are both beneficial for this application. We briefly examine the
performance of some older but popular classifiers; LDA, and logistic regression and
CART. These techniques have similar computational requirements to Matching.

Data

Temporal sequences (between 1989 and 2004) of Landsat 5 and 7 satellite imagery
processed up to and including step 3 were analysed. For each map-sheet, the ‘base’
images used as responses were output from spatial-temporal models (used in pre-
vious AGO work) which are more accurate than single-date classifications. Three
training sites(from the standard AUSLIG 1:1,000,000 mapsheets) were selected to
compare the performance of the classifiers described in the previous section;

1. SI50 (SW Western Australia) presents a challenge for several reasons, the region
has seen a large amount of change in forest cover (largely increased cover as the
result of tree planting), atmospheric haze resulting in increased calibration error
and green flushes in some summer scenes.

2. SH56 (NE New South Wales) is generally considered a difficult area to classify
due to the presence of dark soils. Vegetation in this area is relatively static.

3. SI56 (SE New South Wales) is difficult to analyse for similar reasons to SH56
and also has static vegetation.

The size of the training regions had to be limited to allow testing in R, specifically
for n > 1,000,000 it was difficult to fit a reasonable number of trees with RF.
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Comparison Rationale

Probability images were briefly viewed to ensure the output was reasonable. We then
thoroughly examined years where there was a large difference in misclassification
rates between the classifiers. We also look at a measure of similarity between two
classified images, calculating the proportion of pixels assigned a different class for
a given year. This was performed because it is conceivable (although unlikely) that
two different classifiers achieve similar residuals but these residuals occur on a very
different set of pixels.

Due to the differing dates of the base image and our new image, the residual dif-
ferences are comprised of both genuine error (misclassification) and real change in
vegetation. For this reason, the values of residuals alone are not always a sufficient
measure to judge which classifier is more accurate. However, we consider the veg-
etation SH56 and SI56 to be largely static, in which case residuals are likely to be
a sufficient measure of classifier performance. SI50 was examined since we wish to
assess the ability of a classifier to track change, but because of this, change residuals
need to be regarded cautiously.

Results

Single Date Classification

The results for areas 1, 2 and 3 are summarised in Tables 1, 2 and 3 respectively. The
majority of the time, Matching outperformed CART, LDA and logistic regression

Table 1 Summary of residual differences for SH56 NW, Zone 4

Year

Method 1989 1991 1992 1995 1998 2000 2002 2004 Mean

LR 3.51 2.24 2.36 2.86 4.13 2.75 2.78 3.17 2.97
LDA 4.93 3.24 3.56 4.15 4.75 3.07 3.65 4.09 3.93
CART 3.34 2.54 2.88 3.05 4.1 3.01 3.23 3.6 3.22
Matching 3.27 2.16 2.53 3.52 4.34 2.7 2.74 2.95 3.02
RF 3.12 2.13 2.16 2.07 3.66 2.56 2.69 2.84 2.65

Table 2 Summary of residual differences for SI56 SW, Zone 4

Year

Method 1989 1991 1992 1995 2000 2002 2004 Mean

LR 6.63 6.23 6.15 3.44 5.76 6.33 9.16 6.24
LDA 6.47 6.04 5.79 3.58 5.73 6.64 8.53 6.11
CART 7.6 7.33 6.09 3.68 6.22 6.75 9.89 6.8
Matching 6.36 6.11 5.54 2.8 5.21 6.29 8.39 5.82
RF 6.21 5.78 5.34 2.87 5.2 5.84 8.07 5.62
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Table 3 Summary of residual differences for SI50SE, Zone 11

Year

Method 1989 1991 1992 1995 1998 2000 2002 2004 Mean

LR 11.23 10.33 9.18 7.24 5.18 9.33 11.1 15.5 9.89
LDA 10.97 10.35 8.71 7.56 4.37 8.41 9.48 14.06 9.24
CART 10.25 8.94 7.4 5.8 2.69 7.99 8.48 14.46 8.25
Matching 11.15 8.71 7.26 5.64 2.4 7.58 8.32 14 8.13
RF 9.49 8.16 6.95 5.1 1.87 6.04 6.77 9.74 6.77

Fig. 2 Left: SI50 2000, Bands 4,5,2 (in RGB). Right: Comparison of RF (green), Matching (red)
and LR (blue). RF has identified some early plantations (beneficial) and logistic regression has
classified a large body of water as forest vegetation (a serious commission error)

(Tables 1, 2, 3). When one of these classifiers did outperform Matching, it was by a
small margin. In addition, the errors committed by the linear classifiers were serious
(and systematic) as can be seen in Fig. 2. For this reason we did not go into any fur-
ther analysis of these classifiers and focus on the differences between Matching and
RF. We can see in Fig. 1 (right) that Random Forests consistently achieved lower
residuals than our operational classifier with one exception, Matching did slightly
better for SI56 in 1995. The classifiers typically only differ by a small margin, par-
ticularly for the SH56 and SI56 map-sheets (Fig. 1, right). For these two map-sheets,
large differences were only observed in the presence of a scene boundaries (Fig. 8)
or haze (Fig. 3), which represent atypical data. In operational circumstances, differ-
ent scenes are assigned different strata and smoke/haze covered areas are masked.
So RF was capable of adjusting to data that should have been stratified or removed
(when using Matching). This could be useful in regions where haze is persistently
present or where manual stratification is not a practical option.

The residuals for the SI50 scene were generally higher than the other test areas
due to the large amount of real change in this region (primarily new plantations).
Some very large disparities between RF and Matching were observed here. In par-
ticular, for the years 2000, 2002 and 2004, RF achieved a much closer match to the
base (Table 3). On inspection, we observed that RF had failed to identify much of
the new growth from plantations in these years (Fig. 4) meaning RF had performed
worse than Matching. We believe that this was due to the different spectral signature
of the new growth and the fact that all of this growth was labelled as ‘non-forest’ in
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Fig. 3 Left: SH56 1995, Bands 4,5,2 (in RGB). Right: Comparison of Random Forests (green)
and Matching (red). Random Forests can handle the scene boundary while our simpler classifier
cannot

Fig. 4 Left: SI50SE 2004, Bands 4,5,2 (in RGB). Right: Comparison of Random Forests (green)
and Matching (red). Compared to matching, RF does poorly at identifying new growth. Matching
seems unaffected by the presence of a scene boundary in this example

our base probability image. So this was not a case of over-fitting in the conventional
sense, there was genuine discrimination between new and old growth. This high-
lights one of the major challenges in classifying this data, there are systematically
mislabelled observations. It should be noted that while Matching did outperform RF,
the Matching results for 2000 and 2002 would still have been unacceptable opera-
tionally. For example, we can see in Fig. 5 that matching has also failed to classify
some new growth.

Fig. 5 Left: SI50SE 2002, Bands 4,5,2 (in RGB). Centre: Comparison of Random Forests (green)
and Matching (red) using a 1998 base; both classifiers have failed to identify new growth but in dif-
ferent locations. Right: Results when using a 2004 (propagating) base. Results for the propagating
base were preferable for both classifiers
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Table 4 SI50 classification differences when propagating the base image backwards
through time

Year 1989 1991 1992 1995 1998 2000 2002 2004 Mean

M=1, RF=0 2.35 0.78 0.43 0.58 0.62 1.36 0.56 1.14 0.98
M=0, RF=1 2.53 0.86 0.54 1.25 1.48 2.07 1.71 1.69 1.52
% different 4.88 1.65 0.97 1.84 2.1 3.43 2.27 2.83 2.5

Effect of Altering Base Image

While Matching did perform significantly better than RF for the years 2000, 2002
and 2004, both classifiers produced results for 2000 and 2002 that would have been
unacceptable operationally (Fig. 5, centre). To circumvent this problem in practice,
an operator would have set the thresholds manually or perhaps considered a different
year to use as the base. To compare the two algorithms, we took the latter approach.

Several different choices of base year image were informally compared. It is
not possible to generate a quantitative measure for which base image was ‘best’,
but a trained operator can make a reasonable judgement on whether a classifica-
tion accurately represents the real land cover. Better results (as measured by human
judgement) were achieved by using a 2004 probability image as a response for 2002
data and then propagating the predicted classes as responses backwards through the
time-steps.

The results for both Matching and RF were better than those which used a static
(1998) base as can be seen in Fig. 5 (right). However we could no longer directly
compare the misclassification rates for each technique as we were using different
responses (except for 2002). Instead, we look at the number of pixels assigned a
different class by each method for each year (Table 4).

The results in Table 4 indicate that RF tended to classify a greater number of pix-
els as ‘Forest’ compared to Matching. This was not surprising since the majority of
vegetation change in this region is due to new plantations (increase in forest cover)
and RF was capable of classifying these plantations at earlier stages, examples such
as the one shown in Fig. 6 were typical. When the new plantations were present in

Fig. 6 Left: SI50 2002. Centre: SI50 2004, Bands 4,5,2 (in RGB). Right: Comparison of Random
Forests (green) and Matching (red) for 2002. RF was capable of identifying the early stages of new
growth
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the response, RF accurately classified this new spectral class while Matching did
not. When using the propagating base technique, the results from RF were consis-
tently better than those from Matching, albeit marginally. This was mainly due to
the ability of RF to classify plantations at earlier stages.

Effect of Classifier on Results After Spatial-Temporal Processing
(Step 8)

The use of spatial-temporal models greatly increases the accuracy of land-cover
estimates when a time-series of images is available (Caccetta, 1997). In operational
circumstances, we first classify images from each year independently and then apply
a spatial-temporal model to improve accuracy. While we are interested in improv-
ing single-date classification, from an operational perspective, it is also of interest
to assess the difference in accuracy after spatial-temporal processing. We test this
by applying a spatial-temporal model to the single-date classifications described in
the previous section. We face a similar situation to the SI50 classifications with a
propagating base here, in that classifications do not share a common response so
no reasonable measurement of error can be obtained to compare the two classifiers.
Although we do know that change in SH56 and SI56 should be close to zero and
there should be significant change in SI50 in some years.

For the purposes of carbon accounting, identification of landcover change is the
goal, so we compare the estimates of change from each classifier here. We can see
in Figs. 7 and 8 that spatial-temporal processing consistently reduces the estimated
land-cover change, this is due to the removal of false change. While the amount of
change estimated by each classifier varies somewhat, the trends are very similar.
Random Forest change estimates are reduced by a larger amount by the spatial-
temporal model suggesting RF has slightly less consistency than matching. Random
Forests estimates slightly less change for SI56 and SH56, these images have little,
if any, change so RF has performed marginally better.

A good example of spatial-temporal modelling’s worth can be seen from the
SH56 data. A scene boundary was present in 1995 (Fig. 8), causing a large amount of
commission in Matching, this also occurred in RF to a lesser extent. The large spike
in the Fig. 9 change graph is false change caused by this scene boundary. Spatial
temporal modelling has removed most of this error and the classifiers were in far
greater agreement after this process. This was also quite clear from the probability
image. (Fig. 8). While this was an extreme case that would not occur operationally,
it does demonstrate the spatial-temporal model’s ability to remove errors in single
date classifications.

Discussion and Conclusion

Matching generally compared favourably with RF, with both classifiers achieving
similar results for the majority of data tested. There were some notable exceptions,
where RF could operate accurately for atypical data such as haze or early growth,
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Fig. 7 Comparison of estimated change for the SI50 mapsheet

and was inaccurate when a poor ‘base image’ was chosen, while Matching was
somewhat more robust. Indeed, it was found that the choice of base image was far
more influential on estimates than the choice of classifier.

We face some difficult challenges with data of this nature. An obvious problem is
size, few classification techniques are aimed at data sets where n > 1,000,000, this is
largely an implementational issue. Another (more difficult) challenge is the nature
of our response variable, when change occurs, we have mislabelled pixels in our
response. If these mislabelled observations were randomly distributed throughout
the data, this would not be a serious issue. Unfortunately, as was seen in the later
years for the SI50 mapsheet, this is not the case. The new growth was spectrally
different to older growth and this caused problems for RF and Matching. However,
Matching was more robust to this problem than RF and this speaks strongly for
parsimony in modelling. In the SI50 example, this difficulty was circumvented
via the propagation of the base image. The most interesting results were from the
SI50 example, due to the large amount of land cover change in this area. In the
SI56 and SH56 map-sheets, where vegetation is relatively static, only relatively
small differences between the classifiers were observed (disregarding examples with
smoke/cloud or scene boundaries) and while RF performed better here, it did not
yield any massive improvements in accuracy. The SI50 example revealed both the
advantages and disadvantages of using RF classifier instead of Matching.
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Fig. 8 Left: SH56 1995, Bands 4,5,2 (in RGB). Centre: Comparison of Random Forests (green)
and Matching (red) for single data classifications. Right: Classification comparison post spatial
temporal processing. The spatial-temporal model has improved the inconsistent scene boundary
for the Matching classification

Fig. 9 Comparison of estimated change for the SH56 map-sheet

The cases where RF was performed better were;

1. the identification of plantations in early stages of growth (when a later base
image is available)

2. accurate classification in the presence of haze or smoke
3. accurate classification in the presence of a scene boundary (this is largely a

superficial benefit, as it would be avoided in operational circumstances)



132 J. O’Connell and P. Caccetta

The benefits of Matching were;

1. computationally cheap (an order of magnitude less than RF)
2. more robust to large amounts of change (but not immune)
3. models can be fitted manually using standard image processing software (inter-

pretability)

If we take our final estimates of land-cover using Random Forests to be our
‘optimal’ benchmark, then our current Matching methodology was (at worst) within
2.5% of optimal in all cases (typically much less). In reality, some of the differences
in classification cannot be reliably identified as correct or incorrect. Our operational
classifier compares favorably with Random Forests, a technique that is generally
considered state of the art.
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An Investigation of the Remote Sensing
of Aerosols Based on MODIS Data
for Western Australian Conditions

Mark Broomhall, Brendon McAtee, and Stefan Maier

Abstract Landgate Satellite Remote Sensing Services (SRSS) operates a
MODerate resolution Imaging Spectroradiometer (MODIS) direct broadcast read-
out producing surface reflectance in near real-time using atmospheric correction
from the Simple Method for Atmospheric Correction (SMAC) code using a sin-
gle fixed value for Aerosol Optical Depth (AOD). The project which inspired this
paper aims to retrieve AOD for inclusion in the SMAC process, replacing the sin-
gle, static AOD value with spatially and temporally dynamic AOD input. Three
methods of AOD retrieval will be investigated for accuracy and suitability for the
surface conditions found in Western Australia. Two of these methods are NASA pro-
duced institutional algorithms, denoted MOD04 and MOD09, and the final method
is under development by SRSS and Curtin University.

The first two methods are used within MODIS institutional algorithms developed by
NASA for global applications. The MOD04 and MOD09 algorithms use an empir-
ical relationship based on surface reflectance in the near infrared to infer surface
reflectance for blue and red wavelengths which leads to the production of AOD
and aerosol properties. The third method is being developed in house by SRSS
and Curtin University and is driven by a reflectance change determination based on
time-series Bidirectional Reflectance Function (BRF) data. This compares the most
current SMAC corrected observation with a predicted surface reflectance derived
from the BRDF time-series. The difference or change between the two reflectance
values can then be attributed to a change in the atmospheric aerosol.

The AOD output from the MODIS institutional algorithms is compared to in-situ
Western Australian sun photometer data to ascertain the accuracy of the retrieval
methods. The suitability of these algorithms for use in the Near Real-Time (NRT)
atmospheric correction process can be determined from an examination of the spa-
tial coverage of the algorithm output. The reflectance change method will in future
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be investigated for suitability through radiative transfer modelling and sensitivity
analysis.

These results will be presented and their implication for NRT atmospheric
correction will be discussed.

Introduction

The accurate measurement of atmospheric aerosol is important for (i) the study of
the radiative forcing of the atmosphere where aerosols have a net cooling effect
(Kaufman and Tanre, 1998), and (ii) atmospheric correction to produce surface
reflectance products (Liang et al., 2006). The project which inspired this paper
aims to improve the current retrieval methods for aerosol data over Australia
for use in an atmospheric correction process. The MODerate resolution Imaging
Spectroradiometer (MODIS) instrument on-board the Terra and Aqua satellites is
an ideal platform for daily monitoring of atmospheric and surface parameters on
a global scale, with some locations having up to four overpasses per day during
daylight hours. There are two institutional algorithms employed by NASA which
retrieve aerosol properties, designated MOD04 and MOD09. MOD04-derived
aerosol products are used principally for the study of aerosol radiative forcing,
aerosol transport and for the development of aerosol climatology (Remer et al.,
2005). MOD04 is also designed to retrieve aerosol products over both land and
the ocean. MOD09 is principally designed to retrieve land surface reflectance. This
algorithm retrieves aerosol information as part of the atmospheric correction pro-
cess where MODIS Bottom of Atmosphere (BOA) reflectances are derived from
Top of Atmosphere (TOA) radiance values (Vermote and Vermeulen, 1999). Both
algorithms use band ratio techniques to derive surface reflectance in visible bands.
This technique is referred to as the ‘dark target’ approach and makes use of the
low surface reflectance of dense dark vegetation so that surface and atmospheric
reflectance signals can be separated. In the MOD04 and MOD09 algorithms, this
technique has been extended to include brighter surfaces to improve the spatial cov-
erage. This study will investigate the success of the MODIS institutional algorithms
in areas where there is little or no dense dark vegetation and the surface reflectance
is considered to be high. It will concentrate on Western Australia in general and
specifically on our test site in Merredin, approximately 270 km east of the Western
Australian capital city, Perth.

This paper will also discuss a possible new method of separating the surface and
atmospheric signals using a reflectance change process based on time-series BRF
information.

MOD04 and MOD09 Aerosol Retrieval Algorithms

Atmospheric correction of satellite data is based largely on radiative transfer mod-
elling, either directly or by the use of pre-computed look-up tables. Radiative
transfer modelling is based on a radiative transfer equation which describes the
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path and interaction of solar radiation from the sun, through the atmosphere to the
surface, and from the surface back through the atmosphere, before finally being
received by a satellite based sensor. This type of equation can be used to retrieve
information about any part of the radiative transfer process provided information
is obtained for the other parts of the process. The radiative transfer equation for a
Lambertian surface can be expressed as (Vermote et al., 1997);

ρTOA(θs,θυ ,φs − φυ ) = Tg(θs,θυ )

[
ρR+A + T↓(θs)T↑(θυ )

ρsur

1 − Sρsur

]
(1)

where ρTOAand ρR+A are the sensor perceived and atmospheric path equivalent
reflectances respectively. Equivalent reflectance is given by, ρ = πL/μsEs, with
L being the measured radiance, Es is the solar flux above the atmosphere, and μs

= cos(θ s), where θ s is the solar zenith angle. Of the other angles, θυ refers to the
satellite view angle, and φs – φυ is the relative azimuth between the satellite and the
sun. The surface reflectance is represented by ρsur, S is the spherical albedo of the
atmosphere, T↓,T↑are the total transmission of the atmosphere from the sun to the
surface and from the surface to the sun, and Tg is the gaseous transmission.

ρR+Ais the equivalent reflectance due to the path radiance. This is the signal that
would be received at the satellite if the surface had a reflectance of 0. This signal is
due to Rayleigh scattering (ρR) which is almost totally a result of gaseous molecules
in the atmosphere, and Mie scattering, which is caused mainly by aerosols (ρA).

In order to retrieve the signal due to atmospheric aerosols, all other parts of the
radiative transfer equation must somehow be determined. It is possible to determine
almost all of the radiative components from atmospheric data such as pressure, water
vapour content and ozone concentration. The surface reflectance and aerosol content
are not as easily determined.

The MOD04 and MOD09 algorithms use the same basic premise as the first step
in the retrieval of aerosol optical depth (AOD). The surface reflectance in two visible
bands, 0.49 μm (ρ0.49) and 0.66 μm (ρ0.66) is determined using the relationships
(Kaufman et al., 1997);

ρ0.49 = ρ2.1

4

ρ0.66 = ρ2.1

2

(2)

The atmospheric signal due to aerosol scattering in the 2.1 μm band is assumed
to be negligible so the TOA 2.1 μm is used to infer the surface reflectance in the
visible bands. This relationship is only valid when the surface reflectance is low,
such as over a dense forested area.

The signal due to the atmospheric aerosol can now be determined using the pre-
computed look-up tables. These look-up tables are designed so that a multitude of
TOA radiance or satellite received values (LTOA) are listed for a range of values
of all of the other atmospheric parameters (water vapour, surface pressure, ozone
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concentration, etc) and the surface reflectance. The look-up tables are searched for
all of the known parameters. When these are found then the corresponding value for
AOD is retrieved.

Both MOD04 and MOD09 produce AOD values in three bands. MOD04, as
mentioned above, retrieves AOD values in the 0.49 μm and 0.66 μm bands. It also
provides values for the 0.55 μm band as this band is used in many atmospheric
correction models and is often used in global climate modelling (Remer et al.,
2005). As there is no direct relationship between the 2.1 μm band and the surface
reflectance in the 0.55 μm band, the AOD is inferred from the retrieved bands using
an Angstrom relationship. This states that the AOD is a function of wavelength and
can be expressed as (Teillet et al., 1994);

τ (λ) = Aλ−α (3)

where τ is the AOD, λ is the wavelength, A is the turbidity coefficient, and α is the
angstrom exponent.

Given AOD at two or more wavelengths it is possible to linearise equation 3 using
the logarithms of the AOD and corresponding wavelength to produce the angstrom
exponent as (Schuster et al., 2006),

α = ln A − ln τ (λi)

ln λi
(4)

where λi represents different wavelengths.
The relationship of lnτ to lnλ is not actually linear so the angstrom exponent

changes depending on wavelength. A better fit can be achieved using a second-order
polynomial such that (Schuster et al., 2006);

ln τ (λi) = a0 + a1λi + a2( ln λi)
2 (5)

This is evident in Fig. 1 which shows the comparison of a linear and second-
order polynomial fit to log(AOD) vs log(wavelength) data from Merredin Aerosol
Robotic Network (AERONET) data in March, 2006 (http://aeronet.gsfc.nasa.gov/).
The raw data for the graph in Fig. 1 was retrieved by the photometer between 2 and
4 air masses in the afternoon. If the sun was directly overhead and a sample was
taken then this sample would have been done through 1 air mass. As the sun get
further from nadir a larger amount of atmosphere is between the sun and the sensor.
The convention is to describe the amount of atmosphere in terms of the ratio to a
single air mass. Two to four air masses occur when the sun is approximately 60–80◦
from nadir and last for about 1 hour.

Figure 1 and Eq. 5 show that when using two AOD values at different wave-
lengths to estimate a third, these wavelengths need to be as close together as possible
and the wavelength of the value to be estimated should lay between the other two. If
this isn’t the case then the risk is run that the linear estimation will be too far from
the actual curve and the estimation of AOD will be of less use.
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Comparison of regression fits to AERONET AOD 
data

y = –1.2391x + 5.1925

R2 = 0.9773
y = 0.4976x2 – 7.5891x + 25.376

R2 = 0.9899

–4

–3.5

–3

–2.5

–2

–1.5

–1

–0.5

0
5.6 5.8 6 6.2 6.4 6.6 6.8 7

log (wavelength (nm))

lo
g

 (
A

O
D

)

12/03/06

Linear (12/03/06)

Poly. (12/03/06)

Fig. 1 This figure shows the difference between a linear and second-order polynomial fit to a
log/log plot of AOD vs wavelength

AOD is retrieved up to a maximum 2.1 μm TOA reflectance value of 0.4. This
upper limit requires that the view zenith angle be large enough so that there is a
significant path radiance contribution to the TOA signal (Remer et al., 2005). The
retrievals are considered to be ‘very good’ within the range 0.001 ≤ ρ2.1 ≤ 0.25
(Remer et al., 2005).

Evaluation of AOD Retrieval by MOD04 and MOD09

This evaluation will investigate the spatial coverage of AOD retrievals for both
MOD04 and MOD09, and the validity of the retrievals. It will also compare
AERONET AOD figures with MODIS AOD retrievals for all days in March, 2006
when there were concurrent MODIS and AERONET retrievals.

Spatial Coverage and Retrieval Validity

The following images show composite AOD values for various months over the state
of Western Australia. The AOD values are scaled to produce the clearest represen-
tation, so it is not indicative of the lowest or highest values. In each image, the same
scale is applied to all bands. Each image is an 8-bit RGB. In the MOD04 images
the 0.49 μm band (MODIS band3) is displayed as blue, the 0.55 μm band (MODIS
band 4) as green, and the 0.66 μm band (MODIS band 1) as red. In the MOD09
images the 0.41 μm band (MODIS band 8) is displayed as blue, the 0.49 μm as
green and the 0.66 μm band as red.
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(a) Terra (b) Aqua

Fig. 2 MOD04 AOD composites for Western Australia, August 2005. These images are RGB
representations of the AOD amounts for band 1, band 4 and band 3 respectively

Figures 2 and 3 are monthly composites of AOD for MOD04 where, at some
time within the composite period, there were clear conditions over the entire state
allowing data to be collected. These images show where the MOD04 algorithm
will retrieve AOD. Figure 4 shows MOD09 retrievals over a 2 week period in

(a) Terra (b) Aqua

Fig. 3 MOD04 AOD composites for Western Australia, March 2006. These images are RGB
representations of the AOD amounts for band 1, band 4 and band 3 respectively
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(a) Terra MOD09 October, 2005 (b) Aqua MOD09 March, 2006

Fig. 4 MOD09 AOD composites for Western Australia. The images are RGB representations of
the AOD amounts for band 1, band 3 and band 8 respectively. The predominantly white areas in
the north-west in (a) indicate that there were no cloud-free pixels in this area over the composite
period

October, 2005 and a 1 week period in March, 2006. The images in Fig. 4 show
where cloud was present and there were no subsequent retrievals. This comprises
a very small part of the land surface and thus gives a good estimation of where
retrieval is possible.

Figures 2, 3 and 4 show that the AOD retrieval over Western Australia is not com-
prehensive. The composites show that up to a third of the state (or approximately
835 × 103 km2 has no AOD retrieved from MODIS. On a day to day basis this can
extend to well over half of the state.

The angstrom exponent from theory and observation is known to be positive.
This means that AOD must be larger at lower wavelengths. The difference between
AOD at different wavelengths is a result of the composition of the atmospheric
aerosol. Larger aerosol particles such as dust show less difference between AOD
values whereas smaller aerosol particles show larger differences. AOD figures from
AERONET for the Cimel sun photometer at Merredin verify these equations. The
equations and fit residuals are displayed on the graph from Fig. 1. This means that
the AOD plots should be blue not red.

There is seasonality shown in the images with the south west corner of the state
predominantly blue in the winter month of August with the red becoming more
dominant in early autumn month of March. The red colour in March closely matches
the geographical extents of the wheat belt region of Western Australia. This trend
is reversed in the Kimberley region in the north of the state with the blue colour
dominating in March and the red in August. This is consistent with the theory of
the algorithms which are designed to work over dense vegetation. The seasonality
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(a) Aqua MOD09 July 8th, 2006  (b) QA field 13

Fig. 5 (a) MOD09 AOD output from Aqua on the 8th of July, 2006. (b) Output from the QA flag
from MOD09 which indicates where the retrieved AOD amounts in band 1 exceed the amounts
retrieved for band 3

shown by the AOD retrievals follows the wet and dry seasons for these regions. The
vegetation density is greatest in the Kimberly in March and in the south-west in
August, following the annual rainfall patterns.

The unrealistic sign of the AOD dependence on wavelength, the seasonal control
by vegetation density and the visible difference between high density and low den-
sity vegetated areas indicate that the MOD04 and MOD09 are suspect over Western
Australia. This shows that surface reflectance has not been well determined.

The MOD09 algorithm provides quality assurance information on the data pro-
duced. The AOD retrieval process provides information on where the band 1
AOD exceeds that of band 3. This provides clear evidence where using band ratio
techniques is likely to produce erroneous results. This is shown in Fig. 5.

Comparisons with sun photometer data at the Merredin test site, shown in Fig. 6,
have also shown conclusive evidence of erroneous retrievals by the MOD04 algo-
rithm. The AERONET figures are inferred from Eq. 5 as the Cimel sun photometer
does not take readings at the same wavelength as MODIS bands 1, 3 and 4. A com-
parison is done only if the AERONET and MODIS measurements are within 10
minutes of each other. No comparison is shown here for MOD09 as, at the time of
writing, only 2 points were available that satisfied the comparison guidelines.

The erroneous retrievals are largely due to the band ratio technique used to infer
surface reflectance in band 1 and band 3. If the actual reflectance ratio is greater than
the theoretical value then TOA signal attributed to the surface will be under esti-
mated. This will cause an over estimation of the contribution from the atmosphere
and thus AOD estimates will be far larger than the true value.
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Inferred AERONET AOD compared with AQUA MOD04
AOD, MERREDIN (March 2006) 
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Fig. 6 Comparison of AOD figures from MOD04 with Cimel AERONET AOD figures showing
the expected MOD04 uncertainty of Δτ = ±0.05 ± 0.15τ

Figure 7 shows values for the reflectance ratios from Eq. 2 from measurements
made with an Analytical Spectral Devices spectrophotometer (ASD), at Merredin,
in March 2006. Data was taken at 200 m spacing with measurements made at nadir,
30 and 60

◦
. At Each successive line of the grid the off-nadir measurements were

alternated between forward-scatter (sun in the northern sky and the ASD pointed
north) and back-scatter directions (sun in the northern sky and the ASD pointed
south). The spectral readings have been band averaged over the MODIS spectral
response function for each band. The data have then been spatially averaged to a
pixel size of 600 m.

The plots in Fig. 7 show that at nadir the reflectance ratios are very close to the
MODIS-assumed theoretical value but when the off-nadir values are included the
reflectance ratios increase rather dramatically. As this reflectance ratio is assumed
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MODIS band averaged spectrophotometer
measurements: - band ratios, Merredin
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Fig. 7 This figure shows a comparison of the critical reflectance ratios used to infer surface
reflectance with the NASA MODIS aerosol algorithms (see Eq. 2). These figures in these plots
are generated by band averaged data that is spatially averaged over the Merredin field site

to be fixed by the MOD04 and MOD09 algorithms, any samples taken off-nadir
would under-estimate the surface reflectance in band 1 and band 4. As a result the
AOD would be over-estimated.

Reflectance Change from Time-Series BRF

Atmospheric correction of satellite data requires that the surface and atmospheric
signals can be separated from each other. The atmospheric signal is due to scatter-
ing by the constituents of the atmosphere. Of these constituents, aerosols are by far
the most variable, spatially, temporally and in constitution. The surface, and thus the
contribution to the TOA, may vary but the time period of this change is long com-
pared to the change in the atmospheric signal. Exceptions to this are events such as
burning, snow and crop harvesting. These can generally be spotted by examination
all of the MODIS reflectance bands.

SRSS, as part of the processing routine, perform a reflectance change determina-
tion using time-series BRF information. The BRF is a mathematical expression of
the apparent change in reflectance due to the changes in geometry between the illu-
mination and viewing directions over a surface. The MODIS instrument on-board
both Terra and Aqua, which have a 16-day repeat cycle, will experience at least
15 changes in this geometry for each point on the Earth’s surface over this 16-day
period. In order to get a geometrically-independent indication of the reflectance of
a point or pixel on the surface a normalisation for BRF is required.

The BRF process involves fitting observational data to a model. Semi-empirical
models are a popular choice as they combine computational ease with underlying
physical meaning. SRSS uses a model similar to that developed by (Roujean
et al., 1992),



An Investigation of the Remote Sensing of Aerosols Based on MODIS Data 143

ρ (θs, θυ , φ) = k0 + k1 f1 (θs, θυ , φ) + k2 f2 (θs, θυ , φ) (6)

where, ρ(θ s, θυ , φ) is the bidirectional reflectance at the specific sun zenith (θ s),
view zenith (θυ )and relative azimuth (φ) angles. The first term represents isotropic
reflectance, the second term represents geometric scattering, the third term repre-
sents volumetric scattering. The forms of terms 2 and 3 are determined by f1 and
f2 while the contribution of each term is determined by the coefficients k0, k1, k2.
f1 and f2 are analytical functions of the view and illumination geometry, whereas
the functions k0, k1, k2 are based on a physical representation of the surface condi-
tions. The coefficients are determined by linear regression of Eq. 6 using multiple
observations.

In practice the data fitted to the BRF model should be atmospherically corrected
although if the fit period is long enough then atmospheric variations will average out.

It is possible to exploit this averaging process to examine both surface and atmo-
spheric changes. The BRF determination performed by SRSS provides a forward
predicted reflectance for the next observations view and illumination geometry. If
there is a change on the surface, such as a fire, then comparing the forward predicted
reflectance with the actual observation will show there is a reflectance change or
anomaly. This method is used operationally at SRSS to detect fire scars.

AOD Retrieval from Time-Series BRF

If the BRF process was to be used with data that was atmospherically corrected
using a single AOD value for all observation, then comparing the forward predicted
reflectance from the model with the actual observation should show where there is a
change due to a variation in aerosol. This can be seen in Fig. 8. The images in Fig. 8
show a small amount of reflectance change even when it is unlikely that any such
change occurred. This is more evident at longer wavelengths. The uncertainty in the
BRDF is larger at longer wavelengths and often the predicted surface reflectance
can be higher or lower than the true value. This corrupts the reflectance change data
as a result.

Such a process could be used to measure changes in AOD. The reflectance
change will stem from changes around an average value. This will be for average
aerosol conditions. As the reflectance change varies, it provides information on the
radiative properties of the atmosphere due to aerosols. These radiative properties
when fitted to an appropriate aerosol model could produce AOD and other use-
ful parameters. This approach could use the inversion procedures from the MODIS
AOD algorithms given that the reflectance change procedure would provide path
radiance and surface contributions for the bands. The major difference is that it does
not require any sort of band ratio technique to derive the surface and path radiances.

Figure 9 shows the result of the reflectance change determination over the
Merredin test site for January and February, 2006. The presence of clouds can be
seen from the large increases in the bands, particularly band 3. The samples from the
5th of February show a large decrease in band 7 (2.13 μm) and band 5 (1.24 μm).
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MODIS Aqua – Reflectance change 23/01/2006 ~2:11pm

Band 3 (466nm) Band 4 (555nm) Band 1 (645nm)

Band 2 (857nm) Band 5 (1240nm) Band 7 (2130nm)

Fig. 8 Example of the ability of the BRF reflectance change determination to identify atmospheric
aerosol. This figure shows the change in reflectance from the predicted value for MODIS land
bands

This is due to a registration issue as all of the bands have been re-projected to 250 m
pixels. In this case the band 5 and 7 pixels are in a cloud shadow and the other pixels
are sitting on the cloud. In the case where pixels are contaminated by cloud, they
would be excluded from any AOD retrieval process. The other samples provide a
good indication of what reflectance change due to the atmospheric contents looks

Reflectance change value for Merredin, W.A. 
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Fig. 9 This figure shows the reflectance change values for the 250 m MODIS pixel in each band
located over the Merredin field site



An Investigation of the Remote Sensing of Aerosols Based on MODIS Data 145

(a) Scatter plot (b) Lev. 1b RGB

Fig. 10 (a) This shows a scatter plot of MOD04 derived band 3 AOD increase from an average
value for the scene shown by (b). (b) This shows a large smoke plume in the south-west of Western
Australia

like, as there was very little change to the surface conditions over the test site over
this period. The samples shown in the plots in Fig. 9 have only been atmospher-
ically corrected using a single value for many of the key atmospheric parameters.
The reflectance change in the plots therefore cannot be directly attributed to changes
in AOD but changes in atmospheric aerosols do produce the greatest change in path
radiance.

A rough comparison of the reflectance change determination and AOD change
can be seen in Fig. 10(a). This comparison was done primarily over the south-
west corner of Western Australia, using products derived from Terra. This area was
affected by smoke from a fire in the forest east of Perth. The smoke had been blown
out to sea, then blown south, before being blown north, back over land. A very crude
scaling technique was used to change the 250 m resolution reflectance change data
to a 10 km resolution for comparison with the MOD04 data. The AOD change was
determined by taking the difference between an averaged composite of AOD data
from the 6/01/2005 to the 11/01/2005 and the swath AOD data for the 17/01/2005.

Figure 10(a) shows a correlation between the two sets of data. This correlation
shows the possibility of using reflectance change data to infer a comparative change
in AOD. The regression line (shown as red in Fig. 10(a)), which was produced using
a modified least-squares technique, is skewed by the lower values. The group of
points which show a large increase in reflectance without a corresponding increase
in AOD (those points above 0.05 reflectance change and close to the y-axis) are due
to cloud affected pixels included in the reflectance change scaling process.

While there is no definitive way to judge the validity of the comparison in
Fig. 10(a), the MOD04 retrieval in the area examined is under favourable conditions.
The area in question is the south-west corner of Western Australia. which is the most
heavily forested area of the state. The AOD is quite high due to the presence of the
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smoke, which means that the path radiance will increase in relation to the surface
signal. This retrieval is at the edge of the swath which means that there is a large
slant path. A larger slant path means that the path radiance increases in relation to
the surface signal. These factors provide confidence in the MOD04 retrieved AOD.

Conclusion and Further Work

The results of this work have shown that the spatial coverage of the AOD retrievals
from the MOD04 and MOD09 algorithms over Western Australia is not compre-
hensive. Vast areas of the state do not have AOD figures retrieved at all and in some
areas there are only sporadic retrievals. In areas where the RGB representations
of the AOD in three bands show a predominately red colouration, it indicates that
the AOD retrieved in band 1 exceeds the other 2 bands, invalidating the retrieval
in this band and casting doubt on the accuracy of the data for the other bands.
Comparisons with sun photometer data in the Western Australian wheat belt in
March, 2006 have shown that the MOD04 data, in general, largely over estimates
the AOD. Spectrophotometer data have shown that the reflectance ratios used by the
MODIS algorithms over the test site will become larger as the reflectance is mea-
sured further from nadir. This will lead to an over estimation of the contribution
from the atmosphere to the TOA signal and result in over-estimation of the AOD.

It should be noted here that MOD09 is designed to retrieve surface reflectance
and the AOD produced by the algorithm is a purely internal product. If the AOD
figures fail one of the internal quality assessment tests then the figures are not used
in the atmospheric correction process.

It should also be noted that this evaluation is based on collection-4 data. The
ATBD for MOD04 collection-5 shows that the next generation of the MOD04 algo-
rithm will, among other things, account for the aerosol effect in the 2.1 μm channel,
employ angular information and surface types when determining the reflectance
ratios, and adjust the algorithm to account for differences in Rayleigh scattering due
to surface height (Remer et al., 2006).

The reflectance change determination using time-series BRF information
provides information on the change of state of the surface and the atmosphere. It
can be shown that it detects the change in atmospheric aerosols. The rough com-
parison of the change in atmospheric aerosol derived from MOD04 data, with the
reflectance change, shows that it may be feasible to use reflectance change to mea-
sure the magnitude of AOD change, and thus give AOD data. This does not require
the use of a band ratio technique to separate the path and surface radiance. It is also
hoped that this approach will allow retrievals over brighter targets where MOD04
and MOD09 do not work effectively.

The project which inspired this paper aims to develop a method to retrieve AOD
over areas of Western Australia and Australia where the dark target methods used
in MOD04 and MOD09 fail. The problems with these algorithms stem from the
methods used to determine surface reflectance, namely the band ratio techniques.
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Reflectance change offers a way to separate path and surface radiance directly
from the MODIS spectral data. Modelling this process using radiative transfer sim-
ulations will be the next step in developing an AOD retrieval algorithm based on
reflectance change. This will also allow the sensitivity of such a process to be
examined.

An examination of the data produced by the new algorithms from collection 5
will also be done, when the data used for this study are re-processed by the new
algorithm.

Once a suitable AOD retrieval method is developed and included in the
atmospheric correction process, the impact of the change will be examined to ensure
it improves the current products.
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Improved Near-Real Time Atmospheric
Correction of MODIS Data for Earth
Observation Applications

Brendon McAtee and Stefan Maier

Abstract Current operational satellite-based sensors designed for Earth obser-
vation such as the MODerate Resolution Imaging Spectroradiometer (MODIS)
possess the capability to provide remotely sensed land surface information in Near-
Real Time (NRT). This means that vegetation parameters, measures of land cover
change, pasture and crop yield, and a range of environmental indicators may be
available within an hour of the satellite overpass for areas up to regional scale.

Such land surface parameters are based on surface reflectance data acquired from
MODIS. To produce remotely sensed surface reflectance data of the highest qual-
ity the atmospheric component of the signal received at the satellite sensor must be
removed. This step requires that the amount of water vapour, ozone and aerosols
in the atmosphere be accurately determined so that their contributions to the mea-
sured signal may be evaluated and removed. For optimum results, these ancillary
data should be obtained coincidently with reflectance information from the satel-
lite sensor. The MODIS sensor was designed as an operational NRT sensor for just
such a purpose, possessing the necessary spectral coverage to retrieve the required
atmospheric parameters.

This paper will describe the development of an operational system for the atmo-
spheric correction of reflectance data from the MODIS sensor. It discusses the
sensitivity of the atmospheric correction process to the accuracy of the input
ancillary data with a focus on the validation of results to date. This Cooperative
Research Centre for Spatial Information project serves as a foundation for future
NRT processing of remotely sensed data in Australia.

Introduction

The Satellite Remote Sensing Services (SRSS) section of Landgate, Western
Australia, runs an operational system for the processing of remotely sensed data
from the MODIS satellite-based sensor in NRT (see Maier et al. (2006) for further
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Fig. 1 Flow diagram showing the operational processing system described in Maier et al. (2006).
Solid boxes show existing components of the system. Dashed boxes show components under devel-
opment. Ovals contain external inputs to the processing system. Taken from Maier et al. (2006)

discussion of this operational system). Figure 1 (taken from Maier et al. (2006))
describes the processing sequence for MODIS data at SRSS. It may be seen
from this figure that the atmospheric correction process is fundamental to deriving
remotely sensed products from MODIS data for a range of applications.

Under Project 4.1 of the Co-operative Research Centre for Spatial Information
(CRC-SI), two approaches to the atmospheric correction of MODIS data are being
implemented. SRSS is implementing the Simple Method of Atmospheric Correction
(SMAC) (Rahman and Dedieu 1994) algorithm for atmospheric correction, utilis-
ing NRT data sources for all the necessary ancillary inputs to the algorithm. This
allows the atmospheric correction of MODIS data to be optimised for continen-
tal Australian conditions. In parallel with the SMAC development, at Geoscience
Australia the National Aeronautics and Space Administration (NASA) algorithm
for atmospheric correction of MODIS data, referred to as MOD09 (Vermote and
Vermeulen 1999), has also been implemented.

This paper summarises the development of these algorithms for atmospheric
correction of MODIS data and presents the results from the validation analyses
undertaken to date.

Methodology

Algorithm Development

The atmospheric correction algorithm for MODIS is complex and has many data
dependencies. It is best described by Fig. 5 in the MOD09 Alogorithm Theoretical
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Basis Document (ATBD) (Vermote and Vermeulen, 1999). The reader is directed to
the MOD09 ATBD for a more detailed description of its workings as the architecture
of the MOD09 algorithm is not the focus of this paper. In summary, the radiative
properties of the atmosphere must be well-characterised in order to separate the
atmosphere and surface-derived components of the signal measured by the satellite
sensor. Clearly, when the atmospheric component of the at-sensor signal is esti-
mated and removed, the remainder is the contribution from the surface. This surface
contribution is the quantity of interest for most of SRSS’ current applications.

The important atmospheric parameters which need to be known in order to
accurately characterise the atmosphere are water vapour, ozone concentration and
aerosol optical depth. The vertical pressure gradient within the atmosphere also
influences the radiative properties observed. Each of these parameters are ancillary
inputs into the atmospheric correction algorithm.

For the MOD09 algorithm, surface pressure and water vapour information are
sourced from Global Data Assimilation System (GDAS) files. The necessary ozone
information is sourced from Total Ozone Analysis using SUBV/2 and TOVS
(TOAST) files, which are also global data sets. These data files may be obtained
from archives such as that maintained by the Space Science and Engineering
Centre at the University of Wisconsin-Madison (ftp://aqua.ssec.wisc.edu.au/
pub/terra/ancillary). GDAS files are updated 6-hourlywhile TOAST files are
updated on a daily basis. For the SMAC algorithm, the necessary ancillary data
are sourced from a number of locations, all in NRT.

Surface pressure and ozone data are acquired from the Bureau of Meteorology
(BoM), while the water vapour data are produced from MODIS at SRSS in NRT
using the algorithm developed by Albert et al. (2005).

By far the most problematic of the required ancillary inputs to the basic atmo-
spheric correction algorithm is the Aerosol Optical Depth (AOD). This parameter
describes the concentration of particulate matter in the atmosphere such as dust,
smoke or other photochemcicals. It is a particularly important parameter as the
accuracy with which the radiative contribution of aerosols may be estimated is the
limiting factor on the accuracy of the atmospheric correction process in the visi-
ble part of the electromagnetic spectrum (section “Sensitivity Study’ discusses the
importance of accurate AOD estimation in more detail).

As AOD is a difficult parameter to measure accurately, a dedicated AOD retrieval
algorithm exists for MODIS (MOD04, Kaufman and Tanrè (1998)), and an algo-
rithm for AOD retrieval based upon similar physical principles is included within
the MOD09 algorithm. However, as the work of Broomhall et al. (2006) shows,
the results from the MOD04 and MOD09 AOD retrieval algorithms are patchy
at best under Australian conditions. The need for an improved source of AOD
data for the purpose of atmospheric correction under Australian conditions to
feed into the NRT SMAC-based atmospheric correction algorithm provides the
motivation for the work of Broomhall et al. (2006) in developing an alternative
AOD retrieval methodology for MODIS, more suited to continental Australian
conditions.

As noted above, the atmosphere and surface-derived contributions are coupled
together within the signal measured at the sensor, and are required to be separated.
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A further complication exists in that the surface contribution is also dependant
upon the satellite viewing geometry of the surface and the relative solar position.
The description of the change in measured surface reflectance due solely to sensor-
solar geometry is frequently termed the Bi-Directional Reflectance Distribution
Function (BRDF, Roujean et al. (1992)). Knowledge of the BRDF is a critical input
for optimising the results from the atmospheric correction process (Vermote and
Vermeulen 1999). The BRDF is also important to the validation of results from the
atmospheric correction procedure, as will be shown later in sections “The Role of
Validation’ and “Validation of the MOD09 Algorithm’.

Sensitivity Study

As part of the incorporation of NRT atmospheric parameters into the SMAC atmo-
spheric correction methodology, a sensitivity study was initiated to determine how
sensitive the atmospherically corrected surface reflectance is to the accuracy with
which each of the important atmospheric parameters is known. This study was
undertaken using the MODTRAN atmospheric radiative transfer model (Berk,
Bernstein 1989). In the model, the land surface was given reflectances of 0.05, 0.5
and 1.0 to encompass the full range of possible values encountered over the spectral
range of MODIS bands 1 to 7 for surface types typical of continental Australia. The
values of the water vapour, ozone concentration and AOD in the model were iterated
over typical ranges of their values for continental Australian conditions, for each of
the set of surface reflectance values. Information on the sensitivity of the surface
reflectance retrieved through the atmospheric correction process to the accuracy
of the atmospheric parameters was gleaned through characterising the difference
between the simulated surface reflectance that would be measured by MODIS, for
the predefined set of atmospheric parameters, and the surface reflectance set in the
MODTRAN model. The difference between the predefined surface reflectance and
the retrieved surface reflectance for MODIS simulated using the model changes as
the values of the atmospheric parameters used in the model are varied. The magni-
tude of this change defines the sensitivity of the retrieved surface reflectance to each
of the atmospheric parameters. Results from this study are presented in Fig. 2.

The Role of Validation

Motivation for the development of an accurate atmospheric correction methodology
arises from the need to optimise the quality of the downstream products based on
atmospherically corrected surface reflectance data (see Fig. 1 for a full list of these).
As such, validation of the results flowing from the atmospheric correction process
is a critical quality control measure.

To this end, a field site for validation of atmospherically corrected surface
reflectance data derived from MODIS has been set up within the DryLands Research
Institute run by the Department of Agriculture and Food, Western Australia
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Fig. 2 Sensitivity of
atmospherically corrected
surface reflectance to
accuracy of AOD estimate.
From the top of the figure in
an anticlockwise direction the
order of MODIS bands is 3
(469 nm), 4 (555 nm), 1
(645 nm), 2 (858 nm), 5
(1240 nm), 6 (1640 nm), 7
(2130 nm)

(DAFWA), near the town of Merredin, 270 km east of Perth (see Fig. 3). Grids
have been laid out in different paddocks of the site with spacings ranging from
10 to 200 m so as to characterise the surface properties of the site at a range of
spatial scales applicable to different satellite-based sensors. Instrumentation for
measuring the AOD has also been installed at the site (Broomhall et al. 2006)
as the aerosol component of the atmospheric correction methodology has been
identified as being critical to the quality of results obtained (see section “Surface
Reflection Sensitivity’) and is the subject of intensive investigation within this
project (Broomhall et al. 2006). Figure 3 shows an Advanced Spaceborne Thermal
Emission and Reflection Radiometer(ASTER) image of the field site with the
boundaries of paddocks overlaid. The false colour image of the field site suggests
that different areas of the site have different spectral properties. This illustrates
that it is important to characterise such variability of the site up to the spatial
scale of MODIS pixels (250–500 m) in order to correctly validate results from the
atmospheric correction algorithms (see section “Field Site Characterisation’).
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Fig. 3 ASTER image of the
Merredin field site

The current component of the validation program focuses on results from the
MOD09 algorithm as the necessary components of the NRT SMAC methodology
continue to be integrated (e.g. the AOD component (Broomhall et al. 2006)). To
characterise the spectral properties of the site and validate the results from the
MOD09 algorithm spectral measurements were made with an ASD Hyperspectral
Spectroradiometer at defined grid points covering the field site. The ASD instrument
covers the spectral range of MODIS bands 1 to 7 and MODIS surface reflectances
were simulated from these ground measurements by applying the respective relative
response functions for each MODIS band to the spectral surface reflectance data
acquired using the ASD instrument.

Results and Discussion

Surface Reflectance Sensitivity

Results from the sensitivity study show that the accuracy of the AOD estimate has
the largest impact on the surface reflectance retrieved through the atmospheric cor-
rection process, particularly in MODIS bands with shorter wavelength. Figure 2
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shows the sensitivity of the retrieved surface reflectance to errors in the AOD esti-
mate for bands 1 to 7 of MODIS for a predefined surface reflectance of 0.05. The
water vapour concentration is 2 g cm–2 and the ozone concentration is 300 DU.
The accuracy of the AOD estimate at 550 nm is shown on the x-axis. At a value
of zero on the x-axis the AOD estimate used in the atmospheric correction process
is exactly correct. To the left of this point the AOD value used is too low by the
amount given on the x-axis, while to the right it is too large. The simulated sur-
face reflectance estimated-through the MODTRAN model is given on the y-axis.
The figure illustrates that even small errors in AOD can have a large effects on the
surface reflectance estimated by the MOD09 and SMAC algorithms.

The impacts of errors in water vapour and ozone concentrations on the atmo-
spherically corrected surface reflectance are less significant than for the AOD.
McAtee, Maier (2006) have quantified the accuracy of NRT water vapour retrieval
using the Albert et al.(2005) algorithm to be ±0.6 g cm–2. The current sensitivity
study confirmed that this result only translates to a 5% error at most in the atmo-
spherically corrected surface reflectance for satellite viewing angles approaching
60◦ in the longer wavelength bands (MODIS bands 5–7). In other bands the impact
is generally much smaller than this. The MODIS spectral bands, except for band 4
located at 555 nm (see Fig. 3b from Vermote and Vermeulen (1999)), remain rel-
atively unaffected by errors in the estimation of atmospheric ozone concentration.
Even in band 4, which is located near an atmospheric ozone absorption feature, the
impact of errors in ozone estimation is negligible in most cases.

Field Site Characterisation

From Fig. 3 it is apparent that there are some spectral differences between different
areas within the field site. It is unlikely that a given MODIS field-of-view (FOV)
will fall completely within one of the distinct areas depicted in the ASTER image
of Fig. 3. As such it is necessary to characterise the homogeneity of the field site
at spatial scales up to the MODIS pixel size to ensure that any differences between
the ground and satellite-derived surface reflectance measurements can be said to
originate from the MOD09 algorithm rather than surface variability.

The field survey grid is spaced at 200 m intervals over the field site, and includes
several smaller 100 × 100 m grids with a grid spacing of 10 m. The combination of
these grid spacings allows spectral reflectance measurements made using the ASD
instrument to be averaged over different spatial scales. A representative result of this
process for the field site is shown in Fig. 4.

At the shorter wavelengths (MODIS bands 3 and 4) the site appears homogenous
across all spatial scales. At the longer wavelengths the mean surface reflectance
appears to decrease at the larger spatial scales. For these longer wavelengths the
variability about the mean value over all spatial scales approaches 7% of the mean
value. In the absence of any atmospheric contribution this value of will be the lim-
ing accuracy for the validation of the atmospherically corrected surface reflectances
from the MOD09 algorithm.
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Fig. 4 Spectral variability of the Merredin field site at different spatial scales

To achieve the best validation results between the ground measurements and
satellite-derived surface reflectances it is also important to consider any BRDF
effects which may impact the comparisons, i.e. the solar-sensor geometry at which
the ground measurements are made compared to the solar-sensor geometry of the
satellite. For this work, the survey grids were laid out in a north-south orientation.
As such, there were two main solar-sensor geometries in the field measurements –
into the sun when heading north, and away from the sun when heading south. These
directions equate to the forward and backscatter directions for solar radiation from
the Earth’s surface.

The results from the ground measurements presented in Fig. 5 show that as the
angle of view from the ASD instrument to the surface increased definite BRDF
effects began to emerge in the reflectance data. The measurements were taken at
nadir (Fig. 5a), 30◦ (Fig. 5b) and 60◦ (Fig. 5c) on a grid with 10 m spacing. Figure 5
is for Band 2 of MODIS, but similar structure is also apparent in the equivalent
contour plots at other wavelengths. It is clearly evident from these figures that at
larger zenith angles backscatter dominates over forward scatter from the land sur-
face of the field site. As a result, the measured surface reflectance is higher in the
south-facing direction than in the north-facing direction by between 5 and 10% due
to BRDF effects. The high and low contours of reflectance shown in the figure are
aligned north-south and match the forward and backscatter directions noted above.
This is an important result as there are two MODIS instruments, one on the TERRA
platform which follows a north-south orbit, while the second on the AQUA platform
follows a south-north path. As such, when these sensors view the field site at large
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(a) Nadir view

(b) View angle 30°

(c) View angle 60°

Fig. 5 Contour plots of surface reflectance measured using the ASD instrument illustrating the
BRDF effects which emerge as the viewing angle increases. North is towards the top of the page
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zenith angles it will be important to validate these results against ground measure-
ments made at matching solar-sensor orientations in order to minimise the impact
of BRDF effects on the validation of the atmospheric correction algorithm.

Validation of the MOD09 Algorithm

Over the 26th, 27th, 28th and 30th of March 2006 a field experiment was undertaken
at the Merredin field site to provide preliminary validation of the MOD09 surface
reflectance product supplied by Geoscience Australia. For each day of the exper-
iment the pixel in the MOD09 image from the MODIS sensor aboard the Terra
platform closest to the grid locations at which ASD ground measurements were
made during a period of the day close to the MODIS overpass time was selected. A
spatially averaged surface reflectance for each of MODIS bands 1 to 7 was calcu-
lated from the ground measurements over a 600 by 600 m area as close to coincident
as possible with the MODIS measurements. Figure 6 shows the comparison between
the ground measurements of surface reflectance made using the ASD instrument and
the atmospherically corrected surface reflectance from the MOD09 algorithm.

The figure shows that the MOD09 algorithm generally over estimates the surface
reflectance measured on the ground. In the figure, the colour of each symbol (as
noted in the figure) signifies the MODIS band for which the comparison was made.
The different symbols represent the days on which the comparisons were made.

Fig. 6 Validation of results from the MOD09 algorithm against the ground measurements made
during the Merredin validation experiment
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Table 1 Comparison between the theoretical accuracy of the MOD09 algorithm and results from
the Merredin validation experiment

Band MOD09 ATBD (%) Merredin experiment (%)

1 10–33 5
2 3–6 2
3 50–80 6
4 5–12 4
5 3–7 3
6 2–8 4
7 2–8 8

The filled circles are for March 26, the “plus’ signs for March 27, the triangles for
March 28 and the squares for March 30. The comparisons are best for bands 1, 2 and
4, while the comparisons do not appear as good for the bands at longer wavelengths
(bands 5, 6 and 7). Overall the comparison shows an RMS error of approximately
0.05 about a bias of 0.03.

When the validation results are examined individually by spectral band the out-
come agrees well with the theoretical accuracy of the algorithm described in the
ATBD for MOD09, authored by Vermote and Vermeulen (1999). This comparison
is presented in Table 1.

Conclusions and Future Work

Deriving accurate atmospherically corrected surface reflectance from satellite-based
sensors is a complex task. However, this work has shown that the MOD09 algorithm
is currently producing good quality results in agreement with its theoretical limita-
tions. This is a promising result from this preliminary analysis for a number of
reasons; (1) more rigour may be added to the present validation analysis to further
refine the estimates of accuracy presented based on incorporation of BRDF infor-
mation into the validation analysis, and; (2) there is a large scope for improvement
to the accuracy of the ancillary atmospheric parameters which are input into the
MOD09 and SMAC algorithms for atmospheric correction. In particular, the AOD
estimation methodology being developed by Broomhall et al. (2006) will markedly
improve AOD estimation for continental Australian conditions. Inclusion of this
algorithm into the suite of algorithms for MODIS processing will serve to deliver
further improvements to remotely sensed data for Earth observation applications in
the future.
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Abstract The Bureau of Meteorology continuously acquires low resolution multi-
spectral image data, with continental coverage of Australia in near-real time, from
both the Advanced Very High Resolution Radiometer (AVHRR) on the US National
Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites and from
the geostationary imagers on Japan’s MTSAT-1R and China’s Fengyun-2C satel-
lites. The Bureau routinely derives several products from these satellites which
can serve as continuous data streams that can contribute to operational land sur-
face monitoring, either directly or as inputs (drivers or constraints) to land surface
models. Solar radiation, in the form of fields of integrated daily solar horizontal
exposure, is produced daily from MTSAT-1R visible-band data. A 17-year clima-
tology of daily solar radiation has recently been produced by processing archived
satellite data from 1990 to 2006, and will find application in agriculture, solar
energy planning, building design, and surface energy balance studies. The Bureau
is implementing operational production of Normalised Difference Vegetation Index
(NDVI) and land surface temperature (LST) from AVHRR data using the Common
AVHRR Processing System (CAPS) software developed by CSIRO, for use in
applications that require national monitoring of vegetation condition. All of these
products are produced on a 0.05◦ national grid: at least once per day for LST,
daily for solar exposure, and weekly for NDVI. The AVHRR data products and
solar exposure can together serve as near-real time continental inputs to systems
for the assessment of surface moisture status across Australia, based either on
simple surface energy balance models or more complex land surface models. The
Australian Water Availability Project, a collaboration between the Bureau of Rural
Sciences, CSIRO and the Bureau of Meteorology, is using such an approach with
the data streams described to establish national monitoring of land surface water
availability.
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Introduction

The Bureau of Meteorology (the Bureau) maintains a network of satellite receiving
stations which continuously acquires low resolution multispectral image data, with
continental coverage of Australia, from polar orbiting and geostationary satellites.
Data reception currently includes the Advanced Very High Resolution Radiometer
(AVHRR) on board the US National Oceanic and Atmospheric Administration
(NOAA) polar orbiting satellites and the imagers on Japan’s MTSAT-1R and
China’s Fengyun-2C geostationary satellites. Several of the near-real time products
that the Bureau derives from these satellites can serve as continuous data streams
that can contribute to operational land surface monitoring, either directly or as inputs
(drivers or constraints) to land surface models.

The Australian Water Availability Project (AWAP) is a collaboration of the
Bureau of Rural Sciences, the Bureau of Meteorology and CSIRO which aims to
establish a national capability for the monitoring of soil moisture and other com-
ponents of the surface water balance. A better understanding of water availability
will improve the management of natural resources, farms, water supply and ecosys-
tems. The first phase of AWAP, which was conducted in 2004 and 2005, developed
historical remote sensing and meteorological datasets with national coverage, and
used these with a land surface water balance model to demonstrate the feasibility
of monitoring water availability at the basin scale. The second phase of AWAP,
being conducted over 2006 and 2007, is establishing a near real-time national water
availability monitoring system. AWAP is working towards using the model within
an assimilation scheme in order to make optimal use of the data. The contribu-
tion of the Bureau of Meteorology will include the establishment of near real-time
satellite products: solar radiation from geostationary satellite data; and Normalised
Difference Vegetation Index (NDVI) and land surface temperature from AVHRR.

This paper describes implementation details of these near-real time streams of
satellite data products.

Solar Radiation

The Bureau produces daily fields of solar radiation on a 0.05◦ grid covering
Australia, from geostationary satellite visible-band imager data. Specifically, the
parameter is daily integrated global solar exposure, at the land surface, for a horizon-
tal surface and over the full solar spectrum. Figure 1 shows an example. Production
of each day’s field is completed each evening. Applications include agriculture, solar
energy planning, building design, and surface energy balance studies.

The primary data input for solar radiation is the hourly visible-band imagery from
the MTSAT-1R geostationary satellite which is stationed over the equator at longi-
tude 140◦ E and operated by the Japan Meteorological Agency (JMA). The data is
received by the Bureau at Crib Point near Melbourne. The images have 1.25-km
resolution at nadir. They are geolocated and calibrated using the information placed
into the header of each image by JMA, then regridded to 0.01◦ and averaged to the
final 0.05◦ grid.
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Fig. 1 Daily solar exposure derived from the MTSAT-1R visible band imager, in MJ m-2

Instantaneous surface solar radiation (irradiance) is calculated for the time of
each satellite image with a physical model that parameterises the important aspects
of the atmospheric radiative transfer in two spectral bands, in the visible and near-
infrared (Weymouth and Le Marshall 1999, 2001). The physical parameterisations
are adapted to the spectral response characteristics of the MTSAT-1R imager. The
model uses ancillary data on atmospheric composition. Total column water vapour
amount is taken from the forecast field of the Bureau’s numerical weather prediction
model LAPS. Total column ozone amount is taken as a fixed function of latitude.
The strongest factor controlling the surface radiation, after the solar zenith angle,
is the cloudiness. At clear-sky locations, the satellite data is used to estimate the
surface reflectance and this is used together with the atmospheric data to calculate
the surface radiation. At cloudy locations, the satellite data are used to estimate
the cloud-top reflectance, from which the cloud transmission is inferred. The cloud
optical properties are used with the atmospheric data and the surface reflectance to
calculate the surface radiation. The surface reflectance is estimated from preceding
clear-sky conditions by compositing the calculated surface reflectances of the previ-
ous two months: at each grid point and each hour, the day at the twentieth percentile
in brightness is selected as being cloud-free. The hourly surface irradiance estimates
for each day are integrated to give a daily solar exposure value at each grid point.
The accuracy of the satellite product is assessed, and biases removed, with surface-
based observations from the Bureau’s network of radiation sites, as described in
more detail below.

The Bureau has produced a solar radiation product since 1990. The original soft-
ware was in FORTRAN and stored results as McIDAS format files over 36 regions
with varying resolutions. To improve the software flexibility and maintainability,
and to enable the reprocessing of archived data, most of the software was recently



164 I.F. Grant

rewritten to use the NAP extension to the Tcl language, which was developed
by CSIRO to manipulate gridded data (see http://tcl-nap.sourceforge.net/, Davies
2002). Product files are now a single grid in netCDF format.

The archive of the near-real time product that had been produced since 1990
constituted a historical solar radiation record that had large gaps and non-uniform
quality due to the need to upgrade software when satellites changed and the associ-
ated delays. Therefore, a new 17-year record of daily solar radiation has recently
been produced by reprocessing archived raw satellite data from 1990 to 2006
with the new software. The satellites used were, in sequence, GMS-4 and GMS-
5, operated by JMA, GOES-9, operated by NOAA, and MTSAT-1R, operated by
JMA. The model was adapted to the respective spectral response function of each
satellite. The calibration derived by the International Satellite Cloud Climatology
Project (ISCCP) was adopted, except for MTSAT-1R for which the prelaunch
calibration was adopted. Total column water vapour amount was taken from
the European (European Centre for Medium-Range Weather Forecasts, ECMWF,
ERA-40) and US (National Centers for Environmental Prediction/National Center
for Atmospheric Research, NCEP/NCAR, after August 2002) numerical weather
reanalysis datasets. The resulting daily solar exposure values were compared with
high quality surface observations, the majority coming from the Bureau’s network
of radiation sites since 1993. This permits the estimation of biases that result,
for instance, from uncertainties in the satellite calibration and total water vapour
amount. Each month of exposure grids was debiased by a single linear function
of exposure, derived from the observations at all surface sites for all days in the
month. Figure 2 compares the satellite and surface values for a typical month,
before and after bias removal. For each month, the mean modulus of the daily
difference from the surface observations was, after bias removal, generally in the
range 0.8–1.5 MJ m-2. This is comparable with the value of 1.4 MJ m-2 quoted by

Fig. 2 Comparison of daily solar exposure derived from MTSAT-1R with surface observations, in
MJ m-2, before bias removal (left) and after (right)
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Fig. 3 Monthly means of daily solar exposure for 1997, in MJ m-2

Weymouth and Le Marshall (2001) for the accuracy of the solar radiation system
when they established it for GMS-5. Compared to the old record, the new record is
more complete, is at a uniform resolution on a single grid, and is of more uniform
quality, to the extent permitted by the raw data.

The long timeseries of daily exposure maps is a resource for investigation of
the climatology of solar exposure over the Australian continent. Figure 3 shows
the twelve monthly means for 1997. While latitudinal effects dominate the spatial
variation, and seasonal solar declination effects dominate the temporal variation,
other features are evident, such as the low values in northern Australia during the
monsoon (summer) period, and low values in Tasmania and along the eastern and
south-eastern coast at some times of the year. Interannual variation may also be
explored, with Fig. 4 showing that over 16 years there is marked variation between
January means.

AVHRR Products

In addition to solar radiation, the AWAP requires streams of near-real time prod-
ucts derived from AVHRR satellite data. Within the AWAP, CSIRO is developing
a Hydrological and Terrestrial-Biosphere Data Assimilation System (HTBDAS)
to assimilate timeseries of NDVI (normalised difference vegetation index, a mea-
sure of vegetation greenness) and land surface temperature (LST). NDVI is derived
from land surface reflectances in the red and near-infrared spectral bands that are
measured by AVHRR as channels 1 and 2 respectively. LST may be estimated using
the thermal window bands of AVHRR (channels 4 and 5).
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Fig. 4 Monthly mean of daily exposure for all Januaries from 1990 to 2005, in MJ m-2

The Bureau of Meteorology acquires AVHRR data with national coverage daily,
and is establishing the production of national fields of NDVI weekly, and LST at
least daily. The following sections describe the details of the implementation.

Data Acquisition

The Bureau acquires raw AVHRR data in High Resolution Picture Transmission
(HRPT) format from reception stations in Perth, Darwin and Alice Springs and
near Melbourne. Data from all four stations is transferred in near-real time to the
Bureau’s Head Office in Melbourne, arriving within one hour of the satellite pass.
Thus the Bureau maintains complete and timely national daily coverage by AVHRR.
The next section describes the data processing common to all of the AVHRR
products. Subsequent sections describe product-specific processing.

Generic Processing

The Bureau processes raw AVHRR data to the higher level products required by the
AWAP with the Common AVHRR Processing System (CAPS) software developed
by CSIRO and based on NAP (see http://www.eoc.csiro.au/cats/caps/, King 2003).
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CSIRO used CAPS software to process its AVHRR archive into the CSIRO AVHRR
Time Series (CATS) dataset, a version of which was used in the first phase of the
AWAP.

Image geolocation is done by CAPS, using near-real time satellite orbital param-
eters generated by CSIRO in Hobart which are automatically downloaded hourly.
The CAPS navigation has a demonstrated accuracy of better than 1 km.

Calibration is applied using CAPS. The calibration of the thermal channels
(channels 3a, 4 and 5) derives from the on-board calibration measurements that
are included in the HRPT data stream. The calibration coefficients for the reflective
channels (channels 1 and 2) are taken from the monthly bulletins released by the
National Environmental Satellite, Data, and Information Service (NESDIS) of the
National Oceanic and Atmospheric Administration (NOAA) in the US.

The cloud mask implemented in CAPS, which is a modification of the CLAVR
algorithm (Stowe et al. 1998), is being used initially. Each pass is gridded to a 0.01◦
latitude-longitude grid and sea masked.

AVHRR Reflectance Products

Reflectance measurements derived from AVHRR channels 1 and 2 are the basis for
calculating NDVI. They can also form the basis for estimating surface albedo, a
measure of land surface reflectance that considers the radiation in all incoming and
outgoing directions, and McVicar and Jupp (2002) used channel 1 and 2 reflectances
to estimate vegetation fractional cover. At present, only NDVI is produced, and it
is calculated straightforwardly from top-of-atmosphere channel 1 and 2 reflectances
ρ1 and ρ2 as

NDVI = (ρ2 − ρ1)/(ρ2 + ρ1). (1)

A national NDVI grid is updated weekly by compositing the set of cloud-masked,
gridded NDVI images for all passes within the previous 30 days by the maximum
value composite method (Fig. 5).

Land Surface Temperature

Calibrated data from AVHRR channels 4 and 5 may be expressed as effective
blackbody temperatures of the Earth scene, commonly referred to as brightness
temperatures. CSIRO has adopted the algorithm of Sobrino and Raissouni (2000) to
estimate LST as a function of channel 4 and 5 brightness temperatures and NDVI.
For each daytime NOAA orbit, the Bureau will supply LST at the time of the over-
pass, calculated from the Sobrino algorithm. The LST map in Fig. 6 demonstrates
the spatial coverage of a single NOAA orbit.
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Fig. 5 30-day maximum value composite NDVI for September 2007, derived from NOAA-18

Fig. 6 Cloud-masked AVHRR LST from a NOAA-18 afternoon pass on 24 September 2007 at
0455 UTC, in K
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Planned Improvements

CAPS aims to realise the consensus best processing practice of the Australian
AVHRR supplier community. Research to improve the processing of moderate reso-
lution polar orbiting sensors continues around the world, including for the venerable
AVHRR, particularly because of its uniquely long data record. Once the baseline
processing system described above is implemented, several potential improvements
can be investigated.

On-orbit calibration of the AVHRR reflective bands is a difficult problem with a
long history of research, much of it summarised several years ago in the CalWatch
report by CSIRO (Mitchell 1999), which recommended preferred calibration meth-
ods and coefficients. Many methods have been developed and all have drawbacks.
The NOAA/NESDIS monthly updates rely on the approach of Rao and Chen (1999)
by assuming the invariance of a particular desert target – an assumption which has
been shown to be invalid for some deserts at some times – and take about one
year to establish for a new satellite. Thus new methods to calibrate channels 1 and
2 independently of the monthly updates from NOAA/NESDIS will be examined
for possible implementation. Projects are being developed overseas to continuously
intercalibrate AVHRR against other satellite instruments (for example, Minnis et al.
2002), and the results from these will be considered for operational use once they
mature.

Land surface measurement from satellites requires effective cloud screen-
ing. Development of AVHRR cloud detection has continued since Stowe et al.
(1998) introduced the CLAVR algorithm, and more recent alternatives will be
investigated. A recent innovative approach is the CLAVR-X method, under devel-
opment by NOAA/NESDIS (Heidinger et al. 2002), which sets spatially and
temporally varying detection thresholds based on timely albedo measurements
from satellites and surface temperature from a numerical weather prediction
model.

However, the ultimate goal is to maximize the consistency of the reflectance
products by applying a correction for the effect of the atmosphere, and normalis-
ing for the variation of land surface reflectance with sun and view directions. This
will reduce the channel 1 and 2 measurements to land surface reflectance values that
are, to first order, intrinsically characteristic of the land surface and independent of
the atmospheric conditions and the satellite measurement process. The atmospheric
effect depends on the amounts of water vapour and aerosol in the atmosphere, and
the nature of the aerosol, all of which vary in space and time. The reflectance
anisotropy of the surface depends on the land cover characteristics and may be
characterised by an angular model with a small number of parameters, which vary
spatially and temporally.

Surface reflectance for channels 1 and 2, corrected for atmospheric and angu-
lar effects, can be calculated using the existing CAPS software. An atmospheric
correction is implemented in CAPS, based on the parameterisation of atmospheric
radiative transfer developed by Mitchell and O’Brien (1993), and implemented in a
fast form using look up tables by Dilley et al. (2000). The atmospheric correction
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requires as inputs estimates of the amounts of water vapour and aerosol in the
atmosphere. The total column water vapour at the time of the satellite pass will
be taken from the Bureau’s regional numerical weather prediction model (currently
LAPS). The aerosol type and seasonally varying amount will be taken from the
Global Aerosol Data Set (GADS) climatology (Koepke et al. 1997) that is built into
CAPS. For the angular anisotropy model the Bureau will initially adopt the same
seasonal climatology that CSIRO used, namely the one that has been implemented
in CAPS and is based on data collected by the POLDER-1 satellite mission in 1996
and 1997.

The angular correction factors can differ from unity by tens of percent. Their
interannual variation, for a particular AVHRR channel in a particular month, can
exceed 10%, although the variation is less for NDVI. To improve the normalisa-
tion of reflectance anisotropy, a dynamic angular model can be derived by inverting
an angular model (a model of the bidirectional reflectance distribution function,
BRDF) against the AVHRR data within a sliding temporal window, following the
methodology developed for the Moderate Resolution Imaging Spectroradiometer
(MODIS) BRDF and albedo product MOD43 (Schaaf et al. 2002). An accu-
rate albedo may also be efficiently derived from a dynamic angular model,
again following the MODIS methodology, and using the conversion of (Liang
et al. 1999) for AVHRR to convert channel 1 and 2 albedos to solar broadband
albedos.

Grassland Curing Index (GCI) for southeastern Australia will also be produced
for operational use in fire danger assessment and fire management planning. This
will be derived from NDVI by the algorithm that was developed by CSIRO in col-
laboration with the Victorian Country Fire Authority (Barber 1989; Paltridge and
Barber 1988) and implemented in the software system (Dilley and Edwards 1998)
that the Bureau adopted in 2001 for operational production of GCI. The Bureau is
a partner in a Bushfire Cooperative Research Centre Project to improve the satel-
lite based assessment of curing and extend it, robustly and validated, throughout
Australia and New Zealand.

AVHRR stands out among low resolution multispectral sensors as provid-
ing a record of over twenty years that can be used to calibrate land surface
models and provide context for current observations. However, several advanced
polar orbiting research sensors that have operated over the last several years,
such as MODIS, AATSR, SeaWiFS and SPOT-VGT have more spectral bands,
bands that are better positioned to avoid atmospheric comtamination, and better
calibration. Therefore, these sensors offer more accurate and consistent prod-
ucts, such as NDVI (Huete et al. 2002; Brown et al. 2005; Miura et al. 2006)
and LST (Wan et al. 2004), than does AVHRR. Moreover, the multiplicity of
overpass times of several of these sensors taken together offers more frequent
temporal sampling through the strong diurnal cycle of LST. CSIRO has begun
implementation of these diverse sources of LST in the development of its mod-
elling system, and the Bureau will begin generating MODIS products in paral-
lel with its AVHRR products when its real-time MODIS reception network is
established.
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Conclusions

The Bureau of Meteorology is developing several near-real time continental data
products from its streams of AVHRR and geostationary data that will be useful
for rapid national land monitoring. These are daily solar radiation and land sur-
face temperature, and weekly NDVI. The Australian Water Availability Project has
motivated the establishment of these product streams, and will use these, together
with streams of meteorological data supplied by the Bureau, with a land surface
model to enable national monitoring of water availability. Besides their synergistic
use in AWAP, the satellite land products can serve other environmental management
applications.

There is potential to enhance these products further in future. Solar radiation and
LST at sub-diurnal resolution are potentially available, after some development,
from geostationary data. The Bureau is rolling out an X-band reception network,
with mainland stations near Darwin and Melbourne, that with the existing Western
Australian Satellite Technology and Applications Consortium (WASTAC) station
in Perth will give the Bureau access to near-real time data from MODIS and other
advanced imagers. This offers the prospect of improving the quality of the NDVI
and LST products, and developing new products.
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Recent and Future Developments
in Meteorological Remote Sensing

D.C. Griersmith, I.F. Grant, A.G. Rea, and M.C. Willmott

Abstract Satellite-based remote sensing for meteorological and climate applica-
tions is a global enterprise, and is on the threshold of a generational increase in the
capability and data volumes of sensors on polar orbiting meteorological satellites.
This paper will describe, in the global context, the recent achievements and plans of
the Australian Bureau of Meteorology (the Bureau) to continue to develop its capa-
bility to acquire and process near-real time satellite data for the Australian region,
complementing its surface based observing system.

The Bureau continues to acquire data with national coverage from the polar
orbiting US National Oceanic and Atmospheric Administration (NOAA) satel-
lites, distributing both imagery and derived products from the Advanced Very High
Resolution Radiometer (AVHRR) and the Advanced TIROS Operational Vertical
Sounder (ATOVS) sensor suite for atmospheric sounding. The Bureau is rolling
out a network of X-band receiving stations to complement the existing Australian
stations in preparation for the new generation of sensors on the US National
Polar-orbiting Operational Environmental Satellite System (NPOESS), NPOESS
Preparatory Project (NPP) and European MetOp satellites.

The recent successful launches of Japan’s MTSAT-1R and MTSAT-2 and China’s
Fengyun-2C and Fengyun-2D geostationary satellites have secured the supply of
hourly multispectral imagery in Australia’s region. In addition to the continuing
production of satellite-derived solar radiation and atmospheric motion vectors, work
is underway to characterise the calibration of these sensors and to derive new, high
temporal resolution products including sea surface temperature and fog.

There is an emerging global trend towards rapid exchange of regional data
for assimilation into numerical weather forecasting systems. The Bureau coor-
dinates, and has been an early participant in, the Asia-Pacific Regional ATOVS
Retransmission Service (AP-RARS) which enables routine rapid exchange over the
internet of ATOVS atmospheric sounding information between centres in the Asia-
Pacific region. The European forerunner of RARS, EARS, has expanded to include
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other datasets, and to include regional dissemination by satellite broadcast, and such
enhancements are being considered for RARS.

The Bureau increasingly collaborates with other Australian agencies in the provi-
sion of satellite-based services. Examples are the planned provision of Bureau data
layers to the Sentinel fire management website hosted by Geoscience Australia, the
Bureau’s supply of satellite-based sea surface temperature to the BLUElink collab-
oration between the Bureau, Australia’s Commonwealth Scientific and Industrial
Research Organisation (CSIRO) and the Royal Australian Navy, and the exchange
and shared development of CSIRO’s Common AVHRR Processing Software
(CAPS) software for processing satellite data.

Introduction

The Australian Bureau of Meteorology (the Bureau) acquires a range of satel-
lite data, from both local and indirect reception, in support of its services to
the Australian public. Other national meteorological and hydrological services
(NMHSs) around the world have similar requirements for satellite data to support
similar services. Because the weather and climate system is intrinsically global in
nature, there are well established international systems to coordinate the reception,
processing and exchange of satellite data products. These arrangements are evolving
rapidly to accommodate the impending generational increase in the capability and
data volumes of sensors on polar orbiting meteorological satellites. This paper will
describe the current international trends in usage of satellite data for meteorological
purposes, highlighting the activity at the Australian Bureau of Meteorology. These
trends, described in the remainder of this section, suggest a possible future paradigm
for the utilisation of near-real time continental scale satellite data in the Australian
region for all applications.

The trends are:
Transition from L-band to X-band: Satellites downlinking at L-band are being

phased out and replaced by X-band advanced satellites which can transmit at higher
data rates. The most important polar orbiting L-band meteorological satellite sys-
tem, namely the US NOAA (National Oceanic and Atmospheric Administration)
series, is being replaced with the MetOp system and the upcoming National Polar-
orbiting Operational Environmental Satellite System (NPOESS). MetOp is the
European polar orbiting meteorological satellite system, with transmission at six
times conventional data rates. The first MetOp satellite was launched in October
2006 but its direct broadcast capability failed shortly after. NPOESS is the US equiv-
alent which merges two hitherto separate satellite series, namely NOAA civilian
polar orbiters and the US Department of Defense DMSP (Defense Meteorological
Satellite Program) polar orbiters. The precursor NPP (NPOESS Preparatory Project)
satellite is planned to be launched in 2009. In addition, China’s Fengyun-1 polar
orbiters are being replaced by an advanced Fengyun-3 series at X-band, the first
of which was launched in 2008. Overall, for the next decade there will be a
transition period with both L-band and X-band systems, with a shift towards direct
transmission only at X-band.
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Synergy of multiple sensors: Increasingly, satellite data assimilation and pro-
cessing is being done synergistically by integrated processing of data combined
from multiple sensors. For many years, the capability to assimilate satellite data
has been central to state-of-the-art numerical weather prediction (NWP) systems.
More recently, it has become apparent that far better impact and product quality
from advanced satellite data is now being obtained by processing data from mul-
tiple sensors synergistically. For example, rather than process Advanced Infrared
Sounder (AIRS) atmospheric sounder data on its own, processing suites now com-
bine AIRS data with that from the Moderate Resolution Imaging Spectroradiometer
(MODIS) plus the Advanced Microwave Sounding Unit (AMSU), an advanced
humidity sounder, all of which are on board the Aqua platform. In this way, data
usage is improved, especially in partly cloudy and cloudy areas. Also, the better
spatial resolution of MODIS (0.25–1 km) compared with AIRS (14 km) allows far
better cloud clearing, leading to higher quality radiances for NWP assimilation. The
whole is greater than the sum of the parts.

Composite observing systems: There is a growing trend towards better integration
of multiple observing technologies, enabling the creation of composite observing
systems which are cost effective, provide redundancy and which are more adaptive
and flexible in meeting the needs of NMHSs. An example is the use of advanced
satellite sounder data to complement radiosonde, surface-based wind profiler and
aircraft data. It is now commonly recognised that the greatest positive impact of data
on NWP comes from considering and managing multiple data types as an integrated,
composite whole. Those data types include multiple advanced satellite sensor data,
complementary ground-based conventional data (for example, from radiosonde, air-
craft or ships), and new satellite data types such as MODIS polar winds, Global
Positioning System (GPS) total precipitable water, and GPS Occultation soundings.

Rapid data exchange: The need of NWP models, including regional models,
for non-local data has motivated the recent establishment of systems for the rapid
exchange of meteorological satellite products across each of the European, North
American and Asia-Pacific regions. These are initially using surface telecommuni-
cation networks, and will eventually transition to satellite rebroadcast.

The following sections describe current and planned satellite activity at the
Bureau in the context of these trends.

Polar Orbiting Satellite Data

The Bureau of Meteorology continues to acquire data with national coverage from
the polar orbiting NOAA satellites, distributing both imagery and derived products
from the AVHRR (Advanced Very High Resolution Radiometer) and the ATOVS
(Advanced TIROS Operational Vertical Sounder) sensor suite for atmospheric
sounding. Data from China’s Fengyun-1 is also received routinely.

NOAA and Fengyun-1 data is received via a network of L-band receiving sta-
tions across the continent (Melbourne, Darwin, Perth and Alice Springs) and in
Antarctica. Data received on the mainland is transmitted to Head Office (Melbourne)
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immediately after completion of reception of the pass. Transfers are conducted using
the Bureau’s dedicated communications network, WeatherNet. Once a full pass is
received in Melbourne, it is processed into products for use in operations.

AVHRR data is distributed as cloud imagery, and processed into products includ-
ing fog and low cloud, volcanic ash, sea surface temperature, Normalised Difference
Vegetation Index (NDVI), and Grassland Curing Index (GCI).

ATOVS Atmospheric Sounder

Modern weather forecasting relies heavily on global and regional computer-based
modelling of the atmosphere system driven by observations: numerical weather pre-
diction (NWP). A key data source for the Bureau’s weather services is ATOVS data
from the NOAA satellites, which carries information on the vertical profiles of tem-
perature and humidity through the atmosphere and is assimilated into the Bureau’s
NWP models. Timeliness is critical to meet the cut-off times of NWP model runs.

The ATOVS data are extracted from the High Resolution Picture Transmission
(HRPT) full pass data from the NOAA satellites that is transferred to head office in
near-real time for processing with the internationally standard ATOVS and AVHRR
Pre-processing Package (AAPP). Fig. 1 shows the regional coverage of ATOVS

Fig. 1 HIRS channel 1 brightness temperatures for the NOAA-17 orbits received at Melbourne,
Darwin and Perth during the daytime on 11 May 2007
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data afforded by the Bureau’s network, as illustrated by one channel of the High
Resolution InfraRed Sounder (HIRS) instrument of the ATOVS suite.

The transfer of a pass from Darwin to Melbourne takes 15 min, on average,
with 90% of passes received within 16 min. From Perth, the average transfer time
is 13 min, with 90% of passes received within 17 min. Processing through AAPP
typically takes another five minutes.

X-Band Network

The Bureau is currently rolling out a network of X-band receiving stations to
complement the existing Australian stations in preparation for the new genera-
tion of NPP, NPOESS and Fengyun-3 satellites. The Bureau is part of the Western
Australian Satellite Technology and Applications Consortium (WASTAC) which
already operates an X-band station in Perth. A Bureau station near Melbourne com-
menced operation on a test basis in late 2008. Installation of two further Bureau
stations, near Darwin and at Casey, Antarctica, is planned for completion in early
2009. The coverage of the complete network is shown in Fig. 2.

Fig. 2 Coverage from the Bureau’s planned X-band network, including the WASTAC consortium
station in Perth
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A key output from the Bureau’s X-band reception will be the delivery of MODIS
products to the Bureau’s regional forecasting offices: true colour imagery, false
colour images created from bands that emphasise atmospheric features of inter-
est, and level 2 products such as atmospheric stability indices, total water vapour
and cloud properties. To optimise timeliness and minimise data transfer volumes,
each reception site includes a MODIS data processing system to generate high-level
products for rapid distribution.

Advanced Atmospheric Sounders

Over the next two years, as the Bureau upgrades its NWP systems under the
Australian Community Climate and Earth System Simulator (ACCESS) project,
there will be a requirement for more satellite data, both from local reception and
indirect sources. Key locally received data sources will be the advanced sounders
carried by the new generation of polar orbiters, initially AIRS on Aqua and
the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, which pro-
vide vertical profiles of temperature and moisture and many other geophysical
parameters.

The first advanced sounder to provide data was AIRS on board NASA’s Aqua
satellite, which was launched in 2002. While HIRS on the NOAA satellites makes
measurements in 19 spectral bands, AIRS measures radiation in 2378 bands which,
whilst individually still a broad layer measurement, may be combined to provide sig-
nificantly higher vertical resolution. Temperature profiles from the AIRS instrument
have errors around 1 K in a 1 km layer, and moisture errors are about 10–20% in
layers 2 km thick, while water vapour profiles have better than 10% rms errors under
clear and partially cloudy conditions. By comparison, radiosondes have temperature
errors around 1 K and moisture errors around 5%.

While satellite data like that from AIRS is becoming comparable to radiosonde
data in terms of uncertainties, the satellite data spatial and temporal coverage is
orders of magnitude better than what is possible with any radiosonde or ground-
based network. It has been demonstrated that the skill of numerical weather
prediction models is very significantly improved by the introduction of AIRS data.

The advanced sounders that follow AIRS include the 8000-channel IASI on
MetOp, launched in 2006, the Cross-track Infrared Sounder (CrIS) hyperspec-
tral sounder on NPP and NPOESS, and China’s suite of infrared and microwave
sounding instruments on the FY-3 series, starting in 2008.

Geostationary Satellite Data

The imagers on the geostationary meteorological satellites stationed over the equa-
tor supply high temporal resolution multispectral imagery of Australia’s region. The
Bureau of Meteorology directly receives data from Japan’s MTSAT-1R (at 140◦
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Fig. 3 Visible-band whole Earth disk images from the geostationary satellites Fengyun-2C at
longitude 105◦E (left) and MTSAT-1R at 140◦E (right)

East) and China’s Fengyun-2C and -2D (at 105◦ East and 86.5◦ East, respectively),
both of which provide images at least hourly (Fig. 3). For the purposes of redun-
dancy and to reduce communications costs, geostationary reception systems are
located in Melbourne, Darwin, Perth and Sydney. These stations all receive data
from MTSAT-1R. Data from Fengyun-2C and -2D is received in Melbourne. Due to
its position over the eastern Indian Ocean, Fengyun-2C is very useful for forecasts
and warnings in Western Australia. MTSAT-2 is now in orbit to provide standby
back-up to the MTSAT-1R imager.

Both MTSAT-1R and Fengyun-2C have five channels: visible (0.63 μm), mid-
infrared (3.7 μm), water vapour (6.8 μm) and thermal split window (11 μm and
12 μm). Data from both satellites is used as imagery in forecasting operations, and
for the generation of derived products such as atmospheric motion vectors – esti-
mated from the automatic tracking of clouds between images – and daily insolation.
The Bureau has developed products with sub-diurnal resolution from MTSAT-1R,
such as sea surface temperature in collaboration with NOAA, and fog and low cloud,
the mapping of which is critical for aviation efficiency. The Bureau is working to
better characterise the calibration of these sensors.

Data Exchange

Regional ATOVS Retransmission Service

There is a global trend towards rapid exchange of regional data for assimilation
into numerical weather forecasting systems. The European ATOVS Retransmission
Service (EARS) was initially established to exchange ATOVS products for the
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European region in near-real time over surface telecommunications networks, but
has grown rapidly and evolved considerably:

• it is has expanded its data scope to delivering AVHRR data on an operational
basis within 10 min using line-by-line processing at multiple HRPT stations. Data
from multiple stations is combined, with the stitched product sent to users being
comprised of the lines most rapidly received at the uplink central processing
station; and

• it is supporting Advanced Scatterometer (ASCAT) and IASI data from MetOp on
a pilot basis; and

• it is now using secondary satellite broadcast by uplinking products to a commu-
nications satellite which then rebroadcasts to a broad user region.

The Asia-Pacific Regional ATOVS Retransmission Service (AP-RARS) has been
established, under coordination by the Bureau of Meteorology, to implement the
EARS concept in a region that includes Australia. The Bureau routinely sends
processed ATOVS data from its Perth, Darwin, Melbourne and Davis (Antarctica)
stations, as well as from Townsville, Singapore and New Zealand, to Japan, where
it has been successfully assimilated into NWP models with positive impact. Data
originating from China, Hong Kong, Japan and South Korea has been received in
Melbourne via Japan.

Advanced Dissemination Methods

While AP-RARS currently uses the meteorological Global Telecommunications
System, in the future telecommunications satellite broadcast of data is planned.
China leads the provision of C-band Digital Video Broadcasting – Satellite (DVB-
S) broadcast services over the Asia-Pacific Region with its FengyunCast system.
This dissemination concept, which was pioneered by EUMETCast in Europe, has
the potential to revolutionise the rapid distribution of satellite products. It promises
users near-real time access to a large range of raw data and derived products from
numerous satellites by means of modest-sized fixed antennas.

Interagency Collaboration

The Bureau of Meteorology increasingly collaborates with other Australian agen-
cies in the provision of satellite-based services. This section describes several
examples.

The Bureau supplies satellite-based sea surface temperature (SST), from
both local and overseas reception, to the BLUElink collaboration between the
Bureau, Australia’s Commonwealth Scientific and Industrial Research Organisation
(CSIRO) and the Royal Australian Navy. BLUElink is developing an ocean
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forecasting system, and SST is a key input to the underpinning oceanographic
model. Work is underway to blend the SST the Bureau produces from locally
received AVHRR data with externally sourced global SST products from AVHRR,
the Advanced Along-Track Scanning Radiometer (AATSR) and the Advanced
Microwave Scanning Radiometer for EOS (AMSR-E, on Aqua), in order to pro-
duce a blended SST that benefits from the strengths of each dataset. Geostationary
satellites can resolve the diurnal variation of sea surface temperature, and in 2007
the Bureau, in collaboration with NOAA, established a system to derive sea surface
temperature from MTSAT-1R data.

The Australian Water Availability Project is a collaboration between the Bureau
of Rural Sciences (BRS), the Bureau of Meteorology and CSIRO to establish a
national capability to monitor soil moisture and other components of the land
surface water balance. Historical datasets have been generated, and a prototype oper-
ational monitoring system has been running since 2007. The Bureau contributes
historical and near-real time streams of meteorological data and satellite-derived
products, CSIRO the modelling and historical satellite data, and BRS the coordi-
nation, end product delivery and interface with users. The satellite streams from
the Bureau of Meteorology include daily solar radiation derived from geostationary
satellites, and weekly NDVI and per-orbit land surface temperature from AVHRR.

The Bureau works with other agencies in supporting bushfire management.
Mapping the annual curing (senescence and drying) of grassland is critical for fire
danger rating and fire management planning, and the Bureau, CSIRO and RMIT
University are partnered, through a Bushfire Cooperative Research Centre project, to
develop a robust and validated satellite-based assessment of grassland curing appli-
cable across Australia and New Zealand. The Bureau provides meteorological data
layers to the Sentinel fire management website, which was created by CSIRO and is
now hosted and developed by Geoscience Australia.

These examples demonstrate that in many cases satellite data delivers value to
users not directly through derived satellite products but as input to a system that
delivers the information the user needs.

The Bureau has also contributed to the CSIRO’s development of the Common
AVHRR Processing Software (CAPS) package, notably CAPS code which is
under development to dynamically derive a reflectance anisotropy (bidirectional
reflectance distribution function, BRDF) model from AVHRR data.

Conclusions

The Australian Bureau of Meteorology continues to develop its systems for the
reception and processing of polar orbiter and geostationary satellite data in support
of its weather, climate and other services. The Bureau is currently developing a capa-
bility to deliver products from MODIS and advanced sounders. In many cases, the
value of new satellite data and products will be delivered to end users in partnership
with, or through the higher level data systems of, other agencies.
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National meteorological services in the Asia-Pacific region are working towards
a regional system, under the auspices of the World Meteorological Organisation, for
coordinated:

• direct reception, such as at X-band;
• processing, such as calibration and navigation, and archive;
• applications;
• distribution and on-line access;
• research, development and training; and
• rapid data exchange, as is being pioneered by RARS.

The Bureau will contribute as a supplier and distributor of low-level data and
higher level products. In servicing the satellite data requirements of the Bureau’s
programs, the balance between local reception and regional and global access will
be driven by user needs, security of access, satellite constraints (Direct Broadcast
versus onboard storage), and operator constraints (availability of near-real time
products).

The EARS and RARS systems, in conjunction with local reception, address time-
liness issues for NWP by enabling satellite data to be available for assimilation
within model cutoff times. It is important to remember, however, that the mere exis-
tence of this retransmission concept and its manifestation and success in Europe
and North America is evidence that local reception is needed to meet many user
needs, such as those of advanced NMHSs such as the Bureau. The RARS concept
is a significant innovation that points to a possible future in which a large range of
near-real time satellite data and products is accessible to users with modest receiving
infrastructure.



Improved Spatial Resolution of Fire Detection
with MODIS Using the 2.1 µm Channel

Florian Goessmann, Stefan W. Maier, and Mervyn J. Lynch

Abstract Since the first Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument on board the Terra satellite started collecting data in February
2000, the detection of active fires was one of the initial applications. The algo-
rithms used to detect active fires with MODIS that are used in production (Giglio
et al., 2003a; Kaufman and Justice, 1998; Kaufman et al., 1998) are based on algo-
rithms developed for Advanced Very High Resolution Radiometer (AVHRR) and
the Visible and Infrared Scanner (VIRS) (Flasse and Ceccato, 1996; Giglio et al.,
1999; Giglio et al., 2003b; Giglio et al., 2000; Justice et al., 1996; Lee and Tag,
1990; Li et al., 2000) that exploit the difference in spectral response of a hot target
in the middle (MIR) and thermal (TIR) infrared.

The MODIS channels typically used for this task, out of the 36 channels MODIS
provides, are the 3.7 μm channel, which is available as a high gain channel (21)
and low gain channel (22) to cover the MIR and the 11 μm channel (31) in the TIR
range. Both these channels have a native spatial resolution of 1 km.

In this work, we will give an overview of the possibilities in regards to improving
the spatial resolution of fire detection from MODIS data by utilizing the 2.1 μm
channel (7), which is available at 500 m resolution. This channel has been mentioned
in the literature (Chuvieco, 1999; Kaufman and Justice, 1998) as being potentially
useful for the detection of fires, but its application has not been further investigated
before.

Introduction and Method

According to Wien’s Displacement Law,

λmax = 2.898 × 10−13k · m

T
(1)
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where:

λmax = wavelength of maximum radiation, m
T = temperature of blackbody, K

blackbodies of typical wildfire temperatures ranging from 600 K for smoldering fires
to about 1200 K for flaming fires (Kaufman and Justice, 1998; Wooster et al., 2003)
have an emission maxima at 4.8 and 2.4 μm respectively. The 2.1 μm channel
of MODIS is therefore well placed to observe actively flaming fires but has only
very limited capabilities to locate smouldering fires. Kaufman and Justice (1998)
attest the 2.1 μm channel to be very sensitive to fires of 1000 K and above.

Fire detection using the 2.1 μm channel of MODIS is based on a high change in
observed reflectance compared to the expected reflectance for each pixel, as shown
in Fig.1. An overview of all channels used in the proposed methodology can be
found in Table 1.

Fig. 1 Observed and expected reflectance of the 2.1 μm channel of MODIS for a pixel centered
at 127.841◦ east and –20.176◦ north before, during and after a fire from June 2 to 6 2006

Table 1 MODIS channels used in fire detection

Channel number Centre wavelength (μm) Purpose

1 0.65 Cloud masking
2 0.86 Cloud masking
5 1.24 False alarm rejection
7 2.1 Active fire detection

31 11.0 Cloud masking
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Apparent Reflectance

As reflectance values are calculated from the radiances measured by the sensor,
the retrieved reflectance value of a pixel containing an active fire is not its spectral
reflectance ρ(λ) as defined by

ρ(λ) = LR(λ)

E0(λ)π
× 100 (2)

where:

E0(λ) = irradiance at object
LR(λ) = reflected radiance,

but the apparent reflectance ρa(λ) defined as,

ρa(λ) = LR(λ) + LF(λ)

E0(λ)/π
× 100 (3)

where: LF(λ) = fire emitted radiance.
Equation (3) shows that a fire will lead to reflectance values higher than they

should be for a particular pixel as the radiance measured by the sensor is not only
the radiance caused by reflection but also the radiance caused by the fire.

Properties of Detectable Fires

In order to be detectable, a fire’s LF(λ) has to be big enough to raise the pixel’s
ρa(λ) significantly above the pixel’s expected reflectance. The two main contrib-
utors to LF(λ) are the fire’s average temperature (a fire within a pixel will not be
homogenous) and its size.

According to Kaufman and Justice (1998), the 2.1 μm channel saturates at a
reflectance of 0.8. Observation however suggest that the 2.1 μm channel saturates at
a reflectance value of 0.98 which corresponds to a fire of a 1000 K covering 0.09% of
the area of a pixel with a highly reflective background of 0.18 reflectance. Following
the sensitivity studies of Kaufman and Justice (1998) and Wien’s Displacement Law,
a fire of 900 K and above is expected to be able to produce a LF(λ) big enough to be
significant and will be used as the prototype temperature for a detectable fire. Such
a fire with a background of 0.18 reflectance would saturate the 2.1 μm channel if it
fractionally covered 0.192% or greater of a pixel.

It is more difficult to determine the size of the fire necessary to produce a big
enough LF(λ). We expect a fire to significantly add to the effective reflectance if
the reflectance caused by the fire equals or exceeds the spectral reflectance of the
background. With a high reflective background of 0.18, a 900 K fire has to cover
0.06% of a pixel to satisfy this condition. With a background of a lower reflectance
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Table 2 Sample combinations of fire size and temperature that satisfy the conditions of the
smallest detectable fire

Fire temperature (K) Burning fraction Size (m2, 500 m Pixel)

600 0.2141 53525
700 0.0424 10600
800 0.0126 3150
900 0.005 1250

1000 0.0023 575
1100 0.0012 300

Fig. 2 Combinations of burning fraction and fire temperature that satisfy the requirements for the
smallest detectable fire

of 0.13 the fire has to cover only 0.045% to fulfill the requirement. For present
purposes we set the size of the prototype for the detectable fire to 0.005 (0.5%) of
the pixel size.

This prototype fire corresponds to a fire-caused reflectance change of 0.25. This
reflectance change can be caused by an infinite number of combinations of average
fire temperature and fire fraction. Table 2 shows the values for a number of valid
combinations. These combinations are indicated by the grey area in Fig. 2.

Determination of Background Reflectance and Change

The required estimation of the reflectance of an observed pixel without the pres-
ence of a fire is derived from a multi-temporal bidirectional reflectance distribution
function (BRDF) (Roujean et al., 1992) model developed by Maier (2006).
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This model calculated the expected reflectance of a pixel from previous BRDF
and atmospherically corrected observations of the same pixel. At least 7 cloud
free observations not more than 21 days old are required to derive the expected
reflectance (Maier 2006) (ρEx, x being the centre wavelength of the channel) of a
pixel. It further provides the difference between the observed reflectance (ρx) and
ρEx (reflectance change, �ρx) and the standard deviation of the differences between
the modeled and observed reflectances (σρx).

Cloud Masking

Apart from active fires, clouds can also cause a high reflectance change in the
2.1 μm channel. Cloud masking is performed using a technique based on the one
proposed by Stroppiana et al. (2000) for the AVHRR instruments.

The cloud mask uses the reflectances of channels 1 and 2, denoted ρ0.65 and ρ0.86
and the blackbody brightness temperature of channel 31 denoted T11. A pixel is
classified as contaminated by clouds if it satisfies:

ρ0.65 + ρ0.86 > 0.55 (4)

or

T11 < 275 K. (5)

Pixels classified as cloud are excluded from further examination.

Identification of Fire Pixels

All pixels that have not been identified as cloud contaminated are tested if they
satisfy:

�ρ2.1 > 0.25 (6)

and

�ρ2.1

σρ2.1
> 3 (7)

and

ρ1.24 < ρ2.1 (8)

Equation (6) tests if the reflectance change of the pixel is greater than the
reflectance change caused by the prototype of a detectable fire as defined above. The
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test in Eq. (7) checks if the reflectance change is bigger than three times the stan-
dard deviation of the modeled expected reflectance to ensure that the reflectance
change was not likely to be caused by normal variations in reflectance. Equation
(8) eliminates false alarms caused by unmasked clouds or other highly reflective
objects.

If a pixel satisfies all three tests, it is classified as containing an active fire.

Results

Figure 3 shows the comparison of three different fire detection approaches applied to
a large fire complex. The high resolution detection of 30 m is derived from data from
the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
that shares its platform Terra with one of the MODIS instruments. It shows how
the fire detection based on the 2.1 μm channel is capable of providing more precise
location information of intense fires compared to MOD14 which is based on the
MIR and TIR bands of MODIS.

Fig. 3 Fire complex as detected at three different resolutions
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Conclusions

Due to its insensitivity to smoldering fires as well as the unavailability of data from
the 2.1 μm channel for night time observations, the proposed methodology to detect
active fires from MODIS using its 2.1 μm channel cannot be a replacement for the
algorithms based on the MIR and NIR channels.

However, it has shown its ability to provide more accurate spatial information
on flaming fire fronts than provided current fire detection algorithms and could be
deployed together with existing fire detection methodologies to provide an overall
improved fire detection framework.

The methodology presented further shows that fire detection possibilities using
current satellites have not yet been fully exploited.
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Characterizing Eucalypt Leaf Phenology
and Stress with Spectral Analysis

Karen Barry, Ross Corkrey, Christine Stone, and Caroline Mohammed

Abstract Detection of stress with remote sensing in any vegetation type relies on
development of methods that highlight properties associated with stress which are
discernable from background variation, such as phenological changes. Therefore
the nature (and timing) of phenological foliar change needs to be systematically
compared to foliar stress symptoms with physical, biochemical and optical anal-
yses. Two such case studies with eucalypt species are presented here, including
Eucalyptus globulus and Eucalyptus pilularis. Studies with both eucalypt species
have shown that different leaf ages can be associated with alterations in pigments
and properties that are as pronounced as those occurring for well-developed stress
responses (potassium deficiency for E. globulus and low nutrient and cold exposure
in E. pilularis). Chlorophyll, carotenoid and anthocyanin content were analysed,
as well as specific leaf area and water content. Significant differences between leaf
ages were detected for many of these leaf pigments and properties, but the significant
differences between healthy and stressed leaves were usually of greater magnitude.
Only carotenoid content was not significantly different with leaf age for E. globulus,
but was significantly different with potassium-deficiency. This is a basis to further
investigate the potential of carotenoids to discern stressed leaves from phenological
changes. Preliminary data shown here provides a background for ongoing spectral
research on this theme for eucalyptus.

Introduction

Remote Sensing of Canopy Health in Eucalypt Forests

Eucalyptus represents the most commonly planted broad-leaved tree genus world-
wide, with almost 18 million ha in 2000, approximately half the amount represented
by the Pinus spp.(Palmberg-Lerche et al. 2002). Despite this extent, remote sens-
ing of eucalypt plantations is only in the initial stages: the industry is dominated
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by relatively new plantation estates, the majority of which are in South America
and Asia where use of remote sensing is not as common as in Europe or Northern
America. Australia has a growing eucalypt plantation estate (740,000 ha in 2005) of
which over half is represented by Eucalyptus globulus (Parsons et al. 2006) and the
potential of remote sensing is being explored. Remote sensing of native or planta-
tion forests can offer a variety of uses, including assessment of productivity (Asner
et al. 2003; Smith et al. 2002) and detection of stress due to a range of causes
(Pontius et al. 2005a; Sampson et al. 2000; Stone et al. 2004; Wulder et al. 2006).
In fast-growing, intensively-managed plantations such as Eucalyptus globulus this
spatially-explicit information can aid management decisions and ultimately increase
productivity.

Detecting the Difference Between a Stress Response
and Changes Due to Normal Leaf Aging

A range of abiotic and biotic stressors may be experienced during the rotation
length of a eucalypt plantation, which result in various foliage symptoms (Abbott
et al. 1999; Carnegie et al. 1998; Coops et al. 2004; Snowdon 2000; Stone et al.
1998) and cause various impacts on growth. Response to many stressors is typically
revealed at both the leaf and crown level; stressed eucalypts can develop contracted
crowns and prematurely shed leaves and the foliar symptoms may include chlorosis,
necrosis or reddening. Detection of stress with remote sensing may be possible for
eucalypt plantations if the symptoms can be reliably correlated with spectral data
and this requires a good understanding of symptom development and the chemical,
physiological and structural basis of those symptoms. In terms of foliar chemistry,
chlorophyll content has been widely regarded as a generic indicator of stress and a
range of vegetation indices can be correlated to it (le Maire et al. 2004). There has
also been some focus on carotenoids (Gamon and Surfus 1999; Gitelson et al. 2002)
and development of vegetation indices which relate to photosynthetic functioning,
such as the photochemical reflectance index (Gamon et al. 1990).

Methods to assess chlorophyll content with remote sensing in eucalypts have
been tested with hyperspectral imaging and leaf scale studies (Coops et al. 2003;
Datt 1998; Datt 1999a). Chlorophyll content can vary widely with leaf age in many
plant species, including eucalypts (Choinski Jr et al. 2003; Stone et al. 2005).
Anthocyanins are frequently produced in eucalypts as a response to both abiotic
and biotic stress (Close and Beadle 2003; Stone et al. 2005). Anthocyanins can
be detected using spectral reflectance wavelengths in the UV-VIS region (Gamon
and Surfus 1999) and have been investigated in eucalypt forests to a limited extent.
While some research has been conducted into changes in chlorophyll content with
leaf age and stress in eucalypts (Datt 2000; Stone et al. 2005), corresponding data
including anthocyanin content is not available. Carotenoid dynamics have been
characterized in stressed plantation eucalypt species (Close and Beadle 2005; Close
et al. 2003) but the relationship between total carotenoids and spectral indices has
not been well explored for eucalypts (Datt 1998).
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Characterization of leaf pigments in visible wavelengths has dominated studies of
stress indicators, but changes in water content and leaf dry mass may also contribute
to characterizing some stress types, with spectral changes particularly in the near-
and middle-infrared wavelengths (Baret and Fourty 1997; Datt 1999b; Peñuelas and
Inoue 1999; Tucker 1980). During leaf expansion and aging, water content and
specific leaf area (SLA) decrease, and reflectance in the near-infrared (NIR) also
tends to decrease (Roberts et al. 1998; Stone et al. 2005) although may increase
(Gausman et al. 1973). Damaged adult eucalypt leaves have reduced reflectance in
the NIR compared to healthy (Stone et al. 2005), but internal collapse of cells asso-
ciated with senescence has been related to increased reflectance in the NIR (Sinclair
et al. 1971).

A range of vegetation indices can be used to explore spectral differences between
foliage types, especially when particular traits are of interest (e.g. chlorophyll).
However, when attempting to characterize spectral variation that may be specific
to a certain foliage or stress type, an exploration of the whole spectral range is ben-
eficial and may enable identification of key spectral regions or wavelengths. Large,
non-normal hyperspectral data sets require effective methods, which is suited to
non-parametric analyses. Examples used in stress detection include, logistic regres-
sion (Delalieux et al. 2007), partial least squares (Delalieux et al. 2007; Pontius
et al. 2005b), regularized regression (Renzullo et al. 2006), tree-based modeling
(Delalieux et al. 2007) and neural networks (Wang et al. 2008). We chose to explore
regularized regression, in a discriminant analysis framework to identify key spec-
tral regions in stressed E. pilularis leaves. Ridge regression and the least absolute
shrinkage and selection operator (lasso) are methods of regularized regression that
can handle the high dimensionality of spectral data and give stable estimates of dis-
criminant variable coefficients (Renzullo et al. 2006). Lasso is powerful because
only wavelengths that exhibit the strongest effect in separating treatment groups are
considered (other wavelengths are given zero values), while the ridge regression (or
penalized discriminant analysis) can have problems with overfitting, as estimates of
the discriminant variable coefficients is more variable.

In this chapter, we explore leaf pigments (chlorophyll a and b, total carotenoids
and anthocyanins), water content and SLA of leaves from two eucalypt species,
comprising studies of leaf age and stress effects. In this case stress symptoms were
the result of abiotic factors, primarily nutritional. With spectral studies we corre-
lated these leaf properties with some published indices. In addition we have utilized
multivariate data analysis for one data set to determine key wavelengths which may
indicate better methods for discrimination of stress effects. E. globulus (blue gum) is
a widely grown species in Australia and other countries while Eucalyptus pilularis
(black butt) is a minor species grown in sub-tropical areas of Australia. For E. globu-
lus symptoms induced by a potassium deficiency were studied, while in E. pilularis
(black butt) fertiliser was withheld and plants were exposed to cold. While nutri-
ent deficiencies were involved in both these cases, our aim was not to detect foliar
nutrient content but rather the symptoms exhibited by their deficiency. Chlorosis,
necrosis and reddening are common symptoms of a range of stressful condition and
we treat the data here as case studies.
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Materials and Methods

Eucalyptus Globulus

Studies of leaf age were conducted with healthy pot-grown E. globulus (German
Town, North-eastern Tasmania seed stock) plants which were approximately 1 m in
height when sampled. Three categories of leaf age were used; (1) recently expanded,
>1 month old (2) fully expanded, current season’s growth, 2–3 months old (3) last
season’s growth, >6 months old. Three leaf pairs (six leaves) from each class were
sampled from five plants, resulting in thirty leaves per class per tree. These leaves
were labelled, pooled for reflectance measurements and then one leaf of each pair
was immediately placed in a freezer for later chlorophyll and carotenoid analysis,
while the other leaves were used for SLA determination and then frozen for later
anthocyanin extraction.

Leaves with potassium deficiency symptoms were collected from an experimen-
tal planting of E. globulus in SE Tasmania when trees were approx. 2.5 years. Full
site details are available (O’Grady et al. 2005). Three trees with symptoms (patchy
necrosis and red discolouration, particularly around the leaf margin) and three
apparently healthy trees were sampled. From each tree, 24 leaves were removed
in total, including four leaves from node 4 and 5 of each of six branches around
the lower crown (0.5–1.5 m above ground level). All leaves were placed on ice and
returned to the laboratory within 2 hours, reflectance measurements were made and
leaves processed as above. The cause of the symptoms was verified by analyzing
foliar K with a second set of leaf samples from the same field-trees as above. A total
of 18 leaves with K-deficient symptoms were sampled and 18 leaves with healthy
appearance, comprising six leaves from each of three trees in each case. Leaves
were dried at 70◦C for a minimum of 48 h and ground in a Wiley mill. Samples
(150–200 mg) were digested with sulphuric acid and hydrogen peroxide, following
a standard method (Lowther 1980). On average, there was 4.7 (± 0.3) mg g DW–1

of potassium in the leaves with K-deficient symptoms and 9.9 (± 0.3) mg g DW–1

in the healthy leaves. Previous studies of young E. globulus have concluded that
amounts of 3–7 mg g DW–1 K are deficient, while 8–15 mg g DW–1 is adequate
(Dell et al. 2002), therefore amounts detected in this study are commensurate with
a K deficiency.

For both studies, spectral reflectance (400–1000 nm) was obtained of fresh leaves
placed on a black background using a UniSpec-DC spectroradiometer (PP Systems,
USA). Leaves were arranged in stacks six layers deep, based on studies by O’Neill
et al. (1990) who found the maximum reflectance of eucalypt leaves occurred when
stacks were 5–7 layers deep, representing infinite reflectance. Leaf stacks were
shuffled between repeated measurements to obtain an average for each sample
and the spectroradiometer was calibrated against a SpectralonTM standard. Mean
reflectance was determined by averaging the spectra each time the leaf stack was
reshuffled.

Three spectral indices were applied using wavelengths in the visible region
for pigment content. All major leaf pigments have overlapping absorption ranges
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(Gitelson et al. 2006; Lichtenthaler 1987) and indices utilize wavelengths to
quantify specific pigments with reduced influence of the others. These included
an index developed by Datt (1999a) to estimate chlorophyll content in eucalypt
leaves, the anthocyanin reflectance index (Gitelson et al. 2001) and the photochem-
ical reflectance index (Gamon et al. 1990) which is well correlated to carotenoid
content (Blanchfield et al. 2006; Gamon et al. 1997). The carotenoid reflectance
index (Gitelson et al. 2002) was tested with our data (K. Barry, unpublished) but
results were poor, possibly because use of the index has only been successful in
anthocyanin-free samples (Gitelson et al. 2006; Merzlyak et al. 2003). This needs
to be explored further in eucalyptus.

The point of the maximum slope of the spectrum between the red and NIR wave-
lengths (red edge position, REP) was determined using the Lagrangian interpolation
method (Dawson and Curran 1998; Demetriades-Shah et al. 1990). Lagrangian
interpolation is applied to the first derivative transformation of the spectrum in the
red edge region, then a second-order polynomial curve is fitted using 3 bands cen-
tre around the maximum slope position (in this case 692.9, 702.7 and 712.4 nm
were used). A second derivative is then performed on the Lagrangian equation to
determine the maximum slope position (resolved when the second derivative is
zero).

While areas of the spectrum most influenced by water content and specific leaf
area are above 1300 nm (Baret and Fourty 1997) one absorption feature of water
occurs at 970 nm (Curran 1989) and a water index using a ratio of 900 and 970 nm
was tested here (Peñuelas and Inoue 1999). Details of the indices mentioned here
are provided in Table 1.

Leaves were destructively analysed for content of chlorophyll, carotenoids and
anthocyanin using standard extraction methods and quantification with a Cary UV-
VIS spectrophotometer (Barry et al. 2008; Close et al. 2001; Lichtenthaler 1987).
Specific leaf area (SLA) was determined by measuring leaf area, drying the leaves
in an oven at 65◦C for 3 days and then obtaining dry weight.

Table 1 Six narrowband vegetation indices, where ρ is the reflectance at a given wavelength (nm)

Index Name Equation Reference

REP Red edge position Determined using
Lagrangian
interpolation

Demetriades-Shah et al.
(1990), Dawson and
Curran (1998)

Datt ‘99 Chlorophyll index (ρ850–ρ710)/(ρ850–ρ680) Datt (1999a)
ARI Anthocyanin Reflectance

Index
(ρ550

–1)/(ρ700
–1) Gitelson et al. (2001)

CRI Carotenoid Reflectance a = (ρ510
–1)/(ρ550

–1) Gitelson et al. (2002)
Index b = (ρ510

–1)/(ρ700
–1)

PRI Photochemical
Reflectance Index

(ρ531–ρ570)/(ρ531+ρ570) Gamon et al. (1990)

WI Water Index P900/ρ970 Peñuelas and Inoue (1999)
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Eucalyptus Pilularis

Clonal plants of E. pilularis (Queens Lake provenance, clone A) were prepared
from cuttings and maintained in a glasshouse with adequate fertiliser. Leaf devel-
opment was monitored when the plants were 14 months old, over a 4-week period
from the time of expansion. The reflectance of each leaf (in the same position) was
successively measured each week in a non-destructive manner. Newly-expanded E.
pilularis leaves were soft and pink in colour and visible green colouration devel-
oped in the second and third week. By week 4 all leaves appeared more than 95%
green. For this non-destructive study of leaf development a SPAD chlorophyll meter
(Minolta) was used to estimate relative chlorophyll content. Replicate leaves were
used to determine SLA at the first and last measurement time point.

Different pot-grown E. pilularis plants (Queens Lake provenance, clone B) were
used for a stress experiment where five plants were subjected to cold (outdoor winter
temperatures, minimum 7–8◦C) and nutrient deprivation, while another five were
maintained in a glasshouse environment and given adequate fertiliser. At one time
point (3 weeks after the stress treatment was begun), five leaves from each plant
were removed from the plants and destructively sampled. For the stress study, leaf
pigments and SLA were analysed as for E. globulus.

For both E. pilularis studies an ASD Handheld FieldSpec UV/VNIR (Analytical
Spectral Devices, Boulder CO, USA) with contact probe was used. Spectra were
obtained with a white SpectralonTM surface behind the leaf; therefore a component
of transmittance is added to the reflectance spectra and data needs to be inter-
preted with this in mind. While the leaf stack approach with a black background
would involve an element of transmittance also, the two data sets here cannot be
directly compared. Both E. pilularis data sets presented here are comparable to
each other, but not directly to similar studies using a black background. For all data
sets here, spectra are termed as ‘apparent reflectance’ to signify this. Transmittance
back towards the sensor can occur commonly in the natural environment due to
a range of reflective surfaces being behind leaves (e.g. lower leaves in a crown,
under storey vegetation or bright soil). Leaf level studies with a range of species
showed that background changes resulted in very small effects in the UV and visi-
ble spectra (with the exception of the green reflectance peak) and greater effects in
the NIR between 750 and 1300 nm (Noble and Crowe 2001). Crown-level studies
with eucalypts have shown that some of those indices used here (e.g. REP, ARI and
Datt index) were not significantly affected by background when black canvas and
bright soil were compared (Barry et al. 2008).

Spectral indices were calculated as described for E. globulus and in addition two
different multivariate methods of spectral discrimination were applied to the data
set for stressed and healthy E. pilularis leaves. These methods included a penalized
discriminant analysis method (Hastie et al. 1995) and lasso regression (Tibshirani
1996) as have been applied by Renzullo et al. (2006) to reflectance data to identify
wavelengths which are most sensitive to different treatment groups. The penalized
regression function is executed using the lars function in the lars R package (Hastie
and Efron 2004) in R (R Development Core Team 2006). Tuning parameters were
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selected to minimize validation and training errors for the penalized analysis, while
for the lasso analysis tuning was set to result in only one coefficient being selected
(hence one wavelength is identified).

Results and Discussion

Eucalyptus Globulus

Average reflectance spectra of juvenile E. globulus leaves of three different ages
showed a progressive decrease in reflectance in the visible wavelengths as leaves
aged (Fig. 1a). Reflectance in the NIR wavelengths was significantly lower in leaves
which grew in the previous season compared to the two younger categories of leaves,
as found for older compared to young adult eucalyptus leaves (Stone et al. 2005).
Comparison of average spectra of leaves with potassium-deficient symptoms and
those of healthy appearance revealed little difference in the visible wavelengths but
a progressive divergence in the NIR region, as stressed leaves had higher reflectance
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Fig. 1 Mean reflectance spectra of juvenile E. globulus leaves, (a) three different age classes, (b)
healthy and those with symptoms of potassium deficiency. Error bars are SE
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than healthy leaves at 850 nm (Fig. 1b) which may be related to changes in internal
cell structure in the necrotic regions of the leaf.

Anthocyanin content was significantly greater in the oldest leaf class which was
detectable by application of the ARI to the spectral data (Table 2). Chlorophyll con-
tent was significantly higher for the intermediate class (Table 1) but this difference
was not detected with use of the Datt index for chlorophyll content and the REP
changed little with leaf age in the study (Table 2). Carotenoid content did not differ
significantly between age classes based on destructive analysis. Leaves of the older
two classes were significantly tougher (lower SLA) and drier than the youngest leaf
class which are common changes during leaf aging (Roberts et al. 1998) and this
was detected by the WI (Table 2).

Anthoycanin content was significantly increased in potassium deficient
E. globulus leaves compared to healthy leaves (Table 2) while chlorophyll content
was significantly decreased. Application of the Datt index for chlorophyll did not
detect these differences between healthy and symptomatic leaves. The ARI was
significantly different between healthy and potassium-deficient leaves and was well
correlated to anthocyanin content (r2=0.72). Total carotenoids, SLA and water
content were also significantly different between healthy and potassium-deficient
leaves (Table 2).

In conclusion, total carotenoids were the only variable that was significantly dif-
ferent between the stressed and healthy leaves but not changed with the three leaf
ages used here.

Eucalyptus Pilularis

Non-destructive determination of reflectance of leaves during the first four weeks
after expansion showed that the average spectrum from the first week was of a very
different profile in the visible wavelengths compared to the following three weeks
(Fig. 2a). In the NIR region the reflectance of leaves at week 2 was significantly
reduced compared to the other weeks (Fig. 2a). E. pilularis plants which were sub-
jected to cold and nutrient stress developed leaves which were chlorotic and red in
colour. Reflectance spectra (Fig. 2b) revealed very prominent differences in the visi-
ble wavelengths; stressed leaves had inverse reflectance trends in the green peak and
chlorophyll well regions compared to the healthy leaves. There was little apparent
difference in the NIR region (Fig. 2b).

New leaves of healthy E. pilularis plants became tougher (SLA decreased sig-
nificantly over time), drier and SPAD values indicated that chlorophyll content
increased significantly over time (Table 3). The position of the maximum reflectance
of red edge peak, derived from the first derivative spectra, was shifted to higher
wavelengths (up to 4 nm shift) as the leaves aged (Table 3). Also, the red edge
peak area was increased as leaves aged. Both these trends are characteristic of what
was found for the expansion of purple foliage into new green leaves for a range of
Eucalyptus species (Datt 2000). Significant changes in the values determined using
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week period with non-destructive assessments, (b) healthy and those exposed to cold and nutrient
deprived. Error bars are SE

the Datt index were the same as for chlorophyll content (Table 3). The initial red
discolouration was visibly reduced over time and while the extent of reduction in
anthocyanin content is unknown, the ARI suggested that anthocyanin content was
progressively and significantly reduced at each measurement time as leaves aged
(Table 3).

Differences in chlorophyll and anthocyanin content were large (6-fold reduced
and 3.7-fold increased respectively) and significant between leaves from plants that
were subjected to cold and nutrient deprivation and those which were maintained in
favourable growth conditions (Table 3). Results of the Datt index and ARI mirrored
these pigment difference, as did a very large shift (approx. 13 nm) in the position
of the maximum slope of the red edge. Associated with leaf development and the
stress treatment, large and significant differences in water content and SLA were
also detected (Table 3). The WI detected significant differences between leaf ages
and between the healthy and stressed leaves in these studies. Total carotenoid con-
tent was over 3-fold reduced in leaves of stressed plants and was well correlated
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Fig. 3 Coefficient values for
the penalized discriminant
analysis of reflectance spectra
for healthy and stressed (cold
and low fertilizer) E. pilularis
leaves. Quantiles are marked

with the PRI (r2=0.79) which has been shown in numerous studies (Blanchfield
et al. 2006; Gamon and Surfus 1999).

Multivariate analysis revealed that a range of wavelengths are important in dis-
criminating the reflectance spectra of the healthy and stressed E. pilularis leaves, as
shown by the coefficient values for each wavelength (displayed for the penalized
analysis in Fig.3, detailed for both analyses in Table 4). Both methods selected
similar wavelengths as the most important (712 and 709 nm) which are also
similar to the REP (710 nm, Table 3) of the spectra determined from healthy
leaves.

Table 4 Important wavelengths to discriminate the healthy and stressed E. pilularis reflectance
data

Wavelength ranges (nm)

Penalised analysis
Quantiles

Max 712
95% 699–724
90% 627–638; 692–731
80% 600–656; 689–734
20% 518–569; 937–987
10% 527–561; 971–987
5% 531–556
Min 541

Lasso analysis
709
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An Approach to Detect Stress in Eucalypt Plantations

Studies with both eucalypt species have shown that different leaf ages can be asso-
ciated with alterations in pigments and properties which are as pronounced as those
occurring for a well-developed stress response. For E. globulus, changes in antho-
cyanins and SLA were most pronounced with the longer-term leaf aging (with
less change in chlorophyll and no significant changes in carotenoids), while all
pigments and properties were significantly altered when leaves were low in potas-
sium. This study highlights carotenoids as a possible basis to discern healthy leaves
from stressed leaves (with less difference between ages) and spectral methods to
detect carotenoids in eucalypt leaves need to be improved to explore this further.
The PRI has a well demonstrated relationship with carotenoid to chlorophyll ratio
and xanthophyll pigments and this is currently being explored further in Eucalyptus
globulus with a study integrating leaf age and multiple stress types (K. Barry,
unpublished).

For E. pilularis, vegetation indices suggested that changes during the early stages
of leaf growth were substantial for chlorophyll, anthocyanins and water, but proba-
bly not to the extent of the changes for plants subjected to cold and nutrient stress.
However, the stress imposed was particularly pronounced and may not occur to this
extent in a field situation. While carotenoid content could not be determined, the
PRI suggests that alterations in carotenoids probably occur within the four week
timeframe of leaf development studies here. Vegetation indices tested here showed
general correlation with leaf properties data, but statistically significant differences
were not detected for the E. globulus study, which may be a function of the leaf
stack approach, compared to the individual leaf spectra obtained for E. pilularis. The
penalized discriminant analysis and lasso regression identified similar wavelengths
in the E. pilularis stress reflectance data set which were close to the REP. This is a
useful tool to explore the full spectrum for differences between treatments and may
be particularly useful to discern the key wavelengths when a range of symptoms are
apparent together.

Spectral methods used in these two studies include an element of transmit-
tance data and therefore represent apparent reflectance. This gives us a preliminary
understanding of the relationship between spectral data and pigments and physi-
cal properties of eucalypt foliage. While transmittance is always part of the optical
signal of vegetation, ideally it is minimized in leaf-level reflectance studies. To
obtain reflectance with no or minimal transmittance, a black background with sin-
gle leaves is preferable. An integrating sphere should be used to separate reflectance
from transmittance and data can then be incorporated into leaf and crown radia-
tive transfer models. Our ongoing studies are using this approach. Disadvantages
of using integrating spheres is that foliage must be removed, which does not allow
repeated spectral studies of leaves during development, as conducted here. Ideally,
obtaining a spectrum using a black and then white background with a contact probe
(such as the ASD instrument used here) would allow repeated spectral studies of
attached leaves and an ability to separate reflectance from transmittance (Noble and
Crowe 2001).
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Leaf-level studies are the basis for our understanding of vegetation detection
with remote sensing, but an understanding of the distribution and normal phenol-
ogy of leaves is also needed at the crown and canopy scale. For example, the distinct
changes occurring as leaves initially develop (seen here in E. pilularis) usually occur
across a short growing season (known as the ‘red flush’ or ‘spring flush’ for euca-
lypts). Changes in red edge or anthocyanin indices occurring at other times of the
year may more reliably signify a stress event, but may be difficult to distinguish from
a ‘spring flush’ if occurring at that time. Leaf distribution within the crown is also
important and leaves from last years growth (as seen in the E. globulus study) will
occupy a smaller proportion of the outer leaf layers than the current seasons growth
which contribute more towards the whole-tree or whole-canopy spectrum. This can
only be fully understood by light interception modeling for the species of inter-
est and the growing environment. In a closed canopy, effective photon penetration
depth (EPPD) is 1–2 layers of foliage in the visible through to short wave infrared
wavelengths (Asner 2008), therefore only the younger age classes may contribute
to this range of the spectra, where the influence of pigments dominates. It follows
that stress symptoms which primarily affect older, lower foliage in a crown may be
difficult to detect. In crown studies of E. globulus, defoliation of the lower crown
was difficult to detect with reflectance spectra (Barry et al. 2008). Therefore an
understanding of the distribution of symptomatic foliage is equally important in the
detection of stress with remote sensing and ideally for key eucalypt species a good
understanding of EPPD should be developed with field measurements and canopy
radiative transfer models (Asner 1998). Along with changes in foliage quality, crown
responses to stress are an important factor in the detection of stress by remote sens-
ing, including reduced leaf area index due to production of smaller leaves or loss
of leaves.

The current studies show that a similar range of properties alter with eucalypt leaf
age or when they become stressed. While separation of these effects is challenging,
there is a basis to further explore carotenoid content and dynamics. Development of
strategies to detect stress in eucalypt plantations need to consider the magnitude of
the symptoms at the leaf- and crown-level, time of year and how they contrast with
normal changes in leaf development. A range of vegetation indices should ideally
be used together to detect symptoms of stress. A combination of approaches may be
useful for separating stress and phenology in time and space, for example a time-
series approach (e.g. MODIS) could be used to track phenological changes and then
a higher spectral and spatial resolution approach could target areas of forest that do
not follow the local trends.
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Development of Satellite Vegetation Indices
to Assess Grassland Curing Across Australia
and New Zealand

Danielle Martin, Ian Grant, Simon Jones, and Stuart Anderson

Abstract Grasslands, including woodlands, grass and scrub mixes, cover nearly
75% of Australia and constitute 70% of vegetation cover in New Zealand. Grass
characteristics such as water content and degree of curing (senescence), deter-
mine the vulnerability of grasses to propagate and carry fire. This work is part of
a Bushfire Cooperative Research Centre (CRC) project that aims to improve the
assessment and prediction of grassland curing across Australia and New Zealand.
This will be carried out with the use of two satellite remote sensors. NOAA AVHRR
has been used operationally to produce a satellite curing index since the 1980s across
southeastern Australia. In the near future, the use of this sensor will be extended
across the continent on the basis of extensive field data collected by the CRC.
The EOS MODIS sensor, can provide more detailed assessments of vegetation than
AVHRR, and has the potential to provide better curing estimates due to its greater
number of spectral bands. The aim of this project is to develop a satellite-based
method for curing assessment that is robust and can be validated across Australia
and New Zealand. This paper covers the background research of satellite remote
sensing on grassland curing, and presents preliminary methods and results using
field data and MODIS-derived vegetation indices.

Introduction

Motivation

Fires are a major socio-economic and natural hazard in Australia, affecting over
25,000 km2 of land annually. This figure remains uncertain, owing to the difficulty
in distinguishing between wildfires and agricultural/cultural burning-off in northern
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Australia. For example, in 1992, 74,000 km2 of land was burnt in the Northern
Territory; the proportion burnt by wildfires is unknown (Cheney and Sullivan, 1997).
In addition, the area of burnt land can easily rise in a severe fire season such as the
summer of 1982/83 when the Ash Wednesday fires took 71 lives and destroyed 2000
homes in Victoria and South Australia (Jones et al., 2004). Currently the Bureau of
Meteorology distributes grassland curing maps for south-eastern Australia which
are derived from remotely sensed satellite data, using an algorithm developed by
the Commonwealth Scientific and Industrial Research Organisation and Victoria’s
Country Fire Authority (Barber and Paltridge, 1986). The research described here
is part of a Bushfire Cooperative Research Centre (CRC) project (Project A1.4:
Improved methods for assessment and prediction of grassland curing). Bushfire
CRC research covers a wide range of social and environmental issues, and empha-
sises that fire management should be underpinned by reliable prediction tools which
are research-based. This part of the project aims to develop remote sensing methods
to assess grassland curing across Australia and New Zealand. Information produced
from this project will provide fire management agencies with access to accurate and
reliable maps of grassland curing during fire seasons for planning and input into
grassland fire danger rating and fire behaviour models. Outputs from these mod-
els provide input into a range of fire management strategies and decisions, such as
implementation of prescribed burning programs, determining fire preparedness lev-
els, imposition of fire restrictions, safe fire fighting actions, and public warning. This
research aims to make the best use of emerging technology, so that the usefulness
of the results will continue in future years.

Aims

Current grassland curing assessment is based on visually assessed field data and
AVHRR (Advanced Very High Resolution Radiometer) satellite data. Visual assess-
ment of curing has inherent problems and has lead to inaccurate assessment of
grassland curing (Anderson et al., 2005). In order to produce a better satellite-
based grassland curing index, this research will establish algorithms to estimate
grassland curing routinely across Australia and New Zealand using field techniques
such as destructive sampling and the Levy rod method, and using vegetation indices
from MODIS (MODerate resolution Imaging Spectroradiometer) satellite data. This
research will be advanced through the use of MODIS due to its higher number of
spectral bands than AVHRR. The research questions to be addressed are:

• What is the accuracy of the current satellite curing estimates?
• How may satellite measurements in several spectral bands be best combined to

quantitatively estimate the degree of grassland curing?
• How do factors such as grassland type, soil type, topography and amount of tree

cover influence the algorithm?
• Do very cloudy regions/seasons require a modification to the algorithm to

accommodate less frequent satellite views?



Development of Satellite Vegetation Indices 213

This paper presents the past research on satellite remote sensing of grassland
curing, and compares results from past studies to preliminary results from the
current study.

Background

Grasslands

Within Australia, there are four main vegetation classes; forests and woodlands, cov-
ering 34% of the continent (NLWRA, 2001), shrublands, covering 13% (NLWRA,
2001) and grasslands (Moore, 1970). Including mixes of woodlands and scrublands,
grasslands cover nearly 75% of Australia (Cheney and Sullivan, 1997), consisting of
hundreds of grass species, which have been classified into; crops and pastures, tus-
sock, hummock, coastal and sub-humid grasslands (Groves, 1994). In New Zealand,
the steep and divided relief of the country provides a dramatic variation in climate
and vegetation cover across the land. New Zealand is covered mainly by forests,
grasslands (including pasture/croplands), scrublands, and mixes of these vegeta-
tion types. Grasslands include both native (such as tussock) and pasture grasses.
Native and exotic forests cover less than 20 and 6% of the land respectively, and
‘pure’ grasslands as well as mixes of grass/forest/scrub cover approximately 70%
(Newsome, 1987).

Grassland Curing

Grassland curing is defined as the progressive senescence and drying out of a grass
after flowering (annual) or in response to drought (perennial). The degree of curing
is the fraction of dead material in the grass sward expressed as a percentage (Cheney
and Sullivan, 1997). At the time of year when all of the grass is dead, the grass is
said to be 100% cured (Fig. 1). Luke and McArthur (1978) state that when leaves
and stems die, roots cease drawing moisture from the soil, causing plants to dry out
(Barber, 1979) and become cured.

Grassfires

In comparison to forest fuels, grass fuels are relatively simple in structure (Cheney
and Sullivan, 1997). Grasslands consist of fine fuels, which respond very quickly to
changes in weather conditions and are capable of supporting fires, which develop
and spread rapidly (McArthur, 1966). Grassland fire fuels have an annual life cycle
of germination, growth, maturity and curing (senescence). Depending on the stage
of this life cycle, certain characteristics determine the vulnerability of grass to ignite
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Fig. 1 The life cycle of annual grasses in southeastern Australia. Grasses experience a period of
growth (in Spring) until reaching a stage where they lose their ability to draw up moisture from the
soil. Source: (Garvey and Millie, 2001, p. 3, Copyright CFA, 2006)

and allow fire to spread (Barber, 1992). Grasslands are also unlikely to carry fire
when the curing is less than 50% (Cheney et al., 1998).

Fuel Moisture Content

Fuel is a key ingredient for fire. Along with the fuel’s variability of quantity
and arrangement, the most important aspect is the Fuel Moisture Content (FMC)
(Foley, 1947). As the degree of curing represents the percentage of dead material in
vegetation, the (FMC) refers to the percentage of water in vegetation,

FMC (%) = (
(Ww − Wd)

/
Wd

) × 100 (1)

which is calculated from the wet weight Ww and dry weight Wd of a sample
(Chuvieco et al., 2004). Using data supplied by McArthur (1966), Barber (1990)
established a relationship between field-derived FMC and a Grassland Curing Index
(GCI), based on visual estimates. This relationship converts the FMC to GCI, where
FMC (oven dried weight %) is represented by x.

y =
(
−0.000006295x3

)
+

(
0.0044x2

)
− (1.0721x) + 109.68 (2)

This relationship has been used in several studies (Dilley and Edwards, 1998;
Dilley et al., 2004), and the use of this relationship avoids the uncertainties
that would arise if the GCI was estimated by visual observations (Dilley and
Edwards, 1998), which tend to underestimate the curing value, particularly when
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secondary growth occurs (Anderson and Pearce, 2003; Hosking, 1990; Millie and
Adams, 1999).

Fuel moisture has a significant impact on the combustibility of fuel as the greater
the FMC the higher the specific heat and thermal conductivity of the fuel, requiring
more absorbed heat for the surface layer of the fuel to reach ignition temperature
(Chandler et al., 1983). This required amount of heat is very high for wet fuel, so
its risk of burning is usually quite low (Foley, 1947). The FMC of grasslands is
controlled by temperature and rainfall patterns on a long-term scale, and also by
temperature and relative humidity on a daily basis. However, once the grasses have
reached a certain stage of curing, generally when the FMC has declined to 40%, it
becomes irreversible despite even a major rainfall (McArthur, 1966).

Vegetation Indices

Unlike traditional methods of vegetation assessment, satellite remote sensing pro-
vides a non-destructive and instantaneous monitoring approach at various landscape
scales (Davidson et al., 2005). As plant pigments absorb visible light, vegeta-
tion usually has a low visible reflectance. On the other hand, plants have a high
reflectance in the near-infrared (NIR) to mid-infrared (MIR) part of the spectrum
(Gausman, 1977). Vegetation indices (VIs), based on values of reflectance, are
formed from a combination of spectral bands whose values are divided, multiplied
or added together to obtain a single value that indicates the amount of vegeta-
tion cover (Campbell, 2002; Wiegand et al., 1991). VIs are the most widely used
tools for making quantitative estimates of properties of vegetation (Alexander and
Millington, 2000), as they tell us how densely or sparsely vegetated a region is, and
how much electromagnetic radiation that could be used for photosynthesis is being
absorbed by vegetation. With the use of multispectral remotely sensed data, dif-
ferent indices have been developed. As well as measuring vegetation cover across
the Earth’s surface, these indices can quantify the structure of vegetation, as well
as stem/leaf density and distribution, moisture content, mineral deficiencies, para-
sitic attacks and stand age (Liang, 2004). Various indices have been used to monitor
vegetation cover from a number of different satellite sensors (Paltridge and Barber,
1988). The range of available indices to assess curing in grasslands will depend on
the spectral bands offered by the operational sensors. Three selected indices pro-
duced from MODIS suitable for curing assessment include, NDVI, EVI and NDWI
(Table 1).

Satellite Remote Sensors

Two satellite sensors will be utilised for this research, namely AVHRR (to be used
in the near future) and MODIS, as summarised in Table 2.
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Table 1 Vegetation indices

Index Formula Measurement Reference

NDVI
Normalised
Difference
Vegetation
Index

NDVI =
(NIR − Red)

/
(NIR + Red)

Global
vegetation
changes

(Tucker, 1979)

EVI
Enhanced
Vegetation
Index

EVI = 2.5 · ((NIR − Red)/(NIR
+(6 · Red) − (7.5 · Blue) + 1))

Vegetation
changes in
regions of high
biomass

(Huete et al., 2002)

NDWI
Normalised
Difference
Water Index

NDWI =
(NIR − MIR)

/
(NIR + MIR)

Leaf water
content

(Gao, 1996)

Table 2 General characteristics of MODIS and AVHRR

Satellite EOS-TERRA NOAA

Sensor MODIS AVHRR
No. bands 36 5
Spectral range 0.62–14.38 μm 0.58–12.5 μm
Temporal resolution Daily Daily
Spatial resolution 250, 500, 1000 m 1000 m

AVHRR has been used since the mid 1980s to estimate grassland curing in
southeastern Australia (Anderson et al., 2005). To assess curing across the whole
continent and also New Zealand, an extension to other regions of Australia and
New Zealand requires validation against field data representative of the grassland
types in those regions. The newer MODIS sensor, from which data can be collected
free of charge (from National Aeronautics and Space Administration), can moni-
tor vegetation more precisely than AVHRR (Campbell, 2002), and has the potential
to provide better curing estimates due to its modern design and greater number of
spectral bands. MODIS has the advantages over AVHRR that its spectral bands are
less affected by the atmosphere (Campbell, 2002) and are calibrated on board the
satellite. MODIS, however, is a research sensor, and so does not have the same
security of data continuity as an operational sensor series. Thus an AVHRR-based
curing system should be maintained as a backup, in case of MODIS failure, until
a future sensor, VIIRS (Visible Infrared Imager/Radiometer Suite) is in operation,
which is due to be launched on the NPOESS (National Polar-Orbiting Operational
Environmental Satellite System) and NPP (NPOESS Preparatory Project) satellites
from 2009. For this research, three MODIS products (datasets generated from a par-
ticular algorithm) will be utilised to assess the vegetation indices of selected sites.
Internationally standard software packages are available to enable local satellite
reception stations to process raw MODIS data in near-real-time into products such
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as MOD09 (surface reflectance – 8 day composite), MOD13 (vegetation indices –
16 day composite), and MOD43 (BRDF/Albedo – 16 day composite), where BRDF
is the Bidirectional Reflectance Distribution Function. These products, which have
all been corrected for atmospheric effects, are suitable for use as they avoid any
difficulties that may arise when using raw satellite data, for example, atmospheric
disturbance. The MOD09 product (consisting of the first seven MODIS bands), has a
higher temporal resolution than MOD13 and MOD43, and all products are projected
to a convenient coordinate system. In any case, it is recognised that GIS compati-
bility is a very desirable characteristic for modern operational fire products, and this
will be kept in mind as these research results are moved into operation.

Remote Sensing of Grassland Curing

Remote sensing methods have endeavoured to produce a Grassland Curing Index
(GCI) that is equivalent to field measured curing values. The NDVI-GCI relationship
has been investigated in few studies (Allan et al., 2003; Dilley and Edwards, 1998),
which have shown differing results due to dissimilar methods and regional char-
acteristics. In Victoria, Dilley and Edwards (1998) found that the satellite-derived
GCI decreases exponentially with the satellite-derived NDVI. Similarly, researchers
in Northern Australia found the same exponential decline between visual-curing
values and NDVI over red soils; however, the negative relationship was linear over
black soils (Allan et al., 2003). Alongside the effects of seasonal change, the con-
trasting soils limited the accuracy of these results. It has also been suggested that
there is a direct relationship between FMC and NDVI (Dilley et al., 2004). For
example, Paltridge and Barber (1988) correlated field-based FMC estimates with
satellite-derived NDVI values to find a positive linear relationship. The current
operational method converts NDVI to FMC using the relationship of Paltridge and
Barber (1988), and then converts FMC to GCI using Barber’s (1990) relationship
(derived from a graph supplied by McArthur (1966)) shown in Fig. 2.

Fig. 2 The mathematical
relationship between GCI and
FMC, derived by Barber
(1990). Source: (Garvey and
Millie, 2001, p. 4, Copyright
CFA, 2006)
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The use of the GCI-FMC relationship, investigated in several studies (Dilley and
Edwards, 1998; Dilley et al., 2004), avoids the uncertainties that arise from visual
curing observations, which are significantly less accurate than destructive sampling
(Dilley and Edwards, 1998). However, the GCI-FMC relationship may be species
specific (Gill, 2006).

Methods

To assess grassland curing across Australia and New Zealand, MODIS-derived veg-
etation indices were investigated and compared to field data collected by fellow
Bushfire CRC researchers. Field data were collected from a number of selected
grassland sites (Fig. 3), which cover a variety of climate, topography and grass
types.

Fig. 3 Locations of grassland study sites in Australia and New Zealand

The majority of Australian sites presented in this paper have also been sum-
marised in Table 3, to show the climatic differences and variability in grass type
between sites.

Field Data

Various field methods have been used in past studies to measure grassland curing
and FMC (Dilley et al., 2004). FMC has been estimated using the destructive sam-
pling technique (Barber, 1979). This method entails collecting grass samples from
random sites, weighing, oven-drying for 48 hours (105–110◦C), then reweighing.
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Table 3 Grass species, and annual rainfall of sites in Australia

Site Grass Species
Mean Annual
Rainfall (mm)∗

ACT Majura Tall Spear grass, Tall fescue, Wall
Fescue, Common Wheat grass

611

Tidbinbilla Fringed Fescue, Tall fescue,
Phalaris, Weeping grass

862

NSW Braidwood Wall Fescue, Kangaroo grass 706
VIC Caldermeade Rye grass 855

Kaduna Rye grass 855
QLD Jerona Salt Couch, Black Spear grass 907

Lakefield Black Spear grass, Kangaroo grass,
Paspalum, Love Grass

1146

Ryans Farm Black Spear grass, Urochloa grass 907
WA Silent Grove [Blacksoil] Spear grass, Buffel Grass, Mintbush,

Golden Beard grass
932

Silent Grove [Sandstone] Spear grass, Spinifex, Golden Beard
grass

932

Parry Lagoons Three-awned Spear grass,
Native Annual Sorghum, Sand
grass,
Wanderrie grass

754

Lorna Glen Wanderrie grass, Love grass, Spinifex,
Curry flower

230

∗ Rainfall data collected from the Bureau of Meteorology, 2007.

Grassland curing has been estimated in the past by visual observations, using a
photo guide. These observations generally underestimate the curing value, particu-
larly when secondary growth occurs (Anderson and Pearce, 2003; Hosking, 1990;
Millie and Adams, 1999).

Field data have been collected by Bushfire CRC researchers throughout Australia
and New Zealand. Only a portion of these data however, are presented in this paper.
The three methods used to estimate curing were destructive sampling, visual obser-
vations and Levy rod sampling. Destructive sampling of curing involved collecting
grass samples in the field and sorting them into live and dead material in the labora-
tory, then oven-drying and weighing these live and dead components to calculate the
proportion of dead fuel. Visual assessments were made by observers in the field, esti-
mating the proportion of dead grass present. The Levy rod method is a modification
of that proposed by Levy and Madden (1933), and entailed counting live and dead
grasses that come in contact with a thin steel rod placed vertically into the ground
at several points along a transect (Anderson et al., 2005). As the visual assessments
of grassland curing have shown to be least accurate in a CRC study (Anderson
et al., 2006), data derived from the destructive sampling and Levy rod methods are
presented in this paper. Dead and combined (live and dead) fuel moisture samples
were also collected from most sample sites.
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Satellite Data

For each MODIS tile (geographic areas in which MODIS products are dis-
tributed), 68 MOD09 images (12 July 2005–27 December 2006), and 32 MOD13
images (from ACT) (26 June 2005–10 October 2006) were collected from
the Land Processes Distributed Active Archive Center (http://edcdaac.usgs.gov/
datapool/datapool.asp). The two Collection 4 MODIS products are as follows:

• MOD09A1: 8-day 500-m surface reflectance.
• MOD13A1: 16-day 500-m vegetation indices.

To reduce uncertainty in the results, the 500 m-resolution data were averaged
over a 3 × 3 pixel area for each site, which was required to be uniform in grassland
cover for accurate satellite-surface comparisons.

Results and Discussion

NDVI-time series (2005–2008) were generated from MOD09 at each field site and
supplied from MOD13 for sites in the ACT. For each site across Australia and New
Zealand, this process will be repeated for MOD09 over the next year. Using MOD09
data, the NDVI is plotted (Fig. 4) from August 2005 to February 2008 in Queensland
and northern Western Australia. The NDVI generally peaks in autumn, mainly due
to heavy monsoonal rains in summer. High variation is found between the sites,
particularly throughout the curing period (in the winter months).

Fig. 4 Northern Australia NDVI Time series. Mean MOD09-derived NDVI, 500 m-resolution
(3 × 3 pixel window) from two sites in Queensland (Jerona, Ryans Farm), and four sites in northern
WA (Silent Grove [Blacksoil], Silent Grove [Sandstone], Parry Lagoons, Lorna Glen), 2005–2008
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Fig. 5 Southern Australia NDVI Time series. Mean MOD09-derived NDVI, 500 m- resolution (3
× 3 pixel window) from two sites in the ACT (Majura, Tidbinbilla), one site in NSW (Braidwood),
two in VIC (Caldermeade, Kaduna) and one site in southern WA (Simcocks), 2005–2008

In contrast, the NDVI in sites from southern Australia (from July 2005 to
February 2008) generally shows spring to be the ‘greenest’ season of each year
(Fig. 5).

The maximum NDVIs in southern Australia were much lower in 2006 than in
2005 and 2007. As the summer period approaches, the NDVI declines as grasslands
are likely to cure. The variations between sites are large, and differences between
the sites were observed in the timing of senescence. Peaks are also observed (partic-
ularly in Braidwood) throughout later summer to autumn (2006), due to secondary
growth following rain. The annual cycle of NDVI is expected to vary through-
out Australia and New Zealand due to different soil and grass types, and climatic
and topographic variability. Throughout northern Australia, for example, NDVI is
expected to decline throughout winter. In contrast, the NDVI in southern Australia
decreases in summer.

The MOD09 time-series from Majura (ACT) is also presented in Fig. 6 for com-
parison with the MOD13 NDVI time-series, which uses a different compositing
algorithm.

There is very little variation between the two MODIS products (root mean square
difference of 0.033); however, MOD09 has an advantage with an enhanced 8-day
temporal resolution, compared to 16 days for MOD13. In agricultural regions (con-
sisting of grasslands and cereal crops, including wheat, maize, and mainly rice) of
Southern China, Cheng (2006) found that MOD13 NDVI had a slightly closer cor-
relation with ground data than MOD09 NDVI. Similarly, over selected cotton fields
in the southwestern part of USA, McKellip et al., (2005) found less noise for the
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Fig. 6 MOD09 and MOD13 NDVI. MOD09 and MOD13-derived NDVI in Majura (ACT) from
July 2005 to November 2006

MOD13 NDVI time-series than that of MOD09. In this current study, MOD13 and
MOD09 NDVI were closely related, yet slight variability was found between the
two products. These differences will be examined in future; for now it is fair to sug-
gest that both products deliver similar information. As Cheng (2006) and McKellip
et al. (2005) suggested good data was retrieved from MOD13-derived NDVI, they
found that MOD09 had an advantage with its higher temporal resolution. Therefore,
MOD09 NDVI has been compared, for this study, with field measurements.

The period in which NDVI decreases, is generally the period in which grassland
curing occurs. As illustrated in Fig. 4, the NDVI in northern Australia decreases
from May to October, which is the expected time for grasslands to cure in this
region. As shown in Fig. 7a, the NDVI of three sites in northern WA has shown
to decrease, while curing increases (Fig. 7b).

Fig. 7 Time series of (a) MOD09-derived NDVI, and (b) Levy rod curing, during the 2006 curing
period in Parry Lagoons, Silent Grove [Sandstone], and Silent Grove [Blacksoil] (northern WA)
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Fig. 8 FMC and NDVI.
Field-derived FMC
(destructive sampling) and
MOD09-derived NDVI. From
Majura (ACT), Parry Lagoons
(northern WA), Caldermeade
and Kaduna (Victoria),
2005–2008, with the
FMC-V0 relationship from
Paltridge and Barber (1988)

The relation between NDVI and curing will be discussed later in this paper.
Firstly, Paltridge and Barber (1988) correlated a full cover Vegetation Index

V0 = (NIR − 1.2 · Red)
/
(NIR + Red) (3)

with FMC in Victoria. This index uses the coefficient of 1.2; the best-fit line for
non-vegetated surfaces, calculated from plotting the red against the NIR radiance
(Paltridge and Barber, 1988). A positive linear relationship was found between V0
and FMC until the FMC reaches 250%. Above this percentage, the grass does
not appear any greener. Therefore the V0 will not continue to increase. A similar
relationship was found between field-derived FMC and MOD09-derived NDVI in
Majura (ACT), Parry Lagoons (northern WA), Caldermeade and Kaduna (Victoria)
from 2005 to 2008 (Fig. 8). The four field sites show a similar NDVI-FMC rela-
tionship, even though they are of differing grass type (Table 3), in contrasting
soils and in different climate zones. Compared to Paltridge and Barber’s (1988)
FMC-V0 relationship, however, the NDVI from both sites does not decrease to 0
with 0% FMC.

According to Barber (1990), FMC has a cubic relationship with grassland curing
(Fig. 2). The results obtained from Braidwood (NSW), displayed such a relationship
(Fig. 9). As the visual observations are less accurate, only the Levy rod and destruc-
tive sampling methods were considered, and are presented with the FMC-curing
curve from Fig. 2. Further data collection is obviously required, and the relationship
may also vary between sites. So far, the FMC-destructive curing relation, roughly
follows the curve derived from Barber (1990), with an offset of about 10%.

The Levy rod method has generally been found to be accurate when used in
grasslands in Eastern Australia and New Zealand, as demonstrated by its agreement
with the destructive curing estimates (Anderson et al., 2006). In this case, how-
ever, the FMC-Levy rod curing relation differs from Barber’s (1990) curve and the
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Fig. 9 FMC and Grassland
Curing. The correlation
derived by Barber (1990),
with the FMC-Curing
relationship from 2005 to
2006 field measurements in
Parry Lagoons (WA) (using
two methods)

Fig. 10 Destructive Curing,
against MOD09-derived
NDVI and EVI in Parry
Lagoons, (WA) 2005–2008,
with the NDVI-GCI curve
from (Dilley et al., 2004)

FMC-destructive curing curve by up to 20%. Therefore, destructive curing has been
correlated with EVI and NDVI (Fig. 10).

The relation between these indices and grassland curing (ranging from 40 to
100%; the critical range of medium to high fire danger) is similar to the relation
between NDVI and grassland curing found in several past studies (Allan et al., 2003;
Dilley and Edwards, 1998), which are based on AVHRR-derived NDVI and visu-
ally assessed curing values. The exponential curves of best fit (not shown) for each
method do not support strong correlations; however, data are limited.

Various vegetation indices will be analysed to identify which index correlates
best with curing measurements. At this stage, it is uncertain which index will be the
most appropriate to assess grassland curing across Australia and New Zealand, or
whether the vegetation index – curing relationship will vary regionally.
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Conclusions

To support bushfire management, this research aims to deliver a satellite based cur-
ing assessment method that is applicable across Australia and New Zealand. In
summary, the NDVI annual cycle has illustrated definite differences between sites
from northern and southern Australia due to climatic differences. Results have also
shown that grassland curing occurs in the period of time when NDVI decreases.
Current results, which compared MOD09-derived NDVI with field-derived cur-
ing measurements, show similar trends to the findings from past studies; however,
these past studies either cover southeastern Australia only, or are based overseas.
Therefore, variation in results between this project and past research is expected.
The information produced from this project will lead to improved assessments of
the degree of curing in grasslands across Australia and New Zealand, thereby pro-
viding sound science to support fire management in protecting life and property
from grassfires, as well as using fire safely and effectively.
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Assessment of Grassland Curing Using
Field-Based Spectrometry and Satellite Imagery

Danielle Martin, Simon Jones, Ian Grant, and Stuart Anderson

Abstract Depending on a grass’s growth stage, certain curing characteristics deter-
mine the vulnerability of grass to ignite or to propagate a fire. The current curing
input into fire behaviour models and fire danger rating systems in Australia and New
Zealand is generally based on visual estimates, which are widely recognised by both
researchers and end-users as being inaccurate and thus causing uncertainty in system
outputs. This Bushfire Cooperative Research Centre (CRC) project aims to develop
improved methods to assess grassland curing across Australia and New Zealand.
This paper reports on one component of the CRC project, which has focused initially
on vegetation indices derived from EOS MODIS (MODerate resolution Imaging
Spectroradiometer) satellite data. Results suggest a positive correlation between
these satellite data and field data for curing assessment. Methods include destructive
sampling, visual observations and Levy rod sampling. More comprehensive field
data collection has been conducted in Victoria, entailing measurements of spec-
tral reflectance signatures of grasslands using an ASD Fieldspec Spectroradiometer
covering the wavelength range 350–2500 nm. These measurements identify which
regions of the visible to mid-infrared spectrum best correlate with field data col-
lected for curing assessment. The information produced from this project will lead
to improved assessments of the degree of curing in grasslands across Australia and
New Zealand, thereby providing sound science to support fire management in pro-
tecting life and property from grassfires, as well as using fire safely and effectively.

Background

The degree of curing, defined as the drying out and dying of grasses, reflects the
proportion of dead material in a grassland fuel complex (as a percentage), and has

D. Martin (B)
Space Based Observations Section, Bureau of Meteorology; School of Mathematical and
Geospatial Sciences, RMIT, Melbourne; Bushfire Cooperative Research Centre, East Melbourne,
VIC, Australia
e-mail: Danielle.Martin@bom.gov.au

229S. Jones, K. Reinke (eds.), Innovations in Remote Sensing and Photogrammetry,
Lecture Notes in Geoinformation and Cartography, DOI 10.1007/978-3-540-93962-7_18,
C© Springer-Verlag Berlin Heidelberg 2009



230 D. Martin et al.

a strong influence on the ability of fire to develop and spread, and the rate at which
it spreads (Cheney and Sullivan 1997). The current curing input into fire behaviour
models and fire danger rating systems in Australia and New Zealand is generally
based on visually assessed field data and AVHRR (Advanced Very High Resolution
Radiometer) satellite data. Both of these techniques have inherent problems and
have lead to inaccurate assessment of grassland curing (Anderson et al. 2005).
This can have major implications for fire management, particularly in terms of fire
prevention and control, as well as the effective use of fire in prescribed burning pro-
grams. The accurate assessment of grassland curing has been the subject of past
research throughout Australia (Allan et al. 2003, Barber 1979, Barber 1989, Dilley
et al. 2004, Hosking 1990, Millie and Adams 1999, Paltridge and Barber 1988),
mainly in the south-eastern corner of the continent. In south-eastern Australia, cur-
ing generally commences around late spring (see Fig. 1, Martin et al. this volume).
However, in drought – affected areas, the onset of this process can occur much
earlier (Barber 1989).

Vegetation characteristics that can be assessed via satellite remote sensing
include Fuel Moisture Content (FMC) and curing percentage (chlorophyll con-
tent and colour of vegetation) (Barber 1992). Moisture content can be estimated
using a number of spectral wavelengths centred on 970, 1200, 1450, 1950, and
2250 nm (Sims and Gamon 2003, Danson and Bowyer 2004, Davidson et al. 2005).
Chlorophyll content is dependent on grass-species, leaf-age, phenological stage and
leaf-health, as well as site specific factors such as shading. The main chlorophyll
absorption bands are located in the blue and red bands, located 375–495 nm and
600–700 nm (Knipling 1970, Daughtry and Biehl 1985). Assessing either FMC or
chlorophyll content, past studies have monitored, mostly using vegetation indices,
pastures and crops in Victoria (Paltridge and Mitchell 1990, Paltridge and Barber
1988, Dilley et al. 2004, Dilley and Edwards 1998), tropical savannas in northern
Australia (Allan et al. 2003), grasslands and shrublands in Spain (Chuvieco et al.
2004), grasslands and cereal crops in China (Cheng 2006) and cotton fields in
the USA (McKellip et al. 2005). A number of different large area satellite sen-
sors, such as AVHRR (Advanced Very High Resolution Radiometer) and MODIS
have been widely used in past studies. This paper explores which MODIS bands
correlate well with curing, via collection of spectral signatures from two Victorian
sites, Caldermeade and Kaduna, for comparison with the MODIS measurements.
These spectral readings are then utilised to identify which regions of the visi-
ble to mid-infrared spectrum best correlate with field data collected for curing
assessment.

Methods

Throughout Australia and New Zealand, the Bushfire CRC has collected in situ cur-
ing measurements from 46 grassland sites. After assessing the representativeness
and data quality of these sites 29 were selected for comparison with EOS MODIS
(see Fig. 3, Martin et al this volume). From November 17th 2007 to February
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18th 2008, two of these sites (Caldermeade and Kaduna) also included in situ
spectral measurements using an ASD Fieldspec Spectroradiometer (350–2500 nm).
Caldermeade and Kaduna are located 70 and 50 km southeast of Melbourne respec-
tively, and both sites (used for cattle grazing) consist of improved pastures, with rye
grass (Lolium perenne) being the dominant species.

Grassland curing was assessed at Caldermeade and Kaduna using three methods;
visual observations, destructive sampling and Levy rod curing. For a full descrip-
tion of this method please see Martin et al. this volume. As visual assessments of
curing have shown to be least accurate in past research (Anderson et al. 2006),
and the destructive sampling technique was used less frequently in this study, data
derived from the Levy rod method have been presented in this paper. The satel-
lite data generated from MODIS are arranged into various sets of products. The
product used for this study (MOD09A1) provides an estimate of surface spec-
tral reflectance, at a 500 m resolution, corrected for atmospheric scattering and
absorption, to provide an 8 – day temporal composite. Out of 36 MODIS bands,
MOD09A1 provides the first seven, which are listed in table 1. These bands are
located in the visible (380–720 nm), Near Infrared – NIR (720–1300 nm) and Mid
Infrared – MIR (1300–3000 nm) regions of the spectrum (Campbell 2002). In the
wider context of the CRC curing research, these bands are used to calculate vari-
ous vegetation indices. To identify which of these bands offer maximum utility in
curing research, this paper compared each MOD09A1 band with the in situ curing
measurements.

Table 1 MODIS surface reflectance bands (NASA 2004)

Band Spectral region Wavelength (nm)

1 Red 645
2 Near Infrared – NIR 857
3 Blue 466
4 Green 554
5 Near Infrared – NIR 1242
6 Mid Infrared – MIR 1629
7 Mid Infrared – MIR 2114

To obtain satellite data for the two Victorian sites, MOD09A1 images were
gathered from one MODIS tile (a geographic area in which MODIS products are
distributed). Thirteen of these images (all from Collection 5) were collected from
the Land Processes Distributed Active Archive Center (http://edcdaac.usgs.gov/
datapool/datapool.asp). To reduce uncertainty in the results, the 500 m resolution
data were averaged over a 3 × 3 pixel area for each site for accurate satellite-
surface comparisons. These averaged values were produced from each 8 – day
composite, which have been compiled throughout the curing sampling period. On
each day of curing sampling, field spectroscopy was utilised to investigate the
changes in spectral reflectance of grass, as curing progresses. An ASD Fieldspec
Spectroradiometer was used, covering the spectral range between 350 and 2500 nm.
With measurements taken at nadir, the spectroradiometer 8◦ lens was mounted on
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a tripod 108 cm from the surface, resulting in a field of view diameter of 30.4 cm.
To account for spectral variability across the site, these spectral measurements were
collected every 2 metres along a 20 m transect. This process was repeated along a
second transect located perpendicular to the original. At every 2 m interval, a min-
imum of 15 readings were taken. To calibrate for changing illumination geometry
and to convert readings into reflectance factors, a white reference Spectralon panel
was used, and held 15 cm below the 8◦ lens. The frequency of use was dependent
on weather conditions, but as a minimum, one spectralon sample was collected at
each sample point.

Results and Discussion

MODIS data were correlated simultaneously with in situ curing measurements for
all sites around Australia and New Zealand. In this paper, preliminary results are
presented from the Caldermeade and Kaduna sites in Victoria, from November
17th 2007 to February 18th 2008. In addition to curing and MODIS data com-
parisons, these measurements have been compared with in situ spectral mea-
surements. To understand the changes in spectral reflectance as grassland curing
progresses, Fig. 1 represents the spectral signatures of grassland produced by an
ASD Spectroradiometer.

Each curve is the reflectance spectrum on a particular day, and is coloured accord-
ing to the (Levy rod) curing value on that or the nearest day. To follow on from these
ASD – derived reflectance spectra, the reflectance spectra illustrated in Fig. 2 were
generated from MODIS bands 1 to 7 (Table 1) (after the approach of Zarco-Tejada
et al., (2003)), again, coloured according to curing values. Since these reflectance

Fig. 1 Spectral signatures derived from an ASD Spectroradiometer at (a) Caldermeade (30-11-
07–22-01-08) and (b) Kaduna (28-12-07–19-02-08). Areas with gross atmospheric scattering have
been removed, resulting in a gap between 1800 and 1960 nm
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Fig. 2 Spectral signatures of grasslands generated from MOD09’s seven bands at (a) Caldermeade
(30-11-07–19-02-08) and (b) Kaduna (18-12-07–19-02-08)

signatures have only seven reflectance values the water and chlorophyll absorption
features are less prominent than those presented in Fig. 1.

Vegetation spectral signatures are characterised by low reflectance in the visible
and MIR (controlled by pigment and water absorption features) and high reflectance
in the NIR (dominated by cell structure) (Cheng et al. 2006, Daughtry and Biehl
1985, Knipling 1970). The low reflectance in the visible spectrum is due to leaf
pigments, primarily chlorophylls, although, carotenoids, xanthophylls and antho-
cyanins also have an effect (Knipling 1970). As leaves grow and mature, chlorophyll
concentrations are suggested to increase (Gates and Tantraporn 1952), creating high
absorption in the red and blue wavelengths (MODIS bands 1 and 3 respectively).
This is shown in Figs. 1 and 2. As leaves senesce (cure), chlorophyll levels decline
(Gates and Tantraporn 1952). In the NIR, there is little or no electromagnetic radi-
ation absorption by leaf pigments (Gausman 1977, Knipling 1970), resulting in a
region of high reflectance from 750 to 1300 nm (illustrated clearly in Fig. 1), known
as the NIR plateau (Belward and Lambin 1990). As curing commences, lack of
moisture causes the internal leaf volume to decline and the number of cell inter-
faces to increase, resulting in a rise in NIR scattering and hence reflectance (Rock
et al. 1988, Knipling 1970). Figure 1b illustrated a minor trough for green grass at
970 nm, owing to a water absorption band, which does not feature in the coarse
MODIS spectra (Fig. 2). This trough tends to vanish from the spectrum when
vegetation loses its moisture (Rahman et al. 2003). As well as two minor water
absorption bands (970 and 1200 nm) located in the NIR, water content generally
controls the reflectance spectra in the MIR wavelengths at 1450, a major trough
shown in Fig. 1, and also at 1950 and 2250 nm (Davidson et al. 2005, Danson
and Bowyer 2004, Sims and Gamon 2003). Leaf reflectance in the MIR is there-
fore inversely related to water content (Gates and Tantraporn 1952, Belward and
Lambin 1990). However, the sensitivity of reflectance to change in water content
is wavelength dependent (Danson and Bowyer 2004). Both Figs. 1 and 2 show that
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Fig. 3 Comparisons between MOD09 and ASD simulated reflectance values at Caldermeade

even though both sites received similar amounts of rainfall during the study period
(located 20 km apart), and also consist of the same grass type and land-use inten-
sity, Caldermeade reached a higher degree of curing than Kaduna. Resembling past
studies of vegetation water content (Danson and Bowyer 2004, Pu et al. 2003), both
figures indicate that as grasses cure, the surface reflectance tends to increase in the
visible, decrease in the NIR, and increase in the MIR. Similarly, a study in central
Spain compared the reflectance spectra of Mediterranean grasslands with different
FMC values. Even though Yebra et al. (2008) found a lower FMC to result in a
slightly lower reflectance in the visible, the spectra demonstrated a lower and higher
reflectance in the NIR and MIR respectively, similar to the spectral responses shown
in Figs. 1 and 2.

To validate the MODIS surface reflectance using field spectroscopy, all seven
MOD09 bands were then compared with the seven simulated MOD09 bands gen-
erated from the ASD spectroradiometer at the Caldermeade site (Fig. 3). In order
to synchronise the MODIS data with the field data, the spectral measurements were
matched with the closest date of MODIS data. Even though the field data cannot be
entirely coincident with the time of over-flight, the field data collection should gen-
erally bracket the satellite overpass time (McCoy 2005), hence, fall within the 8-day
composite. Therefore, to match up these data, some data points were removed.

Each ASD reflectance spectrum (in Fig.3), was multiplied by the relative spec-
tral response curve of each MODIS band (Jupp 2003) and summed to give seven
simulated MODIS reflectance values. These comparisons in Fig. 3 demonstrate that
for all bands, the MOD09 and ASD simulated values agree well with little bias,
as shown by the closeness of the points to the one-to-one line. Excepting band 7
with an outlier resulting in a higher Root Mean Square (RMS) (Fig. 3 g), the scatter
is generally small. This agreement demonstrates that the MOD09 product, which is
the result of an atmospheric correction, provides accurate surface reflectance values,



Assessment of Grassland Curing Using Field-Based Spectrometry and Satellite Imagery 235

Fig. 4 Relationship between Levy rod curing (%) and each MODIS Band (derived from MOD09
‘MOD’, and from ASD field spectroscopy ‘ASD’) at Caldermeade

at least at the Caldermeade site. It also gives confidence that the field locations and
sampling methodology of the spectroscopy yield values that are representative of the
MODIS scale. By implication, the Levy rod measurements are representative of the
MODIS scale because they are sampled on the same transect as the spectroscopy.
Therefore, assuming from Fig. 3 that both the MOD09 and ASD spectral data have
the same relationship with curing, the band sensitivity to curing was then examined.
Figure 4 compares, for each band, the MODIS and ASD simulated reflectance with
Levy rod curing (ranging from 52 to 83%) at Caldermeade.

Referring to Figs. 1a and 2a, the reflectance spectra at Caldermeade had changed
as curing progressed, particularly in the water and chlorophyll absorption bands.
One of the minor water absorption bands, at 1200 nm, is located adjacent to Band 5
(1242 nm) on the spectrum. Past studies have used this band, as well as Bands 2 and
6, to estimate vegetation water content (Zarco-Tejada et al. 2003, Cheng et al. 2006),
and as water content (in this case FMC) relates with curing (Dilley and Edwards
1998, Barber 1979, Dilley et al. 2004, Millie and Adams 1999), the Levy rod curing
estimates were expected to show a spectral response at this wavelength (Fig. 4e).
Reasons for such a poor relationship between Band 5 and curing remain uncertain,
however, spectral reflectance had changed with curing for the other 6 MOD09 bands.

Conclusions

In summary, the reflectance spectra of grasslands at both Victorian sites illustrated
definite differences between green and cured grass due to the affects in the water
and chlorophyll absorption bands. In situ observations of curing using the Levy Rod
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method were found to correlate well with MOD09A1 spectral responses and be
broadly representative of the monitored sites. The relationships found between cur-
ing estimates, MODIS data, and ASD field spectroscopy will help identify which
vegetation indices are most useful for curing assessment, and will assist in creat-
ing a possible new index. The information produced from this project will lead to
improved assessments of the degree of curing in grasslands across Australia and
New Zealand, thereby providing sound science to support fire management in pro-
tecting life and property from grassfires, as well providing for the safe and effective
use of fire.
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Airborne Fire Intelligence

R. Cook, A. Walker, and S. Wilkes

Abstract A bushfire is part of the Australian summer landscape. Over the past two
decades there has been an increasing use of aircraft, both fixed and rotary wing, for
water bombing and the gathering of fire intelligence. In Australia prior to 2001,
the gathering of airborne fire intelligence was mostly catered for by the use of
paper maps that were subject to considerable operator error, delays and risk get-
ting the information to the incident management team. The delay and risk factors
were generally caused by airborne drops over pre-determined zones, or the aircraft
needing to land to supply paper maps with hand drawn fire activity information, or
by verbal passing of intelligence over congested radio frequencies.

Recent years have seen an increasing use of computer based airborne mapping sys-
tems, line scanners and infrared devices and cameras. These systems can be complex
to operate and require careful coordination on a state-wide basis to ensure that the
various incident management teams receive timely, readily understandable and use-
ful information. These new systems, however, enabled the relevant authorities from
2001 on to make soundly based and timely fire fighting decisions with otherwise
limited resources.

This paper is based on bushfire experience gained in NSW and the ACT during the
years 2001–2003. It looks at the aircraft based fire intelligence systems used and the
coordination of these systems together with fire weather, predictive fire behaviour,
assets under threat and local knowledge perspectives. Hopefully the work that has
been undertaken will stimulate discussions as to what is best practice to fully utilise
these limited and expensive tools in fire management.

Introduction

Traditionally, bushfire incident management teams needing spatial coordination and
planning data relied on the use of 1:25,000 scale topographic maps that were often
considerably out of date; some not printed since the change to metric maps in 1966.
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In the late 1980s and early 1990s, digital data derived from these sources was being
increasingly made available for the use of emergency services staff for incident and
operational management.

At the local grass roots level, some emergency managers were already aware or
became aware of the short comings of basic data for incident management. Some
local regions developed and operated various configurations of ‘community map-
ping’ to improve the data and keep it current and accurate (McRae and Walker,
2001). Community mapping, as the name implies, is a local consortium of land
managers, response agencies and volunteers who undertake data collection and
upkeep in an agreed manner. The use of simple Geographical Information Systems
(GIS) together with this enhanced community gathered data enabled local emer-
gency managers to rapidly locate the incident, check its authenticity, and dispatch
appropriate resources. In most cases, local areas achieved considerable cost savings
as a result of better utilisation of their scarce resources.

The NSW Rural Fire Service (NSW RFS) for the years up to 2001 mainly relied
on fire information collected from the fire ground (or from aircraft when these were
available) and drawn on paper maps. In many cases the information gathering was
a slow process (the aircraft had to land or the vehicle had to be driven back to the
incident control centre and the data transcribed on to a map) and was often of poor
quality due to many factors. Up to this time many in incident management teams
thought that airborne fire intelligence gathering sorties were expensive exercises in
futility. Concurrent with this at times of extreme State-wide fire activity, data from
an airborne Daedalus line scanner (a multispectral system with 12 bands ranging
from the visible, through the near infrared, shortwave infrared to the thermal infrared
wavelengths) system (Air Affairs Australia Pty Ltd (AAA)) was flown only at night
using the thermal infrared channel (Fig. 1). Incident management teams usually
found them difficult to relate to their particular fire incident as the results were often
hours old, could not be rapidly geolocated or easily interpreted. Also, as this product
was not rectified, it could not be overlain by topographic or other data (such as
cadastre and property information) in a GIS.

In October 2001, the NSW RFS obtained the services of Image Analysis &
Mapping Pty Ltd (IAM) to provide a review of and recommendations for the use
of this airborne scanner system. Most of this work was carried out in northern NSW
during an actual fire situation early in the fire season of 2001. The review centred
on the requirement of fire incident operations staff to transfer fire front data from
the scanner imagery on to the NSW RFS’s standard incident management 1:25,000
scale map backgrounds. A further requirement was to provide the digital data in a
form that could be easily understood by the incident management teams.

Local GIS platforms facilitated the rapid exchange of data particularly during
emergency incidents. Fire mapping software such as ‘PyroMap’TM and ‘Incident
Management Tools’ developed during 2002 (PyroLogicaTM) increased the power
of GIS. Also, community sourced GIS data enabled the rapid mapping of emer-
gency incidents, both on the ground and from airborne platforms such as helicopters.
Recently, due to the ‘Cinderella factor’ nature of these developments, many
vested interests attempted to push various inappropriate and insufficiently evaluated
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Fig. 1 Raw Daedalus night
TIR fire image north of post
Macquarie, October 2001

technologies for these purposes at the local level. As an example, there are some
very good and very poor instances of this situation in web enabled systems that are
in use in various States and Territories throughout Australia.

The ability to collect very accurate information and produce maps using the best
possible information at the local level ensures the best possible safety for emer-
gency workers. The Canberra fires of 2003 (where the methods described were used)
clearly demonstrated this and could be the most comprehensively mapped bushfires
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in the long history of fire in the landscape of Australia. This ability at the local
level to produce such accurate maps and enable the information to be transmitted
between locations meant that it could also be rapidly transmitted in digital form to
regional offices and headquarters enabling better planning of emergency resources.
The digital data supplied enabled a planned approach to all incidents on a state wide
basis and improved the efficiency of the intelligence capture process. This becomes
particularly important during post-incident coronial enquiries.

The discussion describes the processes developed and employed by the NSW
RFS between 2001 and 2003 to improve the operational management of bushfires.

Fire Intelligence

Good coordination results from the supply of accurate and timely information. The
forward deployment of Geographical Information Systems at the district (fire, local
government, etc) level increased the supply of accurate and timely information to
many fires across the state. At NSW RFS headquarters the information could be
made up of satellite (NOAA AVHRR) data identified hotspots (thermally hot areas),
lightning strikes and current and forecast weather conditions (BOM) over the fire
ground. Headquarters could then readily see those incidents that required addi-
tional management. In these cases, the Daedalus airborne scanner was tasked to
fly a carefully planned flight pattern over fires to obtain data on which to base the
increased deployment of resources. The efficient fighting of fires is becoming an
expensive exercise, in part due to the increased use of aircraft and in particular of
water bombing aircraft. This is a cost that will more than likely continue to increase
with changing climatic conditions that may well lead to not just more bushfires but
to more serious (intense) bushfires. This will increase requirements for and demands
on ground and airborne reconnaissance systems.

To improve such systems, further research is required for fire management coor-
dination, communication systems, aircraft instrument scanning and other instrument
systems use and to deliver overall reductions in the cost of fire fighting operations.
An example of cost reductions would be by way of a decrease or at least a better
use of water bombing aircraft provided for by the more cost effective use of air-
borne scanner and other fire intelligence data. Possible research examples are the
filtering techniques used for lightning strike data to improve its accuracy for those
strikes most likely to start a fire, and post-fire research to investigate and analyse
airborne data acquired during fire incidents. Another technology the NSW RFS has
been using is a thermal infrared camera (FireSearch Pty Ltd) that is mounted on a
fixed wing aircraft for mapping hotspots near to the fire edge and particularly for
mopping up operations.

Coordinating resources across a large area such as NSW requires accurate and
timely intelligence on bushfire situations across the State. Bushfire suppression and
property protection is most critical when fire conditions are extreme. When this is
the case, available resources are stretched to the limit and assistance is often sought
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from other jurisdictions. Unbiased, accurate and consistently collected information
obtained across the range of situations is needed quickly to ensure the resources
are deployed safely where they are most efficiently used. This requires confidence
in the decisions made which can only be achieved by having confidence in the data
provided. This can be achieved, at least in part, by having standardised GIS mapping
methods, attributes (metadata) and depiction (appearance), plus personnel trained to
understand not only what the data shows but also the limitations of such data and
derived information.

During the bushfire seasons of 2001–2003, a system of intelligence gather-
ing using various techniques was established and supplied the NSW RFS and
other stakeholders with accurate, timely and highly relevant information to enable
coordination of fire management across the state.

Daedalus Airborne Scanner

Up to the 2000–2001 fire season, the Daedalus airborne line scanner did not have an
attitude correction system installed to enable the scanner data to be geographically
located. Figure 1 (above) is an example of the type of basic raw data product that
was used up to this time. In the night time TIR example given, the fire front appears
white with the area burnt from behind the fire front and up the image having a
speckled appearance. Some cloud is also evident. As can be seen, such an image is
not particularly useful in this form.

IAM’s review of the scanner system highlighted the need (to AAA and NSW
RFS) for the scanner to have an attitude correction system installed.

Four of IAM’s recommendations included:

1. An upgrade to the AAA scanner to provide accurate geographic location of the
data.

2. That the RFS install an air-to-ground data down link system.
3. That the RFS set up a permanent spatial data group for rapid response processing

of the airborne data.
4. That with the above systems in place, the scanner also be used for day time

monitoring of fires using multispectral bands as well as night time with thermal
infrared (TIR) data only.

By mid 2002, AAA had upgraded their airborne scanner with an attitude correc-
tion system that allows the scanner data to be geo-rectified. Further to this, IAM
had software developed that uses the scanner attitude correction system data (pro-
viding X, Y, Z, roll, pitch and yawl locations for each line scanned) to rectify the
scanner data.

During the 2002–2003 bushfire season, the NSW RFS made full use of the
upgraded Daedalus scanner system with fire activity images produced shortly after
the data was received and dispatched to the GIS unit at operations headquarters,
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Fig. 2 Rectified and
processed Daedalus data
showing bushfire intensity

regional offices and other authorities such as the NSW NPWS, NSW State Forests,
metropolitan brigades and police. This data was very well received by all who under-
stood what the data provided. Figure 2 (below) is an example of the type of output
from this upgraded system. This particular example with a spatial resolution of 8 m
is of the Canberra bushfires of January 2003 and is located to the west of Canberra.
Brindabella Valley can be seen in the southern half of the image. After rectification
and with appropriate image processing, nearly all of the cloud and smoke is removed
providing images that not only show the status (intensity, volatility), locations and
directions of fire fronts and spot fires but also of varying fire intensity and existing
and potential property and environmental damage. The white to yellow area of fire
in the centre of the image indicates that the fire is very intense and taking a run.
The red areas indicate less intense fire and where the fire has already burnt through.
The blue areas are of very dense smoke that includes ash and other debris. Daedalus
data in this form is a considerable improvement over the raw TIR night time data as
shown in Fig. 1 and is invaluable to fire operation management teams as it allows
them to accurately assess fire conditions, where to send available resources and plan
further fire fighting activities.

The Daedalus system has also been flown over post-bushfire areas throughout
NSW and the ACT and provides a very effective means of mapping the final fire
extent and of determining fire severity. This is of particular importance where prop-
erty damage has occurred. An example of this is provided in Fig. 3 that is a mosaic
of 19 runs of orthocorrected data at 3 m spatial resolution over the Canberra bushfire
affected region of 2003 (data acquired April/May 2003).



Airborne Fire Intelligence 245

Fig. 3 Daedalus post fire
data of the Canberra area
bushfires of January 2003.
This mosaiced image
comprises 19 runs of data at 3
m spatial resolution

This and other such data has been extensively used by various authorities to help
determine fire severity and the consequential impact on property and the natural
environment and can be used as evidence in post-fire Coronial inquiries.

In 2004 in collaboration with the NSW RFS, AAA installed a downlink system
that allows rapid response quick-look images of fire activity to be downloaded to
operations staff on the ground.

Digital Air Observers

Bushfire air observers have been providing intelligence data on fire behaviour and
location for many years using well accepted paper mapping techniques that has
provided a basic set of data. GPS (Global Positioning System) technology pro-
gressed from large transportable units (early 1980s) to the palm of one’s hand with
a significant increase in accuracy to the present day.
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From about 1996, land managers started using a GPS connected to a laptop com-
puter to capture a fire plot and fax it back to a single location using a modem card
and mobile phone. This consisted of a black line with grid squares for locating on a
topographic map. This fax was copied to clear overlay and placed on the planning
map showing where the fire was within minutes of finishing a mission. Soon came
the ‘What if?’ questions. ‘What if we could collect all the data needed to enable
acceptable spread predictions at the same time?’ What if we could have more types
of lines and symbols and annotations? What if we could attach images? What if. . .?

During the period 2000–2002, GPS logger software was no longer meeting the
challenge and so GPS was coupled with GIS opening up a wide range of possibili-
ties. As digital vector data was not of sufficient quality to use as a background base
for quality control, raster versions of topographic maps were used. These were over-
laid with digital data such as that provided by community mapping exercises or of
aviation and other features of concern such as power lines. It was now possible to
collect as many line and symbol styles as necessary and have the ability to attribute
the data and increase the amount of data being captured.

This process steadily evolved on various platforms such as pen tablets and PDAs
(Personal Digital Assistants). Due to technological advances it is now possible to
collect in near real-time, fire characteristics and weather data and attach georefer-
enced digital oblique stills, video and TIR images capturing a number of important
features to assist incident planning. The automation of the system and in flight trans-
mission enables many missions to be completed in one trip. This data is digitally
transmitted to a number of end users at the completion of the data capture as a fin-
ished incident map. The next mission is often commenced in minutes flying time
from the last, saving a 1 h round trip to deliver the data. A typical map prod-
uct emailed back to control centres and State operations concurrently are shown
in Fig. 4 (above). The image inset at the lower left is a georeferenced photograph

Fig. 4 Screen shot of a PyroMap fire plot that has a hot-linked digital hand-held camera photo
(Bottom left) to indicate fire behaviour
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taken at the location of the small black arrow. It shows a benign backing fire work-
ing slowly downhill. GPS data capture and attribution can occur on foot, in a vehicle
or helicopter, depending on access to and behaviour of the fire.

These products were used directly as GIS layers, as PDF maps or projected onto
a screen to report the situation to the incident team meeting. The system has evolved
again to another level of efficiency. As the use of these systems and methodologies
increased, more time was available for the capturing of higher quality and quantity
of data that led to an increase and overall improvement in thoroughness, quality
control and safety. Also, the increased volume of data collected greatly improved
the efficiency of operations.

GPS mapping produced at control centres would typically involve an early morn-
ing and early evening (last light) flight. This allows planners to assess whether the
fire’s overnight travel was likely to compromise the planned strategies or to check
the efficacy of the day’s operation and determine a last light perimeter plot. When
placed on field crew maps, the crew would be able to assess the fire’s progress
they met in the morning and develop a feel for the fire’s behaviour. In this way, the
most recent intelligence was presented to the planning meetings to assist in decision
making.

This data collection strategy was put in place to free available aircraft for other
duties such as water bombing during the peak period and allows the observer time
to attend to land based duties. It also enabled critical information pertaining to the
relevance of the daily planned strategies reaching the planning team so that contin-
gencies could be put in place to address any change in the fire situation. Intelligence
missions increased coincident with heightened risk and to confirm conflicting field
reports. Although field reports are an important source of fire ground information
that lack the perspective offered by other methods, digital air observing gives the
field crew an elevated perspective while they focus on the frontline tasks.

During small fires the observer may not fly and instead spends the time in the
field to create a plot by manual mapping techniques. During normal fire behaviour,
observers may spend 2–3 h per day collecting intelligence. During extreme condi-
tions it may be 6–8 h a day and require a dedicated aircraft to ensure information
flow. At times, fire behaviour can escalate to a point where intelligence collected
would not assist the planning or coordination of the operation and thus becomes a
recording exercise to assist future research and inquiry.

Digital Hand-Held Cameras

Digital cameras have been another useful advance in technology that aids in the
capture of bushfire intelligence information. Images can be taken while engaged
in other tasks and if pointed at the right place at the right time can capture highly
useful images and information. Images were captured from the scanner aircraft,
helicopters, and vehicles or on foot and in January 2003, even from the international
space station. The images provide a record of the events from many perspectives
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Fig. 5 Spot fire in river bank
vegetation. Uriarra Crossing
ACT, 18 January 2003

and scales. It is often said that a picture paints a thousand words. Analysis of such
pictures may also provide an insight into future events.

GPS mapping produced at control centres would typically involve an early morn-
ing and early evening (last light) flight. This allows planners to assess whether the
fire’s overnight travel had or was likely to compromise the planned strategies or to
check the efficacy of the day’s operation and determine a last light perimeter plot.
Hand held digital images are most useful when metadata is captured with them such
as date, location, time etc.

A digital image such as the one shown in Fig. 5 can convey a wealth of informa-
tion to an experienced bushfire response planner. This spot fire started on the river
bank less than a minute before the image was captured. Within a few minutes it had
impacted the buildings lower middle and middle right. The smoke colour and flame
height at the head shows how serious this situation is. This spotfire claimed three
buildings despite having three helicopters at the scene including the sky crane water
bombing aircraft. Adequately conveying this data by word is a challenge in itself.
Images can be transmitted digitally with the map to the control centre. This scene
was also captured on video and was used to estimate that the fire’s forward rate of
spread was faster than a fire tanker could negotiate the same terrain.

Such imagery can be a very valuable source of historical data in addition to dis-
playing fire behaviour to the planning team. With adequate metadata they can be
valuable in recording timeframes during periods when memories become clouded
or overwhelmed. During the January 2003 firestorm, digital imagery from many
sources was valuable in reconstructing time sequences.

FLIR

Forward Looking (thermal) InfraRed (FLIR) is a tool used to see through smoke and
locate non smoking hot spots for mop-up of apparently extinguished fire edges. Used
with GPS and GIS systems it can provide enhanced vision allowing hand mapping of
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Fig. 6 This image taken 5 Dec 2002 near Borowra shows the difference FLIR can make to critical
intelligence collection. (Top image is TIR and bottom image is the visual bands). Without FLIR
the botton view is all the crew can see

critical, operationally significant information such as determining breach of control
lines through smoke.

This is valuable during extreme fire weather conditions as it allows operations
staff to develop a better picture of the progress of the fire incident and provides a
more efficient and safer operating environment with improved vision for air attack
supervisors. Hand held and fixed front mounted TIR cameras were also used at var-
ious sites and research is required to assess each of these techniques for the purpose
of mop-up quality assessment.

Figure 6 (above) is a screen capture from a video FLIR system operated by
Gyrovision Pty Ltd during the Baulkham Hills fire on 5th December 2002. This
system was used to video fire activity and to detect hotspots. It is clear that with-
out the FLIR, observation of the rapidly moving fire front would be impossible. Its
importance to air operations during major fire runs is underestimated as a tool for
Air Attack Supervisors engaged in property protection.

TIR Camera System

A thermal infrared system (FireSearch Pty Ltd) was used to detect hotspot activity
as a planning and quality control tool for mopping up operations. It also served as
backup for the line scan aircraft during aircraft maintenance periods.

The system captured and classified thermal imagery to indicate fire activity and
perimeter. It produced a mosaic of tiles sent in real time to output a single image
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Fig. 7 This thermal
composite image of a fire
shows the density of hotspot
around the fire. Denser areas
(red) show recent fire activity
and back burning, Less dense
hotspot activity indicates
declining persistence of
hotspot against time to a point
where a much smaller
number of potential sources
of reignition are likely to
survive to the next cycle of
hotter dryer weather in the
near future

that was processed to a layer of points with temperature attributes. Figure 7 is an
example of georectified and mosaiced data from this system. The system is most
efficiently used to capture georectified hotspot temperature data indicating the likely
success and effectiveness of the deployment of remote area crews for the mop-up of
extinguished fire edges.

In bushland regions, conditions can often occur where reignition sources are
masked by cooler and moister ground cover conditions and thus lay undetected
using conventional ground-based surveillance means. This situation can remain
undetected until (atmospheric) conditions deteriorate causing multiple reignitions
to ruin much good work already carried out. This is particularly so during very
dry periods and becomes evident during response scale down. There is little point
deploying a Remote Area Fire Team (RAFT) with insufficient resources for them
to mop up for hours together with expensive air support only to fail to con-
tain the fire due to the task being much larger than was understood by incident
controllers.

If the amount of containment work can be estimated by incident controllers early
in the morning using airborne surveillance techniques, the most appropriate course
of action can be implemented saving financial and human resources. Each failed
attempt at suppression leaves the Incident Management Team (IMT) with a much
larger perimeter to contain and fewer resources with which to carry the out work.

This equipment also captures an acceptable additional or alternative thermal edge
plot at high altitude. This tool was used flexibly to improve data product delivery
when other methods were unavailable or less efficient.

There are also times when a fire can be contained with a RAFT but is not
attempted due to insufficient information on the actual hotspot activity. Hotspot
density and persistence information adds a new dimension to resource planning and
increases safety in the workplace. It does, however, require a calibration study to
determine the percentage of actual hotspots detected that are relevant to reignition
concerns.
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Discussion

During the period reported in this paper (2001–2006), many different though
complementary techniques were deployed across NSW and the ACT that were
coordinated and tasked by a fledgling NSW RFS GIS unit (formed in 2001). The
operational parameters of the techniques overlapped sufficiently to provide con-
tingency cover maintaining product supply that could not be met by one technique
alone. All of the techniques used provided useful information to one or more aspects
of operational planning, post-fire event evidence and study.

The airborne intelligence tasking represented less than 1% of the aviation expen-
diture during the 2002–2003 fire season (NSW RFS figures). The information
collected enabled better use of resources and reduced the amount of preventable
errors. A lost spot fire (and fires can spot 15+ km ahead of a main front as measured
from Daedalus scanner data over the Blue Mountains (west of Sydney)) on a severe
weather day can cause a breakaway fire that can undo millions of dollars worth of
suppression and weeks of volunteers’ work based on ground and airborne fire fight-
ing costs (NSW RFS). The relatively minor amount of money required for airborne
intelligence is a small price to pay for increased fire management efficiency and the
prevention of possible disasters and loss or damage to property.

Williams (2005) suggested that from a study of fire management over ten years of
wildfires in the USA, 1% of all fires caused 95% of the damage sustained and 85% of
the total budget for fire management in suppression cost. Williams proposed that at
the extreme end of the scale, fire managers need to re-think the familiar paradigm of
throwing ever increasing amounts of resources at ‘mega fires’ and that they should
develop new strategies to deal with such situations that are likely to become more
prevalent, especially given global climate change predictions. It is proposed here
that the first step is to find better ways of identifying such wildfire events through
the gathering of more relevant real time data.

The many techniques introduced in this paper, while individually very useful
tools for the fire planner, when combined through an intelligent operations sys-
tem can be deployed to provide data at many levels of resolution. This creates an
operations system with great power to assist in the coordination of fire suppres-
sion planning and when properly archived, for future research. Such information
can only enlighten and assist incident management teams to form better plans and
contingencies once the data is understood in terms of its strengths and limitations.
Airborne fire suppression costs are a significant component of the total fire suppres-
sion cost and are especially so with fires that occur throughout much of Australia’s
native vegetation that has evolved to maintain fire.

Also of great importance is the need for Australia-wide GIS mapping standards
for the use by all emergency services to be designed, implemented and adhered to.
Both the NSW RFS and ACT ESA (Emergency Services Authority) have already
adopted standards of their own. GIS mapping standards should include not just GIS
system methodologies, mapping techniques and equipment technical specifications,
but also cartographic and display elements (including metadata) that can be used
across all GIS platforms and that will be plainly visible and correctly interpreted
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even when transmitted as a facsimile. Standards already exist for topographic, geo-
logic, geophysical and oceanographic mapping and so should also exist for natural
disaster mapping.

There is an enormous quantity of data and information that has been captured as
part of normal fire operations and through research over the past twenty five years
or more throughout Australia. Much of this has not been properly archived and
much less fully analysed. It is imperative that all emergency management data from
throughout Australia be permanently archived in preferably a national repository
where it can be made readily and easily accessible to all parties with a need to
investigate fire behaviour, property damage, etc.

Since 2003, the airborne scanner system under contract to the NSW RFS has
also been deployed elsewhere in Australia to assist other jurisdictions with fire con-
trol efforts. Also since putting in place the airborne scanner system as described
above and as a compliment to it, the Victorian Department of Sustainability and
Environment has upgraded their TIR Daedalus airborne scanner with an attitude
correction system to bring it more-or-less in line with the system used by the
NSW RFS.

Conclusion

The strategies of throwing more resources at a fire when it is clear that this action
is not providing the desired results need to be tempered by unbiased, relevant intel-
ligence data to improve the chances of matching resources to the need for a more
efficient outcome. A small percentage of the resource pool being used to provide a
better perspective locally and across jurisdictions is seen as effort well spent con-
sidering the benefits of adequate amounts of timely, accurate and relevant data to
facilitate more effective coordination and deployment of fire fighting resources.

The authors consider the work performed during the 2001–2003 period that saw
the development of a holistic system to provide support to incident decision making
to be very successful. Incorporation of field situation reports and other important
data such as current weather data is needed.

‘Fires know no boundaries’. This saying refers to all natural and man made
boundaries such as rivers and roads, National Park and State Forest boundaries and
state and territory borders, etc. While this saying is becoming part of our everyday
lexicon when talking about natural disasters, and co-operation between state and
territory governments is increasing, more work is required to foster the importance
and real meaning of it to those in positions of authority in all state and territory gov-
ernments and relevant departments. This will become increasingly important where
airborne surveillance is concerned and as overall fire suppression costs increase.

Eventually, a National approach may be warranted for airborne surveillance of
natural disasters. Indeed, the authors recommend that a National airborne surveil-
lance system be set up, possibly run by the Federal Government with proportional
funding (in relation to area and population) provided by the state and territory
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governments. It is believed given the cost associated with providing airborne surveil-
lance (even though it is considerably less than air and ground based fire fighting
costs) that such a national scheme would be considerably more affordable for the
states and territories than going it alone.

With advances in communications, it is feasible for the airborne scanner and
other system data to be transmitted to operation centres by satellites such that the
data (in the case of airborne scanner data) can be rectified and displayed on large
screens in near real time. Such data can also be draped over digital terrain models
providing a further 3D enhancement for fire and other operations staff so that they
are able to view a fire’s progress not just in near real time but also in relation to
topography.

Also of course, an airborne surveillance system can be put to a variety of uses for
monitoring of natural disasters apart from active bush fires including floods, and oil
spills and for man-made disasters, for post-disaster investigations to survey and map
damage to property and the environment, on-shore and off-shore search and rescue
and for general homeland security requirements.
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Give Me the Dirt: Detection of Gully Extent
and Volume Using High-Resolution Lidar

Alisa Eustace, Matthew Pringle, and Christian Witte

Abstract The Fitzroy catchment drains into the Great Barrier Reef lagoon. It is the
largest catchment on the east coast of Australia, with an area of over 140,000 km2.
To ascertain point-sources of erosion, and to quantify the volume of sediment
lost from gullies, within the Fitzroy catchment is a major challenge for land-
management; despite this, gully locations and volumes have never been thoroughly
investigated. This study aims to develop a semi-automated method to detect and
map gully extent and volume, using aircraft-mounted Light Detection and Ranging
(LiDAR) technology within the Fitzroy catchment. Twenty LiDAR transects were
acquired in 2007 (5000 × 275 m). The average distance between points of the
LiDAR data was 0.3 m on the ground, with a height accuracy of within 0.1 m.
Digital Elevation Models were derived for the transects, with a 0.5-m spatial reso-
lution. We delineated gullies using terrain attributes and the backscatter intensity
of the LiDAR returns. Transects were classified as ‘gully’ or ‘non-gully’ using
objected-oriented classification. Gully volume was estimated for each pixel of the
twenty transects. For four transects, we used a random forest algorithm to model the
relation between gully presence and a set of readily available ancillary variables.
We also modelled the relation between gully volume and the ancillary variables.
These models were used to predict gully presence and volume at unsampled loca-
tions. We considered the extrapolation a success. The products generated from this
study will be used to inform water-quality models, to asses land condition, and to
improve our understanding of the dynamics of gully erosion under different climate
and land-management regimes.

Introduction

The sediment eroded from gullies deteriorates land condition and the quality of
water in rivers. These can have dramatic long-term ecological effects. To ascertain

A. Eustace (B)
Queensland Department of Natural Resources and Water, Remote Sensing Centre, Indooroopilly,
QLD 4068, Australia
e-mail: alisa.eustace@qld.gov.au

255S. Jones, K. Reinke (eds.), Innovations in Remote Sensing and Photogrammetry,
Lecture Notes in Geoinformation and Cartography, DOI 10.1007/978-3-540-93962-7_20,
C© Springer-Verlag Berlin Heidelberg 2009



256 A. Eustace et al.

point-sources of erosion, and quantify the volume of sediment lost from gullies, are
major challenges for land-management in a catchment. The Fitzroy River catch-
ment drains into the Great Barrier Reef lagoon, and is the largest catchment on the
east coast of Australia covering over 140,000 km2. Previous hydrological studies
in the catchment have used the SedNet model to examine sediment-generation and
water-quality (Hughes et al. 2001, Dougall et al. 2005, Joo et al. 2005); however, the
uncertainty of the model was substantial (Dougall et al. 2006). Initially, the model
assumed that gully volume was constant across the whole catchment, while the gully
information used as input to the model was based on averages for studies outside
Queensland (Hughes et al. 2001). To address these issues, a study was undertaken
to refine the SedNet model for the Fitzroy catchment (Dougall et al. 2007). The
refined model used spatially variable gully lengths, derived from high-resolution
Quickbird imagery, to estimate gully volume (Trevithick et al. 2008). Unfortunately,
the cross-sectional area used to convert gully length to volume was assumed con-
stant at 10 m2. This assumption signified the need for spatially variable information
on gully volume: a layer such as this could be incorporated directly as an input to the
SedNet model and may help to reduce the uncertainty of the model predictions for
the Fitzroy catchment. Furthermore, the establishment of a high-resolution baseline
of gully extent and volume information is crucial to the ability to monitor temporal
change in the catchment.

Light Detection and Ranging (LiDAR) has been used in to identify and quantify
temporal changes in topography due to erosion (Young and Ashford 2006, Thoma
et al. 2005, Lane et al. 2003). This study uses LiDAR to establish a synoptic base-
line of gully locations, extents, and volumes, based on a semi-automated procedure.
Extrapolation of these data outside the bounds of the LiDAR transects will be vital if
they are to be useful for modelling. Extrapolation can be facilitated with an ensem-
ble decision-tree, known as a random forest (Breiman 2001, Liaw and Weiner 2002).
A random forest can be used for classification and regression (depending on whether
the predictor variable is categorical or continuous, respectively). The principle of
random forests is that, rather than use just one decision-tree, we grow many trees,
where each tree is based on a bootstrap sample of the data. The individual trees in a
forest require no pruning, and the forest as a whole does not over-fit (Breiman 2001).

In this study we used a random forest classification of LiDAR data to deter-
mine the probability of finding a gully within the landscape. We also used a random
forest regression analysis of LiDAR data to estimate the volume of gullies within
the landscape. Extrapolation of the models’ predictions to large areas will provide
information that can be integrated into water-quality models, and also used to assess
land-condition in the Fitzroy catchment.

Methods

Study Sites and Creation of a Baseline of Gully Information

Ten sites were selected within the Fitzroy catchment, Queensland (Fig. 1), where
topography would be measured using a LiDAR sensor, mounted on an aircraft. The
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Fig. 1 (a) The location of the Fitzroy Catchment, Queensland; (b) the ten sites selected for LiDAR
acquisition within the Fitzroy catchment. Filled in black squares represent the sites selected for
testing extrapolation methods

Fig. 2 The outline of a pair of transects (thick white line) obtained for one LiDAR site, placed
over a grey-scaled Quickbird image. Light areas represent the tops of ridges; dark areas represent
forested regions

study sites were selected on the basis that they encompassed a variety of landscape
attributes. At each site, two transects were acquired (Fig. 2).

Ten transects were acquired between February 3rd–5th, 2007, with an Optech
ALS ALTM 3100 Enhanced Accuracy LiDAR scanner. A further ten transects were
acquired on July 27, 2007, using a Leica ALS50 scanner. The dimensions of each
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Fig. 3 (a) A 0.5-m raster DEM (units of metres) for one transect, derived from LiDAR; (b) the
same transect displaying 0.5-m raster LiDAR backscatter intensity images (dimensionless)

transect were 5000 × ~275 m (there was a small variation in the width that depended
on the sensor used). The data were supplied in a ‘cloud-point’ configuration that
consisted of eastings and northings, height (metres above sea-level) and backscat-
ter intensity (relative strength of the returning signal). A classification of the cloud
points as either ‘ground’ or ‘non-ground’ was also provided with the data. The
twenty cloud-point files were converted to Digital Elevation Models (DEMs) with
a 0.5-m raster, using an inverse-distance weighted interpolation algorithm (Fig. 3a).
The backscatter intensity was also processed to a 0.5-m resolution (Fig. 3b).

Object-Oriented Classification of Gullies

We used Definiens 5.0 Object-Oriented Classification software (Definiens 2006) to
classify the DEMs into two classes: ‘gully’ and ‘non-gully’. Each of the twenty
transects were processed separately. For every transect, the input images used in
the classification comprised the DEM, backscatter intensity, slope of the DEM,
standard deviation of the slope, and the texture of the DEM. Objects were cre-
ated using the image-segmentation dialogue in the Definiens software package. The
image-segmentation parameters included a scale factor, a colour factor, and a shape
factor.

We used the multiresolution segmentation mode of the software (Definiens
2006). The objects of a segmented image (the ‘image-objects’) were classified as
gully or non-gully based on shape and image attributes. Combinations of attributes
of the image-objects (i.e., slope, texture, standard deviation of the slope, the length
of longest edge of the object, length-to-width ratio, rectangular fit, asymmetry, and
the relation to neighbours) were tested to determine the best thresholds and the
attributes that most accurately classified gullies.
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Gully Volume

Following segmentation, we removed from the cloud-point data those points that
corresponded to the location of the ‘gully’ class. The elevation values associated
with the remaining (‘non-gully’) locations were interpolated across the voids using
a nearest-neighbour algorithm. This created a ‘non-gully plane’. For each transect,
we then clipped the non-gully plane and the DEM to the extent of the gully class.
The clipped DEM was subtracted from the non-gully plane to create an image of
gully depth. The values at each pixel of the gully-depth image were multiplied by
the area of the LiDAR raster pixel (2.5 m2) to yield a volume (m3).

Models of Gully Information

We selected four LiDAR transects for further analysis (Fig. 1b). Our intention was
to investigate whether, in these transects, the relation between gully information
and various ancillary variables could be modelled accurately. If so, these ancillary
variables could be used to extrapolate the gully information at unsampled locations
within a subset of the catchment. All modelling was done using the R statistical
package (R Development Core team 2008).

Ancillary Variables

There was a combined total of approximately 24,000,000 pixels within the four
LiDAR transects. We matched the LiDAR-derived data for each pixel (i.e., the spa-
tial coordinate of the pixel centre, an indicator variable for gully presence/absence,
and the gully volume) with a set of ancillary variables that were readily available
for the extent of the entire catchment. These variables were:

• DEM estimated by Shuttle Radar Topographic Mapper (SRTM) and derivatives
of the DEM such as

◦ slope (degrees);
◦ aspect (degrees from North);
◦ shaded relief;
◦ focal statistics (3×3 window) of the SRTM-DEM and slope images

including minimum, maximum, non-directional edge and variance;
◦ flow direction and accumulation, stream order, down-stream length;

• Landsat-derived products such as

◦ 2006 Foliage Projective Cover (FPC) (Armston et al. 2004) and Bare
Ground Index (BGI) (Scarth et al. 2006);

◦ timeseries (1988–2006) FPC minimum (including and excluding outliers)
and standard error and

◦ timeseries (1987–2006) BGI minimum, maximum, mean, median and
standard error;
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• categorical products derived for the National Action Plan for Salinity and Water
Quality (Brough et al. 2006) including discharge, drainage, recharge, salinity
hazard risk map, permeability class, and Australian Soil Resource Information
System soils classification;

• land-type class;
• pre-clearing Regional Ecosystem class.

The ancillary variables were available at spatial resolutions coarser (at least 50
times greater) than the 0.5-m LiDAR pixels. This meant that it was inefficient to
attempt direct modelling of the 24-million-row data array, due to redundant infor-
mation. We circumvented this issue through the use of conditioned Latin Hypercube
Sampling (Minasny and McBratney 2006). Conditioned Latin Hypercube Sampling
(cLHS) is an algorithm for optimum stratified random sampling, applicable to sit-
uations where one has ‘complete information’ consisting of numerous continuous
and categorical variables. We used cLHS to extract a representative sample (opti-
mised across all variables) of 5% of the pixels. Half of these sampled pixels were
used to build a model of gully presence; the other half of the pixels were used for
model validation. We used a random forest (Breiman 2001, Liaw and Wiener 2002)
to model the relation between gully presence and the ancillary variables. For a cate-
gorical variable such as gully presence, the random forest out-of-bag error rate is a
proportion analogous to the inadequacy of the model, where zero indicates a perfect
fit. The random forest was used to predict the presence (or absence) of a gully in
the pixels of the validation data. We denote this forest as Model 1. The agreement
between observed ‘gully’ and ‘non-gully’ classes and those predicted by Model 1
was described with an error matrix (Congalton and Green 1999). We then calculated
statistics associated with the error matrix such as the overall accuracy, and Kappa
(Congalton and Green 1999).

The cLHS algorithm was used again to extract another representative sample of
5% of those pixels with a gully volume > 0 m3. Half of these sampled pixels were
used to build a model of gully volume; the other half of the pixels were used for
model validation. We used a random forest to model the relationship between gully
volume and the ancillary variables. This random forest was used to predict the gully
volume for the pixels of the validation data. We denote this forest as Model 2.

Extrapolation of Gully Volume at Unsampled Locations

Our objective was to establish whether the gully information in the LiDAR transects
could be extrapolated at unsampled locations. We investigated this issue in a small
subset region (250,000 ha) that encompassed four transects of interest (Fig. 1b). All
ancillary variables were recorded at the nodes of a 25-m grid across this region.

The extrapolation of gully volume at unsampled locations was a two-step pro-
cess: first, the ancillary variables required by Model 1 were used to calculate the
probability of finding a gully at each unsampled location; and second, the ancillary
variables required by Model 2 were used to calculate the volume of a gully at each
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unsampled location. The predicted gully volumes were based on a 0.5-m raster, and
thus required scaling to correspond to the 25-m pixel grid. The predictions of Model
2 were qualified by the predictions of Model 1, i.e., it was only appropriate to report
predicted gully volumes for those pixels where we had reasonable confidence in the
presence of a gully (a probability of 0.6 was used as a threshold).

Results

Object-Oriented Classification of Gullies

We achieved the optimum segmentation of the gullies through a heuristic process.
A segmentation scale-factor of 50 provided well-defined gully boundaries that were
associated with relatively few image-objects (Fig. 4a). A scale factor of 200 did
not delineate gullies with enough detail (Fig. 4b), while a scale factor of 20 seg-
mented the gullies excessively and created too many image-objects for efficient
classification (Fig. 4c). The rules required to classify the image-objects as ‘gully’ or
‘non-gully’ are described in Table 1. The resulting classification identified ‘gully’
image-objects to create a map of the extent of the gullies (Fig. 5).

Fig. 4 Delineation of gully boundaries using multiresolution segmentation at different scale
parameters: (a) 50; (b) 200; (c) 20

Table 1 The rules required to classify image-objects as either ‘gully’ or ‘non-gully’

Class Rule

Gully Mean slope ≥ 15◦
Mean DEM texture ≥ 50 (variance of digital number)
Mean standard deviation of slope ≥ 6◦
Length of longest edge of a polygon ≥ 18 m

Non-gully Mean standard deviation of slope ≤ 7◦ and mean slope ≥ 15◦
Rectangular fit ≥ 0.9 (proportion between 0 and 1)
Length-to-width ratio ≥ 1.5 and rectangular fit ≥ 0.9 (proportion between 0 and 1)
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Fig. 5 The classified extent
of gullies map over a DEM
(units of metres)

Gully Volume

Gully volumes were calculated for all twenty transects. An example of the gully
volumes from one transect is shown in Fig. 6.

Summary statistics for gully volume suggested that volume varies substantially
across the landscape (Table 2). Transect 3 had the most pixels classified as a gully
(i.e., the largest surface area of gully extent). Transect 9 had the deepest gully
pixel. Transect 14 had the smallest maximum and median volume and the smallest
variance.

There was not a strong visual relationship between median gully volume and total
gully volume for a given transect (Fig. 7). This indicated that different sites may
have different gully morphologies and we cannot assume a proportional relation
between the two quantities; one site may have many shallow gullies, while another
may have few deep gullies.

Extrapolation of Gully Information

The out-of-bag error for Model 1 was 19.4%. When applied to the validation data,
Model 1 predicted gully presence and absence with an overall accuracy of 75% and
Kappa = 0.52. The most-important variables used to predict the presence of a gully
were (in decreasing importance): the standard error of the Foliage Projective Cover
(FPC) timeseries; the Bare Ground Index (BGI) timeseries standard deviation; the
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Fig. 6 (a)Quickbird image
displaying an area where
gully volumes were mapped;
(b) Gully volume (m3)
estimated for a subset within
one LiDAR transect

FPC timeseries minimum (excluding outliers); the BGI timeseries maximum; the
BGI timeseries median; and the FPC timeseries minimum (including outliers).

Model 2 has not been subjected to a formal accuracy assessment, but a
cursory examination of the validation results suggested that the correlation of
model-predicted gully volume with observed gully volume was r = 0.58, with a
root-mean-square-error of 0.1 m3. Preliminary analysis also suggested that Model 2
predicted gully volume better at an aggregated spatial scale than at the native 0.5-m
resolution. Further testing may confirm this. The most-important variables used to
predict the volume of a gully were similar to those for Model 1, i.e. (in decreasing
importance): the minimum (including outliers) of the FPC timeseries; the BGI 2006
value; the BGI timeseries minimum; the BGI timeseries mean; the BGI timeseries
maximum and the SRTM-DEM.
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Table 2 Summary statistics of gully volume for each LiDAR transect

Transect N Max. (m3) Median (m3) Total volume (m3) Variance (m3)2

1 532823 1.99 0.10 115835 0.07
2 484286 1.97 0.23 164898 0.10
3 662963 0.93 0.07 73102 0.01
4 465156 0.87 0.07 51794 0.01
5 255654 0.73 0.09 31482 0.01
6 258649 0.99 0.07 31379 0.02
7 296614 0.85 0.07 29732 0.01
8 388281 1.28 0.13 67179 0.02
9 506556 2.31 0.10 89039 0.05
10 206757 1.09 0.09 30300 0.02
11 133167 2.23 0.25 52185 0.16
12 74513 2.01 0.21 24093 0.10
13 64238 1.25 0.09 12465 0.07
14 125168 0.53 0.06 11244 0.01
15 208570 1.45 0.17 48459 0.04
16 265356 1.42 0.13 48537 0.03
17 87276 1.02 0.07 10145 0.02
18 199238 1.29 0.13 37963 0.03
19 401180 1.38 0.07 49719 0.02
20 351976 1.15 0.07 42456 0.02

Bold indicates the maximum value of each statistic; the underline indicates the minimum. The
number of pixels classified as ‘gully’ is denoted N.
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Fig. 7 The relation between
median and total gully
volume, by transect. A larger
total volume does not
necessarily mean a larger
median

Figure 8 shows an example of the predictions of Model 1 and Model 2 at unsam-
pled locations. Figure 8 integrates both variables into one layer, i.e., gully volume
where the probability of finding a gully exceeds a probability of 0.6. Despite the
spatial ‘noise’ in the predictions, we were encouraged to observe, running from the
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Fig. 8 (a) Area on a
Quickbird image where gully
presence and volume have be
predicted at unsampled
locations; (b) Gully volume
(m3) estimate where the
probability of finding a gully
exceeds a probability of 0.6
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lower-left of the image to the upper right, relatively large volumes predicted in an
area that the Quickbird image suggests is a drainage depression. The linearity of
the predicted feature was encouraging also, as this corresponded with the results of
the object-oriented classification. We examined other parts of the region and found
similar results.

Discussion

LiDAR Transects as a Baseline of Gully Information

Through the acquisition of twenty LiDAR transects, we have established a baseline
of gully information for sampled areas in the Fitzroy catchment. This baseline can
be used to detect and monitor change in gully morphologies. This will assist in iden-
tification of ‘active’ gullies in the landscape, and therefore, those areas most at risk
of erosion. Future research into sedimentation rates and changes in gully morphol-
ogy can be quantified using this baseline. This will contribute to our understanding
of sediment movement throughout the Fitzroy catchment, to the quantification of
rates of change in land-condition, and as an aid for land-management decisions.
The gully-volume information can be used to improve the certainty of the gully-
related inputs required by the SedNet model. The power of the baseline will be
recognised if another LiDAR acquisition for the twenty transects is completed and
shows that the volumes of some gullies have changed since the original acquisition,
following the major flood event which occurred in the Fitzroy catchment in February
2008. Hotspots of gully activity may also be identified so that management of gul-
lies can be targeted to regions where sediment is generated under the existing land
management and climate conditions.

Object-Oriented Classification of Gullies

This study produced a semi-automated classification of LiDAR-derived products
to map gully extent based on an object-oriented approach. The number of input
attributes, the spectral and shape properties within the attributes, and combinations
and permutations of each, created a multitude of options for determining how the
image-objects can be allocated to classes. Initial testing that used slope as the sole
rule for classification of gullies found that many areas with long hill slopes were
allocated incorrectly to the ‘gully’ class. An additional rule that classified areas of
steep, though relatively uniform, slope as ‘non-gully’ was able to reduce this error of
commission. Texture-based rules were able to account for objects whose constituent
pixels were relatively heterogeneous. Many ‘gully’ objects were highly variable in
regard to slope and topography (DEM), which led to large values of texture, and
an improved ability to distinguish ‘gully’ from ‘non-gully’ attributes. Shape-based
attributes were also important factors for the classification of gullies. The length of
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the longest edge of a polygon, the length-to-width ratio and rectangular fit criterion
were able to discriminate thin objects from round or wide objects, as many gullies
consisted of long and/or linear objects at a scale factor of 50.

Transect Gully Volume

The volume per pixel for each of the twenty transects provided an accurate and
precise baseline measurement of sediment loss due to gully erosion. The lack of a
correlation between total gully volume and the median gully volume (Fig. 7) indi-
cated that areas of deep gullies do not necessarily occur in local regions where there
are many gullies present. This has implications for modelling as it is possible that the
many shallow gullies detected could contribute more sediment to the catchment’s
rivers than the few deep gullies that were found.

Extrapolation of Gully Information

The presence of gullies appeared to follow environmental boundaries identified in
the Quickbird imagery. The six most-important ancillary variables out of the thirty-
eight tested are noteworthy as they arise from three sources: the Landsat timeseries-
derived FPC and BGI, and the SRTM-DEM. This has favourable implications for
the extrapolation of gully information, as these sources are independently derived
and are acquired at a relatively fine spatial resolution.

The extrapolation methods we have described will be carried out for the entire
Fitzroy catchment, contributing to enhanced information on gully locations and
volumes within the Fitzroy catchment. Further analysis will be carried out to vali-
date the extrapolation results. The gully volume maps can be used to improve the
spatial variability and uncertainty concerning gully locations and volumes within
the Fitzroy. The products from this study can also be used to modify water qual-
ity models to include spatially variable data based on remotely sensed Queensland
information.

Conclusions

This study developed a semi-automated method to map gully extent and volume
using aircraft-mounted Light Detection and Ranging (LiDAR) technology within
the Fitzroy catchment. We derived baseline Digital Elevation Models for the twenty
LiDAR transects with a 0.5-m spatial resolution. Gullies were delineated and clas-
sified using an objected-oriented approach. Gully volume was also derived for the
twenty transects. We carried out random forest classification and regression analy-
sis to predict both the probability of finding a gully and also gully volume across
a 250,000-ha subset of the Fitzroy catchment. This information produced a map
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of gully volume where the probability of finding a gully exceeded a probability of
0.6. We consider that there is potential to extrapolate successfully gully information
across the extent of the catchment. The products generated from this study will be
used to inform water-quality models, to asses land condition under different climate
and land-management regimes.
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Integrating Mineralogical Interpretation
of HyLogger Data with HyMap Mineral
Mapping, Mount Painter, South Australia

A.J. Mauger and S. Hore

Abstract HyLogger, HyMap and PIMA II are three hyperspectral spectrometers
variously sampling the electromagnetic spectrum between 450 and 2500 nm. At
Blue Mine in the Mount Painter Province of South Australia, the opportunity arose
to make a direct comparison of the three instruments. Drill hole BM5, an inclined
diamond drill hole, intersected steeply dipping stratigraphy which outcrops in the
steeply sloping, scree covered hills immediately above. HyMap data flown over the
same district presented 5 × 5 m pixels each carrying spectra defined by 128 channel
reflectance data from along the surface projected line of BM5.

This project has demonstrated that the three hyperspectral instruments pro-
vide mutually corroborative datasets in their ability to map mineralogy. It is
clear that there remain significant differences between spectral datasets even after
pre-processing. These differences limit the opportunity for automated mineral iden-
tification. In spite of those differences key common spectral features were identified
in each dataset and mineralogical boundaries delineated.

A new subunit within the Wortupa Quartzite, identified mineralogically with these
instruments, potentially offers better targeting of mineralisation in this part of the
stratigraphy.

Keywords HyLogger · HyMap · Hyperspectral · Spectroscopy · Mineralogy · Mount
painter · Ground validation

Introduction

The Mount Painter region has been a test bed of hyperspectral datasets used to map
mineralogy for some years (Denniss et al., 1999, Hewson et al., 2001, Hewson et al.,
2003). With the advent of HyLoggerTM technology (Huntington et al., 2004) an
opportunity arose to use high resolution hyperspectral data to inform the analysis
of airborne hyperspectral HyMap data in a geological context. An inclined diamond
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Fig. 1 Regional location diagram

drill hole in the vicinity of Blue Mine in the Mount Painter inlier intersected the
stratigraphy orthogonal to dip (Elliot, 1972).

The Mount Painter Province (MPP) (Coats and Blissett 1971) is a geological
province in the northern Flinders Ranges in the vicinity of Arkaroola (Fig. 1). Blue
Mine is an abandoned Cu mine approximately 20 km north west of Arkaroola.

Geological Context

The Blue Mine Creek area is located at lat 30◦11′37′′S long 139◦14′35′′E GDA94 in
the southwestern MPP an area where Mesoproterozoic basement rocks of the Mount
Painter Inlier (MPI) are unconformably overlain by Neoproterozic Adelaidean
metasediments.

The Adelaidean sequences bordering the MPI have historically been a minor
source of base metals, principally Cu, and some Pb–Ag. Bismuth has been recorded
from a number of localities near the western contact with the MPI. The Cu
occurs predominantly as small, high-grade secondary bodies consisting of mala-
chite, azurite, cuprite and some chalcopyrite. Mines are predominantly sited on
shears and faults or adjacent to faults, with mineralisation mainly occurring within
carbonate-rich rocks (Anderson 1990).
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Fig. 2 Cross section of drill hole BM5 (after Elliot, 1972)

The Blue Mine was first prospected in 1891 and work ceased in 1910 and during
this period 40 tons of ore was sold, averaging 18% copper. The workings were
concentrated on small but high grade occurrences of secondary Cu ores (azurite,
malachite, chrysocolla) within the Adelaidean Callanna Group (Elliot, 1972).

Drill-hole BM5 was drilled by Aquitaine Australia to investigate a geochem-
ical anomaly, with an almost coincident IP anomaly, proximal to the main Blue
Mine workings in the historic mining field. These workings are situated on a
faulted section of the Wortupa Quartzite. The drillhole was spudded in the over-
lying Skillogalee Dolomite with interceptions of pyrite and chalcopyrite within the
Wortupa Quartzite (Fig. 2), which were interpreted by Aquitaine to be stratiform
with Cu values up to 0.95% over 1.5 m reported (Elliot 1972). The pyritic and chal-
copyritic generation was sedimentary in origin and reconcentrated through folding
and faulting and associated general metamorphism (Elliot 1972).

Reconnaissance exploration work by Marathon Petroleum Australia Ltd targeted
the Au potential in the upper section of the Wortupa Quartzite. Samples include the
Blue Mine Creek area and assays returned anomalous values averaging 1 ppm Au,
which was associated with secondary Cu localised in veins and shears (Yates 1982).

The Wortupa Quartzite presents itself as resistant ridges formed by weathering of
the underlying and overlying carbonate horizons, it is a continuous unit providing an
excellent marker. It is often arkosic and becomes increasingly gritty towards the top.
This is overlain by the calcareous muds of the Skillogalee Dolomite, which consists
of siltstones, greywackes and magnesite horizons (Preiss, 1987).
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The basement and Adelaidean rocks of the MPP were deformed and meta-
morphosed to mostly lower amphibolite facies during the Cambro-Ordovician
Delamarian Orogeny (Preiss, 1987).

Methods

Surface sampling the units as projected to the surface and correlating the spectral
responses from drill hole (1 ×1 cm) to surface sample to HyMap pixel (5 × 5 m)
enabled the derivation of spectral signatures which were propagated further within
the HyMap data.

HyMap

Nine runs of HyMapTM were flown over the Mount Painter inlier on 27 March
1998 between 30◦ 20′ 09′′ S, 139◦ 11′ 32′′ E and 29◦ 49′ 44′′ S, 134◦ 46′ 25′′ E
at 2 000 m altitude on a 047◦ heading generating 2.5 km wide, 50 km strips of
imagery at 5 m resolution. HyMap recorded 128 bands across the reflective solar
wavelength region of 450–2500 nm with contiguous spectral coverage (except in the
atmospheric water vapour bands) and band widths between 15–20 nm. The imagery
was calibrated and corrected for atmospheric effects using ACORN 4TM software.
Technical specifications for HyMap are available from HyVista’s web site (HyVista
Corporation, 2008).

CSIRO HyLogger

In January 2005 Blue Mine diamond drill core was scanned by the CSIRO core
scanning HyLoggerTM system (Huntington et al., 2004) at PIRSA’s Glenside Core
Library. The HyLoggerTM has three instruments installed on a support frame: a
hyperspectral spectroradiometer (450–2500 nm); a three band, high resolution lines-
can camera; and a laser profilometer. The core scanner provides a rapid means of
gathering semi-quantitative statistical distributions of minerals down hole. When
linked with assay data, this provides a powerful tool for understanding drilling
results in the context of deposit paragenesis.

Ground Validation

Figure 3 shows the topography and ground cover in the vicinity of Blue Mine.
Samples collected every 5 m along the line of the surface projection of drill hole
BM5, identified and described in Elliot (1972) and shown by the tape in Fig. 3, were
measured with the PIMA II (1300–2500 nm). Spectra were then compared to those
obtained from HyLogger and HyMap. Although the common spectral range shared
by the three instruments is in the short wave infrared (SWIR) analysis was not con-
strained to SWIR active mineralogy. When comparing HyLogger and HyMap the
visible-near infrared (VNIR) responses were compared as well.
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Fig. 3 View of the Blue
Mine workings from the
collar of BM5 looking along
the projected line of the hole

Data

HyMap

Thirty three pixels, identified by comparison to the Digital Globe Quick Bird
imagery (Fig. 4), had their spectra extracted and stored in a separate library. In order
to extract spectra from the HyMap data for comparison to both the HyLogger and

Fig. 4 Quickbird imagery
over Blue Mine showing the
surface projected line of drill
hole BM5 (green line)
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Fig. 5 HyMap imagery
(1268,816,543:RGB) over
Blue Mine showing the
surface projected line of drill
hole BM5

the PIMA results, several bad bands had to be removed. These bands display incon-
sistent spectral responses compared to adjacent bands. These effects are usually
encountered either at the edges of the spectra or where the four sets of detec-
tors that comprise the full 400–2500 nm range join or overlap in their response
curves. In this case the dataset was reduced to 110 bands from the original 128
bands. The data were then scaled from an original response range of 0–475 to
a range 0–1 for approximate comparison with the other instruments. Finally the
band passes were resampled to match the HyLogger band passes using a ‘Spectral
Library Resampling’ tool within ENVI software which employs a gaussian resam-
pling model (Envi, 1999). This process enabled the spectra to be imported directly
into TSG-Core.

The outcome was a spectral library with relatively subdued dynamic range for
key absorption features in the shortwave infrared. Comparing PIMA and HyMap
the results were not dissimilar to those achieved by Denniss et al. (1999).

For visual interpretation purposes the band combination of HyMap data
employed in Fig. 5 highlighted the contact between the Skillogalee Dolomite (cyan
colour) and the Wortupa Quartzite (reds and browns). It also sought to maximise
the differences between hematite and goethite Fe oxide species within the quartzite
unit. The green pixels are trees.

CSIRO HyLogger

With one spectra recorded every 0.8 cm along the core tray (Huntington et al., 2004)
a certain degree of filtering is required before comparisons can be drawn with other
datasets. First there is a process where extraneous pixels are masked from the anal-
ysis eg depth markers, tray ends, gaps that see the bottom of tray etc. Then the
data was down sampled by depth and output as a new dataset. This has the effect
of removing the noise and enhancing the signal by averaging adjacent spectra. By
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selecting a 5 m interval the resultant spectra potentially average out the mineral
signatures contributing to the equivalent HyMap pixels.

Ground Validation

The distance from the collar of BM5 along the ground was measured by tape. At
the start, 1 m samples were collected but given the invariant nature of the samples
and the 5 m resolution of the HyMap data it was decided to measure samples every
5 m. At some points multiple readings were taken to record the variety of materials
observed. Once loaded into TSG-Core with their measured distances from the collar
appended as a scalar it proved possible to downsample back to an even 5 m interval
for the entire hole. Due to the nature of the topography it was necessary to collect
over a longer surface distance than the vertical plan view indicated on the Quick
Bird imagery. Final locations were checked by visual context on the imagery rather
than relying on the GPS in averaging mode.

Results

The output from the three separate instruments are presented in Figs. 6, 7 and 8.
Each horizontal line is a separate spectrum where red indicates an absorption feature
and blue is a reflection peak. For this presentation the wavelength range along the
x- axis has been subset to match the PIMA wavelengths 1300–2500 nm. Each plot

Fig. 6 Stacked spectra from HyLogger 1300–2500 nm
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Fig. 7 Stacked spectra from PIMA II 1300–2500 nm

is arranged such that the collar of the hole is at the top of the diagram. In order to
compare positions in each plot a calculation needed to accommodate the topography,
the dip of the drill hole and the dip of the beds. The common point of the creek
occurred at 65 m down the drill hole(dh), 45 m measured by tape (t) over the ground
and 43 m by measure pixel (p) on the HyMap image. The end of the hole was
respectively 172 m (dh), 224 m (t) and 200 m (p).

Fig. 8 Stacked spectra from HyMap 1300–2500 nm



Integrating Mineralogical Interpretation 279

In subdividing the stratigraphy by spectral response the key wavelengths to
observe are 2310 and 2200 nm. The 2290 nm feature is also of interest. From the col-
lar of the hole to the creek, the spectral response is dominated by tremolite/actinolite
characterised by 2310 nm absorption. After the creek a strong illite/muscovite sig-
nal focussing on 2200 nm dominates to approximately 116 m (dh), 130 m (t), 132
m (p). Nontronite or talc registers at 2290 nm in the HyMap image after this bound-
ary and this is supported by the HyLogger data. For the remainder of the hole the
spectral response is dominated by kaolinite or aspectral material. Aspectral material
does not imply lack of a signature rather the signature is not contained in the soft-
ware library. This can be because the material has no recognised SWIR response.
In this case magnetite and quartz would be regarded as aspectral and these tend to
dominate the surface scree. What remains, sometimes as a minor component, is the
kaolinite.

PIMA II is ill equipped to measure the presence of Fe oxide and is unable to
identify species of Fe oxide. HyLogger identifies zones in the deeper part of the hole
where Fe2+ dominates Fe3+ especially between 116 and 150 m (dh). By choosing
bands to highlight variance in Fe oxide response the HyMap data shows stratification
within the Wortupa Quartzite (Fig. 5).

Discussion

Three major units have been characterised at three scales of hyperspectral obser-
vation. The upper unit is the Skillogalee Dolomite. The two lower units, defined
mineralogically, are part of the Wortupa Quartzite, the basal unit of which is associ-
ated with Cu mineralisation. The basal unit also has a higher Fe oxide content. Using
bands that enhance the Fe oxide spectral response this unit can be traced on the
HyMap imagery over considerable distances allowing better exploration targeting
of mineralisation.

The low dynamic range of the final HyMap spectra limited the ability of TSG
Core to provide automated mineral identification. However the PIMA interpretation
of surface samples allowed the modification of the spectral library for HyLogger
and this refinement enabled the logging of tremolite in the core.

The presence of kaolinite in a largely aspectral section of the stratigraphy was
unexpected but, as noted above, this may not be an indication of absolute abundance,
rather simply the only SWIR responsive mineral in the section. Jarosite was also
noted in this section.

Conclusions

This project has demonstrated that the three hyperspectral instruments: HyMap,
PIMA II and HyLogger, provide mutually corroborative datasets in their ability
to map mineralogy. It is clear that there remain significant differences between
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spectral datasets even after pre-processing. These differences limit the capacity
for automated mineral identification using a program like TSG Core. In spite of
those differences key common spectral features can be identified in each dataset
and mineralogical boundaries delineated. In this instance the 2310 and 2200 nm
absorption features highlighted changes from tremolite/actinolite dominated min-
eralogy of the Skillogalee Dolomite to a white mica dominated upper unit of the
Wortupa Quartzite. The third or basal unit of the Wortupa Quartzite, dominated by
quartz, magnetite and kaolinite, was logged largely as aspectral but had sufficient
spectral character to be mappable using HyMap imagery.
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A Preliminary Study of Mapping Biomass
and Cover in NZ Grasslands Using
Multispectral Narrow-Band Data

L. Vescovo, M. Tuohy, and D. Gianelle

Abstract Mapping biophysical parameters (LAI, nitrogen content, biomass, Green
herbage ratio) is fundamental to understanding ecosystem functioning. Considerable
time and expense are commonly spent measuring these variables which can be
scaled up from ecosystem to landscape level to monitor productivity, carbon stocks
and fluxes. In a scaling up approach, remote sensing techniques can be used
at ground, airborne and satellite levels, and different Spectral Vegetation Indices
(SVI) can be compared with data collected by direct harvesting. Four main grass-
land classes (improved pastures, unimproved pastures, New Zealand native tussock
grassland and depleted grasslands) were identified on Landsat ETM+ images. ASDI
spectroradiometer and Landsat ETM+ data were examined at ground and satellite
level (3 × 3 pixels), respectively. In January 2004, in New Zealand’s South Island,
ground observations (Leaf Area Index, biomass, necromass and spectral measure-
ments with 170◦ diffusor optics) were performed at 12 sites belonging to the four
grassland classes. Spectral signatures were determined at the two levels and spectral
vegetation indices were calculated for the different grassland canopies investigated.
The range of biomass levels within the different canopies was wide (from 10 to
667 g/m2 of dry matter). Necromass rate was high in tussock grasslands which also
showed high levels of biomass. However, tussock spectral signatures are similar to
depleted areas. NDVI calculated for improved pastures, unimproved pastures, and
depleted grasslands is correlated with dry biomass levels both at ground (R2=0,76)
and at Landsat ETM+ level (R2=0,74). Most of the tussock NDVI values do not
follow a typically logarithmic trend. Saturation of NDVI occurs above biomasses of
100 g/m2.

The preliminary results of the present study confirm the potential of upscaling
the biophysical parameters estimation from ecosystem to landscape level. Tussock
spectral response is shown to be different from the other grasslands, because of the
particular structure and the influence of bare soil.
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Materials and Methods

New Zealand Grasslands

New Zealand grasslands can be divided into ‘native’ and ‘exotic’. Native grass-
lands are endemic to New Zealand, while the ‘exotic’ derive from seeding European
species and consequent natural diffusion after the European colonization started the
18th century (Scott 1979). Tussocks are predominantly native grasslands. Because
of their inability to cope with competition, they are often put under conserva-
tion by New Zealand Department of Conservation. However, replacement of native
grasslands by introduced agricultural species is still continuing.

A field campaign started in early January 2004 with the identification of 12 New
Zealand grassland areas (Fig. 1) for ground-truth measurements based on an exist-
ing classification project (Land Cover Data Base 2, LCDB2; finished in 2004; NZ
Ministry for the Environment, Christchurch).

LCDB2 used Landsat 7 ETM+ imagery as primary data for thematic classifi-
cation. Grassland was included into the seven ‘first order’ classes, and grasslands
were further divided into several ‘target’ classes. In this study, most common grass-
land ecosystems such as improved pastures, unimproved pastures, tall/short tussock
grasslands and depleted tussock grasslands were identified on the ETM+ 4, 5, 3
false-colour images (Fig. 2) and during the field campaign, locations were confirmed
using a GPS system. Field sampling was done in the South Island (Banks Peninsula,
Mackenzie Basin, and Central Otago), in collaboration with Steve Thompson and
Ingrid Gruner, both working on the LCDB2 project as remote sensing and ecology
specialists. During the field work, ground truth-areas for biophysical and spectral
measurements were selected according to their location, topography, homogeneity,
and similar management in the summers of 2003 and 2004.

Improved pastures (orange-red in the false colour visualisation, because of their
high reflectance in the near-infrared band) are intensively managed exotic grass-
lands either cut for hay or rotationally grazed for wool, fat-lamb, beef, dairy, and
deer production. Improved pastures are generally vigorous reflecting high levels of
inherent soil fertility, typical of the plains and down-lands. In some dry areas of the
Mackenzie basin, improved pastures are irrigated. Dominant species are clovers and
ryegrass. Non-pasture species are inconspicuous.

Unimproved pastures (visualised as yellow, because of their lower reflectance
in the near-infrared band) are extensively managed exotic grasslands grazed for
wool, sheep-meat and beef production. A class typically found on steep hill and
high country throughout New Zealand. Plant growth is usually less vigorous than
in improved pasture reflecting lower levels of soil fertility, lower fertiliser applica-
tion, seasonal drought or a shorter growing season, especially in the South Island.
Dominant species are less productive exotic grasses, such as browntop and sweet
vernal, usually mixed with indigenous short tussock species. Areas of unimproved
pasture show a tendency to ‘brown off’ during summer months.

Short tussock grassland (visualised as greenish-brown, because of the high
reflectance of the red and medium-infrared bands) include areas of grassland
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Fig. 1 Location and description (grassland class, ecosystem, estimated Vegetation Fraction and
altitude) of the 12 grassland ground truth areas in the New Zealand South Island. VF= vegetation
fraction
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Fig. 2 Upper Landsat
ETM+ 4,5,3 false-colour
visualisation of a Banks
peninsula grassland area. I, U,
D, T: Improved pastures,
Unimproved pastures,
Depleted tussocks, Tussock
grasslands. Lower: Spectral
measurements on an
unimproved pasture in the
Mackenzie basin

characterised by the presence of hard tussock (Festuca novae-zelandiae), blue tus-
sock (Poa colensoi), and/or silver tussock (Poa cita). Short tussock grassland is
typically over-sown with exotic pasture species to improve pastoral production, or
exotic grasses have invaded from neighbouring areas. Tall tussock grassland (also
greenish-brown) can be typically found at higher altitudes in the South Island high
country with limited presence in the North Island main ranges. Chionochloa species
dominate, usually accompanied by short tussock grassland species and a number of
herbs, in particular, Celmisia species. Both short and tall tussock ecosystems can
show low vegetation fraction (VF) values.

Depleted tussock grasslands (visualised as light blue, because of the very high
reflectance in the red band) are areas of very low, herbal vegetation with a general
grassland/herbfield character. They are common in dry areas and heavily-grazed
areas, where some invasive species can find a most favourable habitat. Short
tussock grassland species are usually present, but display less than 10% cover.
Hieracium species, thyme and/or exotic grasses are conspicuous, as is the bare
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ground component. Plant vigour and biomass are significantly lower than in short
tussock.

In this work, 2 improved pastures, 5 unimproved pastures, 3 tussock grasslands
and 2 depleted tussock grasslands were investigated.

Spectral and Biophysical Measurements

All field samples were collected during January 2004. Using the LCDB2 classifi-
cation, improved pastures, non improved pastures, tussock grassland and depleted
tussock areas were identified on Landsat ETM+ satellite imagery acquired in
January 2003. With the colour composite of bands 4, 5, 3 (RGB) providing a good
visualisation of the different classes, 12 ground-truth areas (100 × 100 m) were
selected, consistent with the 3 × 3 pixel selected ROIs (pixel size 30 m, ROI size
90 × 90 m) The Landsat imagery was registered and atmospherically corrected at
the New Zealand Centre for Precision Agriculture, Massey University, Palmerston
North.

Spectral measurements have been carried out between 10.00 and 14.00 on clear
sky conditions. Ground spectra were collected at the 12 sites using an Analytical
Spectral Devices (ASD) Hand Held spectroradiometer. The ASD Hand Held wave-
length range is 325–1075 nm. Cosine diffuser foreoptics were used during the field
campaigns; 12 spectra were measured at each ground-truth area. Each spectrum
was automatically calculated and stored by the spectroradiometer as an average of
20 readings. Spectra were exported and spectral vegetation indices were calculated
from both ground measurements and from the Landsat 7 ETM+ reflectance val-
ues (used bands were red: 630–690 nm and Near-Infrared 750–900) obtained in
3 × 3 pixel ROIs (Regions of Interest indicated by the 12 GPS positions). For the
Vegetation Indices calculation, ground data were matched to the ETM+ satellite
band ranges.

Biophysical measurements were also carried out in the ground-truth areas.
Investigated parameters were biomass, necromass, Leaf Area Index, nitrogen leaf
concentration, biomass/necromass ratio (%) and biomass/phytomass ratio (Green
Ratio (GR), %). GR is the proportion of green material in a grassland– in sim-
ple terms, it is the percentage of grass that is green, while the degree of curing
(also used in the literature) represents the correspondent proportion of dead mate-
rial. Phytomass was divided manually into biomass and necromass components.
Samples were dried for 48 h at 80◦C and then weighed. Biomass nitrogen content
(%) was determined in the laboratory. Vegetation fraction (VF) was also estimated
on a visual basis.

Results

Biophysical Measurements

The biophysical parameters range was very wide, as the research campaign included
very different vegetation types, from very productive and green improved grasslands
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Fig. 3 Biomass, necromass and Leaf Area Index of the investigated grasslands

to dry unimproved pastures and tussocks (Fig. 3). Biomass values varied from 10
(depleted tussock) to 667 g m–2 (improved pasture) while necromass maximum val-
ues reached 386 g m–2 (tussock grassland). Vegetation necromass was generally
high in most of the grassland ecosystems due to the dry conditions of the austral
summer of 2004 in the Canterbury and Mackenzie Basin area. In fact, due to the dry
climatic trend, it was possible to observe that in 9 of the 12 study areas the GR value
was lower than 50%. The native grassland tussocks structure also generally includes
many old leaves, so in all these grasslands the observed necromass was always high.

For this reason, the tussock grasslands look brownish especially in summer even
if they show high biomass levels and generally discrete GR values. This is because
of their tussock structure, where high rates of biomass are concentrated and ‘hid-
den’ within the sparse tussocks, while the ground in between the tussocks is poorly
vegetated or sometimes even bare.

LAI range was also very high, being between 0.8 (depleted area) and 8.2 (inten-
sively managed meadow). Observing the infrared reflectance (Fig. 4) it is possible
to distinguish, in the near-infrared wavelength range (760–900 nm), improved pas-
tures (with a biomass range between 400 and 700 g m–2) from unimproved ones
(100–400 gm–2). Improved pastures (grassland areas with high biomass) generate
high reflectances in the near infrared (higher than 0.5 in the 825–900 nm range).
With high biomass, the near infrared (NIR) reflectance continues to respond sig-
nificantly to changes in moderate-to-high vegetation density in canopies. On the
other hand, this higher sensitivity of the NIR reflectance has little effect on NDVI
values once the NIR reflectance exceeds 0.3, as shown by Gitelson (2004). This
different reflectance in the NIR still allows a different visualisation of improved
(red-orange) and unimproved (yellow) pastures in the 4,5,3 ETM+ false-colour
imagery. Blue colour in the false colour visualisation is typical of areas with high
reflectance in the red wavelengths such as depleted tussocks (see Fig. 4). On the
other hand, short and tall tussock areas look dark green or brownish according to
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Fig. 4 Spectral signatures of the 12 investigated New Zealand grasslands

their reflectance in the red and especially in the mid-infrared wavelengths (band 5).
New Zealand tussock grassland signatures are very similar to depleted, unproduc-
tive areas, despite the higher biomass content. This can be related to the particular
structure of such canopies where biomass is concentrated into the dense tussocks
and partially ‘shaded’ by both biomass and necromass elements. Also, there is a
strong background effect due to the bare ground reflectance (low VF values). No
significant differences could be found between tussocks and non-tussocks biomass
nitrogen (%) content (data not shown). Figure 5 shows that correlation coefficient R,
in the visible region, is negative for phytomass, biomass and necromass. Minimum
value for LAI correlation is –0.75 at 500 nm, while in the infrared region R is pos-
itive, reaching a maximum value of 0.84 at 750 nm for LAI and a maximum of
0.82 at 740 nm for biomass. Also, biomass total nitrogen, biomass/necromass ratio
and GR are negatively correlated in the visible and positively correlated in the NIR
region. Necromass alone showed very low R values. These results seem to confirm
the suitability of the hyperspectral approach for both in-situ and remote estimation
of both quantity and quality of grass. Narrow-band reflectances and spectral veg-
etation indices can yield very good linear correlations with grassland biophysical
parameters as demonstrated by Hansen and Schjoerring (2003) and Mutanga (2004).
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Fig. 5 Correlation between biophysical parameters and reflectance: R values at different wave-
lengths

GR (and consequently the curing rate) of grasslands is one of the most predictable
parameters both in the visible and in the NIR bands. The multispectral approach still
allows acceptable upscaling of the investigated parameters at regional scale. A good
correlation between ground NDVI values (calculated from ETM+ simulated bands)
and biomass was found (R2 = 0.76, RMS = 0.08) see Fig. 6).
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On the other hand, index saturation occurs above biomass rates of 150 g/m2.
A similar logarithmic trend could be found at ground and satellite level. Indices
calculated from tussock reflectance data have to be considered separately as they
show values which are not comparable to other grasslands, because of their canopy
structure.

There is a good potential for monitoring grassland phenological properties, as
the GR is highly correlated (see Fig. 7). with many vegetation indices, such as
Green-NDVI, calculated as a normalised difference between the NIR and the green
band. The correlation is mostly linear and do not perform well below 20–30%
cover, as it typically happens for remote vegetation indices. The Prediction of GR
(and then the curing rate of grasslands) seems to be possible according to the
correlation coefficient found (R2 = 0.74; RMS= 0.06), which can be considered
sufficient for use in remote understanding grassland processes. Also in this case, tus-
sock grasslands have to be considered separately because of their particular optical
properties.
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Conclusions

A marked variability of the investigated biophysical parameters was observed,
according to the very different vegetation types and canopy structures which were
observed.

Depending on their different biomass, improved and unimproved pastures
showed very different spectral signatures in the NIR range. Despite this, NDVI-
biomass regression is logarithmic as NDVI values saturate very early due to the
index normalisation effect.

The native grassland tussocks signatures showed a spectral response very similar
to depleted low-productive areas in the visible-NIR range. As these grasslands are
visualised as green-brownish in the 4, 5, 3 false-colour ETM+ imagery, more studies
are needed in order to investigate their the mid-infrared reflectance. These studies
could also help to improve prediction of biophysical parameters and provide new
information about the predictability of grassland water status.

Good correlations were found between narrow-band reflectances and biophysical
parameters. Considering the curing monitoring need, necromass itself seems to be
not predictable but biomass and GR showed good R values. All these results seem
to confirm the suitability of the hyperspectral approach for both in-situ and remote
estimation of both the quantity and quality of grass, using hyperspectral indices or
a regression method exploiting several narrow bands.

On the other hand, depending on the spectral resolution available from the
satellite platforms, multispectral vegetation indices allow the upscaling of the bio-
physical parameters. GR (and consequently the curing rate) of grasslands was one
of the most predictable parameters and shows a linear correlation with Green NDVI.
This kind of information is a key tool in grassland curing estimation for phenological
monitoring and fire danger assessment.
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Comparing Common Hyperspectral Vegetation
Indices for Their Ability to Estimate Seasonal
Nitrogen and Other Variables in Winter
Wheat Across a Growing Season

J.G. Ferwerda, S.D. Jones, G. O’Leary, R. Belford, and G.J. Fitzgerald

Abstract Abstract Field spectroscopy was used to assess the nitrogen status and
monitor crop growth and production of wheat (Triticum aestivum L, cv. Chara)
under a range of nitrogen fertilizer treatments and two irrigation levels (rainfed
and irrigated) throughout the growing season. The association between a range of
commonly used vegetation indices for the detection of green biomass, nitrogen or
chlorophyll concentration, and measured crop characteristics (nitrogen concentra-
tion, total nitrogen accumulated, dry weight, wet weight, relative foliar cover and
moisture content) was determined for six moments in the growing season. At about
95–144 days after sowing, a strong correlation (r2 between 0.7 and 0.99, p<0.01)
existed between vegetation indices and wheat biomass, relative foliar cover and
total nitrogen load per square meter. However this association did not hold when
multiple sample dates were combined. Changes in total biomass and/or foliar cover
strongly affected the association between vegetation measures and the vegetation
indices, making between-date comparisons difficult.

Introduction

Nitrogen is an important factor in environmental processes such as biomass decom-
position (Recous et al., 1995), plant growth (Zhao et al., 2005) and herbivore
foraging (Mattson, 1980). In agriculture it is one of the main fertilizers used
to enhance crop productivity. Nitrogen status of a plant is linearly related to
chlorophyll content (Zhao et al., 2005), and therefore to a plants photosynthetic
capacity. Early detection of nitrogen shortages in crops may enhance fertilization
schemes and improve crop production. It is therefore not surprising that many stud-
ies have tried to develop automated routines for the detection of foliar nitrogen
concentration.
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A variety of remote sensing indices have been proposed to predict foliar nitro-
gen and chlorophyll concentration, as well as the relative foliar cover, such as
Green Leave Area Index, GLAI Ferwerda and Jones, 2006; Gong et al., 2002;
Haboudane et al., 2004; Haboudane et al., 2002; Huete, 1988; Johnson, 2001; Yoder
and Pettigrew-Crosby, 1995. Two distinct groups of indices can be distinguished.
One group required a priori knowledge about the characteristic of the crop, such
as biomass ranges, and foliar nitrogen content. An example is the Crop Canopy
Chlorophyll Index (CCCI, (Fitzgerald et al., 2006)) which uses the Nitrogen Stress
Index (NS Index (Rodriguez et al., 2006)) to detetermine the fertilisation status
of crops. When tested on wheat, Rodriguez et al., (2006) found that the CCCI
accounted for 68% of the variation in nitrogen status as early as zadoc (growth
stage) 33 (3rd node detectable). Although these indices work well, there is an obvi-
ous downside to the need of field data. The second group of indices is based solely
on the reflectance signatures of the crop. These indices typically combine bands
from chlorophyll absorption features in the visible light (around 450 nm or 680 nm)
with one or more bands influenced by radiometric scattering by cell-wall material
in the near infrared (primarily 700–900 nm) or short wave infrared light (primarily
1500–1750 nm). The main variation between these indices is the predicted sensi-
tivity to the effects of soil reflectance under low canopy cover, and to variations
in foliage cover. Common indices include the Transformed Chlorophyll Absorbed
Reflectance Index (TCARI (Haboudane et al., 2002)), the Optimized Soil Adjusted
Vegetation Index (OSAVI (Haboudane et al., 2002)), the Modified Soil Adjusted
Vegetation Index (MSAVI (Qi et al., 1994)), and the Modified Simple Ratio index
at 705 nm (MSR705 (Sims and Gamon, 2002)).

In semi-arid production systems the balance between nitrogen availability and
water availability strongly affects crop productivity. The effect of irrigation, besides
increasing water availability and subsequent growth and cell-stretching (Munns
et al., 2000), is an increased ability to absorb nitrogen, which further enhances
growth. A shortage of available water therefore limits growth in two ways: Directly,
through a reduced cell-extension, and at extreme levels, damage to cells and
overheating of foliage, and indirectly, through a reduced ability to absorb nitrogen.

To test the effects of water and nitrogen availability on plant growth and wheat
(Triticum aestivum L, cv. Chara) production, and the ability to detect these effects
through remote sensing, a field experiment was performed. In particular the rela-
tionship between a variety of common vegetation indices (assumed to be related to
biomass or foliar nitrogen (chlorophyll)) and the actual concentration of nitrogen,
the GLAI and the standing crop biomass throughout the growing season for irrigated
and rain-fed wheat on four different levels of fertilisation.

When vegetation indices are used to asses the fertilisation requirements and the
growth of a crop at a specific moment in time, it is important to determine the
spatial variation of a crop growing under similar conditions accurately, at that spe-
cific moment in time. However, when monitoring crop development throughout the
season (for example for yield forecasting models), it is equally important that veg-
etation indices have a consistent relation with the measure of interest. Therefore
the association between vegetation indices and measured vegetation characteristics
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was analyzed for both individual sampling dates, as well as combined for the full
growing season.

Methods

Field Setup

Wheat (Triticum aestivum L, cv. Chara) was grown during the 2004 growing season
in Horsham, Victoria, Australia (Sowing date: June 17th; Date of emergence: June
22nd). As part of an ongoing experiment on the effects of nitrogen and water avail-
ability on the productivity of wheat in semi-arid systems (Rodriguez et al., 2006),
wheat was grown on plots (soil type: Grey vertisol) with a variation of nitrogen
applications and irrigation levels in a split-plot factorial design. The main treatments
were Irrigated (390 mm; decile 9 for Horsham) and Rainfed (270 mm; decile 5 for
Horsham) with four levels of nitrogen applied as urea (0, 16, 39, 163 kg N/ha) in
subplots with three replications. Irrigated plots were irrigated six times with 25 mm
each between September 6th and November 18th. Urea fertiliser was applied on the
28th of May. Rows were planted in a north to south orientation.

Hyperspectral Measurements

Spectral properties of the plots were recorded at eight sampling dates during the
growing season (Table 1). The reflectance of approximately 1 m2 of the canopy was
recorded using an ASD (Analytical Spectral Devices, Inc, Boulder, USA) Fieldspec
FR field spectrometer. This instrument combines three spectrometers to cover the
350–2500 nm range of the electromagnetic spectrum. The spectrometer is equipped
with an optical fibre, which was placed in a pistol grip and mounted on a steel
boom, 2.5 m above ground surface pointing downwards in a 90 degree angle to

Table 1 Sampling dates. Dates, and the number of days after sowing (17th of June 2004) at which
samples were collected

Date Days after sowing

12 Aug 2004 56
27 Aug 2004 71
20 Sep 2004 95
06 Oct 2004 111
18 Oct 2004 ∗ 123
08 Nov 2004 144
22 Nov 2004 158
03 Dec 2004 169

∗ Spectrometer readings from the 18th of October displayed high levels
of noise, and data from this date has been removed from analysis
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measure the up-welling radiance of the wheat. Absolute reflectance was calculated
using a calibrated Spectralon Reflectance Target (Labsphere, Inc, North Sutton,
New Hampshire) as a reference. The above-ground biomass at the centre of each
measured area was harvested (0.36 m2) for further analysis (see below). All mea-
surements took place between 2 h before and after solar noon on predominantly
cloud-free days.

Sample Analysis

At eight sampling dates during the growing season above-ground biomass was har-
vested after spectral measurements were taken of the site. The following parameters
were determined for the collected samples:

• Nitrogen concentration (N, g kg–1)
• Green Leaf Area Index (GLAI, m2 m–2)
• Sample Moisture Content (SMC, g kg–1)
• Sample Dry Weight (SDW, gm–2)
• Sample Wet Weight (SWW, g m–2)

For the first two sampling dates (56 days after sowing (DAS56) and DAS71) only
N and SDW for rainfed plots were determined, as irrigation had not started yet. On
the 13th of December two quadrates (4 rows by 1 meter; approximately 1 m2) per
treatment were harvested, and mean wheat production was determined.

Data Processing

Nitrogen concentration was converted to Nitrogen load per Square Meter pad-
dock (NSM) by multiplying N with the SDW and dividing it by the sampled area.
Since reflectance measurements were taken over a consistent area, it was expected
that nitrogen per unit area would have a stronger relation to chlorophyll indices
then nitrogen concentration. The effect of individual treatments on N, NSM, SDW,
SWW, SMC and GLAI was tested using a factorial analysis of variance with nitro-
gen level (n=4), irrigation (n=2) and days after sowing, DAS (n=8) as interacting
factors. For all variables the group distributions were slightly skewed, and a square-
root transformation was applied to NSM, SDW, SWW, and GLAI, after which a
Shapiro Wilks’ W test indicated that group distributions did not seriously devi-
ate from normality (Shapiro Wilks’ W; p > 0.05). N and SMC were measured on
a truncated scale (between 0 and 1000 g kg–1), and their distribution is therefore
by definition non-normal (Zar, 1999). An arcsine transformation was applied, after
which these variables did not deviate from normality (Shaprio Wilks’ W; p<0.05).
Analysis of Variance was performed using the transformed data.
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Index Calculation

The hyperspectral readings for each plot were used to calculate a series of narrow-
band vegetation indices related to crop chlorophyll content and biomass (See Table 2
for calculation details and literature from which the formulas’ were derived) The
IDL programming language (ITT Industries Inc., Boulder USA) was used to pro-
cess the reflectance signatures and calculate the indices. The following indices were
included, grouped by the biophysical parameters for which strong relations are
expected.

Table 2 Overview of the vegetation indices used in this study, including the formula used to cal-
culate them and the literature used to determine calculations. λ = Wavelength, Rλ = Reflectances
of band with central wavelength closest to wavelength λ. See appendix 1 for an explanation of the
indices

Index Calculation Following

NDVI (R800–R670)/(R800+R670) Rouse et al. (1974)
MCARI [(R700–R670)–0.2(R700–R550)](R700/T670) Daughtry et al. (1992)
mSR705 (R750–R445)/(R705–R445) Sims and Gamon (2002)
MSAVI 1/2 [2R800 + 1 – sqrt(2 (R800+1)2–8(R800–R670))] Qi et al. (1994)
OSAVI (1+0.16)(R800–R670)/(R800+R670+0.16) Haboudane et al. (2002)
TCARI 3[(R700–R670)–0.2(R700–R550)(R700/R670)] Haboudane et al. (2002)
LAIVI TCARI/OSAVI Haboudane et al. (2002)
mND705 (R750–R705)/(R750+R705–2R445) Sims and Gamon (2002)
RDVI (R800–R670)/sqrt(R800+R670) Haboudane et al. (2004)
TVI 0.5[120(R750–R550)–200(R670–R550)] Broge and Leblanc (2000)
NRI693,1559 (R693 – R1559)/(R693 + R1559) Ferwerda et al. (2005)
NRI693,1770 (R693 – R1770)/(R693 + R1770) Ferwerda et al. (2005)
PRE λ where dR/dλ is Max | 650 nm < λ < 780 nm Gong et al. (2002)
PYE λ where dR/dλ is Max | 550 nm < λ < 582 nm Gong et al. (2002)
PIRE λ where dR/dλ is Max | 1300 nm < λ < 1460 nm Gong et al. (2002)

Relation Between Indices and Vegetation Characteristics

Pearson correlation coefficients were calculated between the 16 vegetation indices
and N, NSM, SWW, SDW, SWW, SMC and GLAI. This was done for all samples
collected in the study together, for these samples grouped by sampling date (seven
groups), and for the samples grouped by sampling date and irrigation treatment
(fourteen groups).

Results

Treatment Effects

All vegetation measures changed as the season progressed, and all measures were
affected by the nitrogen and the irrigation treatments (Table 3, Fig. 1). For N, NSM
and SWW the effects of the nitrogen treatment were dependent on the sampling
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Table 3 Analysis of variance results testing for the effect of nitrogen and irrigation treatments of
winter wheat vegetation characteristics throughout the growing season

N NSM SDW SWW SMC GLAI Yield

DAS ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ –
N ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
Irrigation ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
DAS∗ N ∗∗∗ ∗∗∗ n.s. ∗ n.s. n.s. –
DAS∗ Irr ∗∗∗ n.s. ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ –
N∗ Irr n.s. ∗∗ n.s. ∗∗∗ n.s. ∗∗∗ ∗
DAS∗ N∗ Irr n.s. n.s. n.s. n.s. n.s. n.s. –

∗: P<0.05; ∗∗ P:<0.01, ∗∗∗ p<0.001, n.s.: not significant

date (Table 3) with higher N, NSM and SWW on plots with higher fertilisation
levels. For all measures, except NSM, the effect of irrigation was dependent on
sampling date. A significant interaction occurred between nitrogen and irrigation
treatments for NSM, SWW, Yield and GLAI (Table 3). In other words, the effect

Fig. 1 Vegetation characteristics for wheat grown on irrigated versus rainfed plots over the grow-
ing season. Characteristics: Aboveground nitrogen concentration (N, in g kg–1); Nitrogen loading
per Square Meter (NSM, in g m–2); Green Leaf Area Index (GLAI, in m2 m–2); Sample Moisture
Content (SMC in g g–1); Sample Wet Weight (SWW in g m–2), Sample Dry Weight (SDW in g m–2)
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of irrigation was dependent on levels of nitrogen fertilisation. These measures were
higher on irrigated then rainfed plots, and the difference was more pronounced with
increasing nitrogen levels. On rainfed plots GLAI levelled off for the highest two
nitrogen treatments and even decreased with the highest nitrogen level for Yield.
The interaction between nitrogen treatment, irrigation and days after sowing was
not significant for any variable, indicating that the interactive effects of nitrogen and
water availability on the measured vegetation variables did not vary throughout the
growing season.

Relation Between Indices and Vegetation Characteristics

The correlation (r) between vegetation indices and vegetation characteristics as
measured across growing stages was generally moderate to poor (Table 4). Only
for GLAI and SMC correlations with vegetation indices were consistently high
(Table 4). Two indices (NRI1770 and NRI1559) showed a strong association with
foliar nitrogen. No vegetation index showed a strong correlation with NSM, SDW
or SWW.

When data were grouped by growth stage, stronger associations were found.
Figure 2 gives an overview of the correlation between individual vegetation indices,
and N, NSM, Yield, SDW, SWW and GLAI. For all plots combined, coefficients
of determination were significant (p ≤ 0.05) for r2 values > 0.4 from DAS95.

Table 4 Whole-season correlation (r) values between vegetation indices, and foliar nitrogen con-
centration (N, g kg–1), Nitrogen load per square meter (NSM, g m–2), leaf area index (GLAI, m2

m–2), sample dry weight (SDW g m–2), sample wet weight (SWW g m–2) and sample moisture con-
tent (SMC, g kg–1) for all samples combined. Strong linear correlations (|r| > 0.75) are displayed
in bold

N NSM GLAI SDW SWW SMC

LAIVI –0.47∗∗∗ –0.42∗∗∗ –0.61∗∗∗ 0.15n.s. –0.31∗∗ –0.42∗∗∗
MCARI 0.72∗∗∗ 0.44∗∗∗ 0.82∗∗∗ –0.37∗∗∗ 0.39∗∗∗ 0.92∗∗∗
MSAVI 0.73∗∗∗ 0.59∗∗∗ 0.88∗∗∗ –0.26∗ 0.53∗∗∗ 0.88∗∗∗
MSR 0.73∗∗∗ 0.56∗∗∗ 0.85∗∗∗ –0.28∗∗ 0.51∗∗∗ 0.88∗∗∗
MSR705 0.73∗∗∗ 0.59∗∗∗ 0.86∗∗ –0.26∗ 0.55∗∗∗ 0.86∗∗∗
ND705 0.67∗∗∗ 0.48∗∗∗ 0.89∗∗∗ –0.29∗∗ 0.48∗∗∗ 0.86∗∗∗
NDVI 0.64∗∗∗ 0.45∗∗∗ 0.86∗∗ –0.28∗∗ 0.46∗∗∗ 0.86∗∗∗
NRI1559 –0.80∗∗∗ –0.37∗∗∗ –0.87∗∗∗ 0.50∗∗∗ –0.33∗∗∗ –0.91∗∗∗
NRI1770 0.78∗∗∗ 0.37∗∗∗ 0.88∗∗∗ –0.50∗∗∗ 0.33∗∗∗ 0.91∗∗∗
OSAVI 0.68∗∗∗ 0.51∗∗∗ 0.88∗∗∗ –0.27∗∗ 0.50∗∗∗ 0.88∗∗∗
PIRE –0.25∗ –0.09n.s. –0.05n.s. 0.15n.s. –0.07n.s. –0.28∗∗∗
PRE 0.64∗∗∗ 0.70∗∗∗ 0.86∗∗∗ –0.07n.s. 0.63∗∗∗ 0.73∗∗∗
PYE –0.52∗∗∗ –0.28∗∗ –0.65∗∗∗ 0.32∗∗∗ –0.17n.s. –0.56∗∗∗
RDVI 0.71∗∗∗ 0.55∗∗∗ 0.88∗∗∗ –0.26∗ 0.52∗∗∗ 0.88∗∗∗
TCARI 0.60∗∗∗ 0.35∗∗∗ 0.77∗∗∗ –0.31∗∗ 0.37∗∗∗ 0.85∗∗∗
TVI 0.74∗∗∗ 0.55∗∗∗ 0.88∗∗∗ –0.29∗∗ 0.49∗∗∗ 0.89∗∗∗

∗: P<0.05; ∗∗ P:<0.01, ∗∗∗ p<0.001
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For DAS56 and DAS71 coefficients of determination were significant (p ≤ 0.05)
for r2 values > 0.6. For rainfed and irrigated plots separately, significant relations
occurred, independent of date or treatment, for r2 values > 0.6. Figure 3 show the
best performing indices for the individual vegetation characteristics.

The relation between vegetation indices and the measures they try to predict var-
ied throughout the growing season. The relation between individual indices and
vegetation measures was strongest for NSM and SWW, with r2 values over 0.90.
Strong relations occurred with SDW and GLAI (r2 > 0.8), and relationships with
Yield and N were relatively poor (r2 < 0.8). Overall, the strongest relations between
vegetation parameters and vegetation indices occurred mid-growing season, around
DAS95, DAS111 and DAS144.

Fig. 2 Correlation r2 between remotely sensed vegetation indices and: a: Sample dry weight
(SDW), sample wet weight (SWW) and green leaf area index (GLAI). b: Nitrogen load per square
meter (NSM), nitrogen concentration (N) and plot yield (Yield)
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Fig. 2 (continued)

Sample Dry Weight

Maximum correlation (p<0.05) between mean dry weight and an individual index
across treatments occurred with OSAVI (DAS95, r2=0.85; DAS144, r2=0.85) and
RDVI (DAS95, r2=0.81; DAS144, r2=0.84). When data was separated in irrigated
and rainfed plots, maximum correlation occurred with OSAVI (DAS95, r2=0.85),
RDVI (DAS95, r2=0.84) and PRE (DAS95, r2=0.82). Maximum correlation on
rainfed plots occured for NDVI, TVI and OSAVI (DAS95, r2=0.86), and MSAVI
(DAS144, r2=0.86).

Sample Wet Weight

The correlation (p<0.05) between mean wet biomass and the vegetation indices was
the strongest of all vegetation measures. Correlation r2 values peaked across treat-
ments from DAS95 to DAS144. Maximum correlations for all indices, except for
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Fig. 3 Scatterplot of the strongest observed relations between an individual vegetation index and
vegetation characteristics, with: Triangles = Irrigated plots, Plusses = Rainfed plots. Variables
on the Y-axis were transformed for normality, and represent sample dry weight (SDW, g
m–2), sample wet weight (SWW, g m–2), green leaf area index (GLAI, m2 m–2), Nitrogen
load per square meter (NSM, g m–2), nitrogen concentration (N, g g–1) and plot yield (Yield,
1000 kg ha–1)

LAIVI, PIRE, TCARI and NDVI, ranged between 0.78 and 0.92. For all plots com-
bined the best relation occurred with MSAVI (DAS95, r2=0.90) and mSR705 and
TVI (DAS111, r2=0.89). For irrigated plots the peak r2 values were observed for
MSAVI (DAS95, r2=0.92 and DAS111, r2=0.91), PRE and RDVI (DAS95, r2=0.91
and DAS111, r2=0.91). On rainfed plots, peak correlations occurred for MSAVI,
RDVI (r2=0.91) and TVI (r2=0.90) at DAS144, and ND705, OSAVI (r2=0.89) and
NRI1559 (r2=0.88) at DAS95.

Green Leaf Area Index

The correlation (p<0.05) between GLAI and the vegetation indices is generally not
strong. Peak correlation occurred around DAS111 for all plots and irrigated plots.
For rainfed plots this was at DAS111 and DAS144. The maximum correlation for
all plots was with MSAVI, RDVI and TVI (DAS111, r2=0.89). For irrigated plots
peak correlations were observed for TVI (r2=0.88, DAS111) and MSAVI (r2=0.87,
DAS95). For rainfed plots this occured for MCARI (r2=0.78, DAS144), TCARI and
TVI (DAS144, r2=0.76).
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Nitrogen Concentration

Correlations (p<0.05) between vegetation indices and N were relatively poor, with r2

values above 0.75 only occurring on irrigated plots. For all plots combined the posi-
tion of the red edge (PRE) was the best predictor of N (r2=0.72, DAS95), followed
by MSAVI (DAS95, r2=0.67) and TVI (DAS95, r2=0.65). For irrigated plots the best
prediction of N occurred at 111 days after sowing, with correlations between N and
MCARI, MSAVI, MSR705, NRI1559, NRI1770, PRE, RDVI all above r2=0.80.
On irrigated plots maximum r2 values occurred for NRI1559 (DAS111, r2=0.75)
and PRE (DAS111, r2=0.75).

Nitrogen Per Square Meter

Correlations (p<0.05) between NSM and the vegetation indices were generally
strong. For all plots combined, maximum correlation between NSM and vegetation
indices occurred for PRE (DAS95, r2=0.91), RDVI (DAS95, r2=0.86) and MSR705
(DAS95, r2=0.87). On Irrigated plots maximum correlations occurred for MSAVI
(DAS111, r2=0.94) PRE (DAS111, r2=0.94) and TVI (DAS111. r2=0.94). On rain-
fed plots, the best indices were PRE (DAS95, r2=0.95), MSR705 (DAS95, r2=0.91)
and NRI1559 (DAS95, r2=0.89).

Yield

Correlation (p<0.05) between grain yield and the vegetation indices was poor. Only
in the late growing season (DAS144) the coefficient of determination was signifi-
cant, with values of over r2=0.6 for TCARI (r2=0.67), NDVI (r2=0.61), OSAVI
(r2=0.60) and MCARI (r2=0.61).

Discussion

The correlations between individual indices and the vegetation characteristics all
showed a similar trend in time and between irrigation treatments. There was no
‘best’ index for the prediction of any of the vegetation characteristics, and accuracies
across the growing season were fairly similar. Considering that most indices are
derived from the same wavebands this is not unexpected.

One of the main interests for a production farmer is the fertiliser needs of the
crop. A big increase in the detectability of nitrogen occurs between 71 days after
sowing (Corresponding to Zodac stage 30; start of stem erection) and 95 days
after sowing (Corresponding to Zodac stage 33; third node detectable). Correlation
r2 between a number of vegetation indices and nitrogen concentration reached
0.8–0.9 at Zodac stage 33, which is well within the time window for additional fer-
tilisation. These correlation levels are slightly higher then those found by Rodriguez
et al. (2006).

The poor overall association between vegetation indices and the vegetation char-
acteristics across the growing season illustrates the effect of plant development on
the vegetation indices. The relation between the index and the measure of interest
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Fig. 4 Reflectance signatures of winterwheat: (a) 95 days after sowing, for wheat growing at
full density, on irrigated sites with no fertilisation and16, 39 or 163 kg N/ha (0 N, 16 N, 39 N,
and 163 N respectively). (b) Difference between rainfed and irrigated wheat growing on plots
fertilised with 163 kg N/ha, 95, 111 and 169 days after sowing (95 DAS, 111 DAS and 169 DAS
respectively)

may change throughout the season, as a result of changes in the reflectance due
to increased biomass and changes in water content or redistribution of nitrogen
in the plant. Although for rainfed plots the sample dry weight increases through-
out the growing season, a peak in green leaf area is already reached at DAS95, a
point clearly reflected in the difference in reflectance between irrigated and rainfed
plots (Fig. 4b). If indices designed to detect vegetation characteristics are not prop-
erly calibrated against variation in green leaf area, this may affect across-season
validity of the index. OSAVI for instance, has a strong relation with dry biomass:
at 95 days after sowing, OSAVI explains 85% of the variation in biomass across

Fig. 5 OSAVI versus leaf area index and sample dry weight, categorized by DAS
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treatments (Fig. 2). However, when the data from the whole growing season is com-
bined, only 27% of the variation in biomass can be predicted (Table 4). Plotting dry
weight as a function of OSAVI shows why the relation across the growing season
is poor (Fig. 5). As the season progresses, and biomass increases, the regression
line between dry weight and OSAVI becomes steeper. At the onset of the grow-
ing season (DAS56) an increase of OSAVI corresponds to only a limited change in
biomass. At the end of the growing season, this is inversed: A slight increase of
OSAVI corresponds to a steep increase in biomass. For all other indices the same
relation between dry biomass and vegetation index occurs. This gives rise to the
idea that not biomass, but a proxy is detected by the vegetation index. When GLAI
is plotted as a function of OSAVI for the full growing season (Fig. 2a) there is a
clear relation between GLAI and OSAVI. Higher levels of OSAVI predict higher
GLAI. Figure 1 shows that GLAI increases until about 111 days after sowing, and
then gradually decreases, even though biomass increases to the end of the grow-
ing season, which is in line with the decrease in predictive capability of vegetation
indices trying to predict biomass.

Yield Forecasting

Reasonable correlations occur at DAS144 across plots, but this mainly represents a
difference in yield between rainfed and irrigated plots (Fig. 3f). Previous work on
wheat has shown similar poor relations between final grain yield, and early season
vegetation indices. Aparicia et al. (2000) concluded that although under rainfed con-
ditions a significant correlation occurs between grain yield and vegetation indices,
these indices saturate when GLAI reaches values of over 3, which occurs in the more
favourable irrigation environment. The current study seems to confirm this conclu-
sion. Previous studies have shown promising results for yield forecasting using an
accumulated NDVI (Hochheim et al., 1996). The rational behind this is that end
of season grain yield is an integrated measure of all growing conditions encoun-
tered over the duration of the growing season. Therefore the accumulated NDVI
was calculated over the last 6 sampling dates, and the correlation coefficient with
total grain yield was calculated. This resulted in a poor overall correlation (r2=0.05;
p<0.1). When data is categorized by irrigated versus rainfed, these become r2=0.00
(p<0.76) and r2=0.33 (p<0.003) respectively.

Data Acquisition and Accuracy

Spectral readings from measurement 5 (October 18th, 123 DAS) were noisy, with
a number of spikes in the visible/near infrared part of the electromagnetic spectrum
for most signatures, and all measurements from that date were therefore excluded
from analysis. When visually analyzing Fig. 2, a slight drop in correlations between
the indices and vegetation characteristics for measurement 6 (November 8th, 144
DAS) can be observed, with a subsequent increase correlation for the next acqui-
sition date. In theory this could be the result of variation in plant-water status
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between plots. However, irrigation of irrigated plots occurred every time at least
five days before spectral readings were taken, making this less likely. Growing con-
ditions during the week following irrigation were no different then on other dates.
Therefore it is assumed that the noise in the spectra is a result of the data-acquisition
setup. For each plot, one spectral signature was acquired at each acquisition date.
This may have resulted in a decreased signal-to-noise ratio. For future studies, a
higher number of spectral readings per plot, and a reduction in setup times should
be aimed for.

Conclusions

At about 95–144 days after sowing, a good correlation (r2 between 0.7 and 0.99)
existed between vegetation indices and wheat biomass, relative foliar cover and total
nitrogen load per square meter. A reasonable correlation (r2 between 0.5 < r2 and
0.75) occurred with foliar nitrogen concentration. This difference is likely the result
of the inability of these basic indices to separate the effect of total biomass on the
nitrogen signal: The total amount of N per square meter can be more accurately
predicted than the concentration of N in foliage. Since the relation between vegeta-
tion measures and the indices changed throughout the growing season, these indices
seem to be suitable for site-specific analysis of underperforming regions, but require
continuous calibration against field data in order to make between-date comparisons
realistic. To improve between-date relationships, other methodologies, that better
remove the effect of increased biomass/leaf area on absolute reflectance, should be
explored, such as continuum removal (Clark and Roush, 1984), derivative analysis
(Tsai and Philpot, 1998) and principal component analysis (Thenkabail et al., 2004).
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Appendix: Summary of the Indices Used in this Study

Indices Typically Used for Biomass (Green Leaf Area)

NDVI (Normalized difference vegetation index). Commonly used to assess the
amount of green biomass, uses the difference between reflectance around 800 nm,
which is influenced by cell-wall scattering, and reflectance around 670 nm, which
is influenced by chlorophyll absorption.

OSAVI (Optimized Soil Adjusted Vegetation Index (Haboudane et al., 2002)).
This index is based on the Soil Adjusted Vegetation Index (Huete, 1988). Effectively
chlorophyll absorption around 670 nm is used as an index, which is stabilized for
soil background using reflectance in the NIR (800 nm).
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MSAVI (Modified Soil Adjusted Vegetation Index (Qi et al., 1994)). This is
another index based on SAVI. MSAVI minimizes the effect of soil-background on
vegetation signals using a soil-background adjustment function, which has been
empirically derived from NDVI and WDVI. Effectively chlorophyll absorption
around 670 nm is used as an index, which is stabilized for soil background using
linear and quadratic reflectance in the NIR (800 nm).

RDVI (Re-normalized Difference Vegetation Index (Haboudane et al., 2004)).
Similar to the NDVI, this index uses the ratio between the sum and the difference
of a band in a chlorophyll absorption feature (670 nm) and a band in cell-wall scat-
tering region (800 nm) to predict biomass. To reduce saturation effects at higher
biomass levels, the square root is taken of the nominator.

Indices Typically Used for Chlorophyll/Foliar N

LAIVI (Leaf Area Insensitive Vegetation Index (Haboudane et al., 2002))
(TCARI/OSAVI). In order to reduce the effects of non-closed canopies and soil-
reflectance on TCARI, TCARI is divided by OSAVI, which results in LAIVI.

MCARI (Modified Chlorophyll Absorption index (Daughtry et al., 1992)). A
measure of the depth of chlorophyll absorption at 670 nm relative to the reflectance
at 550 and 700 nm,

mSR705. (Modified simple ratio index around 705 nm (Sims and Gamon, 2002)).
Based on a simple ratio index. Reflectance is normalized by subtracting a stable
reflectance (e.g., reflectance at a saturated absorption feature 445 nm) from a refer-
ence index (750 nm) and dividing it by the difference between the stable reflectance
and an index wavelength (705 nm).

mND705 (Modified Normalized Difference Vegetation Index (Sims and Gamon,
2002)). Based on normalised ratio indices such as NDVI. The index is based on
the difference between two bands, and normalized for shifts in overall intensity by
dividing by the sum of the index and reference bands. To further reduce the effect
of surface reflectance, the reflectance of a saturated absorption feature is subtracted
from the nominator.

NRI693,1559 (Normalized ratio index at 1559 (Ferwerda et al., 2005)). A varia-
tion on the NDVI, this index uses the less-saturated part of chlorophyll absorption
at 693 nm as an index, and a foliar water absorption feature around 1559 nm as
reference.

NR693,1770 (Normalized ratio index at 1770 (Ferwerda et al., 2005)). A variation
on the NDVI, this index uses the less-saturated part of chlorophyll absorption at
693 nm as an index, and a carbon-hydrogen absorption feature as reference.

PRE (Position of the red edge (Gong et al., 2002)). The wavelength where the
first derivative reaches a maximum, within the spectral region of the red edge 670–
740 nm.

PYE (Position of the yellow edge (Gong et al., 2002)). The wavelength where
the first derivative reaches a maximum, within the spectral region of the yellow edge
(550–582 nm).
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PIRE (Position of the infrared edge (Gong et al., 2002)). The wavelength where
the first derivative reaches a maximum, within the spectral region of the infrared
edge (1300–1460 nm).

TCARI (Transformed Chlorophyll Absorption Index (Haboudane et al., 2002)).
A transformed variant of the chlorophyll index MCARI, which is more sensi-
tive to low chlorophyll values and more resistant to vegetation non-photosynthetic
materials.

TVI (Triangular Vegetation Index (Broge and Leblanc, 2000)). Promoted as a
general vegetation index, it uses an absorption ‘triangle’ to quantify the depth of the
chlorophyll absorption feature between 550 and 750 nm, centred at 670 nm.
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The Spectral Response of Pastures in an
Intensively Managed Dairy System

R.N. Handcock, G. Mata, G.E. Donald, A. Edirisinghe,
D. Henry and S.G. Gherardi

Abstract All grazing-based industries require information on their feed resources
in order to manage them optimally. Gathering this information through traditional
methods for measuring pasture biomass is time-consuming and error-prone, result-
ing in increased interest in remotely-sensed methods. Remote sensing used to
monitor feed resources in farming systems differs from remote sensing of systems
such as forestry because of how the time-scale of management practices impacts on
the growth rate and accumulation patterns of biomass. Also, in operational systems,
designed for near real-time delivery to end-users of quantitative pasture measure-
ments, we are restricted to the commercially available broad-band high-resolution
sensors. The goal of this paper is to understand how remotely-sensed observations
of pastures in an intensively managed dairy system change in relation to intensive
management practices, so that better image analysis and ground-validation methods
can be developed for measuring and monitoring such systems. At two dates in the
growing season we examined high-resolution (SPOT-5 and Ikonos) images of an
intensively managed perennial dairy farm in Victoria (Australia). We showed that
the observed spectral response in the images varied with the length of time since
the paddock was grazed, consistent with the re-growth of pastures post-grazing.
The operational remote sensing of pastures is often restricted by the range of spec-
tral bands that are available on broad-band sensors. However, these results suggest
that when choosing a vegetation index for intensively managed dairy pastures it
should incorporate the short-wave infrared (SWIR) band to improve observations of
recently grazed pastures and tune analyses based on the spectral response.

Introduction

The goal of this paper it to understand how remotely-sensed observations of pastures
in an intensively managed (rotationally grazed) dairy system change in relation to
intensive management practices, so that better image analysis and ground-validation
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methods can be developed for measuring and monitoring such systems. In this
dynamic system, quantitative measurements of pasture biomass (kg DM ha–1) and
pasture growth rate (kg DM ha–1 day–1) are required frequently (˜ weekly) at the
scale of dairy paddocks (< 1 ha) which therefore restricts images to commercial
broad-band sensors such as SPOT and Ikonos.

The remote sensing of pastures in an intensively managed dairy system dif-
fers from vegetation systems such as forests because of the impact of management
practices such as grazing on the growth patterns and accumulation of pasture over
short-time periods. In non-pasture systems, vegetation biomass and growth rates
are closely related. However, in pasture systems management practices such as the
interval between, and number of, grazing events or the addition of fertilizers change
the pasture biomass that otherwise would result from a typical phenological cycle.
Also, grazing a pasture is not the same as clear-cutting in a forest because the graz-
ing pressure may vary and the re-growth occurs on top of a pasture residue which
increases with repeat grazing events (Fig. 1).

All grazing-based industries require information on their feed resources in order
to manage them optimally. Gathering this information through traditional meth-
ods for measuring pasture biomass (e.g. pasture cuts, visual assessments and plate
meters) (Sanderson et al. 2001) are time-consuming and error-prone, resulting in
increased interest in remotely-sensed methods which are spatially-extensive, labor-
saving, and reliable. The chosen sensors and analysis methods for the remote
sensing of pastures is complicated by the image pixel-resolution, paddock size, and
edge effects due to mixed pixels on the fence-line. Issues with the collection of
on-farm validation/calibration data include the growth of pastures between the time
of the image and the time of sampling, and problems with accurately geo-locating
measurements.

Farm management practices will impact the remote sensing of pastures, both
in the observed spectral response and the logistics of ground sampling and timing
images, and should be recorded as part of collecting validation data. As well as
grazing, cultivation, and conservation (e.g. for silage or hay), farm-management
practices include harvesting, nutrient inputs, and standing water from irrigation.
Repeat grazing events will result in changes in the amount of background soil that is
exposed, both across the season, but also across the farm, which will alter the spec-
tral response. Unlike a cropping system, at any point in time intensively managed

Fig. 1 Schematic illustrating vegetation growth for (a) forested, and (b) intensively managed
systems. The x-axis represents biomass or growth (not to scale)
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pastures may be at different stages of growth depending on where they sit in the
grazing rotation. Repeat grazing events will also affect the proportion of green and
dead material in the pasture, as seen by the gradual build-up of senesced leaves
(Moore et al. 1991) in the pasture residue through repeat grazing. The animals them-
selves can have an impact on ground and remote observations, through pugging, that
is where stock intensely trample wet soil, affecting soil and sward structure. Also,
there are the logistics of choosing paddocks for sampling which do not have man-
agement practices being actively applied over part of the paddock during image
acquisition.

Conceptually, the remote sensing of a farm is different from regional remote
sensing due to the discrete spatial partitions created by fences which define each
paddock. As well as observing pastures at individual pixels it is possible to study
the farm on a paddock by paddock basis. Aggregating data to the paddock-scale has
the benefit of giving a fixed spatial unit for further analysis and comparison of the
remotely-sensed values with farm management practices that typically occur at the
paddock-scale. However, activities such as strip-grazing (using temporary electric
fences to control animal access) can also occur are the sub-paddock-scale (Fig. 2).

While there is extensive work on the remote sensing of agriculture (Dorigo et al.
2007), this has tended to focus on crops (Seelan, et al. 2003) which do not experi-
ence the cycle of grazing and re-growth, or on rangeland remote sensing (Todd et al.
1998). There are studies that look at the relationship between vegetation indices and
pasture biomass (Edirisinghe et al. 2000) or growth rate (Hill et al. 2004) within
extensive grazing systems, but none that examine the impact on remotely-sensed
images of intensive farming practices such as exist within a rotationally grazed dairy
system.

In this paper we examine the remote sensing of pastures across the full spectrum
of pasture re-growth stages that are encountered in a commercial dairy system. At
two dates in the growing season we examine high-resolution (SPOT-5 and Ikonos)
images of an intensively managed dairy farm in Victoria (Australia). We com-
pare characteristics such as the number and interval between grazing events and
ground measurements of biomass with remotely-sensed observations of pastures.

Fig. 2 Three example paddocks from Ikonos July showing (a) the remains of uneaten hay, and (b)
strip grazing
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The image-analysis and ground-validation methods we use are a case-study for
measuring and monitoring an intensively managed dairy system, which differs from
other agricultural systems due to the dynamics of repeat grazing and re-growth.

Approach

Study Site

Image and ground data were collected in July and September 2005 at the Ellinbank
Research Institute, situated in West Gippsland, Victoria, Australia (latitude 38◦ 16′S,
longitude 145◦ 59′E). Ellinbank is a 217 ha research farm with a median paddock
size at the time of t study of 0.4 ha. Ellinbank has a temperate climate. Total annual
precipitation is 1093 mm, and the average annual temperature minimum is 8.7◦C
and the maximum is 18.2◦C (Australian Bureau of Meteorology 2006).

The pastures at Ellinbank are based on perennial ryegrass (Lolium perenne) with
some white clover (Trifolium repens) and the soils are predominantly clay-loam.
Remnant vegetation is characterized by tall tree wind-breaks on the edges of pad-
docks. Unlike an annual pasture system where the growing season has a well-defined
start (initialized by plant germination) and finish (defined by plant senescence), the
perennial pastures found at Ellinbank are characterized by changes in growth rate,
and not by distinct changes in vegetation condition.

Image Data

Three high-resolution satellite images were acquired from both the SPOT-5 (10 m
pixels) (CNES SPOT Image 1989) and the Ikonos (4 m pixels) (Peterson et al.
2001) broad-band sensors. The Ikonos sensor has four bands (blue, green, red, near-
infrared (NIR)), and the SPOT-5 sensor has 4 bands (green, red, NIR, short-wave
infrared (SWIR)). Two data collections were made approximately two months apart.
In September the SPOT-5 and Ikonos images were only two days apart (Table 1).

Satellite images were obtained from Raytheon Australia, calibrated, processed to
top of atmosphere (TOA) reflectance, and geo-referenced to base-data by Landgate.
The Ikonos and SPOT-5 images in September had different viewing geometries,

Table 1 Details of image and ground data at Ellinbank

Image Date 22nd July 2005 4th September 2005 6th September 2005

Sensor Ikonos Ikonos SPOT-5
# paddocks sampled 8 14 15
Paddock-average range

of biomass cuts [kg
DM ha-1]

469–2623 1205–2583 1205–2583



The Spectral Response of Pastures in an Intensively Managed Dairy System 313

which resulted in differences in the TOA reflectance for each image. While a
Bidirectional Reflectance Distribution Function (BRDF) correction is generally nec-
essary to adjust for different viewing geometries before inter-image comparison is
attempted (Bacour et al. 2006), suitable data to model the BRDF were not available.
This was not an issue for comparing the two Ikonos images because the images
had similar viewing geometries, and the SPOT data was analyzed separately. For a
within-image analysis of an individual image we assume a negligible effect on the
imagery from not correcting for the BRDF.

For each image the Normalized Vegetation Index (NDVI) (Tucker, 1979) was
determined from the red and near infrared (NIR) reflectance NDVI is widely-used
to capture the ‘vigour’ of plant greenness, although many broad-band vegetation
metrics can be calculated (Elvidge and Chen, 1995).

Ground Measurements

We made measurements of pastures biomass on selected paddocks and collected
additional information on when pastures were grazed and other farm-management
practices occurring at the time of image acquisition. Grazing data is used to examine
the relationship between the number of days since the paddock was grazed and the
resulting spectral response, and with biomass. Biomass measurements can also be
used to develop empirical calibrations between the image and ground-data to predict
pasture biomass, but this is not the focus of the present study.

Surrogates for Paddock Biomass

Paddocks were rotationally grazed in a sequential manner, such that all paddocks in
the rotation can be ranked according to their paddock biomass. As biomass infor-
mation for all paddocks on the farm is usually not available, NDVI, or alternate
vegetation indices sensitive to green vegetation, can be used as a surrogate for
ranking paddock-average biomass. Alternatively, as the biomass in a paddock is
a function of pasture growth rates and the time since grazing, and we can assume
that pasture growth rate only changes slowly within the cycle of a grazing rotation,
the number of days since the paddock was grazed can be used as a surrogate for
paddock-average biomass.

Timing Ground-Measurements

Ground sampling on the same day as image acquisition was not always possible due
to practicalities of weather and human resources. The timing of the ground sampling
in relation to the image acquisition will impact on the accuracy of any comparison
between the remotely-sensed data and ground-observations such as pasture biomass
because of pasture growth in the intervening period. This is worst in spring when
growth rates are high. Ground sampling was completed within 3–4 days of image
acquisition.
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Paddock Selection

Paddocks were chosen to provide a range of biomass (Table 1) within the range of
what is to be expected under normal commercial practice which optimizes pasture
quality (1000–1200 to 3400–3600 kg DM ha–1) (Fulkerson et al. 1997). To focus
sampling on this optimum biomass range, excluded from the selection were pad-
docks that had been grazed within the five previous days, or undergoing active farm
management. Where possible large, regularly shaped, paddocks were selected, to
maximize the number of ‘pure’ pixels contained entirely within a paddock. Steeply
sloping paddocks were avoided to minimize BRDF differences among sampled
paddocks.

Laying Out the Sample Grid Within the Paddock

A 3 × 3 grid (nine locations) was laid out within each paddock with a 20 m grid
spacing for the July sampling and a 4 m grid spacing for the September sampling.
Grids were located in a representative area of ‘uniform pasture’, and at least 10 m
from the fence line. Areas of pugging and bare ground were avoided. Locations
where pasture measurements were made were geo-referenced using a GPS (Garmin
Model #72, ± 5–7 m).

Making Pasture Cuts

Pasture biomass at each grid location was determined by pasture cuts made to
ground level using electric hand shears within a 0.22 m2 quadrat (Cayley and Bird
1996). This was laid out so that the pasture inside the quadrat was uniform in com-
position and quantity. For the July sampling five cuts were made at the corners and
centre locations of each grid. For the September sampling cuts were made at all 9
grid locations. All cuts were photographed from above at a 45◦ angle so that pasture
height was visible. Where necessary the cut pasture was washed, dried and weighed
to determine pasture biomass (kg DM ha–1).

Data Analysis

Paddock Masks

Paddocks in dairy farms are typically small in comparison to the size of pixels, and
may not be regular in shape. Pixels on the edges of the paddocks are typically mixed
with the fence line, roads or neighboring paddocks. This can impact on any analysis
which uses all of the pixels within a paddock, particularly when the pixel size is
large or the paddock is surrounded by spectrally contrasting material.

To avoid any issues with geo-registration of the image to the fence-lines or
unusual ground conditions near the paddock gate, each paddock was first masked
with a 10 m buffer in from the fence line. Masking of non-pasture vegetation within
the paddocks, such as individual trees or tall-windbreaks along the fence lines,
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was also necessary so that pixels identified as pasture were as pure as possible.
Remaining variation in the paddock-scale spectral response can be interpreted as
farm management practices, such as half-grazed paddocks, or bare-soil exposed
through cultivation.

Within-Paddock and within-Grid Statistics

Analyses of image and ground data were made at two spatial scales. Firstly, the
image pixels were analyzed at the spatial scale of entire paddocks (within-paddock
statistics), and secondly, the ground measurements made at grids within a paddock
were examined.

Within-paddock statistics (mean, and standard deviation) were calculated from
the pixel values of each image band and the NDVI by overlaying the masked image
in the GIS with the paddock boundaries. These statistics were collated with the farm
management practices on the image data, such as the number of days since grazing.

For the purpose of analyzing an individual pasture cut, the image and ground
data from each paddock measurement grid was considered representative of more
‘operational’ scale image data (20 m pixels) as distinct from the high resolution
images used in the present study. This is because an individual pasture cut can not
capture the fine-scale spatial heterogeneity in pasture observed within an individual
pixel, or across the paddock. All ground data were therefore aggregated within a 20
× 20 m area, resulting in each paddock being represented by a single aggregated
ground measurement and its corresponding image pixels.

Results

Figure 3 shows the range of standing green biomass exhibited in a typical man-
aged dairy farm, as captured by the NDVI. Across the farm the NDVI tends to be
higher in July than in September. At the sub-paddock level we see strip-grazing
practices (Fig. 2b) and the remains of uneaten hay put out on the paddock during
supplementary feeding of cattle (Figs. 2a and 3).

Fig. 3 Range of Ikonos-NDVI representing standing green biomass exhibited on a typical
managed dairy farm, for (a) July, and (b) September. Thick lines indicate sampled paddocks
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Fig. 4 Paddock-average reflectance (%) vs. the number of days since grazing for, (a) Ikonos, July,
(b) Ikonos, September, and (c) SPOT-5 September images, (d) SPOT-5 detail

Figure 4 shows the spectral reflectance (%) of the individual paddocks compared
to the number of days since the pasture was grazed. We see the expected spectral
differences between bands as is typical for vegetation, with little variation in the red,
blue, or green, and the maximum response in the NIR bands. For paddocks in the
first few days after grazing the SWIR band of the SPOT-5 image exhibits a different
response compared to paddocks that have been out of grazing for longer (Fig. 4d).

Figure 5a shows the variation in paddock-average NDVI, from the July and
September Ikonos images with the number of days since grazing. NDVI increases
with time since grazing, and tended to be higher in July than in September. NDVI
values are very variable soon after grazing, before increasing to an asymptote, and
then decreasing.

Fig. 5 (a) Paddock-average NDVI from Ikonos data for July and September 2005 vs. the number
of days since grazing, (b) grid-average biomass derived from pasture cuts vs. days since grazing
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Figure 5b shows the relationship between the biomass cuts made in each paddock
and the number of days since grazing. Paddocks sampled in this range were at the
1 to 2.5 leaf stage as is expected from a pasture system with grazing management
which targets paddocks at the 2 to 3.5 leaf stage (Fulkerson et al. 1997). Each point
on Fig. 5b corresponds to a sub-paddock area designed to represent the operational
scale of currently available image sensors. These ground results are all from pad-
docks that were at least five days post-grazing, so do not cover the full range of
paddocks presented in Figs. 4 and 5a.

Discussion

The Impact of Time Since Grazing on Remotely-Sensed
Observations

These results illustrate the effect of the grazing practices on the spectral response
of dairy pastures as seen in remotely-sensed images. In Figs. 4 and 5 the number
of days since grazing represents the re-growth period of the pasture in each pad-
dock. Typically, the longer the time since grazing the greater the standing biomass
(Fig. 5b), and the greater the corresponding NIR reflectance (Fig. 4) and NDVI
(Fig. 5a).

The active growing period is defined from when new leaf tissue appears (∼3
days after defoliation). The standing biomass in a paddock at any point will be the
result of many factors. These include environmental factors such as weather, the
availability of solar irradiance and aspect, but also management factors such as time
since grazing, the ability to recover from hard grazing, the cultivar, and the input of
nutrients in the form of fertilizers. The image captures the compound effect of these
factors at a single instant in time.

Plant characteristics such as the number of tillers (which will increase across the
growing season), leaves, seed heads, and lodging (falling sideways) impact on the
magnitude and variability of the spectral response. Other factors are the amount
of exposed soil background and the build-up of senesced leaves in the pasture
residue (Moore et al. 1991) with repeat grazing. These factors will also vary with
the composition of the pasture sward. While the pastures in the present study were
predominantly ryegrass, they contained small proportions of other species such as
clover and cape weed which have different spectral characteristics, particularly as
larger leaves have greater reflective surface area. The exact state of the pasture post-
grazing is also influenced by how hard the paddock was grazed, although most farms
try to graze down to a uniform pasture residue.

Spectral Response Soon After Grazing

In the first few days after grazing there is a different spectral response of pastures,
as is seen in the difference in the both the SWIR reflectance and NDVI in paddocks
soon after grazing (Figs. 4d and 5a) compared to paddocks that have been out of
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grazing for a period of time (Figs. 4c and 5a). This difference in spectral response is
similar to that reported for non-intensely managed mown grasslands observed using
Landsat multi-spectral data (Mino et al. 1998).

For the purpose of developing quantitative measurements from the remotely-
sensed images it is necessary to manage this different spectral response from
paddocks soon after grazing. While a variety of metrics of vegetation greenness and
vigor can be determined (Elvidge and Chen 1995), and refined for different condi-
tions of soil background, leaf-area, dry mater and atmospheric conditions, Ikonos
and SPOT-5 do not have suitable bands for complex metrics. However, the SWIR
region is more sensitive to dry vegetation and soils, although the specific response
depends on the soil type and brightness (Todd et al. 1998). When choosing a veg-
etation index for intensively managed dairy pastures it is best to select one which
incorporates the SWIR band, so that it is more robust to changes in the proportion
of exposed soil post first leaf emergence and prior to canopy closure.

Spectral Response Across the Optimum Grazing Range

Across the optimum grazing range the spectral response of the pasture (Fig. 4)
and the NDVI (Fig. 5a), both relative to the days since grazing, behaves as would
be expected with actively growing pastures. During this period the impact of the
amount of soil background becomes less significant as the pasture re-grows and
canopy closure is reached.

In July NDVI reaches a plateau around day 40 while in September the plateau is
reached between 25–30 days after grazing (Fig. 5a) before declining. This decline in
response with time is likely to be associated with higher pasture growth rates result-
ing in the pasture canopy reaching full closure and the pasture sward approximating
the 3 leaf stage of development. Also, the saturation of vegetation indices for high
biomass is well established, particularly for NDVI (Sellers 1985).

The difference in relationships between NDVI and the number of days since graz-
ing for July and September are not unexpected due to the across-season changes
typical in perennial pastures (Fig. 5a). These differences are due to factors such
as dilution in chlorophyll levels, lower nitrogen status of the plant during rapid
growth in spring or morphological changes as the plant shifts from a vegetative
to a reproductive state in preparation for head emergence and seed production.

Ground Sampling Logistics

Ground sampling of pastures for comparison with remotely-sensed images also
needs to be tailored to account for variations in pasture conditions. If paddocks
are only sampled during the optimum pasture growth period then this may limit the
range of any calibration relationships made from the image data due to physiolog-
ical or morphological differences in the pasture which result in a different spectral
response.

Additionally, because the amount of exposed soil background prior to canopy
closure will impact on the remotely-sensed observations, a useful measurement to
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make would be the proportion of pasture coverage at different re-growth stages post-
grazing. This could be achieved through photos which distinguish pasture coverage
from background material (soil, dead vegetation) (Rotz et al. 2008), allowing the
change in the amount and spatial pattern of pasture vs. background material to be
determined.

Implications of These Results

These results enhance our understanding of how remotely-sensed observations of
pastures within a intensively managed dairy system change in relation to on-farm
management practices. While the use of hyper-spectral data to observe pasture
canopies would provide extensive spectral information that could be compared
to the plants growth and physiology (Thenkabail et al. 2000), for the practical
remote sensing of intensively managed dairy systems users are currently restricted to
commercially available satellite-based broad-band sensors such as SPOT. Tailoring
image analysis and ground-validation methods based on knowledge of how farm-
management affects the spectral response of pastures will allow the refinement of
quantitative measurements of pasture characteristics such as pasture biomass or
growth rate. For example by using different relationships for pastures that are early,
middle and late in the growing period, since these pastures may behave differently.

Although the present study does not discuss these in detail, potential on-farm
applications of remote measurements of pasture characteristics include pasture man-
agement tools to optimize pasture utilization. This includes the setting of target
rotation speed, feed allowances calculated on a per-cow basis and supplementation
required, based on the amount of available biomass and pasture growth rate, and
the animal requirements. In extensive grazing systems (e.g. sheep, and large pad-
docks) such tools are currently available through the Pastures from SpaceTM project
( www.pasturesfromspace.csiro.au ), but are too-coarse for paddock-scale delivery
on dairy farms. The project derives moderate-resolution weekly pasture growth rate
using a light-use efficiency model, and moderate resolution satellite images (Hill
et al. 2004).

As the growing season progresses the combination of grazing and management
practices will change the proportion of pasture and exposed soil and hence its spec-
tral response. More research is needed on this changing spectral response of pastures
over time, as seen in recent work using a time-series of SPOT images (Handcock
et al. 2008).

Conclusions

By understanding how remotely-sensed observations of pastures changed in rela-
tion to intensive management practices, better remote sensing applications can be
developed for measuring and monitoring such systems. Tailoring image analysis
and ground-validation methods, based on knowledge of how the farm-management
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affects the spectral response of pastures, will allow the refinement of relationships to
predict quantitative measurements of pasture characteristics such as pasture biomass
or growth rate from remotely-sensed data. For example, by using different relation-
ships for pastures early, middle and late in the growing period, since these pastures
may behave differently.

The observed spectral response in the images was shown to vary with the length
of time since the paddock was grazed, consistent with the re-growth of pastures
post-grazing. The operational remote sensing of pastures is often restricted by the
range of spectral bands that are available, however these results suggest that when
choosing a vegetation index for intensively managed dairy pastures it should incor-
porate the SWIR band (if available) as this should improve observations of pastures
that have recently been grazed.

We showed that broad-band multi-spectral sensors with frequent revisit times
can be used for the operational remote sensing of pasture characteristics, such as
biomass, on dairy farms which have small paddocks and which require frequent
(∼weekly) data. These results enhance our understanding of how remotely-sensed
observations of pastures within a intensively managed dairy system change in
relation to on-farm management practices.
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Using Pasture Growth Rate Data
in a National Agricultural Drought
Assessment Monitoring Tool

R.G.H. Stovold, M. Adams, S.W. Maier, G. Donald,
S. Gherardi, and M. Broomhall

Abstract Pastures from Space (PfS) provides rural enterprises across Australia
with a unique ‘Australian first’ – it is a pasture management tool that utilizes satel-
lite images from the MODIS sensor to determine pasture growth rates (PGR) and
assist farmers adjust stocking levels.

PGR data have been selected for inclusion in the National Agricultural
Monitoring System (NAMS) to streamline the Exceptional Circumstance (EC)
drought relief application and assessment process.

PfS is a collaborative project between Landgate, Department of Agriculture
and Food Western Australia, CSIRO Livestock Industries and commercial partner
Fairport Technologies. It uses primarily the Normalised Difference Vegetation Index
(NDVI) and climate data in a model developed by CSIRO.

The NAMS web-based tool is using the following quantitative pasture growth
rate data in whole or part:

1. Monthly standard PGR data for the southern region of Australia at one kilometre
resolution.

2. Monthly PGR data for the southern region of Australia derived from the
deviation of the median value of the last 12 year PGR historical archive.

3. Monthly PGR time series graphs for all shires in the southern region of Australia.
The graphs are based on the comparison of the current season to the previous
three seasons.

The purpose and use of the information is for inclusion in the National
Agricultural Monitoring System (NAMS), a web based data delivery tool being
developed on behalf of the Primary Industries Ministerial Council, to assist pro-
ponents and jurisdictions in the development and assessment of Exceptional
Circumstances (drought relief to rural producers) application and assessment
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processes. The data is web enabled ready for producers and land managers
interpretation and compiled into reports for immediate use.

This paper outlines the acquisition and processed outputs of the PGR data to
provide close to real time maps and graphs, using NAMS, for interpretation by rural
producers and drought assessment authorities.

Introduction

The Satellite Remote Sensing Services (SRSS) section within Landgate has been
routinely acquiring satellite data for farmers and rural consultants and building oper-
ational processing and internet delivery systems based on the Normalised Difference
Vegetation Index (NDVI) (Tucker, Sellers, 1986)

Some of the agricultural products that are being generated routinely from this
data and delivered to farmers, consultants and corporate users include:

• Spatial assessment of predicted and forecasted Pasture Growth Rate
(PGR) (Donald et al., 2004; Hill and Donald 2004) on a weekly time
step for the Mediterranean annual pasture zone of southern Australia,
PGR R©

• Estimates of Feed On Offer (FOO) at paddock level in southwest Western
Australia only, FOO R©

• and Agimage, a single Landsat image acquired during the crop growing season
which is converted to biomass and targeted at the cropping sector.

SRSS produce the pasture growth rate information from MODIS satellite
data combined with weather data obtained from the Bureau of Meteorology
utilising the CSIRO model for PGR. PGR values are calculated weekly on a
per paddock basis for subscribers, which can then be mapped or displayed in
PastureWatch (Fairport Technologies, South Perth, WA), a proprietary software
program.

PGR information can be accessed and viewed graphically through an internet
web service developed at SRSS as well as in PastureWatch R©. The PGR data can
be automatically downloaded from the SRSS web server to the PastureWatch R©
software. The PGR model is run weekly covering the previous week’s esti-
mated PGR. Some of this information is available freely at regional scale from
http://www.pasturesfromspace.csiro.au. Paddock level information is available as
an annual subscription service.

The PGR data is included in the National Agricultural Monitoring System
(NAMS) to assist assessment of Exceptional Circumstances or drought conditions
over rural Australia. NAMS is web enabled and delivers data to land managers for
interpretation and reporting.
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The Nams Project

Project Objectives

The primary purpose of NAMS is to streamline the Exceptional Circumstances
(drought assistance) application and assessment process.

Development on the NAMS was instigated by Primary Industries Ministerial
Council, and the project is funded by all Australian, State and Territory
governments.

The objectives of the project are:

• To contain relevant and comprehensive data that is user friendly and client
focused;

• To provide a centralised access point for that data;
• To provide quicker and cheaper access to data than existing sources;
• To enhance the timely identification of an emerging Exceptional Circumstances

event;
• That data can be applied to areas equivalent to local government areas; and
• To identify the longer term uses for other applications, for example

more objective state drought declarations, improved approaches to risk
management.

What Is the NAMS?

The National Agricultural Monitoring System (NAMS) is a website that contains
maps, graphs and reports that demonstrate the production situation for major agri-
cultural systems, and their climatic drivers. It has been primarily developed to
streamline the Exceptional Circumstances (drought relief) application and assess-
ment processes. However, producers can use the NAMS to assist in management
decisions by improving their ability to judge and assess the risks posed by climate
variability.

Presently the scope of the NAMS covers dryland and broadacre industries. It
is envisaged that the NAMS will be extended to other industries, such as irrigated
agriculture and horticulture.

Reports

NAMS can produce four different reports designed to present agricultural produc-
tion and climatic information at the National, State/Territory and Regional level.
These reports are:

• The National Report which presents the recent climatic and agricultural produc-
tion situation across Australia;
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• The State/Territory Report which presents the recent climatic and agricultural
production situation across the selected State/Territory;

• The Regional Profile Report, which presents background information on the
selected region, such as population, agricultural statistics and climatic aver-
ages; and,

• The EC Report, which presents the core set of analyses for the selected region
required for an EC application. This report provides contextual information and
information on the climatic, agricultural production and economic condition of
the region.

Method of Data Acquisition, Processing and Analysis of PGR
Data for use in NAMS

Acquisition

One of the key datasets for calculating PGR is NDVI acquired from the National
Aeronautics and Space Administration (NASA) MODIS sensor. MODIS data is
acquired daily by the Western Australian Satellite Technology and Applications
Consortium (WASTAC) receiving stations from the Aqua and Terra satellite plat-
forms. Weekly composites of cloud free pixels provide the base data for the
calculation of the NDVI. Maximum value NDVI pixels are then combined with
climate data supplied from the Bureau of Meteorology in a model (Hill and
Donald, 2004) initially developed by CSIRO to calculate PGR values on a weekly
time basis.

Processed Outputs

Processed data is split into two broad regions, southwest Western Australia, and
the southern, Mediterranean climate regions of South Australia, Victoria and New
South Wales.

For the NAMS project, the weekly PGR data is summarized into mean monthly
data and resampled to 1 km from the original 250 m grid cells. (Fig. 1).

Two additional products are calculated. First is the PGR anomaly map (Fig. 2),
which is a comparison of the respective month’s mean PGR compared to the 12 year
median value on a pixel by pixel basis. Cut-offs in the legend are for 15, 30, and 60%
greater or less than the long term median for each pixel. The 12 year PGR median
value is based on the available supply of MODIS data from 1993 to the present.

�

Fig. 2 PGR Anomaly map of eastern Australia for August 2006 showing lower PGR values in
brown and pale blue colours when compared with the long term 12 year median value. Due to
severe drought conditions in 2006 there are few areas of green indicating higher than the median
PGR value
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Fig. 1 An example of mean monthly PGR data for August 2006 resampled to 1 km covering the
South Western agricultural area of Western Australia. These maps are also produced for eastern
Australia. Area of lowest PGR values is shown in pink and high PGR in blue and purple

Fig. 2 (continued)
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Fig. 3 Monthly PGR time series graphs for a SLA or shire in Western Australia. The graphs are
based on the comparison of the current season to the previous three years

Secondly, monthly PGR is summarized on a Statistical Local Area (SLA) basis,
and automatically graphed.The SLA graph includes the monthly mean PGR mea-
sured in the current year, the past three years, and the long term median (Fig. 3).

Discussion

Spatial assessment of accumulative PGR data can be used to provide decision
support information suitable for farm, catchment, regional and shire applications.
Figure 4 as an example shows the yearly pattern of gross Dry Matter (DM) of
biomass produced for a Western Australian shire for selected years. For these years
6.9, 4.9 and 9.0 tonnes of DM were produced for 1995, 2000 and 2005 respectively
with an average of seven tonnes for all years 1994–2005. This shire is located in
the south-west of Western Australia with a seasonal break usually occurring in late
March–April. These data currently could be provided across the southern districts
of Australia.

The monthly PGR time series graphs available within NAMS covers all SLA’s
and provides land managers and farmers with monthly growth trends and gives an
insight into seasonal patterns of growth, hence productivity, which then gives a clear
picture of the climatic trends through the season.

Comparison of the long term median PGR base with previous years’ graphed
data provides land managers with a tool to estimate the productivity of their current
season to other seasons.
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Gross Pasture produced
in a Western Australian Shire
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Fig. 4 Accumulative PGR graph representing gross pasture produced for a Western Australia shire
(average – meaned over all years 1994–2005)

Conclusions

The Pastures From Space project run by partners from Landgate, CSIRO and
Department of Agriculture and Food is delivering current and 12 years of quanti-
tative historical PGR data on modelled pasture production for every rural property
in the southern Mediterranean agricultural zone in Australia.

The PGR data is potentially a valuable input to the NAMS website for view-
ing and assessment of the extent and severity of drought by rural producers and
Exceptional Circumstance managers.

The three products currently delivered to NAMS include:

• Monthly standard PGR data for the southern region of Australia resampled to one
kilometre resolution.

• Monthly PGR data for the southern region of Australia derived from the deviation
of the median value of the last 12 year PGR historical archive.

• Monthly PGR time series graphs for all shires in the southern region of Australia.
The graphs are based on the comparison of the current season to the previous
three years.

The NAMS project is providing a valuable service to the rural community by
allowing easier and wider access to climatic, agronomic and production based anal-
ysed information on a publicly viewable website. This will allow producers to more
efficiently manage their properties and streamline the reporting mechanisms for
Exceptional Circumstance drought applications.

Improvements to the currently supplied PfS data would be an accumulative PGR
graph to represent gross pasture production. This would more clearly represent PGR
anomalies at a local and regional scale.
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Investigating the Potential for Mapping
Fallow Management Practises Using MODIS
Image Data

Ralf-D. Schroers, Robert Denham, and Christian Witte

Abstract The objective of this study was to investigate the potential for mapping
fallow land management practices on local farm scale in Southern Queensland,
Australia, using high temporal frequency satellite remote sensing over a period
of six years. The Moderate Resolution Imaging Spectroradiometer (MODIS) was
chosen as it provides a temporal resolution fine enough to detect ground cover
change within cropping cycles (fallow periods). Previous studies have successfully
employed MODIS data detecting cropping patterns in Kansas, North America and
Northern Kazakhstan.

Multivariate logistic regression examined the relationship between fallow man-
agement practices and image data. A binary response was formed by classifying
observations during fallow periods as either cultivated (ploughed) or non-cultivated
(zero-tillage).

Explanatory data represented 8-day 500 m as well as 16-day 250 m MODIS com-
posite imagery, and derived vegetation indices (Normalized Difference Vegetation
Index, Enhanced Vegetation Index, Normalized Cellulose Absorption Index and
Normalized Difference Tillage Index). The combination of bands and indices char-
acterized a broad explanatory source and showed high predictive ability (area
under the receiver operating curve: 0.788) distinguishing between cultivated and
non-cultivated fallow periods.

The ability to discriminate sprayed and non-sprayed areas using immediate pre and
post event imagery during fallow times was also investigated. Reasonable predictive
power (0.724 area under the receiver operating curve) was achieved based on the
MODIS 8-day 500 m composite data.

The results were promising and suggest that there is considerable potential for
differentiating land management practices during fallows periods. This information
is valuable for modelling erosion risk, understanding potential on-farm impacts on
productivity and off-farm impacts on water quality.
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Introduction

The objective of this study was to investigate the potential to map fallow land
management practises on local farm scale using high temporal frequency satellite
remote sensing. The Moderate Resolution Imaging Spectroradiometer (MODIS)
has been chosen as a tool to identify agricultural tillage practises and detect
ground cover changes during fallow periods providing high temporal resolu-
tion data. Previous studies have successfully employed MODIS data in order
to detect cropping patterns in Kansas, North America and Northern Kazakhstan
(Wardlow and Egbert 2002; Muratova and Terekhov 2004; Sultangazin, Muratova
et al. 2004).

Monitoring crop residue cover of agricultural land during fallow periods
requires continuous observation data in order to determine detailed characteris-
tics of ground cover over time between cropping periods. Remotely sensed data,
frequently captured over selected broad-acre farms, offered the opportunity to rec-
ognize events of fallow management activities and consecutive changes of fallow
land cover.

Overview of Study Area

Four properties in South Central Queensland, Australia were selected as study
area (Fig. 1).

Data

Investigating the spectral response of fallow areas required the acquisition of
detailed ground information. The collection of field records for this study was
conducted in cooperation with land holders who provided detailed information on
fallow management activities. Spectral responses for these farm areas were acquired
during fallow periods using remotely sensed imagery.

Field Records

Local field records at farm or paddock level were obtained in Southern Queensland,
Australia. Cropping history over the past six years for 21 paddocks was collected.
The average paddock size of selected farm areas was 122 ha, ranging between 35
and 320 ha. The data included information on crop types, planting and harvesting
times and methods, tillage and other fallow management practises to control weeds.
Records of fallow management practises such as ploughing, cultivating or spraying
were available with given dates. The dates for farm applications of other paddocks
were estimated if land manger’s data referred to monthly recordings.
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Fig. 1 Overview of Study Area (eastern Balonne-Condamine catchment and Stat. Local Areas);
enlarged are farm sites where ground information was used (a, b, c, d). The background shows a
true colour LANDSAT image (July/August 2005)
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Image Data

MODIS Bands and Indices

MODIS products used for this study included 16 day composite data of the MODIS
product MOD13Q1 (250 m spatial resolution) and eight day composite data of the
MODIS product MOD09A1 (500 m spatial resolution). The time series data com-
prised a period from April 2000 until end of 2005. Each year was represented by 46
layers of the 8-day 500 m composite data and 24 layers of MODIS 16-day 250 m
composite data.

The 16-day 250 m composites provided index data of NDVI and Enhanced
Vegetation Index (EVI) and spectral reflectance in the RED (620–670 nm, band
1) and NIR (841–876 nm, band 2). The EVI data derived from band 1, 2 and 3, with
band 3 being resampled to a spatial resolution of 250 m.

MODIS 8-day 500 m composites included surface reflectance data such as Band
1 (RED, 620–670 nm), 2 (NIR, 841–876 nm), 3 (blue, 459–479 nm), 4 (green, 545–
565 nm), 5 (1230–1250 nm), 6 (1628–1652 nm), 7 (middle infrared, MIR, 2105–
2155 nm). These bands were 8-day-composite interval reflectances and were used
to calculate of spectral indices NDVI, EVI, Normalized Cellulose Absorption Index
(NCAI) and Normalized Difference Tillage Index (NDTI).

The NCAI was computed as

Band7 − Band6

Band7 + Band6
,

and the NDTI resulted from

Band2 − Band7

Band2 + Band7
.

.
NDVI and EVI index data served as a measure of vitality and amount of active

vegetation (Jensen 2005; NRM 2005). Crop-residue sensitive bands 6 and 7 of
MODIS 8-day 500 m composite data were used to calculate a cellulose lignin
absorption index, and band 2 and 7 were selected to compute a tillage index. Further
calculations using band 1 and 2 allowed the calculation of NDVI and band 1, 2 and
3 delivered the EVI.

Methodology

The relationship between paddock-level information on fallow management and
corresponding spectral response based on MODIS composite time series was anal-
ysed. This required grouping the field data into specified classes, extracting the
various MODIS band values for each of the paddocks and undertaking statisti-
cal analysis. The following sections describe each of these components of the
methodology.
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Formatting Field Observations

Field data provided by farmers describing the cropping history were classified
based on two approaches. Fallow classes initially were clustered as cultivated and
non-cultivated. Fallows with mechanical impact on the surface such as plough-
ing, cultivating or harrowing were considered as cultivated. Fallows being sprayed,
grazed or burnt were classified as non-cultivated. If only harrowing occurred in
conjunction with spraying activities, corresponding fallows were identified as non-
cultivated, since no stronger physical impact had happened (Fig. 2). Fallow here
refers to the time from harvesting of the previous crop to planting of the next crop.
If any cultivation occurred during this time then the fallow is classed as cultivated.

Fig. 2 Two approaches used for classifying fallow period observations, the first approach estab-
lished periods of cultivation and non-cultivation depending on ploughing operations, the second
approach classified whole fallow times as either cultivated or non-cultivated irrespective of the
point in time the ploughing operations occurred

A second approach was classifying observations into periods. The period leading
up to a cultivation event is classed as non-cultivated. The period following is classed
as cultivated. This effectively divided some fallows, as defined above, into a non-
cultivated and cultivated period.

Image Analysis

LANDSAT Thematic Mapper (TM) imagery was used to georeference the selected
paddocks and thereby the detailed cropping information. MODIS data provided
band and index variables describing spectral response of observed paddock areas.

Extraction and Classification of Spectral Reflectances

Each paddock area was digitized, and the derived polygon shapes were used to
retrieve MODIS image data in form of spectral reflectance or vegetative indices
values. Given the considerable number of MODIS products analysed and the large
number of images used for this study, Python scripting was used to automate the
majority of the processing (Python 2001). Records of farm activities were used to
mask out time intervals of MODIS imagery. These time series were then classed
according to ground information into the categories ‘cultivated’ and ‘non-cultivated’
fallow, and served as the response in later developed logistic regression models.
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Statistical Analysis

Univariate analysis of MODIS bands and indices showed the ability of each band
and index variable to discriminate between cultivated and non-cultivated fallows, as
well as cultivated and non-cultivated periods (see Fig. 2).

Multivariate logistic regression explored the relationship of MODIS spectral
band and index combinations to dichotomous class establishments such as culti-
vated versus non-cultivated fallow, cultivated versus non-cultivated periods as well
as spraying versus non-spraying events.

Both univariate comparisons and multivariate modelling employed 8-day 500 m
and 16-day 250 m MODIS composite data.

Model predictions of fallow type classes were conducted for paddocks where
cropping information had not been collected. The accuracy was assessed by asking
landholders for feedbacks on the predictions

Univariate Analysis of Band and Index Variables

The analysis of single bands and indices provided a measure of how separable the
different fallow types were. Boxplots were descriptive measures depicting distri-
bution patterns, variability, median, lower and upper quartiles of spectral values of
two established fallow classes. Median and inter-quartile ranges were a measure of
how distinctive a classification was observed within a band or index. The statistical
means of the two established classes were examined conducting a t test using the
software R (Crawley 2002; R 2006). That revealed whether the means of two groups
were statistically different from each other, and described the performance of each
band or index as a classifier.

Multivariate Logistic Regression Employing Band and Index Variables

Cultivation vs Non-cultivation

Model development was based on spectral response of both cultivated/non-
cultivated fallows and cultivated/non-cultivated periods.

Relating a number of MODIS bands and indices to a binary response in the form
of two classes, such as cultivated and non-cultivated fallow, could be approached by
logistic regression.

A multivariable logistic regression model was designed describing potential asso-
ciations between the two fallow classes and MODIS band reflectance values and
indices. The logistic model employed was equivalent to

P = 1

1 + e−(z)
,

where P denoted the probability for model estimations being assigned to either
one of the two established classes (Kleinbaum 1994). The probability was rang-
ing between values of 0 and 1, and represented the probability that a paddock was
non-cultivated. The value z is the linear predictor consisting of a combination of
MODIS band and index variables (Kleinbaum 1994).
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Regressions were developed for both 8-day 500 m and 16-day 250 m MODIS
composites. Stepwise regression was conducted using the AKAIKE Information
criteria (AIC) to minimize the number of explanatory band and index variables.
The prediction performance was analysed using the statistical method of receiver
operating characteristic (ROC), representing the tradeoffs between sensitivity and
specificity of a model estimation (van Schalkwyk and van Schalkwyk 2001).

Spraying Events and Non-spraying Events

Fallow management events were differentiated according to their physical impact on
agricultural fields. Two classes were established, spraying operations, not disturb-
ing the soil, and non-spraying operations where events disturbed the soil surface.
Ploughing, lighter ploughing operations (using secondary tillage equipment) and
harrowing were categorized to a class ‘non-spraying’. The probability that obser-
vations referred to spraying events was ranging between 0 and 1. Further analyses
using the ROC approach were investigating the probability that the classifier could
accurately predict observed discriminations.

Each event could be described by two image composites. The earlier image rep-
resenting reflectances of land cover when the farm operation was carried out (cause),
and the consecutive image characterizing the spectral response of the impact. This
analysis employed ground information of twelve paddocks providing precise dates
for farm operations.

Predicting Non-cultivation or Cultivation During Fallow Times

Firstly, predictions were based on data from the study site that were used for
model development. In this way model performance could be assessed by com-
paring predictions against observations. Based on 8-day 500 m data, two models
provided probabilities for observed areas being not cultivated at a point in time,
ranging between 0 and 1. Low probabilities indicated a cultivation. Boxplot anal-
ysis provided information on how separable predicted classes were and delivered
a threshold level representing a probability value separating between cultivated for
non-cultivated classes. One model was employing data from cultivated and non-
cultivated fallows and the second model was based on cultivated and non-cultivated
periods.

Secondly, predictions were made for ten new selected paddock areas outside
the observation data frame, of which five were cropped agricultural land. The two
models delivered each prediction probabilities for areas being cultivated or non-
cultivated. The results were validated through ground information provided by land
holders.

Predictions based on 8-day 500 m data delivered estimations for every 8th day.
A polynomial was fit using least squares to predicted probability values for pixels
of each paddock. Hence, the local regression fit computed one probability value for
each paddock over time.
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Results

The discrimination of spectral response between cultivated/non-cultivated fallow
and cultivated/non-cultivated periods was analysed. The performance of each
MODIS band and index as individual classifier was examined. Multivariate regres-
sion revealed how well a band or index combination could account for class
discrimination. It was also investigated whether four different fallow management
practices (spraying, ploughing, lighter ploughing and harrowing) could be discrim-
inated based on their spectral response using two image dates, one before and one
after the event.

Cultivated vs Non-cultivated Fallows

A fallow was defined as the period from the harvest of the last crop to the planting
of the next one and is classed as either cultivated on non-cultivated. 8-day 500 m
data and 16-day 250 m MODIS data were investigated as tools for differentiating
these two classes.

Eight-Day 500 m Data

Univariate Analysis

The class establishment based on spectral response of cultivated and non-cultivated
fallow through individual bands and indices did not reveal large difference
between class medians (Fig. 3). However, the differences of class means were
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Fig. 3 Boxplots for classified spectral response of all farm areas for the years 2000–2005. The
data employed derived from MODIS 8-day 500 m composites, based on observations cultivated
and non-cultivated fallows; Band 6 provided maximum discrimination
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statistically significant at the 5% level. Best discrimination was achieved by Band 6
(1628–1652 nm), followed by NCAI, Band 5 (1230–1250 nm) and EVI. The NDTI
could not strongly discriminate between spectral responses of cultivated and non-
cultivated fallows. As individual classifier, the NCAI had some potential to establish
cultivation classes.

Multivariate Regression

Ten spectral variables were used as explanatory source in a logistic regression
accounting for fallows being cultivated or non-cultivated. The model was com-
posed of MODIS bands 1, 2, 3, 4, 6, and 7 and indices EVI, NCAI, NDTI and
NDVI. Correct classifications were represented by true positive fractions, matching
non-cultivated observations with a non-cultivated prediction class. A ROC curve
plotted true positive against false positive results that depicted wrong class assign-
ment of non-cultivated fallow observations. The derived area under ROC of 0.742
showed that the model had some predictive power to distinguish between the two
classes (Fig. 4).
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Fig. 4 Prediction of cultivation/non-cultivation based on fallow observations and 8-day 500 m
composite data; area under the ROC curve: 0.742

Sixteen-Day 250 m Data

Univariate Analysis

None of the image band or index variables was particularly suitable for repre-
senting the cultivation status of farm fallows. Both EVI and NDVI resulted in
lower differences of mean values as discrimination criterion for spectral class
establishment than their respective composite parts, RED (620–670 nm) and NIR
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Fig. 5 Boxplots for classified spectral response of all farm areas for the years 2000–2005. The
data employed derived from MODIS 16-day 250 m composites, based on observations cultivated
and non-cultivated fallows

(841–876 nm) (Fig. 5). Differences of class means for the latter were statistically
significant at the 5% level.

Multivariate Regression

Discriminations of fallows based on 16-day 250 m composite data employed a three
variable model. The variables comprised EVI, NIR, and RED. Corresponding pre-
dictions could not distinguish between cultivated and non-cultivated fallow periods
very well as the ROC curve was close to the graph of a random prediction model
(Fig. 6). The area under the ROC curve was 0.608.
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Fig. 6 Prediction of
cultivation/non-cultivation
based on fallow observations
and 16-day 500 m composite
data; area under the ROC
curve: 0.608
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Cultivated and Non-cultivated Periods

Observations in form of spectral response of cultivated and non-cultivated peri-
ods served as explanatory source. In contrast to fallows, periods were considering
ploughing or lighter ploughing operations during fallow times (Fig. 2). Periods were
classed as uncultivated unless soil disturbing operations occurred.

Period data of the 8-day 500 m composites generally better distinguished
between cultivation and non-cultivation than 8-day 500 m fallow data (see
Chap. 6.1).

Eight-Day 500 m Data

Univariate Analysis

Band 6 (1628–1652 nm) provided maximum discrimination followed by EVI and
band 5 (1230–1250 nm). The NCAI composed of band 6 (1628–1652 nm) and
band 7 (2105–2155 nm) computed low differentiations between fallow classes
(Fig. 7). Band 7 showed low potential for class discrimination. All class means
were statistically different at the 5% level.
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Fig. 7 Boxplots for classified spectral response of all farm areas for the years 2000 to 2005. The
data employed derived from MODIS 8-day 500 m composites, based on observations cultivated
and non-cultivated periods; Band 6 provided maximum discrimination

Multivariate Regression

A ten variable model predicting fallow type classes was developed composed of
MODIS bands 1, 2, 3, 4, 6, and 7 as well as indices EVI, NCAI, NDTI and
NDVI. The model performance was analysed by plotting the ROC curve (Fig. 8). It
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provided a measure for accuracy of true class assignment describing the sensitivity
of the model to correctly identify observations non-cultivated periods. The mea-
sure of predictive ability represented by the area under the ROC curve was 0.788
(Fig. 8). This model promised to deliver fairly good predictions of cultivated vs.
non-cultivated periods.

Sixteen-Day 250 m Data

Univariate Analysis

A higher variation of class medians of EVI could be observed in the boxplot shown
in (Fig. 9). NIR band data (841–876 nm) showed highest variation in the position
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Fig. 9 Boxplots for classified spectral response of all farm areas for the years 2000–2005. The
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of class medians (Fig. 9). Also the RED band (620–670 nm) provided noticeable
difference in class discrimination. Only the NDVI class means were not significantly
different at the 5% level.

Multivariate Regression

Model predictions based on 16-day 250 m data employed the variables EVI, NIR
and NDVI. This model was a fairly good predictor, the area under the ROC curve
was computed as 0.731 (Fig. 10).
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Comparing 16-Day 250 m and 8-day 500 m Data Using Same Variables

Model comparison between the 8-day 500 m composite time series and the 16-day
250 m imagery was conducted based on period observations. Both models employed
the same independent variables (NIR, NDVI and EVI) explaining cultivation and
non-cultivation. The model based on 8-day 500 m composite data produced an area
under ROC curve of 0.696. This result was lower than the predictive ability of the
16-day 250 m composite series (area under ROC curve: 0.731). Here, prediction
performance improved with higher spatial but lower temporal resolution.

Spraying vs. Non-spraying Events

A model was developed based on spectral response of land cover changes induced
by spraying and non-spraying events. An event class was created, aggregating
the spectral response of ploughing, lighter ploughing and harrowing events each
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Fig. 11 ROC curves for models predicting spraying events (true positive fraction) vs. non-spraying
events (false positive fraction) for twelve selected paddocks during 2000 and 2005; left: 16 day
250 m data, area under the ROC curve: 0.624; right: 8-day 500 m time series, area under the ROC
curve: 0.724

described by a series of two images. Non-spraying events were considered to have a
higher physical impact on the surface, than spraying operations. A binary response
was defined as ‘spraying’ and ‘non-spraying’ events.

The ROC curve corresponding to the probability of prediction achieved an area
of 0.624 and 0.724 based on the 16-day 250 m and 8-day 500 m time series,
respectively (Fig. 11). The models employed 10 variables, bands 1–7, NDVI, EVI
and NCAI.

The 8-day 500 m series computed higher predictive ability as the area under the
ROC curve was 0.724, compared to 0.624 of the 16-day 250 m dataset.

Model predictions based on the 8-day 500 m composite data were validated.
Corresponding error matrix showed that a high number of spraying events were
predicted as non-spraying operations (20.6%). The overall accuracy resulted in 78%.

Predicting Non-cultivation or Cultivation During Fallow Times

Predictions using data from the study site permitted an analysis of model perfor-
mance. The model outcomes represented probabilities of areas being non-cultivated
at a point in time. Field observations were then taken for comparison against models’
predictions. This permitted defining a probability threshold level for class separa-
tion. Predicted probabilities ranged between 0 and 1, lower probabilities below the
derived threshold level indicated that farm sites were cultivated. One model employ-
ing data from cultivated and non-cultivated fallows showed a threshold value of
0.69. The second model was based on cultivated and non-cultivated periods and
separation threshold was 0.84.

As a further step, predictions were computed for ten new paddock areas outside
the observation data frame. Based on the two models’ specific probability thresholds
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Fig. 12 Prediction probability as colour coded lines (local regression fit); predictions based on
either fallow observations (light line) or period observation (dark line); Colour coded cut-off levels
symbolize probability thresholds dividing cultivation classes; NDVI reflectance of correspond-
ing paddock areas are represented by data points: assumed fallow times (light dots) and assumed
cropping times (dark dots)

predictions indicated either cultivation (above threshold) or non-cultivation (below
threshold). Most of the predicted fallows and periods did match with ground infor-
mation provided by corresponding landholders. 25 fallow periods were predicted
for five selected farm sites. Over a period of from spring 2002 onwards, fallows
were estimated each for spring and autumn. Out of 30 fallow cycles the valida-
tion was conducted for 25 fallows. Nine fallow cycles were identified correctly as
non-cultivated, thirteen as correctly classed as cultivated.

The achieved overall accuracy of predictions was 88%. Both models achieved
same classification results. Figure 12 shows an overlay of prediction probabilities
over a sequence of NDVI reflectances of a selected paddock. Two predictions were
based on fallow and period observations, respectively. Both prediction outcomes
followed almost similar trends indicating either cultivation or non-cultivation.

Discussion and Conclusion

Four different types of observation data were employed for investigating the poten-
tial to map cultivation during fallow times. Field information was formatted either as
fallow or period, and each of the latter employed spectral reflectances of two image
series. One image set was of 8-day 500 m composites consisting of the 11 layers
MODIS band 1–7, NDVI, EVI, NCAI and NDTI. The second image set was of 16-
day 250 m composites comprising the four layers MODIS band 1 and 2 as well as
MODIS NDVI and EVI. Band 1 and 2 of both data sets represented the RED and
NIR region, respectively. Figure 13 provides an overview for results of univariate
comparisons and multivariate regression.
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Fig. 13 Overview explanatory sources and results for identifying cultivation and non-cultivation
during fallow times using univariate comparison and multivariate regression. Observations were
classed as either fallows or periods

Generally, better discriminations were achieved through 8-day 500 m data than
16-day 250 m data.

In decreasing order of performance, Band 6 (1628–1652 nm), EVI and band 5
(1230–1250 nm) achieved best discrimination of classes of periods and the 8-day
500 m data. Band 6, NCAI, band 5 and EVI best distinguished classes of fallows and
the 8-day 500 m composites. Best classifier for classes of period and fallow based on
16-day 250 m composites was NIR (841–876 nm), followed by RED (841–876 nm)
and EVI.

Multivariate modelling revealed fairly strong predictive power regarding the esti-
mation of cultivation and non-cultivation. Best predictions were achieved for period
rather than fallow observations and were based on a 10 variable model based on
MODIS 8-day 500 m composites (area under the ROC curve of 0.788). Also a three
variable model achieved good prediction accuracy based on MODIS 16-day 250 m
data (area under the ROC curve of 0.731).

The role of temporal and spatial resolution was explored regarding predictive
ability of cultivation and non-cultivation. Two models were investigated using 8-
day 500 m data and 16-day 250 m data with the same explanatory variables (NIR,
NDVI and EVI) of periods. The results showed that higher temporal resolution
did not compensate for lower spatial resolution. The model based on 8-day 500
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m composites produced an area under ROC curve of 0.696 compared to the better
predictive ability of the 16-day 250 m composites with an area under ROC curve
of 0.731.

The discrimination of spraying and non-spraying event classes showed consid-
erable potential. The best results were achieved through a 10 variable multivariate
model using the MODIS 8-day 500 m composites (area under the ROC curve of
0.724). The predictive ability of the model based on period observations and 16-day
250 m data was considerably weaker (area under ROC curve of 0.624).

The regression models using periods and 8-day 500 m data were used to predict
cultivation in a number of paddocks which were not included in the study so far.
The results were given to the corresponding land managers and feedback on each
paddock was provided. The overall accuracy of predictions for cultivation or non-
cultivation was 88%. 22 out of 25 fallow types were correctly classed as either
cultivated or non-cultivated.

As an indicator for crop residue quantities Band 7 (2105–2155 nm) could not
clearly distinguish between cultivation classes (Daughtry et al. 2005). Slightly
higher reflectance values for non-cultivated fallows were discernable and could
explain higher residue cover levels throughout these phases. Cultivated fallows
might have also been covered with plant litter (to a lower extent), preventing a
detection of bare soil via band 7.

The NCAI sensitivity to plant cellulose showed reasonable potential for discrim-
ination of cultivation classes for fallow observations.

The discrimination between spraying and non-spraying events was successful.
An explanation for differences in spectral response could be the stronger physical
impact on the surface left by ploughing, lighter ploughing or harrowing activities.
Best prediction results were achieved by the 8-day 500 m data. The predictive ability
based on 16-day 250 m data was weak. 8-day 500 m models employing higher
temporal resolution were performing better and seemed to compensate for the lower
spatial resolution.
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Spectral Mixture Analysis for Ground-Cover
Mapping

Michael Schmidt and Peter Scarth

Abstract Monitoring of ground-cover is an important task for land management
since it has been linked to indicators of soil loss, biodiversity, and pasture pro-
duction. Ground-cover is an indicator adopted by Queensland natural resource and
catchment management groups. However, accurate spatial estimation of ground-
cover is confounded by varying cover types, cover greenness and soil colour.

This research reports on ground-cover mapping based on spectral mixture anal-
ysis (SMA) of LANDSAT satellite imagery. Estimates of green and senescent
vegetation and soil fractions are derived from iterative SMA. Correlations with
field data are form SMA iterations are discussed with r2 values of 0.78 and 0.69
respectively for bare ground estimates over black soils.

Introduction

Land- and ground-cover data of the earth surface is of strong interest for studies of
terrestrial and atmospheric processes of energy fluxes and feedback mechanisms
from regional to global scale (Cihlar 2000). Ground cover data is a key source
of information for various scientific questions and natural resource management
(Jensen 1996). Major drivers for ground cover are understood to be climate and land
management (Scarth et al. 2006); sustainable land management is a priority for the
State of Queensland. Approximately 65% of Queensland is covered by state rural
leasehold land (more than 40 million hectares). The Queensland government has ini-
tiated a review process for renewal of leases which require estimates of bare-ground
for the assessment of the land condition (Karfs et al. 2007).

Scarth et al. (2006) used Landsat data Thematic Mapper (TM) and Enhanced
Thematic Mapper (ETM+) over Queensland with a regression based approach to
estimate bare ground as a state-wide product using 450 field estimates as train-
ing data. The product is the best available data source for ground-cover, but has
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some shortcomings particularly on regional scales. Black soils are know to pose
difficulties in this state-wide regression based approached (Scarth et al. 2006). Gill
and Phinn (2008) evaluated short wave infrared data from the ASTER satellite sen-
sor over specific study sites in Queensland for bare-ground estimates via a spectral
mixture analysis.

The dry vegetation component is a crucial parameter in estimating bare-ground
fractions. It is one of the elements of the total cover, important in carbon account-
ing, infiltration, runoff, water and wind erosion modelling (Van Leeuwen and Huete
1996). Since this component can not be detected easily by greenness based vegeta-
tion indices from satellite data over different soil types there is the need to develop
and apply other methods (García-Haro et al. 1996).

This study aims to derive ground-cover and vegetation fraction estimates over a
study site with a variety of soil types, focussing on black soils. Fraction estimates
of certain constituents under the spectral unmixing paradigm provide physically
based estimates of soil or vegetation coverage (Hill 2000; Hurcom and Harrison
1998; Smith et al. 1996). Spectral unmixing describes spectral data in terms of
membership grades to a cluster or a reference spectrum on sub-pixel scale (Roberts
et al. 1998).

We apply a spectral mixture analysis (SMA) of LANDSAT data over a test area
of 80 × 120 km2 with a large proportion of black soils (see Fig. 1). The aim is to
investigate the SMA paradigm to reliably estimate fractions of cover, green and dry
vegetation for the study area and to potentially apply an SMA approach for the state
of Queensland.

Landsat scene coverage
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Fig. 1 Location of the study
area near Emerald,
Queensland
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Data

Satellite Images

Two adjacent LANDSAT TM5 images from the same satellite overpass over a region
surrounding Emerald (10th June 2007) were geometrically corrected (Armston et al.
2002), radiometrically corrected (Danaher 2002; de Vries et al. 2007), mosaiced and
subsetted. The images are part of the Department of Natural Resources and Water
(NRW) satellite image archive over Queensland. The image subset was chosen to
represent a variety of soil and cover types.

Field Data

Fieldwork was conducted from May 15 to 19, 2007 during a dry period to minimise
cloud contamination of the satellite data (Fig. 2).

Field measurements were acquired via a modified discrete point sampling
method (Brady et al. 1995) along three star shaped 100 m transects, the first laid
in the north-south direction with 60 degree angles clockwise to the next transect
(Scarth et al. 2006). Ground layer data (bare, rock, dead leaf attached, litter, green
leaf and cryptogram), mid-storey and over-storey strata attributes were recorded at
each metre along each transect and subsequently entered into a palmtop computer
in-situ. A running mean was calculated on 20 point blocks and provides an indica-
tion of stability (i.e. homogeneity) of the plot. The data points were compared with
the respective location of the Landsat data analysis extracted from a 3 × 3 pixel area
around GPS the location.

In addition to transects, visual estimates of biomass and cover were recorded for
different soil types and stored in a geospatial database as polygons (Fig. 3). It is
important to note that visual estimates were taken over a range of soil types.

Fig. 2 Photos of two field sites (M. Schmidt 16.05.2007)
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Fig. 3 Landsat Channel 1 image of the study area (left), the grey points (on the right) indicate the
location of the standard ground-cover sampling sites; in white are the visual estimation polygons
displayed. (The dotted line refers to a zoom region of Fig. 9.)

Methods

The term ‘mixed pixels’ describes an effect that occurs when different surface mate-
rials or land cover types comprise the spectrum measured within a satellite’s IFOV
(Instantaneous Field of View). Spectral mixture analysis is based on the assumption
that the spectrum recorded from the satellite is a linear or non-linear combination
of each of those components (Adams et al. 1986). The decomposition of a surface
area within the IFOV or a pixel, into proportional abundance of a finite number of
endmembers assumes that most of the spectral variation in a multispectral image
can be described, in a first approximation, by additive (linear) spectral mixtures
(Adams et al. 1995; Schmidt and Schoettker 2004). A mixed spectrum Pλ of a given
pixel can thus be modelled by the sum of the fractions f of the n endmembers Ei in
the IFOV:

Pλ =
n∑

i=1

fiEiλ + ελ (1)

where λ represents a spectral band, n the number of endmembers and ε the resid-
ual term. The model fit is expressed either as error in the fractions f or ελ at each
wavelength or across all bands as global RMSE (Roberts et al. 1998):

RMSE = 1

m

√√√√
m∑

i=1

(εiλ)2 (2)
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where m is the number of bands. The process of SMA creates the endmember frac-
tions for every pixel in the image and each endmember, referred to as endmember
abundance (Hill 2000). The identification of endmembers such that the spectra of
most pixels are explained properly, is the key issue in spectral unmixing (Hill 2000)
with the best results obtained by choosing extreme spectra.

Candidate endmembers were chosen to be green vegetation (GV), non photo-
synthetic vegetation (NPV), soil and shade. A set of potential NPV endmember
spectra were derived from spectral libraries (Gill and Phinn 2008), US geologic
survey and jet propulsion laboratory as implemented in ENVI (RSI 2007) and end-
member spectra derived from the imagery itself. The candidate endmember spectra
used in this study are shown in Fig. 4 as scatter plots of different bands as a 2D
histogram.

Fig. 4 2D histogram of the imagery with candidate endmembers for some band combinations (the
9 NPV spectra used are shown in the same symbol)
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Fig. 5 Two examples of spectra used in the SMA iterations as extracted from the spectral library
of candidate endmembers

The GV spectrum was taken from pixels with the highest NDVI (Normalized
Difference Vegetation Index (see (Tucker 1979) for more details) values in the image
while pure soil spectra were obtained from polygons obtained during field work.

SMA results of a 4 (not shown) and 5 endmember model were tested and iter-
ated - the 5 endmember model seemed to perform better overall. All combinations
of several candidate endmembers: 1 GV spectrum, 9 NPV, 3 soil type 1 (dark soil),
2 soil type 2 (bright soil) and 2 shade/soil type 3 (red soil) were iterated, resulting
in 108 SMA runs; Fig. 5 shows two examples of endmember spectra used in the
iterations.

Bare-ground, or percent bareness, is in this approach defined as 1-NPV-GV on a
per pixel basis.

Results

Figure 6 shows plots for the two example SMA runs described in Fig. 5 including
the correlation coefficients and regression lines: mean values for the transect mea-
surements of both NPV and ground cover were plotted with means of the SMA runs
over the respective area (Fig. 6a, b). Figure 6c incorporates the RMSE (in DN val-
ues) to indicate the quality of the SMA solution. The visual estimates of cover over
a variety of soil types are included to indicate the quality of the SMA for different
soil types (see Fig. 6d).

The percent dry cover NPV relationship in (Fig. 6a) shows a good relationship,
especially in the case of Example 1 with an r2= 0.78 and a slight offset from the 1:1
line. The p values from the F-test of significance are indicated in Fig. 6 and show
that all datasets pass the 5% significance test of a correlation.

The percent bare field measurements show good correlations for the two
Examples, but the total of 7 observations with only one data point in high bare con-
ditions (or low cover) make the need for more field data obvious in order to obtain
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Fig. 6 Regression plots of the field data and SMA results for two examples as shown in Fig. 5
(see text for more details). The triangles in the Example 1 (d) represent polygons where NPV +
GV > 1 indicating that the spectral mixture was insufficient and thus were these points left out of
the regression

more reliable estimates. However, the correlations and point distributions are very
promising, however there is a common bias for each example in the bare-ground
estimates (1-NPV-GV).

The RMSE values are low for both plots and show that the SMA is working well
for both Examples over the 7 black soil field sites.

Visual cover estimates, performed over different soil types, were used to establish
an indication of robustness of the SMA results over the whole study area as shown
in (Fig. 6d) – the field measurement sites were not included. Example 1 shows the
higher r2 values (Fig. 6a) for field measurements, but Example 2 shows higher
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Fig. 7 Regression plot of the field estimates in green cover and the GV estimates from SMA
(SMA Example 1)

correlations for the visual estimates (Fig. 6d). One physical explanation might be
that in Example 1 a shade endmember was used, which seems to be beneficial
in the SMA, particularly over black soils, while in Example 2 this spectrum was
replaced with a red soil spectrum to better represent different soil conditions, espe-
cially where there were red soils. In the SMA result for Example 2 none of the sites
were modelled with NPV + GV > 1 (see Fig. 5d) which indicates a better overall
solution. The visual estimates can only be seen as a proxy for true ground cover and
inherit potential (human) errors.

The green vegetation component is important for ground cover estimation.
Figure 7 shows a regression plot for the field measured precent of green cover
against GV from the SMA (Example 1). The relatively low correlation for GV with
6 of the 7 data points being below 4% is expected, as the mapped signal is weak
given a low signal to noise ratio (see also Fig. 2).

More GV measurements are needed in the higher greenness range and more cover
values need to be obtained in further field campaigns, possibly during a wet season,
as the current field data were obtained in pastoral areas during a dry period with
very little greenness (i.e. the representation in Fig. 7 is relatively accurate).

The bare-ground plots from Fig. 6 were also plotted for the current state wide
bare-ground product, as described in (Scarth et al. 2006), as shown in Fig. 8.

The existing NRW bare ground product (Bi3) product does not perform well with
the field data, but black soils have not been represented adequately in the training

p=0.478
Fig. 8 Same as above for the
existing NRW bare-ground
product Bi3 (Scarth et al.
2006) generated as a
state-wide product
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0                    1
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Fig. 9 (a) Landsat Channel 1 and the abundance channels for (b) GV, (c) NPV and (d) ‘red’ soil
for the image subset of the study area as indicated in Fig. 3 of an SMA result (Example 2)

dataset for the current regression based approach of bare-ground mapping (Scarth,
2008 pers. comm.). The field data shown here are not yet included in the Bi3 dataset,
but will be included in an attempt to improve the model performance in black soil
areas.

Figure 9 displays a map of GV, NPV and a soil abundance for the study region
(see Fig. 3 in comparison). The grayscale values represent the percentages of each
cover fraction per pixel (see Eq. (1)).

Discussion and Conclusion

The SMA runs show high correlation coefficients for bare-ground estimates and
field transect measurements with r2=0.78 and 0.69. The results need confirmation
with more field data as only 7 field measurements were used in the data validation;
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all of which were obtained over black soils. The bare-ground and dry cover infor-
mation over these sites seems to be relatively reliable, but needs further examination
over other soil types. The study area of ∼80 × 120 km2 is large enough to represent
certain heterogeneity, but the transferability of this approach to a state-wide prod-
uct needs to be further evaluated. This will be done in conjunction with existing
regression based approaches to evaluate the best representation of bare-ground for
the state-wide product.

SMA layers provide physically based information for different abundance chan-
nels, which are a rich source for further analysis (e.g. a land cover classification or
soil mapping).

Techniques to optimise the computing time and to find the ‘ideal’ set of endmem-
bers in e.g. a sphere around ‘good spectra’ form which endmembers for a second
iteration could be extracted might improve the overall performance and efficiency.

Only one GV spectrum was used in all iterations, which was image derived
from densely vegetated agricultural areas. The question of scaling arises for such
a spectrum to be representative of Australian native vegetation. A pure vegetation
endmember (e.g. 100% greenness) needs to be defined in this environment.

Future work will include the use of a Landsat time series from the NRW satellite
archive to monitor changes in ground-cover over time.
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Vineclipper: A Proximal Search Algorithm
to Tie Gps Field Locations to High Resolution
Grapevine Imagery

A. Hall and J. Louis

Abstract Grapevine canopy characteristics as determined from remotely sensed
imagery have been shown to be effective in forecasting grape composition param-
eters that can be used to estimate the quality of wine made from those grapevines.
Maps of canopy characteristics are therefore valuable tools for precision viticul-
ture practice. In a case of extracting reflectance data at the scale of individual vines
from vineyard imagery with a pixel resolution of ca. 0.5 m, simple use of sample
point location data provided by a GPS (the GPS points) projected onto a georectified
image proved too inaccurate for the desired analysis. At the individual vine scale,
the spatial error between the GPS point and the corresponding location in a georec-
tified image was great enough to result in clearly incorrect pixels being identified
as representative of the sample grapevine canopy. The sample GPS point locations
were, however, sufficiently close to the correct vine canopy in the georectified image
to act as a seed point for a computer search algorithm.

The VineClipper algorithm was developed to identify a more representative set of
vine pixels using the sample GPS points as seed points in a proximal spatial search.
The procedure automatically recognises vine rows in an image close to each GPS
point and then determines the local central line of the vine row closest to the GPS
point location. The central point of the canopy pixels selected to correspond to the
GPS field data point was selected as the point on the centre line closest to the GPS
point. Reflectance data of the pixels surrounding this point were then extracted from
inside a rectangle (equivalent to the area of one vine) aligned with the row direc-
tion. The methodology and the novel algorithm that was developed to automatically
perform this procedure are presented.

Interested readers may obtain a copy of the algorithm code or further details by
contacting Andrew Hall (email: ahall@csu.edu.au).
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Introduction

High levels of spatial variability in fruit composition and yield are common to many
vineyard blocks, presenting management challenges to viticulturists (Bramley and
Proffitt 1999, Bramley 2001, 2005). The use of spatial technologies in viticulture
research and industry is now common (Proffitt et al. 2006, Reynolds et al. 2007,
Tisseyre et al. 2007). Similarly, significant within-block spatial variability in canopy
vigour, as quantified by leaf area index (LAI), calculated as leaf area per unit ground
area, has been observed (for example Sommer and Lang 1994, Nemani et al. 2001,
Hall et al. 2008). Due to the modification of the light and temperature microclimate
in the fruiting zone, vine canopy vigour is a major variable influencing grape com-
position and yield (e.g. Smart 1985, Smart et al. 1988, Dry 2000, Bergqvist et al.
2001, Spayd et al. 2002). It follows therefore that the spatial pattern of variability of
canopy vegetation should correlate to the spatial pattern of variability in fruit com-
position and yield. Quantitatively assessing grapevine canopy characteristics on the
ground is time consuming and unlikely to result in producing information that is
more valuable than the cost of its procurement. Remote sensing technologies, on
the other hand, offer rapid assessment of vegetative characteristics of large vineyard
areas (Lamb et al. 2001, Hall et al. 2002, Johnson et al. 2003), enabling the oppor-
tunity to produce inferred maps of grape quality at a relatively low expense. The
key to enabling such inferences is developing an understanding of the link between
remotely sensed imagery of vineyards and actual vine canopy characteristics.

Recent work has shown that differences in vine performance can be identi-
fied from remotely sensed data from which normalised difference vegetation index
(NDVI) images have been calculated. The possibility of determining prospective
wine quality for vineyard regions based on remotely sensed data through the rela-
tionship between canopy and fruit composition has been indicated by Johnson et al.
(1998, 2001). More attention is now being paid to the relationship between NDVI
imagery and measures of vine canopy vigour such as LAI. Using 4-m resolution
IKONOS satellite imagery, significant correlations have been achieved between
NDVI and both canopy LAI and leaf area per vine (m2 per vine) in multiple vine-
yards (Johnson et al. 2001, 2003, Johnson 2003). As well as the 4-m resolution
employed by IKONOS, Dobrowski et al. (2003) used 6-m resolution NDVI imagery
to estimate dormant pruning weights over consecutive growing seasons. Lamb et al.
(2004) used NDVI imagery (initially 1-m resolution but sub-sampled to 5-m resolu-
tion) to estimate phenolics and colour levels in red winegrapes. Common to all the
above-mentioned work is the fact that the pixel size is much larger than individual
vines. If high spatial resolution imagery, where the pixel size is smaller than the
individual grape vine canopies, is used then a number of pixels can be identified to
determine the canopy characteristics. The higher degree of accuracy in describing
canopy characteristics potentially allows more accurate forecasts of fruit quality and
yield down to the individual vine scale.

For studies in precision viticulture at the individual vine scale, identifying the
location of a sample vine in a remotely sensed image is necessary if an accurate
analysis of the influence of canopy density on fruit quality is to proceed. The
Vinecrawler algorithm (Hall et al., 2003) was developed to assess vine canopy
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characteristics for individual grapevines from high spatial resolution imagery. The
use of this algorithm was limited for use in relatively small uniformly straight vine-
yards. In larger vineyards, in which there are many thousands of vines or where the
rows are not uniformly straight, the mechanism of Vinecrawler becomes unwieldly
and requires a high degree of user intervention. Vinecrawler also produces data for
the whole vineyard, using unnecessary processing time when only a small propor-
tion of sample vines may be required. This paper presents the methodology used
in a focused approach to collect canopy data from images, delivering increased
efficiency and results that could be validated with a greater degree of confidence.
VineClipper has been developed in response to a specific research problem, and its
use is intended for research purposes where there are a number of sample vines
within a vineyard for which information from imagery is required. Nevertheless,
the algorithm can be applied to whole vineyards if all vine locations are included
in the input GPS vine location file. An automated or semi-automated procedure for
estimating the locations of all vines in a vineyard block based on the coordinates of
a few corner locations could rapidly provide the vine location data. With all indi-
vidual vine canopies characterised, commercial precision viticulture practice can
potentially be applied to whole vineyard blocks.

GPS locations collected with a modern real-time kinematic differential GPS sys-
tem is accurate in 3 dimensions to within 0.02 m (Proffitt et al. 2006). The spatial
error in data collected with a modern GPS is therefore negligible when working with
imagery that has a spatial resolution of 0.5 m. The main cause of error between GPS
locations and corresponding locations in imagery is due to geometric error intro-
duced by the remote sensing system. Geo-rectification of the imagery is usually
performed using polynomial models to warp the imagery to minimise this spa-
tial distortion (Jensen 2005). Polynomial models are calculated using a number
of ground control points (GCPs), the coordinates of the GCPs are acquired using
an accurate surveying method, and the locations of the GCPs are chosen so that
they can be easily identified in imagery. Although image warping decreases spatial
distortion and provides map coordinates for imagery, it does not produce perfect
results in all locations within an image. Differences between the map coordinates
in the image and actual coordinates on the ground remain (e.g. Hughes et al. 2006,
Tisseyre et al. 1999). Having optimised a geo-rectification procedure on imagery
with a spatial resolution of 1 m, Zhou and Li (2000) achieved an average accuracy
of 3 m for checkpoints (not GCPs) used to assess the geo-rectification accuracy
across whole images. In the case of imagery with a 0.5 m spatial resolution (as
used in this paper), average geo-rectification accuracy can be reasonable assumed
to be no better than 1.5 m. With a row spacing of 3.6 m in the study vineyard, a 1.5
m spatial error is great enough to place GPS points well away from the grapevine
canopy in an image. Figure 1 illustrates the mismatch that can occur between sam-
ple sites and vine locations. Extraction of pixels at these locations delivers a set of
pixel values that do not represent the vegetative characteristics of the vines in the
vicinity. To produce a more representative set of pixels for each sample location, a
procedure was developed whereby the central line of the vine row closest to the GPS
point was identified. The central point of the pixels to be extracted to represent the
vine for each GPS point in the image was selected as the point on the central line
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(a)  (b)

(c)

Fig. 1 Georectified NDVI image of vineyard sections with vine sample locations (at the point of
the intersection of the crosses). (a) Sample locations at vine row centre. (b) Sample locations at
vine row edges. (c) Sample location in between two adjacent vine rows

closest to the GPS point. Reflectance data of the pixels surrounding this point were
then extracted from inside a rectangle aligned with the row direction equivalent to
the size of one vine. This paper describes the method developed to perform these
operations.

Methods

Spatial Data Collection

This work formed part of a large precision viticulture study involving a remote
sensing component to quantitatively characterise the canopy characteristics of
grapevines. Multispectral images of an area of a commercial vineyard in the Eden
Valley of South Australia were acquired between 2003 and 2006. Figure 2 contains
an NDVI image of the vineyard. The site is a machine-pruned block of Riesling on a
single wire trellis system planted in 1972. The vines are arranged in several smaller
sub blocks on topographically varied terrain. Generally, there is a space of 3.6 m
between rows, and individual vines are separated by 2.1 m along the row, although
the irregular nature of the vineyard means that this is not always the case. Trellises
follow the contours of the topography resulting in an irregular winding pattern of
vine rows.

Steps of the VineClipper Algorithm

While reading the text, it will be useful to refer to the diagram containing the geom-
etry (Fig. 3). The major steps of the VineClipper algorithm are presented in Fig. 4.
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Fig. 2 Section of NDVI image of study site

Fig. 3 Identification of sample vine pixels and related geometry. Line A–A′ is the centre line of
the vine row and line B is perpendicular to line A and intersects the centre point (xc, yc). The grid
represents image pixels. If the centre point of a pixel lies within the dashed rectangle and has an
NDVI value of that pixel is greater than the threshold NDVI, then the pixel is designated as being
a representative member of the sample vine
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Fig. 4 Flow chart of the major steps of the VineClipper algorithm
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Each of the pre-defined process boxes (the boxes bound by two vertical lines) in the
flow chart are explained in detail in the following section.

Calculate Centre Line of Row Closest to GPS Point (Line A–A′)

1. The pixels with coordinates within a 5.4 m (1.5 times the vine row spacing) by
5.4 m square centred on the starting coordinate (xs, ys) are extracted.

2. The extracted pixels’ NDVI values are interpolated to a 40 by 40 grid using linear
interpolation (Fig. 5 (Left)).

3. The interpolated grid is then converted to a binary image: the highest 20% of
NDVI values within the grid are given the value 0; the remaining pixels within
the grid are given the value 1 (Fig. 5 (Right)).

4. All vine pixels within a 0.9 m (one quarter the vine separation) radius of the
starting coordinate (xs, ys) are identified. A region growing algorithm continues
to locate further vine pixels that lie within a 0.9 m radius of any of the previously
identified vine pixels.

5. The spatial range in the x and y directions of the pixels identified in step 4 are
determined.

6. A linear regression model is applied to the x location values and the y location
values. If the range is greater in the x direction, then the model used is

y = mAx + cA. (1)

Equation (1) represents line A–A′, and can be defined as the centre line of the
vine row closest to the given point, oriented in the direction of the row in the region
of pixels determined in step 4. If the range is greater in the y direction, the equation
representing line A–A′ is determined with a method that uses the model,

x = mmy + cm. (2)

Fig. 5 (Left) Linear interpolation to a 40 by 40 grid using of the extracted pixels’ NDVI values.
(Result after Step 2.) The sample point (xs, ys) is represented by the circle at the centre of the
image. (Right) Binary version of image in Fig. 5 (Left). The highest 20% of NDVI values have
been assigned the value 1; the remaining pixels have been assigned the value 0. (Result after Step
3.) The sample point (xs, ys) is represented by the circle at the centre of the image
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To produce a model similar to Eq. (1) mA and cA are calculated using

mA = 1

mm
(3)

and

cA = y − mAx, (4)

where (x̄, ȳ) = the centroid of pixels identified in step 4.

Closest Point on the Centre Line of a Vine Row to a Given Coordinate
(Vine Centre Point) is Located

Line B–B′ is defined as the line perpendicular to A–A′ that intersects the sample
point (xs, ys), i.e.

y = mBx + cB, (5)

where

mB = −1

mA
(6)

and

cB = ys − mBxs. (7)

Where Lines A–A′ and B–B′ intersect is the vine centre point (xc, yc), where

xc = cA − cB

mB − mA
(8)

and

yc = mAxc + cA. (9)

The Pixels to be Used Around the Vine Centre (Sample Vine Pixels)
are Identified

The centre points of the pixels extracted to describe the characteristics of the canopy
of the vine are contained within a polygon centred at (xc, yc). The rectangle is
oriented in the cross-vine direction of B–B′ (θ), i.e.

θ = tan−1 mB (10)
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The four nodes of the rectangle are calculated using the following four
equations.

(xNE, yNE) = (xc + 1.8 cos θ − 1.05 sin θ, yc + 1.8 sin θ + 1.05 cos θ) (11)

(xSE, ySE) = (xc + 1.8 cos θ + 1.05 sin θ, yc + 1.8 sin θ − 1.05 cos θ) (12)

(xNW , yNW ) = (xc − 1.8 cos θ − 1.05 sin θ, yc − 1.8 sin θ + 1.05 cos θ) (13)

(xSW , ySW ) = (xc − 1.8 cos θ + 1.05 sin θ, yc − 1.8 sin θ − 1.05 cos θ) (14)

The numerical parameters in Eqs. (11–14) are derived from the row and vine
spacing. The area identified is a rectangle 2.1 m by 3.6 m, which is the mean distance
between vines and the mean distance between rows, respectively. Figure 6 illustrates
the rectangle calculated for the image region shown in Fig. 5.

Once the rectangle has been defined, all pixels that lie within the rectangle are
identified from the image and recorded in a table that forms the main output file.
The main output file (1) contains information about each pixel within each rectan-
gle identified by VineClipper. A second output file (2) contains data on the new
coordinates for each sample vine as well as geometric information used in the
calculations.

Fig. 6 Rectangle calculated
for the binary image region
shown in Fig. 5 (Right). The
centre points of the
interpolated pixels are shown
as +. The centre points of the
original pixels of the NDVI
image are shown as ×. The
sample point (xs, ys) is
represented by the circle at
the centre of the Fig. The
corrected sample point (xc,
yc) is represented by the
circle at the centre of the
rectangle. Each NDVI pixel
of the original image that lies
within the rectangle is
recorded as being part of the
sample vine
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VineClipper Output Data

The data in Output File 2 is used to check the algorithm function, provides the
corrected coordinates of the sample location, and includes data that can be used in
further analyses concerning the effects of row direction (i.e. orientation to the Sun)
on vine performance. An r2 value for the goodness of fit obtained for Line A–A′ to
the interpolated local image in Step A6 is also recorded to provide an indication of
how well this step was executed. A low r2 value indicates a possible problem with
the line fitting procedure, requiring a visual check.

The data in Output File 1 contains the reflectance values for each of the pixels
identified as being in the rectangles defined for each sample vine. There are, on
average, 23 pixels returned per sample vine. At this point, canopy descriptors can
be calculated. Hall et al. (2003) calculated six different canopy descriptors using the
output of their VineCrawler algorithm. Although the output of VineClipper is subtly
different, similar descriptors to those calculated for VineCrawler can be calculated.
Simple algorithms have been developed to read Output File 1 and return a number
of vine canopy descriptors. For example, the mean of the NDVI values is calculated
for the pixels that have identical Vine IDs, resulting in single NDVI values for each
sample vine.

Conclusions

A procedure for tying GPS field location data to grapevine sample locations in high
spatial resolution imagery has been developed. Imagery is first converted into a sin-
gle number vegetation index (the NDVI). Around the local area of each GPS field
location the NDVI pixels are re-sampled to a higher spatial resolution. A thresh-
olding procedure is used to separate non-vine and vine re-sampled pixels. The
re-sampled vine pixel closest to the GPS field location is identified, and a region
grow technique is applied to identify all re-sampled pixels that are likely to be part
of the same vine row as the first re-sampled vine pixel identified.

The closest centre point to the GPS field location of a vine row is then located,
and this is used as the basis for defining a rectangle that encompasses the area of
the image of the sample vine intended to be recorded by the GPS operator. The
reflectance values of the image pixels within the rectangles defined for the sam-
ple vines are returned by the algorithm in an output file. Geometric information
about the row direction is additionally returned that provides data for use in analyses
involving vine – sunlight interactions.

Preliminary comparisons of the extracted NDVI data with viticultural data col-
lected on the ground reveal some significant correlations consistent with those
outlined by Smart (1985) and suggested by Hall et al. (2002). These correlations
go some way to demonstrating the ability of the algorithm to extract the pixels that
do correspond with the sample vines. A full analysis of these data is underway. In
addition to the application of VineClipper to the purpose described in this paper,
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the algorithm, or variations of the algorithm, could be used where similar auto-
matic pixel extraction is required. If particular objects can be identified in a similar
way to how grapevine canopy can be identified from a background of senesced or
sparse vegetation, then VineClipper (or a modified version VineClipper) can be used
to extract reflectance information of objects in georectified imagery that does not
match up exactly with the location coordinates of those objects. Reflectance infor-
mation from linear image features that can be split into discrete elements such as
rivers, roads or geological features may be extracted with VineClipper. In addition,
by using a slightly modified version of VineClipper, objects that are not part of lin-
ear features may be identified, and the pixels of those object extracted for analysis,
such as individual trees in an orchard or forestry plantation.
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Modelling Weed Distribution Across
the Northern Australia Using Very Extensive
Transects

C. Hempel, N. Preece, K. Harvey, and J.C.Z. Woinarski

Abstract A Generalised Additive Modelling (GAM) approach is used to predict
weed occurrence across the Top End of the Northern Territory, Australia. The
availability of new toolsets such as GRASP (Generalised Regression Analysis and
Spatial Predictions) and the application of novel GIS variables, including remotely
sensed Radiometric data, Infrastructure density (roads and fences) mapping and
Climate layers, provide a useful framework for mapping regions at high risk of
infestation. An independent set of weed locations provides support for the regional
accuracy of the modelling. Infrastructure density is a significant factor in the predic-
tion of weed occurrence in this study. Coastal areas with high levels of infrastructure
appear most susceptible to weed infestation, although 8 Biogeographic Regions are
considered currently at risk.

Introduction

Relatively small and isolated human populations in the Northern Territory’s savan-
nas has allowed for the persistence of very extensive tracts of intact environments.
These vast landscapes, however, are subject to increasing infrastructure develop-
ments and the related incursion of exotic weeds. Weed data from a very long transect
survey have been modelled against GIS derived landscape and climate variables to
predict the likely distribution of weeds throughout the Top End. Topics discussed
include relating spatial data to weed distribution, alternative modelling techniques,
field validation using an independent data set and implications for regional weed
management strategies.

The focus of this study is to describe the characteristics of the predicted invaded
environments and assess which regions are more susceptible to these weeds to help
set broad scale management priorities for habitat protection and invasion control in
the Top End (Hobbs and Humphries 1995).
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Modern regression techniques such as generalised linear models (GLM) and
generalised additive models (GAM) are used extensively in all types of ecolog-
ical research. This popularity is due to their ability to relate the complex, often
non-linear, relationships between a species and its environment (Guisan et al.
2002). The integration of such regression analysis with Geographic Information
Systems (GIS) helps describe the spatial relationships of species and their
environments.

Generalised linear modelling has been used in the Northern Territory to map rare
plant distributions in the Victoria River Region (Crase et al. 2006), improve the man-
agement of Buffel Grass in Watarrka National Park (Puckey et al. 2007) and develop
habitat models for a suite of microchiropteran bat species (Milne et al. 2006).

Current research favours the use of GAM, a semi-parametric version of GLM,
with its proven ability to handle highly non-linear and ‘non-monotonic’ rela-
tionships. Using this technique the data themselves determine the nature of the
relationship between response and explanatory variables and can be described as
data-driven models (Guisan et al. 2002).

A major criticism of this technique is its computational overhead and cum-
bersome nature in generating predictions from datasets in a GIS environment
(Leathwick et al. 2006). Recently software packages designed specifically for
GLM and GAM modelling have become available to ecologists, such as GRASP
which has been developed in Splus (Lehmann et al. 2004) and R (http://www.r-
project.org/). In this study we utilise the tools available through the Splus version of
GRASP to examine a set of environmental layers which best describe the ecological
niche of introduced plants over a region of Northern Australia.

Methods

Study Area

This study comprises the Northern Territory savanna lands north of 18◦ South lati-
tude, including major coastal Islands. This ‘Top End’ landscape (˜520,000 Km2) is
dominated by Eucalypt open woodlands with a dense grassy understorey. The mon-
soonal climate produces distinct wet and dry seasons, with 90% of annual rainfall
occurring between December and March, although the timing and onset of the mon-
soon season is highly variable (Taylor and Tulloch 1985). There is a marked decline
in average annual rainfall from 1900 mm on the Tiwi Islands in the North West to
500 mm in the Southern interior.

Land tenure in this region is predominantly Pastoral leasehold (50%) with large
areas of Aboriginal freehold lands (35%). This Top End region remains largely
intact, with less than 5% of its area subject to significant landscape modification,
although human-caused disturbance is widespread. About 10% of this region is pro-
tected under public and private conservation estate. The prevalence and long history
of pastoralism has lead to the introduction of exotic plants considered palatable by
stock. Extensive burning is a common land management practice during the dry
seasons throughout this landscape.
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Transect Sampling

Sampling over three extensive transects was undertaken during the late dry sea-
son for the years 2001–2004 inclusive. This allowed for the most optimal access
along the entire route but did mean that some areas surveyed were previously burnt.
Four-wheel drive vehicles were used to traverse pre-determined pathways, often
far removed from existing roads or tracks. In some cases transects became discon-
tinuous due to physical and cultural reasons. Over this four year period a total of
1,900 km was surveyed, with the major routes being North-South from Darwin to
Mataranka and West-East from Wadeye to Nhulunbuy (Fig. 10).

Track logs and individual weed occurrences were recorded using hand-held GPS.
Flora species data were recorded at an average spacing of 2 kilometres over all
transects. Records were spaced further apart in uniform environments, but where a
weed occurrence was observed or where there was a sharp change in habitat, records
were placed closer together.

Plants known to have been introduced to the Top End since pastoralism began
are considered weeds. Table 1 lists the names of all weed species recorded in the

Table 1 Weeds observed in Transect Surveys

Weed species Common name Records Weed classification

Acacia nilotica Prickly Acacia 4 Schedule 1
Achyranthes aspera Chaff Flower 4
Andropogon gayanus Gamba Grass 3 Schedule 1 outside

and Schedule 2 inside
‘Management Zone’.

Bidens pilosa Cobbler’s Peg 1
Brachiaria mutica Para Grass 1
Calopogonium

mucunoides
Calopo 1

Calotropis procera Rubber Bush 13 Schedule 2 – south of 16◦ 30′
Centrosema

pubescens
Centro 1

Hyptis suaveolens Hyptis 106 Schedule 2
Jatropha gossypifolia Bellyache Bush 1 Schedule 2
Macroptilium

atropurpureum
Atro 1

Mimosa pigra Giant Sensitive Plant 10 Schedule 1 – south of 14◦
Parkinsonia aculeate Parkinsonia 2 Schedule 2
Passiflora foetida Wild Passionfruit 25
Pennisetum

polystachion
Mission Grass 6

Senna obtusifolia Sicklepod 10 Schedule 2
Sida acuta Spiny Head Sida 1 Schedule 2
Sida cordifolia Flannel Weed 1 Schedule 2
Sida sp. 2 Schedule 2
Stachytarpheta spp. Snake Weed 2 Schedule 2 – outside town areas
Themeda quadrivalvis Grader Grass 11 Schedule 2
Xanthium strumarium Noogoora Burr 5 Schedule 3

TOTAL 211
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transect surveys. Seventeen of the species identified in the transects are declared as
weeds under the Northern Territory’s Weeds Management Act (Northern Territory
Government, 2006). The other species listed are considered to be ‘environmen-
tal’ weeds. From here on these weeds will be referred to collectively as ‘savanna
weeds’.

Predictor Variable Selection

The selection of an appropriate set of predictor variables requires an understanding
of the ecological principles that determine the occurrence of savanna weeds across
the Top End landscape. ‘Resource’ predictors such as rainfall and soil type, ‘direct’
predictors including temperature variation and ‘indirect’ predictors such as eleva-
tion, population and infrastructure density are all involved in the spread of weeds
throughout the Top End.

A total of 21 environmental and anthropogenic variables were used as inputs
into the modelling process, these are listed in Table 2. BIOCLIM (Houlder,
2000) was used to create mean annual rainfall, rainfall seasonality, mean annual
temperature, minimum temperature (coldest quarter) and maximum tempera-
ture (warmest quarter) climate layers. Distance from Drainage/Floodplain and
Drainage/Floodplain density were mapped from Series 3 GEODATA hydrogra-
phy layers (Geoscience Australia 2006). A digital elevation model (DEM) was
provided by the Shuttle Radar Topography Mission (Farr and Kobrick 2000).
Radiometric thorium, potassium and total count data were sourced from the
Northern Territory Geological Survey (Clifton 2004) and used as surrogates for soil
fertility.

Continental scale maps of vegetation (Wilson et al. 1990), which was grouped
into five broad categories, surface geology (Bureau of Rural Sciences after
Australian Geological Survey Organisation 1991) and soil texture (Bureau of Rural
Sciences after Commonwealth Scientific and Industrial Research Organisation
1991) were also included as predictor variables. These thematic maps were also
used to create an additional composite layer, habitat complexity, which is described
as an index calculated from the total number of different soil, geology and vegetation
types occurring within a 10 by 10 km neighbourhood (Milne et al. 2006).

Both Distance from population centre and population density were calculated
from 2001 Census data (Australian Bureau of Statistics 2002). Distance from
infrastructure and infrastructure density were mapped from the combination of
fence and road features available in the Series 3 GEODATA infrastructure layers
(Geoscience Australia 2006). Broad tenure was created by dissolving the digital
cadastral database (DCDB) of the Northern Territory by tenure type and reclassing
the output into 4 categories. Distance from coastline was calculated from the Series
3 GEODATA coastline framework.

All predictor variables were resampled using cubic convolution to coincide
with a grid representation of the Series 3 GEODATA outline of the Northern
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Table 2 Environmental Variables used in Modelling Weed Distribution

Predictor variables Acronym Units

Climate and hydrology

Mean annual rainfall P12ANNR millimetres
Rainfall seasonality P15SEAS Coefficient of variation
Minimum Temperature

Warmest Period
P05MAXT Degree celsius

Maximum temperature coldest
period

P06MINT Degree celsius

Mean annual temperature P01MNTM Degree celsius
Distance from

drainage/floodplain
WATDST Metres

Drainage/floodplain density WATD25 Metres within 25 km radius

Land and vegetation

Elevation ELEV Metres above sea level
Radiometric total count TC Scaled 8-bit
Radiometric thorium TH Scaled 8-bit
Radiometric potassium K Scaled 8-bit
Surface geology SUFGEOL Categorical (bedrock; quartz sand; sand, silt, clay

and gravel; limestone; duricrust; clay, silt and
minor sand)

Soil texture SOIL Categorical (coarse; medium; fine; cracking;
gradational; duplex)

Vegetation type VEG Categorical (non-eucalypt forest; eucalypt forests
and woodlands; low woodlands with tussock
grass understorey; low woodlands with
hummock grass understorey and grasslands;
littoral and floodplain)

Habitat complexity COMPLEX Index (1–53)
Distance from coast COASTDST Metres

Population and infrastructure

Broad tenure TEN4 Categorical (Built-up; Pastoral; Aboriginal;
Reserve)

Distance from populated place POPDST Metres
Population density POPD25 Localities within 25 km radius
Distance from infrastructure INFDST Metres
Infrastructure density INFD25 Metres within 25 km radius

Territory (clipped to 18◦ latitude), with a 2 km cell size and a lamberts conformal
projection.

GIS was used to attribute all savanna weed locations with values from the 21
predictor variables. Grid cell values with multiple weed sites were included only
once as ‘presence’ sites if any one location contained weeds or ‘absent’ if all sites
contained no weeds, to reduce the effects of auto-correlation. A site density grid was
also created in the GIS to test for auto-correlation in the modelling process.
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Univariate Analysis of Spatial Data

A set of histograms presented in Fig. 1 shows the distribution of savanna weeds for
each predictor variable or environmental gradient. Weed presence is represented in

Fig. 1 Histograms showing the distribution of savanna weeds across each predictor variable
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dark grey with a number above each bar. Absence observations are represented in
light grey. The dashed line gives the overall average proportion of observations, with
the solid line representing the proportion of presence observations in comparison to
the total.

Multivariate Analysis of Spatial Data

Multivariate statistics such as Principal Component Analysis (PCA) and Cluster
Analysis (CA) can be used to tease out relationships between environmental lay-
ers using information from presence observations (van Strien 2007). Results from
PCA show those environmental gradients with high information content. CA results
can be described using a dendrogram in which related environmental gradients are
grouped together into clusters. Figure 2 shows outputs from both PCA and CA
analysis of selected input variables.

Generalised Additive Modelling Trials using GRASP

The GRASP method contains many functions exploring, modelling and interpreting
spatial predictions of species/environment relationships. The following parameters
were set for all modelling runs:

• A maximum acceptable correlation between any pair of input variables set to 0.8
(See Fig. 3)

• P limit for tests set to 0.05.
• Stepwise model selection in both directions.
• 4 degrees of freedom.
• Minimum model contribution of 5%.

GRASP offers six different statistical tests for selection of model parameters:

1. AIC: Akaike Information Criteria.
2. BIC: Bayesian Information Criteria.
3. F: An f test is used to test whether predictors are significant.
4. CHI: A Chi Squared test is used.
5. CROSS: A cross validation method is used at each step of a BIC model.

Parameters that present the highest cross-validation statistics are kept.
6. BRUTO: An adaptive back-fitting procedure that optimises the degree of

smoothing for each variable (Leathwick et al. 2006).

Spatial models predicting savanna weed occurrence across the Top End were run
using all 6 statistical tests. All models were evaluated according to goodness of
fit as described using the proportion of explained deviance (Crawley 1993) and by
plotting random subsets of model predictions against observed data using receiver
operating characteristic (ROC) analysis and measuring the area under the curve
(Fielding and Bell 1997).
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Fig. 2 Principal Component and Cluster Analysis of selected predictor variables
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Fig. 3 Correlation co-efficient biplots for all predictor variables

Results

Models

Table 3 shows robust internal model performances, with explained deviance ranging
from 0.25 to 0.41 and the area under the ROC curve not moving below 0.8. Three of
the models (AIC, CHI and F TEST) selected identical predictor variables and shared
an explained deviance of 0.4. The BIC selected model was able to predict 25%
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Table 3 Internal Model Performance

Model n null.dev resid.dev expl.dev df residual ROC cvROC COR cvCOR

AIC 461 487.27 292.25 0.40 436.30 0.90 0.85 0.67 0.56
BIC 461 487.27 365.87 0.25 452.08 0.84 0.82 0.52 0.48
BRUTO 461 487.27 326.43 0.33 450.77 0.87 0.84 0.60 0.52
CHI 461 487.27 292.25 0.40 436.30 0.90 0.85 0.67 0.57
CROSS 461 487.27 290.30 0.41 428.10 0.90 0.86 0.67 0.57
F TEST 461 487.27 292.25 0.40 436.30 0.90 0.85 0.67 0.57

of the variance using only Radiometric Potassium and Average Annual Rainfall.
The BRUTO model was the only one to use the Complexity Index as a predictor
variable. The CROSS validation model was the least parsimonious, requiring 8 input
variables.

Each model was run with the GRASP autocorrelation function using a local
density map of transect site locations. The autocorrelation term was found not sig-
nificant in all 6 models. Figures 4, 5, 6, and 7 give an output map, graphs showing
predictor variable contributions and response curves for all models. An averaged
map representing the probability of weed occurrence for the Top End was computed
from the 6 input models in a GIS and used in further analysis (Fig. 8).

Comparisons of the ‘probable’ locations of weed infestations with maps of land
tenure and Biogeographic subregions can now be presented. As we are attempting to
predict the occurrence of environmental weeds that are yet to invade suitable envi-
ronments, these results need to be taken with caution. To facilitate this comparison
the averaged savanna weed map was separated into 4 probability classes (<0.1 or
low; 0.1–0.5 or medium; 0.5–0.75 or high and >0.75 or very high).

Testing the Model with Independent Data

A database of weed distribution North of 18◦ (n = 4523, Fig. 9), provided by the
weeds branch (NRETA 2008), was used to test the efficacy of the savanna weed
map. The four probability classes were compared against a random set of points (n
= 1000); all species present in the independent dataset; the same species recorded
as in the transect surveys and individual weed Genera distribution.

According to Fig. 10 the random points are poorly represented in high prob-
ability classes (<12%). 60% of all weeds branch records fall within the high to
very high classes. Andropogon, Mimosa, Pennisetum and Sida spp. records occur
predominantly in the high to very high classes, although there were only a small
number (19) of Andropogon records. The location of Parkinsonia and Passiflora
spp. records are poorly predicted by our composite weeds model. About 40% of
the Weeds Branch Parkinsonia spp. records are found south of 18◦ latitude and
hence this genus’s environmental envelope falls largely outside that described by our
modelling.
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Fig. 4 Average Probability Map of Weed Occurrence
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Fig. 5 Model output for AIC, CHI and F tests
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Fig. 6 Model output for the BIC test
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Fig. 7 Model output for BRUTO test
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Fig. 8 Model output for CROSS Validation test

Fig. 9 Comparison of model probability classes with random observations and independent weed
records
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Fig. 10 Location of Transect Surveys and Weeds Branch data

Comparisons with Land Tenure

Broad Land Tenure was not selected as a predictor variable by any of the models.
When comparing the savanna weed map with a 4 category map of land Tenure (built-
up areas; Pastoral land; Aboriginal land and Conservation Reserves), built-up areas
are faced with the greatest risk of complete infestation, with over 70% of their extent
in the very high class (Fig. 11). Conservation Reserves have over 20% of their extent
falling in the high to very high risk classes. Aboriginal and Pastoral lands appear to
be at less risk of infestation, with values of around 10% in the high to very high
class, but this remains a significant problem as these are the dominant land tenures
in this region.

Comparisons with Biogeographic Subregions

Comparison of the savanna weed map with Biogeographic Subregions (Department
of the Environment, Water, Heritage and the Arts 2004) provides a finer scale pic-
ture of which environments face greater peril from weed invasion. Fig. 12 shows
8 Biogeographic Sub-Regions which are considered to have large areas at a high
to very high risk of invasion. As expected, the Darwin Coastal Subregion faces
the greatest challenge with over 60% of its extent most vulnerable. The risk to the
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Fig. 11 Predicted weed occurrence across 4 dominant Land Tenure Types

Tiwi-Coburg Subregion, with 50% in the high class, is of concern considering the
large scale forestry developments underway on Melville Island. Victoria-Bonaparte;
Ord-Victoria Plains; Arnhem-Coast; Pine Creek; Gulf Falls and Uplands and the
Daly Basin Subregions are all considered to be at high risk of savanna weed
incursion.
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Fig. 12 Predicted Weed Occurrence across 8 Biogeographic Subregions

Discussion

With any regression modelling of species distribution there is an implicit assumption
of pseudo-equilibrium between the species and its environment. This can often lead
to poorly performing models or the prediction of presence in areas the species is
yet to occupy (Guisan et al. 2002, Franklin 1995). Many of these weed species have
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been present in more populated parts of the Top End for decades (Cook and Dias
2006), but may still venture further into remote areas as development of Northern
Australia continues. We caution the use of these weed models as maps of current
distribution, but rather regionally indicative of environments at greater risk of weed
incursion in the Top End.

Few studies of predictive species modelling incorporate field validation. In this
exercise we have used an independent set of weed observations to ‘test’ the field
validity of our predictions. 65% of records for the same species recorded in the
transect surveys occurred in high to very high probability classes. This does provide
confidence in the magnitude of threat depicted in these weed models. However, the
poor prediction for the location of Parkinsonia sp. records, suggests this modelling
does not adequately represent weed risk in the Rangeland environments of the Sturt
Plateau.

As with similar studies, this scale of modelling areas at risk of weed infestation
and the related understanding of broad environmental processes favouring exotic
plants is a useful tool for planning the long-term management of these environments
(Collingham et al. 2000, Puckey et al. 2007), although the control of weeds will
always be managed at a finer spatial scale and these predictive models will not
necessarily aid in the planning of field work (Kean and Price 2003).

Across all the statistical tests used in this study there is a consistent theme of
high rainfall, suitable surface lithology (from the Radiometric data) and proximity
to populated places and/or human infrastructure in predicting infestations of weeds.
However these spatially static models take no account of dispersal factors, rates of
spread or neighbouring spatial context. Incorporating these factors into the mod-
elling process should be the focus of future work in predicting weed incursions in
Northern Australia.
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Automated Reconstruction of Buildings
Using a Hand Held Video Camera

J.R. Fulton and C.S. Fraser

Abstract Abstract This work looks at the automation of the reconstruction of build-
ings using a handheld consumer grade video camera. We discuss our progress to
date which includes: deinterlacing the video footage, automated selection of non-
blurred key frames, registration of key frames using a Fast Fourier Transformation
technique and tracking of points and features to be used in the bundle adjustment.

Introduction

The automatic reconstruction of buildings from image sequences is currently an
active area of research, as indicated by the work of Faugeras et al. (1998), Zisserman
et al. (1999) and Pollefeys et al. (2000), for example. A recent review of image based
3D modelling, which encompasses 3D object reconstruction from sequences of
imagery acquired using handheld video cameras, has been presented by Remondino
and El-Hakim (2006). The automated image measurement and matching, along with
the subsequent orientation and object point triangulation phases, invariably involves
selected images only from the sequence, and thus the question arises as to which
images are optimal for this process. Obviously, geometric factors are important here
as the images used need to form a network exhibiting sufficient geometric strength
and redundancy in order to achieve a reliable reconstruction. Another important
factor is the quality of the imagery and specifically the amount of blur within each
image. Image blur can degrade feature extraction and also the matching and orien-
tation, so it is important that the automatic process adopted to select the appropriate
images from a sequence takes account of the extent of blurring so that images with
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excessive blur are avoided. In order to achieve this, a metric is needed to enable
blur to be quantified and the development of such a metric forms the subject of
this paper.

After deinterlacing video footage many of the video frames may be blurred due
to camera motion. The blur metric to be introduced allows the automated selec-
tion of non-blurred key frames. Registration of these key frames is then performed
using a fast Fourier transformation based technique called phase correlation. A new
metric that indicates when robust matches have occurred in the tracking of points
and features via a modification of the phase correlation technique has also been
developed.

Methodology

In this section we will give a brief overview of the methodology before we look
more closely at each stage.

The methodology used in conducting this research was firstly to video the build-
ing of interest. The video sequence was then transferred to the computer and saved
as individual JPEG frames. The images in PAL format were then interpolated into
their odd and even fields. A metric is then run on every field in the sequence to see
how blurred it is. Key frames with the least amount of blurring within a window of
up to 4 s of video are then selected. The selected key frames are then registered
using phase correlation. Feature extraction on the registered frames is then per-
formed using either Harris and Stephens (1988) or Canny (1986). These detected
features are then searched for using phase correlation of smaller windows in the
subsequent images. At the end of this process the top 60 tracked points or features
are then output so that the exterior orientation of the sequence may be recovered.
For the remainder of this section we will look in more detail at each step of the
process.

Image Sequence

While a number of image sequences have been used for this research, for this paper
we will report results on one sequence called ‘building 47’. The building is sur-
rounded by plants and trees. The first frame of video from the sequence is shown in
Fig. 1.

The video camera employed was a Sony MiniDV Digital Handycam DCR-PC1e.
This camera records in PAL format. This sequence was transferred to a computer
initially using Apple Quicktime Pro, and later the open source program ‘kino’. For
each PAL image the odd and even fields were extracted, with interpolation being
employed to fill pixels in the missing lines. Individual fields were 720 × 576 pixels
with 24-bit colour. The sequence is made up of 3300 individual images – that is
6600 fields of odd and even video.
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Fig. 1 First frame of b47 sequence and its Fourier transform

Blur Metric

Initial inspection of the video showed that some frames are in focus while others
are badly distorted by motion blur. The blurring was due to motion caused by the
camera being hand held while encircling the building. Tracking of features would
fail on the badly blurred images so a blur metric was then developed to automatically
select the least blurred images.

Motion blur occurs when a camera moves too fast for the image sensor to accu-
rately record the light coming from a single 3D point. Thus the light from one 3D
world point ends up being detected by multiple sensors. Incorrect focusing of the
image on the image plane causes focal blur.

There has been much work related to the removal of motion blur from single
images in the literature with Rosenfeld (1969), Gonzalez and Woods (1992) and
Reiter (2000) providing overviews of the application of Fast Fourier Transform
(FFT) techniques for this purpose. Rekleitis (1996) uses the FFT and a cepstral
analysis based technique to recover optical flow when motion blur exceeds a few
pixels, while Kang et al. (2001) recover motion and focal blur using a spatially adap-
tive regularisation algorithm. Trussell and Fogel (1992) present a non-FFT image
sequence method which finds the velocity vectors (Fogel, 1991) between frames
of the sequence and then uses a modified Landweber iteration method to correct
the image based on the frame rate of the camera, with interlaced video not being
considered. Rooms et al. (2001) use wavelets with a Lipschitz exponent to estimate
the amount of Gaussian blurring on vertical lines in the image, whereas Elder and
Zucker (1998) use a scale space technique to estimate the amount of focal blurring
on lines.

Marziliano et al. (2002) provide a perceptual blur metric based on vertical edges
in the image, whereas Marichal et al. (1999) give a blur metric based on a his-
togram of the Discrete Cosine Transform data present in MPEG and JPEG images.
Mayntz et al. (1999) estimate the amount of blur by first determining its direction
from the eigenvalues of a matrix with elements made up of summation of different
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components of the FFT. The extent of blurring is then estimated by finding the
zeroes in either the power spectrum or bispectrum. Finally, Devčić and Lončarić
(2000) have used a Singular Value Decomposition method to estimate the amount
of blur.

We developed two methods of classifying the amount of blur that both involve
taking the FFT of the image. The power spectrum PS(x,y) of an image scaled
between 0 and 1 is calculated as:

PS(x,y) = log
(
1 + |F(x,y)|2

) /
log

(
1 + |F(0,0)|2

)
(1)

where F is the 2D FFT of the image. The first blur metric is defined as:

ThresholdBlurMetric =
∑(N−1)/2

x=1

∑M−1

y=1

{
1 PS(x,y) ≤ α

0 otherwise
(2)

where ∝ is a threshold and N and M are the dimensions of the image in the x and y
directions. Eq. (2) provides a metric for the amount of blur in an image. Zero hertz
frequency components (when x = 0 or y = 1) are ignored as they do not improve
the measure. x is only summed to (N – 1)/2 due to Hermitian symmetry (Frigo and
Johnson, 1999). This metric is invariant with respect to blur direction because the
frequencies in both xand y directions are considered. A trough detector will therefore
find the images with least motion blur when applied to an image sequence.

The second blur metric uses the mean of the normalised power spectrum:

MeanBlurMetric = −2

(M − 1)(N − 1)

∑(N−1)/2

x=1

∑M−1

y=1
PS(x,y) (3)

Here the negative sign is used to make more blurred images have higher peaks.
Again the 0 Hz components have been ignored.

When comparing these blur metrics to Marichal et al. (1999), Marziliano et al.
(2002), and Yoshida et al. (1993) with an image which has been increasingly artifi-
cially blurred we can see that both metrics work well. Figure 2 shows the image from
Fig. 1 artificially motion blurred by 20 pixels and its resulting Fourier Transform.
Note that the nulls in the power spectrum are lines perpendicular to the direction
of motion blur and in the case of focal blur are concentric circles about the ori-
gin (Cannon, 1976). Figure 3(a) shows a plot of the results for increasingly blurred
images for all the metrics between 0 and 20 pixels of blur.

A brief summary of our results on the blur metrics is that we favour the mean
blur metric of Eq. (3) because it does not need any parameters to be specified and
has good precision even for minor blurs. Marziliano should be avoided as it fails
when the blur is larger than the response of the Sobel (1970) Operator. If the task is
time critical but less precision is required then Marichal is a good choice due to it
using the already existing frequency components of the discrete cosine transform.
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Fig. 2 Image from Fig. 1 artificially blurred by 20 pixels and its Fourier transform

Fig. 3 Plot of various blur metrics for (a) increasingly blurred images and (b) for first 100 odd and
even fields of the building 47 image sequence. The higher the value the more blurred the image.

A plot of the first 100 fields of the building 47 sequence for the Marichal,
Yoshida, Mean and Threshold metrics is shown in Fig. 3(b). Manual verification
showed that the peaks of the mean and threshold metrics corresponded to the most
blurred images.

Registration of Key Frames

Once the blur metric has identified the frames of least blurring, we register the
images using a phase correlation technique which recovers scale, rotation and x
and y translations between two images. The original frequency domain technique,
known as Phase Correlation (Kuglin and Hines, 1975), is based on the translation
property of the Fourier transform. This property (also called the shift theorem) states
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that if two images f1 and f2 are related by a translation (x0, y0):

f2(x,y) = f1(x − x0,y − y0) (4)

then their Fourier transforms (F1 and F1) will be related by

F2(ξ ,η) = e−j2π (ξx0+ηy0)F1(ξ ,η) (3)

The cross-power spectrum of the two images is defined as

F1(ξ ,η)F∗
2(ξ ,η)/

∣∣F1(ξ ,η)F2(ξ ,η)
∣∣ = e−j2π (ξx0+ηy0) (4)

Taking the inverse Fourier transform of the resultant exponential produces an
impulse at the position of best registration.

The Fourier-Mellin transform converts the power spectrum of an image to log-
polar coordinates. The reason for doing this is to recover rotation and scale. The
polar transform converts changes in the rotation to a translation. Likewise the loga-
rithmic transform converts changes in scale to a translation. With rotation and scale
both represented as translations, phase correlation can be used to recover them. The
use of the power (or magnitude) spectrum decouples the calculation from x and y
translations in the image domain because these translations are encoded in the phase
information of a Fourier transform.

Due to the processing efficiency of the FFT compared to the Fourier transform,
in practice, these algorithms are implemented using the FFT.

Recovery of rotation and scale using the Fourier-Mellin transform was first
demonstrated by Casasent and Psaltis (1976, 1977) using optical computing devices.
Later Chen et al. (1994) and Reddy and Chatterji (1996) proposed similar computer
algorithms which are summarised as follows:

1. For two images f1 and f2, calculate their FFTs F1 and F2.
2. Convert the magnitudes of F1 and F2 to the Fourier-Mellin (polar-log) equivalent

so that:

F2(φ,ρ) = F1(φ − φ0,ρ − A)/a2 (5)

where rotation φ = arctan(η/ξ ) and scale ∝ is recovered from A = log(a) where

ρ = log
(√

ξ2 + η2
)
.

1. Use phase correlation on the newly created polar-log image to recover the
rotation (φ) and scale (a).

2. Unscale f2 by 1/a.
3. Rotate the unscaled image by –φ and another copy of the unscaled image by –φ

+ 180◦(a 180◦ degree ambiguity is introduced by using the magnitude spectra).
4. Phase correlate both copies against f1 and keep the translation solution which

produces the highest correlated peak.
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Published examples using this technique include Stricker (2001) and Xie et al.
(2003) who both confirm the need for at least 30% overlap of image content for the
method to work.

Notes on our implementation include;

• using Hamming windows on all data before the FFT is applied (steps 1, 3 and 6)
which results in higher peak power in the inverse power spectra and the technique
working for images that are further apart in the image sequence.

• The Fourier-Mellin image created in step 2 has dimensions of 720 × 720 which
gives an angular resolution of 0.5◦.

• Rotation of an image by 180◦ in the frequency domain can be achieved by multi-
plying imaginary components of the Fourier transform by –1 which allows partial
combination of steps 5 and 6.

For images with the dimensions of a PAL image we can confirm the observation
of Reddy and Chatterji (1996) that having the final peak greater than 0.03 always
gives a satisfactory registration. We have however found that the final peak is highly
dependent on the image dimensions which we will discuss in the following section.
For recovery of the rotation and scale we insist that the peak be above 0.017 and
when this fails assume no change in scale or rotation.

If an image pair fails to register then the next best image as determined by the
blur metric is selected and registration attempted. We continue until we have key
frames spanning the sequence registered to their neighbouring key frames.

Feature Registration

To find features to track in individual frames we use either the method of Harris
and Stephens (1988) or Canny (1986) and note that many studies such as Trajković
and Hedley (1998) and Cooke and Whatmough (2005) find the Harris detector to
be the most stable corner detector. We also use the features matched in the previous
frame.

To find the match to an individual feature we take the original image and the
next key image in the sequence. The next key image is unscaled, unrotated and
untranslated using the values found by the previous stage. We then take a patch of
the image centred on the feature and find the best phase correlation for this patch in
the next image. This is only for translation as scale and rotation were corrected in
the previous step.

Choice of window size involves a trade off between size, processing time and
inclusion of the target point. Larger sizes take longer to process and are more
affected by changes in the 3D geometry of the scene. While small windows need
to be large enough to include the required point. Figure 4(a) show the number of
correct points this technique finds regardless of the height of the peak. The smaller
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Fig. 4 (a) Plot of correctly found points using phase correlation for various window sizes regard-
less of peak. Data were taken from matches between even fields of frames 17 and 96. (b) ROC
curve of the ratio classifier with 0.95 confidence intervals for the 135 × 135 window. The cross
hairs show the Optimal Operating Point. (c) Area under the ROC curves versus window size for
the ratio, SNR and peak classifiers. (d) The mean values for good and bad matches versus window
sizes with the ‘peak ratio’ classifier. Error bars are shown at 1 standard deviation. The optimal
threshold to decide between a good and bad match from the ROC curve is also shown.

window sizes performed poorly because they were too small to include the target
points.

While Reddy and Chatterji (1996) use a peak in inverse power spectra greater
than 0.03 to classify a good registration, we have found that this value is highly
correlated to the window size. This method also shows no indication of when a badly
localised match occurs for near identical windows. For example when presented
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with two patches of sky, a high correlation peak results, but the location of the peak
is highly susceptible to noise and its position is essentially random.

We have found a more accurate and stable test of correctness is the peak
of the correctly oriented window divided by the peak of the window which is
rotated by 180◦.

peakratio = peak/peak180◦ (6)

We will call this method the ‘peak ratio’ classifier. The Signal to Noise Ratio
(SNR) of the peak is defined as

SNR = (peak − μ)/σ (7)

where μ and σ are the mean and standard deviation respectively of the inverse
power spectrum not including the peak. We can define a third classification of a
good match as

SNRratio = SNR/SNR180◦ (8)

where SNR is the SNR of the correctly oriented window and SNR180◦ is the SNR of
the window rotated by 180◦.

Both the peak ratio and SNR ratio methods are more stable over a larger window
range with an optimal threshold near 1.5. More importantly when presented with
near identical patches of sky they both give results of near 1.0 indicating a bad
localisation match.

To compare the 3 methods we plotted the Receiver Operator Characteristic
(ROC) curves for the 3 methods using various window sizes. Figure 4(b) shows the
ROC curve for the peak ratio classifier. The area under a ROC curve indicates how
good a method performs as a classifier. Using numerical integration we calculated
the areas under all the ROC curves and presented them in Fig. 4(c). We see that,
for the window sizes 55 × 55 and larger, the peak ratio and SNR ratio classifiers
outperform the peak classifier.

More data will be required to separate the performance of the peak ratio and
SNR ratio classifiers. When faced with a choice between the two, we favour the
peak ratio classifier because of its simpler implementation (the SNR requires the
mean and standard deviation of the inverse power spectra). We have noted that the
peak ratio and SNR ratio classifiers often only differ in the second decimal place.

The test points we have used in this paper were found with the Harris cor-
ner detector, so that there are no uniform patches of sky or tarmac which would
have shown even stronger results in favour of the peak ratio and SNR ratio
methods.

While there are a number of ways of determining the Optimal Operating
Point (OOP) on a ROC curve (Gallop et al. 2003), we use the maximum of the
simple metric

OOP = Se + Sp (9)
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where Sp is the specificity (probability of a true negative) and Se is the sensitivity
(probability of a true positive).

To find the optimal threshold for the different classifiers we take the OOP for
the sensitivity (y-axis) off the ROC curve. We then sort our inliers and select the
threshold which includes this percent of the inliers. Figure 4(d) shows the optimal
thresholds as defined from the ROC plots.

Fig. 5 (a) Using phase correlation for matching can sometimes give incorrect results. A crop of
two consecutive frames with a point on the pole incorrectly matched to the position which was
behind the pole in the previous frame. (b) A feature point tracked through multiple frames. Only
the 20 pixels above and below the feature are shown from each frame.
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Discussion

While the phase correlation method works well to find matches for many of the
points, there are times when it fails. For example it can some times match the back-
ground image features and ignore the foreground. For example Fig. 5(a) shows a
point on a pole in one frame which is matched to the scenery that was behind the
pole in the next frame, further more the peak in the inverse power spectra is very
strong. In order to detect these errors we currently check the pixel colour values of
the matches and fail any match that does not have all red, green and blue values
within 25–30% of each other.

Using the described method we have managed to track a number of features of
the building for around 400 frames. Figure 5(b) shows one such corner.

Conclusions and Future Work

Using a combination of a blur metric and registration with phase correlation we
have been able to automatically select key frames for further processing. We have
investigated using phase correlation for tracking feature points and have identified a
new classification metric for deciding if we have found a good match.

Further work is need to extend these matched feature points to larger angular
separations to get a more robust geometry for the bundle adjustment phase of 3D
object reconstruction.
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Mapping Seagrass Biomass
with Photo-Library Method

Tiit Kutser, Ele Vahtmäe, Chris Roelfsema, and Liisa Metsamaa

Abstract Validation of benthic habitat maps produced from remote sensing
imagery is quite time consuming and expensive. Validating maps of seagrass
biomass is even more sophisticated and time consuming as the seagrass has to be
collected, dried and weighed in the laboratory. We developed a method for esti-
mating the dry weight of the seagrass based on photo transect data and a photo
library of quadrats with known seagrass biomass. For seagrass biomass estimation
we selected 13 different bottom classes. A photo of each 25 × 25 cm quadrat was
taken prior to collecting the samples for each class. Seagrass (and macroalgae, if
present) dry weight for each class was measured in the laboratory. These photos
were then used to estimate seagrass biomass in 100 m long geolocated photo tran-
sects. Seagrass dry weight estimated from the photo transects using the photo-library
method was compared with QuickBird satellite radiances. Preliminary results show
that QuickBird imagery may be used for mapping seagrass biomass even in highly
variable environment such as the Ngederrak Reef in Palau.

Introduction

Seagrass habitats have a valuable role in marine ecosystems since they function as
nursery grounds, a natural resource, and provide biodiversity and coastal protection
(Waycott et al. 2005). Therefore, for conservation and management purposes one
needs appropriate monitoring methods for the biophysical characteristic of seagrass
species, cover and biomass (McKenzie et al. 2001; Short and Coles 2001).

A variety of methods have been developed to measure seagrass biomass, sam-
pling designs will continue to be modified and improved. The most appropriate
sampling method for estimating biomass depends on the size of the area to be
assessed, resource and time limitations, the accuracy required, the structure of
the vegetation complex and vegetation components of interest (Catchpole and
Wheeler, 1992).
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The most widely used method for estimating seagrass biomass is the manual
harvesting of macrophytic tissue within quadrats (Downing and Anderson, 1985).
Biomass is measured by harvesting either the above-ground or the total biomass
within the sampling frame (Krause-Jensen et al., 2004). Samples may be collected
by sampling randomly (Hossain, 2005; Boer, 2000; Phillips et al., 2006) or by apply-
ing point samples on a line transect (Lin and Shao, 1998; Tolan et al., 1997). To
determine the patterns of seagrass abundance over a gradient of water depth, a
transect method is recommended. The aim of random sampling is to estimate the
real biomass of the meadow (Duarte and Kirkman, 2002). The manual harvesting
method provides a relatively precise measure of seagrass abundance, but has the
disadvantage of being destructive, time consuming and expensive.

If biomass estimation studies are carried out in marine protected areas, prior-
ity should be given to less destructive sampling methods. Mellors (1991) designed
a non-destructive visual assessment method for estimating above-ground seagrass
biomass which allows repeated monitoring, is less damaging to the environment
and is generally faster than destructive methods.

Mellors (1991) visual assessment method uses a linear scale of 5 biomass cat-
egories (1–5), which are assigned to seagrass samples in 0.25 m2 quadrats. Five
calibration quadrats are chosen so that the first quadrat is placed in the seagrass bed
with the highest biomass (referred to as category 5). A second quadrat is placed
in an area with the lowest biomass (referred to as category 1). Quadrats for cate-
gories 2, 3 and 4 are placed by estimating biomass differences between categories
1 and 5. Each quadrat is photographed and harvested as a biomass sample. Using
the photographs of the calibration quadrats as a guide, observers proceed to visually
estimate seagrass biomass at the study site. Mumby et al. (1997) extended the range
of reference quadrates from five to six, as it was hypothesed that surveyors were
tempted to place a disproportionate number of quadrats in the middle category.

In Palau, the research study area seagrass beds are included in marine protected
areas, because they are important feeding areas for dugongs. Consequently the max-
imum number of destructive samples the authors allowed to collect was limited to
fifteen. The variability of habitats in the Ngederrak Reef is very high: varying from
dense seagrass beds to almost bare sand and from dense macroalgal cover with some
seagrass to dense coral cover with some seagrass. We were not able to use the meth-
ods which require the training of observers by taking multiple biomass samples of
each class (Mellors, 1991; Mumby et al., 1997). Also classification with just six sea-
grass density classes would have been insufficient in such a complex environment.
As a result we had to modify the sampling strategy and rely on photo transect data
which we classified visually using photos of the fifteen sample quadrats with known
biomass.

Method

Study Area

The study was carried out in the Republic of Palau at the Ngederrak Conservation
Area in April 2006. The Ngederrak Reef contains several habitats including seagrass
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beds, which are known to be important feeding grounds for dugongs. The seagrass
beds situated on sandy substrates vary between sparse to dense cover and consist
of several seagrass species: Cymodocea rotundata, Halodule uninervis, Halophila
ovalis, Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides. The
canopy height of these beds can vary from a few centimetres for Halophila ovalis,
to less than 20 cm for Enhalis accroides and over 30 cm for Thalassia hemprichii
(Waycott et al., 2005). Thalassia hemprichii and Enhalis accroides were the most
frequently occurring seagrass species.

The Ngederrak seagrass habitats are mixed with algae and coral species. The
algae species are mainly; Laurencia, Caulerpa, Sargassum, Turbinaria, Dictyota
and Padina. In the fieldwork area Laurencia was the most abundant species mixed
with the seagrasst often forming dense and continuous cover below the seagrass
canopy. Dense Padina beds were also present in some of the studied areas. The
seagrass/algae cover was mixed with mainly branching Acropora spp. and massive
and branching Porites spp. Some of the habitats were covered in cyanobacterial mats
overgrowing sand, seagrass, algae and coral.

Photo-Transect Method

The photo-transect method for creating benthic habitat maps for the calibration and
validation of satellite imagery was developed in the Centre for Remote sensing
& Spatial Information in the University of Queensland (Roelfsema et al., 2006).
Bottom types are identified based on still images taken along a 100 m tape geolo-
cated and fixed to the seafloor. The photos are captured at a 2 m interval. A Sony
PC10 camera in Marine Pack UW housing and external wide angle lens were used
in the Ngederrak Reef. A plumb line attached to the camera was used to determine
the right distance from the bottom to capture 1 × 1 m area in each photo. A Garmin
72 GPS was towed by the photographer to geolocate the photo transect data. The
time stamp of the GPS position and of the photo allowed the geolocation of each
photo taken along the transects.

Biomass Samples

The Ngederrak reef area was visually inspected prior to the survey work to identify
the range of seagrass biomass. Fifteen sampling sites were chosen in the study area
to cover the diversity of habitats from dense seagrass beds to almost bare sand and
from dense macroalgal cover with some seagrass to dense coral cover with some
seagrass. Biomass samples of seagrass standing crop and algae were collected from
0.25 m2 quadrats after a photo record of the quadrate was taken. The contents of the
quadrats were carefully and completely removed and placed into mesh bags.

At the laboratory samples were cleaned of remaining sediments. Cleaned sam-
ples were separated into seagrass and macroalgae. Epiphytes on the seagrass leaves
were removed by soaking in hydrochloric acid. Each biomass sample was dried
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in an oven at 60̊ C for approximately 24 h. Dried samples were weighed immedi-
ately after removal from the oven since they reabsorb moisture quickly. Dry weights
of seagrass and macroalgae (if present) were measured for each quadrat. The dry
weight of macroalgae was not used in this study.

Photos of the sorted biomass samples were taken in the laboratory. The biomass
was sorted according to major seagrass and macroalgae species. A measuring tape
was included in the frame to enable a rough estimate of seagrass leaf length. Thus,
the photo library used in further estimation of seagrass biomass consisted of two
photos: one taken in situ before removing the biomass and one taken in the labora-
tory after biomass sorting but prior to drying. The latter proved useful in seagrass
biomass estimation as the measuring tape gave more detailed information about the
height of the seagrass canopy than some of the in situ photos. The relative amount
of macroalgae was also more clearly visible in the laboratory photos than in situ
photos.

Satellite Imagery

We used a QuickBird satellite imagery acquired on March 6th, 2006. QuickBird is
a high spatial resolution instrument (2.4 m), with 4 bands in the visible and near-
infrared part of the spectrum. Wavelength ranges of the QuickBird bands are: blue:
450–520 nm, green: 520–600 nm, red: 630–690, and near-infrared: 760–900 nm.
The dynamic range of the instrument is 11 bits. In this preliminary stage we used a
QuickBird top of the atmosphere radiance image (without atmospheric correction).

Photo-Library Method

Seagrass biomass estimations were performed by visual assessment comparing tran-
sect photos to the photos of the quadrats with known biomass (photo-library). As
mentioned above the photo library consisted of two photos for each class: one taken
in situ and one after sample sorting in laboratory. The transect photographs (1 × 1 m
in size) were divided into 16 squares (0.25 × 0.25 m). Each of the 16 squares were
visually compared with the photo library photos. Seagrass biomass estimates were
given for each sixteenths of the transect photo. The total biomass in each 1 × 1 m
transect photo was then calculated as the sum of biomasses in the 16 squares.

Results and Discussion

Three of the quadrats had similar biomass values (see Table 1) and bottom types
(seagrass on sand) despite our attempt to create a photo-library of as many differing
bottom types as possible. Therefore, the actual number of classes used in estimating
biomass along the photo transects was reduced to 13. Table 1 illustrates that there
are some other classes with similar seagrass dry weights. However, these classes
were different in their bottom type composition.
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Table 1 Biomass values (dry weight) of the 0.25 m2 cm calibration quadrates

Sample no Seagrass dry weight (g) Algae dry weight (g) Substrate

#15 0,56 5,33 Sand
#5 0,62 5,43 Sand/Coral
#10 0,68 − Sand
#9 1,72 21,47 Coral
#16 1,96 − Sand
#8 3,75 20,96 Coral
#13 4,15 − Sand
#2 4,22 − Sand
#1 4,23 − Sand
#7 7,62 11,34 Sand/Coral
#11 7,64 10,24 Sand
#4 12,83 46,62 Sand
#3 13,82 1,32 Sand
#6 13,91 − Coral
#14 17,31 4,08 Sand
#12 24,98 0,75 Sand

Seagrass dry weight estimates along a photo transect by three observers are
shown in Fig. 1. The correlation between the results obtained by the observers was
good as seen in Figs. 1 and 2. It must be noted that two of the observers participated
in the fieldwork, but the observer #3 did not have any previous experience with the
seagrasses and did not participate in the fieldwork. This explains why the results of
observers #1 and #2 are more consistent. Bigger discrepancies between the results
of observer #3 and the other two observers occur at higher biomass values. This
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using the photo-library of quadrats with known biomass
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Fig. 2 Correlation between seagrass dry weight estimates (in g/m2) obtained by two observers
along the same photo transect. One-to-one line is indicated with dashed line

result is explained by the 3D structure of the canopy, which Observer #3 had never
observed. It is theoretically easier to get larger discrepancies in biomass estimates
in the case of higher biomass values. The reason behind this is larger between-
class differences (see Table 1) in biomass in the case of more dense canopies. The
most extreme example would be if one observer decides that all sixteen quadrats
in a transect photo belong to a class with the seagrass dry weigh of 17.31 g (sec-
ond highest biomass class) but another observer classifies all as belonging to the
highest biomass class (24.98 g). In this example the results of seagrass dry weigh
estimates per square metre would be 276.96 and 399.68 respectively. This kind of
discrepancies did not happen. It must be noted that the transect shown in Fig. 1
was the first all observers classified. The results became more consistent in subse-
quent transects. Figure 2 illustrates the correlation between biomass estimates of the
observer with previous seagrass and in situ fieldwork experience (observer #1) and
the observer without previous seagrass experience (observer #3) obtained for four
different transects.

The photo-library method can be used as a fast in situ method for the mapping
of seagrass biomass. All diving time can be used to take bottom photos either along
transects or as point measurements as there is no need to train staff under water or to
write down visual biomass estimates. However, our final aim is to estimate seagrass
biomass from satellite data. This part of study is still in very preliminary phases. We
used a QuickBird top-of-atmosphere radiance image without atmospheric or water
column removal. This assumed that the atmosphere did not change within the small
area of the Ngederrak Reef and water depth was stable along the photo transects
under investigation (as it was).

Correlation between the estimated seagrass dry weight and QuickBird band 1
radiance is shown in Fig. 3. Bottom types along the 100 m transect were vari-
able. There were patches of almost bare sand, areas with almost 100% live coral
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Fig. 3 Correlation between seagrass dry-weight estimated along a photo transect using the photo-
library method and QuickBird radiance values along the same transect

cover with sparse seagrass and areas with dense Thalassia beds. The variability was
often high even within the 1 × 1 m areas seen in each transect photo. For example
1 × 1 m scenes could contain live branching and massive coral colonies, bare sand,
dense macroalgal cover and different species of seagrasses with variable density.
Therefore, the correlation between estimated seagrass dry weight and QuickBird
radiance was surprisingly good. This correlation was similar the same when based
upon the other two QuickBird visible bands.

There is a general tendency of decreasing seagrass biomass with increasing radi-
ance values (Fig. 3), bare sand pixels being the brightest. However, the pixels with
no seagrass may be covered with bright coral sand, relatively dark live coral or rub-
ble covered with turfing algae of different densities. This means that pixels with no
seagrass may have very variable brightness values. Variable water depth across the
reef also causes variability in radiance values. The later can be removed to a certain
extent as demonstrated by Lyzenga (1978). It has been shown that seagrass density
can be mapped from satellites (Dierssen et al., 2003) in optically simple situations
like seagrass beds on sand substrate. Nevertheless, more studies are needed before
one can conclude whether it is possible to map seagrass biomass with QuickBird
imagery in such highly variable environment as experienced by the Ngederrak Reef
in Palau.

Conclusions

The photo-library method provides an opportunity to map seagrass biomass across a
larger area than in the case of other methods as all the diving time is used for collect-
ing photo samples (transect or point) as opposed to training or any other activities.
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The biomass samples and photo library have to be collected once. This also saves
valuable diving time. Biomass sample collection for the photo-library can also be
conducted in non-protected areas

Low variation in results obtained by observers, with different level of experience
with seagrasses, suggests that the method is easy to learn in office situations and
there is no need to spend diving time on the training of staff.

A first test of using the photo-library method for determining seagrass biomass
from space gave promising results even in such a highly variable environment like
the Ngederrak Reef in Palau. Further studies are needed to conclude on what types
of background (e.g. sand, coral, rubble) seagrass biomass can be estimated from
space and determine in which type of backgrounds (dense macroalgal cover?) it
may be difficult or impossible.

Acknowledgements The research for this paper was possible through funding through World
Bank GEF Coral Reefs Project, Coral Remote Sensing and the field support of the Palau
International Coral Reef Center and Dr. Karen Brady. Tiit Kutser′s and Ele Vahtmäe′s partici-
pation in the fieldwork was funded by the Estonian Science Foundation grant 6051 and Estonian
Basic Research grant 0712699s05.

References

Boer, W.F. (2000). Biomass dynamics of seagrasses and the role of mangrove and seagrass
vegetation as different nutrient sources for an intertidal ecosystem. Aquatic Botany 66:
225–239.

Catchpole, W.R., Wheeler, C. J. (1992). Estimating plant biomass: a review of techniques.
Australian J Ecol 17: 121–131.

Dierssen, H.M., Zimmerman, R.C., Leathers, R.A., Downes, T.V., Davis, C.O. (2003). Ocean color
sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery.
Limnol. Oceanogr 48: 444–455

Downing, J.A., Anderson, M.R. (1985). Estimating the standing biomass of aquatic macrophytes.
Canadian J Fish and Aquat Sci 42: 1860–1869

Duarte, C.M., Kirkman, H. (2002). Methods for the measurement of seagrass abundance and depth
distribution. In: Short FT, Coles RG (eds.) Global Seagrass Research Methods. Elsevier Science
B.V., Amsterdam.

Hossain, M.K. (2005). An examination of seagrass monitoring protocols as applied to two New
South Wales estuarine settings. MSc Thesis. Australian Catholic University.

Krause-Jensen, D., Quaresma, A.L., Cunha, A.H., Greve, T.M. (2004). How are seagrass distribu-
tion and abundance monitored? In: Borum J, Duarte CM, Krause-Jensen D, Greve TM (eds.)
European seagrasses: an introduction to monitoring and management. The M&MS Project,
European Union.

Lin, H., Shao, K. (1998). Temporal changes in the abundance and growth of intertidal Thalassia
hemprichii seagrass beds in southern Taiwan. Botanical Bulletin of Academia Sinica 39:
191–198

Lyzenga, D.R. (1978). Passive remote sensing techniques for mapping water depth and bottom
features. Applied Optics 17: 379–383

Mellors, J.E. (1991). An evaluation of a rapid visual technique for estimating seagrass biomass.
Aquat. Bot 42: 67–73

McKenzie, L., Finkbeiner, J.M.A., Kirkman, H. (2001). Seagrass Mapping Methods. In: F.T. Short
and R.G. Coles (eds.) Global Seagrass Research Methods. Amsterdam, Elsevier, pp. 101–122.



Mapping Seagrass Biomass With Photo-Library Method 415

Mumby, P.J., Edwards, A.J., Green, E.P., Anderson, C.W., Ellis, A.C., Clark, C.D. (1997). A visual
assessment technique for estimating seagrass standing crop. Aquatic Conservation: Marine and
Freshwater Ecosystems 7: 239–251

Phillips, R.C., Milchakova, N.A., Alexandrov, V.V. (2006). Growth dynamics of Zostera in
Sevastopol Bay (Crimea, Black Sea). Aquatic Botany 85: 244–248

Roelfsema, C., Phinn, S., Joyce, K. (2006). Benthic validation photo transect method. University
of Queensland, Brisbane. http://www.gpa.uq.edu.au/CRSSIS/publications/GPS_Photo_
Transects_for_Benthic_Cover_Manual.pdf

Short, F.T., Coles, R.G. (2001). Global Seagrass Research Methods. Amsterdam, Elsevier.
Tolan, J.M., Holt, S.A., Onuf, C.P. (1997). Distribution and community structure of ichthyoplank-

ton in Laguna Madre seagrass meadows: potential impact of seagrass species change. Estuaries,
20: 450–464

Waycott, M., Longstaff, B.J., Mellors, J. (2005). Seagrass population dynamics and water quality
in the Great Barrier Reef region: A review and future research directions. Marine Pollution
Bulletin 51: 343–350



A Comparison of Bathymetric Signatures
Observed on ERS SAR and LANDSAT TM
Images Over the Timor Sea

Medhavy Thankappan and Craig J.H. Smith

Abstract Modulation of surface capillary waves by tidal current flow over sub-
marine relief features causes roughness variations on the ocean surface that are
detected by Synthetic Aperture Radar (SAR). Previous studies have demonstrated
the presence of features in SAR images that correspond with submarine topogra-
phy under appropriate sea-state and imaging conditions. In this study, bathymetric
signatures observed on two European Remote Sensing Satellite (ERS) SAR images
and a near-coincident Landsat Thematic Mapper (TM) image over an area west
of Melville Island in the Timor Sea were investigated. Bathymetric features visi-
ble on the SAR and optical satellite images correspond well with isobaths of the
study area. Submarine relief features seen on the satellite images of the study area
were analysed in conjunction with wind and sea-state data. Based on the analysis,
we highlight some factors governing the expression of submarine relief features
seen in satellite images of the study area. Submarine relief signatures are sensed
by optical and SAR sensors through different mechanisms, however similarities in
signatures observed in the near-coincident optical and SAR images indicate that the
underlying mechanism is common to optical and SAR imaging. Sun glint resulting
from specular reflection and modulated by ocean surface roughness is the predomi-
nant mechanism producing features on the Landsat TM image that correspond with
bathymetric signatures seen on the ERS SAR images. This study demonstrates the
potential to extract information on sea bottom topography from sun glint in opti-
cal images under specific sun-sensor-target geometries and sea-state conditions, to
complement similar information derived from SAR.

Introduction

Satellite based Synthetic Aperture Radar (SAR) sensors have been used to observe
various ocean related phenomena. Internal waves, currents, eddies, fronts and
bathymetric features have been identified on SAR images in previous studies
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(Johannessen et al. 1993, Alpers and Hennings 1984, Lyzenga and Marmorino
1998, Shuchman et al. 1985, Jones et al. 2006). The potential of temporally
coincident SAR and optical images for studying ocean dynamics has been demon-
strated by Gagliardini and Clemente-Colon (2004); they compared thermal fronts
detected on European Remote Sensing Satellite (ERS) SAR and Landsat Thematic
Mapper (TM) images, by analysing sun glint, upwelling radiance and SAR
backscatter.

Studies by Alpers and Hennings (1984), Shuchman et al. (1985), Hennings et al.
(1994), Gagliardini and Clemente-Colon (2004), and Jones et al. (2006) have shown
that the interaction of tidal currents with bottom topography produces surface signa-
tures that express the bathymetry on SAR images. Hennings et al. (1988) compared
satellite images acquired by optical and SAR sensors for a shallow ocean area with
submarine relief features; they concluded that brightness variations in both radar and
optical images are due to surface effects resulting from the tidal flow over submarine
relief.

Chust and Sagarminaga (2007) showed that for two optical satellite images exam-
ined under sun glint conditions, the Multi-angle Imaging Spectroradiometer (MISR)
sensor provided better detection of capillary wave damping by oil, compared to
the single-view Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.
Adamo et al. (2006), have proposed the use of MODIS images acquired in sun-glint
conditions to complement SAR based detection of oil slicks. The physical principle
for retrieving bathymetric information from satellite images over optically shallow
water is based on measuring the sunlight reflected off the bottom in conjunction
with scattering and attenuation of sunlight in the water column. Several well known
approaches model these processes to derive depth information from optical images.

Bathymetric features observed on near-coincident SAR and optical images over
the Timor Sea, Australia, are compared in this study. The motivation for this
work was to understand various mechanisms that generate low-backscatter sig-
natures on SAR in order to increase the confidence of natural hydrocarbon seep
identification in the region. Similarities and differences in the SAR and opti-
cal imaging mechanisms and the influence of sun glint are discussed. This study
demonstrates the potential for deriving information about submarine relief from
sun glint in optical images to complement similar information from near-coincident
SAR images.

Methods

Study Area

The study area is located within 10.5˚ S, 129˚ E and 11.5˚ S 130˚ E. This area of the
Timor Sea west of Melville Island, Australia has a shallow and variable bathymetry
and is in the vicinity of a region with petroleum potential (Fig. 1). Natural hydrocar-
bon seeps have previously been observed in SAR images over this region (O’Brien
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Fig. 1 Study area showing
footprints of the ERS SAR
and Landsat TM images on
the regional bathymetry grid

et al. 2002). The study area is also located in one of the world’s largest macro-
tidal shelf environments with large tidal amplitudes that generate strong currents.
Shallow, variable bathymetry can interact with the significant tidal flows to produce
features on SAR images that resemble natural hydrocarbon seeps.

Satellite and Ancillary Data

Satellite Data

An ERS-1 SAR image acquired on 10 December 1995 at 1:35 UTC and an ERS-2
SAR image acquired on 26 October 1998 at 1:35 UTC were used in this study. The
two SAR images were spatially co-located. A Landsat TM image acquired 28 min
before (1:07 UTC) the ERS SAR image of 26 October 1998 was also used in this
study. Overlap between the footprints of ERS SAR and Landsat TM images is shown
in Fig. 1.

Wind Fields

Wind field data close to the time of ERS SAR and Landsat TM imaging
was acquired from QuikScat and the Defense Meteorological Satellites Program
(DMSP) series of satellites. Wind data in gridded binary format from Remote
Sensing Systems (2004), based on the algorithm by Wentz (1992) was used.
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Bathymetry

The Geoscience Australia regional bathymetry grid with 0.01 degree cell size
(Petkovic and Buchanan, 2002) and hydrographic charts, published by the
Australian Hydrographic Service were used.

Tides and Currents

Tide heights coincident with the time of satellite data acquisition were obtained
using tide prediction software developed by Flater (2008). Tidal current data mod-
elled for Geoscience Australia’s sediment transport studies by Porter-Smith et al.
(2004), was used.

Observations

The SAR and Landsat images were analysed in conjunction with ancillary data to
understand the mechanisms generating features identified on the images. Archived
images were also examined to determine specific conditions under which these
features could be identified on the optical images.

ERS SAR and Landsat TM

Similar features, oriented north-east to south-west can be seen on the ERS SAR
images acquired on 10 December 1995 (Fig. 2), and 26 October 1998 (Fig. 3). The
patterns visible on the 1995 ERS-1 SAR image are less distinct compared to patterns
on the 1998 ERS-2 SAR image.

The near-coincident Landsat-5 TM image acquired 28 min before the ERS-2
SAR image also shows similar patterns that correspond to features seen on both the
ERS-1 and ERS-2 SAR images (Fig. 4). This is unexpected because the mechanism
for SAR imaging is based on Bragg wave resonance and that for optical imaging is
based on Fresnel’s law which describes the behaviour of light in media with different
refractive indices.

Hydrographic charts of the area show a series of submarine valleys approxi-
mately 2–4 km wide and up to 80 m deep, in water depths ranging from 25 to 100 m.
The regional bathymetry of the study area is shown in Fig. 5. Following a combined
analysis of the images from ERS SAR, Landsat TM and the regional bathymetry
within a GIS, we found that features in all the images were co-located and cor-
responded well with the shoals and valleys observed in the regional bathymetry.
Figure 6 shows a section of the composite ERS SAR and Landsat TM image (Red:
ERS-1 SAR Green: ERS-2 SAR Blue: Landsat TM) with isobaths from the hydro-
graphic charts overlaid. Isobaths from the hydrographic charts coincide with the
bathymetric features observed on the ERS SAR and Landsat TM images.
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on 26 October 1998 at 1:35
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Wind speeds between 3 and 12 m/s provide the roughness elements required
for observation of capillary waves (of the order of centimetres) by SAR; within
this range the distinct signatures produced by the modulation of capillary waves
by wind are most evident. At lower wind speeds, a smoother sea surface reflects
radiation away from the sensor to produce dark features on the image. At higher
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Fig. 4 Landsat-5 TM image
acquired on 26 October
1998 at 1:07 UTC

Fig. 5 Regional bathymetry
showing valleys and shoals in
the study area (yellow =
shallow, blue = deep)

wind speeds, increased SAR backscatter diminishes contrast of the observed ocean
features (Gagliardini and Clemente-Colon, 2004).

According to Alpers and Hennings (1984), bottom topography is expressed on
SAR images in the presence of moderate winds of 3–5 m/s and tidal current speeds
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Fig. 6 A section of the ERS
SAR and Landsat TM
composite image with
isobaths from hydrographic
chart

of about 0.5 m/s. Imaging of bottom topography by SAR is based on the effect
of tidal current on the radar backscatter. The interaction between tidal current and
bottom topography results in modulation of the surface current velocity; the modu-
lation of surface current velocity generates variations in the wave spectra intensity;
the variations in the wave spectra intensity modulate the level of radar backscatter.
A schematic representation of the theory of SAR imaging of bottom topography is
shown in Fig. 7.

To understand the mechanism involved in imaging of the bathymetric features
seen on the Landsat TM image while comparing it with the ERS SAR images, the
condition of wind, tide and currents at the time of image acquisition were examined.
Wind and tide condition at the time of satellite image acquisition is presented in
Table 1.

Fig. 7 Relationship between SAR image intensity, sea surface roughness, tidal flow and bottom
topography (Alpers and Hennings, 1984)
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Table 1 Wind speed and tide height at the time of SAR and TM image acquisition

Satellite and sensor Date time (UTC) Wind speed (m/s)
Tide height (m)
(hours to low tide)

ERS-1 SAR 10 December 1995 (01:35) 7.5 0.74 Ebb (1.1)
ERS-2 SAR 26 October 1998 (01:35) 3.5 1.5 Ebb (2.4)
Landsat-5 TM 26 October 1998 (1:07) 3.5 1.9 Ebb (3.0)

The wind speed at the time of acquiring the 1995 SAR image was 7.5 m/s com-
pared to 3.5 m/s in the 1998 SAR and Landsat TM images. The time of imaging of
the SAR and optical images coincided with ebb tide with time to low tide varying
from 0.74 to 1.9 h.

Tidal currents of the study area modelled for GEOMAT, Geoscience Australia’s
sediment transport model (Porter-Smith et al., 2004) indicated strong semi-diurnal
tidal currents measuring 0.5 m/s directed east-west in the study area. Typical
monthly current time-series plots indicated strong east-west currents, with speeds
of approximately 0.5 m/s during spring tides and approximately 0.2–0.3 m/s during
neap tides.

Figure 8(a) and (b) shows bathymetry of a part of the study area with convergent
channels and the corresponding section of the ERS-2 SAR image. Depth of the
convergent channels range from 25 to 75 m. From analysis of the wind speed, tide
height, current speed and bathymetry of the study area in the context of the SAR
imaging theory (Alpers and Hennings, 1984), features seen on the ERS SAR images
can be adequately explained by the variations in the sea surface roughness caused by
tidal flow over variable bottom topography. The reduced contrast in the 1995 ERS-1
image (Fig. 2) compared to the 1998 ERS-2 image (Fig. 3) can be explained by the
higher wind speed of 7.5 m/s at the time of ERS-1 imaging which has increased the
average SAR backscatter and diminished the overall contrast of features observed
in the image.

Sun glint seen in satellite images results from specular reflection of solar radi-
ation and its existence is well documented (Cox and Munk, 1954). Sun glint is
seen on satellite images when the sun-sensor-target geometry is such that the law of
reflection is satisfied. The Landsat TM image in Fig. 4 shows the presence of sun
glint, identified by increased brightness on the lower right side of the image which

a b

Fig. 8 (a) Bathymetry showing convergent channels (b) same bathymetric features on ERS-2
SAR © ESA 1998
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progressively decreases towards the left of the image. The presence of sun glint in
the image is consistent with the illumination geometry at the time of Landsat over-
pass; the sun elevation angle was 60.8◦ and sun azimuth angle was 94.6◦. In their
study using aerial photographs of sun glint to determine the statistical occurrence of
capillary wave slopes, Cox and Munk (1954) showed that wave-slope statistics are
governed by wind speed; they showed that the mean square wave slope increased
linearly with wind speed. Their study revealed that capillary and locally induced
gravity waves were the main contributors to sun glint.

Hennings et al. (1988) showed that the interaction of tidal flow and bottom relief
increases the mean slope of the waves, which causes an increase in the number of
wave facets imaged by the optical sensor. Hennings et al. (1988) suggested that the
Cox-Munk model alone may not adequately explain increased brightness observed
in optical images over shallow water and that the effects due to tidal interaction with
bottom relief need to be considered as well.

We examined the visibility of bathymetric features as a function of TM wave-
length bands in order to understand the influence of sun glint. Figure 9 shows
the area of convergent channels as it appears in the TM Visible (Blue, Green, and

TM1 Blue

TM3 Red

TM5 MIR

TM2 Green

TM4 IR

TM7 MIR

Fig. 9 Bathymetric feature visibility as a function of wavelength on Landsat TM image of 26
October 1998
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Red), Infrared (IR) and Middle Infrared (MIR) wavelength bands. The bright areas
around the convergent channels in TM bands 1 and 2 could be a result of water con-
stituents associated with ocean colour or the circulation of distinctive water masses
(Fig. 4). It is interesting to note that the same convergent channels are also visible
in the TM near infrared (NIR) and middle infrared (MIR) wavelength bands; this is
somewhat unexpected, as water absorbs strongly in the NIR and MIR wavelength
region.

The visibility of these features on the Landsat TM image has a weak depen-
dence on wavelength, as seen in Fig. 9, indicating that the features are the result
of surface phenomena. This raises the question of whether the features in the
Landsat TM image are caused by the same mechanism as in the case of the
SAR images.

Our interpretation of the above finding is that the sun glint is being modulated by
the interaction of the tidal current and bottom topography. Based on the observations
of the features in the Landsat TM NIR and MIR bands, the only possible mechanism
that could adequately explain the correlation between submarine topography and
brightness in the image is specular reflection of the sunlight from the sea surface
with variable roughness where the roughness is based on bottom-current interaction
effects described above. Therefore, sun glint modulated by ocean surface roughness
is the predominant mechanism generating the expression of bathymetric features on
the Landsat TM image.

Archived Landsat Images

Surface expressions of bathymetric features resulting from sun-glint have not been
observed on optical images of the study area very frequently. Therefore, 284 Landsat
Thematic Mapper and 127 Enhanced Thematic Mapper (ETM) archived quick look
images acquired at the Australian Centre for Remote Sensing (ACRES) between
1986 and 2005, were examined to determine if detection of bathymetric features
was related to specific sun-sensor-target geometries. The images were examined to
determine if Parry Shoal, a prominent feature below 20 and 30 m of water, could be
identified. The location of Parry Shoal is indicated on images shown in Figs. 4 and 5.
A similar exercise was not attempted for the SAR images as the only two images
available in the archive that show Parry Shoal, are used in this study.

Table 2 lists all Landsat TM and ETM images from the ACRES archive in which
Parry Shoal could be unambiguously identified. Table 2 also shows the illumina-
tion conditions described by sun elevation and azimuth angles, and the wind speeds
and tide heights at the time of imaging; it is clear that only certain combinations of
the sun-sensor-target geometry, wind and tide conditions favour the identification of
Parry Shoal. Sun elevation angles ranging from 52◦ to 63◦ and sun azimuth angles
from 57◦ to 111◦ in conjunction with low to moderate wind speed of 3–7 m/s at low
tide seem to be favour generation of bathymetric signatures on Landsat images of
the study area. To select glint-free satellite images for bathymetry mapping, Sagar
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Table 2 Wind, tide and illumination conditions for archived Landsat TM and ETM images in
which Parry Shoal can be identified (ETM images shown in bold)

Date time (UTC) Sun elevation Sun azimuth
Wind speed
(m/s)

Tide height (m)
(hours to low tide)

12 Oct 1987 00:56:23 56.7◦ 85.3◦ 3 1.7 Ebb (2.9)
17 Oct 1989 00:54:02 56.8◦ 89.1◦ 3 0.3 Ebb (1.6)
4 Oct 1990 00:48:32 53.7◦ 81.2◦ 3 0.6 Ebb (0.4)
8 Nov 1991 00:53:09 57.1◦ 102.3◦ 4 0.4 Ebb (1.2)
7 Oct 1997 01:02:00 57.5◦ 81.9◦ 5 1.80 Ebb (3.0)
8 Sep 1998 01:07:40 52.5◦ 64.1◦ 7 1.0 Ebb (1.5)
14 Jan 2005 01:15:04 55.7◦ 111.0◦ 5 1.6 Ebb (2.6)
29 Oct 2002 01:16:45 62.9◦ 88.7◦ 3 2.2 Ebb (4.1)
2 Feb 2003 01:17:33 55.8◦ 103.2◦ 3 0.6 Ebb (0.9)
22 Mar 2003 01:17:38 54.9◦ 72.3◦ 3 2.6 Ebb (2.7)
29 Aug 2003 01:17:20 52.0◦ 57.6◦ 3 1.4 Ebb (1.4)
18 Oct 2004 01:17:38 62.7◦ 88.7◦ 3 1. 0 Ebb (2.2)
21 Oct 2005 01:18:11 63.0◦ 90.8◦ 3 0.8 Ebb (2.0)

et al. (2008) applied a tool that uses the sun elevation and azimuth angles for pre-
dicting the sun glint potential. We used the sun elevation and azimuth angle ranges
identified above in the glint prediction tool and found that the sun glint potential
for these values was moderate to high. The wind speed and tidal current speed
threshold requirements specified by Alpers and Hennings (1984) for expression of
bathymetry on SAR images were also met in the study area at the time of Landsat
image acquisition.

The prevalence of low tide in all instances of imaging where Parry Shoal could
be identified on the Landsat images is a significant finding. The average tide height
at high tide for all observations is 3.8 m compared to an average tide height of 1.2
m at the time of imaging. The time to low tide, shown within parentheses in the last
column of Table 2, identifies the point in the tidal cycle corresponding to the time
of imaging; this provides a measure of the hydrodynamic flow. While these obser-
vations apply only to Parry Shoal and not the larger study area, it is reasonable to
assume that other submarine features across the study area which were identified on
the SAR images are likely to be identified on the Landsat images if similar illumi-
nation and sea-state conditions prevail at the time of imaging; further investigation
into this is required.

Figures 10 and 11 show two Landsat TM images where Parry Shoal is not appar-
ent. The image in Fig. 10 was acquired on 12 October 1993 at 00:51 UTC; the sun
elevation angle was 55.5◦ and the sun azimuth angle was 86.1◦; the illumination
conditions are within the optimum ranges outlined in Table 2. At the time of image
acquisition however, it was flood tide and 95 minutes after occurrence of low tide at
23:16 UTC. The wind speed at the time of image acquisition was 4 m/s.

The image in Fig. 11 was acquired on 3 May 2004 at 01:09 UTC; the sun eleva-
tion angle was 47.6◦ and the sun azimuth angle was 50.6◦; illumination conditions
are outside the optimum ranges identified earlier. Low tide occurred at 00:40 UTC;
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Fig. 10 Landsat TM image
of 12 October 1993 over
Parry Shoal (bathymetric
feature not apparent)

Fig. 11 Landsat TM image
of 3 May 2004 over Parry
Shoal (bathymetric feature
not apparent)

at the time of image acquisition it was 29 min after low tide(flood tide) and wind
speed was 7 m/s. The two images illustrate the need for appropriate illumination
conditions to occur in conjunction with the hydrodynamic flows during ebb tide for
expression of bathymetric features in optical images over the study area.
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Discussion

The prevalence of ebb tide in all cases where bathymetric features have been imaged
by the SAR and optical sensors indicates that interaction of tidal currents and vari-
able bottom topography is a dominant factor. A shallower water column over the
submarine bathymetric features during low ebb tide is likely to result in stronger
expression of bathymetry at the sea surface enabling imaging of the features by
both SAR and optical sensors.

When solar illumination geometry favours the observation of upwelled radiance
over sun glint (low solar elevation and azimuth angles), TM channel 1 can provide
information related to ocean colour and water quality. The relatively weak intensity
of water leaving radiance is strongly dependent on wavelength, with an absorption
minimum corresponding to the blue-green region.

When illumination conditions favour sun glint, it dominates the water leaving
radiance detected by the optical sensor. As detection of sun glint has weak depen-
dence on wavelength, sun glint can be observed in all the optical bands. The features
observed on the Landsat TM image of 26 October 1998 correspond to the reflective
effects of sun glint resulting from sea surface roughness modulated by tidal current
flow over variable bathymetry.

In the case of ERS SAR the antenna position with respect to the illuminated area
of the sea surface remains the same for each spatially co-located image footprint;
this means under optimal wind and tide conditions when hydrodynamic modulation
of sea surface roughness occurs, bottom topography in the study area is more likely
to be imaged by SAR.

Optical imaging with Landsat however is different as the sun’s position changes
during the day and throughout the year. The illumination geometry for the presence
of sun glint is generally satisfied only around the time of summer solstice in the
study area when the combination of sun elevation and sun azimuth angles is optimal.
In addition to the presence of sun glint, wind and sea-state conditions also need to
be optimal for imaging bathymetric features in the study area.

Conclusions

Ocean features associated with bathymetry of the study area are imaged by both
SAR and optical sensors with striking similarities. Moderate winds, strong currents
and low tide prevailed at the time of imaging in all cases where bathymetric features
are identifiable. This indicates the prominent role of tidal flow in hydrodynamic
modulation of capillary waves enabling surface expression of bathymetry.

In the case of ERS SAR, bathymetric feature imaging is enabled primarily
through modulation of sea surface roughness by tidal flow over variable bottom
topography. In the case of Landsat TM, imaging of the same bathymetric features
is enabled primarily through the modulation of sun glint by sea surface roughness
resulting from interaction of tidal flow and bottom topography.
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ERS SAR and Landsat TM images with sun glint represent to a first approxi-
mation the sea surface roughness conditions in the study area. For optical imaging,
illumination conditions change and therefore bathymetric feature detection through
sun glint is achieved only under very specific sun-sensor-target geometries

When sun glint prevails in the study area, optical sensors can image bathymet-
ric features through their response to sea surface roughness modulated by tidal
currents and bathymetry. Under optimum conditions, sun glint in optical satellite
images could provide useful information on ocean features which complement the
use of SAR.
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Optical Properties of Water Bodies
in the Torres Strait, Australia,
from Above-Water Reflectance

L.J. Majewski, W.M. Klonowski, and M.M. Slivkoff

Abstract The marine environment in the shallow waters to the north of Australia
is poorly characterised. Vast areas have never been surveyed and relatively little
is known about the composition of the water mass, the properties of the seabed
and the bathymetry of the shallowest areas. Satellite-based optical remote sensing
has potential to provide wide-ranging, inexpensive and frequent coverage of the
region, but techniques for the estimation of environmental parameters from satellite
data are dependent on robust inversion algorithms and a high level of knowledge
about the prevalent environmental conditions. In November 2005 a suite of phys-
ical, optical and biological measurements were collected in the Torres Strait (near
Thursday Island, Australia) and in the Gulf of Carpentaria. Above-water reflectance
measurements were made along the cruise track using a 3-channel continuous
sampling spectroradiometer. A semianalytic model was applied to the reflectance
measurements to estimate water column depth and in-water optical properties.
Model retrieved backscattering compared favourably, both in terms of spectral slope
and magnitude, with in-water measurements. The model retrieved phytoplankton
absorption compared favourably with laboratory measurements where these were
available. Model retrieved depth values were within 10% of sounded depths at 10 of
11 measurement sites where the bottom contribution to the measured above water
reflectance exceeded 15%.

Introduction

Accurate, high spatial resolution, bathymetric data are required for a multitude of
purposes. Foremost among these are navigation, physical oceanography and benthic
ecology. Consequently determination of bathymetry has prompted many hydro-
graphic, oceanographic and ecological surveys to be undertaken. Passive remote
sensing of shallow water bathymetry has long been suggested as a method for
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rapidly obtaining high-resolution bathymetric data (Lyzenga, 1978). Satellite-based
optical remote sensing has potential to provide wide-ranging, inexpensive and
frequent coverage of a particular region of interest (Robinson et al., 2000).

Ratio-based methods have been devised (Lyzenga, 1978) and applied to multi-
spectral data sets with high spatial resolution (Dierssen et al., 2003). These
ratio-based methods often require regional tuning that inherently accounts for,
or obscures, variations in the optical properties of the overlying water column.
Accounting for these water column properties has been shown to improve the accu-
racy of retrieved depth (Philpot, 1989) and benthic cover information (Mumby et al.,
1998). The increased availability of hyperspectral data, often with high-spatial res-
olution, has enabled the development and application of more robust coastal water
algorithms that address the problem of separating contributions from benthic sig-
nals and water column properties from above water remotely sensed reflectance,
Rrs, (Lee et al., 1999).

Relatively little is known about the properties of the seabed and the bathymetry
of the shallow waters to the north of Australia. Still less is known regarding the
magnitude and variability of in-water optical properties. As an example, the NASA
bio-Optical Marine Algorithm Data set (NOMAD, Werdell and Bailey, 2005) cur-
rently holds no measurements of optical properties in the Torres Strait. The Torres
Strait is a submerged land bridge between Australia and Papua New Guinea linking
the tropical Arafura and Coral Seas; it is shallow and dotted with numerous reef sys-
tems and over 200 islands. Narrow channels between the reef systems experience
strong tidal currents that influence the structure of the sea floor (Harris, 1991) and
change in-water optical properties substantially over relatively small distances (this
study).

In November 2005 a suite of physical, optical and biological measurements were
collected in Torres Strait and the Gulf of Carpentaria (Fig. 1). The primary objec-
tive of the field program was to obtain a baseline characterisation of the inherent

a) b)

Fig. 1 Location of the study region and field operations. (a) Regional map indicating the location
of the study region. (b) Location of sampling sites within the study region. In-water optical prop-
erties were measured at Sta. 1–19. Water samples were collected at Sta. 1, 2, 3, 6, 9, 11, 14, 16 and
19 for laboratory analysis
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optical properties of the waters in and around Torres Strait. The secondary aim was
to assess the accuracy and validity of depth and optical property retrievals obtained
through application of a semianalytic model to measurements of Rrs collected along
horizontal transects.

Method

To address the aims of the research program, simultaneous measurements of temper-
ature, salinity, beam attenuation at 660 nm, cpg(660), and chlorophyll fluorescence
were measured along horizontal transect lines using a ferry-box system (composed
of a SeaBird SBE-43 μTSG, WET Labs Wetstar and c-star). Profiles of in-water
optical properties were obtained at a series of 19 locations along the cruise track
and water samples were collected at nine locations for laboratory analysis (see
Fig. 1b). Stations 1–3 (western transect, 23/11/2005) were sampled to the west
of Torres Strait, Stations 4–10 (southern transect, 24/11/2005) were sampled in
the coastal waters of the Gulf of Carpentaria while Stations 11–19 (northern tran-
sect, 25/11/2005) were conducted in Torres Strait, northwest of Thursday Island
(10.35◦S, 142.13◦E). Rrs was measured along the cruise track using a 3-channel con-
tinuous sampling spectroradiometer (DALEC: downwelling above water radiance
(L) and irradiance (E) collector).

In Water Backscattering

Profiles of the volume scattering function in the direction of 140◦, β(140◦), were
measured at six wavelengths with a HOBILabs HydroScat-6 at all profiling sta-
tions. Estimates of the particulate backscattering coefficient at depth z, bbp(z), were
obtained using the method of Maffione and Dana (1998),

bbp (z,λ) = 2πχ
(
β

(
z,λ,140◦) − βw

(
z,λ,140◦)) , (1)

where βw is the volume scattering function for water at a given temperature and
salinity (Morel, 1974). χ is known to be dependent upon the volume scattering
function of the observed water column, but was given the wavelength independent
value of 1.18 following Boss and Pegau (2001).

The path length of the HydroScat-6 varies with the amount of absorbing and
scattering material present within the water column. In highly attenuating water, a
small portion of the backscattered light will be selectively absorbed before reaching
the detector. Measured optical properties were used with the HydroSoft (HobiLabs)
processing software to correct for path length amplification. A spectral shape param-
eter, Y (unitless), may be used to approximate bbp at any wavelength in the range
200–800 nm (Smith and Baker, 1981),

bbp (λ) = bbp (λ0)
(
λ0

/
λ
)Y , (2)
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where λ0 is a reference wavelength. For λ0 = 400 nm, values of Y derived from
field measurements generally range between 0 and 2.5 (Lee et al 1999). Y varies
with the size of backscattering particles. If the particles are small (e.g. oligotrophic
regions where nanophytoplankton and picophytoplankton may dominate the particle
assemblage) then the value of Y is large and vice versa (Carder et al, 1999).

Absorption, Suspended Matter and Chlorophyll

Laboratory based measurements of in-water properties are used as the bench mark
against which bio-optical measurements are compared. Sub-samples of the collected
water were strained through glass fibre filters (Whatmann GF/F) and stored in liquid
nitrogen for subsequent laboratory determination of particulate absorption, ap.

The optical density of each particulate absorption sample was measured follow-
ing the protocol (Mitchell et al., 2003). Pathlength amplification was accounted for
using the coefficients of Cleveland and Weidemann (1993), to yield ap (m–1). The
filter pads were then treated with bleach to remove any algal pigments present and
re-examined, yielding absorption due to non-algal particles, anap, and absorption
due to phytoplankton, aϕ , since aϕ = ap – anap.

Other sub-samples were obtained for the determination of Total Suspended
Matter (TSM) and the fluorometric determination of the phytoplankton pigment
chlorophyll-a (TChl–a). Due to the remote location and operational constraints,
measurements of chromophoric dissolved organic matter (CDOM) absorption, ag,
were not made.

Above Water Surface Reflectance

Above-water remote sensing reflectance, Rrs, was measured along the cruise track
using the DALEC. The DALEC consists of three optical channels, which permit
simultaneous recordings of above water downwelling irradiance, Ed, total upwelling
radiance, Lt, and downwelling sky radiance, Lsky. The Ed and Lt channels record
light into 256 channels, from 350 to 1100 nm, with a nominal bandwidth of 3.3 nm.
The Lsky sensor incorporates 2048 spectral channels, covering the wavelength range
350–800 nm, and has a nominal bandwidth of 0.3 nm per spectral channel.

Radiometric calibration of the DALEC was performed a week prior to the field
campaign.

Dark current measurements were recorded just before and/or just after the col-
lection of underway transect field measurements. The dark current measurements
were subtracted from each spectrum collected along transects, after which the
lab-determined calibration responsivity coefficients were employed to yield Ed, Lt

and Lsky.
Rrs is calculated as the ratio of Lw/Ed, where Lw is the water leaving radiance. An

above water, downward-looking, radiance detector will measure the total radiance
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incident upon the detector, Lt, where Lt is the sum of Lw, the sky glint reflected by
the sea surface, Lr, and the reflected sun light or glint, Lg.

In practice, when Lg is significant the water-leaving radiance is impossible to
estimate and these contaminated spectra are discarded. The Lt sensor was orien-
tated to view the surface 135◦ away from the solar plane and 40◦ from nadir to
minimise the occurrence of Lg contamination. Additionally, the Lsky sensor was
orientated to view 40◦ off zenith and 135◦ off the solar plane. The DALEC was
mounted on the bow of the vessel using a gimballed mounting structure, allowing for
pitch, yaw and roll movement, minimising deviations in view geometry caused by
vessel motion.

A number of methods, differing in complexity, are available to estimate Lr

(Mobley, 1999). During this particular field experiment the wind speed was on the
order of 5–10 m/s and the sky was often overcast. These conditions allow the use of
the simplistic model Lr(λ) = ρLsky(λ), where ρ is a reflectance factor given the value
0.028 (Mobley, 1999). Thus, Rrs for each set of measurements may be determined
using

Rrs(λ) = (Lt(λ) − 0.028Lsky(λ))/Ed(λ). (3)

During DALEC deployments the vessel speed was maintained between 6 and 12 kt.
The system captured over 10,000 quality controlled spectra during the 4–5 h it was
deployed each day.

Reflectance Model

Rrs is a function of in-water properties, solar geometry and viewing geometry. When
operating in shallow water, the influence of the substrate must also be accounted for.
This relationship can be formulated as,

Rrs (λ) = f [a (λ) ,β (λ) ,ρbenthos (λ) ,H,θw,θv,ϕ] , (4)

where ρbenthos is the reflectance of the substrate, H is the depth of the water column,
θv is the subsurface sensor view-angle, θw is the subsurface solar zenith angle and
ϕ is the viewing azimuth angle from the solar angle.

Rrs and the radiance reflectance just below the surface, rrs, are related by account-
ing for transmission/reflectance at the air-sea interface using Rrs = ζ rrs/(1 – �rrs),
where ζ represents the water-to-air radiance divergence factor and the denominator
accounts for the internal reflection from water to air (Lee et al., 1998; 1999).

Numerous researchers have developed bio-optical models relating in-water prop-
erties to rrs for an optically deep water column, rrs

dp, (e.g. Gordon et al., 1988). In
shallow water, the contribution to rrs from the benthos, rrs

b, may not be negligible.
Lee et al. (1999) developed a semianalytic model which accounts for water column
and benthic contributions to the measured reflectance.
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A Levenberg-Marquardt optimisation scheme was used to alter the parameters
of the semianalytic model to match measured values of Rrs, after accounting for
air-water interface effects (Lee et al., 1998; Klonowski et al., 2006).

Results

The vertical profiles of temperature, salinity and β(140◦) indicated that the water
column at each measurement site was well mixed. Thus, near surface and depth
averaged parameters may be used to characterise the optical properties of these
sites. Figure 2 displays the surface TChl-a, TSS, aϕ(440), anap(440) and the depth
averaged values of bbp(400) at sites where in-water measurements were made.

Fig. 2 Selected bio-optical properties from sites where in-water optical measurements were made

The spectral properties of coefficients are required to solve the inverse prob-
lem. The average, normalised, aϕ spectra measured during the experiment was
input directly to the semianalytic model since there was no NOMAD data available.
The spectral slope (S) of aCDOM was set to the global mean of 0.015 (Twardowski
et al., 2004), Y was determined using the empirical relationship of Lee et al. (1999)
and the reflectance spectra of coral sand, as measured by Maritorena et al. (1994),
were used.

The predictions of the inversion scheme from reflectance measurements made
at the profiling stations were compared to in-water measurements. The retrieved
bbp(400) was compared to station averaged bbp(400) estimated from HydroScat-
6 measurements (Fig. 3a). The normalised root mean square error (RMSE) of the
direct comparison was 10%, with a small bias. The RMSE for aϕ(440) retrievals was
17%, with all points within 25% of in-laboratory-based measurements (not shown).

Depth retrievals were considered to be invalid if the contribution of the bottom
component to rrs(500) was < 15% (N=7). At each of these sites the depth was
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a) b)

Fig. 3 Comparison between measured and retrieved parameters. (a) bbp(400) and (b) depth at
measurement stations compared with the parameters retrieved from DALEC measurements

> 9.5m and > 5.5 m deeper than the Secchi depth. The valid depth retrievals (N=11)
were compared to the depth measured by the ships echo sounder (Fig. 3b) and had
a RMSE of 8%. The RMSE may not be an accurate description of the performance
of the depth retrievals, as there were two clusters of echo sounder measurements
(around 9 and 15 m).

The low RMSE of the bbp(400) retrieval when compared to Hydroscat-6 mea-
surements suggests that the backscattering component of the retrieval system is
robust. For further verification, bbp(660) retrieved from DALEC measurements was
compared with the ferry box measured cpg(660), which can vary significantly along
the cruise track. Figure 4 displays an example of this variation along part of the
northern transect (note the different scales). There were local cpg(660) maxima
at 10.51◦S, 10.47◦S and 10.43◦S. These local maxima are also displayed in the
bbp(400) and bbp(600) retrievals (Fig. 4, note the different scale).

Fig. 4 Spatial variation in measured cpg(660) (black), retrieved bbp(660) (gray) and retrieved
bbp(400) (dashed line). Black bars indicate station locations
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The magnitude of cpg(660) is primarily influenced by particulate scattering and
backscattering; the contribution of ag(660) to cpg(660) is generally less than 1%.
Performing a correlation between cpg(660) and bbp(660) along each transect yielded
correlation coefficients, r2, of 0.82, 0.90 and 0.66 respectively.

Conclusion

In order to develop a baseline characterisation of the inherent optical properties
of the Torres Strait and Gulf of Carpentaria measurements of biological, physical
and optical properties were obtained along a series of horizontal transects over the
course of three days (23–25/11/2005). The set of measurements included discrete
samples, high-resolution vertical profiles and underway measurements.

Measured values of bbp(z) were relatively low throughout the experiment and dis-
played limited vertical structure, with the majority of sites being well approximated
by near-surface values. The hyperbolic slope of back scattering, Y, varied from 0.75
to 1.22, with the greatest values (steepest slope) occurring in shallow coastal waters
on 24/11.

The semianalytic model developed by Lee et al. (1999) was applied to the hor-
izontal transects of Rrs collected using the DALEC. At stations where in-water
measurements were available, the model retrieved bbp(400) (N=18) and aϕ(440)
(N=9) compare well to in-water measurements (RMSE of 10 and 18% respectively).
Valid depth retrievals were obtained at 11 of 18 sites with a RMSE of 8%.

Along track in-water measurements depicted large differences in optical proper-
ties over a relatively small distance (Fig. 4). Some of these sharp gradients could
not be resolved using the discrete optical profiles, showing the value of along track
measurement systems. The model retrieved bbp(660) and in-water measurements of
cpg(660) showed a high degree of spatial correlation along each of the three tran-
sects. These results indicate that it is possible to obtain in-water inherent optical
properties to within stated uncertainties from hyperspectral measurements of Rrs.

Additional field surveys, conducted during different seasons and over a greater
spatial extent, are required to characterise the optical properties of the Torres
Strait. The use of the semianalytic model with atmospherically corrected hyper-
spectral data from air-borne and/or space-borne sensors would greatly speed up the
process.

References

Boss E, Pegau WS (2001) Relationship of light scattering at an angle in the backward direction to
the backscattering coefficient. Appl Opt, 40:5503–5507.

Carder KL, Chen FR, Lee ZP, Hawes SK, Kamykowski D (1999) Semiabalytic moderate-
resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical
domains based on nitrate-depletion temperatures. J Geophys Res, 104:5403–5421.

Cleveland JS, Weidemann AD (1993) Quantifying absorption by aquatic particles: A multiple
scattering correction for glass-fiber filters. Limnol Oceanogr, 38:1321–1327.



Optical Properties of Water Bodies 441

Dierssen HM, Zimmerman RC, Leathers RA, Downes TV, Davis CO (2003) Ocean color remote
sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery.
Limnol Oceanogr, 48:444–455.

Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark DK (1988) A
semianalytic radiance model of ocean color. J Geophys Res, 93:10909–10924.

Harris PT (1991) Reversal of subtidal dune asymmetries caused by seasonally reversing wind-
driven currents in Torres Strait, northeastern Australia. Cont Shelf Res, 11:655–662.

Klonowski WM, Lynch MJ, Majewski LJ, Fearns PRCS (2006) Bottom type and depth deter-
mination from hyperspectral imagery, 2006 Ocean Sciences Meeting. Eos Trans. AGU,
Honolulu.

Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1998) Hyperspectral remote sensing for
shallow waters. I. A semianalytical model. Appl Opt, 37:6329.

Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for
shallow waters: 2. Deriving bottom depths and water properties by optimization. Appl Opt,
38:3831–3843.

Lyzenga D (1978) Passive remote sensing techniques for mapping water depth and bottom features.
Appl Opt, 17:379–383.

Maffione RA, Dana DR (1998) Instruments and methods for measuring the backward-scattering
coefficient of ocean waters. Appl Opt, 36:6057–6067.

Maritorena S, Morel A, Gentili B (1994) Diffuse reflectance of oceanic shallow waters: influence
of water depth and bottom albedo. Limnol Oceanogr, 39:1689.

Mitchell BG, Kahru M, Wieland J, Stramska M, 2003. Determination of spectral absorption
coefficients of particles, dissolved material and phytoplankton for discrete water samples.
NASA/TM-2003-211621/Rev4-Vol. IV.

Mobley CD (1999) Estimation of the remote-sensing reflectance from above-surface measure-
ments. Appl Opt, 38:7442–7455.

Morel A (1974) Optical properties of pure water and pure seawater. In: Jerlov NG, Steeman Nielsen
E (eds), Optical Aspects of Oceanography. Academic, San Diego, Calif., pp. 1–24.

Mumby PJ, Clark CD, Green EP, Edwards AJ (1998) Benefits of water column correction and
contextual editing for mapping coral reefs. Int J Remote Sens, 19:203–210.

Philpot WD (1989) Bathymetric mapping with passive multispectral imagery. Appl Opt, 28:
1569–1578.

Robinson JA, Feldman GC, Kuring N, Franz B, Green E, Noordeloos M, Stumpf RP (2000) Data
fusion in coral reef mapping: working at multiple scales with SeaWiFS and astronaut photog-
raphy, 6th International Conference on Remote Sensing for Marine and Coastal Environments,
pp. 473–483.

Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl
Opt, 20: 177–184.

Twardowski MS, Boss E, Sullivan JM, Donaghay PL (2004) Modeling the spectral shape of
absorption by chromophoric dissolved organic matter. Mar Chem, 89:69–88.

Werdell PJ, Bailey SW (2005) An improved bio-optical data set for ocean color algorithm devel-
opment and satellite data product validation. Remote Sensing of Environment, 98:122–140.



Accordance of MERIS Standard Products
over the Gulf of Finland to the Parameters
Measured Under Regular Monitoring Program

L. Metsamaa, A. Reinart, K. Alikas, T. Kutser, and A. Jaanus

Abstract The Medium Resolution Imaging Spectrometer (MERIS/Envisat) was
launched in March 2002 to provide a dedicated mission of coastal zone monitor-
ing. A full reprocessing of the MERIS products using the latest set of algorithms
was finished in March 2006. The main objective of the present study was to eval-
uate performance of the new MERIS Level 2 products in such optically complex
waters like those found in the Gulf of Finland, the Baltic Sea. Large temporal and
spatial variability in the concentrations of chlorophyll and suspended sediments is
characteristic of these waters. Potentially toxic cyanobacterial blooms occur every
year in the middle of summer in the Baltic Sea. Aggregations of cyanobacteria often
form dense subsurface blooms or even surface scum, which are spatially extremely
patchy. Coloured dissolved organic matter has a significant influence on the optical
properties of the Baltic Sea and is the major contributor to the optical properties of
coastal waters. MERIS products are compared with available in situ data obtained
regularly by an Estonian monitoring programme. Our results indicate that the satel-
lite sensors give consistent results, which are in the same range as in situ data.
Chlorophyll concentrations may exceed standard processing limits during heavy
bloom conditions.

Introduction

The Baltic Sea is one of the largest brackish water areas on Earth, with a drainage
basin that is four times larger than its surface area. The Baltic Sea is extremely
vulnerable to anthropogenic disturbance due to its special hydrographical condi-
tions, simple ecosystem structures and poor water exchange with the North Sea
(Voipio 1981).

Reliable and cost-efficient monitoring techniques of coastal waters that are
able to resolve spatial patterns in high resolution are growing in importance
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as a consequence of increasing symptoms of on-going eutrophication processes.
Phytoplankton blooms are extremely patchy, both temporally and spatially (Reinart
and Kutser, 2006). Consequently, they often remain unobserved using the traditional
sampling methods based on temporally sparse sampling at fixed monitoring stations
(Härmä et al. 2001).

Unattended flow-through systems on ships-of-opportunity (Leppänen et al. 1995;
Lindfors et al. 2005), airborne (Dekker et al. 1992; Jupp et al. 1994) and satellite-
based remote sensing (Kahru et al. 1993, 2000; Kutser 2004) have been frequently
used methods to provide greater spatial information about the distribution of water
quality characteristics (e.g. chlorophyll a concentrations) than the conventional
monitoring programs can provide. Easiest and fastest availability of satellite data
is provided by NASA (MODIS images). However, standard algorithms developed
for MODIS overestimate chlorophyll concentrations in the Baltic Sea by 150–200
% even in non-bloom conditions (Darecki and Stramski 2004). MODIS standard
algorithms were designed primarily for Case 1 waters, where the concentrations
of optically active substances in seawater are assumed to co vary with the chloro-
phyll concentration (Gordon and Morel 1983; Morel and Prieur 1977). The Baltic
Sea waters do not satisfy this assumption and can be classified as Case 2 waters.
High variation in phytoplankton biomass is accompanied with relatively high dis-
solved organic matter and suspended sediments concentration (values for Gulf
of Finland aCDOM(440)=0.41±0.27 m–1 and CTSS=1.1–11 g m–3 accordingly).
However these two parameters are not included into regular monitoring programme,
which hampers the application of remote sensing methods. Thus the overall poor
performance of Case 1 water algorithms in the Baltic is not surprising (Darecki
et al. 2003).

The prospects of better remote sensing of Case 2 waters are improving with
technological advances in ocean color sensors and the scientific efforts under-
way to gain an in-depth understanding of optics in Case 2 waters (Darecki and
Stramski 2004). MERIS has been providing a new opportunity to map phytoplank-
ton biomass (Gower and Borstad 2004). MERIS offers a combination of several
narrow wavebands to target both chlorophyll a and accessory pigment absorption
in the red spectral region (at 620 and 709 nm), at a spatial resolution sufficient for
medium sized water bodies and coastal areas, with a satisfactory signal-to-noise
ratio (Doerffer and Schiller 2007).

It have been shown that during the spring bloom ship-of-opportunity data
together with satellite data can provide a practical tool for operative determination
of chlorophyll a concentrations in the Baltic Sea. Further investigation is still needed
because during the different phases of the same bloom the chlorophyll a concentra-
tions vary a wide range even within a local area (Vepsäläinen et al. 2005; Koponen
et al. 2007).

The aim of the present paper is to study the possible usage of MERIS standard
products for chlorophyll concentration (algal_1 and algal_2) in the Gulf of Finland,
the Baltic Sea. We compared MERIS chlorophyll concentration products with the
available field data to clarify, whether this sensor is capable of detecting the high
variability in chlorophyll values in the Baltic Sea.
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Material and Methods

Study Area and Chlorophyll a in Situ Data

The study area is located in the northern part of Europe, in the Baltic Sea (Fig. 1).
The Gulf of Finland has one of the busiest shipping routes in the world.

Potential negative environmental impacts are also conditioned by runoff enters
from a large catchments area. Active monitoring is very important for this area.
Operative in situ chlorophyll a measurements are provided by the continuous flow-
through fluorometer system on board a passenger ferry travelling in the across the
Gulf of Finland between Tallinn (Estonia) and Helsinki (Finland) (Fig. 1). Regular
monitoring in the Gulf is carried out in the frame of Estonian and Finnish National
Monitoring Programs according to HELCOM convention recommendations. Main
aim is to secure the Baltic Sea ecosystem preservation and biodiversity.

Chlorophyll a fluorescence, salinity and temperature were measured contin-
uously along the Tallinn-Helsinki transect and water samples for nutrients and
chlorophyll a were taken weekly by automatic water samplers included in the flow-
through system. Onboard the ship-of-opportunity, chlorophyll a fluorescence was
measured semi-continuously at an interval of 20 s using Turner 10-AU fluorom-
eter. Once a week chlorophyll samples were collected to calibrate fluorescence
values into chlorophyll concentrations (Chl). An automatic refrigerated water sam-
pler (Teledyne ISCO) conducted water sampling for chlorophyll a analysis. The
sampling depth was ∼5 m, but the sampling water was assumed to represent mixed
surface water due to the mixing caused by the ferry. We used these samples to
validate the MERIS algorithms performance.
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Fig. 1 Locations of the ferry line between Tallinn and Helsinki in the Baltic Sea, where the study
was carried out. Sampling points are indicated by labelled circles in box
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The samples of chlorophyll a were filtered through Millipore GF/F filters,
extracted in 96% ethanol for 24 h at room temperature and measured spectropho-
tometrically (Jenway 6400). Typically there are two periods in Baltic Sea, when
phytoplankton blooms occur. The first one starts early in the spring before ice
totally melts. This bloom is dominated by diatoms and dinoflagellates. The second
bloom occurs later in the summer and is dominated by cyanobacteria. Extent and
duration of the bloom varies between years and depends significantly from local
climatic conditions. We used in situ data describing three different conditions of
the phytoplankton development in the Gulf of Finland: 12/05/3003 (spring bloom),
17/06/2003 (non-bloom) and 29/07/2003 (summer bloom) (Table 1).

Table 1 Dates of the satellite overpass and the operative monitoring with dominating species on
the last column

Date of the
satellite overpass

Date of the in situ
measurements

Dominating species
(μg/l-average for the ship rout)

10/05/2003 12/05/2003 Dinoflagellates (4118)
Diatoms (1885)

17/06/2003 17/05/2003 Dinoflagellates (220)
31/07/2003 29/07/2003 Cyanobacteria (845)

MERIS Chlorophyll Retrieval Algorithms and Image Analyses

The MERIS Level 2 standard products include two chlorophyll retrieval algorithms:
algal_1 and algal_2. Algal_1 is an estimate of the chlorophyll concentration in
oceanic waters, where the concentration is derived from empirically developed rela-
tionship between the ratio of the blue and green signal leaving the water surface
and the concentration of algal pigments. Algal_2 is derived by inverting a model of
the optical properties of the water through the use of a neural network and may be
more suited to optically complex waters (Doerffer and Schiller 2007). The algorithm
used in the latest reprocessing (MEGS 7.4.(1)) uses the output of the neural network
(absorption by phytoplankton pigments) with an empirical relationships (Eq. 1) to
form an estimate of chlorophyll concentration (MERIS 2006):

algal_2 = 21 ∗ apigment(443)1.04, (1)

Concentrations of non-absorbing suspended matter and the CDOM absorption at
443 nm is also output by this algorithm.

Frequent cloud cover over the Baltic Sea makes it difficult to obtain an extensive
set of cloud-free satellite images for inter-comparison with in situ data. Remote
sensing and in situ measurements were in general not carried out at the same
time. We used meteorological and wave measurements supplied by the Finnish
Environmental Institute (SYKE) to estimate drift of the water masses and chose
the most suitable images in order to compare the remote sensing data and the
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in situ measurements. For describing different ecological conditions in the Gulf
of Finland three cloud free MERIS/ENVISAT reduced resolution image were
used: 10/05/2003, 17/06/2003 and 31/07/2003 (http://envisat.esa.int.) (Table 1).
Images were visualized and analyzed using software BEAM 3.2 and ENVI 4.1
(ResearchSystemsInc.).

In situ measurement points were marked with a pin in the MERIS L2 images and
a 3 x 3 pixel area around the pin was examined. Average concentrations and standard
deviations were calculated at every measurement point for every date based on nine
pixel values in algal_1, algal_2. If some pixel value around exceeded pinned value
more than 30%, this pixel was not used in further analyses. The total number of data
points was 85 (10/05/2003), 58 (17/06/2003) and 93 (31/07/2003).

Results and Discussion

First step was to study the fluorescence and measured chlorophyll match-ups.
Correlation between laboratory measured chlorophyll and in situ measured fluo-
rescence on 12/05/2003 was strong (R2=0.81), but root mean square error was very
high (RMSE=25.6). However, we have used these relationships to calculate chloro-
phyll from measured fluorescence data to describe horizontal variability as this is
the common method in our monitoring system for such kind of data.

During non-bloom conditions in 17/06/2003 dinoflagellates dominate in water
but biomass of phytoplankton was much lower compared with spring and summer
bloom conditions. There was weak correlation (R2=0.37; RMSE= 2.4) between
the laboratory measured chlorophyll and in situ measured fluorescence. The corre-
lation is disturbed by one outlier, where concentration of the dinoflagellates is the
highest. If the outlier is excluded from this comparison we get a perfect correlation
(R2=0.95; RMSE=5.5, Fig. 2). Excluding this station does not affect the compar-
ison with the satellite data. Station is located in the harbor and is left out from the
satellite data processing because of land adjacency effect.

In 2003 only medium cyanobacterial bloom occurred close to the Finnish coast in
the end of July and beginning of August. The laboratory measured chlorophyll and

y = 0.4227x + 0.1106

R2 = 0.95

RMSE = 5.5

0

2

4

6

0 2 4 6 8 10
Chl fluorescence

M
ea

su
re

d 
ch

l

Fig. 2 Correlation between
laboratory measured
chlorophyll (Chl) and in situ
measured fluorescence for
17/06/2003



448 L. Metsamaa et al.

in situ measured fluorescence at 29/07/2003 were in perfect correlation (R2=0.98;
RMSE=7.2).

Figure 3a is describing the situation on 10/05/2003, typical time for spring
bloom. Dinoflagellates and diatoms occur in bloom conditions in the Northern
regions of the Baltic Sea, every year. These species lack the ability to govern
their motion within the water column and are therefore distributed equally in
the upper mixed layer. Consequently there should be better correlation between
the chlorophyll values measured at the depth of 5 m and estimated by satellite
based sensors. It is also seen in Fig. 3a that chlorophyll calculated from fluores-
cence data and algal_2 product coincide relatively well. Algal_1 results are much
higher (around 20 mg m–3) and noisier than algal_2 and only few pixels are pro-
cessed, but the numerical values are closer to measured ones, while algal_2 are
too low.

The MERIS image from 17/06/2003 was cloudy near Helsinki. Thus, compar-
isons could not be made for about one third of transect (Fig. 3b). The algal_2
values showed a rapid decrease from Tallinn towards the open sea, similar to the
fluorescence values. However, as seen in Fig. 3b, between 59.6ºN and 60.1ºN
the chlorophyll values obtained from the flow-through fluorescence values stayed
around 2 mg m–3, while MERIS algal_2 values varied around 4–8 mg m–3. In this
case the product algal_1 showed even closer values to the fluorescence chlorophyll
than algal_2.

Medium cyanobacterial bloom conditions were noticed close to the Finnish coast
in the end of July and beginning of August. Figure 3c shows typical cyanobacte-
rial situation in the Baltic Sea, where fluorescence gives almost the straight line,
however correlation between chlorophyll and florescence was perfect (R2=0.98;
RMSE=7.2). This effect is probably caused by picoplankton. Seppälä et al. (2007)
have shown that chlorophyll fluorometers, commonly used in the flow-through sys-
tems, cannot provide information about the amount of cyanobacteria in the water
as most of chlorophyll a in cyanobacteria is in non-fluorescing photosystem. They
suggest that flow-through measurements have to be done parallel with phycocyanin
fluorescence measurements. MERIS algal_2 high chlorophyll values are shown
close to the Finnish coast, which are not supported by measured fluorescence data.
This may be caused by the accumulation of cyanobacteria in upper water layers
(above 5 m where is intake of flow-trough system). The algal_1 and algal_2 values
coincide rather well with measured fluorescence profiles towards the Estonian coast,
where the bloom is not so pronounced.

MERIS products include set of flags showing various steps in processing or
problems. In all cases the flag showing uncertainties in estimates of water leav-
ing radiance (PCD_1_13) were raised over the entire transect. This is typical of
MERIS images over Baltic Sea and shows that problems in processing start already
during atmospheric correction, which means that further products can not be trusted
as well. Another important flag showing high level of dissolved organic matter in
water have not been activated yet in MERIS processing, but probably will in the
next reprocessing.



Accordance of MERIS Standard Products over the Gulf of Finland 449

 10 May 2003

0
5

10
15
20
25
30
35
40
45

59
.4

5

59
.5

5

59
.6

5

59
.7

5

59
.8

5

59
.9

5

60
.0

5

60
.1

5

Tallinn                        latitude                           Helsinki

C
hl

 (
m

g 
m

-3
).

algal_1
algal_2
fluorescence

 17 June 2003

0
2
4
6
8

10
12
14
16
18
20

59
.4

5

59
.5

5

59
.6

5

59
.7

5

59
.8

5

59
.9

5

60
.0

5

60
.1

5

Tallinn                          latitude                           Helsinki

C
hl

 (
m

g 
m

-3
).

algal_1

algal_2

fluorescence 

31 July 2003

0

5

10

15

20

25

30

35

59
.4

5

59
.5

5

59
.6

5

59
.7

5

59
.8

5

59
.9

5

60
.0

5

60
.1

5

Tallinn                            latitude                         Helsinki              

C
hl

 (
m

g 
m

-3
).

algal_1
algal_2
fluorescence

(a)

(b)

(c)
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MERIS algal_2 product shows rather well the seasonal variation of chlorophyll
(Fig. 4a, b), having significantly higher values in the spring bloom and lower values
later in the summer period. It also conforms to the increase of measured chlorophyll
in July-August, when cyanobacterial bloom occurs. In 2003 the in situ measure-
ments show that bloom was more pronounced in coastal regions than in the open
waters, and the same difference can be noticed also by satellite data. However,
MERIS estimates rise up to 39.2 mg m–3 and do not reach to the highest values
measured in situ (58.1 mg m–3).

Comparison for the three selected cases shows, that MERIS algal_2 is capable
to detect relative distribution of chlorophyll rather well (Fig. 5a) and highest val-
ues accord to the spring bloom, while lowest are for the non-bloom conditions.
When all available data collected at same day with satellite overpass (all together
33 points) are plotted against MERIS algal_2, then R2 was 0.51 and RMSE was
2.3 mg m–3, points are close to 1:1 line (Fig. 5b). For algal_1 there where less
points available (28) and even the R2 value was slightly higher (0.6) RMSE was
very high – 21.8 mg m–3 and algal_1 values are about two-times higher than the in
situ measured chlorophyll.
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Use of chlorophyll values derived from fluorescence measurements for compar-
isons with satellite data could increase the data points but in reality does not give any
better results. When fluorescence measurements and MERIS algal_2 at the same day
(17/06/2003) were compared pixel-by pixel bases, then R2 value was only 0.16, and
linear regression rather similar to that shown in Fig. 5a. (y=0.49x+2.9, RMSE=4.4).

It was surprising that MERIS data and flow-trough measurements are so weakly
comparable even in conditions when there were no extensive surface accumulations
of cyanobacteria in the Northern part of the Baltic Sea. The cyanobacterial situation
in the Gulf of Finland, where the bloom is usually most dense, was relatively good.
Only medium bloom conditions were noticed close to the Finnish coast in the end
of July and beginning of August. This situation was caused by the cold weather in
the summer of 2003. A basic requirement for the development of an algal bloom
is high enough temperature within the euphotic zone. We assume that in surface
bloom conditions there is hardly any connection between the bloom near or on
the water surface satellites are detecting and the bloom flow-through systems are
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detecting. Further investigations are needed about the vertical distributions of the
phytoplankton species and the other optically active substances in water column.

Conclusions

Results of this study suggest the performance of the MERIS standard algorithm
algal_1 is un-stable and therefore not suitable for use in the Gulf of Finland.
It could give some valuable estimates when chlorophyll values are low (below
4 mg m–3). The additional effect caused by the dissolved organic and suspended
matter, algal_1 may be applicable only in limited regions of the open water and
short period when non-bloom conditions occur.

As expected the MERIS algal_2 product is performing better. It gives more
consistent chlorophyll values. However, depending on local conditions it underesti-
mates lower values and overestimates higher chlorophyll values. It is also important
to understand, that fluorescence and flow-through data collected during cyanobac-
terial blooms is often not suitable for validation of satellite products. First of all
concentration of chlorophyll and chlorophyll a fluorescence are not in correlation
during cyanobacterial blooms. On the other hand concentration of chlorophyll at the
depth of 5 m and concentration of chlorophyll near the water surface, that satellites
are detecting, are not correlated during the phytoplankton blooms capable of migrat-
ing in the water column (like cyanobacteria). This makes it very difficult to develop
remote sensing algorithms for quantitative mapping of cyanobacteria. More reliable
information about vertical distribution as well as optical properties of the domi-
nating phytoplankton species and the accompanying optically active substances are
needed. In the mean time remote sensing is a very valuable tool to estimate relative
abundance of phytoplankton and to study occurrence and dynamics of blooms.
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